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Abstract: This thesis deals with uniaxial stretching of capillary bridges of polymer 

solutions. It consists of two experimental parts investigating drop dynamics and liquid 

transfer. The stretching of viscoelastic polymer solutions can create the beads on a string. 

Solutions are prepared with a wide range of mass fractions. The stretching is quantified 

using diameter-space-time diagrams, which demonstrate hierarchy, asymmetry, migration, 

oscillation, and merging of drops. Also, position of minimum diameter on the filament is 

determined, along with number, positions and diameters of the drops. The maximum 

number of drops can be predicted using the characteristic relaxation time. The extracted 

minimum diameter is used to calculate extensional viscosity. Then, the viscoelastic liquid 

transfer for cylindrical-shaped capillary bridges, pinned on circular parallel plates is studied.  

Specifically, the effects of polymer mass fraction, solvent viscosity, plate diameter, initial 

and final height, stretching speed, and contact angle are investigated. With the increase in 

polymer mass fraction and solvent viscosity, the liquid transfer to the top plate significantly 

reduces. The increase in the initial and final height of the capillary bridge decreases the final 

liquid transfer to the top plate. The shape of the initial capillary bridge is studied by varying 

the liquid volume introduced, and for the Newtonian and viscoelastic solutions, an opposite 

liquid transfer behaviour is noticed. Finally, numerical simulations for a liquid capillary 

bridge are reported and show formation of filament and a big central drop having size 

similar to the experimental value. 

Keywords: Viscoelastic solutions, beads on a string pattern, liquid transfer 

 

Résumé: Cette thèse traite de l'étirement uniaxial de ponts capillaires de solutions de 

polymères. Celle-ci se compose de deux parties expérimentales étudiant la dynamique des 

gouttes et le transfert du liquide. L'étirement des solutions de polymères viscoélastiques 

peut créer le motif de perle-sur-ficelle. Les solutions sont préparées pour une large gamme 

de concentrations. L'étirement est quantifié à l'aide de diagrammes diamètre-espace-temps, 

qui démontrent la hiérarchie, l'asymétrie, la migration, l'oscillation et la coalescence des 

gouttes. La position du diamètre minimum sur le filament est déterminée, ainsi que le 

nombre, les positions et les diamètres des gouttes. Le nombre maximum de gouttes peut 

être prédit en utilisant le temps caractéristique de relaxation. Le diamètre minimum est 

utilisé pour calculer la viscosité élongationnelle. Puis, le transfert de liquide viscoélastique 

pour des ponts capillaires de forme cylindrique, entre deux plaques circulaires parallèles, 

est étudié. En particulier, les effets de la concentration, de la viscosité du solvant, du 

diamètre des plateaux, des hauteurs initiale et finale, de la vitesse et de l'angle de contact 

sont présentés. Avec l'augmentation de la concentration et de la viscosité du solvant, le 

transfert vers la plaque supérieure diminue. L'augmentation des hauteurs initiale et finale 

du pont capillaire diminue le transfert de liquide. La forme du pont capillaire initial est 

modifiée, et on constate un comportement opposé du transfert pour les solutions 

newtonienne et viscoélastique. Enfin, des simulations numériques sont présentées et 

montrent la formation d'un filament avec une grosse goutte centrale de taille similaire aux 

expériences. 

Mots-clés : Solutions viscoélastique, motif perle-sur-ficelle 
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General introduction

Take a drop of saliva between your thumb and forefinger, and then pull your fingers apart to
a distance. Often, you can see a thread of saliva that starts thinning and instead of breaking
rapidly, it evolves into a quasi-periodic pattern of drops formed on the thread (filament), as
shown in Fig. 1. This pattern is commonly known as beads on a string (BOAS) [1–3] and
recently as drops on a filament [4]. The formation of BOAS pattern is not observed for the
Newtonian fluids, e.g. water, alcohol. However, this process of formation of filaments and
BOAS is widely observed in nature, e.g. stringiness of cheese and sliced okra. In some
spider webs (see Fig. 2), BOAS appears due to a solution of low molecular mass compound
from the spider, “distributed throughout the aqueous material” [5], where water comes from
humidity of the environment. The process of formation of BOAS is still not well understood
and specifically occurs in non-Newtonian and viscoelastic fluids, e.g. saliva, paint, polymer
solutions, etc.

Classical linear stability analysis shows that a viscoelastic liquid filament is, in fact,
more unstable than a Newtonian liquid of the same viscosity and inertia [6–9]. Instead
of breaking off by a Rayleigh-Plateau instability to form a detached drop as a Newtonian
fluid does [10, 11], viscoelastic fluids form filaments that delay its breakup. The breakup
process is driven by the action of capillarity, which seeks to minimise interfacial energy of
the free surface of a liquid filament. This dynamical process can be rapid, depending on the
composition of the fluid. Viscous, elastic and inertial forces play an important role in resisting
the action of capillarity. In case of Newtonian liquids, the filament thinning undergoes visco-
capillary or inertio-capillary thinning depending on the influence of inertial or viscous
forces [12]. In case of viscoelastic liquids, after undergoing initial visco-capillary or inertio-
capillary thinning, the filament experiences elasto-capillary thinning due to presence of
elastic polymer chains [12]. The balance of elastic and capillary forces in the axially uniform
filament leads to an apparent extensional viscosity. The uniaxial extensional viscosity is a
fundamental material property of fluids which characterises the resistance of a material to
stretching deformations. One of the most common demonstrations of extensional viscosity
effects in complex fluids is its influence on the lifetime of a liquid filament undergoing a
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Fig. 1 Filament and beads on a string (BOAS), for saliva, formed between forefinger and
thumb. Size of the big central drop is approximately 150 µm.

capillary break-up. When a liquid jet of high molecular weight polymer undergoes a capillary
driven thinning, a BOAS instability that appears, delaying breakup, is a well-known example
of this phenomenon [7].

The formation of a BOAS structure is a nonlinear dynamic process [13]. In a BOAS
structure, spherical fluid drops are interconnected by long thin fluid filaments of random
lengths. In the spherical drops, the polymer molecules are relaxed and surface tension
dominates; whereas in the thin filament, the molecules are highly stretched and viscoelastic
stresses dominate. Experimental studies [9, 14, 15] and numerical simulations [2, 16]
have demonstrated the evolution and the interaction of multiple drops on a viscoelastic
filament. Multiple generations of drops are developed in a BOAS structure due to iterated
instabilities caused by capillary and elastic forces. However, sometimes in the final stages of
thinning, another secondary instability called blistering is also observed which is apparently
similar to a BOAS structure [17, 18]. Recently, Deblais et al. [18] demonstrated that the
blistering instability is due to a dynamical phase separation (caused by temperature) and
inhomogeneities of polymer concentration in a filament. Even though multiples generations
of drops have been reported [9, 14, 17, 18], the role of viscoelasticity and liquid bridge
geometry in the formation of multiple generations of drops and drop dynamics are yet to be
explored thoroughly. In a BOAS structure, drops migrate along the filament due to gravity
or differences in capillary forces and coalescence occurs. Eventually, when the structure
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Fig. 2 Formation of beads on a string in spider web that contains solution of low molecular
mass compounds from the spider in humidity attracted from the environment. (A) A web
formed by a female Argiope aurantia consisting of threads. (B) Scanning electron microscope
image of the spinning spigots that are responsible for a production of a thread. Aggregate
gland spigots (AG); flagelliform gland spigot (FL). (C) A thread showing the formation of
droplets due to increased humidity content in the solution, that initially enlarged the diameter.
(D) The same thread 30 seconds after the formation of droplets is completed. Figures adapted
from Opell et al. [5].

has coarsened to a few large drops, the extensibility limit of the polymer is reached and
the filament breaks. To study the formation of the BOAS structure, various methods have
been used, notably, the capillary jets [6, 7, 19], dripping-onto-substrate [20], stretched liquid
bridge [1, 9], as shown in Fig. 3. In recent years, interest in the BOAS structure has grown,
because of their numerous applications in printing [21], see Fig. 4, lab-on-a-chip [22], optics
[23], bio-engineering [24] and electro-spraying [25].

In nature, liquid bridges are ubiquitous. In various medical problems such as respiratory
diseases or body joints, small capillary bridges appear [28–30]. Liquid bridge configuration
also exists in many industrial applications such as food processing, material engineering,
adhesion processes, powder granulation, oil recovery, flow in porous media and microfluidics
[20, 30]. Liquid bridge configuration can also be used to measure rheological and interfacial
properties of liquids as an extensional rheometer, tensiometer and surfactometer [30]. The
present study was inspired by the variety of natural phenomena and technical applications in
which liquid bridges play a relevant and significant role.

Non-Newtonian fluids have many applications, but only a few applications are listed
here: printing, atomisation of sprays [31–33], agricultural [34] or cosmetic (sunscreen)
liquids, fuels stabilised with polymers, and drag reduction effect with coatings of fire hoses
[35, 36]. Printing is often a more accurate and cost-friendly method than other conventional
manufacturing processes due to its simplicity and versatility. Nowadays, a printing process is
not only limited to books, magazines and newspapers but has also expanded to various areas
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Fig. 3 Formation of beads on a string structures for polymer solutions using different methods,
(a) Continuous capillary jet (from Tirel et al. [26]), (b) Dripping-from-nozzle (from Dinic
et al. [27]) and (c) Stretched capillary bridge (from the present work).

Fig. 4 A portrait printed with dots (diameter = 490 nm) using a polyurethane ink and a 500
nm internal-diameter nozzle. The inset shows a magnified image of the printed dots. Adapted
from Park et al. [21].
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Fig. 5 Printing of electronics. (a) A roll-to-roll printing process, (b) A temperature sensor, (c)
An electronic circuit with zoomed view of the transistor. Reprinted from Kumar [20].

like manufacturing of electric circuits and electronics [20], see Fig. 5, screen displays, lab-on-
a-chip [21], solar cells [37] and 3D microstructures (polymer wires, needles, pillars, cones,
or microspheres) [23]. There are many methods of printing, for example roll-to-roll printing,
see Fig. 5(a), inkjet printing and gravure printing, see Fig. 6. One of the key motivations for
the study of stretched liquid bridges is its close association with these printing processes. The
printing industry deals with inks having non-Newtonian rheological properties. The advanced
printing methods, like inkjet printing [38], flexographic printing [37], 3D printing [39] and
gravure printing, use inks containing polymers. In printing, the liquid from one surface is
transferred to another surface. The main issue is to calculate the volume of liquid transferred
from one surface to another as the two surfaces are separated. In practice, successful printing
involves both the transfer of a sufficiently large volume of liquid from one surface (a printing
plate) to another (a substrate) and the preservation of the desired liquid shape, e.g., elongated
shapes that could form wires [23]. In case of a stretched liquid bridge, solution pools are
created on the end plates for Newtonian fluids, and a filament appears along with these
solution pools for a viscoelastic liquid bridge. The transfer of the desired volume of liquid is
a major challenge in the printing industry, due to complexities involving surface and liquid
properties, along with the formation of filaments. Furthermore, capillary, viscous, inertial,
elastic and gravitational forces play important role in this liquid transfer. Existing works
have mostly focused on the impact of capillarity and liquid contact angles on a volume of
Newtonian [40, 41] and viscoelastic [42, 43] liquid transferred to a substrate. However, no
systematic studies on the influence of a polymer mass fraction (in viscoelastic fluids) and
geometric properties (of a liquid bridge) on a liquid transfer are reported.

The present thesis mainly addresses the formation of drops on a filament and liquid
transfer. We investigate the role of viscoelasticity and liquid bridge geometry in drop
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Fig. 6 A typical gravure printing process, showing the gravure roll with ink directed from
doctor blade. Reprinted from Cen et al. [44].

dynamics of a BOAS structure and liquid transfer. This manuscript is organised in five
chapters whose details are as follows:

• Chapter 1: This chapter gives a brief introduction about basic principles of rheology
and viscoelastic fluids. Governing equations along with theoretical models describing
the filament thinning are also discussed. Then, the present state of knowledge regarding
the beads on a string and liquid transfer is documented. This chapter will establish a
foundation for the thesis and will be useful in interpreting the experimental results.

• Chapter 2: The sample solutions tested, protocols for their preparation, and their
rheological characterisation, both in shear and extensional flows are explained. The
experimental setup used in the present study, along with the details of the instruments
employed are given in this chapter. Details of experimental methods and image analysis
to investigate both drops on a filament and liquid transfer are also provided. Finally, for
numerical investigation, details of the geometry and meshes used, numerical schemes
to solve the fundamental equations are described, together with preliminary numerical
results.

• Chapter 3: This chapter deals with the experimental results obtained for the drops
on a filament phenomenon. We present new space-time diagrams called ’diameter-
space-time diagrams’ and ’Hencky strain-space-time diagrams’. We further analyse
these diagrams to investigate characteristic behaviours of BOAS instability and drop
dynamics. Then, effect of different geometrical and stretching parameters on the
formation of BOAS structure and drop dynamics are reported, together with preliminary
numerical results.
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• Chapter 4: This chapter focuses on the study of liquid transfer. The role of viscoelastic-
ity in liquid transfer is investigated by varying polymer mass fractions in viscoelastic
liquids, along with preliminary numerical results. We then explore the influences of ge-
ometrical and stretching properties, such as plate diameter, initial liquid bridge height,
final stretching height and stretching speed, on liquid transfer for both viscoelastic and
Newtonian fluids. In addition, the role of the initial liquid volume introduced in the
liquid bridge is investigated.

• Chapter 5: Finally, the major conclusions drawn from the present study, along with the
detailed observations, are presented in this chapter.
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Rheology is the study of the deformation of matter resulting from the application of
a force [45]. Type of deformation response depends on the state of matter; for example,
gases and liquids will flow when a force is applied, while solids will deform by a fixed
amount and are expected to regain their shape when the force is removed. The term rheology
was coined by Eugene C. Bingham, along with Markus Reiner [46]. Rheology generally
deals with the behaviour of non-Newtonian fluids. Fluids are characterised as Newtonian
and non-Newtonian fluids, based on the response of their viscosity with change in a rate of
deformation. Newtonian fluids are named after Sir Isaac Newton, who first used an equation
to establish the relation between the rate of deformation and shear stress for such fluids.

In this chapter, general definitions of non-Newtonian and viscoelastic fluids are described.
After a general overview, extensional flows along with the capillary bridge thinning, formation
of a filament, and extensional viscosity are discussed. Then, a current state of knowledge
for drops on a filament and liquid transfer is presented, in addition to the numerical study of
both phenomena. This analysis will be a useful guide for the interpretation of experimental
results concerning drops on a filament and liquid transfer. Finally, the chapter is concluded
with objectives of the thesis.

1.1 Elastic solid and viscous fluid

In this section, classical descriptions of solids and liquids in their simplest (non-tensorial)
form are presented.

1.1.1 Elastic solids

Hooke’s law Hooke’s law describes the behaviour of an ideal elastic solid (called Hookean
solid). Hooke’s law states that the applied stress (force per unit surface area), τ , is proportional
to the deformation, γ , by a factor G called shear modulus:

τ =Gγ. (1.1)

Here, the example of a shear deformation is presented (see Fig. 1.1), where τ is the
shear stress and γ = δ /L is the shear deformation or shear strain. However, for an extensional
deformation, a strain, κ , is defined as a change in length divided by the original length. For
the extensional deformation, a ratio of the stress to strain is called Young’s modulus, E. Both
G and E measure the stiffness of the solid in shear and extension, respectively; and are related
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by E = 2G(1+ v̄). Here, v̄ is the Poisson ratio defined as a ratio of transverse to axial strain in
the direction of a stretching force.

solid solid

Lγ

δ τ

-τ

Deformed Unconstrained 

Fig. 1.1 An applied shear stress, τ , on a solid leads to a deformation, δ . The shear strain, γ ,
is given as: γ = δ /L.

Hooke’s law suggests that the material responds instantaneously to any mechanical
deformation since it does not have any internal relaxation time. After a sudden deformation,
the stress instantaneously switches from 0 to Gγ . In addition, once the source of stress
is removed, the Hookean body will always recover its original shape. Since the internal
structure of the material is not affected by the deformation at all, it can be said that the
Hookean body does not "flow," even if the stress is applied for a long time. The elastic
deformations in the body are reversible and elasticity is in fact closely related to the idea
of memory. Hence, a Hookean elastic solid is a limiting case of a material with infinite
memory. Hooke’s law is generally valid in the regime of small deformations. Above these
deformations, the material starts creeping and it enters from the elastic regime into the plastic
regime. In the plastic regime, the internal structure of the material is modified permanently.

1.1.2 Viscous fluid

Newton’s law Newton’s law of viscosity says the shear stress, τ , in a fluid is directly
proportional to the rate of deformation, γ̇ , by the factor η , which is defined as its shear
viscosity, as shown in Eq. 1.2. Contrary to Hookean elastic solids, any stress τ applied
during a short time t causes a permanent and irreversible deformation i.e. the fluid will never
spontaneously recover its previous internal structure once the stress is removed. Newton’s
law describes the behaviour of an ideal viscous fluid (called Newtonian fluid).

τ = ηγ̇ ; η = τ

γ̇
(1.2)
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Newton’s law of viscosity is valid for both liquids with small molar mass and gases.
Fluid viscosity is associated with the energy dissipation within the fluid and is due to internal
friction between the molecules. At a macroscopic level, viscosity can be viewed as the
resistance to deformation at a given shear rate. As shown in Fig. 1.2, a velocity gradient is
created along y direction within the fluid as the bottom plate is fixed and the top plate moves
with velocity, u. Hence, a shear flow is developed, and along the y direction, each fluid layer
moves with a different average velocity. In the shear flow, viscosity describes the transfer
of momentum due to molecular collisions between the different layers of the fluid. These
collisions are affected by temperatures. Hence, it is important to carry out the shear viscosity
measurements at a constant temperature.

τ

-τ

u

Fig. 1.2 Shear flow of a viscous fluid in-between two parallel plates separated by a distance
L. The top plate is moved at a speed of u and the bottom plate is fixed.

1.2 Governing equations

The branch of physics dealing with the motion of continuous materials (rather than modelled
as discrete particles), such as fluids and solids, is called continuum mechanics. The french
mathematician Augustin-Louis Cauchy was the first to formulate the fundamental equations
in 19th century. These equations include the conservation of mass and conservation of
momentum. For isothermal, single-phase, unsteady flows and incompressible fluids, the
basic governing equations are the mass conservation:

∇⋅u = 0 (1.3)
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and the momentum balance:

ρ (∂u
∂ t
+(u ⋅∇)u) = −∇p+∇⋅τ +g. (1.4)

Here u is the local velocity field, t is time, ρ is the material density (which is constant
for isothermal and incompressible flow), p is the pressure within the fluid and τ is the
local stress tensor describing the internal forces arising at any position in the material during
deformations. The conservation of momentum equation is also known as the Cauchy equation.
In the present study, we only consider incompressible flows and symmetric stress tensors, i.e.
τxy = τyx.

1.3 Shear and extensional flows

For the investigation of the mathematical structure of constitutive equations, two types of
flows have been of particular interest: pure shear flows and pure extensional flows. These
two flows will be discussed now.

Shear flow The velocity field and the associated strain rate tensor for a pure shear flow are

u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ux = γ̇y

uy = 0

uz = 0

and D = γ̇

⎡⎢⎢⎢⎢⎢⎢⎣

0 1/2 0
1/2 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(1.5)

where x and y are the direction of the flow and the direction of the velocity gradient, respec-
tively, (see Fig. 1.2), and γ̇ is the shear rate. Here, D is the rate of deformation tensor, defined
as:

D = 1
2
[(∇u)T +∇u] ⇒ Dxy =

1
2
(∂ux

∂y
+ ∂uy

∂x
) (1.6)

where (∇u)T is the transpose of (∇u) and ∇u is the velocity gradient tensor. By symmetry,
we can show that some components of the stress tensor are 0. The most general form of the
stress tensor is then
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τ =
⎡⎢⎢⎢⎢⎢⎢⎣

τxx τxy 0
τyx τyy 0
0 0 τzz

⎤⎥⎥⎥⎥⎥⎥⎦
(1.7)

The three important physical quantities are
● the shear stress, τxy = τyx

● the first normal stress difference, N1 = τxx−τyy

● the second normal stress difference, N2 = τyy−τzz.
The shear viscosity, also called apparent shear viscosity, is defined as

η ≡ τxy/γ̇. (1.8)

Extensional flow The velocity field and the associated strain rate tensor for a pure exten-
sional flow are

u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ux = exε̇x

uy = eyε̇y

uz = ezε̇z

and D = ε̇

⎡⎢⎢⎢⎢⎢⎢⎣

ex 0 0
0 ey 0
0 0 ez

⎤⎥⎥⎥⎥⎥⎥⎦
(1.9)

where, ε̇ is called the extension rate. For incompressibility, ex + ey + ez = 0. Two types of
extensional flows are considered:
● for a three-dimensional extensional flow along x ∶ ex = 1 and ey = ez = −1/2
● for a planar extensional flow along x ∶ ex = −ey = 1 and ez = 0.
The associated form of the stress tensor is

τ =
⎡⎢⎢⎢⎢⎢⎢⎣

τxx 0 0
0 τyy 0
0 0 τzz

⎤⎥⎥⎥⎥⎥⎥⎦
(1.10)

In the case of a three-dimensional extensional flow, since directions y and z are equivalent,
there is only one normal stress difference τxx−τyy and the extensional viscosity is defined as

ηe ≡
τxx−τyy

ε̇
. (1.11)

The same definition of extensional viscosity applies to the planar case.
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Newtonian fluids The constitutive equation in tensor form for incompressible Newtonian
fluids is written as

τ = 2ηD ⇒ τxy = η (∂ux

∂y
+ ∂uy

∂x
) (1.12)

where η is the shear viscosity defined by Eq. 1.8. It is a constant parameter of the fluid,
independent of the shear rate. Eq. 1.12 is the tensorial form of Newton’s law of viscosity
(Eq. 1.2). The normal components of the stress tensor, τ , are 0 in a pure shear flow, i.e.
N1 =N2 = 0, and the extensional viscosity is ηe = 3η for a three-dimensional pure extensional
flow. Fluids which follow Eq. 1.12 are called Newtonian fluids. The main examples of
Newtonian fluids are water, air and alcohol.

Non-Newtonian fluids Many complex fluids do not obey the Newton’s law of viscosity
(Eq. 1.2 and Eq. 1.12). There are many examples of so-called non-Newtonian fluids in
nature (saliva, blood, egg-white, mud, magma, etc.), food (ketchup, sauces, soups, yoghurts,
jams, mayonnaise), cosmetics (shampoo, cremes, toothpaste, gels, foams), civil engineering
(concretes, paints) and industry (polymer melts, molten metals). Many models have been
developed to predict behaviour of non-Newtonian fluids. For instance, an equation for power-
law fluid is shown in Eq. 1.13, also known as Ostwald–de Waele relationship [47], where K
is the flow consistency and n is the flow index. Values of n can be greater or less than one. If
n = 1, then the fluid is a Newtonian fluid, recovering Eq. 1.2. The different behaviours of Eq.
1.13 are represented in Fig. 1.3.

τ =Kγ̇
n ; η =Kγ̇

n−1 (1.13)

Moreover, non-Newtonian fluids are often categorised based on the change in their
viscosity with respect to time and rate of deformation. Viscosity of time-dependent non-
Newtonian fluids changes with the time duration of applied stress: viscosity of thixotropic
fluids decreases with the time duration of applied shear stress and for rheopexy fluids,
viscosity of fluid increases with the time duration of applied shear stress. Rheopexy fluids
are also known as anti-thixotropic fluids because of their exact opposite behaviour, compared
to thixotropic fluids. Additionally, the viscosity of non-Newtonian fluids may increase or
decrease with the rate of deformation, as shown in Fig. 1.3(b), and, fluids are categorised as
shear-thinning or shear-thickening. Shear-thinning fluids are also called pseudo-plastic fluids.
For shear-thinning fluids, n < 1 and for shear-thickening fluids, n > 1.

Viscoelastic fluids Viscoelastic fluids are special types of non-Newtonian fluids which
exhibit both viscous, as well as elastic properties under an applied rate of deformation.
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Fig. 1.3 Different types of responses, as a function of applied rate of deformation, for (a)
shear stress and (b) viscosity, distinguishing the Newtonian and non-Newtonian behaviour of
fluids, adapted from Plohl [48].

Additionally, their behaviour can be time-dependent, i.e. rheopectic or thixotropic. The main
examples of viscoelastic fluids are saliva, egg white, polymer melts and solutions.

A polymer is a large molecule composed of chains or rings, of linked repeated small
molecules, which are known as monomers. Polymers can be divided into two categories:
natural polymers and synthetic polymers. Natural polymers are the polymers found in nature,
such as silk, wool, proteins and deoxyribonucleic acid (DNA). Synthetic polymers are man-
made polymers, obtained by chemical reactions in industries. Examples of synthetic polymers
are polyvinyl chloride (PVC), polystyrene (PS), polyamide (PA or nylon), polyethylene oxide
(PEO) and polyethylene glycol (PEG). Based on the structure of monomer chains, polymers
are categorised as linear, branched-chain and cross-linked polymers. The polymers used in
this study are linear.

1.4 Constitutive equations and viscoelastic models

The purpose of measuring rheological properties of materials is to provide parameters which
enable a description of the fluid flow behaviour. Viscoelastic models are used to represent
viscoelastic fluid flow behaviours. Behaviour of viscoelastic solutions resembles closely
to different combinations of dampers (viscous elements) and springs (elastic elements).
Different models have been developed, using these elements, to relate the stress tensor to the
material deformation by establishing constitutive equations. Some of the important models
related to this study are described below:
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1.4.1 Maxwell model and Kelvin-Voigt model

Simplest forms of linear constitutive models used for viscoelastic fluids are the Maxwell
model and the Kelvin-Voigt model, as shown in Fig. 1.4. In the Maxwell model, a dashpot
and a spring are in a serial connection, while, in the Kelvin-Voigt model, a dashpot and a
spring are in a parallel connection. The total deformation for both models is denoted as γ

and the total stress for both models is denoted as τ . The corresponding deformation and
stress of the spring are denoted by γs and τs, respectively. For the dashpot, the corresponding
deformation and stress are shown by γd and τd , respectively.

(a) (b)

η
η

Dashpot

Spring

-τ τ -τ τ

Spring

Dashpot

Fig. 1.4 (a) Maxwell model with a purely viscous damper of viscosity η , and purely elastic
spring of elastic modulus G, in serial connection, (b) Kelvin-Voigt model with a purely
viscous damper of viscosity, η , and purely elastic spring of elastic modulus, G, in parallel
connection.

Hence, under the application of τ , for Maxwell model, we can observe that γ = γs+γd and
τ = τs = τd . For Kelvin-Voigt model, we can observe that, τ = τs+τd and γ = γs = γd . Then,
the linearised Maxwell model is represented by

τ + η

G
τ̇ = ηγ̇ (1.14)

and the general equation for the Kelvin-Voigt Model is given as:

τ =Gγ +ηγ̇ (1.15)

Here, G is the elastic constant of the material or shear modulus. The differential equation of
the Maxwell model, Eq. 1.14, can be solved for step excitation of stress or deformation. The
response represents the creep and relaxation functions, respectively [49, 50]. The Maxwell
model can be further modified by introducing the Maxwell stress relaxation time, λ = η/G.
Hence, Eq. 1.14 will become,

τ +λ τ̇ = ηγ̇ (1.16)



10 Basic principles of rheology, beads on a string, liquid transfer, and numerical modelling

The above linear models can be turned into convected models. Scalar stress and strain rate
are replaced by stress and rate of deformation tensors, τ and D, respectively. For convected
models to be independent of the frame of reference, time derivatives of tensors are introduced.
The Oldroyd convected derivative is a time derivative in a local coordinate system along the
fluid flow [51]. The upper convected derivative of stress,

∇
τ , is given as,

∇
τ ≡

∂τ

∂ t
+u ⋅∇τ −(∇u)T ⋅τ −τ ⋅∇u. (1.17)

The Maxwell model in the upper convected form can be written as:

τ +λ
∇
τ = 2η0D , (1.18)

where η0 is the zero-shear-rate viscosity, i.e. the viscosity at low shear rates. The upper
convected Maxwell model among other things is limited by its shear-rate independent
viscosity [47].

1.4.2 Jeffreys and Oldroyd-B models

Jeffreys model Jeffreys model is a linear viscoelastic fluid model with two-time constants
that was introduced in 1929 for the study of wave propagation in the Earth’s mantle [47]:

τ +λ τ̇ = η0 (γ̇ +λ2γ̈) . (1.19)

This model contains three independent parameters; the zero-shear-rate viscosity, η0, and
two material time constants: the stress relaxation time, λ , and the deformation retardation
time, λ2. These two polymeric time scales describe the rheological behaviour of viscoelastic
liquids upon small deformations. For small deformations of a liquid element, the polymeric
time scales λ and λ2 describe the stress relaxation after removal of strain and strain rate
relaxation after removal of stresses, respectively.

Oldroyd-B model The upper convected equivalent of the Jeffreys model is identical to the
Oldroyd-B model, introduced by Oldroyd in 1950 [51]. The Oldroyd-B model is given as:

τ +λ
∇
τ = 2η0(D+λ2

∇
D) (1.20)
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The Oldroyd-B model contains several other as special cases:

• If λ2 = 0, the Oldroyd-B model reduces to the Maxwell model in the upper convected
form (Eq. 1.18).

• If λ = λ2, the Oldroyd-B model reduces to a Newtonian fluid with viscosity η0.

There are different forms of the Oldroyd-B model and they are used depending upon the
applications. Some of the important forms are listed below:

• Solvent-polymer stress splitting (SPSS)

This form was introduced by Bird et al. [47]. The Oldroyd-B equation is formulated in
terms of the polymeric stress, τ

p
, and solvent stress, τ

S
, contributions to the stress:

τ = τ
p
+τ

S
,

τ
S
= 2ηsD,

τ
p
+λ
∇
τ

p
= 2ηpD. (1.21)

After substitution of τ
p
= τ −τ

S
in the last equation, one recovers Eq. (1.20) provided

that η0 = ηs +ηp, where ηp is polymer viscosity, ηs is solvent viscosity, and λ2 =
λ [ηs/(ηp+ηs)] = ληs/η0. The ratio, ηs/η0, is called viscosity ratio, S.

• Elasto-viscous stress splitting (EVSS)

This form was introduced by Perera and Walters [52] for stable numerical simulation.
The Oldroyd-B equations are formulated in terms of Newtonian stress, τ

n
, and elastic

stress, τ
e
, contributions to the stress:

τ = τ
n
+τ

e
,

τ
n
= 2η0D,

τ
e
+λ

∇
τ

e
= −2ληel

∇
D (1.22)

After substitution of τ
e
= τ −τ

n
in the last equation, one recovers Eq. 1.20 provided

that ηel = [1− (λ2/λ)]η0. The EVSS model does not use the solvent viscosity nor
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the polymeric viscosity. Furthermore, calculations with this model require either the
retardation time, λ2, or the elastic viscosity, ηel , to be provided.

However, SPSS is the most popular form in numerical simulations compared to the
EVSS method [53–56]. In the work by Amoreira and Oliveira [57], SPSS was more
efficient than EVSS as the latter requires longer iterative cycles to converge. Also, in
our numerical simulations, rheoTool only allows us to implement the SPSS form.

Polymer solutions may exhibit both stress relaxation and deformation retardation times
[58]. These two material time constants, along with the zero-shear-rate viscosity are captured
by the Oldroyd-B model and can be determined by rheological methods. The relaxation
time can be measured experimentally using the Capillary Breakup Extensional Rheometer
(discussed later in details in section 1.5) and retardation time can be measured experimentally
using the oscillating drop method (discussed in appendix C). Even though the Oldroyd-B
model provides satisfactory results in a simple steady shear flow, yet the model is limited by
its shear-rate independent viscosity [47]. Moreover, the model fails to predict breakup of a
filament seen in the experiments, and does not include the finite extensibility of polymers.

1.4.3 FENE-P model

The FENE-P model is one of the most commonly used constitutive equations that takes intrin-
sic nonlinearities into account. The model has been derived by Bird, Curtiss, Armstrong and
Hassager [47] from the kinetic theory of dilute polymer solution where polymer molecules
are modelled as “finitely extensible nonlinear elastic” (FENE) dumbbells. The Oldroyd-B
model is also derived from this theory, however the polymer molecules are modelled as
Hookean dumbbells, with a linear intrinsic stress-strain relationship. The FENE-P model
and its key predictions for pure extensional flows are simply discussed here (see Bird et al.
[47, 59], Herrchen and Öttinger [60] and Gaillard [61] for more detailed discussions).

The polymer contribution to the stress tensor can be written as

τ
P
=G( f A− I) (1.23)

where
λ
∇
A+ f A = I (1.24)

and

f = (1−
tr(A)

b
)
−1

= 1+ 3
b
⎛
⎝

1+
tr(τ

P
)

3G
⎞
⎠

(1.25)
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where A is a conformation tensor (defined in section 1.8), I is the unit tensor, G is the elastic
modulus, λ is the relaxation time and tr is the trace of a tensor. f is a correction term
accounting for non-linearity and finite extensibility, b, of the dumbbell. b is defined as a ratio
of the polymer size at full extension to its size in the coiled state at equilibrium. Thus, b is
a positive dimensionless parameter, usually greater than ten, which accounts for the finite
extensibility of the polymer chains. For semi-dilute solutions, b is an effective value as FENE
models do not take into consideration any chain-chain interaction. The Oldroyd-B model can
be recovered for infinitely extensible polymers, i.e. for fb→∞ = 1.

Extensional flow For an extensional flow, the asympotic values (t →∞) of the stress
components are given as:

τP,ii =
2eiGλ ε̇

f −2eiλ ε̇
where i = x, y, z (1.26)

and
f = 1+ 3

b
(1+ τP,xx+τP,yy+τP,zz

3G
) (1.27)

In the case of a three-dimensional extensional flow, the extensional viscosity, ηe ≡ (τxx−τyy)/ε̇
is given as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ηe−3ηs)/Gλ = 2/( f −2λ ε̇)+1/( f +λ ε̇)
f 3− [λ ε̇ +1+3/b] f 2+ [λ ε̇(1+3/b)−2(λ ε̇2)] f +2(λ ε̇)2 = 0

(1.28)

for which there is no simple analytical expression. The two limiting scalings are

ηe−3ηs =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3Gλb/(b+3) for λ ε̇ → 0

2Gλb for λ ε̇ → +∞
(1.29)

Considering the polymer contribution to the zero-shear viscosity, i.e. ηP = η0−ηs, we obtain

ηe−3ηs

η0−ηs
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3 for λ ε̇ → 0

2(b+3) for λ ε̇ → +∞
(1.30)
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The FENE-P model is more realistic than the Oldroyd-B model since shear thinning
behaviour is allowed. It has been successfully used to describe, at least qualitatively, many
physical phenomena including the breakup stage of thinning filaments [12, 15].

