
HAL Id: tel-03566937
https://theses.hal.science/tel-03566937v1

Submitted on 11 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification of a methodology for the design and
production of safety-critical digital systems

Vincent Iampietro

To cite this version:
Vincent Iampietro. Formal verification of a methodology for the design and production of safety-critical
digital systems. Computer science. Université Montpellier, 2021. English. �NNT : 2021MONTS059�.
�tel-03566937�

https://theses.hal.science/tel-03566937v1
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIERDE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale : Information, Structures, Systèmes

Unité de recherche LIRMM

Vérification formelle d’une méthodologie pour la conception et
la production de systèmes numériques critiques

Vérification formelle d’une méthodologie pour la conception et
la production de systèmes numériques critiques

Formal verification of a methodology for the design and production of
safety-critical digital systems

Formal verification of a methodology for the design and production of
safety-critical digital systems

Présentée par Vincent IAMPIETRO

Le 16 décembre 2021

Sous la direction de David Delahaye
et David Andreu

Devant le jury composé de

Christian Retoré, Professeur, Université de Montpellier Président du jury

David Déharbe, Docteur, Ingénieur, Clearsy Examinateur

Marc Pouzet, Professeur, ENS, Paris Examinateur

David Andreu, MCF, Université de Montpellier/Neurinnov Co-Directeur

Sandrine Blazy, Professeure, Université de Rennes Rapporteure

Frédéric Boniol, Maître de recherche, ONERA, Toulouse Rapporteur

David Delahaye, Professeur, Université de Montpellier Directeur

iii

Remerciements

Je remercie mes deux directeurs de thèse David Delahaye et David Andreu pour avoir initié
ce projet de thèse et m’avoir permis d’y participer. Durant ces trois ans, nous avons appris à
nous connaître et à travailler ensemble (même si en bonne partie à distance, à cause de ce virus
dont il est interdit de prononcer le nom. . .). Grâce à vous, j’ai pu non seulement acquérir des
compétences en informatique, en mathématiques, en automatisme et électronique, mais aussi
des compétences en termes d’organisation et de conduite de projets. Je vous suis reconnaissant
pour votre patience et votre pédagogie à mon égard.

Je remercie aussi toute l’équipe MAREL du LIRMM pour m’avoir accueilli, et m’avoir ap-
porté des conseils et des critiques constructives vis-à-vis de mon travail ; notamment lors des
fameux séminaires de l’équipe. Au sein de l’équipe MAREL, je remercie tout particulièrement
mon co-bureau Nicolas Hlad et Pascal Zaragoza (qui était dans un bureau un peu plus loin)
qui ont été des soutiens tout au long de ma thèse, et sont maintenant des amis.

Je remercie également les autres doctorants du LIRMM, notamment ceux de l’équipe MAO-
RE, à savoir Gabriel Volte, Tom Davot, Samuel Masseport (pour ne citer que les plus perma-
nents), qui ont aussi été des soutiens au quotidien.

Finalement, je remercie mes amis et ma famille pour leur soutien, leur amour et l’intérêt
qu’ils ont pu porter à mon projet de thèse.

Pour conclure, merci à toutes les personnes qui ont contribué de près ou de loin à ce projet,
et à l’écriture de ce mémoire.

v

Contents

Remerciements iii

Résumé xi

Abstract xiii

Résumé étendu xv
0.1 Introduction . xv
0.2 Un formalisme de haut-niveau : les réseaux de Petri xvi
0.3 Un langage cible : VHDL . xviii
0.4 La transformation modèle-vers-texte de HILECOP xxi
0.5 Preuve de préservation sémantique . xxiii
0.6 Conclusion . xxv

1 Introduction 1
1.1 The HILECOP methodology . 6

1.1.1 Designing safety-critical digital systems . 6
1.1.2 Introducing the HILECOP methodology . 7
1.1.3 Verifying the HILECOP methodology . 12

2 Preliminary notions 17
2.1 Mathematical formalisms . 17

2.1.1 Classical first-order logic . 17
2.1.2 ZF Set theory . 18
2.1.3 Rule-based definition of sets . 21

2.2 Induction principles . 24
2.2.1 Well-founded induction . 24
2.2.2 Structural induction . 24
2.2.3 Rule induction . 26

2.3 The Coq proof assistant . 27
2.3.1 The Calculus of Inductive Constructions (CIC) 28
2.3.2 Inductive types . 30
2.3.3 Functional programming . 33
2.3.4 Dependent types . 34

vi

3 Implementation of the HILECOP Petri nets 37
3.1 Informal presentation of Synchronously executed Petri nets 37

3.1.1 Preliminary notions on Petri nets . 37
3.1.2 Particularities of SITPNs . 43

3.2 Formalization of the SITPN structure and semantics 48
3.2.1 SITPN structure . 48
3.2.2 SITPN State . 49
3.2.3 Preliminary definitions and fired transitions 50
3.2.4 SITPN Semantics . 52
3.2.5 SITPN Execution . 55
3.2.6 Well-definition of a SITPN . 56
3.2.7 Boundedness of a SITPN . 59

3.3 Implementation of the SITPN structure and semantics 59
3.3.1 Implementation of the SITPN and the SITPN state structure 60
3.3.2 Implementation of the SITPN semantics . 61

3.4 Conclusion . 63

4 H-VHDL: a target hardware description language 65
4.1 Presentation of the VHDL language . 65

4.1.1 Main concepts . 66
4.1.2 Informal semantics of the VHDL language 72

4.2 Choosing a formal semantics for VHDL . 75
4.2.1 Specifying our needs: HILECOP and VHDL 75
4.2.2 Looking for an existing formal semantics 77

4.3 Abstract syntax ofH-VHDL . 84
4.3.1 Design declaration . 84
4.3.2 Concurrent statements . 85
4.3.3 Sequential statements . 86
4.3.4 Expressions, names and types . 87

4.4 Preliminary definitions . 87
4.4.1 Semantic domains . 87
4.4.2 Elaborated design and design state . 88

4.5 Elaboration rules . 89
4.5.1 Design elaboration . 90
4.5.2 Generic clause elaboration . 91
4.5.3 Port clause elaboration . 92
4.5.4 Architecture declarative part elaboration 93
4.5.5 Type indication elaboration . 93
4.5.6 Behavior elaboration . 95
4.5.7 Implicit default value . 98
4.5.8 Typing relation . 98
4.5.9 Static expressions . 98
4.5.10 Valid port map . 99
4.5.11 Valid sequential statements . 102

vii

4.6 Simulation rules . 104
4.6.1 Full simulation . 106
4.6.2 Simulation loop . 108
4.6.3 Simulation cycle . 108
4.6.4 Initialization rules . 109
4.6.5 Clock phases rules . 112
4.6.6 Stabilization rules . 114
4.6.7 Evaluation of input and output port maps 116
4.6.8 Evaluation of sequential statements . 119
4.6.9 Evaluation of expressions . 123

4.7 An example of full simulation . 124
4.7.1 Elaboration of the tl design . 127
4.7.2 Simulation of the tl design . 133

4.8 Implementation of theH-VHDL syntax and semantics 141
4.8.1 Implementation of the H-VHDL abstract syntax, elaborated design and

design state . 141
4.8.2 Implementation of the elaboration phase 143
4.8.3 Implementation of the simulation algorithm 145

4.9 Conclusion . 147

5 The HILECOP model-to-text transformation 149
5.1 Informal presentation of the HILECOP model-to-text transformation 149
5.2 Expressing transformation functions . 157

5.2.1 Building transformation functions . 157
5.3 The transformation algorithm . 163

5.3.1 The sitpn_to_hvhdl function . 163
5.3.2 Primitive functions and sets . 165
5.3.3 Generation of component instances and constant parts 168
5.3.4 Interconnection of the place and transition component instances 173
5.3.5 Generation of ports, the action and the function process 177

5.4 Coq implementation of the HILECOP model-to-text transformation 180
5.4.1 The generate_sitpn_infos function . 183
5.4.2 The generate_architecture function . 184
5.4.3 The generate_ports function . 186
5.4.4 The generate_comp_insts and generate_design_and_binder functions . 187

5.5 Conclusion . 188

6 Proving semantic preservation in HILECOP 191
6.1 Proofs of semantic preservation in the literature 191

6.1.1 Compilers for generic programming languages 193
6.1.2 Compilers for hardware description languages 194
6.1.3 Model transformations . 196
6.1.4 Discussions on transformations and proof strategies 198

6.2 The state similarity relation . 198

viii

6.3 Behavior preservation theorem . 203
6.3.1 Proof notations . 204
6.3.2 Preliminary definitions . 204
6.3.3 The behavior preservation theorem . 206
6.3.4 The trace similarity theorem . 209

6.4 A detailled proof: equivalence of fired transitions 219
6.4.1 An accompanied journey along the proof 219
6.4.2 A report on a bug detection . 232

6.5 Mechanized verification of the proof . 233
6.6 Conclusion . 237

7 Conclusion 241
7.1 Future work and perspectives . 245

A The place design in concrete and abstract VHDL syntax 249

B The transition design in concrete and abstract VHDL syntax 255

C The semantic preservation theorem and its dependencies 261

D Semantic preservation proof 265
D.1 Initial States . 266

D.1.1 Initial states and marking . 267
D.1.2 Initial states and time counters . 270
D.1.3 Initial states and reset orders . 271
D.1.4 Initial states and condition values . 273
D.1.5 Initial states and action executions . 274
D.1.6 Initial states and function executions . 274
D.1.7 Initial states and fired transitions . 275

D.2 First Rising Edge . 276
D.2.1 First rising edge and marking . 278
D.2.2 First rising edge and time counters . 278
D.2.3 First rising edge and reset orders . 280
D.2.4 First rising edge and action executions . 282
D.2.5 First rising edge and function executions 282
D.2.6 First rising edge and sensitization . 284
D.2.7 First rising edge and conditions . 284

D.3 Rising Edge . 285
D.3.1 Rising edge and Marking . 285
D.3.2 Rising edge and conditions . 286
D.3.3 Rising edge and time counters . 289
D.3.4 Rising edge and reset orders . 290
D.3.5 Rising edge and action executions . 298
D.3.6 Rising edge and function executions . 299
D.3.7 Rising edge and sensitization . 301

ix

D.4 Falling Edge . 305
D.4.1 Falling edge and marking . 305
D.4.2 Falling edge and time counters . 313
D.4.3 Falling edge and condition values . 319
D.4.4 Falling edge and action executions . 319
D.4.5 Falling edge and function executions . 322
D.4.6 Falling edge and firable transitions . 322
D.4.7 Falling edge and fired transitions . 335

Bibliography 353

xi

Résumé

La production de circuits numériques complexes est devenue impossible sans l’aide des ordi-
nateurs. La méthodologie HILECOP (HIgh LEvel hardware COmponent Programming) assiste
les ingénieurs dans la conception et la production de circuits numériques dans le contexte des
systèmes critiques, i.e. systèmes dont le malfonctionnement peut résulter en la perte de vies
humaines, des catastrophes naturelles, des désastres économiques, etc. À titre d’exemple, la
société Neurinnov1 applique la méthodologie HILECOP pour la production de neuroprothèses,
considérées comme des dispositifs médicaux hautement critiques par la loi de régulation de
l’UE2. Dans HILECOP, les ingénieurs produisent un modèle de circuit numérique. Ils utilisent
un formalisme graphique qui regroupe les diagrammes à composant et un type particulier de
réseaux de Petri (RdP). Ensuite, le modèle est transformé en une représentation textuelle inter-
médiaire décrite en langage VHDL (Very high speed integrated circuit Hardware Description
Language). Finalement, un compilateur/synthétiseur industriel génère un circuit numérique
physique, i.e. un ASIC ou sur carte FPGA, depuis la représentation VHDL. Ici, l’utilisation
des RdPs est liée au contexte des systèmes critiques. Les RdPs permettent la vérification de
propriétés sur les modèles de circuits numériques grâce à l’application de techniques de model-
checking. Cependant, une des transformations décrite dans la méthodologie HILECOP pourrait
altérer le comportement (ou sémantique) des modèles initiaux, invalidant ainsi les précédentes
étapes de vérification. Le but de cette thèse est de prouver que la transformation modèle-vers-
texte de HILECOP, qui génère une description VHDL depuis un modèle de circuit numérique,
préserve le comportement des modèles d’entrée, i.e.: pour tout modèle passé en entrée de la
transformation, la description VHDL résultante se comporte de la même manière. Pour prouver
cette propriété, nous nous inspirons des travaux menés sur la vérification formelle de compi-
lateurs (notamment sur le compilateur C certifié CompCert [72]). Notre approche est celle de la
vérification déductive interactive avec assistants de preuve. Dans ce contexte, les étapes pour
établir la propriété de préservation de comportement de la transformation sont : (1) formaliser
la sémantique d’exécution de la représentation source, (2) de la représentation cible, (3) décrire
la transformation, et (4) prouver un théorème de préservation sémantique. Même en suivant ce
processus clairement détaillé, les spécificités de la transformation modèle-vers-texte de HILE-
COP (comparaît notamment aux compilateurs) apportent de nouvelles questions recherches et
des challenges à chaque étape. Dans cette thèse, nous utilisons l’assistant à la preuve Coq pour
nous accompagner tout au long du processus. Finalement, nous avons prouvé que la trans-
formation de HILECOP préserve le comportement de tous modèles initiaux. La mécanisation
complète de la preuve avec Coq est un travail en cours.

1https://neurinnov.com/
2https://eur-lex.europa.eu/eli/reg/2017/745/2020-04-24

https://neurinnov.com/
https://eur-lex.europa.eu/eli/reg/2017/745/2020-04-24

xiii

Abstract

The complexity of digital hardware circuits makes it difficult to produce them without the help
of computers. The HILECOP (HIgh LEvel hardware COmponent Programming) methodology
aims at the assistance of engineers in the design and production of such digital circuits. The
context of production is the one of safety-critical digital systems, i.e. systems which failure could
result in direct human losses, natural catastrophes, economic disasters, etc. To give an exam-
ple, the Neurinnov3 company leverages the HILECOP methodology to produce highly critical
medical devices known as neuroprostheses. In HILECOP, engineers rely on a graphical formal-
ism, based on component diagrams and a particular kind of Petri nets, to produce a model of
a digital circuit. Then, a computer program turns the model into an intermediary description
written in VHDL (Very high speed integrated circuit Hardware Description Language). Finally,
an industrial compiler/synthesizer transforms the VHDL description into a concrete physical
circuit on an FPGA, or as an ASIC. The use of Petri nets permits the engineers to describe a
formal model of a digital circuit. The mathematical foundations of Petri nets enable the use of
model-checking techniques. Thus, proofs can be brought that the produced models verify cer-
tain soundness properties. However, even with a sound model of a circuit, one transformation
step could alter the behavior of the initial model. The goal of this thesis is to bring the for-
mal proof that the model-to-text transformation from a HILECOP high-level model to a VHDL
description is semantic preserving (or behavior preserving); i.e. for all high-level model given as
an input to the transformation, the resulting VHDL description behaves similarly. To perform
this task, we draw our inspiration from the works pertaining to the formal verification of com-
pilers for programming languages (especially from the certified C compiler CompCert [72]).
Specifically, we are interested in proving the property of semantic preservation in the context
of deductive verification with proof assistants. In this context, the steps to verify that a transfor-
mation is semantic preserving include: (1) the formalization of the execution semantics of the
source representation, (2) of the target representation, (3) the formal description of the trans-
formation, and (4) the proof of a corresponding semantic preservation theorem. In this thesis,
these steps have been carried within the framework of the Coq proof assistant. Even though
these steps are clearly set, the specificities of the HILECOP model-to-text transformation, com-
pared to compilers for programming languages, bring some interesting research challenges.
Finally, we have brought the paper proof that the HILECOP transformation is semantic preserv-
ing by demonstrating a related behavior preservation theorem. The full mechanization of the
proof using the Coq proof assistant is an ongoing task.

3https://neurinnov.com/

https://neurinnov.com/

xv

Résumé étendu

0.1 Introduction

Pour répondre aux contraintes liées à la conception de circuits numériques critiques, et à
l’augmentation constante de la complexité des systèmes, le domaine de l’Ingénierie Système à
Base de Modèles (ISBM) a été développé. L’intérêt est de travailler sur des modèles de haut
niveau avec un pouvoir d’expression et des qualités de compréhension et de lisibilité qui facili-
tent les interactions entre les acteurs de la conception du circuit (i.e, les ingénieurs). Plusieurs
formalismes existent : le langage SysML [49], des variantes du langage C [116], ou encore les
réseaux de Petri (RdPs) [113], pour citer les plus répandus. Une fois la conception terminée,
les modèles sont physiquement synthétisés en suivant un procédé manuel ou automatique. Il
reste alors à prouver que la phase de transformation préserve le comportement du modèle de
conception. La présente thèse s’intéresse à la vérification d’un processus d’aide à la modélisa-
tion et à la production de circuits numériques critiques : la méthodologie HILECOP (HIgh LEvel
hardware COmponent Programming). Cette méthodologie est mise en œuvre dans le cadre de
la création de micro-contrôleurs intégrés à des dispositifs médicaux de type neuroprothèses.
La Figure 1 en décrit les principales étapes.

Component 1

behavior interface

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC

Compute

clk

rst

SendQuery

Query

Answer

s1

s2

Component 2

interface behavior

clk

rst

UniqueQuery

Query

Answer

s3

s4

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

Answer

Query

CheckStatus

SustainrLED
[3,3]

EndOfCheck

Component 1

behavior interface

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC

Compute

clk

rst

SendQuery

Query

Answer

s1

s2

Component 2

interface behavior

clk

rst

UniqueQuery

Query

Answer

s3

s4

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

Answer

Query

CheckStatus

SustainrLED
[3,3]

EndOfCheck

Abstract
model

1

designing

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC
Compute

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

CheckStatus

SustainrLED
[3,3]

EndOfCheck

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC
Compute

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

CheckStatus

SustainrLED
[3,3]

EndOfCheck

a
ss

em
bl

in
g

&

fl
a
tt

en
in

g

analysis

Implementation
model

2

analysis
feedback

VHDL
top-level
design

m
od

el
-t

o
-t

ex
t

tr
a
n
sf

o
rm

a
ti

o
n

3

co
m

p
il
a
ti

o
n
/

sy
n
th

es
is

FPGA and ASIC
implementation

4

FIGURE 1: Principe de la méthodologie HILECOP; les double flêches horizontales
représentent des phases de transformation; les simple flêches indiquent les autres

types d’opérations ayant cours à une étape précise, ou entre étapes.

xvi

Le concepteur de systèmes électroniques esquisse premièrement un modèle graphique de
haut niveau de son circuit (1©). Ce modèle s’appuie sur le formalisme des diagrammes à com-
posants, avec l’addition des RdPs pour décrire le comportement interne des parties du circuit.
Dans un deuxième temps, les parties du modèle sont assemblées et la structure des composants
est effacée. Le résultat obtenu est un réseau de Petri global décrivant le système modélisé (2©).
Des outils d’analyse exploités par la méthodologie permettent alors de vérifier certaines pro-
priétés du modèle (caractère borné, vivacité. . .) et présentent un compte rendu au concepteur.
Après plusieurs itérations du cycle analyse-correction, du code VHDL est généré à partir du
modèle d’implémentation (3©). Dès lors, la dernière étape de la méthodologie, qui opère la
synthèse du circuit électronique depuis le code source VHDL, est prise en charge par un com-
pilateur/synthétiseur industriel propriétaire (4©).

L’objectif de la thèse est de prouver que la transformation du modèle d’implémentation en
code VHDL (i.e, de 2© vers 3© dans la Figure 1) n’introduit pas de divergences de comporte-
ment. Dans cette optique, il sera nécessaire de formaliser la sémantique des modèles de haut
niveau (RdP), du langage cible (VHDL), et de décrire la transformation. Ensuite, la preuve
de similarité comportementale devra être établie. L’intégralité de la démarche sera mécanisée
avec l’assistant à la preuve Coq [106]. Même si cette démarche a été éprouvée pour la vérifi-
cation de compilateurs, son application à la conception de circuits numériques est bien moins
fréquente. L’intérêt scientifique provient de la distance qui existe entre le modèle d’exécution
du formalisme source (SITPN) et celui du langage cible (VHDL). Cette distance devra être prise
en compte lors de la preuve de préservation de comportement.

0.2 Un formalisme de haut-niveau : les réseaux de Petri

Du fait de leur statut de modèles formels et des possibilités d’analyse qui en résultent, les RdPs
ont été retenus comme modèles de haut niveau de la méthodologie HILECOP. Le but de la
méthodologie étant la conception et la production de circuits numériques critiques, les modèles
se doivent d’être validés par analyse formelle. Afin d’augmenter l’expressivité des modèles, les
RdPs HILECOP combinent plusieurs classes connues de RdPs (présentées ci-après), mais leur
particularité réside dans leur exécution synchrone. Les RdPs HILECOP sont nommés SITPNs
pour Synchronously executed Interpreted Time Petri Nets with priorities.

Les SITPNs sont des RdP interprétés; des actions peuvent être associées aux places d’un
réseau et des fonctions/conditions peuvent être associées aux transitions. Actions et fonctions
définissent des opérations sur une ensemble de variables, ici, des signaux VHDL. Les conditions
associées aux transitions sont des expressions Booléennes sur la valeur des signaux. Dans un
RdP interprété, une transition est franchissable si elle est sensibilisée et que toutes les condi-
tions qui lui sont associées sont vraies. La Figure 2 donne un exemple de RdP interprété.

xvii

p0 a0 p1

p2 a1

t0
f0
c0

t1 c1

c0: i > 10◦C
f0: set temperature(o1,s)
c1: i ≤ 10◦C and s

a0: green LED on(o2)
a1: red LED on(o2)

FIGURE 2: Un exemple de réseau de Petri interprété; sur le côté gauche, le RdP; sur
le côté droit, les expressions Booléennes associées aux conditions et les opérations

associées aux actions et fonctions.

Les RdP utilisés dans HILECOP sont temporels ; une fenêtre de tir, i.e un intervalle de temps,
peut être associée à une transition. Un compteur de temps est lancé lorsqu’une transition
devient sensibilisée; celle-ci devient franchissable lorsque son compteur de temps a atteint
l’intervalle de tir. La Figure 3 donne un exemple de RdP temporel. La valeur courante des
compteurs de temps est représentée entre chevrons en dessous des intervalles temporels asso-
ciés. En résumé, une transition d’un SITPN est franchissable si elle est sensibilisée, si toutes les
conditions qui lui sont associées sont vraies et si son compteur de temps est dans l’intervalle
défini.

p0

p1

t0
[2,∞]
<2>

t1
[2, 4]
<1>

FIGURE 3: Un exemple de RdP temporel. La valeur des compteurs de temps appa-
raît en rouge.

Contrairement au cas général, les SITPNs ont une politique de tir (i.e, une sémantique) syn-
chrone. Fondamentalement, le tir des transitions d’un RdP est un phénomène indéterministe
(si deux transitions sont franchissables au même instant, tous les ordres de tirs sont possibles),
et asynchrone (dès qu’une transition est franchissable, elle peut être tirée sans attente). A con-
trario, l’évolution d’un SITPN est rythmée par le front montant et le front descendant d’un
signal d’horloge, comme montré dans la Figure 4. Sur le front descendant (1© de la Figure 4),
toutes les transitions devant être tirées sont déterminées, ce après mise à jour des conditions
et intervalles de temps ; sur le front montant (2© de la Figure 4), les précédentes transitions

xviii

sont tirées, entraînant la mis à jour du marquage du réseau et l’exécution de fonctions. La
sémantique d’évolution d’un tel réseau est synchrone et déterministe.

Clock signal

Updates the marking,
the reset order values
and the function execution status.

Updates the condition values,
the time counter values,
and the action activation status.

FIGURE 4: Evolution d’un SITPN synchronisée avec un signal d’horloge.

La structure et la sémantique des SITPNs ont été formalisées dans [71, 78]. La séman-
tique est exprimée comme un système états-transitions où les transitions sont étiquetées par
les évènements d’un signal d’horloge. Il y a deux évènements possibles : le front montant et
le front descendant du signal. L’état d’un SITPN décrit, entre autres, le marquage courant du
SITPN, la valeur des compteurs de temps et des conditions associés aux transitions, la liste des
transitions à tirer. . . La sémantique des SITPNs fixe les règles de changement d’état en fonction
des évènements d’horloge. Par exemple, sur le front descendant d’horloge, la liste des transi-
tions à tirer au prochain front montant est calculée; une règle stipule qu’une aucune transition
non franchissable au front descendant n’appartient à l’ensemble des transitions à tirer.

La première contribution de la thèse est l’implantation en Coq de la structure et de la séman-
tique des SITPNs. La sémantique a été implantée comme une relation inductive paramétrée
par un SITPN, deux états (i.e, avant et après transition), et un évènement d’horloge. La rela-
tion présente deux cas de construction, un pour chaque évènement d’horloge considéré. Afin
de tester notre implantation de la sémantique des SITPNs, un interprète a été conçu, i.e un pro-
gramme qui simule les changements d’état d’un SITPN pour n cycles d’horloge, en partant de
l’état initial du réseau. Cet interprète est prouvé correct et complet vis-à-vis de la sémantique
des SITPNs pour une évolution sur un cycle d’horloge. L’intégralité de la formalisation et de la
mécanisation est mise à disposition du lecteur4. Cependant, nous avons utilisé une autre ver-
sion de l’implantation des SITPNs en Coq pour effectuer la preuve de préservation sémantique.
La dernière version est plus élégante et utilisent les types dépendants5.

0.3 Un langage cible : VHDL

Il existe plusieurs techniques permettant la synthèse physique d’un RdP. Cependant, la tech-
nique la plus étudiée est la transformation vers la langage VHDL. Cette technique a donc

4https://github.com/viampietro/sitpns
5https://github.com/viampietro/ver-hilecop/tree/master/sitpn/dp

https://github.com/viampietro/sitpns
https://github.com/viampietro/ver-hilecop/tree/master/sitpn/dp

xix

été retenue par la méthodologie HILECOP. Le langage VHDL permet les descriptions struc-
turelle et comportementale de circuits électroniques, à des fins de simulation ou de synthèse
physique. En VHDL, un design décrit un composant électronique en termes d’interface entrée-
sortie (l’entité) et de comportement interne (l’architecture). Le comportement d’un design s’ex-
prime de deux manières : via l’interconnexion d’instances d’autres designs (des sous-compo-
sants), ou à l’aide de processus. La spécificité du langage VHDL tient à l’exécution concurrente
des processus et des sous-composants décrivant une architecture de design. Un processus
définit un bloc d’instructions séquentielles; il observe un certain nombre de signaux qui com-
posent sa liste de sensibilité. Le changement d’état d’un signal de cette liste entraîne l’exécution
du bloc d’instructions du processus. Conceptuellement, un signal VHDL représente une con-
nexion physique sur un circuit électronique. Les signaux sont les principaux véhicules des
valeurs dans les programmes VHDL.

La sémantique de VHDL est décrite dans une prose informelle dans le manuel de référence
du langage (MRL). De fait, interpréter un programme VHDL, qui décrit un design de circuit, re-
vient à simuler le design décrit. Dans le MRL, la sémantique de VHDL est donc définie sous la
forme d’une boucle de simulation. La boucle de simulation spécifie la dynamique d’exécution
des blocs concurrents qui composent une architecture de design, ainsi que la propagation des
valeurs au travers des signaux.

La littérature propose de nombreuses formalisations de la sémantique de VHDL [69]. Cer-
taines formalisations expriment la boucle de simulation telle qu’exhibée dans le MRL; d’autres
choisissent de s’abstraire de cette boucle, et optent pour une formalisation alternative basée
sur des modèles permettant la gestion de la concurrence et du temps (automates temporels,
réseaux de Petri, logique d’intervalles temporels. . .).

La méthodologie HILECOP opère la génération d’un design VHDL dans l’optique de sa
synthèse physique. Dès lors, nous ne considérons qu’une partie synthétisable du langage que
nous définissons et nommonsH-VHDL. De plus, les designs VHDL générés par la méthodolo-
gie HILECOP décrivent des circuits synchrones, i.e, dont l’exécution est rythmée par un signal
d’horloge. La prise en compte d’une sous-partie synthétisable et du synchronisme nous a per-
mis d’exprimer la sémantique des programmesH-VHDL en termes d’une boucle de simulation
bien plus simple en comparaison de celle exprimée dans le MRL. L’Algorithme 1 décrit notre
boucle spécifique de simulation pour un designH-VHDL.

xx

Algorithm 1: Simulation(∆, σe, cs, Ep, Tc)

// Initialization phase.
1 σ′e ← RunAllOnce(∆,σe,cs)
2 σ← Stabilize(∆,σ′e,cs)

// Main loop.
3 θ ← [σ]

4 while Tc > 0 do
5 σi ← Inject(∆,σ,Ep,Tc)
6 σ↑ ← RisingEdge(∆,σi,cs)
7 σ′ ← Stabilize(∆,σ↑,cs)
8 σ↓ ← FallingEdge(∆,σ′,cs)
9 σ← Stabilize(∆,σ↓,cs)

10 θ ← θ ++ [σ′, σ]
11 Tc ← Tc − 1

12 return θ

L’Algorithme 1 est paramétré par un design élaboré ∆ et un état de design σe. Ces deux
paramètres sont le résultat de l’élaboration du design qui va être simulé. Le paramètre cs
correspond au comportement, ou, pour être précis, à la partie comportementale de l’architecture
du design. C’est ce comportement qui sera exécuté au cours de la simulation. Le paramètre
Ep est l’environnement de simulation. Il permet l’injection de nouvelles valeurs sur les ports
d’entrée du design à chaque nouveau cycle d’horloge. Le paramètre Tc correspond au nombre
de cycles de simulation à effectuer, c’est à dire, le front de simulation.

La première partie de l’Algorithme 1 correspond à la phase d’initialisation. Chaque proces-
sus et sous-composants appartenant à cs sont exécutés exactement une fois lors de cette phase
(RunAllOnce(∆, σe, cs)). S’ensuit une phase de stabilisation des signaux (Stabilize(∆, σe, cs))
où seules les parties combinatoires du design sont exécutées. Ensuite, vient l’exécution de la
boucle principale de simulation. La boucle principale exécute Tc fois les phases d’un cycle
d’horloge. Dans l’ordre, ces phases sont : (1) injection de nouvelles valeurs dans les ports
d’entrée du design simulé, (2) exécution des processus séquentiels qui réagissent au front
montant de l’horloge, (3) stabilisation des signaux, (4) exécution des processus séquentiels
qui réagissent au front descendant de l’horloge, (5) stabilisation des signaux. Pour un cycle
d’horloge, l’état stable obtenu au milieu du cycle et à la fin du cycle sont ajoutés à la trace de
simulation θ. Cette trace de simulation est retournée à la fin de l’Algorithme 1.

Une formalisation de la sémantique deH-VHDL a été effectuée sous la forme d’une séman-
tique opérationnelle à petit pas pour la partie simulation, c.-à-d., chaque état intermédiaire est
considéré dans la trace de simulation. Le corps des processus est lui interprété avec une séman-
tique à grands pas. La mécanisation en Coq de la syntaxe et la sémantique de H-VHDL a été
réalisée. Cette sémantique s’inspire des travaux de formalisation esquissés dans [109, 17]. La
sémantique formalisée prend également en compte la phase d’élaboration du design, prélimi-
naire à la simulation. L’élaboration génère l’environnement de simulation, i.e un couple ∆, σinit
qui se trouve en paramètre de la boucle de simulation (voir Algorithme 1). Durant la phase
d’élaboration, une vérification de type est effectué sur le code VHDL. La vérification de type

xxi

s’assure que la partie déclarative et la partie comportementale du design VHDL respectent cer-
taines règles de typage définies par le MRL. Par exemple, pour une instruction d’affectation de
valeur à un signal, l’expression affectée doit être du même type que le signal cible.

0.4 La transformation modèle-vers-texte de HILECOP

Comparée à la compilation de programmes (qui est un type de transformation), l’originalité
de la transformation modèle-vers-texte de HILECOP provient de plusieurs critères. Première-
ment, la représentation source de la transformation HILECOP n’est pas un programme écrit
dans un langage de programmation. C’est un formalisme graphique, c.-à-d., celui des RdPs.
La structure des modèles d’entrée est alors bien différente de celle de l’arbre syntaxique d’un
programme. Par conséquent, l’expression de la transformation ne peut pas suivre la définition
récursive opérant une descente dans l’arbre syntaxique du programme d’entrée, définition qui
est usuelle pour les compilateurs de langage de programmation. Deuxièmement, le langage
cible de la transformation HILECOP est un langage de description d’architecture de circuits,
c.-à-d., VHDL. Même spécifique, ce langage reste un langage de programmation.

Nous allons illustrer la transformation modèle-vers-texte HILECOP en prenant le SITPN
présenté en Figure 5 comme modèle d’entrée.

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN
H-VHDL top-level design

Transformation

FIGURE 5: Transformation d’un modèle d’entrée SITPN en un design de top-niveau
H-VHDL. Le modèle d’entrée est composé de deux places p0 et p1, deux transitions
t0 et t1. La transition t0 est associée à l’intervalle de temps [1, 3] et à la condition c0.
La transition t1 est associée à la condition c1, et son tir déclenche l’exécution de la
fonction f0. L’action a0 est activé lorsque la place p0 est marqué, et de même pour

l’action a1 et la place p1.

La transformation modèle-vers-texte HILECOP génère un design H-VHDL dit de top-niveau
(c.-à-d., un circuit qui n’est pas lui-même embarqué dans un autre circuit) depuis un modèle
d’entrée SITPN. La Figure 6 présente la forme finale du designH-VHDL de top-niveau résultant
de la transformation.

xxii

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN

idp0

in

out

⇓
const.

idt0

in

out

⇓
const.

idp1

in

out

⇓
const.

idt1

in

out

⇓
const.

action function

idc0idc1

ida0 ida1
idf0

H-VHDL top-level design

Transformation

FIGURE 6: DesignH-VHDL de top-niveau résultant de la transformation HILECOP.

La première partie de la transformation HILECOP génère les composants qui vont constituer
l’architecture interne du design de top-niveau. Pour chaque place du modèle d’entrée, un com-
posant de type place, qui correspond à une instance du design place défini au préalable, est
généré. Il en va de même pour chaque transition du modèle d’entrée. Dans la Figure 6, la place
p0 donne lieu au composant place d’identifiant idp0 , la transition t0 au composant transi-
tion d’identifiant idt0 , etc. Lors de cette première phase, les parties constantes des composants
sont générées (en bleue sur la Figure 6). Les parties constantes comprennent les constantes
génériques, qui donne les dimensions aux interfaces des composants, et les informations liées
aux arcs du SITPN d’entrée (c.-à-d., poids et types) qui sont encodées dans l’interface des com-
posants de type place.

Lors de la deuxième phase de la transformation, les interconnexions entre composants de
type place et composants de type transition sont générées. Les interconnexions apparaissent
en rouge dans la Figure 6. C’est grâce à ces interconnexions et aux comportements internes de
chaque composant que la même sémantique d’exécution du SITPN d’entrée sera obtenue dans
sa version VHDL.

La dernière phase de la transformation concerne les éléments d’interprétation contenus
dans le modèle d’entrée. Pour chaque condition du modèle d’entrée, un port d’entrée primaire
(c.-à-d., un port d’entrée d’un design de top-niveau) est généré. Ce port d’entrée est connecté
à l’interface de certains composants de type transition (fils verts dans la Figure 6). Cela
représente l’association de la condition à certaines transitions du SITPN. Pour chaque action
et fonction du modèle d’entrée, un port de sortie correspondant est généré dans l’interface de
sortie du design de top-niveau. Ces ports de sortie représentent l’état d’activation/exécution
des actions/fonctions associées. Pour qu’une action soit activée, il faut qu’au moins une des

xxiii

places à laquelle l’action est associée soit marquée d’un jeton. Pour représenter ce mécanisme
en VHDL, les composants de type place possèdent un port de sortie marked qui indique leur
état de marquage. Lors de la transformation, tous les ports de sortie marked des composants de
type place sont branchés au processus action, qui est aussi généré par la transformation. Le
processus action est alors chargé d’activer les ports de sortie représentant les actions du mod-
èle d’entrée. Le même mécanisme est mis en place pour les fonctions. Chaque composant de
type transition est armé d’un port de sortie fired qui indique leur état de tir. Rappelons que
dans la sémantique des SITPNs, une fonction est exécutée lorsqu’une des transitions qui lui est
associée est tirée. Lors de la transformation, chaque port fired est branché au processus func-
tion, qui est aussi généré par la transformation. Le processus function va se charger d’activer
les ports de sortie représentant les fonctions du modèle d’entrée. Cette activation se fait selon
la valeur des ports fired des composants de type transition. L’interconnexion entre les ports
marked et le processus action, et les ports fired et le processus function est représentée par
les fils orange dans la Figure 6.

Un algorithme complet de la transformation a été exprimé en pseudo-langage impératif.
Ensuite, l’algorithme a été implanté par une fonction écrite en langage Coq.

0.5 Preuve de préservation sémantique

Le but de cette thèse a été de prouver que la transformation modèle-vers-texte de HILECOP
préserve le comportement de ses modèles d’entrée. Plus précisément, pour un modèle d’entrée
de la transformation, nous voulons prouver que le design de top-niveau H-VHDL résultant se
comporte de la même manière. Il est donc d’abord important de définir la relation nous perme-
ttant de comparer un état d’un SITPN avec un état d’un design de top-niveau H-VHDL. Nous
avons défini une relation de similarité entre l’état d’un SITPN et l’état d’un design H-VHDL.
C’est à travers cette relation de similarité que notre théorème de préservation de comporte-
ment pourra être exprimé. La relation de similarité relie les valeurs présentes dans l’état d’un
SITPN aux valeurs de certains éléments, principalement les valeurs de signaux, présents dans
l’état d’un designH-VHDL. Pour un état s de SITPN et un état σ de designH-VHDL, s et σ sont
similaires si :

– Pour toute place p, le marquage de p est égal à la valeur du signal interne s_marking d’un
composant de type place d’identifiant idp (où p et idp sont liés par la transformation).

– Pour toute transition t, la valeur du compteur de temps associé à t est égale à la valeur du
signal interne s_time_counter d’un composant de type transition d’identifiant idt (où t et
idt sont liés par la transformation).

– Pour toute transition t, la valeur de l’ordre de reset associé à une transition t est égale à
la valeur du signal interne s_reinit_time_counter d’un composant de type transition
d’identifiant idt (où t et idt sont liés par la transformation).

– Pour toute condition c, la valeur d’une condition c est égale à la valeur du port d’entrée idc
représentant la condition dans le design de top-niveauH-VHDL.

xxiv

– Pour toute action a, la valeur d’une action a est égale à la valeur du port de sortie ida
représentant l’action dans le design de top-niveauH-VHDL.

– Pour toute fonction f , la valeur d’une fonction f est égale à la valeur du port de sortie id f
représentant la fonction dans le design de top-niveauH-VHDL.

Notre théorème de préservation de comportement prend donc la forme suivante. Pour
un modèle SITPN d’entrée et le design de top-niveau H-VHDL résultant de la transformation,
si le SITPN renvoie la trace d’exécution θ, et le design renvoie la trace de simulation θ′ en
s’exécutant pendant τ cycle d’horloges, alors chaque couple d’états, considéré dans les traces
à un même instant temporel, vérifie la relation de similarité.

Pour prouver ce théorème, nous avons raisonné par induction sur la structure des traces
d’exécution. Le lemme fondamental pour la preuve déclare qu’à états de départ similaires, un
SITPN et un design H-VHDL liés par la transformation, et qui s’exécutent pendant un cycle
d’horloge, arrivent en fin de cycle à deux états similaires. La Figure 7 exprime graphiquement
ce lemme.

sitpn
s s′ s′′↑ ↓

design

(= bsitpnc) σ σ′σi σ↑ σ′′σ↓

Inject ↑ ↓

↓≈ ↑≈ ↓≈

FIGURE 7: Représentation graphique du lemme déclarant que la transformation
HILECOP préserve la sémantique des modèles initiaux pour une exécution sur un

cycle d’horloge.

La partie supérieure de la Figure 7 représente l’exécution d’un cycle d’horloge pour un
modèle SITPN ; la partie inférieure représente l’exécution d’un cycle d’horloge pour le design
de top-niveau H-VHDL résultant de la transformation HILECOP (i.e. design = bsitpnc où le
symbole de plancher représente la transformation). Il y a deux types de relation de similarité

entre états, représentés par deux symboles différents. Le premier symbole
↓≈ représente la

relation de similarité après front descendant ; le deuxième symbole
↑≈ représente la relation

de similarité après front montant. Selon la phase du cycle d’horloge considérée, la relation de
similarité varie quelque peu.

Nous avons prouvé que la transformation modèle-vers-texte HILECOP vérifie bien la pro-
priété de préservation sémantique. La preuve a été effectuée informellement sur papier. Elle
s’étale sur une centaine de pages. La mécanisation de la preuve avec l’assistant de preuves Coq
est en cours de réalisation.

xxv

0.6 Conclusion

Le but de cette thèse a été de vérifier formellement une partie de la méthodologie HILECOP,
usitée dans le cadre de la conception de circuits numériques critiques. Spécifiquement, le tra-
vail de vérification porte sur la phase transformant un modèle de conception, à base de RdPs,
en design VHDL. Au final, nous avons fait la démonstration d’un théorème de préservation de
comportement pour cette phase de transformation. La preuve a été effectuée informellement,
mais représente tout de même un volume d’une centaine de pages. La mécanisation complète
de cette preuve avec l’assistant de preuves Coq est en cours de réalisation.

Comme autres perspectives de travail, les modèles d’entrée de la transformation doivent
inclure de nouveaux éléments. Deux éléments déjà existant dans ce formalisme restent à pren-
dre en compte : les macroplaces, qui permettent d’exprimer la gestion d’exceptions dans les
SITPNs, ainsi que la possibilité de spécifier des domaines d’horloge différents au sein d’un
même modèle; c’est le cas des systèmes Globalement Asynchrones Localement Synchrones
(GALS).

Le code Coq de la thèse, comprenant la formalisation des sémantiques des SITPNs et du
langage H-VHDL, l’implémentation de la transformation, l’expression du théorème de préser-
vation sémantique ainsi qu’une partie de la preuve formelle, est accessible à l’adresse:

https://github.com/viampietro/ver-hilecop

https://github.com/viampietro/ver-hilecop

1

Chapter 1

Introduction

With the use of every human-bred technology is associated a risk. Regarding the nature of the
technology, and the broader system in which it is involved, the consequences of a failure can
be dramatic. Thus arises the notion of the safety of systems; [20] gives the following definition
of safety:

“Safety can [. . .] be defined as the freedom from exposure to danger, or the exemption from
hurt, injury or loss.”

A safety-critical system can be understood as a system for which the safety aspect is the main
concern, being that important consequences, such as direct human losses, natural catastrophes,
or economic disasters, could result of the failure of the system. In this thesis, conducted in the
field of computer science, we are particularly interested in safety-critical computer systems. The
concept of computer system encompasses both the low-level hardware-related and the more
abstract software-related aspects involved in computer technologies. These days, computers
pervade a considerable number of objects and technologies that pave our every-day life, in-
cluding safety-critical systems. Thus, the risk associated with the use of computers in certain
critical applications is real. Failures of safety-critical computer systems have happened and
continue to happen; the list of critical incidents maintained by the ACM Committee on Com-
puters and Public Policy and Peter G. Neumann ever since the mid 80s [85] is always growing1.

To ensure the safety of computer systems involved in critical domains such as avionics,
railway, power plants or medicine, there exists a number of standards and norms developed
by international organizations. These standards set of a number of rules and techniques to be
followed for the design, the production and the validation of safety-critical computer systems.
To cite some well-known standards, the EUROCAE and RTCA organisms has devised the ED-
12C/DO-178C and ED-80/DO-254 industry standards for the development cycle of software
and hardware computer systems involved in avionics; the CENELEC has defined the EN-50128
standard for the development of software programs for railway control and protection systems;
the IEC is at the origin of the IEC-60880 standard for the development of software programs in-
volved in the control of power plants; the USA, Canada and the EU have defined the Common
Criteria (CC) referential for the evaluation of the safety of systems and software programs.
In this thesis, we are interested in verifying a computer-related methodology involved in the

1The risks digest website continues to register the computer-related incidents that resulted or could result in
important damages: https://catless.ncl.ac.uk/Risks/

https://www.eurocae.net/
https://www.rtca.org/
https://www.cencenelec.eu/
https://www.iec.ch
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/
https://catless.ncl.ac.uk/Risks/

2 Chapter 1. Introduction

production of safety-critical medical devices. This domain is regulated by the EU 2017/145
standard2 that sets the rules for the development of medical devices, including how to validate
the technologies involved in the production line.

The rules imposed by the standards vary with respect to the criticality of the considered
systems; for instance, in the medical field, the regulation text 2017/145 of the EU, pertaining to
the marketing of medical devices, sets a different requirement level whether we are considering
the production of dressings (class I), or of neuroprostheses (class III). The IEC defines a SIL
(Safety Integrity Level) measure that qualifies the criticality level of a system. The CC defines
a level of Evaluation Assurance Level (EAL), from 1 to 7, that must be met by the evaluated
systems regarding their functional requirements.

Among the mandatory procedures, prescribed by the standards, which must be followed
to validate a computer system involved in a safety-critical system, there are tests (unit, func-
tional or integration tests) or simulation (especially applied to hardware systems). However, in
the case of the development of safety-critical computer systems, a particular kind of methods,
called formal methods (FM), are also applied. In formal methods, a computer system is consid-
ered as a mathematical object [9]. As pointed out in [20], “formal methods address correctness
issues”, that is whether a system delivers the required service. The perks of formal methods are
to set a formal mathematical framework around a computer system. This framework allows us
to reason about the system and prove that the system meets some required properties. Thus,
a “formal methods” framework for computer systems requires at least a formal requirement
language, i.e. with a formal semantics, to express the properties that a given system must ver-
ify. The expression of these required properties is called the specification of the system. We can
cite some specification formalism such as CCS [79], CSP [61], Petri nets [93] or TLA+ [70] to de-
scribe reactive systems (i.e. systems that continuously interact with an environment); hardware
description languages such as VHDL [74] and Verilog [65] can also be considered as formal spec-
ification languages for hardware designs if provided with a formal semantics and embedded
in a formal proof system (see for instance [16]). We can also cite specification languages such
as VDM [10], the Z notation [2] on which is based the B language [1] (included in the broader
B-method); but also, all the theorem provers and proof assistants that come with their own
specification languages such as Isabelle/HOL [86], Coq [106], PVS [38], etc. A FM framework
must also provide a formal proof system to reason about the formal specification of the system.
Some FM frameworks come with means to implement the computer system or simplified ver-
sion of the system (i.e. a model) in a formal setting. This latter kind of framework enables to
check if the implementation of a system always complies with its specification, i.e. the sound-
ness of the system, and if all the aspects of the specification are met by the implementation, i.e.
the completeness of the system.

Even though the purpose is always to check the correctness of systems, there exist multiple
kinds of formal verification techniques. These techniques can be separated in three groups.
The first group refers to the deductive verification methods; the techniques aims at establish-
ing some proofs over a computer system in a formal proof setting; the deduction process can
either be interactive (i.e. conducted by a human) or automated. The second group refers to
model-checking techniques. The third group refers to the abstract interpretation of programs.

2http://data.europa.eu/eli/reg/2017/745/2020-04-24

http://data.europa.eu/eli/reg/2017/745/2020-04-24

Chapter 1. Introduction 3

The techniques applied to the formal verification of hardware computer systems or software
computer systems are quite similar. Thus, most of the techniques presented here apply to both
hardware and software developments. Note that the following presentation of formal verifica-
tion techniques is not exhaustive.

Abstract interpretation

Abstract interpretation [37] aims at performing automatic static analysis of programs by ap-
proximating the possible execution states of the program. To do so, the concrete domains of
the program variables are related to more abstract domains notably through the use of a lat-
tice structure. Afterwards, invariant properties that the program verifies can be automatically
checked against the lattice structure. For instance, abstract interpretation can help to determine
that a given program terminates. To give examples of abstract-interpretation-based tools, we can
cite the TERMINATOR static analyzer [35] that proves termination and other properties over
C programs, or the Astrée [12] program analyzer for real-time embedded systems.

Similarly to abstract interpretation, symbolic execution [21] is another method for the static
analysis of programs based on the partial execution of the considered programs. The method
consists in generating all the execution traces, also called symbolic traces, of a given program;
the result takes the form of a symbolic execution tree. In these traces, some of the program
inputs, i.e. the variables, will be associated with symbolic expressions denoting the fact that the
values of these inputs are yet unknown. Thus, by reasoning on the definition domains of these
inputs, some properties of the program can be checked at execution points, that is, at the nodes
of the symbolic execution tree. The property checking process is most of the time performed
by a constraint solver [3], where constraints are expressed over the symbolic variables of the
program. Pertaining to the construction of the symbolic execution tree, it is obtained most
of the time by applying the rules of a structural formal semantics [94] associated with the
language of the considered program. Typically, a branching in the execution tree is the result
of the evaluation of a conditional statement. Each path of the execution tree is associated with
a satisfiability condition, i.e. a Boolean formula, that determines if a given execution point
is reachable or not. Symbolic execution methods are often used to generate test suites with an
important coverage of the execution paths of programs. To give examples of symbolic-execution-
based tools, we can cite the DART [53] or CUTE [101] test generators.

Model checking

Model-checking techniques [96, 32] build a model reflecting the execution of a computer sys-
tem by enumerating all the possible execution states of the system. Then, the execution model
can be automatically checked against some properties that the computer system must verify.
The execution model must be a finite-state model, i.e. the enumeration of the execution states
of the model must not be infinite. Most of the time, the properties that the computer system
must verify are expressed through formulas of a modal logic. Model-checking techniques are
broadly used for the formal verification of reactive systems, especially hardware systems. In
that case, the properties that must be met by the considered system are expressed within for-
mulas of one of the many temporal logics (Interval Temporal Logic [83], Linear Temporal Logic

4 Chapter 1. Introduction

[95], Computation Tree Logic [47], etc.), which are handy to express time-related properties. To
give examples of well-known model-checkers, we can cite the BLAST [59], CADP [52] or UP-
PAAL [6] model-checkers.

Deductive software verification

“Deductive software verification aims at formally verifying that all possible behaviors of a
given program satisfy formally defined, possibly complex properties, where the verification
process is based on some form of logical inference, i.e., ‘deduction’ ” [57]. Deductive software
verification methods are divided into two categories: interactive theorem proving methods
and automated theorem proving methods.

In the philosophy of Interactive Theorem Proving (ITP), the programmer is responsible
for the specification and the implementation of a computer program, but he also expresses
theorems and conducts the corresponding proofs in a formal proof system. Interactive theorem
proving methods are closely tied to proof assistants (cf. Isabelle/HOL, Coq, PVS, etc.), which
offer the possibility to specify, implement, perform proofs over a given program in the same
framework. The programmer builds the proof for a given theorem in an interactive manner,
for instance assisted by a tactic language in the case of the Coq proof assistant (see Chapter 2 for
an example). Each proof assistant comes with its own specification language and underlying
proof system. In between the world of interactive theorem proving and automatic theorem
proving, we can also cite the contract-based verification methods based on the Floyd-Hoare
logic [48] and Dijkstra’s weakest precondition calculus [44] such as SPARK [27], ESC [99], the
B-method [1], Frama-C [68], or the Escher Verifier [26].

The Automated Theorem Proving (ATP) methods aim at automating the deduction steps in-
volve in the proof search. Multiple automated theorem provers exist based on different proof
search techniques such as natural deduction (e.g. Isabelle [86]), the tableaux method (e.g. the
FaCT++ reasoner [108], Zenon [14]), or resolution algorithms (e.g. the E theorem prover [100],
Vampire [98]).

In this thesis, we address the problem of the formal verification of a particular program.
This program transforms an input model, which is an instance of a particular kind of Petri
nets (PNs), into a program written in a Hardware Description Language (HDL). The program,
the context in which it is involved, the specificities of the input model, and the target HDL,
will all thoroughly be presented in this thesis. Here, we want to zoom in on the nature of the
considered program that we aim to formally verified. The transformation from an instance
of one formalism to another instance of another formalism is analog to the case of a compiler
program. The only difference is that here an input to the transformation is not a program of
a source language, but rather a model of an abstract source formalism, namely a PN model.
Thus, our formal verification task amounts to the formal verification of a compiler program.
The problem of compiler verification has greatly stimulated the use of formal methods in the
field of software verification. Because a complete computer system is made out of complete
chain of hardware, firmware and software components, the ultimate goal of the verification of
such a system is to be able to prove the safety of all the layer composing it. In this system of
layers, the place of compiler programs are mandatory as they are placed at the layer interfaces.

Chapter 1. Introduction 5

Indeed, one can prove that a given program and a given hardware is safe, but what if the
compilation phase from the given program to low-level version introduces errors and behavior
divergences. With these considerations in mind, compiler verification is an important aspect
for one that needs to certify an entire computer system.

Thus, certifying a compiler program amounts to proving that the compiler verifies certain
properties; [90] presents three of them. First, one can verify that a compiler is type-preserving,
also called the subject reduction property. A type-preserving compiler yields a well-typed target
program given a well-typed source program. Second, one can verify that a compiler is semantic-
preserving. A semantic-preserving compiler yields a target program that behaves similarly to
the source program. Thirdly, one can verify that the compiler is equivalence-preserving. Given
two source programs that verify a certain source-level equivalence relation, an equivalence-
preserving compiler yields two corresponding target programs that verify a certain target-level
equivalence relation; this target-level equivalence relation is of course somehow related to the
source-level equivalence relation. In this thesis, we are interested in proving that a compiler-like
transformation program is semantic-preserving.

[72] lists several techniques that exist to establish that a compiler is semantic-preserving.
The first method is simply called compiler verification. Compiler verification aims at estab-

lishing the semantic-preserving property of a compiler program by proving a so-called seman-
tic preservation theorem of the form:

For all source program S, and compiler C from the language of S to a target language, S has
the behavior B (written S ⇓ B) iff C(S) (i.e. the compiled version of S) has the behavior B:

∀S, C, B, S ⇓ B⇔ C(S) ⇓ B.

Now the above form of the theorem is the strongest one, i.e. it can be proved only for a
very particular kind of source and target languages. Other refined versions of this semantic
preservation theorem exist depending on the nature of the source and target languages. Prov-
ing such a theorem is often performed with the help of a proof assistant as can be witnessed in
the pioneering work on the CompCert compiler [73]; thus, compiler verification falls under the
hood of deductive verification methods.

The second method is called compiler validation. Compiler validation does not aim at prov-
ing a theorem stating that a given compiler program is semantic preserving for all input pro-
grams. The strategy of compiler validation is to equip the compiler program with a validator
program. Each time the compiler produces a target program from a source program, the val-
idator tries afterwards to prove that the two programs have the same behavior. To establish
such a proof, the validator program often relies on model-checking or abstract interpretation
techniques.

The third method is called proof-carrying compilation. In this setting, the compiler program
generates alongside the target program a proof that this program conforms to some property.
The generated proof must be is such a format that can be verified by a proof-checker, built in a
proof assistant for instance.

Even though it is not considered as a formal method, compiler testing is also a way to
validate the semantic preservation property for a given compiler program. Considering the
essential part played by compiler programs regarding the production of software products, a
lot of efforts has been dedicated for the generation of test suites [29].

6 Chapter 1. Introduction

In the thesis, we will follow the compiler verification technique. Consequently, our aim is
to prove a semantic preservation theorem over a transformation program and mechanize the
process within the framework of the Coq proof assistant.

1.1 The HILECOP methodology

In this section, we present in more details the context of our work, and more specifically, the
subject of our verification task, i.e. HILECOP, a methodology for the design and the production
of safety-critical digital systems.

1.1.1 Designing safety-critical digital systems
According to Moore’s law [80], the complexity of digital integrated circuits is always increas-
ing. To give an example, the cut-of-the-edge AMD Epyc Rome microprocessor (2019) is made out
of 50 billion of transistors. Composing billions of transistors on a wired circuit is no more a task
for humans but is very suited to computers. However, engineers need to think about the design
of digital circuits in a way that is understandable for humans. Therefore, they need high-level
views of the circuits they are designing in order to work together and to communicate about
the designs. The domain of Model-Based Systems Engineering (MBSE) [75] proposes a frame-
work to help engineers to design and produce digital circuits, in a well-documented, safe and
reliable way. Comparable to what Model Driven Engineering (MDE) does in the world of soft-
ware engineering, models are first order concepts in MBSE. A model represents a simplified
view of real object. As illustrated in Figure 1.1, a MBSE process describes a way to design a
digital circuit starting from a high-level view of the system. This high-level view can follow
a graphical formalism such as SysML [49] or Petri nets [93], or a textual one such as SystemC
[11] or VHDL [5]. Then, the MBSE process describes many refinement phases (the downward-
going green arrows in Figure 1.1) during which the input model will be transformed; at each
refinement phase, the model goes down in abstraction towards its final implementation as a
hardware circuit. A refinement phase, which is also a transformation phase, can be performed
automatically, manually, or both. Depending on the refinement phase, the full automation of
the transformation can sometimes never be achieved. In that case, a manual intervention is
necessary.

1.1. The HILECOP methodology 7

FIGURE 1.1: A Model-Based Systems Engineering process. Level 1 represents the
highest abstraction level while Level n represents the concrete implementation of
the system. REQ stands for requirements, BEH for behavior, ARCH for architec-
ture, Dgn V&V for design verification and validation. This figure is an excerpt

from [75].

In the case where the digital circuit being designed is a safety-critical system, an MBSE
process will often employ formal models, i.e. models with a formal mathematical definition,
as the design formalism. Thus, these models enable a certain extent of mathematical reasoning
to prove that safety properties are met during the design V&V phase (cf. Figure 1.1).

The refinement process of the MBSE is really close to the one of the B-method [1] for the de-
velopment of safety-critical software programs. The B-method allows the developers to specify,
implement and verify a software program at an abstract level, using the B language; then, sev-
eral refinement phases are performed until a concrete program is generated in the Ada or C
language.

1.1.2 Introducing the HILECOP methodology
The INRIA CAMIN team has developed a new technology of neuroprostheses [55]. Neuro-
prostheses are medical devices which purpose is to electro-stimulate the nerves of patients
suffering from moving disabilities. The nerves are responding to the stimulation, i.e. an elec-
tric influx, in order to activate the muscles and so that the patient can recover some movements.
Thus, controlling stimulation applied to the patient’s nerve is a critical point of the device over-
all functioning. This stimulation is generated and controlled by an implanted mixed circuit
(resp. analogous and digital parts), embedded in the neuroprosthesis. Therefore, the design
of such digital systems becomes utterly critical as a faulty circuit could result in the injury of
patients. To assist the engineers in the design and the implementation of these safety-critical
digital systems, the CAMIN team came up with a process called the “HILECOP methodology”

8 Chapter 1. Introduction

[4]. This methodology follows the principles of a MBSE process and relies on several trans-
formations going from abstract models to concrete FPGA (Field-Programmable Gate Array)
or ASIC (Application-Specific Integrated Circuit) implementations through the production of
VHDL code. Figure 1.2 details the global workflow of HILECOP.

Component 1

behavior interface

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC

Compute

clk

rst

SendQuery

Query

Answer

s1

s2

Component 2

interface behavior

clk

rst

UniqueQuery

Query

Answer

s3

s4

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

Answer

Query

CheckStatus

SustainrLED
[3,3]

EndOfCheck

Component 1

behavior interface

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC

Compute

clk

rst

SendQuery

Query

Answer

s1

s2

Component 2

interface behavior

clk

rst

UniqueQuery

Query

Answer

s3

s4

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

Answer

Query

CheckStatus

SustainrLED
[3,3]

EndOfCheck

Abstract
model

1

designing

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC
Compute

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

CheckStatus

SustainrLED
[3,3]

EndOfCheck

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC
Compute

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

CheckStatus

SustainrLED
[3,3]

EndOfCheck

a
ss

em
bl

in
g

&

fl
a
tt

en
in

g

analysis

Implementation
model

2

analysis
feedback

VHDL
top-level
design

m
od

el
-t

o
-t

ex
t

tr
a
n
sf

o
rm

a
ti

o
n

3

co
m

p
il
a
ti

o
n
/

sy
n
th

es
is

FPGA and ASIC
implementation

4

FIGURE 1.2: Workflow of the HILECOP methodology; horizontal double arrows in-
dicate the transformation phases, i.e. the refinement phases in MBSE terms; simple

arrows indicate different kinds of operations performed at a given step.

In Figure 1.2, Step 1 corresponds to the design phase of a digital system. At this step, the
engineers produce a model of the required system; the leveraged model formalism is a graph-
ical formalism specially designed for the methodology and based on component diagrams.
Figure 1.3 provides an example of such a model.

1.1. The HILECOP methodology 9

Component 1

behavior interface

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC

Compute

clk

rst

SendQuery

Query

Answer

s1

s2

Component 2

interface behavior

clk

rst

UniqueQuery

Query

Answer

s3

s4

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

Answer

Query

CheckStatus

SustainrLED
[3,3]

EndOfCheck

FIGURE 1.3: An Example of HILECOP high-level model. Black diamonds represent
VHDL signals.

As shown in Figure 1.3, a component of the HILECOP high-level model formalism is rep-
resented by a box having an internal behavior and an interface that allows the connection to
other components. The internal behavior of a component is defined with a specific kind of Petri
Net (PN) model. These PNs and their distinguishing features will be thoroughly presented in
Chapter 3. The component interface exposes references to the places, transitions, and signals
of the internal behavior to the outside so that multiple components can be assembled. Each
component has a clock and a reset input port (clk and rst) in its interface. The presence of the
clk port shows that the HILECOP methodology has been built for the design of synchronous
digital systems. To a certain extent, VHDL signals can be integrated to the high-level compo-
nents to represent a direct wiring between components. A component behavior can also be
defined through the composition of other components. In that case, we talk about a composite
hardware structure.

Next, in Figure 1.2, the transformation from Step 1 to Step 2 flattens the model. The internal
behaviors are connected according to the interface compositions, and embedding component
structures are removed. Figure 1.4 gives the result of the flattening phase for the model of
Figure 1.3. In Figure 1.4, we do not show the VHDL signals that were present in Figure 1.3.
As these signals already constitute plain VHDL code, they will simply be copied as they stand
during the model-to-text transformation happening from Step 2 to Step 3.

10 Chapter 1. Introduction

2

WforSensorOn WafterAnswer

SensorOn
C-cond

ExecFunction
F-foo

CycleCt

Wafterfoo

SendQuery

WforAnswer

Query

Answer

Compute

EOC

EOC
Compute

WforQuery

UniqueQuery

RecvQuery TimeOut
[10,∞[

Compute
A-gLEDon

LogError
A-rLEDon

CheckStatus

SustainrLED
[3,3]

EndOfCheck

FIGURE 1.4: A global Petri net model obtained after the flattening of a HILECOP
high level model.

The PN models used in HILECOP have been specifically devised for the design of safety-
critical digital systems; a first thesis has formalized the execution semantics of these PN mod-
els [71]. What makes them a very particular kind of models is their synchronous execution
semantics. This semantics denotes from the standard asynchronous execution of PNs. The PN
formalism is a formal model and therefore allows us to apply mathematical reasoning on its
instances. Particularly, a PN model can be analyzed, and a proof that a given model meets
some properties can be automatically produced through the direct analysis of the structure or
through the use of model-checking techniques. This feature of PNs has been one of the reason
of the adoption of this formalism as HILECOP’s base formalism. A thesis has been dedicated to
the development of new methods to analyze the HILECOP PN models [78]. In fact, the transfor-
mation of the abstract model is a bit different in preparation of the model analysis. The trans-
formation adds new information to the flattened model to help the analysis. Figure 1.4 only
gives the flattened version of the model produced in preparation of the next transformation
into a VHDL design. The analysis phase is here to convince the engineers that they are indeed
designing a safe system. The analysis process is a round trip between Step 1 and Step 2. It aims
at producing a model that is conflict-free (see Section 3.2.6 for more details about the definition
of a conflict), bounded, and deadlock-free, using model-checking techniques. After several
iterations, the model should reach soundness and is then said to be implementation-ready.

In Figure 1.2, from Step 2 to Step 3, VHDL source code is then generated by means of an auto-
matic model-to-text transformation. The generated code describes a VHDL design, i.e. a textual
description of a hardware system, which has an interface defining input and output ports and
an internal behavior called an architecture. Details about the syntax and the semantics of the

1.1. The HILECOP methodology 11

VHDL language will be given in Chapter 4. Figure 1.5 succinctly illustrates the transformation
between Step 2 and Step 3. Each place (resp. transition) of the input PN model (on the left)
is transformed into a place (resp. transition) component instance, which is an instance of the
place (resp. transition) design. The transformation from Step 2 to Step 3 will be thoroughly
presented in Chapter 5.

p0

t0

p1

p0
place

instance

t0
transition
instance

in

out

p1
place

instance

in

out

in

out

Place
design

(interface + behavior)

Transition
design

(interface + behavior)

Static

Generated

FIGURE 1.5: Generation of a top-level VHDL design from a Petri net. On the left,
the input PN and on the right, the generated VHDL top-level design. Dotted arrows

show the relation between the component instances and their source design.

For the purpose of the HILECOP methodology, two VHDL designs have been defined: the
place design, which is a hardware description of a PN place (circle nodes in a PN) and the
transition design, which is a hardware description of a PN transition (square nodes in a
PN). Like all VHDL designs, the place and the transition designs have an input and output
port interface, and their own internal behavior. A VHDL design describes a kind of “class”
of hardware component. Thus, a design can be instantiated in the behavior of other designs
in order to obtain more complex behaviors. As illustrated in Figure 1.5, the transformation
from Step 2 to Step 3 creates a place component (or design) instance (PCI) and a transition
component (or design) instance (TCI) for each place and transition of the input Petri net. Then,

12 Chapter 1. Introduction

the PCIs and TCIs are connected together through their input and output port interfaces. These
connections reflect the arc connections, and thus the interactions, between the places and the
transitions of the input PN model.

From Step 3 to Step 4, the VHDL compilation/synthesis and the FPGA programming, or
ASIC realization, are finally performed using industrial tools. At the end of Step 4, the designed
circuit is physically built on an FPGA device or an ASIC. What happens between Step 3 and
Step 4 appears as a black box in the whole HILECOP methodology. Therefore, we will not
consider this transformation phase, which will not be verified.

1.1.3 Verifying the HILECOP methodology
The use of Petri nets as a base model is one of the major advantage of the HILECOP method-
ology. All the analysis tools that accompany the Petri net formalism, and allow us to prove
that the models meet some required properties, qualify the HILECOP methodology as a formal
method for the design and implementation of safety-critical digital systems. However, even
with input models that are proved to be sound, the advantages provided by the use Petri nets
would be lost if one of the transformations performed during the process changes the input
definition of the circuit in a way that would alter its behavior. Thus, the engineers would
have specified a perfectly correct digital system but would never obtain the expected circuit
on a physical device. Therefore, in order to reinforce the confidence in the HILECOP method-
ology, the goal of this thesis is to verify, by establishing a formal proof, that the model-to-text
transformation from Step 2 to Step 3 (i.e. the framed part with red dotted lines in Figure 1.2)
preserves the behavior of the input models into the generated VHDL designs. We choose to
carry out this task as a deductive verification task. We aim at proving a theorem stating that
the HILECOP model-to-text transformation is semantic-preserving. This theorem will be of the
following form: for all PN model, input to the HILECOP transformation, the generated output
VHDL design behaves similarly at execution time. Chapter 6 formally presents our behavior
preservation theorem, and thus, what we mean about the similarity of execution between a PN
model and a VHDL design.

One could argue that to qualify the entire HILECOP methodology, one has to verify all the
transformations used in the methodology, i.e. consider also the transformation from Step 1 to
Step 2, and the transformation from Step 3 to Step 4. However, we shall say that:

– The transformation from Step 1 to Step 2 changes the structure of the component-based input
model. Even if the removal of the component structures induces some structural rearrange-
ments, the behavior of the flattened model is almost similar to the one of the component-
based model. Therefore, we argue that verifying that this transformation is semantic-preser-
ving is an easy enough task.

– The transformation from Step 3 to Step 4 is performed by industrial tools. We rely on these
tools because they are widely used in the industry for the development of safety-critical sys-
tems (e.g. cadence tools in aerospace and defense domains). Moreover, the compiler/syn-
thesizer used at this stage of the methodology is a proprietary product. Thus, we don’t have
any access to the code of this program. Moreover, the compiler/synthesizer performs a lot of

1.1. The HILECOP methodology 13

optimizations over the input VHDL code. Even with a provided access to the code, verifying
such an optimizing compiler would not possible within the time-span of this thesis.

Now that we have clarified the nature of the verification task we want to achieve, we can
state our research question as follows:

CAN WE PROVE THAT THE MODEL-TO-TEXT TRANSFORMATION DESCRIBED IN THE
HILECOP METHODOLOGY IS SEMANTIC PRESERVING?

This task is really close to the formal verification of compilers for programming languages.
Compiler verification has been widely explored, and many works are accessible in the litera-
ture [39]. The major source of inspiration of this thesis has been the work done on the CompCert
certified C compiler [72]. Thus, we argue here that the scientific interest of our research comes
from the comparison between the methods used to perform our verification task and the meth-
ods used to perform similar verification task in other domains such as compiler verification.
Thus, we can complement our research question with the following ones:

– What are the similarities and the differences between the HILECOP transformation and other
transformation situations (compilers, model transformations. . .)?

– Is there a strategy to perform the verification of the HILECOP transformation?

– How far the correspondence holds between this strategy and the strategy used in other trans-
formation situations such as compiler verification?

To achieve the formal verification of HILECOP, our approach is similar to what has been
done for the CompCert compiler. The idea is to formalize the semantics of the source and target
languages, and verify that the transformation preserves the semantics of any input model. In
the thesis, we propose both to perform the formalization work on “paper” and mechanize it
within the Coq proof assistant [8].

In the case of HILECOP, some specificities of the source and target languages introduce ad-
ditional technical difficulties in the process of formal verification. A first difference pertains to
HILECOP’s high-level formalism (the input language), which is quite abstract. This formalism
depends on PNs, and thus is not a common programming language.

A second difference is about the VHDL language (the output language). Similarly to the PN
models used in HILECOP, the VHDL language is not a common programming language as its
purpose is both the structural and behavioral description of hardware circuits.

To further motivate the necessity of the verification task, the development of neuroprosthe-
ses by the INRIA CAMIN team is at the base of the creation of the Neurrinov company3. The
Neurrinov company is now looking towards the industrial development of such neuroprosthe-
ses. We hope that once the verification performed on the HILECOP methodology, it will help to
obtain the CE certification, related to the EU 2017/745 regulation text, necessary to qualify the
neuroprostheses as eligible for the medical market.

Moreover, the HILECOP methodology comes with a working implementation based on the
Eclipse framework. This software is currently used by the engineers of the Neurinnov com-
pany to design the digital systems having a part in the neuroprostheses. Figure 1.6 gives a
view of the existing HILECOP software.

3http://neurinnov.com/

http://neurinnov.com/

14
C

hapter
1.

Introduction

FIGURE 1.6: A view of the HILECOP software implemented on top of the Eclipse framework. The middle frame
shows high-level model of digital system such as can be designed in the HILECOP methodology. On the right

side, the frames correspond to the palette of tools available to the user to build a model of a digital system.

1.1. The HILECOP methodology 15

To the purpose of formal verification, we will implement the HILECOP model-to-text trans-
formation leveraging the functional language of the Coq proof assistant. However, after the
mechanization of the proof of semantic preservation, we could use the extraction feature of the
Coq proof assistant to produce the implemented transformation as an OCaml program. Then,
we will be able to connect this program to the existing HILECOP software in order to use the
verified version of the transformation.

This thesis memoir is structured as follows.
Chapter 2 introduces all the necessary mathematical notions to understand the remainder

of the memoir. Chapter 3 presents in an informal and formal way a specific kind of Petri net
models; these models are the input to the HILECOP transformation program. Chapter 4 gives
an informal presentation of the VHDL language. The VHDL language is the target language in
which the programs generated by the HILECOP transformation are written. We also give in
this chapter a formal definition of the syntax and semantics of a subset of the VHDL language
that we call H-VHDL. Chapter 5 presents the algorithm of the HILECOP transformation and
its implementation with the Coq proof assistant. Chapter 6 details the semantic preservation
theorem expressing that the HILECOP transformation is semantic-preserving. It also gives the
high-level theorems and lemmas involved in the proof of the semantic preservation theorem.
Finally, Chapter 7 ends the memoir, and outlines the perspectives regarding the full completion
of the task of proving that the HILECOP transformation is semantic-preserving.

The results of a literature review pertaining to the formal semantics VHDL is presented at
the beginning of Chapter 4. Similarly, the results of a literature review pertaining to the task
of compiler verification in the world of deductive verification methods are presented at the
beginning of Chapters 5 and 6.

17

Chapter 2

Preliminary notions

In this chapter, we introduce the mathematical formalisms and notations used throughout this
thesis to express and formalize our ideas. Section 2.1 introduces both classical first-order logic
and set theory which constitute our mathematical frameworks. Section 2.2 is a reminder on
induction principles. In Section 2.3, we provide the basics to understand the Coq proof assis-
tant, which is the framework we adopt to write our programs and mechanize our proofs. This
chapter is inspired by the book The Formal Semantics of Programming Languages: an Introduction
[112] by Glenn Winskel, the courses of the University of Cambridge on the semantics of pro-
gramming languages1 by Neel Krishnaswami, the documentation of the Coq proof assistant2,
and the book Certified Programming with Dependent Types [31] by Adam Chlipala.

2.1 Mathematical formalisms

In this section, we introduce classical first-order logic and the Zermelo-Fraenkel (ZF) set theory
which combination constitutes the base formalism for all our mathematical definitions, and our
framework for the expression and the interpretation of logical formulas.

2.1.1 Classical first-order logic
In this section, we define the syntax of the first-order logic. Here, we already use concepts and
notations that belong to set theory; set theory will be presented in the following section. For
now, the reader has only to consider the intuitive definition of a set as a collection of elements,
and a function as an entity that relates each element of a set to a unique element of another set.

To define the syntax of the first-order logic, let us first define:

– The set V of variables x, y, etc.

– The set SF of function symbols f, g, etc.

– The set SP of predicate symbols P, Q, etc.

1https://www.cl.cam.ac.uk/teaching/2021/Semantics/
2https://coq.inria.fr/distrib/current/refman/index.html

https://www.cl.cam.ac.uk/teaching/2021/Semantics/
https://coq.inria.fr/distrib/current/refman/index.html

18 Chapter 2. Preliminary notions

Let us also consider a function a ∈ SF ∪ SP → N that associates a given function or
predicate symbol to an arity, i.e. the number of parameters of the function or the predicate.
E.g, if f (x, y) with f ∈ SF then a(f) = 2; if P(x, y, z) with P ∈ SP then a(P) = 3. Constants are
functions of arity 0, i.e. with no parameter.

The syntax of classical first-order logic [81] is divided between terms and formulas. We define
a term of the classical first-order logic with the following BNF entry:

t ::= v | f (t1, . . . , tn)

This entry states that a term is either a variable v ∈ V , or a function symbol f ∈ SF of arity
n with terms t1, . . . , tn as inputs.

We define a formula of the classical first-order logic with the following BNF entry:

F ::= ⊥ | > | P(t1, . . . , tn) | F ∧ F | F ∨ F | F ⇒ F | F ⇔ F | ¬F | ∀x,F | ∃x,F

This entry states that a formula is either:

– ⊥ (bottom), the always false formula, or > (top), the always true formula.

– A predicate P(t1, . . . , tn) (i.e. an atomic formula) of arity n, where P ∈ SP with terms
t1, . . . , tn as inputs.

– The composition of two subformulas with one of the following binary operators: the con-
junction ∧, the disjunction ∨, the implication⇒, the double implication⇔.

– The composition of one subformula with the negation operator ¬.

– A subformula prefixed by the universal quantifier ∀ or the existential quantifier ∃. For in-
stance, the formula (∀x, P(x)) denotes the atomic formula P(x) where the parameter x is a
universally quantified variable of the formula. As a shorthand notation, we write ∀x, y, z. . . .
to denote ∀x, ∀y, ∀z. The same stands for the existential quantifier ∃. Variables that are
introduced in a logical formula by one of the previous quantifiers are called the bound vari-
ables of the formula. Variables that appear in a logical formula without being introduced by
a quantifier are called free variables. For instance, in the logical formula (∀x, P(x) ∧ Q(y)),
x is a bound variable and y is a free variable of the formula.

In this thesis, our formulas are interpreted as formulas of the classical logic [102]. Thus,
during a proof, we can appeal to the law of excluded middle to reason on the truth value of a
given formula.

2.1.2 ZF Set theory
In this thesis, we use the Zermelo-Fraenkel (ZF) set theory as the base formalism for all our
mathematical definitions and proofs. In this section, we present the axioms of the ZF set theory,
and the associated definitions and notations that will be used throughout this memoir. The
reader will find further information on the ZF set theory in [82].

2.1. Mathematical formalisms 19

In the ZF set theory, a set represents a group of elements called the members of the set.
For every set A, we write a ∈ A to denote that the element a is a member of set A. The
membership property is a basic set-theoretic property. Given a set A, we sometimes have to
express a property P of the elements of A in the following form: ∀x, x ∈ A ⇒ P(x). When
there is no ambiguity, we equivalently write ∀x ∈ A, P(x).

Now, let us define the axioms of the ZF set theory.

Axiom 1 (Existence). There exists a set which has no elements, i.e. ∃A, ∀a, a /∈ X.

Definition 1 (Empty set). We call the empty set the unique set with no element, written ∅.

Axiom 2 (Extensionality). If every element of A is an element of B, and vice-versa, then A = B,
i.e. ∀A, B, x, (x ∈ A⇔ x ∈ B)⇒ A = B.

Axiom 3 (Schema of comprehension). Let P(x) be a property of x. For all set A, there exists a
set B such that x ∈ B if and only if x ∈ A and P(x) holds. I.e. ∀A, B, x, x ∈ B⇔ x ∈ A∧ P(x).

Axiom 4 (Pair). For all set A and B, there exist a set C such that x ∈ C if and only if x = A or
x = B. I.e. ∀A, B, ∃C, ∀x, (x ∈ C ⇔ x = A ∨ x = B).

More intuitively, Axiom 4 states that if A and B are sets then their corresponding pair C is
also a set.

Axiom 5 (Union). For all set A having sets as elements, there exists a set C corresponding to the
union of the elements of A. I.e. ∀A, ∃U, x ∈ U ⇔ ∃B, B ∈ A ∧ x ∈ B.

Definition 2 (Subset). A set A is a subset of set B, written A ⊆ B, if for all x if x ∈ A then
x ∈ B, i.e. ∀x, x ∈ A⇒ x ∈ B.

Definition 3 (Union). Given a set A and B, the set A ∪ B is the union of the members of A and
the members of B, i.e. ∀x, x ∈ A ∪ B⇔ x ∈ A ∨ x ∈ B.

Axiom 6 (Infinity). There exists a set A such that the empty set belongs to A and for all x such
that x ∈ A then x ∪ {x} ∈ A. I.e. ∃A, ∅ ∈ A ∧ (∀x, x ∈ A⇒ x ∪ {x} ∈ A).

Axiom 7 (Power set). For all set A, there exists a set B such that for all set X, X ∈ B if and
only if X ⊆ A. I.e. ∀A, ∃B, ∀X, (X ∈ B⇔ X ⊆ A).

20 Chapter 2. Preliminary notions

Axiom 8 (Schema of replacement). Let P(x, y) be a property such that for all x there exists a
unique y such that P(x, y) holds. For all set A, there exists a set B such that for all x ∈ A, there
exists y ∈ B for which P(x, y) holds. I.e. (∀x, ∃y, P(x, y)) ∧ ∀A, ∃B, ∀x, (x ∈ A ⇔ ∃y, y ∈
B ∧ P(x, y)).

Definition 4 (Intersection). Given a set A and B, the set A ∩ B denotes the set formed by the
intersection of set A and B, i.e. ∀x, x ∈ A ∩ B⇔ x ∈ A ∧ x ∈ B.

Axiom 9 (Foundation). For all non-empty set A, there exists a set B such that B ∈ A and B
has no common element with A. I.e. ∀A, A 6= ∅⇒ ∃B, B ∈ A ∧ (A ∩ B = ∅).

Based on the previous axioms, we can complement the theory with following definitions
and notation.

Notation 1 (Extension). A set is defined by extension with the enumeration of all its members.
For instance, {1, 0,−1}, {a, b, c} or {p0, . . . , pn} are all sets defined by extension.

Notation 2 (Intension). Let P(x) be a property of x, we write {x | P(x)} the set of x for which
P(x) holds. The set {x | P(x)} is defined by intension. For instance, here is the intensional
definition of the set of even numbers: {n ∈N | ∃k ∈N, n = 2k}.

Given two sets A and B, the following sets are formed:

Definition 5 (Difference). A \ B denotes the set formed by the elements of set A that are not
elements of set B (the difference between set A and B), i.e. A \ B = {x | x ∈ A ∧ x /∈ B}.

Definition 6 (Cartesian product). A× B denotes the Cartesian product between the elements
of set A and set B, i.e. the set of all ordered pairs defined by {(x, y) | x ∈ A ∧ y ∈ B}.
We generalize the definition to build the set of n-tuples A0 × A1 × · · · × An defined by
{(x0, (x1, . . . (. . . , xn))) | x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An}.

It is sometimes useful to give a name to the elements of a tuple without referring to their
index. In such a case, a tuple is called a record where each element, called a field, has been
given an explicit name. This formalism is useful to represent rather complex data structures.
For instance, say that we want to represent the set of humans by a triplet composed of the
size, weight, and eye color of a given human. We can define this set as the set of triplet R×
R× {green, blue, brown}. If we want to give a concrete name to the elements of the triplet, we
can equivalently define such a triplet as a record, written <size, weight, eye>, where size ∈ R,
weight ∈ R and eye ∈ {green, blue, brown}.

2.1. Mathematical formalisms 21

Definition 7 (Disjoint union). A t B denotes the set formed by the disjoint union of set A and
set B. The disjoint union is obtained by adjoining an index i to the elements of A and an index j
to the elements of B such that i 6= j. Then, the two sets of couples are joined together to build the
disjoint union of A and B. For instance, consider that A = {a, b, c} and B = {a, b}. To obtain the
disjoint union A t B, we create the two sets Ai = {(i, a), (i, b), (i, c)} and Bi = {(j, a), (j, b)},
and then join the sets together s.t. A t B = {(i, a), (i, b), (i, c), (j, a), (j, b)}.

When the two sets A and B are disjoint, i.e. A ∩ B = ∅, then A t B is isomorphic to A ∪ B.
To stress the fact that we are building a set from the union of two disjoint sets, we prefer to use
the disjoint union operator. For instance, we write Nt {∞}, instead of N∪ {∞}, to denote the
set of values ranging from the set of natural numbers with the addition of the infinite value ∞.

Definition 8 (Powerset). P(A) denotes the powerset of A defined by all the possible subsets
formed with the elements of set A, i.e. P(A) = {X | X ⊆ Y}.

Relations and functions

Definition 9 (Relation). A binary relation R between two sets X and Y is a subset of the set of
pairs X × Y, i.e. R ⊆ X × Y, or an element of the powerset P(X × Y), i.e. R ∈ P(X × Y).
We write R(x, y) to denote (x, y) ∈ R. We generalize the definition to n-ary relations. An n-
ary relation between sets X0, . . . , Xn is a subset of the set of n-tuples X0 × · · · × Xn, i.e. R ⊆
X0 × · · · × Xn, or an element of the powerset P(X0 × · · · × Xn), i.e. R ∈ P(X0 × · · · × Xn).
We write R(x0, . . . , xn) to denote (x0, . . . , xn) ∈ R.

Definition 10 (Partial function). A partial function f from set X to set Y is a binary relation
from X to Y verifying that ∀x ∈ X, y, y′ ∈ Y, (x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′, i.e. x appears
at most once as the first element of a pair in f . We note f ∈ X 9 Y to denote a partial function
from X to Y. The set of the first elements of the pairs defined in f is called the domain of f . We
write it dom(f) = {x | ∃y s.t.(x, y) ∈ f }. When there is no ambiguity, and given an x ∈ X and
f ∈ X 9 Y, we write x ∈ f as a shorthand to x ∈ dom(f).

Definition 11 (Application). A total function a, or application, from X to Y is a partial function
verifying that all the elements of X appear as the first element of a pair in a, i.e. for all x ∈ X,
there exists y ∈ Y such that (x, y) ∈ a. In other words, the domain of an application from X to Y
is equal to the set X. We note a ∈ X → Y to denote an application from X to Y.

2.1.3 Rule-based definition of sets
All along this memoir, we define sets (especially relations) with rule instances, also called in-
ference rules or judgments. A rule instance can take the following forms:

22 Chapter 2. Preliminary notions

C or
P1, . . . , Pn

C

The left form of rule instance is called an axiom. In the right form of rule instance, P1, . . . , Pn
are the premises of the rule and C is the conclusion of the rule.

Definition 12 (Rule instances). We define a set R of rule instances as a set of pairs of the
form (P/C) where P is a finite (possibly empty) set of premises and C is an element called the
conclusion. A pair (P/C) is a rule instance.

Rule instances define a way to build derivation trees. A derivation of C takes either the form
of an axiom, i.e. C , or of a tree with C as a root and with branches composed of the derivation
trees of the premises, i.e.

...

P1 . . .

...

Pn

C

Given a set R of rule instances, we define the set A such that if (∅/C) ∈ R then C ∈ A, and
if ({P1, . . . , Pn}/C) ∈ R, then if there exists a derivation for all premises P1, . . . , Pn then C ∈ A.
In fact, the set R of rule instances define the properties that must be verified by the elements of
set A. There exists an infinity of sets A that verify the properties outlined by the rule instances
R. Thus, we define the set of elements defined by the rule instances R as the least set verifying
the properties outlined by the rules. For instance, the two following rules, named rules EV0
and EV2, define the set of even natural numbers:

EV0

IsEven(0)

EV2
IsEven(n− 2)

IsEven(n)

The rule EV0 states as an axiom that 0 is an even number; the rule EV2 states that for all
natural number n, n is an even number if one can derive that fact that n− 2 is an even number.
Thus, we can derive from the previous rules that 4 is an even number by building the following
derivation tree:

EV0
IsEven(0)

EV2
IsEven(2)

EV2
IsEven(4)

Starting from IsEven(4), we can apply the EV2 rule to derive IsEven(2). Then, another
application of the EV2 rule leads to IsEven(0), and we can close the derivation branch by
applying the EV0 rule. Here, the only branch of the tree has reached an axiom, and thus the
derivation tree is finite. To further illustrate the use of rule instances in the definition of a

2.1. Mathematical formalisms 23

set, let us consider the following minimal language of arithmetic expressions expressed in the
Backus-Naur form:

e ::= n | id | e0 + e1

Here, n ranges over the set of natural numbers N; id ranges over the set string of non-
empty strings (i.e. it is the set of identifiers). To evaluate the arithmetic expressions, we need a
state s ∈ string 9 N that maps each variable identifier to a natural number value. We assume
that only a certain set of declared identifiers can appear in an arithmetic expression. Thus, the
state is a partial function from the set of non-empty strings to the set of natural numbers. We
define the evaluation relation for the arithmetic expressions with the three following rules:

NAT

s ` n→ n

VAR
id ∈ dom(s)

s ` id→ s(id)

ADD

s ` e0 → n s ` e1 → m
s ` e0 + e1 → n + m

Here, the evaluation relation is a subset of the set of triplets (string 9 N)× e×N. In the
rule instances defining the evaluation relation, the ` symbol (pronounced thesis) means that the
left part implies the right part, or it is involved in the evaluation of the right part. For instance,
the second rule can be read: in the context of state s, id evaluates to s(id) if id ∈ dom(s). When
the context is not involved in the evaluation of the syntactic constructs on the right side of the `
symbol, we remove the context and the ` from the rule instances. For example, we can define
to the NAT rule by:

NAT

n→ n

as the state s in not involved in the evaluation of expressions that are natural numbers.
Note that in the VAR rule, there appears an extra statement, at the right of the judgment

line, called a side condition. This is an extra condition that must hold with all the premises of
the rule instance, but which does not generate a derivation tree of its own.

Finally, here is an example of a derivation tree for the evaluation of the expression x + (y +
1) in the context of state {(x, 1), (y, 2)}:

VAR x ∈ {x, y}
{(x, 1), (y, 2)} ` x → 1

VAR y ∈ {x, y}
{(x, 1), (y, 2)} ` y→ 2

NAT
1→ 1

ADD
{(x, 1), (y, 2)} ` y + 1→ 3

ADD
{(x, 1), (y, 2)} ` x + (y + 1)→ 4

Here again, all the branches of the derivation tree have reached axioms, and thus
{(x, 1), (y, 2)} ` x + (y + 1) → 4 is a member of the evaluation relation of arithmetic expres-
sions. It states that the expression x + (y + 1) evaluates to 4 in the state {(x, 1), (y, 2)}.

The evaluation relation can also include rule instances defining error cases. For instance,
we can add an extra rule to the definition of the evaluation relation for arithmetic expressions;

24 Chapter 2. Preliminary notions

the following rule states that an arithmetic expression that is an unreferenced variable in state
σ results in an error:

UNREFVAR
id /∈ dom(s)

s ` id→ err

The special value err is defined to represent error cases. Thus, the evaluation relation de-
fines a subset of triplets (string 9 N)× e× (Nt {err}).

2.2 Induction principles

In the proofs presented in this thesis, we often rely on induction. Here are some reminders on
induction principles to help the reader understand the proofs of Chapter 6 and Appendix D.

2.2.1 Well-founded induction

The most general principle of induction is called well-founded induction. From well-founded
induction derives all induction principles presented afterwards.

To introduce well-founded induction, let us define a well-founded relation.

Definition 13 (Well-founded relation). A binary relation ≺ over a set A is well-founded if
there exist no infinite descending chain, i.e. · · · ≺ ai ≺ · · · ≺ a1 ≺ a0.

For instance, the strictly less than relation < over the set of natural numbers is a well-
founded relation.

Let≺ be a well-founded binary relation on a set A. The principle of well-founded induction
on the relation ≺ says that in order to prove that a property P holds for all elements of A, it
suffices to prove that P holds of any a ∈ A whenever P holds for all b ∈ A such that b ≺ a,
formally: (

∀a ∈ A, ([∀b ∈ A, b ≺ a⇒ P(b)]⇒ P(a))
)
⇒ ∀a ∈ A, P(a)

2.2.2 Structural induction
Sometimes, reasoning by induction requires to follow the structure of a given set, i.e. the
formation rules of a given set. This kind of reasoning is called structural induction.

Let us consider the formation rules of the set of natural numbers:

ZERO

0 ∈N

SUCC
n ∈N

n + 1 ∈N

These rules state that zero is a natural number and that for every natural number, its direct
successor is also a natural number. Structural induction describes a way to deduce that a

2.2. Induction principles 25

property holds for the set of natural numbers, first by stating that the property holds for zero,
i.e. the minimal element of the set, then by stating that if the property holds for a given number
then it holds for its successor. Thus, knowing that P(0) holds, we can deduce that P(1) holds,
P(2) holds, P(3) holds, etc. Following the structural induction scheme, given a property P, to
prove that P holds for all natural numbers, it is sufficient to prove that:

– P holds for 0

– if P holds for a given n then it holds at n + 1

To take another example, if we want to prove that a given property P holds for the set of
arithmetic expressions described in Section 2.1.3, we must prove that:

– P holds for all natural number n

– P holds for all identifiers id

– if P holds for all sub-expressions e0 and e1, then P holds for e0 + e1

A proof that leverages structural induction follows the structure of the elements we are
reasoning upon. In this thesis, we are using structural induction to prove that a sum expression
verifies a certain property. Thus, the structural induction follows the recursive definition of the
sum term, which is, for any set A, function f ∈ A→N and X ⊆ A and :

∑
x∈X

f (x) =

0 if X = ∅
f (x) + ∑

x′∈X′
f (x′) if X = {x} ∪ X′

In the second computation branch, it is left implicit that set X′ is strict subset of X such that
x /∈ X′ or X′ = X \ {x}. Given a set A and a function f ∈ A→ N, to prove that for all X ⊆ A,
the property P(X, ∑

x∈X
f (x)) holds, we must show that:

– ∀X ⊆ A, X = ∅⇒ P(∅, 0)

– ∀X ⊆ A, x ∈ X, X′ ⊂ X,
X = {x} ∪ X′ ⇒ P(X′, ∑

x′∈X′
f (x′))⇒ P({x} ∪ X′, f (x) + ∑

x′∈X′
f (x′))

The induction follows the structure of the function. In this specific case, structural induction
is often referred to as functional induction. Let us prove Proposition 1 to illustrate the use of
structural induction over a sum term:

Proposition 1. For all X ⊂N a finite set of natural numbers, ∑
x∈X

2x is even, i.e.

∃k ∈N s.t. ∑
x∈X

2x = 2k

26 Chapter 2. Preliminary notions

Proof.

Let us define the property P as follows:

P(X, ∑
x∈X

2x) ≡ ∃k ∈N s.t. ∑
x∈X

2x = 2k

Then, let us use structural induction to prove P(X, ∑
x∈X

2x).

First, let us show P(∅, 0), i.e. ∃k ∈N s.t. 0 = 2k. Let us take k = 0 to build a tautology.

Then, given an X′ ⊂ X and an x ∈ X s.t. X = {x} ∪X′, and assuming that P(X′, ∑
x′∈X′

2x′)

holds (i.e. the induction hypothesis), let us show P({x} ∪ X′, 2x + ∑
x′∈X′

2x′). Appealing to

the induction hypothesis, let us take a j such that ∑
x′∈X′

2x′ = 2j. Rewriting ∑
x′∈X′

2x′ as 2j:

⇒∃k ∈N s.t. 2x + 2j = 2k

⇒∃k ∈N s.t. 2(x + j) = 2k

⇒Then, let us take k = x + j to obtain a tautology.

2.2.3 Rule induction

A specific kind of structural induction, called rule induction, is applied to prove properties
over sets that are defined by rule instances. Let us take the evaluation relation for arithmetic
expressions used in Section 2.1.3 to illustrate the principle of rule induction. To prove that
a property P holds for the evaluation relation of arithmetic expressions, which is a subset of
triplets (string→N)× e×N, we must prove that:

– For all s ∈ string 9 N, n ∈N, P(s, n, n)

– For all s ∈ string 9 N, id ∈ string, if id ∈ dom(s) then P(s, id, s(id))

– For all s ∈ string 9 N, e0, e1 ∈ e, n, m ∈N,
if s ` e0 → n and P(s, e0, n), and s ` e1 → m and P(s, e1, m)
then P(s, e0 + e1, n + m)

Rule induction states that in order to prove a property over a set defined by rule instances,
the property must hold in any construction case of the considered set. The idea is that if the
property is preserved from the premises of rules to the conclusions then the property holds for
all the elements of the set.

Let us give an application of rule induction to prove a property over the evaluation relation
of arithmetic expressions. First, we define, through the three following rules, the relation ∈r
stating that a given identifier id is referenced in an arithmetic expression e, written id ∈r e:

2.3. The Coq proof assistant 27

INRID

id ∈r id

INRADDL
id ∈r e0

id ∈r e0 + e1

INRADDR
id ∈r e1

id ∈r e0 + e1

Then, the property of Proposition 2 states that an arithmetic expression that contains refer-
ences to identifiers that are not part of the current state’s domain can not be evaluated.

Proposition 2. Let id ∈ string. For all state s, arithmetic expression e, and natural number n,

id /∈ dom(s) ∧ id ∈r e⇒ ¬s ` e→ n

Proof.

Let us define the property P as follows:

P(s, e, n) ≡ id /∈ dom(s) ∧ id ∈r e⇒ ¬s ` e→ n

Then, let us use rule induction to prove P(s, e, n).

First, we must prove P(s, n, n). Assuming id ∈r n, there is a contradiction as no rule
instance defining the relation ∈r includes the case where the considered expression is a
natural number.

Then, we must prove P(s, id′, s(id′)), assuming that id′ ∈ dom(s). We know that id ∈r id′,
and thus id = id′. Then, there is a contradiction between id ∈ dom(s) and id /∈ dom(s).

Finally, we must prove P(s, e0 + e1, n + m), assuming that s ` e0 → n and P(s, e0, n), and
s ` e1 → m and P(s, e1, m). We know that id ∈r e0 + e1; this hypothesis has either be
constructed by applying Rule INRADDL or Rule INRADDR. If Rule INRADDL has been
applied, then we know id ∈r e0; thus, from P(s, e0, n), we can deduce ¬s ` e0 → n, which
contradicts s ` e0 → n. We can perform the proof similarly if Rule INRADDR has been
applied.

2.3 The Coq proof assistant

In this section, we present the Coq proof assistant [106]. The Coq proof assistant constitutes our
framework to encode the different semantics, programs and proofs involved in the verifica-
tion of the HILECOP model-to-text transformation. Here, we give an overview of the different
concepts underlying the Coq proof assistant. The aim is to give to the reader the tools to un-
derstand the different listings presenting Coq code in the following chapters. For a thorough
presentation of the Coq proof assistant, the reader can refer to [31, 91, 8].

28 Chapter 2. Preliminary notions

2.3.1 The Calculus of Inductive Constructions (CIC)
The kernel of the Coq proof assistant implements the Calculus of Inductive Constructions (CIC)
[36]. The CIC is a typed lambda-calculus that includes polymorphism, dependent and induc-
tive types. Thus, the CIC permits us to define programs and types similarly; both are terms of
the language. A program is a term with a certain type, and a type is also a term with a certain
type. The type of a type is called a sort. We can mention three basic sorts built in the Coq proof
assistant: the Prop sort which is the type of logical formulas, the Set sort which is the type of
small sets, and the Type sort which encompasses the Prop and Set sorts.

The Coq proof assistant allows us to express logic formulas and to interactively build proofs
of these formulas by using a high-level tactic language. The sequence of tactics that builds a
proof for a given formula is called a proof script. The execution of a proof script builds a proof
term. In the CIC, a logic formula can be seen as a type and a proof of this formula is an inhabitant
of the type denoted by the logic formula. Thus, when building a proof term by executing a
proof script, the Coq kernel checks that the proof term is of the type of the logic formula by
applying typing rules3. For instance, let us take two logical propositions A and B. In Coq, we
can declare these propositions as elements of the Prop type in the Coq top-level loop4:

Coq < Variables A B : Prop.

The Variables keyword adds the propositions A and B to the global environment accessed
by the Coq kernel. Now, say that we want to prove the modus ponens theorem expressed with
the propositions A and B, namely that A⇒ (A⇒ B)⇒ B. In Coq, we can express it as follows:

Coq < Theorem modus_ponens : A→ (A→ B)→ A.

Here, we declare the modus ponens theorem as an element of type A → (A→ B)→ A. The
arrows represent functional arrows; in fact, A → B is a notation for the product type Πx : A.B
where x is not referenced in B. According to the Curry-Howard correspondence [62], there is
an equivalence between a proof term and a program. This correspondence is a consequence
of the Brouwer-Heyting-Kolmogorov (BHK) interpretation of the intuitionistic logic [81]. Intu-
itionistic logic is the underlying logic built-in the Coq proof assistant. Intuitionistic logic denies
the use of the law of excluded middle to perform proofs. Thus, intuitionistic logic has a con-
structivist approach of proofs. In the intuitionistic setting, one has to provide an explicitly built
proof to demonstrate a theorem; one can not rely on pure proof by contradiction by appealing
to the law of excluded middle. Thus, a proof term of the logical implication A⇒ B is equivalent
to an explicitly built program, or a function, of type A → B, i.e. a program that takes an element
of type A and yields an element of type B. Thus, the type A → (A→ B)→ A is a valid encoding
of the formula A⇒ (A⇒ B)⇒ B.

