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Since about two decades, the need to understand the links between magnetoelectric prop-
erties of nanoscale systems and their strains has been of increasing interest. The reasons
for this renewed interest in fundamental or applied physics studies on magnetoelastic (or
indirect magnetoelectric) e�ects are multiple. They are linked to the recent appearance
of new thematic �elds of nanomagnetism such as:
(i) Curvilinear magnetism which deals with the e�ects of curvatures of nanometric objects
on the magnetic con�guration.
(ii) Straintronics, which aims at developing magnetoelectric systems whose performance
is controlled by elastic strains.
(iii) Flexible or stretchable magnetoelectric systems which are the subject of applied
studies on the performance of thin �lms and magnetic nanostructures on �exible sub-
strates.
In all cases, the understanding of magnetoelastic e�ects at small scales is important be-
cause they condition the properties of the objects studied. My thesis is an experimental
and numerical contribution to the understanding of magnetoelastic e�ects in nanostruc-
tures, whose geometrical limitations lead to heterogeneous �elds (magnetic and elastic).
My work is at the crossroads of these three thematic �elds, it includes a numerical de-
velopment in micromagnetism including heterogeneous strain �elds and validations of
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1 Introduction

Figure 1.1: Shape-induced patterning [1]: (a) Topologically induced double vortex ground
state of soft magnetic spherical shell [2]. (b), (c) Topologically induced do-
main walls appear as a ground state in magnetic Möbius ring with strong
easy-normal anisotropy [3].

this approach on ferromagnetic nanostructures. Before addressing the motivation of my
thesis, we �rst provide a brief overview of these three �elds. Then, we will brie�y review
the state of the art of existing methods to probe the magnetomechanical properties of
thin �lms and nanostructures, both experimental and numerical.

1.1 Current topics involving magnetoelasticity

1.1.1 Curvilinear magnetism

Curvilinear magnetism took o� in the 2010s. It consists most often in dealing with 1D or
2D magnetic objects subjected to curvatures in 3D space. These strong curvatures lead
to considerable modi�cations of the fundamental physical (magnetic) properties of the
object considered, with for example topological e�ects [1]. The absence of symmetry in-
version and the emergence of e�ective anisotropy and Dzyaloshinskii-Moriya interaction
(DMI) lead to curvature-induced magnetochiral responses and topology-induced magneti-
zation shaping. These e�ects can therefore have a strong impact on multiple applications
involving for example topological defects (such as skyrmions) or spin wave propagation.
If the current studies are essentially fundamental, the experimental mastery of these ob-
jects could allow to take advantage of these phenomena for applications in spintronics,
as an alternative to other approaches e.g. the interfacial DMI (in ferromagnetic/heavy
metal layer stacks).

For example, �gure 1.1 shows the magnetization pattern for curved objects, such as a
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1 Introduction

spherical shell with a double vortex, or in a Mobiüs ring where the anisotropy induced by
the curvature makes a magnetic domain wall appear. Up to now, theoretical research on
curvature e�ects in magnetic objects has focused heavily on the energies involved. These
include the Heisenberg exchange, anisotropy and DMI which are local contributions.
Moreover, authors have also shown the role of dipolar interaction on curvature-induced
anisotropy. This last e�ect has also generated a preferential chirality of the domain
walls in cylindrical shells and a resulting asymmetry of the spin wave spectra [4]. In
this context, much work remains to be done to understand the e�ects of curvature in
arbitrary geometries, including theory-experiment confrontations. Hence, it will also be
necessary to include the e�ects of strains in the object, probably very localized (given the
strong curvatures) for the comparisons to be fruitful. For the moment, there is no such
numerical code taking into account very heterogeneous strains to estimate their e�ect
on the stabilization (or not) of topological defects (domain walls, vortices, skyrmions,
Bloch points). Without reaching such an objective, we will see that my thesis work can
contribute to the development of such a model.

1.1.2 Straintronics

In general, straintronics is a broad �eld of condensed matter physics that concerns the
control of physical properties by the deformation of the crystal lattice. In the �eld of
magnetism, there are many topics since 2000 related to the development of arti�cial mul-
tiferroics. From an application point of view, the objective is to develop electronic devices
to control the magnetic state by an electric �eld and vice versa [5, 6, 7]. For example, in
the �eld of spintronics, one ambition is to obtain a voltage control of the magnetization
to design and develop electrically writable, non-volatile, magnetic memories with low
energy consumption [8]. One way is to design arti�cial magnetoelectric composites com-
bining ferroelectric and magnetic media [9]. These composites show several geometrical
features, comprising magnetic thin �lms or nanostructures on ferroelectric substrates or
actuators [10, 11].

An example of application of straintronics is the control of domain wall propagation
properties in magnetic nanowires by strains (�gure 1.2) [12]. It is shown in Lei et al.
[12] that the movement of DWs can be electrically controlled at room temperature using
indirect magnetoelectric coupling via the PbZr1−xTixO3 substrate (PZT)/nanostructure
interface. In particular, �gure 1.2-ii shows that the energy barrier of the domain walls can
be doubled by varying the voltage from 0 to -50V or +50V, which is quite interesting in
spintronic applications. The inclusion of PZT electrodes would also endow the additional
function of addressable content, as domain walls in parts of a racetrack could be `clamped'
by applied electric �elds, while walls in other parts could continue to be shifted along
the wire. These developments are potentially interesting if one is capable of a very good
control of the local strain �elds.
Another example is the control of the magnetic con�guration of micrometric structures
deposited on a PMN-PT ferroelectric substrate (�gure 1.3-a). These experiments show
that the magnetic con�guration under strain can vary considerably by changing the
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1 Introduction

Figure 1.2: (i) a: Cross section of a hybrid PZT and spin-valve (SV) hall bar-shaped
device measured by scanning electron microscopy. SV strip is located in
the middle of PZT, and side electrodes are in a good contact with PZT
side walls. b: GMR loops of SV strip, which is measured by sweeping an
external magnetic �eld H is along easy axis. The free-layer and pinned-layer
magnetization reversal with applied �eld are shown with solid black squares
and open black squares, respectively.(ii) a: Giant magnetoresistance loops
with di�erent applied voltages, which starts from a depolarized state of the
PZT layer. b: Propagation �eld in the free layer as a function of the voltage
applied on the PZT layer. The �gure is adapted from [12].
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Figure 1.3: (a) Schematic of ferromagnetic dots (Ni/CoFeB bilayer systems) deposited
on PMN�PT crystal with the surface normal along the [011] crystallographic
direction. (b) Electric �eld-controlled magnetic reorientation in 2 μm mi-
crosquares from four di�erent Ni/CoFeB bilayer systems. The ratio between
the Ni and CoFeB magnetic volumes controls the magnetoelectric e�ect in
these multiferroic systems.

thickness ratio of two ferromagnetic layers of di�erent materials (Nickel and CoFeB).
When the ratio of the two magnetic thicknesses is signi�cantly larger than one, the
magnetoelastic properties of the system are dominated by those of the thicker layer.
On the other hand, when the layers are of the same thickness, the exchange-coupled
microstructures exhibit a more complex behavior, which cannot be described by simply
combining the magnetoelastic e�ects of the two constituent materials, as shown in �gure
1.3-b.

In these di�erent cases of straintronics, it is important to understand the magnetoelastic
e�ects and therefore to know how to relate the strain heterogeneities and magnetic �eld
heterogeneities within the same system. In the examples cited, the thicknesses are often
very small compared to the lateral dimensions, which may justify neglecting the strain
heterogeneities. In addition, PZT or PMN-PT substrates are rigid, which limits the
strong strain concentration in the substrate. However, we will see in the following that for
larger thicknesses, especially when using �exible substrates, the e�ects of heterogeneities
on magnetic behavior can be signi�cant.

1.1.3 Thin �lms and nanostructures on �exible/stretchable substrates

The topic of magnetic systems deposited on �exible or extensible substrates has taken
o� in the 2010s. Indeed, several groups have focused on this issue to show the feasibility
of modern deformable magnetoelectronic devices, adaptable to non-planar surfaces. This
theme includes applied works but also more fundamental works on magnetoelastic e�ects
in thin �lms, nanometric stacks, or 1D and 2D nanostructures.

One of the characteristics of these systems is the strong sti�ness contrast between the
magnetic nanostructures and their substrate, which can make the deformation �elds very
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Figure 1.4: a) Schematic of GMR sensors consisting of [Py/Cu]30 micro�akes and triblock
copolymer (SBS) printed on ultrathin foils. SEM image reveals dried GMR
paste printed on a Mylar foil. Scale bar: 100 µm. b,c) Photographs of
printed GMR sensors conformably applied on skin with curved body parts
of a �nger (b) and a stretched (c-i) and bent (c-ii) wrist. Scale bar: 1 cm.
d) GMR performance of the printed sensors under planar and bent state (16
µm of bending radius). e) Cross-sectional SEM images of bent GMR sensors
printed on an ultrathin Mylar foil. At the apex the GMR sensor is bent to the
radius of 16 µm (inset). Scale bars: 100 µm, 20 µm (inset). f) The magnitude
of the GMR e�ect and the sensor sensitivity following the gradual decrease
of the bending radius from 5 mm to 16 µm. Taken and adapted from [13].
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heterogeneous for nanostructures. This is an important point, which will be quanti�ed
in this thesis, and probably still requires fundamental numerical and experimental work.
However, for thin �lms or stacked layers whose lateral dimensions are very large compared
to the thickness, the assumption of homogeneous deformation is often true and several
works have shown the applicability of �exible or stretchable giant magnetoresistance
(GMR) sensors or to a lesser extent giant magnetoimpedance (GMI) sensors.
An example of work on GMR sensors is shown in Figure 1.4. Indeed, Ha et al. recently
showed that these sensor devices are capable of detection in low magnetic �eld (below 1
mT) and sustaining high-performance magnetoresistive sensing under extreme mechan-
ical deformation of up to 16 µm of bending radii (see �gure 1.4-f) and 100% stretching.
The remarkable performance is achieved by dispersing GMR micro�akes of [Py/Cu]30

in a viscous triblock copolymer based poly(styrene-butadiene-styrene) (SBS) elastomer
(1.4-a). This type of application work, based on fundamental developments, allows to
consider new 3D printable devices, light and adaptable to arbitrary geometries, based on
the GMR sensor technology.

Other applications than �exible/stretchable GMR sensors can be considered. We think
in particular of arti�cial magnonic crystals which are interesting for high frequency ap-
plications (gigahertz range). In order to consider this type of systems on deformable
substrates, it is necessary to understand the mechanical properties of these objects and
optimize them. This was one of the objectives of S. Merabtine's thesis at LSPM[?],
which showed that lateral nanostructuring could be a way to delay damage (cracks),
see �gure 1.5. Indeed, for a given material thickness, he showed that the cracking of
nanolines was much later than that of a continuous �lm. This is shown in �gure 1.5-(i-ii)
for Ni80Fe20 systems. For these same systems, Merabtine et al. also showed that the
magnetic anisotropy was insensitive to the multiplication of cracks, at least up to 20% of
strain (�gure 1.5-(iii)-(a-b)). It is also interesting to see that the FMR linewidths are also
very insensitive to these damages, as shown in �gure 1.5-(iii)-(c-d), linked in particular
to the weak magnetostriction of Ni80Fe20.
To go further, it is now important to analyze this type of behavior for systems that are
also magnetostrictive, taking into account the distribution of deformation in the system.
An analysis of the elastic heterogeneities must be taken into account to analyze this type
of study. This is one of the objectives of this thesis: to take into account the e�ects of
strain heterogeneities related to free surfaces and to the sti�ness contrast between con-
stituents to properly analyze the magnetomechanical behavior of nanostructured systems
on �exible substrates.
In the next paragraph, we will brie�y review the state of the art of current methods to
measure or model magnetomechanical e�ects.

1.2 State of art on experimental and numerical methods

1.2.1 Ferromagnetic resonance
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Figure 1.5: (i) Typical AFM images highlighting the multicracking of a 20 nm thick
Ni80Fe20 array of nanowires on Kapton substrate at di�erent strain states
(8%, 12%, and 20%). (ii) Residual fragments length as a function of the
applied strains of Ni80Fe20 �lm and arrays of nanowires (NWs). (iii) (a, b)
Frequency dependencies as a function of applied magnetic �eld along and
perpendicular to the nanowires for a Ni80Fe20 array of nanowires. The de-
pendencies are presented for two stresses states: at 0% (a) and at 20% (b).
(c) Typical FMR spectra of the NWs for magnetic �eld applied along and
perpendicular to the NWs at 0% of strain and after 20% of strain. (d) Peak
to peak FMR line width ∆Hpp variations as a function of the frequency ob-
tained from the spectra recorded with a magnetic �eld applied along the NWs.
The dashed line is a linear �t and serves as a guide for the eyes. Taken and
adapted from [14].
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Figure 1.6: (a) Sketch of a bending test combined with broadband FMR [15]. Irfin and

Irfoutcorrespond to the injected and transmitted radio frequency current. The
static magnetic �eld ~H is applied along the microstrip-line. (b) Bending e�ect
on FMR lines in a �exible system (CoFeB �lm on Kapton substrate) [16]. (c)
FMR linewidth of FeCuNbSiB thin �lms on Kapton of as function of voltage
applied to a ferroelectric actuator (on which compliant system is cemented)
[17].
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Ferromagnetic resonance spectroscopy (FMR) [18] is an old but powerful technique to
study the magnetization dynamics in thin �lms and nanostructures [19, 20]. FMR con-
sists in exciting the magnetization of a magnetic material with a microwave �eld at
a certain frequency to make it precess around the e�ective �eld. At resonance, the
frequency of the microwave �eld coincides with the precession frequency of the magneti-
zation, absorption is then maximal. This technique o�ers possibilities for measuring the
properties of a magnetic layer either by making a �eld sweep (the microwave frequency
is �xed and the static �eld is varied) or a frequency sweep (the static �eld is �xed and
the frequency of the microwave �eld is varied). The conventional FMR technique (with a
resonant cavity) is not well suited for in situ magneto-mechanical characterization due to
the limited available space to perform micro-mechanical testing. This is the reason why
several groups have adopted inductive permeameter techniques even if they provide lower
sensitivity in the FMR detection [21, 22]. Indeed, they allow greater �exibility in the
sample environment with the advantage to work in a broadband regime [23, 24]. In situ
techniques combining broadband FMR set up and mechanical testing have been recently
developed and have made it possible to characterize these phenomena in �exible systems.
Several studies have been carried out under tension [25, 26] or bending [15, 16, 27].
Thanks to the FMR detection in thin �lms and nanostructures, it is possible to study
and characterize their dynamic magnetic properties and thus to extract �ne informa-
tions on their micromagnetic properties from their microwave responses. Figure 1.2.1-a
shows a bending support combined with a broadband FMR technique where the sample
is close to the microstrip line [15]. Figure 1.2.1-b shows that for a given material (here
CoFeB on a Kapton® substrate) the displacement of a FMR line depends on the direc-
tion of curvature [16]. Thus, it is possible to characterize systems in both tension and
compression. For instance, it is possible to detect the presence of in-plane anisotropies
(amplitude and order) by performing in-plane angular measurements or to measure the
magnetic damping properties from the resonance peak lines. This last parameter governs
the speed at which the magnetization of a ferromagnetic medium can be reversed or re-
oriented and is a key issue in assessing the potential usefulness of such media. Depending
on the intended application, it is better to have low (for MRAM [28], TMR read heads
[29], etc.) or high (current-perpendicular to plane giant magneto-resistance read sensors
[30], etc.) damping values. In this context, Zighem et al. showed a strain-control of the
magnetic damping in FeCuNbSiB thin �lms by combining broadband FMR technique
and micro-mechanical test (ferroelectric actuation) [17]. Figure 1.2.1-c shows that the
FMR peak-to-peak line-width can be tuned from 150 to 200 Oe depending on the strain
state.
Moreover, the signature of the applied strains is very visible by the o�set of the resonance
lines. This has made it possible, for example, to determine the saturation magnetostric-
tion coe�cient of Heusler alloys [15], as well as the evolution of anisotropy under actua-
tion or bending of complex alloys or magnetic oxides [31, 27, 32]. Finally, this technique
has also been used to characterize the properties of magneto-impedance systems under
bending for wireless applications [33].
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1.2.2 Magneto-optical techniques

Among the magneto-optical techniques, Brillouin light scattering (BLS) spectroscopy and
magneto-optical Kerr e�ect (MOKE) magnetometry have been used by di�erent groups
to study the magneto-mechanical coupling of �exible magnetic systems. One of the
advantage of those techniques is that they allow probing magnetization properties under
di�erent kind of mechanical testing (ferroelectric actuator, bending and even tensile with
a conventional mini-machine); this is due to the non-contact aspect of these techniques
which in �ne analyze the scattered light by the material.
BLS is based on the inelastic scattering of light by thermally activated wave phenomena
(in the GHz range) in a material. BLS gives access to spin wave and surface acoustic
wave modes with non-zero wave vectors, but has been little used in combination with
mechanical tests. For instance, it has been used by Karboul-Trojet et al. to study spin
wave energies in a Ni thin �lm as function of an external uniaxial stress applied thanks to
a conventional tensile machine [34]. In the context of �exible magnetic system, its main
disadvantage is its acquisition time as compared to FMR since it gives similar results
than those obtained by FMR since no group has taken into advantage of the wave-vector
dependencies. However, this technique could be of strong interest for future systems such
as magnonic crystals on �exible substrates, for studying the evolution of magnonic band
structures versus of an applied strain.
On the other hand, MOKE magnetometry is more and more used in the �eld of �ex-
ible/stretchable magnetic systems. The magneto-optical Kerr e�ect is the result of an
interaction between an electromagnetic wave and a ferromagnetic material. When an
electromagnetic wave interacts with a magnetized material (usually a ferromagnetic ma-
terial) the polarization of the re�ected wave is not the same as that of the incident wave.
Thus the analysis of the polarization of the wave as a function of an external static mag-
netic �eld makes it possible to follow the magnetization curves of the magnetic material
being probed. There are many studies showing the evolution of magnetization curves of
magnetic alloys on polymer substrates, to analyze the e�ect of mechanical stresses on the
evolution of the coercive �eld and remanent magnetization [35, 36, 37, 38, 39, 40, 41].
In the context of �exible magnetic systems, it is indeed easier to use MOKE rather than
the other magnetometry techniques such as SQUID (superconducting quantum interfer-
ence device), VSM (vibrating sample magnetometry), AGFM (alternating gradient �eld
magnetometry), etc... to record magnetization curves as function of the applied strains
even if no quantitative value of the magnetic moment is obtained. Therefore, it can be
easily coupled to tensile or bending tests [35] to perform in-situ strain testing.

1.2.3 Magneto-resistance measurements

Magnetoresistance is the variation of the electrical resistance in the presence of a magnetic
�eld. GMR or TMR systems on polymer substrates have many applications [45, 46].
In the case of magnetic �eld sensors, the aim is to develop systems that are not very
sensitive to strains and damages in order to avoid all the possible additional sources
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(a)	 (b)	

(c)	
	

(d)	

Figure 1.7: (a) Image of a magneto-resistance measurement of a TMR on Kapton in bend-
ing [42]. (b) Comparative measurement between several bending states, and
comparison with an oxidized silicon substrate [42]. (c) Bending test (charge-
discharge) and in situ electrical resistance measurement of a GMR deposited
on PET coated with a thin layer of SU-8 polymer [43]. (d) Magnetoelectric
performance of a GMR sensor under imposed bending [44].
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of perturbations (strain induced response for example) [44]. On the contrary, in the
case of strain sensors, magnetoelastic e�ects will be sought to correlate magneto-resistive
behavior and strain �eld [47, 48]. since �exible magnetic systems have attracted the
interest of the scienti�c community and industry for their high application potential,
many groups have tried to develop tensile [49] or bending experiments [42] with in situ
magneto-resistance measurements. In this context, 4-wire devices under magnetic �eld
have been developed in simple bending, biaxial swelling or simple tension up to potentially
very large strains. In general, these tests make it possible, on the one hand, to measure the
strain e�ects on the measured GMR values and, on the other hand, to test the reliability
of systems under repeated stress, such as cyclic bending or tensile tests [43]. Figure
1.2.3-a shows a 4-wire measurement system under bending developed by Bedoya-Pinto et
al. [42]. These measurements made on a TMR system on Kapton show a small e�ect of
strain on their magneto-resistance, as shown in Figure 1.2.3-b [42]. Figures 1.2.3-c and
1.2.3-d show in situ bending devices (with motor-controlled mechanical loading setup) to
evaluate the evolution of electrical resistance and magneto-resistance, respectively [44].
Figure 1.2.3-d shows a remarkable consistency of the sensitivity of a GMR sensor despite
the wide variation of the bending radius (down to 12.5 mm). Overall, all these techniques
allow e�cient diagnosis of the performance of magneto-resistive sensors under imposed
strains.

1.2.4 Magnetization imaging

Finally, although not widely used, a few groups have used magnetic domain imaging
techniques (essentially magnetic force (MFM) [50, 51, 52, 53]- and MOKE [38, 40]-
microscopies) to study the in�uence of applied strains on magnetic properties. MOKE
microscopy uses the principle of the magneto-optical Kerr e�ect (see above) with a cam-
era allowing the image of magnetic contrasts on the surface of the material. MFM is a
variety of atomic force microscopy, in which a magnetized tip scans a magnetic material;
tip/sample magnetic interactions are detected and allow reconstructing the magnetic
con�guration of the surface.
For example, these techniques can be used for studying the evolution of strip domains. In
these speci�c cases where there is an out-of-plane magnetic contrast, micro-mechanical
tests could be adopted because of the geometric space available. For instance, magnetic
imaging has been performed by using ferroelectric actuators [52], tensile machines [50, 51]
or more recently by bending the system [53] under an atomic force microscopy. In
addition, the geometrical space available under the microscope allows to setup studies
under applied strain and magnetic �eld [50, 51].

1.2.5 Numerical methods for magnetomechanical behavior

The numerical description of magnetic nanostructures behavior involves the develop-
ment of micromagnetic modeling of the Landau-Lifschitz-Gilbert (LLG) equation. The
commonly used calculation codes (Nmag [54], Oommf [55] and mumax3 [?]) allow to
simulate their dispersion relation in the Brillouin zones [56]. However, there is no pos-
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Figure 1.8: Schematic illustrations of (a) setup for the ferromagnetic ring on top of piezo-
electric substrate PMN-PT. (b) Top view and cross section view of the mag-
netoelastic rings (Terfenol-D and Ni). Illustration of the initialization �eld
Hinitial with respect to the crystal orientations in PMN-PT, and the tensile
and compressive response along corresponding directions. EA indicates the
strain-induced magnetic easy-axis due to magneto-elastic coupling. (c) De-
scription of the two simulation approaches: the unidirectional model only
tracks inverse magnetostrictive e�ect; while the bidirectional model considers
both the magnetostrictive and inverse magnetostrictive e�ects. (d) Domain
wall rotation state in Ni rings at 16ns after strain application predicted by
two models when subjected to 2000 ppm, 500 ppm and 100 ppm strains.
Adapted from [60].

sibility in these codes to apply inhomogeneous strains. The only possible option is to
apply a homogeneous uniaxial stress, which means incorporating a uniform (magnetoe-
lastic) anisotropy �eld in the simulation. For magnonic crystals on �exible substrates, it
is important to include local strains in the problem because heterogeneities can be strong
and in�uence the micromagnetic behavior. The magnetoelastic coupling (magnetization
switching, strain and their coupling) must therefore be fully described at the local scale.
Few groups have implemented numerical codes that couple the LLG equation describing
the magnetization dynamics as well as the solid mechanics ones in strain-mediated arti-
�cial multiferroics [57, 58, 59]. These codes could be very well adapted to the problem
of systems with �exible substrates.
The model developed by Liang et al. [58] is probably the most complete, taking into
account both direct (e�ect of the applied magnetic �eld on the strain) and inverse (ef-
fect of the applied strain on the e�ective �eld) magnetostrictive e�ects, all at the local
scale. Note that the inverse magnetostrictive e�ect is the also called magnetoelastic
coupling consisting on the manipulation of the magnetic properties via a strain. This
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model has been applied to nanorings deposited on a ferroelectric substrate [60]. Fig-
ure 1.2.5-(a) shows the modeling scheme of the nanoring deformed by the ferroelectric
substrate. The authors studied 2 materials for the nanorings (Ni and Terfenol), Terfenol
having a very high magnetostriction coe�cient (about 1200.10−6) compared to Ni (about
30.10−6). Figure 1.2.5-(b) shows the geometry of the computational elements, including
the applied �eld and the strain directions. The 1.2.5-(c) shows the two models used,
the unidirectional model is the one taking into account only the reverse magnetostric-
tion (magnetoelastic e�ect), while the bidirectional model takes into account both e�ects
(direct and reverse). The authors have shown that these two models are equivalent for
materials with standard magnetostriction such as Nickel (see �gure 1.2.5-(d), which is not
at all the case for Terfenol. In this example, the strain applied through the application
of voltage changes the magnetoelastic energy, causing the �onion� state to re-orient to its
new energy minimum con�guration and driving the domain walls towards the direction
of the principal strain axes.
This example shows that for materials that are classically used in nanomagnetism (Ni,
Fe, Co and their alloys), the consideration of the inverse magnetostriction is enough to
describe the magnetomechanical behavior. This is why in this work focused on NiFe
alloys, we have always neglected the direct e�ects of magnetostriction. At the present
time, no group except ours has been numerically interested in magnetomechanical e�ects
related to compliant substrates.