1.5 Extensional rheology

Industrial processing of viscoelastic polymer solutions is usually a combination of shear
and extensional flows. Therefore, rheological characterisation of solutions in both shear
and extensional flows is necessary to optimise the properties of the final products. We now
explain how to experimentally measure the relaxation time and the extensional viscosity of a
viscoelastic liquid. There are different types of extensional rheometers available depending
upon the applications. Details of extensional rheometers along with their applications can be
found in a handbook by Tropea and Yarin [49]. One of the most popular devices to measure
these extensional properties of polymer solutions is the Capillary Breakup Extensional
Rheometer (CaBER). In order to produce an extensional flow, we use the well-documented
filament thinning technique, using CaBER, described by Anna and McKinley [1]. It is a
standard technique and is now used by many authors [9, 14, 62, 63]. CaBER is a filament
stretching extensional rheometer, as it monitors thinning of a liquid filament, formed after
stretching of a liquid bridge, connecting two circular end plates. A typical protocol is the
following one. A droplet of liquid is placed between two horizontal plates with diameter DP

or radius RP, see Fig. 1.5, like a drop of saliva between a thumb and index finger. Hence, a
liquid bridge is formed with an initial diameter, D0, or radius, R0, and an initial height, L0.
At this point, the liquid bridge diameter and the plate diameter are the same D0 =DP. Then,
the bottom plate is kept fixed and the upper plate is moved upwards to a final stretching
height, L. The liquid bridge starts necking and a filament connecting the two solution pools
undergoes a succession of thinning regimes until the final breakup. The filament thinning
process is recorded in order to measure the filament diameter, D(t), as a function of time, t
(experimental details are given in the next chapter). The stretching of the liquid bridge can be
defined using dimensionless quantities called the aspect ratio. The initial aspect ratio, IAR,
can be defined as IAR = L0/RP, and the final aspect ratio, FAR, can be defined as FAR = L/RP.

A global picture of the filament thinning process of complex fluids can be found in the
review article published by McKinley [12]. Capillary forces hold an initial fluid sample
in-between two plates. When the two plates are separated by a distance L0, the liquid bridge
(or filament) becomes unstable above a critical separation height. It is thus essential that the
initial plate separation height, L0, is small enough to support a static liquid bridge. Moreover,
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(a) (b) (c)

(d) (e) (f)

D(t)
Top plate

Bottom plate Bottom plate

Top plate

D0 L0

L(a)

(b)

z

r

(c)

D(t)

RP

Fig. 1.5 (a) Liquid bridge with initial diameter, D0, initial height, L0 and plate radius, RP.
(b) Stretched liquid bridge with filament diameter, D(t), and final stretching height, L. (c)
Schematic representation of a cylindrical filament.

due to axial gravity, the liquid bridge stability depends on both the fluid volume introduced
and the Bond number, Bo.

Bond number Gravitational effects on the liquid bridge are characterised by a dimension-
less number, called the Bond number, Bo. The name commemorates the English physicist
Wilfrid Noel Bond [64]. The Bond number represents the balance between gravitational
forces and surface tension (capillary) forces:

Bo = ρgDP
2

4σ
(1.31)

In order to keep the initial configuration close to a cylindrical shape, capillary breakup tests
typically employ axial separations equivalent to a condition: L0 ≤ lcap or IAR ≤ 1/

√
Bo [14].

lcap is the capillary length of a liquid bridge given as: lcap =
√

σ/ρg, where σ is the surface
tension of the fluid, g is the gravitational acceleration and ρ is the density of the fluid. For
IAR larger than the conditional value, the liquid bridge can ‘sag’ and the stability of the
bridge can get affected [12, 14, 65]. In the present thesis, Bo is varied from 0.66 to 2.88, by
using three different plate diameters.

Stability of a liquid bridge The filament break-up experiments typically start with a
cylindrical-shaped liquid bridge and the total physical volume remains constant as the
bridge is elongated axially. The stability of the liquid capillary bridge, formed between two
equal-sized plates can be represented by a single closed curve, as shown in Fig. 1.6. The
dimensionless volume, VD is plotted against the slenderness ratio, Λ = L0/DP = IAR/2, to
present different initial liquid bridge shapes. Here, VD is defined as the ratio of physical



16 Basic principles of rheology, beads on a string, liquid transfer, and numerical modelling

Fig. 1.6 Stability curve for the liquid bridge. Liquid bridge configurations represented by
points inside this stability limit curve are stable, while those lying outside are unstable.
Curve AB indicates moving contact line, curve BC characterises the minimum liquid volume
required and curve AC represents the maximum liquid volume that can be placed in-between
two plates. Modified from Bezdenejnykh et al. [66].

volume introduced in the liquid bridge to the cylindrical volume with same L0 and DP. Inside
the stability limit enclosed curve, liquid volumes are stable and will not breakup, whereas
liquid volumes outside the curve are unstable [66]. This stability curve can be characterised
into three different regimes. For the smaller values of dimensionless volumes and the
slenderness ratios, the liquid contact line is not pinned to the edges of disks, as represented
by the curve AB. The curve BC governs the minimum volume required, characterised by
the axisymmetric break-up of the bridge, and called ’minimum volume stability limit’. The
breakup of the capillary bridge is observed outside of this curve. The third curve, AC, refers
to the maximum volume limit of the bridge, over which the liquid bridge becomes unstable
and overflows. In the experiments discussed in the thesis, precautions are taken to make sure
the initial liquid bridge will be inside the stability curve.

Force Balance on a slender filament When a liquid bridge is stretched, it starts thinning
due to capillary forces and a filament along with solution pools is formed, as shown in Fig.
1.5(b). Due to gravitational sagging, the filament diameter is a function of altitude, z, as
D(z,t). For slender filaments (i.e. filaments for which ∂D/∂ z≪ 1), mathematical analysis
are often simplified by neglecting axial curvature caused by sagging. Hence, a simplified
force balance equation can be written assuming a filament with a constant diameter, D(t), or
radius, R(t), see Fig. 1.5(c). In this context, the extensional flow has an axial component
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uz = ε̇z and a radial component ur = −ε̇r/2, where ε̇ is the extension rate. Since ur at r = R(t)
must be equal to Ṙ(t) = dR/dt, we have

ε̇ = −2Ṙ(t)
R(t) = −

2Ḋ(t)
D(t) (1.32)

When the filament thins down to diameter, D(t), the total deformation in the element is given
by the logarithmic or Hencky strain [67, 68]:

ε(t) = ∫
t

0
ε̇(t∗)dt∗ = 2ln[D0/D(t)] (1.33)

The general form of the force balance for slender viscoelastic filaments was established
by McKinley [12] and Tirtaatmadja et al. [69]. Considering inertial, capillary, viscous and
elastic forces, the force balance equation can be written as,

1
2

ρṘ(t)2 ≈ Fz(t)
πR(t)2

− σ

R(t) −3ηsε̇ − [τ(t)p,zz−τ(t)p,rr] (1.34)

Here, σ/R(t) is a capillary pressure, 3ηsε̇ is the net viscous extensional stress, [τ(t)p,zz−
τ(t)p,rr] is the time-evolving non-Newtonian polymeric stress difference and Fz(t) is the
unknown tensile force in the filament. The solution pools formed at the end plates serve as
quasi-static reservoirs which soak up the fluid drained into them from the radially-contracting
filament. They also enable the no-slip boundary condition at the plates, which would
otherwise induce a radial shear flow at the liquid contact lines on the plates. In CaBER
experiments, since there is no external stretching (contrary to fibre-spinning-like experiments
for example), the axial force on the filament can be given as Fz(t) = 2πσR(t). Hence, Eq.
1.34 can be written as,

1
2

ρṘ(t)2 ≈ σ

R(t) −3ηsε̇ − [τ(t)p,zz−τ(t)p,rr] (1.35)

However, according to the numerical simulations for viscoelastic solutions by Li and Fontelos
[2], the axial force is actually Fz(t) ≈ 3σR(t). Hence, the theoretical approximated value of
Fz is acceptable, and will only result in moderate errors in the prefactor of the final result.

Ohnesorge number Wolfgang von Ohnesorge introduced in 1936 [70] a dimensionless
number, later called the Ohnesorge number, Oh, that relates viscous forces to inertial and
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surface tension forces [71], as shown in Eq. 1.36. If Oh > 1, the viscous effects will dominate
the filament thinning. The thinning will be controlled by inertia if Oh < 1. In the present
work, we are able to achieve a wide range of Oh from 10−3 to 4.91 by varying polymer
solutions and liquid bridge properties.

Oh = η0√
ρσRP

(1.36)

Deborah number To characterise the material behaviour in time, Reiner [46] introduced a
dimensionless number, called Deborah number, De. A natural or intrinsic Deborah number
[12, 14, 72] for free surface viscoelastic flows, represents a ratio of time scales for the elastic
stress relaxation, λ , to the ‘Rayleigh time scale’, tR, as shown in Eq. 1.37. The Rayleigh time
scale is a characteristic time scale for phenomena dominated by the interplay of capillarity
and inertia.

De = λ

tR
= λ√

ρD3
P

8σ

(1.37)

This definition of Deborah number has been widely used before [3, 9, 12, 56, 72] and
is based on material properties and plate diameter. Note that other definitions of De are
possible, where Deborah number is defined as λ /(η0DP/2σ) [3, 43]. Mainly, De represents
a balancing of the elastic, capillary and inertial forces. For De≫ 1, the material shows elastic
solid-like behaviour, while for De≪ 1, viscous fluid-like behaviour. If De ≈ 1, the material
behaviour can be regarded as a viscoelastic liquid.

Dynamics of filament thinning The relevant solution for a particular experimental configu-
ration depends on relative magnitudes of the visco-capillary, inertio-capillary and viscoelastic
time scales denoted tv, tR and λ , respectively. Here, the viscous time scale, tv, is defined as
tv = η0RP/σ . Hence, Oh can be rewritten as a ratio of viscous to Rayleigh time scales,

Oh = tv
tR

(1.38)

Newtonian liquids For a Newtonian liquid of viscosity η , close to filament breakup, two
different behaviours can be observed depending on the relative importance of inertia and
viscosity. If inertia overcomes fluid viscosity (Oh≪ 1), the force balance equation (Eq. 1.35)
reduces to ρṘ(t)2/2 ≈ σ/R(t). On the contrary, if fluid viscosity overcomes inertia (Oh≫ 1),
the force balance equation (Eq. 1.35) becomes 3ηsε̇ ≈ σ/R(t). Therefore, the respective
inertio-capillary (Oh≪ 1) and visco-capillary (Oh≫ 1) thinning regimes can be written, as
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[12, 14, 61]:

R(t)/R0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X ( tb−t
tR
)2/3 for Oh≪ 1

X2 ( tb−t
tν ) = 0.0709 Oh−1 ( tb−t

tR
) for Oh≫ 1

(1.39)

Here, tb is the filament breakup time. A careful analysis of past measurements in the
inertio-capillary regime reveals the dimensionless prefactor, X , exhibits a complex and
nonmonotonic behaviour. Early theoretical and experimental studies [14, 63, 69, 73, 74]
reported or utilised values of X in the range of 0.6 to 0.8. However, Deblais et al. [11]
and Dinic and Sharma [75] obtained values of the prefactor X in the range of 0.3 to 0.4.
Furthermore, recent numerical simulations by Figueiredo et al. [56] show that the value of
prefactor X depends on Oh. The authors found that as Oh decreases, the prefactor increases
and X = 0.19 was reported for Oh = 0.1.

Viscoelastic liquids For viscoelastic solutions, thinning dynamics are different in the later
stages due to presence of polymers. Initially, a self-similar inertio-capillary (Oh≪ 1) or
visco-capillary (Oh≫ 1) thinning occurs depending on the value of Oh. When the stretched
liquid bridge suddenly switches to a slender filament shape, the filament diameter decays
exponentially at a rate of (3λ )−1 with a prefactor, as shown in Eq. 1.40. This thinning is
called elasto-capillary thinning and during this transition, elastic stresses become dominant
due to the rapid stretching of polymer molecules. Physically, in this regime, we obtain a
balance of the elastic modulus, G = ηP/λ , and ‘squeezing’ effects due to capillary pressure
[12].

D(t)
D0
= (GD0

4σ
)

1/3
exp( −t

3λ
) (1.40)

As the mass fraction of polymer increases, the elasto-capillary thinning process slows down
as a consequence of the increase in the material relaxation time. In the later stages of filament
thinning, two effects become evident. Firstly, the thinning diameter systematically deviates
from the exponential behaviour due to the finite extensibility of the polymer chains. When
the polymer chains reach their full length, the extensional viscosity reaches a plateau value
and the liquid behaves like a Newtonian fluid [76]. The filament diameter then decreases
linearly with time, see Eq. 1.41. Hence, filament thinning shows quasi-Newtonian behaviour,
characterised by a constant observed extensional viscosity, ηT .

D(t) =D0−(σ/ηT )t. (1.41)
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Secondly, the discrete resolution of the laser micrometer can create a ‘stair casing’ like
structure in the measured evolution of the filament diameter with time.

Extensional viscosity In the elasto-capillary regime, inertia is negligible. Hence, using the
force balance equation (Eq. 1.35), the normal stress difference, τ(t)zz−τ(t)rr, in the filament
can be estimated.

σ

R(t) ≈ 3ηsε̇ + [τ(t)p,zz−τ(t)p,rr] (1.42)

where τ(t)zz − τ(t)rr = [τ(t)s,zz−τ(t)s,rr)+(τ(t)p,zz−τ(t)p,rr] and the net viscous exten-
sional stress, τ(t)s,zz−τ(t)s,rr = 3ηsε̇ . The "apparent extensional viscosity" can be defined
as

ηE =
τ(t)zz−τ(t)rr

ε̇
(1.43)

By considering Eq. 1.32 and Eq. 1.42, the apparent extensional viscosity can be directly
estimated from the experiments as

ηE = −
σ

2Ṙ(t)
= − σ

Ḋ(t)
(1.44)

Finitely extensible nonlinear elastic (FENE) dumbbell models predict that ηE reaches a
plateau value, known as the terminal extensional viscosity, ηT . Yet, according to theory [77],
polymer chains are stretched about one-tenth of the extension limit. For the FENE-P model,
using Eq. 1.30, the terminal extensional viscosity is given by [12, 78]

ηE Ð→ ηT = 3ηs+2bηp. (1.45)

Here, the value of b+3 in Eq. 1.30 with FENE-P model is replaced by b and as we are
mainly interested in the order of magnitude of b, this will not have any consequences in later
discussions.

However, there are different methods to measure the extensional viscosity of the solutions.
The extensional viscosity can be measured using a micro weight-balance or using the "appar-
ent extensional viscosity" method. Sridhar et al. [79] used a micro-balance to experimentally
measure the extensional viscosity. The Trouton ratio, which is the ratio of the extensional
viscosity, ηe, to the constant shear viscosity, η0, is found to be increasing with time from the
initial value of 3, to 103 but it does not attain the steady value. Hence, the authors did not
attain the terminal extensional viscosity. Berg et al. [80] measured the extensional viscosity,
by stretching liquid bridges, under microgravity. The axial force required to stretch the bridge,
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was measured with time. Newtonian, as well as viscoelastic fluids, were tested. Silicone
oil was used as a Newtonian fluid. Aqueous solutions of acrylamide polymer, in various
concentrations, were used as viscoelastic fluids. Initially, both Newtonian and viscoelastic
fluids showed the same behaviour where the extensional viscosity increased to three times the
shear viscosity. Then, the extensional viscosity remained constant for the Newtonian fluid.
But for viscoelastic fluids, the extensional viscosity keeps on increasing and did not attain
the terminal extensional viscosity. Additionally, the extensional viscosity increases linearly
with increase in the Hencky strain. Here, the Hencky strain is defined as ε = ln[L(t)/L0],
where L(t) and L0 are the instantaneous and initial lengths of a cylindrical section. Moreover,
with the increase in polymer concentration, the extensional viscosity is also found to be
increasing.

Furthermore, previously either the midpoint diameter, [1, 78] or the neck diameter [81],
of a filament were used to calculate the apparent extensional viscosity. The use of midpoint
diameter, Dmid(t), to calculate the apparent extensional viscosity was proposed by Schümmer
and Tebel and was later implemented by Anna and McKinley [1]:

ηE = −
σ

dDmid/dt
. (1.46)

Gaillard et al. [78] measured the apparent extensional viscosity using a custom-made capillary
breakup extensional rheometer. Solutions of polyethylene oxide (PEO), with M = 8×106

g/mol, in a solvent made of water and polyethylene glycol (PEG) with M = 8000 g/mol
was used. The concentration of PEG was fixed with 20 wt% and the concentration of PEO
was varied from 0 to 0.4 wt%. Additionally, aqueous solutions of HPAM and NaCl were
used. A liquid bridge with DP = 3 mm, was stretched from initial aspect ratio, L0/RP ≈ 1 to
final aspect ratio, L/RP ≈ 2.4. The apparent extensional viscosity, ηE , was plotted against
the Hencky strain, ε , as shown in Fig. 1.7(a). The extensional viscosity increased with
the increase in PEO concentration for aqueous solutions of PEO and PEG. Dinic et al.
[81] implemented dripping-onto-substrate extensional rheometry and measured optically
the apparent extensional viscosity, ηE , for aqueous solutions of PEO with lower molecular
weight (M = 106 g/mol) than the one used in the present study. The concentration of PEO
was varied from 0.01 to 0.3 wt%. The solutions were dispensed through a nozzle with
0.419 mm inner radius onto a glass substrate located at a fixed distance, H = 2.514 mm.
The apparent extensional viscosity, ηE , was calculated as, ηE = −σ/(dDneck/dt) and plotted,
see Fig. 1.7(b), against Hencky strain, ε = 2ln[D0/Dneck(t)]. Similar to Berg et al. [80]
and Gaillard et al. [78], the increase in polymer concentration leads to an increase in the
extensional viscosity before pinch-off. In the present study, we will implement a similar
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Fig. 1.7 (a) Apparent extensional viscosity as a function of Hencky strain for PEO solutions
with 20 wt% PEG solvent and for HPAM solutions using a capillary breakup extensional
rheometer. Adapted from Gaillard et al. [78]. (b) Extensional viscosity as a function of
Hencky strain for PEO solutions in dripping-onto-substrate extensional rheometry. Reprinted
from Dinic et al. [81].

method as Dinic et al. [81] as we use the minimum diameter of the filament to calculate ηE .
This approach helps to extract ηE in the neck diameter of the filament.

Effect of final stretching height There have been limited studies on the effect of final
stretching height on the thinning of a liquid capillary bridge. Rodd et al. [14] investigated the
filament thinning using CaBER for aqueous PEO solutions (M = 2×106 g/mol) for different
final stretching heights (FAR ≈ 2.9 to 4). The authors reported that relaxation times remain
unchanged with the increase in final aspect ratios. Later, Miller et al. [83] reported a similar
behaviour where relaxation times remained unchanged against final aspect ratios (FAR = 3 to
15) for 1 wt.% aqueous polyacrylamide (PAA) solution. Furthermore, when plotted against
the Hencky strain, extensional viscosities of the solutions remained unaffected with FAR.
The extensional viscosity evolution of polymer solutions was found to be independent of FAR
once the elasto-capillary balance had been reached. However, in case of wormlike micelle
solutions of cationic surfactant cetylpyridinium chloride (CPyCl) and sodium salicylate
(NaSal) dissolved in a solution of 100 mM NaCl in distilled water, the Trouton ratio was
found to decrease by more than a factor of four as the stretch length was increased from
FAR = 3 to FAR = 7. Furthermore, a decay of relaxation times when increasing from FAR = 3
to FAR = 7 was also reported for CPyCl/NaSal solutions. On the contrary, Kim et al. [84]
found an opposite behaviour as relaxation times increase with FAR was increased from 1.6 to
3.4. According to the authors, this discrepancy could be differences in fundamental properties
of wormlike micellar material, but it could be also due to lower values of FAR. However,
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in the present thesis, we investigate filament thinning for aqueous solutions of PEO. Hence,
only the findings of Rodd et al. [14] and Miller et al. [83] for the effect of FAR on polymer
solutions are useful.

1.6 Review on beads on a string

In this thesis, the stretching of a liquid bridge is considered and we use aqueous solutions of
polyethylene oxide (PEO) and polyethylene glycol (PEG) to create viscoelastic solutions.
Hence, in the following text, the relevant literature on filament thinning and formation
of BOAS structure, mainly using PEO solutions and stretched liquid capillary bridge are
reviewed.

Formation of BOAS structure Once extensional viscosity reaches a plateau value, neck-
ing occurs at the ends of a filament and the filament then undergoes a Rayleigh-Plateau-like
instability. This instability leads to formation of a drop-like pattern on a thin column of
viscoelastic liquid, called as the beads on a string [7, 9, 16, 85]. However, BOAS structure
is clearly not a simple Rayleigh-Plateau like instability since the beads are very far apart
[18, 74, 86]. A "blistering" instability could be a secondary instability leading to smaller
beads on a thinner string and sometimes observed at the final stages of thinning. A blistering
pattern is superficially similar to a BOAS structure and it is characterised by small droplets
that form in between the initially formed BOAS structure. Deblais et al. [18] demonstrated
that BOAS and blistering instabilities have self-similar origins. A BOAS structure is con-
trolled by an interplay between capillary and elastic forces and induced by local symmetry
breaking in a fluid neck. On the other hand, a blistering instability is due to a dynamical
phase separation that takes place in an elongational flow. The phase separation is induced by
combined effects of temperature and inhomogeneities of polymer concentration in a polymer
filament. Sattler et al. [86] demonstrated that the amplitude of higher generations of drops
follows a temporal evolution that starts with an exponential growth and then switches to a
power law growth. In this power law growth, a connecting filament pumps solution into drops.
As a result, volume of the filament decreases as volume of drops increases. Furthermore, in a
blistering pattern, droplets are arranged off-axis relatively to the filament [86], as shown in
Fig. 1.8(a). When a BOAS structure was dried, magnified images obtained using a scanning
electron microscopy, Fig. 1.8(b)-(d), indicate a thin solid filament. The filament showed the
properties of a purely elastic fibre, suggesting phase separation. Even though the filament is
in a stretched state, polymers in (liquid) drops are in a relaxed state.
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Fig. 1.8 (a) Shadowgraphic image of a beads on a string phenomenon, (b) Scanning electron
microscopy image of two drops, connected by a filament (for a BOAS structure dried on a
substrate), (c) Another example of the structure, (d) Magnified view of (c). Reprinted from
Sattler et al. [86].

In a BOAS structure, the simple one-dimensional force balance equation (Eq. 1.35)
becomes invalid. Furthermore, since finite extensibility effects are now important, charac-
teristic elasto-capillary thinning equation Eq. 1.40 is not valid anymore. Linear stability
analysis by Chang et al. [85] showed that for low viscosity elastic fluids, in the later stages
of a BOAS formation, an additional phenomenon introduced as ‘iterated stretching’, should
develop in which elasticity, capillarity and inertia are all significant. The authors investigated
formation mechanism for a BOAS structure and dynamics at filament necks for viscoelas-
tic liquid jets using 1D Oldroyd-B model. Their numerical calculations indicate that the
neck region connecting the primary drop to the elastically dominated cylindrical filament
is unstable to small perturbations that further triggered a new instability, called as “elastic
recoil” [12] or simply "recoil" [85] of the filament. This elastic recoil leads to formation
of a smaller “secondary” spherical drop connected to the primary drop by a new thinner
cylindrical filament. This new filament subsequently thins under the action of capillarity.
Necks connecting the new filament to the primary drop and the new secondary drop may
once again become unstable. This further results in another elastic recoil and formation of a
smaller secondary drop connected to the main drop by a finer-scale filament. However, this
structure is itself unstable to perturbations and this process of ‘iterated stretching’ repeats
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Fig. 1.9 (a) Evolution of filament and droplet sizes during a CaBER experiment. (b) Typical
image of a beads on a string (138 µm×2317µm) used for image analysis. Droplets corre-
sponding to those represented in (a) are identified as 1, 2 and 3, for the first, second and third
generation, respectively. Adapted from Oliveira et al. [9]

indefinitely (for an infinitely extensible fluid model such as the Oldroyd-B model), leading to
multiple generations drops in a BOAS structure. The recoiling and formation of multiple
generations drops in BOAS structure was later confirmed numerically by Li and Fontelos
[2] and experimentally by Oliveira et al. [9]. Moreover, inertial effects are also important
for the iteration process. Inertia ensures that growth rates of drops are faster than a thinning
rate of a primary elastic filament, otherwise a premature filament breakup without formation
of multiple generations of drops may occur. Chang et al. [85] demonstrated that for an
iterated stretching, high Deborah numbers (De≫ 1), intermediate viscosity ratios (0 < S < 1),
finite fluid inertia (Oh≪ 1) are required so that inertial effects lead to a rapid growth of the
capillary instability and recoil. Furthermore, very high finite extensibilities (b2≫ 1) are
needed so that the iterated nature of a BOAS instability and elastic recoil process are not
truncated prematurely by the maximum length of the molecules. These criteria for an iterated
stretching were later experimentally validated by Oliveira et al. [9] to demonstrate multiple
generations of drops in a BOAS structure (see Fig. 1.9).

Space-time diagrams To represent a complete spatial and temporal dynamics of filament
thinning, digital images can be used to construct a ‘space-time’ diagram. This approach
was pioneered by Baumert and Muller [87] to visualise elastic instabilities. Space-time
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diagrams for a BOAS structure were reported by Oliveira et al. [9] for a stretched viscoelastic
liquid bridge and later by Clasen et al. [15] for a viscoelastic liquid jet. Oliveira et al. [9]
represented first stages of droplet formation, along with coalescence through the space-time
diagrams. Aqueous solution of polyethylene oxide (PEO) in a mixture of ethylene glycol and
water was used as viscoelastic test fluids. Initially, a liquid bridge was formed using CaBER
plates, having diameter, DP = 6 mm, and IAR = 1. This bridge was stretched to FAR = 3.23 to
generate a long slender filament of polymer solution, followed by capillary-driven drainage
and breakup. The obtained images of the filament thinning and the BOAS structure are
shown in Fig. 1.10(a). A space-time diagram, constructed using a sequence of experimental
images, from the appearance of a first-generation drop until filament breakup, is shown in
Fig. 1.10(b). Each colour of the pixel in the diagram represents the thickness of a filament in
space and time. The dark red colour is for the zero thickness of the filament and the dark
blue colour is for the largest drop. The initial homogeneity represents uniform filament
and the bright bands in the later stages indicate the appearance of drops. The appearance
of the discontinuity, with time, is an indication of the coalescence (indicated by circles in
the space-time diagrams). Due to coalescence, drop migration occurs and the filament is
pulled towards the direction of coalescence. Yet, this space-time diagram fails to provide
any quantitative information about the diameter of filament and drops. The diagram only
represents the evolution of the filament when the first drop appears. Besides, the analysis of
the space-time diagram is only descriptive, with no further investigation of the drops.

Later, another type of space-time diagram, called ’XLt diagram’, as shown in Fig. 1.11,
for liquid jets was developed by Clasen et al. [15], to represent positions of drops in space
and time. Thin filaments and drops were produced using downward falling jets, having a
nozzle radius of 0.075 mm, of aqueous solutions of polyacrylamide (PAA). Filament thinning
results into formation of a big terminal drop followed by small drops. These small drops
coalesce with the big terminal drop and this phenomenon is called gobbling. Frame by frame
analysis of captured images is enabled by XLt diagram. Yet, the XLt diagrams offer only the
position L(t) of the centre of the terminal drop, and the following small drops X(t), but do
not provide sizes of the drops.

Numerical work on BOAS structure Formation of a BOAS structure for viscoelastic
fluids has a rich history [2, 3, 7, 9, 13–16, 18, 26, 27, 63, 82, 85, 88, 89]. In the last few
decades, this phenomenon has received great attention in both experimental and numerical
communities. Due to the diversity and complexity associated, recreating a BOAS structure
has been chosen by the computational rheology community as a core problem for testing
algorithms.
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Fig. 1.10 Construction of a space time diagram. (a) Image sequence representing a uniform
filament along with a BOAS structure. z is the position on the filament. (b) A space-time
diagram capturing evolution of the filament when BOAS structure starts appearing. Colour of
each pixel represents the relative thickness of the filament and drop, in space and time, ranging
from zero (dark red) to thickest (dark blue). Initially, the colour intensity is homogeneous
in the z-direction, showing the existence of a uniform filament. Bright bands suggest the
appearance of drops. Occurrence of coalescence is indicated by black circles. Drops migrate
either upwards or downwards in the direction of the occurrence of coalescence. Adapted
from Oliveira et al. [9].
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Fig. 1.11 (a)-(b) Construction of a space-time diagram, here called XLt diagram. The position
of the terminal drop L(t) is represented by a hollow symbol and positions of following drops
X(t) on the falling jet are presented with filled symbols. (c) An example of XLt diagram, for
the falling jet issuing from a nozzle of radius 0.075 mm. The thin solid lines with constant
slope indicate that the drops move with constant velocity, resulting in gobbling. Adapted
from Clasen et al. [15].
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1D Oldroyd-B model Preliminary work on formation of a BOAS structure for viscoelastic
solutions was done by Bousfield et al. [13]. The authors used 1D thin filament approx-
imations, to understand the breakup mechanism for liquid jets. The same approach was
implemented later by other authors [2, 3, 16, 55, 56, 85]. An infinitely-long uniform liquid
cylinder was perturbed with a periodic axisymmetric disturbance. Both Newtonian and
viscoelastic solution jets were tested, neglecting gravity. For Newtonian solutions, finite
element numerical algorithm [90] was implemented. Two cases with Oh = 0 and 32.86 for
Newtonian jets were studied and flow domain was subdivided using a finite element mesh.
The Oldroyd-B model was used for a 1 mm radius viscoelastic liquid (λ = 0.17 s) jet. The
authors successfully demonstrated evolution of a filament for Newtonian fluids and predicted
a BOAS structure for viscoelastic jets. Initial capillary-driven thinning grows much more
rapidly on polymeric filaments than on Newtonian liquid filaments. Extensional stresses
stabilise viscoelastic filaments and retard the breakup. Satellite drops in low viscosity liquid
jets are formed because of inertia. Due to viscoelasticity, formation of a BOAS structure
slows down and thinnest point on the filament is maintained at the midpoint between the
drops.

Further investigation of drop dynamics of a BOAS structure was conducted by Li and
Fontelos [2] for viscoelastic jets. A small (1%) disturbance was applied to the initial jet
profile. The 1D model used here was equivalent to Bousfield et al. [13] and equations for a
slender Oldroyd-B filament were integrated forward in time. Finally, the resulting equations
were solved numerically by an explicit finite difference scheme [91] on a uniform mesh.
Drop migration, oscillation, merging and draining were studied, with Deborah numbers,
De ranging from 94.3 to 105. The simulations showed growth of a large ‘primary’ drop
and smaller ‘secondary’ drops. Fig. 1.12 shows a typical example of formation of a BOAS
structure obtained by a simulation for De = 300. Necking was observed in Fig. 1.12(a), which
leads to recoiling and then formation of small drops at t = 50 (Fig. 1.12(e)). The late BOAS
profile with primary and secondary drops, at time, t = 2000, is shown in Fig. 1.12(f). For
all values of De, the authors found a BOAS structure with a symmetrical drop distribution
across the central drop.

Later, in order to investigate formation of a BOAS structure for a weakly elastic (De = 0.8)
and low viscous (Oh ∼ 0.04 and S = 0.27) polymeric liquid, Ardekani et al. [16] used the
Oldroyd-B constitutive equations for a liquid jet. A BOAS structure with multiple satellite
droplets were reported for smaller value of Deborah number (De = 0.8) compared to Li and
Fontelos [2] (De ranging from 94.3 to 105). Furthermore, the authors also observed typical
drop dynamics such as coalescence and drop migration similar to Li and Fontelos [2]. In
a similar attempt to characterise formation of a BOAS structure using De and Oh, Bhat
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Fig. 1.12 Formation of a BOAS structure for a viscoelastic liquid jet with De = 300. Evolution
of the BOAS structure, with time, t = (a) 44, (b) 45, (c) 47, (d) 48, (e) 50 and (f) 2000. t is a
dimensionless time. Reprinted from Li and Fontelos [2].

et al. [3] implemented a 1D Oldroyd-B model for a stretched viscoelastic filament. Gravity
was neglected. A phase diagram was created for a stretched viscoelastic liquid bridge, as
shown in Fig. 1.13, using the Oldroyd-B model, with S = 0.6 and FAR = 3. This diagram
gives different morphologies of a BOAS structure for various values of De and Oh. Multiple
drops were obtained only for the smaller values of De and Oh, i.e. De < 0.05 and Oh < 0.5.
The BOAS structure was symmetrical about the big central drop due to imposed plane of
symmetry. The results showed that inertia is needed for the formation of beads. However,
no bead was reported for De > 0.2, although previous numerical and experimental findings
[2, 9, 16, 85] report appearance of a BOAS structure for De > 1. With the same S = 0.6, as
Bhat et al. [3], and De > 1, Ardekani et al. [16] reported multiple beads for liquid jets.

2D Oldroyd-B model Recent advances in numerical methods enable to simulate nonlinear
dynamics of viscoelastic liquid bridges and jets, with high resolution and more accuracy.
Turkoz et al. [55] used the Oldroyd-B model for 2D flows to investigate the thinning of a
viscoelastic liquid bridge. An axisymmetric two-phase incompressible momentum equations
system, consisting of air as medium, is numerically solved using the Basilisk solver [92, 93].
The interface between a high-density viscoelastic liquid (De = 60, Oh = 3.16 and S = 0.25)
and low-density ambient air was transported by a volume-of-fluid (VOF) method [94]. An
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Fig. 1.13 Phase diagram representing different BOAS morphologies as a function of De
and Oh, for a Oldroyd-B filament with S = 0.6 and FAR = 3. (A), (B) and (C) show filament
shapes, for a viscoelastic liquid bridge, corresponding to a uniform cylindrical filament
(no satellite drops), a single satellite drop and multiple drops morphologies, respectively.
Adapted from Bhat et al. [3].
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adaptive mesh was implemented that refines the domain up to 212 grid points. Again, gravity
was not considered. A BOAS structure was observed with a symmetric drop distribution
across the central drop. Significant polymeric stress in the off-diagonal direction was found,
that can not be captured by 1D simulations.

Further work on a stretched viscoelastic liquid bridge was conducted by Figueiredo
et al. [56]. Effect of an outer fluid phase on dynamics of a stretched viscoelastic filament
was investigated. The geometry used was similar to the experimental work presented by
Sousa et al. [95], where the authors studied a stretched liquid bridge formed in between
two small cylindrical rods, confined in an immiscible oil bath. The 2D Oldroyd-B model,
neglecting gravity, was considered. A non-uniform mesh, for axisymmetric conditions, was
implemented with a higher number of elements closer to the filament. A self-developed two-
phase solver was used for the stretched liquid bridge, in various oil baths. Filament thinning
was followed by formation of a BOAS structure and single as well as multiple drops were
observed. In case of multiple drops, smaller satellite drops were distributed symmetrically
across the central drop. Use of different immiscible oils did not affect formation of a BOAS
structure.

Summary and voids in the literature Evolution of a filament starts from its stretching,
followed by necking and formation of a drops on a filament pattern, and then finally ends with
its breakup. Previous studies have consistently evidenced visco-capillary or inertio-capillary
thinning, an exponential polymeric elasto-capillary thinning and existence of a BOAS
structure with multiple generations of drops attached to a thin filament [1, 9, 14, 15, 18, 26,
27, 63, 74, 81, 89, 96, 97], depending on viscoelastic liquid properties. Formation of drops
on a filament for viscoelastic solutions has been reported experimentally and numerically for
continuous capillary jets [2, 7, 13, 15, 16, 26, 55, 82, 85, 89], dripping-from-nozzle [27, 81,
98] and stretching of capillary bridges [1, 3, 9, 12, 14, 56, 63, 76, 80, 88, 99]. In most of the
previous numerical work, BOAS structure was reproduced using 1D [2, 3, 13, 16, 85, 100]
and 2D [55, 56] Oldroyd-B models. Most of the previous study of a BOAS structure was
focused on viscoelastic jets [2, 13, 16, 55, 85], but little work was done on viscoelastic
liquid bridges [3, 56]. In BOAS instability, multiple generations of drops are formed due to
’iterated stretching’ [9]. Drop migration, oscillation, merging and draining for viscoelastic
liquid filament were observed experimentally [9, 15] and numerically for various De and
Oh [2, 16]. However, previous numerical studies neglected gravity and hence, observed a
symmetric drop distribution along the filament length. Hence, these results show an identical
and equal number of drops on either side of a central drop. Furthermore, even though there
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is a significant experimental and numerical work on drops on a filament phenomenon, yet
there is not much analysis on the position, trajectories of the drops and number of drops.