The Theorem keyword triggers the interactive proof mode through which the user will build
a proof term for the corresponding formula. A simple proof term for the modus ponens theo-
rem is a function that takes an element x of type A and a function f of type A → B as inputs, and
yields an element of type B by applying the function f to parameter x, i.e. (f x). The function
takes the form of the following term of the typed lambda-calculus:

3https://coq.inria.fr/distrib/current/refman/language/cic.html
4Coq scripts can be either interpreted or compiled.

https://coq.inria.fr/distrib/current/refman/language/cic.html

2.3. The Coq proof assistant 29

λ(x : A).λ(f : A→ B).(f x)

While passing this lambda-term as a proof term of the modus ponens theorem, the Coq kernel
checks the well-typedness of the term by building the following derivation tree, which is a
simplified version of the full derivation tree according to the typing rules of the CIC:

VAR
A B : Prop[x : A, f : A→ B] ` f : A→ B

VAR
A B : Prop[x : A, f : A→ B] ` x : A

APP
A B : Prop[x : A, f : A→ B] ` (f x) : B

LAM
A B : Prop[x : A] ` λ(f : A→ B).(f x) : (A → B)→ B

LAM
A B : Prop[] ` λ(x : A).λ(f : A→ B).(f x) : A → (A→ B)→ B

In the above derivation tree, the global and the local environment are represented at the left
of the thesis symbol `. The local environment is represented by square brackets. The global
environment is represented at the left of the local environment. At the root of the derivation
tree, the global environment contains our two previously declared logical propositions A and
B, whereas the local environment is empty. The application of the LAM rule adds new entry to
the local environment; the APP triggers the type-checking of the left and the right part of an
application; the VAR rule checks that a term is well-typed if it is referenced as an element of the
given type in the global or the local environment.

As said before, the Theorem keyword triggers the interactive proof mode. The interactive
proof mode will accompany the user to an incremental building of a proof term for the cur-
rent goal, i.e. the current logic formula we want to prove. Then, to prove the modus ponens
theorem, the following interface is first presented to the user:

Coq < Theorem modus_ponens : A→ (A→ B)→ B.
1 subgoal

============================
A → (A→ B)→ B

The term under the horizontal bar represents the current goal to prove, i.e. the current
formula for which we are building a proof term. Above the horizontal bar are referenced the
variables constituting the local environment. At the beginning of the proof, the local environ-
ment is empty – and so is the local environemnt at the root of the derivation tree presented
above. To build a proof term in interactive mode, the user will then invoke commands called
tactics. Each tactic invocation corresponds to the invocation of a typing rule of the CIC per-
formed by the Coq kernel. To build a proof term for the modus ponens theorem, the first thing
to do is to invoke the LAM rule; this is done by appealing to the intros tactic.

Coq < intros x.
1 subgoal

x : A
============================
(A → B)→ B

30 Chapter 2. Preliminary notions

Here, the user passes to the system the name of the variable that will be introduced in the
local environment by the LAM rule, i.e. the variable x. Then, we repeat the operation, applying
the LAM rule a second time to introduce an element of type A → B in the environment.

Coq < intros f.
1 subgoal

x : A
f : A → B
============================
B

Then, based on the local environment, we can build an object of type B by applying f to the
input x. We can do it by appealing to the apply tactic. The apply tactic invokes the APP rule.

Coq < apply (f x).
No more subgoals.

Coq < Qed.

After the invocation of the apply tactic, the proof term for the modus ponens theorem is
completely built, thus, the Coq top-level loop displays the message that all goals are completed.
Then, we can close the interactive proof mode and store the proof of the modus ponens theorem
in the global environment by using the Qed keyword.

Another way to prove the modus ponens theorem is to directly pass the proof term with
the exact tactic.

Coq < exact (fun (x : A) ⇒ fun (f : A → B)⇒ f x).
No more subgoals.

Coq < Qed.

Here the term fun (x : A) ⇒ fun (f : A → B)⇒ f x represents the lambda-term λ(x : A).λ(f :
A→ B).(f x) (i.e. the proof term) in the Coq syntax.

2.3.2 Inductive types
One of the major strength of the CIC, and therefore of the Coq proof assistant, is the possibility
to enrich the global type system with the definition of inductive types. For instance, here is the
definition of the type of natural numbers, named nat:

Inductive nat : Set :=
| O : nat
| S : nat→ nat.

2.3. The Coq proof assistant 31

The nat type is of the Set sort (remember that the type of a type is called a sort). The nat
type is defined through two constructors, represented by the pipe-separated entries. The O con-
structor states that zero is a natural number. The S constructor takes a natural number as input
and yields the successor to this natural number. This corresponds to the structural definition
of natural numbers in Peano’s arithmetic. Thus, in this setting, the number 2 is represented by
(S (S O)) , the number 3 by (S (S (S O)) , etc. The result of the evaluation of an inductive type,
declared through the Inductive keyword, is the addition of this type and each of its construc-
tors to the global environment accessible by the Coq kernel. Also, a corresponding structural
induction principle is generated at the evaluation of an inductive type definition. For instance,
the nat_ind induction principle is generated at the evaluation of the nat type. It is a proof term
of the logical formula denoting the structural induction principle over the nat type, i.e.:
forall P : nat→ Prop, P 0→ (forall n : nat, P n → P (S n)) → forall n : nat, P n

Then, the induction principle nat_ind can be used to perform structural induction in a proof
involving natural numbers. For instance, say that we want to prove the following theorem
stating that a natural number elevated at the power 2 is always greater than or equal to itself.
We can write as follows:

Coq < Theorem ge_pow2 : forall n : nat, n <= n ∗ n.
1 subgoal

============================
forall n : nat, n <= n ∗ n

Then, we can use the nat_ind induction principle to prove such a theorem. Most conve-
niently, the built-in induction tactic chooses the appropriate induction principle based on the
type of its argument. Thus, the following command invokes the nat_ind induction principle
over the universally quantified variable n:

Coq < induction n.
2 subgoals

============================
0 <= 0 ∗ 0
subgoal 2 is:
S n <= S n ∗ S n

The result of the invocation of the induction tactic is a branching in the proof tree. Thus,
the system indicates that two subgoals must be proved to complete the proof of the gt_pow2
theorem. These two subgoals correspond to the proof of P(0) and the proof that assuming P(n)
we can show P(n + 1), as agreed with structural induction. Here, the property P is defined by
P(n) ≡ n ≤ n × n. We can use the built-in lia tactic, defined in the Lia module of the Coq
standard library, to solve the two remaining subgoals. The lia tactic implements a whole
decision procedure to prove theorems involving systems of equalities and inequalities over the
set of natural numbers. We can combine the induction tactic with the lia tactic using the semi-
colon operator. Then, the lia tactic is applied to all the subgoals generated by the induction
tactic.

32 Chapter 2. Preliminary notions

Coq < induction n; lia.
No more subgoals.
Coq < Qed.

The Coq proof assistant permits us to define proof tactics, or procedures, in order to autom-
atize some proof tasks. At the top-level of the Coq proof assistant, the Ltac and Ltac2 languages
are the supports for the definition of this kind of tactics. These languages allow us to compose
sequences of tactics, to perform pattern matching over the local environment and the current
goal in interactive proof mode, to define loops or recursive tactics, etc. Even though the Ltac
and Ltac2 languages offer a lot of possibilities, the user willing to implement complex proof
tactics must turn to the OCaml language which the implementation, and thus meta-language,
of the Coq proof assistant. For instance, the lia tactic is implemented partly with the Ltac lan-
guage and as a OCaml program.

Leveraging the definition of inductive types, the syntactic constructs of programming lan-
guages are also easily implemented. Here is the implementation of the syntax of arithmetic
expressions presented in the previous section:

Inductive e : Set :=
| enat : nat→ e
| eid : string→ e
| eadd e → e→ e.

Each constructor corresponds to a construction case in the definition of arithmetic expres-
sions in the Backus-Naur form. The Coq system also generates the induction principle fol-
lowing the structure of arithmetic expressions (thus, a structural induction principle). The
induction principle is a proof term of the following logical formula:

forall P : e → Prop,
(forall n : nat, P (enat n)) →
(forall id : string, P (eid id)) →
(forall e0 : e, P e0 → forall e1 : e, P e1 → P (eadd e0 e1)) →
forall e : e, P e

The evaluation relation for arithmetic expressions is defined similarly:

Inductive evale (s : string→ option nat) : e→ nat→ Prop :=
| evalnat : forall n : nat, evale s (enat n) n
| evalid : forall (id : string) (n : nat),

s id = Some n →
evale s (eid id) n

| evaladd : forall (e0 e1 : e) (n m : nat),
evale s e0 n →
evale s e1 m →
evale s (eadd e0 e1) (n + m).

In the above listing, the state that yields the value of identifiers present in an arithmetic
expression is a named parameter of the evale relation, i.e. the s parameter. Parameters which
are not varying from one construction case to another can be passed as named parameters

2.3. The Coq proof assistant 33

while defining an inductive type. The state s takes a string identifier as input and yields an
option to a natural number. As so, the option type permits the definition of partial functions.
The identifiers that belong to the domain of state s will be associated with Some natural number,
whereas the unreferenced identifiers will be associated with the None value of the option type.
The Some and the None constructors are the two constructors of the option type which is defined
in Coq as follows:

Inductive option (A : Type) : Type :=
| Some : A → option A
| None : option A.

The option type is parameterized by a type A that will set the type of elements passed to the
Some constructor. As so, the option type is an example of generic type.

2.3.3 Functional programming

As told in the presentation of the CIC, the Coq proof assistant permits to write functional pro-
grams, including the definition of recursive functions. The definition of a recursive function is
performed with Fixpoint keyword. Here is an example of recursive function defined in Coq.
The pow function takes two natural numbers a and n as inputs and yields a to the power n.

Fixpoint pow (a n : nat) {struct n} : nat :=
match n with
| O ⇒ 1
| S m ⇒ a ∗ pow a m
end.

In the body of the pow function, the match construct performs pattern-matching over the
structure of the input n. The input n is an element of the nat type, and thus it could either
have been built with the O constructor or as the successor of another element of the nat type,
i.e. with the S constructor. The match construct enumerates all the possible construction cases
for the given input. Each construction case leads to a pipe-separated entry; for each entry,
the structure of the input appears at the left of the arrow, and the result returned appears at
the right the arrow. In the above example, 1 is returned if n equals O, and the result of the
multiplication of a with the recursive call pow a m is returned if n is the successor of a certain m.
In that case, we have m = n − 1, and then the recursive call pow a m can be read as pow a (n − 1).

When declaring a recursive function, the user must specify which parameter is structurally
decrementing through the recursive call. This is performed through {struct id} annotation,
where id denotes one parameter of the declared function. This information permits to the
Coq kernel to generate the fixpoint equation for the function, thus proving that the function
is always terminating. For consistency reasons, all Coq functions must terminate and must be
total. A user willing to implement a non-terminating function equivalently define the function
as an inductive type where termination limitations do not apply. For instance, let us say that
we want to implement this following ill-formed version of the pow function:

Fixpoint pow (a n : nat) {struct n} : nat :=
match n with
| O ⇒ 1

34 Chapter 2. Preliminary notions

| _ ⇒ a ∗ pow a n
end.

Clearly, this function diverges for all n strictly superior to 0. The Coq kernel will not allow
such a definition; thus, we can implement the pow function as the following relation Pow ⊆
(N×N×N):

Inductive Pow (a : nat) : nat→ nat→ Prop :=
| Pow0 : Pow a 0 1
| Pown : forall n res, Pow a n res→ Pow a n (a ∗ res).

The Pow relation takes three parameters of the nat type and projects a value in the Prop type
(meaning that the Pow relation is a predicate). The third nat parameter corresponds to the result
of the computation of an given that the two first parameters are a and n. Determining the result
of the computation of an is equivalent to finding a natural number m that verifies that Pow a n m
holds. In intuitionistic logic, finding a proof of the existence of a m such that Pow a n m holds
amounts to explicitly building such a m. Here, one can notice that when the second parameter
passed to the Pow relation is greater than zero, the formation rules of the Pow relation will not
permit us to find a result for the computation. Thus, a tactic implementing a proof search for a
m such that Pow a n m holds when n > 0 will never terminate.

2.3.4 Dependent types

In the listings that the reader will find in the following chapters, and also in the code repos-
itory associated with this thesis, some data structures are dependently-typed structures. Thus,
we introduce here the notion of dependent type and how it is expressed with the Coq proof
assistant.

A type is said to be dependent when its expression depends on one or more elements of
other types. To give an example of dependent type, let us take the definition of polymorphic
lists that carry their own length. In Coq, these lists are defined as follows:

Inductive listn (A : Type) : nat→ Set :=
| niln : list A 0
| consn : forall n : nat, A → listn A n→ listn A (S n).

The listn takes the type A of its elements as its first parameter, then its second parameter
is an element of the nat type which represent the actual length of the list. Note that the first
parameter, i.e. the A parameter, of the listn type alone is not sufficient to qualify listn as a
dependent type. The A parameter is the expression of the polymorphism of the elements of
the list involved in generic programming. Polymorphism relates to the fact that the A type is
general enough to accept multiple types as the type of the list’s elements. The niln constructor
of the listn, i.e. the constructor of the empty list, has the type of lists of length 0. The consn
constructor permits to add a new element at the head of an existing tail list to build a new list.
Thus, the type of the resulting list is the type of lists of length n + 1, where n is the length of
the tail list.

To further illustrate the use of dependent types, let us say that we want to write a function
that takes two natural numbers n and m as inputs, and yields n−m only if n ≥ m. Thus, the
function takes two parameters n and m, and a third parameter which is the proof that n ≥ m.

2.3. The Coq proof assistant 35

This third parameter depends on the two previous parameters, and thus the function is said to
be a dependently-typed function. In Coq, it would be written as follows:

Definition my_sub (n m : nat) (pf : m <= n) : nat := n − m.

Even though, in its definition body, the my_sub function simply appeals to the Coq built-
in subtraction function, passing a proof that m is less than or equal to n adds a constraint to
the computation of the subtraction. One can see how dependent types can help check that
the parameters of programs meet some properties at definition time. Constraining the type of
parameters during the definition of programs reduces the proof efforts afterwards, but adds
programming complexities at the moment of the definition. Thus, there is a trade-off between
using dependent types to constraint the structures and programs at the moment of their defini-
tion, or letting the structures and programs as constraint loose as possible at the cost of having
to prove much more properties afterwards.

To conclude the subject of dependent types, we often use sigma types to define a type of
elements that meet a given property. Sigma types are constructivist versions, coming from the
intuitionistic logic, of existential logic formulas. A sigma type expresses the dependence be-
tween a parameter and a proof of a given property that possibly depends on another parameter.
As so, sigma types are useful to express intentional sets (cf. Section 2.1.2). In the Coq standard
library, the definition of the sigma type is as follows:

Inductive sig (A:Type) (P:A → Prop) : Type := exist : forall x:A, P x → sig P.

The sig type only constructor takes an element x of type A along with a proof that x meets
a certain property P. For instance, if we want to define the type of natural numbers that are
strictly greater than zero, we can do it as follows:

Definition natstar := sig nat (fun n : nat⇒ n > 0).

The property passed as the second argument of the sig type is expressed by a lambda ab-
straction (denoted by the fun keyword) that takes a parameter n of type nat and returns a proof
that n is strictly greater than zero. The Coq standard library defines a notation to write sigma
types as intensional sets. Thus, we can write the natstar type as follows:

Definition natstar2 := { x : nat | x > 0}.

We can leverage sigma types to rewrite the my_sub function presented above. In the fol-
lowing version, the type of the m parameter carries the proof that m is less than or equal to
n:

Definition my_sub2 (n : nat) (m : { x : nat | x <= n }) : nat := n − (proj1_sig m).

Here, we can no longer directly subtract n with m as the type of m is no longer nat but
{ x : nat | x <= n } . We have to extract the first part of the m parameter with the help of the
proj1_sig function. The first part of an element of the { x : nat | x <= n } type corresponds to
the natural number x verifying the following property x <= n, and the second part corresponds
to the proof that x verifies the property.

37

Chapter 3

Implementation of the HILECOP
Petri nets

In this chapter, we present the input formalism of our transformation function: Synchronously
executed Interpreted Time Petri Nets with priorities (SITPNs). The formalization of the SITPN
structure and semantics is mainly the result of two former Ph.D. theses [71, 78]. However, we
contributed to the simplification and clarification of both the definition of the SITPN structure
and its semantics. Moreover, we added complementary definitions that are required to express
the semantic preservation theorem about the HILECOP model-to-text transformation (cf. Chap-
ter 6). Our main contribution in this part lies in the implementation of the SITPN structure and
semantics with the Coq proof assistant. This chapter is structured as follows: Section 3.1 is a
reminder on the PN formalism and also gives an informal presentation of SITPNs; Section 3.2
provides the formal definitions of the SITPN structure and semantics; Section 3.3 deals with
the implementation of SITPNs with the Coq proof assistant.

3.1 Informal presentation of Synchronously executed Petri nets

Here, fundamentals on the Petri net formalism are outlined, and certain classes of Petri nets are
described more precisely. Then, the specificities of the Petri nets used to design the behavior of
electronic components in the HILECOP methodology are presented. For more information on
the topic of Petri nets, the reader can refer to [40], [84], or [43].

3.1.1 Preliminary notions on Petri nets

Petri nets (PNs), invented by C. A. Petri [93], have been designed to model a broad range of
dynamic systems: resource sharing between concurrent processes [40], behavior of agents in
multi-agent systems [28], behavior of digital components [113]. A Petri net is a directed graph
composed of two types of node: place nodes (circles) and transition nodes (squares or lines). As
shown in Figure 3.1, place nodes usually represent a part of the state of the modelled system,
here, the states of two computer processes and a semaphore; transition nodes usually refer
to events triggering the system evolution (or state changing). In Figure 3.1, places p0, p3 and
sem are marked with tokens, represented by filled black circles. This means that places p0, p3
and sem are currently active. The distribution of tokens over places is called the marking of the

38 Chapter 3. Implementation of the HILECOP Petri nets

net. The marking of a Petri net reflects the overall state of the modelled system at a certain
moment in its activity cycle. We will see later that there exists a lot of different classes of PNs.
Figure 3.1 presents an example of the most simple form of PN, namely, the place-transition PN.
In this chapter, when no precision is given on the class of PN considered, a PN refers to a
place-transition PN.

p0
(Waiting)

p1
(Treatment 1)

sem

t0
(Begin treatment 1)

t1
(End treatment 1)

p2
(Treatment 2)

p3
(Waiting)

t2
(Start treatment 2)

t3
(End treatment 2)

FIGURE 3.1: An example of Petri net. The semaphore place sem prevents the paral-
lel execution of Treatment 1 (place p1) and Treatment 2 (place p2).

Edges

In a Petri net, directed edges link together places and transitions. Places cannot be linked to
other places, and the same stands for transitions. There are two kinds of edges, pre or incoming
edges, going from a place to a transition, and post or outcoming edges, going from a transition
to a place. Places linked to a transition t by incoming (resp. outcoming) edges will be referred
to as the input places (resp. output places) of t. The same stands for the transitions linked
to a place p. For instance, in Figure 3.1, p0 and sem are the input places of t0, and p1 is the
output place of t0; t1 and t3 are the input transitions of place sem, and t0 and t2 are the output
transitions of sem. Some weight –a natural number– is associated to the edges of a Petri net. If
no label appears on the edge then one is the default weight. Petri nets are said to be generalized
when the weight of the edges are possibly greater than one.

Transition firing

In a Petri net, the marking evolves based on a token consumption-production system. Transi-
tions consume tokens from their input places, and produce tokens to their output places. This
whole process is called transition firing. In order to be firable, a transition must be sensitized (or
enabled), meaning that the number of tokens in each of its input places must be equal or greater
than the weight of the associated incoming edges. For instance, in Figure 3.1, the transition
t0 is sensitized because the weight of the arcs (p0, t0) and (sem, t0) is of one (default value),
and place p0 and sem are marked with one token. As a counter example, transition t3 is not

3.1. Informal presentation of Synchronously executed Petri nets 39

sensitized because its input place p2 holds no token, where at least one token is expected for
t3 to be sensitized. Depending on the class of PNs that is considered, other parameters affect
the firability of transitions (see interpreted Petri nets, time Petri nets and Section 3.1.2). When a
sensitized transition is fired, tokens are retrieved from their input places (as many tokens as the
weight of the input arcs) and produced in their output places (as many tokens as the weight of
the output arcs). This process represents the occurrence of an event (denoted by the transition)
triggering the evolution of the system from one state to another. Figure 3.2 shows the state of
the PN of Figure 3.1 after the firing of the transition t0.

p0
(Waiting)

p1
(Treatment 1)

sem

t0
(Begin treatment 1)

t1
(End treatment 1)

p2
(Treatment 2)

p3
(Waiting)

t2
(Start treatment 2)

t3
(End treatment 2)

FIGURE 3.2: The PN of Figure 3.1 after the firing of transition t0.

In Figure 3.2, the tokens in the input places of t0, i.e. places p0 and sem have been consumed,
and one token has been produced in the output place p1. The current marking indicates that
the task “Treatment 1” is being performed (place p1 is active).

In Figure 3.1, transition t0 and t2 are enabled at the same time. However, the standard se-
mantics of PNs is such that only one transition can be fired in that case. Either t0 consumes the
token in place sem or t2 does, but never both. Thus, the transition firing process in the standard
PN semantics is a nondeterministic process. From the marking of Figure 3.1, two markings are
reachable: the marking resulting of the firing of transition t0 and the one resulting of the firing
of transition t2. Also, in standard PNs, the transition firing process is asynchronous; as soon as
a transition is enabled, the transition firing process can be triggered.

Extended Petri nets

The class of extended Petri nets introduces the inhibitor and test edges. As shown in Figure 3.3,
test arcs are represented with a black-filled circle head and inhibitor arcs with a white-filled
circle head. Inhibitor and test edges are incoming edges, always coming from a place toward a
transition.

40 Chapter 3. Implementation of the HILECOP Petri nets

p0 p1

p2

t0

2

p0 p1

p2

t0

3

FIGURE 3.3: Two examples of extended Petri nets; on the left side, a PN with in-
hibitor arcs; on the right side, a PN with test arcs.

The particularity of the inhibitor and test edges is that they are not consuming tokens in
input places after the firing of a transition. They are just testing the number of tokens in in-
coming places to determine if the transition is enabled. Inhibitor arcs ensure that the number
of tokens in input places is strictly lower than their weights; test arcs ensure that the number
of tokens in incoming places is equal or greater than their weights. Therefore, on the left side
of Figure 3.3, transition t0 is sensitized because there is strictly less than one token in place p0
and strictly less than two tokens in place p1. On the right side of Figure 3.3, transition t0 is
sensitized because there is at least one token in place p0 and three tokens in place p1.

Interpreted Petri nets

As stated in [40], Interpreted Petri Nets (IPN) “can be applied to various interpretations accord-
ing to the use wished to be made of it”. In its general definition, an IPN is associated with a
finite set of variables V, a finite set of operations O, and a finite set of conditions C. Operations
of the O set are associated with places and triggered when the places become marked. The ex-
ecution of operations affects the value of the variables, and the value of conditions depends on
Boolean expressions computed upon the variables. Conditions are associated with transitions
and become involved in the firing process. Thus, in an IPN, a transition is firable if:

– It is enabled.

– All its associated conditions are true.

Among other applications, IPNs are handy to model the behavior of hardware controllers.
Thus, interpretation aspects have been naturally introduced to the HILECOP high-level models,
which are models of hardware systems. The HILECOP version of IPNs refines the concepts of
the general definition. In this version, the set of variables corresponds to the set of VHDL signals
that are handled by the model; a signal can be an input port, an output port or an internal signal
of the modeled hardware circuit. The operations are separated in two kinds, namely: actions
and functions. Actions (or continuous operations) are associated to the places; all the actions
associated to a place p are activated as long as p is marked (i.e. as long as p holds a token).
Functions (or discrete operations) are associated to the transitions; when a transition t is fired,
all functions associated to t are executed once.

3.1. Informal presentation of Synchronously executed Petri nets 41

Figure 3.4 illustrates the use of actions, functions and conditions in an interpreted Petri net
as applied in the HILECOP high-level models.

p0 a0 p1

p2 a1

t0
f0
c0

t1 c1

c0: i > 10◦C
f0: set temperature(o1,s)
c1: i ≤ 10◦C and s

a0: green LED on(o2)
a1: red LED on(o2)

FIGURE 3.4: An example of interpreted Petri net; on the left side, the interpreted
Petri net; on the right side, examples of tests associated to conditions and opera-

tions associated to actions and functions.

In Figure 3.4, the set of VHDL signals, on which the interpretation elements act upon, is
{i, s, o1, o2}. Here, signal i is an input port of the hardware, s is an internal signal, and o1 and
o2 are two output ports. The action a0 is activated as place p0 is marked by one token; thus,
the operation green_LED_on(o2) is currently executed. Also, function f0 will be executed (i.e.
operation set_temperature(o1, s)) at the firing of t0, that is if condition c0 is true and t0 is
sensitized. On the right side of Figure 3.4, we associate Boolean expressions with conditions;
these expressions depend on the value of the signals declared by the model. Also, we associate
actions and functions with operations that handle the signals of the model which are passed
as inputs. Concretely, in the HILECOP high-level models, functions and actions are declared
as VHDL procedures. Listing 3.1 gives one possible implementation of the set_temperature
operation as a VHDL procedure; the set_temperature operation is associated with function f0
in Figure 3.4.� �

1 procedure set_temperature(signal tmp : out integer; signal flag : inout std_logic) is
2 begin
3 if flag = ’1’ then
4 tmp⇐ 30;
5 flag⇐ ’0’;
6 else
7 tmp⇐ 10;
8 flag⇐ ’1’;
9 endif;

10 return;
11 end set_temperature;� �

LISTING 3.1: An example of VHDL procedure implementing the operation set_-
temperature associated with the function f0.

42 Chapter 3. Implementation of the HILECOP Petri nets

In Listing 3.1, the set_temperature procedure declares two parameters: the tmp signal
which is a write-only signal of type integer, and the flag signal which is a both readable
and writable signal of the Boolean type (std_logic in VHDL). The set_temperature procedure
checks the value of the flag signal and assigns a new value to the tmp and flag signals accord-
ingly. The⇐ operator is the assignment operator for signals in the VHDL syntax (more on that
in Chapter 4).

Therefore, to compute the evolution of an IPN, we must be able to interpret the content
of operations associated with actions and functions, and also to evaluate the Boolean expres-
sions associated with conditions. This implies the definition of interpretation rules that give
an execution semantics to operations and expressions. For now, we consider a simplified ver-
sion of the interpretation that permits us not to bother with the semantics of operations and
Boolean expressions. In fact, we do not consider the set of VHDL signals as a part of the HILE-
COP PN structure; thus, we are not interested in the representation of the Boolean expressions
associated with conditions, nor in the VHDL procedures that implement functions and actions.
Regarding conditions, we consider that they directly receive their value from an environment
that would have computed in our stead the values of the Boolean expressions. Thus, we no
more have to consider the Boolean expressions associated with conditions, and only have to
rely on the values given by the environment. Regarding actions and functions, we are only in-
terested in the fact that a given action/function is activated/executed but no more in actually
executing the associated operation.

Time Petri nets

In a time Petri net (TPN), time intervals are associated to transitions. The goal is to constrain the
firing of a transition to a certain time window. As shown in Figure 3.5, time intervals are of the
form [a, b], where a ∈N∗ and b ∈N∗ t {∞}. Other definitions of time intervals exist for TPNs
(e.g. with real numbers), but here we will only consider the latter definition. In Figure 3.5, time
counters are represented in red between diamond brackets. The current value of time counters
is part of the state of the TPN, along with its current marking, whereas time intervals are part
of the static structure of the TPN.

p0

p1

t0
[2,∞]
<2>

t1
[2, 4]
<1>

FIGURE 3.5: An example of time Petri net. The value of time counters appears in
red.

3.1. Informal presentation of Synchronously executed Petri nets 43

For each sensitized transition associated with a time interval, time counters are incremented
at a certain time step, previously defined by the designer. For instance, in the case of SITPNs,
i.e. Petri nets used in the HILECOP methodology, the reference time step for the increment of
time counters is the clock cycle.

When a transition associated with a time interval is fired or disabled, a reset order is sent to
the transition to set its time counter to zero. In time Petri nets, a transition is firable if:

– It is enabled.

– Its time counter value is within its time interval.

For instance, in Figure 3.5, only transition t0 is firable. Moreover, there are several possible
firing policies for TPNs. Here, we will only consider the imperative firing policy: as soon as a
time counter reaches the lower bound of a time interval, the associated transition must be fired
if all the other firability conditions are verified.

Petri nets with priorities

Two transitions are in structural conflict if they have a common input place connected through
a basic arc (i.e. neither inhibitor nor test arc). When two transitions in structural conflict are
firable at the same time and if the firing of one of the transitions disables the other, then, the
conflict becomes effective. In a Petri net with priorities, it is possible to specify a firing priority
in the case where the conflict between two transitions becomes effective. In that case, the
transition with the highest firing priority will always be fired first. Figure 3.6 illustrates the
application of a priority relation to solve the effective conflict between two transitions.

p0

t0 t1

(a) Without priorities.

p0

t0 t1

(b) With priorities.

FIGURE 3.6: An example of transitions in structural and effective conflict. In sub-
figure (b), the dotted arrow represents the priority relation between t0 and t1. The
transition with the highest firing priority is at the source of the arrow; here, transi-

tion t0.

3.1.2 Particularities of SITPNs

Here, we will informally present the specificities of the Petri nets describing the internal behav-
ior of the HILECOP high-level model components. These Petri nets are called: Synchronously
executed, extended, generalized, Interpreted, Time Petri Nets with priorities or SITPNs. SIT-
PNs are a combination of multiple classes of PNs, namely: extended PNs, generalized PNs,

44 Chapter 3. Implementation of the HILECOP Petri nets

interpreted PNs, time PNs and PNs with priorities. These classes were presented in the above
section. We will now talk about another aspect of SITPNs that constitutes the originality of the
formalism compared to the standard PN semantics: its synchronous execution.

The class of interpreted Petri nets increases the expressiveness of the HILECOP high-level
models. However, to ensure the safe execution of functions after the synthesis of the designed
circuit, the whole system must be synchronized with a clock signal [71]. As a consequence,
a clock signal also regulates the evolution of SITPNS (i.e. it is a part of their semantics). The
evolution of a SITPN is synchronized with two clock events: the rising edge and the falling edge
of the signal. Figure 3.7 depicts the process of state evolution, following the clock signal.

Clock signal

Updates the marking,
the reset order values
and the function execution status.

Updates the condition values,
the time counter values,
and the action activation status.

FIGURE 3.7: Evolution of an SITPN synchronized with a clock signal.

Considering the different classes of PNs that define SITPNs, the state of a SITPN is charac-
terized by its marking, the value of time counters, the reset orders assigned to time counters,
the execution/activation status of actions/functions (Boolean values), and the value of condi-
tions (also Boolean). As shown in figure 3.7, the state evolution process of a SITPN is divided
into two steps. The rising edge of the clock signal triggers the marking update, which is the
consequence of transition firing; all transitions that have been fired or disabled by the firing
process receive reset orders; all functions associated with fired transitions are executed. Then,
on the falling edge of the clock signal, the environment provides a new value to each condition.
The falling edge triggers the evolution of the time counter values; values are incremented, re-
set, or stalling in the case where a time counter has reached the upper bound of its associated
time interval (see the following remark on locked time counters). Finally, all actions associated
with marked places are activated. Figure 3.8 gives an example of the evolution of the state of
a given SITPN through one clock cycle. The aim of this figure and the explanation that fol-
lows is to give some hints to the reader about the semantics of SITPNs before giving its formal
definition in Section 3.2.4.

3.1. Informal presentation of Synchronously executed Petri nets 45

p0

t0
[2, 4]
<2>

p1

t1

a0

a1

c0
f0

c1

1

p0

t0
[2, 4]
<2>

p1

t1

a0

a1

c0
f0

c1

2

p0

t0
[2, 4]
<1>

p1

t1

a0

a1

c0
f0

c1

3

↓ ↑ ↓ ↑
.

FIGURE 3.8: Evolution of a SITPN over one clock cycle. Conditions appear in green
when their value is true and in red otherwise; actions and functions appear in
green when they are activated/executed and in red otherwise; time counters ap-
pear in red and between diamond brackets; time counters appear in blue when

they receive reset orders.

From Step 1 to Step 2, the rising edge of the clock signal triggers the SITPN state evolution.
Here, transition t0 is fired. At Step 1, transition t0 gathers all the necessary conditions to trigger
the firing process, namely:

– t0 is enabled by the current marking.

– Condition c0 is true (appears in green).

– The value of t0’s time counter is within the associated time interval (2 ∈ [2, 4]).

As a consequence, one token is consumed in place p0 and one token is produced in place
p1. Also, function f0 is executed at the occurrence of the rising edge of the clock signal, and
thus, f0 appears in green at Step 2. Due to the firing of t0 at the rising edge, a reset order is sent
to the time counter of t0, and it appears in blue at Step 2. From Step 2 to Step 3, the falling edge
updates the action activation status: a0 stays activated as place p0 is still marked; a1 becomes
newly activated as p1 is marked. The value of time counters is updated: t0’s time counter is set
to zero as the transition previously received a reset order. However, as t0 is still enabled by the
new marking, its time counter is incremented. Thus, the resulting time counter value at Step 3
is of one (i.e. result of reset plus increment). Also, the environment provides a new value to
each condition. As a consequence, condition c0 takes the value false and condition c1 keeps
the same value.

A remark on priorities

The semantics of synchronous execution is that all transitions are fired at the same time. In
Figure 3.9, transitions t0 and t1 are both sensitized by place p0, and consequently are both fired
at the same time. The system acts as if two tokens were available in place p0, one for the firing
of t0 and another for the firing of t1.

46 Chapter 3. Implementation of the HILECOP Petri nets

p0

t0 t1

p0

t0 t1

↑

FIGURE 3.9: Double consumption of one token in a SITPN. On the left side, the cur-
rent marking before the firing of t0 and t1; on the right side, the marking resulting
of the firing of t0 and t1. The arrow indicates the occurrence of a rising edge that

triggers the firing process.

In the context of a SITPN, a branching like the one of Figure 3.8, normally interpreted as
a disjunctive branching, takes the semantics of a conjunctive branching when no priority are
prescribed between the conflicting transitions. To avoid the phenomenon of “double consump-
tion” of tokens, we enforce the resolution of any structural conflict by means of mutual exclu-
sion or through the application of priorities. This policy about the resolution of structural con-
flicts is part of the definition of a well-defined SITPN presented in Section 3.2.6. The property
of well-definition is mandatory to produce safe models of digital systems.

When a structural conflict between transitions is solved with priorities, the firing process
follows a slightly different mechanism. As illustrated in Figure 3.10, to determine which transi-
tions of t0, t1 and t2 must be fired, a residual marking is computed by following the priority order.
For each transition of the group t0, t1 and t2, the residual marking represents the remaining to-
kens in p0 after the firing of transitions with a higher firing priority. Thus, in the semantics of
SITPNs, we add an extra condition to the firing of a transition: to be fired, a transition must be:

– enabled by the current marking

– must have all its conditions valuated to true

– must have its time counter within its time interval

– and must be enabled by the residual marking.

The computation of the residual marking only involves the consumption phase of the firing
process; tokens are withdrawn from places, but none are generated.

3.1. Informal presentation of Synchronously executed Petri nets 47

p0

t0 t2t1 c0

1

p0

t0 t2t1 c0

2

p0

t0 t2t1 c0

3

FIGURE 3.10: Computation of the residual marking for a group of conflicting tran-
sitions. At 1 (resp. 2 and 3), place p0 holds the residual marking for transition
t0 (resp. t1 and t2). Condition c0 is in red to indicate that its current value is false.

In Figure 3.10, the residual marking for t0 corresponds to the marking obtained after the
firing of all transitions with a higher priority. As t0 is the transition with the highest firing
priority, the residual marking for t0 is equal to the current marking. Transition t0 gathers all
the conditions to be firable and is enabled by the residual marking; thus, t0 will be fired on
the next rising edge. The residual marking for t1 is the marking obtained after the firing of t0,
i.e. the only transition with a higher priority. As illustrated at 2 , t1 is enabled by the residual
marking. However, t1 does not gather all the conditions to be firable as the value of condition
c0 is false. Thus, t1 will not be fired on the new rising edge. The residual marking for t2 is
obtained after the firing of t0 only. Even though transition t1 has a higher firing priority than
t2, t1 is not a member of the set of fired transitions. Thus, t1 is not taken into account in the
computation of the residual marking for t2. The residual marking at 3 enables transition t2,
and as t2 gathers all the conditions to be firable, then t2 will be fired on the next rising edge.

Locked time counters

SITPNs inherit the properties of time PNs and interpreted PNs. The phenomenon of locked time
counters is a consequence of this inheritance. As illustrated in Figure 3.11, the value of a time
counter can overreach the upper bound of its associated time interval. This situation can only
arise if a condition hinders the firing of a given transition while the considered transition is
still enabled by the marking. As a consequence, the time counter will be incremented at every
clock cycle until the upper bound of the time interval is overreached. Then, at this point, the
time counter is said to be locked and its value will no more evolve.

p

t
c

[2, 4]
<4>

p

t
c

[2, 4]
<5>

↓

FIGURE 3.11: An example of locked time counter. Condition c is equal to false
and thus appears in red.

48 Chapter 3. Implementation of the HILECOP Petri nets

In Figure 3.11, condition c is valuated to false before the falling edge of the clock signal.
Thus, transition t can not be fired but is still enabled by the marking. On the next falling edge,
the time counter of transition t is incremented and overreaches the upper bound of interval
[2, 4] and thus becomes locked. If the designer of the model has not anticipated the case of a
locked time counter, and has not provided an alternative to disable place p in that case, then
the transition t will never be firable again.

3.2 Formalization of the SITPN structure and semantics

We hope that the reader has now a fair understanding of the concepts underlying the SITPNs
and of the dynamics governing the SITPN state evolution process. In this section, we give the
formal definition of the SITPN structure and of its execution semantics. We also introduce the
concept of a well-defined SITPN at the end of the section.

3.2.1 SITPN structure

The structure of SITPNs is formally defined as follows:

Definition 14 (SITPN). A synchronously executed, extended, generalized, interpreted, and time
Petri net with priorities is a tuple <P, T, pre, post, M0,�,A, C,F , A, C, F, Is>, where we have:

1. P = {p0, . . . , pn}, a finite set of places.

2. T = {t0, . . . , tm}, a finite set of transitions.

3. pre ∈ P → T 9 (N∗ × {basic, inhib, test}), the function associating a weight to
place-transition edges.

4. post ∈ T → P 9 N∗, the function associating a weight and a type to transition-place edges.

5. M0 ∈ P→N, the initial marking of the SITPN.

6. �⊆ (T × T), the priority relation, which is a partial order over the set of transitions.

7. A = {a0, . . . , ai}, a finite set of continuous actions.

8. F = { f0, . . . , fk}, a finite set of functions (instantaneous actions).

9. C = {c0, . . . , cj}, a finite set of conditions.

10. A ∈ P→ A → B, the function associating actions to places. ∀p ∈ P, ∀a ∈ A, A(p, a) =
true, if a is associated to p, A(p, a) = false otherwise.

11. F ∈ T → F → B, the function associating functions to transitions. ∀t ∈ T, ∀ f ∈ F ,
F(t, f) = true, if f is associated to t, F(t, f) = false otherwise.

3.2. Formalization of the SITPN structure and semantics 49

12. C ∈ T → C → {−1, 0, 1}, the function associating conditions to transitions. ∀t ∈ T,
∀c ∈ C, C(t, c) = 1, if c is associated to t, C(t, c) = −1, if c̄ is associated to t, C(t, c) = 0
otherwise.

13. Is ∈ T 9 I+, the partial function associating static time intervals to transitions, where
I+ ⊆ (N∗ × (N∗ t {∞})).

In Definition 14, the structure holds the static elements of a SITPN model, i.e. all the ele-
ments which value does not evolve with the execution of the model. Therefore, the value of
time counters associated with transitions does not appear in the SITPN structure. As the value
of time counters is dynamic, i.e. it evolves with the execution of an SITPN model, it is a part of
the SITPN state.

Definition 15 (Time transitions). For a given sitpn ∈ SITPN, Ti denotes the definition do-
main of Is, i.e. the set of transitions associated with a time interval, referred to as time transitions.

In the current formal definition of the SITPN structure, and as discussed in Section 3.1.1,
we do not consider the set of VHDL signals manipulated by a SITPN model. As a consequence,
the structure holds neither the association between conditions and boolean expressions, and
nor the association between actions/functions and operations (i.e. VHDL procedures that act
upon signal values) that would be necessary in the presence of the set of VHDL signals. In this
simplified version of the SITPN structure, conditions, actions and functions are only considered
as finite sets of indexed elements associated with the places and transitions of an SITPN.

3.2.2 SITPN State

The SITPN semantics describes the evolution of the state of an SITPN through a given number
of clock cycles; thus, we must first define the SITPN state structure:

Definition 16 (SITPN State). For a given sitpn ∈ SITPN, let S(sitpn) be the set of possible
states of sitpn. An SITPN state s ∈ S(sitpn) is a tuple <M, I, resett, ex, cond>, where:

1. M ∈ P→N is the current marking of sitpn.

2. I ∈ Ti →N is the function mapping time transitions to their current time counter value.

3. resett ∈ Ti → B is the function mapping time transitions to time counter reset orders (defined
as Booleans).

4. ex ∈ A t F → B is the function representing the current activation (resp. execution) state
of actions (resp. functions).

5. cond ∈ C → B is the function representing the current value of conditions (defined as
Booleans).

50 Chapter 3. Implementation of the HILECOP Petri nets

Notation 3 (SITPN state and fields). In the rest of memoir, we refer to a specific field of a
SITPN state s with the infix pointed notation, e.g. s.M refers to the marking of state s, and
s.M(p) denotes the marking of a given place p at state s; s.I refers the function yielding the value
of time counters at state s, and s.I(t) denotes the value of the time counter associated with the
transition t at state s.

At the beginning of its execution, a SITPN model is associated with an initial state defined
as follows:

Definition 17 (Initial state). For a given sitpn ∈ SITPN, s0 ∈ S(sitpn) is the initial state of
sitpn, such that s0 =< M0, ON, OB, OB, OB >, where M0 is the initial marking of the SITPN,
ON is a function that always returns 0, OB is a function that always returns false.

3.2.3 Preliminary definitions and fired transitions

Before formalizing the full SITPN semantics, we must introduce some definitions and nota-
tions, especially the definition of a firable and a fired transition. We use the two following nota-
tions to simplify the formalization of the SITPN semantics.

Notation 4 (Relations between markings). For all relation R existing between two marking
functions M and M′, the expressionR(M, M′) is a notation for ∀p ∈ P, R(M(p), M′(p)). For
instance, M′ = M − ∑

ti∈T′
pre(ti) is a notation for ∀p ∈ P, M′(p) = M(p)− ∑

ti∈T′
pre(p, ti)

where T′ ⊆ T.

Notation 5 (Sum expressions and arc types). Many times in this document, we need to express
the number of tokens coming to or from places, after the firing of a certain subset of transitions.
To do so, we use two kinds of sum expression:

1. The first kind of expression computes a number of output tokens. For instance, for a given
place p, ∑

t∈T′
pre(p, t) where T′ ⊆ T.

The expression ∑
t∈T′

pre(p, t) is a notation for ∑
t∈T′

{
ω i f pre(p, t) = (ω, basic)
0 otherwise

When computing a sum of output tokens (i.e. resulting of a firing process), we want to add to
the sum the weight of the arc between place p and a transition t ∈ T′ only if there exists an arc
of type basic from p to t (remember that the test and inhibitor never lead to the withdrawal
of tokens during the firing process). Otherwise, we add 0 to the sum as it is a neutral element
of the addition operator over natural numbers.

2. The second kind of expression computes a number of input tokens. For instance, for a given
place p, ∑

t∈T′
post(p, t) where T′ ⊆ T.

3.2. Formalization of the SITPN structure and semantics 51

The expression ∑
t∈T′

post(p, t) is a notation for ∑
t∈T′

{
ω i f post(t, p) = ω

0 otherwise

Here, we add the weight of the arc from t to p only if there exists such an arc; we add 0 to the
sum otherwise.

Therefore, in the rest of the document, we will use the conciser notations ∑
t∈T′

pre(p, t) to denote

an output token sum, and ∑
t∈T′

post(t, p) to denote an input token sum.

We give the formal definition of the sensitization of a transition by a given marking as follows:

Definition 18 (Sensitization). A transition t ∈ T is said to be sensitized, or enabled, by a
marking M, which is noted t ∈ Sens(M), if ∀p ∈ P, ∀ω ∈ N∗,

(
pre(p, t) = (ω, basic) ∨

pre(p, t) = (ω, test)
)
⇒ M(p) ≥ ω, and pre(p, t) = (ω, inhib)⇒ M(p) < ω.

We give the formal definition of a firable transition at a given SITPN state as follows:

Definition 19 (Firability). A transition t ∈ T is said to be firable at a state s =
<M, I, resett, ex, cond>, which is noted t ∈ Firable(s), if t ∈ Sens(M), and t /∈ Ti or
I(t) ∈ Is(t), and ∀c ∈ C, C(t, c) = 1⇒ cond(c) = 1 and C(t, c) = −1⇒ cond(c) = 0.

As explained in Section 3.1.2, the firability conditions are not sufficient for a transition to
be fired. A transition must also be enabled by the residual marking to go through the firing
process. Definition 20 gives the formal definition of a fired transition at a given SITPN state:

Definition 20 (Fired). A transition t ∈ T is said to be fired at the SITPN state s =
<M, I, resett, ex, cond>, which is noted t ∈ Fired(s), if t ∈ Firable(s) and t ∈ Sens

(
M −

∑
ti∈Pr(t)

pre(ti)
)
, where Pr(t) = {ti | ti � t ∧ ti ∈ Fired(s)}.

One can notice that the definition of the set of fired transitions is recursive. To compute the
residual marking necessary to the definition of a fired transition, the Pr set must be defined.
For a given transition t, the Pr set represents all the transitions with a higher firing priority
than t that are also fired transitions; hence the recursive definition. As the priority relation is a
partial order over the finite set of transitions, all transitions have a finite set of transitions with
a higher firing priority. Thus, the computation of the set of fired transitions always terminates.

In Definition 20, the marking M− ∑
ti∈Pr(t)

pre(ti) formally qualifies the residual marking for

a given transition t and at a given SITPN state s.

52 Chapter 3. Implementation of the HILECOP Petri nets

3.2.4 SITPN Semantics
We formalize the semantics of a given SITPN as a transition system. The SITPN state transition
relation defined in the SITPN semantics has two cases of definition, one for each clock event.
The SITPN state transition relation describes the evolution of the state of a SITPN.

Definition 21 (SITPN Semantics). The semantics of a given sitpn ∈ SITPN is the transition
system <L, Ec,→ > where:

- L ⊆ {↑, ↓} ×N is the set of transition labels. A label is a couple (clk, τ) composed of a clock
event clk ∈ {↑, ↓}, and a time value τ ∈N expressing the current count of clock cycles.

- Ec ∈ N → C → B is the environment function, which gives (Boolean) values to conditions
(C) depending on the count of clock cycles (N).

- →⊆ S(sitpn)× L× S(sitpn) is the SITPN state transition relation, which is noted

Ec, τ ` s clk−→ s′ where s, s′ ∈ S(sitpn) and (clk, τ) ∈ L, and which is defined as follows:

∗ ∀τ ∈ N, ∀s, s′ ∈ S(sitpn), we have Ec, τ ` s
↓−→ s′, where s =< M, I, resett, ex, cond >

and s′ =< M, I′, resett, ex′, cond′ >, if:

(1) cond′ is the function giving the (Boolean) values of conditions that are extracted from the
environment Ec at the clock count τ, i.e.:

∀c ∈ C, cond′(c) = Ec(τ, c).

(2) All the actions associated with at least one marked place in the marking M are activated,
i.e.:

∀a ∈ A, ex′(a) = ∑
p∈marked(M)

A(p, a) where marked(M) = {p′ ∈ P | M(p′) > 0}.

(3) All the time transitions that are sensitized by the marking M and received the order to
reset their time intervals, have their time counter reset and incremented, i.e.:

∀t ∈ Ti, t ∈ Sens(M) ∧ resett(t) = true⇒ I′(t) = 1.

(4) All the time transitions that are sensitized by the marking M, and did not receive a reset
order, increment their time counters if time counters are still active, i.e.:

∀t ∈ Ti, t ∈ Sens(M) ∧ resett(t) = false∧ [I(t) ≤ u(Is(t)) ∨ u(Is(t)) = ∞]

⇒ I′(t) = I(t) + 1.

3.2. Formalization of the SITPN structure and semantics 53

(5) All the time transitions verifying the same conditions as above, but with locked counters,
keep having locked counters (values are stalling), i.e.:

∀t ∈ Ti, t ∈ Sens(M) ∧ resett(t) = false∧ I(t) > u(Is(t)) ∧ u(Is(t)) 6= ∞

⇒ I′(t) = I(t).

(6) All the time transitions disabled by the marking M have their time counters set to zero,
i.e.:

∀t ∈ Ti, t /∈ Sens(M)⇒ I′(t) = 0.

∗ ∀τ ∈ N, ∀s, s′ ∈ S(sitpn), we have Ec, τ ` s
↑−→ s′, where s =< M, I, resett, ex, cond >

and s′ =< M′, I, reset′t, ex′, cond >, if:

(7) M′ is the new marking resulting from the firing of all the transitions contained in
Fired(s), i.e.:

∀p ∈ P, M′(p) = M(p)− ∑
t∈Fired(s)

pre(p, t) + ∑
t∈Fired(s)

post(t, p).

(8) A time transition receives a reset order if it is fired at state s, or, if there exists a place p
connected to t by a basic or test arc and at least one output transition of p is fired
and the transient marking of p disables t; no reset order is sent otherwise:

∀t ∈ Ti, t ∈ Fired(s)

∨
(
∃p ∈ P, ω ∈N∗,

[pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)]

∧ ∑
ti∈Fired(s)

pre(p, ti) > 0

∧M(p)− ∑
ti∈Fired(s)

pre(p, ti) < ω
)

⇒ reset′t(t) = true and reset′t(t) = false otherwise.

(9) All functions associated with at least one fired transition are executed, i.e:

∀ f ∈ F , ex′(f) = ∑
t∈Fired(s)

F(t, f).

We inherit from [71] and [78], the form of Definition 21. In this thesis, we prefer to use
rule instances to define execution relations, or relations that are involved in an operational se-
mantics. Thus, Definition 21 can be equivalently represented with the following rule instances,
where the premises of the rules refer to the premises of Definition 21:

54 Chapter 3. Implementation of the HILECOP Petri nets

FALLINGEDGE

(1) (2) (3) (4) (5) (6)

Ec, τ ` s
↓−→ s′

RISINGEDGE

(7) (8) (9)

Ec, τ ` s
↑−→ s′

Premises (1) to (6) describe the SITPN state evolution at the falling edge of the clock signal.
Premises (1) and (2) deal with the update of condition values and the activation status of ac-
tions. Note that in Premise (2) (and also in Premise (9)), the sum expression corresponds to the
Boolean sum expression, i.e. the application of the or operator over the elements of the iterated
set. Premises (3), (4), (5) and (6) focus on the update of time counter values. In Premise (4) of
the SITPN semantics, the active time counters refer to the time counters that have not yet over-
reached the upper bound of their associated time interval. Of course, a time counter is always
active when the upper bound is infinite. In Premise (5), the locked time counters refer to the time
counters that have overreached the upper bound of their associated time interval. Of course,
time counters can never be locked in the presence of an infinite upper bound. In Premises (4)
and (5), for a given time interval i, u(i) denotes the upper bound of the time interval, and l(i)
denotes the lower bound of the time interval.

Premises (7) to (9) describe the SITPN state evolution at the rising edge of the clock signal.
Premise (7) corresponds to the marking update. The computation of the new marking uses the
set of fired transitions at state s, i.e. Fired(s). Premise (9) deals with the update of the function
execution status. Premise (8) computes the reset orders for time transitions. There are two
cases where a time transition receives the order to reset its time counter. First, if the transition
is one of the fired transitions at state s, then its time counter must be reset on the next falling
edge. Second, if the transition is disabled in a transient manner, then its time counter must also
be reset. Figure 3.12 illustrates the case of a transition disabled by the transient marking, i.e. the
marking obtained after the token consumption phase of the firing process.

p0

t0

p1

t1
[3, 3]
<2>

t2

1

p0

t0

p1

t1
[3, 3]
<2>

t2

2

p0

t0

p1

t1
[3, 3]
<2>

t2

3

FIGURE 3.12: An example of transition that receives a reset order after being dis-
abled by the transient marking. At 1 , the marking before the firing of transitions
t0 and t2; at 2 , the transient marking; at 3 , the marking at the end of the firing

process.

3.2. Formalization of the SITPN structure and semantics 55

In Figure 3.12, the situation at 1 describes the state of the SITPN before a rising edge. Given
the current SITPN state at 1 , transition t0 and t2 will be fired on the next rising edge event.
Situation 2 depicts the marking obtained after the consumption phase of the firing process
(once the rising edge occurred), i.e. the so-called transient marking. Situation 3 corresponds
to the marking at the end of the firing process, where t0 and t2 have been fired. At 3 , transition
t1 is enabled by the marking. However, at 2 , the transient marking disables t1 and thus t1 must
receive a reset order (represented by a blue time counter). This reset order will be taken into
account at the next falling edge event, and the time counter associated with transition t1 will
then be reset.

Contributions to the SITPN semantics

We brought the following changes to the SITPN semantics that was defined in [71] and [78]:

– We clarified the definition of the set of fired transitions. In the former SITPN semantics, four
premises were dedicated to the computation of the set of fired transitions in the definition
of the SITPN state transition relation on falling edge. We removed these premises from the
definition, and made a standalone definition of the set of fired transitions that only depends
on a given SITPN state (cf. Definition 20).

– We completed Premise (8) with the condition ∑
ti∈Fired(s)

pre(p, ti) > 0. This condition is

mandatory to perform the proof of semantic preservation.

– We added Premise (6) to the definition of the SITPN state relation on falling edge. This
premise is also mandatory to perform the proof of semantic preservation.

3.2.5 SITPN Execution
As a part of the SITPN semantics, we define here the SITPN execution and SITPN full execution
relations. These relations bind a given SITPN to an execution trace, i.e. a time-ordered list of
states. This execution trace represents the successive states of the SITPN during its execution
for a given number of clock cycles. These definitions are additional elements corresponding to
our own contribution to the formalization of the SITPN semantics. These two relations provide
a small-step semantics to the SITPNs, given that we are interested in keeping the intermediary
states in an execution trace.

Definition 22 (SITPN execution). For a given sitpn ∈ SITPN, a starting state s ∈ S(sitpn),
a clock cycle count τ ∈ N, and an environment Ec ∈ N → C → B, sitpn yields the execution
trace θ from starting state s, written Ec, τ ` sitpn, s→ θ, by following the two rules below:

EXECUTIONEND

Ec, 0 ` sitpn, s→ []

56 Chapter 3. Implementation of the HILECOP Petri nets

EXECUTIONLOOP

Ec, τ ` sitpn, s
↑−→ s′ Ec, τ ` sitpn, s′

↓−→ s′′ Ec, τ − 1 ` sitpn, s′′ → θ
τ > 0

Ec, τ ` sitpn, s→ (s′ :: s′′ :: θ)

The EXECUTIONEND rule states that the execution of a sitpn ∈ SITPN, starting from a state
s ∈ S(sitpn) in the environment Ec ∈N→ C → B, yields an empty execution trace if the clock
count comes down to 0.

The EXECUTELOOP rule describes how the execution trace related to the execution of a
sitpn ∈ SITPN is built in the case where the clock count τ is greater than zero. The final
execution trace is composed of a head state s′, followed by state s′′ and the tail trace θ. The ::
operator builds a new trace by adding a new element at the head of an existing trace. Starting
from state s, sitpn reaches state s′ after a rising edge event; then from state s′, it reaches state s′′

after a falling edge event. Finally, the execution trace θ is obtained through the recursive call to
the SITPN execution relation where sitpn is executed during τ− 1 cycles starting from state s′′.

Definition 23 (SITPN full execution). For a given sitpn ∈ SITPN, a clock cycle count τ ∈N,
and an environment Ec ∈ N → C → B, sitpn yields the execution trace θ starting from its
initial state s0 ∈ S(sitpn) (as defined in Definition 17), written Ec, τ ` sitpn→ θ, by following
the two rules below:

FULLEXEC0

Ec, 0 ` sitpn
f ull−−→ [s0]

FULLEXECCONS

Ec, τ ` s0
↓ s Ec, τ − 1 ` sitpn, s→ θs

τ > 0

Ec, τ ` sitpn
f ull−−→ (s0 :: s0 :: s :: θs)

The FULLEXECCONS rule of the SITPN full execution relation (Definition 23) appeals to the
SITPN execution relation (Definition 22). However, the definition of the SITPN full execution
relation is necessary because the first cycle of execution, starting from the initial state s0, is par-
ticular. As a matter of fact, no transitions are fired during the first rising edge. Thus, the first
rising edge does not change the initial state s0. This is why the execution trace of Rule FULLEX-
ECCONS begins with two states s0, thus representing the idle first rising edge.

3.2.6 Well-definition of a SITPN
To be able to transform a given SITPN into a VHDL design and also to perform the proof of
semantic preservation, a SITPN must verify some properties ensuring its well-definition. Here,
we formalize the predicate stating that a given SITPN is well-defined.

The main interest of the well-definition predicate is to prevent the phenomenon of the “dou-
ble consumption” of tokens at the execution of a SITPN. In a well-defined SITPN, a conflict res-
olution strategy must be applied to every group of transitions in structural conflict. We must
be able to decide which transition in a conflicting pair will be fired when the conflict becomes
effective. Thus, we give the formal definitions of a conflicting pair of transitions and a conflict
group.

3.2. Formalization of the SITPN structure and semantics 57

Definition 24 (Conflict). For a given sitpn ∈ SITPN, two transitions t, t′ ∈ T are in conflict
if there exist a place p ∈ P and two weights ω, ω′ ∈ N∗ such that pre(p, t) = (ω, basic) and
pre(p, t′) = (ω′, basic).

A conflict group qualifies a finite set of transitions that are all in conflict with each other
through at least a common input place. In Figure 3.13, the set {t0, t3, t1} is a conflict group. The
formal definition of a conflict group is as follows:

Definition 25 (Conflict Group). For a given sitpn ∈ SITPN, Tc ⊆ T is a conflict group if
there exists a place p such that ∀t ∈ T,

(
∃ω ∈N∗, pre(p, t) = (ω, basic)

)
⇔ t ∈ Tc.

Contrary to the statement made in [71, p. 67], we no more consider the notion of conflict
as being transitive. To illustrate this, Figure 3.13 shows two conflict groups: {t0, t3, t1} and
{t1, t2}. In a well-defined SITPN (see Section 3.2.6), all conflicts in a conflict group must be
considered, i.e. for all pair of transitions in the group the conflict must be solved. However,
we no more consider transitions t0 and t2, and t3 and t2, as in conflict. It was believed by the
author of [71] that, if no conflict resolution technique was applied between transitions in the
same situation as t0 and t2, and t3 and t2, then this could result in the double-consumption
of a token, or in the case where a transition is not elected to be fired even though it ought
to be. However, the author does not provide an example where such a situation arises. We
argue that such a situation can never arise and contrive to prove it later. Therefore, we no more
consider the construction of merged conflict group (i.e, conflict groups must be merged into
one if their intersection is not empty; e.g, {t0, t1, t2} in Figure 3.13) as being necessary. As a
consequence, the definition of a conflict group is simpler than in [71] and does not impact the
HILECOP model-to-text transformation.

p0

t0 t1t3

p1

t2

FIGURE 3.13: An example of two separate conflict groups, namely: {t0, t3, t1} and
{t1, t2}.

When the conflict between a pair of transitions becomes effective, there are two ways to
be sure that only one transition will be fired. The first way is to define a firing order through
a priority relation. The second way is to use a mean of mutual exclusion. A mean of mu-
tual exclusion ensures that the two transitions of a conflicting pair will never be firable at the
same time. We only consider two ways of mutual exclusion, namely: mutual exclusion with
complementary conditions and mutual exclusion with inhibitor arcs. Here, we give the formal
definition of these two means of mutual exclusion.

58 Chapter 3. Implementation of the HILECOP Petri nets

Definition 26 (Mutual exclusion with complementary conditions). Given two conflicting
transitions t0 and t1, t0 and t1 are in mutual exclusion with complementary conditions if there
exists c ∈ C such that (C(t0, c) = 1∧C(t1, c) = −1) or (C(t0, c) = −1∧C(t1, c) = 1).

Definition 27 (Mutual exclusion with an inhibitor arc). Given two conflicting transitions t0
and t1, t0 and t1 are in mutual exclusion with an inhibitor arc if there exists p ∈ P and ω ∈ N∗

such that (pre(p, t0) = (ω, basic) ∨ pre(p, t0) = (ω, test)) ∧ pre(p, t1) = (ω, inhib) or
(pre(p, t1) = (ω, basic) ∨ pre(p, t1) = (ω, test)) ∧ pre(p, t0) = (ω, inhib).

Figure 3.14 illustrates the two means of mutual exclusion that can be applied to solve a
conflict between two transitions.

p

t0
c0
c̄1

t1
c0
c1

1

p

t0 t1

p0

2

FIGURE 3.14: Examples of conflicting transitions in mutual exclusion. At 1 , an
example of mutual exclusion with complementary conditions; at 2 , an example of

mutual exclusion with an inhibitor arc.

In Figure 3.14, in situation 1 , condition c1 is associated to t1 and the complementary condi-
tion is associated to t0 thus creating the mutual exclusion. In situation 2 , the arcs (p0, t0) and
(p0, t1) ensure the mutual exclusion between transitions t0 and t1. Note that in the structure
of mutual exclusion with an inhibitor arc, the weight of the inhibitor arc and of the one of the
basic or test arc must be the same; otherwise, the mutual exclusion is not effective.

A given sitpn ∈ SITPN is well-defined if it enforces some properties needed on the HILE-
COP source models before the transformation into VHDL. If the properties, given in Defini-
tion 28, are not ensured, they will lead to compile-time errors during the transformation of the
SITPN into a VHDL design.

Definition 28 (Well-defined SITPN). A given sitpn ∈ SITPN is well-defined if:

– T 6= ∅, the set of transitions must not be empty.

– P 6= ∅, the set of places must not be empty.

3.3. Implementation of the SITPN structure and semantics 59

– There is no isolated place, i.e, a place that has neither input nor output transitions:
@p ∈ P, input(p) = ∅ ∧ output(p) = ∅, where input(p) (resp. output(p)) denotes the set
of input (resp. output) transitions of p.

– There is no isolated transition, i.e, a transition that has neither input nor output places:
@t ∈ T, input(t) = ∅ ∧ output(t) = ∅, where input(t) (resp. output(t)) denotes the set of
input (resp. output) places of t.

– For all conflict group as defined in Definition 25, either all conflicts (i.e. for all pair of transi-
tions in the conflict group) are solved by one of the mean of mutual exclusion, or, the priority
relation is a strict total order over the transitions of the conflict group.

3.2.7 Boundedness of a SITPN

We conclude the formalization of the SITPN structure and semantics by the expression of the
boundedness of a SITPN model with respect to its execution trace. In the manner of the well-
definition property, the boundedness of a SITPN model is a mandatory condition to prove the
semantic preservation theorem (cf. Remark 9 in Chapter 6). A SITPN model is bounded if there
exists a bound for the number of tokens that the places can hold in the course of the execution
of the model; formally:

Definition 29 (Bounded SITPN). A given sitpn ∈ SITPN is said to be bounded if for all
execution environment Ec ∈ N → C → B, clock cycle count τ ∈ N, execution trace θ ∈
list(S(sitpn)) such that Ec, τ ` sitpn

f ull−−→ θ, then there exists a bound k ∈ N such that for
all p ∈ P and s ∈ θ, s.M(p) ≤ k.

We extend the definition of a bounded SITPN model to a version where the bound denoting
the maximal marking of each place of the model is passed through a function b ∈ P→N.

Definition 30 (Bounded SITPN through a maximal marking function). A given sitpn ∈
SITPN is said to be bounded through the maximal marking function b ∈ P → N, written
dsitpneb, if for all execution environment Ec ∈ N → C → B, clock cycle count τ ∈ N,

execution trace θ ∈ list(S(sitpn)) such that Ec, τ ` sitpn
f ull−−→ θ, then for all p ∈ P and

s ∈ θ, s.M(p) ≤ b(p).

3.3 Implementation of the SITPN structure and semantics

In this section, we present our mechanization of the SITPN structure and semantics using
the Coq proof assistant. The source code is available to the reader at the address https:
//github.com/viampietro/ver-hilecop. More precisely, the implementation of the SITPN

https://github.com/viampietro/ver-hilecop
https://github.com/viampietro/ver-hilecop

60 Chapter 3. Implementation of the HILECOP Petri nets

structure and semantics is to be found under the sitpn/dp directory. We made a first imple-
mentation of SITPNs without the use of dependent types. For this first version, we also imple-
mented a SITPN interpreter (a so-called token player) and proved that the interpreter is sound
and complete w.r.t the SITPN semantics. This first implementation of the SITPNs and the for-
mal proof of soundness and completeness are available at https://github.com/viampietro/
sitpns. Here, we are only presenting the second version of the implementation of the SITPN
structure and semantics, i.e. an implementation with dependent types.

3.3.1 Implementation of the SITPN and the SITPN state structure
Listing 3.2 presents the implementation of the SITPN structure as a Coq record type. The im-
plementation is almost similar to the formal definition of the SITPN structure given in Defini-
tion 14.� �

1 Record Sitpn := BuildSitpn {
2

3 places : list nat;
4 transitions : list nat;
5 P := { p | (fun p0 ⇒ In p0 places) p };
6 T := { t | (fun t0 ⇒ In t0 transitions) t };
7

8 pre : P → T→ option (ArcT ∗N∗);
9 post : T → P→ option N∗;
10 M0 : P→ nat;
11 Is : T→ option TimeInterval;
12

13 conditions : list nat;
14 actions : list nat;
15 functions : list nat;
16 C := { c | (fun c0 ⇒ In c0 conditions) c };
17 A := { a | (fun a0 ⇒ In a0 actions) a };
18 F := { f | (fun f0 ⇒ In f0 functions) f };
19

20 C : T→ C → MOneZeroOne;
21 A : P→ A→ bool;
22 F : T→ F → bool;
23

24 pr : T → T→ Prop;
25

26 }.� �
LISTING 3.2: Implementation of the SITPN structure in Coq.

We use lists of natural numbers, i.e. list nat in Coq, to define the finite sets of places (Line 3),
transitions (Line 4), actions (Line 14), conditions (Line 13) and functions (Line 15) in the Sitpn
record. We want to use these finite sets in the signature of functions appearing in the structure
(e.g. use the finite set of places P in the signature of the initial marking M0 ∈ P→N).

https://github.com/viampietro/sitpns
https://github.com/viampietro/sitpns

3.3. Implementation of the SITPN structure and semantics 61

However, we can not use the places field to, for instance, give a type to the initial marking
M0. That is, we can not write M0 : places→ nat, because places does not denote a set but
an instance of lists of natural numbers. Thus, leveraging the sig type, we define the finite
set P as the subset of natural numbers that are members of the places list (Line 5). We use
the In relation defined in the Coq standard library to express the membership of a natural
number regarding the elements of the places list. Also, the ArcT type (Line 8) implements
the set {inhib, test, basic}; the TimeInterval type (Line 11) implements the set I+ of time
intervals, and the MOneZeroOne type (Line 20) implements the set {0, 1,−1}. The priority relation
is implemented by the pr function (Line 24) taking two transitions in parameter and projecting
to the type of logical propositions, i.e. the Prop type.

Listing 3.3 presents the implementation of the SITPN state structure as a Coq record type.� �
1 Record SitpnState (sitpn : Sitpn) := BuildSitpnState {
2

3 M : P sitpn→ nat;
4 I : Ti sitpn→ nat;
5 reset : Ti sitpn→ bool;
6 cond : C sitpn→ bool;
7 ex : A sitpn + F sitpn→ bool;
8

9 }.� �
LISTING 3.3: Implementation of the SITPN state structure in Coq.

The SitpnState type definition depends on a SITPN given as a parameter; it is an example
of dependent type. Projection functions are automatically generated to access the attributes of
a record at the declaration of a type with the Record keyword. Thus, in Listing 3.3, we can refer
to the set of places of sitpn with the term P sitpn. The term Ti sitpn denotes the set of time
transitions of sitpn. The set of time transitions, i.e. Ti sitpn in Listing 3.3, for a given SITPN
sitpn is declared as a sig type qualifying to the subset of transitions with an associated time
interval.

3.3.2 Implementation of the SITPN semantics

Here, we present our implementation of the SITPN semantics. In Listing 3.4, we give an ex-
cerpt of the implementation of the SITPN state transition relation, i.e. the core of the SITPN
semantics.� �

1 Inductive SitpnStateTransition
2 (sitpn : Sitpn) (Ec : nat→ C sitpn→ bool) (τ : nat) (s s’ : SitpnState sitpn) :
3 Clk→ Prop :=
4 | SitpnStateTransition_falling :
5

6 (* Premise (2) *)
7 (forall a marked sum,
8 Sig_in_List (P sitpn) (fun p⇒ M s p > 0) marked→
9 BSum (fun p ⇒ A p a) marked sum→

62 Chapter 3. Implementation of the HILECOP Petri nets

10 ex s’ (inl a) = sum) →
11

12 (* Premises (3), (4), (5) and (6) *)
13 (forall (t : Ti sitpn), ∼Sens (M s) t → I s’ t = 0) →
14 (forall (t : Ti sitpn), Sens (M s) t → reset s t = true→ I s’ t = 1) →
15 (forall (t : Ti sitpn),
16 Sens (M s) t →
17 reset s t = false→
18 (TcLeUpper s t ∨ upper t = i+)→ I s’ t = S (I s t)) →
19 (forall (t : Ti sitpn),
20 Sens (M s) t →
21 reset s t = false→
22 (upper t <> i+ ∧ TcGtUpper s t)→ I s’ t = S (I s t)) →
23

24 (** Conclusion *)
25 SitpnStateTransition Ec τ s s’ ↓
26

27 | SitpnStateTransition_rising:
28

29 (** Premise (7) *)
30 (forall fired, IsNewMarking s fired (M s’))→
31

32 (* Premise (9) *)
33 (forall f fired sum,
34 IsFiredList s fired→
35 BSum (fun t ⇒ F t f) fired sum→
36 ex s’ (inr f) = sum) →
37

38 (* Conclusion *)
39 SitpnStateTransition Ec τ s s’ ↑.� �

LISTING 3.4: Excerpt of the implementation of the SITPN state transition relation
in Coq.

The SITPN state transition relation is implemented in Coq as an inductive type with two
constructors, i.e. one for each clock event. The relation has 6 parameters: an SITPN, an envi-
ronment Ec, a clock count τ, two SITPN states s and s’ and a clock event. Note that the two
states s and s’ are bound to the SITPN parameter through their type, i.e. SitpnState sitpn.

In the construction case SitpnStateTransition_falling, we give the implementation of Pre-
mises (2), (3), (4), (5) and (6) defined in the SITPN semantics. The sum term of Premise (2),
i.e. ∑

p∈marked(M)
A(p, a), is implemented by Lines 8 and 9. At Line 8, the Sig_in_List predicate

states that all the inhabitant of the P sitpn type (i.e. the places of sitpn) that verify the prop-
erty (fun p ⇒ M s p > 0) (i.e. the marking of a place is greater than zero at state s) are members
of the marked list. Because we cannot iterate over the elements of a given sig type, we use
the Sig_in_List relation to convert a sig type into a list. Lists are iterable by definition. At
Line 9, the BSum relation states that sum is the Boolean sum obtained by applying the function

3.4. Conclusion 63

(fun p ⇒ A p a) to the elements of the marked list. Premises (3), (4), (5) and (6) are almost similar
in their implementation to the description of Definition 21. The Coq term Sens (M s) t imple-
ments the term t ∈ Sens(M). Due to the particular nature of the upper bound of a time interval,
i.e. defined over the set N∗ t {∞}, the test that the current time counter of a given transition
t is less than or equal to the upper bound is implemented by a separate predicate TcLeUpper.
Similarly, the TcGtUpper predicate implements the inverse test.

In the construction case SitpnStateTransition_rising, we give the implementation of Premi-
ses (7) and (9) defined in the SITPN semantics. In the implementation of Premise (7), the
IsNewMarking predicate represents the expression:
∀p ∈ P, M′(p) = M(p)− ∑

t∈Fired(s)
pre(p, t) + ∑

t∈Fired(s)
post(t, p).

In its definition, the IsNewMarking predicate first checks that the fired list implements the
set of fired transitions at state s. Then, it builds the marking at state s’ for each place p, i.e.
(M s’) , by consuming and producing a number of tokens starting from the marking of p at state
s. The fired list is helpful to qualify the input token sum and the output token sum for a
given place. Similarly to the implementation of Premise (2), the implementation of Premise (9)
at Line 33 relies on the BSum predicate to compute the Boolean sum ∑

t∈Fired(s)
F(t, f). The term

IsFiredList s fired states that the fired list implements the set of fired transitions at state s, so
we can use the fired list to compute the above sum.

3.4 Conclusion

The class of SITPNs is a particular class of PNs used to model the behavior of components in
the HILECOP high-level models. The synchronous evolution of SITPNs constitutes the original-
ity of the model compared to the standard PNs semantics. In this chapter, we gave an informal
and formal presentation of SITPNs and their execution semantics. Two previous Ph.D. theses
contributed, for the most part, to the formalization of the SITPN structure and semantics. How-
ever, we helped simplify the semantics of SITPNs. We passed from 14 rules in the definition
of the SITPN semantics given in [71] to 9 rules in our current definition of semantics. Also, as
presented in at the end of Section 3.2.4, we completed some rules when they happened to be
insufficient to prove the theorem of behavior preservation. Finally, we defined the execution
relations for the SITPN semantics and formalized the well-definition property for the SITPN
structure.

Our other contribution was to implement the SITPN structure and semantics with the Coq
proof assistant. There are two implementations: one with and one without dependent types.
For the version without dependent types, we implemented a SITPN interpreter or token player.
We also proved a soundness and completeness theorem between the interpreter and the for-
malized SITPN semantics. The first implementation of the SITPNs in Coq represents 5000 lines
of specification and 7000 lines of proof. The second implementation, which was presented in
Section 3.3, leverages dependent types. This implementation is closer to the formal definition
given in Definition 14. We chose this implementation to mechanize the proof of the behavior
preservation theorem (see Chapter 6).

65

Chapter 4

H-VHDL: a target hardware
description language

The main purpose of this chapter is to present the target language of the HILECOP transforma-
tion, i.e. the VHDL language. The formalization and the implementation of the VHDL language
syntax and semantics is mandatory to reason about the programs generated by the HILECOP
model-to-text transformation. Thus, we want the reader to clearly understand the structure
and the semantics of the language to be able to fully grab the proof of semantic preservation
presented in Chapter 6. Specifically, we present here the H-VHDL language, our own synthe-
sizable subset of the VHDL language. This subset permits to encode the programs generated
by the HILECOP transformation. We devise a formal semantics for H-VHDL which is a simpli-
fication of the simulation semantics of the VHDL language. The formalization of the H-VHDL
semantics and its implementation is one contribution of this thesis. The chapter is structured
as follows. In Section 4.1, we give an informal presentation of the VHDL language syntax and
semantics. In Section 4.2, we present the state of the art pertaining to the formalization of the
VHDL language semantics. In Section 4.3, 4.4, 4.5 and 4.6, we give the full formalization of the
H-VHDL language, a subset of the VHDL language. Section 4.7 illustrates the formal H-VHDL
semantics with an example. Finally, Section 4.8 outlines the implementation of the H-VHDL
syntax and semantics with the Coq proof assistant.

The HILECOP transformation generates a VHDL design implementing an input SITPN model.
The transformation generates and connects the component instances of two previously defined
VHDL designs: the place design, i.e. a VHDL implementation of a SITPN place, and the tran-
sition design, i.e. a VHDL implementation of a SITPN transition. These designs were defined
by the INRIA CAMIN team at the creation of the HILECOP methodology. In the following
sections, we will be using fragments of the definition of the place and transition designs to
illustrate the content of VHDL programs and the rules of the VHDL language semantics. The
reader will find the source code of the place and transition designs in concrete and abstract
syntax in Appendices A and B.

4.1 Presentation of the VHDL language

The intent here is to give an overview of the VHDL language, its purpose, its main syntactic
constructs, and an informal description of its semantics as presented in the Language Reference

66 Chapter 4. H-VHDL: a target hardware description language

Manual (LRM) [64]. The VHDL language offers a lot of possibility in terms of hardware (and
even software) description. Here, we are not trying to be exhaustive in our presentation of the
language. We will only maintain our description of the VHDL concepts in the scope that is of
interest to us. The readers that are interested in learning more about the VHDL language can
refer to [64], [5] and [92].

4.1.1 Main concepts
The VHDL acronym stands for Very high speed integrated circuit Hardware Description Lan-
guage. The main purpose of the VHDL language is to describe hardware circuits.

A top-level VHDL program is called a design. A VHDL design is composed of two descrip-
tive parts. The first part is called the entity and describes the interfaces of a circuit, namely:
the input and output ports, and the generic constants. Listing 4.1 is an excerpt of the tran-
sition design’s entity that defines the generic constants, the input and output port interfaces
of the design. The generic clause of the entity holds the declaration of the generic constants.
Figure 4.1 is a visual representation of the interfaces of the transition design.

The purpose of generic constants is either to represent some dimensions of the design (e.g.
the size of ports, internal signals. . .) or to represent constant values used throughout the de-
sign. In Listing 4.1, one can see that the conditions_number generic constant gives a dimen-
sion to the type of the input_conditions input port, which is an array of Boolean values with
indexes ranging from 0 to conditions_number-1 (that is the meaning of “std_logic_vector
(conditions_number-1 downto 0)”). The port clause holds the declaration of input and out-
put ports of the design. The in keyword indicates the declaration of an input port and the out
indicates the declaration of an output port.� �

1 entity transition is
2 generic (
3 transition_type : transition_t := NOT_TEMPORAL;
4 input_arcs_number : natural := 1;
5 conditions_number : natural := 1;
6 maximal_time_counter : natural := 1
7);
8 port (
9 clock : in std_logic;
10 reset_n : in std_logic;
11 input_conditions : in std_logic_vector(conditions_number−1 downto 0);
12 time_A_value : in natural range 0 to maximal_time_counter;
13 time_B_value : in natural range 0 to maximal_time_counter;
14 input_arcs_valid : in std_logic_vector(input_arcs_number−1 downto 0);
15 reinit_time : in std_logic_vector(input_arcs_number−1 downto 0);
16 priority_authorizations : in std_logic_vector(input_arcs_number−1 downto 0);
17 fired : out std_logic
18);
19 end transition;� �

LISTING 4.1: The entity part of the transition design in concrete VHDL syntax.

4.1. Presentation of the VHDL language 67

reset n

clock

fired
..
. 0

cn − 1

input

conditions

time A value

time B value

..
. 0

ian − 1

input

arcs

valid

..
. 0

ian − 1

reinit

time

..
. 0

ian − 1

priority

authorizations

FIGURE 4.1: A representation of the transition design entity. On the left side, the
input port interface of the transition design; cn stands for conditions_number
and ian stands for input_arcs_number, i.e. two of the generic constants declared
in the generic clause of the transition design entity; the numbers at the right of
the input pins represent the pin indexes. On the right side, the output port interface

of the transition design.

The second part of a VHDL design is called the architecture. The architecture describes the
internal behavior of the design. It declares all the internal signals, i.e. the wires, involved in the
description of the design behavior. Then, there are three ways to describe the behavior itself:
by using processes, by instantiating other designs (also called, component instantiations), or
by combining both techniques (the latter option is chosen in the VHDL designs generated by
the HILECOP transformation).

Behavior specification with processes

The first way to specify the behavior of a design is through the description of processes. Pro-
cesses are concurrent statements that describe the wiring or the operations performed on the
signals of a given design. These operations are described by sequential statements in the body
of processes. A process declares a sensitivity list that corresponds to the signals read in its
statement body; also, it possibly declares internal variables. Listing 4.2 gives an excerpt of
the transition design architecture containing the declarative part of the architecture (i.e. the
declaration of internal signals) and three of the processes describing the transition design
behavior, namely: the condition_evaluation process, the firable process and the fired_-
evaluation process. In Listing 4.2, Lines 2 to 8 correspond to the declaration of the internal
signals of the transition design. Line 11 starts the declaration of the condition_evaluation
process. The sensitivity list of the condition_evaluation process holds one signal, the input_-
conditions input port. The value of the input_conditions input port is read is the process

68 Chapter 4. H-VHDL: a target hardware description language

body; then, as a design rule, it must be declared in the sensitivity list. The process defines a
local variable v_internal_condition at Line 12. At Line 13, the begin keyword starts the dec-
laration of the process body, i.e. the block of sequential statements performing operations on
the signals of the transition design.� �

1 architecture transition_architecture of transition is
2 signal s_condition_combination : std_logic;
3 signal s_enabled : std_logic;
4 signal s_firable : std_logic;
5 signal s_firing_condition : std_logic;
6 signal s_priority_combination : std_logic;
7 signal s_reinit_time_counter : std_logic;
8 signal s_time_counter : natural range 0 to maximal_time_counter;
9 begin
10

11 condition_evaluation : process (input_conditions)
12 variable v_internal_condition : std_logic;
13 begin
14 v_internal_condition := ’1’;
15

16 for i in 0 to conditions_number − 1 loop
17 v_internal_condition := v_internal_condition and input_conditions(i);
18 end loop;
19

20 s_condition_combination⇐ v_internal_condition;
21 end process condition_evaluation;
22

23 . . .
24

25 firable : process (reset_n, clock)
26 begin
27 if (reset_n = ’0’) then
28 s_firable⇐ ’0’;
29 elsif falling_edge(clock) then
30 s_firable⇐ s_firing_condition;
31 end if;
32 end process firable;
33

34 fired_evaluation : process (s_firable, s_priority_combination)
35 begin
36 fired⇐ s_firable and s_priority_combination;
37 end process fired_evaluation;
38

39 end transition_architecture;� �
LISTING 4.2: An excerpt of the architecture part of the transition design in concrete

VHDL syntax.

4.1. Presentation of the VHDL language 69

In the statement body of a process, the designer can use control flow statements common
to most of the generic programming languages (if statement, for loops. . .), and also statements
that are specific to the VHDL language. The most representative statement, and the one of in-
terest to us, is the signal assignment statement. The signal assignment statement relates a given
signal identifier to a source expression. For instance, at Line 20 of Listing 4.2, the signal assign-
ment statement, represented with the⇐ operator, assigns the value of the internal variable v_-
internal_condition to the s_condition_combination signal. The v_internal_variable that
itself holds the Boolean product between the subelements of the input_conditions input port
performed in the for loop of Lines 16 to 18.

When considering a VHDL design in the point of view of hardware synthesis, a signal as-
signment statement specifies a wiring between a target signal identifier and other source sig-
nals. Figure 4.2 gives a synthesis-oriented view of the processes described in Listing 4.2.

reset n

clock

fired

..
.input

conditions

time A value

time B value

..
.input

arcs

valid

..
.reinit

time

..
.priority

authorizations

s condition

combination

. . .
firable
process

s firing

condition

. . .

s firable

s priority

combination

. . .

FIGURE 4.2: A representation of three of the processes defining the transition de-
sign architecture. On the left side, the condition_evaluation process connecting
the input_conditions input port to the s_condition_combination internal signal;
the firable process in the middle; on the right side, the fired_evaluation process
connecting the s_firable and the s_priority_combination signals to the fired

output port.

In Figure 4.2, the condition_evaluation process is represented as an “and” port perform-
ing the product over the elements of the input_conditions input port. The fired_evaluation
process is a simple “and” gate connecting the fired output port to the s_firable and s_-
priority_combination internal signals. The fired_evaluation and the condition_evaluation
processes are combinational processes. They describe the value of an output signal based on
the value of input signals. For instance, the value of the s_condition_combination signal is a
function of the value of the input_conditions input port such that:

s_condition_combination =
conditions_number−1

∏
i=0

(input_conditions[i])

70 Chapter 4. H-VHDL: a target hardware description language

This equation always holds, and we refer to it as a combinational equation. Here, the
input_conditions input port is a composite signal, meaning that it is composed of multiple
subelements (multiple pins) each having a unique index. We denote the value of the subele-
ment of index i in a composite signal a with the square-bracketed notation a[i].

Also presented in Figure 4.2, the firable process is a synchronous process. It is executed
only at the occurrence of the falling edge event of the clock signal, and thus represents a
memory point. In its statement body (Line 30 of Listing 4.2), the firable process assigns the
value of the internal signal s_firing_condition to the signal s_firable only at the occurrence
of the falling edge of the clock signal (captured by the expression falling_edge(clock) where
falling_edge is a primitive function of the VHDL language). In the point of view of simulation,
there are no distinction between synchronous processes and combinational processes. However,
in the point of view of synthesis, processes responding to a clock signal follow the rules of
the synchronous (or sequential) logic, whereas, combinational processes follow the rules of
combinational logic.

To complete the presentation of the statements to be found in the body of processes, the
VHDL language is also equipped with timing constructs, i.e. statements that explicitly specify
an amount of time in a given time unit. The signal assignment statement possibly specifies
a time clause indicating when the assignment must be performed. For instance, the signal
assignment statement specifying that the value of signal b must be assigned to signal a in 3
milliseconds takes the form: a ⇐ b in 3 ms. When no time clause is specified for a signal
assignment statement, we talk about a δ-delay signal assignment, i.e. the application of the
signal assignment is related to some δ interval corresponding the time of propagation through
a wire. When a time clause is specified, we talk about a unit-delay signal assignment. δ-delay
signal assignments are synthetizable, meaning they have an equivalent implementation on a
physical device, whereas, unit-delay signal assignments can not be synthetized. Unit-delay
signal assignments do not appear neither in the VHDL designs generated by HILECOP transfor-
mation nor in the declaration of the place and transition designs. We are only mentioning
their existence because they play a part in the simulation algorithm described in Section 4.1.2.

Behavior specification with design instances

The second way to specify the behavior of a design is to use other designs, or rather instances
of other designs, as components. In that case, the design is said to be composite as it embeds
instances of other designs in its own behavior. Also, a design at the highest level of embedding,
i.e. that is not instantiated as a part of another design’s behavior, is called a top-level design. The
design instantiation, or component instantiation, statement permits to instantiate a design in
an embedding architecture. When instantiating a design with a design instantiation statement,
the designer provides the component instance with an identifier. Then, the instance must be
dimensioned; this is performed through a generic map that associates the generic constants
of the design being instantiated to a static value. Finally, the designer specifies how the com-
ponent instance is connected to the other elements of the architecture. A port map associates
the input ports and output ports of the component instance to expressions or to the signals of
the embedding architecture. Listing 4.3 shows an example of instantiation of the HILECOP’s

4.1. Presentation of the VHDL language 71

transition design. This instance is involved in the definition of the behavior of an embedding
design called toplevel.� �

1 architecture toplevel_architecture of toplevel is
2 begin
3 . . .
4 idt : entity transition
5 generic map (
6 transition_type⇒ NOT_TEMPORAL,
7 input_arcs_number⇒ 1,
8 conditions_number⇒ 1,
9 maximal_time_counter⇒ 1

10)
11 port map (
12 clock⇒ clock,
13 reset_n⇒ reset_n,
14 time_A_value⇒ 0,
15 time_B_value⇒ 0,
16 input_conditions(0)⇒ id0,
17 input_arcs_valid(0)⇒ id1,
18 priority_authorizations(0)⇒ ’1’,
19 reinit_time(0)⇒ id2,
20 fired⇒ id3
21);
22 . . .
23 end toplevel_architecture;� �

LISTING 4.3: An example of design instantiation statement in the architecture of
the toplevel design. Here, the design being instantiated is the transition design.

In Listing 4.3, the transition component instance (TCI) has the identifier idt. Following
the entity keyword is the name of the design being instantiated; here, the transition design.
Then, the generic map associates the generic constants of the transition design (i.e. the left side
of the arrow, also called the formal part) to static values (i.e. the right side of the arrow called the
actual part). This permits the dimensioning of the component instance. For example, remem-
ber that the input_arcs_number generic constant value determines the number of elements
in the composite input ports input_arcs_valid, priority_authorizations and reinit_time
(cf. Figure 4.1). The port map associates the input ports of the transition design to expres-
sions. For instance, the time_A_value input port is connected to the constant value 0, and the
input_conditions input port is connected to the internal signal id0 at index 0. The port map
also associates the output ports with signal identifiers. Contrary to the association of input
ports, output ports can not be associated to expressions. An output port association describes
a direct wiring. In the port map described in Listing 4.3, the association fired⇒ id3 expresses
that the fired output port is connected to the signal id3, where signal id3 is defined in the em-
bedding design. Figure 4.3 illustrates the transition component instance idt and the wiring
of its input and output port interfaces inside the toplevel design.

72 Chapter 4. H-VHDL: a target hardware description language

transition design instance idt

reset n reset n

clock clock

id3fired

0

0

time A value

time B value

id0 input conditions(0)

id1 input arcs valid(0)

’1’ priority authorizations(0)

id2 reinit time(0)

toplevel design

FIGURE 4.3: Visual representation of a design instantiation statement. Here, the
figure represents the transition design instance described in Listing 4.3.

4.1.2 Informal semantics of the VHDL language

There are two approaches to the description of circuits with the VHDL language. The first aims
at the simulation of the described circuits, and the second aims at the synthesis of the described
circuits on physical supports. These two approaches arise from the practice and the use of the
VHDL language by electronicians. Even though, in practice, there are two ways to consider a
VHDL design, i.e. a synthesis-oriented way and a simulation-oriented way, the LRM does not
define a synthesis-oriented semantics for the VHDL language. A synthesis-oriented semantics
gives an interpretation to a design by describing an equivalent in a lower level formalism,
closer to the physical circuit. For instance, the Verilog language gives a synthesis-oriented
semantics to its programs by defining an equivalent RTL level description [66]. The LRM gives
an informal semantics to VHDL designs through the definition of a simulation algorithm [64,
p.167]. The purpose of simulation is to compute the evolution of the values of signals during
a certain time interval. Through the simulation process, the designer is able to control the
behavior of the modeled circuits and to detect flaws in the evolution of the signal values.

Former to the simulation, the LRM defines an elaboration phase. The elaboration phase
operates syntactic and semantic controls over the design code. It also describes code transfor-
mations over the design’s behavioral part to obtain a simulation-ready execution model. More
specifically, the elaboration phase builds the simulation environment and the default simula-
tion state associated with the design under simulation. The simulation environment is built
based on the declarative parts of the top-level design; it maps the signals to their types. In the
default simulation state, each signal is associated with a current value (i.e. the default value of
the signal’s type) and with a driver. A driver maps time points to values and the association
between a given time point and a signal value is called a transaction. The need for drivers to
express the values associated with a given signal is explained by the presence of unit-delay

4.1. Presentation of the VHDL language 73

signal assignments. A unit-delay signal assignment specify a time clause indicating when a
giving assignment must be performed, e.g. a ⇐ b in 3ms (signal a takes the value of signal
b in 3 milliseconds). Thus, when a unit-delay signal assignment is executed in the course of a
simulation, its effect is to change the driver of the target signal by posting a new transaction.
For instance, let Tc by the current simulation time, the execution of statement a⇐ true in 2ns
sets a new transaction in the driver of signal a. The new transaction associates the value true to
the time point Tc + 2ns. Note that without unit-delay signal assignments, i.e. without a speci-
fied time clause, drivers are not needed as all assignments take effect at the current simulation
time. Moreover, the elaboration checks the well-formedness of the design by performing static
type-checking on the behavioral part of the design. It also checks that the connection between
signals respect certain rules, for instance, that there are no multiply-driven signals, i.e. signals
that are written to by multiple processes. Finally, the elaboration operates some transforma-
tions over the VHDL code, and thus builds the execution model. To summarize, all concurrent
statements of the behavioral part are transformed until the top-level design behavior is only
composed of processes.

After the elaboration, the top-level design, or rather its corresponding execution model, is
ready to be simulated. Two entities are involved in the simulation: the sea of processes obtained
after the elaboration of the top-level design’s behavior, and a kernel process. The kernel process
orchestrates the simulation; it handles the time of the simulation, i.e. it holds a variable de-
scribing the current time of the simulation, and controls the execution of processes. Figure 4.4,
which is an excerpt from [15], describes the structure of the VHDL simulation algorithm.

FIGURE 4.4: The VHDL simulation loop. Excerpt from [15].

The simulation starts with an initialization phase. During the initialization phase all pro-
cesses are run exactly once. Then, the simulation cycles are structured as follows. All pro-
cesses execute their statement body concurrently. New transactions are posted in the drivers of
signals for every interpreted signal assignment statement. The execution goes on until all pro-
cesses have executed their statement body and then have reached a suspension state. When, all
processes are suspended, the kernel process takes over. Figure 4.5 shows the activity diagram
associated with the kernel process.

74 Chapter 4. H-VHDL: a target hardware description language

Waits for
suspension of
all processes

all suspended?

Determines
next cycle

Updates the current value
and the drivers of signals

Advances
to next time

point

Wakes up
processes

current time
=

end time

delta
cycle

time
cycle

FIGURE 4.5: The activity diagram of the kernel process. Square boxes represent
activities, diamond nodes are decision nodes. The black circle at the top represents
the starting point of the activities; the other black circle in the middle of the diagram

represents the end of all activities.

As shown in Figure 4.5, after the suspension of all processes, the kernel process will then
determine the kind of simulation cycle that will be performed next. There are two kinds of
cycles: delta cycles or time cycles. If the value of a signal changes at the current time point,
i.e. its driver holds a transaction at the current time point with a new value, then a delta cycle
must be performed. Then, the simulation time does not change. The kernel process updates
the current value of signals and their drivers, and wakes up the processes sensitive to the
signals that obtained new values. The repetition of multiple delta cycles corresponds to the
stabilization of signal values, i.e. the propagation of values through the wires, that takes effect
in a negligible δ time. If all signal values are stable at the current time point, then a time cycle
must be performed. The kernel process looks up the drivers for the next time point where the
value of a given signal will change. Then, the kernel process advances the simulation time to
this next time point before updating the signal values and resuming the execution of processes.
The simulation goes on like this, alternating between delta and time cycles, until the current
time value reaches the time specified for the end of the simulation.

4.2. Choosing a formal semantics for VHDL 75

4.2 Choosing a formal semantics for VHDL

In the previous section, we presented the main concepts underlying the VHDL language and its
informal semantics. We want to prove that the HILECOP transformation that generates VHDL
code from SITPNs preserves the behavior of the initial model (i.e, the SITPN model) into the
generated VHDL program. A formal semantics for the VHDL language is therefore a necessary
element to be able to reason about the generated VHDL programs, and moreover to be able to
compare their behaviors with the behaviors of the source SITPN models. Keeping that in mind,
which formal semantics should we consider for VHDL?

The same holds for any task: there is a trade off between finding a tool designed by oth-
ers that will fit our needs, and creating our own tool that will mitigate the gaps between our
needs and what is available in the literature. In the present case, the tool is a formal seman-
tics for VHDL. Adopting a fully-set semantics found in the literature as a base ground for the
implementation of a formal semantics for VHDL has multiple perks. First, it reduces the for-
malization effort, which is not a lesser point considering that the proof ahead might be long
and must still be completed within the time span of the thesis. Still, the semantics would need
to be implemented in Coq, if no implementation exists (or not written in Coq). Second, the
formal semantics of programming languages found in the literature are often general in their
approach, this to provide a generic framework to reason about programs. However, we must
not lose sight of our goal which is to prove behavior preservation; a generic formal semantics
could turn out to be too complex, or necessitate too much tweaking and thus hinder the fulfill-
ment of our task. On the other side, creating our own formal semantics for VHDL, based on the
work of others, is the best way to fit our needs in compliance with our final aim. However, the
pitfalls are that the resulting semantics might prove to be very specific, therefore preventing
others from using it. Also, a work of formalization would be necessary which, as we already
stated, would be time-consuming. In order to determine whether we ought to use an existing
semantics or design a new one, we must first clearly specify our needs regarding the VHDL
language.

4.2.1 Specifying our needs: HILECOP and VHDL

Two elements are of major influence to the specification of our needs for a formal semantics:
first, the context of HILECOP and the specificities of the VHDL programs that are generated;
second, the context of theorem proving. These two aspects entail the following considerations.

The need for coverage

The HILECOP methodology generates particular VHDL programs. Even if some transforma-
tions can be operated on the generated programs to simplify them, the looked-for formal se-
mantics must be able to deal with a certain subset of the VHDL language. Especially, this subset
must include:

– 0-delay (or δ-delay) signal assignments (equivalent to unit-delay signal assignment with a
“0 ns” after clause)

76 Chapter 4. H-VHDL: a target hardware description language

– component instantiation statements with generic constant and port mapping

– entity’s generic constant clauses (declaration of generic constants in a design entity)

HILECOP’s VHDL programs only deal with 0-delay signal assignments because they are the
only kind of signal assignments that can be synthesized. As a matter of fact, the industrial
compiler/synthesizer used in the HILECOP methodology only accepts VHDL programs with
no timing constructs (i.e, no delayed signal assignments) as inputs.

Regarding component instantiation statements, the VHDL LRM describes a way to trans-
form these statements into equivalent process statements and block constructs [64, p. 141] dur-
ing the elaboration of the design. However, we want to preserve the hierarchical structure
provided by the component instantiation statements arguing that it will be easier to compare
the state of a given SITPN model with a VHDL design state with an explicit hierarchical struc-
ture. Indeed, there exists a mapping between places and transitions of an SITPN and their
mirror (generated by the transformation) place and transition component instances (PCIs and
TCIs). This one-to-one correspondence might turn out to be handy to perform the proof of be-
havior preservation. Obviously, the semantics must cover the evaluation of process statements
which are the core concurrent statements of VHDL programs.

The types of signals and variables used in HILECOP VHDL designs must have finite ranges
of values. For instance, a VHDL signal that ranges over N cannot be synthesized on a physical
circuit. Indeed, N has an infinite number of values, and would therefore require an infinite
number of latches to be physically implemented. Moreover, as the number of latches used
to implement a digital circuit greatly impacts the power consumption of the circuit, the types
of signals and variables must be as constrained as possible to optimize the dimensioning of
the circuit. The generic constants, declared in the entity part of a design, are involved in the
dimensioning of the circuit. The generic constants define the bound of the array and natu-
ral range types for the different signals and variables declared in the place and transition
designs’ architecture. When a place or a transition component is instantiated, that is during
the transformation of the SITPN model into VHDL code, its generic constants receive values
via a generic map; we call it the dimensioning of the component instance. Therefore, generic
constant clauses must belong to the subset of the VHDL language covered by the semantics.