1.3 Brief summary of the manuscript

My manuscript includes several aspects describing the magnetomechanical behavior of
nanostructures. After describing the tools used for the di�erent steps of my work (sample
preparation, characterization, analysis, etc.), we will describe the scienti�c work itself.
A large chapter is dedicated to the numerical development of a micromagnetic model of
nanostructures on compliant substrate. This part will be followed by results on the e�ect
of strain heterogeneities on the static and dynamic magnetization. After having dis-
cussed these e�ects, two chapters will deal with the e�ects of heterogeneities on the mag-
netomechanical behavior of real objects, including experimental (in situ FMR)/model
confrontations. The �rst case will be that of NiFe nanoline arrays deposited on Kapton,
while the second one will focus on NiFe antidots also deposited on Kapton. Overall, the
main thread of the manuscript concerns the relationship between strain and magnetic
modes localizations. We will see that these coupled local e�ects can have a signi�cant
in�uence, especially in the case of magnetic antidots.
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In this chapter, the theoretical aspects of micromagnetic and micromechanical proper-
ties are succinctly discussed. Indeed, during this thesis, we have intensively used micro-
magnetic and micromechanical numerical simulations, either separately or by combining
them. When performing separate simulations, OOMMF package has been employed to
calculate micromagnetic modes and COMSOL Multiphysics to carry out micromechan-
ical simulations. When combining micromagnetic and micromechanical simulations, we
have employed two approaches: i) in the �rst one, the simulations are achieved separately
but we used the results of a simulation to feed the second one. The micromagnetic be-
havior is �rst simulated and the magnetic modes were identi�ed and localized within the
magnetic nanostructure. The second step consists in the estimation of the transmitted
strain in the zone in which the magnetic mode is localized and injected in the model to
estimate the resonance �eld shift. This step is important to take into account the real
strain �eld experienced by the magnetic moments localized in the magnetic mode zone;
ii) in the second one, we have fully coupled the magnetic and the mechanical properties
of a magnetic medium. For this purpose, we have developed a fully coupled mechanical-
micromagnetic model in COMSOL Multiphysics. In the following, we brie�y present
some basics of the micromagnetic theory before presenting the general philosophy of the
micromagnetic simulations carried out under OOMMF. In a second part, we give a short
theoretical background regarding the elastic properties of solids before presenting basic
numerical results obtained from an array of magnetic nanostructures under mechanical
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straining. Finally, the fully coupled mechanical-micromagnetic model developed during
this thesis will be presented.

2.1 Spatio-temporal micromagnetic simulations

In this section, we present some aspects of the micromagnetic theory that is generally
used to model ferromagnetic objects of small size (from micrometer to nanometer). It
was introduced by Brown and assumes that the ferromagnetic medium is continuous.
Thus, the atomic details of the origin of the ferromagnetic order are ignored but, as we
will see, magnetism at the scale of magnetic domains and walls is fairly well described.
Thus, thermodynamic quantities (such as magnetization or the various internal �elds)
are continuous variables even if their origins are all atomic. We can then de�ne the mag-
netization of the medium as a vector ~M(~r, t), macrospin approach, of constant modulus
MS evolving in the space and time. This micromagnetic approach is above all energetic.
It is then necessary to identify the main phenomena involved in the con�guration of the
magnetization within the medium and thus associate them an energy. The simulations
that we are going to carry out are based on a dynamic model introduced by Landau
and Lifshitz which describes the evolution of ~M(~r, t) over time; the equilibrium positions
being the relaxed states of the system.

2.1.1 Theoretical background

The study of the magnetization dynamics in ferromagnetic thin �lms is very important
for the understanding of the di�erent phenomena that emerge there, whether they are
relaxation, propagation or con�nement and localization phenomena. We will therefore
introduce the di�erent basic de�nitions before presenting the model used in homecode
simulations. Magnetism in matter takes its origin from the motion of electrons orbiting
around a nucleus within an atom. Indeed, an electron in rotation on a closed trajectory
can be compared to an electric current �owing through a conducting wire which generates
a magnetic �eld and moment. This electron has an orbital magnetic moment due to its
orbital motion around the nucleus, to which is added another moment linked to the
rotation of the electron around itself, which also creates a magnetic moment known as
the spin magnetic moment. The sum of the moments generated in the same atom gives
rise to the atomic magnetic moment, and the contribution of all of the atomic magnetic
moments of a given volume of matter gives rise to what is known as magnetization[61, 62].
According to this de�nition, one can understand that all the atoms (from the periodic
table) do not exhibit a magnetic moment.

The most interesting materials in the spintronics domain are the ones with elements
carrying a non-zero magnetic moments. The atoms with this characteristics are clearly
identi�ed in the Mendeleev periodic table, generally localized in the transition metals
whose the d atomic level is incomplete, the lanthanide with an incomplete 3d (2.1), 4f
level and the actinides with an incomplete 5f level. So, the relative orientations of the
magnetic moments within the magnetic materials gives rise to di�erent magnetic material
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Figure 2.1: Schematic representation of atomic structure with electronic con�guration
within an atom in which the 3d level partially �lled. The impaired electons
(yellow color) do not have their magnetic moments compensated and give
rise to a global magnetic moment in the considered atom in which the paired
(blue spheres) have their moments compensated.

classes. Namely the paramagnetic, ferromagnetic, antiferromagnetic and the ferrimag-
netic materials. These magnetic orders are schematically represented in �gure 2.2. The
�rst sketch corresponds to ferromagnetic materials characterized by a parallel alignment
of the magnetic moment at a critical temperature beyond which this ferromagnetic order
is lost. Indeed, the e�ect of the thermal agitation consists in destroying this equilibrium
state. The second class is the antiferromagnetic materials, which, as can be deduced
from their nomination, represent materials with an �antiparallel� alignment of the mag-
netic moments of similar amplitudes. Ferrimagnetic materials are quite similar to the
antiferromagnetic materials with however antiparallel magnetic moments of di�erent am-
plitudes. The last class gathers the so-called paramagnetic materials within which the
magnetic moments are randomly oriented over the sample[62, 63, 64].

As mentioned earlier, these materials at certain temperature conditions exhibit a sponta-
neous macroscopic magnetic moment. In other words, there is a temperature above which
the ferromagnetic material under consideration exhibits spontaneous magnetization even
in the absence of an applied external magnetic �eld. The explanation was provided by
the molecular �eld model, or internal �eld model, developed by Pierre Weiss in 1907.
This model states that if one were to take a magnetic moment inside a ferromagnetic
material, the latter would feel a magnetic �eld which is nothing more than the resultant
of the �elds generated by the di�erent magnetic moments of the crystal to which the
external magnetic �eld is added if it is applied. It was in 1928 that Heisenberg pro-
vided the explanation of the microscopic origin of the molecular �eld taken from Weiss
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Ferromagnetic Anti-ferromagnetic Ferrimagnetic Paramagnetic

Figure 2.2: Magnetic materials classes. The ferromagnetic order exhibits an homogeneous
magnetic moment modulus, the antiferromagnetic an alternative alignment
of antiparallel magnetic moments of same modulus, the ferrimagnetic has the
same distribution, antiparallel magnetic moment with di�erent amplitudes
and the paramagnetic class which shows a random spatial distribution of the
magnetic moments.

theory. Indeed, Heisenberg showed that the magnetic moments are aligned thanks to
the exchange interaction. The Weiss theory seems incomplete since it does not explain
the antiferromagnetic and ferrimagnetic character of certain materials. However, the
antiferromagnetic and ferrimagnetic character is the result of local and not long range
phenomena. Louis Néel provided an explanation in 1950 by modifying the Weiss model.
In Néel's modi�cation, the local nature is taken into account since he introduced the
notion of a local molecular �eld, which therefore takes into account the di�erent nature
of the atoms, unlike Weiss theory, where the value of the �eld is averaged [63, 65, 66].
Ferromagnets are the materials that have interested us during these studies. We will
therefore give more details on the Weiss �eld model in order to introduce the di�erent
forms of energy that will be used during the various simulations and interpretations.

Let us consider an atomic magnetic moment in a ferromagnetic material. In the frame-
work of Weiss mean molecular theory, the magnetic moment in question is subject to
the mean �eld that results from the competition of the �elds generated by the di�erent
magnetic moments, to which we could add the applied magnetic �eld. The total �eld
then experienced by this magnetic moment is of the form:

H = Happ +Hmed (2.1)

where Happ represents the applied �eld and Hmed the average molecular �eld is of course
a function of the magnetic moment of a de�ned volume in the material - in this case, the
magnetization is considered as it represents the average magnetic moment contained in
a given volume. This �eld can therefore be expressed in the following form Hmed = AM
where A is a constant related to the average molecular �eld and M the magnetization of
the material. If now we are interested in an assembly of magnetic moments, such as an
assembly of spins immersed in the applied external �eld, the associated Hamiltonian is
written as:

H =
∑
ij

JijSi · Sj− giµBHapp

∑
i

Si (2.2)
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where H, Si, Sj , gi, µB and Happ represent the Hamiltonian, spin operator of i-th and
j-th sites, gyromagnetic ratio of the i-th moment, the Bohr magnetron and the applied
magnetic �eld, respectively. It follows from this Hamiltonian that if we consider the
moment at site i, cut o� the external �eld and consider the identical magnetic moments,
we �nd an average �eld felt by the magnetic moment i and which is of the form [66]:

Hmed =
1

giµB

∑
ij

JijSj (2.3)

This model is able to explain the existence of the ferromagnetic order in matter. This
leads to an implicit de�nition of the magnetization in a ferromagnetic material as the
average of the magnetic moments present in a given volume and is calculated as follows:

−→
M =

∑
i

−→mi

V
(2.4)

where ~M , ~mi and V are the magnetization, the ith magnetic moment and the volume
considered, respectively. Two important properties also describe ferromagnetic materials
and it is essential to introduce them and give their description. These are magnetic
susceptibility and magnetic permeability. Magnetic permeability is the ability of certain
materials to de�ect the lines of a magnetic �eld. In other words, this property re�ects
the ability of certain materials to increase or decrease the magnetic induction within the
magnetic material under consideration. The relationship between the magnetic �eld and
the magnetic induction (or magnetic density �ux) is given by:

~B = µ0( ~H + ~M) (2.5)

which can be written also in the following form:
~B = µ

−→
H = µ0µr

−→
H (2.6)

where ~B, ~H, µ, µ0 and µr represent the magnetic induction vector, the excitation mag-
netic �eld, the absolute magnetic permeability, the vacuum permeability and the relative
permeability, respectively. Magnetic permeability can be a scalar value in the case of
isotropic medium or a tensorial quantity otherwise. Magnetic susceptibility measure the
response of a given material immersed in an external magnetic �eld and re�ects the align-
ment ratio of the magnetic moments (magnetization) with the magnetic �eld or against
his direction. The magnetization is related to the applied magnetic �eld by the magnetic
susceptibility via:

~M = χ ~H (2.7)

Substituting this last equation and equation 2.5, the magnetic density �ux takes the
following form:

~B = µ0(1 + χ) ~H (2.8)

Then, the relative magnetic permeability (µr), which is a dimensionless entity, is equal
to 1 +χ. We will now look at the di�erent interactions and energies in order to use them
in the description of the magnetization static and dynamic properties.

27



2 Micromagnetic and micromechanical numerical methods

2.1.1.1 Energies and interactions

The energies prevailing in a ferromagnetic medium are the Zeeman energy, the exchange
energy, the magnetostatic energy, the magnetocrystalline anisotropy energy and the mag-
netoelastic energy. Of course, we have focused on the main energies encountered in the
various studies discussed here, but other terms can be included like interfaces and free
surfaces terms and other e�ects. The global expression of energy is given by [62]:

F = FZee + Fdem + Fani + Fexch (2.9)

where FZee, Fdem, Fani, Fexch represent the Zeeman, demagnetizing, anisotropy and
exchange energy contributions, respectively.

Zeeman interaction energy This interaction re�ects the behavior of elementary mag-
netic moments (spin), in this case magnetization (macrospin approximation), in presence
of an external magnetic �eld ~H. The energy of Zeeman takes the following form:

FZee = − ~H · ~M (2.10)

The exchange interaction This interaction is responsible of the magnetic order and
this by aligning magnetic moments in parallel way giving rise to ferromagnetism (or anti-
parallel of the latter i.e. antiferromagnetism). This interaction originates from quantum
e�ects and has no analog from the classical point of view due to the indescernability
of the electrons carrying the magnetic moments. The exchange interaction is divided
into two variants according to the distance between two neighboring magnetic moments.
The �rst variant is the direct exchange that is encountered when the interaction occurs
directly between the two moments in question without an intermediate atom. In the
case of the second variant, called indirect exchange which occurs through another atom,
the weak overlap of the respective wave functions of the magnetic moments means that
the indirect exchange remains the predominant interaction and occurs through another
atom. The predominant exchange interaction during this thesis was the direct exchange.
As introduced previously, the direct exchange comes from the direct overlap between
the electronic wave functions of neighboring atoms. Because of the fermionic nature
of electrons, the principle of exclusion of Pauli must be respected. As a consequence,
the wave functions are therefore antisymmetric. In the simple case of two neighboring
electrons, the exchange energy can be expressed by the e�ective Hamiltonian Hspin given
by the expression [66, 67]:

Hspin = −2J ~S1 · ~S2 (2.11)

where ~S1 and ~S2 are the angular spin moments of the atoms of the site i and j. J
represents the overlapping integral, also called the exchange constant. In the case of
a solid, in a discretization approach, this energy is expressed by the Heisenberg model
whose Hamiltonian is given by:

H =
∑
ij

Jij ~Si · ~Sj (2.12)
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where Jij represents the exchange constant between the spins of sites i and j. ans as a
�rst approximation (interaction between �rst neighbors), on can write:

Jij =

{
J Close neighbors

0 Otherwise
(2.13)

The alignment of the spins in a magnetic material depends on the sign of the exchange
integral (constant). In the case of a positive overlapping integral, a parallel alignment of
the spins is favored, which gives rise to ferromagnetism if the moments have the same
modulus. A negative overlapping integral favors an antiparallel alignment of the spins
(antiferromagnetism or ferrimagnetism). In the micromagnetic theory, the energy related
to this interaction takes the following form:

Fexch =
Aex
M2
s

((
~∇Mx

)2
+
(
~∇My

)2
+
(
~∇Mz

)2
)

(2.14)

where Aex, Mx, My and Mz are the exchange sti�ness and the di�erent components of
the magnetization.

The magnetostatic magnetic interaction Magnetostatic energy is the part of the mag-
netic excitation created by within the framework of Maxwell's equations. This interaction
can act inside a �nite size ferromagnetic object through a demagnetizing or outside the
ferromagnetic object through the stray �eld. This contribution is global and can ra-
diate outside the ferromagnetic medium. Thus, unlike the other contributions coming
from magnetization, this contribution is not zero outside the medium. This energy is
expressed using the demagnetizing �eld Hdem and can be written as[62]:

δFdem = −1

2

ˆ
~Hdem · ~M (2.15)

with

~Hdem = −
˚

div ~M
~OP∥∥∥ ~OP
∥∥∥3dV +

¨
~n · ~M

~OP∥∥∥ ~OP
∥∥∥3dS (2.16)

where V and S correspond to the volume and area of the ferromagnetic medium, ~n is
the normal vector, O is the point where the magnetic volume element is located and
P is a variable point. This �eld satis�es Maxwell's equations. As a consequence, the
demagnetizing �eld can be view in term of virtual �free charges� which appear where
the normal component of magnetization points to the discontinuous interfaces (magnetic
medium-vacuum medium for instance). These "free charges" with a volume density
ρ = −∇ · ~M and a surface density σ = ~M · ~n induce a demagnetizing �eld opposing
the direction of magnetization. In general, this demagnetizing �eld is uniform neither
in direction nor in amplitude in the volume of the medium. It strongly depends on the
shape of the medium. Thus, this demagnetizing �eld can only be calculated easily in
the case of uniformly magnetized ellipsoidal objects (div ~M = 0). In this last case the
demagnetizing �eld is written[62, 68]:

~Hdem = −4π
=
N ~M (2.17)
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where
=
N is the demagnetization tensor[69]. When the main axes of the ellipsoid coincide

with those of the coordinate system, the demagnetization tensor is diagonal with Nxx +
Nyy + Nzz = 1. The energy density associated with the demagnetizing �eld can then
take the form[62]:

Fdem = 2π(NxxM
2
x +NyyM

2
y +NzzM

2
z ) (2.18)

The magnetocrystalline anisotropy Magnetocrystalline anisotropy expresses the fact
that the spontaneous con�guration of a material depends on the crystal structure. This
anisotropy is the direct consequence of the spin-orbit interaction that gives rise to a di-
rection that minimizes the internal energy of the system. This is called the easy axis of
magnetization. Indeed, experimentally, it is observed that it is more di�cult to mag-
netize a single crystal sample in certain crystallographic directions than in others. This
anisotropy re�ects the existence of energy terms depending on the orientation of the
magnetization with respect to the crystalline axes. The physical origin of this anisotropy
is attributed to the spin-orbit coupling. The atomic orbits, disturbed by the ionic envi-
ronment, are linked to the crystal lattice. Through the spin-orbit coupling, the spins are
also linked to the lattice. It is usual to develop magnetocrystalline anisotropy as a func-
tion of the magnetization orientation. As an example, the form of the magnetocrystalline
energy term in the case of hexagonal crystals can be written as[62, 70]:

Fani = K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +K3 sin6 θ sin 6ϕ (2.19)

where θ and ϕ are the usual spherical angles, the polar axis being chosen parallel to the c
axis of the crystal. Constants Ki are called magnetocrystalline anisotropy constant and
are expressed in J/m3.

Magneto-elastic anisotropy The overwhelming majority of ferromagnetic materials are
sensitive to the strain. This e�ect can be described using a magnetoelastic anisotropy
energy term which microscopic origin is also the spin-orbit coupling. It is due to the
coupling between the magnetization and the deformations of the crystal lattice. This
magnetoelastic anisotropy is found, for example, in epitaxial thin �lms. Indeed, in order
to adapt to the substrate, the lattice of the crystal deforms thus generating a magnetoe-
lastic �eld within the �lm. This energy is written as the doubly contracted product of
the stress tensor (

=
σ) and the magnetic strain tensor (

=
εmag):

Fme = − =
σ:

=
εmag (2.20)

It should be noted that the magnetoelastic strain tensor
=
εmag is that resulting from the

so-called direct magnetostriction and depends on the direction of the magnetization. In
the case of an isotropic medium (which is the case for all the systems studied during this
thesis), the expression of this strain is quite simple:

=
εmag=

 λ 0 0

0 −λ
2 0

0 0 −λ
2

 (2.21)
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λ being the magnetostriction coe�cient at saturation which can be positive or negative.
This coe�cient is worth some 10−6 in transition metals. It is unitless because it is the
deformation of the magnetic material when it is subjected to a magnetic �eld. Thus, in
the case of an isotropic medium, there is only one magnetostriction coe�cient. Finally,
it is interesting to note that there are homogenization methods (Voight and Reuss for
example) making it possible to determine e�ective magnetostriction coe�cients in het-
erogeneous media from the magnetostriction coe�cients of solid materials. In reality,
the isotropic case is only a special case of these homogenization methods. We will come
back to this magnetoelastic energy during the presentation of our model that combines
magnetic and mechanical e�ects.

2.1.1.2 Magnetization equilibrium

Equilibrium is an important concept in materials and in physics in general. Indeed, every
physical system tends towards an equilibrium con�guration that minimizes its entropy.
Two equilibria can be found in nature, stable and unstable equilibrium situations. Mag-
netic systems do not escape this universal law. We will therefore focus on the study of
equilibrium in a ferromagnetic layer and then move on to the study of the magnetization
dynamics in the next subsection. We have introduced the di�erent energies that can be
encountered in a ferromagnetic material. The equilibrium in question here depends of
course on the competition between the di�erent terms introduced and the minimization
of the total energy. Indeed, the di�erent energy terms that we have just introduced make
it possible to determine the static equilibrium con�gurations of the magnetic moments
by minimizing the free total energy of the system. This is only done analytically in a
few special cases. One of the approaches making it possible to determine an equilibrium
con�guration is to search for a local minimum for the free energy with the constraint
~M2 = M2 (�xed norm of the magnetization). A Lagrange multiplier λL is used for this
purpose[71]:

L = F + λL

(
~M2 −M2

)
(2.22)

The equilibrium con�guration is then obtained by deriving this last equation by ~M
(Euler-Lagrange equation)[62]:

2λL ~M = −
(
∂F

∂ ~M

)
(2.23)

This equation re�ects the fact that the functional gradient of the energy is aligned with
the functional gradient of the constraint. The right-hand term of this equation has the
size of a magnetic �eld and is called e�ective magnetic �eld ( ~Heff ). This e�ective
magnetic �eld can be considered as the functional derivative of the energy with respect
to the magnetization:

~Heff = − ∂F
∂ ~M

(2.24)

Thus, we can de�ne an anisotropy �eld, an exchange �eld, a demagnetizing �eld, a
Zeeman �eld, ... At equilibrium, at any point of the medium, we have the following
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relation:
~Heff × ~M = ~0 (2.25)

Thus, the magnetization and this e�ective �eld are collinear at all points. In addition,
at equilibrium, in the vicinity of the surface, the magnetization satis�es the following
relation:

~M ×
(
~n · ~∇

)
~M = ~0 (2.26)

As the norm of the magnetization is constant, we necessarily have ~M ·
(
~n · ~∇

)
~M = 0.

We then deduce that in the vicinity of the surface of a free surface, the magnetization
must remain stationary: (

~n · ~∇
)
~M = ~0 (2.27)

To be more complete, in presence of a surface contribution to the total energy, the
previous condition is modi�ed. For example, an energy density related to an anisotropy
can take the following form:

Fsur = KS

1−

(
~n · ~M

)2

M2

 (2.28)

And the condition 2.27 becomes:

∂ ~M

∂n
= KS

(
~n−

(
~n · ~M

)
· ~M
)

(2.29)

Finally, the magnetization distribution of a material depends on the competition between
the various energetic contributions previously mentioned without forgetting of course to
take into account the external shape of the object which intervenes through the boundary
conditions and the demagnetizing �eld. We observe that at zero applied magnetic �eld,
these contributions are invariant by any transformation which changes the sign of the
magnetization vector. Thus, knowing a state of equilibrium, we deduce a second one.
These equilibrium con�gurations which correspond to the local minima of the energy can
be manipulated from one state to another by application (among others) of an external
magnetic �eld. This continuous passage will present a discontinuity for certain critical
values of the magnetic �eld. Consider a magnetic structure at equilibrium approaching
a critical �eld. For this �eld, the state of equilibrium remains a local minimum but it
is no longer a minimum minimorum. It thus becomes a state of unstable equilibrium.
An in�nitesimal disturbance of the system can move away from this state to the point
of ending up in a di�erent stable state. We then speak of magnetization reversal. The
type of reversal depends on the magnetic con�guration of the structure. Depending on
whether the magnetization is uniform or not, two processes will guide this phenomenon
which will result either in large-amplitude rotations of the magnetization or in domain
walls propagation. Several con�gurations then exist in order to minimize the energy of
the system.
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Figure 2.3: Sketch of the magnetization oscillation and the di�erent torques. a) Larmor
precession of the magnetization around the e�ective magnetic �eld. b) The
magnetization oscillation around the e�ective magnetic �eld and the e�ect of
the Gilbert damping represented here by the damping torque vector ~τG.