Spatial and temporal dynamics of filament thinning and formation of a BOAS structure
can be represented by using space-time diagrams and yet, these diagrams have received little
attention. A space-time diagram for stretched liquid capillary bridge has been reported by
Oliveira et al. [9] and for continuous jets, Clasen et al. [15] reported a space-time diagram
called ’XLt diagram’. The authors reported multiple generations of drops along with drop
migration and coalescence. However, space-time diagram by Oliveira et al. [9] only represent
relative thickness of drops and space-time diagram by Clasen et al. [15] provide only positions
of drops. Both diagrams fail to provide actual drop sizes along with thinning and breakup
dynamics of filament. Hence, there is a need to create space-time diagrams that can depict
filament thinning and monitor spatial-temporal dynamics of drops along with their sizes and
numbers.

Increase in filament thinning and breakup times due to increasing polymer concentration
is already well established and has been reported previously [78, 101]. However, there is
no information available on effect of polymer concentration on drop dynamics of a BOAS
instability. Therefore, this influence of polymer concentration on drop dynamics needs
to be studied and effects can be depicted for each concentration by space-time diagrams.
Effect of capillary bridge stretching heights on filament thinning dynamics was documented
[14, 83, 84]. In addition, a BOAS instability has been previously demonstrated only for
a single geometrical (plate diameter and initial liquid bridge height) or stretching (final
stretching height and stretching speed) parameter [9, 14]. However, there is no study on
effect of various geometrical and stretching parameters on formation of a BOAS pattern
and drop dynamics. Hence, influence of these geometric and stretching properties on a
BOAS instability needs to be investigated. These results can be further represented through
space-time diagrams to depict variations in filament thinning and drop dynamics for each
parameter.

After a stretched filament breaks up, solution pools are formed on end plates of a liquid
bridge. This formation of solution pools depends on various factors [20, 30]. Moreover, size
of solution pools reflects liquid transfer, which will be further reviewed in the next section.

1.7 Review on liquid transfer

Up to now, we have been focused on stretching of a viscoelastic liquid bridge, filament
thinning, beads on a string structure and filament breakup. However, from printing field
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point of view, formation of filaments and a BOAS structure for viscoelastic solutions can
affect volume of liquid transferred from one surface (carrier or donor) to another surface
(substrate or accepter). Hence, dynamics of a stretched liquid bridge and volume of liquid
transferred play an important role in printing processes. In practice, a successful transfer
printing requires a sufficiently large volume of liquid transferred from one surface to another
[20], whereas, in 3D lithographic printing, desired liquid shapes (BOAS structured wires)
need to be preserved [23]. Yet this liquid transfer is a complex problem in fundamental
fluid dynamics. First, liquid-air interfaces play an important role in liquid bridge dynamics.
Shape of a liquid bridge needs to be determined along with velocity and pressure fields. This
leads to highly nonlinear time-dependent free-boundary problems. Second, liquid-solid-air
contact lines are present on carrier-substrate surfaces and many basic issues regarding their
behaviour are still being actively studied [100, 102–107]. Third, rheology provides another
source of non-linearity as most of printing inks are typically multi-component mixtures
that may contain colloidal particles (pigments or conductors), polymers and surfactants
(to control interfacial tension and wetting) [20]. These inks may exhibit shear thinning,
viscoelasticity and thixotropy [42, 107]. Solvent evaporation also occurs during printing that
causes ink rheology to change with time and temperature. Furthermore, liquid transfer may
involve a combination of extensional, shear, and rotational motion that further complicates
understanding of the problem.

More detailed study of different types of printing and their origins can be found in the
review article by Kumar [20]. However, in the present study, printing methods having liquid
bridges formed in-between two flat plates are considered. The fundamental problem of
liquid transfer between two flat surfaces is relevant to direct printing methods and offset
printing methods. In direct printing methods, liquid transfer occurs directly from a carrier
to a substrate. Examples of direct printing methods are gravure, flexography (Fig. 1.14),
additive manufacturing (Fig. 1.15), screen printing and letterpress printing processes. In the
offset printing methods (e.g. offset gravure), see Fig. 1.16, liquid transfer occurs between an
offset roll and a substrate. In these printing methods, both carrier and substrate surfaces are
locally flat. In a typical micro-gravure-offset printing system, diameters of offset cylinders
are of an order of 105 µm, and pattern on a plate or printed width is of an order of 10 to 102

µm [108]. The large difference between these sizes means that dynamic effects caused by
the rotational motion of cylinders during an ink transfer process can be neglected. Hence, it
is convenient to consider liquid transfer between two chemically homogeneous flat surfaces
as a starting point for a basic understanding of the problem.

In the following text, we will discuss the current state of the art for liquid transfer. In
the present study, we study a uniaxial stretching of both viscoelastic and Newtonian liquid
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Fig. 1.14 Schematic of a flexographic printing platform. A metering roll withdraws inks
from an ink reservoir and transfers the ink to a printing cylinder. The printing cylinder has
a flexible printing plate with patterns to be printed. The ink is further transferred from the
printing cylinder to a substrate surface, through a formation of a liquid bridge. Adapted from
Lorenz et al. [109].

bridges. A detailed study on dynamics of liquid bridges can be found in the review article by
Montanero and Ponce-Torres [30].

1.7.1 Contact lines and angles

Chadov and Yakhnin [102, 103] were the first to identify and systematically investigate liquid
transfer phenomenon. By using Newtonian solutions of water-glycerol and ethanol-glycerol
mixtures, experiments were conducted for liquid bridges undergoing uniaxial extensional
stretching. Effects of surface tension, viscosity of solutions and stretching speeds of surfaces
are reported. Bottom surfaces were made of different materials (such as Teflon, polyethylene,
Mylar and zinc) and the top surface was made of zinc. Both surfaces were large compared
to the capillary lengths of the liquids. In their experiments, a droplet of volume 5 µl was
placed on the fixed bottom surface and then, the zinc surface, from the top, was brought in
contact with the droplet to create a liquid bridge (with a plate gap of ∼ 0.1 mm). Contact
lines between the surface and liquid were not pinned and hence, were free to move as there is
no edge to prevent the slip due to large size of surfaces. However, in the present thesis, liquid
volumes are such that contact lines on CaBER plates are pinned to the edges of small plates.
Then, the top surface was moved upwards at a desired height at a constant speed (∼ 0.001
cm/s). As a result, solution pools were formed on each surface. Solution pools formed were
weighed, to measure the amount of liquid transferred. These authors observed that receding
liquid contact angles on the polymer surfaces were larger than that on the zinc surface and
majority of the liquid (60–97%) is transferred to the zinc surface. Hence, more liquid was
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Fig. 1.15 Schematic of additive printing method. Ink is first deposited on a carrier surface
which has engraved printing patterns. Then, the ink is transferred from the carrier surface
and added on to a receiver surface to manufacture the patterns. Adapted from Carlson et al.
[110].

Fig. 1.16 Schematic of an offset-gravure printing method. Ink is transferred from a gravure
plate to an offset pad. Then, the ink is deposited from the offset pad on to a substrate.
Adapted from Huang et al. [111].

transferred to the more wettable surface and in this case, zinc was more wettable than other
surfaces. Furthermore, amount of liquid transferred increased with a larger difference in
contact angles between the two surfaces. However, when two zinc surfaces were used, an
equal amount of liquid was left on each surface.

Differences in liquid transfer observed by Chadov and Yakhnin [102, 103] for different
surfaces suggest that contact-line dynamics play a key role in liquid transfer. Kang et al.
[112] experimentally studied liquid transfer and performed measurements of contact-line
motion. Their experimental method, see Fig. 1.17(a), was the same as Yakhnin and Chadov
[103]. A water drop of volume 4 µ l was placed on a bottom plate and a top plate was brought
in contact to the drop (with a plate gap of ∼ 0.25 mm). Then, the top plate is moved up with
a stretching speed of 2.8 mm/s to a desired height. Initial liquid bridge and formation of
solution pools were recorded with a camera. However, instead of measuring actual weight or
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volume of solution pools, each solution pool image was analysed in units of pixels. Width and
height of the cross-section of each droplet were estimated by counting pixels in respective
directions. Volumes of solution pools on plates were calculated using ’spherical cap’ method,
by assuming the solution pool to be a truncated axisymmetric sphere. In the present thesis, we
have used the same method to calculate volumes of solution pools on both plates and details
of this method are discussed in the next chapter. The ’spherical cap’ method is a non-contact
liquid volume measurement method and during the measurement, no fluid is lost (as no liquid
is transferred from plates to weighing instrument). In their study, two methods were used by
Kang et al. [112] to vary contact angles: first by altering the liquid properties and second,
by altering the surface properties. Effect of contact angles, at a bottom plate, β , and top
plate, α , as represented schematically in Fig. 1.17(a), on a transfer ratio was studied. The
transfer ratio is defined as a ratio of volume of liquid transferred to an accepter plate to the
total volume of liquid in-between the plates. It is important to notice that the initial shape of
their liquid bridge is concave, while, contact lines between the plates and liquid are unpinned
(free to move). These liquid bridge dynamics are similar to [40, 106, 112, 113], where the
initial concave-shaped bridge has moving contact lines. Results obtained are presented in
Fig. 1.17(b), and for the same value of β , it is found that the transfer ratio decreases with
an increase in α . But when contact angles of both plates are equal, α = β , the transfer ratio
is close to 50%. This is similar to Chadov and Yakhnin [102, 103] where the transfer ratio
obtained by the authors is close to 50% due to same plate material (and hence same contact
angle). Role of contact angles in liquid transfer between two flat plates with unpinned contact
lines was further studied by Huang et al. [106]. Their numerical findings show that liquid
transfer can be enhanced, not only by the use of a hydrophobic donor surface but can also be
improved by using a pair of surfaces with a large difference in contact angles. (Details of their
findings will be discussed later in this chapter.) In addition, Kang et al. [112] reported that if
two plates have the same contact angle, two pinch-off events can happen simultaneously, one
near each plate. This can result in formation of a detached drop. These detached drops have
been observed experimentally in stretching of liquid bridges with moving contact lines. In
our experiments, we also have observed a detached drop for Newtonian fluids with pinned
contact lines. This is generally undesirable in printing because these drops can ruin the image
quality if they land on a substrate or printing plate. Also, these drops are wasteful and can be
a potential health hazard if inhaled [20].

However, moving contact lines is a complex problem and out of the scope of this work.
Further details on dynamics of moving contact lines can be found in review articles by
Snoeijer and Andreotti [114] and Kumar [20]. The above discussion on intricacy due to
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Fig. 1.17 (a) Schematic diagram of a liquid bridge, of volume 4 µl, representing contact
angle at the bottom plate, β , and contact angle at top plate, α . Contact lengths on the bottom
plate and top plates are WL and WU respectively. Here, the stretching speed, U , and the initial
bridge length, d, are 2.8 mm/s and 0.25 mm, respectively. WM is the width of the filament at
the midplane. (b) Transfer ratio in percentage (%) for different values of α and β . Transfer
ratio in percentage (%) can be defined as a ratio percentage volume of liquid transferred to
the top plate to the total volume (100 %) of liquid in-between the plates. Adapted from Kang
et al. [112].

different surfaces and moving contact lines highlights a need to focus on a simpler version of
liquid transfer problem. To investigate liquid contact line motions in a liquid transfer, Qian
and Breuer [115] formed a bridge with a glass plate (similar to Chadov and Yakhnin [102]
and Kang et al. [112]) and a cylindrical rod (similar to CaBER plates). In their study, the
authors observed that contact line on the (glass) plate slips, but on the cylindrical rod, the
contact line is effectively pinned. In the present study, cylindrical plates of the same material
are used. Our contact lines can therefore be regarded as fixed contact lines and the effect of
plate material on liquid transfer is avoided. This simpler version of liquid transfer has been
previously studied by Zhang et al. [100].

1.7.2 Effect of parameters

Plate radius Zhang et al. [100] investigated, experimentally and numerically, the stability
and breakup of a liquid bridge with pinned contact lines. In their numerical study, a one-
dimensional model, based on a slender jet approximation, was used to simulate the dynamic
response of a liquid bridge, under a continuous uniaxial stretching. For experiments, two
coaxial, circular, solid disks with radii, RP, ranging between 0.08 and 0.32 cm were used.
The bottom plate was fixed and the top plate was moved upwards. A liquid bridge with
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Fig. 1.18 Liquid bridge dynamics and liquid transfer for IAR = 2 and U = 0.006 m/s. (a)
Dimensionless ratio of the limiting length of bridge, Ld to the plate radius, RP, as a function
of RP, for experimental and numerical studies. Ld is the maximum stretching length attained
by a liquid bridge at the time of breakup. The liquid bridges are stretched until the breakup
of the filament occurs (i.e. until Ld). With the increase in RP, the conical shape of the
solution pool at the top plate, at the time of breakup, changes from convex to concave. (b) A
non-dimensional ratio, Vl/V(%) as a function of RP, for experimental and numerical studies.
Here, Vl is the volume of the solution pool on the bottom plate and V is the total volume of
the bridge. Adapted from (Zhang et al. [100]).

IAR = 2, having pinned contact lines is stretched at U = 0.006 m/s. Water and glycerol are
used as testing fluids either separately or as mixtures with different concentrations. In their
study, liquid transfer is expressed by as a ratio of liquid volume on the bottom plate, Vl , to the
total volume of the bridge, V . However, in the present and previous studies [103, 106, 112],
liquid transfer is defined as a ratio of solution volume on the top plate to the total volume
of the bridge. Their numerical and experimental results are in good agreement as shown in
Fig. 1.18. In their study, the Bond number is varied by using different plate radii and results
obtained for liquid bridge dynamics are presented in Fig. 1.18(a). With increase in plate
radius, liquid volume and limiting length, Ld , of the bridge before breakup increases. Ld is
the maximum stretching length attained by a liquid bridge at the time of breakup. However,
the dimensionless ratio Ld/RP shows an opposite trend and decreases linearly with increasing
RP. For RP ≥ 0.32 cm, most of the liquid accumulates on the bottom plate (bottom solution
pool) while liquid in the top solution pool decreases considerably. Hence, with increase in
RP, at the time of breakup, the conical shape of the top solution pool changes from convex
to concave in the vertical plane. As IAR = 2 was used by these authors, the increase in RP

resulted in increased liquid volume. Increase in thickness of a filament and the concave shape
of the top solution pool considerably delay the filament breakup. Hence, liquid transfer to
the top plate decreases with an increase in plate radius. Furthermore, for larger plate radius
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with Bo > 1, influence of gravitational force increases. Therefore, more liquid is accumulated
on the bottom portion of a liquid bridge before the breakup. However, Zhang et al. [100]
investigated only Newtonian fluids (aqueous solutions of glycerol). The authors state that
with the increase in RP, filament breakup is delayed. Yet, no detailed study was conducted
to investigate effect of formation of a viscoelastic filament and resulting delayed filament
thinning on liquid transfer.

Stretching velocity Influence of stretching speed on liquid transfer was investigated for
unpinned contact lines [102, 103, 113] and for pinned contact lines [100]. The authors
reported the same trend for both pinned and unpinned contact lines as liquid transfer to a top
plate increased with increasing stretching speed. Furthermore, results obtained by Chadov
and Yakhnin [102, 103] and Chen et al. [113] indicate three distinct regimes for liquid transfer
depending on stretching speeds. A first regime corresponds to low stretching speeds and a
quasi-equilibrium transfer, where liquid transfer is determined by wetting properties of a
surface and capillary effects of a liquid. A second regime is a transition zone. A third regime
occurs at high speeds (U > 0.01 m/s) and an equal amount of liquid is left on each surface.
Liquid transfer in this third zone remains unchanged with increasing speed, and independent
of surface and liquid properties. In addition, Chen et al. [113] observed that, in the dynamic
regime, liquid contact angles do not affect liquid transfer and the same volume of liquid
is deposited on both the surfaces. Later, in their numerical simulations, Huang et al. [106]
studied the transfer ratio as a function of the Capillary numbers, Ca = η0U/σ . Their results
are represented in Fig. 1.19 for different values of ∆θr. Here, ∆θr is the difference between
contact angle at the bottom plate, β , and contact angle at the top plate, α . When ∆θr = 0,
the same volume of liquid is observed on both plates for all values of Ca (since the liquid
does not preferentially wet either plate). As Ca increases, the transfer ratio approaches value
of 50% for all values of ∆θr. With the increase in Ca, viscous forces become stronger and
influence of wettability differences reduces.

Initial aspect ratio Further investigation was done by Huang et al. [106] to explore influ-
ence of initial liquid bridge height, L0, on liquid transfer. This effect of L0 was studied by
varying IAR from 1 to 4, where IAR = L0/RP. Different values of IAR are obtained by varying
L0 and by keeping RP constant. Rayleigh-Plateau limit for a cylindrical column corresponds
to IAR = 2π and suggests that longer bridges will breakup earlier [106, 116, 117]. Due to this
early breakup, less time is available for liquid transfer to the top surface. As a result, with
the increase in IAR, liquid transferred to the top plate decreases. However, these numerical
results are for moving contact lines and values of IAR studied are limited.



1.7 Review on liquid transfer 41

Fig. 1.19 Effect of Ca on transfer ratio (in percent) for different values of ∆θr. Here, ∆θr is a
difference between contact angle at the bottom plate, β , and contact angle at the top plate, α .
Value of α is fixed at 60 and β is varied. Transfer ratio in percentage (%) can be defined as a
ratio percentage volume of liquid transferred to the top plate to the total volume (100 %) of
liquid in-between the plates. Reprinted from Huang et al. [106].

Viscosity and surface tension Effect of solution properties, such as liquid viscosity, η0,
and surface tension, σ , on liquid transfer was investigated by Chadov and Yakhnin [102, 103].
As previously discussed, liquid transfer only gets affected in the first characteristic regime,
where liquid properties determine the final volume of liquid transferred to a top plate. η0 is
increased by adding glycerol to water. As value of η0 increases, volume of liquid transferred
to the top plate decreases. On the contrary, liquid transferred to the top plate decreases when
surface tension of a solution is reduced by adding ethanol. As expected, in both cases, at
high stretching speeds, equal volume of solution pools were formed on the top and bottom
plates in the characteristic third regime.

1.7.3 Viscoelastic inks

Even though most of the printing inks have viscoelastic or shear thinning behaviour, there
have been very limited studies on liquid transfer for viscoelastic solutions. The first systematic
investigation of liquid transfer for viscoelastic solutions was reported by Sankaran and
Rothstein [42]. Their experimental study was carried out for a liquid transfer in-between
different gravure cells and flat plate. These authors used polyethylene glycol (PEG) with
molecular weight, M, of 20 000 g/mol to obtain Newtonian solutions. For viscoelastic
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Fig. 1.20 Single curve for transfer ratio vs. Ca. The data include: (∎) for 20% of 20k PEG,
( ) for 15% of 20k PEG, (▲) for 10% of 20k PEG. Adapted from Sankaran and Rothstein
[42]

solutions, polyethylene oxide (PEO) of two different molecular weights, M = 2×106 and
8×106 g/mol, in combination with 20% PEG were investigated. The polymers tested by the
authors are similar to the polymers used in the present thesis. For the Newtonian fluids, when
a liquid bridge was stretched, one detached drop and two static solution pools on the plate
and inside the cell were formed. For a viscoelastic solution, a typical long-lived self-thinning
filament was observed along with a capillary breakup. To calculate the fraction of liquid
transferred to the top plate, a high precision weight balance was used. The transfer ratio
increased with increasing Ca and a single curve (see Fig. 1.20) was obtained for all polymer
solutions. For Ca > 0.05, the transfer ratio reached a plateau, similar to Huang et al. [106],
but lower values of transfer ratio (less than 0.5) were obtained. These lower values of T R
were probably due to different surface geometries of the flat plate and gravure cells.

Further investigation on the effect of viscoelasticity in liquid transfer was carried out
numerically by Lee et al. [43]. The simulations were performed under the same conditions
as the experiments of Sankaran and Rothstein [42] with a corresponding gravure system
geometry and similar liquid properties. A liquid bridge, formed in between a fixed gravure
cell cavity at the bottom and a moving flat disk at the top, is considered as an initial condition.
Their numerical results for fraction of liquid transferred against Ca are shown in Fig. 1.21.
Two effects of viscoelasticity are evident: first, for all values of Ca, due to increase in
elasticity, liquid transferred to the flat plate reduces with increase in De, and second, to obtain
a maximum liquid transfer, there is an optimal capillary number Ca. The authors reported
that computations could not be reliably carried out for De > 5 due to numerical difficulties
associated with high elasticity flow. However, these results are useful in our liquid transfer
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Fig. 1.21 Effect of Deborah number, De, on a fraction of liquid transferred for S ≈ 0.8. Here,
Bo = 1.2 and Oh ∼ 0.57. Adapted from Lee et al. [43].

experiments as we have obtained a wide range of De for the same polymers used by Sankaran
and Rothstein [42]. Furthermore, in their study, draining of viscoelastic solutions occurred in
two stages. In the first stage, liquid transfer is decided by strong initial elastic forces, which
pull the solution back into the cavity. This stage is independent of gravity and dominated
by shearing forces. In the second stage, thinning is dominated by extensional forces and
delayed filament breakup allows prolonged drainage in the direction of gravity. Similar
behaviour was observed by Wu et al. [107] for a moving liquid contact line liquid transfer.
For PEO solution, in the first stage, the contact-line motion was influenced by shear viscosity
because of strong shear deformation at slipping contact lines on plates. However, in the
second stage, after stretching of a liquid bridge, formation of a thin filament was controlled
by extensional viscosity. The authors found that filament formation had little effect on liquid
transfer, contrary to the findings of Lee et al. [43] who reported prolonged gravitational
drainage due to filament formation. Therefore, the effect of filament formation on liquid
transfer remains an open question.

Summary and voids in the literature Most of the previous investigations on liquid trans-
fer were done by using Newtonian fluids [40, 100, 102, 103, 106, 112, 113], and limited
work was done on viscoelastic fluids [42, 43, 107]. Effect of viscoelastic PEO solutions on
liquid transfer was studied experimentally by Sankaran and Rothstein [42] as well as Wu et al.
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[107] and numerically by Lee et al. [43]. Limited results [42, 43, 107] suggest an effect of
viscoelasticity on liquid transfer. In case of moving liquid contact lines, shear forces influence
contact line motion and extensional viscosity only controls filament thinning time [107].
Formation of a filament delayed liquid bridge breakup and allowed prolonged gravitational
drainage in the direction of gravity. However, these findings are only limited to gravure
cells and moving contact surfaces. Numerical results from Lee et al. [43] suggest that with
increase in De, liquid transfer to the top plate decreases. Hence, it would be interesting to
study the effect of De on liquid transfer by varying polymer mass fraction and plate diameter.

Furthermore, liquid transfer for viscoelastic solutions must be explored by varying
polymer mass fractions using pinned contact lines. Effects of stretching dynamics of a liquid
bridge on liquid transfer have been explored before [42, 43, 100, 102, 103, 106, 107, 113,
118]. Increase in liquid transfer to a moving top plate with increasing stretching speed and
the capillary number is well established for Newtonian fluids using moving contact lines
[102, 103, 106, 113] and fixed contact lines [100]. However, effect of stretching velocity on
viscoelastic liquid transfer with pinned contact lines remains to be investigated. Size and
shape of an initial bridge liquid are other factors that should be considered to understand the
dynamics of liquid transfer. Effect of plate diameters on liquid transfer for Newtonian fluids
was studied before [100]. In their numerical study, Huang et al. [106] reported a decrease
in transfer ratio with increasing initial aspect ratio for moving contact lines. However,
there is no study that addresses the influence of final stretching heights on liquid transfer.
Hence, influences of plate diameter, initial and final stretching heights on liquid transfer of
viscoelastic solutions for pinned contact lines need to be investigated. In addition, most of the
previous works focused on liquid transfer for non-cylindrical shaped (initial) liquid bridges
with moving contact lines [40, 42, 102, 103, 106, 107, 112, 113, 118]. Therefore, liquid
transfer for cylindrical and non-cylindrical shaped liquid bridges remains to be investigated.

Previous limited numerical studies investigated Newtonian fluids using cylindrical disks
[100] and viscoelastic fluids using combinations of gravure cells-flat plate [43]. Additionally,
liquid transfer was studied numerically mostly with moving contact lines [106], and there
is no significant work done with fixed contact lines on flat plates [100]. Therefore, liquid
transfer for circular flat plates having fixed contact lines needs to be studied numerically.

Hence, the present study focuses on liquid transfer for a cylindrical-shaped liquid bridge
of viscoelastic fluids, as well as Newtonian fluids. Solutions will be prepared by varying mass
fraction and molecular weight of polymers to investigate effect of viscoelasticity on liquid
transfer. Previous studies showed liquid contact angles vary for different surface materials
[102, 103, 107]. Hence, to minimise influence of surface properties, the same types of plates
will be used [107]. Contact lines will be pinned, like Zhang et al. [100], to overcome the
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shearing effect of moving contact lines. Different plate diameters, initial aspect ratio and
final aspect ratio will be explored for both Newtonian and viscoelastic liquid bridges. By
varying stretching profile curvatures, liquid transfers for different shapes and sizes of initial
liquid bridges will be investigated.

1.8 Numerical modelling

Current state of the art on beads on a string and liquid transfer, along with their limitations,
has been discussed in the previous sections. Numerical modelling of capillary thinning of a
viscoelastic filament can be done using various models, especially Oldroyd-B [2, 3, 13, 16, 55,
56, 85, 100] and FENE models [74, 119–121]. However, the Oldroyd-B model has attracted
considerable earlier attention because it exhibits formation of a BOAS structure along with its
typical drop dynamics such as coalescence and drops migration [2]. In most of the previous
numerical works, a BOAS structure was reproduced using 1D [2, 3, 13, 16, 85, 100] and 2D
[55, 56] Oldroyd-B models. To fully capture a filament and a BOAS structure, distribution of
stress components in the neck region connecting a filament with a drop should be resolved in
detail. This can not be achieved by 1D slender formulation because the structure of drops
attached to the thin filament is not slender [55]. For this purpose, the 2D Oldroyd-B equations
should be simulated in an axially symmetric domain to examine the velocity and stress field
in the filament. The Oldroyd-B model allows infinite stress to be built up so that the filament
should not break up as long as the numerical grid is small enough. As the filament does
not breakup with the Oldroyd-B model, a BOAS structure can develop due to necking and
localised pinching.

Although there are several options, both commercial and open-source, to handle Newto-
nian and also non-Newtonian fluids, the range of options for viscoelastic fluid flow simula-
tions is more limited. Previously, different solvers have been used to solve 2D Oldroyd-B
equations. Turkoz et al. [55] implemented Basilisk solver [92, 93] and Figueiredo et al. [56]
developed an in-house two-phase viscoelastic fluid flow solver. Open-source packages are
especially appealing because they are cost-free for the user and usually allow the customisa-
tion of the available source code. In the present study, we will use a specialised open-source
solver for viscoelastic flows, implemented in OpenFOAM, called rheoTool. The OpenFOAM
is a versatile finite-volume solver for CFD simulations in general which can handle general
unstructured meshes and perform parallel computations [122]. Favero et al. [123] created a
library containing a wide range of constitutive equations to model viscoelastic fluids, along
with a solver named viscoelasticFluidFoam that makes use of this library. rheoTool was



46 Basic principles of rheology, beads on a string, liquid transfer, and numerical modelling

introduced recently in 2016 by Pimenta and Alves [124, 125]. Then, the authors modified
the solver with enhanced stability and developed a solver called rheoInterFoam that can
be used for viscoelastic models in two-phase flows [126–128]. Results obtained using this
solver agree with numerical studies of impacting drop [53] and extruded swell of viscoelastic
fluids [54]. Details of the solver are given in the article by Pimenta and Alves [124].

Few previous numerical studies investigated viscoelastic filament thinning and BOAS
structure for a stretched liquid bridge [3, 56]. As rheoTool allows us to implement the 2D
Oldroyd-B model, dynamics of filament thinning along with a BOAS structure and liquid
transfer could be investigated in details for our stretched liquid bridge. In addition, the use
of rheoTool for viscoelastic filament thinning remains to be tested. Therefore, we would
like to validate the use of rheoTool solver using our Newtonian and viscoelastic solutions.
The present study focuses on numerically reproducing BOAS and transfer ratio phenomena,
using properties of test fluids and respective stretched liquid bridge profiles.

Mathematical modelling of viscoelastic solutions and liquid-air interface In rheoTool,
for viscoelastic fluid flow simulation, the total extra-stress tensor is divided into the solvent
contribution, τ

S
and the polymeric contribution τ

p
, as shown in Eq. 1.47. For details refer to

section 1.4.2. The present work only considers the Oldroyd-B model, with constant polymer
viscosity, ηP.

τ = τ
p
+τ

S
(1.47)

However, usually simulations for highly viscoelastic fluids experience stability issues [129].
To tackle this problem, the log-conformation tensor approach [130] and the both-sides-
diffusion (BSD) technique are implemented in the rheoTool solver, which enables stable
simulations [124, 125]. The polymeric extra-stress tensor is related to the conformation
tensor A. For the Oldroyd-B model, for example, this relation is expressed as

τ
p
= ηp

λ
(A− I). (1.48)

Since A is positive definite, it can be diagonalised in the form

A = R Λ RT . (1.49)

R is a matrix whose columns are the eigen vectors of A and Λ is a matrix whose diagonal
elements are the respective eigenvalues resulting from the decomposition of A. In the log-
conformation tensor methodology, a new tensor Θ is defined as the natural logarithm of the
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conformation tensor:
Θ = ln(A) = R ln(Λ) RT (1.50)

Evolving Θ in time and then transforming back to the conformation and stress tensors leads
to generally enhanced stability [124]. In addition, both-side-diffusion (BSD) is a technique
already incorporated in the rheoTool solver to stabilise viscoelastic flows [124]. It consists of
adding a diffusive term on both sides of the momentum equation (Eq. 1.4). On the left-hand
side, ∇⋅(ηs+ηp)∇u, is added implicitly, while on the right-hand side, ∇⋅(ηp∇u), is added
explicitly in Eq. 1.4. Once steady-state is reached, both terms cancel each other exactly.
Such method increases stabilising effect, mostly when there is no solvent contribution to the
extra-stress tensor. More details on the BSD technique can be found in rheoTool document
by Pimenta and Alves [125].

For two-phase flows, the Volume of Fluid (VOF) method [94] is used to model a free
surface boundary (fluid-fluid interface) in OpenFOAM. In this method, the volume of fluid
in a cell is computed as Fvol =α1 ⋅Vcell where Vcell is the computational cell volume and α1 is
the liquid fraction in this cell. The value of α1 in a cell varies between 0 and 1. A cell filled
with one fluid can be represented as α1 = 1 and a filled cell with another different fluid can
be represented as α1 = 0. At the interface, the value of α1 is in-between 0 and 1, and follows
the equation:

∂α1

∂ t
+∇⋅(α1u)+∇⋅ [α1(1−α1)u�] = 0 (1.51)

where u� is the velocity field in the directions subjected to the interface compression [123].
The last term is only activated in the region of interface due to a product of liquid fractions
α1(1-α1). To use the VOF method for the two-phase flows, the physical properties in any
control volume domain are given by the corresponding values of α1, in that volume. It is
mathematically obtained, considering any property, H, as

H = α1H1+(1−α1)H2 (1.52)

Many viscoelastic models, such as Oldroyd-B, FENE and Giesekus, can be solved
using rheoTool in standard extra-stress or conformation tensor variables. rheoTool allows
us to define various liquid properties such as ηs,ηp and λ to implement these viscoelastic
models. For Newtonian fluids, we only need to define liquid parameter η0 to solve Newtonian
constitutive equations. In rheoTool, the solver rheoInterFoam is a library used for two-
phase flows. The rheoInterFoam solves the constitutive equation for each phase and
the extra-stress tensor, τ , which contributes to the momentum equation, is calculated by the
average of the extra-stress tensor for each phase.
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1.9 Summary of objectives of the present work

The present work is motivated by the need to understand fundamental dynamics regarding
drops on a filament and liquid transfer phenomena, experimentally. While there is significant
experimental and numerical work on drops on a filament phenomenon, yet there is not
much investigation on position, trajectories and number of drops. Considering the literature
[9, 15], there is a need to create space-time diagrams that can depict filament thinning and
monitor spatial-temporal dynamics of drops along with their sizes and numbers. Moreover,
there is no information available on effect of polymer concentration on drop dynamics of
a BOAS instability and liquid transfer. Hence, in the present study, large range of mass
fractions of polyethylene oxide (PEO) and polyethylene glycol (PEG), either separately or
in combination, will be considered to understand their effect on BOAS structure and liquid
transfer.

Taking into account the voids in the literature review, in our experimental study, we aim to
understand the influence of geometrical parameters such as plate diameter, initial stretching
height, final stretching height, and stretching speed of a liquid capillary bridge, on drop
dynamics and liquid transfer. These results can be further represented through space-time
diagrams to depict variations in filament thinning and drop dynamics for each parameter.
Moreover, we plan to investigate liquid transfer for cylindrical and non-cylindrical shaped
initial liquid bridges using fixed contact lines.

Few numerical studies are available for liquid transfer in a stretched capillary bridge.
Thus, for such a case, further numerical study would be helpful. The OpenFOAM toolbox
rheoTool will be tested to reproduce liquid transfer and the BOAS structure.
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This chapter is devoted to test fluids and their characteristic properties, descriptions
of test facilities, instruments employed and details of image analysis techniques. We first
present protocols for the preparation of the solutions. The solutions are characterised using
a density meter, a rotational rheometer and a drop shape analyser. Next, we turn our
attention to rheological characterisations of the test fluids, both in shear and extensional
flows. Experimental method and image analysis for drops-on-a-filament and liquid transfer
are described. The experimental results associated with this set-up for drops-on-a-filament
and liquid transfer will be discussed in chapters 3 and 4, respectively. In addition, numerical
simulations for a stretched liquid bridge using the Oldroyd-B model are discussed. The
present chapter is primarily organised as per the following sections: (i) test fluids and their
properties, (ii) extensional rheology of polymer solutions and (iii) numerical setup using
rheoTool.

2.1 Test fluids and their properties

The experiments are performed with two high molecular weight polymers with different
rheological behaviours. In this study, aqueous solutions of polyethylene oxide (PEO), and
polyethylene glycol (PEG) polymers are used either separately or in combination. The
relatively high mass fraction of PEG, in PEG+PEO solution, makes the solution particularly
dependent on PEG for the shear viscosity and on PEO for the elasticity. Broadly, our strategy
is to control the shear viscosity of the solutions with PEG and extensional viscosity with the
mass fraction of PEO, noted wPEO.

2.1.1 Polymers and solution preparation

Both PEO and PEG polymers have the same molecular structure: H−(O−CH2−CH2)n−OH,
where n is the number of repeatable units. But both polymers have different chain lengths.
PEO is a long-chain polymer, with an average molecular weight, M ∼ 8×106 g/mol. Whereas
PEG is a relatively short-chain polymer, with an average molecular weight, M ∼ 20 000 g/mol.
The polymers and their molecular weights are provided by Sigma Aldrich. Commercial PEO
is known to be polydisperse. The same supplier was used by Latrache et al. [131] and the
authors found a low polydispersity index of 1.25 for PEO. Both polymers are soluble in water
and their aqueous solutions are transparent, non-ionic and non-toxic.