The need for a synchronous execution

The second property of HILECOP’s generated VHDL programs is their synchronous execution.
The digital circuits designed with the HILECOP methodology are all synchronously executed
on physical target. The generated VHDL designs declare a clock signal as an input port of their
entity port interface. Thus, the behavioral part of the designs contains two kinds of processes:
synchronous processes, i.e. processes that are sensitive to the clock signal, and combinational
processes, i.e. processes that are not sensitive to the clock signal, and that are permanently
running until the stabilization of the signal values. Synchronous processes react to the events
of the clock signal, i.e. the rising and the falling edge, and possess blocks of sequential state-
ments that are only executed at the precise moment of the clock event1. Therefore, we need a

1These blocks are guarded by the expressions rising_edge(clk) and falling_edge(clk).

4.2. Choosing a formal semantics for VHDL 77

semantics that is able to deal with synchronism, and that explicitly integrates the synchroniza-
tion with a clock signal into the expression of the simulation cycle.

A last consideration pertains to whether or not the VHDL semantics must explicitly handle
errors. As the SITPN semantics does not include the production of error values, the handling
of errors by the VHDL semantics is not a mandatory aspect.

Qualifying criterions

We here give the list of the qualifying criterions that will help to analyze the different VHDL
semantics encountered in the literature and that are presented in the next section. The three
most relevant criterions are:

– Synchronism. Regarding this criterion, there are three possibilities:

– Synchronism is not expressible in the considered VHDL semantics; this completely dis-
qualifies the adoption of the semantics.

– Synchronism is expressible in the considered VHDL semantics. Synchronism is expressible
if time-steps are handled in the semantics, at least to be able to represent clock events.

– Synchronism is explicit, i.e. the simulation loop is built around the occurrences of clock
events.

We will foster the semantics that explicitly formalize a synchronized execution of a VHDL
design.

– Component instantiation. Either the semantics handle the component instantiation statement
in its simulation rules, or component instantiation statements must be transformed in order
to be executed. We will foster the semantics that handle component instantiation statements
without transformation.

– Elaboration. This criterion pertains to the formalization of the elaboration phase as integrated
to the VHDL semantics. This criterion also expresses the ability of the semantics to handle
constrained types, i.e. arrays and natural ranges, and generic constant clauses that are both
dealt with during the elaboration phase. Either the semantics handle these constructs or it
does not. Of course, we will foster the first kind of semantics.

4.2.2 Looking for an existing formal semantics
Here, we give a summary of the work found in the literature pertaining to the formalization of
the VHDL language semantics. Articles are gathered and presented depending on the type of
semantics used in the formalization (operational, denotational, axiomatic. . .). Each semantics
is analyzed regarding the needs that were previously expressed.

78 Chapter 4. H-VHDL: a target hardware description language

Denotational semantics

Some authors have been interested in giving a formal denotational semantics to VHDL. In a
general manner, these authors want to reason about VHDL programs: prove properties over a
VHDL program, prove that two programs are equivalent. . .

In [51], the authors give a denotational semantics to the VHDL language within the Focus
[41] framework, a method for the development of distributed systems. Signal values and their
evolution through time are represented as streams of values. Statements are denoted as stream-
processing functions. Processes are stream-processing functions that take input signal streams
(signals of the sensitivity list) and yields transaction traces (i.e, waveforms) over output signals
(i.e, signal that are written by the process). Transaction traces are merged together as the result
of the concurrent execution of processes. The authors only consider 0-delay signal assignments
in their semantics, stating that it is sufficient to “consider time at a logical level to model both
synchronous and asynchronous designs”. However, some transformations must be applied
to a design that has a synchronous execution to express its equivalent only with 0-delay signal
assignments. Therefore, this semantics does not express synchronism of execution in an explicit
manner. Moreover, the component instantiation statements are not dealt with, and no mention
is made of the elaboration phase.

In [24], the authors give a denotational, yet relational, semantics to the VHDL language. A
state of a VHDL design is represented by a function binding signals to values; a worldline is a
time-ordered list of states. Statements (including processes) are denoted in the semantics by a
relation that binds an input couple, composed of a time point and a worldline, to an output cou-
ple of the same type. Multiple input and output couples possibly satisfy the relation denoting
a particular statement; thus, the semantics is nondeterministic. The semantics tries to abstract
from the formalization of the simulation cycle as it is done in the LRM. The authors want to
establish a semantics that is abstract enough to be able to compare all other works of formal-
ization with the authors’ semantics. The authors also give an axiomatic semantics (i.e, in the
Hoare logic style) which is proved to be sound and complete with the first denotational seman-
tics. A Prolog [33] implementation of the axiomatic semantics is given. Regarding our needs,
the semantics only deals with unit-delay signal assignments. However, this semantics enables
the representation of a δ-delay signal assignment with a unit-delay signal assignment adorned
with a “after 0 ns” time clause. The hierarchical structure of designs is not preserved, and,
although expressible, the semantics does not explicitly express a synchronous simulation cycle.

The denotational semantics expressed in [89] uses interval temporal logic as an underlying
model. Leveraging this underlying model, the authors are interested in proving some proper-
ties over VHDL designs to help compilers to optimize the code, for instance, by using rewrite
rules proved to be valid against the model. Some of the proofs laid out by the authors are
embedded in PVS [88]. The expression of the dynamic model uses many concepts described
in the LRM, like drivers, port association, driving and effective values for signals. The se-
mantics deals with both unit-delay and δ-delay signal assignments. The semantics works on
fully-elaborated designs, therefore, it does not deal with component instantiation statements.
Moreover, interval temporal logic is useful to reason on the VHDL designs in the presence of
delays, however, it looses its interest for designs presenting only 0-delay assignments.

In [17], the author states that “denotational semantics is more adequate for mathematical

4.2. Choosing a formal semantics for VHDL 79

reasoning”. The author formalizes the VHDL semantics to prove the equivalence between VHDL
programs (for instance, a specification and an implementation). What is of major interest re-
garding our needs is that the author has expressed a simulation cycle for synchronous designs.
Therefore, a distinction is made between combinational and synchronous processes in the ab-
stract syntax. Moreover, this work formalizes the elaboration part of a VHDL design former to
the simulation; also, the elaboration keeps the hierarchical setting of the VHDL design, that is
component instantiation statements are not replaced by processes. Due to the time abstraction,
the semantics only deals with 0-delay signal assignments. It is explained by the fact that the
reference time-unit is the clock period (i.e, the only known time-step), and the advancing of
time, happening during the simulation cycle as described in the LRM, is captured within the
setting of the simulation cycle.

Operational semantics

Multiple works formalize an operational semantics for VHDL. These works are interested in the
formal description of the VHDL simulator. The aim is to devise a formal semantics that acts as
a formal specification for a simulator.

In [23], a formal description of a functional semantics for VHDL is laid out based on stream-
processing functions. The semantics is expressed with the functional programming language
Gofer [67], thus enabling the computation of execution traces, that is, the computation of the
streams representing the values taken by signals over time. As in the former work of the same
author [24], only unit-delay signal assignments are dealt with, however, this time the author
describes a deterministic operational semantics. Regarding our needs, this work is neither
interested in preserving the hierarchical structure of VHDL designs, and no mention is made
regarding how a design is elaborated, nor in expressing an explicit synchronous simulation
cycle.

In [15], the authors formalize the simulation loop of the LRM using Evolving Algebra
machines (EA-machines). All important constructs of the VHDL language are represented as
records; processes are represented as concurrent agents running pseudo-codes, and the simula-
tion control flow is passed to and fro between the kernel process (i.e, the simulation orchestra-
tor) and the rest of the processes that execute the design behavior. This semantics implements
closely the simulation loop as described in the LRM. Therefore, it is very rich and deals with
most of the VHDL constructs, including the two time paradigms of the language (i.e. δ time and
unit time). Moreover, the semantics works on fully-elaborated designs, therefore, component
instantiation statements are omitted. However, a synchronous execution is fully expressible
even if not explicitly embedded in the expression of the simulation loop.

In [109], the author presents a natural semantics for VHDL. The simulation loop is expressed
by inference rules, and the execution of processes is based on the events over signals of their
corresponding sensitivity lists. The execution of statements computes transaction traces, that
is, the drivers of the signals. The semantics deals both with unit and delta delay signal assign-
ments. Regarding our needs, this semantics does not entirely cover the subset of VHDL we are
interested in. Component instantiation statements are not dealt with. A synchronous execution
is expressible within the semantics, although it would be hidden in the inference rule formaliz-
ing the generic simulation loop. Also, the semantics does not provide its simulation loop with

80 Chapter 4. H-VHDL: a target hardware description language

a simulation horizon (a maximum number of simulation cycles). The simulation ends when
signal values evolve no more.

In [54], the author presents an operational semantics for VHDL in the small-step style. The
semantics follows closely the simulation cycle described in the LRM; however it is very concise
and clear. The covered VHDL subset comprises both unit and delta-delay signal assignments.
There is an interesting discussion about the non-determinism of VHDL, since it is a concurrent
programming language: it entails that non-determinism is only existent at the processes level,
that is, internal sequential statement of processes can be executed in a nondeterministic manner
(referred to as A actions, that is, internal actions). But at every delta or time step (referred to as
δ and T actions) of the execution, the design state can be computed in a deterministic manner,
since all processes have reached a suspension point at the end of their inner body. The author
is interested in comparing the behaviors of two VHDL designs by proving that some relation of
equivalence holds between the two. He describes two strategies to compare VHDL programs.
The first one is bisimulation; it is based on the comparison of the sequence of actions (either A,
δ or T actions) performed by the two programs. The second one is observational equivalence;
it is based on the observation of the value of the output signals of two VHDL programs (the ob-
servees), that receive values in their input signals from another VHDL program (the observer).
The observer stimulates the entries of the observees and reaches a success state based on its
observations of the value of the outputs. Regarding our needs, this semantics permits the de-
scription of our synchronous simulation cycle. However, like most of the semantics presented
here, the component instantiation statement is not supported as it stands, but it is rather trans-
formed into the equivalent processes statements. Small-step semantics is not needed in our
case because we are only interested in the values of signals at the delta and time steps (for us,
time steps correspond to clock events). We are not interested in capturing the design states in
the middle of the execution of a process body. We are more interested in "weak bisimulation",
therefore forsaking the internal actions performed by a VHDL design. In [107], the authors ex-
tend the work of [54], especially by handling shared variables, in the presence of which a VHDL
program can have a concrete nonderterministic behavior. The authors are also interested in the
equivalence between two VHDL programs, and they are interested in determining a unique
meaning property for VHDL programs. The unique meaning property states that the execution
of a VHDL design in the presence of shared variables is unique. This work is interesting as it
points out the fact that the VHDL language is not only subject to “benign nondeterminism”. By
benign nonderterminism, the authors of [107] mean that the only moment where the state of a
VHDL design can not be decided in a deterministic way is when the processes are in the middle
of the execution of their statement body. However, the state of a VHDL design at that moment
is of no interest; it corresponds to nothing regarding the concrete functioning of a hardware
circuit. Also, two different processes can never be writing to the same signal at the same time.
If such a design happens, this is a case of multiply-driven signal, which is utterly forbidden. So,
there can be no nondeterminism, regarding the value of a signal, coming from the concurrent
execution of two processes (at least when shared variables are not involved).

4.2. Choosing a formal semantics for VHDL 81

Translational semantics

Another kind of semantics, called “translational”, formalizes the VHDL language semantics by
translating a VHDL design into another formal model. Thus, the semantics of VHDL is modeled
by the translation and the formal semantics of the target model. The target model has the
ability to model concurrency, which is one of the specificity of VHDL. Moreover, target models
are chosen regarding the tools they provide for analysis, and thus, a translational semantics for
VHDL is often related to model checking considerations.

In [97], the author expresses the formal semantics of VHDL by translating a VHDL design
into a corresponding flowgraph. All VHDL constructs, ranging from sequential statements to
concurrent processes, are expressed with individual flowgraphs that are then composed to-
gether through their interfaces. The simulation cycle of VHDL is also encoded by means of
connected flow graphs: one for the “execution part” of the semantics, that is, all processes run
until suspension, and one for the update part (i.e, the kernel process). Flowgraphs come with a
large amount of tools for analysis, and this translational semantics is involved in the setting of
a framework to reason about VHDL programs using multiple techniques (automatic theorem
proving, model checking. . .). All these techniques rely on the flowgraph formalism.

In [45], the author introduces a translational semantics for VHDL based on deterministic
finite-state automatons. Again, the reason for using such automatons lies in the existence of
many analysis tools. Moreover, forcing the generation of deterministic automatons improves
the time execution of model-checking techniques. The translation is performed on an elabo-
rated VHDL design; a data space stores the values of signals and variables, and automatons
represent the control-flow of VHDL statements. Each VHDL statement is associated to a specific
automaton; sequence of statements are achieved by automaton composition. The simulation
kernel is also represented by a specific automaton. Processes are composed together with re-
spect to synchronization states, i.e. states that permit to pass the control from one process to
another, therefore achieving determinism in the control flow of the overall automaton.

In [87], the author presents a translation from VHDL to Coloured Petri Nets (CPNs) thus
giving a formal semantics to the VHDL constructs. The author approach to the VHDL semantics
is a strict translation of the “event-based” VHDL simulator by means of Petri nets. The author
translates VHDL execution models (sea of processes) into CPNs, and also translates the kernel
process into a CPN. The kernel process has previously been expressed as a VHDL process so
that the translation into CPN is similar to the translation of other processes. Signals are not rep-
resented in the subnets, instead, three shared variables depict the signal states: one variable for
the driving, one for the effective and one for the current value of a given signal (see [64, p.167]
for the details on the values associated with signals during the simulation). Color domains
of places in the subnets represent the different types of VHDL domains. Variables are repre-
sented by tokens. Values in drivers are represented by sequences of transactions (equivalent
to waveforms); the author defines a set of functions that are convenient to handle sequences
of transactions. Sequential statements are partitioned into two kinds: control flow (if, loop,
case. . .) and notation (operations on signals and variables) nets. Processes subnets are made
by the fusing of each sequential statements in the process body. There is a special Resume place
that can be set by the kernel process to resume the activity of a process. Concurrency is not
discussed here, as the Petri net models are inherently concurrent models. The kernel process is

82 Chapter 4. H-VHDL: a target hardware description language

a broad CPN having some of its places interfaced with the process subnets. The decoloration
of the Petri net enables the analysis of the model and the detection of dead-locks.

In [42], the author gives a formal semantics to VHDL by transforming a VHDL design into
an abstract machine, i.e. defined by a set of inputs, outputs, states and transition function over
states and outputs. The author is interested in the verification of properties over VHDL designs
(temporal properties) or to prove equivalence between designs (bisimulation). To operate this
transformation, only a subset of VHDL is considered, otherwise a finite-state representation is
not reachable. The covered VHDL subset consists of objects with finite types, and no quantita-
tive timing constructs (no after clause in signal assignments). The transformation generates a
decision diagram (i.e. a control flow graph) and a state space for each process defined in the
design’s behavior. The decision diagram encodes the transition function over states and out-
puts. Process statements are composed with a special composition operator to obtain a global
abstract machine. Moreover, the article lays out a method to transform a block statement into
an abstract machine. The initiative is to be noticed as there are only a few papers, dealing with
the formalization of the VHDL semantics, that are interested in such hierarchical constructs as
block or component instantiation statements. The article concludes with an expression of the
space of complexity entailed by the transformation of a VHDL design into an abstract machine.

Although the translational semantics described above meet most of the qualifying criterions
in relation to our needs, we are not especially interested in implementing one of these. The
main reason being that it would require to implement the transformation from the abstract
VHDL syntax to the target model, in addition to the implementation of the semantics of the
target model.

Table 4.1 summarizes the analysis of the VHDL semantics encountered during our literature
review. Table 4.1 compares the different VHDL semantics in relation to our qualifying criterions
(see Section 4.2.1).

Fuchs
and

M
endler

[51]

Breuer
etal.

[24]

Pandey
etal.

[89]

Borrione
and

Salem

[17]

Breuer
etal.

[23]

Börger
etal.

[15]

V
an

Tassel

[109]

G
oossens

[54]

R
eetz

and
K

ropf

[97]
D

öhm
en

and
H

errm
ann

[45]

O
lcoz

[87]

D
éharbe

and
Borrione

[42]

Kind D D, A D D O O O O T T T TSemantics

Description Purpose AR, ATP AR AR AR SS SS SS, ITP SS, MC ATP, MC, ITP MC, ITP MC MC

Qualifying

Criterions

Component

Instantiation
T T T N T T T T T T T N

Synchronism NE NE NE Ex E E E E E E E NE

Elaboration × × × X × × X × × × × X

Extra.

Informations.

Impl.

Technology
Focus [41] Prolog [33] PVS [88] ? Gofer [67] ? HOL [63] ? HOL [63] ? ? ?

Particular

Model or

Data Types

Stream

Processing
No

Interval

Temporal

Logic

No
Stream

Processing

Evolving

Algebra

Machines

Natural

Semantics

(big-step)

Structural

Semantics

(small-step)

Flow

Graphs

Finite-State

Automatons

Colored

Petri

Nets

Abstract

Machines

and

Decision

Diagrams

TABLE 4.1: A comparative summary on VHDL formal semantics.

- Kind : D (Denotational) - A (Axiomatic) - O (Operational) - T (Translational).

- Purpose : AR (Abstract Reasoning) - ATP (Automatic Theorem Proving) - SS (Simulator Specification) - ITP (Interactive Theorem Proving) - MC
(Model Checking).

- Component Instantiation : T (statement is Transformed into equivalent processes) - N (statement is Natively taken into account in the semantics).

- Synchronism : E (Expressible within the semantics) - NE (Not Expressible within the semantics) - Ex (Explicitly built in the semantics).

84 Chapter 4. H-VHDL: a target hardware description language

To summarize, we are interested in a semantics built for the purpose of interactive theorem
proving (ideally, with an existing implementation in the Coq proof assistant). Most important,
the formal semantics must be able to deal with the expression of synchronous designs, that is,
designs synchronized with a clock signal. Therefore, a synchronous simulation cycle must be
at least expressible within the semantics. Moreover, the semantics must handle component in-
stantiation statements as they are, that is, without transforming them into equivalent processes.
As a bonus, the semantics should formalize the elaboration part of VHDL semantics.

In Table 4.1, cells are colored in green when the cell’s content foster the adoption of the se-
mantics, in yellow when the content does not go towards the adoption of the semantics but is
not disqualifying, and red when the content is a disqualifying criterion. Regarding the seman-
tics adoption, cells are labelled in light grey when their content is neutral. Now comparing
the entries of Table 4.1 with the expression of our needs, we can discard the semantics with
a cell labelled in red, that is, most of the denotational semantics; moreover, all translational
semantics are disqualified for the previously mentioned reasons. The candidate semantics are
the operational semantics, plus the denotational semantics by Borrione and Salem [17], the
only semantics that formalizes an explicitly synchronous simulation cycle. The semantics that
is the most likely to be adopted is the Borrione and Salem’s semantics. However, we prefer
an operational setting for our semantics. To lower down the complexity of proofs, we really
need a semantics that builds the synchronism into its simulation cycle, therefore putting aside
all the intricacies of the full-blown VHDL simulation cycle. Moreover, the big-step style for an
operational semantics is more relevant to us; as stated before, we are not interested in the in-
termediary states of computation that a small-step style semantics considers. Based on these
observations, we have decided to formalize our own VHDL semantics inspired from the seman-
tics of Borrione and Salem’s [17] and Van Tassel’s [109]. The following sections are dedicated to
the presentation of the syntax and semantics of a subset of VHDL that we baptize H-VHDL. H-
VHDL embeds the subset of VHDL that we are interested in when considering the VHDL designs
generated by the HILECOP transformation.

4.3 Abstract syntax ofH-VHDL

In this section, we describe the abstract syntax of H-VHDL, a subset of VHDL covering all the
constructs present in the programs generated by the HILECOP transformation. Terminals of the
language are written in typewriter font, or are enclosed in simple quotes for symbols with no
typewriter representation. The a∗ denotes a possibly empty repetition of the element a; the a+

denotes a non-empty repetition of a.

4.3.1 Design declaration

Similarly to [109], we define the design construct in theH-VHDL’s abstract syntax which has no
equivalent in the concrete syntax of VHDL.

In the above entry, ide indicates the entity identifier and ida the architecture identifier of
the declared design. The gens entry corresponds to the generic clause, i.e. the declaration list
for the generic constants of the design. A generic constant is declared via the gdecl entry; a

4.3. Abstract syntax ofH-VHDL 85

design ::= design ide ida gens ports sigs cs
gens ::= gdecl*
ports ::= pdecl*
sigs ::= sdecl*

gdecl ::= (id, τ, e)
pdecl ::= ((in|out), id, τ)
sdecl ::= (id, τ)

generic constant declaration is a triplet composed of an identifier, a type indication and an
expression denoting the generic constant’s default value. The ports entry holds the declaration
of the input and output ports of the design. A port declaration (i.e. the pdecl entry) is a triplet
composed of a port type, i.e. in or out, an identifier, and a type indication. The sigs entry is
the list declaring the internal signals of the design. An internal signal declaration entry (i.e.
sdecl) is a couple composed of an identifier and a type indication. The cs entry represents the
concurrent statements composing the behavior of the design.

4.3.2 Concurrent statements

cs ::= psstmt | cistmt | cs || cs | null

In H-VHDL, two kinds of concurrent statements are available to describe the behavior of
a design: process statements, represented by the psstmt entry, and component instantiation
statements, represented by the cistmt entry. Concurrent statements are composable through
the || operator. We add the null statement to the H-VHDL abstract syntax to help represent
idle behaviors.

Process statement

psstmt ::= process (idp, sl, vars, ss)
sl ::= id∗

vars ::= vdecl*
vdecl ::= (id, τ)

A process statement declares a sensitivity list, i.e. the sl entry, which is a possibly empty set
of signal identifiers. In order to be well-formed, the signals composing a sensitivity list must
be either internal signals or input ports of the design. As a good practice, all signals which
value is read in the sequential statement body of the process must appear in the sensitivity
list. The process possibly declares a set of internal variables, i.e. the vars entry. A variable
declaration entry is a couple composed of a variable identifier and a type indication. The ss
entry represents the sequence of statements composing the body of the process, i.e. the part
that will be executed during the simulation.

86 Chapter 4. H-VHDL: a target hardware description language

Component instantiation statement

The VHDL LRM defines two kinds of component instantiation statement (CIS): the instantiation
of a component [64, p.139] and the instantiation of a design entity [64, p.141]. The component
instantiation statement used in theH-VHDL abstract syntax corresponds to the instantiation of
a design entity.

cistmt ::= comp (idc, ide, g, i, o)
g ::= assoc∗g
i ::= assoc∗ip
o ::= assoc∗op
assocg ::= (id,e)
associp ::= (name,e)
assocop ::= (id,(name|open))|(id(e),name)

In the cistmt entry, the identifier idc represents the name of component instance. Identifier
ide points out the name of the design, i.e. the entity identifier, being instantiated here. The
g entry describes the list of associations between generic constant identifiers and expressions.
The i entry is the list of associations between input port identifiers (or indexed identifiers) and
expressions. The o entry is the list of associations between output port identifiers (or indexed
identifiers) and signal names, or the open keyword. Associating the open keyword with an
output port identifier indicates that the port is not connected. The left element of an association
is called the formal part, and the right element of an association is called the actual part.

4.3.3 Sequential statements

ss ::= name⇐ e | name := e | if (e) ss [ss] | for (id,e,e) ss
| falling ss | rising ss | rst ss ss’ | ss; ss | null

The ss entry defines the sequential statements that compose the body of processes. The sig-
nal assignment statement is represented with the ⇐ operator; the variable assignment state-
ment with the := operator. Also, we devise three control flow statements that have no equiv-
alent in the VHDL syntax: the falling block statement, the rising block statement and the
rst block (or reset block) statement. The falling ss statement (resp. rising ss) declares a
block of sequential statements to be executed only at the falling edge (resp. rising edge) of the
clock signal (see Section 4.6.5). Also, the rst ss ss’ statement declares two blocks, the first one
must be executed during the initialization phase of the simulation; otherwise, the second one is
executed (see Section 4.6.4). These introduced constructs are equivalent to specific if-else state-
ments that are commonly used in the body of a synchronous process. The rst ss ss’ statement
is equivalent to:� �
if rst = ’0’ then ss else ss’ end if;� �

4.4. Preliminary definitions 87

In the above listing, ’0’ is the equivalent to the Boolean value false in concrete VHDL
syntax. More details are given, in Section 4.6.4, regarding the semantics of the above statement
in relation to the initialization phase that starts a design’s simulation.

The rising ss and falling ss statements are equivalent to the following if statements:� �
if rising_edge(clk) then ss end if;
if falling_edge(clk) then ss end if;� �

In the above listing, the rising_edge (resp. falling_edge) primitive yields true if a rising
edge event (resp. falling edge event) occurred in the clk signal passed as input. More details
are given, in Section 4.6.5, regarding the semantics of the above statements in relation to the
clock phases happening during a simulation cycle.

4.3.4 Expressions, names and types

e ::= e and e | e or e | not e | e = e | e 6= e
| e < e | e <= e | e > e | e >= e | e + e | e - e
| name | natural | boolean | (e+)

name ::= id | id(e)
boolean ::= true | false
τ ::= boolean | natural (e, e) | array (τ, e, e)

The expression entry, i.e. e, declares a set of operators over Boolean expressions, and natural
numbers expressions. The natural non-terminal represents the set of natural numbers (N). The
id non-terminal represents the set of identifiers, comparable to the set of non-empty strings, or
any infinitely enumerable set. In the following sections, concrete identifiers will be written in
typewriter font, e.g. the place and transition design identifiers.

The τ entry corresponds to the type indication associated with the declaration of a generic
constant, a port or an internal signal. The considered types are the Boolean type, the constrained
natural type, and the array type. The constrained natural type, i.e. natural(e,e), defines a finite
interval of natural numbers; the left-most expression of the range constraint denotes the lower
bound of the interval, and the second one denotes the upper bound of the interval. The array
type indication, i.e. array(τ, e, e), denotes a non-empty set of elements of type τ. The elements
are indexed with respect to the specified index constraint. The left-most expression of the index
constraint denotes the starting index (possibly different from 0) and the right-most expression
denotes the final index.

4.4 Preliminary definitions

4.4.1 Semantic domains
Let id denote the set of identifiers in the semantic domain. We write pre f ix-id to denote arbi-
trary subsets of the id set. The type and value semantic types are defined as follows:

88 Chapter 4. H-VHDL: a target hardware description language

TABLE 4.2: The type and value semantic types.

type ::= bool | nat(n, n) | array(type, n, n)

value ::= b | n | arr
b ::= ’>’ | ’⊥’
n ::= 0 | 1 | . . . | NATMAX
arr ::= (value+)

In Table 4.2, the type type is in any way similar to the τ entry of theH-VHDL abstract syntax.
However, all constraint bounds, that were expressions in the constrained natural and the array
type indications, have been evaluated to natural numbers. NATMAX denotes the maximum value
for a natural number. The NATMAX value depends on the implementation of the VHDL language;
NATMAX must at least be equal to 231 − 1. Note that the array value contains at least one value
as an array’s index range contains at least one index.

4.4.2 Elaborated design and design state

Now, let us define the structure of elaborated design. An elaborated design is built during the
elaboration of a H-VHDL design (see Section 4.5). Then, the elaborated design will act as a
runtime environment in the expression of the simulation rules. Let ElDesign be the set of
elaborated designs. An elaborated design is a composite environment built out of multiple sub-
environments. Each sub-environment is a table, represented as a function, mapping identifiers
of a certain category of constructs (e.g, input port identifiers) to their declaration information
(e.g, type indication for input ports). We represent an elaborated design as a record where the
fields are the sub-environments. An elaborated design is defined as follows:

Definition 31 (Elaborated Design). An elaborated design ∆ ∈ ElDesign is a record
<Gens, Ins, Outs, Sigs, Ps, Comps> where:

−Gens ∈ generic-id→ (type× value) is the function yielding the type and the value of generic
constants.

− Ins ∈ input-id→ type is the function yielding the type of input ports.

−Outs ∈ output-id→ type is the function yielding the type of output ports.

− Sigs ∈ declared-signal-id→ type is the function yielding the type of declared signals.

− Ps ∈ process-id → (variable-id → (type × value)) is the function associating process
identifiers to their local environment.

−Comps ∈ component-id→ ElDesign is the function mapping component instance identifiers
to their own elaborated design version.

We assume that there is no overlapping between the identifiers of the sub-environments
(i.e, an identifier belongs to at most one sub-environment), and also between the identifiers of

4.5. Elaboration rules 89

the sub-environments and the identifiers of local environments. When there is no ambiguity,
we write ∆(x) to denote the value returned for identifier x, where x is looked up in the appro-
priate field of ∆. We write x ∈ ∆ to state that identifier x is defined in the domain of one of ∆’s
field. We note ∆(x) ← v the overriding of the value associated to identifier x with value v in
the appropriate field of ∆, ∆ ∪ (x, v) to note the addition of the mapping from identifier x to
value v in the appropriate field of ∆, that assuming x /∈ ∆. We write x ∈ F (∆), where F is a
field of ∆, when more precision is needed regarding the lookup of identifier x in the record ∆.

Now let us define the run-time state of a design, i.e. the state that describes the value of
signals and component instances in the course of a simulation. Let Σ be the set of design states.
A design state of σ ∈ Σ is defined as follows:

Definition 32 (Design state). A design state σ ∈ Σ is a record <S , C, E> where:

−S ∈ signal-id → value, is the function yielding the current values of the design’s signals
(ports and declared signals).

−C ∈ component-id→ Σ, is the function yielding the current state of component instances.

−E ⊆ signal-id t component-id, is the set of signal and component instance identifiers that
generated an event at the current design state.

The signal-id subset is the disjoint union of input-id, output-id and declared-signal-id. When
there is no ambiguity regarding which store a given identifier belongs, we use σ(id) to denote
the value associated to an identifier in the signal store S or in the component store C fields. We
write id ∈ σ to state that an identifier is defined in either the signal store S or the component
store C fields. Also, when there is no ambiguity, we rely on indices or exponents to qualify the
signal store, the component instance store and the set of events of a given design state. For
instance, C0 denotes the component instance store of design state σ0, and E ′ denotes the set of
events of design state σ′, etc.

Notation 6 (No events design state). The function NoEv ∈ Σ → Σ returns a design state
similar to the one passed in parameter but with an empty set of events. I.e, for all design state
σ ∈ Σ s.t. σ = <S , C, E>, NoEv(σ) = <S , C, ∅>.

4.5 Elaboration rules

The goal of the elaboration phase is to build an elaborated design ∆ along with a default state
σe out of aH-VHDL design d and for a given design store D. The elaboration relation performs
type-checking operations over the declarative and behavioral parts of the design. Even though
the elaboration of a design is described in the LRM, the formalization of this phase has been
performed in few works only [17, 42, 109], and never in a setting that covers both syntactical
well-formedness and type-checking of the designs. We are interested in the formalization of the
elaboration phase because we are interested in the well-formedness of the programs generated

90 Chapter 4. H-VHDL: a target hardware description language

by the HILECOP transformation. Here, the term well-formedness refers to a syntactically valid
design, w.r.t. the syntactic rules of the VHDL language, and to a well-typed design, w.r.t. the
typing rules defined in the LRM. Formalizing the elaboration phase is also a way to define
how the runtime environment and the runtime state of the simulation are built. For now, we
haven’t tackled down the proof that theH-VHDL designs generated by HILECOP are elaborable,
i.e. syntactically well-formed and well-typed. As explained in Chapter 6, this task is foreseen
in our work perspectives. In our own formalization of the elaboration phase, and contrary
to what is prescribed by the LRM [64, p. 166], we are not dealing with the transformation
of the component instantiation statements into block statements. We prefer to preserve the
hierarchical structure of the design (i.e. its composite structure) during its elaboration. We
argue that dealing with component instantiation statements instead of block statements does
not add complexity to the semantics of theH-VHDL simulation rules.

In the following sections, the green frames give additional explanations about the premises
of the rule instances; the red frames bring additional explanations about the side conditions of
the rules.

4.5.1 Design elaboration

One way to define a design’s behavior is through the instantiation of subcomponents which are
instances of other designs. Each component instance declares the entity identifier that points
out to the specific design being instantiated. Therefore, for each instantiation, the associated
design must be known through the definition of a global design declaration environment called
a design store. A design store is defined as follows:

Definition 33 (Design store). A design store D ∈ entity-id → design is a function mapping
design identifiers (i.e. the entity identifier of designs) to their corresponding representation in
abstract syntax. As a prerequisite to the elaboration of HILECOP-generated designs (i.e, resulting
from the transformation of a SITPN into a H-VHDL design), a particular design store DH is
defined. Design store DH binds the transition and place identifiers to the definition of the
place and transition designs inH-VHDL abstract syntax:
DH := {(transition, design transition transition_architecture genst portst sigst cst),

(place, design place place_architecture gensp portsp sigsp csp)}

The full definition of the place and transition designs in abstract syntax are given in Appen-
dices A and B.

At the beginning of the elaboration phase, a functionMg ∈ generic-id 9 value mapping
the top-level design’s generic constants to values is passed as an element of the environment.
TheMg function is referred to as the dimensioning function.

Rule DESIGNELAB defines the design elaboration relation. It relates a H-VHDL design to
its resulting elaborated version and default design state that were built in the context of the
design store D and the dimensioning functionMg.

4.5. Elaboration rules 91

DESIGNELAB

∆∅,Mg ` gens
egens−−−→ ∆ ∆, σ∅ ` ports

eports−−−→ ∆′, σ ∆′, σ ` sigs
esigs−−→ ∆′′, σ′ D, ∆′′, σ′ ` cs ebeh−−→ ∆′′′, σ′′

D,Mg ` design ide ida gens ports sigs cs elab−−→ ∆′′′, σ′′

∆∅ denotes an empty elaborated design, that is an elaborated design initialized with empty
fields (empty tables). In the same manner, σ∅ denotes an empty design state. The effect of the
egens, eports, esigs and ebeh relations that respectively deal with the elaboration of the generic
constants, the ports, the architecture declarative part and the behavioral part of the design, are
made explicit in the following sections.

4.5.2 Generic clause elaboration

The egens relation elaborates the list of generic constant declarations, i.e. the generic clause of
a design declaration. The egens relation is defined through the GENELABDIMEN, GENELAB-
DEFAULT and GENELABCOMP rules. The elaboration of a generic constant declaration consists
in:

1. Transforming the type indication associated with the constant into a semantic type.

2. Checking that the default value, and/or the value associated with the constant in the di-
mensioning function, is well-typed.

3. Adding the couple constant identifier and (type,value) to the Gens sub-environment of ∆.

Premises

- etypeg transforms a type indication, specifically attached to a generic constant declara-
tion, into a type instance and checks its well-formedness (see Section 4.5.5).

- The e relation links an expression e to its value v in a given context (see Section 4.6.9). The
context of evaluation for an expression is composed of a given elaborated design, a given
design state, and given local environment. We omit the thesis symbol and symbols at the
left of the thesis when they refer to empty structures. For instance, e e−→ v is a notation
for ∆∅, σ∅, Λ∅ ` e e−→ v.

- SEl states that an expression is locally static (see Section 4.5.9).

- v ∈c T and M(idg) ∈c T checks that the default value and the value yielded by the
dimensioning function belongs to the type of the declared generic constant (see Sec-
tion 4.5.8).

92 Chapter 4. H-VHDL: a target hardware description language

Side conditions

The expression idg /∈ ∆ checks that the generic constant identifier idg is not already defined
in the domain of one sub-environment of the elaborated design ∆.

GENELABDIMEN

` τ
etypeg−−−→ T e e−→ v SEl(e)

v ∈c T
M(idg) ∈c T idg /∈ ∆

idg ∈ M∆,M ` (idg,τ,e)
egens−−−→ ∆ ∪ (idg, (T,M(idg)))

The GENELABDEFAULT rule states that the value of a generic constant is defined by its
type’s default implicit value when no value is specified by the dimensioning functionM.

GENELABDEFAULT

` τ
etypeg−−−→ T ` e e−→ v SEl(e) v ∈c T idg /∈ ∆

idg /∈ M∆,M ` (idg,τ,e)
egens−−−→ ∆ ∪ (idg, (T, v))

GENELABCOMP

∆,M ` gdecl
egens−−−→ ∆′ ∆′,M ` gens

egens−−−→ ∆′′

∆,M ` gdecl, gens
egens−−−→ ∆′′

4.5.3 Port clause elaboration

The eports relation elaborates each port declaration defined in a design’s port clause. For each
port declaration, the eports relation transforms the port’s type indication into a semantic type
and retrieves the implicit default value of this type. Then, the eports relation adds the bind-
ing between the input (resp. output) port identifier and its type to the Ins (resp. Outs) sub-
environment of the elaborated design structure ∆. It also adds the binding between the input
(resp. output) port identifier and its implicit default value to the default design state σ.

Premises

– The etype relation associates a type indication to its corresponding semantic type and
checks its well-formedness (see Section 4.5.5).

– The de f aultv relation associates a given semantic type to its implicit default value.

Side conditions

The expression id /∈ σ checks that the identifier id is not already defined in the domain of

4.5. Elaboration rules 93

the signal store or the component store of the design state σ. It is a shorthand notation to
id /∈ dom(S) ∪ dom(C) where σ = <S , C, E>.

INPORTELAB

∆ ` τ
etype−−→ T ∆ ` T

de f aultv−−−−→ v id /∈ ∆
id /∈ σ

∆, σ ` (in, id, τ)
eports−−−→ ∆ ∪ (id, T), σ ∪ (id, v)

OUTPORTELAB

∆ ` τ
etype−−→ T ∆ ` T

de f aultv−−−−→ v id /∈ ∆
id /∈ σ

∆, σ ` (out, id, τ)
eports−−−→ ∆ ∪ (id, T), σ ∪ (id, v)

PORTELABCOMP

∆, σ ` pdecl
eports−−−→ ∆′, σ′ ∆′, σ′ ` ports

eports−−−→ ∆′′, σ′′

∆, σ ` pdecl, ports
eports−−−→ ∆′′, σ′′

4.5.4 Architecture declarative part elaboration

The esigs relation elaborates each internal signal declaration defined in the declarative part of
a design’s architecture. For each signal declaration, the esigs relation transforms the signal’s
type indication into a semantic type and retrieves the implicit default value of this type. Then,
the esigs relation adds the binding between the signal identifier and its type to the Sigs sub-
environment of the elaborated design structure ∆. It also adds the binding between the signal
identifier and its implicit default value to the default design state σ.

SIGELAB

∆ ` τ
etype−−→ T ∆ ` T

de f aultv−−−−→ v id /∈ ∆
id /∈ σ

∆, σ ` (id, τ)
esigs−−→ ∆ ∪ (id, T), σ ∪ (id, v)

SIGELABCOMP

∆, σ ` sdecl
esigs−−→ ∆′, σ′ ∆′, σ′ ` sigs

esigs−−→ ∆′′, σ′′

∆, σ ` sdecl, sigs
esigs−−→ ∆′′, σ′′

4.5.5 Type indication elaboration

The etype relation checks the well-formedness of a type indication τ, and transforms it into a
semantic type (as defined in Table 4.2). A type indication τ is well-formed in the context ∆ if τ
denotes the boolean keyword or the natural or array keywords with a well-formed constraint,
and a well-formed element type in the array case.

94 Chapter 4. H-VHDL: a target hardware description language

ETYPEBOOL

∆ ` boolean
etype−−→ bool

ETYPENAT

∆ ` (e, e′) econstr−−−→ (v, v′)

∆ ` natural(e, e′)
etype−−→ nat(v, v′)

ETYPEARRAY

∆ ` τ
etype−−→ T ∆ ` (e, e′) econstr−−−→ (v, v′)

∆ ` array(τ, e, e′)
etype−−→ array(T, v, v′)

The econstr relation checks that a constraint is well-formed and evaluates the constraint
bounds. A constraint is well-formed in the context ∆ if:

- Its bounds are globally static expressions [64, p.36] conforming to the nat(0, NATMAX) type
after evaluation.

- Its lower bound value is inferior or equal to its upper bound value.

Remark 1 (Type of constraints). As the VHDL language reference stays unclear about the type
of range and index constraints [64, p.33], we add the restriction that range and index constraints
must have bounds of the nat(0, NATMAX) type, i.e. the interval of natural numbers representable
with the VHDL language.

Premises

– The ∈c relation states that a given value conforms to a given type (see Section 4.5.8).

– The SEg relation states that an expression is globally static (see Section 4.5.9).

ECONSTR

∆ ` SEg(e)
∆ ` SEg(e′)

∆ ` e e−→ v
∆ ` e′ e−→ v′

v ∈c nat(0, NATMAX)
v′ ∈c nat(0, NATMAX)

v ≤ v′

∆ ` (e, e′) econstr−−−→ (v, v′)

When considering a type indication in a generic constant declaration, the definition of well-
formedness differs slightly from the general definition. A type indication τ associated to a
generic constant declaration is well-formed if τ denotes the boolean keyword, or the natural
keyword with a well-formed constraint. A generic constant can not be associated with a com-
posite type indication (i.e. an array type). The etypeg relation is specially defined to check the
well-formedness of a type indication associated with a generic constant declaration.

4.5. Elaboration rules 95

ETYPEGBOOL

` boolean
etype−−→ bool

ETYPEGNAT

∆ ` (e, e′)
econstrg−−−−→ (v, v′)

` natural(e, e′)
etype−−→ nat(v, v′)

The econstrg relation checks that a generic constraint (i.e, a constraint appearing in a type
indication associated with a generic constant declaration) is well-formed and evaluates the
constraint bounds. A generic constraint is well-formed if:

- Its bounds are locally static expressions [64, p.36] conforming to the nat(0, NATMAX) type after
evaluation.

- Its lower bound value is inferior or equal to its upper bound value.

ECONSTRG

SEl(e)
SEl(e′)

` e e−→ v
` e′ e−→ v′

v ∈c nat(0, NATMAX)
v′ ∈c nat(0, NATMAX)

v ≤ v′

` (e, e′)
econstrg−−−−→ (v, v′)

4.5.6 Behavior elaboration

The ebeh relation elaborates each concurrent statement composing the behavioral part of a de-
sign.

Elaboration of concurrent statements

The elaboration of the composition of concurrent statements is performed sequentially.

CSPARELAB

D, ∆, σ ` cs ebeh−−→ ∆′, σ′ D, ∆′, σ′ ` cs′ ebeh−−→ ∆′′, σ′′

D, ∆, σ ` cs || cs′ ebeh−−→ ∆′′, σ′′

CSNULLELAB

D, ∆, σ ` null
ebeh−−→ ∆, σ

Process statement elaboration

To elaborate a process statement, the ebeh relation associates the process identifier with a local
environment in the Ps sub-environment of ∆. The ebeh builds the local environment based on
the process’s local variable declaration list (see the evars relation). The ebeh relation also checks
that the sequential statements composing the body of the process are well-typed (see the validss
relation in Section 4.5.11).

96 Chapter 4. H-VHDL: a target hardware description language

Premises

The validss relation states that a sequential statement is well-typed in the context ∆, σ, Λ,
where Λ is the local variable environment deduced from the elaboration of the process
declarative part.

Side conditions

sl ⊆ Ins(∆) ∪ Sigs(∆) indicates that the sensitivity list sl must only contain readable signal
identifiers, that is, input ports and internal signals.

PSELAB

∆, Λ∅ ` vars evars−−→ Λ ∆, σ, Λ ` validss(ss) idp /∈ ∆

sl ⊆ Ins(∆) ∪ Sigs(∆)D, ∆, σ ` process (idp, sl, vars, ss) ebeh−−→ ∆ ∪ (idp, Λ), σ

Process declarative part elaboration

The evars relation builds a local environment out of a process declarative part. For each lo-
cal variable declaration, the evars transforms the type indication associated with the variable
identifier into a semantic type and retrieves the implicit default value of this type. Then, the
evars relation adds the binding between the variable identifier, and the couple (type,value) to
the local environment Λ.

VARELAB

∆ ` τ
etype−−→ T ` T

de f aultv−−−−→ v id /∈ Λ
id /∈ ∆

∆, Λ ` (id, τ)
evars−−→ Λ ∪ (id, (T, v))

VARELABCOMP

∆, Λ ` vdecl evars−−→ Λ′ ∆, Λ′ ` vars evars−−→ Λ′′

∆, Λ ` vdecl, vars evars−−→ Λ′′

Component instantiation statement elaboration

To elaborate a component instantiation statement, the ebeh relation first builds a dimensioning
functionM out of the component instance’s generic map. Then, the design associated with the
entity identifier declared by the component instance (i.e. ide) is looked up and retrieved from
the design store D. Then, the ebeh relation appeals to the elab relation to build an elaborated
version ∆c and a default design state σc for the retrieved design given the specific dimensioning
function M. Finally, the component instance identifier idc is bound to its elaborated version
∆c in the Comps sub-environment of ∆, and is bound to its own default design state σc in the
component store C of σ. Consequently, the definition of the elab and ebeh relations is mutually
recursive.

4.5. Elaboration rules 97

Premises

- The emapg relation builds a functionM ∈ generic-id 9 value out of a generic map (see
the definition below).

- validipm (resp. validopm) states that an input port map (resp. output port map) is valid,
i.e. well-formed and well-typed (see Section 4.5.10).

Side conditions

M ⊆ Gens(∆c) checks that the generic map g contains references to known generic con-
stant identifiers only.

COMPELAB

M∅ ` g
emapg−−−→M

D,M ` D(ide)
elab−−→ ∆c, σc

∆, ∆c, σ ` validipm(i)
∆, ∆c ` validopm(o)

idc /∈ ∆, idc /∈ σ

ide ∈ D
M ⊆ Gens(∆c)D, ∆, σ ` comp (idc, ide, g, i, o) ebeh−−→ ∆ ∪ (idc, ∆c), σ ∪ (idc, σc)

A port map is a mapping between expressions and signals coming from an embedding
design (∆) and the ports of an internal component instance (∆c). The formal part of a port map
entry (i.e, the left part) belongs to the internal component, whereas the actual part (i.e, the right
part) refers to the embedding design. Therefore, we need both ∆ and ∆c to verify if a port map
is well-typed leveraging the validipm, or the validopm, relation.

Remark 2 (Valid generic map). In Rule COMPELAB, note that we are not checking the va-
lidity of the generic map g. In case of an ill-formed generic map, an inconsistent mapping M
is generated by the emapg relation. In the presence of an ill-formed dimensioning function, the
elab relation is never derivable. Therefore, the elab relation does an implicit validity check on the
generic map.

The emapg relation builds a dimensioning function out of generic map. For each association
of the generic map, the emapg relation evaluates the actual part of the association, and adds a
binding between the generic constant identifier and its value to the dimensioning functionM.

ASSOCGELAB

SEl(e) e e−→ v
idg /∈ M

M ` (idg, e)
emapg−−−→M∪ (idg, v)

GMELAB

M ` assocg
emapg−−−→M′ M′ ` gmap

emapg−−−→M′′

M ` assocg, gmap
emapg−−−→M′′

An assocg entry doesn’t allow indexed identifiers in its formal part, due to the restriction
of generic constants to scalar types. Note that this restriction is not imposed by the LRM. We
choose to adopt this simplification of the VHDL syntax since the case of generic constants with
composite types is never encountered in the VHDL programs generated by HILECOP.

98 Chapter 4. H-VHDL: a target hardware description language

4.5.7 Implicit default value
According to the VHDL LRM, at the declaration of a port, a signal or a variable, these items
must receive an implicit default value depending on their types [64, p.61, 64, 173]. The de f aultv
relation determines the default value for a given type.

DEFAULTVBOOL

bool
de f aultv−−−−→ ⊥

DEFAULTVCNAT
n ≤ m

nat(n, m)
de f aultv−−−−→ n

DEFAULTVCARR

T
de f aultv−−−−→ v n ≤ m

size = (m− n) + 1
array(T, n, m)

de f aultv−−−−→ create_array(size, T, v)

The create_array(size, T, v) expression yields an array of size size, containing elements of
type T, where each element is initialized with the value v.

4.5.8 Typing relation

The typing relation ∈c checks that a given value conforms to a given type.

ISBOOL

b ∈ B
b ∈c bool

ISCNAT

n ∈ [l, u]
n ∈c nat(l, u)

ARRAY

vi ∈c T i = 1, . . . , n
n = (u− l) + 1∆ ` (v1, . . . , vn) ∈c array(T, l, u)

4.5.9 Static expressions

Static expressions are either locally static or globally static; the LRM defines locally static and
globally static expressions as follows.

Locally static expressions

An expression is locally static if:

- It is composed of operators and operands of a scalar type (i.e, natural or boolean).

- It is a literal of a scalar type.

The SEl relation, defined by the following rules, states that an expression is locally static.

LSENAT

n ∈N
SEl(n)

LSEBOOL

b ∈ B
SEl(b)

LSENOT

SEl(e)

SEl(not e)

LSEBINOP

SEl(e) SEl(e′)
op ∈ { +,−,=, 6=,<,≤,>,≥, and, or }

SEl(e op e′)

4.5. Elaboration rules 99

Globally static expressions

An expression is globally static in the context ∆ if:

- It is a generic constant.

- It is an array aggregate composed of globally static expressions.

- It is a locally static expression.

The SEg relation, defined by the following rules, checks that an expression is globally static
in a given context ∆.

GSELOCAL

SEl(e)

∆ ` SEg(e)

GSEGEN

idg ∈ Gens(∆)
∆ ` SEg(idg)

GSEAGGREGATE

∆ ` SEg(ei)
i = 1, . . . , n

∆ ` SEg((e1, . . . , en))

4.5.10 Valid port map

Valid input port map

The validipm predicate states that an input port map is valid in the context ∆, ∆c, where ∆ is
the embedding design structure and ∆c denotes the component instance, owner of the input
port map, if:

- All ports defined in ∆c are exactly mapped once in the input port map.

- For each input port map entry, the formal and actual part are of the same type.

Premises

- listipm builds a set L ⊂ id t (id×N) out of the input port map.

- checkpm checks the validity of a port map based on the corresponding port list (here, the
input ports of ∆c) and the set built by the listipm relation.

VALIDIPM

∆, ∆c, σ,L∅ ` i
listipm−−−→ L checkpm(Ins(∆c),L)

∆, ∆c, σ ` validipm(i)

The listipm relation builds a set composed of identifiers and/or couples (identifier, natural
number) collected from the identifiers and indexed identifiers found in the formal parts of an
input port map. It also checks, for each association of the input port map, that the expression
of the actual part is of the same type than the identifier or indexed identifier of the formal part.

100 Chapter 4. H-VHDL: a target hardware description language

Side conditions

– id f ∈ Ins(∆c) checks that the identifier id f is an input port identifier of ∆c.

– id f /∈ L checks that the port identifier id f is not already mapped, i.e. it is not already
referenced in the L set.

– @vi s.t. (id f , vi) ∈ L checks that a subelement of id f is not already map, that is, if id f
denotes a signal identifier of the array type.

LISTIPMSIMPLE

∆, σ ` e e−→ v v ∈c T
id f /∈ L, id f ∈ Ins(∆c)

@vi s.t. (id f , vi) ∈ L
∆c(id f) = T∆, ∆c, σ,L ` (id f , e)

listipm−−−→ L∪ {id f }

Premises

vi ∈c nat(n, m) checks that the index value stays in the array bounds.

Side conditions

id f /∈ L and (id f , vi) /∈ L checks that neither the port identifier id f nor the couple port
identifier id f and index vi are already mapped.

LISTIPMPARTIAL

SEl(ei)

ei
e−→ vi

∆, σ ` e e−→ v
vi ∈c nat(n, m)
v ∈c T id f /∈ L, (id f , vi) /∈ L

id f ∈ Ins(∆c)

∆c(id f) = array(T, n, m)∆, ∆c, σ,L ` (id f (ei), e)
listipm−−−→ L∪ { (id f , vi) }

LISTIPMCONS

∆, ∆c, σ,L ` associp
listipm−−−→ L′ ∆, ∆c, σ,L′ ` i

listipm−−−→ L′′

∆, ∆c, σ,L ` associp, i
listipm−−−→ L′′

The checkpm(Ports,L) predicate states that all port identifiers referenced in the domain of
Ports ∈ id 9 type appear in L as a simple identifier, or if the port identifier is of the array type,
then all couples (id,i) must belong to L, where i denotes all indexes of the index range and id
denotes the port identifier.

checkpm(Ports,L) ≡ ∀id f ∈ dom(Ports), id f ∈ L ∨ (Ports(id f) = array(T, n, m)∧
∀i ∈ [n, m], (id f , i) ∈ L)

4.5. Elaboration rules 101

Valid output port map

The validopm predicate states that an output port map is valid in the context ∆, ∆c, where ∆
is the embedding design structure and ∆c denotes the component instance owner of the port
map, if:

- An output port identifier appears at most once in the output port map.

- Two different output port identifiers cannot be connected to the same signal.

- For each output port map entry, the formal and the actual part are of the exact same type.

We allow partially connected output port map; i.e, an output port map where all output
ports might not be present in the mapping. Such output ports are open by default.

Premises

listopm builds two sets L,Lids ⊆ id t (id×N) out of the output port map opmap. Lids is
built incrementally to check that there are no multiply-driven signals resulting of the port
map connection.

VALIDOPM

∆, ∆c,L∅,Lids∅ ` o
listopm−−−→ L,Lids

∆, ∆c ` validopm(o)

Side conditions

- id f /∈ L checks that the port identifier id f is not already mapped (i.e, is not already used
in the formal part of a port map entry).

- ida /∈ Lids checks that the signal identifier ida is not already mapped (i.e, is not already
used in the actual part of a port map entry).

- id f ∈ Outs(∆c) checks that id f is an output port identifier of ∆c.

- ida ∈ Sigs(∆) ∪Outs(∆) checks that ida is either an output port or an internal signal
identifier of ∆.

- ∆c(id f) = ∆(ida) = T checks that id f and ida are exactly of the same type.

LISTOPMSIMPLETOSIMPLE

id f /∈ L, ida /∈ Lids

id f ∈ Outs(∆c)

ida ∈ Sigs(∆) ∪Outs(∆)

∆c(id f) = ∆(ida) = T
∆, ∆c,L,Lids ` (id f , ida)

listopm−−−→ L∪ {id f },Lids ∪ {ida}

102 Chapter 4. H-VHDL: a target hardware description language

Side conditions

Outsc(id f) = T and Sigs(ida) = array(T, n, m) checks that the type of id f and the type of
the elements of ida are the same. Note that ida be a signal identifier of the array type as id f
is mapped to one subelement of ida.

LISTOPMSIMPLETOPARTIAL

SEl(ei) ei
e−→ vi vi ∈c nat(n, m)

id f /∈ L, ida, (ida, vi) /∈ Lids

id f ∈ Outs(∆c)

ida ∈ Sigs(∆) ∪Outs(∆)

∆c(id f) = T

∆(ida) = array(T, n, m)

∆, ∆c,L,Lids ` (id f , ida(ei))
listopm−−−→ L∪ {id f },Lids ∪ {(ida, vi)}

LISTOPMSIMPLETOOPEN id f /∈ L
id f ∈ Outs(∆c)

∆, ∆c,L,Lids ` (id f , open)
listopm−−−→ L∪ {id f },Lids

Remark 3 (Unconnected output port.). We forbid the case where an indexed formal part cor-
responding to the subelement of a composite output port is unconnected, i.e. (id f (ei), open), as
it could lead to the case where some subelements of a composite output port are connected while
others are not (error case in [64, p.7]).

LISTOPMPARTIALTOSIMPLE

SEl(ei) ei
e−→ vi vi ∈c nat(n, m)

id f , (id f , vi) /∈ L, ida /∈ Lids

id f ∈ Outs(∆c)

ida ∈ Sigs(∆) ∪Outs(∆)

∆c(id f) = array(T, n, m)

∆(ida) = T

∆, ∆c,L,Lids ` (id f (ei), ida)
listopm−−−→ L∪ {(id f , vi)},Lids ∪ {ida}

LISTOPMPARTIALTOPARTIAL

SEl(e′i)
SEl(ei)

e′i
e−→ v′i

ei
e−→ vi

v′i ∈c nat(n′, m′)
vi ∈c nat(n, m)

id f , (id f , vi) /∈ L, ida, (ida, v′i) /∈ Lids

id f ∈ Outs(∆c)

ida ∈ Sigs(∆) ∪Outs(∆)

∆c(id f) = array(T, n, m)

∆(ida) = array(T, n′, m′)

∆, ∆c,L,Lids ` (id f (ei), ida(e′i))
listopm−−−→ L∪ {(id f , vi)},

Lids ∪ {(ida, v′i)}

LISTOPMCONS

∆, ∆c,L,Lids ` assocpo
listopm−−−→ L′,L′ids ∆, ∆c,L′,L′ids ` opmap

listopm−−−→ L′′,L′′ids

∆, ∆c,L,Lids ` assocpo, opmap
listopm−−−→ L′′,L′′ids

4.5.11 Valid sequential statements
The validss predicate states that a sequential statement is well-typed in the context ∆, σ, Λ.

4.5. Elaboration rules 103

Well-typed signal assignment

Premises

– ∆, σ, Λ ` e e−→ v evaluates the expression assigned to signal ids in the context ∆, σ, Λ.

– v ∈c T checks that the value of expression e conforms to the type of signal ids.

WTSIG

∆, σ, Λ ` e e−→ v v ∈c T ids ∈ Sigs(∆) ∪Outs(∆)

∆(ids) = T∆, σ, Λ ` validss(ids ⇐ e)

WTIDXSIG

∆, σ, Λ ` e e−→ v
∆, σ, Λ ` ei

e−→ vi

v ∈c T
vi ∈c nat(n, m) ids ∈ Sigs(∆) ∪Outs(∆)

∆(ids) = array(T, n, m)∆, σ, Λ ` validss(ids(ei)⇐ e)

Well-typed variable assignment

WTVAR

∆, σ, Λ ` e e−→ v v ∈c T idv ∈ Λ

Λ(idv) = (T, val)∆, σ, Λ ` validss(idv := e)

WTIDXVAR

∆, σ, Λ ` e e−→ v
∆, σ, Λ ` ei

e−→ vi

v ∈c T
vi ∈c nat(n, m) idv ∈ Λ

Λ(idv) = (array(T, n, m), val)∆, Λ ` validss(idv(ei) := e)

Well-typed if statements

WTIF

∆, σ, Λ ` e e−→ v v ∈c bool ∆, σ, Λ ` validss(ss)

∆, σ, Λ ` validss(if (e) ss)

WTIFELSE

∆, σ, Λ ` e e−→ v v ∈c bool

∆, σ, Λ ` validss(ss)
∆, σ, Λ ` validss(ss′)

∆, σ, Λ ` validss(if (e) ss ss’)

104 Chapter 4. H-VHDL: a target hardware description language

Well-typed loop statement

WTLOOP

∆, σ, Λ ` e e−→ v
∆, σ, Λ ` e′ e−→ v′

v ∈c nat(0, NATMAX)
v′ ∈c nat(0, NATMAX) ∆, σ, Λ′ ` validss(ss)

Λ′ = Λ ∪ (idv, (nat(v, v′), v))
∆, σ, Λ ` validss(for (idv, e, e’) ss)

Well-typed rising and falling edge blocks

WTRISING

∆, σ, Λ ` validss(ss)

∆, σ, Λ ` validss(rising ss)

WTFALLING

∆, σ, Λ ` validss(ss)

∆, σ, Λ ` validss(falling ss)

Well-typed rst blocks

WTRST

∆, σ, Λ ` validss(ss) ∆, σ, Λ ` validss(ss′)

∆, σ, Λ ` validss(rst ss ss’)

Well-typed null statement

WTNULL

∆, σ, Λ ` validss(null)

4.6 Simulation rules

In this section, we formalize a specific simulation algorithm for the H-VHDL designs. This
algorithm is much simpler than the one presented in the LRM. This is mostly due to the fact
thatH-VHDL is a subset of VHDL that aims at the description of synthesizable and synchronous
designs. Synthesizable designs mean that the only kind of signal assignment used to describe
the design behaviors are δ-delay signal assignments. Leaving apart the synchronous side, we
only need a simulation algorithm that performs delta cycles (see Section 4.1.2) to simulate such
synthesizable designs. However, H-VHDL designs are also synchronous designs. As such, a
H-VHDL design is equipped with a clock input port. The value of the clock input port changes
from 0 to 1 and inversely at a constant rate, i.e. the clock rate. One can see the changing of the
value of the clock input port as the result of the execution of a unit-delay signal assignment
where the time clause is equal to half the clock period. Listing 4.4 illustrates how a H-VHDL
design tl can be embedded in another top-level design alongside a process regulating the value
of a clock signal by using a unit-delay signal assignment. Listing 4.4 presents the behavioral
part of the embedding top-level design.

4.6. Simulation rules 105

� �
1 architecture toplevel_arch of toplevel is
2 begin
3

4 clkp : process (clock)
5 begin
6 clock⇐ not clock after τ -- where τ is half a clock period
7 end process clkp;
8

9 idtl : entity tl
10 generic map (. . .)
11 port map (clock⇒ clock, . . .);
12

13 end toplevel_arch;� �
LISTING 4.4: An architecture to simulate a synchronous design. The architecture
toplevel_arch is composed of the clkp process, that simulates a clock signal, and

of an instance of the design tl named idtl , i.e. the design under simulation.

In Listing 4.4, the clkp process assigns the clock signal with its inverse value after τ unit
of time where τ corresponds to half the clock period. Of course, the clock period is specified
by the designer of the circuit. The component instance idtl corresponds to the instantiation of
the H-VHDL design tl, i.e. the one we want to simulate. The clock input port of idtl is con-
nected to the clock signal of the embedding design in idtl’s port map. Thus, when the value
of the clock signal changes every half clock period, the processes that react to the changes of
the clock signal, i.e. the so-called synchronous processes, are executed in the internal behavior
of the component instance idtl. Then, it is the turn of combinational processes to be executed
until stabilization of all signal values. Using the terms of the LRM simulation algorithm, what
will happen when trying to simulate the design of Listing 4.4 will be an alternation between
one time cycle to move to the next clock event and execute synchronous processes, followed
by many delta cycles corresponding to the execution of combinational processes until stabi-
lization. Thus, we choose to embed this alternation within the definition of our simulation
algorithm.

We must add a last element to the definition of our simulation algorithm. The top-level
design generated by the HILECOP transformation interacts with its environment through the
input ports. The input ports of a top-level design are called primary input ports. In our sim-
ulation algorithm, we need to represent the capture and the injection of the values of primary
input ports and how this affects the values of the internal signals of the simulated design.

Finally, Algorithm 2 gives an overview of our simulation algorithm in a pseudo-code lan-
guage. This simulation algorithm is formalized in a small-step semantics style in the following
sections. Here, we say small-step semantics because the different intermediary states of the
design under simulation are detailed and registered in a simulation trace θ. This simulation
trace is built incrementally through the execution of simulation cycles, and is returned at the
end of Algorithm 2. However, the execution of sequential statements in the body of processes
are expressed with a big-step operational semantics.

106 Chapter 4. H-VHDL: a target hardware description language

Algorithm 2: Simulation(∆, σe, cs, Ep, Tc)

// Initialization phase.
1 σ′e ← RunAllOnce(∆,σe,cs)
2 σ← Stabilize(∆,σ′e,cs)

// Main loop.
3 θ ← [σ]

4 while Tc > 0 do
5 σi ← Inject(∆,σ,Ep,Tc)
6 σ↑ ← RisingEdge(∆,σi,cs)
7 σ′ ← Stabilize(∆,σ↑,cs)
8 σ↓ ← FallingEdge(∆,σ′,cs)
9 σ← Stabilize(∆,σ↓,cs)

10 θ ← θ ++ [σ′, σ]
11 Tc ← Tc − 1

12 return θ

Algorithm 2 defines an elaborated design ∆ and a default design state σe as parameters. We
assume that they are the result of the elaboration of the design being simulated. cs corresponds
to the behavior of the design, i.e. the one that will be executed during the simulation. Ep is
the environment that will provide values to the primary input ports; it is a function that maps
the set of input port identifiers to values. Tc corresponds to the number of simulation cycles to
be performed. Algorithm 2 begins with an initialization phase (following the LRM simulation
algorithm); all processes are run exactly once (Line 1) followed by a stabilization phase (Line 2,
multiple delta cycles). Line 3 initializes the variable θ with a singleton list holding state σ,
i.e. the initial simulation state. Then, the same loop is performed until Tc reaches zero. First,
the values of primary input ports are retrieved from the environment Ep at the current time
value Tc; this is performed by the Inject function; then, all parts of cs that react to the rising
edge (resp. falling edge) of the clock signal are executed; finally, the combinational parts of
cs are executed until stabilization of all signals. At Line 10, the states obtained after the rising
edge phase (i.e. σ′) and after the falling edge phase (i.e. σ) are appended to the simulation
trace θ. Note that we only register stable states in the simulation trace. At the end of the
simulation cycle, the parameter Tc is decremented. After the execution of all simulation cycles,
Algorithm 2 returns the simulation trace.

4.6.1 Full simulation

The full simulation process is decomposed in two steps. The first step is the elaboration phase
that builds an elaborated version of a H-VHDL design along with its default state. Previous to
the elaboration phase, the top-level design receives a value for each of its generic constant; we
refer to it as the dimensioning of the top-level design. The second step is the simulation phase
that executes the behavioral part of the top-level design, and yields a simulation/execution
trace; this step has been presented through the Algorithm 2.

4.6. Simulation rules 107

The f ull simulation relation, defined by the FULLSIM rule, formalizes the full simulation
process for a given H-VHDL design. The relation holds eight parameters, namely: a top-level
design d, a design store D ∈ id 9 design, an elaborated design ∆ ∈ ElDesign, a dimensioning
function Mg ∈ Gens(∆) 9 value, a simulation environment Ep ∈ N → (Ins(∆) → value),
a simulation cycle count τ ∈ N, an initial state σ0 ∈ Σ, and a simulation trace θ ∈ list(Σ),
corresponding to the list of states yielded by the simulation of design d during τ cycles. Note
that we use the pointed notation to access the behavioral part of design d, written d.cs. It is this
part of the design that is executed during the simulation, and therefore is passed as a parameter
of the initialization and simulation relations.

Premises

- Mg ∈ Gens(∆) 9 value, the function yielding the values of generic constants for a
given top-level design, referred to as the dimensioning function. Here, Gens(∆) is a short-
hand notation for the domain of Gens(∆), normally written dom(Gens(∆)), i.e. the set of
generic constant identifiers of ∆.

- Ep ∈N→ (Ins(∆)→ value), the function yielding a mapping from primary inputs (i.e,
input ports of the top-level design) to values at a given simulation cycle count. Here,
Ins(∆) is a shorthand notation for the domain of Ins(∆), normally written dom(Ins(∆)),
i.e. the set of input port identifiers of ∆.

- τ, the number of simulation cycles to execute. The value of τ is decremented at each
clock cycle until it reaches zero (see Section 4.6.2).

FULLSIM

D,Mg ` d elab−−→ ∆, σ D, ∆, σ ` d.cs init−−→ σ0 D, Ep, ∆, τ, σ0 ` d.cs→ θ

D, ∆,Mg, Ep, τ ` d
f ull−−→ (σ0 :: θ)

Our simulation algorithm aims at representing the execution of a hardware system in the
presence of an environment. Thus, we need to make some hypotheses regarding the relation
between the environment and the clock signal defining the operating frequency of the modeled
system:

Hypothesis 1 (Stable primary inputs). The values of primary inputs (i.e, input ports of the
top-level design) are captured at the beginning of a clock cycle, and thus remain stable (i.e, their
values do not change) during a whole clock cycle.

Hypothesis 1 arises from the fact that the clock signal sample rate respects the Nyquist-
Shannon sampling theorem. Therefore, the sample rate of the design’s clock is sufficient to
capture all events possibly arising in the environment. We only need to settle the values of the
primary inputs at the beginning of a clock cycle.

Also, after each clock event phase follows a signal stabilization phase in the proceedings of
a simulation cycle. One more hypothesis is needed here:

108 Chapter 4. H-VHDL: a target hardware description language

Hypothesis 2 (Stabilization). All signals have enough time to stabilize during the signal stabi-
lization phase that happens between two clock events.

As a H-VHDL design represents a physical circuit, one can assume that the represented
circuit is analyzed former to the simulation. Therefore, the analysis tells us exactly how much
time is needed to propagate signal values through the longest physical path; as a consequence,
a proper clock frequency is set ensuring signal stabilization between two clock events. Thus,
Hypothesis 2 arises from the latter facts.

4.6.2 Simulation loop
The following rules define the H-VHDL simulation relation. The H-VHDL simulation relation
associates the execution of a behavior cs with a simulation trace θ in a context D, Ep, ∆, τ, σ.
The simulation trace θ is the result of the execution of the design behavior cs during τ cycles.
In the case where τ is equal to zero (Rule SIMEND), the execution of cs returns an empty trace.
In the case where τ is greater than zero (Rule SIMLOOP), one simulation cycle is performed
from the starting state σ and returns the two states: σ′, the state in the middle of the clock cycle
(i.e. after a rising edge phase), and σ′′, the state at the end of the clock cycle (i.e. after a falling
edge phase). Then, the H-VHDL simulation relation calls itself recursively with a decremented
cycle count. The recursive call yields a trace θ which is then appended to the states σ′ and σ′′

to form the final simulation trace.

SIMEND

D, Ep, ∆, 0, σ ` cs→ []

SIMLOOP

D, Ep, ∆, τ, σ ` cs
↑,↓−→ σ′, σ′′ D, Ep, ∆, τ − 1, σ′′ ` cs→ θ

τ > 0
D, Ep, ∆, τ, σ ` cs→ (σ′ :: σ′′ :: θ)

4.6.3 Simulation cycle
To ease the reading of forward simulation rules, we need to introduce two notations.

Notation 7 (Overriding union). For all partial function f , f ′ ∈ X 9 Y, f
←∪ f ′ denotes the

overriding union of f and f ′ such that f
←∪ f ′(x) =

{
f ′(x) i f x ∈ dom(f ′)
f (x) otherwise

Notation 8 (Differentiated intersection domain). For all partial function f , f ′ ∈ X 9 Y,

f
6=
∩ f ′ denotes the intersection of the domain of f and f ′ for which f and f ′ yields different values.

That is, f
6=
∩ f ′ = { x ∈ dom(f) ∩ dom(f ′) | f (x) 6= f ′(x) }.

4.6. Simulation rules 109

Definition 34 (Input port values update). Given an elaborated design ∆ and a simulation
environment Ep ∈ N → (Ins(∆) → value), let us define the relation expressing the update
of the value of input ports at a given design state σ ∈ Σ and clock cycle count τ ∈ N, thus
resulting in a new state σi ∈ Σ. The relation is written Inject(σ, Ep, τ, σi) and verifies that:

σ = <S , C, E> and σi = <S ←∪ Ep(τ), C, E>.

The H-VHDL simulation cycle relation, written
↑,↓−→, is defined through the only Rule SIM-

CYC. It states that the design states σ′ and σ′′ are the result of the execution of the design
behavior cs over one simulation cycle, this starting from state σ. Here, σ′ is the state obtained
in the middle of the clock cycle, i.e. after the rising edge phase and the first stabilization phase,
and σ′′ is the state obtained at the end of the clock cycle, i.e. after the falling edge phase and
the second stabilization phase. As mentioned in Hypothesis 1, the update of the value of input
ports is performed at each clock event. New input port values are coming from the environ-
ment Ep. The update is made through the definitions of state σi which is qualified in the side
condition by the Inject relation.

SIMCYC

D, ∆, σi ` cs
↑−→ σ↑

D, ∆, σ′ ` cs
↓−→ σ↓

D, ∆, σ↑ ` cs −→ σ′

D, ∆, σ↓ ` cs −→ σ′′
Inject(σ, Ep, τ, σi)

D, Ep, ∆, τ, σ ` cs
↑,↓−→ σ′, σ′′

4.6.4 Initialization rules

The init relation, defined through the Rule INIT, describes the initialization phase of the H-
VHDL simulation algorithm. It produces an initial simulation state σ0 by executing the design
behavior cs in the context D, ∆, σ.

INIT

D, ∆, σ ` cs runinit−−−→ σ′ D, ∆, σ′ ` cs −→ σ0

D, ∆, σ ` cs init−−→ σ0

During the initialization phase, each process is executed exactly once. This is formalized
by the runinit relation. Then, a stabilization phase follows, formalized by the stabilize relation,
written −→. The initialization phase triggers the execution of the first part of reset blocks. A
reset block (rst ss ss’) is equivalent to (if rst = ’0’then ss else ss’ end if;). Therefore, when
considering a (rst ss ss’) block, the runinit relation always executes the ss block; at every other
moment of the simulation, the ss’ block is executed. This corresponds to the conventional
execution of a hardware system where a reset signal set to false triggers the initialization of the
system, and then is set to true for the rest of the execution.

The runinit relation is defined by the Rules PSRUNINIT, COMPRUNINIT, PARRUNINIT and
NULLRUNINIT which are detailed right below. The stabilize relation is defined in Section 4.6.6.

110 Chapter 4. H-VHDL: a target hardware description language

Evaluation of a process statement

The PSRUNINIT rule describes the execution of a process statement during the initialization
phase. The execution of a process statement comes down to the execution of the process state-
ment body. The result of the execution is a new state σ′.

Premises

– The i flag of the ssi relation indicates that all sequential statements responding to the
initialization phase (i.e, reset blocks) will be executed.

– The ssi relation takes two states in its context, i.e. two σ. The first σ is the state used to
evaluate expressions appearing in the process statement body; the second σ is the state
that will be modified by the execution of signal assignment statements.

Side conditions

The local environment Λ used to execute the body of the process idp is retrieved from the
Ps sub-environment of the elaborated design ∆.

PSRUNINIT

∆, σ, σ, Λ ` ss
ssi−→ σ′, Λ′

∆(idp) = Λ

D, ∆, σ ` process (idp, sl, vars, ss) runinit−−−→ σ′

Evaluation of a component instantiation statement

Rule COMPRUNINIT describes the execution of a component instantiation statement during
the initialization phase. The execution of a component instantiation statement is divided in
three phases. First, the input ports of the component instance receive new values through the
evaluation of the component instance’s input port map. Second, the internal behavior of the
component instance is evaluated; this evaluation possibly modifies the value of the internal
signals and the output ports of the component instance. Finally, through the evaluation of its
output port map, the component instance propagates the value of its output ports to the signals
of the embedding design.

Premises

– The mapip relation evaluates the input port map i of idc, thus modifying the internal
state σc of idc. The result is a new internal state σ′c.

– The expression D(ide).cs refers to the internal behavior of the component instance idc.

– State σ′′c is the new internal state of component instance idc resulting from the execution
of its internal behavior.

4.6. Simulation rules 111

– The mapop relation evaluates the output port map o of idc, thus modifying the state σ of
the embedding design. The result is a new embedding design state σ′.

Side conditions

– ∆c is the elaborated version of the component instance idc referenced in the Comps sub-
environment of the embedding design ∆, i.e. ∆(idc) = ∆c.

– σc is the internal design state of the component instance idc referenced in the component
store of state σ, i.e. σ(idc) = σc.

– The component store C ′′ of state σ′′ is equal to the component store C ′ of state σ′ where
the component instance idc is assigned to its new internal state σ′′c .

– The expression C
6=
∩ C ′′ equals {idc} if the internal state of the component instance idc has

changed after the evaluation of its input port map and its internal behavior. In other
words, we register the component instance idc as an eventful component instance if σc 6=
σ′′c .

COMPRUNINIT

∆, ∆c, σ, σc ` i
mapip−−−→ σ′c

D, ∆c, σ′c ` D(ide).cs runinit−−−→ σ′′c
∆, ∆c, σ, σ′′c ` o

mapop−−−→ σ′
ide ∈ D
∆(idc) = ∆c, σ(idc) = σc

σ′′ = <S ′, C ′′, E ′ ∪ (C
6=
∩ C ′′)>

C ′′ = C ′(idc)← σ′′c

D, ∆, σ ` comp (idc, ide, g, i, o) runinit−−−→ σ′′

Evaluation of the composition of concurrent statements

Rule PARRUNINIT describes the evaluation of the parallel composition of two concurrent state-
ments cs and cs’. The two concurrent statements are evaluated starting from the same state σ,
and they generate two different state σ′ and σ′′. The state resulting from the concurrent execu-
tion of cs and cs’ is the result of a merging between the starting state σ, and the two states σ′

and σ′′.

PARRUNINIT

D, ∆, σ ` cs runinit−−−→ σ′ D, ∆, σ ` cs′ runinit−−−→ σ′′
E ′ ∩ E ′′ = ∅

D, ∆, σ ` cs || cs′ runinit−−−→ merge(σ, σ′, σ′′)

The merge function, defined in Listing 4.5 in pseudo-Coq language, computes a new state
based on the original state σ, and the states σ′ and σ′′ yielded by the computation of two
concurrent statements. In the resulting state, the signal value store Sm is a function merging

112 Chapter 4. H-VHDL: a target hardware description language

together the signal stores of states σ, σ′ and σ′′. Sm yields values from the signal store S ′ (resp.
S ′′) for all signal that belongs to the set of events at state σ′ (resp. σ′′), and yields values from
the original signal store S for all eventless signals. The same goes for the merged component
store Cm. The new set of events Em is the union between the set of events at state σ′ and state
σ′′. The merge function correctly merges the state σ, σ′ and σ′′ only if the set of events of σ′

and σ′′ are disjoint. The PARRUNINIT rule, which appeals to the merge function, defines the
condition of disjoint set of events as a side condition.

1 Definition merge(σ, σ′, σ′′) :=
2 let σ = <S ,C,E> in
3 let σ′ = <S ′,C ′,E ′> in
4 let σ′′ = <S ′′,C ′′,E ′′> in

5 let Sm(id) =

S ′(id) if id ∈ E ′
S ′′(id) if id ∈ E ′′
S(id) otherwise

in

6 let Cm(id) =

C ′(id) if id ∈ E ′
C ′′(id) if id ∈ E ′′
C(id) otherwise

in

7 let Em = E ′ ∪ E ′′ in <Sm,Cm,Em>.

LISTING 4.5: The merge function that fuses together an origin state σ, with two
states σ′ and σ′′ generated by the execution of twoH-VHDL concurrent statements.

Remark 4 (No multiply-driven signals). For all states σ′ = <S ′, C ′, E ′> and σ′′ =
<S ′′, C ′′, E ′′> resulting from the execution of twoH-VHDL concurrent statements, E ′∩E ′′ = ∅
must be enforced. Otherwise, there are some multiply-driven signals, which are forbidden in our
semantics.

Rule NULLRUNINIT evaluates a null statement during the initialization phase. The evalua-
tion of a null statement yields a state similar to the starting state.

NULLRUNINIT

∆, σ ` null runinit−−−→ σ

4.6.5 Clock phases rules
The following rules express the evaluation of concurrent statements at clock phases, i.e. the
rising edge (↑) and the falling edge (↓) phases. The clock signal, which triggers the evaluation
of synchronous process statements, is represented by the reserved signal identifier clk. Thus,
synchronous processes are processes containing the clk signal in their sensitivity list.

4.6. Simulation rules 113

Evaluation of a process statement

The following rules describe the evaluation of a process statement at the occurrence of the
rising or the falling edge of the clock signal. In the case where a process does not contain the
clk identifier in its sensitivity list, then its statement body is not executed during the clock
phases (see Rules PSRENOCLK and PSFENOCLK). Otherwise, its statement body is executed.
Depending on the considered clock event, falling blocks or rising blocks are executed when
encountered in the body of a process (see Rules PSRECLK and PSFECLK).

PSRENOCLK
clk /∈ sl

D, ∆, σ ` process (idp, sl, vars, ss)
↑−→ σ

Premises

The ↑ flag in the ss↑ relation indicates that rising blocks will be executed.

PSRECLK

∆, σ, σ, Λ ` ss
ss↑−→ σ′, Λ′ clk ∈ sl

∆(idp) = Λ
D, ∆, σ ` process (idp, sl, vars, ss)

↑−→ σ′

PSFENOCLK
clk /∈ sl

D, ∆, σ ` process (idp, sl, vars, ss)
↓−→ σ

Premises

The ↓ flag in the ss↓ relation indicates that falling blocks will be executed.

PSFECLK

∆, σ, σ, Λ ` ss
ss↓−→ σ′, Λ′ clk ∈ sl

∆(idp) = Λ
D, ∆, σ ` process (idp, sl, vars, ss)

↓−→ σ′

Evaluation of a component instantiation statement

The following rules describe the evaluation of a component instantiation statement during
clock phases. These rules are similar in every point to Rule COMPRUNINIT that describes the
evaluation of a component instantiation statement during the initialization phase. The only
difference lies in the execution of the internal behavior of the component instance. During the

clock phases, the falling relation, written
↓−→, or the rising relation, written

↑−→, evaluate the
internal behavior of component instances.

114 Chapter 4. H-VHDL: a target hardware description language

COMPRE

∆, ∆c, σ, σc ` i
mapip−−−→ σ′c

D, ∆c, σ′c ` D(ide).cs
↑−→ σ′′c

∆, ∆c, σ, σ′′c ` o
mapop−−−→ σ′

ide ∈ D
∆(idc) = ∆c, σ(idc) = σc

σ′′ = <S ′, C ′′, E ′ ∪ (C
6=
∩ C ′′)>

C ′′ = C ′(idc)← σ′′c

D, ∆, σ ` comp (idc, ide, g, i, o)
↑−→ σ′′

COMPFE

∆, ∆c, σ, σc ` i
mapip−−−→ σ′c

D, ∆c, σ′c ` D(ide).cs
↓−→ σ′′c

∆, ∆c, σ, σ′′c ` o
mapop−−−→ σ′

ide ∈ D
∆(idc) = ∆c, σ(idc) = σc

σ′′ = <S ′, C ′′, E ′ ∪ (C
6=
∩ C ′′)>

C ′′ = C ′(idc)← σ′′c

D, ∆, σ ` comp (idc, ide, g, i, o)
↓−→ σ′′

Evaluation of the composition of concurrent statements

The following rules describe the evaluation of the composition of concurrent statements and
the evaluation of null statements during the clock phases. These rules are similar to the ones
described for the initialization phase. Thus, the reader can refer to Section 4.6.4 for more details.

PARFE

D, ∆, σ ` cs
↓−→ σ′ D, ∆, σ ` cs′

↓−→ σ′′
E ′ ∩ E ′′ = ∅

D, ∆, σ ` cs || cs′
↓−→ merge(σ, σ′, σ′′)

NULLFE

∆, σ ` null ↓−→ σ

PARRE

D, ∆, σ ` cs
↑−→ σ′ D, ∆, σ ` cs′

↑−→ σ′′
E ′ ∩ E ′′ = ∅

D, ∆, σ ` cs || cs′
↑−→ merge(σ, σ′, σ′′)

NULLRE

∆, σ ` null ↑−→ σ

4.6.6 Stabilization rules

The following rules describe the evaluation of concurrent statements, representing a design’s
behavior, during a stabilization phase. The stabilization phase triggers the execution of the
combinational parts of the behavior by appealing to the comb relation. When the execution of
the combinational parts of the behavior does not change the design state anymore, then we
have reached a stable state and the stabilization phase ends (Rule STABILIZEEND). When the
execution of the combinational parts produces some events, i.e. it changes the value of signals
or the internal state of component instances, then the stabilization phase must continue until a
stable state is reached (Rule STABILIZELOOP). In the formalization of the H-VHDL simulation

4.6. Simulation rules 115

algorithm, the set of events of a design state is useful to merge the states resulting from the
execution of multiple concurrent statements (see Definition 4.5), and to determine if a stable
state has been reached. In the LRM simulation algorithm, the kernel process uses the set of
events to resume the activity of processes. If one of the signal declared in a process’ sensitivity
list is registered in the current set of events, then the process body must be executed. We choose
to disregard this aspect of the execution of processes in the formalization of our simulation
algorithm. Thus, all combinational processes are executed when a delta cycle is performed,
regardless of the intersection between the set of events and the sensitivity lists.

Side conditions

– In Rule STABILIZEEND, state σ is an eventless state, i.e. its event set E is empty.

– In Rule STABILIZELOOP, state σ′ is an eventful state and state σ′′ is eventless.

STABILIZEEND

D, ∆, σ ` cs comb−−→ σ
E = ∅

D, ∆, σ ` cs −→ σ

STABILIZELOOP

D, ∆, σ ` cs comb−−→ σ′ D, ∆, σ′ ` cs −→ σ′′ E 6= ∅
E ′′ = ∅D, ∆, σ ` cs −→ σ′′

Evaluation of a process statement

Rule PSCOMB describes the execution of a process statement during a stabilization phase. Even
synchronous processes can be executed during a stabilization phase, however, the falling and
rising blocks are not interpreted. Thus, the evaluation of a purely synchronous process, defined
only with falling or rising blocks and no combinational parts, does not change the design state
during a stabilization phase.

Premises

– The c flag (for combinational) on the ssc relation indicates that statements responding
to clock events (i.e. falling and rising blocks) and statements executed during the
initialization phase only (i.e. rst blocks) will not be considered.

– The set of events of state σ is emptied (NoEv(σ), see Notation 6) before the evaluation
of the process statement body. It corresponds to the consumption of the information
brought by the event set. Once the information has been consumed, new events can be
generated by executing the process body. Otherwise, if the set of events is never emptied,
then a stable state might never be reached.

PSCOMB

∆, σ, NoEv(σ), Λ ` ss ssc−→ σ′, Λ′
∆(idp) = Λ

D, ∆, σ ` process (idp, sl, vars, ss) comb−−→ σ′

116 Chapter 4. H-VHDL: a target hardware description language

Evaluation of a component instantiation statement

Rule COMPCOMB describes the evaluation of a component instantiation statement during a
stabilization phase. This rule is similar in every point to Rule COMPRUNINIT, and Rules COM-
PRE and COMPFE, that describe the evaluation of a component instantiation statement during
the initialization phase, and the clock phases. The only difference lies in the execution of the
internal behavior of the component instance. During a stabilization, the comb relation evalu-
ates the internal behavior of component instances. Otherwise, see Section 4.6.4 for more details
about the premises and side conditions of Rule COMPCOMB.

COMPCOMB

∆, ∆c, σ, σc ` i
mapip−−−→ σ′c

D, ∆c, σ′c ` D(ide).cs comb−−→ σ′′c
∆, ∆c, NoEv(σ), σ′′c ` o

mapop−−−→ σ′
ide ∈ D
∆(idc) = ∆c, σ(idc) = σc

σ′′ = <S ′, C ′′, E ′ ∪ (C
6=
∩ C ′′)>

C ′′ = C ′(idc)← σ′′c

D, ∆, σ ` comp (idc, ide, g, i, o) comb−−→ σ′′

Evaluation of the composition of concurrent statements

The following rules describe the evaluation of the composition of concurrent statements and
the evaluation of null statements during a stabilization phase. These rules are similar to the
ones describe for the initialization phase. Thus, the reader can refer to Section 4.6.4 for more
details.

PARCOMB

D, ∆, σ ` cs comb−−→ σ′ D, ∆, σ ` cs′ comb−−→ σ′′
E ′ ∩ E ′′ = ∅

D, ∆, σ ` cs || cs′ comb−−→ merge(σ, σ′, σ′′)

NULLCOMB

∆, σ ` null comb−−→ NoEv(σ)

4.6.7 Evaluation of input and output port maps

Evaluation of an input port map

Here, we define the mapip relation that evaluates the input port map of a component instance.
For each association of the input port map, the actual part is evaluated and the result is assigned
to the formal part of the association, i.e. an input port (Rule MAPIPSIMPLE) or an indexed input
port (Rule MAPIPPARTIAL) identifier. The following rules define the mapip relation.

MAPIPSIMPLE

∆, σ ` e e−→ v v ∈c T
∆c(ids) = T

σc = <S , C, E>
S ′ = S(ids)← v∆, ∆c, σ, σc ` (ids, e)

mapip−−−→ <S ′, C, E>

4.6. Simulation rules 117

MAPIPPARTIAL

∆, σ ` e e−→ v
ei

e−→ vi

v ∈c T
vi ∈c nat(n, m)

∆c(ids) = array(T, n, m)

σc = <S , C, E>
S ′ = S(ids)← set_at(v, vi,S(ids))∆, ∆c, σ, σc ` (ids(ei), e)

mapip−−−→ <S ′, C, E>

MAPIPCOMP

∆, ∆c, σ, σc ` associp
mapip−−−→ σ′c ∆, ∆c, σ, σ′c ` ipmap

mapip−−−→ σ′′c

∆, ∆c, σ, σc ` associp, ipmap
mapip−−−→ σ′′c

Evaluation of an output port map

Here, we define the mapop relation that evaluates the output port map of a component instance.
For each association of the output port map, the formal part is evaluated and the result is
assigned to the actual part of the association. There can be five kinds of associations in an
output port map:

– an output port identifier (of the component instance) is associated with the open keyword,
thus denoting an unconnected output port in the output interface of the component instance

– an output port identifier is associated with an internal signal or an output port identifier of
the embedding design (Rule MAPOPSIMPLETOSIMPLE)

– an output port identifier is associated with an indexed internal signal or an indexed output
port identifier of the embedding design (Rule MAPOPSIMPLETOPARTIAL)

– an indexed output port identifier is associated with an internal signal or an output port
identifier of the embedding design (Rule MAPOPPARTIALTOSIMPLE)

– an indexed output port identifier is associated with an indexed internal signal or an indexed
output port identifier of the embedding design (Rule MAPOPPARTIALTOPARTIAL)

Remark 5 (Out ports and e). We can not use the e relation to interpret the values of output
ports, because output ports are write-only constructs. We append the flag o to the e relation (i.e,
eo) to enable the evaluation of output port identifiers as regular signal identifier expressions.

The eo relation is only defined to retrieve the value of output ports from a store signal S
under a design state σ = <S , C, E>.

118 Chapter 4. H-VHDL: a target hardware description language

OUTO ids ∈ Outs(∆)
ids ∈ σ

∆, σ ` ids
eo−→ σ(ids)

IDXOUTO

ei
e−→ vi vi ∈c nat(n, m) ids ∈ Outs(∆)

ids ∈ σ
∆(ids) = array(T, n, m)∆, σ ` ids(ei)

eo−→ get_at(vi, σ(ids))

The following rules define the mapop relation.

MAPOPOPEN

∆, ∆c, σ, σc ` (id f , open)
mapop−−−→ σ

Side conditions

In the signal store S ′, value v is assigned to the signal identifier ida. If this assignment
changes the value of ida, then an event on signal ida must be registered. The expression

E ∪ S
6=
∩S ′ represents the set of signals that have a different value in signal store S and S ′.

MAPOPSIMPLETOSIMPLE

∆c, σc ` id f
eo−→ v v ∈c T

ida ∈ Sigs(∆) ∪Outs(∆)

∆(ida) = T

σ = <S , C, E>

S ′ = S(ida)← v, E ′ = E ∪ (S
6=
∩S ′)

∆, ∆c, σ, σc ` (id f , ida)
mapop−−−→ <S ′, C, E ′>

MAPOPSIMPLETOPARTIAL

ei
e−→ vi

∆c, σc ` id f
eo−→ v

v ∈c T
vi ∈c nat(n, m)

ida ∈ Sigs(∆) ∪Outs(∆)

∆(ida) = array(T, n, m)

σ = <S , C, E>
S ′ = S(ida)← set_at(v, vi,S(ida))

E ′ = E ∪ (S
6=
∩S ′)

∆, ∆c, σ, σc ` (id f , ida(ei))
mapop−−−→ <S ′, C, E ′>

MAPOPPARTIALTOSIMPLE

∆c, σc ` id f (e′i)
eo−→ v v ∈c T

ida ∈ Sigs(∆) ∪Outs(∆)

∆(ida) = T

σ = <S , C, E>

S ′ = S(ida)← v, E ′ = E ∪ (S
6=
∩S ′)

∆, ∆c, σ, σc ` (id f (e′i), ida)
mapop−−−→ <S ′, C, E ′>

MAPOPPARTIALTOPARTIAL

ei
e−→ vi

∆c, σc ` id f (e′i)
eo−→ v

v ∈c T
vi ∈c nat(n, m)

ida ∈ Sigs(∆) ∪Outs(∆)

∆(ida) = array(T, n, m)

σ = <S , C, E>
S ′ = S(ida)← set_at(v, vi,S(ida))

E ′ = E ∪ (S
6=
∩S ′)

∆, ∆c, σ, σc ` (id f (e′i), ida(ei))
mapop−−−→ <S ′, C, E ′>

4.6. Simulation rules 119

MAPOPCOMP

∆, ∆c, σ, σc ` assocpo
mapop−−−→ σ′ ∆, ∆c, σ′, σc ` opmap

mapop−−−→ σ′′

∆, ∆c, σ, σc ` assocpo, opmap
mapop−−−→ σ′′

4.6.8 Evaluation of sequential statements
Here, we define the ss relation that evaluates the sequential statements composing the body of
processes. The phases of a simulation cycle affect the evaluation of sequential statements. For
instance, reset blocks are only evaluated during an initialization phase, falling blocks during a
falling edge phase. . . Thus, we append a specific flag to the ss relation to enable the evaluation
of specific sequential statements at particular phases of the simulation cycle. There are four
different flags, the c flag to denote the execution of combinational statements only, the i flag to
enable the execution of reset blocks, the ↑ (resp. ↓) flag to enable the execution of rising (resp.
falling) blocks. Writing the ss relation with no flag indicates that the evaluation of a given
sequential statement is the same for every phase of the simulation cycle. A flag is passed from
the conclusion to the premises when a sequential statement is composed of inner sequential
blocks.

Signal assignment statement

A signal assignment generates a new design state with a modified signal store and a new set
of events. Note that there are two states on the left side of the thesis symbol. State σ represents
the state holding the current values of signals (i.e. the reading state), and state σw holds the new
values of signals (i.e. the written state).

Side conditions

The expression S
6=
∩S ′w registers signal ids as an eventful signal if its value after assignment,

i.e. in the signal store S ′w, is different from its current value at state σ, i.e. in the signal store
S .

SIGASSIGN

∆, σ, Λ ` e e−→ v v ∈c T

ids ∈ Sigs(∆) ∪Outs(∆)

∆(ids) = T

S ′w = Sw(ids)← v

E ′w = Ew ∪ (S
6=
∩S ′w)

∆, σ, σw, Λ ` ids ⇐ e ss−→ <S ′w, Cw, E ′w>, Λ

IDXSIGASSIGN

∆, σ, Λ ` ei
e−→ vi

∆, σ, Λ ` e e−→ v
v ∈c T

vi ∈c nat(n, m)

ids ∈ Sigs(∆) ∪Outs(∆)

∆(ids) = array(T, n, m)

S ′w = Sw(ids)← set_at(v, vi,Sw(ids))

E ′w = Ew ∪ (S
6=
∩S ′w)

∆, σ, σw, Λ ` ids(ei)⇐ e ss−→ <S ′w, Cw, E ′w>, Λ

120 Chapter 4. H-VHDL: a target hardware description language

Remark 6 (Signal assignments). Let us take the example of a synchronous process that performs
a swap between the value of two signals s1 and s2 at the falling edge of the clock signal clk. This
process is implemented by the following listing written in VHDL concrete syntax:� �
swap : process(clk)
begin
if falling_edge(clk) then
s1 ⇐ s2;
s2 ⇐ s1;

end if;
end process swap;� �
In the above listing, the two signal assignment statements must be considered as being executed
in parallel, even though they are written as a sequence. Thus, when the statement s2 ⇐ s1
is evaluated, the value to consider for signal s1 is not the one resulting from the execution of
statement s1 ⇐ s2 but the one at the beginning of the process evaluation. For these reasons, we
must include a reading state and a written state in the environment of the ss relation.

Variable assignment statement

A variable assignment statement modifies the value of a variable defined in a local environ-
ment Λ. Contrary to the case of signal assignments, a sequence of variable assignment state-
ments are to be considered as a real sequence, and not as being executed in parallel.

VARASSIGN

∆, σ, Λ ` e e−→ v v ∈c T idv ∈ Λ
Λ(idv) = (T, val)

∆, σ, σw, Λ ` idv := e ss−→ σw, Λ(idv)← (T, v)

IDXVARASSIGN

∆, σ, Λ ` ei
e−→ vi

∆, σ, Λ ` e e−→ v
vi ∈c nat(n, m)
v ∈c T idv ∈ Λ

Λ(idv) = (array(T, n, m), val)
∆, σ, σw, Λ ` idv(ei) := e ss−→ σw, Λ(idv)← (T, set_at(v, vi, val))

Remark 7 (Local variables and persistent values). In the LRM, the value of local variables
is persistent through the multiple execution of a process. However, in the definition of the place
and transition designs, and in the VHDL programs generated by HILECOP, all local variables
are initialized by an assignment statement at the beginning of the body of processes. Thus, to
simplify the H-VHDL semantics, we choose not to consider local variables as persistent memory
as their values are renewed at each execution of a process.

4.6. Simulation rules 121

If statement

Here, we present the classical evaluation of if and if-else statements.

IF>
∆, σ, Λ ` e e−→ > ∆, σ, σw, Λ ` ss ss−→ σ′w, Λ′

∆, σ, σw, Λ ` if (e) ss ss−→ σ′w, Λ′

IF⊥
∆, σ, Λ ` e e−→ ⊥

∆, σ, σw, Λ ` if (e) ss ss−→ σw, Λ

IFELSE>
∆, σ, Λ ` e e−→ > ∆, σ, σw, Λ ` ss ss−→ σ′w, Λ′

∆, σ, σw, Λ ` if (e) ss ss′ ss−→ σ′w, Λ′

IFELSE⊥
∆, σ, Λ ` e e−→ ⊥ ∆, σ, σw, Λ ` ss′ ss−→ σ′w, Λ′

∆, σ, σw, Λ ` if (e) ss ss′ ss−→ σ′w, Λ′

Loop statement

Here, we present the classical evaluation of for-loop statements. Rule LOOPINIT corresponds
to the evaluation of a for loop in the case where the range variable idv is not already defined in
the local environment; in that case, the loop range bounds are evaluated and binding between
the variable idv and its type and initial value is added to the local environment; finally the
loop statement is re-evaluated with the updated local environment. Rule LOOP⊥ denotes the
evaluation of a loop statement in the case where the range variable idv has not yet reached the
upper bound of the loop range. Rule LOOP> denotes the evaluation of a loop statement in the
opposite case.

LOOP⊥

∆, σ, Λi ` idv = e′ e−→ ⊥
∆, σ, σw, Λi ` ss ss−→ σ′w, Λ′

∆, σ, σ′w, Λ′ ` for (idv, e, e′) ss ss−→ σ′′w, Λ′′ idv ∈ Λ

Λ(idv) = (T, val)

Λi = Λ(idv)← (T, val + 1)∆, σ, σw, Λ ` for (idv, e, e′) ss ss−→ σ′′w, Λ′′

LOOP>
∆, σ, Λi ` idv = e′ e−→ > idv ∈ Λ

Λ(idv) = (T, val)

Λi = Λ(idv)← (T, val + 1)∆, σ, σw, Λ ` for (idv, e, e′) ss ss−→ σw, Λ \ (idv, Λ(idv))

LOOPINIT

∆, σ, Λ ` e e−→ v
∆, σ, Λ ` e′ e−→ v′ ∆, σ, σw, Λi ` for (idv, e, e′) ss ss−→ σ′w, Λ′ idv /∈ Λ

Λi = Λ ∪ (idv, (nat(v, v′), v))∆, σ, σw, Λ ` for (idv, e, e′) ss ss−→ σ′w, Λ′

122 Chapter 4. H-VHDL: a target hardware description language

Rising and falling edge block statements

Here, we define the execution of rising and falling blocks. Rising (resp. Falling) blocks are
executed only during a rising (resp. falling) edge phase of a simulation cycle, i.e. when
the flag ↑ (resp. ↓) is raised (Rule RISINGEGDEEXEC and FALLINGEDGEEXEC). Otherwise,
the evaluation of these blocks is without effect on state σw and on the local environment Λ
(Rules RISINGEDGEDEFAULT and FALLINGEDGEDEFAULT).