2.1.1.3 Magnetization dynamics: Landau-Lifshitz-Gilbert equation

Let us take a look at the equation governing the movement of magnetization over time.
If we consider a magnetic moment ~m subjected to a magnetic �eld ~H, its energy density
is described by the Zeeman coupling and is written:

FZee = −~m · ~H (2.30)

Let us denote by ~c the torque exerted by the magnetic �eld on the magnetic moment,
this torque is then equal to:

~c = −~m× ~H (2.31)

If we call ~̀ the angular momentum associated with this magnetic moment, the equation
of motion is written using the angular momentum theorem:

d
−→
`

dt
= −→c (2.32)

In an approach of continuous medium (by averaging the previous equation), one can
write:

d
−→
L

dt
= ~M × ~Heff (2.33)

Where
−→
L is the angular momentum per unit volume. We also know that these two

quantities are linked to each other by the gyromagnetic factor (γ):

−→
L = −1

γ
~M (2.34)

Here γ is the absolute value of the gyromagnetic factor of the material γ0 which is written
as a function of Landé's factor g (dimensionless), of the mass m and the charge of the
particle γ0 = −g|e|

2m . Magnetization is considered as a local density of magnetic moments
whose contributions are orbital or spin. For ferromagnetic materials like Fe, Ni , Co...
this contribution is essentially due to the spins, so the factor g will be close to that of an
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electron, itself close to 2[72]. If we take into account all the contributions to energy, we
thus end up with an equation of motion written[62, 63, 73, 74]:

d
−→
M

dt
= −γ ~M × ~Heff (2.35)

This equation was established by Landau and Lifshitz for the case of ferromagnetic ma-
terials and is thus based on the gyromagnetic e�ect. For a constant e�ective �eld, the
magnetization precess uniformly around this �eld at a natural frequency called Larmor
ωLar = γHeff [75] (see �gure 2.3-a). This equation being conservative, it is noted that
this motion in no way leads to the minimum energy situation which is an alignment
of the magnetization according to the e�ective �eld ( ~Heff × ~M = ~0). In order for the
magnetization to reach the stable thermodynamic equilibrium state, it is necessary to
introduce a dissipation mechanism describing the interaction with the crystalline environ-
ment. Gilbert then introduces in a phenomenological way a second term in the equation
of motion which tends to align the magnetization according to the e�ective �eld[76, 77]:

d
−→
M

dt
= −γ ~M × ~Heff +

α

MS

~M × d
−→
M

dt
(2.36)

This second term corresponds to the energy dissipation and is characterized by the di-
mensionless Gilbert damping coe�cient (α). In presence of α1 the solution of the LLG
equation reveals a second characteristic time (in addition to the Larmor frequency), the
relaxation time that is equal to τ = 1+α2

αωL
. On the other hand, the frequency is slightly

modi�ed and becomes ω = ωL
1+α2 . The illustration of this addition torque is schematically

represented in �gure 2.3-b). Finally, geometrically, we see that to bring the magnetiza-
tion back to the e�ective �eld, the dissipation term must be oriented along the meridian.
The movement resulting from the precession term and the dissipation term is a spiral de-
scribed on the sphere ~M2 = M2 (see �gures 2.3-a) and -b)). The expression of movement
can also be written as resolved[62]:

d
−→
M

dt
= − γ

1 + α2
~M × ~Heff +

γα

MS (1 + α2)
~M × ~M × ~Heff (2.37)

2.1.1.4 Small magnetization oscillations

During this thesis, the magnetization dynamic is treated by considering small oscillations
of the magnetization around an equilibrium position. The magnitudes which are the
magnetization and the e�ective �eld are thus broken down into a static part and into a
dynamic part assumed to be much smaller than the previous one:

~M(t) = ~M + ~meiωt

~Heff (t) = ~Heff + ~heffe
iωt (2.38)

1The order of magnitude of α is 0.01 in most ferromagnetic materials.
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Figure 2.4: Space spherical coordinates system and the representation of the magnetiza-
tion and e�ective magnetic �eld

with m(t) � M and h(t) � Heff . Assuming that the motion is not attenuated, the
linearized Landau-Lifshitz equation without dissipation (α = 0) can be written as:

iω

γ
~m = − ~M × ~heff − ~m× ~Heff (2.39)

We suppose indeed that ~m × ~heff is negligible and that ~M × ~Heff = 0. One of the
direct consequences of this expression is that the dynamic and static components of the
magnetization are perpendicular to each other: ~m ⊥ ~M 2. Let us consider an e�ective
magnetic �eld along the Oz axis and the saturation magnetization aligned in the same
direction. The conservation criteria and the fact that the amplitude of the dynamic
components of both magnetic �eld and magnetization are very small, the Landau-Lifshitz
takes the form:

iωmx + γHeffmy = −γMhyeff (2.40)

−γHeffmx + iωmy = γMhxeff (2.41)

The component ~m and ~heff are linked by the high-frequency magnetic susceptibility
=
χ

(Polder tensor)[78]:

~m =
=
χ ~heff =

(
χ iχa
−χa χ

)(
hxeff
hyeff

)
(2.42)

In the precedent equations, on can notice that if ω → γHeff , χ and χa grow unlimitedly.
Taking the magnetic damping into consideration will avoid this phenomenon by trans-
forming χ and χa into complex quantities: χ = χ

′
+ iχ” and χa = χ

′
a + iχ”

a. Figure 2.5

shows the variation of the real and imaginary parts of the Polder tensor
=
χ as function of

an applied magnetic �eld. The real part change in sign, while the imaginary parts pass
through maxima at the resonance. The resonance condition is given by :

ωres =
γHeff

1 + α2
(2.43)
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Figure 2.5: The real (solid line) and the imaginary (dashed line) part of the complex hf

susceptibility.

The imaginary part of the magnetic susceptibility χ” characterizes the energy absorption
that appears in a ferromagnetic system due to excitation by a microwave �eld. The
absorbed microwave power, Prf in a ferromagnetic thin �lm, is then de�ned as:

Prf =
1

2
ωIm [χ] |hrf |2 (2.44)

2.1.1.5 Uniform precession mode

In this paragraph, we consider a uniformly magnetized material. If, moreover, the e�ec-
tive �eld, here its dipolar component, is also uniform in the material (which imposes a
constraint on the shape of the sample) then a spatially uniform precession of the magne-
tization can be established around the e�ective �eld corresponding to the gyromagnetic
mode. It is neither more nor less of the precession of the magnetic moment following a
cone whose axis corresponds to the constant e�ective �eld. Obtaining an expression of
the resonant frequency of this excited mode, commonly called uniform precession mode,
can be done by considering small oscillations of the magnetization around its equilibrium
position. The goal here is to express the equation describing the magnetization motion in
spherical coordinates. In spherical coordinates, in which the magnetization is identi�ed
by its zenith and azimuth angles (see �gure 2.4). In this system, the unit vectors are:

−→e r =

 sin θM cosϕM
sin θM sinϕM

cos θM

 ;−→e θ =

 cos θM cosϕM
cos θM sinϕM
− sin θM

 ;−→e ϕ =

 − sinϕM
cosϕM

0


2Indeed, iω

γ
~m · ~M =

(
− ~M × ~heff − ~m× ~Heff

)
· ~M = −

(
~M × ~M

)
· ~heff −

(
~Heff × ~M

)
· ~m = 0.
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The magnetization motion (see equation 2.35) is described by its position and and ve-
locity:

~M = M (sin θM cosϕM~ex + sin θM sinϕM~ey + cos θM~ez) = M~er (2.45)

d
−→
M

dt
= M(θ̇M~eθ + ϕ̇ sin θM~eϕ) (2.46)

The e�ective �eld ( ~Heff ) takes the following form:

~Heff = −∇ ~MF = − 1

MS

(
F~er +

∂F

∂θM

−→e θ +
1

sin θM

∂F

∂ϕM

−→e ϕ
)

(2.47)

The incorporation of the e�ective �eld expression and the temporal derivative of magne-
tization in the equation2.35 gives the following form:

M

 0

θ̇
ϕ̇ sin θM

 = −γ

 0
1

sin θM
∂F
∂ϕM

− ∂F
∂θM

+
α

MS

 0
−M2

θ̇M2
ϕ̇ sin θM

 (2.48)

at the equilibrium position the derivative terms tends to zero ( ∂F∂θM = ∂F
∂ϕM

= 0). Let
us now consider a small perturbations nearby the equilibrium angles (θeq and ϕeq) rep-
resenting a small oscillation of the magnetization at this position. Let us replace the
partial derivative forms by the following notation: Fξ with ξ = θ, ϕ. The minimization
related to the perturbation is of the form:

δFθ = ∂θFθδθ(t) + ∂ϕFθδϕ(t)
δFϕ = ∂ϕFϕδϕ(t) + ∂θFϕδθ(t)

(2.49)

where δθ(t) and δϕ(t) represent the perturbations around the equilibrium position:
δθ(t) = θ(t) − θeq = δθe−iωt and δϕ(t) = ϕ(t) − ϕeq = δϕe−iωt. Because α << 1,
one can neglect the squared damping terms in the formulation. Considering these con-
ditions, one can write:

θ̇ = − γ
M sin θ

∂F
∂ϕ −

αγ
MS

∂F
∂θ

ϕ̇ = γ
M sin θ

∂F
∂θ −

αγ
MS sin2 θ

∂F
∂ϕ

(2.50)

By incorporating equations 2.49 in equation 2.50, one can write:
− 1
γMθ̇ sin θ = Fϕθδθ + Fϕϕδϕ

1
γMϕ̇ sin θ = Fθθδθ + Fθϕδϕ

(2.51)

The previous system admits a non-trivial solution if and only if its determinant is zero.
The natural frequency of this system corresponds to the resonant frequency of the uniform
mode. Finally, if one neglect the losses (α = 0), we obtain the Smith-Beljers equation[79,
80]: (

ω

γ

)2

=

(
1

M sin θ

)2
(
∂2F

∂θ2

∂2F

∂ϕ2
−
(
∂2F

∂θ∂ϕ

)2
)
θeq ,ϕeq

(2.52)

The presence of dissipation (α 6= 0) leads to a complex form of ω = ω′ + ω”. The real
part corresponds to the previous relation and the complex part can be written as[62]:

ω”

γ
=

α

2M

(
∂2F

∂θ2
+

1

sin2 θ

∂2F

∂ϕ2

)
θeq ,ϕeq

(2.53)
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Thus knowing the form of the energy, it is possible for us to know the orientation of the
magnetization (equation 2.51) and the resonance frequency (equation 2.52). In the case of
materials of ellipsoidal shape whose main axes coincide with those of the reference frame,
by considering a saturating magnetic �eld applied in the direction Oy, the resonance
frequency is given by Kittel's formula [81]:(

ωR
γ

)2

= (H + (Nz −Ny)M) (H + (Nx −Ny)M) (2.54)

This resonance is not sustainable. The magnetization is gradually aligned according to
the direction of the e�ective �eld after having carried out a spiral movement around
this same �eld. Its gradual alignment is due to the dissipative e�ects. To maintain the
precession, it is necessary to compensate for the losses by a radiofrequency magnetic
excitation of frequency ωrf . The coupling between the radiofrequency �eld and the
magnetization is optimum for ωrf = ωR, which de�nes magnetic resonance. This is the
principle of the ferromagnetic resonance technique, a technique that we will detail in the
next chapter and that we have intensively used during this thesis.

2.1.1.6 Spin waves in thin �lms

The notion of spin waves was �rst introduced by Bloch who showed that the low energy
excitations of the Heisenberg Hamiltonian are states in which the reversal of a spin is
delocalized on all the lattice: a spin wave is characterized by its wave vector k and its
pulsation ω(~k) (i.e. in a quantum context, its energy ~ω(~k)). In this subsection, we will
�rst present the case of the so-called magnetostatic spin waves and then brie�y present
spin waves in the exchange regime in the context of a thin �lm uniformly magnetized in
its plane and in absence of anisotropy (magnetocrystalline and magnetoelastic). In these
conditions, we suppose an in�nite thin �lm in the plane Oxy and bounded by a thickness
d according to the direction z. Finally, an external magnetic �eld is applied along y.

Magnetostatic spin waves (either by neglecting the exchange contribution or by taking
into account this exchange with an approximation)
Under the magnetostatic regime assumption, the currents associated with �eld �uctu-
ations are neglected (the electrical and magnetic variables are decoupled). Under this
assumption, one can write:

~∇× ~hdem = ~0 (2.55)

where ~hdem is the dynamical part of the demagnetizing �eld. In addition, the magnetiza-
tion of the material and the demagnetizing �eld present within the �lm obey the Maxwell
equation:

~∇ ·~b = ~∇ ·
(
~hdem + 4π~m

)
= 0 (2.56)

~b being the oscillating magnetic induction �eld. Equation 2.55 makes it possible to intro-
duce the magnetostatic potential (φ) linked to the demagnetizing �eld by the relation:

~hdem = ~∇φ (2.57)
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In these conditions, equation 2.56 takes the following form:

∆φ+ 4π~∇ · ~m = 0 (2.58)

We now consider that the magnetic potential takes the following form:

φ(x, y, z, t) = φ(z)e−i(kxx+kyy)eiωt (2.59)

As previously mentioned, an external magnetic �eld is applied along y, thus the static
magnetization ~M is aligned along y. The linearized Landau-Lifshitz relation (see equation
2.39) makes it possible to determine the components of the dynamic magnetization:(

mx

my

)
=

(
iα2 α1

α1 iα2

)(
∂zφ
ikyφ

)
(2.60)

where α1 = HM
H2−Ω2 ; α2 = HΩ

H2−Ω2 and Ω = ω
γ . Moreover, equation 2.58 takes the following

form[82]:

−

(
k2
x +

k2
y

1 + α1

)
φ(z) + ∂2

zφ(z) = 0 (2.61)

So, one can deduce that the potential is:

φ(z) = φ1e
Qz + φ2e

−Qz (2.62)

where Q =
(
k2
x +

k2y
1+α1

) 1
2
. Outside the �lm, the oscillating �eld derived from a potential

ψ that obey to a Laplace type equation (∆ψ = 0). To be compatible with the form of
the potential inside the �lm φ and in order to remain limited, this potential must take
the following form:

ψ<(x, y, z, t) = ψ1e
Kzei(kxx+kyy)eiωt for z < 0

ψ>(x, y, z, t) = ψ1e
−Kzei(kxx+kyy)eiωt for z > d

(2.63)

where K =
(
k2
x + k2

y

) 1
2 . The boundary conditions between the �lm and the exterior

express the continuities of ~h‖dem and ~b⊥. They result in a system of linear equations
bearing on the unknowns φ1, φ2, ψ1 and ψ2 without second member:

Kψ1 = Q (1 + 4πα1) (φ1 − φ2)− 4πα2ky (φ1 + φ2)

−Kψ2e
−Kd = Q (1 + 4πα1)

(
φ1e

Qd − φ2e
−Qd

)
− 4πα2ky

(
φ1e

Qd − φ2e
−Qd

)
(2.64)

ψ1 = φ1 + φ2

ψ2 = φ1e
Qd − φ2e

−Qd

If this system is invertible, then all the unknowns are zero. A magnetization oscillation
only exists if the system is not invertible, i.e. its determinant is zero:

K1 ·K2 = 0 (2.65)
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with

K1 = (−K +Q (1 + 4πα1)− 4πα2ky) (K −Q (1 + 4πα1)− 4πα2ky) e
−2Qd (2.66)

K2 = (K +Q (1 + 4πα1)− 4πα2ky) (K +Q (1 + 4πα1)− 4πα2ky) e
−2Qd (2.67)

MagnetoStatic Surface spin Wave (MSSW) If we consider a wave propagating in
the x direction (ky = 0), i.e. perpendicular to the static magnetization, the relation 2.65
takes the following form[83, 84, 85]:

Ω2 = (H + 2πM)2 − (2πM)2 e−2kxd (2.68)

This relation gives the dispersion of the surface magnetostatic mode, also called Damon
Eshbach mode. Relation 2.62 shows that this spin wave has an evanescent character;
here we �nd a justi�cation for its name as surface wave. A signi�cant asymmetry is
observed in the shape of the magnetostatic potential associated with the demagnetizing
�eld between the two surfaces of the �lm. Thus, a spin wave propagating in one direction
will be localized near the upper surface and the spin wave propagating in the other
direction will be localized near the lower surface. This speci�city makes it possible to
highlight certain interface e�ects by playing on the bu�er and capping layers (down and
top interfaces). This is also how it is possible to measure the so-called Dzyaloshinskii
Moriya interaction in magnetic �lm/non magnetic �lm systems by measuring the non
reciprocity of this spin wave energy.

MagnetoStatic Backward Volume spin Waves (MSBVW) We speak of magneto-
static backward volume wave when we consider waves propagating parallel to the static
magnetization direction (i.e. kx = 0). System 2.64 leads to the following relation[86, 85]:

` = tan

(
kyd

2`

)
(2.69)

where ` = (1 + 4πα1)
1
2 . It results from equation 2.65 a set of solutions for ` from which

we can deduce the frequencies from the following relation:

Ω2 = H2 +
4πMH

1 + `2
(2.70)

The waves associated with these modes have a stationary character in the z direction;
hence the name volume waves. Note that the frequency decreases when the wave vector
ky increases, the group velocity is negative. That justi�es the denomination of backward
waves. Generally, only the lowest mode is studied by ferromagnetic resonance or Bril-
louin light scattering.

The expressions 2.68 and 2.70 correspond to limit case. In the general case (i.e. kx 6= 0
and ky 6= 0: arbitrary angle between the static magnetization and the direction of the
spin wave propagation) it is advisable to �nd numerically the eigenfrequencies starting
from the relation 2.65. Finally, one can note that the MSBVW mode dispersion is less
than that of MSSW mode.
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MSSW and MSBVW modes in the exchange regime The frequencies of the magne-
tostatic modes that we have just present were calculated neglecting the exchange constant
A. These expressions remain valid as long as the module k of the wave vector is small
(i.e. for values of kd lower to about 3). For larger wave vectors, the contribution of the
exchange cannot be neglected. Under certain conditions, it is possible to obtain an ana-
lytical expression of the natural frequency magnetostatic modes (MSSW and MSBVW)
taking into account the exchange. Account given that the magnetic �lms are thin (a few
nanometers), it is convenient to integrate the Landau-Lifshitz and Maxwell equations on
the thickness of the �lm. This approach was introduced by Stamps and Hillebrands and
can only concern modes that slightly vary on the thickness of the �lm[87, 88]; stationary
modes of exchange will therefore not be described by this approach. This method is pow-
erful in that it allows to obtain analytical expressions by taking into account other energy
terms associated with di�erent phenomena in a fairly simple way. In these conditions,
the integration of the linearized Landau-Lifshitz relation can be written as:

iΩ~m = ~M ×
(
~hdem +− 2A

M2
Q2 ~m− λ~m

)
(2.71)

Where the magnetization oscillation has the form ~m = ~m(z)ei(kxx+kyy) and where we
have set Q2 = (k2

x + k2
y). The following convention was chosen: f = 1

d

´ d
0 fdz and

[f ] = f(d)− f(0). Under these conditions, the demagnetizing �eld dynamic is written:

~hdem = iφ ~Q+
1

d
[φ]~ez (2.72)

The integration of Maxwell's equation associated with the boundary conditions allows
us to determine the following quantities:

φ ∼=
4πi ~Q · ~m
Q(2

d +Q)
; [φ] =

−8πmz
2
d +Q

(2.73)

Note that this only approximation necessary to obtain these two quantities is as follows
(strong assumption):

1

d

ˆ d

0
φ(z)dz ' φ(d) + φ(0)

2
(2.74)

The integration of the linearized Landau-Lifshitz relation then leads to a homogeneous
and linear system on the components of ~m. This system must not be invertible for the
magnetization oscillation to be non-zero. By writing that the determinant of the system
is zero, we obtain the eigenfrequencies. Finally, note that when the exchange is taken
into account in the calculation of the magnetostatic modes , we see that the MSBVW
mode no longer necessarily has a negative group velocity. However, we will keep its name
by analogy with the dipolar approximation (i.e. by neglecting A).

Perpendicular stranding spin waves These waves have a wave vector parallel to the
normal of the �lm plane. These waves undergo re�ections at the interfaces and enter
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a stationary regime, a regime which will depend on the thickness d of the layer and of
the pinning conditions[89, 90]. We always consider a uniformly magnetized thin �lm for
which the �eld is applied in the �lm plane and suppose that waves propagate in the z
direction. Assuming a pro�le of the form m(z) = m+eiqzz +m−eiqzz and by writing the
previously de�ned Rado-Weertman conditions, it is possible to determine the frequencies
of the stationary modes:(

ω
γ

)2
=
(
H −Ha + 2A

M (Q2 + k2
z)(H + 2A

M (Q2 + k2
z))
)

·
(

4πM(H + 2A
M (Q2 + k2

z)−Ha

(
Q2

Q2+k2z

)) (2.75)

Where we have set Q2 = q2
x + q2

y . Ha = 2K
M is a perpendicular anisotropy �eld de�ned

by the anisotropy constant K. An approximation is made as to the value of kz. We
set kz ' nπ

d (with n positive integer), which often makes it possible to describe the
eigenfrequencies of the stationary modes. We speak of order mode 1,2,3, ... according to
the value of n.

2.1.2 Micromagnetic simulations

Till now, magnetic heterogeneities were mentioned in the di�erent analytical expression
above which are valid just in the case of homogeneously magnetized �lms. When studying
isolated magnetic nano-object or arrays of magnetic nano-objects such as dots, antidots,
nanowires,....; it is only possible to obtain an analytical expression for spin waves at the
cost of approximations which are sometimes too unrealistic. Indeed, in the case of a mag-
netic objects whose dimensionality are reduced, new free surfaces appear and give rise to
heterogeneous demagnetizing �elds, which in �ne can lead to non-uniform magnetization
distributions. In addition to this heterogeneous magnetization distribution, spectacular
e�ects such as the quanti�cation of some spin wave modes appear. These e�ects can
sometimes be treated satisfactorily analytically. It is for example the case in arrays of
rectangular section nanowires for which an approximate analytical modelization captures
well the quantization e�ects if one suppose a uniform magnetization along the nanowire.
This is the reason why many experimental studies carried out on arrays of magnetic
nano-objects use micromagnetic simulations in order to try to explain or even predict
certain phenomena which cannot be interpreted simply in an analytical way. During this
thesis, we have employed this philosophy when studying arrays of nanostructures.

For this purpose, we used the OOMMF (Object Oriented Micro Magnetic Framework)[55]
software. It allows us to �nd the equilibrium con�gurations for a particular geometry
and parameters, but also to follow the temporal evolution of this con�guration under the
e�ect of an external perturbation (a radio frequency �eld in the ferromagnetic resonance
experiments). The goal here is not to present the code itself by detailing the calculation
procedures, we will be satis�ed with a fairly brief presentation.

We start by de�ning our object. In order to keep calculation times reasonable, we have
decided to limit ourselves to a small number of nanostructures (a few holes if we take
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x 

y 

Figure 2.6: Top view of a simulated (�nite) array of antidots (4×4 nanoholes of diameter
250 nm and a periodicity of 600 nm). A magnetic �eld (1150 Oe) is applied
along x. Relaxation curves (magnetization components variation as function
of time) obtained with α = 0.5, the magnetic moments were initial uniformly
aligned along z at t = 0 ns. After 1 ns of relaxation, the magnetic moments
are almost all aligned the applied magnetic �eld (along x direction). Magnetic
parameters are those of permalloy (Ni80Fe20): MS = 800 emu.cm−3, γ/2π =
0.003 GHz.Oe−1 and A = 1× 10−6 erg.cm−1.

the example of an antidot array). The �rst stage of our work consisted in �nding the
state of equilibrium of the system studied by taking into account all the energy contribu-
tions: exchange, magnetostatic (demagnetizing and dipolar), Zeeman,... Note that the
di�erent magnetic parameters (saturation magnetization MS , gyromagnetic ratio γ and
exchange sti�ness A) used in the simulations have been systematically (when possible)
experimentally obtained either from magnetic resonance measurements or magnetometry
measurements performed on a continuous �lm. Indeed, since we will be interested in the
temporal evolution of our magnetic system under the in�uence of external disturbance
(here it will be a small radio frequency magnetic �eld), it will be a question of determin-
ing the evolution of the magnetization according to time by solving the Landau Lifshitz
equation at each cubic cell:

d
−→
M

dt
= −γ ~M × ~Heff +

α

MS

~M × d
−→
M

dt
(2.76)

Solving this equation will allow us to determine the equilibrium con�gurations for dif-
ferent �eld values. The 3d structure which will be considered each time is broken down
into elementary cells within which the di�erent quantities are evaluated. Depending on

the exchange length value de�ned as `ex =
√

2A
µ0M2

s
, we will take an elementary cell of

dimension `x× `y × `z nm3 with the idea to have `x = `y = `z ' `ex. In this initial step,
the LLG equation is generally solved with a damping constant �xed at α = 0.5 since only
the �nal equilibrium interests us. As an example, the relaxation curves of an �nite array
of nanoholes is presented in �gure 2.6 wheremi = Mi/Ms (i stands for x, y or z directions
and Ms the saturation magnetization). The studied system corresponds to a �nite array
of antidots (periodicity of 600 nm and nanohole diameter of 250 nm with a thickness of
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20 nm). The magnetic moments were initially aligned along z; at t = 0 ns a magnetic
�eld is applied along x direction, the �nal magnetization distribution corresponds to an
alignment of the magnetic moments along this �eld. One can note that the equilibrium
state is obtained in less than 1 ns, which is due to the strong Gilbert damping constant.