Three different types of solutions: PEG, PEO and PEG+PEO solutions are prepared in
degassed deionised water. In the first type of solution, PEG is added into water; specifically,
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20 wt% in water. This solution is highly viscous and labelled as "PEG20". The mass of PEG
represents 20% of the total mass of the solution. PEG20 is a Newtonian solution and the
corresponding shear viscosity is 0.034 Pa⋅s (details are given later in this chapter). "PEG20"
solution is prepared without isopropyl alcohol (IPA). In the second type, to have highly
elastic solutions, PEO is mixed with water in various mass fractions and designated as "PEO
solutions". The PEO mass fraction ranges from 100 to 2000 wppm. In the third type of
solutions, hereafter "PEG+PEO solutions", both PEO and PEG are added separately to the
water and then mixed to create viscoelastic solutions. In the "PEG+PEO solutions", the mass
fraction of PEG is kept constant at 20 wt%. Hence, the corresponding solvent viscosity,
ηs, is 0.034 Pa⋅s (as PEG20 acts as solvent). The mass fraction of PEO varies from 100 to
2000 wppm. The preparation and storage of all types of solutions are carried out at room
temperature, 20○C.

For all solutions containing PEO, 0.5 wt% of IPA is included. IPA is mixed with water
before PEO being added to the mixture. As previously demonstrated by Layec and Layec-
Raphalen [132], the addition of IPA helps in easy molecular dispersion of PEO polymers.
The presence of IPA also helps to prevent bacterial degradation of the solutions. Hence, the
solutions can be used over a longer period, typically two to three weeks.

Moreover, if the solutions are stirred, degradation of polymer chains may occur. Me-
chanical stirrers produce high shear rates. Hence, the polymer chains can break and result in
lower average molecular weights. Gaillard [61] observed that, if a mechanical stirrer is used,
relaxation times of PEO solutions with the same PEO mass fraction can vary by a factor of 4.
However, in our study, no mechanical stirring is done while preparing the solutions. This
technique takes longer preparation times than stirring, but mechanical degradation due to
stirring is avoided.

The "PEG+PEO solutions" are prepared in two stages. In the first stage, two vessels
are used to prepare aqueous mixtures of PEG and PEO separately. In the first vessel, PEG
flakes are dropped slowly into the water. In another vessel, initially, iso-propyl alcohol
(IPA) is added in the water. The mass fraction of IPA in the final blend is 0.5 wt%. Then,
PEO powder, depending upon the required mass fraction, is weighed and poured into this
mixture. Both vessels are covered with plastic films and aluminium foils. Depending upon
the polymer mass fraction, the vessels are kept for 3 to 7 days to ensure complete mixing of
the polymers. In the second stage, when the mixtures are well dissolved, the PEG solution
from the first vessel is poured into the PEO solution in the second vessel, resulting in the final
blend. All mass fractions of PEO, PEG and IPA refer to this final blend, which is obtained
in the second vessel and is kept for 3 to 7 additional days without stirring, to produce a
homogeneous mixture. The solutions are considered homogeneous when the white-coloured
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layer of polymers disappears from the eyes of the experimenters, and no polymer blobs are
observed.

Mark-Houwink equation The Mark-Houwink equation is a common way to estimate the
critical overlap mass fraction, w∗ [47]. For a polymer solution, w∗ is defined as a mass
fraction at which different polymer coils touch each other. A dilute regime corresponds to
w < w∗ and a semidilute regime, in which polymers are entangled, corresponds to w > w∗.
The equation takes the form [η] =KM ×MαM , where [η] is the intrinsic viscosity [47] and M
is the molecular weight of the polymer. KM and αM depend on the chemical nature of both
polymer and solvent. Investigations by Tirtaatmadja et al. [69] with PEO in various solvents
(water, glycerol-water) suggest that solvent play a minor role. Hence, in the present study,
the following Mark-Houwink formula [69] is used:

[η] = 0.072×M0.65. (2.1)

The formula agrees well for PEO in water over the range of molecular weight, M = 8×103

to 5× 106 g/mol as reported by Tirtaatmadja et al. [69]. For PEO solution at 20○C, we
find [η] ≈ 2210 ml/g and w∗ = 0.77/[η] ≈̇348 wppm. For PEG solution at 20○C, we obtain
[η] ≈ 45 ml/g and w∗≈̇1.71 wt%. Hence, we can assume, for PEG+PEO solutions with 20
wt% PEG, interactions between PEG molecules are significant. To cover a wide range of
mass fractions, our solutions are thus prepared above as well as below 348 wppm of PEO.

2.1.2 Solution properties

Different relevant properties, such as density, surface tension, shear viscosity, relaxation time
and extensional viscosity of test fluids are measured. These properties are used to calculate
characteristic non-dimensional numbers. All the measured properties and the characteristic
non-dimensional numbers are summarised at the end of the chapter.

2.1.2.1 Density measurements

A portable density meter DMA 35 (Anton Paar) is used to measure density, ρ , of all the
solutions. The instrument measures the density of solutions using the oscillating U-tube
method. In the oscillating U-tube method, a sample in the U-shaped glass tube is excited to its
characteristic frequency and this frequency is used to calculate the density of the sample. The
samples are filled in the measuring tube using built-in pipette type syringe. A temperature
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sensor measures temperatures of the solutions. For the solutions having a density less than 2
g/cm3, the accuracy of the density meter is 0.001 g/cm3 and resolution is 0.0001 g/cm3. The
density measurements for each solution are the average over three tests. A fresh liquid sample
is used for each test. Details of the values obtained for densities, ρ , for all the solutions are
reported in Tab. 2.1. The PEG, as well as PEG+PEO solutions, have higher densities than
the PEO solutions, as expected.

2.1.2.2 Surface tension measurements

Another important property to characterise the free surface flow of the solutions is surface
tension, σ . A pendant drop method [133] is used with the help of computer-aided image
processing [134] to calculate the surface tension. In the pendant drop method, an axisym-
metric drop of test fluid is formed at the end of a needle with known diameter. The pendant
drop shape at equilibrium is influenced only by surface tension and gravity. The pendant
drop at equilibrium is described by the Young-Laplace equation: ∆p = σ[(1/R1)+(1/R2)],
where ∆p is the pressure difference (Laplace pressure) across the interface, R1 and R2 are the
principal radii of curvature of the drop surface and σ is the surface tension of the solution.
Due to gravitational effects, the drop deforms as its weight generates a hydrostatic pressure,
∆phyd , within the drop and this hydrostatic pressure is defined as ∆phyd = gl∆ρ . Here, ∆ρ is
the difference in densities between heavier (pendant) drop and lighter (air) phase, g is the
gravitational acceleration and l is a vertical distance between the measuring point and the
needle opening. This hydrostatic pressure contributes to the inner pressure and therefore,
influences the primary radii of curvature R1 and R2. During the measurement, a magnification
of a video image is first determined to be able to assess actual drop dimensions (R1, R2 and
l). Then, an inbuilt (Kruss) software uses a numerical method to generate a drop shape that
coincides with the actual drop shape. When both the shapes coincide, a surface tension
value is extracted [134] by equating the Young-Laplace equation and the hydrostatic pressure
equations.

The surface tension measurements are done using a (Kruss) Drop Shape Analyser (series
100), with a resolution of 0.01 mN/m. A suspended drop of the solution is created at the tip
of a syringe. The syringe has a needle diameter of 1.825 mm. A box, made of transparent
glass, is partially filled with the solution. Then, the box is covered with a paraffin film having
a small hole. The size of the hole is limited so that the syringe needle can just pass through it.
This method helps to create a saturated environment to prevent evaporation of the pendant
drop. Furthermore, any other outside contamination and airflow are restricted. At least three
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drops are analysed for each test fluid. The values obtained of surface tension, σ , for all the
solutions are reported in Tab. 2.1. The values of σ are fairly constant for all the solutions.

2.1.2.3 Shear rheometry

We measure the shear viscosity, η(γ̇) = τ/γ̇ , and the measurements are done with a rotational
rheometer (Discovery HR-3 from TA Instrument). A double-wall concentric cylinder geome-
try, as schematically shown in the inset of Fig. 2.1, is used. The large contact area between the
solution and geometry surfaces enables accurate measurements of the low-viscosity solutions
with torque resolution of 0.05 nN.m. After machine self-calibration, the test fluid is loaded
into the cavity between the two fixed cylinders of the double-wall concentric geometry. The
detailed geometry of the double-wall concentric cylinder is as follows: inside cup diameter
is 30.2 mm, outside cup diameter is 37 mm, inside bob diameter is 32 mm, outside bob
diameter is 35 mm, and inner cylinder height is 55 mm. The rotating bob drives the flow.
Then, the geometry is covered with the protective plates to avoid solution evaporation and
outside contamination. Range of shear rate, γ̇ , is maintained in-between 0.001 to 1000 s−1,
with at least 5 points per decade. To ensure the repeatability of the measured points, shear
rate is increased from 0.001 to 1000 s−1, and then decreased from 1000 to 0.001 s−1. Only
overlapped data points are validated and unstable data are removed. The low shear rates
were limited by the instrumental constraints and the high shear rates were limited by elastic
instabilities [135]. For shear rates larger than 100 s−1, apparent shear thickening is indeed
observed, probably due to elastic instabilities. Over-night tests are performed to ensure the
steady-state condition is reached. Each point takes at least 1200 seconds so that at least one
complete rotation of the bob is obtained for the low shear rates and many more for the highest
shear rate. For each experiment, the same protocol and a new test fluid is used. The shear
viscosity experiments are carried out in a temperature-controlled room at 20○C and a thermal
bath (ThermoFisher scientific) is also used to ensure that the rheometer remains at a constant
temperature (20○C).

Experimental measurements of η versus γ̇ for all the solutions are presented in Fig. 2.1.
At small shear rates, the viscosity attains a constant value, called first Newtonian plateau
viscosity or zero-shear viscosity, η0. At high shear rates, a second plateau called the second
Newtonian plateau viscosity or infinite-shear viscosity, η∞, is expected. For the results
obtained, the Carreau model [47] is used to calculate the zero shear viscosity, η0. The
Carreau model represents the approximation of the relationship between zero-shear rate,
infinite-shear rate, and shear viscosity:
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η −η∞
η0−η∞

= [1+(K1γ̇)a](n−1)/a (2.2)

where K1 is a time constant at which shear thinning starts, n is the power law exponent,
and a is a dimensionless parameter describing the transition between the zero-shear rate
region and the power law region. When a = 2, Eq. 2.2 is referred to as the Carreau equation
[136]. The variable parameter a was added later by Yasuda et al. [137]. In our calculations,
we use a = 2. Furthermore, since the second Newtonian plateau is not accessible by our
measurements (it is beyond elastic instabilities), a solvent viscosity, ηs, is considered as the
infinite-shear viscosity. The minimum torque for Discovery HR-3 is 5 nN⋅m, according to the
manufacturer. However, the bob is used for both rotation control and torque measurement.
Hence, in practice, as shown in Fig. 2.1, it is difficult to reach the minimum torque.
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Fig. 2.1 Shear viscosity, η(γ̇), for all tested solutions at 20○C. The inset schematic diagram
is the double-wall concentric cylinder geometry, used for the shear viscosity measurements.
For PEO and PEG+PEO solutions, the data are fitted with the Carreau law (Eq. 2.2). For
PEG20 solution, the red dashed line shows the average value of η . The minimum torque
limit is indicated by the dashed-dotted line.

The corresponding values of the zero shear viscosity, η0, the power law exponent, n,
and the time constant, K1, are reported in Tab. 2.1. It can be observed that PEG+PEO
solutions have higher η0 than PEO solutions, as expected. Hence, the addition of PEG in
PEO solutions enhance the shear viscosity of the solutions. When n is less than one, fluids
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Table 2.1 Density, surface tension and shear rheological parameters for PEG20, PEO and
PEG+PEO solutions at 20○C. For all solutions containing PEO, 0.5 wt% of isopropyl alcohol
is added. For PEO and PEG+PEO solutions, shear viscosity data are fitted with the Carreau
law (Eq. 2.2). n is the power law exponent and K1 is a time constant. Values of n and K1 are
obtained from the Carreau fits. The solvent viscosity, ηs, is considered as η∞. For PEG20,
average value of shear viscosity is considered as η0. ∗ indicate inconsistent values of η0
caused probably by shear viscosity measurements performed later than three weeks after
solution preparation.

Abbreviation wPEG wPEO ρ σ η0 η∞ n K1

wt (%) (wppm) (kg/m3) (mN/m) (Pa⋅s) (Pa⋅s) (s)
PEG20 20 0 1032.5 58 0.034 - - -

PEO100 0 100 997 59 0.0011 0.001 0.940 3.319
PEO250 0 250 997.1 59 0.0013 0.001 0.973 0.774
PEO800 0 800 997.3 59 0.0100∗ 0.001 0.957 0.999

PEO1000 0 1000 997.3 59 0.006 0.001 0.900 0.998
PEO1500 0 1500 997.5 59 0.054∗ 0.001 0.724 1.651
PEO2000 0 2000 997.6 59 0.039 0.001 0.717 0.887

PEG20PEO100 20 100 1032.8 57 0.160 0.034 0.99 348.8
PEG20PEO250 20 250 1033.4 57 0.165 0.034 0.99 319.1
PEG20PEO800 20 800 1033.6 57 0.170 0.034 0.880 300.1

PEG20PEO1000 20 1000 1033.6 57 0.771 0.034 0.634 10.28
PEG20PEO2000 20 2000 1033.4 57 1.682 0.034 0.641 23.65

experience shear thinning behaviour. In the present study, for both PEO and PEG+PEO
solutions, the shear-thinning behaviour is observed and this behaviour is predominant beyond
w∗ = 350 wppm. Values of the time constant, K1, are higher for PEG+PEO solutions than
PEO solutions. Higher values of K1 for PEG+PEO solutions indicate that the shear-thinning
behaviour occurs earlier (at lower shear rates) than PEO solutions.

2.2 Extensional rheology of polymer solutions

In this section, initially, details of the experimental setup and instrumentation used are given.
Then, experimental methods along with image analysis for filament thinning and BOAS
structure are discussed. Furthermore, relaxation time and apparent extensional viscosity
values for test fluids are presented. Finally, the experimental details and image analysis for
the liquid transfer are discussed.
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Fig. 2.2 (a) Schematic and (b) photograph of the experimental setup. In the schematic, the
small blue rectangle represents a polymer solution sample.

2.2.1 Experimental setup and instrumentation

The experimental setup to study extensional rheology consists of a CaBER, a high-speed
camera (Phantom), a 2 W power-adjustable continuous green laser (RayPower), and a diffuser.
The camera is fitted with a catadioptric lens (Questar). The diffuser is an anti-speckle optic
that allows shadowgraph images. A schematic and photograph of the experimental setup is
shown in Fig. 2.2 Details of the instrumentation used in the experimental setup are given
below:

Capillary Breakup Extensional Rheometer (CaBER) CaBER is a commercial exten-
sional rheometer by Thermo Haake and it can be used to obtain a precise stretching of a
capillary liquid bridge. A solution sample is placed in-between two horizontal stainless steel
cylindrical plates to form the liquid bridge. The liquid volume introduced is controlled with
the help of a pipette (Eppendorf research plus, range of 10 to 100 µL). The bottom plate of
the CaBER is fixed. The top plate can be moved at the desired speed (minimum speed of
approximately 0.001 m/s and a maximum speed of approximately 0.134 m/s). The liquid
bridge is stretched upwards to a requisite height with the help of a linear motor having a
resolution of 0.02 mm. Hence, a highly precise, repeatable, and controllable stretching can
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be achieved. Three sets of plates with diameters 4, 6 and 8 mm are used, as shown in Fig.
2.3.

(a) (b) (c)

Fig. 2.3 CaBER (top) plates with diameters, DP = (a) 4, (b) 6, and (c) 8 mm.

Camera and lens The high-speed camera (Miro series from Phantom) records the evolution
of the capillary liquid bridge. Images can be acquired at a maximum rate of 3260 images per
seconds. Each image having a resolution of 800×1280 pixels. A long-distance catadioptric
lens from Questar (with working range 560 to 1520 mm and resolution up to 3 µm at 560
mm) is attached to the camera.

Laser A continuous laser from Dantec dynamics (RayPower 2000) with 2 W power is used
as a light source. The laser power can be adjusted to capture good-contrasting images. A
diffuser (shadowStrobe from Dantec), which is an optical device used for shadowgraphy,
is connected to the laser. The diffuser helps to avoid speckles and to make a uniform light
distribution.

Temperature For all experiments, the experimental setup is kept in a temperature-controlled
room, maintained at 20○C. A thermal bath (ThermoFisher scientific) is also used to ensure
that the CaBER remains at a constant temperature (20○C). Furthermore, storage and charac-
terisation of the solutions are done at the same temperature (20○C).

2.2.2 Experimental method and image analysis

In the present study, liquid bridge is stretched in the upward direction. Stretching of a
viscoelastic liquid bridge leads to the formation of a filament. To measure the time-evolution
of the filament diameter, a CaBER micrometer, as well as a high-speed image processing have
been used. The images are acquired at a rate from 100 to 1000 fps. Capillary thinning of the
filament leads to necking at its both ends and the solution is pulled towards the centre of the
filament. Then, due to localised pinching, a big central drop along with several smaller drops
is formed. The camera records stretching, filament thinning, necking, localised pinching, as
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well as the formation of drops on the filament. Calibration of images is required to optimise
reproducibility and accuracy of geometric measurements. The pixel size has to be determined
to produce scaled measurements. We acquire only the filament to extract filament diameters
and to study the drops-on-a-filament structure. We record the complete stretched liquid
bridge to visualise the evolution of the liquid bridge and to investigate the liquid transfer.
Therefore, the camera is fixed at a position to capture the complete stretched liquid bridge or
only the filament, depending upon the objective of measurement. Then, a reticle (from Max
Levy Autograph) is placed in-between the plates and an image is acquired. The reticle has
standard graduated markings (range: 0 to 15 mm) and the smallest measurement on the scale
is 0.1 mm. The numbers of pixels for 0.1 mm are measured and this obtained scaling is used
to convert the number of pixels into µm. The resolution for typical experiments (with DP = 6
mm and FAR = 2) in the BOAS study is 1 pixel ≈ 2.3 µm, and in the liquid transfer study: 1
pixel ≈ 1.9 µm.

2.2.2.1 Filament thinning and BOAS

In this section, a typical example of a stretched viscoelastic liquid bridge is described. Time
evolution of the stretched liquid bridge until the formation of BOAS, for PEO2000, is
depicted in Fig. 2.4(a-g). Initially, at t = 0 s, the liquid bridge is formed in-between two
CaBER plates with diameter, DP = 6 mm, as shown in Fig. 2.4(a). The bridge is initially
separated by the initial height, L0 = 2 mm. Then, the top plate is moved upwards (with a
simple linear motion) and reaches the final stretching height, L = 6 mm, at t = 0.05 s, as
shown in Fig. 2.4(b). Thinning of the stretched liquid bridge continues and a filament forms,
a shown in Fig. 2.4(c). Moreover, solution pools can be seen at both ends of the filament.
Necking appears first at the top end of the filament, see Fig. 2.4(d), and then at the bottom
end. After necking of the filament occurs at both ends, the solution sample is pulled towards
the centre of the filament. This is termed as recoil [2, 85]. A big central drop is formed as
shown in Fig. 2.4(e). Furthermore, due to localised pinching, smaller satellite drops are
formed across the length, on either side of the big drop, as shown in Fig. 2.4(f). The number
of drops grows with time. Hence, a structure appears with all drops connected by thin and
small random lengths of the filaments. This structure is called the drops-on-a-filament or
BOAS structure. A zoomed view of the BOAS structure is shown in Fig. 2.4(g). The size of
the big central drop is around 300 µm. The drops move across the length of the filament and
coalescence of the drops occurs. However, the filament continues to thin at both ends and
breaks at either its top or bottom end. As a result, the drops either merge into the bottom
or top solution pool. However, in the present study, we mostly observed drops falling into
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the bottom solution pools. More details about the coalescence of the drops and the breakup
of the filament are discussed in the next chapter. The formation of solution pools is further
discussed at the end of this chapter.

Filament diameters Now to further investigate the filament thinning, the camera is focused
on the region around the filament and images are captured. A self-developed code in
MATLAB is used to extract the data from the calibrated images. Neck or minimum diameters,
Dmin(t), and mid-plane diameters, Dmid(t), of the filaments are obtained for each image. As
the name suggests, the mid-plane diameter, Dmid , is captured at the mid-plane of the filament.
The position of Dmid on the liquid bridge is indicated in Fig. 2.4(h) by blue-dashed lines.
The measured filament diameters, D(t), are plotted against time, t and presented in Fig.
2.4(h). The shaded regions (b-f) represent different filament thinning stages corresponding
to photographs (b-f). For the same experiment, after t ≃ 1.8 s, the minimum diameter curve
deviates from the mid-plane diameter curve. Furthermore, both diameters are compared
with the filament diameter, DCaBER(t), obtained from CaBER measurements. In CaBER, the
diameter of the filament is monitored by an inbuilt laser micrometer. The position of the
CaBER micrometer is fixed at the mid-height of the liquid bridge. The fixed mid-height
position of the CaBER micrometer is represented as a red dotted line in Fig. 2.4(a-f).
The CaBER experiments and high-speed image analysis experiments can not be conducted
together because of experimental limitations (as the CaBER micrometer obstructs the laser
path). Hence, the CaBER experiments are conducted separately to measure the filament
diameter. In Fig. 2.4(h), the vertical shift between the red and blue curves, for D, can be
explained by the position of the extracted diameters on the filament. Moreover, the horizontal
shift between the red and blue curves, for t, can be due to different experiments. When all
three diameters are considered, the filament does not have the same diameter over time.

In the later stages of the filament thinning, due to the recoiling and the coalescence, the
drops move axially along the thread. Hence, for Dmid measurements, in the later stages
of Fig. 2.4(h), crests and troughs are observed. The appearance of crests and troughs are
highlighted in this D versus t plot by the shaded regions (e) and (f). The crests and troughs
are not observed for Dmin, as it only measures the minimum diameter across the filament.
Position of Dmin on the filament is also tracked in time and space. The details of the position
of Dmin are discussed in the next chapter. In the present thesis, we use Dmid to calculate
relaxation times and Dmin to measure extensional viscosity.
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Fig. 2.4 A typical example of stretching of a liquid bridge, filament thinning and formation
of a beads-on-a-string (BOAS) structure. Here, a liquid bridge, formed in-between the two
plates having DP = 6 mm and volume 56 µl, is stretched from IAR = 0.66 to FAR = 2 at
U = 0.08 m/s. (a-f) Photographs of the time evolution of stretching of a capillary bridge until
the formation of drops for PEO2000. The fixed mid-height position of CaBER micrometer is
represented as a red dotted line. The mid-plane position of the filament is represented by a
blue dashed line. (g) Zoomed view of BOAS pattern, where the size of the big central drop is
300 µm. Scale bar: 100 µm. (h) D versus t for PEO2000, measured by the micrometer (red
crosses) and by image processing at mid-plane of the filament, Dmid (blue circles), and at
the minimum diameter along the filament, Dmin (green diamonds). The shaded regions (b-f)
represent the different thinning stages corresponding to photographs (b-f).
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2.2.2.2 Relaxation time

Relaxation time is the time required for a material to adjust itself to the applied deformation.
The relaxation times of the solutions are calculated using the CaBER. When the solution
sample, loaded in-between the two plates, is stretched, filament forms. Here, the liquid
bridge formed with the plate diameter, DP = 6 mm, IAR = 0.66, is stretched at the speed, U =
0.08 m/s, to FAR = 2. Thinning of the filament occurs due to the capillary forces. The time
evolution of DCaBER for the PEG20, PEO and PEG+PEO solutions are presented in Fig. 2.5.
For all the solutions, the filament diameter, DCaBER, decreases with time, as expected, and
finally the filament breaks. For both the PEO and PEG+PEO solutions, the filament breakup
time increases with increasing PEO mass fraction, wPEO. Furthermore, for the same wPEO,
the filament breakup time is higher for PEG+PEO solutions than PEO solutions.

Fig. 2.5 Evolution of the average CaBER diameter, DCaBER, versus time for all measured
solutions, for (a) PEG20 and PEO solutions, and (b) PEG+PEO solutions. DCaBER is an
average over at least 5 experiments. Here, the liquid bridge, formed in-between the two plates
having DP = 6 mm and volume 56 µ l, is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s.
Solid lines represent elasto-capillary fits (Eq. 2.3) for PEO as well as PEG+PEO solution,
and inertio-capillary fit (Eq. 2.4) for PEG20. The relaxation times, λ , are calculated using
Eq. 2.3. Only overlapped data points of DCaBER and the elasto-capillary fits are considered
to calculate λ . In the final stages of the present graphs, crests and troughs are observed due
to the BOAS structure.

When the filament thinning enters into the elasto-capillary regime, exponential decrease
of the filament diameter is observed. In this regime, the relaxation time, λ , is calculated as
shown:

DCaBER

D0
= (GD0

4σ
)

1/3
exp( −t

3λ
) (2.3)
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where G and σ are the modulus and surface tension of test fluids [12]. Values of the
relaxation time, λ , are calculated considering the average over at least five experiments. For
each experiment, a new solution sample is used. Fits are obtained in the elasto-capillary
regime for D > 0.1 mm, t > 0.05 s and the fit error less than 2%. Furthermore, only the
overlapped data points of DCaBER and the fits are used to calculate λ .

The values of λ for the PEO and PEG+PEO solutions are presented in Fig. 2.6. Detailed
values of λ for all the solutions are reported at the end of the chapter. As expected, for
both the PEO and PEG+PEO solutions, λ increases with increasing PEO concentration,
wPEO. This behaviour has also been reported previously for PEO solutions [88] and for
PEG+PEO solutions [78, 101]. Stelter et al. [88], Martínez-Arias and Peixinho [101] and
Gaillard et al. [78] used the same molecular weight (M = 8×106 g/mol) of PEO as in the
present study. Hence, values of λ from the present study are compared with the values
obtained by these authors. For PEO solutions, we have obtained higher values of λ compared
to Stelter et al. [88]. The difference in λ measured in the present study and Stelter et al.
[88] can be due to differences in the average molecular weights of PEO provided by the
manufacturers and the different protocols in the solution preparations. It is important to recall
that we have not used any mechanical stirrer to prepare the solutions and use of a mechanical
stirrer reduces relaxation times as reported by Gaillard [61]. Furthermore, when λ for both
PEO and PEG+PEO solutions are compared, at the same wPEO, larger λ is observed for
PEG+PEO solution. For example, λ for PEG20PEO1000 solution is higher compared to λ

for PEG7PEO1000 and PEO1000 solutions. Hence, it can be concluded that the addition of
PEG in the aqueous solutions of PEO enhances the relaxation time of the solution. Finally,
power law fits are used to capture the trend of increase in λ with wPEO. The exponents of
the fits suggest the increase in λ with wPEO is fairly similar for all mass fractions of PEG.
The exponent found in the present experiments for all mass fractions of PEG varies between
0.64 to 0.84. These exponents are in agreement with the previous values by Stelter et al. [88]
(0.63), by Martínez-Arias and Peixinho [101] (0.59) and by Gaillard et al. [78] (0.84).

Relaxation time using Dmin We want to verify if Dmin, obtained from the image processing,
can be used to calculate the relaxation time, λ . Hence, additional experiments are performed
for all PEO and PEG+PEO solutions. Relaxation time from Dmin is calculated using an
exponential fit : Dmin∝D0 exp(−t/3λ). These results are compared with λ obtained from
CaBER measurements and are presented in Fig. 2.6. For the PEO solutions, λ calculated
from Dmin increases with increase in wPEO. For the PEG+PEO solutions, λ from both
methods, are in the same range. However, for each concentration, the difference in the values
of λ from both methods is around 30%. Hence, due to large differences in the values of λ ,
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Fig. 2.6 Relaxation time, λ , as a function of the mass fraction of PEO, wPEO, for PEO and
PEG+PEO solutions. The initial liquid bridge is formed in-between two plates having DP = 6
mm and volume 56 µl. The graph also represents the comparison of λ calculated by Dmin,
obtained from the image processing, and from CaBER. Martínez-Arias and Peixinho [101]
used aqueous PEO solutions with 7 wt% PEG, whereas Stelter et al. [88] used aqueous PEO
solutions only. The lines indicate power law fits with coefficient of determination of 0.96 and
1 for PEG20PEO (CaBER) and PEO (CaBER) solutions.

we only consider relaxation times obtained from DCaBER to calculate the non-dimensional
numbers.

Filament thinning for PEG20 For PEG20 solution, we found Oh = 0.08 with DP = 6 mm,
and hence, the filament undergoes inertio-capillary thinning. Data points in Fig. 2.5 are
fitted using Eq. 2.4. The filament necking time (or breakup time for Newtonian PEG20
solution), tb = 0.063 s, is obtained from the CaBER measurements and the Rayleigh time
scale is calculated from the solution properties, tR = 0.022 s. In the present study, we obtained
prefactor value of X = 0.33 that agrees well with the previous studies [11, 14, 56, 63, 69, 73–
75] where the authors reported values of X in the range of 0.19 to 0.8.

DCaBER

DP
= X (tb− t

tR
)

2/3
(2.4)
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2.2.2.3 Apparent extensional viscosity

In the present study, the apparent extensional viscosity, ηE , is calculated, using the concept
proposed by Anna and McKinley [1]. In their work, the authors considered mid-plane
diameter, Dmid , of the filament to determine ηE . Later, other authors [9, 78, 138] followed
the same approach. However, Dinic et al. [27] used the neck diameter, Dmin, of the filament
to evaluate ηE . In the present work, we use the same approach, proposed by Dinic et al.
[81]. As previously observed, the filament diameter, D, varies across its length. Hence, this
approach helps to accurately measure ηE at the neck or minimum diameter, Dmin. Calculating
extensional viscosity at Dmin allows measuring the maximum extensional viscosity in the
filament. The apparent extensional viscosity, ηE , is calculated using Dmin:

ηE =
−σ

dDmin(t)/dt
. (2.5)

Furthermore, a similar approach was used previously [1, 9, 78, 138] to calculate the Hencky
strain by using Dmid . However, again, we use the same minimum diameter extracted from
the images to determine the Hencky strain,

εmin = 2 ln[ D0

Dmin(t)
] . (2.6)

Experiments are performed by stretching a liquid bridge formed in-between two plates
with DP = 6 mm. The liquid bridge is stretched upwards with U = 0.08 m/s from IAR = 0.66
to FAR = 2. Since the minimum measurable diameter with this experimental setup is 2.16
µm and the plate diameter, D0 = 6 mm, the maximum Hencky strain that can be calculated is
15.86.

The results obtained for the apparent extensional viscosity, using PEG, PEO and PEG+PEO
solutions, are plotted against time in Fig. 2.7(a) and against the Hencky strain in Fig. 2.7(b).
For both PEO and PEG+PEO solutions, ηE increases with time and the Hencky strain. Fur-
thermore, all PEG+PEO solutions have comparatively higher ηE than PEO solutions. The
trend of increase in ηE with εmin is similar to the previous studies by Yu et al. [138] and
Gaillard et al. [78]. Both authors used 20% of PEG with various concentrations of PEO.
However, both authors calculated ηE and εmin using midplane diameter, Dmid . Moreover,
Yu et al. [138] used lower molecular weights of PEG (M = 10000 g/mol) and PEO (M =
6.72×105 to 1.03×106 g/mol) in their study of viscoelastic liquid jets. Gaillard et al. [78]
used the same molecular weight of PEO as in the present study (M = 8×106 g/mol). But
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Fig. 2.7 Apparent extensional viscosity, ηE , as a function of t and the Hencky strain, εmin, for
PEO and PEG+PEO solutions. ηE = −σ/[dDmin(t)/dt] and εmin(z,t) = 2ln[D0/Dmin(z,t)].
Dmin is extracted from the images. The liquid bridge, formed in-between the two plates with
DP = 6 mm, is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s.

the molecular weight of PEG (M = 8000 g/mol) is lower compared to us. Even though, the
authors used smaller plate diameter (DP = 3 mm), stretching parameter FAR = 2.33 is fairly
similar to us. As a result, both authors found similar trends for ηE vs. εmin but lower values
compared to the present work.

More detailed observation of Fig. 2.7(b) indicates that the increase in ηE with εmin can
be characterised in two distinct regimes. The first regime (εmin < 6), the polymer chains
are stretched and a small increase in εmin results in a large increase of ηE . This regime
corresponds to the development of the cylindrical shaped filament in the axial, as well as
radial direction. Then, ηE transits to the second regime. For εmin > 6, ηE does not increase
considerably. This behaviour is called strain hardening and corresponds to polymers being
closer to a fully stretched state. In this regime, the filament thins in the radial direction only.

Finite extensibility parameter Furthermore, terminal extensional viscosity, ηT , at large
strains is estimated considering the maximum values of ηE . Hence, knowing values of η0

and ηs, we can use Eq.1.45 to estimate the finite extensibility parameter, b:

b ≡ ηT −3ηs

2(η0−ηs)
. (2.7)
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For PEO solutions, water is considered as the solvent. Hence, to calculate the finite exten-
sibility parameter of PEO solutions, viscosity of water (0.001 Pa⋅s at 20 ○C) is considered
as solvent viscosity. For PEG+PEO solutions, PEG20 is considered as the solvent. Hence,
to calculate the finite extensibility parameter for PEG+PEO solutions, viscosity of PEG20
(η0 from table 2.1) is considered as solvent viscosity. Values of ηT and b are reported in
table 2.2. At the same wPEO, b values are higher for PEO solutions than PEG+PEO solutions.
The values of ηT obtained in the present study are higher for the same wPEO compared to
Gaillard et al. [78]. The difference can be due to the lower molecular weight of PEG and
different solution preparation protocols (with a mechanical stirrer) used by the authors.

Table 2.2 Rheological parameters for PEO and PEG+PEO solutions at 20○C. For PEG+PEO
solutions, PEG20 is considered as solvent with ηs = 0.034 Pa⋅s and for PEO solution, water is
considered as solvent with ηs = 0.001 Pa⋅s. In the present study, a liquid brigde with DP = 6
mm is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. The results are compared with
Gaillard et al. [78], note the authors only used PEG+PEO solutions. The authors used same
molecular weight of PEO as in the present study (M = 8×106 g/mol) but lower molecular
weight of PEG (M = 8000 g/mol).

Abbreviation wPEG wPEO η0 ηs ηT b ηT [78] b [78]

wt (%) (wppm) (Pa⋅s) (Pa⋅s) (Pa⋅s) ×103 (Pa⋅s) ×103

PEO100 0 100 0.0011 0.001 53 264.98 - -

PEO250 0 250 0.0013 0.001 144 239.99 - -

PEO1000 0 1000 0.006 0.001 798 79.8 - -

PEO2000 0 2000 0.039 0.001 893 11.75 - -

PEG20PEO100 20 100 0.160 0.034 3856 15.30 400 100

PEG20PEO1000 20 1000 0.771 0.034 5192 3.52 2000 40

PEG20PEO2000 20 2000 1.682 0.034 5676 1.72 5000 20

Moreover, in Fig. 2.8, the terminal extensional viscosity, ηT , is plotted against the
relaxation time, λ , of the solutions. ηT increases with an increase in λ . This trend has been
reported previously by Stelter et al. [88], Gaillard et al. [78] (see Tab. 2.2) and Tirel et al.
[139]. According to Stelter et al. [88], ηT is proportional to λ by a prefactor which is larger
for flexible polymers than rigid polymers. In the present study, only flexible polymers are
used and ηT varies with λ by a prefactor of 1.7×103 Pa. Gaillard [61] obtained a different
prefactor value such that ηT ≈ 8×103λ . The shift in the prefactors can be justified by the
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Fig. 2.8 The terminal extensional viscosity, ηT , from Tab. 2.2, as a function of the relaxation
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et al. [78] and Tirel et al. [139]. The red line represents a fit ηT = 1.7×103λ for the present
data.

higher values of λ obtained in the present study, as we do not use any mechanical stirrer.
Furthermore, for PEO solutions (M = 8×106 g/mol) used by Tirel et al. [139], ηT values lie
between the prefactors 1.7×103 Pa and 8×103 Pa. This difference in the prefactor values
may be due to the use of different IPA mass fractions, as Tirel et al. [139] used 5 wt% of IPA
whereas we used 0.5 wt% of IPA for PEO solutions.