RISINGEDGEDEFAULT f 6=↑
f ∈ {↓, i, o}

∆, σ, σw, Λ ` rising ss
ss f−→ σw, Λ

FALLINGEDGEDEFAULT f 6=↓
f ∈ {↑, i, o}

∆, σ, σw, Λ ` falling ss
ss f−→ σw, Λ

RISINGEDGEEXEC

∆, σ, σw, Λ ` ss
ss↑−→ σ′w, Λ′

∆, σ, σw, Λ ` rising ss
ss↑−→ σ′w, Λ′

FALLINGEDGEEXEC

∆, σ, σw, Λ ` ss
ss↓−→ σ′w, Λ′

∆, σ, σw, Λ ` falling ss
ss↓−→ σ′w, Λ′

Rst block statement

Here, we define the evaluation of reset blocks. The first part of reset blocks is only evaluated
during the initialization phase of a simulation, i.e. when the i flag is raised (Rule RSTEXEC).
Otherwise, it is the second part of the reset block that is evaluated (Rule RSTDEFAULT). Re-
member that a reset block is the transcription of an if-else statement specifically devised for the
H-VHDL abstract syntax.

RSTDEFAULT

∆, σ, σw, Λ ` ss′
ss f−→ σ′w, Λ′ f 6= i

f ∈ {↑, ↓, o}
∆, σ, σw, Λ ` rst ss ss′

ss f−→ σ′w, Λ′

RSTEXEC

∆, σ, σw, Λ ` ss
ssi−→ σ′w, Λ′

∆, σ, σw, Λ ` rst ss ss′
ssi−→ σ′w, Λ′

Composition of sequential statements and null statement

Here, we present the evaluation of the composition of sequential statements (Rule SEQSTMT)
and of the null sequential statement (Rule NULLSTMT). When evaluating a sequence of state-
ments, the same state σ holding the current value of signals is used to execute both part of the
sequence. The written state σw is modified by the first part of the sequence, thus resulting in a
state σ′w. Then, σ′w is used to evaluate the second part of the sequence.

SEQSTMT

∆, σ, σw, Λ ` ss ss−→ σ′w, Λ′ ∆, σ, σ′w, Λ′ ` ss′ ss−→ σ′′w, Λ′′

∆, σ, σw, Λ ` ss; ss′ ss−→ σ′′w, Λ′′

NULLSTMT

∆, σ, σw, Λ ` null ss−→ σw, Λ

4.6. Simulation rules 123

4.6.9 Evaluation of expressions
Here, we present the evaluation of expressions used throughout the definition of H-VHDL de-
signs. Rules NAT, FALSE and TRUE describe the evaluation of natural number and boolean con-
stants. Rule AGGREG describes the evaluation of an aggregate expression. Rule GEN presents
the evaluation of a generic constant identifier. Rules SIG and VAR describe the evaluation of
signal and variable identifiers. Rules IDXSIG and IDXVAR correspond to the evaluation of in-
dexed signal and indexed variable identifiers. In Rules IDXSIG and IDXVAR, get_at(i, a) is a
function returning the i-th element of array a.

NAT n ∈N

n ≤ NATMAX
∆, σ, Λ ` n e−→ n

FALSE

∆, σ, Λ ` false e−→ ⊥

TRUE

∆, σ, Λ ` true e−→ >

AGGREG

∆, σ, Λ ` ei
e−→ vi

i = 1, . . . , n
∆, σ, Λ ` (e1, . . . , en)

e−→ (v1, . . . , vn)

SIG
ids ∈ Sigs(∆) ∪ Ins(∆)

∆, σ, Λ ` ids
e−→ σ(ids)

VAR idv ∈ Λ
Λ(idv) = (T, v)

∆, σ, Λ ` idv
e−→ v

GEN idg ∈ Gens(∆)
∆(idg) = (T, v)

∆, σ, Λ ` idg
e−→ v

IDXSIG

∆, σ, Λ ` ei
e−→ vi vi ∈c nat(n, m) ids ∈ Sigs(∆) ∪ Ins(∆)

∆(ids) = array(T, n, m)
i = vi mod n∆, σ, Λ ` ids(ei)

e−→ get_at(i, σ(ids))

IDXVAR

∆, σ, Λ ` ei
e−→ vi vi ∈c nat(n, m) idv ∈ Λ

Λ(idv) = (array(T, n, m), v)
i = vi mod n∆, σ, Λ ` idv(ei)

e−→ get_at(i, v)

Rule NATADD describe the evaluation of the addition between two expressions of the nat-
ural type. The operator +N denotes the addition operator of natural numbers in the semantic
world. We add as a side condition that the result of the addition between two natural numbers
must not exceed the value of the NATMAX number (the greatest natural number representable in
H-VHDL). Rule NATSUB describes the evaluation of the substraction between two expressions
of the natural type. Rule ORDOP describes the evaluation of the comparison between two

124 Chapter 4. H-VHDL: a target hardware description language

expressions of the natural type. The result of the comparison is a Boolean value. Rules BOOL-
BINOP and NOTOP describes the evaluation of Boolean expressions. Rules EQOP and DIFFOP
define the evaluation of the equality and difference between two expressions of the same type;
the result is a Boolean value. Rule PARENTH describes the evaluation of a parenthesized ex-
pression.

NATADD

∆, σ, Λ ` e e−→ v ∆, σ, Λ ` e′ e−→ v′
v +N v′ ≤ NATMAX

∆, σ, Λ ` e + e′ e−→ v +N v′

NATSUB

∆, σ, Λ ` e e−→ v ∆, σ, Λ ` e′ e−→ v′
v ≥ v′

∆, σ, Λ ` e − e′ e−→ v −N v′

ORDOP

∆, σ, Λ ` e e−→ v ∆, σ, Λ ` e′ e−→ v′
opordn ∈ {<,≤,>,≥}

∆, σ, Λ ` e opordn e′ e−→ v opordN v′

BOOLBINOP

∆, σ, Λ ` e e−→ v ∆, σ, Λ ` e′ e−→ v′
opbool ∈ {and, or}

∆, σ, Λ ` e opbool e′ e−→ v opB v′

NOTOP

∆, σ, Λ ` e e−→ v

∆, σ, Λ ` not e e−→ ¬v

EQOP

∆, σ, Λ ` e e−→ v ∆, σ, Λ ` e′ e−→ v′

∆, σ, Λ ` e = e′ e−→ eq(v, v′)

DIFFOP

∆, σ, Λ ` e = e′ e−→ v

∆, σ, Λ ` e 6= e′ e−→ ¬v

PARENTH

∆, σ, Λ ` e e−→ v

∆, σ, Λ ` (e) e−→ v

In Rule EQOP, eq is the equality operator established for all types defined in the semantics.
In the definition of eq, two natural numbers and two Booleans are compared with the Leibniz
equality. Two values of an array type are equal if the sub-elements sharing the same index are
equal w.r.t. the definition of the eq relation. Thus, to be equal, the two arrays must be of the
same size.

4.7 An example of full simulation

In this section, we will illustrate the full simulation of aH-VHDL top-level design on the exam-
ple of Listing 4.6. The aim here is to give some derivations of the formal rules composing the

4.7. An example of full simulation 125

H-VHDL semantics. Listing 4.6 is the result of the transformation of the SITPN model presented
in Figure 4.6 into aH-VHDL design.

To keep the examples within a reasonable size, Listing 4.6, and the other listings and deriva-
tion trees used in this section, refer to the generic constants, the ports and the internal signals
of the transition and place designs by their short names. See Table D.1 for a correspondence
between the short names and the full names of constants and signals of the place and tran-
sition designs. In Listing, the generated H-VHDL design, named tl, declares its input and
output ports at Line 7, and its internal signals at Line 10. The behavior of tl is defined by a
place component instance idp (Lines 15 to 23), a transition component instance idt (Lines 28
to 36), and two processes, namely: the actions process (Lines 41 to 43), and the functions
process (Lines 48 to 50).� �

1 design tl tla
2

3 -- Generic constants
4 ∅
5

6 -- Ports (portstl)
7 ((in, idc0, boolean), (out, id f 0, boolean), (out, ida0, boolean))
8

9 -- Declared (internal) signals (sigstl)
10 ((id f t, boolean), (idav, boolean), (idrt, boolean),(idm, boolean))
11

12 -- Behavior (cstl)
13

14 -- Place component instance idp
15 comp (idp, place,
16 -- Generic map
17 ((ian, 1), (oan, 1), (mm, 1)),
18

19 -- Input port map
20 ((im, 1), (iaw(0), 1), (oat(0), 0), (oaw(0), 1), (itf(0), id f t), (otf(0), id f t))
21

22 -- Output port map
23 ((oav(0), idav), (pauths, open), (rtt(0), idrt), (marked, idm)))
24

25 ||
26

27 -- Transition component instance idt
28 comp (idt, transition,
29 -- Generic map
30 ((tt, 0), (ian, 1), (cn, 1)),
31

32 -- Input port map
33 ((ic(0), idc0), (A, 0), (B, 0), (iav(0), idav), (rt(0), idrt), (pauths(0), true)),
34

35 -- Output port map

126 Chapter 4. H-VHDL: a target hardware description language

36 ((fired, id f t)))
37

38 ||
39

40 -- The actions process
41 process (actions, {clk}, ∅,
42 (rst (ida0 ⇐ false)
43 (falling (ida0 ⇐ idm or false))))
44

45 ||
46

47 -- The functions process
48 process (functions, {clk}, ∅,
49 (rst (id f 0 ⇐ false)
50 (rising (id f 0 ⇐ id f t or false))))� �

LISTING 4.6: An example of H-VHDL top-level design generated by the HILECOP
transformation.

p
a0

t
c0
f0

FIGURE 4.6: The SITPN model at the base of the generation of the top-level design
presented in Listing 4.6.

Figure 4.7 is a graphical transcription of the top-level design of Listing 4.6. In Figure 4.7,
note that we are representing the clk and rst in the interface of the tl design and also in
the interfaces of tl’s subcomponents, even though these two ports do not appear in the port
clause of the tl design. These ports are considered as natively included in the port interface of
allH-VHDL designs.

4.7. An example of full simulation 127

idp

clk

rst

im1

iaw(0)1

oat(0)basic

oaw(0)1

itf(0)

otf(0)

marked

rtt(0)

pauths(0)

oav(0)

idt

clk

rst

A0

B0
pauths(0)true

iav(0)

rt(0)

ic(0)

fired functions
clk

rst

actions
clk

rst

clk

rst

idc0

idf0

ida0

FIGURE 4.7: A graphic representation of the tlH-VHDL top-level design presented
in abstract syntax in Listing 4.6.

The rule of Figure 4.8 states that the full simulation of the tl design (presented in Listing 4.6)
over 1 clock cycle yields the simulation trace (σ0 :: σ1 :: σ2). The simulation over one clock
cycle (the rightmost premise) yields a trace composed of two states: the state σ1 at half the
clock period, and the state σ2 at the end of the first cycle. The full simulation happens in the
context of the HILECOP’s design store DH, the elaborated design ∆, an empty dimensioning
function and a simulation environment Ep. Here, portstl is an alias for the list of ports of tl,
sigstl for the list of internal signals of tl, and cstl for the behavior of tl. In what follows, we
will detail the premises of the FULLSIM rule.

...

DH, ∅ ` design tl . . . elab−−→ ∆, σe

...

DH, ∆, σe ` cstl
init−−→ σ0

...

DH, Ep, ∆, 1, σ0 ` cstl → (σ1 :: σ2)
FULLSIM

DH, ∆, ∅, Ep, 1 ` design tl tla portstl sigstl cstl
f ull−−→ (σ0 :: σ1 :: σ2)

FIGURE 4.8: The FULLSIM rule applied to the tl design.

4.7.1 Elaboration of the tl design
The rule of Figure 4.9 states that the elaborated design ∆ and the default design state σe are the
result of the elaboration of the tl design. From left to right in the premises of the rule, the three
first premises pertain to the elaboration of the declarative parts of the tl design, i.e. the generic
constant declaration list, the port declaration list and the internal signal declaration list. The
rightmost premise pertains to the elaboration of the behavior of the tl design.

128 Chapter 4. H-VHDL: a target hardware description language

...

∅, ∅ ` genstl
egens−−−→ ∆0

...

∆0, ∅ ` portstl
eports−−−→ ∆1, σe1

...

∆1, σe1 ` sigstl
esigs−−→ ∆2, σe2

...

DH, ∆2, σe2 ` cstl
ebeh−−→ ∆, σe

DH, ∅ ` design tl tla genstl portstl sigstl cstl
elab−−→ ∆, σe

FIGURE 4.9: The DESIGNELAB rule applied to the tl design.

Elaboration of the declarative parts

The elaboration of the declarative parts populates the Gens, Ins, Outs and Sigs sub-environments
of the elaborated design ∆. Here is the content of the Gens, Ins, Outs and Sigs sub-environments
of ∆2, where ∆2 is the partial elaborated design after the elaboration of the declarative parts of
the tl design (passed as a parameter of third and the fourth premises of the rule in Figure 4.9).

– Gens(∆2) := ∅

– Ins(∆2) := {(idc0, bool)}

– Outs(∆2) := {(id f 0, bool), (ida0, bool)}

– Sigs(∆2) := {(id f t, bool), (idav, bool), (idrt, bool), (idm, bool)}

The top-level design generated by the HILECOP transformation all have an empty list of
generic constants (see Chapter 5 for more details about the transformation). Also, all ports and
internal signals are of the Boolean type. Thus, there are no range constraint or index constraint
to solve here. The boolean type indication is simply transformed into the bool semantic type.

The elaboration of the declarative parts also gives a default value to the signals in the signal
store of the default design state σe2, where σe2 is the partial default design state at the end of
the elaboration of the declarative parts of the tl design (passed as a parameter of the third and
the fourth premises of the rule in Figure 4.9). Here is the content of the signal store S of σe2.

– S(σe2) := {(idc0,⊥), (id f 0,⊥), (ida0,⊥), (id f t,⊥), (idav,⊥), (idrt,⊥), (idm,⊥)}

The default value associated to the bool type is ⊥, thus, all signals of the tl design are
initialized to ⊥ in the signal store of σe2.

Elaboration of the behavioral part

The behavior of the tl design contains two component instantiation statements and two pro-
cess statements. Each one of these statements will be elaborated in sequence. First, we present
the elaboration of the actions process to illustrate the elaboration of a process statement; then,
we present the elaboration of the place component instance idp to illustrate the elaboration of
a component instantiation statement.

4.7. An example of full simulation 129

Elaboration of a process statement

The rule of Figure 4.10 presents the elaboration of the actions process defined in the behavior
of the tl design.

∆2, ∅ ` ∅ evars−−→ ∅

...
WTRST

∆2, σe2, ∅ ` validss

(
rst (ida0 ⇐ false)
(falling(ida0 ⇐ idm or false))

)
PSELAB

DH, ∆2, σe2 ` process(actions, clk, ∅, . . .) ebeh−−→ ∆2 ∪ (actions, ∅), σe2

FIGURE 4.10: The elaboration of the actions process defined in the behavior of the
tl design.

The actions process is elaborated in the contextDH, ∆2, σe2 where ∆2 and σe2 are the partially-
built elaborated design and default design state at a certain point of the elaboration of the be-
havioral part of the tl design. The elaboration of a process statement associates the process
identifier to a local variable environment in the Ps sub-environment of the being-built elabo-
rated design. The local variable environment is built out of the variable declaration list of the
process. Here, the actions process has an empty variable declaration list. Thus, the binding
(actions,∅) is added in the Ps sub-environment of ∆2.

The elaboration of process statement also performs static type-checking on the process
statement body leveraging the validss relation. The rule of Figure 4.11 details the static type-
checking of the statement body of the actions process (rightmost premise of the rule presented
in Figure 4.10). To keep the example within a reasonable size, we discard the context of some
rules with it is not relevant. We annotate the rule names to describe the side conditions associ-
ated to a derivation.

FALSE

false
e−→ ⊥

ISBOOL

⊥ ∈c bool
WTSIG1

` validss(ida0 ⇐ false)

SIG2

σe2 ` idm
e−→ ⊥

FALSE

false
e−→ ⊥

BOOLBINOP

σe2 ` idm or false
e−→ ⊥

ISBOOL

⊥ ∈c bool
WTSIG1

σe2 ` validss(ida0 ⇐ idm or false)
WTFALLING

σe2 ` validss(falling(ida0 ⇐ idm or false))
WTRST

∆2, σe2, ∅ ` validss

(
rst (ida0 ⇐ false)
(falling(ida0 ⇐ idm or false))

)
(1) ∆2(ida0) = bool (2) σe2(idm) = ⊥

FIGURE 4.11: Static type-checking of the actions process statement body.

At the end of the elaboration of the tl design’s behavior, the Ps sub-environment of ∆ is as
follows: Ps(∆) := {(actions, ∅), (functions, ∅)}

130 Chapter 4. H-VHDL: a target hardware description language

Elaboration of a component instantiation statement

The rule of Figure 4.12 presents the elaboration of the place component instance idp belonging
to the behavior of the tl design.

...

∅ ` gp
emapg−−−→M

...

DH,M ` design place . . . elab−−→ ∆p, σp

...

∆2, ∆p, σe2 ` validipm(ip)

...

∆2, ∆p ` validopm(op)
COMPELAB1

DH, ∆2, σe2 ` comp (idp, place, gp, ip, op)
ebeh−−→ ∆2 ∪ (idp, ∆p), σe2 ∪ (idp, σp)

(1)

idp /∈ ∆2
idp /∈ σe2
place ∈ DH
M⊆ Gens(∆p)

FIGURE 4.12: The elaboration of the idp component instance defined in the behav-
ior of the tl design.

The elaboration of a component instantiation statement is divided in three parts. First, a
dimensioning function is built out of the generic map of the component instance. Figure 4.13
shows a part of the creation of the dimensioning functioningM from the generic map of the
component instance idp. Basically, the elaboration of a generic map is a transformation from
a syntactic construct, i.e. the generic map, into a function, i.e. the dimensioning function
M. For each association of the generic map, the elaboration checks that the actual part of the
association is a locally static expression (see Section 4.5.9).

LSENAT

SEl(1)
NAT

1 e−→ 1
ASSOCGELAB1

∅ ` (ian, 1)
emapg−−−→ {(ian, 1)}

...
GMELAB

{(ian, 1)} ` (oan, 1), (mm, 1)
emapg−−−→ {(ian, 1), (oan, 1), (mm, 1)}

GMELAB

∅ ` (ian, 1), (oan, 1), (mm, 1)
emapg−−−→ {(ian, 1), (oan, 1), (mm, 1)}

(1) ian /∈ ∅

FIGURE 4.13: The elaboration of the generic map of the idp component instance
defined in the behavior of the tl design.

The second step of the elaboration of a component instance is to retrieve from the design
store the design associated with the component instance, and to elaborate this design. Here,
the design store is the HILECOP design store DH, and the design associated with idp is the
place design. The dimensioning functionM sets the value of the generic constants declared
in the place design. The full code of place design is available in Appendix A. In Figures 4.14

4.7. An example of full simulation 131

and 4.15, we give the elaborated design ∆p and the default design state σp resulting of the
elaboration of the place design given the dimensioning functionM.

∆p := {
Gens := {(ian, (nat(0, NATMAX, 1)),

(oan, (nat(0, NATMAX), 1))
(mm, (nat(0, NATMAX), 1))}

Ins := {(im, nat(0, 1)),
(iaw, array(nat(0, 255), 0, 0)),
(oat, array(nat(0, 2), 0, 0)),
(oaw, array(nat(0, 255), 0, 0)),
(itf, array(bool, 0, 0)),
(otf, array(bool, 0, 0))},

Outs := {(oav, array(bool, 0, 0)),
(pauths, array(bool, 0, 0)),
(rtt, array(bool, 0, 0))}

Sigs := {(sits, nat(0, 1)),
(sm, nat(0, 1)),
(sots, nat(0, 1))},

Ps := {(input_tokens_sum, {(v_internal_its, (nat(0, 1), 0))}),
(output_tokens_sum, {(v_internal_ots, (nat(0, 1), 0))})}
(priority_evaluation, {(v_saved_ots, (nat(0, 1), 0))})}

Comps := ∅
}

FIGURE 4.14: An elaborated version of the place design built with the dimension-
ing function deduced from the generic map of the component instance idp.

In ∆p, all the types associated with ports and internal signals of the place design have
been resolved; i.e. the expressions qualifying the bounds of the range and index constraints in
type indications have been evaluated. For example, array(boolean, 0, input_arcs_number-
1) is the type indication associated with the input_transitions_fired input port (i.e. itf)
defined in the port clause of the place design. The dimensioning function M sets the value
of the input_arcs_number (i.e. ian) generic constant to 1. After the elaboration, the type indi-
cation array(boolean, 0, input_arcs_number-1) is thus transformed into the semantic type
array(bool, 0, 0). Thus, we have ∆p(itf) = array(bool, 0, 0) in the resulting ∆p.

Figure 4.15 shows the default design state σp of ∆p.

132 Chapter 4. H-VHDL: a target hardware description language

σp := {
S := {(im, (0)), (iaw, (0)), (oat, (0)),

(oaw, (0)), (itf, (⊥)), (otf, (⊥)),
(oav, (⊥)), (pauths, (⊥)), (rtt, (⊥))
(sits, 0), (sm, 0), (sots, 0)},

C := ∅
E := ∅

}
FIGURE 4.15: The default design state σp of the elaborated design ∆p.

The component store of design state σp is empty as there are no component instantia-
tion statements in the behavior of the place design. The same stands for the Comps sub-
environment of ∆p. Also, the set of events of a default design state is always empty.

The final step in the elaboration of a component instantiation statement is to check the well-
formedness and the well-typedness of the input and output port maps. The validipm and
validopm relations, defined in Section 4.5.10, state the validity of the port maps. The rule of
Figure 4.16 presents a part of the construction of the validopm relation applied to the output
port map of the place component instance idp. Note that ∆p is necessary to check the validity
of the output port map of idp, as it holds the correspondence between port identifiers and port
types.

4.7. An example of full simulation 133

LSENAT

SEl(0)
NAT

0 e−→ 0
ISCNAT

0 ∈c nat(0, 0)
1

∆2, ∆p, ∅, ∅ ` (oav(0), idav)
listopm−−−→ {(oav, 0)}, {idav}

.... LISTOPMCONSB

LISTOPMCONSA

∆2, ∆p, ∅, ∅ ` (oav(0), idav), (pauths, open)
(rtt(0), idrt), (marked, idm)

listopm−−−→ {(oav, 0), pauths,
(rtt, 0), marked} , {idav, idrt, idm}

VALIDOPM

∆2, ∆p ` validopm

((oav(0), idav), (pauths, open)
(rtt(0), idrt), (marked, idm)

)

...
LISTOPMCONSB

∆2, ∆p, {(oav, 0)}, {idav} `
(pauths, open),
(rtt(0), idrt),
(marked, idm)

listopm−−−→
{(oav, 0),
pauths,
(rtt, 0),
marked}

, {idav, idrt, idm}

(1)

∆p(oav) = array(bool, 0, 0)
∆2(idav) = bool
oav /∈ ∅ and (oav, 0) /∈ ∅
idav /∈ ∅

FIGURE 4.16: An example of validity checking performed on the output port map
of the place component instance idp. The bottom proof tree represents the top-right

premise of the top proof tree.

At the end of the elaboration of the tl design’s behavior, the Comps sub-environment of ∆
is as follows: Comps(∆) := {(idp, ∆p), (idt, ∆t)}. Here, ∆t represents the elaborated version of
the transition design obtained from the elaboration of the transition component instance idt.

Also, at the end of the elaboration, the component store of σe is as follows: C(σe) :=
{(idp, σp), (idt, σt)}. Here, σt is the default design state of the transition component instance
idt.

4.7.2 Simulation of the tl design
Let us now present the rules pertaining to the simulation of the tl design, that is, pertaining to
the execution of the tl design’s behavior with respect to our formal simulation algorithm.

Initialization

The rule of Figure 4.17 presents the initialization phase in the proceeding of the simulation of
the tl design. The initialization phase builds the initial state of the simulation. The first step

134 Chapter 4. H-VHDL: a target hardware description language

of the initialization, formalized by the runinit relation, runs the processes and the internal be-
havior of component instances exactly once (with the execution of the first part of reset blocks).
Then, a stabilization phase follows.

...

DH, ∆, σe ` cstl
runinit−−−→ σ′

...

DH, ∆, σe ` cstl
 −→ σ0

INIT

DH, ∆, σe ` cstl
init−−→ σ0

FIGURE 4.17: The initialization phase, first step of the simulation of the tl design.

The rule in Figure 4.18 presents the execution of the tl design’s behavior during the runinit
phase. The tl design’s behavior is defined by the composition of concurrent statements. Here,
the actions process is at the head of the behavior, whereas it is not the case in Listing 4.6. We
formally proved, with the Coq proof assistant, that the || composition operator for concurrent
statements is commutative and associative with respect to the runinit relation. In Figure, the
actions process is executed and yields the state σ′e. Then, the rest of the tl design’s behavior
is executed and yields the state σ′′e . Finally, the starting state σe and the two states σ′e and σ′′e are
merged into one by the merge function.

...

DH, ∆, σe ` process(actions, . . .) runinit−−−→ σ′e

...

DH, ∆, σe ` cs′tl
runinit−−−→ σ′′e

COMPRUNINIT1

DH, ∆, σe ` process(actions, . . .) || cs′tl
runinit−−−→ merge(σe, σ′e, σ′′e)

(1) E ′e ∩ E ′′e

FIGURE 4.18: The runinit phase applied to the concurrent statements composing
the behavior of the tl design.

In what follows, we detail the execution of a process statement and of a component instan-
tiation statement during the first part of the initialization, i.e. the runinit phase.

Execution of a process statement with the runinit relation

The rule in Figure 4.19 shows the execution of the actions process during the runinit phase.
The first part of the reset block defining the statement body of the actions process is executed.
This first part assigns the expression false to signal ida0.

4.7. An example of full simulation 135

FALSE

` false e−→ ⊥
ISBOOL

⊥ ∈c bool
SIGASSIGN2

DH, ∆, σe, σe ` ida0 ⇐ false
ssi−→ σ′e, ∅

RSTEXEC

DH, ∆, σe ` rst(ida0 ⇐ false)(. . .)
ssi−→ σ′e, ∅

PSRUNINIT1

DH, ∆, σe ` process(actions, . . .) runinit−−−→ σ′e

(1) ∆(actions) = ∅ (2)

∆(ida0) = bool
σ′e = <S ′e, C ′e, E ′e>
S ′e = Se(ida0)← ⊥
E ′e = Ee ∪ (Se

6=
∩S ′e)

FIGURE 4.19: The runinit phase applied to the concurrent statements composing
the behavior of the tl design.

In the side conditions of the SIGASSIGN rule, a new event set E ′e is computed based on the

event set Ee joined to the expression Se
6=
∩S ′e. This expression returns the set of signals with a

different value between signal store Se and signal store S ′e. The only signal that possibly has
a different value from Se to S ′e is the assigned signal ida0. Thus, this expression is a short-
hand to test if the value of signal ida0 has changed after the execution of the signal assignment
statement. If it is the case, then the event set receives the signal identifier ida0; ida0 is then an
eventful signal. In the present case, the value of signal ida0 was ⊥ at state σe and is still ⊥ after
the execution of the signal assignment statement. Therefore, no event is registered on signal
ida0. When states σe, σ′e and σ′′e will be merged (cf. Figure 4.18), if ida0 is part of the event
set of state σ′′e , then, the merged state will return the value associated to ida0 in state σ′′e . We
would have merge(σe, σ′e, σ′′e)(ida0) = σ′′e (ida0). However, signal ida0 would be a potentially
multiply-driven signal because both the actions process and the concurrent statement cs′tl (cf.
Figure 4.18) both assign the signal value.

Execution of a component instantiation statement with the runinit relation

The rule of Figure 4.20 presents the execution of the place component instance idp during the
runinit phase. The execution of a component instantiation statement is pretty much the same in
all the phases of the simulation algorithm. The difference lies in the choice of the relation used
to execute of the internal behavior of the component instance. During the initialization phase,
it is the runinit relation that executes the internal behavior of component instances; during the
rising edge phase, it is the ↑ relation that executes the internal behaviors, etc.

136 Chapter 4. H-VHDL: a target hardware description language

...

∆, ∆p, σe, σp ` ip
mapip−−−→ σ′p

...

DH, ∆p, σ′p ` csp
runinit−−−→ σ′′p

...

∆, ∆p, σe, σ′′p ` op
mapop−−−→ σ′e

COMPRUNINIT1

DH, ∆, σe ` comp(idp, place, gp, ip, op)
runinit−−−→ σ′′e

(1)

σ′e = <S ′e, C ′e, E ′e>
σ′′e = <S ′e, C ′′e , E ′e ∪ (Ce

6=
∩ C ′′e)>

C ′′e = C ′e(idp)← σ′′p

FIGURE 4.20: The execution of the place component instance idp during the runinit
phase (first part of the initialization).

The execution of a component instantiation statement is decomposed in four parts. First,
the input ports of the component instance receive new values through the evaluation of the
input port map. Second, the internal behavior of the component instance is executed. Thirdly,
the evaluation of the output port map propagates the values coming from the output interface
of the component to the signals of the embedding design. Finally, the component instance is
assigned to its new internal state in the component store of the embedding design; here, σ′′p is
assigned to idp in the component store C ′′e . Moreover, if the new internal state of the compo-
nent instance is different from its older internal state, then the component instance identifier

is added to the event set of the embedding design. Here, the expression Ce
6=
∩ C ′′e performs the

state comparison; we have:

Ce
6=
∩ C ′′e = Ce

6=
∩(C ′e ← σ′′p)

= Ce
6=
∩(Ce ← σ′′p)

=

{
{idp} if σp 6= σ′′p
∅ otherwise

In the second line, we have Ce = C ′e because the evaluation of the output port map (per-
formed by the mapop relation) does not affect the component store.

The rule of Figure 4.21 gives a part of the evaluation of the input port map of idp.

4.7. An example of full simulation 137

NAT

∆, σe ` 1 e−→ 1
ISCNAT

1 ∈c nat(0, 1)
MAPIPSIMPLE1

∆, ∆p, σe, σp ` (im, 1)
mapip−−−→ σ′p0

...

∆, ∆p, σe, σ′p0 `
(iaw(0), 1)
(oat(0), 0), (oaw(0), 1),
(itf(0), id f t), (otf(0), id f t)

mapip−−−→ σ′p

MAPIPCOMP

∆, ∆p, σe, σp `
(im, 1), (iaw(0), 1)
(oat(0), 0), (oaw(0), 1),
(itf(0), id f t), (otf(0), id f t)

mapip−−−→ σ′p

(1)

∆p(im) = nat(0, 1)
σp = <S , C, E>
S ′ = S(im)← 1
σ′p0 = <S ′, C, E>

FIGURE 4.21: The evaluation of the input port map of the place component in-
stance idp.

The evaluation of the input port map of idp changes the value of the initial_marking
input port (i.e. im). We have σp(im) = 0 and σ′p(im) = 1. As the value of one of its input port
has changed, the place component instance idp will be registered as an eventful component
instance.

The rule of Figure 4.22 gives a part of the evaluation of the output port map of idp.

` 0 e−→ 0 0 ∈c nat(0, 0)
IDXSIG2

∆p, σ′′p ` oav(0)
eo−→ >

ISBOOL
> ∈c bool

1

∆, ∆p, σe, σ′′p ` (oav(0), idav)
mapop−−−→ σ′e0

...

∆, ∆p, σ′e0, σ′′p `
(pauths, open)
(rtt(0), idrt), (marked, idm)

mapop−−−→ σ′e
MAPOPCOMP

∆, ∆p, σe, σ′′p `
(oav(0), idav), (pauths, open)
(rtt(0), idrt), (marked, idm)

mapop−−−→ σ′e

(1)

∆(idav) = bool
σe = <S , C, E>
S ′ = S(idav)← >
E ′ = E ∪ (S

6=
∩S ′)

σ′e0 = <S ′, C, E ′>

(2)
∆p(oav) = array(bool, 0, 0)
σ′′p (oav) = (>)
get_at(0, (>)) = >

FIGURE 4.22: The evaluation of the output port map of the place component in-
stance idp.

138 Chapter 4. H-VHDL: a target hardware description language

Stabilization

A stabilization phase happens after the runinit phase during the initialization phase, but also
after the rising edge phase and the falling edge phase in the course of a simulation cycle. The
stabilization phase executes the combinational parts of the design’s behavior. The tl design
holds no combinational processes in its behavior. The actions and functions processes are
both synchronous. To illustrate the execution of a combinational process during a stabilization
phase, let us consider the fired_evaluation process defined in the behavior of the transition
design. The fired_evaluation process will be executed with the internal behavior of the tran-
sition component instance idt during the stabilization phase. The rule of Figure 4.23 presents
the execution of the internal behavior of the transition component instance idt. As shown, the
internal behavior cst is executed three times before reaching a stable state. Here, the number of
execution before stabilization is arbitrary. In Figure 4.23, σt0 corresponds to the state of idt after
the runinit phase and after the evaluation of its input port map. Remember that the evaluation
of the input port map of a component instance always precedes the execution of the internal
behavior of the component. Since σt0 and σt1 are not stable states, it means that their event set
is not empty. Thus, we have E(σt0) 6= ∅ and E(σt1) 6= ∅. On the contrary, σt2 is a stable state,
and thus, E(σt2) = ∅.

...

DH, ∆t, σt0 ` cst
comb−−→ σt1

...

DH, ∆t, σt1 ` cst
comb−−→ σt2

...

DH, ∆t, σt2 ` cst
comb−−→ σt2

STABILIZEEND

DH, ∆t, σt2 ` cst
 −→ σt2

STABILIZELOOP

DH, ∆t, σt1 ` cst
 −→ σt2

STABILIZELOOP

DH, ∆t, σt0 ` cst
 −→ σt2

FIGURE 4.23: Three rounds of execution of the combinational parts of the
transition component instance idt during a stabilization phase.

Now, let us illustrate the execution of the fired_evaluation process, which is a part of
the transition design behavior cst, happening during the stabilization phase. The rule of
Figure 4.24 details the execution of the body of process fired_evaluation performed by the
comb relation.

4.7. An example of full simulation 139

SIG

∆t, σt0 ` sfa e−→ ⊥
SIG

∆t, σt0 ` spc e−→ >
BOOLBINOP

∆t, σt0 ` sfa and spc e−→ ⊥
ISBOOL

⊥ ∈c bool
SIGASSIGN2

DH, ∆t, σt0, NoEv(σt0), ∅ ` fired⇐ sfa and spc
ssc−→ σ′t0, ∅

PSCOMB1

DH, ∆t, σt0 ` process(fired_evaluation, {sfa, spc}, ∅,
fired⇐ sfa and spc)

 −→ σ′t0

(1) ∆t(fired_evaluation) = ∅ (2)

∆t(fired) = bool
NoEv(σt0) = <S , C, ∅>
S ′ = S(fired)← ⊥
σ′t0 = <S ′, C,S

6=
∩S ′>

FIGURE 4.24: The execution of the fired_evaluation process during a stabiliza-
tion phase. The fired_evaluation process is defined in the transition design’s

behavior.

Let us consider that the value of the fired signal was > at state σt0, i.e. σt0(fired) = >.

Then, since σ′t0(fired) = ⊥, we have S
6=
∩S ′ = {fired}. When state σ′t0 will be merged with

the other states generated by the concurrent execution of processes defining the transition
design’s behavior, the resulting merged state will have a non-empty set of events. Thus, an-
other round of execution will be triggered. A stable state has been reached when the execution
of the combinational parts of the behavior does not generate any event anymore.

Simulation cycle and clock phases

We describe here the execution of the tl design over one clock cycle. After the initialization
phase, the design under simulation will execute τ simulation cycles, where τ is a natural num-
bers passed as a parameter. In the rule of Figure 4.25, τ equals 1. Thus, the behavior of the tl
design is executed during one clock cycle and then the simulation ends. In Figure 4.25, σ0 is
the initial simulation state, i.e. the one at the end of the initialization phase. One simulation
cycle yields two states σ1 and σ2, where σ1 is the state after the rising edge and the stabilization
phases (i.e. in the middle of the clock cycle), and σ2 is the state after the falling edge and the
stabilization phases (i.e. at the end of the first cycle). The resulting simulation trace is only
composed of states σ1 and σ2.

140 Chapter 4. H-VHDL: a target hardware description language

...
SIMCYC

DH, Ep, ∆, 1, σ0 ` cstl
↑,↓−→ σ1, σ2

SIMEND

DH, Ep, ∆, 0, σ2 ` cstl → []
SIMLOOP1

DH, Ep, ∆, 1, σ0 ` cstl → (σ1 :: σ2 :: [])

(1) 1 > 0

FIGURE 4.25: The execution of the tl design’s behavior during one clock cycle.

The rule of Figure 4.26 zooms in the first simulation cycle. The state σ1 is produced by a
rising edge phase followed by a stabilization phase. The state σ2 is produced by a falling edge
phase followed by a stabilization phase. The value of the primary input ports of the tl design
are updated before the rising edge event. States σ0i is the new state obtained after the update
of the primary input port values. The update corresponds to the capture of values yielded by
the given simulation environment Ep. The tl design has only one primary input port, i.e. the
input port idc0. The value of idc0 at state σ0i is equal to the value yielded by the environment
Ep during the first clock cycle. Thus, we have σ0i(idc0) = Ep(1)(idc0).

...

DH, ∆, σ0i ` cstl
↑−→ σ↑

...

DH, ∆, σ↑ ` cstl
 −→ σ1

...

DH, ∆, σ1 ` cstl
↓−→ σ↓

...

DH, ∆, σ↓ ` −→ σ2
SIMCYC1

DH, Ep, ∆, 1, σ0 `
↑,↓−→ σ1, σ2

(1) Inject(σ0, Ep, 1, σ0i)

FIGURE 4.26: Details of the execution of the tl design’s behavior during the first
clock cycle.

The rule of Figure 4.27 describes the execution of the functions process, defined in the tl
design’s behavior, during the rising edge phase of the first simulation cycle. During the rising
edge phase, rising blocks are executed. Thus, the ↑ relation triggers the execution of the rising
block defined in the body of the functions process.

4.8. Implementation of theH-VHDL syntax and semantics 141

SIG3

∆, σ0i ` id f t
e−→ >

FALSE

false
e−→ ⊥

BOOLBINOP

∆, σ0i ` id f t or false
e−→ >

ISBOOL

> ∈c bool
SIGASSIGN2

∆, σ0i, σ0i, ∅ ` id f 0 ⇐ id f t or false
ss↑−→ σ′0i, ∅

RISINGEDGEEXEC

∆, σ0i, σ0i, ∅ ` rising (id f 0 ⇐ id f t or false)
ss↑−→ σ′0i, ∅

RSTDEFAULT

∆, σ0i, σ0i, ∅ ` (rst (id f 0⇐ false)(rising (id f 0⇐ id f t or false)))
ss↑−→ σ′0i, ∅

PSRECLK1

DH, ∆, σ0i ` process (functions, {clk}, ∅,
(rst (id f 0⇐ false)(rising (id f 0⇐ id f t or false))))

↑−→ σ′e

(1) clk ∈ {clk}∆(functions) = ∅ (2)

∆(id f 0) = bool
σ0i = <S , C, E>
S ′ = S(id f 0)← >
E ′ = E ∪ (S

6=
∩S ′)

σ′0i = <S ′, C, E ′>

(3) σ0i(id f t) = >

FIGURE 4.27: The execution of the functions process during a rising edge phase.
The functions process is a part of the tl design’s behavior.

4.8 Implementation of theH-VHDL syntax and semantics

This section presents the implementation of the H-VHDL abstract syntax, and also of the elab-
oration and the simulation semantics of H-VHDL designs with the Coq proof assistant. The
full code is available under the hvhdl folder of the following repository: https://github.com/
viampietro/ver-hilecop.

4.8.1 Implementation of the H-VHDL abstract syntax, elaborated design
and design state

H-VHDL abstract syntax

The implementation of theH-VHDL abstract syntax is naturally done leveraging the Inductive
construct of the Coq proof assistant. The result is strictly similar to the formal definition of the
abstract syntax given in Section 4.3. The reader can refer to the AbstractSyntax.v under the
hvhdl folder for the details of the implementation.

Elaborated design

Listing 4.7 presents the implementation of the elaborated design structure (cf. Definition 31).
Two definitions are involved in the implementation of the elaborated design structure. The
first one defines the SemanticObject inductive type. Each constructor of this type corresponds

https://github.com/viampietro/ver-hilecop
https://github.com/viampietro/ver-hilecop

142 Chapter 4. H-VHDL: a target hardware description language

to a sub-environment of the elaborated design. For instance, the Generic constructor corre-
sponds to the couple (type × value) associated with a generic constant identifier in the Gens
sub-environment of Definition 31. The Process constructor corresponds to the local variable
environment associated with the process identifiers in the Ps sub-environment. A local vari-
able environment is implemented by the LEnv type. The LEnv type is a map between identifiers
and couples (type× value). Identifiers are implemented by the ident type, an alias of the nat
type. The type and value types are the implementation of the semantic type and value pre-
sented in Table 4.2. The ElDesign type implements the elaborated design structure. It is an
alias to the IdMap SemanticObject type. The IdMap is the type of maps from identifiers (i.e.
belonging to the ident type) to instances of the type passed as an input. Here, the input is the
SemanticObject type. Thus, an elaborated design is implemented as a map between identi-
fiers and terms of the SemanticObject type. We leverage the FMaps module defined in the Coq
standard library to implement the IdMap type. The IdMap type ensures that an identifier is only
mapped once. Thus, the implementation of the elaborated design structure verifies that there
are no intersection between the domains of sub-environments. For instance, a generic constant
identifier can not be an input port identifier, and, as it is implemented, an identifier id can not
be mapped to a Generic object and to an Input object in the same instance of ElDesign.� �

1 Inductive SemanticObject : Type :=
2 | Generic (t : type) (v : value)
3 | Input (t : type)
4 | Output (t : type)
5 | Declared (t : type)
6 | Process (lenv : LEnv)
7 | Component (∆c : IdMap SemanticObject).
8

9 Definition ElDesign := IdMap SemanticObject.� �
LISTING 4.7: The implementation of the elaborated design structure with the Coq

proof assistant.

Design state

Listing 4.8 gives the implementation of the design state structure through the definition of
the DState inductive type. The constructor of the DState type defines three fields: sigstore,
implementing the signal store S of the design state, compstore, implementing the component
store C, and events, implementing the set of events E of the design state. The sigstore field is
a map from identifiers to values. The compstore field is a map from identifiers to design states,
justifying the inductive definition of the DState type. The events field is an instance of the
IdSet type. The IdSet is the type of sets of identifiers (i.e. sets of natural numbers). The IdSet
type is defined leveraging the MSets module of the Coq standard library.� �

1 Inductive DState : Type := MkDState {
2 sigstore : IdMap value;
3 compstore : IdMap DState;
4 events : IdSet;

4.8. Implementation of theH-VHDL syntax and semantics 143

5 }.� �
LISTING 4.8: The implementation of the design state structure with the Coq proof

assistant.

4.8.2 Implementation of the elaboration phase
The design elaboration relation, as presented in Section 4.5.1, is implemented in Coq by the
edesign relation. Listing 4.9 presents the definition of the edesign relation as an inductive
type. As usual, a n-ary relation is implemented in Coq by a type defined with n parameters and
projecting to the Prop type. The edesign relation has five parameters. The first parameter is the
design store D of type IdMap design, i.e. a map from identifiers toH-VHDL designs as defined
by the abstract syntax. The second parameter is the dimensioning functionM of type IdMap
value, i.e. a map from identifiers to values. The third parameter is the design being elaborated,
of type design. The fifth and sixth parameters are the elaborated design (of type ElDesign and
the default design state (of type DState) resulting from the elaboration. In Listing 4.9, the
EDesign constructor implements the DESIGNELAB rule presented in Section 4.5.1. From Line 7
to Line 10, the constructor defines the premises of Rule DESIGNELAB. The empty elaborated
design structure, denoted ∆∅, is implemented by the EmptyElDesign definition, and the empty
design state structure, denoted by σ∅, is implemented by the EmptyDState definition. Line 13
implements the conclusion of Rule DESIGNELAB.� �

1 Inductive edesign (D : IdMap design) : IdMap value→ design→ ElDesign→ DState→ Prop :=
2 | EDesign :
3 forallM ide ida gens ports sigs behavior
4 ∆ ∆′ ∆′′ ∆′′′ σ σ′ σ′′,
5

6 (* Premises *)
7 egens EmptyElDesignM gens ∆→
8 eports ∆ EmptyDState ports ∆′ σ→
9 edecls ∆′ σ sigs ∆′′ σ′ →

10 ebeh D ∆′′ σ′ behavior ∆′′′ σ′′ →
11

12 (* Conclusion *)
13 edesign DM (design_ ide ida gens ports sigs behavior) ∆′′′ σ′′

14

15 with ebeh (D : IdMap design) : ElDesign→ DState→ cs→ ElDesign→ DState→ Prop :=
16 . . .� �

LISTING 4.9: The implementation of the design elaboration relation with the Coq
proof assistant.

The edesign relation requires a mutually recursive definition with the ebeh relation. The
mutually recursive definition is performed leveraging the with clause at the end of Listing 4.9.
The ebeh relation needs the edesign relation to elaborate the component instances found in the
behavior of a design. Listing 4.10 gives the details of the with clause defining the ebeh relation.

144 Chapter 4. H-VHDL: a target hardware description language

At Line 2, the EBehPs constructor implements the Rule PSELAB defining the elaboration of a
process statement (cf. Section 4.5.6). Lines 6 and 7 implement the premises of the rule; the evars
relation implements the elaboration of the local variable declaration list of the process; the
validss relation implements the relation that type-checks the statement body of the process.
Lines 10 to 14 implement the side conditions of the rule. The term ∼NatMap.In idp ∆ implements
the side condition idp /∈ ∆. The NatMap.In id m relation states that a given identifier id is a key
of the m map. At Line 13, the NatSet.In ids sl term states that ids belongs to the identifier set
sl. At Line 14, the term MapsTo ids (Input t) ∆ states that the identifier ids is mapped to
Input t in the elaborated design ∆, i.e. Ins(∆)(ids) = t. More generally, MapsTo is a ternary
relation stating that a given key k of type nat, is mapped to a value v of a type A, in a given
map m, i.e. Mapsto k v m. Line 17 implements the conclusion of Rule PSELAB. The NatMap.add
function binds the process identifier idp to the term Process Λ in the elaborated design ∆, i.e.
∆ ∪ (idp, Λ).

At Line 19, the EBehComp constructor implements the Rule COMPELAB (cf. Section 4.5.6).
This rule describes the elaboration of a component instantiation statement. Lines 24 to 27
implement the premises of the rule. Line 25 appeals to the edesign relation to elaborate the
cdesign design associated with the component instance idc; thence, the mutually recursive
definition with the ebeh relation. As it is stated at Line 32, the cdesign design is associated to
identifier ide, i.e. the entity identifier of component instance idc, in the design store D. Lines 30
to 33 implement the side conditions of the rule. Line 30 checks that the identifier idc is not al-
ready bound to a semantic object in the elaborated design ∆. Line 31 checks that the identifier
idc is not already bound in the component store of σ. Line 33 checks that all identifiers de-
fined in the domain of mapM, i.e. the dimensioning function, are bound to generic constants
in the elaborated design ∆c (i.e. M ⊆ Gens(∆c)). Lines 36 to 38 implement the conclusion
of Rule COMPELAB. At Line 39, the cstore_add function binds idc to design state σc in the
component store of state σ and returns the resulting state.

At Line 41, the EBehNull constructor implements Rule CSNULLELAB. At Line 43, the EBeh-
Par constructor implements Rule CSPARELAB.� �

1 with ebeh (D : IdMap design) : ElDesign→ DState→ cs→ ElDesign→ DState→ Prop :=
2 | EBehPs :
3 forall idp sl vars stmt Λ ∆ σ,
4

5 (* Premises *)
6 evars ∆ EmptyLEnv vars Λ→
7 validss ∆ σ Λ stmt→
8

9 (* Side conditions *)
10 ∼NatMap.In idp ∆→
11

12 (forall ids,
13 NatSet.In ids sl→
14 exists t, MapsTo ids (Declared t) ∆ ∨ MapsTo ids (Input t) ∆)→
15

16 (* Conclusion *)
17 ebeh D ∆ σ (cs_ps idp sl vars stmt) (NatMap.add idp (Process Λ) ∆) σ

4.8. Implementation of theH-VHDL syntax and semantics 145

18

19 | EBehComp :
20 forall ∆ σ idc ide gmap ipmap opmap
21 M ∆c σc formals actuals cdesign,
22

23 (* Premises *)
24 emapg (NatMap.empty value) gmapM→
25 edesign DM cdesign ∆c σc →
26 validipm ∆ ∆c σ ipmap formals→
27 validopm ∆ ∆c opmap formals actuals→
28

29 (* Side conditions *)
30 ∼NatMap.In idc ∆→
31 ∼NatMap.In idc (compstore σ)→
32 MapsTo ide cdesign D →
33 (forall g, NatMap.In gM→ exists t v, MapsTo g (Generic t v) ∆c)→
34

35 (* Conclusion *)
36 ebeh D ∆ σ (cs_comp idc ide gmap ipmap opmap)
37 (NatMap.add idc (Component ∆c) ∆)
38 (cstore_add idc σc σ)
39

40 | EBehNull: forall ∆ σ, ebeh D ∆ σ cs_null ∆ σ
41

42 | EBehPar:
43 forall ∆ ∆′ ∆′′ σ σ′ σ′′ cstmt cstmt’,
44 ebeh D ∆ σ cstmt ∆′ σ′ →
45 ebeh D ∆′ σ′ cstmt’ ∆′′ σ′′ →
46 ebeh D ∆ σ (cs_par cstmt cstmt’) ∆′′ σ′′.� �

LISTING 4.10: The implementation of the ebeh behavior elaboration relation with
the Coq proof assistant.

4.8.3 Implementation of the simulation algorithm
The full simulation relation (cf. Section 4.6.1) formalizes the H-VHDL simulation algorithm.
The Coq implementation of the full simulation relation, presented in Listing 4.11, is a strict
translation of Rule FULLSIM. At Lines 14 and 15, the term (behavior d) represents the con-
current statements defining the behavior of the H-VHDL design d (i.e. d.cs in the formal rule).
Line 13 corresponds to the elaboration phase, Line 14 to the initialization phase, and Line 15 to
the main simulation loop.� �

1 Inductive fullsim
2 (D : IdMap design)
3 (M : IdMap value)
4 (Ep : nat→ Clk→ IdMap value)
5 (τ : nat)

146 Chapter 4. H-VHDL: a target hardware description language

6 (∆ : ElDesign)
7 (d : design) : list DState→ Prop :=
8

9 | FullSim :
10 forall σe σ0 θ,
11

12 (* * Premises * *)
13 edesign DM d ∆ σe →
14 init D ∆ σe (behavior d) σ0 →
15 simloop D Ep ∆ σ0 (behavior d) τ θ→
16

17 (* * Conclusion * *)
18 fullsim DM Ep τ ∆ d (σ0 :: θ).� �

LISTING 4.11: The implementation of the full simulation relation with the Coq
proof assistant.

The simloop relation appeals to the simcycle that implements the simulation cycle relation
defined in Section 4.6.3. Listing 4.12 presents the implementation of the simcycle relation.
The simcycle relation is a strict transcription of the SIMCYC rule. At Line 13, the vrising
relation implements the ↑ relation, i.e. the rising edge phase of the cycle. At Line 15, the
vfalling relation implements the ↓ relation, i.e. the falling edge phase of the cycle. At Lines 14
and 16, the stabilize relation implements the relation, i.e. the stabilization phases of the
simulation cycle. At Lines 18 and 19, the IsInjectedDState relation implements the Inject
relation. Line 18 states that the σi state is the result of the injection of the map (Ep τ) in the
signal store of state σ.� �

1 Inductive simcycle (D : IdMap design) (Ep : nat→ IdMap value)
2 (∆ : ElDesign) (τ : nat) (σ : DState) (behavior : cs)
3 (σ′ σ′′ : DState) : Prop :=
4 | SimCycle : forall σi σ↑ σ↓,
5

6 (* * Premises * *)
7 vrising D ∆ σi behavior σ↑ →
8 stabilize D ∆ σ↑ behavior σ′ →
9 vfalling D ∆ σ′ behavior σ↓ →
10 stabilize D ∆ σ↓ behavior σ’’→
11

12 (* * Side conditions * *)
13 IsInjectedDState σ (Ep τ) σi →
14

15 (* * Conclusion * *)
16 simcycle D Ep ∆ τ σ behavior σ′ σ′′.� �

LISTING 4.12: The implementation of the simulation cycle relation with the Coq
proof assistant.

4.9. Conclusion 147

4.9 Conclusion

In this chapter, we gave an overview of the VHDL language and its informal simulation se-
mantics. Then, considering our needs, that is considering the content of the VHDL programs
generated by the HILECOP model-to-text transformation, we defined a synthesizable and syn-
chronous subset of the VHDL language called H-VHDL. We gave a small-step semantics to H-
VHDL by formalizing a simplified simulation algorithm. The simulation algorithm yields a
simulation trace, i.e. time-ordered list of states, corresponding to the execution of the behavior
of a H-VHDL design over multiple clock cycles. The formalization of the H-VHDL semantics
also includes the formalization of the design elaboration. The elaboration, prior to the simula-
tion, ensures the well-formedness and the well-typedness of a H-VHDL design. Moreover, we
have implemented theH-VHDL syntax and semantics with the Coq proof assistant.

Ever since the mechanization of the proof of behavior preservation has begun, the seman-
tics of H-VHDL has been evolving. Section 4.3, 4.4, 4.5 and 4.6 present the most recent version
of the semantics. We realized that keeping an operational semantics as close as possible to the
VHDL simulation algorithm added complexity to the proof process. For instance, in the VHDL
simulation algorithm, the body of a process is executed during the stabilization phase only if
one signal of its sensitivity list is part of the current state’s event set. However, it is through
the execution of the body of a process with the rules of the H-VHDL semantics that we can
determine the combinational equation associated with the value of a signal. In the proceeding
of the proof of semantic preservation, we must often describe the value of a signal based on
the value of its input, or source, signals (cf. Section 6.4). Due to the event-based system of
resuming a process activity, a combinational process can sometimes never be executed during
a stabilization phase. Say that process p assigns signal s with the expression a and b, where a
and b are two signals. If the process p is not executed, then we will not be able to state that
s = a and b, even though this equation always holds. We had to carry extra hypotheses in
the definition of our lemmas to deal with this problem. Finally, our current semantics always
executes the body of combinational processes during a stabilization phase, thus permitting us
to easily determine the combinational equation tied to a signal. By doing this kind of simplifi-
cation, we realized that we were heading toward a semantics that was closer to the “synthesis”
semantics we talked about at the beginning of the chapter. This semantics tends to get closer
to the rules of the combinational logic and the synchronous logic. These rules that a hardware
system designer has in mind when devising a model with a hardware description language.

149

Chapter 5

The HILECOP model-to-text
transformation

The aim of this chapter is to present the details of the HILECOP model-to-text transformation
that we propose to verify as semantic preserving. The chapter is structured as follows. First, we
make an overall description of the HILECOP transformation. Then, we present, in Section 5.2,
a literature review of the works pertaining to transformation functions in the context of formal
verification. The literature review focuses on the expression of transformation functions and
on their implementation. In Section 5.3, we thoroughly present the HILECOP transformation
function in the form of a pseudo-code algorithm. Finally, in Section 5.4, we describe the Coq im-
plementation of the algorithm. Note that, in the following chapter, we refer to the generic con-
stant, internal signal and port identifiers defined in the place and transition designs through
their abbreviated names (see Table D.1).

5.1 Informal presentation of the HILECOP model-to-text trans-
formation

This section outlines the main phases of the HILECOP model-to-text transformation function.
The goal is to give to the reader the means to appreciate the differences and the similarities
between the HILECOP transformation and the other transformations presented in the literature
review of Section 5.2. Then, Section 5.3 will enter the details of the transformation by presenting
the transformation algorithm.

The HILECOP model-to-text transformation function takes an SITPN model as input; then,
it generates a top-level H-VHDL design out of the input model. We will illustrate each step
of the HILECOP model-to-text transformation through the transformation of the input SITPN
model presented in Figure 5.1.

150 Chapter 5. The HILECOP model-to-text transformation

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN
H-VHDL top-level design

Transformation

FIGURE 5.1: Transformation of an input SITPN model into a top-levelH-VHDL de-
sign. The input model is composed of two places, p0 and p1, and two transitions, t0
and t1. The transition t0 is associated with the time interval [1, 3] and the condition
c0. The transition t1 is associated with the condition c1, and its firing triggers the
execution of the function f0. The action a0 is activated when the place p0 is marked,

and the action a1 is activated when the place p1 is marked.

The generated top-level design implements the structure of the input SITPN. As a first step,
the transformation generates, for each place of the input SITPN, a component instance of the
place design, and, for each transition of the input SITPN, a component instance of the transi-
tion design. These subcomponents constitute the main part of the H-VHDL top-level design’s
architecture (i.e. its internal behavior). Figure 5.2 shows a graphical representation of the input
and output port interfaces of the place and transition designs. All PCIs (Place Component
Instances) and TCIs (Transition Component Instances) generated during the first step of the
HILECOP transformation inherit the interface presented in Figure 5.2.

5.1. Informal presentation of the HILECOP model-to-text transformation 151

rst
clk

im

..
. 0

ian − 1

iaw

iaw

..
. 0

oan − 1

oat

oat

..
. 0

oan − 1

oaw

oaw

..
. 0

ian − 1

itf

itf

..
. 0

oan − 1

otf

otf

..
.

0

oan − 1

oav

oav
..
.

0

oan − 1

pauths

pauths

..
.

0

oan − 1

rtt

rtt

m

place design interface

rst
clk

f

..
. 0

cn − 1

ic

ic
A
B

..
. 0

ian − 1

iav

iav

..
. 0

ian − 1

rt

rt

..
. 0

ian − 1

pauths

pauths

transition design interface

FIGURE 5.2: On the left, the place design interface and on the right the transition
design interface. The indexes of composite ports are expressed at the inner extrem-
ity of the pins, while the name (abbreviated) of ports are expressed at the outer

extremity.

During the first generation step of the HILECOP transformation, each PCI and TCI receive
a value for each of their generic constants through the creation of generic maps. In the generic
map of a TCI idt (implementing a transition t), the ian constant is associated with the number of
input arcs of t, the cn constant with the number of conditions attached to t, etc. In the generic
map of a PCI idp, the ian constant is associated with the number of input arcs of p, the oan
constant with the number of output arcs of p, and the mm constant with the maximal marking
value of p. The maximal marking value associated with a given place p of the input SITPN is
an information passed as a parameter to the transformation function. This information comes
from the analysis of the input SITPN pertaining to the boundedness of the input model. In the
definition of the HILECOP methodology, this analysis takes place before the transformation of
the input SITPN into a H-VHDL design. The generic constants do not appear as pins in the
interfaces of the place and transition designs presented in Figure 5.2. The generic constants
have an impact of the structure of the interface of each component instance. For example,
Figure 5.2 shows the dependency between the size (i.e. the number of pins) of composite ports
and the value of generic constants, e.g. the size of iaw input port of the place design depends
on the ian generic constant. Thus, the generation of generic maps during this first generation
step corresponds to the dimensioning of the PCIs and TCIs; this is when the number of pins of
composite ports are determined.

152 Chapter 5. The HILECOP model-to-text transformation

Figure 5.3 shows the architecture of the top-level design resulting of the first generation
step of the HILECOP transformation.

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN

idp0

in

out

⇓⇓⇓
constant values

idt0

in

out

⇓⇓⇓
constant values

idp1

in

out

⇓⇓⇓
constant values

idt1

in

out

⇓⇓⇓
constant values

H-VHDL top-level design

Transformation

FIGURE 5.3: Generation of the place and transition component instances based
on the set of places and transitions of the input SITPN. The PCI idp0 implements
the place p0, TCI idt0 the transition t0. . . In red, the internal signals connected to

the marked port of PCIs and to the fired port of TCIs.

During the first transformation step, illustrated in Figure 5.3, the input and output port
maps of PCIs and TCIs are also partly generated. In the manner of the generic constants in
generic maps, some input ports are associated with constant values in the input port maps of
PCIs and TCIs. All these associations are generated during this first step. Also, the marked
output port of every PCI is associated with an internal signal in the output port map of the
PCI. The internal signal will be connected later in the course of the transformation. The same
holds for the fired output port of every TCI.

After the first transformation step, the component instances are interconnected through
their port interfaces. Figure 5.4 illustrates the behavior of the top-level design after the inter-
connection of PCIs and TCIs.

5.1. Informal presentation of the HILECOP model-to-text transformation 153

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN

idp0

in

out

⇓
const.

idt0

in

out

⇓
const.

idp1

in

out

⇓
const.

idt1

in

out

⇓
const.

H-VHDL top-level design

Transformation

FIGURE 5.4: Generation of the interconnections between the place and transition
component instances. In red, the internal signals interconnecting the PCIs and the
TCIs. These signals are generated by the transformation. The arrows indicate the
sense of propagation of the information. In blue, the constant associations (i.e. the
generic maps and a part of the input port maps) produced during the previous

transformation step.

The PCIs and TCIs interact through their interfaces to exchange informations. For instance,
a PCI idp, implementing a given place p, separately informs its output TCIs (i.e. the TCIs im-
plementing the output transitions of p) that its current marking enables them. The marking
of a PCI is represented by the value of its internal signal s_marking. A PCI is the only one to
have access to the current value of its internal signals. Thus, a PCI must communicate to its
output TCIs their sensitization status. To perform this exchange of information, the transfor-
mation generates an internal signal to connect a specific output port of a PCI (the oav port) to
a specific input port of the output TCIs (the iav port). Likewise, a TCI informs its input and
output PCIs about its firing status. The transformation generates an internal signal to connect
the fired output port of a TCI to the itf and otf input ports of the input and output PCIs.
These interconnections are performed by adding new associations in the input port map and
output port map of PCIs and TCIs. Through the execution of the internal behavior of each PCI
and TCI, and, through the interconnection of component instances, the transformation aims
at generating a design’s behavior that, by its inherent structure, carries the rules of the SITPN
semantics and conforms to the execution of the input SITPN model.

To reduce the size of circuits after the synthesis on an FPGA or ASIC, PCIs and TCIs only
communicate with Boolean signals through their interfaces. To restrict the interconnections to

154 Chapter 5. The HILECOP model-to-text transformation

Boolean signals, the place design, which is the mold of all PCIs, carries the arc information
(i.e. the weight and type of its input and output arcs) in its interface; this approach of encod-
ing the arc information is called the place-pivot approach. Figure 5.5 points out where the arc
information is encoded in the interface of the place design. Thus, a PCI has all the needed
information to compute the sensitization of its output TCIs by comparing the weight of its out-
put arcs to its current marking value. A PCI can simply communicate through a Boolean signal
that it is currently enabling its output TCIs. In the other approach, the transition-pivot approach,
the transition design carries the arc information. In that case, the TCIs compute their own
sensitization status. To be able to do so, the PCIs must communicate their current marking
value to the TCIs. As a marking value is a natural number, the number of interconnecting sig-
nals between PCIs and TCIs greatly increases in the transition-pivot approach. Eventually, the
place-pivot approach has been retained in the current version of HILECOP.

rst
clk

im

..
. 0

ian − 1

iaw

iaw

..
. 0

oan − 1

oat

oat

..
. 0

oan − 1

oaw

oaw

..
. 0

ian − 1

itf

itf

..
. 0

oan − 1

otf

otf

..
.

0

oan − 1

oav

oav

..
.

0

oan − 1

pauths

pauths

..
.

0

oan − 1

rtt

rtt

m

FIGURE 5.5: Inside the red frame, the arc information encoded through the iaw,
oat and oaw input ports in the interface of the place design.

The last part of the transformation deals with the interpretation elements of the input
SITPN, i.e. the conditions, the actions and the functions. Each condition of the input SITPN
leads to the declaration of a Boolean input port in the port clause of the top-level design. As
it was pointed out in Chapter 3 (cf. Section 3.1.1), the interpretation aspect has been greatly
simplified in the SITPN structure, and the generation and the association of an input port to
each condition of the input SITPN is a consequence of the simplification. In the full version
of the SITPN structure, a condition depends on a Boolean expression that involves both the
value of internal signals and input ports of the top-level design. In our simplified version of
the SITPN structure, a condition value depends on the execution environment, i.e. a function
that updates the value of conditions at each falling edge of the clock signal. Thus, we find it
natural to transform each condition into an input port of the top-level design, as the value of
both depends on the execution/simulation environment. Then, each input port representing

5.1. Informal presentation of the HILECOP model-to-text transformation 155

a condition is connected to the ic input port of TCIs. The interconnection of an input port
of the top-level design to the ic input port of a TCI reflects an existing association between a
transition and a condition of the input SITPN model.

For each action and function of the input SITPN, the transformation generates a Boolean
output port, a.k.a. an action or a function port. At runtime, the value of these output ports
represent the activation or execution status of the corresponding actions and functions. To de-
termine the value of the action and function ports, the transformation generates two processes:
the action process and the function process. The action process is a synchronous process
responding to the falling edge of the clock signal. At the occurrence of the falling edge of the
clock signal, the action process sets the value of the action ports computed from the values
of the multiple marked output ports1. The marked port is an output port of the place design.
Through the marked port, the PCIs inform the outside about their marking status, i.e. if they
possess at least one token or not. Remember that the transformation generated an association
between the marked output port and an internal signal in the output port map of PCIs during
the first transformation step. These internal signals are read by the action process to assign a
value to the action ports of the top-level design. The function process is a synchronous pro-
cess responding to the rising edge of the clock signal. At the occurrence of the rising edge of
the clock signal, the function process sets the value of the function ports computed from the
values of the fired output ports. The fired port is an output port of the transition design.
Through the fired port, the TCIs inform the outside about their firing status, i.e. if they are
fired or not. Remember that, during the first transformation step, the transformation generated
an association between the fired output port and an internal signal in the output port map of
TCIs. These internal signals are read by the function process to assign a value to the function
ports of the top-level design. Figure 5.6 presents the top-level H-VHDL design at the end of
the transformation.

1As one action can be associated to multiple places, one action port can depend on the value of multiple marked
output port.

156 Chapter 5. The HILECOP model-to-text transformation

p0

t0

p1

t1

a0

a1

[1, 3]
c0

c1
f0

SITPN

idp0

in

out

⇓
const.

idt0

in

out

⇓
const.

idp1

in

out

⇓
const.

idt1

in

out

⇓
const.

action function

idc0idc1

ida0 ida1
idf0

H-VHDL top-level design

Transformation

FIGURE 5.6: Generation of the input and output ports, and of the action and the
function processes in the H-VHDL top-level design. The primary input port idc1

(resp. idc0) implements the condition c1 (resp. c0). In green, the internal signals,
generated by the transformation, connecting the input ports of the top-level design
to the input_conditions input port of TCIs. The ida0 and ida1 output ports reflect
the activation status of the actions a0 and a1. The id f0 output port reflects the ac-
tivation status of the function f0. In orange, the internal signals, generated by the
transformation, connecting the marked and fired output ports of PCIs and TCIs
to the action and function processes. In purple, the representation of the assign-
ments performed by the action and function processes and that set the value of

the action and function ports of the top-level design.

5.2. Expressing transformation functions 157

5.2 Expressing transformation functions

In this section, we present our literature review pertaining to transformation functions in the
context of formal verification. Here, a transformation function is understood as any kind of
mapping from a source representation to a target representation, where the source and target
representations possess a behavior of their own (i.e. they are executable). We use the same arti-
cles to perform our literature review in this chapter and in the following chapter, i.e. Chapter 6.
However, our research questions, i.e. the questions we try to give an answer to while reading
the articles, and our presentation axis differ from one chapter to the other. Here, the following
questions guide our reading:

– Is there a proper way to build a transformation function? Are there standards depending on
the application domain?

– How can we build a modular, extensible transformation function?

– How can we build a transformation function that will ease the proof of semantic preserva-
tion?

The goal is to inspire ourselves with the works of the literature, and to see how far the
correspondence holds between our specific case of transformation, and other cases of transfor-
mations. The material we used for the literature review is divided in three categories. Each
category covers a specific case of transformation function. The three categories are:

– Compilers for generic programming languages

– Compilers for hardware description languages

– Model-to-model and model-to-text transformations

Note that, in the case of compilers for programming languages, the term translation is pre-
ferred over transformation to talk about the generation of a target program from a source pro-
gram.

5.2.1 Building transformation functions
As the authors state in [104], “Although theoretically possible, verifying a compiler that is not
designed for verification would be a prohibitive amount of work in practice.” The question is
to know how to design such a compiler? How to anticipate the fact that we will have to prove
that the compiler is semantic preserving? Now, let us consider these questions in the more
general context of transformation functions that map a source representation to a target one.

158 Chapter 5. The HILECOP model-to-text transformation

Compilers for generic programming languages

In the context of formally verified compilers for generic programming languages, the transla-
tion from a source program to a target program is straight forward. While descending recur-
sively through the AST of the input program, each construct of the source language is mapped
to one or many constructs of the target language. Figure 5.7 gives an example of the translation
from Java program expressions to Java bytecode expressions, set in the context of a compiler
for Java programs written within the Isabelle/HOL theorem prover [103]. Here, the mapping
between source and target constructs is clearly defined.

FIGURE 5.7: Translation from Java expressions to Java bytecode expressions

In the works pertaining to the well-known CompCert project [72, 13], the many steps that
compose the compiler from C programs to assembly programs are also clearly mapping each
construct of source program to target program constructs. Moreover, the pattern matching
possibilities offered by languages like Coq, Isabelle, HOL and other interactive theorem provers
enable a clear and concise implementation of compilers.

The cases of optimizing compilers like [72] and [105] show that, to avoid writing too com-
plex functions when passing from a source to a target program, the compilation is decomposed
into many passes. No more than 12 passes for the CakeML compiler, and up to 20 passes for
CompCert. This is a way to keep the translation functions simple enough in order to ease rea-
soning afterwards. Indeed, the more the gap is important between the source representation
and the target one, the more the translation function will be complex.

Another point that is noticeable while expressing a translation function is the necessity to
keep a binding between the source and the target representations. For instance, in CompCert,
when passing from transformed C programs to an RTL representation (based on registers and
control flow graphs), a binding function γ links the variables of a C program to the registers
generated in the RTL representation of the program. The binding is necessary for both the
translation and the proof of semantic preservation. During the translation, it permits to replace
the variables by their corresponding registers in the RTL code. During the proof of semantic
preservation, the link that exists between a variable and a register indicates which elements
must be compared to prove that the execution state of the source representation is similar to

5.2. Expressing transformation functions 159

the execution state of the target representation. The generation of this binding function must
be integrated to the design of the translation function.

In [72], and [30], compilers are written within the Coq proof assistant. Compilers are ex-
pressed using the state-and-error monad, thus mimicking the traits of imperative languages
into a functional programming language setting. In Section 5.3, we present the HILECOP trans-
formation in the form of an imperative pseudo-code algorithm. The state-and-error monad is
well-suited to the implementation of this kind of algorithm with a functional language like Coq;
thus, we chose to apply this monad to our implementation of the transformation algorithm (see
Section 5.4).

Compilers for hardware description languages

The other category of compilers that we are interested in are compilers for hardware descrip-
tion languages (HDL). The HILECOP methodology’s goal is the design of hardware circuits.
For that reason, we are interested in studying the case of compilers for HDLs. However, one
can notice that compiling an HDL program into a lower level representation is one level of
abstraction down compared to the transformation we propose to verify. Indeed, it corresponds
to Step 3 in the HILECOP methodology (cf. Figure 1.2), i.e. the transformation of VHDL source
code into an RTL representation.

In the context of formal verification applied to HDLs compilers, only a few works describe
the specificities of their translation function.

In [22], the authors define the FeSi language (a refinement of the BlueSpec language, a spec-
ification language for hardware circuit behaviors), and its implementation within the Coq proof
assistant. The authors present the syntax and semantics of the FeSi language and of the RTL
language which is the target language of the compiler. FeSi programs are composed of simple
expressions, and actions permitting to read or write from different types of memory (registers).
Therefore, the abstract syntax is divided into the definition of expressions and the definition
of actions, i.e: control flow instructions and operations on memory. The RTL language is com-
posed of expressions and write operations to registers. The authors are more interested in
proving that a FeSi specification is well-implemented by a given Coq program, than giving the
details of the translation from FeSi to RTL. However, the translation seems straight-forward,
and proceeds as usual by descending through the AST of FeSi programs.

In [18], the authors present a compiler for the language Koîka, which is also a simpler
version of the BlueSpec language. A Koîka program is composed of a list of rules; each rule
describes actions that must be performed atomically. Actions are read and write operations on
registers. A Koîka program is accompanied by a scheduler that specifies an execution order
for the rules. The described compiler transforms Koîka programs into RTL descriptions of
hardware circuits. The translation function builds an RTL circuit by descending recursively
down the AST of rules. Each action is translated into a specific RTL representation which are
afterwards composed together to get complex circuits. The translation becomes trickier when
it comes to decide the composition of RTL circuits to respect the execution order prescribed by
the scheduler.

In [19], the authors present the verification of a compiler toolchain from Lustre programs to
an imperative language (Obc), and from Obc to Clight. The Clight target is the one defined in

160 Chapter 5. The HILECOP model-to-text transformation

CompCert [72]. Lustre permits the definition of programs composed of nodes that are executed
synchronously. Nodes treat input streams and yield output streams of values. A node body is
composed of sequence of equations that determine the values of output streams based on the
input. Obc programs are composed of class declarations. A class declaration has a vector of
memory variables, a vector of instances of other classes, and method declarations. The trans-
lation turns each node of a Lustre program into a class of Obc accompanied by two methods:
the reset method, for the initialization of the streams, and the step method, for the update of
values resulting of a synchronous step.

In [76], the authors describe a compiler that transforms Verilog programs into netlists tar-
geting given FPGA models. Verilog programs are a lot like VHDL programs; they describe a
hardware circuit behavior in terms of processes. A netlist is composed of registers, variables
and a list of cells corresponding to combinational components. During the translation process,
the expressions of the Verilog programs are turned into netlist cells, and the composition of
statements leads to the creation of complex circuits by means of cell composition.

In [60], the authors describe a High-Level Synthesis (HLS) tool that transforms C programs
into Verilog descriptions. Moreover, they have formally proved the correctness of the whole
process, and mechanized the proof with Coq. In HLS, the purpose of the transformation is
to obtain a hardware implementation, described with an HDL, of a computer program. The
verified transformation from C to Verilog described in the paper is decomposed into several
transformations: from C to a CFG-representation language called 3AC, from 3AC to the inter-
mediate language HTL, and from HTL to Verilog. The transformation from C to 3AC relies
on the CompCert compiler. In the second transformation pass, i.e. from 3AC to HTL, the HTL
language permits the FSM-based representation of a hardware design. Thus, going from 3AC
to HTL implies transforming C statements into a complex FSM ecosystem split into a data-path
part and a control logic part. The data-path part involves a RAM representation of the hard-
ware memory. Therefore, in the generated HTL program the RAM memory is a part of the
code, whereas it does not appear in the input program.

Model transformations

We will now present the works pertaining to model-to-model and model-to-text transforma-
tions in the context of formal verification. Because of the nature of the transformation we
propose to verify, i.e a model-to-text transformation, the following works are of particular in-
terest to us. We will focus here on the manner to express transformations in the case of model-
to-model and model-to-text transformations. Also, we tried to find articles related to model
transformations involving Petri nets.

In [7], the authors observe that Model-Driven Engineering (MDE) is all about model trans-
formation operations. They propose to set a formal context within the Coq proof assistant to
verify that model transformations preserve the structure of the source models into the target
models. To illustrate their methodology, they choose to transform UML state machine dia-
grams into Petri net models. The translation rules from source to target models are expressed
within the setting of the OMG standard QVT language (Query/View/Transform). The QVT
language offers a formal way to express model transformations, partly based on the Object
Constraint Language (OCL). The translation rules map the different kinds of structures that

5.2. Expressing transformation functions 161

can be found in UML state diagrams to specific structures of Petri nets. Even though the two
models used as source and target of transformations are executable, the authors leverage the
formal context provided by Coq to prove that the expressed transformations preserve certain
structural properties.

In [25], the authors describe a process for model transformation where transformation rules
are expressed with the Atlas Transformation Language (ATL). Transformation rules in ATL
involve both declarative (OCL) and imperative (match rules) instructions. The authors show
how the ATL rules can easily be translated into Coq relations. An example is given on the kind
of model-to-model transformations that can be implemented that way. The example is a UML
class diagram to relational database model transformation.

In [34], the authors explore the different ways to give a formal semantics to a Domain-
Specific Language (DSL) in the context of MDE. Here, the syntax of a given DSL is expressed
with a meta-model. An instantiation of this meta-model (a model) yields a DSL program. The
authors specify a transformation from a DSL model to another executable model, thus provid-
ing an translational semantics to the DSL model. The authors illustrate their approach with a
source DSL named xSPEM, which is a process description language. The target models are
timed PNs. The transformation is expressed through a structural mapping; i.e, each element
of an xSPEM model is mapped to a particular PN: an activity is mapped to a subnet, a re-
source to a single place, connection from activity to resource through parameter is mapped to
a connection of transitions and places in the resulting PN. . .

In [46], the authors address the problem of expressing model transformations by using
transformation graphs. Precisely, the kind of transformation graphs that are used are called
Triple Graph Grammar (TGG). A TGG is a triplet <s, c, t> where the “correspondence model
c explicitly stores correspondence relationships between source model s and target model t”.

The work described is [50] is really close to our own verification task. The article describes
how Coloured Petri Nets (CPNs, specifically LLVM-labelled Petri nets) are transformed into
LLVM (Low Level Virtual Machine) programs representing the state space (the graph of reach-
able markings) of these PNs. LLVM is a low-level assembly language. The aim is to enable an
efficient model-checking of the CPNs. LLVM-labelled PNs are CPNs whose places, transitions
and arcs have LLVM constructs for color domains. Places are labelled with data types. Transi-
tions are labelled with boolean expressions that correspond to the guard of the transition. Arcs
are labelled by multisets of expressions. A marking is a function that maps each place to a
multiset of values belonging to the place’s type. The authors define data structures (multisets,
sets, markings. . .) with interfaces, i.e. sets of operations over structures, to represent the Petri
nets in LLVM. They define interpretation functions that draw equivalences between Petri nets
objects and LLVM data structures. The authors define two algorithms: fire_t and succ_t
to compute the graph of reachable states. These are the functions that transform CPNs into
concrete LLVM programs.

In [77], the authors describe a transformation from UML state machine diagrams to Coloured
Petri Nets (CPNs). The aim is to leverage the means of analysis provided by Petri nets to cer-
tify certain properties over UML state machine diagrams. The authors want to verify that the
transformation preserve structural properties between source and target models. The transfor-
mation function does not use a standard setting as QVT or ATL, or transformation graphs. It is
expressed as a specific function written in Isabelle/HOL.

162 Chapter 5. The HILECOP model-to-text transformation

In [114], the authors present a transformation from Architecture Analysis and Design Lan-
guage (AADL) models to Timed Abstract State Machines (TASMs). AADL is a language widely
used in avionics to describe both hardware and software systems. AADL doesn’t have a lot of
tools to analyze and simulate the designed systems; therefore transforming AADL models into
TASM enables the use of an important toolbox for analysis, and simulation. The transformation
from AADL to TASMs are described with ATL rules.

Discussions on how to build transformation functions in the context of semantic preservation

Transformation functions are mappings from a source representation to a target representation.
The more the mapping from source to target is straight-forward the easier the comparison
will be when proving that the transformation is semantic preserving. Thus, in [72, 105, 30]
where complex cases of optimizing compilers are presented, the compilation is split into many
simple passes to ease the verification effort coming afterwards. In the case of the HILECOP
transformation, we are not yet concerned with the optimization of the generated VHDL code.
Thus, our transformation algorithm performs the generation of the target H-VHDL design in
a single pass. We do not need to use intermediary representations between the input SITPN
model and the generatedH-VHDL design.

Also, while transforming source programs, the compiler must often generate fresh con-
structs belonging to the target language (for instance, generating a fresh RTL register for each
variable referenced in a source C program in [72]). The compiler must keep a binding, that
is, a memory of the mapping between the elements of the source program and their mirror in
the target program. This consideration is of interest in our case of transformation where the
elements of SITPNs are also mirrored by elements in the generatedH-VHDL design.

It remains hard to establish a standard way to express a transformation function as it really
depends on the form of the input and the output representations. Compilers for programming
languages tend to be a lot more compositional than model transformations. Here, the word
compositional means that the translation rules can be split into simple and independent cases
of translation, e.g. translation of expressions, then translation of statements, then translation
of function bodies,. . . This is a huge advantage to perform the proof of semantic preservation.
Indeed, this decomposition of a translation function permits to reason on simple translation
cases; yet, each of these translations cases yields a piece of target code that can be executed or
interpreted in an independent manner. In the case of the HILECOP, we tried as much as possible
to express the transformation in a compositional way. First, we tried to devise the transforma-
tion by building up transformation functions for each element of the SITPN structure, i.e.: a
transformation function for the places, another for the transitions. . . However, due to the inter-
connections that exist between the component instances of the generated H-VHDL design, it is
impossible to define transformation functions that would yield stand-alone executable code.

In the world of models, there exist some standard formalisms to express transformation
rules (QVT, ATL, transformation graphs. . .). However, the complexity of the transformation
rules depends on the richness of the elements composing the source model, and the distance to
the concepts of the target model. In our case, we were not able to grab the perks of using such
formalisms as QVT or ATL to devise our transformation.

5.3. The transformation algorithm 163

5.3 The transformation algorithm

Before detailing the algorithm underlying the HILECOP model-to-text transformation, we want
to point out the necessity to automate the transformation. Judging by the appearance of the
H-VHDL design generated from the input SITPN model, the reader could rightly ask why the
designers of hardware circuits that are using the HILECOP methodology do not start directly
by writing down the VHDL code. The reasons are many. First, handling the interconnections
between PCIs and TCIs is simple enough when the number of places and transitions of the
input SITPN is few, however, it becomes a lot more tedious with the increase of the size of
models. To give an example, the Neurrinov company2, which applies the HILECOP methodology
to the design of critical digital circuits, has developed a digital circuit model for the control
of the electro-stimulation in neuroprostheses. Once flattened down, the model is composed
of 1097 places and 1666 transitions. The top-level VHDL design generated from this model
represents up to 140000 lines of code. Obviously, the hand-coding of this input model into a
VHDL design would be too error-prone. Moreover, the PN models offer a lot of opportunities in
terms of analysis and model-checking compared to the ones that exist for VHDL code. Finally,
the graphical aspect of PNs appears to be more fit for the task of digital architecture design in
comparison to plain source code, as it facilitates the discussions between designers. For these
reasons, we choose to preserve SITPNs as the input models of the HILECOP methodology, and
to automatize the transformation into top-levelH-VHDL designs.

In this section, we give the algorithm underlying the HILECOP model-to-text transforma-
tion. This algorithm is the base of the Coq implementation of the HILECOP transformation; the
implementation is presented in Section 5.4. As presented in Chapter 1, there exists a Java im-
plementation of the HILECOP methodology. This implementation performs the generation of
VHDL code from a SITPN model. However, the algorithm of the transformation has never been
documented, nor a formal specification given. The following algorithm is one of the contribu-
tion of this thesis. It has been devised through the examination of the code of the existing Java
implementation, and through the discussions with the designers of the HILECOP methodology.

5.3.1 The sitpn_to_hvhdl function

The HILECOP transformation algorithm, presented in Algorithm 3, generates aH-VHDL design
and a SITPN-to-H-VHDL binder from an input SITPN. A SITPN-to-H-VHDL design binder is a
structure that binds the dynamic elements of a SITPN, namely: places, transitions, conditions,
actions and functions; to the dynamic elements of a H-VHDL design, namely: component in-
stance identifiers and signal identifiers. By dynamic elements, we mean these elements that
value or characteristics vary in the course of the execution/simulation of the structure. Such
a binder is generated alongside the transformation and links a SITPN element to its H-VHDL
implementation, i.e. the H-VHDL element that will supposedly behave similarly to the source
SITPN element at runtime. Thus, the SITPN-to-H-VHDL design binder is at the center of the
state similarity relation, presented in Chapter 6, and that enables the comparison between an

2https://neurinnov.com/

https://neurinnov.com/

164 Chapter 5. The HILECOP model-to-text transformation

SITPN state and an H-VHDL design state. The formal definition of an SITPN-to-H-VHDL de-
sign binder is as follows.

Definition 35 (SITPN-to-H-VHDL design binder). Given a sitpn ∈ SITPN and a H-VHDL
design d ∈ design, a SITPN-to-H-VHDL design binder γ ∈WM(sitpn, d) is a tuple
<PMap, TMap, CMap, AMap, FMap> where:

– sitpn = <P, T, pre, test, inhib, post, M0,�,A, C,F , A, C, F, Is>

– d = design ide ida gens ports sigs cs

– PMap ∈ P→ {id | comp(id, place, g, i, o) ∈ cs}

– TMap ∈ T → {id | comp(id, transition, g, i, o) ∈ cs}

– CMap ∈ C → {id | (in, id, t) ∈ ports}

– AMap ∈ A → {id | (out, id, t) ∈ ports}

– FMap ∈ F → {id | (out, id, t) ∈ ports}

As presented in Definition 35, the binder is composed of five sub-environments that map
the different SITPN sets to identifiers. The PMap and TMap sub-environments map the places
to their corresponding PCI identifiers, and the transitions to their corresponding TCI identi-
fiers. The CMap sub-environment maps the conditions to input port identifiers. The AMap
and FMap sub-environments map the actions and functions to output port identifiers.

Notation 9. For a given binder γ and an element of an SITPN structure e ∈ Pt TtC tAtF ,
we write γ(e) where e is looked up in the appropriate function. For instance, for a given f ∈ F ,
γ(f) is a shorthand notation for FMap(f) where γ = < . . . , FMap>.

Algorithm 3 is the algorithm of the HILECOP model-to-text transformation. The algorithm
as four parameters; the first one is the input SITPN model sitpn; ide and ida are the entity
and the architecture identifiers for the generated H-VHDL design; b ∈ P → N is the function
associating a maximal marking value to each place of the input SITPN. This function is the
result of the analysis of the input SITPN.

Algorithm 3: sitpn_to_hvhdl(sitpn, ide, ida, b)

1 d← design ide ida ∅ ∅ ∅ null

2 γ← ∅

3 generate_architecture(sitpn, d, γ, b)
4 generate_interconnections(sitpn, d, γ)
5 generate_ports(sitpn, d, γ)

6 return (d,γ)

In Algorithm 3, Line 1 creates the initial H-VHDL design structure and assigns it to the
variable d. Initially, the design has an empty port declaration set, an empty internal signal

5.3. The transformation algorithm 165

declaration set, and a behavior defined by the null statement. The design generated by the
sitpn_to_hvhdl function has an empty set of generic constants; this set stays empty even at
the end of the transformation. Line 2 initializes the γ binder with empty sub-environments.
From Lines 3 to 5, the called procedures modify the design and the binder structures. Each
part of the sequence corresponds to one step of the transformation, which were outlined in
Section 5.1. The content of the generate_architecture function is detailed in Algorithms 5,
6 and 7. The content of the generate_interconnections function is detailed in Algorithm 10.
The content of the generate_ports function is detailled in Algorithms 11, 12, 13 and 14.

Notation 10. In the remainder of memoir, we write bsitpncb to denote
sitpn_to_hvhdl(sitpn, ide, ida, b), for all sitpn ∈ SITPN, b ∈ P → N and identifiers
ida, ide.

5.3.2 Primitive functions and sets

The description of further functions and algorithms appeals to some primitive functions and
set definitions that we introduce here. Below are all the sets that we use in the description of
the algorithms.

– input(p) = {t | ∃ω s.t. post(t, p) = ω}, the set of input transitions of a place p.

– output(p) = {t | ∃ω, a s.t. pre(p, t) = (ω, a)}, the set of output transitions of a place p.

– acts(p) = {a |A(p, a) = true}, the set of actions associated with a place p.

– input(t) = {p | ∃ω, a s.t. pre(p, t) = (ω, a)}, the set of input places of a transition t.

– output(t) = {p | ∃ω s.t. post(t, p) = ω}, the set of output places of a transition t.

– conds(t) = {c | C(t, c) = 1∨C(t, c) = −1}, the set of conditions associated with a transition
t.

– trs(c) = {t | C(t, c) = 1 ∨ C(t, c) = −1}, the set of transitions to which a condition c is
associated.

– pls(a) = {p |A(p, a) = true}, the set of places to which an action a is associated.

– trs(f) = {t | F(t, f) = true}, the set of transitions to which a function f is associated.

Every set presented above are unordered. However, we assume that, every time we iterate
over the elements of an unordered set with a foreach statement, the iteration respects an arbi-
trary order. This order is always the same through the multiple calls to foreach statements. Of
course, the iteration over the elements of an ordered set with a foreach statement respects the
natural order of the set.

Now, let us introduce some primitive functions and procedures that we use in the descrip-
tion of the following algorithms.

166 Chapter 5. The HILECOP model-to-text transformation

– outputc ∈ P → 2T. The outputc function takes a place p as input and yields an ordered set
of transitions computed as follows:

1. If all conflicts between the output transitions of p are solved by mutual exclusion, or if
the set of conflicting transitions of p is a singleton, then outputc returns an empty set.

2. Otherwise, the function tries to establish a total ordering over the set of conflicting tran-
sitions of p w.r.t the firing priority relation:

– If no such ordering can be established (in that case, the firing priority relation is ill-
formed, and the input SITPN is not well-defined), outputc raises an error.

– Otherwise, the function returns the ordered set, with the top-level priority transition at
the head.

– outputnc ∈ P→ 2T. The outputnc function takes a place p as input and yields an unordered
set of transitions computed as follows:

– If all conflicts between the output transitions of p are solved by mutual exclusion, or if the
set of conflicting transitions of p is a singleton, then, the function returns the set of output
transitions of p, i.e. output(p) as defined above.

– Otherwise, the function returns the set of output transitions of p connected through a test
or an inhib arc, i.e. {t | ∃ω s.t. pre(p, t) = (ω, test) ∨ pre(p, t) = (ω, inhib)}.

– cassoc(map, id, x) where map is either an input port map or an output port map, id is an
identifier, x is an expression or a name (i.e. a simple or indexed identifier). The cassoc
procedure adds an association of the form (id(i), x) to the map structure. The index i is
computed as follows based on the content of map:

1. looks up id(j) with max(j) in the formal parts of map

2. if no such j, adds (id(0), x) in map

3. if such j, adds (id(j + 1), x) in map

Examples:

– cassoc({(s(0), true), (s(1), false)}, s, true) yields the resulting map
{(s(0), true), (s(1), false), (s(2), true)}.

– cassoc({(s(0), true), (s(1), false)}, a, 3) yields the resulting map
{(s(0), true), (s(1), false), (a(0), 3)}.

– get_comp(idc, cstmt) where idc is an identifier, and cstmt ∈ cs is a H-VHDL concurrent state-
ment. The get_comp function looks up cstmt for a component instantiation statement la-
belled with idc as a component instance identifier, and returns the component instantiation
statement when found. The get_comp function throws an error if no component instantiation
statement with identifier idc exists in cstmt, or if there exist multiple component instantiation
statements with identifier idc in cstmt.

5.3. The transformation algorithm 167

– put_comp(idc, cistmt, cstmt) where idc is an identifier, cistmt is a component instantiation
statement, and cstmt ∈ cs is aH-VHDL concurrent statement. The put_comp procedure looks
up in cstmt for a component instantiation statement with identifier idc, and replaces the
statement with cistmt in cstmt. If no CIS with identifier idc exists in cstmt, then cistmt is
directly composed with cstmt with the || operator. The put_comp procedure throws an error
if multiple CIS with identifier idc exist in cstmt.

– actual(id, map) where id is an identifier and map is a generic, an input port or an output
port map. The actual function returns the actual part associated with the formal part id in
map, i.e. returns a if (id, a) ∈ map. The function throws an error if id is not a formal part in
map, or if there are multiple association with id as a formal part in map.

– genid(). The genid function returns a fresh and unique identifier. During the transforma-
tion, we appeal to it when a new internal signal, a new port or a new component instance
must be declared or generated.

Algorithm 4 presents the connect procedure. This procedure takes an output port map
o, an input port map i, a name n (i.e. a simple or indexed identifier), an identifier id and a
H-VHDL design d as parameters. It generates a Boolean internal signal ids and adds it to the
internal signal declaration list of design d. Then, the procedure adds the association between
the n name and the internal signal ids to the output port map o. Moreover, the procedure
adds an association between a subelement of id, which index will be determined by the cassoc
function, and the internal signal ids to the input port map i. As a result, n is connected to a
subelement of id through the Boolean internal signal ids. Note that the name n must denote a
signal of the Boolean type, and so must be the subelements of the composite signal denoted by
id; otherwise, the output port map o and the input port map i, will not be well-typed at the end
of the execution of the connect procedure.

Algorithm 4: connect(o, i, n, id, d)

1 ids ← genid()
2 d.sigs← d.sigs ∪ {(ids, boolean)}
3 o ← o ∪ {(n, ids)}
4 cassoc(i, id, ids)

Notation 11. When there is no ambiguity, idp (resp. idt) denotes the PCI (resp. TCI) identifier
associated with a given place p (resp. transition t) through γ(p) = idp (resp. γ(t) = idt), where
γ is the binder returned by the HILECOP transformation function. Similarly, idc (resp. ida and
id f) denotes the input port (resp. output port) identifier associated with a given condition c (resp.
action a and function f) through γ(c) = idc.

168 Chapter 5. The HILECOP model-to-text transformation

5.3.3 Generation of component instances and constant parts
The first step of the transformation generates the PCIs and TCIs, their generic map, and the con-
stant part of their input port maps, in the behavior of the H-VHDL design. At this moment of
the transformation, places are bound to PCI identifiers, and transitions are bound to TCI iden-
tifiers in the γ binder. Also, the marked output port and the fired output port are connected to
internal signals in the output port map of PCIs and TCIs. Algorithm 5 presents the content of
the generate_architecture procedure that implements this first part of code generation. The
generate_architecture procedure is decomposed in two procedures: the generate_PCIs and
the generate_TCIs procedures.

Algorithm 5: generate_architecture(sitpn, d, γ, b)

1 generate_PCIs(sitpn, d, γ, b)
2 generate_TCIs(sitpn, d, γ)

The generate_PCIs procedure, presented in Algorithm 6, has four parameters: sitpn ∈
SITPN, the input SITPN model; d ∈ design, theH-VHDL design being generated; γ ∈WM(sit-
pn, d), the binder between sitpn and d; b ∈ P→ N, the function assigning a maximal marking
value to each place. The procedure iterates over the set of places of the sitpn parameter. For
each place p in the set, the procedure produces a corresponding PCI idp, and generates its
generic map gp, and its partially-built input and output port maps ip and op. At the end of
the procedure (Lines 24 to 26), a fresh and unique component identifier idp is generated, and
a new component instantiation statement, corresponding to the instantiation of the PCI idp, is
composed with the current behavior of design d. Finally, the γ binder receives a new couple
corresponding to binding of place p to identifier idp.

5.3. The transformation algorithm 169

Algorithm 6: generate_PCIs(sitpn, d, γ, b)

1 foreach p ∈ P do
2 if input(p) = ∅ and output(p) = ∅ then err(”p is an isolated place”)

3 gp ← {(mm, b(p)), (ian,

{
1 if input(t) = ∅
|input(t)| otherwise

), (oan,

{
1 if output(t) = ∅
|output(t)| otherwise

)};

ip ← ∅; op ← ∅

4 if input(p) = ∅ then ip ← ip ∪ {(iaw(0), 0), (itf(0), false)}
5 else
6 i← 0
7 foreach t ∈ input(p) do
8 ip ← ip ∪ {(iaw(i), post(t, p))}
9 i← i + 1

10 if output(p) = ∅ then
11 ip ← ip ∪ {(oaw(0), 0), (oat(0), basic), (otf(0), false)}
12 op ← op ∪ {(oav, open), (pauths, open), (rtt, open)}
13 else
14 i← 0
15 foreach t ∈ outputc(p) ∪ outputnc(p) do
16 (ω, a)← pre(p, t)
17 ip ← ip ∪ {(oaw(i), ω), (oat(i), a)}
18 i← i + 1

19 if acts(p) = ∅ then op ← op ∪ {(marked, open)}
20 else
21 ids ← genid()
22 d.sigs← d.sigs ∪ {(ids, boolean)}
23 op ← op ∪ {(marked, ids)}

24 idp ← genid()
25 d.cs← d.cs || comp(idp, place, gp, ip, op)
26 γ← γ ∪ {(p, idp)}

From Line 2 to Line 23, the procedure generates the generic map, the input port map, and
the output port map of the PCI that implements place p. First, the procedure checks if the cur-
rent place p is isolated, i.e. without input nor output transitions. An error, with an associated
message, is raised with the err primitive if the test succeeds. The HILECOP transformation
raises errors in the presence of an input SITPN model that does not meet the well-definition
property (see Definition 28). One part of the well-definition property pertains to the absence of
isolated place in the input model. Line 3 builds the variable gp, and initializes the variables ip
and op, respectively holding the generic map, the input port map and the output port map of
the PCI being generated. The generic map gp holds three associations: the association between
the mm constant to the maximal marking value returned by the b function for place p, and the
association between the ian (resp. the oan constant) and a natural number that depends on the
size of the set of input transitions (resp. output transitions) of place p.

170 Chapter 5. The HILECOP model-to-text transformation

Line 4 tests if the set of input transitions of p is empty. The size of the iaw and itf input
ports, which are of the array type, is equal to the value of the ian constant. Thus, in the case
where the ian constant is associated to 1 in the generic map gp (i.e. the set of input transitions
of p is empty), the iaw and itf input ports are composed of one subelement with index 0. At
Line 4, the sole subelement of the iaw port is associated with 0, and the sole subelement of the
itf port is associated with false in the input port map ip. In the set of input transitions of
p holds is not empty, each subelement of the iaw port is associated with the weight of the arc
between place p and a given input transition t. Note that, in that case, the procedure does not
deal with the connection of the itf port. As the set of input transitions of p is not empty, the
connection of the itf port will be performed by the generate_interconnections described in
Algorithm 10.

Line 10 tests if the set of output transitions of p is empty. The size of the oaw, oat and otf
input ports, which are of the array type, is equal to the value of the oan constant. Thus, in
the case where the oan constant is associated to 1 in the generic map gp (i.e. the set of output
transitions of p is empty), the oaw, oat and otf input ports are composed of one subelement
with index 0. At Line 11, the sole subelement of the oaw port is associated with 0, the sole
subelement of the oat port is associated with basic, and the sole subelement of the otf port is
associated with false in the input port map ip. Also, in the abscence of output transitions, the
oav, pauths and rtt output ports are left unconnected, i.e. they are associated with the open
keyword of output port map op.

If the set of output transitions of p is not empty, the oan constant is associated with the size of
this set in the generic map gp. Then, each subelement of the oaw (resp. the oat) port is associated
with the weight (resp. the type) of the arc between place p and a given output transition t. Note
that, in that case, the procedure does not handle the connection of the otf input port, nor the
connection of the oav, pauths and rtt output ports. As the set of output transitions of p is not
empty, these connections will be performed by the generate_interconnections described in
Algorithm 10.