Actually, the micromagnetic simulations have been performed with the aim to locate the
di�erent magnetic modes and to calculate their frequency dependencies as a function
of the applied magnetic �eld. These latter dependencies can be directly compared to
the FMR experiments. Indeed, the frequency response of magnetic objects in the low
excitation regime is characterized by the susceptibility χ re�ecting the linearity between
the excitation �eld and the magnetic response of the object. The dynamic phenomena
of magnetization can be treated according to two approaches: a frequency approach or a
temporal approach. Frequency approaches are the most often used because historically,
with regard to the �rst experiments with ferromagnetic resonance, we have been led to
reason in frequency space. It is a temporal resolution that we will adopt for this study.
The approach we used to calculate the dynamic susceptibility spectra is presented in the
following. By using a temporal approach, in a homogeneous medium, we can de�ne the
magnetization at a given point as a linear function of the magnetic �eld prior to the
instant t of the measurement:

Figure 2.7: Exciting magnetic �eld presented in the text and corresponding temporal
variations of the normalized magnetization components (mx, my and mz).
The bottom graphs are the Fourier transform of the top graphs. This curves
have been obtained by applying h(t) to the equilibrium con�guration pre-
sented in �gure 2.6. The scale are not identical in all graphs.

−→
M =

ˆ t

−∞
~h(t′)fχ

(
t− t′

)
dt′ (2.77)
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The fact that the magnetization depends only on the antecedent magnetic �eld is related
to the principle of causality. Thus, by setting fχ (t− t′) for any subsequent time that is
t− t′ < 0, the previous integral can be extended to in�nity:

−→
M =

ˆ +∞

−∞
~h(t′)fχ

(
t− t′

)
dt′ (2.78)

We then see that the magnetization appears as a product of convolution between the
magnetic �eld h(t) and the linear function fχ(t). This observation invites us to take the
Fourier transforms of these di�erent quantities, we thus have:

M̃(ω) = h̃(ω)f̃χ(ω) (2.79)

By considering the susceptibility as being the Fourier transform of the linear function
fχ(t), we then de�ne the magnetic susceptibility at the pulsation ω as:

χ(ω) =

ˆ +∞

−∞
fχ(t)eiωt (2.80)

χ(ω) is then the multiplier coe�cient connecting h̃(ω) and M̃(ω) :

M̃(ω) = h̃(ω)χ(ω) (2.81)

All these terms being complex, we can separate them into real and imaginary part.
Therefore, the knowledge of the Fourier transforms of the magnetization and of the
magnetic �eld makes it possible to calculate the complex magnetic susceptibility. Wishing
to go back to susceptibility, any form of the excitation h(t) is in principle applicable;
however it is advisable to choose an excitation which makes it possible to probe the good
frequency range. We will take an exciting �eld of the following form:

h(t) = h0sinc (2πfcut(t− t0)) (2.82)

where fcut was �xed at 25 GHz with a sampling frequency fs = 200 GHz giving a Nyquist
frequency fn = 100 GHz. This exciting �eld can be viewed in �gure 2.7. So in this sec-
ond step, the dynamic response of our system is obtained by exciting the system in the
equilibrium previously calculated with a short magnetic �eld pulse applied orthogonally
which disturbs the equilibrium state (if it is almost homogeneous). The system can thus
relax following the LLG equation with a damping constant �xed at α = 0.008. Each
dynamic simulation is calculated over 20 ns divided in 4000 stages and each stage is got
by mean of the Runge Kutta algorithm. The Fourier transform method was used to get
the resonance frequencies related to the di�erent magnetic modes. Figure 2.7 presents
a typical example of the obtained temporal variation of the normalized magnetization
components when the system is excited using the �eld h(t) and their respective Fourier
transform amplitude. The magnetic system is the one presented in �gure 2.6 and the
exciting �eld is thus applied along y. Obviously, the more intense Fourier transform
corresponds to TF[my] and the less intense Fourier transform component corresponds to
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TF[mx][91], i.e. to the one calculated along the static magnetization ~M (that can be
considered as uniform in the present example).

Finally, the Fourier transform method was also used to get the spacial localization of
each modes. For this purpose, the spacial absorption at the corresponding frequencies
are calculated using the averaged value of each elementary mesh cell over the thickness,
since we consider the thickness small enough (here 20 nm) to get uniform distribution
of the magnetization over it. Figure 2.8 presents an example of a typical pro�le mode
calculation of the more intense frequency in the spectra presented in �gure 2.7.

my mx mz 

my mx mz 

Figure 2.8: Spatially resolved modes in all three cartesian directions plotted over the
extent if the system at the more intense frequency. Top row: power spectra
for x, y and z component. Bottom row: corresponding phase distribution for
the three components.
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2.2 Mechanical simulations under COMSOL Multiphysics®

In this section, we discuss the �nite element simulations carried out under COMSOL
Multiphysics® [92] to evaluate the deformations within nanostructures induced by a
ferroelectric actuator. Indeed, all the systems that we have studied consist of a magnetic
medium (thin �lm or array of nanostructures) deposited on a Kapton® substrate. Then,
these magnetic medium/Kapton systems were glued onto ferroelectric actuators. Thus,
the application of an electric �eld within the ferroelectric allows the application of strains
within the magnetic medium. When the medium is a thin �lm, we have already shown
(during M. Gueye's thesis[?]) that the transmission rate of planar strains is 100%; we also
con�rmed this during this thesis by using the digital image correlation technique (see next
chapter). However, when the medium is an array of nanostructures, the planar strains
will be heterogeneous at the scale of the periodicity of the array and the resolution of the
digital image correlation technique that we have developed is not su�cient to capture this
heterogeneity. This is the reason why we have performed �nite element simulations to
characterize the in-plane strain heterogeneities in nanostructure arrays/Kapton systems.
Due to the strain heterogeneities in those arrays, we will see that the in-plane strain
transmission rate is sometimes higher than the imposed strain in the Kapton substrate.
Before that, we address some theoretical background regarding the elastic properties of
solids. We start with a brief review of some fundamental aspects of stress, strain and the
related elastic energy density.

2.2.1 Theoretical background

2.2.1.1 Stress and strains in solids

In the following de�nitions, we restrict ourself to states of elastic stress and strain. Let
us consider an element of elementary volume cut �ctitiously from a solid. This volume
element is subject to di�erent state of stress which can be classi�ed into two categories,
namely volume forces and surface forces. The volume forces are mainly due to the
e�ect of gravity, and therefore of volume, or to electromagnetic interactions. The surface
forces, on the other hand, originate outside the elementary volume under consideration
and include the various forces exerted by the surrounding environment. In this case, the
applied stresses on the magnetostrictive material σ are de�ned as the force F per area
A perpendicular to the direction of the applied force. Depending on the force direction,
one can distinguish between tensile and compressive stress. The stress has the same
dimension as pressure, that is, N.m−2 (or Pa) in SI unit system and dyn.cm−2 in CGS
unit system. The solid responds to the stress by a deformation called strain ε. The
stress tensor is a second rank tensor, its components will all be noted by the symbol σ
for the normal stresses or τ for the shear stresses with appropriate su�ces. The �rst
su�x denotes the direction of the outward normal to the surface upon which it acts and
the second the direction of the stress components. The related tensor take the following
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form:

=
σ=

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 (2.83)

The stress tensor is symmetric (σij = σji), this propriety is the result of the momentum
equilibrium condition of an in�nitesimal volume. The strain is a consequence of stress.
As a result of strain in a material a point is moved from (x1, x2, x3) to (x1', x2', x3') by
amounts ui such that x′i = xi + ui, where ui vary with position:

ui = eijxj (2.84)

We have de�ned a second rank tensor with nine components eij (with eij = ∂ui
∂xj

). The
component eij represents the movement of points on the xj axis in the direction of the
xi axis. We can separate these contributions by expressing eij as the sum of symmetrical
(εij) and antisymmetrical (ωij) components:

eij = εij + ωij (2.85)

where
εij = (eij + eji)/2 (2.86)

and
ωij = (eij�eji)/2 (2.87)

Shape change (shear) is described by the symmetrical tensor εij . This is the strain tensor.
Rotation is described by the antisymmetrical tensor ωij . As a resume, the strain tensor
has the following form:

=
ε=

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε23 ε33

 (2.88)

diagonal terms re�ect the change in volume of the stressed member, while non-diagonal
terms express shear. This shear is said to be pure when the trace (sum of the diagonal
terms) of the deformation tensor is zero.

2.2.1.2 Elasticity in single crystal: the cubic case

In the elastic regime, the strain is related to the stress thanks to Hooke's law which says
that the strain is proportional to the stress. In addition, stress and strain can be related
by either the sti�ness tensor (Cijkl) or the compliance tensor (sijkl), each of which is
of fourth rank tensor. For example a stress component is given in terms of the strain
components which is given using the summation convention by:

σij = Cijklεkl (2.89)

Or, using the compliance tensor:
εij = Sijklσkl (2.90)

If the body is homogeneous, that is, the mechanical properties are the same for every
particle in the body, then Cijkl are independent of position. We shall be concerned only
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Stresses Strains
Tensor Contracted Tensor Contracted
Notation Notation Notation Notation

σ11(σ1) σ1 ε11(ε1) ε1

σ22(σ2) σ2 ε22(ε2) ε2

σ33(σ3) σ3 ε33(ε3) ε3

τ23=σ32 σ4 γ23=2ε32 ε4

τ31=σ31 σ5 γ31=2ε31 ε5

τ12=σ12 σ6 γ12=2ε12 ε6

Table 2.1: Tensor versus contracted notation for stresses and strains.

with homogeneous bodies. There are 81 coe�cients in equation 2.89 and equation 2.90,
due to the symmetry of the strain tensor (εij = εji), we have Cijkl = Cijlk , the number
of independent Cijkl goes from 81 to 54. Moreover, due the symmetry of the stress tensor
(σij = σji), we have Cijkl = Cjikl , the preceding equations further reduce the number
of independent coe�cients 54 independent by 18. Thus, we have, for the general case
of a linearly elastic body, a maximum of 36 material coe�cients. Using this so-called
contracted Voigt subscript notation (see table 2.1), we can express the various equations
in a shorter form, the fourth order tensor Cijkl reduces to the matrix representation Cij .

The sti�ness and compliance matrix Cij (resp. Sij) have 36 constants. However, less
than 36 of the constants can be shown to actually be independent for elastic materials
when important characteristics of the strain energy are considered. Elastic materials for
which an elastic potential or strain energy density function exists have incremental work
per unit volume of [93] :

dFel = σidεi (2.91)

When the stresses σi act through strains dεi. However, because of the stress-strain
relations, Equation 2.89, the increment work becomes[94, 95]:

dFel = Cijεjdεi (2.92)

Upon integration for all strains, the work per unit of volume is :

Fel =
1

2
Cijεiεj (2.93)

However, Hooke's law, Equation 2.89, can be derived from Equation 2.93 i.e ∂Fel
∂εi

= Cij ,

where upon ∂2Fel
∂εi∂εj

= ∂2Fel
∂εj∂εi

= Cij = Cji. Thus, the sti�ness matrix is symmetric, so only
21 of the constants are independent. We have then the following stress-strain relation in
Equation 2.94 3 with a reduction from 36 to 21 independent constants:

3The relations in Equation 2.94 are referred to characterizing anistropic materials because there no
planes of symmetry for the materials properties.
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

σ1

σ2

σ3

τ4

τ5

τ6

 =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

γ4

γ5

γ6

 (2.94)

The number of independent elastic constants can be further reduced in materials having
a higher degree of crystal symmetry. In such case, some elastic constants may vanishes
while the others are related each other. Among the material with higher degree of
symmetry, the cubic material is the simplest. Consider a cubic material for which the
[100], [010] and [001] cube axes are parallel to the axes x1; x2; x3 coordinate system.
Then, the non-zero elements of the elastic sti�ness Cij are given in the Equation 2.95
where C11 = C22 = C33, C12 = C23 = C31 , C44 = C55 = C66 and all others elastic
constants vanish [96]. 

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (2.95)

Thus, using Equation 2.95 into the Equation 2.93 we can calculate the elastic energy for
a cubic material:

Fel =
1

2
C11(ε2

1 + ε2
2 + ε2

3) + C12(ε1ε2 + ε2ε3 + ε1ε3) +
1

2
C44(ε2

4 + ε2
5 + ε2

6) (2.96)

2.2.1.3 Elasticity in polycrystals

The thin �lms studied during this research project are either polycrystals �lms or amor-
phous �lms. Indeed, the polycristalline thin �lms are constituted of an aggregate of
crystal grains of various sizes and orientation. Their macroscopic properties are a�ected
by the properties of the individual grains. The macroscopic behavior of our polycristalline
�lms will be regarded as isotropic and homogeneous in term of elastic properties because
we have veri�ed that they have random crystallographic texture (non-textured polycrys-
tal). The elastic strain and stress states of an individual crystallites is determined by the
Hooke's equation (see equation 2.89) together with the boundary conditions. In these
conditions, homogenization methods are used to de�ne e�ective elastic coe�cients which
will depend on the single crystal's elastic coe�cients. Reuss and Voigt homogenization
methods are the simplest ones[97]. They are well known because the obtained values
de�ne a boundary for the e�ective elastic coe�cients. For instance, in the case of an
isotropic thin �lm, the e�ective elastic coe�cients in the Voigt model ( C̃11, C̃12 and
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C̃44) are given by (with C = C11 − C12 − 2C44)[98]:

C̃11 = C11 −
2

5
C (2.97)

C̃12 = C12 +
1

5
C (2.98)

C̃44 = C44 +
1

5
C (2.99)

while in the Reuss model they are given by (with S = S11 − S12 − 1
2S44):

C̃−1
11 = C−1

11 −
2

5
S (2.100)

C̃−1
12 = C−1

12 +
1

5
S (2.101)

C̃−1
44 = C−1

44 +
4

5
S (2.102)

C̃11 + 2C̃44 C̃11 C̃11 0 0 0

C̃11 C̃11 + 2C̃44 C̃11 0 0 0

C̃11 C̃11 C̃11 + 2C̃44 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃44


(2.103)

One can note here that only two independent coe�cients are remaining (C̃11 and C̃44).
The following relation is thus deduced:

σij = C̃11δijεkk + 2C̃44εij (2.104)

From this relation σkk =
(

3C̃11 + 2C̃44

)
εkk, we can rewrite the above formula as function

of the stresses:

εij =
1

2C̃44

σij −
C̃11

2C̃44(3C̃11 + 2C̃44)
σkkδij (2.105)

We can de�ne the Young's modulus (Y ) and the Poisson's ratio (ν) by considering a
simple traction:

σ =

 σ 0 0
0 0 0
0 0 0

; ε =

 εL 0 0
0 εT 0
0 0 εT

 (2.106)

Where εL and εT stand for the longitudinal and the transverse strains, respectively. They
can be written as function of C̃11 and C̃44:

εL =
C̃11 + C̃44

C̃44(3C̃11 + 2C̃44)
σ =

1

Y
σ (2.107)

εT =− C̃11

2C̃44(3C̃11 + 2C̃44)
σ = −νεL (2.108)
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Where the Young's modulus Y and the Poisson's ratio (ν) are given by:

Y =
C̃44(3C̃11 + 2C̃44)

C̃11 + C̃44

(2.109)

ν =
C̃11

2(C̃11 + C̃44)
(2.110)

The equation 2.105 can be rewritten by introducing Y and ν:

εij =
1 + ν

Y
σij −

ν

Y
σkkδij (2.111)

σij =
Y

1 + ν
εij +

νY

(1 + ν)(1− 2ν)
εkkδij (2.112)

Note that we can also de�ne the bulk modulus (K) by considering an hydrostatic
compression. In this condition, we have σij = σδij and εij = εδij , which lead to
σij = (3C̃11 + 2C̃44)ε. We deduce that

K =
1

3

(
3C̃11 + 2C̃44

)
=

1

3

Y

1− 2ν
(2.113)

2.2.2 Strain �eld modelization in arrays of ferromagnetic nanostructures (
Nanowires and antidot arrays)

The strain �eld generated in the nanostructures induced by the PZT substrate is deter-
mined by �nite element method within COMSOL Multiphysics®[92, 99]. The geometry
of the systems consists of a Kapton® layer of dimensions 7.5×7.5×5 µm3 and a Ni60Fe40

magnetic nanostructure array of dimensions 7.5× 7.5× 0.02 µm3 containing 8× 8 nan-
odots periodically distributed according to both the studied geometries ( parallel and
perpendicular to the length of the nanowires system and parallel to axes of the antidot
arrays or in the diagonal direction of this latter). The interface between the polymer layer
and the nanostructures is assumed to be perfect (perfect adhesion implying continuity
of the displacement and the traction vector at the interface). It is worth noting that the
represented thickness of the Kapton® layer (5 µm) is much lower than the real thickness
(127.5 µm). This thickness is however su�cient to avoid possible perturbations that may
be caused by the sti�er magnetic nanostructures on the average strain of the compliant
layer. It is also worth noting that the PZT ferroelectric behavior is not modeled here,
only the strain applied by the PZT to the Kapton® is modeled. All these justi�ed mod-
eling choices are motivated by optimization/reduction of the computing time. Thus, it
is necessary during numerical simulations to replicate the homogeneous in-plane strains
transmitted by the PZT substrate to the Kapton® layer. For this purpose, the following
tensile-compression displacement loading will be applied to the Kapton® layer[99]:

Ux = εsubxx x / x = ±L
2

(2.114)

Uy = εsubyy y / y = ±L
2

(2.115)
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Ux and Uy represent the displacement magnitudes applied quasi-statically to the Kap-
ton® layer and L is the length of the Kapton® layer. Regarding the spatial discretiza-
tion of the calculation domain in accordance with the �nite element method, the COM-
SOL Multiphysics® automatic mesher was used[100]. Special attention was paid to
densify the mesh wherever necessary, i.e. in the neighborhoods of interfaces and free
surfaces. An evolutive spatial discretization was thus carried out, utilizing a 1-degree
tetrahedral Lagrangean �nite element, with a minimum characteristic length of 10 nm.
This length enables to have two rows of �nite elements along the thickness of the de-
posit (corresponding to the nanostructures thickness), which is su�cient to accurately
calculate the mean strain in the nanostructures. Moreover, it has been checked that the
adopted meshing density enables to reach the convergence of the numerical results. In
view of the relatively small deformations involved here, the calculations are carried out
within the linear framework of small perturbation assumptions. Within the small ranges
of strain, the materials studied behave linearly in addition to being isotropic. Once the
calculations are performed, a gage zone of dimensions 3×3 µm2 was considered inside the
nanostructures so as to avoid the disturbance induced by the free and loaded edges dur-
ing the post-processing of the numerical results which will be shown in the corresponding
chapters.
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In this chapter, a numerical simulation tool that accounts for heterogeneous strain �elds
of magnetic strained objects has been developed, validated and tested for problems of
increasing complexity. The LLG equation is solved by �nite element methods in a fully
coupled way with solid mechanical governing equations. This resolution is achieved
within the software COMSOL Multiphysics®[92]. A concise presentation of the local
governing equations with the associated boundary, initial and jump conditions is �rst
provided. Then, the chosen examples related to the Larmor magnetization precession,
dipolar interaction in circular and spherical media, magnetization reversal in non-strained
nanostructure, and the e�ect of homogeneous strain on magnetization distribution are
treated so as to validate the mathematical coupled problem implementation compared
to analytical solutions when available. In particular, the obtained versatile numerical
simulation tool is compared with the Nmag [54] micromagnetic code for the magnetization
reversal of an unstrained object as another numerical validation considering an unstrained
object. Finally, the validated simulation tool is deployed to simulate the targeted material
systems corresponding to a magnetic nanomembranes submitted either to heterogeneous
or homogeneous strain �elds.
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3.1 Implementation of LLG equation coupled with solid
mechanical equations

Throughout this chapter we have used the SI system. When needed, we give the expres-
sions of the energies in this system when it is necessary compared to what was introduced
in the previous chapter. Let ~m be the reduced magnetization vector whose components
are given by mi = Mi/Ms where i stands for x, y or z directions and Ms the satura-
tion magnetization. As introduced in the precedent chapter, the global equilibrium of a
magnetoelastic object can be written in term of the total energy density F as:

F = FZee + Fex + Fms + Fel (3.1)

with FZee = −µ0Ms ~m · ~H, the Zeeman energy density, Fex = A (∇~m)2, the exchange
energy density, Fms = −1

2µ0Ms
~Hdem.~m, the magnetostatic energy density. Here, ~Hdem

is the demagnetizing �eld that is determined from the magnetic potential φ as ~Hdem =
−~∇φ. The magnetic potential φ being the solution of the magnetostatic boundary value
problem. Finally, Fel is the elastic energy density that contains the magnetoelastic con-
tribution. For the sake of simplicity, we consider in the following, the magnetic medium
as isotropic (isotropic elasticity and magnetoelasticity in absence of magnetocrystalline
anisotropy) and this contribution can be written as:

Fel =
1

2
εel : C : εel (3.2)

where εel is the elastic strain second order tensor and C, the elastic sti�ness fourth

order tensor. In case of isotropic elasticity, the non-zero elastic sti�ness components
can be simply written as functions of Young's modulus E and Poisson's ratio ν. For
magnetostrictive materials, the elastic strain εel is equal to the total strain ε minus the
magnetoelastic one εm[101]:

εel = ε− εm (3.3)

with,

ε (−→u ) =

−→
∇ ⊗−→u +

(−→
∇ ⊗−→u

)t
2

, (3.4)

and

εm =
3

2
λ

 m2
x − 1

3 mxmy mxmz

mxmy m2
y − 1

3 mymz

mxmz mymz m2
z − 1

3

 , (3.5)
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for an isotropic magnetostrictive ferromagnetic medium, with λ, the isotropic magne-
tostriction coe�cient. It is worth noting that only the quasi-static displacement ~u is
considered here for the calculation of εel (i.e. dynamic e�ects of acceleration are ne-
glected). Moreover, the magnetization distribution directly derives from a competition
between the energy contributions mentioned above. To study the temporal evolution
of the magnetization of the ferromagnetic medium, it is necessary to solve the LLG
equation:

∂ ~m

∂t
= −µ0γ ~m× ~Heff + α~m× ∂ ~m

∂t
(3.6)

where γ is the gyromagnetic ratio, α, the dimensionless Gilbert damping coe�cient and
~Heff , the e�ective �eld, which stands as the functional derivative of the total energy
density F (equation 3.1). It is important to note that the LLG is a nonlinear equation
as the e�ective �eld ~Heff , intervening in the right hand side of the LLG equation, is a
function of the LLG unknown itself, namely the magnetization ~m, besides two other un-
knowns, the displacement ~u (through the strain) and the magnetic potential φ (through
the demagnetizing �eld) (equations 3.1-3.3). Thus, to determine the temporal evolu-
tion of the magnetization in a ferromagnetic medium, it is necessary to solve the LLG
equation in conjunction with two other �eld equations, viz. the mechanical equilibrium
equation[102]:

~∇ ·
(
C : ε

)
+ ~f = ~0, (3.7)

and the magnetostatic equation:

~∇ · ~Hdem = −4φ = S (3.8)

The LLG equation is pertaining to the magnetic nanostructure domain (Ω1), whereas
the equilibrium equation (equation 3.7) concerns the magnetic nanostructure (Ω1) and
the substrate (Ω2) domains, and the magnetostatic equation (equation 3.8) is related to
the whole system constituted of the magnetic nanostructure (Ω1), the substrate (Ω2) and
the surrounding universe (Ω3).
In equation 3.7, ~f=~0 as no body force is applied, whereas the source term (S) in equation
3.8 changes from a domain to another as follows:

S =


−~∇ · (Ms ~m) on (Ω1)

0 on (Ω2)

0 on (Ω3)

(3.9)

The above �eld equations (equations 3.7 and 3.8) are completed by the following bound-
ary, transmission and initial conditions:

� Mechanical kinematic loading:
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~u = ~up (3.10)

with ~up the prescribed displacement on the loaded faces of the substrate (Ω2).