2.2.3 Experimental details for liquid transfer

When a liquid bridge is stretched, solution pools are formed along with a filament. The
formation of the solution pools lasts until the breakup of the filament. In the present study,
the formation of solution pools is studied experimentally with the CaBER and the camera, as
shown schematically in Fig. 2.9. Initially, a liquid capillary bridge, as shown in Fig. 2.9(a), is
created by placing a solution sample in-between the two parallel circular flat CaBER plates.
The volume of the solution introduced in the liquid bridge depends upon the size of the plate
diameter and the initial liquid bridge height, L0, and can be calculated as V = (π/4)DP

2L0.
Special care is taken to ensure that no air bubbles have been trapped inside the liquid bridge
to eliminate any uncertainty in the bridge volume and shape. After stretching of the liquid
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Fig. 2.9 Schematic of the experimental setup. The small blue region represents the polymer
solution sample. (a) Liquid bridge, before stretching, with plate diameter, DP, initial stretch-
ing height, L0 and stretching speed, U . (b) Liquid bridge stretched to the final stretching
height, L, and (c) Volumes of the solution pools on the top plate, VT , and on the bottom plate,
VB. The contact lines are pinned throughout the experiments.

bridge, solution pools are formed on the top and bottom plates, as shown in Fig. 2.9(c).
Throughout the experiment (from stretching of the liquid bridge until the formation of the
solution pools), liquid contact lines are pinned at the corners of the plates. Before and after
stretching of the liquid bridge, we measured lengths of liquid contact lines on the top and
bottom plates. We found that the lengths before and after stretching are the same. Previously,
similar pinned contact lines for plate devices have been observed by Qian and Breuer [115]
and Zhang et al. [100]. The experiments are performed 20○C.

The camera captures stretching, filament thinning, and breakup, as well as the solutions
pools on the top and bottom plates of the CaBER. Considering the axisymmetric capillary
bridge, images of the vertical cross-section of the solution pools are captured. As the images
are obtained from the shadowgraphy technique, it is straightforward to achieve binary images
using the ImageJ software. These images are further analysed to calculate the number of
pixels for both solution pools. The numbers of pixels are converted into the corresponding
length unit. Then, the contact line diameter, a0, and the height, h0, of the cross-section of
each solution pool are estimated by counting the pixels in the appropriate directions. Finally,
considering a spherical shape of the solution pool, the "spherical cap" method [112, 140] is
implemented to calculate the volume, V , of any solution pool, as shown in Fig. 2.10. In the
present study, the liquid contact lines are pinned, and hence, the contact line diameter, a0 is
equal to the plate diameter, DP. Therefore, the volume of the solution pool formed on the
plate can be given as:

V = 1
6

πh0(
3
4

D2
P+h0

2) (2.8)
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a0

h0

Fig. 2.10 Schematic of a solution pool, having volume, V , on any flat surface, considering
asymmetric liquid distribution. The blue line represents a spherical cap or dome containing
liquid, with height h0 and contact line diameter, a0, on the surface.

2.3 Solution property table

All measured rheological properties and the non-dimensional numbers calculated using
CaBER plates (with diameters 4, 6 and 8 mm) are summarised for the polymer solutions
in Tab. 2.3. λ is considered as the characteristic time of a solution and hence, assumed
to be constant for all plate diameters. Hence, λ is measured with DP = 6 mm. η0 data for
PEG20PEO400 is acquired by fitting a trend obtained with η0 data for other PEG+PEO
solutions.

The non-dimensional numbers are recalled: Bond number, Bo = ρgDP
2/ (4σ ), Ohnesorge

number, Oh = η0/
√

ρσDP/2 and Deborah number, De = λ /
√

ρD3
P/8σ . By changing DP

from 4 to 8 mm, Bo is varied from 0.66 to 2.87. For DP = 8 mm, Bo is greater than two,
which suggests the higher influence of gravity on the liquid bridge dynamics. Furthermore, a
wide range of De is obtained by varying wPEO and wPEG. The experiments on the BOAS
structure are mostly carried out using DP = 6 mm and for these experiments, De is varied
from 3.5 to 296.4. These values of De greater than one indicate the influence of elastic forces
and hence, the presence of the elasto-capillary thinning. Finally, Oh values are varied by
changing the zero shear viscosity of the solutions. For example, when DP = 6 mm, Oh for
PEO solutions is varied from 0.001 to 0.13, but for PEG+PEO solutions, Oh is varied from
0.38 to 4.01.

2.4 Numerical setup

In this section, details of numerical simulations for a stretched liquid bridge using Open-
FOAM toolbox rheoTool [125] are discussed. The objective of this work is to test the use of
OpenFOAM toolbox rheoTool to simulate capillary thinning of a stretched liquid bridge. To
recreate an initial state of a bridge as similar to that of Fig. 2.4(b), we will extract stretched
liquid bridge profiles from experiments. Previously, to initiate capillary thinning of the
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filament, other authors introduced an initial perturbation [2, 16, 55] or used interface profile
generated by an equation [56] or planar symmetry [3] neglecting gravity. However, our
method is closer to actual experimental profile of filament compared to these authors and also
accounts gravitational, viscous as well as inertial effects on a stretched capillary bridge. With
the aid of OpenFOAM software, we will design a mesh and use the specific solver rheoIn-

terFoam for fluids under study. In addition, we will extract data for drops-on-a-filament
and liquid transfer, and then compare it with the experimental results in chapters 3 and 4.

Using rheoTool, various viscoelastic models such as Oldroyd-B, Giesekus or FENE-P
can be solved. As discussed in the previous chapter, the Oldroyd-B model is most commonly
used for viscoelastic capillary thinning and BOAS structure [2, 3, 13, 16, 55, 56, 85, 100].
Furthermore, log-conformation tensor approach is known for stabilised viscoelastic fluid
flows [124, 130]. Hence, in the present work, we use the log-conformation tensor approach
of the Oldroyd-B model for simulations of viscoelastic fluids. To implement the Oldroyd-B
model in rheoTool, we need to define liquid properties such as ηs,ηp,ρ,σ and λ . These
values are obtained experimentally as discussed in the previous sections of this chapter
and are used in the numerical simulations. Simulations for a Newtonian case are carried
out with liquid properties of PEG20 solution, and for a viscoelastic case, simulations are
performed with liquid properties of PEG20PEO1000 solution. This preliminary work aims to
explore the potential use of rheoTool for stretching of a liquid capillary bridge of Newtonian
and viscoelastic fluids and to give a direction for future numerical works on beads-on-a-
string structure and transfer ratio. In the next sections, geometrical, mesh and boundary
condition details are presented along with results for capillary thinning of Newtonian as well
as viscoelastic liquid bridge.

2.4.1 Newtonian solution: PEG20

In this section, a Newtonian fluid case is simulated considering liquid properties of the
PEG20 solution. As polymeric extra-stress field does not come into play, the Newtonian fluid
case will serve as a reference for the next viscoelastic fluid simulation.

Geometry and mesh To make our numerical study closer to experimental conditions, a
stretched liquid bridge profile is used to obtain the liquid-air interface, as shown in Fig.
2.11(a) and (b). As in the experiments, the plate radius is 3 mm. By considering an
axisymmetric stretched profile along Y-axis, only the right side of the axis of symmetry is
used. This profile is used as an initial numerical interface and volume fraction. Outline of the
stretched liquid bridge is obtained from an experimental image at t = 0.05 s (when the top
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(a)

X

Y

Dp = 6 mm

L
 =

 6
 m

m

Rp = 3 mm

(a) (b)

Fig. 2.11 (a) Experimental axisymmetric stretched liquid bridge profile for PEG20. The
profile is acquired when the top plate reaches the final stretching height, L = 6 mm, at t = 0.05
s. Experimental conditions for the stretched profile are: DP = 6 mm, IAR = 0.66, FAR = 2
and U = 0.08 m/s. (b) Liquid-air interface and volume fraction of the stretched liquid bridge
profile used as an initial condition for numerical simulations.

plate reaches the final stretching height, L = 6 mm) using the ImageJ software. Then, points
on the outline, along with their coordinates, are extracted by using image analysis. After that,
the stretched profile is recreated and converted into a plane using another software SALOME,
and finally, to create a .stl file. This .stl file is imported in setFieldsDict file.

A 2D uniform axisymmetric mesh is created using the OpenFOAM meshing tool as
shown in Fig. 2.12. Liquid contact lines are pinned on both plates. To have a well-defined
interface, at least three to four elements in X-direction on the interface are required. Five
meshes with the number of elements up to 1 625 000 have been tested. All meshes have
uniform cell size and square mesh elements. Details of all meshes for PEG20 are provided
in Table 2.4. Element size (∆xmin) decreases from M1 to M5. Fig. 2.13 presents numerical
results for dimensionless mid-height filament radius [R(t)/RP] as a function of dimensionless
time [(t − tb)/tR] considering different meshes with values of De = 0 and Oh = 0.08 (same
definitions as in section 1.5). For all meshes, R(t)/RP decreases with increasing (t − tb)/tR.
Furthermore, with decreasing element size, for meshes M4 and M5, thinning radius curves
superimpose over each other. Hence, the numerical results obtained using meshes M4 and
M5 show a good agreement as decreasing element size does not affect the filament thinning.
Larger breakup times for liquid bridge are observed as element size decreases from M1
to M5. Additionally, these results are compared with the experimental values for PEG20
(obtained from Fig. 2.5). The experimental and numerical results are in a good agreement
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Fig. 2.12 Computational domain used with a uniform mesh for PEG20. Experimental
conditions are: RP = 3 mm, R0 = 0.816 mm, IAR = 0.66, FAR = 2 and U = 0.08 m/s. Liquid
phase (PEG20) is represented by the red region and the air is represented by the blue region.
(a) Description of uniform mesh used for numerical simulations. (b) Zoomed view of the
mesh around pinned contact line at the corner of the top plate. (c) Zoomed view of the mesh
around the liquid-air interface.

below R(t)/RP = 0.1. Note that in Fig. 2.13, time is scaled using tb, which is a breakup time
considering the Newtonian case.

Initial conditions The extracted outline of the liquid-air interface gives liquid contact
angles that will be considered as initial conditions. On both plates, dynamicAlphaCon-

tactAngle conditions are imposed for liquid-air contact angles. The liquid bridge has
zero initial velocity. Internal pressure, p, of the liquid bridge is uniform and p = 0 condition
is imposed.

Boundary conditions At the plate, no-slip boundary conditions are imposed with a zero
velocity and zero normal gradient for the pressure. A fixedFluxExtrapolatedPres-

sure condition is assigned to the pressure, for multi-phase flows. Regions representing
open boundaries (atmosphere) are assumed not to interfere with thinning dynamics and the
atmospheric pressure is fixed at p = 0.

Numerical details The rheoInterFoam solver is used, with the algebraic VOF method
of OpenFOAM, thus enabling the simulation of two-phase flows. Newtonian model is used



2.4 Numerical setup 75

Table 2.4 Various uniform meshes tested and their parameters for PEG20. Experimental
conditions used are: RP = 3 mm, IAR = 0.66, FAR = 2 and U = 0.08 m/s. All meshes are
uniform and hence aspect ratio is 1.

Mesh Number of elements ∆xmin/RP

or ∆ymin/RP

M1 2 600 33.3×10−3

M2 10 400 16.7×10−3

M3 260 000 3.33×10−3

M4 1 040 000 1.67×10−3

M5 1 625 000 1.33×10−3

to solve the constitutive equations. The SIMPLEC algorithm is used for the pressure-velocity
coupling. To control time steps, Courant number, Co, defined as Co = a(δ t/δx) is considered
as 0.1. Here a is a velocity magnitude, δ t is a time step and δx is a spacing between mesh
elements. Solvers that use VOF, such as rheoInterFoam, can also limit the time-step
using an interface Courant number, AlphaCo [141], which is set to 0.1 in the present study.
Relevant scripts used for PEG20 are provided in Appendix 3.

Numerical results Thinning of a stretched liquid bridge for PEG20 using mesh M4 is
shown in Fig. 2.14. alpha.water = 1 indicates presence of liquid (PEG20) and al-

pha.water = 0 indicates presence of air. No filament is observed. As we are running the
case for Newtonian fluid, the liquid bridge breaks early, i.e. at t = 0.15 s and solution pools
are formed. In these simulations, we used Oh = 0.08 and thus, we expect inertio-capillary
thinning of the stretched liquid bridge. Hence, when thinning dynamics of mesh M4 are com-
pared with characteristic inertio-capillary thinning equation, R(t)/Rp = X[(t − tb)/tR](2/3),
we obtain X = 0.1 with a coefficient of determination of 0.86. A good agreement between
both numerical solutions and fit can be observed. Furthermore, the prefactor value of X = 0.1
agrees well with the previous studies [11, 14, 56, 63, 69, 73–75] where the authors reported
values of X in the range of 0.19 to 0.8. Recently, Figueiredo et al. [56] found that as Oh
decreases the prefactor X increases and X = 0.19 was reported for Oh = 0.1. In our numerical
simulation of PEG20 solution, we have Oh = 0.08. Hence our value of X = 0.1 can be justified
because of lower value of Oh compared to Figueiredo et al. [56]. In addition, liquid contact
lines at both plate surfaces are tracked by measuring contact line velocities with time. Contact
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Fig. 2.13 Transient computation of the filament radius for PEG20. RP = 3 mm, FAR = 2
and Oh = 0.08. Also, we compared the numerical results with experimental results obtained
using CaBER. Furthermore, filament thinning for M4 is compared with inertio-capillary (IC)
thinning equation to calculate X : R(t)/Rp = X[(t − tb)/tR](2/3).

lines velocities remained at zero and thus, the liquid contact lines are pinned similar to the
CaBER experiments.

2.4.2 Viscoelastic solution: PEG20PEO1000

In this section, we present preliminary numerical results for thinning of a stretched liquid
bridge of PEG20PEO1000. These preliminary results are obtained using simple geometry
and mesh will serve as a reference than can be refined by using a higher number of elements.

Geometry and mesh An experimental stretched liquid bridge interface profile is used as
shown in Fig. 2.15, from image analysis, to obtain the liquid-air interface. Considering
an axisymmetric stretched profile along Y-axis, only the right side of the axis of symmetry
is used. This profile will be used as an initial numerical interface and volume fraction of
PEG20PEO1000 solution. Outline of the stretched liquid bridge is obtained from an experi-
mental image at t = 0.05 s (when the top plate reaches the final stretching height, L = 6 mm)
using the ImageJ software. A.stl file is generated and then imported into setFieldsDict

file as mentioned above for the PEG20 solution.
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(a) (b) (c) (d)

Rp = 3 mm

L
 =
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m

Fig. 2.14 Visualisation of the axisymmetric numerical solution of the filament thinning for
PEG20 using Mesh M4. alpha.water = 1 indicates presence of liquid (PEG20) and
alpha.water = 0 indicates air. In these simulations we used: RP = 3 mm, FAR = 2 and
Oh = 0.08. The snapshots are at (a) t = 0.03, (b) t = 0.05, (c) t = 0.1 and (d) t = 0.15 s. No
filament is observed, as expected.

(b)

X

Y

(a) (b)

Dp = 6 mm

L
 =
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 m

m

Rp = 3 mm

(c)

Fig. 2.15 (a) Experimental axisymmetric stretched liquid bridge profile for PEG20PEO1000.
The profile is acquired the top plate reaches fully stretched position, L = 6 mm, at t = 0.05 s.
Experimental conditions for the stretched profile are: DP = 6 mm, IAR = 0.66, FAR = 2 and
U = 0.08 m/s. (b) Outline of the stretched liquid bridge interface profile, used as an initial
condition of the simulations. (c) Description of a typical uniform mesh used in the numerical
simulations.
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A 2D uniform axisymmetric mesh is created using the OpenFOAM meshing tool as
shown in Fig. 2.15(c). Liquid contact lines are pinned on both plates. Several mesh sizes
with the number of elements up to 173 160 have been tested. All meshes have uniform
cell size and square mesh elements. Details of all meshes for PEG20PEO1000 are given
in Tab. 2.5. Element size (∆xmin/RP) decreases from N1 to N3. The numerical filament
time increases with a decrease in element size from N1 to N3. However, the experimental
thinning time is around 22 s, which is larger than the numerical thinning time of 0.028 s for
N3 mesh. The filament thinning and breakup time increase with the decrease in element size
as also previously demonstrated for PEG20 solution. Hence, it is expected that with smaller
element sizes, i.e. refined meshes, the thinning time can be increased. Fig. 2.16 presents
numerical results for filament thinning considering different meshes tested with De = 132.8
and Oh = 1.84. Note that time is scaled using tb, which is a filament necking time considering
the viscoelastic case.

Initial conditions Similar to PEG20, the extracted outline of the liquid-air interface will be
considered as an initial condition. For liquid-air contact angles, dynamicAlphaContac-

tAngle conditions are imposed on both plates. The liquid bridge has zero initial velocity.
Internal pressure, p, of the liquid bridge is uniform and p = 0 condition is implemented.

Table 2.5 Various uniform mesh tested and their parameters for PEG20PEO1000. Experi-
mental conditions used are: DP = 6 mm, IAR = 0.66, FAR = 2 and U = 0.08 m/s. All meshes
are uniform and thus aspect ratio is 1. Experimental thinning time before appearance of a
BOAS structure for PEO20PEO1000 solution is around 22 s. Note that meshes N1 to N3
have nearly the same element size as M1 to M3 for PEG20 (see Tab. 2.4).

Mesh Number of elements ∆xmin/RP tb

or ∆ymin/RP (s)

N1 4 330 20×10−3 0.023

N2 86 580 10×10−3 0.024

N3 173 160 5×10−3 0.028

Boundary conditions At plate surface, no-slip boundary conditions are imposed with zero
velocity, linearly extrapolated polymeric extra-stress components and a zero normal gradient
for pressure, as in the PEG20 case. A fixedFluxExtrapolatedPressure is assigned
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Fig. 2.16 Transient computation of the filament radius for PEG20PEO1000. In these sim-
ulations, we used: RP = 3 mm, FAR = 2, De = 132.8 and Oh = 1.84. Furthermore, filament
thinning for N3 is compared with inertio-capillary (IC) thinning equation to calculate X:
R(t)/Rp = X[(t − tb)/tR](2/3). We obtain X = 0.24 with a coefficient of determination of 0.93.

to pressure, for multi-phase flows. Regions representing open boundaries (atmosphere) are
assumed not to interfere with thinning dynamics and atmospheric pressure is fixed at p = 0.

Numerical details The rheoInterFoam solver is used, along with the algebraic VOF
method in OpenFOAM, for the simulation of two-phase flows. To solve viscoelastic constitu-
tive equations, the Oldroyd-B model (with log-conformation tensor approach) is used. The
pressure-velocity coupling is defined by the SIMPLEC algorithm. The Multidimensional
Universal Limiter with Explicit Solution (MULES) method is used to avoid either oscilla-
tion or diffusion in the interface. Courant number, Co = 0.05 is considered, to assure the
right balance between convergence and numerical time required. Relevant scripts used for
PEG20PEO1000 are provided in Appendix 3.

Numerical results Thinning of a stretched liquid bridge for PEG20PEO1000 solution
using mesh N3 is shown in Fig. 2.17. alpha.water = 1 indicates presence of liquid
(PEG20PEO1000) and alpha.water = 0 indicates presence of air. Thinning of the
liquid bridge is observed until t = 0.020 s and a filament is formed as shown in Fig. 2.17(c).
In these simulations, we used Oh= 1.84 and hence, we expect inertio-capillary thinning of the
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stretched liquid bridge. Therefore, when thinning dynamics of mesh N3 are compared with
characteristic inertio-capillary thinning equation, R(t)/Rp = X[(t − tb)/tR](2/3), we obtain
X = 0.24 with a coefficient of determination of 0.93. The prefactor value of X = 0.24 agrees
well with the previous studies [11, 14, 56, 63, 69, 73–75] where the authors reported values of
X in the range of 0.19 to 0.8. However, as a low resolution mesh with ∆xmin/RP = 5×10−3 has
been used, we only achieve inertio-capillary thinning but we do not attain elasto-capillary
thinning. Figueiredo et al. [56] used a mesh with ∆xmin/RP = 1.25×10−4 to observe both
inertio-capillary and elasto-capillary thinning. Due to necking, formation of a drop and
solution pools occur at t = 0.021 s, see Fig. 2.17(d). We only acquire a single drop, which is
the first generation of drops. Even after using a mesh with resolution ∆xmin/RP = 1.25×10−4,
Figueiredo et al. [56] achieved only a single first generation drop for De = 4.272 and Oh =
0.129. Furthermore, Turkoz et al. [55] previously demonstrated that a higher mesh refinement
is needed at later times when the filament thins significantly because thinning reaches a width
close to the mesh size. Instead of a complete stretched liquid bridge, the authors considered
only a filament interface domain and obtained a satellite drop for De = 0.8 and Oh = 0.04.
In their numerical study, at least 40 grid points were used in the radial direction of a thin
filament, while for the N3 mesh, there are only 5 elements in the radial direction of the
filament. Hence, we need a high-resolution mesh to achieve localised pinching that will
further lead to the formation of smaller and higher generations of drops.

Pressure (p) map, excluding hydrostatic pressure, for the liquid bridge is shown in
Fig. 2.18. Initially, as expected, there is no significant capillary pressure across the liquid
bridge, as indicated in Fig. 2.18(a) and (b). Then, once the filament appears, pressure
starts developing in the filament, Fig. 2.18 (c). Similar observation of larger pressure in the
filament has been reported by Entov and Hinch [119] and Li and Fontelos [2]. When the
filament appears, at t = 0.027 s, the capillary pressure inside the quasi-cylindrical filament
can be estimated using Laplace equation: p = σ/R(t). Using this formula, value of p in the
filament is around 444 Pa, whereas the average value of p from the numerical simulations
[see Fig. 2.18(c)] is around 432 Pa. Pressure inside the drop is observed to be higher than in
the solution pools, as expected.

Then, filament breakup and formation of the drop occur, Fig. 2.18(d). Also, velocity
distribution across the liquid bridge is shown in Fig. 2.19. Higher magnitude of velocity, U,
is observed only when the filament appears, Fig. 2.19(c). Thinning velocity keeps increasing
in the necking area and then suddenly becomes smaller, once formation of the drop occurs,
Fig. 2.19(d). In addition, liquid contact lines at both plate surfaces are tracked by measuring
contact line velocities, Ux, with time. Contact lines velocities remained at zero and thus,
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Fig. 2.17 Visualisation of the axisymmetric numerical solution of stretched liquid bridge
for PEG20PEO1000 solution using Mesh N3. alpha.water = 1 indicates presence of
liquid (PEG20PEO1000) and alpha.water = 0 indicates air. In these simulations, we
used: RP = 3 mm, FAR = 2, De = 132.8 and Oh = 1.84. (a) Initial stretched liquid bridge at
t = 0 s. (b) Stretched liquid profile at t = 0.020 s. (c) Filament is formed at t = 0.027 s. (d)
Formation of a first generation drop at t = 0.029 s.
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Fig. 2.18 Visualisation of pressure, p (Pa), inside stretched liquid bridge for PEG20PEO1000
solution using Mesh N3. In these simulations, we used: RP = 3 mm, FAR = 2, De = 132.8 and
Oh = 1.84. Pressure, p (Pa), at (a) t = 0, (b) t = 0.020, (c) t = 0.027, and (d) t = 0.029 s.
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Fig. 2.19 Visualisation of velocity inside stretched liquid bridge for PEG20PEO1000 solution
using Mesh N3. In these simulations we used: RP = 3 mm, FAR= 2, De= 132.8 and Oh= 1.84.
Velocity, U (m/s), distribution at (a) t = 0, (b) t = 0.020, (c) t = 0.027, and (d) t = 0.029 s.

in our numerical simulations, the liquid contact lines are pinned similar to the CaBER
experiments.

Distribution of polymeric stress, tauMF, across the stretched liquid bridge is shown in
Fig. 2.20. Average value of tauMF across midplane of the filament is measured and plotted
against time, as shown in Fig. 2.20 (a). The polymeric stress increases with time and this
trend is captured using an exponential fit. It is important to note that this exponential increase
of polymeric stress is in the inertio-capillary regime. Previously, Turkoz et al. [55] reported
exponential increase of polymeric stress in the elasto-capillary regime. The numerical
simulation slows down in elasto-capillary thinning as an extra equation of polymeric stress
becomes significant. When the filament forms, the polymeric stress continues to grow and
reaches the maximum value in necking area, as previously reported [2, 16, 55, 119, 142].
This increasing polymer stress causes recoiling and formation of a drop.

When solution pools are formed on both plates, solution pool heights (h0) on both plates
are measured and the transfer ratio is calculated by using the "spherical drop" method.
Corresponding results of transfer ratio for PEG20 and PEG20PEO1000 solutions are reported
in chapter 4.
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Fig. 2.20 Numerical results for polymeric stress, tauMF distribution for PEG20PEO1000
solution using mesh N3. In these simulations, we used: RP = 3 mm, FAR = 2, De = 132.8
and Oh = 1.84. (a) Average value of tauMF across midplane of the filament as a function of
time. The line is an exponential fit with a coefficient of determination of 0.99. Distribution
of tauMF inside stretched liquid bridge at (b) t = 0.027, and (c) t = 0.029 s.
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In this chapter, experimental results for beads on a string dynamics will be presented. It
has been known for 50 years [6, 7] that capillary jets of viscoelastic polymer solutions may
exhibit a BOAS structure. The BOAS structure has also been observed in the stretching of
capillary bridges using extensional rheometer such as CaBER [3, 14, 63, 76, 88, 143, 144].
For viscoelastic filaments, studies have consistently evidenced the linear viscous-capillary
thinning (Oh≫ 1), the exponential inertio-capillary thinning (Oh≪ 1), the exponential
elasto-capillary thinning and in the later stages, the existence of drops attached to a thin
filament (BOAS or blistering pattern) [1, 12, 14, 16, 18, 27, 74, 81, 88, 97]. Space-time
diagrams have been previously reported to represent spatial and temporal dynamics of a drop
formation along with their coalescence and migration [9, 15].

In the present chapter, homologous polymer mixtures or bi-disperse polymers at different
mass fractions are tested covering a large range of dimensionless numbers. In the first
part of the chapter, new types of space-time diagrams called diameter-space time diagrams
and Hencky strain-space time diagrams will be presented. These novel diagrams will help
to illustrate filament thinning, multiple generations of drops along with their diameters,
positions, coalescence, migration and Hencky strain. Moreover, the space-time diagrams will
be further investigated to study drop dynamics (diameters and number of drops). Previously,
the influence of the initial aspect ratio and the final aspect ratio on filament thinning were
reported [14, 83]. However, their influence on the formation of a BOAS structure has not
been discussed yet. Hence, in the second part of the chapter, space-time diagrams will be
developed and analysis of the diagrams will allow us to uncover effects of (i) plate diameter,
(ii) initial aspect ratio, (iii) final aspect ratio and (iv) stretching speed upon the dynamics of
the BOAS structure. Additionally, we present preliminary numerical results obtained using
rheoTool for PEG20PEO1000 solution.

3.1 Diameter-space-time (DST) and Hencky strain-space-

time (HSST) diagrams

Initially, we would like to recall and briefly discuss the limitations of previous space-time
diagrams for a stretched viscoelastic liquid bridge. Oliveira et al. [9] and Ardekani et al. [16]
reported space-time diagrams in their experimental and numerical study, respectively. The
space-time diagrams by Oliveira et al. [9] only represent a BOAS structure but not the entire
filament thinning process along with its breakup. Also, drops are presented only through
colour intensity but the space-time diagram does not provide any data about actual drop
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diameters. Furthermore, only one space-time diagram is presented by Oliveira et al. [9] for
a solution of 2000 ppm PEO (M = 3.8×106 g/mol) in water and PEG mixture. As a result,
differences in space-time diagrams for various polymer mass fractions were not explored.
Conversely, space-time diagrams obtained from numerical simulations have been produced
by Ardekani et al. [16] for a range of De from 0.8 to 300. These diagrams show a small
number (up to 6) of regularly spaced drops and no coalescence in their BOAS structure. We
aim to produce experimental space-time diagrams taking into account a complete filament
and drop dynamics of a BOAS structure. A wide range of mass fractions is tested for both
PEO and PEG+PEO solutions.

Construction of DST and HSST diagrams To obtain a complete filament along with a
BOAS structure, a trial experiment is initially performed to create a liquid filament, as shown
in Fig. 3.1(a). Depending upon PEO and PEG concentrations in a solution, sizes of the top
and bottom solution pools vary and hence, the position of the filament in a liquid bridge
changes along the z-direction. (Details of the variation of the sizes of the solution pools
with PEO and PEG concentration are discussed in the next chapter). Therefore, the camera
needs to be adjusted to locate the position of the filament along the z-direction. Finally, in
an additional separate experiment, the camera is re-positioned, as shown in Fig. 3.1(b), to
capture the entire filament and to have a better resolution in space. As we aim to capture only
a BOAS structure, our DST and HSST diagrams will only represent a filament, but not an
entire stretched liquid bridge.

Experiments are performed for PEG20, PEO and PEG+PEO solutions. Liquid bridges,
formed in-between the two plates of DP = 6 mm, are stretched from IAR = 0.66 to FAR = 2 at
U = 0.08 m/s. For all PEO and PEG+PEO solutions, a filament and a BOAS structure are
observed. By using a self-developed MATLAB code, the calibrated images are converted
into DST diagrams. Diameters, D(z,t), of the filament and drops, are converted into a colour
code, to obtain any local diameter in space and time. White colour represents the thinnest
part of the filament below the resolution of the camera. The black part at the top end of the
filament indicates a region around the bottom part of the top solution pool. The black part at
the bottom end of the filament indicates a region around the top part of the bottom solution
pool. Intermediate values for smaller to larger diameters are presented by a spectrum of red
and blue colours, respectively. For a liquid bridge with DP = 6 mm and IAR = 0.66, stretched
to FAR = 2 at U = 0.08 m/s, the top plate reaches the final stretching height at t = 0.05 s.
Hence, to construct DST diagrams, images are captured from t = 0.05 s until a majority of
drops merge into the solution pools. A constructed DST diagram for PEO1000 solution
is presented in figure 3.1(c). The DST for PEO1000 solution is a sequence of more than
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700 images. Additionally, the value and position of the minimum diameter, Dmin, along the
filament are tracked in space and time. This position of Dmin is presented by a green line in
the DST diagram.

Furthermore, HSST diagrams are constructed to depict the Hencky strain, ε , in space
and time. As already observed, a filament diameter varies axially (see Fig. 2.4); it would
be interesting to monitor deformation along the filament with time. Hence, using HSST
diagrams, total deformation of a fluid element will be tracked by plotting Hencky strain
along the filament with time. As previously introduced, the Hencky strain is defined as,
ε(z,t) = 2ln[D0/D(z,t)], where D is the diameter of the filament. The axial coordinate, z,
is relative to the camera position needed to capture the entire filament as already described.
Hence, to construct HSST diagrams, the instantaneous diameters, D, of the filament extracted
from the images are used to calculate ε . Then, the values of ε , are converted into a colour
code. White colour represents the smallest values of ε and the black colour represents the
largest values of ε . The intermediate values of ε , from smaller to larger ε , are presented by a
spectrum of red and blue colours, respectively. A constructed HSST diagram for PEO1000 is
presented in Fig. 3.1(d). To construct the HSST diagrams, the images captured from t = 0.05
s until merging of drops into solution pools are considered, with the same time resolution as
DST diagrams. The HSST for PEO1000 solution is a sequence of more than 700 images.
HSST diagrams also enhance visibility of drops in a BOAS structure.

3.1.1 Analysis of space-time diagrams

Another example of HSST diagram, for PEG20PEO1000 solution, is presented in Fig.
3.2. The longer time scale indicates the longer filament thinning time for PEG20PEO1000
compared to PEO1000 solution. In this example, the liquid bridge, formed in-between the
two plates of DP = 6 mm, is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is
when the separation of the CaBER plates starts. The top plate reaches the final stretching
height, L = 6 mm, at t = 0.05 s. HSST is constructed from t = 0.05 s until merging of drops
into solution pools. For each second, 100 images are analysed and hence, the HSST presented
here is a sequence of more than 2500 images. The green coloured line indicates the position
of the minimum diameter, Dmin, of the filament. From this Dmin, the values of εmin and ηE

are calculated. These local εmin and ηE can be recovered using Fig. 2.7(b). For example, the
Hencky strain corresponding to the green line in Fig. 3.2 is εmin for PEG20PEO1000 solution
in 2.7(b). Note that after initial oscillation between both ends of the filament, Dmin is always
located, probably due to gravity, at the top end of the filament where εmin is maximum.
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Fig. 3.1 Construction of the space-time diagrams for filament thinning and BOAS structure,
using PEO1000 solution. The liquid bridge, formed in-between the two plates of DP = 6
mm, is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is when a separation
of the CaBER plates starts. The top plate reaches the final stretching height, L = 6 mm, at
t = 0.05 s. Images are captured from t = 0.05 s until merging of drops into solution pools. (a)
A filament formed for PEO1000 solution, along with top and bottom solution pools. (b) The
region, around the filament, considered to construct the space-time diagrams. Hence, our
space-time diagrams only represent this region, but not the entire stretched liquid bridge. z
is the direction along the filament and z = 0 µm at the baseline of the region. (c) The DST
diagram for PEO1000 solution constructed from the obtained images. For each second, 100
images are captured and hence, the DST presented here is a sequence of more than 700
images. The green line represents the position of the minimum diameter of the filament. The
position of the drop on the filament can be represented along the z direction. The colour
code represents diameters of a filament or a drop. Multiple generations of drops can be
identified by their diameters and colour code. (d) HSST diagram for PEO1000 solution. The
Hencky strain is defined as, ε(z,t) = 2ln[D0/D(z,t)], where D is a diameter of a filament.
The position of any drop on the filament is represented along the z direction. The HSST
presented here is a sequence of more than 700 images.
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Fig. 3.2 HSST diagram for PEG20PEO1000 solution. Filament thinning and appearance of
the BOAS structure are represented by arrows above the diagram. The total time for filament
thinning and appearance of BOAS is considered as the filament breakup time. The longer
filament thinning time for PEG20PEO1000 solution can be observed compared to PEO1000
solution. The liquid bridge, formed in-between the two plates of DP = 6 mm, is stretched
from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is when the separation of the CaBER plates
starts. The top plate reaches the final stretching height, L = 6 mm, at t = 0.05 s. The HSST
diagram is calculated from t = 0.05 s until merging of drops into solution pools. For each
second, 100 images are captured and hence, the HSST diagram presented here is a sequence
of more than 2500 images. The green line represents the position of the minimum diameter
of the filament. The position of any drop on the filament is represented along the z direction.
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In this section, the DST and HSST diagrams from Fig. 3.1 and Fig. 3.2 are analysed. For
both PEO1000 and PEG20PEO1000 solutions, the stretching of the liquid bridges leads to
filament thinning. Initially, the colour intensity is homogeneous in the z-direction, showing
the existence of an uniform filament. Filament thinning time for PEG20PEO1000 solution is
longer than PEO1000 solution. The filament continues to thin until the necking has occurred
at both ends and then Dmin systematically remains at the top end of the filament. For both
solutions, this thinning process can be characterised as an initial inertio-capillary thinning
followed by an elasto-capillary thinning. After t = 2.5 s for PEO1000 and t = 18 s for
PEG20PEO1000, a BOAS instability appears through the formation of a first generation of
drop. Following the initial capillary instability (inertio-capillary and elasto-capillary filament
thinning) and formation of a primary generation of drop, new interconnecting liquid filaments
in-between the first generation of drop and solution pools are developed. These filaments
again become unstable and then, second and third generation of drops are created. The
largest diameter is observed for the first generation of the drops and then drop diameters
further decrease for higher generations of drops. In DST diagrams, the multiple generations
of drops can be recognised by their size and the colour code: blue/dark red for the first
generation of drops and lighter shades of red for the higher generations of drops. The
repeated or ‘iterated’ nature of the drop formation process is clear. The relatively large drop
(first generation of the drop) is formed around the mid-height with diameter varying from 220
(for PEG20PEO1000) to 320 (for PEO1000) µm. Typically, in our BOAS structure, a central
big drop is accompanied by smaller drops on both sides. Interestingly, the second-largest
drop is often a satellite drop above the big central drop. Other than the first two generations
of drops, the third and higher generation of drops have diameters less than 50 µm. For
Oliveira et al. [9], for PEG20PEO1000 solution, drop diameters for the first three generations
are approximately 110, 75 and 31 µm, respectively. The authors used an aqueous solution of
PEO (M = 3.8×106 g/mol) in a mixture of ethylene glycol and water as a viscoelastic test
fluid. Geometrical details of the liquid bridge used by the authors are DP = 6 mm, IAR = 1 and
FAR = 3.23. In the present study, for PEG20PEO1000, the diameter of the second generation
drop (second largest drop) is approximately 50 µm. The differences in the diameters of
the first generation of drops can be explained by differences in M of PEO used and FAR.
The authors used FAR = 3.23 which is larger than the present FAR = 2. The influence of
larger FAR on the diameter of the first generation of drop is explained later in this chapter.
Moreover, for all PEO and PEG+PEO solutions, more satellite drops can be seen above the
big central drop compared to below it, presumably due to gravity. Because of gravity, the big
central drop is closer to the bottom end of the filament. As a result, a larger filament length is
available for localised pinching above the big central drop. This larger filament length leads



92 Beads on a string

to the formation of higher generations of drops, resulting in more number of drops above the
big central drop.