From Line 19 to Line 23, the generate_PCIs procedure connects the marked output port in
the output port map op. If the place p is not associated with any action, the marked output port
is left unconnected, i.e. connected to the open keyword. Otherwise, the marked output port
is connected to a newly generated internal signal of the Boolean type. This generated signal
joins the internal signal declaration list of design d. The connection between the marked output
port and the internal signal will be used later, during the generation of the action process (see
Section 5.3.5).

Figure 5.8 shows the generic, input port and output port map of the PCI idp0 (cf. Figure 5.3)
after the execution of the generate_PCIs procedure.

5.3. The transformation algorithm 171

idp0

clk

rst

im1

iaw(0)1

oat(0)basic

oaw(0)1

itf(0)

otf(0)

oav(0)

rtt(0)

pauths(0)

m

(ian, 1), (oan, 1), (mm, b(p0))
FIGURE 5.8: A graphical representation of the interface of the PCI idp0 after the
generate_PCIs procedure. The generic map associations appear in blue under-
neath the PCI. The indexes of composite ports appear in blue to stress the relation
between the interface dimensioning and the generic constants. The m output port

is connected to an internal signal represented by a red wire.

The generate_TCIs procedure, presented in Algorithm 7, iterates over the set of transitions
T of the sitpn parameter. For each transition t in the set, the procedure produces a correspond-
ing TCI idt, and generates its generic map gt, and its partially-built input and output port maps
it and ot. At the end of the procedure (Lines 11 to 13), a fresh and unique component identifier
idt is generated, and a new component instantiation statement, corresponding to the instanti-
ation of the TCI idt, is composed with the current behavior of design d. Finally, the γ binder
receives a new couple corresponding to binding of transition t to identifier idt.

Algorithm 7: generate_TCIs(sitpn, d, γ)

1 foreach t ∈ T do
2 if input(t) = ∅ and output(t) = ∅ then err(”t is an isolated transition”)

3 gt ← {(tt, get_ttype(t)), (mtc, get_mtc(t)),

4 (ian,

{
1 if input(t) = ∅
|input(t)| otherwise

), (cn,

{
1 if conds(t) = ∅
|conds(t)| otherwise

)}

5 it ← {(A,

{
0 if t /∈ dom(Is)

l(Is(t)) otherwise
), (B,

{
0 if t /∈ dom(Is) ∨ u(Is(t)) = ∞
u(Is(t)) otherwise

)}

6 ids ← genid()
7 d.sigs← d.sigs ∪ {(ids, boolean)}
8 ot ← {(fired, ids)}
9 if input(t) = ∅ then it ← it ∪ {(iav(0), true), (pauths(0), true), (rt(0), ids)}

10 if conds(t) = ∅ then it ← it ∪ {(ic(0), true)}
11 idt ← genid()
12 d.cs← d.cs || comp(idt, transition, gt, it, ot)
13 γ← γ ∪ {(t, idt)}

At Line 2, the procedure checks if transition t is isolated, and raises an error accordingly.
Lines 4 to 8 initialize the variables gt, it and ot, respectively holding the generic map, the in-
put port map and the output port map of the TCI being-generated. The generic map gt takes

172 Chapter 5. The HILECOP model-to-text transformation

four associations: the association between the tt constant and the result of the function call
get_ttype(t), the association between the mtc constant and the result of the function call get_-
mtc(t), the association between ian and the size of the set of input places of t, and the as-
sociation between cn and the size of the set of conditions associated with t. The get_ttype
function returns the type of transition t, i.e. either NOT_TEMPORAL, TEMPORAL_A_A, TEMPORAL_A_B
or TEMPORAL_A_INFINITE, based on the form of the time interval associated with t. Algorithm 8
describes the get_ttype function.

Algorithm 8: get_ttype(t)
1 if t /∈ dom(Is) then return NOT_TEMPORAL
2 else if Is(t) = [a, a] then return TEMPORAL_A_A
3 else if Is(t) = [a, b] then return TEMPORAL_A_B
4 else if Is(t) = [a, ∞] then return TEMPORAL_A_INFINITE

The get_mtc function determines the maximal value for the time counter of t based on
the form of the time interval associated with transition t. Algorithm 9 describes the get_mtc
function.

Algorithm 9: get_mtc(t)
1 if t /∈ dom(Is) then return 1
2 else if Is(t) = [a, b] then return b
3 else if Is(t) = [a, ∞] then return a

In the generate_TCIs procedure, Line 5 sets the value of the A and B input ports while
initializing the input port map it. The A port is associated with 0 if the transition t is not a
time transition (i.e. t has no associated time interval, it is not in the domain of function Is);
otherwise, the A port is associated with the lower bound of the time interval of t. The B input
port is associated with 0 if transition t is not a time transition or if its time interval has an
infinite upper bound; otherwise, the B port is associated with the upper bound of the time
interval of t. From Lines 6 to 8, the generate_TCIs procedure connects the fired output port
to a newly generated internal signal in the output port map op. This internal signal will then be
connected to the input port map of PCIs during the interconnection phase of the transformation
(see Section 5.3.4).

Line 9 checks if the set of input places of t is empty. If the test succeeds, the ian constant is
associated with 1 in the generic map gt. The size of the iav, pauths and rt input ports, which
are of the array type, is equal to the value of the ian constant. Thus, in the case where the set of
input places of t is empty, the iav, pauths and rt input ports are composed of one subelement
with index 0. At Line 9, the sole subelements of the iav and the pauths ports are associated
with true, and the sole subelement of the rt port is associated with the signal identifier ids.
Remember that the fired output port has been previously connected to the internal signal ids
in the output port map ot. Thus, the fired output port is connected to the subelement of the
rt input port with index 0 through the ids signal. This connection is mandatory to reset the
value of the s_time_counter signal (which is an internal signal of the transition design) in
the absence of input places.

5.3. The transformation algorithm 173

Line 10 checks if the set of conditions attached to t is empty. The size of the ic input port,
which is of the array type, is equal to the value of the cn constant. Thus, in the case where
the set of conditions attached to t is empty, the ic input port is composed of one subelement
with index 0. Then, the sole subelement of the ic port is associated with true in the input port
map it. If the set of conditions attached to t is not empty, then the generate_conds procedure,
presented in Algorithm 12, will handle the connection of the subelements of the ic input port.

Figure 5.9 shows the generic, input port and output port map of the TCI idt0 (cf. Figure 5.3)
after the execution of the generate_TCIs procedure.

idt0

clk

rst

A1

B3
pauths(0)

iav(0)

rt(0)

ic(0)

f

(tt, temp a b), (ian, 1),

(cn, 1), (mtc, 3)

FIGURE 5.9: A graphical representation of the interface of the TCI idt0 after the
generate_TCIs procedure. The generic map associations appear in blue under-
neath the TCI. The indexes of composite ports appear in blue to stress the relation
between the interface dimensioning and the generic constants. The f output port

is connected to an internal signal represented by a red wire.

5.3.4 Interconnection of the place and transition component instances
After the generation of PCIs and TCIs, and of all constant associations in their generic and
input port maps, the next step of the transformation performs the interconnections between
the interfaces of PCIs and TCIs. The generate_interconnections procedure, presented in
Algorithm 10, produces these interconnections.

174 Chapter 5. The HILECOP model-to-text transformation

Algorithm 10: generate_interconnections(sitpn, d, γ)

1 foreach p ∈ P do
2 comp(idp, place, gp, ip, op)← get_comp(γ(p), d.cs)

3 i← 0
4 foreach t ∈ input(p) do
5 comp(idt, transition, gt, it, ot)← get_comp(γ(t), d.cs)
6 ip ← ip ∪ {(itf(i), actual(fired, ot))}
7 i← i + 1

8 i← 0
9 foreach t ∈ outputc(p) do

10 comp(idt, transition, gt, it, ot)← get_comp(γ(t), d.cs)
11 ip ← ip ∪ {(otf(i), actual(fired, ot))}
12 connect(op, it, oav(i), iav, d)
13 connect(op, it, rtt(i), rt, d)
14 connect(op, it, pauths(i), pauths, d)
15 put_comp(idt, comp(idt, transition, gt, it, ot), d.cs)
16 i← i + 1

17 foreach t ∈ outputnc(p) do
18 comp(idt, transition, gt, it, ot)← get_comp(γ(t), d.cs)
19 ip ← ip ∪ {(otf(i), actual(fired, ot))}
20 connect(op, it, oav(i), iav, d)
21 connect(op, it, rtt(i), rt, d)
22 ids ← genid()
23 d.sigs← d.sigs ∪ (ids, boolean)
24 op ← op ∪ {(pauths(i), ids)}
25 cassoc(it, pauths, true)
26 put_comp(idt, comp(idt, transition, gt, it, ot), d.cs)
27 i← i + 1

28 put_comp(idp, comp(idp, place, gp, ip, op), d.cs)

The generate_interconnections procedure iterates over the set of places of the sitpn pa-
rameter. For each place p, the procedure generates the interconnections between the PCI idp
and the TCIs that implement the input and output transitions of p; we will refer to them as the
input and output TCIs of PCI idp.

At Line 2, the get_comp function returns the PCI associated with the identifier γ(p) (i.e. the
PCI identifier associated with place p in γ) by looking up the behavior of the design d. At this
step, we assume that all PCIs and TCIs, and all bindings pertaining to places and transitions
in the γ binder, have been previously generated by the generate_architecture procedure.
Otherwise, the get_comp function raises an error if it is not able to find the PCI idp in the
behavior of design d.

Then, from Line 3 to Line 27, the procedure modifies the input and output port map of PCI
idp and the input port map of its input and output TCIs. Finally, Line 28 replaces the old PCI
idp by the modified one in the behavior of design d.

5.3. The transformation algorithm 175

From Line 3 to Line 7, the procedure iterates over the input transitions of place p. Note that
the iteration is performed in the same order as the iteration performed by the foreach loop at
Line 7 of the generate_PCIs procedure; this is mandatory to preserve a consistency between
the index i and the connection to a given transition (see Remark 8). For each input transition
t of p, the corresponding TCI idt is retrieved from the behavior of design d. Then, the internal
signal associated with the fired output port in the output port map of TCI idt is retrieved (i.e.
actual(fired, ot)), and the signal is associated with the subelement of the itf input port with
index i. We know that the generate_TCIs function has generated the association between the
fired output port and an internal signal in the output port map of all TCIs. Thus, the actual
function never raises an error.

Remark 8 (Connections consistency). In the behavior of the place design, some processes
access to the subelements of composite ports through the use of indices. For instance, the
input_tokens_sum process (see Appendix A) increments a local variable i in range 0 to
input_arcs_number − 1 in a for loop. The process tests the value of the itf port’s subele-
ment with index i. If the test succeeds, the process adds the value of the iaw port’s subelement
with index i to the local variable v_internal_input_token_sum. Thus, the subelement with
index i of the itf and iaw ports must refer to the connection to the same transition. Otherwise,
the process does not compute a correct input tokens sum. Figure 5.10 illustrates the correct con-
nection of the itf and iaw ports in the input port map of PCI idp w.r.t. to the connection between
transitions ta, tb, tc and place p.

tatb tc

p

.

idtb

idta

idtc

idp

itf(i)

itf(j)

itf(k)

iaw(i)

iaw(j)

iaw(k)

fired

fired

fired

post(tb, p)

post(ta, p)

post(tc, p)

FIGURE 5.10: An example of correct connections between the PCI idp and
TCIs idta , idtb and idtc . On the left, the input SITPN model showing the con-
nections of the transitions ta, tb and tc to the place p. The dots indicate that
the place p possibly has other input transitions. On the right, the TCIs and
the PCI generated by the transformation. In the input port map of PCI idp,
the subelements of the itf input port are connected to the fired port of
TCIs; the subelements of the iaw port are connected to constant values, i.e.

the weight of the arcs between place p and the input transitions of p.

It is the part of the HILECOP transformation function to ensure the consistency of the connections
of the subelements in the input and output port maps of PCIs. Because the transition design

176 Chapter 5. The HILECOP model-to-text transformation

does not hold the information pertaining to the arc connections, the input and output port maps
of TCIs are not subject to such a constraint. The fact that a foreach loop always iterates in the
same order over the elements of a set ensures the consistency of the connections.

From Line 9 to Line 16, the procedure connects the PCI idp to the TCIs implementing the
conflicting output transitions of place p. For each conflicting output transition t of p, the corre-
sponding TCI idt is retrieved from the behavior of design d. The function call actual(fired, ot)
returns the internal signal associated with the fired output port in the output port map of TCI
idt. This internal signal is then connected to the subelement of the otf input port with index i
in the input port map of PCI idp. At Line 12, the connect function generates an internal signal
id and adds it to the internal signal declaration list of design d. Then, the function associates
the subelement oav(i) (i.e. the subelement of the oav input port with index i) with the internal
signal id in the output port map op, and it associates one subelement of the iav input port to
the internal signal id in the input port map it. The connect function operates similarly on the
rtt output port and the rt input port at Line 13, and on the pauths input port and the pauths
output port at Line 14. Finally, at Line 15, the old TCI idt is replaced by the modified one in the
behavior of design d.

From Line 18 to Line 26, the procedure connects the TCIs implementing to the output tran-
sitions of p that are not in conflict. Note that the variable i is not reset between the two foreach
loops to preserve the continuity of indices. For each non-conflicting output transition t of p, the
corresponding TCI idt is retrieved from the behavior of design d. Then, the interconnections
between PCI idp and TCI idt are similar to the ones that have been performed for the conflicting
transitions of p. The difference lies in the connection of the pauths ports. Between the PCI idp
and its non-conflicting TCIs, the pauths are not connected together; this to reflect the indepen-
dence of non-conflicting output transitions regarding the priority authorizations. Instead, the
subelement of the pauths output port with index i is connected to a newly generated internal
signal ids in the output port map op (Line 22 to Line 24); the internal signal ids is not connected
to anything, and it will be removed by the (industrial) compiler at the time of the synthesis.
Also, one subelement of the pauths input port is associated with true in the input port map
it (Line 25); this connection represents the fact that, since the transition t is not a conflicting
transition of place p, then, transition t always has the authorization to be fired, given that it is
firable.

Figure 5.11 shows the interconnections between the PCI idp0 and the TCI idt0 (cf. Figure 5.3)
after the execution of the generate_interconnections procedure.

idp0

clk

rst

im1

iaw(0)1

oat(0)basic

oaw(0)1
... itf(0)

otf(0)

oav(0)

rtt(0)

pauths(0)

m

idt0

clk

rst

A1

B3

true pauths(0)

iav(0)

rt(0)

ic(0)

f

FIGURE 5.11: A graphical representation of the interconnections of the PCI idp0 and
the TCI idt0 after the execution of generate_interconnections procedure.

5.3. The transformation algorithm 177

5.3.5 Generation of ports, the action and the function process
The last part of the transformation pertains to the generation of the input and output ports of
the top-level H-VHDL design. The input ports implement the conditions declared in the input
SITPN model. Each input port is associated with a condition through the γ binder. This bind-
ing is built during the transformation. The output ports of the H-VHDL design implement the
action and function of the input SITPN. Each output port is associated with an action or a func-
tion through the γ binder. During the simulation of a H-VHDL design, the value of an output
port represent the activation/execution status of the associated action/function. Algorithm 11
presents the generate_ports procedure. This procedure calls three procedures, namely: the
generate_condition_ports procedure, responsible for the generation and the connection of
input ports implementing conditions; the generate_action_ports procedure, responsible for
the generation of output ports implementing actions, and for the generation of the action pro-
cess; the generate_function_ports procedure, responsible for the generation of output ports
implementing functions, and for the generation of the function process. These three proce-
dures are detailed in Algorithms 12, 13 and 14.

Algorithm 11: generate_ports(sitpn, d, γ)

1 generate_condition_ports(sitpn, d, γ)
2 generate_action_ports(sitpn, d, γ)
3 generate_function_ports(sitpn, d, γ)

Algorithm 12 describes the generate_condition_ports procedure.

Algorithm 12: generate_condition_ports(sitpn, d, γ)

1 foreach c ∈ C do
2 idc ← genid()
3 d.ports← d.ports ∪ {(in, idc, boolean)}
4 γ← γ ∪ {(c, idc)}
5 foreach t ∈ trs(c) do
6 comp(idt, transition, gt, it, ot)← get_comp(γ(t), d.cs)
7 if C(t, c) = 1 then cassoc(it, ic, idc)
8 else if C(t, c) = −1 then cassoc(it, ic, not idc)
9 put_comp(idt, comp(idt, transition, gt, it, ot), d.cs)

The generate_condition_ports procedure iterates over the set of conditions of the sitpn
parameter. For each condition of the set, the generate_condition_ports procedure produces
a corresponding input port identifier idc, and adds an input port declaration entry in the port
declaration list of design d. The declared input port is of the Boolean type. Also, a binding
between condition c and identifier idc is added to γ. Then, the procedure performs the connec-
tion between the input port idc and the ic input port present in the input interface of TCIs. The
ic input port is an array composed of Boolean subelements. Indeed, as multiple conditions
can be attached to a given transition, a given TCI is possibly connected to multiple input ports

178 Chapter 5. The HILECOP model-to-text transformation

implementing conditions through its ic port. At Line 5, the foreach loop iterates over the set
of transitions attached to condition c. For each such transition t, the corresponding TCI idt is
retrieved from the behavior of design d. Then, depending on the relation that exists between
condition c and transition t, an association between idc and one subelement of the ic input port
is added to the input port map it. At the end of the loop, the old TCI idt is replaced by a new
TCI, with an updated input port map, in the behavior of design d.

Algorithm 13 describes the generate_action_ports procedure.

Algorithm 13: generate_action_ports(sitpn, d, γ)

1 rstss← null
2 f ss← null

3 foreach a ∈ A do
4 ida ← genid()
5 d.ports← d.ports ∪ {(out, ida, boolean)}
6 γ← γ ∪ {(a, ida)}
7 eida ← false

8 foreach p ∈ pls(a) do
9 comp(idp, place, gp, ip, op)← get_comp(γ(p), d.cs)

10 ids ← actual(marked, op)
11 eida ← ids or eida

12 rstss← rstss; ida ⇐ false
13 f ss← f ss; ida ⇐ eida

14 d.cs← d.cs || process(action, {clk}, ∅, rst (rstss) (falling f ss))

The generate_action_ports procedure does two things. First, it generates an output port
for each action of the input SITPN; second, it builds the action process that is responsible for
the assignment of the value of action ports depending on the value of the marked output ports
of PCIs. The action process is a synchronous process; its statement body is composed of a sin-
gle rst block. A rst block is composed of two blocks of sequential statements; the first block
is executed only during an initialization phase, otherwise, the second block is executed. Here,
the second block corresponds to a falling block, i.e. a block that is only executed during a
falling edge phase. Thus, the generate_action_ports procedure builds two blocks of sequen-
tial statements: the first one, hold in the rstss variable, corresponds to the first part of the rst
block (i.e. the one executed during the initialization phase); the second one, hold in the f ss
variable, corresponds to the second part of the rst block, i.e. a falling edge block. The first two
lines of the procedure initialize the rstss and f ss with the null sequential statement. Then, in
the absence of actions defined in the input SITPN, the statement body of the action process
is composed of null statements; the execution of null statements has no effect on the state of
design during a simulation. At Line 3, the procedure iterates over the set of actions of the sitpn
parameter. For each action a in the set, an output port identifier ida is generated, an output port

5.3. The transformation algorithm 179

declaration entry is added to the port declaration list of design d, the binding between action a
and identifier ida joins the γ binder.

An action is activated at given state if one of its attached place is marked, i.e. its marking
is greater than zero. An output port identifier that implements the activation status of a given
action is assigned in the falling block of the action process. The expression assigned to the out-
put port ida corresponds to the or sum between each marked port of the PCIs implementing the
places attached to the action a. From Line 7 to Line 13, the generate_action_ports procedure
builds this or sum expression. For each place p associated with the action a, the corresponding
PCI idp is retrieved from the behavior of design d. The internal signal ids associated with the
marked port is looked up in the output port map of PCI idp. Then, the signal identifier ids is
composed with the expression eida with the or operator. At the end of the loop started at Line 3,
the procedure adds a new signal assignment statement to the rstss and to the f ss variables by
composition with the ; operator. In the rstss variable, i.e. in the part of the action process
executed during an initialization phase, the ida output port is assigned to false. In the f ss
variable, i.e. the part of the action process executed during a falling edge phase, the ida output
port is assigned to the previously built or sum expression eida . The last line of the procedure
builds and adds the action process to the behavior of design d. The action process is a syn-
chronous process, thus, it declares the clk signal in its sensitivity list. The action process has
an empty set of local variables. Finally, its statement body is composed of a rst block with
rstss as a first block, and a falling edge block wrapping f ss as a second block.

Algorithm 14 describes the generate_function_ports procedure.

Algorithm 14: generate_function_ports(sitpn, d, γ)

1 rstss← null
2 rss← null

3 foreach f ∈ F do
4 id f ← genid()

5 d.ports← d.ports ∪ {(out, id f , boolean)}
6 γ← γ ∪ {(f , id f)}
7 eid f

← false

8 foreach t ∈ trs(f) do
9 comp(idt, transition, gt, it, ot)← get_comp(γ(t), d.cs)

10 ids ← actual(fired, ot)
11 eid f

← ids or eid f

12 rstss← rstss; id f ⇐ false

13 rss← rss; id f ⇐ eid f

14 d.cs← d.cs || process(function, {clk}, ∅, rst (rstss) (rising rss))

The generate_function_ports procedure does two things. First, it generates an output
port for each function of the input SITPN; second, it builds the function process that is re-
sponsible for the assignment of the value of function ports depending on the value of the fired

180 Chapter 5. The HILECOP model-to-text transformation

output ports of PCIs. Similarly to the action process, the function process is a synchronous
process with a statement body composed of a single rst block. The second part of the rst
block is a rising block, i.e. a block that is only executed during a rising edge phase. Thus,
the generate_function_ports procedure builds two blocks of sequential statements: the first
one, hold in the rstss variable, corresponds to the first part of the rst block (i.e. the one exe-
cuted during the initialization phase); the second one, hold in the rss variable, corresponds to
the second part of the rst block, i.e. a rising edge block. The first two lines of the procedure
initialize the rstss and rss with the null sequential statement. At Line 3, the procedure iterates
over the set of functions of the sitpn parameter. For each function f in the set, an output port
identifier id f is generated, an output port declaration entry is added to the port declaration list
of design d, the binding between function f and identifier id f joins the γ binder.

A function is executed at given state if one of its attached transition is fired. An output
port identifier that implements the execution status of a given function is assigned in the rising
block of the function process. The expression assigned to the output port id f corresponds to
the or sum between each fired port of the TCIs implementing the transitions attached to the
function f . From Line 7 to Line 13, the generate_function_ports procedure builds this or sum
expression. For each transition t associated with the function f , the corresponding TCI idt is
retrieved from the behavior of design d. The internal signal ids associated with the fired port is
looked up in the output port map of TCI idt. Then, the signal identifier ids is composed with the
expression eid f

with the or operator. At the end of the loop started at Line 3, the procedure adds
a new signal assignment statement to the rstss and to the rss variables by composition with the
; operator. In the rstss variable, i.e. in the part of the function process executed during an
initialization phase, the id f output port is assigned to false. In the rss variable, i.e. the part of
the function process executed during a rising edge phase, the id f output port is assigned to
the previously built or sum expression eid f

. The last line of the procedure builds and adds the
function process to the behavior of design d. The function process is a synchronous process,
thus, it declares the clk signal in its sensitivity list. The function process has an empty set of
local variables. Finally, its statement body is composed of a rst block with rstss as a first block,
and a rising edge block wrapping rss.

5.4 Coq implementation of the HILECOP model-to-text trans-
formation

This section presents the implementation of the HILECOP model-to-text transformation with
the Coq proof assistant. The full implementation is available under the sitpn2hvhdl folder of
the following Git repository: https://github.com/viampietro/ver-hilecop

Listing 5.1 gives the Coq implementation of the sitpn_to_hvhdl function presented in an
imperative pseudo-code version in Algorithm 3.� �

1 Definition sitpn_to_hvhdl (sitpn : Sitpn)
2 (decpr : forall x y : T sitpn, {pr x y} + {∼pr x y})
3 (ide ida : ident) (b : P sitpn→ nat) :
4 (design ∗ Sitpn2HVhdlMap sitpn) + string :=

https://github.com/viampietro/ver-hilecop

5.4. Coq implementation of the HILECOP model-to-text transformation 181

5 RedV
6 ((do _ ← generate_sitpn_infos sitpn decpr;
7 do _ ← generate_architecture sitpn b;
8 do _ ← generate_ports sitpn;
9 do _ ← generate_comp_insts sitpn;

10 generate_design_and_binder ide ida)
11 (InitS2HState sitpn Petri.ffid)).� �

LISTING 5.1: The Coq implementation of the sitpn_to_hvhdl function presented
in Algorithm 3.

In Listing 5.1, the sitpn_to_hvhdl function has five parameters: sitpn, the input SITPN
model; decpr, a proof that the pr relation (i.e. the implementation of the firing priority rela-
tion) is decidable over the set of transitions of sitpn (i.e. T sitpn); ide and ida, the entity and
architecture identifiers for the generatedH-VHDL design; the b function that maps the places of
the sitpn parameter to a maximal marking value, i.e. a natural number. The sitpn_to_hvhdl
function returns a couple composed of the generated H-VHDL design, of type design, and the
generated γ binder, of type Sitpn2HVhdlMap sitpn; or, the sitpn_to_hvhdl function returns a
string corresponding to an error message.

In the body of the sitpn_to_hvhdl function, the RedV is a notation that reduces a monadic
function call to a value. Our implementation of the HILECOP transformation function relies on
the state-and-error monad [110]. Each function that implements a part of the transformation
function takes a compile-time state as a parameter, and returns either a value and a new compile-
time state, or an error message. The bind construct of the state-and-error monad permits to
pipeline multiple function calls, and, combined with the do notation, it permits us to write
functional programs in the style of imperative languages. The sequence defined in the body of
the sitpn_to_hvhdl function gives an example of what can be achieved with the combination
of the state-and-error monad and the do notation. This sequence constitutes a single monadic
function that takes a state of the Sitpn2HVhdlState type (see Listing 5.2) as input, and yields a
value with a new state, or an error message. Here, the RedV notation retrieves only the value
returned by the application of the monadic function to the parameter (InitS2HState sitpn
Petri.ffid) (i.e. the initial compile-time state), or it retrieves the error message.

In the do sequence of Listing 5.1, the four first function calls do not return values that are
relevant; thus, we use the underscore notation to notify that we are not interested in the re-
turned values. Indeed, the generate_sitpn_infos, generate_architecture, generate_ports
and generate_comp_insts functions directly modify the compile-time state without returning
a value. They are the functional implementation of the procedures described in the previous
section.

Now, let us present the content of the compile-time state. As said above, the compile-time
state is carried from function to function and modified all along the transformation. Listing 5.2
gives the implementation of the compile-time state structure.� �

1 Record Sitpn2HVhdlState (sitpn : Sitpn) : Type :=
2 MkS2HState {
3 lofPs : list (P sitpn);
4 lofTs : list (T sitpn);

182 Chapter 5. The HILECOP model-to-text transformation

5 lofCs : list (C sitpn);
6 lofAs : list (A sitpn);
7 lofFs : list (F sitpn);
8 nextid : ident;
9 sitpninfos : SitpnInfos sitpn;
10 iports : list pdecl;
11 oports : list pdecl;
12 arch : Architecture sitpn;
13 beh : cs;
14 γ : Sitpn2HVhdlMap sitpn;
15

16 }.� �
LISTING 5.2: The compile-time state structure defined as the Coq

Sitpn2HVhdlState record type.

The compile-time state structure is implemented by the Sitpn2HVhdlState record type.
This type depends on a given sitpn passed as a parameter. It is composed of eleven fields.
The first five fields (Line 3 to 7) are the list versions of the finite sets of places, transitions,
conditions, actions and functions of the sitpn parameter. These fields are filled at the very
beginning of the transformation by the generate_sitpn_infos function, and are convenient
to write functions in the context of dependent types. The nextid field (Line 8) permits us to
generate fresh and unique identifiers all along the transformation. The sitpinfos field (Line 9)
is an instance of the SitpnInfos type that depends on the sitpn parameter. The sitpninfos
field is filled up by the generate_sitpn_infos function. It is a convenient way to represent
the information associated with the places, transitions, conditions, actions and functions of the
sitpn parameter. The iports (resp. oports) field, at Line 10 (resp. at Line 11), gathers the
list of input (resp. output) port declarations of the generated H-VHDL design. The arch field
(Line 12) is an intermediary representation of the behavior of the generated H-VHDL design.
This representation is easier to modify and to handle than a H-VHDL concurrent statement.
The beh field (Line 13) is the behavior of the generated H-VHDL design; it is an instance of the
cs type, i.e. the type of concurrent statements defined in the abstract syntax of H-VHDL. The
γ field (Line 14) is the SITPN-to-H-VHDL binder generated alongside theH-VHDL design, and
returned at the end of the transformation.

At the beginning of the transformation, an initial compile-time state is built with the Init-
S2HState function. The InitS2HState function gives an initial value to the fields of the state
structure; mostly, the fields are initialized with empty lists, and the beh field is initialized with
the null statement. The InitS2HState function takes an Sitpn instance and an identifier as
inputs. The identifier parameter represents the initial value of the nextid field. In Listing 5.1,
the second parameter of the InitS2HState function is Petri.ffid. It corresponds to the first
fresh identifier that the transformation can use to produce a H-VHDL design that respects the
uniqueness of identifiers.

Let us now present the functions composing the do sequence of the sitpn_to_hvhdl func-
tion, and how they modify the compile-time state to produce the finalH-VHDL design and the
γ binder.

5.4. Coq implementation of the HILECOP model-to-text transformation 183

5.4.1 The generate_sitpn_infos function
Listing 5.3 presents a part of the generate_sitpn_infos. The part that is let aside, represented
by little dots, pertains to the creation of the dependently-typed lists constituting the first fields
of the compile-time state structure (Line 3 to 7 in Listing 5.2).� �

1 Definition generate_sitpn_infos
2 (sitpn : Sitpn)
3 (decpr : forall x y : T sitpn, {pr x y} + {∼pr x y}) :
4 Mon (Sitpn2HVhdlState sitpn) unit :=
5 . . .
6 do _ ← check_wd_sitpn sitpn decpr;
7 do _ ← generate_trans_infos sitpn;
8 do _ ← generate_place_infos sitpn decpr;
9 do _ ← generate_cond_infos sitpn;

10 do _ ← generate_action_infos sitpn;
11 generate_fun_infos sitpn.� �

LISTING 5.3: A part of the generate_sitpn_infos function.

The generate_sitpn_infos function takes an Sitpn instance and a proof of decidability for
the pr relation as parameters. It returns a value of type Mon (Sitpn2HVhdlState sitpn) unit.
A value of this type can either be a couple (state, value), where state is of type (Sitpn2HVhdlState
sitpn) and value is of type unit, or an error message. The unit type as only one possible value
tt. The unit type is used here to represent a function that modifies the compile-time state
without returning a value.

The aim of the generate_sitpn_infos function is to fill the sitpninfos field of the compile-
time state; the sitpninfos field is an instance of the SitpnInfos record type. Listing 5.4
presents the definition of the SitpnInfos record type, along with the definition of the Pla-
ceInfo and TransInfo record types.� �

1 Record PlaceInfo (sitpn : Sitpn) : Type :=
2 MkPlaceInfo { tinputs : list (T sitpn);
3 tconflict : list (T sitpn);
4 toutputs : list (T sitpn) }.
5

6 Record TransInfo (sitpn : Sitpn) : Type :=
7 MkTransInfo { pinputs : list (P sitpn); conds : list (C sitpn) }.
8

9 Record SitpnInfos (sitpn : Sitpn) : Type :=
10 MkSitpnInfos {
11 pinfos : list (P sitpn ∗ PlaceInfo);
12 tinfos : list (T sitpn ∗ TransInfo);
13 cinfos : list (C sitpn ∗ list (T sitpn));
14 ainfos : list (A sitpn ∗ list (P sitpn));
15 finfos : list (F sitpn ∗ list (T sitpn));
16 }.� �

LISTING 5.4: The PlaceInfo, TransInfo and SitpnInfos record types.

184 Chapter 5. The HILECOP model-to-text transformation

The PlaceInfo record type is composed of three lists that represent the input transitions,
tinputs, the conflicting output transitions, tconflict, and the non-conflicting output transi-
tions, toutputs, of a place. In the SitpnInfos structure, the pinfos field maps the places of
the sitpn parameter to their respective information, i.e. an instance of the PlaceInfo type.
This mapping is built by the generate_place_infos function called in the body of generate_-
sitpn_infos function. While building an instance of the PlaceInfo type for a given place p, the
generate_place_infos function computes the list of output transitions of p that are in conflict
(in the manner of the outputc function described in Section 5.3.2). First, it computes the list of
output transitions that are linked to the place p through a basic arc; then, the function checks
if all conflicts between the transitions of this list are solved by means of mutual exclusion. If
it is the case, the tconflict field is left empty, and all transitions of the list join the toutputs
list. Otherwise, the function tries to establish a strict total order over the transitions of the list,
by decreasing level of priority. If no such order can be established, the function raises an error;
otherwise, the tconflict field is filled with the ordered list. This process never fails if the input
sitpn parameter is indeed well-defined (cf. Definition 28).

The TransInfo record type is composed of two lists that represent the input places, pinputs,
and the output places, poutputs, of a transition. In the SitpnInfos structure, the tinfos field
maps the transitions of the sitpn parameter to their respective information, i.e. an instance of
the TransInfo type. This mapping is built by the generate_trans_infos function called in the
body of generate_sitpn_infos function.

In the SitpnInfos structure, the cinfos (resp. ainfos and finfos) field maps the conditions
(resp. actions and functions) of the sitpn parameter to the list of transitions (resp. places and
transitions) they are attached to. This mapping is built by the generate_cond_infos (resp.
generate_action_infos and generate_fun_infos) function called in the body of generate_-
sitpn_infos function.

At the beginning of the generate_sitpn_infos function, the check_wd_sitpn function partly
checks the well-definition of the sitpn parameter. Precisely, it checks that the set of places and
transitions of the sitpn parameter are not empty, and that the priority relation is a strict order,
i.e. transitive and reflexive, over the set of transitions. The other parts of the well-definition
checking are performed later during the transformation. For instance, the generate_place_in-
fos function checks that, for each group of transitions in conflict, the conflicts are either solved
by means of mutual exclusion or that the priority relation is a strict total order over this group.
It also checks that there are no isolated places in the input sitpn parameter, etc.

5.4.2 The generate_architecture function

Listing 5.5 presents the generate_architecture function. The generate_architecture func-
tion implements the generate_architecture and the generate_interconnections procedures
detailed in Algorithms 5 and 10. The composition of the generate_place_map and the gener-
ate_trans_map functions implements generate_architecture procedure of Algorithm 5. Pre-
cisely, the generate_place_map function implements the generate_PCIs procedure presented
in Algorithm 6, and the generate_trans_map function implements the generate_TCIs proce-
dure presented in Algorithm 7.� �

1 Definition generate_architecture (sitpn : Sitpn) (b : P sitpn→ nat) :

5.4. Coq implementation of the HILECOP model-to-text transformation 185

2 Mon (Sitpn2HVhdlState sitpn) unit :=
3 do _ ← generate_place_map sitpn b;
4 do _ ← generate_trans_map sitpn;
5 generate_interconnections.� �

LISTING 5.5: The generate_architecture function that implements the
generate_architecture procedure of Algorithm 5.

The generate_architecture function takes an Sitpn instance and the b function as inputs,
and modifies the compile-time state. The generate_architecture function fills the arch field
of the compile-time state; the arch field is an instance of the Architecture record type. List-
ing 5.4 presents the definition of the Architecture record type, along with the definition of the
InputMap, OutputMap and HComponent type aliases.� �

1 Definition InputMap := list (ident ∗ (expr + list expr)).
2 Definition OutputMap := list (ident ∗ ((option name) + list name)).
3 Definition HComponent := (genmap ∗ InputMap ∗ OutputMap).
4

5 Record Architecture (sitpn : Sitpn) := MkArch {
6 sigs : list sdecl;
7 plmap : list (P sitpn ∗ HComponent);
8 trmap : list (T sitpn ∗ HComponent);
9 fmap : list (F sitpn ∗ list expr);

10 amap : list (A sitpn ∗ list expr) }.� �
LISTING 5.6: The Architecture record type, and the InputMap, OutputMap and

HComponent subsidiary types.

The HComponent type is an intermediate representation of an H-VHDL component instan-
tiation statement. This type has been devised to ease the construction of PCIs and TCIs, and
of their generic, input port and output port maps all along the transformation. The HCompo-
nent type is a triplet composed of a generic map as defined in the H-VHDL abstract syntax,
an instance of the InputMap type, and an instance of the OutputMap type. The InputMap type
maps an input port identifier to either a simple expression or to a list of expressions, where the
expr type is the type of expressions defined in theH-VHDL abstract syntax. In an InputMap in-
stance, an input port identifier of a scalar type (i.e. Boolean or constrained natural) is mapped
to a simple expression, whereas an input port identifier of the array type is mapped to a list of
expressions. Each expression of the list represents the actual part associated with one subele-
ment of the input port. Similarly to the InputMap type, the OutputMap type maps an output
port identifier to either an option to a signal (the None value representing the connection to the
open keyword) name, or to a list of signal names. In the definition of the OutputMap type, the
name type represents the type of simple identifiers or indexed identifiers defined in theH-VHDL
abstract syntax.

The Architecture record type is an intermediary representation of the behavioral and
declarative part of an H-VHDL design’s architecture. The sigs field of the Architecture type
represents the internal signal declaration list constituting the declarative part of an H-VHDL
design’s architecture. The transformation adds a new signal declaration entry to the sigs field

186 Chapter 5. The HILECOP model-to-text transformation

every time an internal signal must be generated, for example, during the generation of inter-
connections between PCIs and TCIs. The plmap (resp. the trmap) field maps the places (resp.
transitions) of the sitpn parameter to their corresponding PCI (resp. TCI) implemented in
an intermediate format, i.e. an instance of the HComponent type. The fmap field of the Archi-
tecture type maps the functions of the sitpn parameter to a list of expressions. For a given
function f , the associated list of expressions corresponds to the list of internal signals associ-
ated with the fired port of the TCIs implementing the transitions of the trs(f) set (i.e. the
set of transitions associated with function f). The fmap field is filled by the generate_ports
function described in Listing 5.7. The amap field is the twin of the fmap field but on the side of
the actions of the sitpn parameter. Thus, in the amap field, the list of expressions associated
with an action a corresponds to the list of internal signals connected to the marked port of the
PCIs implementing the places of a.

In the body of the generate_architecture function, the generate_place_map function im-
plements the generate_PCIs procedure described in Algorithm 6. For each place of the sitpn
parameter, the generate_place_map function builds an instance of the HComponent type, and
adds an association between place and HComponent instance in the plmap field. The gen-
erate_place_map function fills the generic, input port and output port map of the HCompo-
nent instances as described in the generate_PCIs procedure. Following the generate_place_-
map function, the generate_trans_map function implements the generate_TCIs procedure de-
scribed in Algorithm 7. For each transition of the sitpn parameter, the generate_trans_map
function builds an instance of the HComponent type, and adds an association between transi-
tion and HComponent instance in the trmap field. The generate_trans_map function fills the
generic, input port and output port map of the HComponent instances as described in the gen-
erate_TCIs procedure. Finally, the generate_interconnections function modifies the input
and output port maps of the HComponent instances in the plmap and trmap fields, and thus,
implements the interconnections described in the generate_interconnections procedure of
Algorithm 10.

5.4.3 The generate_ports function

Listing 5.7 presents the generate_ports function called in the body of the sitpn_to_hvhdl
function (see Listing 5.1). The generate_ports function implements the generate_ports pro-
cedure described in Algorithm 11. The generate_ports function calls three functions: the gen-
erate_action_ports_and_ps function that implements the generate_action_ports procedure
of Algorithm 13, the generate_fun_ports_and_ps function that implements the generate_-
function_ports procedure of Algorithm 14, and the generate_and_connect_cond_ports that
implements the generate_condition_ports procedure of Algorithm 12.� �

1 Definition generate_ports (sitpn : Sitpn) : Mon (Sitpn2HVhdlState sitpn) unit :=
2 do _ ← generate_action_ports_and_ps;
3 do _ ← generate_fun_ports_and_ps;
4 generate_and_connect_cond_ports.� �

LISTING 5.7: The generate_ports function implementing the generate_ports
procedure presented in Algorithm 11.

5.4. Coq implementation of the HILECOP model-to-text transformation 187

For every action of the sitpn parameter, the generate_action_ports_and_ps function adds
a port declaration entry to the oports field of the compile-time state, and adds a binding be-
tween action and output port identifier in the γ field. It also builds the action process as
described in the generate_action_ports procedure, and adds the process to the beh field of
the compile-time state. The generate_fun_ports_and_ps does the same for the functions of the
sitpn parameter, and similarly builds the function process and adds it to the beh field. The
generate_and_connect_cond_ports function add a port declaration entry for every condition
of the sitpn parameter to the iports field of the compile-time state. Then, it modifies the in-
put port map of HComponent instances in the trmap of the compile-time state’s arch field. The
modifications pertain to the connection of input ports to the ic input port of TCIs, as described
in the generate_condition_ports procedure (see Algorithm 12).

5.4.4 The generate_comp_insts and generate_design_and_binder functions

At the end of the sitpn_to_hvhdl function (see Listing 5.1), the generate_comp_insts function
transforms the HComponent instances, associated with places and transitions in the compile-
time state’s arch field, into real component instantiation statements as defined in the H-VHDL
abstract syntax. Then, the generate_design_and_binder builds up the final H-VHDL design
and the γ binder, and returns the couple. Listing 5.8 presents the generate_comp_insts func-
tion and the generate_design_and_binder function.� �

1 Definition generate_comp_insts (sitpn : Sitpn) : Mon (Sitpn2HVhdlstate sitpn) unit :=
2 do _ ← generate_place_comp_insts sitpn; generate_trans_comp_insts sitpn.
3

4 Definition generate_design_and_binder (sitpn : Sitpn) (ide ida : ident) :
5 Mon (Sitpn2HVhdlstate sitpn) (design ∗ Sitpn2HVhdlMap sitpn) :=
6 do s ← Get;
7 Ret ((design_ ide ida [] ((iports s) ++ (oports s)) (sigs (arch s)) (beh s)), (γ s)).� �

LISTING 5.8: The generate_comp_insts and the generate_design_and_binder
function.

The generate_comp_insts function is needed because we are using an intermediary repre-
sentation for the component instantiation statements. Even though this representation is con-
venient to manipulate data during the different phases of the transformation, it also implies
an extra generation step to complete the generation of the H-VHDL design and the γ binder.
The generate_comp_insts function calls the generate_place_comp_insts and the generate_-
trans_comp_insts functions. These two functions being similar in all points, except for the
type of their inputs, we are only presenting the generate_place_comp_insts function here.
The generate_place_comp_insts function calls the generate_place_comp_inst function for
each place defined in the set of places of the sitpn parameter. Listing 5.9 presents the code the
generate_place_comp_inst function.� �

1 Definition generate_place_comp_inst (sitpn : Sitpn) (p : P sitpn) :
2 Mon (Sitpn2HVhdlstate sitpn) unit :=
3

4 do idp ← get_nextid;

188 Chapter 5. The HILECOP model-to-text transformation

5 do _ ← bind_place p idp;
6 do pcomp ← get_pcomp p;
7 do pci ← HComponent_to_comp_inst idp place_entid pcomp;
8 add_cs pci.� �

LISTING 5.9: The generate_place_comp_inst function.

The generate_place_comp_inst function generates a fresh and unique PCI identifier by
appealing to the get_nextid function. The get_nextid function returns and increments the
current value of the nextid field, defined in the compile-time state. Then, the bind_place
function adds a binding between the place p and the identifier idp in the γ field of the compile-
time state. The get_pcomp function looks up the plmap field (defined under the arch field of
the compile-time state) and returns the HComponent instance associated with the place p, i.e.
pcomp. The HComponent_to_comp_inst function translates the HComponent instance pcomp into
a PCI with the identifier idp. Finally, the add_cs function composes the returned PCI with the
currentH-VHDL design behavior, hold in the beh field of the compile-time state.

The transformation of a HComponent instance into a PCI implies the translation of the input
and output port map, which are instances of the InputMap and OutputMap types, into their
equivalent representation in H-VHDL abstract syntax. The translation especially concerns the
association between a port identifier of the array type and a list of expressions, or names. For
instance, let us consider an instance of InputMap that is an intermediary representation of the
input port map of a PCI idp. In this InputMap instance, the itf port, which is a composite input
port of the place design, is associated with the list [ida, idb, idc]. Then, based on the previous
association, the HComponent_to_comp_inst function generates the following associations is the
concrete input port map of PCI idp: (rt(0), ida), (rt(1), idb) and (rt(2), idc).

Getting back to Listing 5.8, the generate_design_and_binder function retrieves the current
compile-time state s with the Get function. Then, based on the value of the different fields of
the compile-time state, the function builds an H-VHDL design and returns it along with the γ
binder. TheH-VHDL design receives the ide and ida identifiers, passed as inputs, as the design’s
entity and architecture identifiers. The generic constant declaration list of the H-VHDL design
is empty, i.e. it receives the empty list value. The port declaration list of the H-VHDL design
is built by concatenating the content of the iports and oports fields defined in state s. The
internal signal declaration list is filled by the sigs field, defined under the arch field of state s.
Finally, the beh field receives the behavior of theH-VHDL design.

5.5 Conclusion

The purpose of this chapter was to give to the reader a complete understanding of the HILECOP
model-to-text transformation function, and of what makes it a very specific transformation
case. We first gave an informal presentation of the transformation function with a high-level
view of the transformation principles. Then, we presented our literature review pertaining to
transformation functions in the context of formal verification, with a particular focus on the
expression and the implementation of transformation functions. Two points, drawn out from
the literature review, are of particular interest. First, the review showed that it is important,

5.5. Conclusion 189

during a transformation, to keep the binding between the elements of the source representa-
tion and their corresponding versions in the target representation. This binding is the base
of the comparison of the run-time state of the source and target representation that permits
to express the theorem of semantic preservation. Second, if the distance between the source
and the target representation is too important, it is easier, while aiming at proving a semantic
preservation property, to split the transformation into multiple simple transformation steps.
Then, to each transformation step will correspond an intermediary representation, and a theo-
rem of semantic preservation will be laid out and proved for each one of them. In the case of
the HILECOP model-to-text transformation, even though the transformation has a lot of tricky
aspects pertaining to particular cases of input models, there is no need to split the transforma-
tion into simple steps with intermediary representations. Even though the verification task is
quite close, the HILECOP transformation is quite different from the certified GPL or the HDL
compilers presented in the literature review. Indeed, the source representation is an input
model not a programming language. Moreover, due to the interconnection of the component
instances generated by the transformation function, devising a transformation algorithm that
generates modular and independently executable code is impossible. As everything is con-
nected, one has to reason over the entire transformation process to get the overall behavior of
the generated H-VHDL design. This is also one of the main difference between the HILECOP
transformation and compilers for programming languages. Despite all that, the transformation
algorithm, presented in this chapter, gets as close as possible to a modular expression of the
HILECOP transformation.

191

Chapter 6

Proving semantic preservation in
HILECOP

In this chapter, we present our semantic preservation theorem along with its informal “paper”
proof. The written proof is about a hundred-page long. Therefore, we will only present here
the “high-level” theorems and lemmas involved in the demonstration, and some points of
our proof strategy. The full proof is available to the reader in Appendix D. The structure of
this chapter is as follows: in Section 6.1, we present our review of the literature related to
the proof of semantic preservation theorems for transformation functions; in Section 6.2, we
detail our state similarity relation, i.e. the semantic relation between an SITPN and itsH-VHDL
translation; in Section 6.3, we draw out our behavior preservation theorem; in Section 6.4,
we detail a particular point of the proof related to the SITPN firing process, and leverage the
opportunity to demonstrate some recurring points of our proof process; also, we show how
this point of the proof has led to a bug detection in the code of the H-VHDL transition design;
in Section 6.5, we present some points of the mechanization of the proof with the Coq proof
assistant.

6.1 Proofs of semantic preservation in the literature

In this section, we present a review of the literature about the verification of transformation
functions. A transformation function is understood here as any kind of mapping from a source
representation to a target representation, where the source and target representations have a
behavior of their own (i.e. they are executable). Here, we will focus on verification techniques
based on the proof of semantic preservation theorems, with extra interest when the proofs are
mechanized within the framework of a proof assistant. We are interested in how to prove that
transformation functions are semantic preserving. Especially, we are interested in the expres-
sion of semantic preservation theorems and in seeking usual proof strategies, or patterns. By
proof strategy, or proof pattern, we mean the description of the way to perform a proof. For in-
stance, if the authors use induction to prove their theorem of semantic preservation, the choice
of the element on which the induction will be performed is part of the proof strategy.

The goal is to draw our inspiration from the literature and to see how far the correspondence
holds between our specific case of transformation, and other cases of transformations. The

192 Chapter 6. Proving semantic preservation in HILECOP

material used for the literature review is divided into three categories. Each category covers a
specific case of transformation function; the three categories are:

– Compilers for generic programming languages

– Compilers for hardware description languages

– Model-to-model and model-to-text transformations

In [72], X.Leroy presents the two points of major importance to express semantic preserva-
tion theorems for GPL (Generic Programming Language) compilers, and more generally to get
the meaning of semantic preservation.

The first point is to clearly state how things are compared between the source and the target
programs. It is to describe the runtime state of the source and the target and draw a correspon-
dence between the two. This is expressed through a state comparison relation.

The second point is to relate the execution of the source program to the execution of the
target program through a simulation diagram, equivalently named bisimulation or commuting
diagram. Figure 6.1, excerpt from [72], shows the different kinds of simulation diagrams pos-
sibly relating two programs together.

FIGURE 6.1: Simulation diagrams relating the execution of a source program to the
execution of a target program; S1 and S2 are the initial states of the source and the
target program, and S′1 and S′2 are the final states of the source and target program,
i.e. the states resulting of the execution of the two programs. The ∼ symbol repre-
sents the state comparison relation between the source and target language states.
The arrows represent the execution relation for the source and target program pro-

ducing the observable execution trace t.

Choosing an adequate simulation diagram to express a semantic preservation theorem de-
pends on the kind of possible behaviors that a given program can exhibit. In the case of GPL
programs, X.Leroy lists three kinds of possible behaviors: either the program execution suc-
ceeds and returns a value, or the program execution fails and returns an error, or the program
execution diverges. In the case where the source program execution succeeds, a theorem of
semantic preservation takes the general form of Definition 36.

6.1. Proofs of semantic preservation in the literature 193

Definition 36 (General behavior preservation theorem). Consider a source programming
language L1 and a target programming language L2, and a source program P1 ∈ L1 compiled
into a target program P2 ∈ L2 by compiler comp ∈ L1 → L2. Consider an initial state S1 for
program P1 and an initial state S2 for program P2 such that S1 and S2 are similar states w.r.t. to a
given state comparison relation established between L1 and L2. Then, compiler comp is semantic
preserving if it verifies the following property:
If the execution of P1 leads from state S1 to final state S′1, then there exists a final state S′2 resulting
of the execution of program P2 from state S2 such that S′1 and S′2 are similar w.r.t. the state
comparison relation.

Compiler verification aims at proving the kind of theorem stated above.
Now that we have clarified the meaning of semantic preservation for GPL compilers, we

state that this definition of semantic preservation holds also for a more general case of transfor-
mation from a source representation to a target representation. The only condition to be able to
verify that a transformation is semantic preserving is that the source and target representations
must have an execution semantics (i.e, the instances of the source and target representations
must be executable).

For each article used in the literature review and presenting a specific case of transforma-
tion, the following questions have been asked:

– What are the similarities/differences between source and target representations? May they
be programs of GPLs, or models of a given model formalism.

– How is defined the runtime state for the source and target representations?

– How is expressed the state comparison relation?

– How is expressed the semantic preservation theorem?

– What is the employed proof strategy?

6.1.1 Compilers for generic programming languages

Taking the CompCert compiler as an example, the compilation pass from Clight programs to
Cminor programs is described in [13, 72]. Clight is a subset of the C language, and Cminor
is a low-level imperative language. The two languages are endowed with both a big-step and
small-step operational semantics. Here, the execution state of the source and target languages
are memory models for the most part, but are also completed with representations of global
variable storage, registers, etc. The memory model consists of block references; each block has
a lower and an upper bound. To access data, one has to specify the block reference along with
the size of the accessed data (i.e, the data type) and the offset from the start of the block refer-
ence (i.e, where to begin the data reading). Regarding the proof of semantic preservation, the
most difficult point is to relate the memory state of the source program to the memory state of
the target program. To do so, the authors define a memory injection relation, which binds the

194 Chapter 6. Proving semantic preservation in HILECOP

values of source and target together. They also establish a relation to compare execution en-
vironments, i.e, the environments holding the declaration of functions, global variables. . . The
proof of semantic preservation is built incrementally. First, the authors prove a correctness
lemma for the Clight expressions: if a Clight expression a evaluates to value v, then the trans-
lated Cminor expression bac evaluates to value v (the Clight and Cminor languages have the
same set of values). Then, they prove a similar lemma for Clight statements, and finally for the
entire Clight program. The proof strategy is to reason by induction over the evaluation relation
of the Clight programs and perform case analysis on the translation function.

The pattern to compiler verification for GPLs is more or less the same as presented above. In
the case of compilers for imperative languages [72, 103], or compilers for functional languages
[30, 105], compiler verification proceeds as follows:

1. Establish a relationship between the memory models of the source and target languages,
and between the global execution environments.

2. Prove correctness lemmas starting from simple constructs, and building up incrementally
to consider entire programs.

3. Reason by induction over the evaluation relation of the source language, and the translation
function.

Relating memory models is more difficult when the gap between the source and target
languages is important (for instance, the translation of Cminor programs into RTL (Register
Transfer Language, which is close to assembly languages) programs in [72]). As a consequence,
the complexity of the memory model comparison relation increases.

6.1.2 Compilers for hardware description languages

In the case of HDL (Hardware Description Language) compilers, proving semantic preserva-
tion is very similar to the case of GPL compilers. Of course, the difference lies in the semantics
of HDL languages and the description of execution states. The semantics of HDLs is intrinsi-
cally related to the notion of execution over time, or over multiple clock cycles; we are dealing
with reactive systems. Therefore, the semantic preservation theorems are formulated w.r.t. the
synchronous or the time-related semantics of the considered languages.

In [18, 22], the source language is a subset of the BlueSpec specification language for hard-
ware synthesis, and the target language is an RTL representation of the circuit. The runtime
state of the source and target programs are basically a mapping between registers to values.
In [18], the execution state also holds a log of the read and write operations of the input pro-
gram, and this log is compared to the log of the RTL representation. The semantic preservation
theorem takes the general form of Definition 36, however, the final states refer to the states of
source and target programs at the end of a clock cycle. Thus, the semantic preservation theo-
rem states that starting from equal register stores after the execution of a source program and
its RTL (Register Transfer Level1) circuit after one clock cycle leads to equal register stores.

1The acronymn RTL is used both in the world of microelectronic and computer science. In computer science,
it means Register Transfer Language and refers to a language which level is close to assembly languages. In
microelectronic, it means Register Transfer Level and is a method to give a high-level representation of a circuit.

6.1. Proofs of semantic preservation in the literature 195

In [19], the source language is a subset of Lustre and the target language is an imperative
language called Obc. A Lustre program is composed of nodes; each node treats a set of input
streams and publishes output streams after the computation of its statement body. In its state-
ment body, a Lustre node possibly refers to instances of other nodes. In the compilation process,
each Lustre node is translated into an Obc class. An Obc class holds a vector of variables com-
posing its internal memory and a vector of other Obc class instances. The authors define a
data flow semantics for the Lustre language; the rule instances of the semantics describe how
output streams are computed based on input streams. On the side of the Obc language, the
semantics define a function step that computes the execution of the Obc classes over one clock
cycle. To prove the semantic preservation theorem, the state comparison relation binds the val-
ues of input and output streams on one side to the values of variables and Obc class instances
on the other side. The semantic preservation theorem is as follows: if a Lustre node yields the
output stream o from an input stream i, then the iterative execution of the step function for the
corresponding Obc class incrementally builds the output stream o given the values of the input
stream i. The proof is done by induction over the clock step count, and by induction over the
evaluation relation for the Lustre statements composing the body of nodes.

In [76], the HDL compiler translates Verilog modules into netlists. The execution state of
Verilog module holds the value of the variables declared in the module. The execution state of
a netlist circuit holds the value of the registers declared in the circuit. Therefore, the state com-
parison relation, used to state the semantic preservation theorem, binds the values of variables
on one side to the values of registers on the other side. The semantics of Verilog is quite similar
to the one of VHDL; a set of processes composing a module are executed w.r.t. the simulation
semantics of the language, i.e, composed of synchronous and combinational execution steps.
The authors give a big-step operational semantics to netlists by defining an interpreter that
runs a netlist over n clock cycles. The semantic preservation theorem is as follows: Assuming
that a module is transformed into a circuit, and that some well-formation hypotheses hold on
the module, if the module executes without error, and yields a final state venv, then there exists
a final state cenv yielded by the execution of the circuit over n clock cycles s.t. venv and cenv
are similar according to the relation verilog_netlist_rel. Here, the verilog_netlist_rel is the state
comparison relation, which relates variables to registers.

In [115], the compiler transforms programs of the synchronous language SIGNAL into Syn-
chronous Clock Guarded Actions programs (S-CGA programs). A SIGNAL program describes
a set of processes; each process holds a set of equations describing the relation between signals.
The equations can be synchronous equations (referring to a clock) or combinational ones. An
S-CGA program defines a set of actions to be applied to some variables when some conditions
(the guards) are met. The SIGNAL (resp. the S-CGA) language has been endowed with a
trace semantics describing the computation of signal values (resp. variable values) over time.
The authors describe a function to translate the traces of SIGNAL and S-CGA programs into
a common trace model. Thus, the semantic preservation theorem is stated by comparing two
traces of execution defined through the same model. The proof of the semantic preservation
theorem is built incrementally. For each statement of a SIGNAL process, the authors exhibit a
lemma proving that the trace resulting from the execution of the statement is equivalent to the
trace resulting of the execution of the corresponding guarded actions (obtained through the
compilation). The proof is fully mechanized within the Coq proof assistant.

196 Chapter 6. Proving semantic preservation in HILECOP

In [56], the authors verify a methodology to design hardware models with SystemC mod-
els. SystemC models describe hardware systems with modules; a module is a C++ class with
ports, data members and methods. The methodology describes a transformation from Sys-
temC models to Abstract State Machine (ASM) thus enabling to model-check the hardware
models. ASMs are described in the language AsmL; in AsmL, an ASM is implemented by a
class with data members and methods. A denotational (fixpoint) semantics for SystemC mod-
els is defined along with a denotational semantics for AsmL. The semantics is another variant
of simulation cycle, similar to all other synchronous languages. There are two phases: eval-
uate and update and the gap between the two is called a delta-delay. The execution state of
a SystemC model is divided into a signal store, mapping signal to value, and a variable store,
mapping variable to value. The execution state of an AsmL class is only composed of a variable
store. The theorem of semantic preservation states that, after translation, a SystemC model has
the same observational behavior than its corresponding AsmL class. What is compared between
a SystemC model and its corresponding AsmL class through their observational behavior is
the activity of the processes of the first one and the activity of the methods of the second one.
Processes and methods must be active at the same delta cycles. Therefore, what is compared
here are not the values that the execution states hold, but rather the activity of the source and
target programs.

6.1.3 Model transformations

Regarding model transformations, a lot of articles consider semantic preservation as the preser-
vation of structural properties in the transformed model [7, 25, 77].

Still, there are many cases where the source model and the target one have both an exe-
cution semantics. In these cases, the authors are interested in proving that the transformation
is semantic preserving by showing that the computation of the source model and the target
model follow a commuting diagram (see Figure 6.1).

In [34] and [114], the authors are interested in giving a translational semantics to a given
model having itself a reference execution semantics. In [34], the source models are called
xSpem models; they describe a set of activities that exchange resources and hold an internal
state. The target models are PNs. Both xSpem models and PNs have a state transition se-
mantics. The state comparison is performed by checking the correspondence between each
current status of the activities describe in an xSpem model and the marking of the PN. Then,
the authors prove a bisimulation theorem, illustrated in Figure 6.2.

6.1. Proofs of semantic preservation in the literature 197

FIGURE 6.2: Bisimulation diagram relating an xSpem model execution and a Petri
net execution

In Figure 6.2, on the right side of the diagram, i.e, the Petri net side, one can see that a
Petri net possibly performs many internal actions (represented the arrow τ→∗) before and after
executing the computation step that is of interest for the proof (i.e, action λ). The proof is per-
formed by reasoning by induction on the structure of the xSpem models, and then by reasoning
of the state transition semantics of xSpem models and PNs.

In [114], the authors describe a transformation from a model of the AADL formalism (Archi-
tecture Analysis and Design Language) to a particular kind of Abstract State Machine (ASM)
called Timed Abstract State Machines (TASM). To verify that the transformation is semantic
preserving, the authors define the semantics of AADL models and TASMs through Timed Tran-
sition Systems (TTSs). Thus, the execution state of an AADL model is the execution state of the
corresponding TTS, and the same holds for a TASM. Comparing the state of two TTSs is easier
than comparing the state of two different models, thus having two different definitions. Then,
the authors prove a strong bisimulation theorem to verify that the transformation is semantic
preserving. The whole proof is mechanized within the Coq proof assistant.

In [50], the authors describe a transformation from LLVM-labelled Petri nets to LLVM pro-
grams, where LLVM is low-level assembly language. Precisely, the generated LLVM program
implements the state space of the source Petri net (i.e, the graph of reachable markings). The
authors want to verify if an LLVM program truly implements the PN state space, i.e. if each
marking present in the PN state space can be reached by running a specific f iret function on
the generated LLVM program. The state of an LLVM program is defined by a memory model
composed of a heap and a stack. The marking of an LLVM-labelled PN is defined in such a
manner that the correspondence with the LLVM program memory model is straightforward.
The PN model has classical firing semantics, and LLVM programs follow a small-step opera-
tional semantics. The semantic preservation theorem states that for all transition t being fired,
leading from marking M to marking M′, then applying running the f iret function over the
generated LLVM program at state LM (such that LM implements marking M) leads to a new
state LM′, such that LM′ implements marking M′. To prove this theorem, the authors proceed
by induction on the number of places of the input Petri net.

198 Chapter 6. Proving semantic preservation in HILECOP

6.1.4 Discussions on transformations and proof strategies
In this thesis, we are interested in the verification of a semantic preservation property for a
given transformation function. To achieve this kind of proof task, the way to proceed is quite
similar, at least in the three cases of transformation presented above (i.e, GPL compilation,
HDL compilation, and model transformations). Even though the source and target languages
or models are different from one case of transformation to the other, however, semantic preser-
vation theorems carry the same structure, i.e. the one presented in Definition 36. The state
comparison relation and the choice of the commuting diagram (i.e. how much computational
steps of the target representation correspond to one computational step of the source represen-
tation) are the two angular stones of the process.

One can notice that when verifying the transformation of HDL programs, the semantic
preservation theorems are expressed in terms of a time-related computational step. It can ei-
ther be a clock cycle or another kind of time step. The state equivalence checking is made at
the end of this time-related computational step. This differs from the expression of behavior
preservation theorems for GPLs, where a computational step is not related to time, but rather
expresses the one-time computation of programs.

Concerning proof strategies, in the case of programming languages, proving the semantic
preservation theorems is systematically done by induction over the semantics relations of the
source and target languages, and by reasoning on the translation function. The semantics rela-
tions are themselves defined by following the inductive structure of the language ASTs. In the
case of model transformations, when the source model makes it possible, the proofs are per-
formed similarly by applying inductive reasoning over the structure of the input model. This
enables compositional reasoning, i.e: to split the difficulty of proving the semantic preservation
theorem into simpler lemmas about the execution of simpler programs or simple model struc-
tures. Based on these observations, we will now present the relation that allows us to compare
the runtime state of a given SITPN model with the runtime state of an H-VHDL design. This
state similarity relation will then permit us to express our semantic preservation theorem.

6.2 The state similarity relation

Before presenting our behavior preservation theorem, we must clarify the meaning of semantic
preservation between an SITPN and anH-VHDL design. To do so, we must define:

1. What does semantic similarity mean between an SITPN state and aH-VHDL state?

2. When, in the course of the execution of an SITPN and anH-VHDL design, must this seman-
tic similarity hold?

We must relate the elements that constitute the execution state of an SITPN to the elements
that constitute the execution state of aH-VHDL design. An SITPN state is an abstract structure
relating the places, transitions, actions, functions and conditions of a given SITPN to the values
of certain domains (see Section 3.2.2). An H-VHDL design state is composed of a signal store
mapping signals to values, and of a component store mapping component instances to their

6.2. The state similarity relation 199

own internal states (which are themselves design states). Thanks to the binder function γ (cf.
Definition 35) generated alongside the transformation from an SITPN to an H-VHDL design,
we are able to relate the elements of the SITPN state structure to the component instance states
and signal values of theH-VHDL design state. The γ binder generated by the transformation is
a bijective function. Thus, the state similarity relation, depending on a γ binder and expressing
a semantic match between an SITPN state and anH-VHDL design, is defined as follows:

Definition 37 (General state similarity). For a given sitpn ∈ SITPN, an H-VHDL design
d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ WM(sitpn, d), an SITPN
state s ∈ S(sitpn) and a design state σ ∈ Σ are similar, written γ ` s ∼ σ if

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s.M(p) = σ(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s.I(t) ≤ l(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) ≤ u(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)
.

3. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s.resett(t) = σ(idt)(s_reinit_time_counter).

4. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, s.cond(c) = σ(idc).

5. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s.ex(a) = σ(ida).

6. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).

In Property 1, based on the γ binder, we relate the marking value of a place p at state s to the
value of the s_marking signal inside the internal state of the place component instance (PCI)
idp. The expression σ(idp) returns the internal state of PCI idp by looking up the component
store of state σ. Properties 2 and 3 similarly relate the value of time counters (resp. reset orders)
of transitions to the value of the signals s_time_counter (resp. s_reinit_time_counter) in the
internal state of the corresponding transition component instances (TCIs). In item 4 (resp. 5
and 6), the boolean value of conditions (resp. actions and functions) are compared to the value
of input (resp. output) ports of theH-VHDL design, also based on the γ binder.

As one can observe in Property 2, the relation between the value of a time counter and the
value of the s_time_counter signal is particular. It is due to the definition domain of time in-
tervals. In the definition of the SITPN structure, a time interval i is defined as follows: i = [a, b]
where a ∈ N∗ and b ∈ N∗ t {∞}. In the SITPN semantics, depending on certain conditions,
a time counter possibly increments its value until it reaches the upper bound of the associated
time interval. Therefore, a time counter associated to a time interval with an infinite upper
bound will possibly increment its value indefinitely. While acceptable in the theoretical world,
this is not acceptable is the world of hardware circuits where all dimensions and values are
finite. On the H-VHDL side, the signal s_time_counter, which value represents the value of a
time counter, will stop its incrementation to the lower bound of the time interval in the case

200 Chapter 6. Proving semantic preservation in HILECOP

where the upper bound is infinite. As long as the value of the time counter is less than or equal
to the lower bound of the time interval, we look for a perfect equality between the value of
the time counter and the value of the s_time_counter signal. When the time counter reaches
the lower bound, the values possibly diverge (i.e, the time counter value continues to be incre-
mented while the value of the s_time_counter signal stalls). In that case, we are only inter-
ested in knowing that the value of the s_time_counter signal is equal to the value of the lower
bound of the time interval. The two last subformulas of Property 2 are necessary to cover
the case where a time counter has overreached the upper bound of its time interval. In that
case, the time counter becomes locked. The s_time_counter signal can not overreach the upper
bound of the time interval without causing an overflow. Thus, the value of the s_time_counter
signal diverges from the value of its corresponding time counter when the time counter over-
reaches the upper bound of its time interval. While the time counter is less than or equal to the
upper bound of its time interval, we look for a perfect equality between the value of the time
counter and the value of the s_time_counter signal. When the time counter overreaches the
upper bound, the value of the time counter stalls to upper bound plus one, and the value of
s_time_counter stalls to upper bound. In that case, we are only interested in knowing that the
value of the s_time_counter signal is equal to the value of the upper bound of the time interval.

The second question that we asked above was: when must the state similarity relation hold
in the course of the execution? The source and target representations are both synchronously
executed. Thus, we find it natural to check that the state similarity relation holds at the end of
a clock cycle. However, due to modifications resulting after a bug detection (see Section 6.4),
the state similarity relation of Definition 6.2 does not hold at the end of a clock cycle. The
equality between the value of reset orders and the value of the s_reinit_time_counter signals
(Property 3) is not verified. However, this semantic divergence is without effect. New reset
orders are computed at the beginning of a clock cycle such that the relation of Property 3 holds
in the middle of the clock cycle (i.e, just before the falling edge of the clock). This is the only
moment during the clock cycle where the s_reinit_time_counter signal is actually involved
in the computation of other signals value. Thus, it is sufficient that Property 3 holds only in the
middle of the clock cycle. However, we must now define two state similarity relation; one that
checks the semantic similarity after the rising edge of the clock signal (i.e, in the middle of the
clock cycle), and one that checks the semantic similarity after the falling edge of the clock signal
(i.e, at the end of the clock cycle). The state similarity relation after a rising edge is defined as
follows:

Definition 38 (Post rising edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL
design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ WM(sitpn, d), an
SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are similar after a rising edge, written

γ ` s
↑∼ σ iff

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s.M(p) = σ(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s.I(t) ≤ l(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)

6.2. The state similarity relation 201

∧
(
u(Is(t)) = ∞ ∧ s.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) ≤ u(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)
.

3. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s.resett(t) = σ(idt)(s_reinit_time_counter).

4. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s.ex(a) = σ(ida).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).

Definition 38 is similar to Definition 37 in all points, except for the value of conditions.
A condition of an SITPN is implemented by an input port in the resulting H-VHDL top-level
design. In the H-VHDL semantics, the value of primary input ports (i.e, the input ports of
the top-level design) are updated at each clock edge. In the SITPN semantics, the value of
conditions are updated only at the falling edge of the clock. Consider that a given SITPN is
executed at clock cycle τ; after the rising edge of the clock, the value of conditions are equal
to their value at clock cycle τ − 1, whereas the value primary input ports have been updated
to fresh values. Thus, we will have to wait for the next falling edge to reach the equality
between condition values and input port values. Therefore, there is a semantic divergence
between the value of conditions and the value of input ports in the middle of the clock cycle,
i.e. just before the next falling edge of the clock signal. However, similarly to the case of reset
orders and s_reinit_time_counter signals, conditions and their corresponding input ports
are only involved in computations at the falling edge of the clock cycle. Thus, it is sufficient
that Property 4 holds only right after the falling of the clock signal.

The state similarity relation draws out a correspondence between the values hold by an
SITPN state and the values of the signals declared in an H-VHDL design state. However, to
complete the proof of semantic preservation, we sometimes have to relate the value of signals to
the value of expressions or predicates involved in the SITPN semantics. For instance, consider
a given SITPN state s and a given H-VHDL design state σ, and consider a transition t and
its corresponding TCI idt. It is useful to show that, after a rising edge, the value of signal
s_enabled at state σ(idt), where σ(idt) denotes the internal state of component instance idt at
state σ, is equal to the predicate t ∈ Sens(s.M) stating that the transition t is sensitized (or
enabled) by the marking at state s (i.e, s.M). Thus, for the convenience of the proof, we enrich
our definitions of the state similarity relations with formulas relatingH-VHDL signals to SITPN
semantics predicates and expressions. Consequently, the full post rising edge state similarity
relation is defined as follows:

Definition 39 (Full post rising edge state similarity). For a given sitpn ∈ SITPN, an H-
VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈WM(sitpn, d),
a clock cycle count τ ∈N, and an SITPN execution environment Ec ∈N→ C → B, an SITPN
state s ∈ S(sitpn) and a design state σ ∈ Σ are fully similar after a rising edge happening at

clock cycle count τ, written γ, Ec, τ ` s
↑≈ σ, if γ ` s

↑∼ σ (Definition 38) and

1. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Sens(s.M)⇔ σ(idt)(s_enabled) = true.

202 Chapter 6. Proving semantic preservation in HILECOP

2. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Sens(s.M)⇔ σ(idt)(s_enabled) = false.

3. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,

σ(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

4. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, σ(idc) = Ec(τ, c).

Definition 39 extends Definition 38 with the correspondence of the sensitization of transi-
tions and the value of signal s_enabled, and the computation of the boolean product of condi-
tion values and the value of signal s_condition_combination. The last item of Definition 39
relates the value of the input port identifiers to the value of conditions yielded by the environ-
ment at the clock cycle τ. In the H-VHDL simulation cycle, the input ports receive new values
from the environment at the beginning of the clock cycle, whereas, in the SITPN semantics, the
value of conditions are updated at the falling edge of the clock signal (i.e. in the middle of the
clock cycle). The last item of Definition 39 is a way to register the value of input port identifiers
at the end of a rising edge phase. This information will then allow us to prove the equality of
value between the input port identifiers and their corresponding conditions at the occurrence
of the next falling edge.

Now, let us define the state similarity relation describing how an SITPN state and an H-
VHDL design state must be compared, after the falling edge of a clock signal:

Definition 40 (Post falling edge state similarity). For a given sitpn ∈ SITPN, an H-VHDL
design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈ WM(sitpn, d), an
SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are similar after a falling edge, written

γ ` s
↓∼ σ, if

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s.M(p) = σ(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s.I(t) ≤ l(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s.I(t) ≤ u(Is(t))⇒ s.I(t) = σ(idt)(s_time_counter)

)
.

3. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, s.cond(c) = σ(idc).

4. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s.ex(a) = σ(ida).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s.ex(f) = σ(id f).

As explained above, Definition 40 is similar to Definition 37 except for the equality between
reset orders and the value of the s_reinit_time_counter signals. The extended version of the

6.3. Behavior preservation theorem 203

post falling edge state similarity relation is defined as follows:

Definition 41 (Full post falling edge state similarity). For a given sitpn ∈ SITPN, an H-
VHDL design d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈WM(sitpn, d),
an SITPN state s ∈ S(sitpn) and a design state σ ∈ Σ are fully similar after a falling edge,

written γ ` s
↓≈ σ, if γ ` s

↓∼ σ (Definition 40) and

1. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Firable(s)⇔ σ(idt)(s_firable) = true.

2. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Firable(s)⇔ σ(idt)(s_firable) = false.

3. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Fired(s)⇔ σ(idt)(fired) = true.

4. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Fired(s)⇔ σ(idt)(fired) = false.

5. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, ∑
t∈Fired(s)

pre(p, t) =

σ(idp)(s_output_token_sum).

6. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, ∑
t∈Fired(s)

post(t, p) =

σ(idp)(s_input_token_sum).

Definition 41 extends Definition 40 by drawing out a correspondence between:

– The firability of transitions and the value of the signal s_firable.

– The firing status of transitions (i.e, transitions are fired or not) and the value of the output
port fired.

– The sum of tokens consumed by the firing process and the value of the signal s_output_-
token_sum.

– The sum of tokens produced by the firing process and the value of the signal s_input_-
token_sum.

6.3 Behavior preservation theorem

In this section, we describe the major theorems and lemmas stating that the HILECOP transfor-
mation function is semantic preserving. We also present the informal proofs for these theorems
and lemmas. In our proofs, we often refer to theorems and lemmas that are not yet presented
at the moment of the reading. Therefore, we provide, in Appendix C, a graph of the depen-
dencies between our high-level theorems and the other theorems and lemmas to which they
appeal in their proof.

204 Chapter 6. Proving semantic preservation in HILECOP

6.3.1 Proof notations
To add some readability to our proofs, we use the following notations:

– The most recent framed box above the point of reading denotes the current pending goal
(what we are currently trying to prove): ∀n ∈N, n > 0∨ n = 0

– A red framed box denotes a completed goal (i.e. equivalent to QED): true = true

– A green framed box denotes the current induction hypothesis:

∀n ∈N, n + 1 > 0

– The mention CASE directly follows an item bullet to denote a case during a proof by case
analysis.

During a proof, we constantly refer to the names of the constants and signals declared in the
H-VHDL place and transition designs. Some constants and signals have very long names,
and therefore we use aliases to refer to them in the following proofs. Table D.1 gives the full
correspondence between constant and signal names and their aliases. Also, during a proof and
when there is no ambiguity, idp (resp. idt) denotes the PCI (resp. TCI) identifier associated to a
given place p (resp. transition t) through γ(p) = idp (resp. γ(t) = idt), where γ is the binder
returned by the transformation function. Similarly, idc (resp. ida and id f) denotes the input port
(resp. output port and output port) identifier associated to a given condition c (resp. action a
and function f) through γ(c) = idc.

6.3.2 Preliminary definitions

We define here some relations that are necessary to formalize our theorem of behavior preser-
vation.

In an SITPN, the conditions associated to transitions receive fresh Boolean values from an
execution environment at each falling edge of the clock. During the simulation of a top-level
design, the input ports of the design receive fresh values from a simulation environment at
each clock event. The transformation function generates an input port in the top-level design
that will reproduce the behavior of a given SITPN condition. The binder γ, generated along-
side the top-level design, relates a given condition c to its corresponding input port identifier
idc. To compare the execution/simulation traces of an SITPN and a H-VHDL design, we must
assume that the execution/simulation environments assign similar values to conditions and to
their corresponding input ports at a given clock cycle. Definition 42 states that the execution
environment for a given SITPN and the simulation environment for a given H-VHDL design
are similar.

Definition 42 (Similar environments). For a given sitpn ∈ SITPN, a H-VHDL design d ∈
design, a design store D ∈ entity-id 9 design, an elaborated version ∆ ∈ ElDesign of design
d, and a binder γ ∈ WM(sitpn, d), the environment Ep ∈ N → Ins(∆) → value, that

6.3. Behavior preservation theorem 205

yields the value of the primary input ports of ∆ at a given simulation cycle, and the environment
Ec, that yields the value of conditions of sitpn at a given execution cycle, are similar, written
γ ` Ep

env
= Ec, if for all τ ∈N, c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, Ep(τ)(idc) = Ec(τ)(c).

To prove that the behavior of an SITPN and a H-VHDL design are similar, we want to
compare the states composing their execution/simulation traces. As a reminder, an execu-
tion/simulation trace is a time-ordered list of states describing the evolution of a given SITPN
or H-VHDL design through a certain number of clock cycles. The relation presented in Defini-
tion 43 allows us to compare such traces.

Definition 43 (Execution trace similarity). For a given sitpn ∈ SITPN, a H-VHDL design
d ∈ design, an elaborated design ∆ ∈ ElDesign, and a binder γ ∈WM(sitpn, d), the execution

trace θs ∈ list(S(sitpn)) and the simulation trace θσ ∈ list(Σ) are similar if γ ` θs
clk∼ θσ

(where clk ∈ {↑, ↓}) is derivable according to the following rules:

SIMTRACENIL
clk ∈ {↑, ↓}

γ ` []
clk∼ []

SIMTRACE↑

γ ` s
↑∼ σ γ ` θs

↓∼ θσ

γ ` (s :: θs)
↑∼ (σ :: θσ)

SIMTRACE↓

γ ` s
↓∼ σ γ ` θs

↑∼ θσ

γ ` (s :: θs)
↓∼ (σ :: θσ)

In Definition 43, the clock event symbol on top of the∼ sign indicates the kind of clock event
that led to the production of the states at the head of the traces. The execution trace similarity
relation expects that the states composing the traces have been alternatively produced by a
rising edge step and then by a falling edge step. By construction, the traces must have the
same length to respect the execution trace similarity relation.

To handle the case of an execution/simulation trace beginning by an initial state, that is, a
state neither reached after a rising nor after a falling edge, we give a slightly different definition
of the execution trace similarity relation in Definition 44.

Definition 44 (Full execution trace similarity). For a given sitpn ∈ SITPN, a H-VHDL de-
sign d ∈ design, an elaborated design ∆ ∈ ElDesign(d,DH), and a binder γ ∈WM(sitpn, d),
the execution trace θs ∈ list(S(sitpn)) and the simulation trace θσ ∈ list(Σ) are fully
similar, written γ ` θs ∼ θσ, according to the following rules:

FULLSIMTRACENIL

γ ` [] ∼ []

FULLSIMTRACECONS

γ ` s ∼ σ γ ` θs
↑∼ θσ

γ ` (s :: θs) ∼ (σ :: θσ)

The full execution trace similarity relation indicates that the head states of traces must verify
the general state similarity relation, and that the tail of the traces must respect the execution
state similarity relation starting with a rising edge step.

206 Chapter 6. Proving semantic preservation in HILECOP

6.3.3 The behavior preservation theorem
Theorem 1 expresses our behavior preservation theorem. Theorem 1 states that the HILECOP
transformation function is semantic preserving when the input model is a well-defined (see
Definition 28) and bounded (see Definition 29) SITPN. As a complementary task, we could
show that if the transformation function returns a couple H-VHDL design and binder, and not
an error, then the input SITPN is well-defined. To prove Theorem 1, we must first exhibit an
elaborated version of the returned H-VHDL design (Theorem 2), an initial state (Theorem 3),
and a simulation trace over τ simulation cycles (Theorem 4). Finally, we can establish that the
behaviors are similar by comparing the respective SITPN execution and H-VHDL design sim-
ulation traces (Theorem 5). In this thesis, we are focusing on the proof that the execution/sim-
ulation traces are similar when they are produced by the SITPN execution relation and the
H-VHDL simulation relation over τ clock cycles. This corresponds to the proof of Theorem 5.
For the moment, we choose to consider Theorems 2, 3 and 4 as axioms.

Theorem 1 (Behavior preservation). For all well-defined sitpn ∈ SITPN, H-VHDL design
d ∈ design, binder γ ∈ WM(sitpn, d), clock cycle count τ ∈ N, execution environment
Ec ∈ N → C → B, execution trace θs ∈ list(S(sitpn)) and maximal marking function
b ∈ P→N such that

– SITPN sitpn is transformed into the H-VHDL design d and yields the binder γ: bsitpncb =
(d, γ)

– SITPN sitpn is bounded through b: dsitpneb

– SITPN sitpn yields the execution trace θs after τ execution cycles in environment Ec:

Ec, τ ` sitpn
f ull−−→ θs

then there exist an elaborated design ∆ ∈ ElDesign and a simulation trace θσ ∈ list(Σ) s.t.
for all simulation environment Ep ∈N→ Ins(∆)→ value verifying γ ` Ep

env
= Ec (simulation

and execution environments are similar), we have:

– In the context of the HILECOP design store DH and with an empty generic constant dimen-
sioning function (∅), design d elaborates into ∆ and yields the simulation trace θσ after τ
simulation cycles:

DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ

– Traces θs and θσ are fully similar: θs ∼ θσ

Proof.

Given a sitpn ∈ SITPN, a d ∈ design, a γ ∈ WM(sitpn, d), a τ ∈ N, an
Ec ∈ N → C → B, a θs ∈ list(S(sitpn)), and a b ∈ P → N, let us show
that

6.3. Behavior preservation theorem 207

∃∆, θσ, ∀Ep, γ ` Ep
env
= Ec ⇒ (DH, ∆, ∅, Ep, τ ` d

f ull−−→ θσ) ∧ θs ∼ θσ

Appealing to Theorems 2 (p. 208), 3 (p. 208) and 4 (p. 208), let us take an elaborated
design ∆ ∈ ElDesign, two design states σe, σ0 ∈ Σ, and a simulation trace θσ ∈ list(Σ)
such that:

– ∆ is the elaborated version of design d, and σe is the default design state of ∆:

DH, ∅ ` d elab (∆, σe)

– σ0 is the initial simulation state: DH, ∆, σe ` d.cs init σ0

– Design d yields the simulation trace θσ after τ simulation cycles, starting from initial
state σ0:
DH, Ep, ∆, τ, σ0 ` d.cs→ θσ

Let us use this ∆ and this θσ to prove the current goal. Given an Ep such that γ ` Ep
env
= Ec,

it remains to be proved that:

(DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ) ∧ θs ∼ θσ

First, we must prove that (DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ) holds. By definition of the H-

VHDL full simulation relation, we have:

DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ ≡ ∃σe, σ0 ∈ Σ(∆), DH, ∅ ` d elab (∆, σe)

∧DH, ∆, σe ` d.cs init σ0

∧DH, Ep, ∆, τ, σ0 ` d.cs→ θσ

(6.1)

Thus, it is equivalent to prove:

∃σe, σ0 s.t. DH, ∅ ` d elab (∆, σe) ∧ DH, ∆, σe ` d.cs init σ0 ∧ DH, Ep, ∆, τ, σ0 `
d.cs→ θσ

To prove the goal, let us use σe, σ0 ∈ Σ previously introduced by the invocation of Theo-
rems 2, 3 and 4. Then, the three first points of the goal are previously assumed hypothe-
ses.
Finally, appealing to Theorem 5, we can prove final point of the theorem, i.e. θs ∼ θσ .

The behavior preservation theorem is a case of simulation theorem. It states that if an execu-
tion trace is computed on the SITPN side, then there exists an simulation trace on theH-VHDL
side and that both traces are similar. To express a bisimulation theorem, the other way around

208 Chapter 6. Proving semantic preservation in HILECOP

must also be true, i.e. if a simulation trace is computed on theH-VHDL side, then an execution
trace exists on the SITPN side, and both traces are similar.

Theorem 2 states that everyH-VHDL design returned by the HILECOP transformation func-
tion can be elaborated. The elaboration relation verifies that a given H-VHDL design is well-
typed and well-formed w.r.t. to the VHDL language standards, and builds an elaborated version
of the H-VHDL design that will act as a simulation environment. Thus, Theorem 2 states that
the HILECOP transformation function produces acceptable code, for instance, code that could be
the input to a simulator program.

Theorem 2 (Elaboration). For all well-defined sitpn ∈ SITPN, d ∈ design, γ ∈
WM(sitpn, d) and b ∈ P→N such that

– bsitpncb = (d, γ)

then there exists an elaborated design ∆ ∈ ElDesign and a design state σe ∈ Σ s.t. ∆ is the

elaborated version of design d, and σe is the default design state of ∆: DH, ∅ ` d elab (∆, σe).

Theorem 3 states that one can always build an initial state for every H-VHDL design re-
turned by the HILECOP transformation function, if the input SITPN model is well-defined and
bounded.

Theorem 3 (Initialization). For all well-defined sitpn ∈ SITPN, d ∈ design, b ∈ P → N,
γ ∈WM(sitpn, d), ∆ ∈ ElDesign, σe ∈ Σ(∆) s.t.

– bsitpncb = (d, γ) and dsitpneb and DH, ∅ ` d elab (∆, σe)

then there exists a design state σ0 ∈ Σ(∆) s.t. σ0 is the initial simulation state: DH, ∆, σe `
d.cs init σ0.

Theorem 4 states that one can always build a simulation trace over τ clock cycles for ev-
ery H-VHDL design returned by the HILECOP transformation function. This means that the
simulation of an H-VHDL design never fails when it is the result of the transformation of a
well-defined SITPN.

Theorem 4 (Trace existence). For all well-defined sitpn ∈ SITPN, d ∈ design, b ∈ P → N,
γ ∈WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ s.t.

– bsitpncb = (d, γ) and dsitpneb and DH, ∅ ` d elab (∆, σe) and DH, ∆, σe ` d.cs init σ0

then there exists a simulation trace θσ ∈ list(Σ) such that for all simulation environment
Ep ∈ N→ Ins(∆) → value and simulation cycle count τ ∈ N, design d yields the simulation
trace θσ after τ simulation cycles, starting from initial state σ0:
DH, Ep, ∆, τ, σ0 ` d.cs→ θσ

6.3. Behavior preservation theorem 209

Remark 9 (Bounded SITPN and behavior preservation). A part of the analysis is interested
in determining the maximal number of tokens that a place can hold during the execution of a
SITPN. If each place of the SITPN can only hold a limited number of tokens during the execution
of the model, then the model is said to be bounded. In that case, it is possible to compute a
function that associates the places of the SITPN with a maximal marking value. In the case of
an unbounded input model, there exists a place that can accumulate an infinite number of tokens
during the model execution. In the world of hardware description, and especially when aiming at
hardware synthesis, every element must have a finite dimension. In the definition of the place
design, the internal signal s_marking represents the marking value of a place. The maximal
value of the s_marking signal is bounded by the generic constant maximal_marking. Thus,
when generating a PCI from a place in the course of the transformation, we must give a value to
the maximal_marking generic constant. However, even with a settled maximal_marking value,
the execution of a H-VHDL design, resulting from the transformation of an unbounded SITPN
model, infallibly leads to the overflow of the value of the s_marking signals in the internal states
of PCIs. Consider an unbounded place p and its corresponding PCI idp. There exist a clock cycle
count τ for which the value of the s_marking internal signal (which reflects the marking of place
p) of PCI idp overreaches the maximal_marking value, thus causing an overflow. In that case,
because of the overflow, the next design state (i.e. at clock count τ + 1) can never be derived.
Thus, passed the clock cycle count τ, the simulation of the H-VHDL design ends, the execution
of the corresponding unbounded SITPN model continues, and we are no more able to prove the
equivalence between the two behaviors.

6.3.4 The trace similarity theorem

Here, we present the trace similarity theorem. The trace similarity theorem states that if an
SITPN and its corresponding H-VHDL design are executed/simulated over τ execution/sim-
ulation cycles, then the produced traces are semantically similar, i.e. they verify the full exe-
cution trace similarity relation of Definition 44. In this thesis, we have proved this particular
theorem. The proofs of Theorems 2, 3 and 4 have been left for future work. We chose to focus
our work on the trace similarity theorem, because it directly addresses the semantic preserva-
tion property of HILECOP’s transformation function.

In the proof of Theorem 5, in the case where τ > 0, we must show that the state similarity
relation holds between the states produced by the first execution cycle, and then use Lemma 1
(p. 213) to complete the proof of similarity between the tail traces. First, we must show that
the initial states of both SITPN and H-VHDL design verify the general state similarity relation
(Definition 37); this is done by appealing to Lemma 5 (p. 266). The first execution cycle is
particular because, by definition of the SITPN full execution relation, no transitions are fired
during the first rising edge. Therefore, after the first rising edge, the SITPN state is still equal
to its initial state s0. We prove that the post rising edge similarity relation is verified after the
first rising edge by appealing to Lemma 15 (p. 276). The detailed proofs for Lemmas 5 and 15
are given in Sections D.1 and D.2.

210 Chapter 6. Proving semantic preservation in HILECOP

Theorem 5 (Full trace similarity). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design,
γ ∈ WM(sitpn, d), τ ∈ N, Ec ∈ N → C → B, θs ∈ list(S(sitpn)), ∆ ∈ ElDesign,
Ep ∈N→ Ins(∆)→ value, θσ ∈ list(Σ) such that

– bsitpncb = (d, γ)

– γ ` Ep
env
= Ec

– Ec, τ ` sitpn
f ull−−→ θs

– DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ

then γ ` θs ∼ θσ

Proof.

Assuming the above hypotheses, let us show γ ` θs ∼ θσ (1).
Let us perform case analysis on the given clock count τ; there are two cases:

– CASE τ = 0. By definition of the SITPN full execution and theH-VHDL full simulation
relations, we have:

– Ec, 0 ` sitpn
f ull−−→ [s0] and θs = [s0]

– DH, ∅ ` d elab (∆, σe) and ∆, σe ` d.cs init σ0 and DH, Ep, ∆, 0, σ0 ` d.cs → [] and
θσ = [σ0]

Rewriting θs as [s0], and θσ as [σ0] in goal (1), and by definition of the full execution
trace similarity relation, what is left to prove is: γ ` s0 ∼ σ0

Appealing to Lemma 5 (p. 266), we can show γ ` s0 ∼ σ0.

– CASE τ > 0. By definition of the SITPN full execution relation (i.e. Ec, τ ` sitpn
f ull−−→

θs) and theH-VHDL full simulation relation (i.e, DH, ∆, ∅, Ep, τ ` d
f ull−−→ θσ), we have:

– Ec, τ ` s0
↑0 s0 and Ec, τ ` s0

↓ s and Ec, τ − 1 ` sitpn, s → θ and θs = s0 :: s0 ::
s :: θ

– DH, ∅ ` d elab (∆, σe) and ∆, σe ` d.cs init σ0 and Ep, ∆, τ, σ0 ` d.cs → θ′ and
θσ = σ0 :: θ′

Rewriting θs as s0 :: s0 :: s :: θ and θσ as σ0 :: θ′ in goal (1), the new goal is:
γ ` (s0 :: s0 :: s :: θ) ∼ (σ0 :: θ′) (2)

6.3. Behavior preservation theorem 211

By definition of theH-VHDL simulation relation (i.e. Ep, ∆, τ, σ0 ` d.cs→ θ′), we have:

Ep, ∆, τ, σ0 ` d.cs
↑,↓−→ σ, σ′ and Ep, ∆, τ − 1, σ′ ` d.cs→ θ′′ and θ′ = σ :: σ′ :: θ′′.

Rewriting θ′ as σ :: σ′ :: θ′′ in goal (2), the new goal is:
γ ` (s0 :: s0 :: s :: θ) ∼ (σ0 :: σ :: σ′ :: θ′′) (3)

By definition of the full execution trace similarity relation, there are four points to
prove:

1. γ ` s0 ∼ σ0. Appealing to Lemma 5, we can show γ ` s0 ∼ σ0 .

2. γ, Ec, τ ` s0
↑∼ σ. Appealing to Lemma 15 (p. 276), we have γ, Ec, τ ` s0

↑≈ σ.

By definition of γ, Ec, τ ` s0
↑≈ σ, we can show γ, Ec, τ ` s0

↑∼ σ.

3. γ ` s
↓∼ σ′. Appealing to Lemma 15 and 3 (p. 217), we have γ ` s

↓≈ σ′.

By definition of γ ` s
↓≈ σ′, we can show γ ` s

↓∼ σ′.

4. γ ` θ
↑∼ θ′′.

Appealing to Lemma 15 and 3, we have γ ` s
↓≈ σ′.

Then, we can appeal to Lemma 1 to show γ ` θ
↑∼ θ′′.

To prove the semantic preservation property, we want to prove that a given SITPN and its
translatedH-VHDL version follow the simulation diagram of Figure 6.3.

212 Chapter 6. Proving semantic preservation in HILECOP

↓≈

↑≈

↓≈

s

s′

s′′

σ

σ↑
σ′

σ↓

σ′′

σi↑

↓

Inject

↑
£

£

FIGURE 6.3: Simulation diagram over one clock cycle for a source SITPN and a tar-
getH-VHDL design; the left part of the diagram presents the execution of an SITPN
over one clock cycle, and the right part of the diagram presents the simulation of
anH-VHDL design over one clock cycle; the upper part of the diagram corresponds
to the rising edge phase of the clock cycle, and the lower part illustrates the falling

edge phase of the clock cycle.

The upper part of the diagram, corresponding to the rising edge phase of the clock cycle,
is proved by Lemma 2 (p. 215). First, we assume that the starting SITPN state and the starting
H-VHDL design state verify the full post falling edge state similarity relation at the beginning

of the clock cycle (i.e, s
↓≈ σ in Figure 6.3). Then, Lemma 2 states that after the computation

of a rising edge step on the SITPN part and on the H-VHDL part the resulting states verify the
full post rising edge state similarity relation. The lower part of the diagram, corresponding to
the falling edge phase of the clock cycle, is proved by Lemma 3 (p. 217). First, we assume that
the starting SITPN state and the starting H-VHDL state verify the full post rising edge state

similarity relation (i.e. s′
↑≈ σ′ in Figure 6.3). Then, Lemma 3 states that after the computation

of a falling edge step on the SITPN part and on theH-VHDL part the resulting states verify the
full post falling edge state similarity relation.

Lemma 1 is a generalization of Theorem 5, and it is used in the proof of Theorem 5 to solve
the induction case. Lemma 1 is similar to Theorem 5 excepts that the execution/simulation
traces are not produced starting from the initial states, but starting from two states verifying

the full post falling edge state similarity relation (i.e, γ ` s
↓≈ σ, corresponding to the kind of

similarity relation that must hold when considering two states at the beginning of a random

6.3. Behavior preservation theorem 213

clock cycle). The proof of Lemma 1 is based on the simulation diagram of Figure 6.3. The
SITPN execution relation and theH-VHDL simulation relation execute one computational step
at clock count τ and then decrement the clock count and call themselves recursively to produce
the rest of the execution/simulation traces. Therefore, the proof of Lemma 1 is naturally done
by induction over the clock count τ.

Lemma 1 (Trace Similarity). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈
WM(sitpn, d), ∆ ∈ ElDesign, Ep ∈ N → Ins(∆) → value, Ec ∈ N → C → B, τ ∈ N,
s ∈ S(sitpn), σe, σ ∈ Σ, θs, θσ ∈ list(Σ), such that

– bsitpncb = (d, γ) and γ ` Ep
env
= Ec and DH, ∅ ` d elab ∆, σe

– Starting states are fully similar as intended after a falling edge: γ ` s
↓≈ σ

– Ec, τ ` sitpn, s→ θs

– Ep, ∆, τ, σ ` d.cs→ θσ

then γ ` θs
↑∼ θσ.

Proof.

Given a sitpn, b, d, γ, Ep, Ec, τ, such that bsitpncb = (d, γ) and γ ` Ep
env
= Ec and

DH, ∅ ` d elab ∆, σe, let us show

∀s, σ, θs, θσ s.t. γ ` s
↓≈ σ and Ec, τ ` sitpn, s → θs and Ep, ∆, τ, σ ` d.cs → θσ then

γ ` θs
↑≈ θσ.

Let us reason by induction on the given clock cycle τ.

– BASE CASE: τ = 0. Then, σs = σσ = [] and by definition of the execution trace

similarity relation, we can show γ ` []
↑≈ [].

– INDUCTION CASE: Assuming the following induction hypothesis

∀s, σ, θs, θσ s.t. γ ` s
↓≈ σ and Ec, τ ` sitpn, s → θs and Ep, ∆, τσ ` d.cs → θσ then

γ ` θs
↑≈ θσ.

we must prove the goal at τ + 1, i.e.:

214 Chapter 6. Proving semantic preservation in HILECOP

∀s, σ, θs, θσ s.t. γ ` s
↓≈ σ and Ec, τ + 1 ` sitpn, s → θs and Ep, ∆, τ + 1, σ ` d.cs →

θσ then γ ` θs
↑≈ θσ.

Given s, σ, θs, θσ such that (γ ` s
↓≈ σ) and (Ec, τ + 1 ` sitpn, s → θs) and (Ep, ∆, τ +

1, σ ` d.cs→ θσ), let us show γ ` θs
↑≈ θσ .

By definition of (Ec, τ + 1 ` sitpn, s→ θs) and (Ep, ∆, τ + 1, σ ` d.cs→ θσ), we have:

– Ec, τ + 1 ` s
↑−→ s′ and Ec, τ + 1 ` s′

↓−→ s′′ and Ec, τ ` sitpn, s′′ → θ.

– Inject(σ, Ep, τ + 1, σi)

– ∆, σi ` d.cs
↑−→ σ↑ and ∆, σ↑ ` d.cs −→ σ′

– ∆, σ′ ` d.cs
↓−→ σ↓ and ∆, σ↓ ` d.cs −→ σ′′

– Ep, ∆, τ, σ′′ ` d.cs→ θ′

– θs = s′ :: s′′ :: θ and θσ = σ′ :: σ′′ :: θ′

Then, the new goal is: γ ` (s′ :: s′′ :: θ)
↑∼ (σ′ :: σ′′ :: θ′).