� Perfect adhesion jump conditions:

J~uK =

s(
C : ε(~u)

)
· ~n

{
= ~0 (3.11)

at the magnetic (Ω1)/substrate (Ω2) interface (~n is the outer unit normal of the interface)

� Free boundary conditions:

(
C : ε(~u)

)
· ~n = ~0

on the borders of both magnetic (Ω1) and substrate (Ω2) domains that are free from any
loading.

� Continuity of the perpendicular component of the magnetic induction:

~n · ~∇φ = Ms ~m · ~n (3.12)

on the magnetic domain border (Ω1),

~n · ~∇φ = 0 (3.13)

on the border of the domain (Ω2) and the inner border of the domain (Ω3).

� Remote condition of the evanescence of the demagnetizing potential far away:

~n · ~∇φ = −2
φ3√

x2 + y2 + z2
(3.14)

on the outer border of the universe (Ω3)

� Continuity of the parallel component of the magnetic �eld:

JφK = 0 (3.15)

depicting the continuity of the demagnetizing potential at each interface between adjacent
domains.

� Initial conditions:
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~m(~r, t = 0) = ~mp (3.16)

where ~mp stands as a prescribed value verifying
f
~mp

f
= 1. It is worth mentioning

that theoretically
f
~m

f
= 1 ∀~r ∈ (Ω1); this condition has been numerically satis�ed

accounting the numerical errors. Moreover, it has been also numerically veri�ed that the
norm of the space mean value of ~m is always bounded by 1 for any non uniform magnetic
moment distributions:

‖〈~m〉‖ < 1 (3.17)

This criterion-like directly derives from the use of Schwartz theorem1. Finally, the above
strongly coupled boundary and initial value problems are solved numerically by �nite
element method within the software Comsol Multiphysics® in order to simulate the
temporal evolution of the magnetization under mechanical loading.

3.2 Numerical validations

In this section, four selected problems are solved for the purpose of validating the devel-
oped simulation code of micromagnetic mechanical, in the elastic regime, coupling within
COMSOL Multiphysics®[92]. In the �rst problem, the LLG (3.6) is resolved alone to
simulate the Larmor precession (in absence of damping). The second problem concerns
the determination of the magnetostatic �eld inside (demagnetizing �eld) and outside
(stray �eld) the examined ferromagnetic nano-object. The third problem corresponds to
a quantitative comparison with a software speci�cally dedicated to micromagnetic, viz.
the Nmag package [54]. For this purpose, the LLG equation is resolved in presence of all
magnetic �elds excepted the magnetoelastic one. In the last validation problem, the LLG
equation is resolved by taking into account the magnetoelastic energy density in order to

1Indeed, one can show that(´
mxdV´
dV

)2

+

(´
mydV´
dV

)2

+

(´
mzdV´
dV

)2

< 1 (3.18)

for any non-uniform con�guration thanks to Schwartz inequality which states that if we consider
two independent functions f and g, we have

(´
(fg) dV

)2
<
´
f2dV

´
g2dV . The application of this

Schwartz inequality to micromagnetism can be performed by considering a non uniform magnetization
distribution for at least one component. Thus, one can suppose that mx is variable and we apply
Schwartz's inequality to the functions f = mx et g = 1. One obviously deduced that:(ˆ

mxdV

)2

<

ˆ
m2
xdV

ˆ
dV (3.19)

For the other components, we can write a similar relation by replacing x by y or z. Thus, we
deduced that:(ˆ

mxdV

)2

+

(ˆ
mydV

)2

+

(ˆ
mzdV

)2

<

ˆ (
m2
x +m2

y +m2
z

)
dV

ˆ
dV (3.20)
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study the magnetization of a magnetic nanowire homogeneously strained (or stressed).
It is worth noting that for the performed simulations, the nano-objects were meshed by
using the automatic mesher of COMSOL. Particular attention was paid to the distance
between two adjacent nodes so that it does not exceed the exchange length de�ned as
`ex =

√
2A

µ0M2
S
[103, 101, 104].

𝑚!

0 5 10 15
20 25 30 35

t(ps)

μ0H = 0.1 MA.m−1

μ0H = 1 MA.m−1

a) b) c)

Figure 3.1: a) Temporal evolution of the normalized magnetization components for two
di�erent values of the applied magnetic �eld (along with x−direction): µ0H =
0.1× 106 A.m−1 (top) and 1× 106 A.m−1(down). The initial magnetization
is uniform and aligned along [1, 1, 1] direction. b) Variation of the frequency
of precession, extracted from the temporal evolution of the magnetization, as
a function of the applied magnetic �eld. Symbols correspond to numerical
calculations while the continuous line depicts the analytical result (equation
3.21). c) 3D maps showing the magnetic moments distribution at di�erent
times under an applied magnetic �eld of 1×106 A.m−1 along with x-direction.
Colors encode my.

3.2.1 Larmor's precession

Here, we consider a magnetic sphere of radius 10 nm undergoing an applied (external)
magnetic �eld with no dipolar interaction e�ect ( ~Hdem = ~0). The retained material is
the permalloy (Ni80Fe20) whose bulk magnetic parameters are: Ms = 0.8 × 106 A.m−1,
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µ0γ = 221017 m.A−1.s−1 and A = 10 × 10−12 J.m−1. These parameters lead to an
exchange length `ex ≈ 4 nm. Moreover, the Gilbert's coe�cient is set to zero (α = 0)
with the idea to retrieve the well known Larmor's precession. Indeed, under the unique
presence of an applied magnetic �eld (absence of magnetocrystalline, magnetoelastic and
dipolar contributions), all the magnetic moments precess at unisson and the precession
frequency can be written as:

ω = γµ0H (3.21)

where H is the applied magnetic �eld. This latter is applied along x−direction while the
initial magnetic moments distribution are kept uniform and oriented along the [1, 1, 1]
direction. In Figure 3.1-a), we reported the temporal evolution of the normalized mag-
netization components (〈mx〉 in blue, 〈my〉 in red and 〈mz〉 in green) for two di�erent
values of the applied magnetic �eld (0.1 × 106 and 1 × 106 A.m−1). The curves show
an evolving magnetization with a temporal conservation of its norm (

f
~m

f
= 1) and a

unison precession of all magnetic moments around the applied magnetic �eld along x.
This leads to a constant temporal mean value of x-component of the magnetization 〈mx〉
. The 3D maps of the magnetic moments displayed at di�erent times within one period
clearly show this phenomenon (see �gure 3.1 -c)). Also, we have reported the precession
frequency, calculated from the magnetization oscillations, as a function of µ0H in �gure
3.1-b). Comparison with the analytical solution of the Larmor precession depicted by a
continuous red line in the �gure, shows the good agreement between the two numerical
and analytical evaluations, which constitutes a validation of the numerical implementa-
tion of the LL (Landau-Lifshitz) equation.

3.2.2 Magnetostatic �eld

In this example, the validation of the procedure for calculating the demagnetizing �eld
is sought. For that purpose, we choose to apply it for material systems for which there
exists closed-form solutions. These material systems are constituted of a ferromagnetic
nano-object (Ω1) that is a disk (2D problem) or sphere (3D problem), deposited on a
substrate (Ω2), all these surrounded by the �whole� universe (Ω3). From a magnetic
point of view, (Ω2) and (Ω3) are similar, and the LLG equation is only pertaining to the
ferromagnetic nano-object (Ω1).

The �rst material system is a 2D one allowing a 2D resolution of the magnetoelastic
problem. It is constituted of a ferromagnetic nano-disk of radius 10 nm (Ω1) homoge-
neously magnetized (Ms = 1×106 A.m−1) along y−direction, in immediate contact with
a half holed-disk of radius 20 nm (Ω2-substrate). The surrounding environment (Ω3) is
assimilated to a larger disk of radius 50 nm comprising (Ω1) and (Ω2) (see �gure 3.2-a)
for illustration). In Figure 3.2-a), we displayed the 2D map of the magnetostatic �eld
calculated in the three regions. A zoom-in of the simulated system is presented in �gure
3.2-b). One can note the continuity of the magnetic �eld lines between the di�erent re-
gions, which con�rms that the magnetic boundary conditions (equations 3.12-3.14) have
been numerically well satis�ed. This continuity is better illustrated in �gure 3.2-c) that
presents 1D-pro�les of y−component of the magnetostatic �eld Hy

ms, the corresponding
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y

x

a) 

b) 

c) 

d) 

Hms
y

x106	
Hms
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Figure 3.2: a) 2D-map of the magnetostatic �eld ( ~Hms) calculated inside (Ω1) and outside
a uniformly magnetized (along y) disk of radius 10 nm. The outside region
is divided into two di�erent regions (Ω2) and (Ω3) with similar characteristic
from a magnetic point of view. Colors encode y-component of the magneto-
static �eld Hy

ms. b) Zoom-in of a). c) 1D-pro�les of the magnetostatic �eld;
the corresponding lines are drawn in the graph. Data from (Ω)1 (resp. Ω2

and Ω3) are represented in red (resp. blue and green). For clarity, only Hy
ms

component is plotted with continuous lines for the vertical cutline and with
empty symbols for the horizontal cutline. d) 3D map of ~Hms (blue arrows)
where colors encode Hz

ms (only in regions (Ω1) and (Ω2) for clarity).
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cutlines are drawn in the �gure (vertical cutline: continuous lines and horizontal cutline:
symbols). From those cutlines, it is obvious that Hx

ms, which is not plotted for clarity
on the graphs, is zero in the three regions. Data from (Ω1) (resp. (Ω2) and (Ω3)) are
plotted in red (resp. blue and green). Our results �t well with the well known analytical

solutions for this problem, we retrieve for instance that ~Hdem = − ~M
2 in Ω1. In fact, in the

case of a homogeneously magnetized disk the demagnetizing factor (Nx = Ny because of
the radial symmetry) is equal to 1

2 . Note that the demagnetizing factors have to satisfy
the condition Nx +Ny = 1.
The second studied material system is the 3D counterpart of the former one. The gray
sketch in �gure 3.2-d) depicts the geometry of the simulated system. Concentric spheres
have been used: the bigger sphere (whole universe (Ω3)) has a radius of 100 nm, the
inner sphere (magnetic object (Ω1)) has a radius of 20 nm and the half hollow sphere
(substrate (Ω2)) has a radius of 50 nm. In this problem, the magnetic object (inner
sphere) has been uniformly magnetized along z. Figure 3.2-d), where colors encode Hz

ms,
displays the 3D map of the calculated magnetostatic �eld (blue arrows). For clarity,
Hz
ms has been colored-mapped only in regions (Ω1) and (Ω2). As for the 2D problem, we

retrieve the well known analytical solution for such a problem of a uniform demagnetizing
�eld ~Hdem = − ~M

3 . Similarly to the precedent case, the demagnetizing factor for an
homogeneously magnetized sphere is equal to 1

3 [68, 105].

3.2.3 Comparison with Nmag software

As an additional validation, the developed �nite element code under COMSOL Multi-
physics® is compared to a micromagnetic dedicated software, viz. Nmag that utilizes the
�nite element method too [54]. Thus, a similar mesh of the precedently simulated object
is adopted. Thereby, the magnetostatic �eld is taken into account in the LLG equation
for the simulation of the magnetization evolution. The considered problem for achiev-
ing such comparison concerns the magnetization evolution of an isolated 100 × 40 × 5
nm3 ferromagnetic nanowire, which is embedded inside a large sphere of radius 200 nm,
corresponding to the surrounding environment. It can be noted here that the substrate
is not simulated since it is not required for such comparison. Regarding the magnetic
parameters, the previously adopted values (bulk permalloy) are again retained here with
a Gilbert's damping constant α = 0.1. Moreover, the magnetization is initially aligned
along y in order to favor a realignment of the magnetic moments along the easy axis
(along x) favored by the sample geometry in absence of applied magnetic �eld. Figures
3.3-a) and 3.3-b) present the results obtained under these conditions.

Figures 3.3-a) and 3.3-b) respectively correspond to the temporal evolution of the mean
values of the normalized magnetization components 〈mi〉 and of the demagnetizing �eld〈
H i
dem

〉
. As expected, all the magnetic moments are initially aligned along y-direction

(at t = 0 ns) while they are almost all aligned along x-direction at equilibrium. One can
see the magnetization relaxation in �gure 3.3-c), which presents top view mapping of the
magnetization distribution at di�erent times during the relaxation (colors encode mx).
The Nmag results are also shown in �gures 3.3-a) and 3.3-a) (continuous lines). One can
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Figure 3.3: a) Temporal evolution of the mean values of the normalized magnetization
components. b) Temporal evolution of the mean values of the demagnetizing
�eld components. In a) and b), continuous lines are date obtained with
Nmag software while symbols are data obtained using our model. c) Top
view (xy) mapping showing the magnetization distribution in the nano-object
at di�erent times during the relaxation of the system. Colors encode x-
component of the magnetization (mx).
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note the good agreement between the two models with however very slight discrepancies
after the magnetization reversal (around 0.4 ns). This may be attributed to the demag-
netizing �eld calculation method. Indeed, the �outside medium� is speci�cally modeled
in our code, under the form of a �large� sphere of 200 nm radius, while the Fredkin and
Koehler method [106] is used in the Nmag software. However, these deviations do not
fundamentally change the physics nor the possible quantitative values that one could
extract from these curves.

3.2.4 Self-supported nanostructure homogeneously strained

Before exploiting the developed code for the simulation of material systems undergoing
heterogeneous strains, we focus on a more simpler case where the self-supported nanos-
tructure undergoes homogeneous uniaxial tensile strain, for which there is a closed form
solution of the magnetoelastic �eld. Hence, comparison between the numerical �ndings
and the analytical solution will permit an additional validation of the developed simu-
lation tool. To apply a homogeneous uniaxial tensile strain along the x-direction, the
x-component of the displacement vector is symmetrically prescribed on both extremities
of the sample. Jointly, the rigid modes are eliminated by assuming appropriate kine-
matic conditions on the sample. These latter are just right what is required, so as to
not under-constrained kinematically the strained object (presence of rigid mode) nor to
over-constrain it (no more homogeneous tensile strain). Note that we have used the
pre-existing "Solids Mechanics" module of COMSOL Multiphysics® to calculate the
stress/strain inside the nanostructure whereupon it was took into account in the LLG
equation through the magnetoelastic energy contribution.
The adopted geometry corresponds to a Ni nanostructure of 150×40×10 nm3 dimensions
with Ms = 0.48 × 106 A.m−1, µ0γ = 221017 m.A−1.s−1, A = 10 × 10−12 J.m−1 and
α = 0.5. Moreover, in order to avoid mixing di�erent sources of magnetoelastic coupling,
we consider isotropic mechanical and magnetoelastic parameters for the nanostructure.
In these conditions, the Young's modulus and Poisson's ratio are �xed at EN = 200
GPa and νN = 0.3 while the magnetostriction coe�cient is �xed at λ = −30 × 10−6

[10, 107]. The applied displacement gives rise to a strain ranging from 0 to 0.3%, which
corresponds to a stress σxx ranging from 0 to 0.6 GPa. 3D maps where the colors encode
σxx are presented in �gure 3.4-a). These maps highlight the homogeneity of σxx inside
the nanostructure. Thereafter, we have numerically evaluated the magnetoelastic �eld by
using its closed-form expression which is formally derived from the elastic energy density
Fel[58, 108]:

~Hme = − 1

µ0Ms

∂Fel
∂ ~m

=
1

µ0Ms
C :
(
ε− εm

)
:
∂εm

∂ ~m

=
1

µ0Ms
σ :

∂εm

∂ ~m
(3.22)
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sxx(GPa)

Tensile axis
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a) b)

Figure 3.4: a) 3D maps of the magnetization distribution (black arrows) obtained after
relaxation (i. e. at equilibrium) for di�erent uniform stress states (from
0.3 GPa to 0.6 GPa). Colors encode σxx. b) Mean x-component of the
magnetoelastic �eld 〈Hx

me〉 as a function of the applied uniform stress. Green
and blue sphere symbols correspond to the 〈Hx

me〉 calculated before (at t = 0
ns) and after relaxation (at t = 10 ns), respectively.

where σ is the stress tensor. According to equations 3.5 and 3.22, if one assumes a
uniaxial stress state and a uniform magnetization along x-direction, the magnetoelastic
�eld becomes:

~Hme =
3λσxx
µ0Ms

~ex (3.23)

The analytical expression (equation 3.23) of the magnetoelastic �eld can be directly com-
pared to numerical solutions by forcing an alignment of all the magnetic moments along
with the x-direction (i.e. before relaxation). Hence, we focus on two con�gurations of
the system; the initial one at t = 0 ns where all the magnetic moments are parallel
to x−direction, and the equilibrium one after precession obtained by calculation su�-
ciently far from the transitional regime. For both con�gurations, we have calculated the
magnetoelastic �eld . The black arrows in the 3D maps (see �gure 3.4-a)) illustrate to
the magnetization distribution inside the nanostructure after relaxation; it seems almost
uniform and aligned along with the x direction till ∼ 0.4 GPa while it is aligned along
with the y direction for higher stress. This is due to the competition between the shape
anisotropy �eld of the nanostructure, which promotes an alignment of the magnetic mo-
ments along with the x direction and the magnetoelastic �eld, which favors an alignment
along with the y direction (being given the negative sign of the Ni magnetostriction
coe�cient).
Figure 3.4-b) shows a good agreement between the analytical variation of Hme (red
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continuous line) and its numerical evaluation at 0 ns (green symbols). In addition,
y− and z-components of the magnetoelastic �eld are close to zero (order of magnitude:
10−10 A.m−1), which tend to con�rm the robustness of our modeling. Regarding the Hme

variation after relaxation (blue symbols), the performed calculations enable us to see that
the magnetization evolution can be quite complex especially around the magnetization
reversal (at ∼ 0.52 GPa). Indeed, we note that Hme calculated after relaxation is almost
aligned with the analytical variation (at 0 ns) but deviates around the magnetization
reversal. Obviously, Hme is null for a stress higher than ∼ 0.52 GPa because of the
magnetization distribution (aligned along with y). The highlighted deviation around
the magnetization reversal is due to the magnetization distribution, which proves to be
uniform (see 3D maps in �gure 3.4-a)). This puts forward the advantage of the proposed
modeling that is able to capture magnetoelastic phenomena related to heterogeneous
magnetization and/or stress of the studied sample, contrary to the analytical solution,
which is con�ned to homogeneous stress distribution. This point will be discussed further
in the next section dedicated to the simulation of the magnetization of a nanostructure
deposited on the top surface of a strained polymer substrate.

3.3 Application: e�ects of heterogeneous strain on the
magnetization processes in magnetic nanomembranes

Here, we study the e�ect of the heterogeneous strain in a prototypical magnetic nanomem-
brane of Ni on the application-relevant polyimide foil. We took into account the distri-
bution of the magnetoelastic �eld in the case of the heterogeneous strain and compare it
to the case of the free-standing Ni thin �lm.

These kind of nanostructures are in the heart of novel research directions including �exi-
ble magnetoelectronics [109, 46, 110, 14, 111, 112, 113], origami-based strain engineering
technologies [114, 115, 116], curvilinear magnetism [1, 117, 118, 119], �exible magne-
tocaloritronics [?] and straintronics [120, 121, 122] to name just a few. In all these exam-
ples, magnetic nanomembranes are mechanically deformed, which leads to pronounced
e�ects of mechanical strain and its impact on the magnetization reversal processes and
magnetization dynamics. The performance of the devices based on magnetic nanomem-
brane is determined by the strain and its distribution across the thin �lm. The prevailing
strain �eld within the system must be taken into account in the study of these phenomena
as it can greatly in�uence the magnetic energy of such systems [123, 124].
Indeed, even small strains within the magnetic deposit (a few 10−3) can lead to signif-
icant magnetoelastic �elds (a few tens of mT ) if the studied magnetic material has a
magnetostriction of the order of 10−5. The assumption of uniform strain is no longer
valid for magnetic nanomembranes deposited on a substrate, in particular because of the
e�ects of both the magnetic nanomembrane/substrate interface and the nanomembrane
free surfaces [73]. Hence, for the interface e�ect, the higher the sti�ness contrast between
the nanomembrane and the substrate, the greater the heterogeneity of the strains. Re-
garding the free surface, the e�ect is the opposite, i.e. the larger the free surface, the
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Figure 3.5: a) Modeled Ni/Ka nanomembrane and its �nite element meshing. x, y and
z denote the reference frame axes used in the whole study. b) Map of εxx
component within the Ni nanomembrane induced by a displacement loading
applied to the Ka substrate along x-direction (

〈
εsubstratexx

〉
= 4.10−2). (c) Map

of εxx component within the self-supported Ni nanomembrane. The strain
value in the self-supported Ni nanomembrane corresponds to the volume av-
erage value of the heterogeneous strain inside the Ni nanomembrane strained
by Ka (〈εxx〉 = 3.5 × 10−3). (d) x-pro�les of εxx and εyy at three di�erent
z-positions inside the Ni nanomembrane (top: z = 0 nm, middle : z = 5
nm and bottom: z = 10 nm), showing the heterogeneity in the plane but
also the gradient in the thickness.(e) Mapping of the εxx along the magnetic
nanomembrane.
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lower the strain at the neighborhood [124]. At the moment, the in�uence of heteroge-
neous strain on the magnetic response of magnetic nanomembrane is not addressed. The
reason for this missing knowledge is in the lack of platforms, which would allow such
an analysis. Therefore, the development of numerical models accounting of these strain
heterogeneities is essential for an accurate and reliable prediction and/or description of
the static and dynamic magnetization behavior of magnetic nanomembranes[125].

a)	

b)	

Figure 3.6: a) Temporal evolution of the average values of the magnetization components
for heterogeneous (top) and homogeneous (bottom) strain distributions. For
both cases, the mean strain components are same: 〈εxx〉 = 3.50 × 10−3,
〈εyy〉 = 〈εzz〉 = −1.05×10−3. The right graphs zoom the early phase reversal
(between 0 ns and 2 ns).