In HSST diagrams, for both solutions, ε increases along the filament with time until
necking occurs on both ends. Once the necking occurs, ε increases further with time at both
ends of the filament, before the appearance of multiple-generations of drops in a BOAS
structure. Furthermore, the position of the minimum diameter, Dmin, represented by a green
line, is initially located at the mid-height of the liquid bridge. Once the filament forms,
the thinning continues and then Dmin oscillates in between both ends of the filament. After
necking, Dmin is systematically located at the top of the filament. From Fig. 3.1(c), it can be
seen that, after necking, ε corresponding to green line varies significantly over time.

However, once all drops are fully formed, they migrate axially along the filament, usually
in the direction of gravity, and coalescence occurs. As a result, coalescence between the
drops leads to a coarsening of the pattern in the space-time diagrams, in the form of sudden
axial displacements. Similar coarsening of a space-time diagram due to coalescence was
previously observed by Oliveira et al. [9]. The authors also suggested that the tension in
the filament is relieved after every coalescence, that further implies the elastic behaviour
of the filament. Migration of the drops occurs in the direction of the coalescence. The
filament along with drops is pulled towards the location of coalescence. Hence, drops above
the location of the coalescence migrate downwards and the drops below the location of
coalescence migrate upwards. These axial displacements are noticeably visible in Fig. 3.1(c)
for PEO1000 solution at t = 4.3 and 4.8 s. At least three scenarios predicted numerically
by Li and Fontelos [2] can be observed in our space-time diagrams: the appearance of
drops due to the stretching of a viscoelastic liquid bridge, drops migration and coalescence.
Eventually, for both solutions, in the later stages, the BOAS structure is reorganised (due
to coalescence) into a few large drops. For PEO1000, two relatively medium-size satellite
drops, with diameters varying from 50-150 µm, are observed on either side of the big drop.
Finally, the breakup occurs at the top of the filament, for both solutions, presumably because
of the gravitational effect.

Additional DST and HSST diagrams are depicted in Fig. 3.3 and 3.4. Here, liquid bridges,
formed in-between the two plates of DP = 6 mm, are stretched from IAR = 0.66 to FAR = 2 at
U = 0.08 m/s. In Fig. 3.3, the DST and HSST diagrams for PEO100, PEO2000 and PEG20
are presented. For PEG20 (Fig. 3.3(e) and (f)), the filament breaks rapidly (less than 0.01 s)
and a drop forms then rebound before falling into the bottom solution pool. The DST and
HSST diagrams for PEG20PEO100, PEG20PEO1000 and PEG20PEO2000, are shown in
Fig. 3.4. For all PEO and PEG+PEO solutions, the formation of a filament and a BOAS
structure can be observed. For both PEO and PEG+PEO solutions, filament thinning time



3.1 Diameter-space-time (DST) and Hencky strain-space-time (HSST) diagrams 93

and filament breakup time increase with the increase in wPEO. Furthermore, for the same
value of wPEO, filament thinning time and filament breakup time are larger for PEG+PEO
solutions than PEO solutions, as previously seen in Fig. 2.5.

Another feature of the DST diagrams is the systematic fall of the big drop towards the
bottom solution pool. The diagrams can be used to measure falling dynamics of the big
drop. From the solution properties of PEG20PEO1000 and diameter of the big central drop
(dPEG20PEO1000 = 224 µm), assuming a spherical drop shape, the calculated weight of the
drop is 59.4 nN. At the equilibrium condition, the tension in the filament is equal to the
weight of the drop. Then, the drop starts to fall. From Fig. 3.2, the equilibrium condition
occurs at t ≃ 24 s and at z0 = 1312 µm. Here, z0 is the vertical position of the drop on
the filament. The falling speed of the drop can then be measured; for PEG20PEO1000,
VPEG20PEO1000 = z0/∆t ≃ 1 mm/s. ∆t is the time taken by the drop to fall into the bottom
solution pool. In comparison, the velocity of the drop in a free fall, VFree f all =

√
2gz0 = 160

mm/s, is higher than VPEG20PEO1000. The time taken for the drop in the free fall is 0.02 s.
While the actual time taken by the drop is longer than 1 s, which suggests that there is a
non-negligible pulling force on the drop. From our calculations, for a drop of diameter 224
µm with a falling speed of 1 mm/s, the aerodynamic drag force is 10−3 times the weight and
hence, the aerodynamic drag can be neglected.

Even though several publications deal with the formation of the beads on a string phe-
nomenon, there is limited data on the position, trajectories, diameters and number of drops.
The present space-time diagrams give the accurate measurements of the drops diameter and
Hencky strain, whereas previous works by Oliveira et al. [9] and Clasen et al. [15] are based
on the grey-scale intensity to indicate a relative thickness of the drops or positions of the
drops, respectively. Additionally, both authors presented space-time diagrams for a single
polymer concentration: 2000 ppm of PEO (M = 3.8×106 g/ mol) in a mixture of PEG and
water [143] and 100 ppm of PAAM (M = 7.5×106 g/mol) in water [15]. In the present study, a
large range of space-time diagrams is constructed for a systematic variation of polymer mass
fractions. Overall, our space-time diagrams represent quantitative descriptions of the drop
dynamics studied numerically by Li and Fontelos [2], Ardekani et al. [16] and Turkoz et al.
[55] where filament thinning, drop migration and coalescence were predicted. Furthermore,
our experiments indicate a hierarchy and asymmetric distribution of satellite drops for all
PEO and PEG+PEO solutions. This asymmetric distribution of satellite drops is in contrast
with the previous numerical prediction [2, 16, 55]. These numerical simulations indicated
that higher generations of drops are distributed equally on either side of the first generation
of drops. However, our space-time diagrams show that more satellite drops are above the big
central drop than below, presumably due to the gravity effects.
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Fig. 3.3 Space-time diagrams for filament thinning and BOAS structure, for PEO solutions
and PEG20. Filament thinning time and appearance of multiple generations of drops vary
with wPEO. The liquid bridge, formed in-between the two plates of DP = 6 mm, is stretched
from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is when a separation of the CaBER plates
starts. The top plate reaches the final stretching height, L = 6 mm, at t = 0.05 s. HSST is
captured from t = 0.05 s until merging of drops into solution pools. The green line represents
the position of the minimum diameter of the filament. The position of any drop on the
filament is represented along the z direction. For PEO100 and PEO2000 solutions, for each
second, 100 images are captured. For PEG20, the images are acquired at a rate of 1000
frames per seconds. As PEG20 is a Newtonian fluid, no BOAS structure is observed. (a) DST
for PEO100 and (b) HSST for PEO100, (c) DST for PEO2000 and (d) HSST for PEO2000,
(e) DST for PEG20 and (f) HSST for PEG20.
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Fig. 3.4 Space-time diagrams representing filament thinning and BOAS structure for
PEG+PEO solutions. Filament thinning time and appearance of multiple generations of
drops vary with wPEO. The liquid bridge, formed in-between the two plates of DP = 6 mm,
is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is when a separation of the
CaBER plates starts. The top plate reaches the final stretching height, L = 6 mm, at t = 0.05 s.
HSST is captured from t = 0.05 s until merging of drops into solution pools. For each second,
100 images are captured. The green line represents the position of the minimum diameter of
the filament. The position of any drop on the filament is represented along the z direction.
For these solutions, the images are acquired at a rate of 100 frames per second. (a) DST for
PEG20PEO100 and (b) HSST for PEG20PEO100, (c) DST PEG20PEO1000 and (d) HSST
for PEG20PEO1000, (e) DST for PEG20PEO2000 and (f) HSST for PEG20PEO2000.
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3.1.2 Drop dynamics

Further insights into drop dynamics obtained from the space-time diagrams are presented in
this section. The maximum number of drops, N, on the filament after pinching are counted.
Only drops (up to the third generation) with diameter larger than 25 µm are considered.
The results for the number of drops are plotted in Fig. 3.5(a) against the Deborah number,
De. Detailed values of the Deborah number for DP = 6 mm are given in Tab. 2.3. The
maximum number of drops in a BOAS structure grows with an increase in the Deborah
number. Moreover, the number of drops are higher for PEG+PEO solutions than PEO
solutions. For PEG+PEO solutions, the filament lasts longer after necking and hence, more
time is available for the localised pinching. This localised pinching further leads to the
formation of higher generations of drops. Furthermore, a power law fit is used to represent
the trend of growing N with De. The fit has an exponent of 0.17 and the coefficient of
determination is 0.93. However, no theoretical model has been found to compare this scaling
law. Additionally, we compare our results with the maximum number of drops (up to the third
generation), N, obtained by Oliveira et al. [9] (see Fig. 1.9). From their solution properties,
De is calculated and plotted in Fig. 3.5(a). The differences in the number of drops could be
explained by differences in M of PEO used and larger FAR by the authors than the present
FAR of 2. Hence, in their study, the authors obtained a larger number of drops. The influence
of larger FAR on the number of drops is explained in details later in this chapter.

Also, diameters, d, of the first generation (largest) drops are measured for the PEO,
PEG+PEO and PEG20 solutions. For PEO and PEG+PEO solutions, d is determined once
multi-generation of drops in the BOAS structure are formed. The results obtained are shown
in Fig. 3.5(b), where d is plotted against wPEO. The error bars represent the dispersion over
at least three repetitions of the experiment. A detached drop instead of a BOAS structure
is observed for PEG20. For PEG20, the drop diameter is 480-500 µm. For the solutions
containing PEO, the diameters of first generation of drops range in-between 220-320 µm.
The average diameters of the first generation of drops for the PEO solutions are comparatively
larger than the PEG+PEO solutions. In the case of PEG+PEO solutions, more number of
drops are created than PEO solutions. Hence, for PEG+PEO solutions, the available liquid
volume in the filament is distributed in more number of drops. Therefore, the liquid volume
available for each drop is less, resulting in a smaller diameter of the big central drop. However,
for both PEO and PEG+PEO solutions, the diameter of the first generation of drops remains
constant with the increase in PEO mass fraction.
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Fig. 3.5 Summary of maximum number of drops, N, and drop diameter, d, of the first
generation (largest) drop in a BOAS structure obtained from the DST diagrams for PEO and
PEG+PEO solutions. Here, PEG20PEO indicates 20 wt% of PEG in PEG+PEO solutions.
The liquid bridge, formed in-between the two plates with DP = 6 mm, is stretched from
IAR = 0.66 to FAR = 2 at U = 0.08 m/s. The error bars indicate the dispersion over three
measurements. (a) The maximum number of drops, N, in a BOAS structure as a function of
De. Only the drops (up to the third generation) with diameter, D > 25 µm, are considered.
Values of De for PEO and PEG+PEO solutions using DP = 6 mm are given in Tab. 2.3. The
dashed line is a power law fit with N ∝De0.17 and a coefficient of determination of 0.94.
Additionally, N (up to the third generation) and De by Oliveira et al. [9] are obtained (see
Fig. 1.9). The authors used an aqueous solution of PEO (M = 3.8×106 g/mol) in a mixture
of ethylene glycol and water as the viscoelastic test fluid. Geometrical details of the liquid
bridge used by the authors: DP = 6 mm, IAR = 1 and FAR = 3.23. (b) Diameter, d, of the first
generation (largest) drop on the filament versus PEO mass fraction, wPEO. For PEO and
PEG+PEO solutions, d is determined once multi-generation of drops in the BOAS structure
are formed. A detached drop instead of a BOAS structure is observed for PEG20. The
thick and dash-dotted lines indicate the average drop diameter, d, for PEO and PEG+PEO
solutions, respectively. Also, the pink square symbol represents an average diameter of the
single first generation drop for PEG20PEO1000 solution from our numerical simulations
(see Tab. 3.1).
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Numerical results for diameter of first generation of drops As discussed in the previous
chapter, we obtained a single first generation drop for PEG20PEO1000 solution in our nu-
merical simulations. Experimental conditions for the stretched profile used in our numerical
simulations were DP = 6 mm, IAR = 0.66, FAR = 2 and U = 0.08 m/s. These conditions are
similar to the experimental results in Fig. 3.5. For the numerical simulations, we consider
all three meshes (N1 to N3) to calculate an average d, see Tab. 3.1. Furthermore, we
compare the average diameter, d, of the first generation drop with the experimental results for
PEG20PEO1000 solution, as shown in Fig. 3.5(b). Hence, the numerical and experimental
results for the diameter of the first generation drop are in a good agreement.

Table 3.1 Diameter, d, of first generation of drops for numerical and experimental study. In
the numerical simulations, we used: RP = 3 mm, FAR = 2, De = 132.8 and Oh = 0.46. For the
numerical simulations, we consider all three meshes (N1 to N3) to calculate an average d
plus standard deviation. Experimental conditions are: DP = 6 mm, IAR = 0.66, FAR = 2 and
U = 0.08 m/s.

Solution Numerical d (µm) Experimental d (µm)

PEG20PEO1000 211±6 224±4

3.2 Effect of different parameters on the beads on a string

There is no remarkable study of the influence of different parameters, such as the plate
diameter, DP, the initial stretching height, L0, the final stretching height, L, and the stretching
speed, U , on the formation of the beads on a string and the drop dynamics. Hence, in this
section, the influence of these parameters is studied by constructing and analysing DST and
HSST diagrams.

3.2.1 Plate diameter

Three different plate diameters, DP = 4, 6 and 8 mm are tested. The liquid bridge, formed
in-between the two plates is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. However,
even-though IAR = 0.66, the liquid volume introduced in the initial liquid bridge varies from
16 to 133 µl with the increase in DP from 4 to 8 mm, respectively. Therefore, larger plate
diameters are stretched to larger final stretching heights but FAR is kept constant so that same
extensibility can be applied for all three diameters. DST and HSST diagrams for all three



3.2 Effect of different parameters on the beads on a string 99

plate diameters using PEO1000 solution are presented in Fig. 3.6. For all plate diameters,
filament thinning is followed by the formation of a BOAS structure with multi-generation of
drops. Moreover, the typical BOAS structure with a big central drop at the centre and smaller
satellite drops is evident for all three plate diameters. More satellite drops are observed
above the big central drop. Additionally, recoiling, drop migration and coalescence are also
observed.

In the initial stages of thinning, the position of minimum diameter, Dmin, of the filament
shifts in-between both ends of the filaments and then systematically moves to the top end
of the BOAS structure. To get insights into effect of plate diameters on filament thinning,
for all three diameters, the minimum diameter, Dmin, is plotted in Fig. 3.7. For each plate
diameter, Dmin presented in Fig. 3.7 is the average over three experiments. Large DP leads to
larger filament diameter. For larger plate diameters, pinching of the filament gets delayed and
the filament lasts longer. For the tests shown in Fig. 3.6, pinching occurs earlier for DP = 8
mm than DP = 6 mm. However, the average values of Dmin from Fig. 3.7 indicate that with
the increase in DP, the pinching gets delayed. This delayed pinching enhances gravitational
drainage through the filament. The effects of this gravitational drainage will be discussed
later in the next chapter.

The DST diagrams are further analysed to investigate the drop dynamics of the BOAS
structure. The maximum number of drops, N, on the filament in BOAS structure are counted
and plotted against the Deborah number in Fig. 3.8(a). Only the drops (up to the third
generation) with diameter, D > 25 µm, are considered. Detailed values of the Deborah
number for all three plate diameters are given in Tab. 2.3. As previously observed, for all
three plate diameters, the number of drops, N, increases with De. Additionally, for De > 4,
the number of drops for DP = 8 mm, is higher than the number of drops for DP = 4 and 6
mm. The growth of number of drops with De is captured using a power-law fit. Out of three
plate diameters, a higher exponent of the fit (0.42) is obtained for DP = 8 mm. This further
suggests that, for larger plate diameters, the Deborah number has a higher influence on the
number of drops. Even though IAR and FAR are the same for all three diameters, the final
stretching height, L, is larger for DP = 6 and 8 mm. Hence, available length for the localised
pinching, for DP = 6 and 8 mm, is larger than DP = 4 mm. This larger available length for
DP = 6 and 8 mm than DP = 4 mm leads to the formation of higher generations of drops and
hence, more number of drops.

Furthermore, diameter, d, of the first generation (largest) drop on the filament versus PEO
mass fraction, wPEO, for all plate diameters is reported Fig. 3.8(b). Each symbol represents
the average over three experiments. As previously reported, for all three plate diameters, in
the range of wPEO tested, the drop diameter remains constant against wPEO. The average
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Fig. 3.6 Space-time diagrams of filament thinning and BOAS structure, for PEO1000 solution,
with DP = 4, 6 and 8 mm. The liquid bridge, formed in-between the two plates is stretched
from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. t = 0 is when a separation of the CaBER plates
starts. The top plate reaches the final stretching height, L =DP. The DST and HSST diagrams
are captured when the top plate reaches the final stretching height until merging of drops
into solution pools. The liquid volume introduced in the initial liquid bridge varies from
16 to 133 µl with the change in DP from 4 to 8 mm, respectively. For each second, 100
images are captured. The green line represents the position of the minimum diameter of
the filament. The position of any drop on the filament is represented along the z direction.
Multiple generations of drops can be identified by their diameters and colour code. (a) DST
for DP = 4 mm and (b) HSST for DP = 4 mm, (c) DST for DP = 6 mm and (d) HSST for
DP = 6 mm, (e) DST for DP = 8 mm and (f) HSST for DP = 8 mm.



3.2 Effect of different parameters on the beads on a string 101

10
−2

10
−1

1

 0.001

 0  0.5  1  1.5  2  2.5

D
m

in
 (

m
m

)

t (s)

DP = 4 mm

Dp = 6 mm

DP = 8 mm

Fig. 3.7 Average minimum diameter, Dmin, extracted from captured images for PEO1000
solution and using DP = 4, 6 and 8 mm. The liquid bridge formed in-between the two plates
is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. Here, t = 0 is when the separation
of the CaBER plates starts.

drop diameter, d = 256, 286 and 356 µm, for DP = 4, 6 and 8 mm, respectively, suggesting
for larger plate diameters, d becomes larger. The length of the filament for DP = 4 mm is
around 1600 µm, whereas the length of the filament for DP = 8 mm is around 3500 µm.
Furthermore, with increasing plate diameter, the volume of liquid introduced in the initial
liquid bridge increases, resulting in the larger volume of the solution available in the filament.
Consequently, when a BOAS structure appears, larger values of d are observed for DP = 6
and 8 mm than for DP = 4 mm.

3.2.2 Initial aspect ratio

The influence of the initial stretching height on a BOAS structure is studied by varying IAR
from 0.3 to 0.97, for PEO1000 solution. The liquid bridge, formed in-between the two plates
of DP = 6 mm, is stretched to FAR = 2 at U = 0.08 m/s. For all IAR tested, filament thinning
is followed by the appearance of a BOAS structure with multiple generations of drops. The
evolution of the filament and BOAS structure are presented with DST and HSST diagrams
in Fig. 3.9. For all the cases of IAR tested, the typical configuration of a big central drop,
accompanied by smaller satellite drops on its either side, is again observed. Moreover, more
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Fig. 3.8 Effect of plate diameters on maximum number of drops, N, and drop diameter, d, of
the first generation (largest) drop in a BOAS structure for PEO solutions. The liquid bridge,
formed in-between the two plates is stretched from IAR = 0.66 to FAR = 2 at U = 0.08 m/s.
The error bars indicate the dispersion over 3 to 5 measurements. (a) Maximum number of
drops, N, in a BOAS structure as a function of De. Only the drops (up to the third generation)

with diameter, D > 25 µm, are considered. Here, De = λ /
√

ρD3
P/8σ and detailed values of

De for all three plate diameters are given in Tab. 2.3. The dashed pink, green and blue lines
represent the power law fit for DP = 4, 6 and 8 mm, respectively. (b) Diameter, d, of the first
generation (largest) drop on the filament versus PEO mass fraction, wPEO. The pink, green
and blue lines represent the average drop diameter, d, for DP = 4, 6 and 8 mm, respectively.
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satellite drops can be seen above the big central drop than below. Typical characteristics
of BOAS dynamics such as recoil, coalescence and migration of drops can be noted. In
the initial stages of thinning, the position of minimum diameter, Dmin, of the filament shifts
in-between both ends of the filament and then systematically moves to the top end of the
BOAS structure. The length of the filament for the studied case of IAR = 0.3 is around 4000
µm, but the length of the filament for IAR = 0.97 is only around 2000 µm. With the increase
in IAR, the volume of liquid introduced in the initial liquid bridge increases.

The further analysis of the DST and HSST diagrams is shown in Fig. 3.10. Each symbol
indicates the average over five experiments. The maximum number of drops, N, in BOAS
structure is measured and plotted against the respective IAR, in Fig. 3.10(a). Only the drops
(up to the third generation) with diameters larger than 25 µm are considered. As shown by
the trend line, the number of drops decreases when IAR increases. For larger IAR, larger
solution pools are formed and the available length of the filament to form higher generations
of drops (iterated instability) decreases. Hence, for IAR = 0.97, smaller number of drops are
observed than IAR = 0.3. Diameter, d, of the first generation (largest) drop on the filament is
plotted against IAR, in Fig. 3.10(b). With an increase of IAR, the diameter of the central drop,
d, decreases gradually. The available length of the filament is smaller for larger IAR, and
therefore, a lower liquid volume is trapped in the filament. Consequently, with the increase
in IAR, the diameter of the first generation (largest) drop on the filament decreases.

3.2.3 Final aspect ratio

Effect of the final stretching height on the formation of BOAS is investigated using four
different FAR, ranging from 2 to 3.5. The liquid bridge, formed by PEO1000 solution,
in-between the two plates of DP = 6 mm, is stretched from IAR = 0.66 at the stretching speed
of 0.08 m/s. For all the cases of FAR tested, filament thinning is followed by a BOAS
structure with multiple generations of drops. The evolution of filament and BOAS structure
are presented with DST diagrams and HSST diagrams in Fig. 3.11. The minimum diameter,
Dmin, is tracked in space and time. When the liquid bridge is stretched, for all FAR tested, the
position of the minimum diameter shifts in-between both ends of the filaments until t ⪅ 1 s.
The minimum diameter is then systematically located at the top end of the BOAS structure.

This minimum filament diameter is used to calculate the apparent extensional viscosity,
ηE , and the Hencky strain, εmin, for various FAR values, as discussed in section 2.2.2.3. The
results for obtained ηE are plotted against time, t, in Fig. 3.13(a), and against Hencky strain,
εmin, in Fig. 3.13(b). For all FAR tested, the apparent extensional viscosity, ηE , increases
with increasing t, and the Hencky strain, εmin. Yet, there is no significant difference in ηE
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Fig. 3.9 Space-time diagrams for filament thinning and BOAS structure for PEO1000 solution
with IAR = 0.3, 0.5 and 0.97 mm. t = 0 is when the separation of the CaBER plates starts.
The DST and HSST diagrams start when the top plate reaches the final stretching height until
merging of drops into solution pools. The green line represents the position of the minimum
diameter of the filament. Multiple generations of drops can be identified by their diameters
and colour code. The liquid bridge, formed in-between the two plates of DP = 6 mm, is
stretched to FAR = 2 at U = 0.08 m/s. (a) DST for IAR = 0.3 and (b) HSST for IAR = 0.3,
(c) DST for IAR = 0.5 and (d) HSST for IAR = 0.5, (e) DST IAR = 0.97 and (f) HSST for
IAR = 0.97. For (c) and (d), in the later stages, movement of coalesced drops towards the top
solution pools may be due to pulling force on the drops by the top end of the filament. This
movements of drops, especially in the upper part of the filament, towards the top solution
pool, is not systematic. We observed that for higher IAR, i.e. IAR = 0.97, drops mostly fall
downwards.
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Fig. 3.10 Effect of initial aspect ratio, IAR, on maximum number of drops, N, and drop
diameter, d, of the first generation (largest) drop in a BOAS structure. The liquid bridge,
formed in-between the two plates of DP = 6 mm, is stretched to FAR = 2 at U = 0.08 m/s.
PEO1000 solution is used as a test fluid. For IAR = 0.66, DST and HSST diagrams from Fig.
3.1 are considered. The error bars indicate the dispersion over five experiments. (a) The
maximum number of drops, N, in a BOAS structure as a function of IAR. Only the drops
(up to the third generation) with diameter, D > 25 µm, are considered. The dashed line is a
trend line to serve as a guide to the eyes of a reader. (b) Diameter, d, of the first generation
(largest) drop on the filament versus IAR. The solid line is a trend line as a guide to the eyes.
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Fig. 3.11 Space-time diagrams for filament thinning and BOAS structure, at FAR = 2.5, 3
and 3.5, for PEO1000 solution. t = 0 is when the separation of the CaBER plates starts.
The DST and HSST diagrams are captured when the top plate reaches the final stretching
height until merging of drops into solution pools. The green line represents the position
of the minimum diameter of the filament. The liquid bridge, formed in-between the two
plates of DP = 6 mm is stretched from IAR = 0.66 at U = 0.08 m/s. Multiple generations of
drops can be identified by their diameters and colour code. (a) DST for FAR = 2.5 and (b)
HSST for FAR = 2.5, (c) DST for FAR = 3 and (d) HSST for FAR = 3, (e) DST FAR = 3.5 and
(f) HSST for FAR = 3.5. For (c) and (d), in the later stages, movement of coalesced drops
towards the top solution pools could be due to pulling force on the drops by the top end of
the filament. This movements of drops, especially in the upper part of the filament, towards
the top solution pool, is not systematic. We observed that for smaller FAR, i.e. FAR ≤ 2.5,
drops mostly fall downwards.
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Fig. 3.12 Relaxation time as a function of final aspect ratio. The liquid bridge, formed
in-between the two plates of DP = 6 mm is stretched with U = 0.08 m/s from IAR = 0.66 to
different FAR. Results are compared with Rodd et al. [14] for aqueous PEO (M = 2×106

g/mol) solution with PEO mass fraction of 1000 wppm. The authors used an initial liquid
bridge of DP = 6 mm and IAR = 1. Lines represent average relaxation times.

with time, for the increase in FAR. However, in the case of ηE versus εmin, larger apparent
extensional viscosity, ηE , is observed for higher FAR. Later stages of the Hencky strain,
i.e. εmin > 6, suggest higher strain hardening as FAR increases. For all FAR, two distinct
regimes are observed for ηE against εmin at εmin = 6, as previously discussed. The apparent
extensional viscosity continues to increase for all the cases of FAR studied, which indicates
that the polymers are not in the fully stretched state. Larger final stretching height is required
to achieve fully stretched polymer condition. Additionally, for all FAR tested, we calculated
the relaxation time, λ , using the minimum diameter, Dmin, as previously discussed in section
2.2. But, there is no significant change observed in λ for the increase in FAR, as shown
in Fig. 3.12. Similar observations have been reported previously by Rodd et al. [14] (see
Fig. 3.12) and Miller et al. [83] where in their experimental study, relaxation times remain
unchanged with increasing FAR. Rodd et al. [14] used same plate diameter (DP = 6 mm) and
PEO concentration (1000 wppm) as the present study. The authors obtained lower relaxation
times due to lower molecular weight of PEO (M = 2×106 g/mol) used compared to the
present study (M = 8×106 g/mol).
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Fig. 3.13 Apparent extensional viscosity, ηE , for PEO1000, extracted using the minimum
diameters obtained for different final aspect ratios, FAR. The liquid bridge, formed in-
between the two plates of DP = 6 mm, is stretched from IAR = 0.66 at U = 0.08 m/s. The
top plate is stretched from IAR = 0.66 to various FAR, ranging from 2 to 3.5. t = 0 is when
the separation of the CaBER plates starts. (a) The apparent extensional viscosity, ηE , for
different FAR as a function of time, t. (b) ηE versus Hencky strain, εmin.

In Fig. 3.11, the typical structure of a big central drop, accompanied by the smaller drops
on either side, is only observed until FAR = 2.5. For FAR > 2.5, pinching occurs at different
locations along the filament and multiple large (first generation) drops with a diameter greater
than 200 µm appear. Also, until FAR = 2.5, more number of drops can be seen above the big
central drop than below. Typical features of any BOAS structure such as recoil, coalescence
and drop migration can also be seen for all FAR. The maximum number of drops, N, in a
BOAS structure are plotted in Fig. 3.14(a), against FAR. Each green circle symbol represents
an average over five experiments. Only the drops (up to the third generation) with diameter,
D > 25 µm, are considered. The maximum number of drops in the BOAS structure increases
with increasing FAR, as shown by the trend line. Thus, it can be concluded that the IAR and
FAR cases studied have the opposite effect as the maximum number of drops in a BOAS
structure decreases with increasing IAR. In the further analysis of DST and HSST, diameter,
d, of the first generation drop on the filament (largest in case of multiple big drops), is
measured and plotted against FAR, in Fig. 3.14(b). As FAR increases, as shown by the trend
line, the average diameter, d, decreases gradually. After the necking, the amount of solution
available in the filament increases with an increase of FAR. The larger average diameter,
d, for FAR = 2 can be attributed to the observation that there is only one large drop. In the
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Fig. 3.14 Effect of final aspect ratio, FAR, on maximum number of drops, N, and drop
diameter, d, of the first generation (largest) drops in a BOAS structure. PEO1000 solution
is used as a test fluid. The liquid bridge, formed in-between the two plates of DP = 6 mm,
is stretched from IAR = 0.66 at U = 0.08 m/s. The top plate is stretched from IAR = 0.66
to various FAR, ranging from 2 to 3.5. The error bars indicate the dispersion over five
experiments. (a) The maximum number, N, of drops in a BOAS structure as a function of
FAR. Only the drops (up to the third generation) with diameter, D > 25 µm, are considered.
The dashed line is a trend line to serve as a guide to the eyes of a reader. (b) Diameter, d, of
the first generation (largest) drop on the filament versus FAR. The solid line is a trend line as
a guide to the eyes.

case of multiple drops (FAR ≥ 3), the solution available after necking is distributed into three
or more large drops. Therefore, for FAR ≥ 3, the drops are observed with a smaller average
diameter, d.

3.2.4 Stretching speed

To understand effect of the stretching speed, U , on the BOAS structure, U is varied from
0.008 to 0.2 m/s. The liquid bridge, formed by PEO1000 solution, in-between the two plates
of DP = 6 mm, is stretched from IAR = 0.66 to FAR = 2, with different speeds. For all the
stretching speeds tested, we observed filament thinning and multiple generations of drops
in a BOAS structure. DST and HSST diagrams are constructed but these diagrams are not
reported here as there is no significant difference from the previous diagrams at U = 0.08 m/s
(see Fig. 3.1). These DST diagrams and the HSST diagrams are analysed. The maximum
number of drops, N, in the BOAS structure is measured and plotted, against Weissenberg
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Fig. 3.15 Effect of Weissenberg number on maximum number of drops, N, and drop diameter,
d, of the first generation (largest) drop in a BOAS structure. PEO1000 solution is used as a
test fluid. The liquid bridge, formed in-between the two plates of DP = 6 mm, is stretched
from IAR = 0.66 to FAR = 2. The error bars indicate the dispersion over five measurements.
(a) The maximum number, N, of drops in a BOAS structure as a function of Wi. Only the
drops (up to the third generation) with diameter, D > 25 µm, are considered. The thick green
line represents the average number of drops, N, for different Wi. (b) Diameter, d, of the
first generation (largest) drop on the filament versus Wi. The thick green line represents the
average diameter, d, for different Wi.

number, Wi, in Fig. 3.15(a) and (b). The Weissenberg number [12] can be defined as:

Wi = λU
RP

. (3.1)

For U ranging from 0.008 to 0.2 m/s, Wi varies from 0.92 to 22.93, respectively, for PEO1000.
Only the drops (up to the third generation) with diameter, D > 25 µm are considered. No
conclusive trend can be established for the maximum number of drops with a variation of
Wi and an average of N is found to be 15. Also, the results obtained for the diameter, d,
of the first generation drop on the filament are plotted, against Wi in Fig. 3.15(b). Each
symbol represents the average over five experiments. There is no significant change in d
with a variation of Wi and the average value of d is found to be 280±5 µm. Hence, it can be
concluded that in the tested range of the stretching speed, there is no significant influence of
the Weissenberg numbers on the drop diameters and the maximum number of drops measured
in the BOAS structure.
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3.3 Partial conclusion

In conclusion, our DST and HSST diagrams quantify numbers and diameters of drops of
a viscoelastic filament in space and time. From the diagrams, it is possible to extract the
filament height and diameter at any time during the thinning as well as BOAS dynamics. By
testing the polymer solutions of various mass fractions, it is found that there is a robust con-
figuration of the drops on the filament with a large central drop accompanied by smaller drops
on both sides. The diagrams also quantify filament thinning, drop migration, coalescence
and draining, together with the position of the minimum diameter. As the filament (along
with drops) is pulled towards the location of coalescence, the space-time diagrams allow
us to show the systematic movement of drops in the direction of coalescence. In printing,
these space-time diagrams can be used to track the diameter, number and fall of the drops
on either donor or accepter surface. In the present study, we observed that drops often fall
into the bottom solution pool (donor surface). Hence, there is no risk of contamination of the
top plate (substrate surface) and thus, no degradation of printing quality. Interestingly, the
size of the first generation (largest) drop remains constant even after changing the PEO mass
fraction. During a BOAS instability with multi-generation of drops, the maximum number
of drops, N, in the BOAS structure grows with De, and this increasing trend for N can be
predicted by using a power law scaling.