By definition of the execution trace similarity relation, there are three points to prove:

1. γ ` s′
↑∼ σ′. Appealing to Lemma 3 (p. 217), we have γ ` s′

↑≈ σ′.

By definition of γ ` s′
↑≈ σ′, we can show γ ` s′

↑∼ σ′.

2. γ ` s′′
↓∼ σ′′. Appealing to Lemmas 3 and 2, we have γ, Ec, τ ` s′

↓≈ σ′.

By definition of γ, Ec, τ ` s′
↓≈ σ′, we can show γ ` s′

↓∼ σ′.

3. γ ` θ
↑∼ θ′.

We can apply the induction hypothesis with s = s′′, σ = σ′′, θs = θ and θσ = θ′.

Then, what is left to prove is: γ ` s′′
↓≈ σ′′.

Using Lemmas 3 and 2, we can show γ ` s′′
↓≈ σ′′.

Now, let us present Lemma 2 and Lemma 3, along with their proofs. In the two lemmas,
we added an hypothesis, which can always be verified at the beginning of a clock cycle, about

6.3. Behavior preservation theorem 215

the starting state of the H-VHDL design: DH, ∆, σ ` d.cs comb−−→ σ. This hypothesis states that
all signal values are stable at the beginning of the considered clock phase. This means that the
execution of the combinational part of theH-VHDL design does not change the value of signals
anymore. This hypothesis is required to determine the expression associated to combinational
signals, i.e. the combinational equations, at the beginning of the clock phase (see Section 6.4 for
more details about combinational equations).

To prove Lemmas 2 and 3, one must prove that every point of the state similarity relation
in the conclusion holds. For each point, the proof is given as a separate lemma that the reader
will find in Appendix D. The proof strategy to show the equalities or equivalences involved in
the state similarity relation follows the same two-fold pattern:

– First, reason on the SITPN structure and on the transformation function to determine the
content of the targetH-VHDL design.

– Then, reason on the SITPN state transition relation and the H-VHDL “simulation” relations
(i.e, the Inject, ↑, ↓ and relations) to establish the equality between the values coming
from the SITPN world (i.e, marking, time counters, reset orders, etc. and also predicates)
and the values of the signals declared in the H-VHDL design and in its internal component
instances.

The application of this proof strategy will be detailed in Section 6.4.

Lemma 2 (Rising edge). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈
WM(sitpn, d), Ec ∈ N → C → B, ∆ ∈ ElDesign, Ep ∈ N → Ins(∆) → value, τ ∈ N,
s, s′ ∈ S(sitpn), σe, σ, σi, σ↑, σ′ ∈ Σ, such that

– bsitpncb = (d, γ) and γ ` Ep
env
= Ec and DH, ∅ ` d elab ∆, σe

– γ ` s
↓≈ σ

– Ec, τ ` s ↑ s′

– Inject(σ, Ep, τ, σi) and DH, ∆, σi ` d.cs
↑−→ σ↑ and DH, ∆, σ↑ ` d.cs −→ σ′

– State σ is a stable design state: DH, ∆, σ ` d.cs comb−−→ σ

then γ, Ec, τ ` s′
↑≈ σ′.

Proof.

By definition of the Full post rising edge state similarity relation, there are 9 points to
prove:

216 Chapter 6. Proving semantic preservation in HILECOP

1. ∀p ∈ P, idp ∈ Comps(∆) s′.t. γ(p) = idp, s′.M(p) = σ′(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
.

3. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,
s′.resett(t) = σ′(idt)(s_reinit_time_counter).

4. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s′.ex(a) = σ′(ida).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s′.ex(f) = σ′(id f).

6. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t ∈ Sens(s′.M)⇔ σ′(idt)(s_enabled) = true.

7. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t /∈ Sens(s′.M)⇔ σ′(idt)(s_enabled) = false.

8. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,

σ′(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

9. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, σ′(idc) = Ec(τ, c).

Each point is proved by a separate lemma:

– Apply the Rising edge equal marking lemma (p. 285) to solve Point 1.

– Apply the Rising edge equal time counters lemma (p. 289) to solve Point 2.

– Apply the Rising edge equal reset orders lemma (p. 290) to solve Point 3.

– Apply the Rising edge equal action executions lemma (p. 298) to solve Point 4.

– Apply the Rising edge equal function executions lemma (p. 299) to solve Point 5.

– Apply the Rising edge equal sensitized lemma (p. 301) to solve Point 6.

– Apply the Rising edge equal not sensitized lemma (p. 305) to solve Point 7.

– Apply the Rising edge equal condition combination lemma (p. 286) to solve Point 8.

6.3. Behavior preservation theorem 217

– Apply the Rising edge equal conditions lemma (p. 288) to solve Point 9.

All the lemmas used above, and their corresponding proofs, are to be found in Ap-
pendix D, Section D.3.

Lemma 3 (Falling edge). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈
WM(sitpn, d), Ec ∈ N → C → B, ∆ ∈ ElDesign, Ep ∈ N → Ins(∆) → value, τ ∈ N,
s, s′ ∈ S(sitpn), σe, σ, σ↓, σ′ ∈ Σ, such that

– bsitpncb = (d, γ) and γ ` Ep
env
= Ec and DH, ∅ ` d elab ∆, σe

– γ, Ec, τ ` s
↑≈ σ

– Ec, τ ` s
↓−→ s′

– ∆, σ ` d.cs
↓−→ σ↓ and ∆, σ↓ ` d.cs −→ σ′

– State σ is a stable design state: DH, ∆, σ ` d.cs comb−−→ σ

then γ ` s′
↓≈ σ′.

Proof.

By definition of the Post falling edge state similarity relation, there are 11 points to
prove:

218 Chapter 6. Proving semantic preservation in HILECOP

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s′.M(p) = σ′(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
.

3. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, s′.cond(c) = σ′(idc).

4. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s′.ex(a) = σ′(ida).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s′.ex(f) = σ′(id f).

6. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t ∈ Firable(s′)⇔ σ′(idt)(s_firable) = true.

7. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t /∈ Firable(s′)⇔ σ′(idt)(s_firable) = false.

8. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Fired(s′)⇔ σ′(idt)(fired) = true.

9. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Fired(s′)⇔ σ′(idt)(fired) = false.

10. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp,
∑

t∈Fired(s′)
pre(p, t) = σ′(idp)(s_output_token_sum).

11. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp,
∑

t∈Fired(s′)
post(t, p) = σ′(idp)(s_input_token_sum).

Each point is proved by a separate lemma:

– Apply the Falling edge equal marking lemma (p. 305) to solve Point 1.

– Apply the Falling edge equal time counters lemma (p. 313) to solve Point 2.

– Apply the Falling edge equal condition values lemma (p. 319) to solve Point 3.

– Apply the Falling edge equal action executions lemma (p. 319) to solve Point 4.

– Apply the Falling edge equal function executions lemma (p. 322) to solve Point 5.

– Apply the Falling edge equal firable lemma (p. 322) to solve Point 6.

– Apply the Falling edge equal not firable lemma (p. 335) to solve Point 7.

6.4. A detailled proof: equivalence of fired transitions 219

– Apply the Falling edge equal fired lemma (p. 220) to solve Point 8. The proof of the
Falling edge equal fired lemma is detailled in Section 6.4.

– Apply the Falling edge equal not fired lemma (p. 351) to solve Point 9.

– Apply the Falling edge equal output token sum lemma (p. 306) to solve Point 10.

– Apply the Falling edge equal input token sum lemma (p. 309) to solve Point 11.

All the lemmas used above, and their corresponding proofs, are to be found in Ap-
pendix D, Section D.4.

6.4 A detailled proof: equivalence of fired transitions

The goal of this section is to present the overall proof strategy that we adopted to establish the
semantic preservation property for the HILECOP model-to-text transformation. We take advan-
tage of the proof of Lemma 4, involved in the proof of Lemma 3, to illustrate our demonstration
techniques. The proof of Lemma 4 has been one complex part of the overall demonstration; we
believe it is worth to be mentioned. Also, it has led to a bug detection. We give a full account
on this bug detection, and on how we manage to correct it, at the end of the section.

6.4.1 An accompanied journey along the proof

The proof of Lemma 4 is related to the set of fired transitions. In an SITPN, the firing process,
based on the set of fired transitions, is responsible for the computation of the new marking, the
reset orders, and the execution of functions during the rising edge phase. To prove the seman-
tic preservation property, we must have the equivalence between the set of fired transitions as
defined on the SITPN side and the set of fired transitions as defined on the H-VHDL side. The
equivalence must hold at the beginning of the rising edge phase, i.e. when the set of fired tran-
sitions will be used to compute a new SITPN state. Thus, the falling edge phase prepares the
ground so that the equivalence between the set of fired transitions holds at the beginning of the
next rising edge phase. To express Lemma 4, we must first define the hypotheses stating that a
falling edge phase happened in the course of the execution of an SITPN and its corresponding
H-VHDL design, plus some hypotheses about the similarity of the states at the beginning of the
falling edge phase:

Definition 45 (Falling edge hypotheses). Given a sitpn ∈ SITPN, b ∈ P→N, d ∈ design,
γ ∈WM(sitpn, d), Ec ∈N→ C → B, ∆ ∈ ElDesign, Ep ∈N→ Ins(∆)→ value, τ ∈N,
s, s′ ∈ S(sitpn), σe, σ, σ↓, σ′ ∈ Σ, assume that:

– SITPN sitpn is transformed into the H-VHDL design d and yields the binder γ: bsitpncb =
(d, γ)

220 Chapter 6. Proving semantic preservation in HILECOP

– Simulation/Execution environments are similar: γ ` Ep
env
= Ec

– ∆ is the elaborated version of design d, and σe is the default design state of ∆: DH, ∅ ` d elab

∆, σe

– Starting states are similar according to the full post rising edge similarity relation: γ, Ec, τ `
s
↑≈ σ

– On the SITPN side, the execution of a falling edge phase starting from state s leads to state s′:

Ec, τ ` s
↓−→ s′

– On theH-VHDL side, the simulation of a falling edge phase starting from state σ leads to state

σ′: ∆, σ ` d.cs
↓−→ σ↓ and ∆, σ↓ ` d.cs −→ σ′

– State σ is a stable design state: DH, ∆, σ ` d.cs comb−−→ σ

The hypotheses of Definition 45 are used in all the lemmas expressing properties of the
falling edge phase. Therefore, Definition 45 enables the conciser expression of these lemmas.
Then, we can express Lemma 4 as follows:

Lemma 4 (Falling edge equal fired). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓, σ′

that verify the hypotheses of Definition 45, then for all t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t ∈ Fired(s′)⇔ σ′(idt)(fired) = true.

Now, let us detail the proof of Lemma 4. To prove Lemma 4, we must reason on a given
transition t of the input SITPN sitpn and a TCI idt in the outputH-VHDL design d. Transition t
and TCI idt are bound together through the γ binder returned by the transformation function.
This means that the TCI idt structurally represents the transition t in the outputH-VHDL design
d. In this setting, we want to prove that t is in the set of fired transitions at the end of the falling
edge phase if and only if the fired port of idt equals true at the end of the falling edge phase.
Formally, we want to prove: t ∈ Fired(s′)⇔ σ′(idt)(fired) = true.

As a reminder, the expression Fired(s′) qualifies the set of fired transitions at the SITPN
state s′, and σ′(idt)(fired) denotes the value of the fired port of TCI idt at design state σ′. The
expression σ′(idt) denotes the internal state, i.e. a design state, of TCI idt at state σ′.

To prove the equivalence, we must first look at the definition of the set of fired transitions on
the SITPN side and on theH-VHDL side, and then think of a way to relate the two definitions.

On the SITPN side, the set of fired transitions is an intentional and recursive definition
(see Definition 20) depending on a given SITPN state. In Lemma 4, we are interested in the
definition of the set of fired transitions at state s′, i.e. the state at the end of the falling edge
phase. A transition belongs to the set of fired transitions if it is firable (see Definition 19) and
sensitized by the residual marking (see Sections 3.1.2 and 3.2.3) at the considered SITPN state.
Figure 6.4 gives the set of fired transitions, i.e. Fired(s), on an example of SITPN at a given state

6.4. A detailled proof: equivalence of fired transitions 221

s. Here, transitions ta, tb and tc are all firable at state s; however, only transition tc is sensitized
by the residual marking.

p

tc tb ta

At current state s:
Pr(tc, s) = ∅
Pr(tb, s) = {tc}
Pr(ta, s) = {tc}

Fired(s) = {tc}

FIGURE 6.4: The set of fired transitions on an example SITPN at a given SITPN
state s; on the left side, the dotted arrows indicates the priority relation between the
three transitions (tc is the top-priority transition); on the right side, each transition

is associated to its Pr set, which is necessary to compute the residual marking.

The computation of the residual marking involves the Pr sets, which are, for a given transi-
tion t and a state s, the set of transitions with a higher firing priority than t which are actually
fired at s. This is where the recursive definition of the set of fired transitions begins. The def-
inition is correct, i.e. the recursion ends, if the priority relation is a strict order over the set
of transitions, and therefore, there are always transitions of top-priority (e.g, tc in Figure 6.4).
The condition of the priority relation being a strict order over the set of transitions is part of
the definition of a well-defined SITPN (see Definition 28). By definition, top-priority transitions
have an empty Pr set. There exists no transition with a higher firing priority than a top-priority
transition. Thus, a top-priority transition that is firable is also fired. Note that one cannot deter-
mine the Pr set of a transition before having determined the firing status of all the transitions
with a higher firing priority. For instance, in Figure 6.4, it is impossible to know the content of
Pr(ta, s) before having determined if transition tb is fired or not. To know if tb is fired or not,
we must determine the content of Pr(tb, s). To do so, we must first determine the firing status
of tc. Even though the definition of the set of fired transitions is very declarative, this provides
a natural way to establish an algorithm to build the set of fired transitions at a given SITPN
state.

On the H-VHDL side, the set of fired transitions is defined through the value of the fired
port of TCIs. The transition design declares an output port of the Boolean type with the identi-
fier fired. What we want to prove in Lemma 4 is that, at the end of the falling edge phase (i.e.
at state σ′), the value of the fired port of a TCI reflects the firing status of the corresponding
transition. The fired port is a combinational signal. This means that its value depends on
an equation that is verified when all signals are stable, i.e. at the end of stabilization phases
happening during the simulation. In the point of view of the circuit synthesis, this equation
reflects the wiring of the port in the described hardware circuit. Figure 6.5 shows a part of the
transition design architecture describing how the fired port is connected to the other internal
signals.

222 Chapter 6. Proving semantic preservation in HILECOP

fired
evaluation

..
.

priority authorizations
evaluation

s priority combination

firable
evaluation s firable

fired

n

0

priority

authorizations

..
.

FIGURE 6.5: Wiring of the fired output port in the transition design architecture;
on the left side is the input interface of the transition design; on the right side is the
output interface of the transition design, with the fired port; in red are the parts
of the architecture that depend on synchronous logic and in black are the parts that

are purely combinational.

In Figure 6.5, the labels underneath the and logic ports and inside the block denote the
names of the processes defined in the transition design architecture as VHDL code. As a matter
of fact, Figure 6.5 is a graphical transcription of the code defining the transition design archi-
tecture. Therefore, by looking at the VHDL code, we are able to determine the combinational
equation associated to the fired port. Given a TCI idt in a top-level design and a state σ denot-
ing a current stable state of the design (remember that a combinational equation holds when
all signal values are stable), the fired port equation at σ is:

σ(idt)(fired) = σ(idt)(s_firable) . σ(idt)(s_priority_combination) (6.2)

Equation (6.2) states that the value of the fired port is a simple “and” expression2 between
the value of the internal signal s_firable and s_priority_combination.

Remark 10 (Signals and combinational equations). In the proceeding of the proof, a lot of
combinational equations are established (e.g, Equation (6.2)). These equations relate the value
of a given signal to the value of other signals or expressions. All these equations are deduced
by applying the H-VHDL semantics rules on the internal behavior (i.e., the processes) of the

2To differentiate the formulas of the first-order logic from the expressions of the Boolean logic, we use (“.”, “+”)
to denote the and and or operators in Boolean expressions, and (∧,∨) to denote the conjunction and the disjunction
in the first-order logic formulas.

6.4. A detailled proof: equivalence of fired transitions 223

transition and the place designs. A combinational equation is always the result of a signal
assignment statement happening inside the statement body of a process. For instance, in the
transition design, the fired_evaluation process, presented in Listing 6.1, assigns the fired
output port. Reasoning on the fired_evaluation process statement body and on the H-VHDL
semantics rules permits us to deduce Equation (6.2).� �
fired_evaluation : process (s_firable, s_priority_combination)
begin

fired⇐ s_firable and s_priority_combination;
end process fired_evaluation;� �

LISTING 6.1: The fired_evaluation process in the transition design
architecture; its statement body assigns the fired output port; symbol ⇐

is the signal assignment operator.

Listing 6.2 presents the priority_authorizations_evaluation process, responsible for the
assignment of the s_priority_combination in the transition design.� �
priority_authorization_evaluation : process(priority_authorizations)

variable v_priority_combination : std_logic;
begin

v_priority_combination := ’1’;

for i in 0 to input_arcs_number − 1 loop
v_priority_combination := v_priority_combination and priority_authorizations(i);

end loop;

s_priority_combination⇐ v_priority_combination; -- Assignment of the result
end process priority_authorization_evaluation;� �

LISTING 6.2: The priority_authorizations_evaluation process in
the transition design’s architecture. The local variable v_priority_-
combination accumulates the product of the subelements of the priority_-
authorizations input port in the for loop; then the last statement assigns
the value of v_priority_combination to the s_priority_combination

internal signal.

Equation (6.3) gives the combinational equation deduced from the execution of the priority_-
authorizations_evaluation process for a given TCI idt in a top-level design d. State σ denotes
the current state of d, and σ(idt) denotes the internal state of idt at state σ. The elaborated design
∆ is the elaborated version of design d, and ∆(idt) is the elaborated version of idt.

σ(idt)(spc) =
∆(idt)(input_arcs_number)−1

∏
i=0

σ(idt)(priority_authorizations)[i] (6.3)

In Equation (6.3), spc is an alias for the s_priority_combination signal. The for loop of the
priority_authorization_evaluation process has been converted into a product expression

224 Chapter 6. Proving semantic preservation in HILECOP

where the index i follows the bounds of the loop. The priority_authorizations signal is an
input port of type array, thus we use the bracketed notation a[i] to access the element of index i in
array a. Also, we know that input_arcs_number identifies a generic constant of the transition
design, thus, we can retrieve its value in the elaborated design ∆(idt).
In the proofs laid out in Appendix D and in this chapter, we do not detail how the execution of
processes’ statement body permit to deduce combinational equations. We find that the proofs are
easier to follow without entering in so much details. We let aside the task of proving that these
equations hold until the time of the mechanization with the Coq proof assistant. For now, the
reader can convince himself/herself that an equation holds by looking at the code of the place and
the transition designs (see Appendices A and B).

Now that we know which combinational equation is attached to the value of the output port
fired for a given TCI, we must relate this equation to the definition of the set of fired transitions
on the SITPN side. By definition of the set of fired transitions, we know that t ∈ Fired(s′) is
equivalent to t ∈ Firable(s′) ∧ t ∈ Sens(s′.M − ∑

ti∈Pr(t,s′)
pre(ti)) where Pr(t, s′) = {t′ | t′ �

t ∧ t′ ∈ Fired(s′)}. By definition of the fired port equation, we know that σ′(idt)(fired) =
σ′(idt)(s_firable) . σ′(idt)(s_priority_combination). Using these definitions to rewrite the
terms of the current goal, the new goal to prove is:

t ∈ Firable(s′) ∧ t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti))⇔

σ′(idt)(s_firable) . σ′(idt)(s_priority_combination) = true

Thanks to Lemma 41, we know that t ∈ Firable(s′) iff σ′(idt)(s_firable) = true. Then,
we can get rid of these two terms in the current goal; what is left to prove is:

t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti))⇔ σ′(idt)(s_priority_combination) = true

Based on Equation (6.3), we can replace the value of the s_priority_combination signal by
its equivalent product expression:

t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti))⇔

(∆(idt)(input_arcs_number)−1
∏
i=0

σ′(idt)(priority_authorizations)[i]
)
= true

Then, the proof is in two parts:

1. Assuming t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti)), let us show that

(∆(idt)(ian)−1
∏
i=0

σ′(idt)(pauths)[i]
)
= true.

6.4. A detailled proof: equivalence of fired transitions 225

2. Assuming
(∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i]
)
= true, let us show that

t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti)).

Let us prove the first point. Assuming that t ∈ Sens(s′.M− ∑
ti∈Pr(t,s′)

pre(ti)), let us show

(∆(idt)(ian)−1
∏
i=0

σ′(idt)(pauths)[i]
)
= true.

To prove the current goal, we can equivalently show that:
∀i ∈ [0, ∆(idt)(ian)− 1], σ′(idt)(pauths)[i] = true.

For a given i ∈ [0, ∆(idt)(ian) − 1], let us show that σ′(idt)(pauths)[i] = true. As shown
in Figure 6.5, the priority_authorizations signal is an input port of the transition design.
Therefore, to know what is the value of the i-th element of the priority_authorizations port
at state σ′(idt), we must know how the priority_authorizations port is connected in the
top-level design. Basing ourselves on the transformation function (cf. Algorithm 10, p. 174),
the connection of the priority_authorizations port for the TCI idt depends on the set of
input places of the transition t. If the set of input places of t is empty, then, all elements of
the priority_authorizations port are connected to the constant true, and proving the goal
is trivial. If the set of input places of t is not empty, then, the connection of the i-th element
of the priority_authorizations port reflects the connection of some place p to the transition
t by an input arc. Then, we must reason on the nature of the input arc connecting p to t. The
interested case happens when p and t are connected by a basic arc, and when the conflicts in
the output transitions of p are handled by the priority relation. In that case, the i-th element of
the priority_authorizations input port of the TCI idt is connected to the j-th element of the
priority_authorizations output port of the PCI idp. Figure 6.6 shows the connection of the
priority_authorizations port between the component instances idp and idt.

idp idt

priority

authorizations(j)

priority

authorizations(i)

firedoutput transitions

fired(j)

FIGURE 6.6: Connection of the j-th element of the priority_authorizations out-
put port of the PCI idp to the i-th element of the priority_authorizations input
port of the TCI idt; also the fired output port of idt is connected to the j-th element

of the output_transitions_fired input port of idp.

Thus, we know that the value of the i-th element of the priority_authorizations input
port of idt is bound to the value of the j-th element of the priority_authorizations out-
put port of idp. Therefore, to show that σ′(idt)(pauths)[i] = true , we must now show that

226 Chapter 6. Proving semantic preservation in HILECOP

σ′(idp)(pauths)[j] = true. We must now look at the architecture of the place design to de-
termine the combinational equation associated to the j-th element of the priority_authoriza-
tions output port. Figure 6.7 illustrates the wiring of the priority_authorizations output
port in a place design.

priority
evaluation

marking
s marking

..
.0

m

output

transitions

fired

..
.0

m

output

arcs

types

..
.0

m

output

arcs

weights

0

m

..
. priority

authorizations

FIGURE 6.7: Wiring of the priority_authorizations output port in the architec-
ture of the place design; the input port interface is on the left side and the output
port interface is on the right side; the synchronous parts are in red and the combi-

national ones are in black.

Figure 6.7 shows that the value of the elements of the priority_authorizations output
port is computed by the priority_evaluation process. This process reads the value of the
s_marking signal, assigned by the synchronous process marking. It also reads the value of
the output_transitions_fired, output_arcs_types and output_arcs_weights input ports.
In Figure 6.7, the ports of the input and output interface are composite ports (i.e., of the array
type) with an upper bound index equal to m. The number m is equal to the expression output_-
arcs_number−1, where output_arcs_number is a generic constant of the place design. The
value of the output_arcs_number constant is set at the generation of the generic map of a PCI
idp, and is equal to the number of output transitions of place p. Listing 6.3 presents the code of
the priority_evaluation process defined in the architecture of the place design.� �

1 priority_evaluation : process (output_transitions_fired, s_marking, output_arcs_types,
output_arcs_weights)

2 variable v_saved_output_token_sum : local_weight_t;
3 begin
4 v_saved_output_token_sum := 0;
5

6 for k in 0 to output_arcs_number − 1 loop
7

8 priority_authorizations(k)⇐ (s_marking − v_saved_output_token_sum >=
output_arcs_weights(k));

9

10 if (output_transitions_fired(k) = ’1’) and (output_arcs_types(k) = arc_t(BASIC)) then

6.4. A detailled proof: equivalence of fired transitions 227

11 v_saved_output_token_sum := v_saved_output_token_sum + output_arcs_weights(k);
12 end if;
13

14 end loop;
15 end process priority_evaluation;� �

LISTING 6.3: The priority_evaluation process in the place design’s architecture.

In the statement body of the priority_evaluation process, each subelement of the pri-
ority_authorizations output port is assigned at Line 8 inside the for loop. The statement
of Line 8 assigns the result of the test s_marking − v_saved_output_token_sum >= output_-
arcs_weights(k) to the k-th element of priority_authorizations. The test checks that the
value of the s_marking signal, representing the current marking of the PCI, minus the value of
the local variable v_saved_output_token is greater than or equal to the value of the k-th ele-
ment of the output_arcs_weights signal. The test corresponds to the test of sensitization by
the residual marking for the TCI connected through index k.

Getting back to our proof, the following combinational equation holds for the j-th element
of the priority_authorizations port at state σ′:

σ′(idp)(pauths)[j] = (σ′(idp)(s_marking)− vsots ≥ σ′(id)(output_arcs_weights)[j]) (6.4)

Then, rewriting the goal with Equation (6.4), the new goal is:
(σ′(idp)(s_marking)− vsots ≥ σ′(id)(output_arcs_weights)[j]) = true.

Here ≥ denotes a Boolean operator, i.e. ≥∈ N → N → B. As the ≥⊆ (N×N) relation
is decidable for all pairs of natural numbers, we can interchange an expression a ≥ b = true
with a ≥ b where a, b ∈N. We will generalize this practice to every Boolean operator having a
corresponding decidable relation. Thus, the new goal is:
σ′(idp)(s_marking)− vsots ≥ σ′(id)(output_arcs_weights)[j].

Here, the term vsots corresponds to the value of the local variable v_saved_output_to-
ken_sum at the moment of the assignment in the for loop. By looking at the code of Listing 6.3
(Lines 10 to 12), we can deduce the value of the vsots variable:

vsots =
j−1

∑
l=0

{
σ′(idp)(oaw)[l] if σ′(idp)(otf)[l] . (σ′(idp)(oat)[l] = basic)

0 otherwise
(6.5)

The vsots term is equal to the sum of the output arc weights for all TCIs, representing
output transitions of p, connected through an index l comprised between 0 and j − 1. An
output arc weight is taken into account in the sum only if the TCI connected through index l
has a fired port equals to true (i.e. the output_transitions_fired input port of idp equals
true at index l) and is linked to the place p through a basic input arc (i.e. the output_arcs_-
types input port of idp equals basic at index l).

Based on the fact that all conflicts in the output transitions of place p are handled with
the priority relation, then, as a property deduced from the HILECOP transformation function,

228 Chapter 6. Proving semantic preservation in HILECOP

we know that the order of the indexes from 0 to output_arcs_number− 1 reflects the priority
order of the output transitions of place p. Therefore, the indexes from 0 to j− 1 are linked to
transitions with a higher firing priority than the transition connected to the index j. Figure 6.8
reuses the SITPN of Figure 6.4 to illustrate how the indexes are ordered when the connection
between the PCI idp and its output TCIs idta , idtb and idtc is set (i.e., in the course of the model-
to-text transformation).

idp

otf(2)

otf(1)

otf(0) pauths(0)

pauths(1)

pauths(2)

idtapauths(i) fired

idtbpauths(j) fired

idtcpauths(k) fired

FIGURE 6.8: Connection between the priority_authorizations output port of
PCI idp and the priority_authorizations input port of TCIs idta , idtb and idtc , and
between the output_transitions_fired input port of idp and the fired ports of
idta , idtb and idtc . pauths stands for priority_authorizations and otf stands for

output_transitions_fired.

In Figure 6.8, the indexes in the interface of idp respect the priority order of the output tran-
sitions. The index increases as the priority level of the connected TCI decreases. Thus, idtc is
connected to index 0 as transition tc is the top-priority transition in the output transitions of p,
idtb is connected to index 1 as tc � tb, etc.

As a reminder, the current goal to prove is:
σ′(idp)(s_marking)− vsots ≥ σ′(id)(output_arcs_weights)[j].

The current goal is the H-VHDL implementation of the test that the residual marking in
place p enables transition t. At the beginning of the proof, we assumed that transition t is sen-
sitized by the residual marking for all its input places, i.e. t ∈ Sens(s′.M − ∑

ti∈Pr(t,s′)
pre(ti)).

6.4. A detailled proof: equivalence of fired transitions 229

By looking at the definition of the Sens set (see Definition 18), and knowing that a basic arc of
weight ω connects place p to transition t, we can deduce that s′.M(p)− ∑

ti∈Pr(t,s′)
pre(p, ti) ≥ ω.

Now, we must relate the terms of the latter formula to the terms of the goal. We can easily
show, appealing to Lemma 34, that s′.M(p) equals σ′(idp)(s_marking). Then, by construction,
and knowing that TCI idt is connected to PCI idp through the index j, we can deduce that the j-
th element of the output_arcs_weights input port denotes the weight of the arc between place
p and transition t, i.e. the natural number ω. The last thing to show is the equality between the
two sum terms:

∑
ti∈Pr(t,s′)

{
ω if pre(p, ti) = (ω, basic)
0 otherwise

=
j−1
∑

l=0

{
σ′(idp)(oaw)[l] if σ′(idp)(otf)[l] . (σ′(idp)(oat)[l] = basic)

0 otherwise

On the upper part of the equality, we have unfolded term ∑
ti∈Pr(t,s′)

pre(ti) to its full definition

(see Notation 5 in Section 3.2.3). On the lower part is the full definition of the vsots term. Let
us rewrite the two sum terms in a manner that will come handy to prove the equality. Let us
define the Prp set, which is the set of fired transitions with a higher priority than t that are
conflicting with t through the place p:

ti ∈ Prp ≡ ti � t ∧ ∃ω s.t. pre(p, ti) = (ω, basic) ∧ ti ∈ Fired(s′)

Let us also define the IPrp set, which the set of indexes from 0 to j − 1 for which the otf
port of idp equals true at state σ′ and the oat port of idp equals true at state σ′:

l ∈ IPrp ≡ l ∈ [0, j− 1] ∧ (σ′(idp)(oat)[l] = basic) ∧ (σ′(idp)(otf)[l] = true)

We can equivalently rewrite the goal as follows: ∑
ti∈Prp

fst(pre(p, ti)) = ∑
l∈IPrp

σ′(idp)(oaw)[l]

In the left sum term, the pre(p, ti) always returns a couple (ω, basic) as ti verifies that there
exists an ω such that pre(p, ti) = (ω, basic). Thus, the expression fst(pre(p, ti)) denotes the
first element of the couple returned by pre(p, ti), i.e. the weight ω.

Then, to prove the above equality, we must show that there exists a bijection β between
Prp and IPrp such that for all ti ∈ Prp, we have fst(pre(p, ti)) = σ′(idp)(oaw)[β(ti)]. By
property of the transformation function, we know that the order of the indexes in the pri-
ority_authorizations output port of idp reflects the priority order of the conflicting output
transitions of place p (see Figure 6.8). Then, we can exhibit a bijection β0 between the output
transitions of p with a higher priority than t and the indexes l of interval [0, j − 1] verifying
σ′(idp)(oat)[l] = basic. However, to build a complete bijection β from Prp to IPrp, we need to
know that for a transition ti that is a conflicting transition of place p with a higher priority than
t, we have ti ∈ Fired(s′) ⇔ σ′(idp)(otf)[β0(ti)] = true. By property of the transformation
function, we know that the element of index β0(ti) of the otf input port of PCI idp is in fact

230 Chapter 6. Proving semantic preservation in HILECOP

connected to the fired output port of TCI idti . Thus, what we must assume to build a bijection
from Prp to IPrp is ti ∈ Fired(s′) ⇔ σ′(idti)(fired) = true. This is exactly the property of
equivalence between the set of fired transitions and the value of the fired output ports that we
are currently trying to prove.

Thus, to carry out the proof, we need a strong hypothesis stating that the equivalence be-
tween the set of fired transitions and the fired ports holds for all transitions with a higher firing
priority than t, thus including the ones that are in conflict with t through place p. Therefore,
we must think of a way to build the set of fired transitions iteratively such that the previous
hypothesis becomes an invariant over the many iterations. The recursive definition of the set
of fired transitions naturally calls for a proof by structural induction over the set of fired tran-
sitions. As stated before, the actual definition of the set of fired transitions is very declarative.
However, we can easily convert it into an algorithm that will build the set iteratively. The result
is Algorithm 15.

Algorithm 15: fired(s)
Data: An SITPN state s
Result: Returns the set of fired transitions at state s

1 F ← ∅
2 Ts ← T

3 while Ts 6= ∅ do
4 t← GetTopPriorityTransition(Ts, �)
5 if t ∈ Firable(s) and t ∈ Sens(s.M− ∑

ti∈Pr(t,F)
pre(ti)) then F ← F ∪ {t}

6

7 Ts ← Ts \ {t}
8 return F

Algorithm 15 builds the set of fired transitions at state s by iterating over the set of transi-
tions T. Local variables are initialized in the two first lines. Variable F carries the set of fired
transitions, which is initially empty. Variable Ts represents the set of transitions still to be pro-
cessed; Ts is equal to T at the beginning of the algorithm. At Line 3, the while loop iterates
until all transitions of the Ts set have been elected to be fired or have been discarded. At Line
4, function GetTopPriorityTransition returns a top-priority transition of Ts, i.e. a transition t
for which there exists no transition t′ in Ts such that t′ � t. The statement of Line 5 tests if the
top-priority transition t is firable at state s and is sensitized by the residual marking computed
by the expression s.M− ∑

ti∈Pr(t,F)
pre(ti). Here, Pr(t, F) is the set of transitions with the higher

priority than t that are in the set F, i.e.: Pr(t, F) = {ti | ti � t ∧ ti ∈ F}. We know that the
following property holds: all fired transitions with a higher firing priority than t and that have
been elected to be fired are inside the set F. Therefore, F contains all the transitions necessary to
compute the residual marking that is necessary to elect the transition t as a fired transition; if t
passes the test of Line 5 then it joins the set F. The statement of Line 7 withdraws the transition
t from the set Ts before beginning another iteration. Because the priority relation � is a strict
order over the set of transitions T, we can always find a top-priority transition in Ts. Thus,
there can be no iteration where Ts is not decreasing. Thus, the algorithm always terminates

6.4. A detailled proof: equivalence of fired transitions 231

and returns the set of fired transitions at state s.
Being more accustomed to handle relations while performing a proof, we make a relational

definition of Algorithm 15 through the definition of the IsFiredSet and the IsFiredSetAux rela-
tions given in Definition 47 and 48. Definition 46 states that a given transition is fired in relation
to the IsFiredSet relation.

Definition 46 (Fired). A transition t ∈ T is said to be fired at the SITPN state s =
<M, I, resett, ex, cond>, iff there exists a subset Fset ⊆ T such that IsFiredSet(s, Fset) and
t ∈ Fset.

Definition 47 (IsFiredSet). Given an sitpn ∈ SITPN, a SITPN state s ∈ S(sitpn), and a
subset Fset ⊆ T, the IsFiredSet relation is defined as follows:
IsFiredSet(s, Fset) ≡ IsFiredSetAux(s, T, ∅, Fset)

Definition 48 (IsFiredSetAux). The IsFiredSetAux relation is defined by the following rules:

FSETEMP

IsFiredSetAux(s, ∅, F, F)

FSETFIRED

t ∈ Firable(s)
t ∈ Sens(s.M− ∑

ti∈Pr(t,F)
pre(ti))

IsFiredSetAux(s, Ts, F ∪ {t}, Fset) @t′ ∈ Ts s.t. t′ � t
Pr(t, F) = {t′ | t′ � t ∧ t′ ∈ F}IsFiredSetAux(s, Ts ∪ {t}, F, Fset)

FSETNOTFIRABLE

t /∈ Firable(s)
IsFiredSetAux(s, Ts, F, Fset)

@t′ ∈ Ts s.t. t′ � t
IsFiredSetAux(s, Ts ∪ {t}, F, Fset)
FSETNOTSENS

t /∈ Sens(s.M− ∑
ti∈Pr(t,F)

pre(ti))

IsFiredSetAux(s, Ts, F, Fset) @t′ ∈ Ts s.t. t′ � t
Pr(t, F) = {t′ | t′ � t ∧ t′ ∈ F}IsFiredSetAux(s, Ts ∪ {t}, F, Fset)

We are now satisfied with the definition of the set of fired transitions provided by the
IsFiredSet relation and the IsFiredSetAux relation. Therefore, we give a new expression to
Lemma 4 by using the IsFiredSet relation to qualify the set of fired transitions instead of using
the first declarative definition. The result is Lemma 45.

The full formal proof of Lemma 45 is given in Section D.4 of Appendix D. The inductive
definition of the IsFiredSetAux relation permits us to express the hypothesis that we lacked to
perform the proof of Lemma 4. The hypothesis saying that for a given transition t, the “fired”
equivalence holds for all transitions with a higher firing priority. This is stated in the “extra”
hypothesis used in Lemma 46.

232 Chapter 6. Proving semantic preservation in HILECOP

6.4.2 A report on a bug detection
In the previous section, we showed the equivalence between fired transitions and fired port
values at the end of the falling edge phase. In a previous definition of the SITPN state, preced-
ing the bug detection, the set of fired transitions was a member of the SITPN state record. For
a given sitpn ∈ SITPN, we defined an SITPN state s by the record s = <Fired, M, I, cond, ex>
where Fired was the set of fired transitions. The Fired set was involved in the computation of
time counter values during the falling edge phase. Thus, we needed the proof that the equiv-
alence between the set of fired transitions and the value of the fired ports was effective at the
beginning of the falling edge phase. In the previous SITPN semantics, the set of fired transi-
tions stayed the same during the rising edge phase. Therefore, between two SITPN states s, s′

verifying the rising edge state transition relation, i.e. s
↑−→ s′, we had s.Fired = s′.Fired. How-

ever, we showed that it wasn’t the case on the H-VHDL side, i.e. the values of the fired ports
in TCIs would not stay the same during the rising edge phase. Thus, the equivalence fired
transitions and fired port values at the end of the falling edge phase. The consequence was
a divergence between the value of time counters and the value of the s_time_counter signals,
both computed during the falling edge phase. Figure 6.9 shows a case of divergence between
time counters and s_time_counter signals values in the course of an execution.

p

t0
[2,∞]
<2>

t1
[2,∞]
<2>

p

t0
[2,∞]
<2>

t1
[2,∞]
<2>

p

t0
[2,∞]
<1>

t1
[2,∞]
<1>

↑−→ ↓−→
PCI idp

s marking = 3
pauths to idt0 = true

pauths to idt1 = true

TCI idt0
pauths from idp = true

s time counter = 2
fired = true

TCI idt1
pauths from idp = true

s time counter = 2
fired = true

PCI idp
s marking = 1
pauths to idt0 = true

pauths to idt1 = true

TCI idt0
pauths from idp = true

s time counter = 2
fired = true

TCI idt1
pauths from idp = true

s time counter = 2
fired = true

PCI idp
s marking = 1
pauths to idt0 = true

pauths to idt1 = false

TCI idt0
pauths from idp = true

s time counter = 2
fired = true

TCI idt1
pauths from idp = false

s time counter = 2
fired = false

PCI idp
s marking = 1
pauths to idt0 = true

pauths to idt1 = false

TCI idt0
pauths from idp = true

s time counter = 1
fired = true

TCI idt1
pauths from idp = false

s time counter = 3
fired = false

↑−→ −→ ↓−→

FIGURE 6.9: Bug detection: divergence between the value of time counters and
the value of the s_time_counter signals due to the loss of the firing status in-
formation during the stabilization phase; the value of time counters and of the
s_time_counter signals are in green; the value of diverging signals are in red.

In Figure 6.9, during the stabilization phase coming right after the rising edge of the clock,
the value of the fired port of TCI idt1 passes to false. After the update of the s_marking
signal value during the rising edge phase, PCI idp computes new priority authorizations for
its output TCIs. As the marking is only sufficient to fire transition t0 but not transition t1, PCI
idp indicates to TCI idt1 that it no longer has the authorization to fire. Consequently, through
the connection of priority_authorizations ports, the value of the fired port of idt1 is set to
false. Following the rules of the SITPN semantics, on the next falling edge, the value of time

6.5. Mechanized verification of the proof 233

counters must be reset for transition t0 and t1, because both were fired at the previous rising
edge. As a part of the behavior of a TCI, the time_counter process, executed at the falling edge
of the clock, resets the value of the s_time_counter signal given that the value of the fired
port is true. Thus, as the value of the fired port of TCI idt1 is false at the falling edge, the
time_counter process increments the value of the s_time_counter signal instead of resetting
its value. The consequence is a divergence between the value of the time counter of transition
t1 and the value of the s_time_counter signal in TCI idt1 .

As demonstrated above, the time_counter process can not rely on the value of the fired
ports to determine if the value of the s_time_counter signal must be reset or not. We proved
that there is an equivalence between the fired transitions and the value of the fired ports
at the end of a falling edge phase. We need a way to memorize the value of fired ports at
the moment where the equivalence holds (i.e. at the end of the falling edge phase) so that
the time_counter process can use this information to reset the s_time_counter signal. To do
so, we have modified the SITPN semantics and the behavior of the transition design. In the
actual version of the SITPN semantics, if a transition is fired at the beginning of the rising
edge phase then a reset order is sent to the transition. As a consequence, the time counter
associated to this transition will be reset at the next falling edge. In the actual version of the
transition design behavior, the value of the fired port is involved in the computation of the
s_reinit_time_counter signal; the s_reinit_time_counter signal value follows the value of
the reset order assigned to a given transition. Thus, as the equivalence between reset orders
and the value of the s_reinit_time_counter signal holds at the beginning of the falling edge
phase, the time_counter process can rely on the value of the s_reinit_time_counter signal to
reset the value of the s_time_counter signal. As a consequence, the set of fired transitions is
no longer involved in the SITPN semantics premises of the falling edge phase. Therefore, we
chose to withdraw the Fired set from the definition of the SITPN state record. We opted for
an intentional definition of the set of fired transitions at given SITPN state (i.e., Definition 20).
After these changes, we were able to prove that there were no more divergence between the
time counters and the value of the s_time_counter signals in the course of the execution (see
Lemmas 28, p. 289, and 37, p. 313, about the equivalence of time counters).

6.5 Mechanized verification of the proof

The work of mechanizing the proof of Theorem 5 is an ongoing task. At the time of the writing,
we have only verified the two first points (the Initial states equal marking lemma and the Initial
states equal time counters lemma) of the proof concerning the Similar initial states lemma.
However, the effort to achieve this little part of the overall verification amounts to three months
of work. In this section, we give metrics to measure the gap between the size of the “paper”
proof (see Appendix D) and the size of the computer-checked proof written in Coq. We point
out some of the reasons that may explain the gap, and comment some employed techniques
to reduce the size of proof scripts. As a remainder, the full code including specifications and
proof scripts is available at https://github.com/viampietro/ver-hilecop.

https://github.com/viampietro/ver-hilecop

234 Chapter 6. Proving semantic preservation in HILECOP

Listing 6.4 presents the Coq implementation of Theorem 5 along with the sequence of tac-
tics constituting its proof. We also declared the Behavior preservation theorem, and the Elab-
oration, Initialization, Trace existence theorems as axioms in the Soundness.v file under the
soundness folder of the Git repository.� �

1 Theorem sitpn2hvhdl_full_trace_sim :
2 forall τ sitpn decpr ident idarch Ec θs d Ep b θσ γ ∆,
3

4 (* sitpn is well-defined. *)
5 IsWellDefined sitpn→
6

7 (* sitpn translates into (d, γ). *)
8 sitpn_to_hvhdl sitpn decpr ident idarch b = (inl (d, γ))→
9

10 (* Environments are similar. *)
11 SimEnv sitpn γ Ec Ep →
12

13 (* SITPN sitpn yields execution trace θs after τ execution cycles. *)
14 SitpnFullExec sitpn Ec γ τ θs →
15

16 (* Design d yields simulation trace θσ after τ simulation cycles. *)
17 hfullsim Ep τ ∆ d θσ →
18

19 (* ** Conclusion: traces are similar. ** *)
20 SimTrace γ θs θσ.
21 Proof.
22 (* Case analysis on τ *)
23 destruct τ;
24 intros ∗;
25 inversion_clear 4;
26 inversion_clear 1;
27

28 (* - CASE τ = 0, GOAL γ ` s0 ∼ σ0. Solved with sim_init_states lemma.
29 - CASE τ > 0, GOAL γ ` (s0 :: s0 :: s :: θ) ∼ (σ0 :: σ :: σ′ :: θ′′).
30 Solved with [first_cycle] and [simulation] lemmas. *)
31 lazymatch goal with
32 | [Hsimloop: simloop _ _ _ _ _ _ _ |- _] ⇒
33 inversion_clear Hsimloop; constructor; eauto with hilecop
34 end.
35 Qed.� �

LISTING 6.4: Coq implementation of the Full trace similarity theorem and the
mechanized version of its proof.

The proof laid out in Listing 6.4 follows the structure of the informal proof of Theorem 5.
First, we perform case analysis on the structure of the τ variable through the destruct tactic.
Then, the intros ∗ introduces all universally-bound variables in the proof context. Then, at
Lines 25 and 26, we use a variant of the inversion tactic (i.e. inversion_clear) to unfold the

6.5. Mechanized verification of the proof 235

definition of the SITPN full execution relation and the H-VHDL full simulation relations. The
number passed as an argument to the inversion_clear tactic refers to the index of the premise
in the arrow-separated list of premises constituting the declaration of the theorem. At Line 31,
we perform pattern matching on the proof context and on the conclusion to be proved. This
permits to identify the hypothesis associated to theH-VHDL simulation relation, implemented
in Coq by the simloop relation; the hypothesis of simloop is named Hsimloop. To give an
example, the simloop relation can take the following form (cf. Section 4.6.2 for more details on
theH-VHDL simulation relation):

simloop Ds Ep ∆ σ behavior τ θ

This hypothesis has been introduced in the context of the proof as a side effect of the inver-
sion tactic used at Line 26. Then, we introduce in the proof context new hypotheses based
on the definition of the Hsimloop hypothesis (i.e. the definition of the H-VHDL simulation re-
lation) by invoking inversion_clear tactic on Hsimloop. Then, the constructor tactic builds
sub-goals to be proved based on the definition of the full trace similarity relation. We let the
eauto tactic decide which lemma apply to solve the sub-goals generated by the constructor
tactics. We give a hint to the eauto tactic so that it looks in the user-defined hilecop database
of theorems and lemmas to solve the sub-goals. The hilecop database contains the Coq imple-
mentation of all the theorems and lemmas used to prove the Full trace similarity theorem.

Robustness to change

The proof laid out in Listing 6.4 is representative of our strategy to keep our mechanized proofs
robust to change. The robustness criterion is important for multiple reasons. First, in the
proceeding of the proof, we can always realize that some case is missing in the expression
of the transformation function or discover that the semantics of the SITPNs or the H-VHDL
language is incomplete or incorrect. Therefore, we want to structure our proofs in a way that
will lower the impact of correcting the transformation function or completing the semantics.
Second, we know that the SITPN structure and the H-VHDL code of the place and transition
designs will be evolving in the future. Therefore, we want to be able to adapt our proofs with
a minimum effort. To reach robustness to change, we follow the indications laid out in [30].
Mainly, we make an important use of the pattern matching constructs, such as lazymatch or
match, to seek hypotheses in the current proof context. Also, we build hint databases and rely
as much as possible on the use of the auto and eauto to solve the conclusions.

Automation

To shorten the size of proofs, we develop user-defined tactics using the Coq Ltac language. The
tactic that most contributed to the reduction of the size of the proof scripts is the minv tactic (see
StateAndErrorMonadTactics.v under the common folder). The minv tactic automates the proof
of certain lemmas regarding the properties of the HILECOP transformation function in the con-
text of the state-and-error monad. Our Coq implementation of the HILECOP transformation
function implements the state-and-error monad. This monad simulates imperative language

236 Chapter 6. Proving semantic preservation in HILECOP

traits into functional languages. All functions involved in the HILECOP transformation func-
tion carry a compile-time state, defined as the Coq type CompileTimeState. Each function either
returns a value, modifies the compile-time state or does both. To give an example of the use of
the minv tactic, Listing 6.5 shows the implementation of the generate_place_comp_inst func-
tion involved in HILECOP transformation function. The generate_place_comp_inst function
generates a H-VHDL PCI statement from a place p passed as a parameter. As a side effect, the
generate_place_comp_inst function adds the PCI statement to the behavior of the top-level
design currently built in the compile-time state.� �

1 Definition generate_place_comp_inst (p : P sitpn) : CompileTimeState unit :=
2

3 do id ← get_nextid;
4 do _ ← bind_place p id;
5 do pcomp ← get_pcomp p;
6 do pcomp_inst← HComponent_to_comp_inst id place_entid pcomp;
7 add_cs pcomp_inst.� �

LISTING 6.5: Coq implementation of the generate_place_comp_inst function; the
function takes an SITPN place p as a parameter, and modifies the compile-time

state without returning a value (i.e. the function return type is unit)

In its definition body, function generate_place_comp_inst sequentially calls to functions
that sometimes modify the compile-time state (e.g. the bind_place function adds a binding
between p and id in the generated γ binder, i.e. γ(p) = id after the call to bind_place), or
sometimes simply return a value without modifying the state (e.g. get_pcomp returns an in-
termediate structure representing the place component instance associated to place p in the
compile-time state). During the mechanization of the proof, we often need to prove that some
properties hold between the input compile-time state and the output compile-time after the
call to a certain function. For example, after calling the generate_place_comp_inst function
on a given place p and for a given input state s, let us say that a new compile-time state s′ is
returned. We want to show that the part of the γ binder pertaining to the binding of transitions
to TCI identifiers has not changed between state s and state s′3. To perform the proof, we need
to show that each function call composing the sequence of the generate_place_comp_inst
function returns a compile-time state verifying the wanted property. Proving simple property
like verifying that part of the compile-time states are equal through the multiple invocation of
functions is highly automatable. We adapt the tactic monadInv defined in the CompCert project
[72] to automate proof for such properties. The result is the tactic minv massively used in the
proofs pertaining to state invariants4.

Gap between informal and formal proof

There is a huge gap of size between the informal proof of the Full trace similarity theorem
given in this Chapter and in Appendix D and the machine-checked formal proof. Right now,

3Remember that the γ binder is part of the compile-time state record type.
4State invariance lemmas are to be found in the GenerateInfosInvs.v, GenerateArchitectureIns.v,

GeneratePortsInvs.v and GenerateHVhdlInvs.v under the sitpn2hvhdl folder of the Git repository.

6.6. Conclusion 237

the Coq proof wins the size competition. The most significant distance between the size of
the informal and the formal proof comes from the two following points: the statement of the
combinational equations defining the value ofH-VHDL signals and the statement of properties
about the HILECOP transformation function. Stating that a combinational equation holds for a
given signal in the context of an informal proof is a one-line sentence. The same goes when in-
voking the properties of the PCIs and TCIs populating the top-level design behavior based on
the definition of the transformation function. However, proving these statements represents a
tremendous mechanization effort within the Coq proof assistant. To give an example, we begin
the proof of Lemma 6 by taking a place p and a PCI identifier idp linked through the γ binder
returned by the transformation function. Then, we state the existence of a PCI statement, iden-
tified by idp and with an associated generic map, input port map and output port map, in the
behavior of the top-level design returned by the transformation function. To do so, we use the
following the sentence:

“Let us take a p ∈ P and an idp ∈ Comps(∆) such that γ(p) = idp. By construction, there exist
gp, ip, op s.t. comp(idp, place, gp, ip, op) ∈ d.cs.”

The expression “by construction” is a shorthand expression for “knowing how the target
H-VHDL design is constructed by the transformation function”, “based on the definition of
the transformation function”, or again “by property of the transformation function”. In Coq,
proving the lemma that states the existence of a PCI for a given place p amounts to 1500 lines
of proof script. The lemmas regarding properties of PCI and TCI statements deduced from the
transformation function tend to have complicated proofs. We believe that the implementation
of the HILECOP transformation function could be more straightforward in order to simplify
this kind of proof. By straightforward, we mean that the number of steps separating a given
place or a given transition from the generation of their corresponding PCI or TCI could be
diminished, maybe at the cost of time performance. Right now, ease of proof is more important
than time performance, considering that our goal is to prove the semantic preservation theorem
in a reasonable amount of time. Still, the major complexity of the transformation function, i.e.
what makes the proofs so hard, lies in the generation of the interconnections between PCIs and
TCIs. Some engineering effort could be spent to simplify this particular of the transformation.

Also, we spent a lot of time proving some uninteresting, however necessary, properties
about theH-VHDL design states and theH-VHDL simulation relations. For instance, we proved
a lot of lemmas pertaining the preservation of identifiers through the simulation phases (e.g. if
a signal identifier is present in a design state at the beginning of a stabilization phase, then it is
still present at the end of the phase). We also proved a lot of uninteresting properties about the
H-VHDL elaborated designs and the H-VHDL elaboration relation. For instance, properties on
the uniqueness of identifiers in design states, in elaborated designs. . . We believe that a more
systematic use of dependent types, especially to implement the H-VHDL design state and the
elaborated design structure, could prevent us from proving this kind of lemmas.

6.6 Conclusion

In this chapter, the aim was to present the behavior preservation theorem stating that the HILE-
COP transformation is semantic preserving along with its informal proof. By presenting the

238 Chapter 6. Proving semantic preservation in HILECOP

work of the literature pertaining to the verification of transformation functions through the proof
of behavior preservation theorems, we wanted to convince the reader that the expression of our
semantic preservation theorem is “correct”, i.e. it follows a common expression pattern. We
saw that the expression of semantic preservation theorems is quite similar in its form even
when considered transformations are not of the same nature (i.e. GPL compilers, HDL compil-
ers and model transformations). Our semantic preservation theorem takes the form of a state
similarity checking between the states composing the execution traces of our source model and
our target program. At each point of the execution (i.e. at each clock signal event), the state of
the input model and the state of the output representation must be similar to ensure the behav-
ior preservation property. This definition of the behavior preservation property is particular
to reactive systems, i.e. we are dealing with systems that are executing over time, and that are
synchronized with a clock signal. Naturally, the behavior preservation theorem must ensure
that the behaviors are similar, independently of the number of execution cycles performed.
Hopefully, leveraging the inductive reasoning, proving such a thing comes down to proving
that behaviors are preserved through a clock cycle.

The study of the literature showed that the state comparison relation, i.e. the relation that
describes how things are compared between the source and the target representation, is a sig-
nificant element in the expression of the behavior preservation theorem. Especially, in our case,
the state structure of the source and target representations are quite different. Indeed, we are
dealing with an abstract set of data in the SITPN world, while in theH-VHDL representation all
is converted into signal values and internal states of component instances. Thus, relating these
two kinds of states is not straightforward, and we thoroughly presented our state similarity
relation in Section 6.2.

In this chapter, we wanted to stress another point pertaining no more to the “how” but to
the “when” the states of the input and output representations must be compared in the course
of the execution. Here, we are dealing with two kinds of models that are synchronously exe-
cuted. However, the synchronous execution of an SITPN stays at a level that is quite abstract
compared to the concrete execution of a synchronous hardware system. Indeed, the execu-
tion of a synchronous hardware system is related to the rules of the combinational and the
synchronous logic, while it is not the case at the SITPN level. Thus, a H-VHDL design goes
through a lot more different states in the proceeding of a clock cycle compared to its corre-
sponding SITPN. Figure 6.3 illustrates when the state comparison must be performed in the
course of a clock cycle.

While presenting the proof of Theorem 1, we used certain theorems declared as axioms
(Theorems 2, 3 and 4). These theorems express the fact that we can always derive a simulation
trace from the execution of a H-VHDL design resulting of a successful HILECOP transforma-
tion. It means that the execution of a generated H-VHDL design never results into an error
at some point of the simulation. We chose not to represent errors in the H-VHDL semantics
due to the fact that the concept of error is nonexistent in the SITPN semantics. However, we
argue that proving a theorem stating the existence of a simulation trace, independently of the
number of simulation cycles considered, is a way to rectify the lack of error representation in
our semantics. By presenting Theorems 2, 3 and 4 as axioms, we chose to prove the theorem
of semantic preservation in the case where a simulation trace has been produced for the gen-
erated H-VHDL design. This is the setting of Theorem 5 for which the full proof is detailed in

6.6. Conclusion 239

this chapter and in Appendix D. However, we are not giving up on the proof of Theorems 2,
3 and 4. Indeed, proving a theorem stating the similarity of execution traces is useless if the
execution a generated H-VHDL design always fails at some point while the execution of the
corresponding SITPN goes on. However, we are confident in the fact that if the execution of a
generatedH-VHDL design fails, then it can only reflect a divergence in relation to the behavior
of the input SITPN. Thus, proving that the execution traces are similar contributes to the proof
that we can always derive an execution trace for a generatedH-VHDL design.

The informal “paper” proof of Theorem 5 given in this chapter and Appendix D is long;
about a hundred pages. However, as we explained in Section 6.4, the strategy used in the
overall proof is pretty much the same. To prove that the behavior of an SITPN and its cor-
responding H-VHDL design is preserved through an execution cycle, we must reason on the
execution relations ruling both worlds. But first, to relate the execution of our input and output
representations, we must structurally relate the SITPN to the translatedH-VHDL design. In the
proceeding of the proof, we will first reason on the structure of the input SITPN; based on the
structure of the SITPN and by property of the HILECOP transformation, we can determine the
structure of the top-level H-VHDL design. Once we know the structure of the SITPN and the
H-VHDL design, we can unfold their execution rules to prove that their behaviors are the same;
i.e. at the end of a computational step, states are similar.

The mechanization of the proof of Theorem 5 is at its very beginning in terms of completion.
However, we have already spent three months on it. Thus, the mechanization is a very slow
process. We explain the hardness of the mechanization task by pointing out the two points
where the distance between informal and formal proof is most important. The first point corre-
sponds to the statement of the construction of theH-VHDL design based on the structure of the
SITPN and the HILECOP transformation function. Reasoning on the transformation function
is not an easy task as the transformation itself is not as straightforward as the transformation
from a source program of a GPL to a target program of another GPL. In Section 6.5, we pointed
out the distance between a property of the transformation function expressed in one sentence
in the informal proof and the thousands of lines that it represents in the formal proof. The
second point digging the distance between the informal and the formal proof comes from the
establishment of the synchronous and combinational equations that are verified by the internal
signals of the PCIs and TCIS. This also results in one sentence statement in the informal proof
while representing thousands of lines of code in the formal proof. The De Bruijn factor [111],
that permits to measure the distance in terms of number of characters between an informal
proof and its machine-checked version (i.e. the formal program), is tremendously high in our
case when considering these intermediary results.

241

Chapter 7

Conclusion

In this thesis, we were interested in the formal verification of the HILECOP methodology. The
HILECOP methodology has been devised to assist the design and the production of safety-
critical digital systems. To summarize, the HILECOP methodology proposes a high-level graph-
ical modelling formalism; the aim of the formalism is to provide the engineers with a frame-
work to model safety-critical digital systems in a way that foster the communication around
the design models (hence the graphical aspect of the formalism). The formalism is based on
component diagrams and the internal behavior of components are described with a particular
kind of Petri nets. The mathematical foundations of the Petri net formalism provides the pos-
sibility to formally analyze the HILECOP high-level models, and thereby to bring the proof that
the models verify certain soundness properties. The high-level formalism of HILECOP has been
designed to be handy for the humans; however, the ultimate goal of the methodology is to
obtain a physical version of the safety-critical digital system on an FPGA or ASIC. Thus, from
the state of high-level model to its concrete implementation as a hardware circuit, the designed
digital system goes through multiple transformations. In this thesis, we considered the formal
verification of one of these transformations: the model-to-text transformation from a flattened
Petri net version of the high-level model of the safety-critical digital system (i.e. an SITPN)
to its implementation into a VHDL design. This transformation is performed by a computer
program. It was our purpose to formally verify that the transformation is semantic preserving;
that is, for any input model of the transformation the corresponding output model behaves in
the same way as the input model. Pragmatically, the research question that we formalized in
the introduction of this thesis was:

CAN WE PROVE THAT THE MODEL-TO-TEXT TRANSFORMATION DESCRIBED IN THE
HILECOP METHODOLOGY IS SEMANTIC PRESERVING?

As pointed out in the literature reviews at the beginning of Chapters 5 and 6, the task of
formally verifying that a transformation from a source representation to a target one is se-
mantic preserving has been thoroughly studied, and in different application contexts (generic
compilers, domain-specific compilers, model transformations, etc.). From this fact arises the
will to compare the HILECOP model-to-text transformation to the other kinds of transforma-
tions found in the literature. In a research point of view, the complementary questions that
gravitated around our main research question were:

– What are the similarities and the differences between the HILECOP model-to-text transfor-
mation and the other kind of transformations that have been formally verified?

242 Chapter 7. Conclusion

– Are there standard techniques to prove that a transformation is semantic preserving? Do
these techniques apply in the case of the HILECOP model-to-text transformation?

In other words, what elects the formal verification of the HILECOP model-to-text transfor-
mation as a concrete research task, and not as another yet interesting engineering challenge?

In this thesis, the verification of the HILECOP transformation has been conducted with the
help of the Coq proof assistant; thus, the relation between our formalization choices and the
engineering difficulties that they brought was one topic of interest. Especially in the world
of formal verification, and more truly in the domain of deductive verification and interactive
proving, the mechanization of proofs with the help of a proof assistant may be very time con-
suming. We believe that it is a part of the research task to evaluate the feasibility of the mech-
anization of proofs within a reasonable time-span, and also, to try to bring an understanding
regarding the formalization choices and their impacts on the mechanization.

To formally verify the semantic preservation property of the HILECOP transformation, we
followed the usual proceeding applied in the domain of deductive verification, which is:

1. Formalize the execution semantics of the source representation (Chapter 3) and the target
representation (Chapter 4), and implement them using the proof assistant.

2. Describe and implement the transformation within the proof assistant (Chapter 5).

3. Express the theorem of semantic preservation, prove the theorem, and mechanize the proof
using the chosen proof assistant (Chapter 6).

Following these steps, we brought the proof that the HILECOP transformation is semantic
preserving. Even though the mechanization of the proof is not completed, each step of the
approach brought its own part of contributions.

During the formalization of the SITPN semantics, i.e. the source representation of the trans-
formation, we helped clarify the semantics of these models, even though it was established in
two previous theses [71, 78]. Especially, we formalized the concept of a well-defined SITPN,
that is, an acceptable model for the transformation. As a matter of fact, the HILECOP transforma-
tion raises errors if the input SITPN model is not well-defined. Also, all the theorems and lem-
mas that we proved rely on the well-definition condition of the input SITPN model. Through
the formalization of a well-defined SITPN, we precisely characterized the way to handle a con-
flict between the transitions of an SITPN. This aspect of the SITPN semantics is complex and
has been one particularly subtle point of the proof of semantic preservation.

The reflection around the formal semantics of the VHDL language and how it could ease the
reasoning around the HILECOP’s VHDL programs also brought new contributions. From the
rather complex semantics of the VHDL, and all is protean expressions found in the literature,
we devised a simple simulation algorithm, and formalized it into a simulation relation for
the execution of synchronous VHDL designs. We defined the abstract syntax of a subset of
VHDL, called H-VHDL, that suited our needs regarding the VHDL programs generated by the
transformation and the ones that were previously defined by the methodology (i.e. the place
and transition designs). However, theH-VHDL syntax and semantics is well-suited to express
any kind of synchronous and synthesizable digital systems. Moreover, the implementation

Chapter 7. Conclusion 243

of the H-VHDL syntax and semantics in Coq provides a framework to reason about H-VHDL
designs. To the best of our knowledge, it is the only example of implementation of the VHDL
language using the Coq proof assistant.

About the expression of the HILECOP model-to-text transformation itself, the contribution
of this thesis was the design of the algorithm of the transformation, which had never been ex-
pressed before, and its implementation within the Coq proof assistant. For the implementation
of the transformation, we tried as much as possible to draw our inspirations from the tech-
niques found in the literature. Especially, we tried to produce clear, maintainable code, through
the use of functional design patterns, while anticipating the additions of new elements in the
input models. We also tried as much as possible to implement the transformation in order to
ease the mechanization of the proof of semantic preservation.

The last part of the work was related to the expression and the proof of the semantic preser-
vation theorem. While expressing the theorem of semantic preservation, we formalized the
way to compare an input SITPN model with the corresponding VHDL design, result of the
transformation. This point is the angular stone of the theorem of semantic preservation, more-
over considering that the gap between the source and the target representations is substantial.
The major contribution of the thesis to this part of the work is, of course, to have brought the
proof of the semantic preservation theorem, more especially the proof of Theorem 5. Although
the mechanization of the proof is far from being completed, establishing the informal proof
that the HILECOP model-to-text transformation is semantic preserving has revealed a bug in
the VHDL implementation of the place and transition design (cf. Section 6.4.2).

We stated above that from our very pragmatic research question arose a lot of additional
questions. These questions pertain to the position of the HILECOP model-to-text transformation
with respect to the other examples of transformation for which a work of formal verification
has been realized. In other words, what makes this transformation specific? What aspects of
this transformation and of its formal verification motivate a research interest? The very context
of the design and production of critical digital systems, in which the HILECOP transformation is
involved, brings out interesting research challenges. In terms of semantics, it means that we are
dealing with reactive systems, i.e. systems which are characterized by a time-related execution
and their interactions with an outside environment. Considering the work done on the formal
verification of compilers for GPLs, where programs are transformational systems (i.e. there is
a one-time end-to-end execution of the program), this already constitutes an originality. The
reactivity of systems must be taken into account in the expression of the theorem of semantic
preservation. However, some works [19, 56, 22, 114, 76, 58, 18, 115] have already been con-
ducted on the formal verification of hardware description language (HDL) compilers. In that
case, the source language and its semantics permit us to describe reactive systems. As there
exist a lot of works pertaining to the formal verification of transformations relating a source
programming language to a target one, the first originality of the HILECOP transformation is
that the source representation is a graphical formalism. This graphical formalism is a particular
brand of Petri nets with a synchronous semantics, which is also an original point as most of the
Petri net classes have an asynchronous semantics. These SITPNs have been designed to give as
much power of expression as possible to the engineers that are designing safety-critical digital
systems. Blending these considerations with the context of formal methods, and the necessity
to produce safe models of critical digital systems, the result is that the semantics of SITPNs is

244 Chapter 7. Conclusion

rather complex; especially the handling of conflicts between transitions.
Another point of originality of the HILECOP transformation comes from the distance be-

tween the SITPN models, which are yet abstract mathematical objects, and their target repre-
sentation as VHDL designs, which already deeply tied to the functioning of hardware systems.
Moreover, two designs are at the base of the representation of SITPN models into VHDL pro-
grams: the place and transition designs. These two designs represent more or less of a
hundred lines of VHDL code each. The VHDL code describing the behavior of the place and
transition designs comes with a lot of implementation-related particularities that are some-
times difficult to relate to the semantics of SITPNs (and sometimes impossible to relate at all,
hence the bug detection, cf. Section 6.4.2).

Finally, the HILECOP transformation function is itself rather complex. It cannot be expressed
by rules following the inductive structure of the abstract syntax of a source programming lan-
guage, as it is usually done in compilers. Specifically because of the nature of the SITPN struc-
ture, the HILECOP transformation has to cover a lot of particular cases related to the form of the
input models. The specificities of the HILECOP transformation function relate to the difficulties
that we encountered to mechanize the proof of semantic preservation.

Although the proof of semantic preservation has been established as a semi-formal paper
proof, we were not able to fully mechanize it within the Coq proof assistant; at least not in the
time span of the thesis. This has brought a lot of thinking about the reasons surrounding the
difficulties of the mechanization, and also about the solutions that would allow us to go over
these difficulties. Specifically, we were wondering if the mechanization could not be brought
out entirely because of a lack of engineering skills or because of other considerations. These
considerations included:

– The complexity of the H-VHDL semantics: during the mechanization of the proof, we real-
ized that the H-VHDL semantics, and especially the rules related to the simulation loop, al-
though much more simplified than the complete simulation loop of the VHDL LRM, was not
convenient to reason about the VHDL designs generated by the transformation, nor to reason
about the place and transition design behaviors. Therefore, some changes have been made
in the H-VHDL semantics and the final result has been presented in Chapter 4. However, at
the moment of the writing, we have not yet measured the impact of these changes on the
mechanization of the proof.

– The complexity of the source models: one solution to be able to complete the mechanization
could have been to consider an even smaller subset for the source PNs models. For instance,
we could have let aside the time and interpretation aspects in SITPNs.

– The implementation of the transformation function: the current implementation of the trans-
formation function corresponds to the implementation of a former version of the transfor-
mation algorithm. A new and simpler version of the transformation algorithm has been
presented in Chapter 5. The current implementation of the transformation includes some
intermediate steps, between the input model and the final H-VHDL design, that might not
be necessary and add further complexities at the time of proofs.

– The bootstrap cost of the mechanization task: at the beginning of the mechanization, a lot of
intermediary lemmas must be proved that will later be extensively used in other proofs. The

7.1. Future work and perspectives 245

consequence is that the overall completion of the mechanization advances very slowly at the
beginning of the project because a lot of little bricks must be set. Eventually, the verification
goes much faster when all the necessary tools are in place (notably thanks to the auto tactic
of the Coq proof assistant, and the hint databases system).

Pondering all these considerations, it remains clear that the HILECOP methodology is an
industrial product with all its subtleties. Our guess is that, to complete the mechanization of
the proof, it will require one person (already acquainted with the overall system) doing the
job at full time during one year. However, we are confident in the fact that we cleared the way
enough for the proof of semantic preservation to be fully mechanized; now, it is only a question
of human and time resources to complete it.

Once the mechanization of the proof will be completed, we will have the formal proof that
the HILECOP model-to-text transformation is semantic preserving. Then, this formal proof
can help to certify the HILECOP methodology as an eligible methodology for the design and
production of safety-critical digital systems. The Neurinnov company exploits the HILECOP
methodology for the production of neuroprostheses, which are considered highly critical med-
ical devices. To certify the neuroprostheses as eligible for market, the UE regulation asks for
the thorough testing of all the programs involved in the production chain, thus including the
HILECOP methodology. For the moment, the UE regulation standards for medical devices do
not consider a formal proof as sufficient to certify a given program. All the standards in the
domain of avionics, railways, power plants and many others consider a formal proof as suf-
ficient. Therefore, we are confident in the fact that the UE regulation standards for medical
devices will soon evolve in this way.

7.1 Future work and perspectives

In the immediate future, the first work to complete is of course the mechanization of the proof
of Theorem 5. Then, the proofs of Theorems 2, 3 and 4, which are actually considered as axioms,
must be completed as well. Finally, we must take into account all the aspects of the HILECOP
high-level models, which actually have a richer structure than the one presented in Chapter 3.

The first aspect to reconsider in the definition of the SITPN structure is interpretation. The
interpretation aspect has been simplified in the actual version of SITPNs. We could at least
consider the set of VHDL signals, i.e. the variables of the interpretation, as being a part of
the SITPN structure. Depending on the precision level we want to achieve, we can relate the
conditions to concrete Boolean expressions, and the actions/functions to concrete operations.
Moreover, we can equip the SITPN semantics with an operational semantics to evaluate the
expressions and operations performed over VHDL signals. In that case, the SITPN state would
include a mapping between the set of VHDL signals and their current value.

The two other main aspects still to be integrated are macroplaces and multi-clock domains.
The macroplace mechanism, illustrated in Figure 7.1, enables the encapsulation of an SITPN
subnet, called a refinement, into an environment that handles exceptions.

246 Chapter 7. Conclusion

p0

t0

p1

tin

(2p0)

pin

t0 [1,∞[

(2p0,p1)

pout

texc

(*)

pexc

FIGURE 7.1: The macroplace is the double-lined circle that encapsulates an SITPN
subnet; the subnet is called a refinement. The arcs that enter and go out of the
macroplace are particular arcs, thus with a particular semantics, represented by

dotted arrows.

The formal definition of the SITPN structure with macroplaces and its formal semantics
have been described in [71]. Adding macroplaces to the actual SITPN structure will impact
the transformation function, and all the surrounding proofs. It will also bring a new H-VHDL
design (i.e. the one defining macroplace components) in the loop, and will modify the code of
the place and transition designs.

In the actual semantics of SITPNs, we considered that only one clock signal regulated the
evolution of the system. However, the formalism of the HILECOP high-level models includes
the possibility to assign different clock domains to different parts of the same input model. Thus,
the modeled system is qualified as a multi-clock domain system. It means that the different
parts of the system are not evolving at the same pace. Therefore, a mechanism of asynchronous
message sending relates two parts with different clock domains, and allows these parts to com-
municate together. The system is said to have a Globally Asynchronous Locally Synchronous
(GALS) architecture. The semantics of SITPNs that integrate multi-clock domains has not been
formalized yet. The multi-clock domain aspect also implies modifying the H-VHDL semantics
to integrate multiple clock signals in the simulation loop.

The Coq proof assistant provides a way to extract OCaml or Haskell code from a Coq function.
Thus, proving that our Coq implementation of the HILECOP model-to-text transformation is
semantic preserving would allow us to extract a sound OCaml or Haskell program out of it. This
program could then replace the existing Java implementation of the HILECOP methodology.
At least, the engineers in charge of maintaining the current HILECOP implementation are open
to the idea. However, in the certification standards of safety-critical software programs, the

7.1. Future work and perspectives 247

executed code may not be the one over which the formal verification has been conducted (e.g.
EAL 7 in the Common Criterion standard).

All the programming tasks of this thesis have been performed within the framework of the
Coq proof assistant. The produced code is fully accessible under the following Git repository:

https://github.com/viampietro/ver-hilecop

https://github.com/viampietro/ver-hilecop

249

Appendix A

The place design in concrete and
abstract VHDL syntax

� �
1 entity place is
2 generic(
3 input_arcs_number : natural := 1;
4 output_arcs_number : natural := 1;
5 maximal_marking : natural := 1
6);
7 port(
8 clock : in std_logic;
9 reset_n : in std_logic;

10 initial_marking : in natural range 0 to maximal_marking;
11 input_arcs_weights : in weight_vector_t(input_arcs_number1 downto 0);
12 output_arcs_types : in arc_vector_t(output_arcs_number1 downto 0);
13 output_arcs_weights : in weight_vector_t(output_arcs_number1 downto 0);
14 input_transitions_fired : in std_logic_vector(input_arcs_number1 downto 0);
15 output_transitions_fired : in std_logic_vector(output_arcs_number1 downto 0);
16 output_arcs_valid : out std_logic_vector(output_arcs_number1 downto 0);
17 priority_authorizations : out std_logic_vector(output_arcs_number1 downto 0);
18 reinit_transitions_time : out std_logic_vector(output_arcs_number1 downto 0);
19 marked : out std_logic
20);
21 end place;
22

23 architecture place_architecture of place is
24

25 subtype local_weight_t is natural range 0 to maximal_marking;
26

27 signal s_input_token_sum : local_weight_t;
28 signal s_marking : local_weight_t;
29 signal s_output_token_sum : local_weight_t;
30

31 begin
32

250 Appendix A. The place design in concrete and abstract VHDL syntax

33 input_tokens_sum : process(input_arcs_weights, input_transitions_fired)
34 variable v_internal_input_token_sum : local_weight_t;
35 begin
36 v_internal_input_token_sum := 0;
37

38 for i in 0 to input_arcs_number − 1 loop
39 if (input_transitions_fired(i) = ’1’) then
40 v_internal_input_token_sum := v_internal_input_token_sum + input_arcs_weights(i

);
41 end if;
42 end loop;
43

44 s_input_token_sum⇐ v_internal_input_token_sum;
45 end process input_tokens_sum;
46

47 output_tokens_sum : process(output_arcs_types, output_arcs_weights,
output_transitions_fired)

48 variable v_internal_output_token_sum : local_weight_t;
49 begin
50 v_internal_output_token_sum := 0;
51

52 for i in 0 to output_arcs_number − 1 loop
53 if (output_transitions_fired(i) = ’1’ and output_arcs_types(i) = arc_t(BASIC)) then
54 v_internal_output_token_sum := v_internal_output_token_sum +

output_arcs_weights(i);
55 end if;
56 end loop;
57

58 s_output_token_sum⇐ v_internal_output_token_sum;
59 end process output_tokens_sum;
60

61 marking : process(clock, reset_n, initial_marking)
62 begin
63 if (reset_n = ’0’) then
64 s_marking⇐ initial_marking;
65 elsif rising_edge(clock) then
66 s_marking⇐ s_marking + (s_input_token_sum − s_output_token_sum);
67 end if;
68 end process marking;
69

70 determine_marked : process(s_marking)
71 begin
72 if (s_marking = 0) then
73 marked⇐ ’0’;
74 else
75 marked⇐ ’1’;
76 end if;

Appendix A. The place design in concrete and abstract VHDL syntax 251

77 end process determine_marked;
78

79 marking_validation_evaluation : process(output_arcs_types, output_arcs_weights,
s_marking)

80 begin
81 for i in 0 to output_arcs_number − 1 loop
82 if ((((output_arcs_types(i) = arc_t(BASIC)) or (output_arcs_types(i) = arc_t(TEST)))

and (s_marking >= output_arcs_weights(i)))
83 or ((output_arcs_types(i) = arc_t(INHIBITOR)) and (s_marking <

output_arcs_weights(i))))
84 then
85 output_arcs_valid(i)⇐ ’1’;
86 else
87 output_arcs_valid(i)⇐ ’0’;
88 end if;
89 end loop;
90 end process marking_validation_evaluation;
91

92 priority_evaluation : process(output_arcs_types, output_arcs_weights,
output_transitions_fired, s_marking)

93 variable v_saved_output_token_sum : local_weight_t;
94 begin
95 v_saved_output_token_sum := 0;
96

97 for i in 0 to output_arcs_number − 1 loop
98 if (s_marking >= v_saved_output_token_sum + output_arcs_weights(i)) then
99 priority_authorizations(i)⇐ ’1’;

100 else
101 priority_authorizations(i)⇐ ’0’;
102 end if;
103

104 if ((output_transitions_fired(i) = ’1’) and (output_arcs_types(i) = arc_t(BASIC)))
then

105 v_saved_output_token_sum := v_saved_output_token_sum + output_arcs_weights(i);
106 end if;
107

108 end loop;
109 end process priority_evaluation;
110

111 reinit_transitions_time_evaluation : process(clock, reset_n)
112 begin
113 if (reset_n = ’0’) then
114 reinit_transitions_time⇐ (others⇒ ’0’);
115 elsif rising_edge(clock) then
116 for i in 0 to output_arcs_number − 1 loop
117 if ((((output_arcs_types(i) = arc_t(BASIC)) or (output_arcs_types(i) = arc_t(TEST)))
118 and (s_marking − s_output_token_sum < output_arcs_weights(i))

252 Appendix A. The place design in concrete and abstract VHDL syntax

119 and (s_output_token_sum > 0))
120 or output_transitions_fired(i) = ’1’)
121 then
122 reinit_transitions_time(i)⇐ ’1’;
123 else
124 reinit_transitions_time(i)⇐ ’0’;
125 end if;
126 end loop;
127 end if;
128 end process reinit_transitions_time_evaluation;
129

130 end place_architecture;� �
LISTING A.1: The place design in concrete VHDL syntax.� �

1 design place place_architecture
2

3 -- Generic clause
4 ((input_arcs_number, natural(0,NATMAX), 1),
5 (output_arcs_number, natural(0,NATMAX), 1),
6 (maximal_marking, natural(0,NATMAX), 1))
7

8 -- Port clause
9 ((in, initial_marking, natural(0, maximal_marking)),
10 (in, input_arcs_weights, array (natural(0, 255), 0, input_arcs_number−1)),
11 (in, output_arcs_types, array (natural(0, 2), 0, output_arcs_number−1)),
12 (in, output_arcs_weights, array (natural(0, 2), 0, output_arcs_number−1)),
13 (in, input_transitions_fired, array (boolean, 0, input_arcs_number−1)),
14 (in, output_transitions_fired, array (boolean, 0, output_arcs_number−1)),
15 (out, output_arcs_valid, array (boolean, 0, output_arcs_number−1)),
16 (out, priority_authorizations, array (boolean, 0, output_arcs_number−1)),
17 (out, reinit_transitions_time, array (boolean, 0, output_arcs_number−1)),
18 (out, marked, boolean))
19

20 -- Architecture declarative part
21 ((s_input_token_sum, natural(0, maximal_marking)),
22 (s_marking, natural(0, maximal_marking)),
23 (s_output_token_sum, natural(0, maximal_marking)))
24

25 -- Behavior
26 process (input_tokens_sum, (input_arcs_weights, input_transitions_fired),
27 ((v_internal_input_token_sum, natural(0, maximal_marking))),
28 (v_internal_input_token_sum := 0;
29 (for (i, 0, input_arcs_number − 1)
30 (if (input_transitions_fired(i) = true)
31 (v_internal_input_token_sum := v_internal_input_token_sum +

input_arcs_weights(i))));

Appendix A. The place design in concrete and abstract VHDL syntax 253

32 s_input_token_sum⇐ v_internal_input_token_sum))
33

34 process (output_tokens_sum,
35 (output_arcs_types, output_arcs_weights, output_transitions_fired),
36 ((v_internal_output_token_sum,natural(0, maximal_marking))),
37 (v_internal_output_token_sum := 0;
38 (for (i, 0, output_arcs_number−1)
39 (if (output_transitions_fired(i) = true and output_arcs_types(i) = 0)
40 (v_internal_output_token_sum := v_internal_output_token_sum +

output_arcs_weights(i))));
41 s_output_token_sum⇐ v_internal_output_token_sum))
42

43 process (marking, (clk, initial_marking), ∅
44 (rst (s_marking⇐ initial_marking)
45 (rising (s_marking⇐ s_marking + (s_input_token_sum − s_output_token_sum))))
46

47 process (determine_marked, (s_marking), ∅, (marked⇐ s_marking > 0))
48

49 process (marking_validation_evaluation,
50 (output_arcs_types, output_arcs_weights, s_marking), ∅,
51 (for (i, 0, output_arcs_number − 1)
52 (output_arcs_valid(i)⇐
53 ((((output_arcs_types(i) = 0) or (output_arcs_types(i) = 1))
54 and (s_marking >= output_arcs_weights(i)))
55 or ((output_arcs_types(i) = 2) and (s_marking < output_arcs_weights(i)))))))
56

57 process(priority_evaluation,
58 (output_arcs_types, output_arcs_weights, output_transitions_fired, s_marking),
59 ((v_saved_output_token_sum, natural(0, maximal_marking))),
60 (v_saved_output_token_sum := 0;
61 (for (i, 0, output_arcs_number − 1)
62 (priority_authorizations(i)⇐
63 (s_marking >= v_saved_output_token_sum + output_arcs_weights(i))));
64 (if ((output_transitions_fired(i) = true) and (output_arcs_types(i) = 0))
65 (v_saved_output_token_sum := v_saved_output_token_sum + output_arcs_weights(i)))))
66

67 procees(reinit_transitions_time_evaluation, (clk), ∅,
68 (rst
69 (for (i, 0, output_arcs_number−1) (reinit_transitions_time(i)⇐ false))
70 (rising
71 (for (i, 0, output_arcs_number−1)
72 (reinit_transitions_time(i)⇐
73 (((output_arcs_types(i) = 0) or (output_arcs_types(i) = 1))
74 and (s_marking − s_output_token_sum < output_arcs_weights(i))
75 and (s_output_token_sum > 0))
76 or (output_transitions_fired(i) = true)))))

254 Appendix A. The place design in concrete and abstract VHDL syntax

� �
LISTING A.2: The place design inH-VHDL abstract syntax.

255

Appendix B

The transition design in concrete
and abstract VHDL syntax

� �
1 entity transition is
2 generic(
3 transition_type : transition_t := NOT_TEMPORAL;
4 input_arcs_number : natural := 1;
5 conditions_number : natural := 1;
6 maximal_time_counter : natural := 1
7);
8 port(
9 clock : in std_logic;

10 reset_n : in std_logic;
11 input_conditions : in std_logic_vector(conditions_number1 downto 0);
12 time_A_value : in natural range 0 to maximal_time_counter;
13 time_B_value : in natural range 0 to maximal_time_counter;
14 input_arcs_valid : in std_logic_vector(input_arcs_number1 downto 0);
15 reinit_time : in std_logic_vector(input_arcs_number1 downto 0);
16 priority_authorizations : in std_logic_vector(input_arcs_number1 downto 0);
17 fired : out std_logic
18);
19 end transition;
20

21 architecture transition_architecture of transition is
22

23 signal s_condition_combination : std_logic;
24 signal s_enabled : std_logic;
25 signal s_firable : std_logic;
26 signal s_firing_condition : std_logic;
27 signal s_priority_combination : std_logic;
28 signal s_reinit_time_counter : std_logic;
29 signal s_time_counter : natural range 0 to maximal_time_counter;
30

31 begin
32

256 Appendix B. The transition design in concrete and abstract VHDL syntax

33 condition_evaluation : process(input_conditions)
34 variable v_internal_condition : std_logic;
35 begin
36 v_internal_condition := ’1’;
37

38 for i in 0 to conditions_number − 1 loop
39 v_internal_condition := v_internal_condition and input_conditions(i);
40 end loop;
41

42 s_condition_combination⇐ v_internal_condition;
43 end process condition_evaluation;
44

45 enable_evaluation : process(input_arcs_valid)
46 variable v_internal_enabled : std_logic;
47 begin
48 v_internal_enabled := ’1’;
49

50 for i in 0 to input_arcs_number − 1 loop
51 v_internal_enabled := v_internal_enabled and input_arcs_valid(i);
52 end loop;
53

54 s_enabled⇐ v_internal_enabled;
55 end process enable_evaluation;
56

57 reinit_time_counter_evaluation : process(reinit_time, s_enabled)
58 variable v_internal_reinit_time_counter : std_logic;
59 begin
60 v_internal_reinit_time_counter := ’0’;
61

62 for i in 0 to input_arcs_number − 1 loop
63 v_internal_reinit_time_counter := v_internal_reinit_time_counter or reinit_time(i

);
64 end loop;
65

66 s_reinit_time_counter⇐ v_internal_reinit_time_counter;
67 end process reinit_time_counter_evaluation;
68

69 time_counter : process(reset_n, clock)
70 begin
71 if (reset_n = ’0’) then
72 s_time_counter⇐ 0;
73 elsif falling_edge(clock) then
74 if ((s_enabled = ’1’) and (transition_type /= transition_t(NOT_TEMPORAL))) then
75 if (s_reinit_time_counter = ’0’) then
76 if (s_time_counter < maximal_time_counter) then
77 s_time_counter⇐ s_time_counter + 1;
78 end if;

Appendix B. The transition design in concrete and abstract VHDL syntax 257

79 else
80 s_time_counter⇐ 1;
81 end if;
82 else
83 s_time_counter⇐ 0;
84 end if;
85 end if;
86 end process time_counter;
87

88 firing_condition_evaluation : process (s_enabled, s_condition_combination,
s_reinit_time_counter, s_time_counter)

89 begin
90 if ((s_condition_combination = ’1’)
91 and (s_enabled = ’1’)
92 and ((transition_type = transition_t(NOT_TEMPORAL))
93 or ((transition_type = transition_t(TEMPORAL_A_B))
94 and (s_reinit_time_counter = ’0’)
95 and (s_time_counter >= (time_A_value1))
96 and (s_time_counter < time_B_value))
97 or ((s_reinit_time_counter = ’0’)
98 and (((transition_type = transition_t(TEMPORAL_A_A))
99 and (s_time_counter = (time_A_value1)))

100 or ((transition_type = transition_t(TEMPORAL_A_INFINITE))
101 and (s_time_counter >= (time_A_value1))))
102 or ((transition_type /= transition_t(NOT_TEMPORAL))
103 and (s_reinit_time_counter = ’1’)
104 and (time_A_value = 1))
105)
106) then
107 s_firing_condition⇐ ’1’;
108 else
109 s_firing_condition⇐ ’0’;
110 end if;
111 end process firing_condition_evaluation;
112

113 priority_authorization_evaluation : process(priority_authorizations)
114 variable v_priority_combination : std_logic;
115 begin
116 v_priority_combination := ’1’;
117

118 for i in 0 to input_arcs_number − 1 loop
119 v_priority_combination := v_priority_combination and priority_authorizations(i);
120 end loop;
121

122 s_priority_combination⇐ v_priority_combination;
123 end process priority_authorization_evaluation;
124

258 Appendix B. The transition design in concrete and abstract VHDL syntax

125 firable : process(reset_n, clock)
126 begin
127 if (reset_n = ’0’) then
128 s_firable⇐ ’0’;
129 elsif falling_edge(clock) then
130 s_firable⇐ s_firing_condition;
131 end if;
132 end process firable;
133

134 fired_evaluation : process (s_firable, s_priority_combination)
135 begin
136 fired⇐ s_firable and s_priority_combination;
137 end process fired_evaluation;
138

139 end transition_architecture;� �
LISTING B.1: The transition design in concrete VHDL syntax.� �

1 design transition transition_architecture
2

3 -- Generic clause
4 ((transition_type, natural(0,3), 0),
5 (input_arcs_number, natural(0,NATMAX), 1),
6 (conditions_number, natural(0,NATMAX), 1),
7 (maximal_time_counter, natural(0,NATMAX),1))
8

9 -- Port clause
10 ((in, input_conditions, array(boolean, 0, conditions_number−1),
11 (in, time_A_value, natural(0, maximal_time_counter)),
12 (in, time_B_value, natural(0, maximal_time_counter)),
13 (in, input_arcs_valid, array(boolean, 0, input_arcs_number−1)),
14 (in, reinit_time, array(boolean, 0, input_arcs_number−1)),
15 (in, priority_authorizations, array(boolean, 0, input_arcs_number−1)),
16 (out, fired, boolean))
17

18 -- Architecture declarative part
19 ((s_condition_combination, boolean),
20 (s_enabled, boolean),
21 (s_firable, boolean),
22 (s_firing, boolean),
23 (s_priority, boolean),
24 (s_reinit, boolean),
25 (s_time_counter, natural(0, maximal_time_counter)),
26

27 -- Behavior
28

29 process (condition_evaluation, (input_conditions), ((v_internal_condition, boolean)),

Appendix B. The transition design in concrete and abstract VHDL syntax 259

30 (v_internal_condition := true;
31 (for (i, 0, conditions_number−1)
32 (v_internal_condition := v_internal_condition and input_conditions(i)));
33 s_condition_combination⇐ v_internal_condition))
34

35 process (enable_evaluation, (input_arcs_valid), ((v_internal_enabled, boolean)),
36 (v_internal_enabled := true;
37 (for (i, 0, input_arcs_number−1)
38 (v_internal_enabled := v_internal_enabled and input_arcs_valid(i)));
39 s_enabled⇐ v_internal_enabled))
40

41 process (reinit_time_counter_evaluation, (reinit_time, s_enabled),
42 ((v_internal_reinit_time_counter, boolean)),
43 (v_internal_reinit_time_counter := false;
44 (for (i, 0, input_arcs_number−1)
45 (v_internal_reinit_time_counter := v_internal_reinit_time_counter or reinit_time(

i)));
46 (s_reinit_time_counter⇐ v_internal_reinit_time_counter)))
47

48 process (time_counter, (clk), ∅,
49 (rst
50 (s_time_counter⇐ 0)
51 (falling
52 (if ((s_enabled = true) and (transition_type 6= 0))
53 (if (s_reinit_time_counter = false)
54 (if (s_time_counter < maximal_time_counter)
55 (s_time_counter⇐ s_time_counter + 1))
56 (s_time_counter⇐ 1))
57 (s_time_counter⇐ 0)))))
58

59 process (firing_condition_evaluation,
60 (s_enabled, s_condition_combination, s_reinit_time_counter, s_time_counter),
61 ∅,
62 (s_firing_condition⇐
63 (s_condition_combination = true)
64 and (s_enabled = true)
65 and ((transition_type = 0)
66 or ((s_reinit_time_counter = false) and
67 (((transition_type = 1) and (s_time_counter >= (time_A_value1))
68 and (s_time_counter < time_B_value))
69 or ((transition_type = 2) and (s_time_counter = (time_A_value1)))
70 or ((transition_type = 3) and (s_time_counter >= (time_A_value1)))))
71 or ((s_reinit_time_counter = true)
72 and (transition_type 6= 0)
73 and (time_A_value = 1)))))
74

75 process (priority_authorization_evaluation, (priority_authorizations),

260 Appendix B. The transition design in concrete and abstract VHDL syntax

76 ((v_priority_combination, boolean)),
77 (v_priority_combination := true;
78 (for (i, 0, input_arcs_number−1)
79 (v_priority_combination := v_priority_combination and priority_authorizations(i)));
80 s_priority_combination⇐ v_priority_combination))
81

82 process (firable, (clk), ∅,
83 (rst (s_firable⇐ false)
84 (falling (s_firable⇐ s_firing_condition))))
85

86 process (fired_evaluation, (s_firable, s_priority_combination), ∅,
87 (fired⇐ s_firable and s_priority_combination))� �

LISTING B.2: The transition design inH-VHDL abstract syntax.

261

Appendix C

The semantic preservation theorem
and its dependencies

Theorem 1
(Behavior preservation)

Theorem 5
(Full trace similarity)

Theorem 4
(Trace existence)

Theorem 3
(Initialization)

Theorem 2
(Elaboration)

Theorem 5
(Full trace similarity)

Lemma 1
(Trace Similarity)

Lemma 2
(Rising edge)

Lemma 3
(Falling edge)

Lemma 15
(First rising edge)

Lemma 5
(Similar initial states)

262 Appendix C. The semantic preservation theorem and its dependencies

Lemma 2
(Rising edge)

Lemma 27
(Rising edge equal conditions)

Lemma 26
(Rising edge equal condition combination)

Lemma 33
(Rising edge equal not sensitized)

Lemma 32
(Rising edge equal sensitized)

Lemma 31
(Rising edge equal function executions)

Lemma 30
(Rising edge equal action executions)

Lemma 29
(Rising edge equal reset orders)

Lemma 28
(Rising edge equal time counters)

Lemma 25
(Rising edge equal marking)

Appendix C. The semantic preservation theorem and its dependencies 263

Lemma 3
(Falling edge)

Lemma 36
(Falling edge equal input token sum)

Lemma 35
(Falling edge equal output token sum)

Lemma 48
(Falling edge equal not fired)

Lemma 4
(Falling edge equal fired)

Lemma 44
(Falling edge equal not firable)

Lemma 41
(Falling edge equal firable)

Lemma 40
(Falling edge equal function executions)

Lemma 39
(Falling edge equal action executions)

Lemma 38
(Falling edge equal condition values)

Lemma 37
(Falling edge equal time counters)

Lemma 34
(Falling edge equal marking)

265

Appendix D

Semantic preservation proof

Constants and signals reference
Full name Alias Category Type

input_arcs_number ian generic constant (T) N

transition_type tt generic constant (T) {not_temp, temp_a_b,
temp_a_a, temp_a_inf}

conditions_number cn generic constant (T) N

maximal_time_counter mtc generic constant (T) N

time_A_value A input port (T) N

time_B_value B input port (T) N

input_conditions ic input port (T) array of B

reinit_time rt input port (T) array of B

input_arcs_valid iav input port (T) array of B

priority_authorizations pauths input port (T) array of B

fired f output port (T) B

s_condition_combination scc internal signal (T) B

s_reinit_time_counter srtc internal signal (T) B

s_priority_combination spc internal signal (T) B

s_firable sfa internal signal (T) B

s_enabled se internal signal (T) B

s_time_counter stc internal signal (T) N

s_firing_condition sfc internal signal (T) B

input_arcs_number ian generic constant (P) N

output_arcs_number oan generic constant (P) N

maximal_marking mm generic constant (P) N

initial_marking im input port (P) N

output_arcs_types oat input port (P) array of {basic, test, inhib}
output_arcs_weights oaw input port (P) array of N

output_transitions_fired otf input port (P) array of B

input_arcs_weights iaw input port (P) array of N

input_transitions_fired itf input port (P) array of B

output_transitions_fired otf output port (P) array of B

266 Appendix D. Semantic preservation proof

reinit_transitions_time rtt output port (P) array of B

priority_authorizations pauths output port (P) array of B

marked m output port (P) B

s_marking sm internal signal (P) N

s_output_token_sum sots internal signal (P) N

s_input_token_sum sits internal signal (P) N

TABLE D.1: Constants and signals reference for the H-VHDL transition and place
designs. In the Category column, T (resp. P) indicates a generic constant, input port,

output port or internal signal defined in the transition (resp. place) design.

D.1 Initial States

Definition 49 (Initial state hypotheses). Given an sitpn ∈ SITPN, b ∈ P→N, d ∈ design,
γ ∈WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ, assume that:

– SITPN sitpn is transformed into the design d and yields the binder γ: bsitpncb = (d, γ)

– ∆ is the elaborated version of d, σe is the default state of ∆, i.e. the state of ∆ where all signals
are initialized to their default value:

DH, ∅ ` d elab (∆, σe)

– σ0 is the initial state of ∆: ∆, σe ` d.cs init σ0

Lemma 5 (Similar initial states). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design, γ ∈
WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of Definition 49, then
γ ` s0 ∼ σ0.

Proof.

By definition of the General state similarity relation, there are 6 points to prove.

D.1. Initial States 267

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s0.M(p) = σ0(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ0(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ0(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter)

)
.

3. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s0.resett(t) =
σ0(idt)(s_reinit_time_counter).

4. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, s0.cond(c) = σ0(idc).

5. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s0.ex(a) = σ0(ida).

6. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s0.ex(f) = σ0(id f).

– Apply the Initial states equal marking lemma to solve 1.

– Apply the Initial states equal time counters lemma to solve 2.

– Apply the Initial states equal reset orders lemma to solve 3.

– Apply the Initial states equal condition values lemma to solve 4.

– Apply the Initial states equal action executions lemma to solve 5.

– Apply the Initial states equal function executions lemma to solve 6.

D.1.1 Initial states and marking

Lemma 6 (Initial states equal marking). For all sitpn ∈ SITPN, b ∈ P → N, d ∈ design,
γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of Definition 49, then
∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s0.M(p) = σ0(idp)(s_marking).

Proof.

Given a p ∈ P and an idp ∈ Comps(∆) s.t. γ(p) = idp, let us show that
s0.M(p) = σ0(idp)(s_marking).

268 Appendix D. Semantic preservation proof

By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By property of theH-VHDL initialization relation, comp(idp, place, gp, ip, op) ∈ d.cs, and
through the examination of the marking process defined in the place design architecture,
we can deduce σ0(idp)(s_marking) = σ0(idp)(initial_marking).
Rewriting σ0(idp)(sm) as σ0(idp)(initial_marking),
σ0(idp)(initial_marking) = s0.M(p).

By construction, <initial_marking⇒M0(p)> ∈ ip.
By property of the H-VHDL initialization relation, and comp(idp, place, gp, ip, op) ∈
d.cs, then σ0(idp)(initial_marking) = M0(p). Rewriting σ0(idp)(initial_marking) as
M0(p) in the current goal: M0(p) = s0.M(p).