Here, we investigate the in�uence of strain heterogeneities on the magnetization rever-
sal of a Ni nanomembrane. To make our results of immediate use for the application-
oriented community working on �exible magnetic �eld sensors, we consider the case of
Ni nanomembrane prepared on a polymeric foil with the typical parameters of polyimide
(Kapton® (Ka)). Figure 6.6-a) shows the mesh size used during the calculation and
its re�nement within the magnetic nanomembrane. By comparison of the magnetization
processes in heterogeneously strained nanomembrane to those in a free-standing one,
we found out that the �rst stages of magnetization reversal is fully a�ected by strain
heterogeneities.
Before addressing the micromagnetic simulations, the mechanical behavior of the two
considered systems is �rst investigated. Figures 6.6-b) and 6.6-(c) show the spatial dis-
tribution of the mechanical strain within the nanomembrane for both the heterogeneous
and homogeneous strain states. It can be observed that contrary to the self-supported
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a)	

b)	

Figure 3.7: a-b) Trajectory of the mean magnetization vector corresponding to the tem-
poral evolution of the average values of the magnetization components pre-
sented in �gure 3.6 a): heterogeneously strained system and b): homoge-
neously strained system) . The di�erent projections (my(mx), mz(mx) and
mz(my)) are also presented (right graphs).

configuration, the supported nanomembrane displays distinguishable regions of di�er-
ent strain magnitudes and states. To make it clear and for a quantitative comparison,
x-pro�les of εxx and εyy inside the nanomembrane are represented in �gure 6.6-(d) at
three di�erent z-heights (for y = 0) of the nanomembrane. In these graphs, the sym-
bols and the dashed lines respectively refer to heterogeneous and homogeneous εxx and
εyy x-pro�les. As expected for the self-supported con�guration, the strain pro�les show
that the nanomembrane undergoes the same εxx and εyy values everywhere within the
nanomembrane. Unlikely, in the supported nanomembrane con�guration, these x-pro�les
are clearly non-uniform and the strain values are position dependent within the nanomem-
brane. Regarding εxx distribution (showed also on �gure 6.6-b)) large positive values are
depicted in the central area (zone I), while the o�-center areas are characterized by neg-
ative values on the top-face and slightly underneath (zones II and II'). Hence, the spatial
strain distribution in the supported nanomembrane exhibits high strain gradient along
its length and over its thickness. Moreover, it can be observed in the �gure 6.6-(d) that
the strain is almost uniform at the bottom-face (and slightly above). The in�uence of
these strain distributions on the magnetic response of the studied system is addressed in
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Figure 3.8: Fourier Transform performed on the mx component in both con�gurations.
This FFT corresponds to the cases illustrated in �gure 3.6-a) and 3.6-b).

the following.
The dynamic magnetization of the nanomembrane under the in�uence of the acting
strain, either uniform or non-uniform, and in absence of external magnetic �eld has
been numerically characterized by solving the Landau-Lifshitz-Gilbert (LLG) equations
coupled to the mechanical static equilibrium problem (mechanical dynamic e�ects were
not taken into account in this study) [73]. Figure 3.6-a) shows the time-evolution of the
mean magnetization components (mi = Mi

MS
where i denotes x, y or z andMs = 0.48×106

A.m−1 is the saturation magnetization of bulk Ni) for both strain states (between 0
ns and 15 ns). In these calculations,the gyromagnetic ratio is �xed to µ0γ = 221017
m.A−1.s−1 the exchange sti�ness to A = 10× 10−12 J.m−1; the Gilbert damping factor
to α = 10−2 and �nally the e�ective magnetostriction at saturation is �xed to λNi =
−30 × 10−6. In addition, during our calculations, no external magnetic �eld is applied;
the magnetization reversals that will be presented are solely due to the presence of a
strain induced magnetoelastic �eld. Ni magnetoelastic behavior has been considered as
linearly elastic and isotropic (which is the case at the macroscale for polycristalline Ni)
[10, 107]. The strain distribution is �rst calculated within nanomembrane before running
magnetic simulations that lead to a magnetoelastic �eld, which is time-dependent because
of the temporal evolution of the magnetization distribution.

Figure 3.6-a) displays the temporal evolutions of the average values of the magnetization
components. For both cases, one can observe a magnetization reversal from x-direction
(~m = (1, 0, 0) at 0 ns) to y-direction (~m ≈ (0, 1, 0) at 15 ns). In both cases, the mag-
netization reversal is due to an induced magnetoelastic �eld along y even if the strain
is applied along x; which is due the negative magnetostriction of Ni. However, these
temporal evolutions show a clear di�erence regarding the magnetization reversal process;
in particular at the early phase (less than 1.25 ns of precession) before turning quite
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Figure 3.9: Maps of the magnetization distribution for heterogeneous and homogeneous
cases, during the early steps of reversal (before the almost uniform precession
phase). The color map shows the strain �eld in heterogeneous (top) and
homogeneous (bottom) situations.

similar in term of oscillation frequencies. This magnetization reversal is also represented
thanks to the trajectory of the mean magnetization vector in �gures 3.7-a) and 3.7-b).
It is worth mentioning that the equilibrium is reached earlier in the heterogeneous case
(the magnetization oscillations are still visible at 15 ns for the homogeneous case where
it is almost zero for the heterogeneous one), probably due to the higher localized magne-
toelastic �eld in the zone I which acts as a nucleation area for the magnetization reversal.
In fact, the reversal process seems to be progressive in the case of uniform strain, and
rather abrupt in presence of heterogeneous strain. This di�erence in behavior is nat-
urally explained by the heterogeneity of the internal e�ective magnetic �eld, which is
as heterogeneous as the strain is. Indeed, the �gure 6.6-b) shows distinct strain zones,
which should in�uence the magnetization reversal.

To further illustrate this e�ect, a 3D spatial con�guration of the magnetization reversal
process during the �rst steps of reversal is proposed in �gure 3 where the strain distri-
bution is represented by color map and the magnetization vector by white arrows. One
can note that the reversal process is fully di�erent between the two cases. In particular,
the magnetization switching is more coherent in the homogeneous case, with a spatial
distribution that looks similar to that of the classical case of a magnetic ellipsoidal object,
submitted to a homogeneous external �eld. Unlikely, the heterogeneous strain state leads
to a more complex path. In this heterogeneous case, the reversal is initiated at the zone
II, which is made possible by the strong tensile strain εxx close to the interface. Then
it propagates to the central and opposite (zones I and II' in �gure 6.6-b)) by exchange
e�ect. This behavior is the source of the �utter e�ect observed at the early regime of the
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Figure 3.10: Magnetization distribution mapping for heterogeneous and homogeneous
cases, during the early steps of reversal (before the almost uniform pre-
cession phase). The color map shows x−component of the magnetization.

average magnetization oscillations (before 1 ns), as displayed in �gure 3.6-a). This dy-
namic instability is an important parameter to study since it modi�es the magnetization
reversal process, which is crucial for spintronic applications. Once the reversal has spread
throughout the whole nanostructure (about 1.25 ns), a uniform regime of magnetization
precession settles in, like in a homogeneously strained nanostructure.
Moreover, the di�erences in magnetization dynamics due to di�erent strain distributions
are also noticeable from an energy point of view. Actually, the Fourier transforms per-
formed on the mx for both cases (�gure 3.8b)) reveal: i) a single principal intensity peak
around 2.5 GHz for the uniformly strained nanomembrane (homogeneous case), ii) a
secondary mode of lower frequency (∼ 0.8 GHz) is depicted for the heterogeneous case
besides the principal one at almost the same frequency (∼ 2.5 GHz) as the homogeneous
case but comparatively of lower magnitude. The occurrence of the �highest� frequency
mode is assigned to the central zone of the nanomembrane, viz zone I in �gure 6.6-b),
undergoing the highest strain (high magnetoelastic anisotropy). The lowest frequency (∼
0.8 GHz) mode arises from the oscillations occurring in the nanomembrane region where
the strain is lower because of the free-surface e�ect (zones II and II' of �gure 6.6-b))
leading to a lower magnetoelastic anisotropy �eld. Thus, this structure, heterogeneous
in terms of strain, behaves like an object whose internal �eld is not uniform (multido-
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Figure 3.11: mx andmy values at equilibrium as function of the x-component of the mean
strain 〈εxx〉 within the nanomembrane. Homogeneous and heterogeneous
strain cases are represented by open and �lled symbols, respectively.

main). Nonetheless, it is worth noting that the under spectrum areas for both cases
standing as the magnetic energy, are almost the same (around 144 a.u. and 142 a.u. for
the homogeneous and heterogeneous cases respectively). This suggests a conservation of
the whole magnetic energy that seems to be dependent only upon the average imposed
strain in the present study. Note that the strain heterogeneities are strongly dependent
on the geometry of the magnetic structure. It is particularly the ratio of thickness to
lateral dimensions that in�uences the heterogeneities in the plane and in the thickness
[124]. In the case of realistic magnetic sensors, the dimensions are of the order of 100
nm in thickness and 1 µm in lateral dimension, a ratio that approaches the geometrical
conditions of this work. We can therefore expect that the results of this work can be
applied to magnetic sensors. Furthermore, the substrate thickness of �exible magnetic
sensors can vary from 1 µm to 100 µm. In the case of very small substrate thicknesses,
strain heterogeneity is still expected, but the strain transmission from substrate to the
rigid magnetic structure will be much less important. The e�ect of substrate thickness
on magnetization reversal will therefore be very much related to the average strain value.
In addition to the study of magnetization reversal for a mean strain su�cient to generate
this phenomenon (〈εxx〉 = 3.50 × 10−3), the study also concerned the determination of
the critical applied strain for this reversal to take place. Several equilibrium calculations
for variable average strains were performed for homogeneous and heterogeneous cases.
These results are shown in �gure 4. For the two cases, the same ratio between 〈εxx〉 and
the two other components were kept the same ( 〈εyy〉〈εxx〉 = 〈εzz〉

〈εxx〉 = −0.3).
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The equilibrium magnetization as function of the applied strain 〈εxx〉 in the nanomem-
brane was investigated in order to capture the critical strain value at which the reversal
is favored. For this purpose, mx and my components at the equilibrium state for each
applied strain are reported in �gure 4. It can be observed a very small di�erence regard-
ing the critical values between the homogeneous and heterogeneous cases. Indeed, this
critical value is around 〈εxx〉 = 2.4×10−3 for both cases. This is due to the fact that the
�nal equilibrium mainly depends on the mean internal magnetic �eld (here a competition
between mean demagnetizing and magnetoelastic �elds) and is only slightly a�ected by
very local magnetoelastic �eld concentrations. The small discrepancies are probably due
to slightly di�erent magnetization distribution at equilibrium (heterogeneity e�ects at
the edges, slight gradients in thickness in zones II and II', etc).
In conclusion, the e�ect of strain heterogeneity on the magnetization reversal in a nanomem-
brane was investigated in this work. The �ndings show that the heterogeneous strain
�eld has a strong in�uence on the dynamic reversal, and more particularly at the initial
stages. Indeed, a more abrupt initiation of the magnetization reversal is observed for
the heterogeneous case with the appearance of a secondary mode at a lower frequency.
However, the study of the equilibrium as a function of the applied mean strain shows that
the heterogeneity weakly in�uences the �nal equilibrium con�guration of the magnetiza-
tion. The numerical simulations suggest that the heterogeneous strains, which generally
arise in deformed nanomembranes, has a signi�cant e�ect on the magnetization dynamic
properties but much less on the static ones which mainly depend on the global mean
internal magnetic e�ective �eld.
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During this thesis, the magneto-mechanical properties of thin �lms and nanostructures
have been mainly studied through broadband ferromagnetic resonance (FMR) spec-
troscopy measurements combined with in situ micro-mechanical testing. As explained
in the introduction, our systems are magnetic thin �lms or arrays of magnetic nanos-
tructures deposited on polymer substrates. The micro-mechanical testing are performed
by cementing our systems on PbZr1−xTixO3(PZT) actuators. As a consequence, this
chapter is devoted to the presentation of the setup used during this thesis that com-
bines FMR measurements and mechanical testing as well as to the presentation of the
nanofabrication methods used to obtain arrays of magnetic nanostructures.

4.1 In situ ferromagnetic resonance spectroscopy

In this section, we succinctly present the ferromagnetic resonance setup before presenting
some details on how we applied elastic strains to our systems (magnetic thin �lms and
nanostructures) during this thesis.
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fH

Iin

Iout

Electromagnet

Figure 4.1: a) Sketch of the FMR setup used during this thesis showing the princi-
pal components of the setup. Illustrative image showing a magnetic thin
�lm/Kapton®/PZT-actuator system inside the electromagnet used during
the FMR measurements. The support on which the system is placed allows
modifying the angle between the applied magnetic �eld and the studied sam-
ple. Iin and Iout corresponds to the current injected to the microstripline and
the output one, respectively. This last one is �nally connected to a Schottky
to convert it into voltage for the demodulation through the lock-in ampli�er.
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4.1.1 Generality

The ferromagnetic resonance (FMR) spectroscopy is the oldest and most widely used
technique to date to study the magnetization dynamics in thin ferromagnetic �lms and
nanostructures. This technique consists in placing the magnetic sample in a resonant
cavity in the microwave range[18, 81]. The working frequency is then �xed: it is that of
an eigen-mode of the cavity (typically from 1 GHz to 100 GHz). The cavity is supplied via
a waveguide at the working frequency and the re�ected power is measured as a function
of an external applied magnetic static �eld. When the frequency of the magnetic mode
considered coincides with the working one, the power absorbed has a maximum, which
corresponds to a minimum of re�ected power[126, 127, 128]. The main advantage of this
technique is its sensitivity. In fact, despite the small volume occupied by the magnetic
material, the quality factors of a few thousand achieved for this type of cavity have
made it possible to measure the dynamics of magnetic layers whose thickness is of the
order of a nanometer. Note however that this technique has the disadvantage of a �xed
working frequency, and limits for example the broadband study of the magnetic damping
phenomenon of thin �lms or the study of quantized magnetic modes in nanostructures.
Another disadvantage of this FMR cavity technique is that the cavity makes it very
di�cult to carry out in situ measurements with actuators (such as the ones used during
this thesis) due to the geometrical con�nement.
This is the reason why we have adopted a broadband (0.01-20 GHz) FMR technique
despite its lower sensitivity, as compared to this �classical� setup, to study the magneto-
mechanical properties of our thin �lms and nanostructures. Actually, our broadband
FMR o�ers a sensitivity allowing to detect a net magnetic moment down to 10−5 emu
which is su�cient to detect a signal in our systems. Furthermore, since we aspire to
study the magneto-mechanical properties of magnetic thin �lms and nanostructures, our
magnetic systems have been cemented onto PZT actuators that have been mechanically
characterized by using a non contact optical technique (namely the Digital Image Corre-
lation (DIC) technique developed during M. Gueye's thesis[?])[10, 16, 24]. More technical
characteristics are given in the following subsections.

4.1.2 Technical characteristic of the FMR setup

The basic components of our FMR spectrometer are shown in �gure 4.1. The excitation
of the sample magnetization is performed thanks to a microstripline (with an impedance
Z = 50 Ω to avoid losses)[129, 130, 131]. Indeed, a synthesized sweeper (rf-source in the
�gure 4.1) generates microwaves that travel down a coaxial cable to the microstripline
where some of microwave energy are absorbed by the specimen. The microstripline is
placed inside a 3 kOe electromagnet which supplies the required uniform dc magnetic
�eld ~H0. The sample is placed at the top surface of the microstripline where the rf
magnetic �eld ~hrf is supposed almost homogeneous (even if it is more complex as it
can be seen in �gure 4.2-a). The transmitted microwave beam travels back along the
coaxial cable to a Schottky diode whose output voltage, Vt, is a function of the amplitude
of the transmitted microwave electric �eld. The data collection system is dedicated to
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Figure 4.2: a) Sketch of the cross section of a microstipline showing the rf magnetic and
electric �elds generated when a rf current is applied. b) Illustration of the
modulation of the dc magnetic �eld H0 by an ac one hac; let us consider the
value H0 at the blue point, the detected signal (down graph) is periodic and
re�ect the excursion of VFMR around the blue point (between the two red
ones).

measure the variation of this diode voltage as a function of the applied magnetic �eld
~H0. The variations in the diode voltage that are due to changes in the energy absorption
by the magnetic sample as ~H0 is swept through ~Hres are small and superimposed to
a large constant background. In order to emphasize the variations of Vt with ~H0, the
applied dc �eld is weakly modulated thanks to an ac magnetic �eld hac ' 5 Oe at 170
Hz (see modulation coils in �gure 4.1) and a lock-in ampli�er is used to detect and
amplify the 170 Hz component of the diode voltage. After demodulation, the resulting
signal corresponds to the derivative of the absorbed power. Then, the output of this
ampli�er is connected to a data collection computer. A control program is written using
the labview graphical programming language. The program provides �exibility for a
real time control of the magnetic �eld sweep direction, sampling time, data acquisition
in real time and visualization. Therefore, the microwave frequency is kept constant and
the applied magnetic �eld is varied over a �eld range in which microwave absorption is
expected.

In these conditions, with this setup, we measure the derivative of the microwave absorp-
tion power absorbed by a specimen as function of an applied dc magnetic �eld ~H0, i.e.
the derivative of a Lorentzian curve as schematically presented in �gure 4.2-b). The re-
sulting curve is described by a resonance �eld, Hres, that corresponds to maximum power
absorption, and by a peak to peak absorption linewidth, ∆Hpp. The FMR (derivative)
absorption signal of a ferromagnetic thin �lm is a function of the applied �eld H0 and
intrinsic magnetic properties of the �lm. The latter include the magnetic anisotropies,
the spectroscopic g−factor, the magnetic damping parameter (that is responsible for the
�nite linewidth ∆Hpp), and the quantity of interest such as the saturation magnetization
MS or exchange sti�ness A. A typical FMR spectra is represented in �gure 4.2-b) that

78



4 Experimental methods

illustrate the e�ect of the modulation technique. As a resume, the measured signal is
proportional to:

1

2

dVFMR( ~H0)

dH0
hac cos(φ) (4.1)

where VFMR(H0) corresponds to the FMR absorption signal which depends on the
(static) applied magnetic �eld H0 and φ corresponds to the phase of the weak modulation
magnetic �eld hac(t) = hac cos(ωt + φ). As a result, one can see that the amplitude of
the obtained signal is proportional to hac. We could be tempted to increase this �eld
in order to ameliorate the signal to noise ratio, but it should be kept in mind that this
latter must indeed remain weak in front of the H0 �eld so that this �eld remains a modu-
lation �eld on the one hand and on the other hand because it can arti�cially increase the
linewidths of the spectra. With our setup, we have experienced that this �eld should not
be higher than 5 Oe in order to be in�uenceless in the linewidth spectra. In equation 4.1,
we also note that the measured signal is proportional to cos(φ) that can be controlled
by the low frequency generator of the lock-in (we indeed used the lock-in to modulate
and demodulate the absorption signal). This phase is determined during the calibration
process for each sample in order to �nd the phase angle resulting in a maximum signal
intensity of the spectra.
In addition to this phase, the lock-in allows us to choose a time constant and a sensitivity
that can a�ect the signal to noise ration if those parameters are not well chosen. The
time constant is the integration time of the signal at the output of the lock-in, therefore
at a given frequency. The time constant should be much larger than the period of the
output signal (generally 300 ms with our setup). Concerning the sensitivity, it allows
measuring weak signals, however, the �ip side is that it decreases the signal to noise
ratio. Finally, another way to increase the signal is not seen directly in equation 4.1
but is in fact hidden in the VFMR( ~H0) part. Indeed, it corresponds to the absorption
of the microwave power by the samples which is in �rst approximation proportional to
the magnetization precession amplitude. Thus by increasing the excitation rf �eld ~hrf
(by increasing the Iinrf power, see �gure 4.1-b)), one can increase VFMR( ~H0). Indeed, the

amplitude VFMR( ~H0) strongly depends on the amplitude of the torque exerted by ~hrf
on the sample magnetization. However, a too higher torque can lead to (undesired) non
linear e�ect (increasing of the ∆Hpp or generation of low-wave vector spin waves,...)[132,
133, 134].

4.1.3 Strain characterization

The magneto-mechanical properties of the di�erent thin �lms and nanostructures studied
during this thesis have been probed by performing FMR measurements under applied
elastic strains. These strains have been applied thanks to a PZT actuator on top of
which the system constituted by a magnetic �lm (or array of nanostructure) deposited
onto a polymer substrate has been cemented. This methodology has already proved its
worth during M. Gueye's thesis [?] and it makes it possible to �nely control the elastic
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Figure 4.3: a) Digital image correlation setup. The electric �eld inside the actuator is
generated thanks to a voltage applied by using a Keithley bipolar power
supply. The Aramis software is used to analyze the images. The zoom-in is a
picture showing the ferromagnetic thin �lm cemented on the actuator with a
randomly speckle pattern of the system. b) Schematic illustration of reference
square subset before deformation and a target subset after deformation..
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strains applied to the system. In the case of thin �lms, the strains are measured thanks to
Digital Image Correlation (DIC) technique. Thereby, the �lm/polymer substrate systems
are cemented thanks to an epoxy glue (resin and harder) on top of commercially available
ferroelectric actuators (PZT) with dimensions 1.8×0.7×0.7 cm3, as shown in �gure 4.3-a).
A voltage applied across the actuator results in its deformation which is then transferred
to the �lm. A good contact between the �lm/substrate and the actuator is necessary in
order to completely transmit the in-plane strains. Owing to the converse piezoelectric
and electrostrictive e�ect inherent in PZT, a mechanical expansion (resp. contraction)
along the dominant elongation direction (along x-axis) when a positive (resp. negative)
voltage is applied across it. In particular, a positive voltage results in an elongation
with a related uniaxial strain εxx > 0 along x. Due to elasticity, this tensile strain is
accompanied by compressive strains εyy, εzz< 0 along the orthogonal in-plane direction
y and the orthogonal out-of-plane direction z. To convert the voltage applied across the
PZT actuator into strains, we have developed a Digital Image Correlation (DIC) setup.
DIC is a non-contact and a priori non-destructive optical technique for microscale even
nanoscale surface displacement and strains of an object under di�erent loading conditions.
In DIC, a single camera (2D-DIC) or even a couple of camera (3D-DIC) is used to
determine the displacement and strain of a planar or non-planar surfaces. It works by
doing comparison of set of digitized images of a surface at two di�erent states before
deformation (reference image) and after deformation. However, to achieve this, the
surface of the studied object has to be randomly spray-painted in order to have a random
pattern or must have an intrinsic pattern at its surface. An area of interest on the
surface of the specimen is selected and subdivided into subsets. Typically, a reference
subset of (2M + 1) × (2M + 1) pixels centered at the current point P (x0, y0) from the
left image is chosen to �nd its corresponding location in the right image. Once the
location of the target subset in the right image is found, the disparities of the reference
and target subset centers can then be determined. As schematically shown in �gure 4.3-
b), a set of neighboring points in a reference subset within the left image are assumed
to remain as neighboring points in the target subset within the right image. Thus,
it is reasonable to assume that each of these points Q(x, y) around the subset center
P (x0, y0) in the reference subset can be mapped to point Q′(x′, y′) in the target subset.
Myriad of commercial and laboratory-made softwares based on digital image correlation
are available (Granu [135], Sept D [136], Ncorr [137], Moire [138], Matchid [139],
Correli [140], Correla [141],...), among them the Aramis [142, 143] and Correla
[141] have been used in this manuscript.
This technique has been simple to set up. The only constraint is that the samples must
be previously spray-painted. Indeed, for the DIC calculations, the specimen surface must
have a random gray intensity distribution (i. e. random speckle pattern). It is important
to point out that the spatial resolution is related to the grain size; the smaller the grain
the higher is the resolution. Moreover, whatever the specimen and loading conditions,
the grains have to be �xed and well-adherent in order to facilitate the follow-up of the
material deformation. Therefore, the surface of the studied object has been randomly
spray-painted in order to have a random pattern consisting of black and white random
grain �eld as shown in �gure 4.4-a). Our setup is schematically presented in �gure 4.3-
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a). As shown in this �gure, the PZT actuator is connected to a Keithley power supplier
allowing to apply DC voltages in the range [−200 V;+200 V] with 0.001 V resolution. For
each applied voltage, an image of the top surface of the sample is recorded. The images,
which will serve to determine the in-plane �eld strains as function of the applied voltage,
are recorded thanks to a 3840× 2748 pixels CCD Basler camera vertically positioned at
the top of the surface sample. The objective lens has been chosen to have a �eld view
of around 1 × 1 cm2. A �rst image (reference image) is taken at zero applied voltage;
then, a sequence of images is taken at di�erent applied voltages and is compared to the
reference. Then, the �eld strain at the surface of the system is extracted for each applied
voltage by performing DIC calculations, which are performed by using the reference
image and the di�erent images coming from the sequence. The DIC calculations have
been performed by using Aramis and Correla that are commercially available software
packages [141, 142]. From the �eld strains, the mean in-plane strains are extracted as
function of the applied voltage. When performing our experiments, images are collected
by applying voltages using the following path: 0 V to 100 V and 100 V to 0 V. The
frame is generally of about 0.1 FPS; the step of applied voltage can also be varied.
Furthermore, we have estimated statistical errors of our DIC setup by measuring several
images in absence of applied voltage; it is estimated to be around 5 × 10−6. Moreover,
di�erent images have been taken as a function of time at 0V after saturating the actuator
at 100 V. After approximately 5 h, a di�erence of about 4× 10−5 in the in-plane strains
values is found; this value rises to 1× 10−4 after several days (which is relatively high).
This di�erence is due to training e�ect of the actuator polarization[17].