The drop dynamics in a BOAS instability are studied by varying different stretching
parameters, to understand their effect on the diameter of the first generation drop and the
number of drops in the BOAS structure. When the plate diameter is increased, the diameter of
the first generation of drop and the number of drops increase. However, the average diameter
of the first generation of drop remains constant with increasing wPEO, for all three diameters
investigated. The increase in the number of drops with the plate diameter can be attributed to
the larger filament length available for the iterated instability. Furthermore, the initial and
final aspect ratios have the opposite effect on the number of drops in a BOAS structure. The
number of drops, N, decreases with increasing IAR, while N increases with an increasing
FAR. With the same geometric parameters, the stretching speed seems to have no effect on
the drop dynamics, within the range of the speeds studied.

In 3D lithography, 3D microstructures (polymer wires, needles, pillars, cones, or micro-
spheres) are manufactured and a BOAS structure is desirable to produce a polymer wire with
beads. Hence, high polymer mass fraction, larger surface diameter as well as larger final
stretching height along with a smaller initial stretching height of the liquid bridge should be
preferred to maximise the number of drops in a BOAS structure. However, in printing, the
formation of beads on a string is an undesirable effect. Due to drops, the quality of the print
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can get affected. Hence, smaller sizes and fewer drops are expected. Therefore, low polymer
mass fraction solutions should be used to minimise the number of drops. Furthermore,
smaller surface diameter, larger initial stretching height and smaller final stretching height
for the liquid bridge should be selected to reduce the number of drops.
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In this chapter, experimental results obtained for the liquid transfer of Newtonian and
viscoelastic solutions are presented. We quantify liquid transfer for an upward stretching
of a liquid bridge having pinned contact lines, as shown in Fig. 2.9. However, this liquid
transfer from one surface (donor) to another surface (accepter) is a complex phenomenon.
Gravity, solution properties (capillarity, viscosity and elasticity), geometrical and stretching
properties, along with contact surface properties (material, roughness) affect the amount
of liquid transferred to the accepter surface. In the present study, to avoid complexities
introduced by the surface properties, a similar type of plate material (stainless steel) for
both plates is used. Additionally, in our experiments, we tracked the liquid contact lines
on the CaBER plates. We observed that the contact lines are pinned from the beginning
of the stretching of the liquid bridge until the end of the liquid transfer. This observation
has been previously demonstrated by Qian and Breuer [115], where the authors reported
pinned contact lines for a cylindrical rod (similar to CaBER plate). Moreover, the geometry
of the capillary bridge is considered axisymmetric, that further simplifies the analysis of our
experimental system.

A relevant parameter, called transfer ratio, T R, is defined (similar to [40, 103, 106, 112])
as a ratio of the volume of the liquid transferred to the moving plate (accepter), to the total
volume, V , of the liquid between both plates, see Eq. 4.1. As shown in Fig. 2.9(c), the total
volume, V , is the sum of the volume of liquid transferred to the top plate, VT , and the volume
of liquid left on the bottom plate, VB.

T R = VT

V
= VT

VT +VB
(4.1)

In printing, inks can contain polymers and exhibit Newtonian or viscoelastic liquid
properties. As previously discussed in chapter 1, for a stretched viscoelastic liquid bridge,
effect of polymer mass fraction on the liquid transfer had not been reported in the past. Hence,
in this chapter, the liquid transfer will be investigated by varying the mass fraction of PEO in
the aqueous PEO and PEG+PEO solutions. For Newtonian liquids, a smaller T R for larger
plate diameters with pinned contact lines was reported by Zhang et al. [100]. Numerical
simulations performed by Huang et al. [106] showed a decrease in T R with increasing IAR
for moving contact lines. With increasing the stretching speed, larger volume of Newtonian
liquid was transferred to a top plate with moving contact lines [102, 103, 106] and pinned
contact lines [100]. Also, similar behaviour had been documented for viscoelastic solutions
in gravure plates [42, 43]. Here, we explore effects of DP, FAR and U on liquid transfer
with pinned liquid contact lines. Finally, the influence of initial liquid bridge shape will be
explored and reported by varying the volume of the solution introduced in between the plates.
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4.1 Experimental results and discussion

In this section, results obtained for effects of the polymer mass fraction, geometrical proper-
ties (plate diameter, initial aspect ratio, final aspect ratio), stretching speed and initial bridge
shape on the liquid transfer are discussed.

4.1.1 Polymer mass fraction

Experiments are performed using water, PEG20, PEO and PEG+PEO solutions. As discussed
in chapter 2, PEO mass fraction is varied from 100 to 2000 wppm. A liquid bridge, having
volume 56 µl, is formed in-between the two plates (DP = 6 mm) with IAR = 0.66. Then, the
liquid bridge is stretched at U = 0.08 m/s until FAR = 2. The results obtained are presented in
Fig. 4.1. For both the PEO and PEG+PEO solutions, the liquid transferred to the top plate
decreases with an increase in wPEO. The same can be confirmed from the inset photographs.
A large difference in sizes of the top and bottom solution pools for PEO2000 solution
compared to water can be observed.

Typically, for a viscoelastic liquid bridge, the liquid transfer occurs in two stages. In the
first stage, when the liquid bridge is stretched, based on the geometrical parameters, an initial
liquid transfer occurs from the bottom plate to the top plate. For Dp = 6 mm, the gravitational
forces play a significant role in the liquid transfer as Bo > 1, see Tab. 2.3. In this case, the
initial asymmetry (sagging) decides the primary liquid distribution along the stretched liquid
bridge. Hence, when the liquid bridge is stretched, initially a larger bottom solution pool is
formed compared to the top solution pool. However, these solution pools are formed along
with a filament that plays a significant role in liquid transfer. The second stage of liquid
transfer takes place from the top to the bottom solution pool due to gravitational drainage
through the filament. As previously observed in Fig. 2.5, with increasing wPEO, the filament
lasts longer and the breakup of the liquid bridge gets delayed. Hence, there is more time for
the gravity-driven drainage and more liquid is transferred from the top to bottom solution
pool. In the dilute regime, i.e. wPEO ≈ 100 wppm, for both PEO and PEG+PEO solutions,
the filament breakups early. Hence, there is less time available for the liquid transfer from
the top to bottom solution pool. Therefore, in the dilute regime, the viscoelastic fluids nearly
reproduce the response of PEG20. Finally, above dilute regime (wPEO >w∗), with increasing
wPEO, a combined effect of both stages results in a smaller volume of liquid transferred
to the top plate. For Newtonian solutions, no filaments are observed. Hence, the liquid
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transfer occurs in the first stage depending on the gravitational parameters. Effect of these
gravitational parameters is discussed in the following sections.

Additionally, as shown in Fig. 2.5, above the dilute regime, with increasing wPEO, the
filament lasts longer for the PEG+PEO solutions than for the PEO solutions. Hence, more
liquid is transferred from the top to bottom solution pool through the filament. Therefore,
for the PEG+PEO solutions, lower values of T R are observed, because of the higher gravity-
driven drainage. The change in T R with wPEO is tracked using power law fits for both the PEO
and PEG+PEO solutions. The larger exponent of the fit for the PEG+PEO solutions than the
PEO solutions suggests that effect of change in wPEO is higher for the PEG+PEO solutions.
As already discussed, with increase in wPEO, filament lasts longer for the PEG+PEO solutions
than for the PEO solutions. This allows more time for the liquid transfer from top to bottom
solution pool that leads to smaller values of T R for the PEG+PEO solutions.

Furthermore, for PEO and PEG+PEO solutions, T R is plotted as a function of Deborah
number, as shown in Fig. 4.1(d). For both solutions, T R decreases with increasing De.
Similar behaviour was observed numerically by Lee et al. [43], see Fig. 1.21, where the
authors found that liquid transferred to the top plate decreases with increase in De. However,
these results were obtained for a combination of gravure cell-flat plate. In our study, we have
covered a wide range of De and a power law is used to capture the variation of T R with De.
This relationship between T R and De through the power law regression has been established
for the first time. Again, higher exponent for the fit is observed for PEG+PEO solution than
PEO solution.

Hence, in printing, increase in polymer mass fraction of viscoelastic inks leads to a lower
liquid transfer to the accepter surface (top plate). Also, for the viscoelastic solutions studied,
it is important to recall that the filament thinning leads to formation of a BOAS structure.
This process is tracked by using the space-time diagrams as demonstrated in the previous
chapter. It is observed that when the filament breakup occurs, the drops systematically fall
downwards towards the donor surface (bottom plate). Hence, the BOAS structure does not
affect the quality of the printing.

Numerical results for liquid transfer Once the solution pools are formed in our numerical
simulations (section 2.4), solution pool heights (h0) on both plates are measured to calculate
solution pool volumes by using the "spherical drop" method: V = 1

6πh0 (3R2
P+h0

2). Then,
transfer ratio is calculated using Eq. 4.1. For the numerical simulations, we consider all
meshes for PEG20 and PEG20PEO1000 to calculate average T R, see Tab. 4.1. Experimental
and numerical T R are in good agreement with each other for Newtonian PEG20 solution,
as shown in Fig. 4.1. However, for viscoelastic PEG20PEO1000 solution, we were only
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Fig. 4.1 Effect of wPEO and De on liquid transfer. The liquid bridge, formed in-between the
two plates having DP = 6 mm and volume 56 µl, is stretched from IAR = 0.66 to FAR = 2 at
U = 0.08 m/s. The error bars indicate the dispersion over five tests. (a) T R as a function of
wPEO (wppm). The inserts are photographs for (b) water and (c) PEO2000 depicting the
solution pools on the bottom and top plates after the filament breakup. IAR = 0.66 is shown
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for the PEO and the PEG+PEO solutions, respectively. The vertical blue dashed line shows
the critical mass fraction, w∗, of PEO, from a dilute to semi-concentrated regime. (d) T R as
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coefficient of determination of 0.85 and 0.94 for PEO and PEG+PEO solutions.
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able to achieve the first stage of liquid transfer where geometrical parameters determine the
volume of the solution pools formed. Therefore, in the numerical simulation, liquid transfer
for PEG20PEO1000 solution occurs in a similar way to the Newtonian PEG20 solution
because of the short-lived filament. In our simulations, we do not attain the elasto-capillary
thinning and hence, we do not achieve the second stage of liquid transfer where gravitational
drainage takes place from a top solution pool to a bottom solution pool through the filament.
Hence, use of rheoTool is promising for liquid transfer of Newtonian fluids (as there is
no gravitational draining through a filament) but for viscoelastic solutions, as discussed in
the previous chapter, we need a higher resolution mesh to produce a persistent filament to
enhance gravitational draining, as already explained in section 2.4.2.

Table 4.1 Comparison of numerical and experimental transfer ratios for PEG20 and
PEG20PEO1000 solutions. In numerical simulations we used: DP = 6 mm, FAR = 2 and
Oh = 0.08. Experimental conditions are: DP = 6 mm, IAR = 0.66, FAR = 2 and U = 0.08 m/s.

Solution Numerical T R Experimental T R

PEG20 0.386±0.006 0.368±0.006

PEG20PEO1000 0.396±0.007 0.239±0.001

4.1.2 Geometrical parameters

4.1.2.1 Plate diameter

Size of the plate diameter, DP, is one of the important parameters for the liquid transfer.
Depending upon DP, Bond number, Bo = ρgDP

2/4σ , varies (from 0.66 to 2.63) and hence,
liquid transfer can be influenced by gravity. Effect of DP on the liquid transfer for Newtonian
fluids has already been established by Zhang et al. [100]. However, we would like to explore
effect of DP and Bo for viscoelastic solutions. To understand influence of the plate diameter
on T R, three plates diameters with DP = 4, 6 and 8 mm, are tested. All other geometrical
parameters are kept constant. A liquid bridge, formed in-between the two plates is stretched
from IAR = 0.66 to FAR = 2 at U = 0.08 m/s. Liquid volume introduced varies from 16 to
133 µl with the change in DP from 4 to 8, respectively.

Initially, the experiments are performed using water, PEG20 and PEO1000. The results
obtained for the liquid transfer with different plate diameters are plotted in Fig. 4.2(a).
Each symbol represents the average over five experiments. For all three solutions tested,
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T R decreases with increasing DP. A similar trend for water by Zhang et al. [100] is also
represented. However, the difference in the results for water between the present study and
by the authors is because of different geometrical and stretching parameters. The authors
stretched liquid bridges having IAR = 2 with a stretching speed of 0.006 m/s. Their stretching
speed is lower than the stretching speed in the present study (U = 0.08 m/s) and their IAR is
higher than the present study (IAR = 0.66). The combined effect of both parameters leads to
lower values of T R for Zhang et al. [100] than the present study. The details of influence of
both parameters on the liquid transfer are discussed later in this chapter.

Photographs of the stretched liquid bridge profiles (when the top plate reaches the final
stretching height) for PEO1000 are presented in Fig. 4.2(b-d). With increasing plate radius,
at fixed FAR, the final stretching height is increasing and as a result, the hydrostatic pressure
difference between the top and bottom solution pool also increases. When the plate radius
increases from 4 to 8 mm, the shape of the top solution pool gradually changes from convex to
concave. The shape of the bottom solutions pool remains convex for all three plate diameters.
When the shape of the top solution pool is concave, capillary pressure inside the top solution
pool is lower compared to the bottom solution pool, but this phenomenon is dominated by
hydrostatic pressure difference. As a result, in the early stages, the solution is pushed from
the top solution pool towards the bottom solution pool. Hence, with increasing DP, more
solution is pushed towards the bottom solution pool from the top solution pool. Furthermore,
with increasing DP, the filament diameter and the filament thinning time increase, as shown
in Fig. 3.7. Hence, the gravitational draining through the filament is enhanced by the larger
plate diameter. As a result of this, more liquid is pushed from the top to bottom solution pool
and lower values of T R are obtained.

Moreover, additional experiments are performed using PEO solutions for different plate
diameters. Therefore, Bo varies from 0.66 to 2.63 for DP ranging from 4 to 8 mm, respectively,
and De varies from 1.2 to 60 (see Tab. 2.3). Results for T R are plotted against the Deborah
number, as shown in 4.2(e). As previously discussed, for all three plate diameters and hence
the Bond numbers, T R decreases with an increase in De. Furthermore, for smaller values of
Bo, higher T R are obtained. For Bo > 1, gravitational forces overcome the capillary forces.
Hence, for Bo > 1, the combined effect of gravity and delayed filament thinning (caused by
increasing De) leads to a decrease in liquid transfer to the top plate. T R > 0.5 can be achieved
with smaller values of Bo and DP. However, the smallest plate diameter available in the
present study is 4 mm. Hence, throughout our experimental study, we have not observed
T R > 0.5. For each Bo, power law fits are used to capture the change in T R with De. With
increasing Bo, larger values of the power law exponents are observed. These larger values of
the exponents suggest that for higher Bo, effect of De on the liquid transfer increases.
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Fig. 4.2 Effect of plate diameter, DP, on liquid transfer. The liquid bridge, formed in-between
the two plates having IAR = 0.66 is stretched to FAR = 2 at U = 0.08 m/s. The error bars
indicate the dispersion over three to five tests. (a) T R, as a function of DP. The results are
compared with Zhang et al. [100] (see Fig. 1.18) where the authors varied plate diameters
and stretched liquid bridges, formed with water, from IAR = 2 at U = 0.006 m/s. The solid
lines represent trends for T R against DP. Photographs (b-d) present liquid capillary bridges
at t = 0.05 s for PEO1000 for DP = 4, 6 and 8 mm, respectively. The transition of the top
solution pool from convex to concave shape is indicated by red arrows. (e) T R as a function
of De for different Bo = ρgDP

2/4σ for PEO solutions (see Tab. 2.3). Bo is varied from 0.66
to 2.63 by increasing DP from 4 to 8 mm.

In printing, to increase the amount of liquid transferred to the accepter surface, smaller
plate diameter and hence smaller initial liquid volume should be preferred. Influence of Bo
on the viscoelastic liquid transfer is reported for the first time and its effect will be further
discussed at the end of the chapter.

4.1.2.2 Initial aspect ratio

Influence of the initial liquid bridge height, L0, on the liquid transfer is investigated. Ex-
periments are performed using PEG20 solution as a test fluid. The initial aspect ratio,
IAR = L0/RP, is varied from 0.2 to 2, above which the instability of the initial capillary bridge
is observed for PEG20 solution [65, 66]. Below IAR = 0.2, the liquid bridge can not be
formed because of experimental limitations (pipette tip can not be inserted to form a liquid
bridge). A liquid bridge, formed in-between the two plates having DP = 4 mm is stretched at
U = 0.134 m/s from different IAR to FAR = 4. To avoid effect of change in DP on the liquid
transfer, the different values of IAR are obtained by only varying L0. The liquid volume is
varied from 5 to 50 µl with the change in IAR from 0.2 to 2, respectively.
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The results obtained for T R are plotted against IAR, as shown in Fig. 4.3(a). Each
symbol represents an average over five experiments. With increasing IAR, T R decreases
and this trend has been previously observed numerically for a Newtonian liquid by Huang
et al. [106]. In their study, the contact line on the top plate was pinned and the contact
line on the bottom plate was free to slip. However, in the present study, the contact lines
on both plates are fixed and more number of data points are reported. According to Rodd
et al. [14], for a static liquid bridge, in order to keep the initial configuration close to a
cylindrical shape (without sagging), IAR ≤ 1/

√
Bo. For the liquid bridge of PEG20 solution

with DP = 4 mm and Bo = 0.70, this critical IAR is 1.19. Hence, in the present study, for
IAR > 1.2, instabilities are caused by the imbalance between gravity and capillarity. With
increasing IAR, gravitational forces overcome the capillary forces and axial sagging in the
direction of gravity is observed. Therefore, the liquid bridge becomes non-cylindrical and
bulged shaped closer to the bottom plate. Transition of the initial capillary bridge from the
cylindrical shape to the non-cylindrical (bulged) shape due to increase in IAR can be seen in
photographs presented in Fig. 4.3(a). Due to this change in the initial bridge shape, dynamics
of the stretched liquid bridge are modified. For IAR ≤ 0.5, when the top plate is stretched
upwards, the liquid bridge breakup first occurs closer to the bottom solution pool, as shown
by a green arrow in Fig. 4.3(b). Then, the breakup also occurs closer to the top solution
pool and a detached drop is formed. This drop falls into the bottom solution pool. However,
when the top plate is stretched upwards, for IAR > 0.5, the breakup point moves towards
the top solution pool. Additionally, for IAR > 1.2, when the liquid bridge is stretched, the
bulge shaped liquid (on the bottom plate) turns into the bottom solution pool. Hence, larger
liquid volume is enclosed below this breakup point. Furthermore, with increase in IAR, the
top solution pool curvature changes from convex to a concave shape. This change in the
curvature (from convex to a concave shape) suggests that the liquid is pushed away from the
top solution pool towards the bottom solution pool. Therefore, with increasing IAR, smaller
solution pool is formed on the top plate and the amount of liquid transferred to the top plate
decreases. From the printing point of view, if the initial distance between the donor and
accepter surface is larger, then less liquid will be transferred to the acceptor surface. Hence,
to maximise the liquid transfer to the donor surface, IAR should be smaller than the critical
IAR. Also, care should be taken for small IAR, as the detached drop formed can be hazardous
if inhaled.
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Fig. 4.3 Effect of initial liquid bridge height on the liquid transfer. The liquid bridge, formed
in-between the two plates having DP = 4 mm is stretched at U = 0.134 m/s with different IAR
to FAR = 4. The experiments are conducted using PEG20 solution. Liquid volume is varied
from 5 to 50 µl with the change in IAR from 0.2 to 2, respectively. The error bars indicate
the dispersion over five tests. (a) T R, as a function of IAR, for PEG20. Inset photographs
depict the initial capillary bridge for IAR = 0.5, 1 and 1.5. For IAR = 1.5, sagging of the initial
liquid bridge along with a bulged shape is shown. The stretching direction of the bridge is
represented by the vertical blue arrow and FAR = 4 is represented by a horizontal blue line.
Photographs (b-e) present the stretched liquid bridge before the breakup for IAR from 0.5 to
2, respectively. The green arrows indicate the breakup point on the stretched liquid bridge.
Transition of the top solution pool from a convex to a concave shape is marked with the red
arrows.
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4.1.2.3 Final aspect ratio

Effect of the final stretching height on the liquid transfer is explored by varying the final
aspect ratio, FAR, from 2 to 6. The minimum value of FAR is limited due to the least value
of the stretching height required for breaking of the capillary bridge. The maximum value
of FAR is limited by the experimental constraints (lack of space in the experimental setup
to move the camera to capture the breakup of liquid bridge formed with higher FAR). Two
different experimental studies are carried out for the PEG20 and PEO solutions. A liquid
bridge, formed in-between the two plates having DP = 4 mm and volume 16 µl is stretched
from IAR = 0.66 to various FAR ranging from 2 to 6. For the PEG20 solution, U = 0.134 m/s
and for the PEO solutions, U = 0.08 m/s.

PEG20 solution Change in T R with FAR, for PEG20 solution, is plotted in Fig. 4.4(a).
Each point represents the average over five experiments. T R decreases with increasing FAR.
Fig. 4.4(b), (c) and (d) illustrate the different shapes of the capillary bridges formed, just
before their breakup, when the top plate is at FAR = 2, 4, and 6, respectively. For FAR = 6,
the breakup occurs at the top of the bridge, close to the top solution pool, compared to the
breakup at the middle of the bridge, for FAR = 2. This further suggests that, after breakup,
the liquid transferred to both plates will be nearly the same for FAR = 2. But, with increasing
FAR, as the breakup point moves closer to the top solution pool, more liquid volume will be
enclosed below this breakup point and a larger solution pool is formed on the bottom plate.
Hence, with increasing final stretching height, less liquid will be transferred to the top plate.

PEO solutions Moreover, additional experiments are performed using PEO solutions for
FAR 2, 4 and 6. Results for T R, using different values of FAR, are plotted against wPEO,
as shown in Fig. 4.5. Each data point represents the average over five experiments. As
previously observed in section 4.1.1, for all FAR, with increasing wPEO, T R decreases.
Additionally, for the same value of wPEO, it can be noted that smaller values of T R are
obtained for larger FAR. This behaviour is more significant for higher values of wPEO, than
in the dilute regime. As discussed in the previous section, the location of the necking point,
on the liquid bridge, varies with the final stretching height. Length of the filament increases
with increasing FAR and hence, larger liquid volume is enclosed below this breakup point.
Also, with increasing wPEO, the filament lasts longer. Therefore, more liquid is drained from
the top solution pool to the bottom solution pool. At higher FAR and wPEO, this combined
effect of the larger liquid volume enclosed and the enhanced drainage leads to larger values of
the solution pools formed on the bottom plate. Therefore, smaller values of T R are observed
for FAR = 6. Power law fits are used, for each FAR, to capture the variation of T R with wPEO.
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Fig. 4.4 (a) T R, as a function of FAR, for PEG20 solution. The insets are photographs
illustrating the solution pools formed on the plates, for different FAR. The liquid bridge,
formed in-between the two plates having DP = 4 mm and volume 16 µl is stretched from
IAR = 0.66 to FAR = 2 to 6, at U = 0.134 m/s. The horizontal blue line shows the initial
stretching height. The blue arrow indicates the stretching direction of the initial capillary
bridge. The error bars represent the dispersion over five experiments and the red line is a
guide to the eye. Photographs (b), (c) and (d) display stretched liquid capillary bridges, just
before their breakup, at FAR = 2, 4 and 6, respectively.
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Fig. 4.5 T R as a function of wPEO for different FAR. The liquid bridge, formed in-between
the two plates having DP = 4 mm and volume 16 µ l is stretched from IAR = 0.66 to different
FAR (2, 4 and 6) at U = 0.08 m/s. The error bars indicate the dispersion over five tests. The
blue, red and green lines represent power law fits, for the PEO solutions, with FAR = 2, 4 and
6, respectively. The vertical dashed line shows the critical mass fraction, w∗, of PEO.

With increasing FAR, the value of the power law exponent increases. From printing point
of view, if the final stretching height between the donor and accepter surface is larger, less
liquid will be transferred to the donor surface. Hence, to maximise the liquid transfer to the
donor surface, a smaller final stretching height is required.

4.1.3 Stretching speed

Typical extensional stretching (printing) speeds, U , associated with roll separation are
estimated to be around 0.01 to 0.1 m/s [20, 104]. In this section, influence of the stretching
speed on the liquid transfer is investigated, by varying U from 0.001 to 0.134 m/s. These are
the minimum and maximum values of U that can be achieved with the current experimental
setup. A liquid bridge, formed in-between the two plates having DP = 4 mm and volume
16 µl is stretched from IAR = 0.66 to FAR = 2. PEO1000 and PEG20 solutions are used
as test fluids. The results obtained are presented in Fig. 4.6(a). For both PEG20 and
PEO1000 solutions, with increasing U , T R increases. The increase in liquid transfer to
the top plate with increasing stretching speed is already well established for Newtonian
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fluids [100, 102, 103, 106, 113]. However, in our study, we found the similar trend for the
viscoelastic fluid. The results obtained are compared with Zhang et al. [100]. It is important
to recall that the authors have pinned contact lines similar to the present study. We have
recalculated T R using their results and the similar trend of increase in T R with increasing
U is found. For the authors, a liquid bridge with DP = 3.2 mm, IAR = 2 and initial volume
introduced, V = 40 µ l, is stretched at different speeds. IAR in their experiments is higher than
the present study (IAR = 0.66). As discussed in the previous section, higher values of IAR
leads to smaller values of T R. However, irrespective of geometrical properties (pinned or
moving contact lines), for both Newtonian and viscoelastic solutions, the liquid transferred
to the top plate increases with increasing U .

For further analysis, values of U are used to calculate capillary numbers, Ca = η0U/σ .
Higher stretching (printing) speeds would tend to enhance the importance of viscous forces
relative to interfacial-tension (higher Ca). The transfer ratios are plotted against Ca, as
shown in Fig. 4.6(b). For both solutions, T R increases with increasing Ca. For all the values
of Ca, linear regression is used to capture this trend. However, this trend is already well
established for Newtonian fluids [40, 102, 103, 106]. Furthermore, the results are compared
with experimental results by Chen et al. [40] and numerical simulation by Huang et al. [106].
Chen et al. [40] stretched a liquid bridge of glycerol, formed in between two similar (poly
ethyl methacrylate) surfaces, with increasing U . We have calculated values of Ca from their
data and as expected, T R increases with increasing Ca. In their numerical work, Huang et al.
[106] observed the similar trend (see Fig. 1.19).

The change in T R with Ca can be distinguished in three regimes. These regimes have
been previously described for stretching speed [40, 102, 103] and capillary numbers [106].
For low values of Ca i.e. Ca < 0.01, liquid transfer is determined by wetting properties
of the surface and capillary forces. This regime is called a quasi-static regime and in this
regime, T R values remain constant. In our study, the curve also has a plateau when Ca < 0.01.
Similar plateau for Ca < 0.01 was observed by Chen et al. [40] and Huang et al. [106].
A transition regime is observed for 0.01 <Ca < 1, where for a small increase in Ca, T R
values increase significantly. This behaviour indicates strong influence of viscous forces and
stretching speeds over capillary forces, yet the detailed mechanism still remains unrevealed.
In the present study, only T R values of PEG20 are observed in this regime. For PEO1000
solution, T R values are in the quasi-static regime only due to smaller values of η0 and
experimental limitation of the stretching speed. A third regime called dynamic regime is
expected for Ca > 1. However, in the present study, we could not achieve this regime as with
our experimental setup, the maximum stretching speed of 0.134 m/s (Ca = 0.317 for PEG20)
could be achieved. In this regime, equal volume of solution pools are formed on the both
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Fig. 4.6 Effect of stretching velocity and capillary number on the liquid transfer for PEG20
and PEO1000 solutions. The liquid bridge, formed in-between the two plates having DP = 4
mm and volume 16 µl is stretched from IAR = 0.66 to FAR = 2. The error bars exhibit the
dispersion over five experiments. (a) T R as a function of U . The results are compared with
Zhang et al. [100], with V = 40 µl, IAR = 2 and DP = 3.2 mm. (b) T R as a function of Ca.
For both solutions, different values of Ca = η0U/σ are obtained by varying only U and by
keeping solution properties constant. The blue line represents a linear trend line given as
T R = 0.384Ca+0.373 and a coefficient of determination of 0.91. Results are compared with
Huang et al. [106] and Chen et al. [40] who have moving contact lines and different values
of the contact angles.

plates irrespective of the surface and liquid properties. Huang et al. [106] and Chen et al. [40]
have found T R = 0.5 in this regime. It is worth noting that both authors have moving contact
lines. These three regimes have been previously defined only for moving contact lines and
Newtonian fluids. However, in the present study, we have successfully demonstrated effect
of U and Ca for both Newtonian and viscoelastic fluids for pinned contact lines. In printing,
larger liquid transfer to the donor surface can be achieved with higher stretching speeds and
Ca > 1.

4.1.4 Initial bridge shape

By varying the volume of the liquid introduced in the initial capillary bridge, the shape of the
bridge is controlled, and hence, the initial contact angles are modified. When 100% volume
is introduced, a cylindrical shaped liquid bridge is created and this volume can be calculated
as V = (π/4)DP

2L0. Then, solution volumes introduced are varied from 50 to 125% of V to
obtain different contact angles. For the cylindrical-shaped liquid bridge, an initial contact
angle of 90 ○ is observed, as shown in Fig. 4.7(b). The contact angles less than 90○, Fig.
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4.7(a), and the contact angles greater than 90○, Fig. 4.7(d), are obtained for the volumes less
than or greater than 100% of the cylindrical shaped volume, respectively. For the volumes,
less than 50%, the minimum volume limit of the bridge is observed and for the volumes
larger than 125%, the bridge is found to be unstable.

Four types of fluids, such as water, PEG20, PEO1000 and PEG20PEO1000, are tested to
characterise effect of the initial bridge shape on T R. The liquid bridge, formed in-between the
two plates having DP = 4 mm is stretched from IAR = 0.66 to FAR = 2, at U = 0.134 m/s. The
liquid volume is varied from 8 to 20 µ l for 50% to 125% of V , respectively. The initial bridge
shape with the contact angles less than 90○ is similar to previous works [40, 107, 112, 118],
where slipping contact lines are observed. Yet, in our case, for all initial bridge shapes, the
liquid contact lines are pinned at the corners of the plates, possibly because of the pre-wetting
of the plate surface (that causes a decrease in contact angles) [145]. The obtained T R results
are plotted against %V , in Fig. 4.7. For each symbol, the error bar represents the average
over five experiments. For Newtonian fluids (water and PEG20), T R increases with increase
in %V . But, for the viscoelastic solutions (PEO1000 and PEG20PEO1000), increasing the
volume introduced has exactly the opposite effect and T R decreases with %V . Yet, for all
solutions, with 50% V , T R are found to be nearly the same. But for larger values of %V , the
liquid volume introduced has a stronger and opposite effect on Newtonian and viscoelastic
fluids.

Additional experiments are performed to investigate effect of the initial bridge shape
on the liquid transfer. The liquid bridge formed in-between two plates having DP = 6 mm
is stretched from IAR = 0.66 to FAR = 2, at U = 0.08 m/s. The liquid volume introduced is
varied from 28 to 70 µ l for 50% to 125% of V , respectively. The results obtained for effect of
initial bridge shape on the liquid transfer, for DP = 6 mm, are shown in Fig. 4.8. The results
for the viscoelastic solutions and the Newtonian solutions are presented in 4.8(a) and (b),
respectively. These results are compared with T R obtained with the respective solutions for
DP = 4. Similar trends are observed for PEG20 and PEO1000 solutions, with both DP = 4 and
6 mm. For viscoelastic solutions, T R decreases with increasing %V . Whereas, for Newtonian
solutions, T R increases with increasing %V .

Effect of the initial bridge shape is further analysed, for PEO1000, for all %V studied.
The midplane diameters of the initial liquid bridge, for DP = 4 and 6 mm are obtained from
the images. Then, the Bond number, Bom, is calculated using the initial midplane diameter.
Additionally, the data from Fig. 4.2 for PEO1000, for effect of plate diameter on T R is also
considered for comparison. For these data points, the cylindrical-shaped liquid bridge is
observed and hence, the midplane diameters are equal to the corresponding plate diameters.
The results obtained for T R are plotted against Bom, as shown in Fig. 4.9. With increasing
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Fig. 4.7 Effect of the initial bridge on liquid transfer. T R is plotted as a function of % of the
liquid volume introduced (V ) in the bridge. Insets (a), (b) and (c) are photographs the initial
bridge for water, depicting 50, 100 and 125% of the liquid volume introduced. The liquid
bridge, formed in-between the two plates having DP = 4 mm is stretched from IAR = 0.66
to FAR = 2, at U = 0.134 m/s. The liquid volume is varied from 8 to 20 µl for 50% to
125% of V , respectively. The blue arrow denotes the stretching direction, with the stretching
speed, U = 0.134 m/s. The error bars represent the dispersion over five experiments. The
red, sky-blue, dark blue and green lines are trend-lines for water, PEG20, PEO1000 and
PEG20PEO1000 solutions.
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Fig. 4.8 Effect of the initial bridge on liquid transfer. T R is plotted as a function of % of
the liquid volume introduced (V ) in the bridge. Here, the liquid bridge is stretched from
IAR = 0.66 to FAR = 2. For experiments with DP = 4 mm, U = 0.134 m/s, whereas for DP = 6
mm, U = 0.08 m/s. The error bars represent the dispersion over three to five experiments.
(a) The green, blue and dark green lines are trend lines for PEO1000 and PEG20PEO1000
solutions with DP = 4 mm, and PEO1000 solution with DP = 6 mm, respectively. (b) The red,
sky-blue, blue lines are trend lines for water and PEG20 solution, with DP = 4 mm, and water
with DP = 6 mm, respectively.

Bom, T R decreases, as already discussed in section 4.1.2.1. Therefore, for viscoelastic
solutions, the decrease in T R with increasing %V , can be interpreted as effect of increasing
midplane diameter and hence, increasing Bom. To capture the trend, a power law fit is used,
with the coefficient of determination of 0.94. This fit can be used to predict T R for any plate
diameter and the initial bridge shape, for PEO1000 solution.

4.2 Partial conclusion

In this chapter, we presented the experimental investigation of the liquid transfer for New-
tonian and viscoelastic polymer solutions. The cylindrical-shaped liquid capillary bridge,
with pinned contact lines, was stretched at the desired speed and height. Then, the role of
viscoelasticity in liquid transfer is established through the relationship between the polymer
mass fraction and T R, experimentally for the first time. We show that T R decreases with
increasing wPEO and may be explained by the gravitational draining enhanced by the delayed
filament thinning. Furthermore, the Deborah number is calculated for each mass fraction
and its relationship with T R is demonstrated with a power law regression. In printing, a
large volume of liquid needs to be transferred from donor to accepter surfaces. Therefore to
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Fig. 4.9 T R as a function of Bom. Here, Bom is calculated from the midplane diameters
obtained from the initial bridge shapes, for PEO1000 solution. Here, the liquid bridge is
stretched from IAR = 0.66 to FAR = 2. For the experiments with DP = 4 mm, U = 0.134
m/s, whereas for DP = 6 mm, U = 0.08 m/s. The data is compared with the initial diameters
obtained from effect of plate diameters on T R, see Fig. 4.2(a). For the points from Fig.
4.2(a), the initial midplane diameters are equal to the corresponding plate diameters, as
the cylindrical-shaped liquid bridge are observed. The trend line is a power law fit with a
coefficient of determination of 0.92. Error bars represents the dispersion over three to three
to five experiments.
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maximise liquid transfer, smaller PEO polymer mass fraction solutions should be preferred.
Furthermore, it is recalled that sometimes our space-time diagrams showed migration of
drops towards the top solution pool. These drops can affect the printing quality but their
upward migration is largely prevented by coalescence.