By definition of s0, we can rewrite s0.M(p) as M0(p) in the current goal, tautology.

Lemma 7 (Null input token sum at initial state). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of Defini-
tion 49, then ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, σ0(idp)(s_input_token_sum) = 0.

Proof.

Given a p and an idp s.t. γ(p) = idp, let us show that σ0(idp)(s_input_token_sum) = 0.
By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By property of the initialization relation, comp(idp, place, gp, ip, op) ∈ d.cs, and through
the examination of the input_tokens_sum process defined in the place design architec-
ture, we can deduce:

σ0(idp)(sits) =
∆(idp)(ian)−1

∑
i=0

{
σ0(idp)(iaw)[i] if σ0(idp)(itf)[i]
0 otherwise

(D.1)

Rewriting the goal with Equation (D.1):
∆(idp)(ian)−1

∑
i=0

{
σ0(idp)(iaw)[i] if σ0(idp)(itf)[i]
0 otherwise

= 0.

Let us perform case analysis on input(p); there are two cases:

1. input(p) = ∅:

By construction, we have <input_arcs_number⇒ 1> ∈ gp,
<input_transitions_fired(0)⇒ true> ∈ ip,
and <input_arcs_weights(0)⇒ 0> ∈ ip.

D.1. Initial States 269

By property of the elaboration relation, comp(idp, place, gp, ip, op) ∈ d.cs, and
<input_arcs_number⇒ 1> ∈ gp, we can deduce ∆(idp)(ian) = 1.

By property of the initialization relation, comp(idp, place, gp, ip, op) ∈ d.cs, <input_-
transitions_fired(0)⇒ true> ∈ ip and <input_arcs_weights(0)⇒ 0> ∈ ip,
we can deduce σ0(idp)(itf)[0] = true and σ0(idp)(iaw)[0] = 0.

Rewriting the goal with ∆(idp)(ian) = 1, σ0(idp)(itf)[0] = true, σ0(idp)(iaw)[0] = 0
and simplifying the goal, tautology.

2. input(p) 6= ∅:

By construction, <input_arcs_number ⇒ |input(p)|> ∈ gp, and by property of
the elaboration relation, and comp(idp, place, gp, ip, op) ∈ d.cs, we can deduce
∆(idp)(ian) = |input(p)|.
Let us reason by induction on the sum term of the goal.

– BASE CASE: The sum term equals 0, then tautology.

– INDUCTION CASE:

∆(idp)(ian)−1

∑
i=1

{
σ0(idp)(iaw)[i] if σ0(idp)(itf)[i]
0 otherwise

= 0

{
σ0(idp)(iaw)[0] if σ0(idp)(itf)[0]
0 otherwise

+
∆(idp)(ian)−1

∑
i=1

{
σ0(idp)(iaw)[i] if σ0(idp)(itf)[i]
0 otherwise

= 0

Using the induction hypothesis to rewrite the goal:{
σ0(idp)(iaw)[0] if σ0(idp)(itf)[0]
0 otherwise

= 0

Since input(p) 6= ∅, by construction, there exist an idt ∈ Comps(∆), gt, it, ot s.t.
comp(idt, transition, gt, it, ot) ∈ d.cs, id f t ∈ Sigs(∆) s.t. <fired⇒id f t> ∈ ot and
<input_transitions_fired(0)⇒ idft> ∈ ip.
By property of the initialization relation, comp(idp, place, gp, ip, op) ∈ d.cs,
comp(idt, transition, gt, it, ot) ∈ d.cs, <fired⇒id f t> ∈ ot and <input_tran-
sitions_fired(0)⇒ idft> ∈ ip, we can deduce σ0(idp)(itf)[0] = σ0(idt)(fired).

270 Appendix D. Semantic preservation proof

Rewriting the goal with σ0(idp)(itf)[0] = σ0(idt)(fired):{
σ0(idp)(iaw)[0] if σ0(idt)(fired)
0 otherwise

= 0

Appealing to Lemma 14, we can deduce σ0(idt)(fired) = false.
Rewriting the goal with σ0(idt)(fired) = false, and simplifying the goal,
tautology.

Lemma 8 (Null output token sum at initial state). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of Defini-
tion 49, then ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, σ0(idp)(s_output_token_sum) = 0.

Proof.

The proof is similar to the proof of Lemma 7.

D.1.2 Initial states and time counters

Lemma 9 (Initial states equal time counters). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of
Definition 49, then ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,
u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter) ∧
u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ0(idt)(s_time_counter) = l(Is(t)) ∧
u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ0(idt)(s_time_counter) = u(Is(t)) ∧
u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter).

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show that:

1. u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter)

2. u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ0(idt)(s_time_counter) = l(Is(t))

3. u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ0(idt)(s_time_counter) = u(Is(t))

4. u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ0(idt)(s_time_counter)

By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.

D.1. Initial States 271

Then, let us show the 4 previous points.

1. Assuming that u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t)), then let us show
s0.I(t) = σ0(idt)(s_time_counter).

Rewriting s0.I(t) as 0, by definition of s0, σ0(idt)(s_time_counter) = 0.

By property of the H-VHDL initialization relation, comp(idt, transition, gt, it, ot) ∈
d.cs, and through the examination of the time_counter process defined in the transi-
tion design architecture, we can deduce σ0(idt)(s_time_counter) = 0.

2. Assuming that u(Is(t)) = ∞ and s0.I(t) > l(Is(t)), let us show
σ0(idt)(s_time_counter) = l(Is(t)) .

By definition, l(Is(t)) ∈N∗ and s0.I(t) = 0. Then, l(Is(t)) < 0 is a contradiction.

3. Assuming that u(Is(t)) 6= ∞ and s0.I(t) > u(Is(t)), let us show
σ0(idt)(s_time_counter) = u(Is(t)) .

By definition, u(Is(t)) ∈N∗ and s0.I(t) = 0. Then, u(Is(t)) < 0 is a contradiction.

4. Assuming that u(Is(t)) 6= ∞ and s0.I(t) ≤ u(Is(t)), let us show
s0.I(t) = σ0(idt)(s_time_counter) .

Rewriting s0.I(t) as 0, by definition of s0, σ0(idt)(s_time_counter) = 0.

By property of the H-VHDL initialization relation, comp(idt, transition, gt, it, ot) ∈
d.cs, and through the examination of the time_counter process defined in the transi-
tion design architecture, we can deduce σ0(idt)(s_time_counter) = 0.

D.1.3 Initial states and reset orders

Lemma 10 (Initial states equal reset orders). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypothe-
ses of Definition 49, then ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s0.resett(t) =
σ0(idt)(s_reinit_time_counter).

272 Appendix D. Semantic preservation proof

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show that
s0.resett(t) = σ0(idt)(s_reinit_time_counter).

Rewriting s0.resett(t) as false, by definition of s0,
σ0(idt)(s_reinit_time_counter) = false.

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the H-VHDL initialization relation, comp(idt, transition, gt, it, ot) ∈ d.cs,
and through the examination of the reinit_time_counter_evaluation process defined
in the transition design architecture

we can deduce σ0(idt)(s_reinit_time_counter) =
∆(idt)(ian)−1

∏
i=0

σ0(idt)(rt)[i].

Rewriting σ0(idt)(s_reinit_time_counter) as
∆(idt)(ian)−1

∏
i=0

σ0(idt)(rt)[i],

∆(idt)(ian)−1
∏
i=0

σ0(idt)(rt)[i] = false.

For all t ∈ T (resp. p ∈ P), let input(t) (resp. input(p)) be the set of input places of t (resp.
input transitions of p), and let output(t) (resp. output(p)) be the set of output places of t
(resp. output transitions of p).
Let us perform case analysis on input(t); there are 2 cases:

– CASE input(t) = ∅.

By construction, <input_arcs_number⇒1> ∈ gt, and by property of the elaboration
relation, and comp(idt, transition, gt, it, ot) ∈ d.cs, we can deduce ∆(idt)(ian) = 1.

By construction, < reinit_time(0)⇒ false >∈ it, and by property of the initializa-
tion relation and comp(idt, transition, gt, it, ot) ∈ d.cs, we can deduce σ0(idt)(rt)[0] =
false.

Rewriting ∆(idt)(ian) as 1 and σ0(idt)(rt)[0] as false, tautology.

– CASE input(t) 6= ∅.

To prove the current goal, we can equivalently prove that
∃i ∈ [0, ∆(idt)(ian)− 1] s.t. σ0(idt)(rt)[i] = false.

Since input(t) 6= ∅, ∃p s.t. p ∈ input(t). Let us take such a p ∈ input(t).
By construction, for all p ∈ P, there exist idp s.t. γ(p) = idp.

By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.

By construction, there exist i ∈ [0, |input(t)| − 1], j ∈ [0, |output(p)| − 1], idji ∈ Sigs(∆)
s.t. <reinit_transitions_time(j)⇒idji> ∈ op and <reinit_time(i)⇒idji> ∈
it. Let us take such a i, j and idji.

D.1. Initial States 273

By construction and input(t) 6= ∅, <input_arcs_number⇒|input(t)|> ∈ gt.

By property of the H-VHDL elaboration relation and
<input_arcs_number⇒|input(t)|> ∈ gt, we can deduce ∆(idt)(ian) = |input(t)|.
Since ∆(idt)(ian) = |input(t)| and we have an i ∈ [0, |input(t)| − 1], then, we have an
i ∈ [0, ∆(idt)(ian)− 1]. Let us take that i to prove the goal.

Then, we must show σ0(idt)(rt)[i] = false.

By property of the H-VHDL initialization relation and <reinit_time(i)⇒idji> ∈ it,
we can deduce σ0(idt)(rt)[i] = σ0(idji).

Rewriting σ0(idt)(rt)[i] as σ0(idji), σ0(idji) = false.

By property of theH-VHDL initialization relation and
<reinit_transitions_time(j)⇒idji> ∈ op, we can deduce σ0(idji) =
σ0(idp)(rtt)[j].

Rewriting σ0(idji) as σ0(idp)(rtt)[j], σ0(idp)(rtt)[j] = false.

Since t ∈ output(p), then we know that output(p) 6= ∅.

Then, by construction, <output_arcs_number⇒|output(p)|> ∈ gp.

By property of the elaboration relation and <output_arcs_number ⇒
|output(p)|> ∈ gp, we can deduce that ∆(idp)(oan) = |output(p)|.
Since ∆(idp)(oan) = |output(p)| and j ∈ [0, |output(p)| − 1], then j ∈ [0, ∆(idp)(oan)−
1].

By property of the H-VHDL initialization relation, comp(idp, place, gp, ip, op) ∈
d.cs, through the examination of the reinit_transitions_time_evaluation pro-
cess defined in the place design architecture, and since j ∈ [0, ∆(idp)(oan) − 1],
σ0(idp)(rtt)[j] = false.

D.1.4 Initial states and condition values

Lemma 11 (Initial states equal condition values). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of
Definition 49, then ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, s0.cond(c) = σ0(idc).

274 Appendix D. Semantic preservation proof

Proof.

Given a c ∈ C and an idc ∈ Ins(∆) s.t. γ(c) = idc, let us show that s0.cond(c) = σ0(idc).

Rewriting s0.cond(c) as false, by definition of s0, σ0(idc) = false.
By construction, idc is an input port identifier of Boolean type in the H-VHDL design
d, and thus, by property of the H-VHDL elaboration relation, we can deduce σe(idc) =
false.
By property of the H-VHDL initialization relation and idc ∈ Ins(∆), we can deduce
σe(idc) = σ0(idc).
Rewriting σ0(idc) as σe(idc) and σe(idc) as false, tautology.

D.1.5 Initial states and action executions

Lemma 12 (Initial states equal action executions). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of
Definition 49, then ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s0.ex(a) = σ0(ida).

Proof.

Given a a ∈ A and an ida ∈ Outs(∆) s.t. γ(a) = ida, let us show that s0.ex(a) = σ0(ida).

Rewriting s0.ex(a) as false, by definition of s0, σ0(ida) = false.
By construction, ida is an output port identifier of Boolean type in the H-VHDL design
d. Moreover, we know that the output port identifier ida is assigned to false in the
generated action process during the initialization phase (i.e. the assignment is a part of
a reset block). Thus, we can deduce that σ0(ida) = false.
Rewriting σ0(ida) as false, tautology.

D.1.6 Initial states and function executions

Lemma 13 (Initial states equal function executions). For all sitpn ∈ SITPN, b ∈ P → N,
d ∈ design, γ ∈ WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0 ∈ Σ that verify the hypotheses of
Definition 49, then ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s0.ex(f) = σ0(id f).

D.1. Initial States 275

Proof.

Given a f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show that s0.ex(f) = σ0(id f).

Rewriting s0.ex(f) as false, by definition of s0, σ0(id f) = false.
By construction, id f is an output port identifier of Boolean type in the H-VHDL design
d, and thus, by property of the H-VHDL elaboration relation, we can deduce σe(id f) =
false.
By construction, and by property of the initialization relation, we know that the output
port identifier id f is assigned to false in the generated function process during the
initialization phase (i.e. the assignment is a part of a reset block). Thus, we can deduce
σ0(id f) = false.
Rewriting σ0(id f) as false, tautology.

D.1.7 Initial states and fired transitions

Lemma 14 (No fired at initial state). ∀d ∈ design, ∆ ∈ ElDesign, σe, σ0 ∈ Σ, idt ∈
Comps(∆), gt, it, ot s.t. :

– DH, ∅ ` d.cs elab−−→ σ0

– ∆, σe ` d.cs init−−→ σ0

– comp(idt, transition, gt, it, ot) ∈ d.cs

then σ0(idt)(fired) = false.

Proof.

Assuming all the above hypotheses, let us show σ0(idt)(fired) = false.
By property of the initialization relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the fired_evaluation process defined in the transition de-
sign architecture, we can deduce:

σ0(idt)(fired) = σ0(idt)(s_firable) . σ0(idt)(s_priority_combination) (D.2)

Rewriting the goal with Equation (D.2): σ0(idt)(sfa) . σ0(idt)(spc) = false.
By property of the initialization relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the firable process defined in the transition design archi-
tecture, we can deduce σ0(idt)(sfa) = false.

276 Appendix D. Semantic preservation proof

Rewriting the goal with σ0(idt)(sfa) = false and simplifying the goal, tautology.

D.2 First Rising Edge

Definition 50 (First rising edge hypotheses). Given a sitpn ∈ SITPN, b ∈ P → N, d ∈
design, γ ∈WM(sitpn, d), ∆ ∈ ElDesign, σe, σ0, σi, σ↑, σ ∈ Σ, Ec ∈N→ C → B,
Ep ∈N× {↑, ↓})→ Ins(∆)→ value, τ ∈N, assume that:

– bsitpncb = (d, γ) and DH, ∅ ` d elab (∆, σe) and γ ` Ep
env
= Ec

– σ0 is the initial state of ∆: ∆, σe ` d.cs init σ0

– Ec, τ ` s0
↑0 s0

– Inject(σ0, Ep, τ, σi) and ∆, σi ` d.cs
↑−→ σ↑ and ∆, σ↑ ` d.cs θ−→ σ

Lemma 15 (First rising edge). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ, Ec, Ep, τ that verify the

hypotheses of Definition 50, then γ, Ec, τ ` s0
↑≈ σ.

Proof.

By definition of the Full post rising edge state similarity relation, there are 8 points to
prove.

D.2. First Rising Edge 277

1. ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp, s0.M(p) = σ(idp)(s_marking).

2. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter)

)
.

3. ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s0.resett(t) =
σ(idt)(s_reinit_time_counter).

4. ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s0.ex(a) = σ(ida).

5. ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s0.ex(f) = σ(id f).

6. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Sens(s0.M) ⇔ σ(idt)(s_enabled) =
true.

7. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Sens(s0.M) ⇔ σ(idt)(s_enabled) =
false.

8. ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,

σ(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

9. ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, σ(idc) = Ec(τ, c).

– Apply the First rising edge equal marking lemma to solve 1.

– Apply the First rising edge equal time counters lemma to solve 2.

– Apply the First rising edge equal reset orders lemma to solve 3.

– Apply the First rising edge equal action executions lemma to solve 4.

– Apply the First rising edge equal function executions lemma to solve 5.

– Apply the First rising edge equal sensitized lemma to solve 6.

– Apply the First rising edge not equal sensitized lemma to solve 7.

– Apply the First rising edge equal condition combination lemma to solve 8.

– Apply the First rising edge equal conditions lemma to solve 9.

278 Appendix D. Semantic preservation proof

D.2.1 First rising edge and marking

Lemma 16 (First rising edge equal marking). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ, Ec, Ep,
τ that verify the hypotheses of Definition 50, then ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp,
s0.M(p) = σ(idp)(s_marking).

Proof.

Given a p and an idp s.t. γ(p) = idp, let us show that s0.M(p) = σ(idp)(s_marking).
By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By property of the Inject relation, theH-VHDL rising edge relation, the stabilize relation,
comp(idp, place, gp, ip, op) ∈ d.cs, and through the examination of the marking process
defined in the place design architecture, we can deduce:

σ(idp)(sm) = σ0(idp)(sm) + σ0(idp)(sits)− σ0(idp)(sots) (D.3)

Rewriting the goal with Equation (D.3):
s0.M(p) = σ0(idp)(sm) + σ0(idp)(sits)− σ0(idp)(sots).

Appealing to Lemmas 7 and 8, we can deduce σ0(idp)(sits) = 0 and
σ0(idp)(sots) = 0. Rewriting the goal with σ0(idp)(sits) = 0 and σ0(idp)(sots) = 0,
s0.M(p) = σ0(idp)(sm).

Appealing to Lemma 6, s0.M(p) = σ0(idp)(sm).

D.2.2 First rising edge and time counters

Lemma 17 (First rising edge equal time counters). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ,
Ec, Ep, τ that verify the hypotheses of Definition 50, then
∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,
u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter) ∧
u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t)) ∧
u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t)) ∧
u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter).

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show that:

1. u(Is(t)) = ∞ ∧ s0.I(t) ≤ l(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter)

D.2. First Rising Edge 279

2. u(Is(t)) = ∞ ∧ s0.I(t) > l(Is(t))⇒ σ(idt)(s_time_counter) = l(Is(t))

3. u(Is(t)) 6= ∞ ∧ s0.I(t) > u(Is(t))⇒ σ(idt)(s_time_counter) = u(Is(t))

4. u(Is(t)) 6= ∞ ∧ s0.I(t) ≤ u(Is(t))⇒ s0.I(t) = σ(idt)(s_time_counter)

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
Then, let us show the 4 previous points:

1. Assuming that u(Is(t)) = ∞ and s0.I(t) ≤ l(Is(t)), let us show
s0.I(t) = σ(idt)(stc).

By property of the Inject relation, the H-VHDL rising edge and stabilize relations,
and comp(idt, transition, gt, it, ot) ∈ d.cs, we can deduce σ(idt)(stc) = σ0(idt)(stc).

Rewriting σ(idt)(stc) as σ0(idt)(stc), s0.I(t) = σ0(idt)(stc).

Appealing to Lemma 9, s0.I(t) = σ0(idt)(stc).

2. Assuming that u(Is(t)) = ∞ and s0.I(t) > l(Is(t)), let us show
σ(idt)(stc) = l(Is(t)).

By definition, l(Is(t)) ∈N∗ and s0.I(t) = 0. Then, l(Is(t)) < 0 is a contradiction.

3. Assuming that u(Is(t)) 6= ∞ and s0.I(t) > u(Is(t)), let us show
σ(idt)(stc) = u(Is(t)) .

By definition, u(Is(t)) ∈N∗ and s0.I(t) = 0. Then, u(Is(t)) < 0 is a contradiction.

4. Assuming that u(Is(t)) 6= ∞ and s0.I(t) ≤ u(Is(t)), let us show
s0.I(t) = σ(idt)(stc).

By property of the Inject relation, the H-VHDL rising edge and stabilize relations,
and comp(idt, transition, gt, it, ot) ∈ d.cs, we can deduce σ(idt)(stc) = σ0(idt)(stc).

Rewriting σ(idt)(stc) as σ0(idt)(stc), s0.I(t) = σ0(idt)(stc).

Appealing to Lemma 9, s0.I(t) = σ0(idt)(stc).

280 Appendix D. Semantic preservation proof

D.2.3 First rising edge and reset orders

Lemma 18 (First rising edge equal reset orders). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ, Ec,
Ep, τ that verify the hypotheses of Definition 50, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, s0.resett(t) = σ(idt)(s_reinit_time_counter).

Proof.

Given a t ∈ T and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show that
s0.resett(t) = σ(idt)(srtc).

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and through
the examination of the reinit_time_counter_evaluation process defined in the transi-
tion design architecture, we can deduce:

σ(idt)(srtc) =
∆(idt)(input_arcs_number)−1

∑
i=0

σ(idt)(reinit_time)[i] (D.4)

Rewriting the goal with Equation (D.4): s0.resett(t) =
∆(idt)(ian)−1

∑
i=0

σ(idt)(rt)[i].

Let us perform case analysis on input(t); there are two cases:

– CASE input(t) = ∅:

By construction, <input_arcs_number⇒ 1> ∈ gt, and by property of the H-VHDL
elaboration relation, we can deduce ∆(idt)(ian) = 1.

By construction, < reinit_time(0)⇒ false >∈ it, and by property of the H-VHDL
stabilize relation, σ(idt)(rt)[0] = false.

Rewriting the goal with ∆(idt)(ian) = 1 and σ(idt)(rt)[0] = false,
s0.resett(t) = false.

By definition of s0, s0.resett(t) = false.

– CASE input(t) 6= ∅:

By construction, <input_arcs_number⇒ |input(t)|> ∈ gt, and by property of the
H-VHDL elaboration relation, we can deduce ∆(idt)(ian) = |input(t)|.

Rewriting ∆(idt)(ian) as |input(t)|, s0.resett(t) =
|input(t)|−1

∑
i=0

σ(idt)(rt)[i].

D.2. First Rising Edge 281

By definition of s0, s0.resett(t) = false. Rewriting s0.resett(t) as false,
|input(t)|−1

∑
i=0

σ(idt)(rt)[i] = false.

Given a i ∈ [0, |input(t)| − 1], let us show σ(idt)(rt)[i] = false.

By construction, and since input(t) 6= ∅, there exist a p ∈ input(t), an idp ∈
Comps(∆) s.t. γ(p) = idp, a gp, an ip, an op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs, and there exist a j ∈ [0, |output(p)| − 1] and an idji ∈ Sigs(∆) s.t.
<reinit_transition_time(j)⇒ idji> ∈ op and <reinit_time(i)⇒ idji> ∈ it.

By property of the stabilize relation, <reinit_transition_time(j)⇒ idji> ∈ op and
<reinit_time(i)⇒ idji> ∈ it, we can deduce σ(idt)(rt)[i] = σ(idji) =
σ(idp)(rtt)[j].

Rewriting σ(idt)(rt)[i] as σ(idji) and σ(idji) as σ(idp)(rtt)[j],
σ(idp)(rtt)[j] = false.

By property of the H-VHDL rising edge and stabilize relations, comp(idp, place, gp, ip,
op) ∈ d.cs, and through the examination of the process defined in the place design
architecture, we can deduce:

σ(idp)(rtt)[j] =((σ0(idp)(oat)[j] = basic+ σ0(idp)(oat)[j] = test)

.(σ0(idp)(sm)− σ0(idp)(sots) < σ0(idp)(oaw)[j])

.(σ0(idp)(sots) > 0))
+ (σ0(idp)(otf)[j])

(D.5)

Rewriting the goal with Equation (D.5),

false =((σ0(idp)(oat)[j] = basic+ σ0(idp)(oat)[j] = test)

.(σ0(idp)(sm)− σ0(idp)(sots) < σ0(idp)(oaw)[j])

.(σ0(idp)(sots) > 0))
+ (σ0(idp)(otf)[j])

By construction, there exists an id f j ∈ Sigs(∆) s.t. <fired⇒ idfj> ∈ ot and
<output_transitions_fired(j)⇒ idfj> ∈ ip.

By property of the initialization relation, <fired⇒ idfj> ∈ ot and <output_-
transitions_fired(j)⇒ idfj> ∈ ip, we can deduce σ0(idp)(otf)[j] = σ0(id f j) =
σ0(idt)(fired).

Appealing to Lemma 14, we can deduce σ0(idt)(fired) = false and consequently
σ0(idp)(otf)[j] = false.

282 Appendix D. Semantic preservation proof

Rewriting σ0(idp)(otf)[j] as false and simplifying the goal,

f alse =((σ0(idp)(oat)[j] = BASIC+ σ0(idp)(oat)[j] = TEST)

.(σ0(idp)(sm)− σ0(idp)(sots) < σ0(idp)(oaw)[j])

.(σ0(idp)(sots) > 0))

Appealing to Lemma 8, we can deduce σ0(idp)(sots) = 0.

Rewriting σ0(idp)(sots) as 0 and simplifying the goal, tautology.

D.2.4 First rising edge and action executions

Lemma 19 (First rising edge equal action executions). For all sitpn, b, d, γ, ∆,
σe, σ0, σi, σ↑, σ, Ec, Ep, τ that verify the hypotheses of Definition 50, then
∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s0.ex(a) = σ(ida).

Proof.

Given an a ∈ A and an ida ∈ Outs(∆) s.t. γ(a) = ida, let us show that s0.ex(a) = σ(ida).
By construction, ida is an output port identifier of Boolean type in the H-VHDL design
d. The generated action process assigns a value to the output port ida only during the
initialization phase or a falling edge phase.
By property of the Inject, H-VHDL rising edge and stabilize relations, we can deduce
σ(ida) = σ0(ida).
Rewriting σ(ida) as σ0(ida), s0.ex(a) = σ0(ida). Appealing to Lemma 12,

s0.ex(a) = σ0(ida).

D.2.5 First rising edge and function executions

Lemma 20 (First rising edge equal function executions). For all sitpn, b, d, γ, ∆,
σe, σ0, σi, σ↑, σ, Ec, Ep, τ that verify the hypotheses of Definition 50, then
∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s0.ex(f) = σ(id f).

D.2. First Rising Edge 283

Proof.

Given an f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show that s0.ex(f) = σ(id f).

Rewriting s0.ex(f) as false, by definition of s0, σ(id f) = false.
By construction, id f is an output port identifier of Boolean type in theH-VHDL design d.
The generated function process assigns a value to the output port id f only during the
initialization phase or during a rising edge phase.
By construction, the function process is defined in the behavior of design d, i.e.
ps(function, ∅, sl, ss) ∈ d.cs.
Let trs(f) be the set of transitions associated to function f , i.e. trs(f) = {t ∈ T | F(t, f) =
true}.
Let us perform case analysis on trs(f); there are two cases:

– CASE trs(f) = ∅:

By construction, idf ⇐ false ∈ ss↑ where ss↑ is the part of the “function” process
body executed during a rising edge phase (i.e. a rising edge block statement).

By property of theH-VHDL rising edge and the stabilize relation, σ(id f) = false.

– CASE trs(f) 6= ∅:

By construction, idf ⇐ idft0 + · · ·+ idftn ∈ ss↑ where ss↑ is the part of the “func-
tion” process body executed during the rising edge phase, and n = |trs(f)| − 1, and
for all i ∈ [0, n− 1], id f ti is an internal signal of design d.

By property of the Inject, the H-VHDL rising edge and stabilize relations, we can
deduce σ(id f) = σ0(id f t0) + · · ·+ σ0(id f tn).

Rewriting σ(id f) as σ0(id f t0) + · · ·+ σ0(id f tn), σ0(id f t0) + · · ·+ σ0(id f tn) = false.

By construction, for all id f ti , there exist a ti ∈ trs(f) and an idti s.t. γ(ti) = idti .

By construction and by definition of idti , there exist gti , iti and oti s.t. comp(idti ,
transition, gti , iti , oti) ∈ d.cs.

By construction, we have <fired⇒ idfti> ∈ oti , and by property of the initialization
relation, we have σ0(id f ti) = σ0(idti)(fired).

Rewriting σ0(id f ti) as σ0(idti)(fired), σ0(idt0)(fired) + · · ·+ σ0(idtn)(fired) = false.

Appealing to Lemma 14, we can deduce σ0(idti)(fired) = false.

Rewriting all σ0(idti)(fired) as false and simplifying the goal, tautology.

284 Appendix D. Semantic preservation proof

D.2.6 First rising edge and sensitization

Lemma 21 (First rising edge equal sensitized). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ, Ec,
Ep, τ that verify the hypotheses of Definition 50, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Sens(s0.M)⇔ σ(idt)(s_enabled) = true.

Proof.

See the proof of Lemma 32.

Lemma 22 (First rising edge not equal sensitized). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ,
Ec, Ep, τ that verify the hypotheses of Definition 50, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Sens(s0.M)⇔ σ(idt)(s_enabled) = false.

Proof.

See the proof of Lemma 33.

D.2.7 First rising edge and conditions

Lemma 23 (First rising edge equal condition combination). For all sitpn, b, d, γ, ∆,
σe, σ0, σi, σ↑, σ, Ec, Ep, τ that verify the hypotheses of Definition 50, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,

σ(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

Proof.

See the proof of Lemma 26.

Lemma 24 (First rising edge equal conditions). For all sitpn, b, d, γ, ∆, σe, σ0, σi, σ↑, σ, Ec,
Ep, τ that verify the hypotheses of Definition 50, then
∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, σ(idc) = Ec(τ, c).

Proof.

See the proof of Lemma 27.

D.3. Rising Edge 285

D.3 Rising Edge

Definition 51 (Rising edge hypotheses). Given an sitpn ∈ SITPN, b ∈ P → N, d ∈
design, γ ∈WM(sitpn, d), Ec ∈N→ C → B, ∆ ∈ ElDesign, Ep ∈N→ Ins(∆)→ value,
τ ∈N, s, s′ ∈ S(sitpn), σe, σ, σi, σ↑, σ′ ∈ Σ, assume that:

– bsitpncb = (d, γ) and γ ` Ep
env
= Ec and DH, ∅ ` d elab ∆, σe

– γ ` s
↓≈ σ

– Ec, τ ` s ↑ s′

– Inject(σ, Ep, τ, σi) and DH, ∆, σi ` d.cs
↑−→ σ↑ and DH, ∆, σ↑ ` d.cs −→ σ′

– State σ is a stable design state: DH, ∆, σ ` d.cs comb−−→ σ

D.3.1 Rising edge and Marking

Lemma 25 (Rising edge equal marking). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ,
σi, σ↑, σ′ that verify the hypotheses of Definition 51, then ∀p, idp s.t. γ(p) = idp, s′.M(p) =
σ′(idp)(s_marking).

Proof.

Given a p ∈ P, let us show s′.M(p) = σ′(idp)(s_marking).
By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By definition of the SITPN state transition relation on rising edge:

s′.M(p) = s.M(p)− ∑
t∈Fired(s)

pre(p, t) + ∑
t∈Fired(s)

post(t, p) (D.6)

By property of the Inject, theH-VHDL rising edge and the stabilize relations, comp(idp,
place, gp, ip, op) ∈ d.cs, and through the examination of the marking process defined in
the place design architecture, we can deduce:

σ′(idp)(sm) = σ(idp)(sm)− σ(idp)(s_output_token_sum)
+σ(idp)(s_input_token_sum)

(D.7)

Rewriting the goal with D.6 and D.7,

286 Appendix D. Semantic preservation proof

s.M(p)− ∑
t∈Fired(s)

pre(p, t) + ∑
t∈Fired(s)

post(t, p)

=
σ(idp)(sm)− σ(idp)(sots) + σ(idp)(sits)

By definition of the Full post falling edge state similarity relation, we can deduce
s.M(p) = σ(idp)(sm), ∑

t∈Fired(s)
pre(p, t) = σ(idp)(sots) and ∑

t∈Fired(s)
post(t, p) =

σ(idp)(sits), and thus,

s.M(p)− ∑
t∈Fired(s)

pre(p, t) + ∑
t∈Fired(s)

post(t, p)

=
σ(idp)(sm)− σ(idp)(sots) + σ(idp)(sits)

D.3.2 Rising edge and conditions

Lemma 26 (Rising edge equal condition combination). For all sitpn, b, d, γ, Ec, Ep, τ, ∆,
σe, s, s′, σ, σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,

σ′(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

Proof.

Given a t and an idt s.t. γ(t) = idt, let us show

σ′(idt)(s_condition_combination) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

.

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the H-VHDL stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the condition_evaluation process defined in the transition
design architecture, we can deduce:

σ′(idt)(scc) =
∆(idt)(conditions_number)−1

∏
i=0

σ′(idt)(input_conditions)[i] (D.8)

Rewriting the goal with D.8,

D.3. Rising Edge 287

∆(idt)(cn)−1
∏
i=0

σ′(idt)(ic)[i] = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

.

Let us perform case analysis on conds(t); there are two cases:

– CASE conds(t) = ∅:
∆(idt)(cn)−1

∏
i=0

σ′(idt)(ic)[i] = true.

By construction, <cn⇒ 1> ∈ gt and <ic(0)⇒ true> ∈ it.

By property of the stabilize relation, <cn⇒ 1> ∈ gt and <ic(0)⇒ true> ∈ it, we
can deduce ∆(idt)(cn) = 1 and σ′(idt)(ic)[0] = true.

Rewriting the goal with ∆(idt)(cn) = 1 and σ′(idt)(ic)[0] = true, tautology.

– CASE conds(t) 6= ∅:
By construction, <cn⇒ |conds(t)|> ∈ gt, and by property of the stabilize relation,
we can deduce ∆(idt)(cn) = |conds(t)|.
Rewriting the goal with ∆(idt)(cn) = |conds(t)|:
|conds(t)|−1

∏
i=0

σ′(idt)(ic)[i] = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

There exists a mapping, given by the transformation function, between the set conds(t)
and the indexes of [0, |conds(t)| − 1].

Let β ∈ conds(t)→ [0, |conds(t)| − 1] be this mapping.

To prove the current goal, it suffices to prove that for all condition c ∈ conds(t), we
have({

Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

)
= σ′(idt)(ic)[β(c)]

Given a c ∈ conds(t), let us show the above goal.

By construction, for all c ∈ conds(t), there exists an idc ∈ Ins(∆) such that

– γ(c) = idc

– C(t, c) = 1 implies <ic(β(c))⇒ idc> ∈ it

– C(t, c) = −1 implies <ic(β(c))⇒ not idc> ∈ it

Let us take such an idc with the above properties.

By definition of c ∈ conds(t), we have C(t, c) = 1 ∨C(t, c) = −1. Let us perform case
analysis on C(t, c) = 1∨C(t, c) = −1:

288 Appendix D. Semantic preservation proof

– CASE C(t, c) = 1:

In that case, we must show: Ec(τ, c) = σ′(idt)(ic)[β(c)]

By assumption, we have <ic(β(c))⇒ idc> ∈ it and by property of the stabilize
relation, we can deduce σ(idt)(ic)[β(c)] = σ′(idc).
Rewriting the goal with σ(idt)(ic)[β(c)] = σ′(idc):

Ec(τ, c) = σ′(idc)

By property of the Inject relation and idc ∈ Ins(∆), we can deduce σ′(idc) =
Ep(τ)(idc).

By property of γ ` Ep
env
= Ec, we can deduce Ep(τ)(idc) = Ec(τ, c).

Rewriting the goal with σ′(idc) = Ep(τ)(idc) and Ep(τ)(idc) = Ec(τ, c):
Ec(τ, c) = Ec(τ, c) , then tautology.

– CASE C(t, c) = −1:

In that case, we must show: not Ec(τ, c) = σ′(idt)(ic)[β(c)]

By assumption, we have <ic(β(c))⇒ not idc> ∈ it and by property of the stabi-
lize relation, we can deduce σ(idt)(ic)[β(c)] = not σ′(idc).
Rewriting the goal with σ(idt)(ic)[β(c)] = not σ′(idc):

not Ec(τ, c) = not σ′(idc)

By property of the Inject relation and idc ∈ Ins(∆), we can deduce σ′(idc) =
Ep(τ)(idc).

By property of γ ` Ep
env
= Ec, we can deduce Ep(τ)(idc) = Ec(τ, c).

Rewriting the goal with σ′(idc) = Ep(τ)(idc) and Ep(τ)(idc) = Ec(τ, c):
not Ec(τ, c) = not Ec(τ, c) , then tautology.

Lemma 27 (Rising edge equal conditions). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ, σi,
σ↑, σ′ that verify the hypotheses of Definition 51, then
∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) = idc, σ′(idc) = Ec(τ, c).

Proof.

Given a c ∈ C and an idc ∈ Ins(∆) such that γ(c) = idc, let us show

σ′(idc) = Ec(τ, c)

By property of the Inject relation and idc ∈ Ins(∆), we can deduce σ′(idc) = Ep(τ)(idc).
By property of γ ` Ep

env
= Ec, we can deduce Ep(τ)(idc) = Ec(τ, c).

D.3. Rising Edge 289

Rewriting the goal with σ′(idc) = Ep(τ)(idc) and Ep(τ)(idc) = Ec(τ, c), tautology .

D.3.3 Rising edge and time counters

Lemma 28 (Rising edge equal time counters). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ,
σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
.

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
Then, there are 4 points to show:

1. u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

Assuming that u(Is(t)) = ∞ and s′.I(t) ≤ l(Is(t)), let us show
s′.I(t) = σ′(idt)(s_time_counter).

By property of the Inject, H-VHDL rising edge and stabilize relations, comp(idt,
transition, gt, it, ot) ∈ d.cs, and through the examination of the time_counter
process defined in the transition design architecture, we can deduce σ′(idt)(stc) =
σ(idt)(stc).

By property of γ ` s
↓≈ σ, we can deduce s.I(t) = σ(idt)(stc).

Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc) and s.I(t) = σ(idt)(stc),
tautology.

2. u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t).

Proved in the same fashion as 1.

290 Appendix D. Semantic preservation proof

3. u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t).

Proved in the same fashion as 1.

4. u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

Proved in the same fashion as 1.

D.3.4 Rising edge and reset orders

Lemma 29 (Rising edge equal reset orders). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ,
σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt, s′.resett(t) = σ′(idt)(s_reinit_time_counter)

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show
s′.resett(t) = σ′(idt)(s_reinit_time_counter).

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the H-VHDL stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the reinit_time_counter_evaluation process defined in the
transition design architecture, we can deduce:

σ′(idt)(srtc) =
∆(idt)(input_arcs_number)−1

∑
i=0

σ′(idt)(reinit_time)[i] (D.9)

Rewriting the goal with (D.9), s′.resett(t) =
∆(idt)(ian)−1

∑
i=0

σ′(idt)(rt)[i].

Let us perform case analysis on input(t); there are two cases:

– CASE input(t) = ∅:

By construction, <input_arcs_number⇒ 1> ∈ gt, and by property of the elabora-
tion relation, we can deduce ∆(idt)(ian) = 1.

By construction, there exists an id f t ∈ Sigs(∆) s.t. <reinit_time(0)⇒ idft> ∈ it
and <fired⇒ idft> ∈ ot, and by property of the stabilize relation and comp(idt,
transition, gt, it, ot) ∈ d.cs, we can deduce σ′(idt)(rt)[0] = σ′(id f t) = σ′(idt)(fired).

D.3. Rising Edge 291

Rewriting the goal with ∆(idt)(ian) = 1 and σ′(idt)(rt)[0] = σ′(id f t) =

σ′(idt)(fired): s′.resett(t) = σ′(idt)(fired).

By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the fired_evaluation process, we can deduce:

σ′(idt)(fired) = σ′(idt)(s_firable) . σ′(idt)(s_priority_combination) (D.10)

Rewriting the goal with (D.10):
s′.resett(t) = σ′(idt)(s_firable) . σ′(idt)(s_priority_combination).

By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the priority_authorization_evaluation process defined
in the transition design architecture, we can deduce:

σ′(idt)(spc) =
∆(idt)(ian)−1

∏
i=0

σ′(idt)(priority_authorizations)[i] (D.11)

As ∆(idt)(ian) = 1, we can deduce
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = σ′(idt)(pauths)[0].

Rewriting the goal with (D.11) and
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = σ′(idt)(pauths)[0]:

s′.resett(t) = σ′(idt)(s_firable) . σ′(idt)(pauths)[0].

By construction, <priority_authorizations(0)⇒ true> ∈ it, and by property of
the stabilize relation and comp(idt, transition, gt, it, ot) ∈ d.cs, we can deduce
σ′(idt)(pauths)[0] = true.

Rewriting the goal with σ′(idt)(pauths)[0] = true , and simplifying the equation:
s′.resett(t) = σ′(idt)(s_firable).

Let us perform case analysis on t ∈ Fired(s) or t /∈ Fired(s):

– CASE t ∈ Fired(s):

By property of Ec, τ ` s ↑ s′ (Rule (8)), we can deduce s′.resett(t) = true.

Rewriting the goal with s′.resett(t) = true: σ′(idt)(s_firable) = true.
By property of the stabilize, the H-VHDL rising edge and the Inject relations,
comp(idt, transition, gt, it, ot) ∈ d.cs, and through the examination of the firable
process defined in the transition design architecture, we can deduce
σ(idt)(s_firable) = σ′(idt)(s_firable).
Rewriting the goal with σ(idt)(s_firable) = σ′(idt)(s_firable), we have
σ(idt)(s_firable) = true.

292 Appendix D. Semantic preservation proof

By property of γ ` s
↓≈ σ, we can deduce t ∈ Firable(s)⇔ σ(idt)(sfa) = true.

Rewriting the goal with t ∈ Firable(s)⇔ σ(idt)(sfa) = true, t ∈ Firable(s).

By property of t ∈ Fired(s), t ∈ Firable(s).

– CASE t /∈ Fired(s):
By property of input(t) = ∅, there does not exist any input place connected to t by

a basic or test arc. Thus, by property of Ec, τ ` s ↑ s′ (Rule (8)), we can deduce
s′.resett(t) = false.

Rewriting the goal with s′.resett(t) = false: σ′(idt)(s_firable) = false.

By property of the stabilize, the H-VHDL rising edge and the Inject relations,
comp(idt, transition, gt, it, ot) ∈ d.cs, and through the examination of the firable
process defined in the transition design architecture, we can deduce σ(idt)(sfa) =
σ′(idt)(sfa).

Rewriting the goal with σ(idt)(sfa) = σ′(idt)(sfa), σ(idt)(sfa) = false.

By property of γ ` s
↓≈ σ, we can deduce t /∈ Firable(s)⇔ σ(idt)(sfa) = false.

By property of t /∈ Fired(s) and input(t) = ∅, t /∈ Firable(s) .

– CASE input(t) 6= ∅:

By construction, <input_arcs_number⇒ |input(t)|> ∈ gt, and by property of the
elaboration relation, we can deduce ∆(idt)(ian) = |input(t)|.
Rewriting the goal with ∆(idt)(ian) = |input(t)|,

s′.resett(t) =
|input(t)|−1

∑
i=0

σ′(idt)(rt)[i].

Let us perform case analysis on t ∈ Fired(s) or t /∈ Fired(s):

– CASE t ∈ Fired(s):

By property of Ec, τ ` s ↑ s′ (Rule (8)), we can deduce s′.resett(t) = true.

Rewriting the goal with s′.resett(t) = true,
|input(t)|−1

∑
i=0

σ′(idt)(rt)[i] = true.

To prove the goal, let us show ∃i ∈ [0, |input(t)| − 1] s.t. σ′(idt)(rt)[i] = true.

By construction, and input(t) 6= ∅, there exist p ∈ input(t) and idp ∈ Comps(∆) s.t.
γ(p) = idp.
By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp,
ip, op) ∈ d.cs.

D.3. Rising Edge 293

By construction, there exist an i ∈ [0, |input(t)| − 1], a j ∈ [0, |output(p)| − 1] and
idji ∈ Sigs(∆) s.t. <reinit_transition_time(j)⇒ idji> ∈ op and
<reinit_time(i)⇒ idji> ∈ it. Let us take such an i, j and idji, and let us use i to

prove the goal: σ′(idt)(rt)[i] = true.

By property of the stabilize relation, <reinit_transition_time(j)⇒ idji> ∈ op
and <reinit_time(i)⇒ idji> ∈ it, we can deduce σ′(idt)(rt)[i] = σ′(idji) =
σ′(idp)(rtt)[j].
Rewriting the goal with σ′(idt)(rt)[i] = σ′(idji) = σ′(idp)(rtt)[j],

σ′(idp)(rtt)[j] = true.

By property of the Inject, the H-VHDL rising edge and the stabilize relations,
comp(idp, place, gp, ip, op) ∈ d.cs, and through the examination of the reinit_-
transitions_time_evaluation process defined in the place design architecture, we
can deduce:

σ′(idp)(rtt)[j] =
(
(σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0)
)

+ σ(idp)(otf)[j]

(D.12)

Rewriting the goal with (D.12),

true =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))
+ (σ(idp)(otf)[j])

By construction, there exists id f t ∈ Sigs(∆) such that
<output_transitions_fired(j)⇒ idft> ∈ ip and <fired⇒ idft> ∈ ot. By
property of state σ, which is a stable state, we have σ(idt)(fired) = σ(id f t) =
σ(idp)(otf)[j].
Rewriting the goal with σ(idt)(fired) = σ(id f t) = σ(idp)(otf)[j],

true =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))
+ σ(idt)(fired)

By property of γ ` s
↓≈ σ, we can deduce t ∈ Fired(s)⇔ σ(idt)(fired) = true.

294 Appendix D. Semantic preservation proof

Rewriting the goal with t ∈ Fired(s)⇔ σ(idt)(fired) = true and simplify the goal,
then tautology .

– CASE t /∈ Fired(s): Then, there are two cases that will determine the value of
s′.resett(t). Either there exists a place p with an output token sum greater than zero,
that is connected to t by an basic or test arc, and such that the transient marking
of p disables t; or such a place does not exist (the predicate is decidable).

∗ CASE there exists such a place p as described above:
Then, let us take such a place p and ω ∈N∗ s.t.:
1. ∑

ti∈Fired(s)
pre(p, ti) > 0

2. pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)
3. s.M(p)− ∑

ti∈Fired(s)
pre(p, ti) < ω

We will only consider the case where pre(p, t) = (ω, basic); the proof is the sim-
ilar when pre(p, t) = (ω, test).

Assuming that p exists, and by property of Ec, τ ` s ↑ s′ (Rule (8)), we can
deduce s′.resett(t) = true.

Rewriting the goal with s′.resett(t) = true,
|input(t)|−1

∑
i=0

σ′(idt)(rt)[i] = true.

To prove the goal, let us show ∃i ∈ [0, |input(t)| − 1] s.t. σ′(idt)(rt)[i] = true.
By construction, there exists idp ∈ Comps(∆) s.t. γ(p) = idp.
By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place,
gp, ip, op) ∈ d.cs.
By construction, there exist an i ∈ [0, |input(t)| − 1], a j ∈ [0, |output(p)| − 1] and
idji ∈ Sigs(∆) s.t. <reinit_transition_time(j)⇒ idji> ∈ op and
<reinit_time(i)⇒ idji> ∈ it. Let us take such an i, j and idji, and let us use i

to prove the goal: σ′(idt)(rt)[i] = true.
By property of the stabilize relation, <reinit_transition_time(j)⇒ idji> ∈
op and <reinit_time(i)⇒ idji> ∈ it, we have σ′(idt)(rt)[i] = σ′(idji) =
σ′(idp)(rtt)[j].
Rewriting the goal with σ′(idt)(rt)[i] = σ′(idji) = σ′(idp)(rtt)[j], we have

σ′(idp)(rtt)[j] = true.
By property of the Inject, theH-VHDL rising edge and the stabilize relation, and
through the examination of the reinit_transitions_time_evaluation process

D.3. Rising Edge 295

defined in the place design architecture, we can deduce:

σ′(idp)(rtt)[j] =
(
(σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0)
)

+ σ(idp)(otf)[j]

(D.13)

Rewriting the goal with (D.13),

true =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))
+ σ(idp)(otf)[j]

By construction, <output_arcs_types(j)⇒ basic> ∈ ip and
<output_arcs_weights(j)⇒ ω> ∈ ip.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ′(idp)(oat)[j] = basic and σ′(idp)(oaw)[j] = ω.

By property of γ ` s
↓≈ σ, we can deduce σ(idp)(sm) = s.M(p) and σ(idp)(sots) =

∑
ti∈Fired(s)

pre(p, ti).

Rewriting the goal with σ′(idp)(oat)[j] = basic, σ′(idp)(oaw)[j] = ω,
σ(idp)(sm) = s.M(p) and σ(idp)(sots) = ∑

ti∈Fired(s)
pre(p, ti), and simplifying the

goal:(
(s.M(p)− ∑

ti∈Fired(s)
pre(p, ti) < ω) . (∑

ti∈Fired(s)
pre(p, ti) > 0)

)
+ σ(idt)(fired)

=
true

We assumed that s.M(p)− ∑
ti∈Fired(s)

pre(p, ti) < ω and ∑
ti∈Fired(s)

pre(p, ti) > 0.

Thus, by assumption:(
(s.M(p)− ∑

ti∈Fired(s)
pre(p, ti) < ω) . (∑

ti∈Fired(s)
pre(p, ti) > 0)

)
+ σ(idt)(fired)

=
true

∗ CASE such a place does not exist:
Then, let us assume that, for all place p ∈ P

296 Appendix D. Semantic preservation proof

1. ∑
ti∈Fired(s)

pre(p, ti) = 0

2. or ∀ω ∈N∗, pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)⇒
s.M(p)− ∑

ti∈Fired(s)
pre(p, ti) ≥ ω.

In that case, by property of Ec, τ ` s ↑ s′ (Rule (8)), we can deduce s′.resett(t) =
false.

Rewriting the goal with s′.resett(t) = false:
|input(t)|−1

∑
i=0

σ′(idt)(rt)[i] = false.

To prove the goal, let us show ∀i ∈ [0, |input(t)| − 1], σ′(idt)(rt)[i] = false.

Given an i ∈ [0, |input(t)| − 1], let us show σ′(idt)(rt)[i] = false.

By construction, there exist a p ∈ input(t), an idp ∈ Comps(∆), gp, ip, op,
a j ∈ [0, |output(p)| − 1], an idji ∈ Sigs(∆) s.t. γ(p) = idp and comp(idp,
place, gp, ip, op) ∈ d.cs and <reinit_transition_time(j)⇒ idji> ∈ op and
<reinit_time(i)⇒ idji> ∈ it. Let us take such a p, idp, gp, ip, op, j and idji.

By property of the stabilize relation, <reinit_transition_time(j)⇒ idji> ∈
op and <reinit_time(i)⇒ idji> ∈ it, we have σ′(idt)(rt)[i] = σ′(idji) =
σ′(idp)(rtt)[j].
Rewriting the goal with σ′(idt)(rt)[i] = σ′(idji) = σ′(idp)(rtt)[j]:

σ′(idp)(rtt)[j] = false.
By property of the Inject, the H-VHDL rising edge and the stabilize relations,
comp(idp, place, gp, ip, op) ∈ d.cs, and through the examination of the reinit_-
transitions_time_evaluation process defined in the place design architecture,
we can deduce:

σ′(idp)(rtt)[j] =
(
(σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0)
)

+ σ(idp)(otf)[j]

(D.14)

Rewriting the goal with (D.14),

false =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))
+ σ(idp)(otf)[j])

D.3. Rising Edge 297

By construction, there exists id f t ∈ Sigs(∆) such that
<output_transitions_fired(j)⇒ idft> ∈ ip and <fired⇒ idft> ∈ ot. By
property of state σ as being a stable state, we have σ(idt)(fired) = σ(id f t) =
σ(idp)(otf)[j].
Rewriting the goal with σ(idt)(fired) = σ(id f t) = σ(idp)(otf)[j]:

false =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))
+ σ(idt)(fired)

By property of γ ` s
↓≈ σ, we can deduce t /∈ Fired(s)⇔ σ(idt)(fired) = false

Rewriting the goal with t /∈ Fired(s) ⇔ σ(idt)(fired) = false and simplifying
the goal:

false =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(σ(idp)(sm)− σ(idp)(sots) < σ(idp)(oaw)[j])

.(σ(idp)(sots) > 0))

Then, based on the assumptions made at the beginning of case, there are two cases:
1. CASE ∑

ti∈Fired(s)
pre(p, ti) = 0:

By property of γ ` s
↓≈ σ, we can deduce ∑

ti∈Fired(s)
pre(p, ti) = σ(idp)(sots).

Rewriting the goal with ∑
ti∈Fired(s)

pre(p, ti) = σ(idp)(sots) and

∑
ti∈Fired(s)

pre(p, ti) = 0, and simplifying the goal: tautology.

2. CASE ∀ω ∈N∗, pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)⇒
s.M(p)− ∑

ti∈Fired(s)
pre(p, ti) ≥ ω:

Let us perform case analysis on pre(p, t); there are two cases:
(a) CASE pre(p, t) = (ω, basic) or pre(p, t) = (ω, basic):

By construction, <output_arcs_weights(j)⇒ ω> ∈ ip.
By property of stable state σ and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ(idp)(oaw)[j] = ω.

By property of γ ` s
↓≈ σ, we can deduce σ(idp)(sm) = s.M(p) and

σ(idp)(sots) = ∑
ti∈Fired(s)

pre(p, ti).

298 Appendix D. Semantic preservation proof

Rewriting the goal with σ(idp)(oaw)[j] = ω, σ(idp)(sm) = s.M(p) and
σ(idp)(sots) = ∑

ti∈Fired(s)
pre(p, ti):

false =((σ(idp)(oat)[j] = basic+ σ(idp)(oat)[j] = test)

.(s.M(p)− ∑
ti∈Fired(s)

pre(p, ti) < ω)

.(∑
ti∈Fired(s)

pre(p, ti) > 0))

We assumed that s.M(p)− ∑
ti∈Fired(s)

pre(p, ti) ≥ ω, and then we can deduce

s.M(p)− ∑
ti∈Fired(s)

pre(p, ti) < ω = false.

Rewriting the goal with s.M(p) − ∑
ti∈Fired(s)

pre(p, ti) < ω = false, and

simplifying the goal, tautology.

(b) CASE pre(p, t) = (ω, inhib):
By construction, <output_arcs_types(j)⇒ inhib> ∈ ip.
By property of stable state σ and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ(idp)(oat)[j] = inhib.
Rewriting the goal with σ(idp)(oat)[j] = inhib, and simplifying the goal,
we have a tautology.

D.3.5 Rising edge and action executions

Lemma 30 (Rising edge equal action executions). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s,
s′, σ, σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) = ida, s′.ex(a) = σ′(ida).

Proof.

Given an a ∈ A and an ida ∈ Outs(∆) s.t. γ(a) = ida, let us show s′.ex(a) = σ′(ida).

By property of Ec, τ ` s ↑ s′, we can deduce s.ex(a) = s′.ex(a).
By construction, ida is an output port identifier of Boolean type in the H-VHDL design d.
The generated “action” process is responsible for the assignment of the id a only during
the initialization phase or during a falling edge phase.

D.3. Rising Edge 299

By property of the H-VHDL Inject, rising edge, stabilize relations, and the “action”
process, we can deduce σ(ida) = σ′(ida).
Rewriting the goal with s.ex(a) = s′.ex(a) and σ(ida) = σ′(ida), s.ex(a) = σ(ida).

By property of γ ` s
↓≈ σ, s.ex(a) = σ(ida).

D.3.6 Rising edge and function executions

Lemma 31 (Rising edge equal function executions). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe,
s, s′, σ, σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) = id f , s′.ex(f) = σ′(id f).

Proof.

Given an f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show s′.ex(f) = σ′(id f).

By property of Ec, τ ` s ↑ s′ (Rule (9)):

s′.ex(f) = ∑
t∈Fired(s)

F(t, f) (D.15)

By construction, id f is an output port identifier of Boolean type in theH-VHDL design d.
The generated function process assigns a value to the output port id f only during the
initialization phase or during a rising edge phase.
By construction, the function process is defined in the behavior of design d, i.e.
ps(function, ∅, sl, ss) ∈ d.cs.
Let trs(f) be the set of transitions associated to function f , i.e. trs(f) = {t ∈ T | F(t, f) =
true}.
Let us perform case analysis on trs(f); there are two cases:

– CASE trs(f) = ∅:

By construction, idf ⇐ false ∈ ss↑ where ss↑ is the part of the function process body
executed during a rising edge phase.

By property of the H-VHDL rising edge, the stabilize relations and
ps(function, ∅, sl, ss) ∈ d.cs, we can deduce σ′(id f) = false.

By property of ∑
t∈Fired(s)

F(t, f) and trs(f) = ∅, we can deduce ∑
t∈Fired(s)

F(t, f) = false.

Rewriting the goal with (D.15), σ′(id f) = false and ∑
t∈Fired(s)

F(t, f) = false:

tautology.

300 Appendix D. Semantic preservation proof

– CASE trs(f) 6= ∅:

By construction, idf ⇐ idft0 + · · ·+ idftn ∈ ss↑, where id f ti ∈ Sigs(∆), ss↑ is the part
of the function process body executed during a rising edge phase, and n = |trs(f)| −
1.

By property of the Inject, theH-VHDL rising edge, the stabilize relations, and
ps(function, ∅, sl, ss) ∈ d.cs, we can deduce:

σ′(id f) = σ(id f t0) + · · ·+ σ(id f tn) (D.16)

Rewriting the goal with (D.15) and (D.16), ∑
t∈Fired(s)

F(t, f) = σ(id f t0) + · · ·+ σ(id f tn).

Let us reason on the value of σ(id f t0) + · · ·+ σ(id f tn); there are two cases:

– CASE σ(id f t0) + · · ·+ σ(id f tn) = true:

Then, we can rewrite the goal as follows: ∑
t∈Fired(s)

F(t, f) = true.

To prove the above goal, let us show ∃t ∈ Fired(s) s.t. F(t, f) = true.

From σ(id f t0) + · · ·+ σ(id f tn) = true, we can deduce ∃id f ti s.t. σ(id f ti) = true. Let
us take such an id f ti .
By construction, there exist a t ∈ trs(f), an idt ∈ Comps(∆), gt, it, ot such that:

∗ γ(t) = idt

∗ comp(idt, transition, gt, it, ot) ∈ d.cs
∗ <fired⇒ idfti> ∈ ot

By property of σ as being a stable design state, and comp(idt, transition, gt, it, ot) ∈
d.cs, we can deduce σ(idt)(fired) = σ(id f ti), and thus that σ(idt)(fired) = true.

By property of γ ` s
↓≈ σ, we can deduce t ∈ Fired(s).

Let us use t to prove the goal: F(t, f) = true.

By definition of t ∈ trs(f), F(t, f) = true.

– CASE σ(id f t0) + · · ·+ σ(id f tn) = false:

Then, we can rewrite the goal as follows: ∑
t∈Fired(s)

F(t, f) = false.

To prove the above goal, let us show ∀t ∈ Fired(s) s.t. F(t, f) = false.

Given a t ∈ Fired(s), let us show F(t, f) = false.

Let us perform case analysis on F(t, f); there are 2 cases:

∗ CASE F(t, f) = false.

D.3. Rising Edge 301

∗ CASE F(t, f) = true:

By construction, there exist an idt ∈ Comps(∆), gt, it, ot and id f ti ∈ Sigs(∆) such
that:
· γ(t) = idt

· comp(idt, transition, gt, it, ot) ∈ d.cs
· <fired⇒ idfti> ∈ ot

By property of stable design state σ and comp(idt, transition, gt, it, ot) ∈ d.cs, we
can deduce σ(idt)(fired) = σ(id f ti).

By property of γ ` s
↓≈ σ, we can deduce t ∈ Fired(s)⇔ σ(idt)(fired) = true.

Since t ∈ Fired(s), we can deduce σ(idt)(fired) = true, and from
σ(idt)(fired) = σ(id f ti), we can deduce σ(id f ti) = true.
Then, σ(id f ti) = true contradicts σ(id f t0) + · · ·+ σ(id f tn) = false.

D.3.7 Rising edge and sensitization

Lemma 32 (Rising edge equal sensitized). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ, σi,
σ↑, σ′ that verify the hypotheses of Definition 51, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t ∈ Sens(s′.M)⇔ σ′(idt)(s_enabled) = true.

Proof.

Given a t ∈ T and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show
t ∈ Sens(s′.M)⇔ σ′(idt)(s_enabled) = true.

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.. Then, the proof is in two parts:

1. Assuming that t ∈ Sens(s′.M), let us show σ′(idt)(s_enabled) = true.

By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and
through the examination of the enable_evaluation process defined in the transition
design architecture:

σ′(idt)(se) =
∆(idt)(ian)−1

∏
i=0

σ′(idt)(input_arcs_valid)[i] (D.17)

302 Appendix D. Semantic preservation proof

Rewriting the goal with (D.17),
∆(idt)(ian)−1

∏
i=0

σ′(idt)(iav)[i] = true.

To prove the goal, let us show that ∀i ∈ [0, ∆(idt)(ian)− 1], σ′(idt)(iav)[i] = true.

Given an i ∈ [0, ∆(idt)(ian)− 1], let us show σ′(idt)(iav)[i] = true.

Let us perform case analysis on input(t).

– CASE input(t) = ∅:
By construction, <input_arcs_number⇒ 1> ∈ gt and
<input_arcs_valid(0)⇒ true> ∈ it.
By property of the elaboration and stabilize relations and comp(idt, transition, gt,
it, ot) ∈ d.cs, we can deduce ∆(idt)(ian) = 1 and σ′(idt)(iav)[0] = true.
Thanks to ∆(idt)(ian) = 1, we can deduce that i = 0.
Rewriting the goal with σ′(idt)(iav)[0] = true, tautology.

– CASE input(t) 6= ∅:
By construction, <input_arcs_number⇒ |input(t)|> ∈ gt.
By property of the elaboration relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
we can deduce ∆(idt)(ian) = |input(t)|.
Thanks to ∆(idt)(ian) = |input(t)|, we know that i ∈ [0, |input(t)| − 1].
By construction, there exist a p ∈ input(t), idp ∈ Comps(∆), gp, ip, op, j ∈
[0, |output(p)| − 1] and idji ∈ Sigs(∆) s.t. γ(p) = idp and
comp(idp, place, gp, ip, op) ∈ d.cs and <output_arcs_valid(j)⇒ idji> ∈ op
and <input_arcs_valid(i)⇒ idji> ∈ it.
By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs and
comp(idp, place, gp, ip, op) ∈ d.cs, we can deduce σ′(idt)(iav)[i] = σ′(idji) =
σ′(idp)(oav)[j].
Rewriting the goal with σ′(idt)(iav)[i] = σ′(idji) = σ′(idp)(oav)[j]:

σ′(idp)(oav)[j] = true.

By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs, and through
the examination of the marking_validation_evaluation process defined in the
place design architecture, we can deduce:

σ′(idp)(oav)[j] =
(
(σ′(idp)(oat)[j] = basic+ σ′(idp)(oat)[j] = test)

. σ′(idp)(sm) ≥ σ′(idp)(oaw)[j]
)

+
(
σ′(idp)(oat)[j] = inhib . σ′(idp)(sm) < σ′(idp)(oaw)[j]

)
(D.18)

D.3. Rising Edge 303

Rewriting the goal with (D.18),

true =
(
(σ′(idp)(oat)[j] = basic+ σ′(idp)(oat)[j] = test)

. σ′(idp)(sm) ≥ σ′(idp)(oaw)[j]
)

+
(
σ′(idp)(oat)[j] = inhib . σ′(idp)(sm) < σ′(idp)(oaw)[j]

)
Let us perform case analysis on pre(p, t); there are 3 cases:

– CASE pre(p, t) = (ω, basic):

By construction, <output_arcs_types(j)⇒ basic> ∈ ip and
<output_arcs_weights(j)⇒ ω> ∈ ip.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs,
we can deduce σ′(idp)(oat)[j] = basic and σ′(idp)(oaw)[j] = ω.
Rewriting the goal with σ′(idp)(oat)[j] = basic and σ′(idp)(oaw)[j] = ω, and
simplifying the goal:
σ′(idp)(sm) ≥ ω = true.

Appealing to Lemma 25, we can deduce s′.M(p) = σ′(idp)(sm).
Rewriting the goal with s′.M(p) = σ′(idp)(sm): s′.M(p) ≥ ω = true.

By definition of t ∈ Sens(s′.M), s′.M(p) ≥ ω = true.

– CASE pre(p, t) = (ω, test): same as above.
– CASE pre(p, t) = (ω, inhib):

By construction, <output_arcs_types(j)⇒ inhib> ∈ ip and
<output_arcs_weights(j)⇒ ω> ∈ ip.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we
can deduce σ′(idp)(oat)[j] = inhib and σ′(idp)(oaw)[j] = ω.
Rewriting the goal with σ′(idp)(oat)[j] = inhib and σ′(idp)(oaw)[j] = ω, and
simplifying the goal: σ′(idp)(sm) < ω = true.
Appealing to Lemma 25, we can deduce s′.M(p) = σ′(idp)(sm).
Rewriting the goal with s′.M(p) = σ′(idp)(sm): s′.M(p) < ω = true.

By definition of t ∈ Sens(s′.M), s′.M(p) < ω = true.

2. Assuming that σ′(idt)(s_enabled) = true, let us show t ∈ Sens(s′.M).

By definition of t ∈ Sens(s′.M), let us show

∀p ∈ P, ω ∈ N∗,
(

pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test) ⇒ s′.M(p) ≥
ω
)
∧
(

pre(p, t) = (ω, inhib)⇒ s′.M(p) < ω
)

304 Appendix D. Semantic preservation proof

Given a p ∈ P and an ω ∈N∗, let us show
pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)⇒ s′.M(p) ≥ ω and

pre(p, t) = (ω, inhib)⇒ s′.M(p) < ω.

(a) Assuming pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test), let us show
s′.M(p) ≥ ω.

The proceeding is the same for pre(p, t) = (ω, basic) and pre(p, t) = (ω, test).
Therefore, we will only cover the case where pre(p, t) = (ω, basic).
By property of the stabilize relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
equation (D.17) holds.
Rewriting σ′(idt)(se) = true with (D.17), we can deduce:
∆(idt)(ian)−1

∏
i=0

σ′(idt)(iav)[i] = true.

Then, we can deduce that ∀i ∈ [0, ∆(idt)(ian)− 1], σ′(idt)(iav)[i] = true.
By construction, there exist an idp ∈ Comps(∆), gp, ip, op, i ∈ [0, |input(t)| − 1],
j ∈ [0, |output(p)| − 1] and idji ∈ Sigs(∆) s.t. γ(p) = idp and
comp(idp, place, gp, ip, op) ∈ d.cs and <output_arcs_valid(j)⇒ idji> ∈ op
and <input_arcs_valid(i)⇒ idji> ∈ it. Let us take such an idp ∈ Comps(∆),
gp, ip, op, i ∈ [0, |input(t)| − 1], j ∈ [0, |output(p)| − 1] and idji ∈ Sigs(∆).
By construction, <input_arcs_number⇒ |input(t)|> ∈ gt.
By property of the elaboration relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
we can deduce ∆(idt)(ian) = |input(t)|.
Thanks to ∆(idt)(ian) = |input(t)|, we can deduce that ∀i ∈ [0, |input(t)| − 1],
σ′(idt)(iav)[i] = true.
Having such an i ∈ [0, |input(t)| − 1], we can deduce that σ′(idt)(iav)[i] = true.
By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs and
comp(idp, place, gp, ip, op) ∈ d.cs, we can deduce σ′(idt)(iav)[i] = σ′(idji) =
σ′(idp)(oav)[j].
Thanks to σ′(idt)(iav)[i] = σ′(idji) = σ′(idp)(oav)[j], we have σ′(idp)(oav)[j] =
true.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, equa-
tion (D.18) holds. Thanks to (D.18), we can deduce that:

true =
(
(σ′(idp)(oat)[j] = basic+ σ′(idp)(oat)[j] = test)

. σ′(idp)(sm) ≥ σ′(idp)(oaw)[j]
)

+
(
σ′(idp)(oat)[j] = inhib . σ′(idp)(sm) < σ′(idp)(oaw)[j]

) (D.19)

By construction, <output_arcs_types(j)⇒ basic> ∈ ip and
<output_arcs_weights(j)⇒ ω> ∈ ip.

D.4. Falling Edge 305

By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ′(idp)(oat)[j] = basic and σ′(idp)(oaw)[j] = ω.
Thanks to σ′(idp)(oat)[j] = basic, σ′(idp)(oaw)[j] = ω, and simplifying Equa-
tion (D.19), we can deduce σ′(idp)(sm) ≥ ω = true.

Appealing to Lemma 25, s′.M(p) ≥ ω.

(b) Assuming pre(p, t) = (ω, inhib), let us show s′.M(p) < ω.

The proceeding is the same as in the preceding case. Here, we will start the proof
where the two cases are diverging, i.e:
By construction, <output_arcs_types(j)⇒ inhib> ∈ ip and
<output_arcs_weights(j)⇒ ω> ∈ ip.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ′(idp)(oat)[j] = inhib and σ′(idp)(oaw)[j] = ω.
Thanks to σ′(idp)(oat)[j] = inhib and σ′(idp)(oaw)[j] = ω, and simplifying
Equation (D.19), we can deduce σ′(idp)(sm) < ω = true.

Appealing to Lemma 25, s′.M(p) < ω.

Lemma 33 (Rising edge equal not sensitized). For all sitpn, b, d, γ, Ec, Ep, τ, ∆, σe, s, s′, σ,
σi, σ↑, σ′ that verify the hypotheses of Definition 51, then
∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt, t /∈ Sens(s′.M)⇔ σ′(idt)(s_enabled) = false.

Proof.

Proving the above lemma is trivial by appealing to Lemma 32 and by reasoning on con-
trapositives.

D.4 Falling Edge

D.4.1 Falling edge and marking

Lemma 34 (Falling edge equal marking). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓,
σ′ that verify the hypotheses of Definition 45, then ∀p ∈ P, idp ∈ Comps(∆) s.t. γ(p) = idp,
s′.M(p) = σ′(idp)(s_marking).

306 Appendix D. Semantic preservation proof

Proof.

Given a p ∈ P and an id ∈ Comps(∆) s.t. γ(p) = idp, let us show
s′.M(p) = σ′(idp)(s_marking).

By definition of Ec, τ ` sitpn, s
↓−→ s′, we can deduce s.M(p) = s′.M(p).

By property of the H-VHDL falling edge relation, the stabilize relation and comp(idp,
place, gp, ip, op) ∈ d.cs, and through the examination of the marking process defined in
the place design architecture, we can deduce σ′(idp)(s_marking) = σ(idp)(s_marking).
Rewriting the goal with s.M(p) = s′.M(p) and σ′(idp)(sm) = σ(idp)(sm):
s.M(p) = σ(idp)(sm).

By definition of γ, Ec, τ ` s
↓≈ σ: s.M(p) = σ(idp)(sm).

Lemma 35 (Falling edge equal output token sum). For all sitpn, b, d, γ, ∆, σe, Ec, Ep,
τ, s, s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀p, idp s.t. γ(p) = idp,

∑
t∈Fired(s′)

pre(p, t) = σ′(idp)(s_output_token_sum).

Proof.

Given a p ∈ P and an idp ∈ Comps(∆), let us show

∑
t∈Fired(s′)

pre(p, t) = σ′(idp)(s_output_token_sum).

By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs, and through the
examination of the output_tokens_sum process defined in the place design architecture:

σ′(idp)(sots) =
∆(idp)(oan)−1

∑
i=0

σ′(idp)(oaw)[i] if (σ′(idp)(otf)[i]

. σ′(idp)(oat)[i] = basic)

0 otherwise
(D.20)

Rewriting the goal with (D.20):

∑
t∈Fired(s′)

pre(p, t) =
∆(idp)(oan)−1

∑
i=0

σ′(idp)(oaw)[i] if (σ′(idp)(otf)[i]

. σ′(idp)(oat)[i] = basic)

0 otherwise

Let us unfold the definition of the left sum term:

D.4. Falling Edge 307

∑
t∈Fired(s′)

{
ω if pre(p, t) = (ω, basic)
0 otherwise

=

∆(idp)(oan)−1

∑
i=0

σ′(idp)(oaw)[i] if (σ′(idp)(otf)[i]

. σ′(idp)(oat)[i] = basic)

0 otherwise

To ease the reading, let us define functions f ∈ Fired(s′) → N and g ∈ [0, |output(p)| −

1]→N s.t. f (t) =

{
ω if pre(p, t) = (ω, basic)
0 otherwise

and g(i) =

σ′(idp)(oaw)[i] if (σ′(idp)(otf)[i]

. σ′(idp)(oat)[i] = basic)

0 otherwise

Then, the goal is: ∑
t∈Fired(s′)

f (t) =
∆(idp)(oan)−1

∑
i=0

g(i)

Let us perform case analysis on output(p); there are two cases:

– CASE output(p) = ∅:

By construction, <output_arcs_number⇒ 1> ∈ gp, <output_arcs_types(0)⇒
basic> ∈ ip, <output_transitions_fired(0)⇒ true> ∈ ip, and <output_arcs_-
weights(0)⇒ 0> ∈ ip.

By property of the elaboration relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce ∆(idp)(oan) = 1.

By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ′(idp)(oat)[0] = basic, σ′(idp)(otf)[0] = true and σ′(idp)(oaw)[0] = 0.

By property of output(p) = ∅, we can deduce

∑
t∈Fired(s′)

{
ω if pre(p, t) = (ω, basic)
0 otherwise

= 0

Rewriting the goal with ∆(idp)(oan) = 1, σ′(idp)(oat)[0] = basic, σ′(idp)(otf)[0] =

true, σ′(idp)(oaw)[0] = 0 and ∑
t∈Fired(s′)

{
ω if pre(p, t) = (ω, basic)
0 otherwise

= 0,

tautology.

– CASE output(p) 6= ∅:

By construction, <oan⇒ |output(p)|> ∈ gp, and by property of the elaboration rela-
tion, we can deduce ∆(idp)(oan) = |output(p)|.

308 Appendix D. Semantic preservation proof

Rewriting the goal with ∆(idp)(oan) = |output(p)|: ∑
t∈Fired(s′)

f (t) =
|output(p)|−1

∑
i=0

g(i).

There exists a mapping, given by the transformation function, between the set
output(p) and [0, |output(p)| − 1].

Let β ∈ output(p)→ [0, |output(p)| − 1] be that mapping.

To prove the current goal, it suffices to show that, for all t ∈ Fired(s′), if t ∈ output(p)
then f (t) = g(β(t)), and f (t) = 0 otherwise.

Given a t ∈ Fired(s′), there are two points to prove:

1. Assuming that t ∈ output(p), show f (t) = g(β(t)).

2. Assuming that t /∈ output(p), show f (t) = 0.

1. Assuming that t ∈ output(p), let us show f (t) = g(β(t)).

Replacing the terms f (t) and g(β(t)) by their full definition, let us show{
ω if pre(p, t) = (ω, basic)
0 otherwise

=
σ′(idp)(oaw)[β(t)] if (σ′(idp)(otf)[β(t)]

. σ′(idp)(oat)[β(t)] = basic)

0 otherwise

As t ∈ output(p), there exist a weight ω ∈ N and an arc type a ∈
{basic, test, inhib} such that pre(p, t) = (ω, a).
By construction, we have:

– <oat(β(t))⇒ a> ∈ ip

– <oaw(β(t))⇒ ω> ∈ ip

By property of the stabilize relation and <oat(β(t))⇒ a> ∈ ip, we have
σ′(idp)(oat)[β(t)] = a.
Let us perform case analysis of the value of a; there are two cases:

– CASE a = inhib or a = test:
In that case, pre(p, t) 6= (ω, basic) and σ′(idp)(oat)[β(t)] 6= basic.
Thus, the goal can be rewritten as follows: 0 = 0 , tautology.

– CASE a = basic:
In that case, pre(p, t) = (ω, basic) and σ′(idp)(oat)[β(t)] = basic.
Thus, the goal can be rewritten as follows:

D.4. Falling Edge 309

ω =

{
σ′(idp)(oaw)[β(t)] if σ′(idp)(otf)[β(t)]
0 otherwise

By property of the stabilize relation and <oaw(β(t))⇒ ω> ∈ ip, we have
σ′(idp)(oaw)[β(t)] = ω. Thus, the goal can be rewritten as follows:

ω =

{
ω if σ′(idp)(otf)[β(t)]
0 otherwise

By construction, there exists an id f t ∈ Sigs(∆) such that:

∗ <fired⇒id f t> ∈ ot

∗ <otf(β(t))⇒ idft> ∈ ip

Let us take an id f t ∈ Sigs(∆) that verifies the above properties.
By property of the stabilize relation, <fired⇒ idft> ∈ ot and
<otf(β(t))⇒ idft> ∈ ip , we can deduce σ′(idp)(otf)[β(t)] = σ′(id f t) =
σ′(idt)(fired).
Thus, the goal can be rewritten as follows:

ω =

{
ω if σ′(idt)(fired)
0 otherwise

Appealing to Lemma 4, from t ∈ Fired(s′), we can deduce σ′(idt)(fired) =
true.
Thus, the goal can be rewritten as follows: ω = ω , tautology.

2. Assuming that t /∈ output(p), let us show f (t) = 0.

Replacing the term f (t) by its full definition, let us show{
ω if pre(p, t) = (ω, basic)
0 otherwise

= 0

As t /∈ output(p), then pre(p, t) 6= (ω, basic), and we can rewrite the goal as
follows: 0 = 0 , tautology.

Lemma 36 (Falling edge equal input token sum). For all sitpn, b, d, γ, ∆, σe, Ec, Ep,
τ, s, s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀p, idp s.t. γ(p) = idp,

∑
t∈Fired(s′)

post(t, p) = σ′p(s_input_token_sum).

310 Appendix D. Semantic preservation proof

Proof.

Given a p ∈ P and an idp ∈ Comps(∆), let us show

∑
t∈Fired(s′)

post(t, p) = σ′(idp)(s_input_token_sum).

By construction and by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs.
By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs, and through the
examination of the input_tokens_sum process defined in the place design architecture:

σ′(idp)(sits) =
∆(idp)(ian)−1

∑
i=0

{
σ′(idp)(iaw)[i] if σ′(idp)(itf)[i]
0 otherwise

(D.21)

Rewriting the goal with (D.21):

∑
t∈Fired(s′)

post(t, p) =
∆(idp)(ian)−1

∑
i=0

{
σ′(idp)(iaw)[i] if σ′(idp)(otf)[i]
0 otherwise

Let us unfold the definition of the left sum term:

∑
t∈Fired(s′)

{
ω if post(t, p) = ω

0 otherwise
=

∆(idp)(ian)−1

∑
i=0

{
σ′(idp)(iaw)[i] if σ′(idp)(itf)[i]
0 otherwise

Let us perform case analysis on input(p); there are two cases:

– CASE input(p) = ∅:

By construction, <input_arcs_number⇒ 1> ∈ gp,
<input_transitions_fired(0)⇒ true> ∈ ip, and
<input_arcs_weights(0)⇒ 0> ∈ ip.

By property of the elaboration relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce ∆(idp)(ian) = 1.

By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we can
deduce σ′(idp)(itf)[0] = true and σ′(idp)(iaw)[0] = 0.

By property of input(p) = ∅, we can deduce ∑
t∈Fired(s′)

{
ω if post(t, p) = ω

0 otherwise
= 0.

D.4. Falling Edge 311

Rewriting the goal with ∆(idp)(ian) = 1, σ′(idp)(itf)[0] = true, σ′(idp)(iaw)[0] = 0,

and ∑
t∈Fired(s′)

{
ω if post(t, p) = ω

0 otherwise
= 0, and simplifying the goal: tautology.

– CASE input(p) 6= ∅:

By construction, <ian⇒ |input(p)|> ∈ gp, and by property of the elaboration rela-
tion, we can deduce ∆(idp)(ian) = |input(p)|.
To ease the reading, let us define functions f ∈ Fired(s′) → N and g ∈

[0, |input(p)| − 1] → N s.t. f (t) =

{
ω if post(t, p) = ω

0 otherwise
and g(i) ={

σ′(idp)(iaw)[i] if σ′(idp)(itf)[i]
0 otherwise

Then, the goal is: ∑
t∈Fired(s′)

f (t) =
∆(idp)(ian)−1

∑
i=0

g(i)

Rewriting the goal with ∆(idp)(ian) = |input(p)|: ∑
t∈Fired(s′)

f (t) =
|input(p)|−1

∑
i=0

g(i).

There exists a mapping, given by the transformation function, between the set input(p)
and [0, |input(p)| − 1].

Let β ∈ input(p)→ [0, |input(p)| − 1] be that mapping.

To prove the current goal, it suffices to show that, for all t ∈ Fired(s′), if t ∈ input(p)
then f (t) = g(β(t)), and f (t) = 0 otherwise.

Given a t ∈ Fired(s′), there are two points to prove:

1. Assuming that t ∈ input(p), show f (t) = g(β(t)).

2. Assuming that t /∈ input(p), show f (t) = 0.

1. Assuming that t ∈ input(p), let us show f (t) = g(β(t)).

Replacing the terms f (t) and g(β(t)) by their full definition, let us show{
ω if post(t, p) = ω

0 otherwise
={

σ′(idp)(iaw)[β(t)] if σ′(idp)(itf)[β(t)]
0 otherwise

312 Appendix D. Semantic preservation proof

As t ∈ input(p), there exist a weight ω ∈ N∗ such that post(t, p) = ω. Let us take
such an ω. Thus, the goal can be rewritten as follows:

ω =

{
σ′(idp)(iaw)[β(t)] if σ′(idp)(itf)[β(t)]
0 otherwise

By construction, we have <iaw(β(t))⇒ ω> ∈ ip, and by property of the stabilize
relation, we can deduce σ′(idp)(iaw)[β(t)] = ω. Thus, the goal can be rewritten as
follows:

ω =

{
ω if σ′(idp)(itf)[β(t)]
0 otherwise

By construction, there exists an id f t ∈ Sigs(∆) such that:

– <fired⇒id f t> ∈ ot

– <itf(β(t))⇒ idft> ∈ ip

Let us take an id f t ∈ Sigs(∆) that verifies the above properties.
By property of the stabilize relation, <fired⇒ idft> ∈ ot and
<itf(β(t))⇒ idft> ∈ ip, we can deduce σ′(idp)(itf)[β(t)] = σ′(id f t) =
σ′(idt)(fired).
Thus, the goal can be rewritten as follows:

ω =

{
ω if σ′(idt)(fired)
0 otherwise

Appealing to Lemma 4, from t ∈ Fired(s′), we can deduce σ′(idt)(fired) = true.

Thus, the goal can be rewritten as follows: ω = ω , tautology.

2. Assuming that t /∈ input(p), let us show f (t) = 0.

Replacing the term f (t) by its full definition, let us show{
ω if post(t, p) = ω

0 otherwise
= 0

As t /∈ output(p), then post(t, p) 6= ω, and we can rewrite the goal as follows:
0 = 0 , tautology.

D.4. Falling Edge 313

D.4.2 Falling edge and time counters

Lemma 37 (Falling edge equal time counters). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ,
σ↓, σ′ that verify the hypotheses of Definition 45, then ∀t ∈ Ti, idt ∈ Comps(∆) s.t. γ(t) = idt,(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
.

Proof.

Given a t ∈ Ti and an idt ∈ Comps(∆) s.t. γ(t) = idt, let us show(
u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
∧
(
u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t))

)
∧
(
u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

)
By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the elaboration, H-VHDL rising edge and stabilize relations, comp(idt,
transition, gt, it, ot) ∈ d.cs, and through the examination of the time_counter process
defined in the transition design architecture, we can deduce:

σ(idt)(se) = true∧ ∆(idt)(tt) 6= NOT_TEMPORAL∧ σ(idt)(srtc) = false

∧σ(idt)(stc) < ∆(idt)(mtc)⇒ σ′(idt)(stc) = σ(idt)(stc) + 1
(D.22)

σ(idt)(se) = true∧ ∆(idt)(tt) 6= NOT_TEMPORAL∧ σ(idt)(srtc) = false

∧σ(idt)(stc) ≥ ∆(idt)(mtc)⇒ σ′(idt)(stc) = σ(idt)(stc)
(D.23)

σ(idt)(se) = true∧ ∆(idt)(tt) 6= NOT_TEMPORAL

∧σ(idt)(srtc) = true⇒ σ′(idt)(stc) = 1
(D.24)

σ(idt)(se) = false∨ ∆(idt)(tt) = NOT_TEMPORAL⇒ σ′(idt)(stc) = 0 (D.25)

Then, there are 4 points to show:

1. u(Is(t)) = ∞ ∧ s′.I(t) ≤ l(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter)

314 Appendix D. Semantic preservation proof

Assuming u(Is(t)) = ∞ and s′.I(t) ≤ l(Is(t)), let us show
s′.I(t) = σ′(idt)(s_time_counter).

Let us perform case analysis on t ∈ Sens(s.M); there are two cases:

(a) CASE t /∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce σ(idt)(se) = false.

Appealing to (D.25) and σ(idt)(se) = false, we can deduce σ′(idt)(stc) = 0.

By definition of Ec, τ ` s
↓−→ s′ (Rule (3)), we can deduce s′.I(t) = 0.

Rewriting the goal with σ′(idt)(stc) = 0 and s′.I(t) = 0: tautology.

(b) CASE t ∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce σ(idt)(se) = true.

By construction, and as u(Is(t)) = ∞, we have <tt⇒ TEMP_A_INF> ∈ gt. By
property of the elaboration relation, we have ∆(idt)(tt) = TEMP_A_INF.
Let us perform case analysis on s.resett(t); there are two cases:

i. CASE s.resett(t) = true:

By definition of γ, Ec, τ ` s
↑≈ σ, σ(idt)(srtc) = true.

Appealing to (D.24), σ(idt)(se) = true, ∆(idt)(tt) = TEMP_A_INF and
σ(idt)(srtc) = true, we can deduce σ′(idt)(stc) = 1.

By definition of Ec, τ ` s
↓−→ s′(Rule (3)), we can deduce s′.I(t) = 1.

Rewriting the goal with σ′(idt)(stc) = 1 and s′.I(t) = 1: tautology.

ii. CASE s.resett(t) = false:

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(srtc) = false.

As u(Is(t)) = ∞, there exists an a ∈ N∗ s.t. Is(t) = [a, ∞]. Let us take such
an a ∈ N∗. By construction, <maximal_time_counter⇒ a> ∈ gt, and by
property of the elaboration relation, we have ∆(idt)(mtc) = a.

By definition of Ec, τ ` s
↓−→ s′(Rule (4)), and knowing that t ∈ Sens(s.M),

s.resett(t) = false and u(Is(t)) = ∞, we can deduce s′.I(t) = s.I(t) + 1.
Rewriting the goal with s′.I(t) = s.I(t) + 1: s.I(t) + 1 = σ′(idt)(stc).
We assumed that s′.I(t) ≤ l(Is(t)), and as s′.I(t) = s.I(t) + 1, then s.I(t) + 1 ≤
l(Is(t)), then s.I(t) < l(Is(t)), then s.I(t) < a since a = l(Is(t)).

By definition of γ, Ec, τ ` s
↑≈ σ, and knowing that s.I(t) < l(Is(t)) and

u(Is(t)) = ∞, we can deduce s.I(t) = σ(idt)(stc).
Appealing to ∆(idt)(mtc) = a, s.I(t) = σ(idt)(stc) and s.I(t) < a, we can
deduce σ(idt)(stc) < ∆(idt)(mtc).
Appealing to (D.22), σ(idt)(stc) < ∆(idt)(mtc), σ(idt)(srtc) = false and
σ(idt)(se) = true, we can deduce: σ′(idt)(stc) = σ(idt)(stc) + 1.

D.4. Falling Edge 315

Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc) + 1 and s.I(t) =

σ(idt)(stc): tautology.

2. u(Is(t)) = ∞ ∧ s′.I(t) > l(Is(t))⇒ σ′(idt)(s_time_counter) = l(Is(t).

Assuming that u(Is(t)) = ∞ and s′.I(t) > l(Is(t)), let us show
σ′(idt)(s_time_counter) = l(Is(t)).

As u(Is(t)) = ∞, there exists an a ∈N∗ s.t. Is(t) = [a, ∞]. Let us take such an a ∈N∗.

By construction, <maximal_time_counter⇒ a> ∈ gt, and <transition_type⇒
TEMP_A_INF> ∈ gt by property of the elaboration relation, we can deduce
∆(idt)(mtc) = a and ∆(idt)(tt) = TEMP_A_INF.

Let us perform case analysis on t ∈ Sens(s.M):

(a) CASE t /∈ Sens(s.M):

By definition of Ec, τ ` s
↓−→ s′ (Rule (6)), and knowing that t ∈ Sens(s.M), we can

deduce s′.I(t) = 0. Since l(Is(t)) ∈N∗, then l(Is(t)) > 0.

Contradicts s′.I(t) > l(Is(t)).

(b) CASE t ∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑∼ σ and t ∈ Sens(s.M), we can deduce σ(idt)(se) =

true.
Let us perform case analysis on s.resett(t); there are two cases:

i. CASE s.resett(t) = true:

By definition of Ec, τ ` s
↓−→ s′: s′.I(t) = 1.

We assumed that s′.I(t) > l(Is(t)), then 1 > l(Is(t)).
Contradicts l(Is(t)) > 0.

ii. CASE s.resett(t) = false:

By property of γ, Ec, τ ` s
↑≈ σ and s.resett(t) = false, we can deduce

σ(idt)(srtc) = false.

By definition of Ec, τ ` s
↓−→ s′ (Rule (4)), and knowing that s′.I(t) > l(Is(t)),

we can deduce

s′.I(t) = s.I(t) + 1⇒ s.I(t) + 1 > l(Is(t))
⇒ s.I(t) ≥ l(Is(t))

Let us perform case analysis on s.I(t) ≥ l(Is(t)):

A. CASE s.I(t) > l(Is(t)): σ′(idt)(stc) = l(Is(t)).

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce σ(idt)(stc) = l(Is(t)).

316 Appendix D. Semantic preservation proof

Appealing to (D.23), we can deduce σ′(idt)(stc) = σ(idt)(stc).
Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc) and σ(idt)(stc) =

l(Is(t)): tautology.

B. CASE s.I(t) = l(Is(t)): σ′(idt)(stc) = l(Is(t)).

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce s.I(t) = σ(idt)(stc).

Appealing to (D.23), we can deduce σ′(idt)(stc) = σ(idt)(stc).
Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc), s.I(t) = σ(idt)(stc)
and s.I(t) = l(Is(t)): tautology.

3. u(Is(t)) 6= ∞ ∧ s′.I(t) > u(Is(t))⇒ σ′(idt)(s_time_counter) = u(Is(t)).

Assuming that u(Is(t)) 6= ∞ and s′.I(t) > u(Is(t)), let us show
σ′(idt)(s_time_counter) = u(Is(t)).

As u(Is(t)) 6= ∞, there exists an a ∈ N∗, and a b ∈ N∗ s.t. Is(t) = [a, b]. Let us take
such an a and b.

By construction, <maximal_time_counter⇒b> ∈ gt and there exists
tt ∈ {TEMP_A_A, TEMP_A_B} s.t. <transition_type⇒tt> ∈ gt.

By property of the elaboration relation and comp(idt, transition, gt, it, ot) ∈ d.cs, we
can deduce ∆(idt)(mtc) = b = u(Is(t)) and ∆(idt)(tt) 6= NOT_TEMP.

Let us perform case analysis on t ∈ Sens(s.M):

(a) CASE t /∈ Sens(s.M):

By definition of Ec, τ ` s
↓−→ s′ (Rule (6)), and knowing that t ∈ Sens(s.M), then

s′.I(t) = 0. Since u(Is(t)) ∈N∗, then u(Is(t)) > 0.

Contradicts s′.I(t) > u(Is(t)).

(b) CASE t ∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑≈ σ and t ∈ Sens(s.M), we can deduce σ(idt)(se) =

true.
Let us perform case analysis on s.resett(t); there are two cases:

i. CASE s.resett(t) = true:

By definition of Ec, τ ` s
↓−→ s′ (Rule (3)), we can deduce s′.I(t) = 1.

We assumed that s′.I(t) > u(Is(t)), then we can deduce 1 > u(Is(t)).
Contradicts u(Is(t)) > 0.

ii. CASE s.resett(t) = false:

By property of γ, Ec, τ ` s
↑≈ σ and s.resett(t) = false, we can deduce

σ(idt)(srtc) = false.
Let us perform case analysis on s.I(t) > u(Is(t)) or s.I(t) ≤ u(Is(t)):

D.4. Falling Edge 317

A. CASE s.I(t) > u(Is(t)): σ′(idt)(stc) = u(Is(t)).

By definition of Ec, τ ` s
↓−→ s′(Rule (5)), we can deduce s′.I(t) = s.I(t).

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce σ(idt)(stc) = u(Is(t)).

Appealing to (D.23), we have σ′(idt)(stc) = σ(idt)(stc).
Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc) and σ(idt)(stc) =

u(Is(t)): tautology.

B. CASE s.I(t) ≤ u(Is(t)): σ′(idt)(stc) = u(Is(t)).

By definition of γ, Ec, τ ` s
↑≈ σ, we can deduce s.I(t) = σ(idt)(stc).

Let us perform case analysis on s.I(t) ≤ u(Is(t)); there are two cases:
– CASE s.I(t) = u(Is(t)):

Appealing to ∆(idt)(mtc) = b = u(Is(t)), s.I(t) = σ(idt)(stc) and
s.I(t) = u(Is(t)), we can deduce ∆(idt)(mtc) ≤ σ(idt)(stc).
Appealing to ∆(idt)(mtc) ≤ σ(idt)(stc) and (D.23), we can deduce
σ′(idt)(stc) = σ(idt)(stc).
Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc), s.I(t) = σ(idt)(stc)
and s.I(t) = u(Is(t)): tautology.

– CASE s.I(t) < u(Is(t)):

By definition of Ec, τ ` s
↓−→ s′(Rule (4)), we can deduce s′.I(t) = s.I(t) +

1.
From s′.I(t) = s.I(t) + 1 and s.I(t) < u(Is(t)), we can deduce s′.I(t) ≤
u(Is(t)); contradicts s′.I(t) > u(Is(t)).

4. u(Is(t)) 6= ∞ ∧ s′.I(t) ≤ u(Is(t))⇒ s′.I(t) = σ′(idt)(s_time_counter).

Assuming that u(Is(t)) 6= ∞ and s′.I(t) ≤ u(Is(t)), let us show
s′.I(t) = σ′(idt)(s_time_counter).

As u(Is(t)) 6= ∞, there exists an a ∈ N∗, and a b ∈ N∗ s.t. Is(t) = [a, b]. Let us take
such an a and b.

By construction, <maximal_time_counter⇒b> ∈ gt and there exists tt ∈ {TEMP_-
A_A,TEMP_A_B} s.t. <transition_type⇒tt> ∈ gt; by property of the elaboration
relation, we can deduce ∆(idt)(mtc) = b = u(Is(t)) and ∆(idt)(tt) 6= NOT_TEMP.

Let us perform case analysis on t ∈ Sens(s.M):

(a) CASE t /∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(se) = false.

318 Appendix D. Semantic preservation proof

Appealing (D.25) and σ(idt)(se) = false, we have σ′(idt)(stc) = 0.

By definition of Ec, τ ` s
↓−→ s′(Rule (6)), we have s′.I(t) = 0.

Rewriting the goal with σ′(idt)(stc) = 0 and s′.I(t) = 0: tautology.

(b) CASE t ∈ Sens(s.M):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(se) = true.

Let us perform case analysis on s.resett(t):

i. CASE s.resett(t) = true:

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(srtc) = true.

Appealing to (D.24), ∆(idt)(tt) 6= NOT_TEMP, σ(idt)(se) = true and
σ(idt)(srtc) = true, we have σ′(idt)(stc) = 1.

By definition of Ec, τ ` s
↓−→ s′(Rule (3)), we have s′.I(t) = 1.

Rewriting the goal with σ′(idt)(stc) = 1 and s′.I(t) = 1, tautology.

ii. CASE s.resett(t) = false:

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(srtc) = false.

Let us perform case analysis on s.I(t) > u(Is(t)) or s.I(t) ≤ u(Is(t)):
A. CASE s.I(t) > u(Is(t)):

By definition of Ec, τ ` s
↓−→ s′, we have s.I(t) = s′.I(t), and thus, s′.I(t) >

u(Is(t)). Contradicts s′.I(t) ≤ u(Is(t)).

B. CASE s.I(t) ≤ u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc).

– CASE s.I(t) < u(Is(t)):
From s.I(t) < u(Is(t)), s.I(t) = σ(idt)(stc) and
∆(idt)(mtc) = b = u(Is(t)), we can deduce σ(idt)(stc) < ∆(idt)(mtc).
From (D.22), σ(idt)(se) = true, ∆(idt)(tt) 6= NOT_TEMP, σ(idt)(srtc) =
false and σ(idt)(stc) < ∆(idt)(mtc), we can deduce
σ′(idt)(stc) = σ(idt)(stc) + 1.

By definition of Ec, τ ` s
↓−→ s′(Rule (4)), we can deduce s′.I(t) = s.I(t) +

1.
Rewriting the goal with σ′(idt)(stc) = σ(idt)(stc) + 1 and s′.I(t) =

s.I(t) + 1, tautology.

D.4. Falling Edge 319

– CASE s.I(t) = u(Is(t)):

By definition of Ec, τ ` s
↓−→ s′(Rule (4)), we know that s′.I(t) = s.I(t)+ 1.

We assumed that s′.I(t) ≤ u(Is(t)); thus, s.I(t) + 1 ≤ u(Is(t)).
Contradicts s.I(t) = u(Is(t)).

D.4.3 Falling edge and condition values

Lemma 38 (Falling edge equal condition values). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s,
s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀c ∈ C, idc ∈ Ins(∆) s.t. γ(c) =
idc, s′.cond(c) = σ′(idc).

Proof.

Given a c ∈ C and an idc ∈ Ins(∆) s.t. γ(c) = idc, let us show s′.cond(c) = σ′(idc).

By definition of Ec, τ ` s
↓−→ s′(Rule (1)), we have s′.cond(c) = Ec(τ, c).

By definition of γ, Ec, τ ` s
↓≈ σ, we have σ(idc) = Ec(τ, c)

By property of theH-VHDL falling edge, the stabilize relations and idc ∈ Ins(∆), we have
σ′(idc) = σ(idc) = Ec(τ, c).
Rewriting the goal with s′.cond(c) = Ec(τ, c) and σ′(idc) = Ec(τ, c), tautology.

D.4.4 Falling edge and action executions

Lemma 39 (Falling edge equal action executions). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s,
s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀a ∈ A, ida ∈ Outs(∆) s.t. γ(a) =
ida, s′.ex(a) = σ′(ida).

Proof.

Given an a ∈ A and an ida ∈ Outs(∆) s.t. γ(a) = ida, let us show s′.ex(a) = σ′(ida).

By property of Ec, τ ` s
↓−→ s′(Rule (2)):

s′.ex(a) = ∑
p∈marked(s.M)

A(p, a) (D.26)

320 Appendix D. Semantic preservation proof

By construction, the generated action process is a part of design d’s behavior, i.e. there
exist an sl ⊆ Sigs(∆) and an ssa ∈ ss s.t. ps(action, ∅, sl, ss) ∈ d.cs.
By construction ida is only assigned in the body of the action process during the initial-
ization or a falling edge phase.
Let pls(a) be the set of actions associated to action a, i.e. pls(a) = {p ∈ P | A(p, a) =
true}. Then, depending on pls(a), there are two cases of assignment of output port ida:

– CASE pls(a) = ∅:
By construction, ida ⇐ false ∈ ssa↓ where ssa↓ is the part of the “action” process
body executed during a falling edge phase.

By property of theH-VHDL falling edge relation, the stabilize relation and
ps(action, ∅, sl, ssa) ∈ d.cs, we can deduce σ′(ida) = f alse.