Now, we present results obtained from a magnetic �lm (20 nm)/Kapton® (125 μm)
system cemented onto a PZT actuator. We have employed our technique to measure
in-plane strains in this system. The voltage was applied from 0 V to 100 V and 100
V to 0 V with a 2 V step. Afterwhat, Aramis has been used to calculate the DIC in
two di�erent (around 2× 5 mm2) regions: an uncoated area of the actuator and an area
located at the top of the �lm (see �gure 4.4-a)). Figure 4.4-b) presents the extracted
mean in-plane strains εxx and εyy from these two regions. It is interesting to note that
similar homogeneous (the maps are not shown here) strain �elds as function of the applied
voltage have been calculated from these two regions. Thus, we can conclude that a 100%
in-plane strain transmission in between the PZT actuator and the �lm is observed. Non
linear variations are observed for both εxx and εyy, which is due to the intrinsic properties
of the ferroelectric properties of PZT. One can note that εxx is found to be positive and
εyy is found to be negative in the voltage range [0�100 V]. Moreover, it is interesting to
note that a linear variation of εxx as a function of εyy is found εxx ' −0.65εyy. The
maximum achieved values of εxx and εyy, (1×10−3 and−0.5×10−3 at 100 V, respectively)
show that the �lm is not deteriorated by the plasticity regime because it is obtained for
higher values: this is experimentally con�rmed by the excellent reproducibility (see �gure
4.4-c)) of the experiments (even after several days). Finally, note that the shear strains
are found to be negligible and will be neglected thereafter in the rest of the manuscript.
Obviously, to interpret the FMR results thereafter, we use the mean values of the elastic
strains.
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Figure 4.4: a) Sketch showing the selected region of interest on the surface of the �lm and
actuator for the analysis of the strain transmission. b) Mean in-plane strains
(εxx and εyy) in the �lm and actuator regions as function of the applied
voltage (0 to 100 V and 100 V to 0 V). c) Mean in-plane strains (εxx and
εyy) calculated in the �lm region for a repeating number of non-symmetrical
path (0 V to 100 V and 100 V to 0 V).

4.2 Illustrative example: CoFeB/Pd bilayer system

In this section, we present a study realized on CoFeB/Pd system deposited either on
Kapton® (125 µm) or Silicon (500 µm) substrates. The series is characterized by a
�xed CoFeB thickness of 6 nm while the Pd thickness varies from 2 to 30 nm. This series
of samples allows studying the spin pumping phenomenon at the interface between the
Pd and Co layer which is currently of great interest in the magnetism community. Indeed,
spin pumping is an e�cient method to generate a spin current and therefore to tune the
magnetic damping. Spin pumping is found in magnetic �lm/non-magnetic metallic �lm
systems such as CoFeB/Pd system. The magnetization precession in the magnetic layer
generates spin in the non-magnetic layer through the interface by means of exchange. A
spin accumulation is then generated in the metallic layer and extends over a characteristic
length called the spin di�usion length (`SD ). This is one of the means of generating spin
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current used in spintronic devices. Indeed, there are other ways of producing a purely
spin-polarised current such as the transfer of the spin moment, spin Hall e�ect, optical
angular momentum transfer,... As a resume, we can say that spin pumping is a widely
used method because it consists of a magnetization excitation that can produce a spin
current without electric charges transfer. This make possible to manufacture electronic
devices with high performance and reduced energy consumption. Indeed, in this process
only the spin moment is transferred which results on a zero Joule e�ect during this
process. It is not a question here of entering into the detailed theoretical description nor
of demonstrating the e�ectiveness of this process, works have already shown the e�ect
of this spin pumping, the optimization of the e�ciency of the process and the in�uent
parameters on it. The objective here is to present a standardized FMR study on a similar
system deposited either on a rigid or �exible substrate to show the performance of our
FMR setup.

4.2.1 Theoretical background

Actually, the damping is related to the FMR linewidth through the following relation[129,
144]:

∆Hpp(f) = ∆H0(f) + ∆HGi(f) (4.2)

Where ∆Hpp(f) represents the frequency evolution of the peak-to-peak linewidth di-
rectly measured on FMR spectra. This linewidth can be decomposed into two contri-
butions: ∆H0(f) that is the intrinsic linewidth (itself composed of several contribu-
tions) and the Gilbert contribution ∆HGi(f) that is related to the spin-pumping phe-
nomenon, respectively. The Gilbert contribution is frequency dependent and takes the
form[24, 129, 145, 146]:

∆HGi =
2√
3

2π

γ
αf (4.3)

The multiplying factor 1/
√

3 is the correction between the full width at half maximum and
the peak to peak linewidths for the line shape of a Lorentzian. The former relation include
the intrinsic damping and the spin pumping torque on the damping of the precessional
motion of the magnetization. So, the Gilbert damping takes the form[147]:

α = αint + αpump (4.4)

The right side in the damping equation gives the two contributions to the relaxation
phenomenon. The �rst one is related to the material, αint, the second one is related to
the spin pumping process. The �rst one can be extracted from the frequency evolution of
the linewidth using the formula 4.2, the second one, αpump, is related two the magnetic
layer thickness through[144, 145, 148]:

αpump =
gµBg

��
eff

MS

1

tFM

(
1− e−

2tPd
`SD

)
(4.5)

where g, µB, g
��
eff , Ms and tCoFeB the Landé factor, the Böhr magneton, the e�ective

spin-mixing conductance, the saturation magnetization and the CoFeB �lm thickness,
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respectively. Then, one can conclude that the spin pumping e�ect can be characterized
by following the evolution of the damping as function of the Pd thickness.
In addition, equation 4.5 also gives the spin pumping e�ciency through the spin-mixing
conductance g��

eff . Indeed, this factor tells us about the scattering in the interface and
the rate of the spin moment torque injected through this later. This characteristic is
important in spin transport application like spin information processing devices based
and spin transfer devices. As de�ned bellow, the spin pumping in the present structure,
composed of a ferromagnetic �lm adjacent to heavy metal �lm with high spin-orbit cou-
pling, results in a spin accumulation near the interface during the spin-pumping process.
This accumulation is characterized by a characteristic length called spin-di�usion length
and noted `SD. This characteristic length is the mean length between two successive
spin-�ip events.

4.2.2 Spin pumping and magnetization dynamics studied by FMR

CoFeB(6nm)/Pd(t) bilayers were grown at room temperature on thermally oxidized Si
and on Kapton® substrates at rates of around 0.07 nm/s in a chamber with a base
pressure lower than 2×10−8 Torr, the Ar working pressure during sputtering was 1mTorr.
The series consists in a 6 nm thick CoFeB �lm capped by a Pd layer of various thicknesses
(tPd = 2, 4, 6, 8, 12, 20 and 30 nm). This series allow the determination of both the spin
mixing conductance (g��

eff ) and of the spin di�usion length (`SD) through the analysis of
the FMR linewidth as function of tPd. As seen in the small introduction paragraph, the
determination of g��

eff and `SD requires knowing precisely the saturation magnetization
MS and the Landé factor (g) that is related to the gyromagnetic ratio γ. The gvalues
can be easily obtained by performing out-of-plane FMR measurements. Indeed, in �rst
approximation, the uniform mode frequency in out-plane-plane geometry for a thin �lm
is simply equal to[24]:

f⊥ =
( γ

2π

)
(H − 4πMeff ) (4.6)

In this equation, 4πMeff = 4πMs−H⊥ whereH⊥ is an out-of-plane magnetic anisotropy.
The g-values are then obtained by determining the slopes of the di�erent experimental
out-of-plane frequency dependencies since the slopes correspond to γ/2π. The analysis
of the di�erent slopes in the out-of-plane f(H) dependencies give a γ value that is al-
most thickness independent and therefore, a unique value of γ = 31.3 GHz.kOe−1 will
be used during our analysis. Concerning MS , it should be noted here that the precise
determination MS with solely FMR measurements is almost impossible because it is dif-
�cult to discriminate an out-of-plane magnetic anisotropy from the demagnetizing �eld
resulting from the geometry of the thin �lm geometry (Hdemag = 4πMS). This is the
reason why we have combined our FMR data with VSM (Vibrating Sample Magnetom-
etry) measurements. From VSM measurements, we found a saturation magnetization
of about MS = 800 ± 50 emu.cm−3 for all �lms and we have deduced from the FMR
measurements the presence of a more or less weak out-of-plane anisotropy (around 0.3
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a) b) 

Figure 4.5: Variation of H⊥ (a) and Hu (b) as function of the Pd thickness for the
CoFeB/Pd bilayers on Si and Kapton substrate deduced from the out-of-plane
frequency dependencies (a) and from the in-plane angular dependencies (see
�gure 4.6). The dashed lines are guide for the eyes.

kOe for Si substrate and 2 kOe for Kapton® substrate) which will not be discussed later
because of its random character as function of the Pd thickness and because it does not
enter in consideration in the determination of g��

eff and `SD. Figure 4.5-a) presents the
variation of the H⊥ as function of the Pd thickness; as previously discussed, the �lms
deposited on Kapton® present a more intense out-of-plane anisotropy that is most prob-
ably due to the presence of roughness at the Kapton®/magnetic interface that leads to
an inhomogeneity of the demagnetizing �eld and in �ne to a lower out of plane resonance
�eld.
As presented in the small introduction of this section, the spin pumping phenomenon
can be �directly� measured though the analysis of the in-plane FMR linewidth that is
related to the magnetic damping. This last parameter controls the speed at which the
magnetization of a ferromagnetic medium can be reversed or reoriented and therefore
constitutes an important technological parameter. Information on damping, and there-
fore on the relaxation mechanisms, can be obtained by measuring the FMR linewidth
in the small magnetization precession amplitude regime. Indeed, the FMR linewidth is
caused by two mechanisms: the intrinsic damping (the so-called Gilbert damping) of the
magnetization and extrinsic contributions (such as two magnons scattering, mosaicity,
...). Generally, only the extrinsic contributions are eventually tunable. The deconvolu-
tion between intrinsic and extrinsic contributions can be done by performing in-plane
angular and frequency dependencies FMR measurements. Indeed, the Gilbert damping
contribution to the linewidth is in principle isotropic while the extrinsic ones depend on
several parameters such as the thickness of the �lms, their crystallinity, ... that can be
separately determined by �nely analyzed the angular and frequency dependencies of the
FMR linewidth. However, since the aim of this illustrative study is the determination of
g��
eff and `SD, we will simply choose the in-plane direction where these extrinsic contribu-
tions are the weaker to determine the apparent damping parameter assuming that in �ne
they will be almost zero (or very minimal). However, we will see that this assumption
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Si/Pd(2nm) Si/Pd(4nm) 

Si/Pd(8nm) Si/Pd(30nm) 

Figure 4.6: Variation of the resonance �eld (Hres in �lled symbols) and of the peak to
peak FMR linewidth (∆Hpp in open symbols) as function of the in-plane
angle for di�erent values of the Pd thickness (2, 4, 8 and 30 nm) for the
CoFeB/Pd bilayers on Si substrate. The driving driving frequency is �xed at
8 GHz.

is not totally justi�ed for the systems deposited on Kapton® probably because of the
higher roughness of the �lms when Kapton® is used as a substrate. Figure 4.6 presents
typical in-plane angular dependencies of the uniform precession mode: resonance �eld
Hres as function of ϕH (�lled red symbols) and the associated linewidth ∆Hpp variation
as function of ϕH (open red symbols). For clarity, only data from the Si substrate are
represented. One can note the presence of a uniaxial anisotropy �eld in all cases, the evo-
lution of this in-plane uniaxial anisotropy Hu amplitude as function of tPd is represented
in �gure 4.5-b) for both substrates. One can note higher values for the system deposited
on Kapton® as compared to the system deposited on Si. Indeed, for a Pd thickness
of 30 nm, we measure Hu ' 65 Oe and Hu ' 40 Oe, respectively. Gueye et al. [?]
already observed this phenomena in ferromagnetic �lms deposited on polymer substrate
and they correlate this e�ect to to the magnetostriction character of the ferromagnetic
medium combined with the slight curvature of the substrate during deposition and even-
tually during subsequent manipulations. This phenomenon, although slight, induces an
important in-plane anisotropy �eld if the magnetostriction is signi�cant.

The associated frequency dependencies for a magnetic �eld applied along this in-plane
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Si/Pd(2nm) Si/Pd(4nm) 

Si/Pd(8nm) Si/Pd(30nm) 

Figure 4.7: Variation of the uniform precession mode frequency as function of an in-plane
applied magnetic �eld for the same bilayers than in �gure 4.6. The symbols
refer to experimental data while the solid lines are �ts to the experimental
using equation 4.7.

direction giving the minimal ∆Hpp are illustrated in �gure 4.7, where the continuous
lines are �ts to the experimental data. These dependencies have been �tted using the
following relation of the uniform precession mode for an in-plane applied magnetic �eld
with the presence of a uniaxial anisotropy �eld Hu[23]:

f‖ =
( γ

2π

)√
(H cos (ϕ− ϕH) +Hu) (H + 4πMeff +Hu) (4.7)

Finally, from these frequency dependencies, we have extracted the ∆Hpp variation as
function of the frequency. The results are presented in �gure 4.8-a) for the thinner and
thicker thickness of Pd (2 nm and 30 nm) in both substrates. It is worth mentioning
that, for clarity, we have extracted the frequency independent extrinsic residual linewidth
(∆Hpp

0 ) contribution that is represented as an insert in �gure 4.8-a). This value varies
from a few Oe to several tens of Oe, especially for samples in Kapton substrate. This
is most probably due to the higher roughness at the Kapton®/magnetic interface. In
�gure 4.8-a), the observed linear behavior con�rms the main intrinsic contribution to
damping. Indeed, some of extrinsic contributions are also frequency dependent such
as the two magnons scattering contributions that leads to non linear behavior in the
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∆Hpp variation as function of the frequency. As a result, to extract the Gilbert damping
constant α, we suppose that ∆Hpp presented in �gure 4.8-a) is solely due to Gilbert
damping and can be written as[129]:

∆Hpp(f) =
2√
3

2π

γ
αf (4.8)

In addition to a higher mean value of ∆Hpp
0 for Kapton® systems, the di�erence between

the quasi-absence of a Pd (2 nm) and a thick layer of Pd (30 nm) is not as obvious as with
Si systems. Indeed, the slope of ∆Hpp(f) is almost divided by two for Si systems (see
�gure 4.8-a) ) while it is almost constant for Kapton ones. Finally, by using equation 4.8,
we have deduced the variations of α as function of tPd. These latters are represented in
�gure 4.8-b) for both systems. We have the con�rmation that the variation is very weak
for Kapton® while it is more clear in the case of Si systems. However, for a thickness
of 30 nm, the values of both systems seem to converge. This reveals that the Gilbert
damping constant increases linearly with 1/tPd due to the spin accumulation current
induced in Pd by the FMR precession of the magnetization and thus a decrease of the
angular momentum. The amount of spin pumping is closely related to the spin orbit
coupling through the spin �ip relaxation time and the interface quality (g��

eff ), which we
aim to determine. Finally, we have used equation 4.5 to �t the data; the continuous lines
in �gure 4.8-b) correspond to the best �t to experimental data. The deduced values for
`SD and g��

eff are as follow: `SD ' 1.11 nm (respectively `SD ' 5.22 nm) for Kapton®
(respectively Si) system and g��

eff = 6.55 nm−2 (respectively 5.9 nm−2 ).

4.2.3 Magnetostriction coe�cient determination

Initially, we wanted to study the e�ect of an applied elastic strain on the spin-orbit cou-
pling and in �ne on the spin pumping e�ciency of this system. The obtained results are
not conclusive and we did not observe any signi�cant evolution of the FMR linewidths as
a function of the applied elastic strains. In what follows, we present a methodology which
was developed during M. Gueye's thesis and which �nally allows to determine the mag-
netostriction coe�cient of thin ferromagnetic �lms deposited on polymer substrates[149].
Indeed, the determination of the magnetostriction coe�cient is also an important param-
eter if we want to quantitatively analyze the results obtained in arrays of nanostructures.
The determination of the magnetostriction coe�cient was carried out by making the
assumption of elastic and magnetoelastic isotropy (which is justi�ed in all the samples
presented in this manuscript). To do this, we glued the �lm/substrate system onto a
PZT actuator[149, 99]. The idea is to record resonance spectra at di�erent strain states
by imposing a voltage on the piezoelectric actuator. The transmission of planar defor-
mations from the actuator to the thin �lm is measured by digital image correlation; for
thin �lms 100% of the in-plane strains are transferred. The di�erent stress states have
been obtained by applying a voltage from 0 V to 100 V in steps of 10 V[99, 25].
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a) 

b) 

Figure 4.8: a) Peak to peak FMR linewidth variation as function of the frequency of the
CoFeB/Pd bilayer systems with a the thinner and thicker Pd thickness (2
and 30 nm, respectively) for both substrate, red symbols are experimental
data from the Si substrate while green symbols are data from the Kapton
substrate. The open symbols correspond to tPd = 30 nm while the �lled ones
correspond to tPd = 2 nm. The magnetic �eld is applied in the direction
where ∆Hpp is minimal (see �gure 4.6). The solid lines correspond to linear
�ts. The ∆H0 contribution to the linewidth were systematically substracted
for a more easier comparison, this contribution is represented in the insert
of this graph for all thickness where the variation of ∆H0 as function of tPd
is plotted for both substrates (the dashed lines are guide for the eyes). b)
Variation of the Gilbert damping as function of tPd deduced from a) using
equation 4.8. Symbols refer (red for Silicon substrate and green for Kapton
one) to experimental data while solid lines are �ts using equation 4.5.

90



4 Experimental methods

a) b) 

Figure 4.9: a) Typical FMR spectra of the CoFeB(6nm)/Pd(20nm)/PZT-actuator sys-
tem showing an energy shift when a voltage is applied to the piezoelectric
actuator. b) Resonance �eld shift (δHres ) as a function of the applied voltage
for the same system. The solid line corresponds to the adjustment obtained
using equation 4.9 with λ = 17.5× 10−6.

Figure 4.9-a) shows two typical spectra of the CoFeB(6nm)/Pd(20nm) system in absence
of voltage (0 V) and in presence of an applied voltage (100 V) recorded under similar
conditions: driving frequency of 6 GHz and the magnetic �eld applied along the main
axis of the PZT actuator. A clear energy shift is observed when a voltage is applied.
We then de�ne this resonance �eld shift as δHres = Hres(V ) − Hres(0). This shift is
negative for all the thin �lms studied and already constitutes a �rst result. Indeed, we
can deduce from this that the magnetostriction coe�cient λ is positive. As a matter of
fact, the magnetoelastic energy for a thin �lm subjected to a uniaxial stress σxx (even
if it is slightly biaxial here) can be written: Fme = −3

2λ(α2
x − 1

3)σxx[16, 25] where αx is
the magnetization direction cosine. Thus, a magnetoelastic �eld ~Hme = −~∇ ~MFme can
be introduced. For positive λ and σxx values, this �eld is aligned along the main axis
(x) of the PZT actuator. This induces an easy axis for the magnetization along x. This
ultimately induces a decrease of Hres when the �eld is applied along x (ϕH = 0) and an
increase in Hres when the �eld is applied along y (ϕH = π/2) as experimentally observed.
The quantitative determination of λ is possible by �tting the evolution of δHres as func-
tion of the applied voltage. This evolution is shown in �gure 4.9-b) for the CoFeB(6nm)/Pd(20nm)
system. The adjustment of this (continuous line) was possible by introducing the full form
of the energy in the formulation of Smith and Beljers (Fme = 3

2λ
(
(α2

x − 1
3)σxx(V ) + (α2

y − 1
3)σyy(V )

)
and using the isotropic Hooke's law to connect the components of the stress tensor
(σxx(V ), σyy(V )) to the the strain tensor components of (εxx(V ), εyy(V )). The values of
the Young's modulus and the Poisson's ratio are 160 GPa and 0.3, respectively. Under
these conditions, the resonance �eld is given by the expression[16, 25]:

Hres =

√
(2πMS)2 +

(
2πf

γ

)2

+H1H2 − 2πMS −
3λ

MS
(σxx − σyy) (4.9)
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Figure 4.10: a) Photo of the multi-target apparatus from AJA International (NUS Singa-
pore, Pr. Adeyeye's group). b) Sketch showing the interior of the deposition
chamber with 3 targets (instead of 6 targets).

where H1 = 3λ
MS

(
σxx sin2 ϕ− σyy cos2 ϕ

)
and H2 = 4πMS+ 3λ

MS

(
σxx sin2 ϕ− σyy cos2 ϕ

)
.

In addition, ϕ is the angle between the main axis of the PZT actuator and the magnetic
�eld (here ϕ = π/2). In this expression, the only unknown parameter is the magne-
tostriction coe�cient λ which can be determined by �tting the experimental data to this
model. We found a value of λ = 17.5× 10−6.

4.3 Nanofabrication techniques

In this section, we brie�y describe the di�erent nanofabrication techniques that have been
implemented to obtain the arrays of magnetic nanostructures studied during this thesis.
Two complementary technique have been employed: the interference lithography (IL) and
the nano-stencil lithography (SL). Before presenting those nanofabrication techniques, we
present in a concise way the deposition of ferromagnetic thin �lms on polymer substrate.
Indeed, for each nanostructure arrays, a thin �lm of the same thickness was also deposited
and which will serve as a reference during the various analyzes.

4.3.1 Elaboration of thin �lms on polymer substrates

The deposition of our thin �lms were made using a multi-target apparatus from AJA
International (see �gure 4.10-a)). The deposition chamber (50 liters) contains 6 target
holders which each have their own shutter. This allows a better control when multilayer
systems are fabricated. The substrate is placed on a support �xed by a rotating shaft,
this allows better control of deposits in the development of multilayer systems. The
substrate is placed on a support �xed by a rotating shaft, this allows for multi-target
deposition uniform in chemical composition along the thickness, and those by adjusting

92



4 Experimental methods

the rotation speed of the substrate. A sketch showing 3 targets is represented in �gure
4.10-b)[150, 151].
The thin �lms were deposited on 125 μm thick Kapton® substrates. Before placing
the substrates inside the chamber, it is necessary to clean them. Indeed, the Kapton®
sheets have been handled during cutting and given their electrostatic properties, they
tend to capture impurities. In order to avoid any contamination, these substrates were
cleaned in a clean room. They were immersed in Isopropanol in a beaker and placed in
an ultrasonic bath for 10 minutes. Following this, they were cleaned using distilled water
and a nitrogen gun, before being stored in a clean plastic case. The deposition were
made under vacuum (residual pressure of 2×10−8 Torr), at an argon pressure of 1mTorr.
Furthermore, the substrates were once again cleaned using a plasma (plasma etching)
(Ar+O2) at 3 mTorr for 120 seconds just before the deposition. This in order to eliminate
any organic residues and improve the adhesion of the �lms to the substrate[152].

4.3.2 Interference lithography

Interference lithography is a mask-less nanofabrication technique, which has been used
widely to synthesize large area magnetic nanostructures. The basic principle of IL in-
volves the use of interference patterns generated from two obliquely incident beam paths
(i.e. direct and re�ected beams) to expose a photoresist layer. The patterned area and
resolution are related to the beam source diameter and wavelength respectively[153, 154].
The IL method allows multiple exposure steps to form a speci�c pattern on a resist. For
example, in order to fabricate dot (or antidot) arrays, a second exposure after rotating
the substrate through 90° is needed[154].

A schematic showing the principle of interference lithography is presented in �gure 4.11-
a). To generate interference fringes on the surface of the photosensitive resin, the sub-
strate is placed on an arm of a Lloyd's mirror interferometer. The second arm of the
interferometer contains a square aluminum mirror. The two arms of the interferometer
are exposed to a continuous 325 nm beam generated by a Helium-Cadmium (He-Cd)
laser (Λ = 325 nm). The laser beam is focused through a lens into a 10 µm diameter
hole which helps eliminate noise and provides a Gaussian pro�le to the beam. After pass-
ing through this spatial �lter, the beam propagates towards the sample. The light from
the source beam interferes with the light re�ected from the mirror to form a standing
wave pattern with alternating maxima and minima of intensities. The periodicity of this
alternation is equal to[155, 156, 157]:

p =
Λ

2 sin θ

It is proportional to the half-wavelength of the laser (Λ/2) and is inversely proportional
to the sine of the relative angle θ of the two beams[155]. Figure 4.11-b) displays a typical
atomic force microscopy (AFM) image of the top surface of an array of Ni80Fe20 on a
Kapton® substrate fabricated using the IL process. A pro�le showing the periodicity
of the array is presented in �gure 4.11-c). The obtained periodicity is around 600 nm
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Figure 4.11: a) Schematic of the laser interference lithography setup showing an UV
Laser, a beam shutter, a convergent lens (LS), a pinhole (PH) and the
Lloyd's mirror interferometer. b) AFM image of an array of Ni80Fe20

nanowires (rectangular cross section) fabricated using the IL process. The
periodicity is around 600 nm with a nanowire width of about 400 nm. c)
Pro�le (height as a function of the distance) corresponding to the white
line in image b) highlighting a thickness of around 40 nm for this array of
nanowires.