Gravitational influence is studied by using different plate diameters and we found the
similar trend as Zhang et al. [100] where smaller values of T R are obtained for larger plate
diameters. Then, we establish a relationship between liquid transfer and Bo. We observed
that the liquid transfer to the top plate decreases with increasing Bo. Then, we present
influence of initial liquid bridge height and the final stretching height on the liquid transfer
by using two dimensionless parameters, IAR and FAR, respectively. The liquid transfer to
the top plate decreases with increasing IAR and FAR, for both Newtonian and viscoelastic
solutions. From the printing point of view, smaller values of surface diameter, as well as
initial stretching height (and hence initial liquid volume) along with final stretching height,
should be favoured.

We also show that with increasing stretching speed, liquid transfer to the top plate
increases. This trend was previously established for Newtonian fluids, but in the present
study, we demonstrate that this trend is valid for viscoelastic fluids as well. When T R was
plotted against Ca, we obtained points in the quasi-static (Ca < 0.01) and the transition regime
(0.01 <Ca < 1). Hence, in printing, liquid transfer can be enhanced by using higher values of
the capillary number (Ca > 0.01). Finally, when the initial liquid bridge shape was varied
by varying the (liquid) volume introduced, liquid transfer behaviour is strikingly different
for Newtonian and viscoelastic solutions. For viscoelastic solutions, the liquid transfer to
the top plate decreases with increasing the liquid volume introduced. This behaviour can
be replotted as a function of the Bond number (Bom), calculated using the initial midplane
diameter. It is observed that T R follows a power law regression with this Bom (Fig. 4.9).
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5.1 Conclusions

In the present thesis, we have experimentally investigated the role of viscoelasticity in the
drops-on-a-filament, also known as beads-on-a-string (BOAS) and liquid transfer phenomena.
The drops-on-a-filament and the transfer ratio phenomena were investigated by using vis-
coelastic polymer solutions. The experimental study was carried out with aqueous solutions
of polyethylene oxide (PEO) and polyethylene glycol (PEG), separately and in combination,
at varying polymer mass fractions. The solutions were characterised by measuring density,
surface tension, zero shear viscosity and relaxation times. The experimental high-speed
image microscopy setup was maintained under thermally controlled conditions. The setup
consisted of a Capillary Breakup Extensional Rheometer (CaBER), a high-speed camera,
a catadioptric lens and a laser. The CaBER enabled precise and repetitive stretching of the
liquid capillary bridge with the desired speed.

New types of space-time diagrams called Diameter-space-time (DST) and Hencky strain-
space-time (HSST) diagrams were introduced to capture stretching of an initial liquid bridge,
filament thinning, until falling of drops into solution pools. The diagrams were constructed
from images, where filament and drop diameter was converted into a colour code, to obtain
local diameter and the Hencky strain, in space and time. For both PEO and PEG+PEO
solutions, a BOAS structure with multi-generations of drops was observed. Additionally, in
our space-time diagrams, at least three scenarios predicted numerically by Li and Fontelos
[2] can be observed: presence of drops due to stretching of a viscoelastic liquid bridge, drop
migration and coalescence. Sudden vertical jumps in the diagrams were observed because of
the coalescence of small drops, and the filament was pulled in the direction of the coalescence.
For both PEO and PEG+PEO solutions, a hierarchy, as well as asymmetry of satellite drops
around a big central drop were demonstrated. The present space-time diagrams provide
actual measurements of drop diameter and the Hencky strain, whereas previous works by
Oliveira et al. [9] and Clasen et al. [15] were based on the grey-scale intensity to indicate the
relative thickness of drops or positions of drops. Further analysis of DST diagrams suggests
that even after changing the PEO mass fraction, the diameter of the first generation (largest)
drop remains constant. These findings indicate that the diameter of the first generation of
drop remains unaffected by polymer mass fractions within our experimental range. Also, the
diameter of the big central drop was smaller for PEG+PEO solutions than PEG20 and PEO
solutions. During a BOAS instability with multi-generation drops, we measure the maximum
number of drops in the BOAS structure and interestingly, the number of drops is higher for
the PEG+PEO solutions than that for the PEO solutions. The maximum number of drops
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in the BOAS structure increase with the Deborah number, and we show that this increasing
trend can be captured by a power law fit.

Furthermore, the DST and HSST diagrams enabled to locate the minimum diameter of
a filament in space and time. By using the minimum diameter, the apparent extensional
viscosity, ηE , and the Hencky strain, εmin were calculated. For both PEO and PEG+PEO
solutions, ηE increases with time and the Hencky strain. Moreover, the apparent extensional
viscosity increases with the mass fraction of PEO. The increase in ηE can be distinguished
in two regimes, at εmin ≈ 6. The first regime corresponds to development of a cylindrical
shaped filament in axial (due to formation of solution pools) as well as radial direction, while
the second regime corresponds to the filament thinning in radial direction only. Also, a
similar increase in ηE with time and the Hencky strain was also noticed for various FAR. ηE

increases with the increase in FAR and two distinct regions are again observed at εmin ≈ 6. In
addition, for both PEO and PEG+PEO solutions, relaxation time increases as a power law of
the mass fraction of PEO and with the addition of PEG, in accordance with previous studies
[88, 101].

Various geometric aspects were investigated in order to study their effect on diameter
of the first generation drop and the maximum number of drops in a BOAS structure. For
larger plate diameters, we observe a larger diameter of the first generation drop and a higher
number of drops in a BOAS structure. We also show that initial aspect ratio and final aspect
ratio have the opposite effect on the number of drops in a BOAS instability. Higher number
of drops in the BOAS structure is observed for smaller initial aspect ratio and larger final
aspect ratio. For all three geometrical aspects studied, the maximum number of drops in a
BOAS structure depends on the filament length available to form higher generations of drops
(iterated instability). Surprisingly, stretching speed did not affect the diameter of the first
generation drop and the maximum number of drops in the tested range. This further suggests
that only initial and final bridge geometries may have influence on the studied drop dynamics
of a BOAS instability.

Liquid transfer was experimentally investigated, for both Newtonian and the viscoelastic
solutions, by varying PEO mass fraction, geometrical properties, stretching properties and
initial liquid bridge shape. We used a cylindrical-shaped initial liquid capillary bridge, formed
in-between two circular flat plates with pinned contact lines, in contrast to most of the previous
studies for moving contact lines [40, 42, 102, 103, 106, 107, 112, 113, 118]. The relationship
between the transfer ratio and polymer mass fraction is established experimentally for the
first time. With the increase in the PEO mass fraction, T R decreases and with the addition
of PEG to the PEO solutions, T R decreases further. In addition, we demonstrate the role
of viscoelasticity in a liquid transfer by using a power law regression for a decrease in T R
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with Deborah number. This regressive trend can be explained by gravitational drainage,
enhanced by a delayed filament thinning due to increased PEO mass fraction and viscosity
of the solution. Gravitational influence on the T R was also verified by using different plate
diameters. Liquid transfer to the top plate reduces significantly for the larger plate diameters,
similar to [100] for both Newtonian and viscoelastic solutions. This reduced liquid transfer
can be explained by higher Bond numbers and, therefore, by an increase in the gravitational
effect. We show that liquid transfer to a top plate decreases with increase in initial and final
stretching heights of a liquid capillary bridge, for both Newtonian and viscoelastic solutions.
With increasing IAR, gravitational forces overcome capillary forces and axial sagging occurs
in the direction of gravity, which leads to lower liquid transfer when a liquid bridge is
stretched. FAR governs liquid transfer of Newtonian and viscoelastic fluids in a similar way
as increasing stretching height leads to the more liquid volume enclosed below a liquid bridge
breakup point and then, resulting in a larger bottom solution pool. We also show that with
increase in stretching speed and the capillary number, liquid transfer to the top plate increases.
This trend was previously established for Newtonian fluids [100, 102, 103, 106, 113], but in
the present study, we demonstrate that this trend is valid for viscoelastic fluids as well. Finally,
liquid transfer behaviour is strikingly different for Newtonian and viscoelastic solutions,
when the initial liquid bridge shape or liquid volume, V , introduced is varied. For Newtonian
solutions, T R increases with an increase in the liquid volume, while for viscoelastic solutions,
T R decreases with an increase in the liquid volume. For viscoelastic solutions, a decrease in
T R is observed with increasing %V . Furthermore, for PEO1000, a relationship between T R
and Bom is found and follows a decreasing power law function.

In practice, a successful printing involves a sufficiently large volume of liquid transferred
from one surface to another, defect-free liquid transfer and desired liquid shapes (a BOAS
structured wire) to be preserved. In 3D lithography, a BOAS structure is required and, thus,
we demonstrate that a high polymer mass fraction, a larger surface diameter as well as a
larger final stretching height along with a smaller initial stretching height of the liquid bridge
should be favoured to maximise the number of drops in a BOAS structure. On the contrary,
formation of drops is a defect in printing and hence, a smaller surface diameter, a larger
initial stretching height and a smaller final stretching height for a liquid bridge should be
preferred to minimise the number of drops in a BOAS structure. Moreover, we show that
to maximise the liquid transfer, smaller polymer mass fraction solutions should be used. In
addition, smaller surface diameter and liquid volume, a smaller initial stretching height, a
smaller final stretching height configuration, but a higher stretching speed should be preferred
to increase liquid transfer. Our DST and HSST diagrams also allow tracking drop trajectories,
which can be helpful in the printing industry to track falling of drops on either carrier or
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substrate surface. In the present study, we observed that drops often fall into the bottom
solution pool (donor surface). Therefore, there is no risk of contamination of the top plate
(substrate surface) that can result into deterioration of printing quality.

We tested and validated the OpenFOAM toolbox rheoTool to simulate capillary thinning
of a stretched liquid bridge. Liquid properties of the sample solutions and experimentally
obtained stretched liquid bridge profiles are used to reproduce capillary thinning of a stretched
liquid bridge. For Newtonian PEG20 solution, transfer ratios obtained experimentally and
numerically are in good agreement. For viscoelastic PEG20PEO1000 solution, after necking,
a short-lived filament thinning is observed, along with a single first generation drop. Diameter
of the first generation drop obtained numerically and experimentally for the PEG20PEO1000
solution is similar. However, for PEG20PEO1000, numerical T R is higher than experimental
T R as a consequence of inadequate gravitational draining caused by a short-lived filament.
Presumably, this short lived filament may be due to the coarse meshes used. Hence, liquid
transfer for Newtonian fluids using rheoTool produces satisfactory results. For viscoelastic
solutions, we need a higher resolution mesh to produce a persistent filament to enhance
gravitational draining in liquid transfer and localised pinching to achieve higher generations
of drops in a BOAS structure. Therefore, preliminary results using rheoTool are promising
and our numerical scripts can be further used to investigate other Newtonian and viscoelastic
fluids.

5.2 Future work

Scope of this thesis was to understand the influence of viscoelasticity on drop dynamics
of a BOAS structure and liquid transfer. In the future, by using various mass fractions of
PEG in PEG+PEO solutions, validity of the power law equation for number of drops in a
BOAS instability against the Deborah number could be tested. A similar equation can be
acquired, for the transfer ratio to capture the effect of PEG mass fraction on liquid transfer.
Low molecular weights of PEO can be used to study the influence of molecular weights on
drop dynamics of a BOAS structure and liquid transfer. The current experimental results
suggest that smaller plate diameters and higher stretching speeds can be used to achieve
50% transfer ratios. Drop dynamics and liquid transfer can be further investigated by using
different diameters at top and bottom plates. More experimental work is also needed to
thoroughly describe the effect of stretching direction on liquid transfer. By using a Polarised
Light Microscopy, polymer distribution in a filament, as well as in a drop can be further
estimated. A BOAS structure could be dried [86], and studied under a microscope to observe
polymer distribution.
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Concerning numerical simulations, liquid transfer for other Newtonian fluids should
be further investigated using rheoTool. A higher resolution mesh could be implemented
to produce a persistent filament to enhance gravitational draining in liquid transfer and
localised pinching to achieve higher generations of drops in a BOAS structure. The power
law equations for the influence of viscoelasticity on the number of drops and liquid transfer
can be further investigated numerically. Additionally, to make a numerical study even closer
to stretching of liquid capillary bridge experiments, a moving top plate with a required
stretching speed, along with a dynamic mesh can be implemented. Using a dynamic mesh,
we hope that the experimental results obtained for BOAS structure and liquid transfer could
be reproduced for varying polymer concentrations along with the geometrical and stretching
properties.
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The stretching of viscoelastic polymer solutions close to breakup can create attached
drops on a filament, whose properties and dynamics are little understood. The stretching of
capillary bridges and the consecutive filament, until its breakup, can be quantified using
diameter-space-time diagrams, which demonstrate hierarchy, as well as asymmetry of
satellite drops around a big central drop. All drops experience migration, oscillation, and
merging. In addition, the position of the minimum diameter on the filament is determined,
along with the number of drops, their positions, the diameters of drops and the filament
breakup time. The maximum number of drops on the filament can be predicted using the
Deborah number. The diagrams also quantify the large Hencky strains in the filaments
before pinch-off. The obtained minimum diameter is used to measure the extensional
viscosity, which indicates the effect of polymer concentration and direction of filament
thinning.

DOI: 10.1103/PhysRevFluids.5.011301

Introduction. Understanding the extensional flow properties of polymer solutions is of practical
and physical importance for many commercial applications such as spraying, coating, inkjet
printing, food processing, atomization, etc. Most of these processes undergo filament breakup of
solutions containing dissolved polymers and the extensional viscosity of these solutions plays an
important role in the thinning and the drop dynamics. In contrast to Newtonian fluids, which have
their extensional viscosity directly proportional to the shear viscosity, the extensional viscosity of
viscoelastic fluids is more complex. Macromolecular solutions exhibit large extensional viscosity
[1–10] because extensional flows are irrotational and presumably more efficient at disentangling
or orienting flexible polymer molecules. It has been known for 50 years [11,12] that capillary
jets of viscoelastic polymer solutions exhibit the peculiar morphology called beads on a string
(BOAS). The instability and the initial sinusoidal growth has been reported [13–15] and has also
been observed in the stretching of capillary bridges using extensional rheometers such as Capillary
Breakup Extensional Rheometer (CaBER) [7,16–21]. These studies have consistently evidenced
the linear viscous-capillary thinning, the exponential polymeric thinning [22], and the existence of
drops attached to a thin filament [2,23–28], depending on the fluid properties.

A remarkable feature of the thinning of viscoelastic solution is the ability to form long and
persistent filaments. Scanning electron microscopy observations [29] suggest the extensional flow
is heterogeneous, with local variation of polymer concentration and localized pinching [30]. Yet,
the BOAS morphology appears from the initial wavelength of capillary instability modified by the
central fiber, which behaves as a solid core. The annular film becomes unstable, resulting in drops
along the filament. Inside a drop, the polymers are in relaxed state but in the fluid necks, they are in
stretched state [29].

2469-990X/2020/5(1)/011301(8) 011301-1 ©2020 American Physical Society
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OpenFOAM rheoTool scripts

This chapter is dedicated to guide future researchers for the numerical study of beads-on-a-
string (BOAS) and liquid transfer using the rheoTool code.
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B.1 Newtonian solution: PEG20

B.1.1 Initial conditions

B.1.1.1 alpha.water

{dimensions [0 0 0 0 0 0 0];
internalField uniform 0;
boundaryField
{
atmosphere
{type zeroGradient;}
topWall
{type dynamicAlphaContactAngle;
theta0 23;
thetaA 45;
thetaR 22;
uTheta 0.00;
limit gradient;
value uniform 1;}

bottomWall
{
type dynamicAlphaContactAngle;
theta0 65.77;
thetaA 86.5;
thetaR 65;
uTheta 0.00;
limit gradient;
value uniform 1;
}
wFront
{
type wedge;
}
wBack
{
type wedge;
}
axis
{type empty;
}}}
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B.1.1.2 Pressure, p

dimensions [1 -1 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{
atmosphere
{type fixedValue;
value uniform 0;
}
topWall
{
type fixedFluxExtrapolatedPressure;

}
bottomWall
{
type fixedFluxExtrapolatedPressure;
}
wFront
{
type wedge;
}
wBack
{
type wedge;
}
axis
{
type empty;
}

}
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B.1.1.3 Velocity, U

dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
atmosphere
{
type zeroGradient;
}
topWall
{
type fixedValue;
value uniform (0 0 0);
}
bottomWall
{
type fixedValue;
value uniform (0 0 0);
}
wFront
{
type wedge;
}
wBack
{
type wedge;
}
axis
{
type empty;
}
}
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B.1.1.4 Constitutive properties

phases (water air);
water // PEG20
{
parameters
{
type Newtonian;
rho rho [ 1 -3 0 0 0 0 0 ] 1032.5;
eta eta [1 -1 -1 0 0 0 0] 0.034;
stabilization coupling;
}

}
air
{
parameters
{
type Newtonian;
rho rho [1 -3 0 0 0 0 0] 1.2;
eta eta [1 -1 -1 0 0 0 0] 1.8e-5;
}

}
passiveScalarProperties
{

solvePassiveScalar off;
D D [ 0 2 -1 0 0 0 0 ] 1e-9;

}
sigma sigma [ 1 0 -2 0 0 0 0 ] 0.057;

B.1.1.5 Gravity, g

dimensions [0 1 -2 0 0 0 0];
value (0 -9.81 0);
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B.1.2 Mesh generation: blockMeshDict

convertToMeters 0.001;
vertices
( (0 6 0)

(0 0 0)
(4 0 -0.1)
(4 6 -0.1)
(4 0 0.1)
(4 6 0.1));

blocks
(
hex (0 2 5 3 0 1 4 3) (200 400 1) simpleGrading (1 1 1)
hex (2 13 11 5 1 12 10 4) (20 400 1) simpleGrading (1 1 1)
hex (9 8 13 2 6 7 12 1) (20 20 1) simpleGrading (1 1 1)
hex (5 11 17 16 4 10 15 14) (20 20 1) simpleGrading (1 1 1)

);
edges
(
);
boundary
(

topWall
{type wall;

faces ((0 3 5 0));}
bottomWall
{type wall;

faces ((1 2 4 1));}
atmosphere
{type patch;

faces ((3 2 4 5));}
axis
{type empty;

faces ((0 1 1 0));}
wFront
{type wedge;

faces ((0 1 4 5));}
wBack
{type wedge;

faces ((0 1 2 3));}
);
mergePatchPairs
(
);
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B.1.3 Time step control: controlDict

application rheoInterFoam;
startFrom latestTime;
startTime 0.00;
stopAt endTime;
endTime 0.90;
deltaT 0.000001;
writeControl adjustableRunTime;
writeInterval 0.001;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression compressed;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
adjustTimeStep yes;
maxCo 0.05;
maxAlphaCo 0.05;
maxDeltaT 0.001;



158 OpenFOAM rheoTool scripts

B.1.4 Convection schemes settings: fvSchemes

ddtSchemes
{
default Euler;

}
gradSchemes
{
default Gauss linear;
grad(p) Gauss linear;
grad(U) Gauss linear;
linExtrapGrad Gauss linear;

}
divSchemes
{
default none;
div(Sum(tau)) Gauss linear;
div(grad(U)) Gauss linear;

div(rhoPhi,U) Gauss limitedLinearV 1;

div(phi,alpha) Gauss Gamma 0.2;
div(phirb,alpha) Gauss interfaceCompression;

div(eta*alpha*dev2(T(gradU))) Gauss linear;

div(phi,theta.water) GaussDefCmpw cubista;
div(phi,theta.air) GaussDefCmpw cubista;
div(phi,tau.water) GaussDefCmpw cubista;
div(phi,tau.air) GaussDefCmpw cubista;

}
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laplacianSchemes
{
default

}
interpolationSchemes

{
default linear;

}
snGradSchemes

{
default orthogonal;

}
fluxRequired
{
default no;
p_rgh;
pcorr;
alpha1;

}
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B.1.5 Solver control: fvsolution

solvers
{
"alpha.water.*"
{
nAlphaCorr 1;
nAlphaSubCycles 1;
cAlpha 1;

MULESCorr yes;
nLimiterIter 3;
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-7;
relTol 0.0;
}

"pcorr.*"
{
solver PCG;
preconditioner DIC;
tolerance 1e-10;
relTol 0;
}

p_rgh
{
solver PCG;
preconditioner DIC;
tolerance 1e-10;
relTol 0.0;

}
p_rghFinal
{
$p_rgh;
relTol 0;

}
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"(theta.*|tau.*|U)"
{
solver PBiCG;
preconditioner
{
preconditioner DILU;
}
tolerance 1e-10;
relTol 0;
minIter 0;
maxIter 1000;
}

}
PIMPLE
{
nInIter 1;
SIMPLEC true;

nCorrectors 3;
nNonOrthogonalCorrectors 1;

}
relaxationFactors
{
equations
{
".*" 1;
}

}
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B.1.6 Setting initial field: setFieldsDict

defaultFieldValues
(
volScalarFieldValue alpha.water 0

);
regions
(
surfaceToCell
{
file "PEG20mm.stl";
outsidePoints ((0.003 0.003 0.00));
includeCut true;
includeInside yes;
includeOutside no;
nearDistance 0.000;
curvature 0.00;
fieldValues
(
volScalarFieldValue alpha.water 1
);
}

);
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B.2 Viscoelastic solution: PEG20PEO1000

B.2.1 Initial conditions

B.2.1.1 alpha.water

dimensions [0 0 0 0 0 0 0];
internalField uniform 0;
boundaryField
{
atmosphere
{
type zeroGradient;
}
topWall
{
type dynamicAlphaContactAngle;
theta0 32;
thetaA 33;
thetaR 30;
uTheta 0.00;
limit gradient;
value uniform 1;
}
bottomWall
{
type dynamicAlphaContactAngle;
theta0 65;
thetaA 90;
thetaR 64;
uTheta 0.00;
limit gradient;
value uniform 1;
}
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wFront
{
type wedge;

}
wBack
{
type wedge;

}
axis
{
type empty;

}
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B.2.1.2 Constitutive properties

phases (water air);
water
{
parameters
{
type Oldroyd-BLog;
rho rho [ 1 -3 0 0 0 0 0 ] 1033.6;
etaS etaS [1 -1 -1 0 0 0 0] 0.034;
etaP etaP [1 -1 -1 0 0 0 0] 0.737;
lambda lambda [0 0 1 0 0 0 0] 2.95;

stabilization coupling;
}
}
air
{
parameters
{
type Newtonian;
rho rho [1 -3 0 0 0 0 0] 1.2;
eta eta [1 -1 -1 0 0 0 0] 1.8e-5;
}

}
passiveScalarProperties
{

solvePassiveScalar off;
D D [ 0 2 -1 0 0 0 0 ] 1e-9;

}
sigma sigma [ 1 0 -2 0 0 0 0 ] 0.0565;
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B.2.1.3 Polymeric extra-stress: Tau

dimensions [1 -1 -2 0 0 0 0];
internalField uniform (0 0 0 0 0 0);
boundaryField
{
atmosphere
{
type fixedValue;
value uniform (0 0 0 0 0 0);
}
topWall
{
type linearExtrapolation;
value uniform (0 0 0 0 0 0);
}
bottomWall
{
type linearExtrapolation;
value uniform (0 0 0 0 0 0);
}
wFront
{
type wedge;
}
wBack
{
type wedge;
}

axis
{
type empty;
}
}
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B.2.2 Setting initial field: setFieldsDict

defaultFieldValues
(
volScalarFieldValue alpha.water 0

);

regions
(
surfaceToCell
{
file "PEG20PEO1000.stl";
outsidePoints ((0.003 0.000 0.00));
includeCut true;
includeInside yes;
includeOutside no;
nearDistance 0.000;
curvature 0.00;
fieldValues
(
volScalarFieldValue alpha.water 1
);
}

);
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The retardation time, λ2, is the characteristic time required for a material to respond
when deformation is caused by the application of a force or stress. This delayed response is
a characteristic creep property of the material. The experiments to measure the retardation
time are carried out using the oscillating drop method and theoretical details are given in
Yarin et al. [146], Brenn and Plohl [58] and Plohl [48]. The experiments are performed by
following the protocols mentioned by Brenn and Plohl [58] and Plohl [48]. The aqueous
solutions of PEO, PEG and PEG+PEO are prepared with a wide range of mass fractions,
as shown in Tab. 2.3. For all the PEO solutions in this study, iso-propyl alcohol (IPA) is
not used. Additionally, aqueous solutions of Polyacrylamide (PAM) are prepared with and
without glycerol.

To experimentally investigate the retardation time, the technique of acoustic levitation is
used [58, 147]. The acoustic levitation of drops is achieved using an ultrasonic levitator. A
drop of the polymer solution is introduced close to a pressure node of the acoustic levitator
and levitated into the acoustic field. The maximum sample diameter of the drop that can be
levitated with the frequency of 58 kHz is around 2.5 mm, whereas the smallest drop diameter
is about 15 µm. Oscillations of the levitated drop are excited by amplitude-modulating
ultrasound. Then the amplitude modulation is switched off within seconds after injecting the
drop in the acoustic levitator. A series of pictures of the levitated drop are acquired to obtain
its initial shape. The drop is then excited near its resonance frequency. Then, at some time
during the steady excitation, the modulation is switched off and the drop exhibits damped
oscillations. The oscillations and the damping of the drop are recorded using a camera and
analysed using the Mathematica software (version 12.0), to calculate the retardation time.
Different droplet sizes and different mass fractions of polymers are tested. The ratio of the
retardation time to the relaxation time, λ2/λ , is calculated and plotted against polymer mass
fraction, wPolymer, of PEO, PEG+PEO, PAM and Praestol 2500, as shown in Fig. C.1.

The data is further analysed to calculate the retardation time using the Elasto-Viscous
Stress Splitting (EVSS) method, refer to section 1.4.2, details of which are given in Plohl
[48]. The retardation time is calculated as λ2 = λ(ηs/η0), where ηs is the solvent viscosity
and η0 is the zero shear viscosity. These results are compared with the data obtained for
Praestol 2500 by Plohl [48]. The results seem to agree only for PEO solutions with the
PEO mass fraction up to 1000 wppm. However, for the higher mass fractions of PEO in
PEG+PEO solutions and PAM solutions, the results are not reliable, as the solutions are too
viscous, leading to very small or no oscillations. The results obtained for PAM solutions are
not satisfactory and are irrelevant to the work.
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Fig. C.1 Ratio of the retardation time to the relaxation time, λ2/λ , vs polymer mass fraction,
wpolymer, of PEO, PEG+PEO, PAM and Praestol 2500.
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A Polarised Light Microscopy is carried out for the PEG20PEO1000 viscoelastic solution,
to further investigate the observation by [86] about the presence of the polymers in the beads,
as well as, in the filaments. The polarised microscopy is carried out using Olympus XC30
Digital Camera. The basic principle of different optical properties, of isotropic and anisotropic
crystallographic materials, is used to observe their presence. Here, to study beads-on-a-string
(BOAS) structure of PEG20PEO1000, the BOAS structure, created by stretching liquid
bridge, is placed on a clean glass slide. Then, the structure is observed under the microscope,
and results are shown in Fig. D.1. The size of the big drop, for Fig. D.1(a), is ≈ 220 µm and
the size of the pinching point is ≈ 14 µm. The multi-coloured regions indicate the presence of
the polymer crystals, suggesting the polymers are present in the bead, see Fig. D.1(a), as well
as, in the filament, see D.1(b), after pinching. More detailed study needs to be done, by using
higher resolution of camera, along with the different viscoelastic solutions. Additionally, the
presence of the polymer can be confirmed by drying the BOAS structure.

Fig. D.1 Beads-on-a-string (BOAS) microscopy for PEG20PEO1000, obtained from the
Polarised Light Microscopy. (a) The view around the neck. The size of the big drop is ≈ 220
µm and the size of the pinching point is ≈ 14 µm. (b) The view of the filament, connecting
different beads, and the average diameter ≈ 20 µm can be observed.
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(a)

Top plate

Bottom plate

(b)

Top plate

Bottom plate

U = 0.005 m/s

U = 0.005 m/s

Fig. E.1 Effect of stretching direction on liquid transfer. The insets are photographs depicting
the stretching of the capillary bridge with (a) the top plate moving in the upward direction, and
(b) the bottom plate moving in the downward direction. The liquid bridge, formed in-between
the two plates having DP = 6 mm and volume 56 µ l is stretched from IAR = 0.66 to FAR = 2,
with U = 0.005 m/s. The red arrows denote the stretching direction. The vertical blue line
indicates the critical mass fraction, w∗, of PEO. The error bars represent the dispersion over
five experiments. The dashed green line is a trend line for the PEO solutions with the upward
stretching direction.

The influence of the stretching direction on the liquid transfer is investigated. A liquid
bridge, formed in-between the two plates having DP = 6 mm and volume 56 µl is stretched
from IAR = 0.66 to FAR = 2. Two sets of experiments are performed by stretching either the
top plate in the upward direction or the bottom plate in the downward direction, at U = 0.005
m/s. For the downwards stretching, the experiments are performed at the CORIA laboratory
(Université de Rouen Normandie) using a downward stretching apparatus. Water, PEG20,
PEO solutions and PEG+PEO solutions are tested.

The obtained results for T R are plotted against wPEO as shown Fig. E.1. For PEG20,
PEO solutions and PEG+PEO solutions, shades of red, green and blue colours are used,
respectively. For the upward stretching, the triangle symbols are used, whereas, for downward
stretching, the inverted triangle symbols are used. Each symbol represents the average of
five experiments. For all solutions, T R is higher for upward stretching than the downward
stretching. Additionally, for the upward stretching, T R decreases with the increase in wPEO.
But for the downward stretching, there is no variation in T R is observed. In the downward
stretching, the liquid bridge is stretched in the same direction as gravity. Therefore, more
liquid is pulled from the top solution pool, that explains the lower values of T R.
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Résumé en langue française :  

Cette thèse traite de l’étirement uniaxial de ponts capillaires de solutions polymères. Elle se 

compose de deux parties expérimentales examinant la dynamique des gouttes et le taux de 

transfert de liquide de la surface inférieure à la surface supérieure. La thèse présente également 

quelques résultats numériques visant à reproduire les phénomènes quantifiés expérimentalement.  

Les étirements uniaxials ou les jets de solutions de polymères viscoélastiques se caractérisent par 

la formation de filaments. Pour des concentrations et des masses molaires suffisantes, des 

structures particulières de type perles-sur-ficelle apparaissent avant la rupture. Cette instabilité est 

due à une interaction complexe entre les forces de viscosité, d’élasticité, de capillarité et d’inertie. 

Les propriétés dynamiques des gouttes du motif perle-sur-ficelle ne sont pas encore 

complètement comprises. Dans la thèse, des solutions aqueuses newtoniennes et viscoélastiques 

sont préparées à l’aide d'oxyde de polyéthylène (PEO) et de polyéthylène glycol (PEG) sur une 

large gamme de concentrations. Ce polymère a été choisi car il est constitué de macromolécules 

linéaires et est disponible sur une large gamme de masse molaire. De plus, il est transparent et 

non-toxique. Les propriétés des solutions ont été mesurées : la densité, la tension de surface et la 

viscosité de cisaillement à l’aide d’un rhéomètre rotatif et d’une géométrie type double cylindres 

coaxiaux. En outre, le temps de retardation des solutions a été déterminé par la technique de 

lévitation acoustique.  

Les expériences sont réalisées à l’aide d’un instrument CaBER (Capillary Breakup Extensional 

Rheometer), d’un laser et d’une caméra rapide munie d’une lentille macro. L’utilisation du 

CaBER permet un control de la vitesse d’étirement du pont capillaire positionné entre deux 

disques horizontaux coaxiaux. Initialement, le pont capillaire a la forme d’un cylindre avec les 

lignes de contact (liquide/air/solide) accrochée aux bords des disques. Les hauteurs initiales des 

disques sont contrôlés à l’aide de vises micrométriques. Les images sont obtenues par 

ombroscopie. L’évolution des ponts capillaires est analysée à l’aide de diagrammes spatio-

temporels, qui quantifient le diamètre et la déformation sur la hauteur du filament et au cours du 

temps.  

D’abord, l’évolution du diamètre au cours du temps est caractérisée par un amincissement 

exponentiel dont l’exposant représente le temps de relaxation. Les résultats obtenus pour les 

solutions de polymères préparés sont en bon accord quantitatifs avec les résultats de la littérature. 

En particulier, il y a une augmentation du temps de relaxation avec la concentration du polymère 

et également avec la viscosité des solutions.  



Concernant le motif perle-sur-ficelle, les diagrammes démontrent la hiérarchie, ainsi que 

l’asymétrie des petites gouttes satellites autour d’une grosse goutte centrale. Toutes les gouttes 

subissent des translations le long du filament, des oscillations et des coalescences. Le nombre de 

gouttes, leurs positions, les diamètres des gouttes et le temps de rupture du filament sont 

représentés. De plus, la position et le diamètre minimum le long du filament sont déterminés. En 

particulier, il est montré que le nombre maximum de gouttes sur le filament peut être prédit à 

l'aide d’une loi puissance en fonction du nombre de Deborah, qui est le rapport entre les temps de 

relaxation de la solution de polymère et le temps de Rayleigh (inertio-capillaire). Les diagrammes 

quantifient également les grandes déformations de Hencky dans les filaments. L’évolution 

temporelle du diamètre minimum est utilisée pour calculer la viscosité élongationnelle. Cette 

viscosité élongationnelle augmente rapidement avec la déformation indiquant la résistance du 

filament aux grandes déformations.  

L’effet de l’écartement initial et final sur l’instabilité du motif perle-sur-ficelle se manifeste 

principalement sur le nombre de gouttes, qui semble dépendre de la longueur du filament. Le 

nombre de gouttes diminue avec la hauteur initiale du pont capillaire et augmente pour les grands 

écartements. La vitesse d’étirement n’affecte pas le diamètre de la goutte centrale. Par contre, ce 

diamètre est sensible à l’écartement.  

Après la rupture du filament, qui se produit au niveau du pincement supérieur, le système atteint 

un équilibre avec deux réservoirs de solution attachés aux plateaux inférieur et supérieur. Le taux 

de transfert de liquide viscoélastique d’une surface à une autre est une quantité importante dans 

de nombreuses technologies, et notamment dans les procédés d’impression. Les expériences 

considèrent le transfert de liquides viscoélastiques au travers de ponts capillaires de forme 

cylindrique entre deux disques parallèles circulaires. Les effets de la concentration de polymère, 

de la viscosité du solvant, du diamètre des supports, du rapport d’aspect initial (rapport hauteur 

initial sur diamètre), du rapport d’aspect final, de la vitesse d’étirement et de l’angle de contact 

sont étudiés expérimentalement. Les résultats montrent qu’avec l'augmentation de la 

concentration de polymère et de la viscosité du solvant, le transfert de liquide vers la plaque 

supérieure diminue systématiquement. On observe également que les hauteurs initiales et finales 

du pont capillaire ont des effets opposés sur le taux de transfert de liquide. La forme du pont 

capillaire initial est également étudiée en faisant varier le volume de liquide introduit entre les 

deux disques. Cette augmentation de volume a pour effet de modifier l’angle de contact au niveau 

du plateau support. Pour les solutions newtoniennes, le taux de transfert de liquide augmente 

alors que pour des solutions viscoélastiques, le taux diminue.  
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