By property of ∑
p∈marked(s.M)

A(p, a) and pls(a) = ∅, we can deduce

∑
p∈marked(s.M)

A(p, a) = false.

Rewriting the goal with (D.26), σ′(ida) = f alse and ∑
p∈marked(s.M)

A(p, a) = false,

tautology.

– CASE pls(a) 6= ∅:
By construction, ida ⇐ idmp0 + · · ·+ idmpn ∈ ssa↓, where idmpi ∈ Sigs(∆), ssa↓ is
the part of the action process body executed during the falling edge phase, and
n = |pls(a)| − 1.

By property of theH-VHDL falling edge relation, the stabilize relation, and
ps(action, ∅, sl, ss) ∈ d.cs:

σ′(ida) = σ(idmp0) + · · ·+ σ(idmpn) (D.27)

Rewriting the goal with (D.26) and (D.27):
∑

p∈marked(s.M)
A(p, a) = σ(idmp0) + · · ·+ σ(idmpn).

Let us reason on the value of σ(idmp0) + · · ·+ σ(idmpn); there are two cases:

– CASE σ(idmp0) + · · ·+ σ(idmpn) = true:
Then, we can rewrite the goal as follows: ∑

p∈marked(s.M)
A(p, a) = true.

To prove the above goal, let us show ∃p ∈ marked(s.M) s.t. A(p, a) = true.

From σ(idmp0) + · · · + σ(idmpn) = true, we can deduce that ∃idmpi s.t. σ(idmpi) =
true. Let us take an idmpi s.t. σ(idmpi) = true.
By construction, there exist a p ∈ pls(a), an idp ∈ Comps(∆), gp, ip and op such that:

D.4. Falling Edge 321

∗ γ(p) = idp

∗ comp(idp, place, gp, ip, op) ∈ d.cs
∗ <marked⇒ idmpi> ∈ op

Let us take such a p, idp, gp, ip and op.
By property of stable σ and comp(idp, place, gp, ip, op) ∈ d.cs, we can deduce
σ(idmpi) = σ(idp)(marked).
By property of stable σ, comp(idp, place, gp, ip, op) ∈ d.cs, and through the exami-
nation of the determine_marked process defined in the place design architecture, we
can deduce:

σ(idp)(marked) = σ(idp)(sm) > 0 (D.28)

From σ(idmpi) = σ(idp)(marked), (D.28) and σ(idmpi) = true, we can deduce that
σ(idp)(marked) = true and (σ(idp)(sm) > 0) = true.

By property of γ, Ec, τ ` s
↑≈ σ, we have s.M(p) = σ(idp)(sm).

From s.M(p) = σ(idp)(sm) and (σ(idp)(sm) > 0) = true, we can deduce p ∈
marked(s.M), i.e. s.M(p) > 0.

Let us use p to prove the goal: A(p, a) = true.

By definition of p ∈ pls(a), A(p, a) = true.

– CASE σ(idmp0) + · · ·+ σ(idmpn) = false:

Then, we can rewrite the goal as follows: ∑
p∈marked(s.M)

A(p, a) = false.

To prove the above goal, let us show ∀p ∈ marked(s.M) s.t. A(p, a) = false.

Given a p ∈ marked(s.M), let us show A(p, a) = false.

Let us perform case analysis on A(p, a); there are 2 cases:

∗ CASE A(p, a) = false.

∗ CASE A(p, a) = true:
By construction, there exist an idp ∈ Comps(∆), gtp, ip, op and idmpi ∈ Sigs(∆)
such that:
· γ(p) = idp

· comp(idp, place, gp, ip, op) ∈ d.cs
· <marked⇒ idmpi> ∈ op

Let us take such a idp, gp, ip, op and idmpi .
By property of stable σ, comp(idp, place, gp, ip, op) ∈ d.cs, and
<marked⇒ idmpi> ∈ op, we can deduce σ(idmpi) = σ(idp)(marked).
By property of stable σ, comp(idp, place, gp, ip, op) ∈ d.cs, and through the exam-
ination of the determine_marked process defined in the place design architecture,

322 Appendix D. Semantic preservation proof

we can deduce:
σ(idp)(marked) = (σ(idp)(sm) > 0) (D.29)

From σ(idmp0) + · · ·+ σ(idmpn) = false, we can deduce σ(idmpi) = false.
From σ(idp)(marked) = false, we can deduce (σ(idp)(sm) > 0) = false.

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.M(p) = σ(idp)(sm), and thus, we can

deduce that s.M(p) = 0 (equivalent to (s.M(p) > 0) = false).
Contradicts p ∈ marked(s.M) (i.e, s.M(p) > 0).

D.4.5 Falling edge and function executions

Lemma 40 (Falling edge equal function executions). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s,
s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀ f ∈ F , id f ∈ Outs(∆) s.t. γ(f) =
id f , s′.ex(f) = σ′(id f).

Proof.

Given an f ∈ F and an id f ∈ Outs(∆) s.t. γ(f) = id f , let us show s′.ex(f) = σ′(id f).

By property of Ec, τ ` s
↓−→ s′, we can deduce s.ex(f) = s′.ex(f).

By construction, id f is an output port identifier of Boolean type in the H-VHDL design d
assigned by the function process only during the initialization or during a rising edge
phase.
By property of theH-VHDL rising edge, stabilize relations, and the function process, we
can deduce σ(id f) = σ′(id f).

Rewriting the goal with s.ex(f) = s′.ex(f) and σ(id f) = σ′(id f), s.ex(f) = σ(id f).

By definition of γ, Ec, τ ` s
↑≈ σ, s.ex(f) = σ(id f).

D.4.6 Falling edge and firable transitions

Lemma 41 (Falling edge equal firable). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓,
σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t ∈ Firable(s′)⇔ σ′(idt)(s_firable) = true.

D.4. Falling Edge 323

Proof.

Given a t ∈ T and idt ∈ Comps(∆) s.t. γ(t) = idt, let us show that
t ∈ Firable(s′)⇔ σ′(idt)(s_firable) = true.

The proof is in two parts:

1. Assuming that t ∈ Firable(s′), let us show σ′(idt)(s_firable) = true.

Appealing to Lemma 42: σ′(idt)(s_firable) = true.

2. Assuming that σ′(idt)(s_firable) = true, let us show t ∈ Firable(s′).

Appealing to Lemma 43: t ∈ Firable(s′).

Lemma 42 (Falling edge equal firable 1). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓,
σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t ∈ Firable(s′)⇒ σ′(idt)(s_firable) = true.

Proof.

Given a t ∈ T and idt ∈ Comps(∆) s.t. γ(t) = idt, and assuming that t ∈ Firable(s′), let
us show σ′(idt)(s_firable) = true.

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the H-VHDL falling edge relation, the stabilize relation, comp(idt,
transition, gt, it, ot) ∈ d.cs, and through the examination of the firable process de-
fined in the transition design architecture, we can deduce:

σ′(idt)(sfa) = σ(idt)(se) . σ(idt)(scc) . checktc(∆(idt), σ(idt)) (D.30)

324 Appendix D. Semantic preservation proof

Term checktc(∆(idt), σ(idt)) is defined as follows:

checktc(∆(idt), σ(idt))
=(

not σ(idt)(srtc) .[(
∆(idt)(tt) = TEMP_A_B . (σ(idt)(stc) ≥ σ(idt)(A)− 1)

. (σ(idt)(stc) ≤ σ(idt)(B)− 1)
)

+ (∆(idt)(tt) = TEMP_A_A . (σ(idt)(stc) = σ(idt)(A)− 1))

+ (∆(idt)(tt) = TEMP_A_INF . (σ(idt)(stc) ≥ σ(idt)(A)− 1))
])

+
(
σ(idt)(srtc) . ∆(idt)(tt) 6= NOT_TEMP . σ(idt)(A) = 1

)
+ ∆(idt)(tt) = NOT_TEMP

(D.31)

Rewriting the goal with (D.30): σ(idt)(se) . σ(idt)(scc) . checktc(∆(idt), σ(idt)) = true.
Then, there are three points to prove:

1. σ(idt)(se) = true :

From t ∈ Firable(s′), we can deduce t ∈ Sens(s′.M). By definition of Ec, τ ` s
↓−→ s′,

we have s.M = s′.M, and thus, we can deduce t ∈ Sens(s.M).

By definition of γ, Ec, τ ` s
↑≈ σ, we know that t ∈ Sens(s.M) implies

σ(idt)(se) = true.

2. σ(idt)(scc) = true :

By definition of γ, Ec, τ ` s
↑≈ σ:

σ(idt)(scc) = ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

(D.32)

where conds(t) = {c ∈ C | C(t, c) = 1∨C(t, c) = −1}.

Rewriting the goal with (D.32): ∏
c∈conds(t)

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

= true.

To ease the reading, let us define f (c) =

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

.

Let us reason by induction on the left term of the goal:

D.4. Falling Edge 325

– BASE CASE: true = true.

– INDUCTION CASE:

∏
c′∈conds(t)\{c}

f (c′) = true

f (c) . ∏
c′∈conds(t)\{c}

f (c′) = true.

Rewriting the goal with the induction hypothesis, simplifying the goal, and unfold-

ing the definition of f (c):

{
Ec(τ, c) i f C(t, c) = 1
not(Ec(τ, c)) i f C(t, c) = −1

= true.

As c ∈ conds(t), let us perform case analysis on C(t, c) = 1∨C(t, c) = −1:

(a) CASE C(t, c) = 1: Ec(τ, c) = true.

By definition of t ∈ Firable(s′), we can deduce that s′.cond(c) = true. By

definition of Ec, τ ` s
↓−→ s′ (Rule (1)), we have s′.cond(c) = Ec(τ, c). Thus,

Ec(τ, c) = true.

(b) C(t, c) = −1: not Ec(τ, c) = true.

By definition of t ∈ Firable(s′), we can deduce that s′.cond(c) = false. By

definition of Ec, τ ` s
↓−→ s′ (Rule (1)), we have s′.cond(c) = Ec(τ, c). Thus,

not Ec(τ, c) = true.

3. checktc(∆(idt), σ(idt)) = true :

By definition of t ∈ Firable(s′), we have t /∈ Ti ∨ s′.I(t) ∈ Is(t). Let us perform case
analysis on t /∈ Ti ∨ s′.I(t) ∈ Is(t):

(a) CASE t /∈ Ti: checktc(∆(idt), σ(idt)) = true

By construction, <transition_type⇒ NOT_TEMP> ∈ gt, and by property of the
elaboration relation, we have ∆(idt)(tt) = NOT_TEMP.
From ∆(idt)(tt) = NOT_TEMP, and by definition of checktc(∆(idt), σ(idt)), we
can deduce checktc(∆(idt), σ(idt)) = true.

(b) CASE s′.I(t) ∈ Is(t): checktc(∆(idt), σ(idt)) = true

326 Appendix D. Semantic preservation proof

From s′.I(t) ∈ Is(t), we can deduce that t ∈ Ti. Thus, by construction, there ex-
ists tt ∈ {TEMP_A_B, TEMP_A_A, TEMP_A_INF} s.t. <transition_type⇒tt> ∈
gt. By property of the elaboration relation, we have ∆(idt)(tt) = tt, and
thus, we know ∆(idt)(tt) 6= NOT_TEMP. Therefore, we can simplify the term
checktc(∆(idt), σ(idt)) as follows:

checktc(∆(idt), σ(idt))
=(

not σ(idt)(srtc) .[(
∆(idt)(tt) = TEMP_A_B . (σ(idt)(stc) ≥ σ(idt)(A)− 1)

. (σ(idt)(stc) ≤ σ(idt)(B)− 1)
)

+(∆(idt)(tt) = TEMP_A_A .
(σ(idt)(stc) = σ(idt)(A)− 1))

+(∆(idt)(tt) = TEMP_A_INF .

(σ(idt)(stc) ≥ σ(idt)(A)− 1))
])

+
(
σ(idt)(srtc) . σ(idt)(A) = 1

)

(D.33)

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.resett(t) = σ(idt)(srtc).

Let us perform case analysis on the value s.resett(t):

i. CASE s.resett(t) = true: checktc(∆(idt), σ(idt)) = true

From s.resett(t) = σ(idt)(srtc), we can deduce that σ(idt)(srtc) = true.
From σ(idt)(srtc) = true, we can simplify the term checktc(∆(idt), σ(idt))
as follows:

checktc(∆(idt), σ(idt)) =
(
σ(idt)(A) = 1

)
(D.34)

Rewriting the goal with (D.34), and simplifying the goal: σ(idt)(A) = 1.

By definition of Ec, τ ` s
↓−→ s′ (Rule (3)), from t ∈ Sens(s.M) and s.resett(t) =

true, we can deduce s′.I(t) = 1. We know that s′.I(t) ∈ Is(t), and thus, we
have 1 ∈ Is(t).
By definition of 1 ∈ Is(t), there exist an a ∈ N∗ and a ni ∈ N∗ t {∞} s.t.
Is(t) = [a, ni] and 1 ∈ [a, ni].
By definition of 1 ∈ [a, ni], we have a ≤ 1, and since a ∈ N∗, we can deduce
a = 1.
By construction, <time_A_value⇒a> ∈ it, and by property of stable σ, we
have σ(idt)(A) = a = 1.

ii. CASE s.resett(t) = false: checktc(∆(idt), σ(idt)) = true

D.4. Falling Edge 327

From s.resett(t) = σ(idt)(srtc), we can deduce σ(idt)(srtc) = false.
From σ(idt)(srtc) = false, we can simplify the term checktc(∆(idt), σ(idt))
as follows:

checktc(∆(idt), σ(idt))
=(

∆(idt)(tt) = TEMP_A_B . (σ(idt)(stc) ≥ σ(idt)(A)− 1)
. (σ(idt)(stc) ≤ σ(idt)(B)− 1)

)
+(∆(idt)(tt) = TEMP_A_A . (σ(idt)(stc) = σ(idt)(A)− 1))
+(∆(idt)(tt) = TEMP_A_INF . (σ(idt)(stc) ≥ σ(idt)(A)− 1))

(D.35)

Let us perform case analysis on Is(t); there are two cases:
– CASE Is(t) = [a, b] where a, b ∈N∗; then, either a = b or a 6= b:

– CASE a = b:
Then, we have Is(t) = [a, a], and by construction <transition_type⇒
TEMP_A_A> ∈ gt. By property of the elaboration relation, we have
∆(idt)(tt) =TEMP_A_A; thus we can simplify the checktc term as follows:

checktc(∆(idt), σ(idt)) = (σ(idt)(stc) = σ(idt)(A)− 1) (D.36)

Rewriting the goal with (D.36), and simplifying the goal:
σ(idt)(stc) = σ(idt)(A)− 1.

From s′.I(t) ∈ [a, a], we can deduce that s′.I(t) = a. Let us perform case
analysis on s.I(t) < u(Is(t)) or s.I(t) ≥ u(Is(t)):
∗ CASE s.I(t) < u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc). By

definition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1. From

s′.I(t) = a and s′.I(t) = s.I(t) + 1, we can deduce a− 1 = s.I(t).
By construction, <time_A_value⇒a> ∈ it, and by property of stable
σ, we have σ(idt)(A) = a.
Rewriting the goal with σ(idt)(A) = a, s.I(t) = σ(idt)(stc), and a− 1 =

s.I(t): tautology.

∗ CASE s.I(t) ≥ u(Is(t)):
In the case where s.I(t) > u(Is(t)), then s.I(t) > a. By definition

of Ec, τ ` s
↓−→ s′ (Rule (5)), we have s.I(t) = s′.I(t) = a. Then,

a > a is a contradiction.

In the case where s.I(t) = u(Is(t)), then s.I(t) = a. By definition of

Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1. Then, we have

328 Appendix D. Semantic preservation proof

s′.I(t) = a and s′.I(t) = a + 1. Then, a = a + 1 is a contradiction.

– CASE a 6= b: checktc(∆(idt), σ(idt)) = true

Then, we have Is(t) = [a, b], and by construction <transition_type⇒
TEMP_A_B> ∈ gt. By property of the elaboration relation, we have
∆(idt)(tt) =TEMP_A_B; thus we can simplify the term checktc as follows:

checktc(∆(idt), σ(idt))
=

(σ(idt)(stc) ≥ σ(idt)(A)− 1) . (σ(idt)(stc) ≤ σ(idt)(B)− 1)
(D.37)

Rewriting the goal with (D.37), and simplifying the goal:
(σ(idt)(stc) ≥ σ(idt)(A)− 1) ∧ (σ(idt)(stc) ≤ σ(idt)(B)− 1).

Let us perform case analysis on s.I(t) < u(Is(t)) or s.I(t) ≥ u(Is(t)):
∗ CASE s.I(t) < u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc). By

definition of Ec, τ ` s
↓−→ s′(Rule (4)), we have s′.I(t) = s.I(t) + 1. By

definition of s′.I(t) ∈ [a, b]:
⇒ a ≤ s′.I(t) ≤ b.
⇒ a ≤ s′.I(t) ∧ s′.I(t) ≤ b
⇒ a ≤ s.I(t) + 1∧ s.I(t) + 1 ≤ b
⇒ a− 1 ≤ s.I(t) ∧ s.I(t) ≤ b− 1
By construction, <time_A_value⇒a> ∈ it and
<time_B_value⇒b> ∈ it, and by property of stable σ, we have
σ(idt)(A) = a and σ(idt)(B) = b.
Rewriting the goal with σ(idt)(A) = a, σ(idt)(B) = b and s.I(t) =

σ(idt)(stc): a− 1 ≤ s.I(t) ∧ s.I(t) ≤ b− 1.

∗ CASE s.I(t) ≥ u(Is(t)):

In the case where s.I(t) > u(Is(t)), then s.I(t) > b. By definition

of Ec, τ ` s
↓−→ s′ (Rule (5)), we have s.I(t) = s′.I(t) = b. Then,

b > b is a contradiction.

In the case where s.I(t) = u(Is(t)), then s.I(t) = b. By definition of

Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1.

By definition of s′.I(t) ∈ [a, b], we have s′.I(t) ≤ b:
⇒ s.I(t) + 1 ≤ b
⇒ b + 1 ≤ b is contradiction.

– CASE Is(t) = [a, ∞] where a ∈N∗: checktc(∆(idt), σ(idt)) = true

D.4. Falling Edge 329

By construction <transition_type⇒ TEMP_A_INF> ∈ gt. By property
of the elaboration relation, we have ∆(idt)(tt) = TEMP_A_INF; thus we can
simplify the term checktc as follows:

checktc(∆(idt), σ(idt)) = (σ(idt)(stc) ≥ σ(idt)(A)− 1)) (D.38)

Rewriting the goal with (D.38), and simplifying the goal:
σ(idt)(stc) ≥ σ(idt)(A)− 1.

From s′.I(t) ∈ [a, ∞], we can deduce a ≤ s′.I(t). Then, let us perform case
analysis on s.I(t) ≤ l(Is(t)) or s.I(t) > l(Is(t)):
– CASE s.I(t) ≤ l(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc).

By definition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1:

⇒ s′.I(t) ≥ a
⇒ s.I(t) + 1 ≥ a
⇒ s.I(t) ≥ a− 1
By construction, <time_A_value⇒a> ∈ it, and by property of stable σ,
we have σ(idt)(A) = a.
Rewriting the goal with σ(idt)(A) = a and s.I(t) = σ(idt)(stc):
s.I(t) ≥ a− 1.

– CASE s.I(t) > l(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(stc) = l(Is(t)) = a.

By construction, <time_A_value⇒a> ∈ it, and by property of stable σ,
we have σ(idt)(A) = a.
Rewriting the goal with σ(idt)(stc) = a and σ(idt)(A) = a: a ≥ a− 1.

Lemma 43 (Falling Edge Equal Firable 2). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓,
σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
σ′(idt)(s_firable) = true⇒ t ∈ Firable(s′).

Proof.

Given a t ∈ T and idt ∈ Comps(∆) s.t. γ(t) = idt, and assuming that
σ′(idt)(s_firable) = true, let us show t ∈ Firable(s′).

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.

330 Appendix D. Semantic preservation proof

By property of the H-VHDL falling edge relation, the stabilize relation, comp(idt,
transition, gt, it, ot) ∈ d.cs, and through the examination of the firable process de-
fined in the transition design architecture, we can deduce:

σ′(idt)(sfa) = σ(idt)(se) . σ(idt)(scc) . checktc(∆(idt), σ(idt)) = true (D.39)

From (D.39), we can deduce:

σ(idt)(se) = true (D.40)
σ(idt)(scc) = true (D.41)

checktc(∆(idt), σ(idt)) = true (D.42)

Term checktc(∆(idt), σ(idt)) as the same definition as in Lemma Falling edge equal
firable 1.
By definition of t ∈ Firable(s′), there are three points to prove:

1. t ∈ Sens(s′.M)

2. ∀c ∈ C, C(t, c) = 1⇒ s′.cond(c) = true and C(t, c) = −1⇒ s′.cond(c) = false

3. t /∈ Ti ∨ s′.I(t) ∈ Is(t)

Let us prove these three points:

1. t ∈ Sens(s′.M) :

By definition of Ec, τ ` s
↓−→ s′, we have s.M = s′.M. Rewriting the goal with s.M =

s′.M: t ∈ Sens(s.M).

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(se) = true⇔ t ∈ Sens(s.M).

From σ(idt)(se) = true, we can deduce: t ∈ Sens(s.M).

2. ∀c ∈ C, C(t, c) = 1⇒ s′.cond(c) = true and C(t, c) = −1⇒ s′.cond(c) = false

Given a c ∈ C, there are two points to prove:

(a) C(t, c) = 1⇒ s′.cond(c) = true.

(b) C(t, c) = −1⇒ s′.cond(c) = false.

Let us prove these two points:

(a) Assuming that C(t, c) = 1, let us show s′.cond(c) = true.

D.4. Falling Edge 331

By definition of γ, Ec, τ ` s
↑≈ σ, we have:

σ(idt)(scc) = ∏
c′∈conds(t)

{
Ec(τ, c′) i f C(t, c′) = 1
not(Ec(τ, c′)) i f C(t, c′) = −1

= true (D.43)

where conds(t) = {ci ∈ C | C(t, ci) = 1∨C(t, ci) = −1}.
From C(t, c) = 1, we can deduce c ∈ conds(t). By definition of the product ex-
pression, we have:

Ec(τ, c) . ∏
c′∈conds(t)\{c}

{
Ec(τ, c′) i f C(t, c′) = 1
not(Ec(τ, c′)) i f C(t, c′) = −1

= true (D.44)

From (D.44), we can deduce that Ec(τ, c) = true.

By definition of Ec, τ ` s
↓−→ s′ (Rule (1)), we have s′.cond(c) = Ec(τ, c).

Rewriting the goal with s′.cond(c) = Ec(τ, c) and Ec(τ, c) = true: tautology.

(b) Assuming that C(t, c) = −1, let us show s′.cond(c) = false.

By definition of γ, Ec, τ ` s
↑≈ σ, we have:

σ(idt)(scc) = ∏
c′∈conds(t)

{
Ec(τ, c′) i f C(t, c′) = 1
not(Ec(τ, c′)) i f C(t, c′) = −1

= true (D.45)

where conds(t) = {c′ ∈ C | C(t, c′) = 1∨C(t, c′) = −1}.
From C(t, c) = −1, we can deduce c ∈ conds(t). By definition of the product
expression, we have:

not Ec(τ, c) . ∏
c′∈conds(t)\{c}

{
Ec(τ, c′) i f C(t, c′) = 1
not(Ec(τ, c′)) i f C(t, c′) = −1

= true (D.46)

From (D.46), we can deduce that Ec(τ, c) = false.

By definition of Ec, τ ` s
↓−→ s′ (Rule (1)), we have s′.cond(c) = Ec(τ, c).

Rewriting the goal with s′.cond(c) = Ec(τ, c) and Ec(τ, c) = false: tautology.

3. t /∈ Ti ∨ s′.I(t) ∈ Is(t)

Reasoning on checktc(∆(idt), σ(idt)) = true, there are 3 cases:

(a)
(
not σ(idt)(srtc) . [. . .]

)
= truea

(b)
(
σ(idt)(srtc) . ∆(idt)(tt) 6= NOT_TEMP . σ(idt)(A) = 1

)
= true

332 Appendix D. Semantic preservation proof

(c)
(
∆(idt)(tt) = NOT_TEMP

)
= true

(a) CASE
(
not σ(idt)(srtc) . [. . .]

)
= true:

Then, we can deduce not σ(idt)(srtc) = true and [. . .] = true.
From not σ(idt)(srtc) = true, we can deduce σ(idt)(srtc) = false, and from
[. . .] = true, we have three other cases:

i. CASE
(
∆(idt)(tt) = TEMP_A_B . (σ(idt)(stc) ≥ σ(idt)(A)− 1) . (σ(idt)(stc) ≤

σ(idt)(B)− 1)
)
= true

ii. CASE (∆(idt)(tt) = TEMP_A_A . (σ(idt)(stc) = σ(idt)(A)− 1)) = true

iii. CASE (∆(idt)(tt) = TEMP_A_INF . (σ(idt)(stc) ≥ σ(idt)(A)− 1)) = true

Let us prove the goal is these three contexts:

i. CASE
(
∆(idt)(tt) = TEMP_A_B . (σ(idt)(stc) ≥ σ(idt)(A)− 1) . (σ(idt)(stc) ≤

σ(idt)(B)− 1)
)
= true:

Then, converting Boolean equalities into intuitionistic predicates, we have:
– ∆(idt)(tt) = TEMP_A_B
– σ(idt)(stc) ≥ σ(idt)(A)− 1
– σ(idt)(stc) ≤ σ(idt)(B)− 1
By property of the elaboration relation, and ∆(idt)(tt) = TEMP_A_B, there exist
a, b ∈ N∗ s.t. Is(t) = [a, b]. Let us take such an a and b. Then, let us show
s′.I(t) ∈ Is(t).

Rewriting the goal with Is(t) = [a, b]: s′.I(t) ∈ [a, b].
By construction, <time_A_value⇒a> and <time_B_value⇒b>, and by
property of stable σ, we have σ(idt)(A) = a and σ(idt)(B) = b.
Rewriting the goal with σ(idt)(A) = a and σ(idt)(B) = b, and by definition of
∈: σ(idt)(A) ≤ s′.I(t) ≤ σ(idt)(B).
Now, let us perform case analysis on s.I(t) ≤ u(Is(t)) or s.I(t) > u(Is(t)):
– CASE s.I(t) ≤ u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc).

From σ(idt)(se) = true, we can deduce t ∈ Sens(s.M), and from
σ(idt)(srtc) = false, we can deduce s.resett(t) = false. Then, by defi-

nition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1.

⇒ σ(idt)(A) ≤ s.I(t) + 1 ≤ σ(idt)(B) (by s′.I(t) = s.I(t) + 1)

⇒ σ(idt)(A) ≤ σ(idt)(stc) + 1 ≤ σ(idt)(B) (by s.I(t) = σ(idt)(stc))

⇒ σ(idt)(A)− 1 ≤ σ(idt)(stc) ≤ σ(idt)(B)− 1
We assumed σ(idt)(stc) ≥ σ(idt)(A) − 1 and σ(idt)(stc) ≤ σ(idt)(B) − 1,
and thus we can deduce: σ(idt)(A)− 1 ≤ σ(idt)(stc) ≤ σ(idt)(B)− 1

D.4. Falling Edge 333

– CASE s.I(t) > u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(stc) = u(Is(t)) = b.

Then, from σ(idt)(stc) ≤ σ(idt)(B) − 1, σ(idt)(stc) = u(Is(t)) = b and
σ(idt)(B) = b, we can deduce the following contradiction:
σ(idt)(B) ≤ σ(idt)(B)− 1.

ii. (∆(idt)(tt) = TEMP_A_A . (σ(idt)(stc) = σ(idt)(A)− 1)) = true:
Then, converting Boolean equalities into logic predicates, we have:
– ∆(idt)(tt) = TEMP_A_A
– σ(idt)(stc) = σ(idt)(A)− 1
By property of the elaboration relation, and ∆(idt)(tt) = TEMP_A_A, there
exist a ∈ N∗ s.t. Is(t) = [a, a]. Let us take such an a. Then, let us show
s′.I(t) ∈ Is(t).

Rewriting the goal with Is(t) = [a, a]: s′.I(t) ∈ [a, a].
By construction, <time_A_value⇒a>, and by property of stable σ, we have
σ(idt)(A) = a.
Rewriting the goal with σ(idt)(A) = a, unfolding the definition of ∈, and sim-
plifying the goal: s′.I(t) = σ(idt)(A).
Now, let us perform case analysis on s.I(t) ≤ u(Is(t)) or s.I(t) > u(Is(t)):
– CASE s.I(t) ≤ u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc).

From σ(idt)(se) = true, we can deduce t ∈ Sens(s.M), and from
σ(idt)(srtc) = false, we can deduce s.resett(t) = false. Then, by defi-

nition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1.

⇒ s.I(t) + 1 = σ(idt)(A) (by s′.I(t) = s.I(t) + 1)

⇒ σ(idt)(stc) + 1 = σ(idt)(A) (by s.I(t) = σ(idt)(stc))

⇒ σ(idt)(stc) = σ(idt)(A)− 1 (assumption)

– CASE s.I(t) > u(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(stc) = u(Is(t)) = a.

Then, from σ(idt)(stc) = σ(idt)(A) − 1, σ(idt)(stc) = u(Is(t)) = a,
σ(idt)(A) = a, and a ∈N∗, we can derive the following contradiction:
σ(idt)(A) = σ(idt)(A)− 1.

iii. (∆(idt)(tt) = TEMP_A_INF . (σ(idt)(stc) ≥ σ(idt)(A)− 1)) = true:
Then, converting Boolean equalities into logic predicates, we have:
– ∆(idt)(tt) = TEMP_A_INF
– σ(idt)(stc) ≥ σ(idt)(A)− 1

334 Appendix D. Semantic preservation proof

By property of the elaboration relation, and ∆(idt)(tt) = TEMP_A_INF, there
exist a ∈ N∗ s.t. Is(t) = [a, ∞]. Let us take such an a. Then, let us show
s′.I(t) ∈ Is(t).

Rewriting the goal with Is(t) = [a, ∞]: s′.I(t) ∈ [a, ∞].
By construction, <time_A_value⇒a>, and by property of stable σ, we have
σ(idt)(A) = a.
Rewriting the goal with σ(idt)(A) = a, unfolding the definition of ∈, and sim-
plifying the goal: σ(idt)(A) ≤ s′.I(t).
Now, let us perform case analysis on s.I(t) ≤ l(Is(t)) or s.I(t) > l(Is(t)):
– CASE s.I(t) ≤ l(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have s.I(t) = σ(idt)(stc).

From σ(idt)(se) = true, we can deduce t ∈ Sens(s.M), and from
σ(idt)(srtc) = false, we can deduce s.resett(t) = false. Then, by defi-

nition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1.

⇒ σ(idt)(A) ≤ s.I(t) + 1 (by s′.I(t) = s.I(t) + 1)

⇒ σ(idt)(A) ≤ σ(idt)(stc) + 1 (by s.I(t) = σ(idt)(stc))

⇒ σ(idt)(A)− 1 ≤ σ(idt)(stc) (assumption)

– CASE s.I(t) > l(Is(t)):

By definition of γ, Ec, τ ` s
↑≈ σ, we have σ(idt)(stc) = l(Is(t)) = a.

From σ(idt)(se) = true, we can deduce t ∈ Sens(s.M), and from
σ(idt)(srtc) = false, we can deduce s.resett(t) = false. Then, by defi-

nition of Ec, τ ` s
↓−→ s′ (Rule (4)), we have s′.I(t) = s.I(t) + 1.

⇒ σ(idt)(A) ≤ s.I(t) + 1 (by s′.I(t) = s.I(t) + 1)

⇒ a ≤ s.I(t) + 1 (by σ(idt)(A) = a)

⇒ a < s.I(t)

⇒ l(Is(t)) < s.I(t) (assumption)

(b)
(
σ(idt)(srtc) . ∆(idt)(tt) 6= NOT_TEMP . σ(idt)(A) = 1

)
= true

Then, converting Boolean equalities into logic predicates, we have:

– σ(idt)(srtc) = true

– ∆(idt)(tt) 6= NOT_TEMP
– σ(idt)(A) = 1

By property of the elaboration relation, and ∆(idt)(tt) 6= NOT_TEMP, there exist an
a ∈N∗ and a ni ∈N∗ t {∞} s.t. Is(t) = [a, ni]. Let us take such an a and ni.
By construction, <time_A_value⇒a> ∈ it, and by property of stable σ, we have
σ(idt)(A) = a. Thus, we can deduce a = 1 and Is(t) = [1, ni].

D.4. Falling Edge 335

By definition of γ, Ec, τ ` s
↑≈ σ, from σ(idt)(se) = true, we can deduce t ∈

Sens(s.M), and from σ(idt)(srtc) = true, we can deduce s.resett(t) = true.

By definition of Ec, τ ` s
↓−→ s′ (Rule (3)), t ∈ Sens(s.M) and s.resett(t) = true, we

have s′.I(t) = 1.

Now, let us show s′.I(t) ∈ Is(t) .

Rewriting the goal with s′.I(t) = 1 and Is(t) = [1, ni]: 1 ∈ [1, ni].

(c)
(
∆(idt)(tt) = NOT_TEMP

)
= true

Let us show t /∈ Ti.

By property of the elaboration relation and ∆(idt)(tt) = NOT_TEMP, we have
t /∈ Ti.

aSee equation (D.31) for the full definition.

Lemma 44 (Falling edge equal not firable). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ,
σ↓, σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
t /∈ Firable(s′)⇔ σ′(idt)(s_firable) = false.

Proof.

Proving the above lemma is trivial by appealing to Lemma 41 and by reasoning on con-
trapositives.

D.4.7 Falling edge and fired transitions

Lemma 45 (Falling edge equal fired set). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓,
σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
∀Fset ⊆ T, s.t. IsFiredSet(s′, Fset), t ∈ Fset⇔ σ′(idt)(fired) = true.

Proof.

Given a t ∈ T, and idt ∈ Comps(∆), and a Fset ⊆ T s.t. IsFiredSet(s′, Fset), let us show
t ∈ Fset⇔ σ′(idt)(fired) = true.

By definition of IsFiredSet(s′, Fset), we have IsFiredSetAux(s′, T, ∅, Fset).
Then, we can appeal to Lemma 46 to solve the goal, but first we must prove the following
extra hypothesis (i.e, one of the premise of Lemma 46):

336 Appendix D. Semantic preservation proof

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ ∅⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ ∅ ∨ t′ ∈ T).

Given a t′ ∈ T and an idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ , there are two points to prove:

1. t′ ∈ ∅⇒ σ′(idt′)(fired) = true

2. σ′(idt′)(fired) = true⇒ t′ ∈ ∅ ∨ t′ ∈ T

Let us show these two points:

1. Assuming t′ ∈ ∅, let us show σ′(idt′)(fired) = true.

t′ ∈ ∅ is a contradiction.

2. Assuming σ′(idt′)(fired) = true, let us show t′ ∈ ∅ ∨ t′ ∈ T.

By definition, t′ ∈ T.

Lemma 46 (Falling edge equal fired set aux). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ,
σ↓, σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈ Comps(∆) s.t. γ(t) = idt,
∀F ⊆ T, Ts ⊆ T, Fset ⊆ T, assume that:

– IsFiredSetAux(s′, Ts, F, Fset)

– EH (Extra. Hypothesis):
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts).

then t ∈ Fset⇔ σ′(idt)(fired) = true.

Proof.

Given a t ∈ T, an idt ∈ Comps(∆), a Ts, F, Fset ⊆ T, and assuming
IsFiredSetAux(s′, Ts, F, Fset), let us show(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true ⇒ t′ ∈ F ∨ t′ ∈
Ts)
)
⇒ t ∈ Fset⇔ σ′(idt)(fired) = true.

Let us use rule induction on IsFiredSetAux(s′, Ts, F, Fset). Let us define the property P
taken into account in the induction scheme as follows

D.4. Falling Edge 337

P(s′, Ts, F, Fset)
≡

(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧
(
σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

– CASE FSETEMP: we must show P(s′, ∅, F, F), i.e.(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true ⇒ t′ ∈ F ∨ t′ ∈
∅)
)
⇒ t ∈ F ⇔ σ′(idt)(fired) = true.

Assuming

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ ∅)

we can easily show t ∈ F ⇔ σ′(idt)(fired) = true.

– CASE FSETFIRED:

Assuming

– t ∈ Firable(s′)

– t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))

– IsFiredSetAux(s′, Ts, F ∪ {t}, Fset)

– @t′ ∈ Ts s.t. t′ � t

– Pr(t, F) = {t′ | t′ � t ∧ t′ ∈ F}
and the induction hypothesis (i.e. P(s′, Ts, F ∪ {t}, Fset))(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ∪ {t} ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∪ {t} ∨ t′ ∈ Ts)

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

we must show(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

338 Appendix D. Semantic preservation proof

Assuming the following hypothesis that we will call EH (for Extra Hypothesis)

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

we must show

t ∈ Fset⇔ σ′(idt)(fired) = true

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to
prove that

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ∪ {t} ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∪ {t} ∨ t′ ∈ Ts)

Given a t′ ∈ T, an idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ , we must show that

(t′ ∈ F ∪ {t} ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∪ {t} ∨ t′ ∈ Ts)

There are two points to prove

1. Assuming t′ ∈ F ∪ {t}, then σ′(idt′)(fired) = true

2. Assuming σ′(idt′)(fired) = true, then t′ ∈ F ∪ {t} ∨ t′ ∈ Ts

1. Assuming t′ ∈ F ∪ {t}, let us show σ′(idt′)(fired) = true . Let us perform case
analysis on t′ ∈ F ∪ {t}; there are 2 cases:

– CASE t′ ∈ F: Appealing to EH, the goal is trivially proved.

– CASE t′ = t: Then, idt = idt′ , and we must show σ′(idt)(fired) = true .
By definition of idt, there exist a gt, it, ot s.t. comp(idt, transition, gt, it, ot) ∈ d.cs.
By property of the stabilize relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
and through the examination of the fired_evaluation process defined in the
transition design architecture:

σ(idt)(fired) = σ(idt)(sfa) . σ(idt)(spc)

Rewriting the goal with the above equation: σ(idt)(sfa) . σ(idt)(spc) = true.
Then, there are two points to prove:

D.4. Falling Edge 339

(a) σ(idt)(sfa) = true.
Appealing to Lemma 41, and since t ∈ Firable(s′), we can deduce
σ(idt)(sfa) = true.

(b) σ(idt)(spc) = true.
Appealing to Lemma 47, and since t ∈ Sens(s′M − ∑

ti∈Pr(t,F)
pre(ti)), we can

deduce σ(idt)(spc) = true.

2. Assuming σ′(idt′)(fired) = true, let us show t′ ∈ F ∪ {t} ∨ t′ ∈ Ts . Appealing
to EH, we can deduce that t′ ∈ F ∨ t′ ∈ Ts ∪ {t}. Then, the goal is trivially shown.

– CASE FSETNOTFIRABLE: Assuming

– t /∈ Firable(s′)

– IsFiredSetAux(s′, Ts, F, Fset)

– @t′ ∈ Ts s.t. t′ � t

and the induction hypothesis (i.e. P(s′, Ts, F, Fset))(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

we must show(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

Assuming the following hypothesis that we will call EH (for Extra Hypothesis)

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

we must show

340 Appendix D. Semantic preservation proof

t ∈ Fset⇔ σ′(idt)(fired) = true

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to
prove that

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

Given a t′ ∈ T, an idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ , we must show that

(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

There are two points to prove

1. Assuming t′ ∈ F, then σ′(idt′)(fired) = true

2. Assuming σ′(idt′)(fired) = true, then t′ ∈ F ∨ t′ ∈ Ts

1. Assuming t′ ∈ F, let us show σ′(idt′)(fired) = true .

Appealing to EH, the goal is trivially shown.

2. Assuming σ′(idt′)(fired) = true, let us show t′ ∈ F ∨ t′ ∈ Ts .
Appealing to EH, we can deduce t′ ∈ F ∨ t′ ∈ Ts ∪ {t}. Let us perform case
analysis on t′ ∈ F ∨ t′ ∈ Ts ∪ {t}; there are 2 cases:

– CASE t′ ∈ F: trivially shown, as it is an assumption.
– CASE t′ ∈ Ts ∪ {t}: In the case where t′ ∈ Ts, the goal is trivially shown. In

the case where t′ = t, we can prove a contradiction based on t /∈ Firable(s′) and
σ′(idt′)(fired) = true.
Since t = t′, then idt = idt′ , and we know that σ′(idt)(fired) = true.
By definition of idt, there exist a gt, it, ot s.t. comp(idt, transition, gt, it, ot) ∈ d.cs.
By property of the stabilize relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
and through the examination of the fired_evaluation process defined in the
transition design architecture, we can deduce

σ(idt)(fired) = σ(idt)(sfa) . σ(idt)(spc) = true

Thus, we have
σ(idt)(sfa) = true

and, appealing to Lemma 41, we can deduce t ∈ Firable(s′), which directly con-
tradicts t /∈ Firable(s′).

D.4. Falling Edge 341

– CASE FSETNOTSENS: Assuming

– t /∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))

– IsFiredSetAux(s′, Ts, F, Fset)

– @t′ ∈ Ts s.t. t′ � t

– Pr(t, F) = {t′ | t′ � t ∧ t′ ∈ F}

and the induction hypothesis (i.e. P(s′, Ts, F, Fset))(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

we must show(
∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true)
∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

)
⇒

t ∈ Fset⇔ σ′(idt)(fired) = true

Assuming the following hypothesis, which we will call EH (for Extra Hypothesis)

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts ∪ {t})

we must show

t ∈ Fset⇔ σ′(idt)(fired) = true

Appealing to the induction hypothesis, to prove the current goal, it is sufficient to
prove that

∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

Given a t′ ∈ T, an idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ , we must show that

342 Appendix D. Semantic preservation proof

(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts)

There are two points to prove

1. Assuming t′ ∈ F, then σ′(idt′)(fired) = true

2. Assuming σ′(idt′)(fired) = true, then t′ ∈ F ∨ t′ ∈ Ts

1. Assuming t′ ∈ F, let us show σ′(idt′)(fired) = true .

Appealing to EH, the goal is trivially shown.

2. Assuming σ′(idt′)(fired) = true, let us show t′ ∈ F ∨ t′ ∈ Ts .
Appealing to EH, we can deduce t′ ∈ F ∨ t′ ∈ Ts ∪ {t}. Let us perform case
analysis on t′ ∈ F ∨ t′ ∈ Ts ∪ {t}; there are 2 cases:

– CASE t′ ∈ F: trivially shown, as it is an assumption.
– CASE t′ ∈ Ts ∪ {t}: In the case where t′ ∈ Ts, the goal is trivially shown. In

the case where t′ = t, we can prove a contradiction based on t /∈ Sens(s′.M −
∑

ti∈Pr(t,F)
pre(ti)) and σ′(idt′)(fired) = true.

Since t = t′, then idt = idt′ , and we know that σ′(idt)(fired) = true.
By definition of idt, there exist a gt, it, ot s.t. comp(idt, transition, gt, it, ot) ∈ d.cs.
By property of the stabilize relation and comp(idt, transition, gt, it, ot) ∈ d.cs,
and through the examination of the fired_evaluation process defined in the
transition design architecture, we can deduce

σ(idt)(fired) = σ(idt)(sfa) . σ(idt)(spc) = true

Thus, we have
σ(idt)(spc) = true

and, appealing to Lemma 47, we can deduce t ∈ Sens(s′.M − ∑
ti∈Pr(t,F)

pre(ti)),

which directly contradicts t /∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti)).

Lemma 47 (Stabilize compute priority combination after falling edge). For all sitpn, b, d,
γ, ∆, σe, Ec, Ep, τ, s, s′, σ, σ↓, σ′ that verify the hypotheses of Definition 45, then ∀t ∈ T, idt ∈
Comps(∆) s.t. γ(t) = idt, ∀Ts, F, Fset ⊆ T assume that:

– t ∈ Firable(s′)

– @t′ ∈ Ts s.t. t′ � t

D.4. Falling Edge 343

– EH: ∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts).

then t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))⇔ σ′(idt)(spc) = true

Proof.

Given a t ∈ T and an idt ∈ Comps(∆) s.t. γ(t) = idt, a Ts, F, Fset ⊆ T and assuming

– t ∈ Firable(s′)

– @t′ ∈ Ts s.t. t′ � t

– EH: ∀t′ ∈ T, idt′ ∈ Comps(∆) s.t. γ(t′) = idt′ ,
(t′ ∈ F ⇒ σ′(idt′)(fired) = true) ∧ (σ′(idt′)(fired) = true⇒ t′ ∈ F ∨ t′ ∈ Ts).

let us show

t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))⇔ σ′(idt)(spc) = true.

By construction and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt,
it, ot) ∈ d.cs.
By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs, and through
the examination of the priority_authorization_evaluation process defined in the
transition design architecture, we can deduce:

σ′(idt)(spc) =
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i]

Rewriting the goal with the above equation:

t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))⇔
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = true.

Then, the proof is in two parts:

1. t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))⇒
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = true

2.
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = true⇒ t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti))

344 Appendix D. Semantic preservation proof

Let us prove both sides of the equivalence:

1. Assuming that t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti)), let us show

∆(idt)(ian)−1
∏
i=0

σ′(idt)(pauths)[i] = true.

Let us perform case analysis on input(t); there are 2 cases:

– CASE input(t) = ∅:
By construction, <input_arcs_number⇒1> ∈ gt and <priority_authoriza-
tions(0)⇒ true> ∈ it.
By property of the elaboration relation, we have ∆(idt)(ian) = 1, and by property
of the stabilize relation, we have σ′(idt)(pauths)[0] = true.
Rewriting the goal with ∆(idt)(ian) = 1 and σ′(idt)(pauths)[0] = true, and sim-
plifying the goal: tautology.

– CASE input(t) 6= ∅:
Then, let us show an equivalent goal:
∀i ∈ [0, ∆(idt)(ian)− 1], σ′(idt)(pauths)[i] = true.

Given an i ∈ [0, ∆(idt)(ian)− 1], let us show σ′(idt)(pauths)[i] = true.

By construction, <input_arcs_number⇒|input(t)|> ∈ gt.
By property of the elaboration relation, we have ∆(idt)(ian) = |input(t)|. Then,
we can deduce i ∈ [0, |input(t)| − 1].
By construction, for all i ∈ [0, |input(t)| − 1], there exist a p ∈ input(t) and an
idp ∈ Comps(∆) s.t. γ(p) = idp, there exist a gp, ip, op s.t. comp(idp, place, gp, ip,
op) ∈ d.cs, and there exist a j ∈ [0, |output(p)|] and an idji ∈ Sigs(∆) s.t.
<input_arcs_valid(i)⇒ idji> ∈ it and <output_arcs_valid(j)⇒ idji> ∈
ot. Let us take such a p ∈ input(t), idp ∈ Comps(∆), gp, ip, op, j ∈ [0, |output(p)|]
and idji ∈ Sigs(∆).

Now, let us perform case analysis on the nature of the arc connecting p and t; there
are 2 cases:

– CASE pre(p, t) = (ω, test) or pre(p, t) = (ω, inhib):
By construction, <priority_authorizations(i)⇒ true> ∈ it, and by prop-
erty of the stabilize relation: σ′(idt)(pauths)[i] = true.

– CASE pre(p, t) = (ω, basic):
Let us define outputc(p) = {t ∈ T | ∃ω, pre(p, t) = (ω, basic)}, the set of
output transitions of p that are in conflict. Then, there are two cases, one for each
way to solve the conflicts between the output transitions of p:

D.4. Falling Edge 345

∗ CASE For all pair of transitions in outputc(p), all conflicts are solved by mutual
exclusion:
By construction, <priority_authorizations(i)⇒ true> ∈ it, and by
property of the stabilize relation: σ′(idt)(pauths)[i] = true.

∗ CASE The priority relation is a strict total order over the set outputc(p):
By construction, there exists an id′ji ∈ Sigs(∆) s.t.
<priority_authorizations(i)⇒ id′ji> ∈ it and
<priority_authorizations(j)⇒ id′ji> ∈ op.
By property of the stabilize relation, comp(idt, transition, gt, it, ot) ∈ d.cs and
comp(idp, place, gp, ip, op) ∈ d.cs, we can deduce:

σ′(idt)(pauths)[i] = σ′(id′ji) = σ′(idp)(pauths)[j]

Rewriting the goal with the above equation: σ′(idp)(pauths)[j] = true.
By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs, and
through the examination of the priority_evaluation process defined in the
place design behavior, we can deduce:

σ′(idp)(pauths)[j] = (σ′(idp)(sm) ≥ vsots+ σ′(idp)(oaw)[j]) (D.47)

Let us define the vsots term as follows:

vsots =
j−1

∑
i=0

σ′(idp)(oaw)[i] if σ′(idp)(otf)[i].

σ′(idp)(oat)[i] = basic

0 otherwise
(D.48)

Rewriting the goal with (D.47): σ′(idp)(sm) ≥ vsots+ σ′(idp)(oaw)[j]
By definition of t ∈ Sens(s′.M− ∑

ti∈Pr(t,F)
pre(ti)), we can deduce:

s′.M(p) ≥ ∑
ti∈Pr(t,F)

pre(p, ti) + ω.

Then, there are three points to prove:

(a) s′.M(p) = σ′(idp)(sm)

(b) ω = σ′(idp)(oaw)[j]

(c) ∑
ti∈Pr(t,F)

pre(p, ti) = vsots

Let us prove these three points:

(a) s′.M(p) = σ′(idp)(sm)

Appealing to Lemma 34, s′.M(p) = σ′(idp)(sm).

346 Appendix D. Semantic preservation proof

(b) ω = σ′(idp)(oaw)[j]
By construction, and as pre(p, t) = (ω, basic), we know that <output_-
arcs_weights(j)⇒ ω> ∈ ip.
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs:
ω = σ′(idp)(oaw)[j].

(c) ∑
ti∈Pr(t,F)

pre(p, ti) = vsots

Let us replace the left and right term of the equality by their full definition:

∑
ti∈Pr(t,F)

{
ω if pre(p, ti) = (ω, basic)
0 otherwise

=

j−1
∑

i=0

σ′(idp)(oaw)[i] if σ′(idp)(otf)[i].

σ′(idp)(oat)[i] = basic

0 otherwise

Now, we must reason on the priority status of transition t regarding the group of
conflicting output transitions of p. There 2 cases:
∗ CASE t is the top-priority transition in the group of conflicting output transi-

tions of p:
In that case, the set Pr(t, F) is empty and, by construction, j = 0. Thus, the
goal is a tautology 0 = 0.
∗ CASE t is not the top-priority transition in the group of conflicting output

transitions of p:
In that case, we know that there is a least one element in Pr(t, F) and the index
j > 0.
Let us replace the sum terms in the goal by equivalent terms:

∑
ti∈Prp

{
ω if pre(p, ti) = (ω, basic) and ti ∈ F
0 otherwise

=

∑
i∈IPrp

{
σ′(idp)(oaw)[i] if σ′(idp)(otf)[i]
0 otherwise

Let us define the set Prp as
Prp = {ti | ti � t ∧ ∃ω s.t. pre(p, ti) = (ω, basic)}

and set IPrp as

D.4. Falling Edge 347

IPrp = {i | i ∈ [0, j− 1] ∧ σ′(idp)(oat)[i] = basic}
Let us define f (ti) as

f (ti) =

{
ω if pre(p, ti) = (ω, basic) and ti ∈ F
0 otherwise

and g(i) as

g(i) =

{
σ′(idp)(oaw)[i] if σ′(idp)(otf)[i]
0 otherwise

then, we must prove ∑
ti∈Prp

f (ti) = ∑
i∈IPrp

g(i).

To prove the above equality, it is sufficient to prove that there exists a bijection
β from Prp to IPrp such that for all ti ∈ Prp, f (ti) = g(β(ti)). Let us use the
function β that takes a ti ∈ Prp and yields the index denoting the position of ti
in the priority-ordered version of set Prp. We assumed that a total order existed
over the conflicting output transitions of place p, then there exists a total order-
ing of the transitions of set Prp, i.e. the conflicting output transitions of place p
with a higher priority than t. By property of the HILECOP transformation func-
tion, we know that the index returned by the function β belongs to the interval
[0, j− 1] and verifies σ′(idp)(oat)[i] = basic. Given a ti ∈ Prp, we must show
f (ti) = g(β(ti)).

Let us unfold terms f (ti) and g(β(ti)) to their full definition:{
ω if pre(p, ti) = (ω, basic) and ti ∈ F
0 otherwise

={
σ′(idp)(oaw)[β(ti)] if σ′(idp)(otf)[β(ti)]

0 otherwise

By construction, there exists an idti ∈ Comps(∆) such that γ(ti) = idti , and there
exist gti , iti and oti such that comp(idti , transition, gti , iti , oti) ∈ d.cs.

By property of the function β and by construction, we can deduce that the ele-
ment of index β(ti) of the otf input port of PCI idp is connected the fired output
port of TCI idti . Thus, there exists an idβi ∈ Sigs(∆) s.t. <otf(β(ti))⇒ idβi> ∈ ip
and
<fired⇒ idβi> ∈ oti .
By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs and
comp(idti , transition, gti , iti , oti) ∈ d.cs, we have

σ′(idti)(fired) = σ′(idβi) = σ′(idp)(otf)[β(ti)]

then, we can rewrite the goal with the above equation

348 Appendix D. Semantic preservation proof

{
ω if pre(p, ti) = (ω, basic) and ti ∈ F
0 otherwise

={
σ′(idp)(oaw)[β(ti)] if σ′(idti)(fired)
0 otherwise

By property of the function β and by construction, we can deduce that the ele-
ment of index β(ti) of the oaw input port of PCI idp is connected to a constant
value denoting the weight of the arc between place p and transition ti. Thus, we
have

<oaw(β(ti))⇒ ω> ∈ ip where pre(p, ti) = (ω, basic)
By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs, we
have

σ′(idp)(oaw)[β(ti)] = ω

then, we can rewrite the goal with the above equation{
ω if pre(p, ti) = (ω, basic) and ti ∈ F
0 otherwise

={
ω if σ′(idti)(fired)
0 otherwise

Finally, proving the goal comes down to proving

ti ∈ F ⇔ σ′(idti)(fired) = true

Let us prove both sense of the equivalence:

(a) Assuming ti ∈ F, let us show σ′(idti)(fired) = true .
Appealing to EH, proving the goal is trivial.

(b) Assuming σ′(idti)(fired) = true, let us show ti ∈ F .
Appealing to EH, we have ti ∈ F ∨ ti ∈ Ts. There are two cases: either ti ∈ F
or ti ∈ T. In the case where ti ∈ T, we can show a contradiction with the
fact that t is a top-priority transition in set Ts. By definition, transition ti has a
higher firing priority than t, and thus, if ti belongs to set Ts, then t is no longer
a top-priority transition of set Ts; whence the contradiction .

D.4. Falling Edge 349

2. Assuming that
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = true, let us show

t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti)).

By definition of t ∈ Sens(s′.M− ∑
ti∈Pr(t,F)

pre(ti)):

∀p ∈ P, ω ∈N∗,(
(pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)) ⇒ s′.M(p) −

∑
ti∈Pr(t,F)

pre(p, ti) ≥ ω
)

∧
(

pre(p, t) = (ω, inhib)⇒ s′.M(p)− ∑
ti∈Pr(t,F)

pre(p, ti) < ω
)

Given a p ∈ P and an ω ∈N∗, let us show(
(pre(p, t) = (ω, basic) ∨ pre(p, t) = (ω, test)) ⇒ s′.M(p) −

∑
ti∈Pr(t,F)

pre(p, ti) ≥ ω
)

∧
(

pre(p, t) = (ω, inhib)⇒ s′.M(p)− ∑
ti∈Pr(t,F)

pre(p, ti) < ω
)

By construction, there exists an idp ∈ Comps(∆) s.t. γ(p) = idp. By construction and
by definition of idp, there exist gp, ip, op s.t. comp(idp, place, gp, ip, op) ∈ d.cs.

To prove the goal, there are different cases:

(a) Assuming that pre(p, t) = (ω, test), let us show
s′.M(p)− ∑

ti∈Pr(t,F)
pre(p, ti) ≥ ω.

Then, assuming that the priority relation is well-defined, there exists no transition
ti connected by a basic arc to p that verifies ti � t. This is because t is connected
to p by a test arc; thus, t is not in conflict with the other output transitions of p;
thus, there is no relation of priority between t and the other output transitions of
p.
Then, we can deduce that ∑

ti∈Pr(t,F)
pre(p, ti) = 0.

Then, the new goal is s′.M(p) ≥ ω.

Knowing that t ∈ Firable(s′), thus, t ∈ Sens(s′.M), thus, we have s′.M(p) ≥ ω.

(b) Assuming that pre(p, t) = (ω, inhib), let us show
s′.M(p)− ∑

ti∈Pr(t,F)
pre(p, ti) < ω.

350 Appendix D. Semantic preservation proof

Use the same strategy as above.

(c) Assuming that pre(p, t) = (ω, basic), let us show
s′.M(p)− ∑

ti∈Pr(t,F)
pre(p, ti) ≥ ω.

Then, there are two cases:

i. CASE For all pair of transitions in outputc(p), all conflicts are solved by mutual
exclusion.
Then, assuming that the priority relation is well-defined, it must not be defined
over the set outputc(t), and we know that t ∈ outputc(p) since pre(p, t) =
(ω, basic).
Then, there exists no transition ti connected to p by a basic arc that verifies
ti � t.
Then, we can deduce ∑

ti∈Pr(t,F)
pre(p, ti) = 0.

Then, the new goal is s′.M(p) ≥ ω.
We know t ∈ Firable(s′), thus, t ∈ Sens(s′.M), thus, s′.M(p) ≥ ω.

ii. CASE The priority relation is a strict total order over the set outputc(p).
By construction, there exists idt ∈ Comps(∆) s.t. γ(t) = idt. By construction
and by definition of idt, there exist gt, it, ot s.t. comp(idt, transition, gt, it,
ot) ∈ d.cs.
By construction, there exist j ∈ [0, |input(t)| − 1], k ∈ [0, |output(t)| − 1], and
idkj ∈ Sigs(∆) s.t. <priority_authorizations(j)⇒ idkj> ∈ it and
<priority_authorizations(k)⇒ idkj> ∈ op. Let us take such an j, k and
idkj.

From
∆(idt)(ian)−1

∏
i=0

σ′(idt)(pauths)[i] = true, we can deduce that for all i ∈ [0,

∆(idt) (ian)− 1], σ′(idt)(pauths)[i] = true.
By construction, <input_arcs_number⇒|input(t)|> ∈ gt, and by prop-
erty of the elaboration relation, we have ∆(idt)(ian) = |input(t)|. Then,
from j ∈ [0, |input(t)| − 1], we can deduce j ∈ [0, ∆(idt)(ian) − 1]. And,
from ∀i ∈ [0, ∆(idt)(ian) − 1], σ′(idt) (pauths)[i] = true, we can deduce
σ′(idt)(pauths)[j] = true.
By property of the stabilize relation, comp(idp, place, gp, ip, op) ∈ d.cs and
comp(idt, transition, gt, it, ot) ∈ d.cs:

σ′(idp)(pauths)[k] = σ′(idkj) = σ′(idt)(pauths)[j] = true (D.49)

By property of the stabilize relation and comp(idp, place, gp, ip, op) ∈ d.cs:

σ′(idp)(pauths)[k] = (σ′(idp)(sm) ≥ vsots+ σ′(idp)(oaw)[k]) (D.50)

D.4. Falling Edge 351

Let us define the vsots term as follows:

vsots =
k−1

∑
i=0

σ′(idp)(oaw)[i] if σ′(idp)(otf)[i].

σ′(idp)(oat)[i] = basic

0 otherwise
(D.51)

From (D.49) and (D.50), we can deduce that σ′(idp)(sm) ≥ vsots +
σ′(idp)(oaw)[k].
Then, there are three points to prove:

A. s′.M(p) = σ′(idp)(sm)

B. ω = σ′(idp)(oaw)[k]

C. ∑
ti∈Pr(t,F)

pre(p, ti) = vsots

See 1 for the remainder of the proof.

Lemma 48 (Falling edge equal not fired). For all sitpn, b, d, γ, ∆, σe, Ec, Ep, τ, s, s′, σ,
σ↓, σ′ that verify the hypotheses of Definition 45, then ∀t, idt s.t. γ(t) = idt, t /∈ Fired(s′) ⇔
σ′(idt)(fired) = false.

Proof.

Proving the above lemma is trivial by appealing to Lemma Falling edge equal fired and
by reasoning on contrapositives.

353

Bibliography

[1] J. -R. Abrial et al. “The B-Method”. In: VDM ’91 Formal Software Development Methods.
Ed. by Søren Prehn and Hans Toetenel. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 1991, pp. 398–405. ISBN: 978-3-540-46456-3. DOI: 10.1007/BFb0020001.

[2] Jean-Raymond Abrial. “From Z to B and Then Event-B: Assigning Proofs to Meaning-
ful Programs”. In: International Conference on Integrated Formal Methods. Springer. 2013,
pp. 1–15.

[3] Roberto Amadini et al. “Abstract Interpretation, Symbolic Execution and Constraints”.
In: Recent Developments in the Design and Implementation of Programming Languages. Ed. by
Frank S. de Boer and Jacopo Mauro. Vol. 86. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 7:1–7:19.
ISBN: 978-3-95977-171-9. DOI: 10.4230/OASIcs.Gabbrielli.7.

[4] David Andreu, David Guiraud, and Guillaume Souquet. “A Distributed Architecture
for Activating the Peripheral Nervous System”. In: Journal of Neural Engineering 6.2
(Apr. 1, 2009), p. 026001. ISSN: 1741-2560, 1741-2552. DOI: 10.1088/1741-2560/6/2/
026001.

[5] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, Oct. 7, 2010. 933 pp.
ISBN: 978-0-08-056885-0.

[6] Johan Bengtsson et al. “Uppaal in 1995”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Tiziana Margaria and Bernhard Steffen. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 1996, pp. 431–434. ISBN: 978-3-540-
49874-2. DOI: 10.1007/3-540-61042-1_66.

[7] Karima Berramla, El Abbassia Deba, and Mohammed Senouci. “Formal Validation of
Model Transformation with Coq Proof Assistant”. In: 2015 First International Conference
on New Technologies of Information and Communication (NTIC). 2015 First International
Conference on New Technologies of Information and Communication (NTIC). Nov.
2015, pp. 1–6. DOI: 10.1109/NTIC.2015.7368755.

[8] Yves Bertot and P. Castéran. Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Berlin ;
New York: Springer, 2004. 469 pp. ISBN: 978-3-540-20854-9.

[9] Dines Bjørner and Klaus Havelund. “40 Years of Formal Methods”. In: FM 2014: Formal
Methods. Ed. by Cliff Jones, Pekka Pihlajasaari, and Jun Sun. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2014, pp. 42–61. ISBN: 978-3-
319-06410-9. DOI: 10.1007/978-3-319-06410-9_4.

https://doi.org/10.1007/BFb0020001
https://doi.org/10.4230/OASIcs.Gabbrielli.7
https://doi.org/10.1088/1741-2560/6/2/026001
https://doi.org/10.1088/1741-2560/6/2/026001
https://doi.org/10.1007/3-540-61042-1_66
https://doi.org/10.1109/NTIC.2015.7368755
https://doi.org/10.1007/978-3-319-06410-9_4

354 Bibliography

[10] Dines Bjorner et al., eds. VDM ’87. VDM - A Formal Method at Work: VDM-Europe Sym-
posium 1987, Brussels, Belgium, March 23-26, 1987, Proceedings. Lecture Notes in Com-
puter Science. Berlin Heidelberg: Springer-Verlag, 1987. ISBN: 978-3-540-17654-1. DOI:
10.1007/3-540-17654-3.

[11] David C. Black et al. SystemC: From the Ground Up, Second Edition. Springer Science &
Business Media, Dec. 18, 2009. 291 pp. ISBN: 978-0-387-69958-5.

[12] B. Blanchet et al. “Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software, Invited Chapter”. In: The
Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil d.
Jones. Ed. by T. Mogensen, D.A. Schmidt, and I.H. Sudborough. LNCS 2566. Springer–
Verlag, Oct. 2002, pp. 85–108. ISBN: 3-540-00326-6.

[13] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. “Formal Verification of a C Com-
piler Front-End”. In: FM 2006: Formal Methods. International Symposium on Formal
Methods. Springer, Berlin, Heidelberg, Aug. 21, 2006, pp. 460–475. DOI: 10.1007/11813040_
31.

[14] Richard Bonichon, David Delahaye, and Damien Doligez. “Zenon: An Extensible Auto-
mated Theorem Prover Producing Checkable Proofs”. In: Logic for Programming, Artifi-
cial Intelligence, and Reasoning. Ed. by Nachum Dershowitz and Andrei Voronkov. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007, pp. 151–165. ISBN:
978-3-540-75560-9. DOI: 10.1007/978-3-540-75560-9_13.

[15] Egon Börger, Uwe Glässer, and Wolfgang Muller. “A Formal Definition of an Abstract
VHDL’93 Simulator by EA-Machines”. In: Formal Semantics for VHDL. Ed. by Carlos
Delgado Kloos and Peter T. Breuer. Red. by Jonathan Allen. Vol. 307. Boston, MA:
Springer US, 1995, pp. 107–139. ISBN: 978-1-4613-5941-8 978-1-4615-2237-9. DOI: 10 .
1007/978-1-4615-2237-9_5.

[16] D.D. Borrione, L.V. Pierre, and A.M. Salem. “Formal Verification of VHDL Descriptions
in the Prevail Environment”. In: IEEE Design Test of Computers 9.2 (June 1992), pp. 42–56.
ISSN: 1558-1918. DOI: 10.1109/54.143145.

[17] Dominique Borrione and Ashraf Salem. “Denotational Semantics of a Synchronous VHDL
Subset”. In: Formal Methods in System Design 7.1-2 (Aug. 1995), pp. 53–71. ISSN: 0925-
9856, 1572-8102. DOI: 10.1007/BF01383873.

[18] Thomas Bourgeat et al. “The Essence of Bluespec: A Core Language for Rule-Based
Hardware Design”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2020. New York, NY, USA: Association for
Computing Machinery, June 11, 2020, pp. 243–257. ISBN: 978-1-4503-7613-6. DOI: 10.
1145/3385412.3385965.

[19] Timothy Bourke et al. “A formally verified compiler for Lustre”. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2017. Association for Computing Machinery, June 2017, pp. 586–601. ISBN: 978-
1-4503-4988-8. DOI: 10.1145/3062341.3062358. URL: https://doi.org/10.1145/
3062341.3062358.

https://doi.org/10.1007/3-540-17654-3
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/978-3-540-75560-9_13
https://doi.org/10.1007/978-1-4615-2237-9_5
https://doi.org/10.1007/978-1-4615-2237-9_5
https://doi.org/10.1109/54.143145
https://doi.org/10.1007/BF01383873
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3062341.3062358

Bibliography 355

[20] Jonathan Bowen and Victoria Stavridou. “Safety-Critical Systems, Formal Methods and
Standards”. In: Software engineering journal 8.4 (1993), pp. 189–209.

[21] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT: a Formal System for Test-
ing and Debugging Programs by Symbolic Execution”. In: Proceedings of the International
Conference on Reliable Software. New York, NY, USA: Association for Computing Machin-
ery, Apr. 1, 1975, pp. 234–245. ISBN: 978-1-4503-7385-2. DOI: 10.1145/800027.808445.

[22] Thomas Braibant and Adam Chlipala. “Formal Verification of Hardware Synthesis”. In:
Computer Aided Verification. Ed. by Natasha Sharygina and Helmut Veith. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 213–228. ISBN: 978-3-642-
39799-8. DOI: 10.1007/978-3-642-39799-8_14.

[23] Peter T. Breuer, Luis Sánchez Fernández, and Carlos Delgado Kloos. “A Functional Se-
mantics for Unit-Delay VHDL”. In: Formal Semantics for VHDL. Ed. by Carlos Delgado
Kloos and Peter T. Breuer. Red. by Jonathan Allen. Vol. 307. Boston, MA: Springer US,
1995, pp. 43–70. ISBN: 978-1-4613-5941-8 978-1-4615-2237-9. DOI: 10.1007/978-1-4615-
2237-9_3.

[24] Peter T. Breuer, Luis Sánchez Fernández, and Carlos Delgado Kloos. “A Simple Deno-
tational Semantics, Proof Theory and a Validation Condition Generator for Unit-Delay
VHDL”. In: Formal Methods in System Design 7.1 (Aug. 1, 1995), pp. 27–51. ISSN: 1572-
8102. DOI: 10.1007/BF01383872.

[25] Daniel Calegari et al. “A Type-Theoretic Framework for Certified Model Transforma-
tions”. In: Formal Methods: Foundations and Applications. Ed. by Jim Davies, Leila Silva,
and Adenilso Simao. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2011, pp. 112–127. ISBN: 978-3-642-19829-8. DOI: 10.1007/978-3-642-19829-8_8.

[26] Judith Carlton and David Crocker. “Escher Verification Studio Perfect Developer and
Escher C Verifier”. In: Industrial Use of Formal Methods. John Wiley & Sons, Ltd, pp. 155–
193. ISBN: 978-1-118-56182-9. DOI: 10.1002/9781118561829.ch5.

[27] BA Carré and TJ Jennings. SPARK: The SPADE Ada Kernel: Version 1.0. HM Stationery
Office, 1988.

[28] Jose R. Celaya, Alan A. Desrochers, and Robert J. Graves. “Modeling and Analysis of
Multi-Agent Systems Using Petri Nets”. In: 2007 IEEE International Conference on Sys-
tems, Man and Cybernetics. 2007 IEEE International Conference on Systems, Man and
Cybernetics. Oct. 2007, pp. 1439–1444. DOI: 10.1109/ICSMC.2007.4413960.

[29] Junjie Chen et al. “A Survey of Compiler Testing”. In: ACM Computing Surveys 53.1
(Feb. 5, 2020), 4:1–4:36. ISSN: 0360-0300. DOI: 10.1145/3363562.

[30] Adam Chlipala. “A Verified Compiler for an Impure Functional Language”. In: ACM
SIGPLAN Notices 45.1 (Jan. 17, 2010), pp. 93–106. ISSN: 0362-1340. DOI: 10.1145/1707801.
1706312.

[31] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction to
the Coq Proof Assistant. MIT Press, Dec. 6, 2013. 437 pp. ISBN: 978-0-262-02665-9.

https://doi.org/10.1145/800027.808445
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1007/978-1-4615-2237-9_3
https://doi.org/10.1007/978-1-4615-2237-9_3
https://doi.org/10.1007/BF01383872
https://doi.org/10.1007/978-3-642-19829-8_8
https://doi.org/10.1002/9781118561829.ch5
https://doi.org/10.1109/ICSMC.2007.4413960
https://doi.org/10.1145/3363562
https://doi.org/10.1145/1707801.1706312
https://doi.org/10.1145/1707801.1706312

356 Bibliography

[32] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications”. In: ACM Transactions on Pro-
gramming Languages and Systems 8.2 (Apr. 1, 1986), pp. 244–263. ISSN: 0164-0925. DOI:
10.1145/5397.5399.

[33] Alain Colmerauer. “An Introduction to Prolog III”. In: Computational Logic (1990), pp. 37–
79. DOI: 10.1007/978-3-642-76274-1_2.

[34] Benoît Combemale et al. “Essay on Semantics Definition in MDE. An Instrumented Ap-
proach for Model Verification”. In: Journal of Software 4 (Nov. 1, 2009). DOI: 10.4304/
jsw.4.9.943-958.

[35] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. “Terminator: Beyond Safety”.
In: Computer Aided Verification. Ed. by Thomas Ball and Robert B. Jones. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 415–418. ISBN: 978-3-540-
37411-4. DOI: 10.1007/11817963_37.

[36] Thierry Coquand and Christine Paulin. “Inductively Defined Types”. In: COLOG-88.
Ed. by Per Martin-Löf and Grigori Mints. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1990, pp. 50–66. ISBN: 978-3-540-46963-6. DOI: 10.1007/3-540-
52335-9_47.

[37] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. Jan. 1, 1977,
p. 252. 238 pp. DOI: 10.1145/512950.512973.

[38] Judy Crow et al. “A Tutorial Introduction to PVS”. In: WIFT. 1995.

[39] Maulik A. Dave. “Compiler Verification: A Bibliography”. In: ACM SIGSOFT Software
Engineering Notes 28.6 (Nov. 1, 2003), p. 2. ISSN: 01635948. DOI: 10.1145/966221.966235.

[40] René David and Hassane Alla. “Petri Nets for Modeling of Dynamic Systems: A Sur-
vey”. In: Automatica 30.2 (Feb. 1, 1994), pp. 175–202. ISSN: 0005-1098. DOI: 10.1016/
0005-1098(94)90024-8.

[41] Frank Dederichs, Claus Dendorfer, and Rainer Weber. “Focus: A Formal Design Method
for Distributed Systems”. In: Parallel Computer Architectures (1993), pp. 190–202. DOI:
10.1007/978-3-662-21577-7_14.

[42] David Déharbe and Dominique Borrione. “Semantics of a Verification-Oriented Sub-
set of VHDL”. In: Correct Hardware Design and Verification Methods. Advanced Research
Working Conference on Correct Hardware Design and Verification Methods. Springer,
Berlin, Heidelberg, Oct. 2, 1995, pp. 293–310. DOI: 10.1007/3-540-60385-9_18.

[43] Michel Diaz. Les Réseaux de Petri: Modèles Fondamentaux. Hermès science publications,
2001.

[44] Edsger Wybe Dijkstra et al. A Discipline of Programming. Vol. 613924118. prentice-hall
Englewood Cliffs, 1976.

https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-642-76274-1_2
https://doi.org/10.4304/jsw.4.9.943-958
https://doi.org/10.4304/jsw.4.9.943-958
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/966221.966235
https://doi.org/10.1016/0005-1098(94)90024-8
https://doi.org/10.1016/0005-1098(94)90024-8
https://doi.org/10.1007/978-3-662-21577-7_14
https://doi.org/10.1007/3-540-60385-9_18

Bibliography 357

[45] Gert Döhmen and Ronald Herrmann. “A Deterministic Finite-State Model for VHDL”.
In: Formal Semantics for VHDL. Ed. by Carlos Delgado Kloos and Peter T. Breuer. The
Kluwer International Series in Engineering and Computer Science. Boston, MA: Springer
US, 1995, pp. 170–204. ISBN: 978-1-4615-2237-9. DOI: 10.1007/978-1-4615-2237-9_7.

[46] Johannes Dyck, Holger Giese, and Leen Lambers. “Automatic Verification of Behav-
ior Preservation at the Transformation Level for Relational Model Transformation”. In:
Software & Systems Modeling 18.5 (5 Oct. 1, 2019), pp. 2937–2972. ISSN: 1619-1374. DOI:
10.1007/s10270-018-00706-9.

[47] E. Allen Emerson and A. Prasad Sistla. “Deciding Full Branching Time Logic”. In: Infor-
mation and Control 61.3 (June 1, 1984), pp. 175–201. ISSN: 0019-9958. DOI: 10.1016/S0019-
9958(84)80047-9.

[48] Robert W. Floyd. “Assigning Meanings to Programs”. In: Program Verification: Funda-
mental Issues in Computer Science. Ed. by Timothy R. Colburn, James H. Fetzer, and Terry
L. Rankin. Studies in Cognitive Systems. Dordrecht: Springer Netherlands, 1993, pp. 65–
81. ISBN: 978-94-011-1793-7. DOI: 10.1007/978-94-011-1793-7_4.

[49] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, Oct. 23, 2014. 631 pp. ISBN: 978-0-12-
800800-3.

[50] Lukasz Fronc and Franck Pommereau. “Towards a Certified Petri Net Model-Checker”.
In: Programming Languages and Systems. Ed. by Hongseok Yang. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2011, pp. 322–336. ISBN: 978-3-642-25318-8.
DOI: 10.1007/978-3-642-25318-8_24.

[51] Max Fuchs and Michael Mendler. “A Functional Semantics for Delta-Delay VHDL Based
on Focus”. In: Formal Semantics for VHDL. Ed. by Carlos Delgado Kloos and Peter T.
Breuer. Red. by Jonathan Allen. Vol. 307. Boston, MA: Springer US, 1995, pp. 9–42. ISBN:
978-1-4613-5941-8 978-1-4615-2237-9. DOI: 10.1007/978-1-4615-2237-9_2.

[52] Hubert Garavel et al. “CADP 2011: A Toolbox for the Construction and Analysis of
Distributed Processes”. In: International Journal on Software Tools for Technology Transfer
15.2 (Apr. 1, 2013), pp. 89–107. ISSN: 1433-2787. DOI: 10.1007/s10009-012-0244-z.

[53] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated Ran-
dom Testing”. In: ACM SIGPLAN Notices 40.6 (June 12, 2005), pp. 213–223. ISSN: 0362-
1340. DOI: 10.1145/1064978.1065036.

[54] K. G. W. Goossens. “Reasoning about VHDL Using Operational and Observational
Semantics”. In: Correct Hardware Design and Verification Methods. Advanced Research
Working Conference on Correct Hardware Design and Verification Methods. Springer,
Berlin, Heidelberg, Oct. 2, 1995, pp. 311–327. DOI: 10.1007/3-540-60385-9_19.

[55] David Guiraud et al. “An Implantable Neuroprosthesis for Standing and Walking in
Paraplegia: 5-Year Patient Follow-Up”. In: Journal of Neural Engineering 3.4 (Sept. 2006),
pp. 268–275. ISSN: 1741-2552. DOI: 10.1088/1741-2560/3/4/003.

https://doi.org/10.1007/978-1-4615-2237-9_7
https://doi.org/10.1007/s10270-018-00706-9
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-642-25318-8_24
https://doi.org/10.1007/978-1-4615-2237-9_2
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1007/3-540-60385-9_19
https://doi.org/10.1088/1741-2560/3/4/003

358 Bibliography

[56] A. Habibi and S. Tahar. “Design and Verification of SystemC Transaction-Level Mod-
els”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14.1 (Jan. 2006),
pp. 57–68. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2005.863187.

[57] Reiner Hähnle and Marieke Huisman. “Deductive Software Verification: From Pen-and-
Paper Proofs to Industrial Tools”. In: Computing and Software Science: State of the Art and
Perspectives. Ed. by Bernhard Steffen and Gerhard Woeginger. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2019, pp. 345–373. ISBN: 978-3-
319-91908-9. DOI: 10.1007/978-3-319-91908-9_18.

[58] Michael R. Hansen, Jan Madsen, and Aske Wiid Brekling. “Semantics and Verification
of a Language for Modelling Hardware Architectures”. In: Formal Methods and Hybrid
Real-Time Systems (2007), pp. 300–319. DOI: 10.1007/978-3-540-75221-9_13.

[59] Thomas A. Henzinger et al. “Lazy Abstraction”. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’02. New York, NY,
USA: Association for Computing Machinery, Jan. 1, 2002, pp. 58–70. ISBN: 978-1-58113-
450-6. DOI: 10.1145/503272.503279.

[60] Yann Herklotz et al. “Formal verification of high-level synthesis”. In: Proceedings of the
ACM on Programming Languages 5.OOPSLA (Oct. 2021), 117:1–117:30. DOI: 10.1145/
3485494.

[61] C. A. R. Hoare. “Communicating Sequential Processes”. In: Communications of the ACM
21.8 (Aug. 1, 1978), pp. 666–677. ISSN: 0001-0782. DOI: 10.1145/359576.359585.

[62] William A Howard. “The Formulae-as-Types Notion of Construction”. In: To HB Curry:
essays on combinatory logic, lambda calculus and formalism 44 (1980), pp. 479–490.

[63] Graham Hutton. “Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic by Mike Gordon and Tom Melham (Eds.), Cambridge University Press,
1993, ISBN 0-521-44189-7”. In: Journal of Functional Programming 4.4 (Oct. 1994), pp. 557–
559. ISSN: 1469-7653, 0956-7968. DOI: 10.1017/S0956796800001180.

[64] IEEE Computer Society et al. IEEE Standard VHDL Language Reference Manual. New
York, N.Y.: Institute of Electrical and Electronics Engineers, 2000. ISBN: 978-0-7381-1948-
9 978-0-7381-1949-6.

[65] “IEEE Standard Hardware Description Language Based on the Verilog(R) Hardware
Description Language”. In: IEEE Std 1364-1995 (Oct. 1996), pp. 1–688. DOI: 10.1109/
IEEESTD.1996.81542.

[66] IEEE/IEC 62142-2005 - IEC/IEEE International Standard - Verilog(R) Register Transfer Level
Synthesis.

[67] Mark P. Jones. The Implementation of the Gofer Functional Programming System. Yale Uni-
versity, Department of Computer Science, May 1994, p. 52.

[68] Florent Kirchner et al. “Frama-c: A Software Analysis Perspective”. In: Formal Aspects of
Computing 27.3 (2015), pp. 573–609.

[69] Carlos Delgado Kloos and P. Breuer. Formal Semantics for VHDL. Springer Science &
Business Media, Dec. 6, 2012. 263 pp. ISBN: 978-1-4615-2237-9.

https://doi.org/10.1109/TVLSI.2005.863187
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-540-75221-9_13
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/3485494
https://doi.org/10.1145/3485494
https://doi.org/10.1145/359576.359585
https://doi.org/10.1017/S0956796800001180
https://doi.org/10.1109/IEEESTD.1996.81542
https://doi.org/10.1109/IEEESTD.1996.81542

Bibliography 359

[70] Leslie Lamport. “The Temporal Logic of Actions”. In: ACM Transactions on Programming
Languages and Systems 16.3 (May 1, 1994), pp. 872–923. ISSN: 0164-0925. DOI: 10.1145/
177492.177726.

[71] Hélène Leroux. “Méthodologie de conception d’architectures numériques complexes :
du formalisme à l’implémentation en passant par l’analyse, préservation de la confor-
mité. Application aux neuroprothèses”. PhD thesis. Université Montpellier II - Sciences
et Techniques du Languedoc, Oct. 28, 2014.

[72] Xavier Leroy. “A Formally Verified Compiler Back-End”. In: Journal of Automated Rea-
soning 43.4 (Nov. 4, 2009), p. 363. ISSN: 1573-0670. DOI: 10.1007/s10817-009-9155-4.

[73] Xavier Leroy. “Formal Certification of a Compiler Back-End or: Programming a Com-
piler with a Proof Assistant”. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006. Ed. by J. Gregory Morrisett and Simon L. Peyton Jones. ACM, 2006,
pp. 42–54. DOI: 10.1145/1111037.1111042.

[74] Roger Lipsett, Erich Marschner, and Moe Shahdad. “VHDL - The Language”. In: IEEE
Design Test of Computers 3.2 (Apr. 1986), pp. 28–41. ISSN: 1558-1918. DOI: 10.1109/MDT.
1986.294900.

[75] David Long and Zane Scott. A Primer for Model-Based Systems Engineering. Lulu.com,
2011. 126 pp. ISBN: 978-1-105-58810-5.

[76] Andreas Lööw. “Lutsig: A Verified Verilog Compiler for Verified Circuit Development”.
In: Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs. CPP 2021. New York, NY, USA: Association for Computing Machinery, Jan. 17,
2021, pp. 46–60. ISBN: 978-1-4503-8299-1. DOI: 10.1145/3437992.3439916.

[77] Said Meghzili et al. “On the Verification of UML State Machine Diagrams to Colored
Petri Nets Transformation Using Isabelle/HOL”. In: 2017 IEEE International Conference
on Information Reuse and Integration (IRI). 2017 IEEE International Conference on Infor-
mation Reuse and Integration (IRI). Aug. 2017, pp. 419–426. DOI: 10.1109/IRI.2017.63.

[78] Ibrahim Merzoug. “Validation formelle des systèmes numériques critiques : génération
de l’espace d’états de réseaux de Petri exécutés en synchrone”. PhD thesis. Université
Montpellier, Jan. 15, 2018.

[79] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science.
Berlin Heidelberg: Springer-Verlag, 1980. ISBN: 978-3-540-10235-9. DOI: 10 . 1007 / 3 -
540-10235-3.

[80] Gordon E. Moore. “Cramming More Components onto Integrated Circuits, Reprinted
from Electronics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff.” In: IEEE Solid-State
Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35. ISSN: 1098-4232. DOI: 10.1109/N-
SSC.2006.4785860.

[81] Joan Moschovakis. “Intuitionistic Logic”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Winter 2018. Metaphysics Research Lab, Stanford University, 2018.

https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1109/MDT.1986.294900
https://doi.org/10.1109/MDT.1986.294900
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1109/IRI.2017.63
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860

360 Bibliography

[82] Yiannis Moschovakis. Notes on Set Theory. Undergraduate Texts in Mathematics. New
York: Springer-Verlag, 1994. ISBN: 978-1-4757-4153-7. DOI: 10.1007/978-1-4757-4153-
7.

[83] Ben Moszkowski. “Executing Temporal Logic Programs”. In: Seminar on Concurrency.
Ed. by Stephen D. Brookes, Andrew William Roscoe, and Glynn Winskel. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 1985, pp. 111–130. ISBN: 978-3-540-
39593-5. DOI: 10.1007/3-540-15670-4_6.

[84] T. Murata. “Petri Nets: Properties, Analysis and Applications”. In: Proceedings of the IEEE
77.4 (Apr. 1989), pp. 541–580. ISSN: 1558-2256. DOI: 10.1109/5.24143.

[85] Peter G. Neumann. “Illustrative Risks to the Public in the Use of Computer Systems and
Related Technology”. In: ACM SIGSOFT Software Engineering Notes 19.1 (Jan. 1, 1994),
pp. 16–29. ISSN: 0163-5948. DOI: 10.1145/181610.181612.

[86] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic. Lecture Notes in Computer Science. Berlin Heidelberg:
Springer-Verlag, 2002. ISBN: 978-3-540-43376-7. DOI: 10.1007/3-540-45949-9.

[87] Serafín Olcoz. “A Formal Model of VHDL Using Coloured Petri Nets”. In: Formal Se-
mantics for VHDL. Ed. by Carlos Delgado Kloos and Peter T. Breuer. The Kluwer Inter-
national Series in Engineering and Computer Science. Boston, MA: Springer US, 1995,
pp. 140–169. ISBN: 978-1-4615-2237-9. DOI: 10.1007/978-1-4615-2237-9_6.

[88] S. Owre et al. “A Tutorial on Using PVS for Hardware Verification”. In: Theorem Provers
in Circuit Design. International Conference on Theorem Provers in Circuit Design. Springer,
Berlin, Heidelberg, Sept. 26, 1994, pp. 258–279. DOI: 10.1007/3-540-59047-1_53.

[89] S.L. Pandey, K. Umamageswaran, and P.A. Wilsey. “VHDL Semantics and Validating
Transformations”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 18.7 (July 1999), pp. 936–955. ISSN: 1937-4151. DOI: 10.1109/43.771177.

[90] Marco Patrignani, Amal Ahmed, and Dave Clarke. “Formal Approaches to Secure Com-
pilation: A Survey of Fully Abstract Compilation and Related Work”. In: ACM Comput-
ing Surveys 51.6 (Feb. 4, 2019), 125:1–125:36. ISSN: 0360-0300. DOI: 10.1145/3280984.

[91] Christine Paulin-Mohring. “Introduction to the Coq Proof-Assistant for Practical Soft-
ware Verification”. In: Tools for Practical Software Verification. Ed. by Bertrand Meyer and
Martin Nordio. Vol. 7682. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 45–
95. ISBN: 978-3-642-35745-9 978-3-642-35746-6. DOI: 10.1007/978-3-642-35746-6_3.

[92] Volnei A. Pedroni. Circuit Design with VHDL, Third Edition. MIT Press, Apr. 14, 2020.
609 pp. ISBN: 978-0-262-35392-2.

[93] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Technical University
Darmstadt, Germany, 1962.

[94] Gordon Plotkin. “A Structural Approach to Operational Semantics”. In: J. Log. Algebr.
Program. 60–61 (July 1, 2004), pp. 17–139. DOI: 10.1016/j.jlap.2004.05.001.

https://doi.org/10.1007/978-1-4757-4153-7
https://doi.org/10.1007/978-1-4757-4153-7
https://doi.org/10.1007/3-540-15670-4_6
https://doi.org/10.1109/5.24143
https://doi.org/10.1145/181610.181612
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-1-4615-2237-9_6
https://doi.org/10.1007/3-540-59047-1_53
https://doi.org/10.1109/43.771177
https://doi.org/10.1145/3280984
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1016/j.jlap.2004.05.001

Bibliography 361

[95] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on Founda-
tions of Computer Science (Sfcs 1977). 18th Annual Symposium on Foundations of Com-
puter Science (Sfcs 1977). Oct. 1977, pp. 46–57. DOI: 10.1109/SFCS.1977.32.

[96] J. P. Queille and J. Sifakis. “Specification and Verification of Concurrent Systems in CE-
SAR”. In: International Symposium on Programming. Ed. by Mariangiola Dezani-Ciancaglini
and Ugo Montanari. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1982, pp. 337–351. ISBN: 978-3-540-39184-5. DOI: 10.1007/3-540-11494-7_22.

[97] Ralf Reetz and Thomas Kropf. “A Flow Graph Semantics of VHDL: A Basis for Hard-
ware Verification with VHDL”. In: Formal Semantics for VHDL. Ed. by Carlos Delgado
Kloos and Peter T. Breuer. The Kluwer International Series in Engineering and Com-
puter Science. Boston, MA: Springer US, 1995, pp. 205–238. ISBN: 978-1-4615-2237-9.
DOI: 10.1007/978-1-4615-2237-9_8.

[98] Alexandre Riazanov and Andrei Voronkov. “Vampire 1.1 (System Description)”. In:
Proceedings of the First International Joint Conference on Automated Reasoning. IJCAR ’01.
Berlin, Heidelberg: Springer-Verlag, June 18, 2001, pp. 376–380. ISBN: 978-3-540-42254-9.

[99] K. Rustan, M. Leino, and Greg Nelson. “An Extended Static Checker for Modula-3”.
In: Compiler Construction. Ed. by Kai Koskimies. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1998, pp. 302–305. ISBN: 978-3-540-69724-4. DOI: 10.1007/
BFb0026441.

[100] Stephan Schulz. “E - A Brainiac Theorem Prover”. In: AI Communications 15 (Sept. 8,
2002).

[101] Koushik Sen and Gul Agha. “CUTE and jCUTE: Concolic Unit Testing and Explicit
Path Model-Checking Tools”. In: Computer Aided Verification. Ed. by Thomas Ball and
Robert B. Jones. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006,
pp. 419–423. ISBN: 978-3-540-37411-4. DOI: 10.1007/11817963_38.

[102] Stewart Shapiro and Teresa Kouri Kissel. “Classical logic”. In: The Stanford encyclopedia
of philosophy. Ed. by Edward N. Zalta. Spring 2021. Citation Key: ClassicalLogic. Meta-
physics Research Lab, Stanford University, 2021. URL: https://plato.stanford.edu/
archives/spr2021/entries/logic-classical/.

[103] Martin Strecker. “Formal Verification of a Java Compiler in Isabelle”. In: Automated
Deduction—CADE-18. International Conference on Automated Deduction. Springer, Berlin,
Heidelberg, July 27, 2002, pp. 63–77. DOI: 10.1007/3-540-45620-1_5.

[104] Yong Kiam Tan et al. “A New Verified Compiler Backend for CakeML”. In: (Sept. 4,
2016). DOI: 10.17863/CAM.6525.

[105] Yong Kiam Tan et al. “A New Verified Compiler Backend for CakeML”. In: (), p. 14.

[106] The Coq Development Team. Coq, Version 8.13.2. manual. July 2021.

[107] Krishnaprasad Thirunarayan and Robert L. Ewing. “Structural Operational Semantics
for a Portable Subset of Behavioral VHDL-93”. In: Formal Methods in System Design 18.1
(Jan. 1, 2001), pp. 69–88. ISSN: 1572-8102. DOI: 10.1023/A:1008786720393.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-1-4615-2237-9_8
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/11817963_38
https://plato.stanford.edu/archives/spr2021/entries/logic-classical/
https://plato.stanford.edu/archives/spr2021/entries/logic-classical/
https://doi.org/10.1007/3-540-45620-1_5
https://doi.org/10.17863/CAM.6525
https://doi.org/10.1023/A:1008786720393

362 Bibliography

[108] Dmitry Tsarkov and Ian Horrocks. “FaCT++ Description Logic Reasoner: System De-
scription”. In: Automated Reasoning. Ed. by Ulrich Furbach and Natarajan Shankar. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 292–297. ISBN:
978-3-540-37188-5. DOI: 10.1007/11814771_26.

[109] John P. Van Tassel. “An Operational Semantics for a Subset of VHDL”. In: Formal Se-
mantics for VHDL. Ed. by Carlos Delgado Kloos and Peter T. Breuer. Red. by Jonathan
Allen. Vol. 307. Boston, MA: Springer US, 1995, pp. 71–106. ISBN: 978-1-4613-5941-8 978-
1-4615-2237-9. DOI: 10.1007/978-1-4615-2237-9_4.

[110] Philip Wadler. “The Essence of Functional Programming”. In: Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’92.
New York, NY, USA: Association for Computing Machinery, Feb. 1, 1992, pp. 1–14. ISBN:
978-0-89791-453-6. DOI: 10.1145/143165.143169.

[111] Freek Wiedijk. “The De Bruijn Factor”. In: (Aug. 12, 2000).

[112] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
press, 1993.

[113] Alex Yakovlev and Albert Koelmans. “Petri Nets and Digital Hardware Design”. In:
Lecture Notes in Computer Science - LNCS. Apr. 11, 2006, pp. 154–236. DOI: 10.1007/3-
540-65307-4_49.

[114] Zhibin Yang et al. “From AADL to Timed Abstract State Machines: A Verified Model
Transformation”. In: Journal of Systems and Software 93 (July 1, 2014), pp. 42–68. ISSN:
0164-1212. DOI: 10.1016/j.jss.2014.02.058.

[115] Zhibin Yang et al. “Towards a Verified Compiler Prototype for the Synchronous Lan-
guage SIGNAL”. In: Frontiers of Computer Science 10.1 (Feb. 1, 2016), pp. 37–53. ISSN:
2095-2236. DOI: 10.1007/s11704-015-4364-y.

[116] Yana Yankova et al. “Automated HDL Generation: Comparative Evaluation”. In: 2007
IEEE International Symposium on Circuits and Systems. 2007 IEEE International Sympo-
sium on Circuits and Systems. May 2007, pp. 2750–2753. DOI: 10.1109/ISCAS.2007.
378622.

https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/978-1-4615-2237-9_4
https://doi.org/10.1145/143165.143169
https://doi.org/10.1007/3-540-65307-4_49
https://doi.org/10.1007/3-540-65307-4_49
https://doi.org/10.1016/j.jss.2014.02.058
https://doi.org/10.1007/s11704-015-4364-y
https://doi.org/10.1109/ISCAS.2007.378622
https://doi.org/10.1109/ISCAS.2007.378622

	Remerciements
	Résumé
	Abstract
	Résumé étendu
	Introduction
	Un formalisme de haut-niveau : les réseaux de Petri
	Un langage cible : VHDL
	La transformation modèle-vers-texte de HILECOP
	Preuve de préservation sémantique
	Conclusion

	Introduction
	The HILECOP methodology
	Designing safety-critical digital systems
	Introducing the HILECOP methodology
	Verifying the HILECOP methodology

	Preliminary notions
	Mathematical formalisms
	Classical first-order logic
	ZF Set theory
	Rule-based definition of sets

	Induction principles
	Well-founded induction
	Structural induction
	Rule induction

	The Coq proof assistant
	The Calculus of Inductive Constructions (CIC)
	Inductive types
	Functional programming
	Dependent types

	Implementation of the HILECOP Petri nets
	Informal presentation of Synchronously executed Petri nets
	Preliminary notions on Petri nets
	Particularities of SITPNs

	Formalization of the SITPN structure and semantics
	SITPN structure
	SITPN State
	Preliminary definitions and fired transitions
	SITPN Semantics
	SITPN Execution
	Well-definition of a SITPN
	Boundedness of a SITPN

	Implementation of the SITPN structure and semantics
	Implementation of the SITPN and the SITPN state structure
	Implementation of the SITPN semantics

	Conclusion

	H-VHDL: a target hardware description language
	Presentation of the VHDL language
	Main concepts
	Informal semantics of the VHDL language

	Choosing a formal semantics for VHDL
	Specifying our needs: HILECOP and VHDL
	Looking for an existing formal semantics

	Abstract syntax of H-VHDL
	Design declaration
	Concurrent statements
	Sequential statements
	Expressions, names and types

	Preliminary definitions
	Semantic domains
	Elaborated design and design state

	Elaboration rules
	Design elaboration
	Generic clause elaboration
	Port clause elaboration
	Architecture declarative part elaboration
	Type indication elaboration
	Behavior elaboration
	Implicit default value
	Typing relation
	Static expressions
	Valid port map
	Valid sequential statements

	Simulation rules
	Full simulation
	Simulation loop
	Simulation cycle
	Initialization rules
	Clock phases rules
	Stabilization rules
	Evaluation of input and output port maps
	Evaluation of sequential statements
	Evaluation of expressions

	An example of full simulation
	Elaboration of the tl design
	Simulation of the tl design

	Implementation of the H-VHDL syntax and semantics
	Implementation of the H-VHDL abstract syntax, elaborated design and design state
	Implementation of the elaboration phase
	Implementation of the simulation algorithm

	Conclusion

	The HILECOP model-to-text transformation
	Informal presentation of the HILECOP model-to-text transformation
	Expressing transformation functions
	Building transformation functions

	The transformation algorithm
	The sitpn_to_hvhdl function
	Primitive functions and sets
	Generation of component instances and constant parts
	Interconnection of the place and transition component instances
	Generation of ports, the action and the function process

	Coq implementation of the HILECOP model-to-text transformation
	The generate_sitpn_infos function
	The generate_architecture function
	The generate_ports function
	The generate_comp_insts and generate_design_and_binder functions

	Conclusion

	Proving semantic preservation in HILECOP
	Proofs of semantic preservation in the literature
	Compilers for generic programming languages
	Compilers for hardware description languages
	Model transformations
	Discussions on transformations and proof strategies

	The state similarity relation
	Behavior preservation theorem
	Proof notations
	Preliminary definitions
	The behavior preservation theorem
	The trace similarity theorem

	A detailled proof: equivalence of fired transitions
	An accompanied journey along the proof
	A report on a bug detection

	Mechanized verification of the proof
	Conclusion

	Conclusion
	Future work and perspectives

	The place design in concrete and abstract VHDL syntax
	The transition design in concrete and abstract VHDL syntax
	The semantic preservation theorem and its dependencies
	Semantic preservation proof
	Initial States
	Initial states and marking
	Initial states and time counters
	Initial states and reset orders
	Initial states and condition values
	Initial states and action executions
	Initial states and function executions
	Initial states and fired transitions

	First Rising Edge
	First rising edge and marking
	First rising edge and time counters
	First rising edge and reset orders
	First rising edge and action executions
	First rising edge and function executions
	First rising edge and sensitization
	First rising edge and conditions

	Rising Edge
	Rising edge and Marking
	Rising edge and conditions
	Rising edge and time counters
	Rising edge and reset orders
	Rising edge and action executions
	Rising edge and function executions
	Rising edge and sensitization

	Falling Edge
	Falling edge and marking
	Falling edge and time counters
	Falling edge and condition values
	Falling edge and action executions
	Falling edge and function executions
	Falling edge and firable transitions
	Falling edge and fired transitions

	Bibliography