(nanowire width: 400 nm with an interspacing of 200 nm). To obtain this array of
nanowires, a 127.5 µm thick Kapton® layer was �rst spin coated with an Ultra-i 123
I-Line positive photoresist and then mounted on one arm of a Lloyd's-mirror Interfer-
ometer. The interference between the light from the source beam and the light re�ected
from the mirror form a standing wave pattern with alternating maxima and minima of
intensity. After exposition, the photoresist was developed in CD-26 from MicroChem
company for 45 seconds, then rinsed in DI water and dried using a nitrogen gun. In this
condition, a nanowire pattern is obtained on top of the Kapton® layer. Then, a 20 nm
Ni80Fe20 �lm was deposited using the RF sputtering at a �xed Ar pressure of 3 mTorr.
Lift-o� of the deposited �lm was carried out in isopropyl alcohol (IPA). Completion of the
lift-o� process was determined by the color contrast of the patterned Ni80Fe20 area[99].

4.3.3 Nanostencil lithography

Nano-stencil lithography (SL) is a high-resolution shadow-mask nanofabrication tech-
nique used for patterning surfaces at the micro and nanometer scales[158, 159, 160]. It is
a one-step technique that eliminates resist-related processing steps, which is common in
a standard lithographic process. Actually, it is exactly the same principle used in prehis-
toric frescoes on which handprint paintings have been found. Indeed, a stencil (membrane
with apertures) is placed (aligned if necessary) and clamped to a substrate. The clamped
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Figure 4.12: a) Schematics of the stencil lithography process: i) sketch of a patterned
membrane for stencil. For the sake of clarity, the pattern dimensions are
exaggerated. The stencil mask consists of a rigid part supporting a SiN
membrane on which the desired pattern is etched. ii) E-beam deposition
though the stencil mask. iii) The stencil mask is then removed. iv) An
array of antidots is obtained. b) AFM image of a square array of Ni80Fe20

circular dots fabricated using the nanos-stencil process. The periodicity is
around 2 µm with a dot diameter of about 1 µm. c) 3D AFM image of
four Ni80Fe20 dots. d) Pro�le corresponding to the white line in image a)
highlighting a thickness of 100 nm for this array of dots.
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set is placed in a deposition chamber where materials are evaporated through the sten-
cil's apertures onto the substrate as illustrated in �gure 4.12-a). SL is a very promising
approach for synthesizing high quality magnetic nanostructures without using solvent
and etching thus reducing contamination sources. It is particularly useful for fabricat-
ing complex and multilayer nanostructures at elevated temperature because no resist is
involved.
Figure 4.12-b) presents an AFM image of an array of Ni80Fe20 circular dots obtained
thanks to the nano-stencil process. It corresponds to a square array with a periodicity of
2 µm; the diameter of the dots is around 1 µm. Figure 4.12-d) corresponds to a pro�le
obtained from this image (white line in �gure 4.12-b)) highlighting the periodicity and
the thickness (100 nm) of this speci�c array. To conclude, �gure 4.12-c) presents a 3D
AFM image of four Ni80Fe20 dots.

96



5 1D arrays of ferromagnetic nanowires

submitted to almost homogeneous

strain

Contents

5.1 Magnetization dynamics in absence of applied strain . . . . 97

5.2 In situ FMR measurements . . . . . . . . . . . . . . . . . . . 100

5.3 Mechanical simulations coupled with magnetic analytical
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Strain heterogeneities in nanostructure/polymer substrate systems due to the lateral
patterning [161, 162, 163] can strongly in�uence the whole static and dynamic magnetic
response. Surprisingly, the quantization of these e�ects is still poorly reported in the
literature and must be studied in depth.
In this context, we have carried out experiments describing the evolution of the mag-
netic response by ferromagnetic resonance (FMR) during controlled in situ straining of
magnetic nanostructures deposited on Kapton® substrate. Therefore, large arrays of
Ni60Fe40 nanowires have been fabricated by interference lithography (IL) [164](see chap-
ter 2) and their behavior has been compared to continuous �lms of the same thickness (20
nm). The micromechanical tests have been performed thanks to piezoelectric actuators,
allowing a good knowledge of the macroscopic strains applied to the Kapton® substrate,
which have been measured by digital image correlation (DIC) . Moreover, numerical sim-
ulations based on �nite elements method (FEM) have been carried out to explain the
discrepancies observed between the di�erent systems. Especially, we have considered the
transferred strain rate from substrate to magnetic nanostructures, numerically calculated,
to adjust the magnetostatic model to the experimental data.

5.1 Magnetization dynamics in absence of applied strain

An in-plane angular dependence measurement of the resonance �eld was performed on
the nanowire arrays. Figure 5.1 shows the obtained results with the corresponding mod-
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Figure 5.1: Nanowire arrays Ni60Fe40 angular dependence of the measured resonance �eld

at 8 GHz. The perpendicular con�guration in which the applied �eld is along
the nanowires width corresponds to 90 and 270 degrees.

elization of the magnetic resonance �eld. The initial orientation in the present case
correspond to a magnetic �el applied in the parallel direction of the nanowires and the
a radiofrequency excitation in the transversal direction. One can see a splitting point
when the applied �eld is perpendicular to the principal axis of the nanowires[164, 165].
This spiting is extended over 6 or 7 degrees besides of the perpendicular con�guration
and consist of the appearance of a quanti�ed mode[164, 166, 167].

As described in the second chapter, micromagnetic simulations were performed using
OOMMF software. The methodology used is always the same, the equilibrium situa-
tion is �rst calculated and used as the starting point for the dynamical response. A
2400 ×2400 ×20 nm3 patterned area of four nanowires was created using the OOMMF
mesher. A size of meshing cuboid element of 10 nm3 has been chosen during the simu-
lation for both the static and dynamic studies. The two situations, perpendicular and
parallel con�gurations, have been simulated. Figure 5.2 shows some of the calculated
spectra obtained in the case of a steady �eld applied in the perpendicular direction of
the nanowires ( transversal direction to the length of the nanowires).

The simulations are compared to the experimental results obtained in the parallel and
perpendicular con�gurations in FMR. As one can see in �gure 5.3, our simulations are
in a good agreement with the experimental results for both the principal modes (red and
black scatters) and the �rst quanti�ed mode (white scatters). There is also a frequency
softening of the principal mode and the quanti�ed one near 400 Oe in the experimental

98



5 1D arrays of ferromagnetic nanowires submitted to almost homogeneous strain

0 . 0 0
0 . 0 4
0 . 0 8
0 . 1 2
0 . 1 6

Int
en

sity
 (a

. u
.)

 1 0 0 G

0
4
8

1 2  5 0 0 G

0

3

6  7 5 0 G

0

3
 1 0 0 0 G

0

3

6  1 2 5 0 G

0

3

6  1 5 0 0 G

0

3

6  1 7 5 0 G

2 4 6 8 1 0 1 2 1 4 1 60

2

4

F r e q u e n c y  ( G H z )

 2 0 0 0 G

6 8
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Figure 5.3: a)Mapping of the simulated frequency dependence in the perpendicular con-
�guration and the experimental measurements corresponding to the two con-
�gurations, perpendicular and parallel to the nanowires length. For the sake
of clarity, simulations in the parallal con�guration is not shown here. b) The
corresponding frequency dependance represented in dots. The continuous
lines correspond to the �tting.

results which was also predicted by the simulations[168]. However, the third mode and
its softening (among 2000 Oe) are not visible in the experiment despite its good visibility
on the numerical results. This invisibility can be explained in two di�erent way, the
�rst supposition is that the spatial extension of the concerned mode, which is localized
in the corner sides of the transversal nanowire section, is very small and this give rise
to small intensity peak in FMR spectra. The second supposition, is the most plausible
explanation, is that the nanowire section is not rectangular but it is more rounded corner
section or rough edges [169, 170, 171].

5.2 In situ FMR measurements

A 3D schematic of the formed heterostructure is presented in �gure 5.4-a). Two di�erent
systems have been studied. In the �rst one, the nanowires axis is aligned along the
principal axis of the actuator (x direction, see sketch in �gure 5.5-b)), this system is
de�ned as �Parallel Nanowires� thereafter. The second one is de�ned as �Perpendicular
Nanowires� with the nanowires axis aligned along y direction (see sketch in �gure 5.5-
c)). During the experiments, the static magnetic �eld was applied along the piezoelectric
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Figure 5.4: a) Schematic of Ni60Fe40 nanowires array on a Kapton® substrate, glued

on the top of a piezoelectric actuator (green). ~H corresponds to the applied
magnetic �eld while ~hrf and ~erf are the radio-frequency �elds generated by
the frequency generator (10 MHz-20 GHz) and the stripline. ~H was applied
along the main axis (x) of the piezoelectric actuator and perpendicular to
~hrf . b) Mean in-plane strains (εactuatorxx and εactuatoryy ) at the back surface of
the actuator as calculated using DIC technique [17]. Red and blue symbols
correspond to εactuatorxx and εactuatoryy , respectively. The applied voltage is
ranging from 0V to 100V with increments of ∼ 5 V.

actuator. The principle of these in situ measurements is to deform the magnetic media
through the voltage applied to the actuator, the strains being transmitted from the
actuator to the substrate supporting the magnetic media [31].

Figure 5.5 displays typical FMR spectra obtained at 0 V (green spectra) and at 100
V (red spectra) for the three systems under a driving frequency f = 8 GHz. A small
sketch is added in each graph. For clarity, the spectra have been horizontally shifted
by the resonance �eld in absence of applied voltage. In all cases, we clearly observe a
resonance �eld shift (δHres = Hres(0V )−Hres) of the spectra. However, the amplitude
of this shift varies from a system to another. It is maximal (δHres ∼ 100 Oe) for the
continuous �lm and minimal for the �Perpendicular Nanowires� system (δHres ∼ 50 Oe).
In addition, we note the presence of two modes in �gure 5.5-c). This is due to the lateral
size reduction that leads to wave-vector quantization (qn) of the propagating spin wave
[166, 167, 88]. Thereafter, these modes will be called n = 1 and n = 2 modes. These
modes are the so-called �bulk modes� and are localized in the entire cross section only
excluding the nanowire edges [172, 173]. As in ref. [164], we observe that the mode
n = 1 is always observable while the mode n = 2 is only observable when the applied
�eld is perpendicular to the nanowires. This is the reason why we observe only one mode
(n = 1) in the spectra of the �Parallel nanowires� system (see �gure 5.5-b)). It should be
mentioned that if we apply the magnetic �eld along y direction, we observe the presence
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Figure 5.5: a-c) Typical FMR spectra obtained at 0 V (green) and under 100 V (red) for
the continuous �lm (a), the �Parallel Nanowires� (b) and the �Perpendicular
Nanowires� (c) systems. Small sketches representing the �Parallel Nanowires�
and the �Perpendicular nanowires� systems are drawn.

of the two modes in the �Parallel Nanowires� system and one for the �Perpendicular
Nanowires� system (and vice versa). Interestingly, the δHres variations corresponding to
the two modes are very close one to each other.

Keeping in mind that the resonance �eld shift principally depends on the magnetostric-
tion coe�cients and the saturation magnetization (MS), we assume here an isotropic
magnetostriction coe�cient (λ) since the elastic and magnetoelastic properties are con-
sidered as isotropic. Indeed, the fabricated �lms and nanowires have been checked to
be isotropic from a microstructural point of view (polycrystalline microstructure with a
random orientation of the grains). In these conditions, the magnetoelastic energy can be
written as[31]:

Fme =
3

2
λ

((
α2
x −

1

3

)
σxx(V ) +

(
α2
y −

1

3

)
σyy(V )

)
(5.1)
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σxx(V ) and σyy(V ) being the in-plane principal stress tensor component in the magnetic
medium while αx and αy are the direction cosines of the magnetization. The relations
between the stress components (σxx(V ), σyy(V )) and the strains (εxx(V ), εyy(V )) of the
magnetic medium are given by the (isotropic) Hooke's law with the Young's modulus and
the Poisson ratio of the magnetic phase equal to Yf = 205 GPa and νf = 0.3, respectively.
These parameters have been calculated by homogenization method [174] from the bulk
elastic coe�cients of Ni60Fe40 material taken from ref. [175]. Finally, the relation between
strains and voltage is given by data on �gure 5.4-b). In these conditions, the resonance
�eld for a magnetic �eld applied along x−axis is given by [16, 176, 149, 177]:

Hres =

√(
2πMS +

3λ

MS
σyy

)2

+

(
2πf

γ

)2

− 2πMs −
3λ

Ms
(2σxx − σyy) (5.2)

Where γ is the gyromagnetic factor. We have carried out standardized FMR measure-
ments in absence of applied voltage (not shown here) on the �Continuous Film� system to
determine MS = 950 emu.cm−3and γ = 1.822× 107 Hz.Oe−1 values. Moreover, from the
δHres variation as a function of the applied voltage, it is possible to quantitatively deter-
mine λ [17, 10, 31] in the case of continuous �lm. Indeed, being given Yf , νf , MS and γ
values, the only �tting parameter is λ. Under these conditions, the red continuous line in
�gure 5.6 corresponds to a �t (using equation 5.2) of the experimental data for the �Con-
tinuous Film� system allowing the determination of λ ' 11.5× 10−6(0.5× 10−6). More
details about magnetostriction coe�cient determination can be found in ref. [176, 10].

5.3 Mechanical simulations coupled with magnetic
analytical model

In ref. [164], we have veri�ed that MS is not in�uenced by the lithography process,
one may conclude to similar behavior for λ. Thus, the observed dependence of δHres

to the system should be imputed to another physical process. We think it is due to a
lower transmission of the in-plane strains from the polymer substrate to the magnetic
media in the case of nanowires systems. To con�rm this assumption, we conducted
numerical simulations with COMSOL Multiphysics® software (Structural Mechanics
Module). Figure 5.7-a) gives a sketch of the simulation main idea and �ndings. Due
to limited RAM memory and based on mechanical observations, the substrate has been
satisfactory approximate as a cuboid of dimensions (10 × 10 × 10 μm3) whereas the
simulated arrays of nanowires are thus limited to around 15 nanowires. Moreover, we
veri�ed that it is acceptable to consider such limited number of nanowires as there is no
evolution of the numerical results after adding supplementary nanowires. Figures 5.7-
b-e) show the distribution of the transmitted in-plane strains (εxx and εyy) at a given
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Figure 5.6: Resonance �eld shift δHres variation as function of the applied voltage for the
di�erent systems. Full lines are calculated lines using αxx and αyy determined
from COMSOL Multiphysics® simulations (see text).

Sample αxx (%) αyy (%)
Continuous �lm 100.0 100.0
Parallel nanowires 97.8 62.5
Perpendicular nanowires 27.0 97.7

Table 5.1: Strains transmission factors αxx and αyy for the di�erent systems.

deformation state of the substrate; here εsubstratexx = 1×10−3 and εsubstrateyy = −0.5×10−3

which correspond to the deformation state at 100 V[177, 178, 17].

The numerical simulations show that the strains in the nanowires and the substrate can
be very di�erent in contrary to the continuous �lm [179]. Two interesting cases can be
highlighted: (i) when we probe the strain component tangent to the nanowires, e.g. εxx
if the nanowires are aligned according to x (�gure 5.7-d)) and εyy when the nanowires are
aligned along y direction (�gure 5.7-c)), we �nd the transmission of the strains is almost
perfect (between 97% and 98%), (ii) when we probe the strain component perpendicular
to the nanowires, e.g. εyy when the nanowires are aligned according to x direction (�gure
5.7-e)) and εxx if the nanowires are aligned along y (�gure 5.7-a)), then the transmission
of strains is much worse. However, we can see from �gure 5.7-f) that the transmitted
in-plane strains are almost homogeneous inside the nanowires. Therefore, whatever the
location of the magnetic modes in the nanowires, the strain undergone remains about the
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Figure 5.7: a) Sketch of a simulated system. The imposed εsubstratexx and εsubstrateyy are
the ones determined from DIC measurements. b-e) Maps of the calculated
in-plane strains (εxx and εyy); b) and d) correspond to εxx maps while c)
and e) correspond to εyy maps. f) Pro�les of the calculated in-planes strains
extracted from the corresponding lines in graphs b-e). The imposed strains
are εsubstratexx = 0.1% and εsubstrateyy = −0.05%.
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same. In addition, as previously mentioned, the two probed modes here are not �edge�
modes but rather �bulk� ones [172, 173].
It is undoubtedly the poor transmission of strain with respect to the components normal
to the nanowires which explains the disparities of magnetoelastic behavior between the
continuous �lm and the two geometric con�gurations of the nanowires. Thus, we can
de�ne two factors that express the mechanical transmission rate between the two average
values, namely:

αxx =
εxx

εsubstratexx

and αyy =
εyy

εsubstrateyy

(5.3)

Table 5.1 summarizes the extracted αxx and αyy factors. The use of these factors is
meaningful only if the strains can be supposed as homogeneous inside the nanowires, as
in the present case. Now, incorporating these factors into the equation governing the
resonance �eld to correct the transmitted strains, αxxεsubstratexx (V ) and αyyεsubstrateyy (V )
instead of the previous ones for the arrays of nanowires and MS , λ, γ, Yf and νf of the
�lm system allow us to obtain �ts in �gure 5.6-b). One can note the good agreement
between the experimental data and the calculations.
The numerical simulations allowed us to interpret the experimental data obtained by
ferromagnetic resonance. Thus, the large di�erences in resonance �elds obtained for the
continuous thin �lm and for the nanowires in di�erent geometries are closely related to the
e�ects of discontinuities with respect to the strain components. This purely mechanical
e�ect, from the strong mechanical contrast between Ni60Fe40 and Kapton®, could be
exploited in other studies. Indeed, one can imagine being able to optimize the distribution
of these material discontinuities to control both the desired magnetic properties while
minimizing the harmful e�ects of strains in highly stretchable systems. The methodology
used for nanowires can be easily extended to two-dimensional nanostructures for which
one can consider small strain transmission in any in-plane (xOy) direction. Indeed, the
relevant parameter for a 2D nanostructure adherent to a �exible substrate is the ratio
between its thickness (t) and its lateral dimensions (L for a square dot). The higher
is this ratio (t/L), the lower are the strain transmission factors (αxx and αyy). To
illustrate this purpose, we have calculated the mechanical transmission rates for arrays
of square nanostructures (nanodots) with various aspect ratios during a homogeneous
uniaxial tensile test with εsubstratexx = 0.03%. Moreover, to go further in the analysis, we
considered two di�erent materials for the substrate, namely Kapton® and PDMS, which
are characterized by very di�erent Young's moduli.
Thus, we have performed FEM simulations on a �nite array of Ni nanodots (with L = 200
nm) �xed at the top surface of a polymer substrate (either PDMS or Kapton®) of
thickness of 5µm. It should be noted that the substrate thickness has substantial e�ect on
the strain transmission only if it is of the same order of magnitude than the nanostructure
dimension. For simplicity, isotropic mechanical behaviors have been considered for the
two chosen substrates and for the nanodots. The Young's modulus of the nanodots is
�xed at 200 GPa with a Poisson's ratio of ν = 0.3 while it was �xed at 4 GPa and
7.5× 10−4 GPa for Kapton® (with ν = 0.3 ) and PDMS (with ν = 0.49), respectively.
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Figure 5.8 displays the strain transmission factors versus the nanostructures aspect ratio.
In the case of Kapton® substrate, αxx and αyyare relatively high for thinner (1 nm)
simulated nanostructures (αxx ∼ 0.75 and αyy ∼ 0.55) and decrease very sharply when
increasing the aspect ratio (t/L). For example, if the aspect ratio t/L > 5% (t > 10
nm in our case), then the strain transmission factors are inferior to 0.1. This means
that bidimensionnal nanostructuration on Kapton® substrate can be preserved from
strong magnetomechanical e�ects for relatively moderate thicknesses. Moreover, in the
case of PDMS substrate, the strain transmission factors are almost zero already from
the lower values of the aspect ratio (t/L). This is explained by the PDMS Young's
modulus relatively low value. All these e�ects are explicitly illustrated by 3D maps
of εxx in the whole simulated material system (see �gure 5.8, note that only the top
surface of the substrate is shown). We can clearly see from this �gure the e�ects, on the
strain distribution in the nanodots and their very close neighborhood in the substrate,
of both the substrate mechanical properties and the aspect ratio . These results are
consistent with recent experimental results [180]. Moreover they look similar to other
in-plane geometries like cylinders . As a consequence of these simulations, it can be
concluded that the 2D nanostructuration stands as a way to avoid eventual undesirable
magnetomechanical e�ects in sheapable magnetoelectronics devices [109], additionally to
the one consisting in prestretching an elastomeric substrate such as PDMS[181] .
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Figure 5.8: Simulation of a �nite array of nickel (Ni) nanodots deposited on the top
of a polymer substrate (either PDMS or Kapton®). The thickness of the
polymer substrate is 3 µm whereas the thickness of the nanodots is varied
from 1 to 200 nm (aspect ratio from 0 to 1). Typical 3D maps, where colors
encode x−component of the strain tensor, are shown. Note that only the top
surface of the substrate is shown for clarity. The graph corresponds to the
variation of the mean strain transmission factors (αxx and αyy) as function of
the nanodots thickness. Open and full symbols correspond to values obtained
with PDMS and Kapton®, respectively.
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One can imagine controlling separately these spatially localized spin wave modes by ap-
plying local magnetic �elds [182]. While it is not straightforward to control a magnetic
�eld at the scale of mode localization, it is possible to take advantage of the geometrical
(and thus mechanical [183]) heterogeneity to obtain a position-dependent magnetoelas-
tic �eld. To achieve this goal, antidot-type systems are well suited because an external
macro-strain will be periodically distributed in a non-homogeneous manner[184], as well
as the localization of magnetic modes [185, 186, 187, 188, 189]. This is all the more
the case as a supporting layer is compliant since it should accommodate the strain het-
erogeneities that are known to take place in holed structures [124]. Furthermore, the
di�erentiated sensitivity to the strain �eld of the magnetic modes may depend on the
orientation of the system with respect to the external strain.

we propose a concept using two levels for tailoring individually the magnetic modes,
e.g. the mechanical contrast between antidots and supporting layer and the geometrical
features of the system. This approach is still unexploited in the literature. It has been
validated by the study of strain �elds and magnetic mode energies in Ni60Fe40 antidot
arrays. In order to optimize strain heterogeneities, the antidots have been �rst fabri-
cated on a supporting compliant polyimide layer and then cemented onto a ferroelectric
substrate generating macroscopic strain (�gure 6.1). The correspondence between the
localization of mechanical and magnetic quantities was analyzed by numerical modeling
in order to predict the di�erentiated change in spin wave mode frequencies as a function
of the external strain (�gures 6.1a-b)). Magnetic antidot arrays present both magnetic
heterogeneities (through localized magnetic modes due to in-plane invariance break) and
mechanical ones (due to the presence of free surfaces and to the mechanical contrast
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Figure 6.1: Sketch of the two studied systems (magnetic antidots/Kapton®/PZT sub-
strate); the array is either aligned along x-axis of the PZT substrate (Square
Array -SA- system) in b) or it makes a 45° angle with respect to the x-axis
(Centered Square Array -CSA- system) in a). Illustration of magnetic mode
and strain �eld distributions mapping in a) and b), respectively . The map
corresponds to the pro�le (my component) of one of the studied magnetic
mode obtained with a static magnetic ~H applied along x in the CSA system
in a). A red color in the mapping means a high amplitude spin precession
while a blue color means zero amplitude. b) Example showing a mapping
of calculated strain �eld distribution (εxx component here) in the array of
antidots when an electric �eld is applied to the PZT substrate in the SA
system.
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between Kapton® and Ni60Fe40 material)[184, 190]. We have used double numerical
modeling to spatially locate the di�erent magnetic modes with their energies (6.1-a))
and to quantitatively determine the in-plane strain distributions (6.1-b)) in the antidot
arrays. Then, the local magneto-mechanical coupling can be estimated using a �clas-
sical� magnetoelastic formalism. The magnetic problem was solved by performing 3D
micromagnetic simulations thanks to OOMMF package [55] and the mechanical one was
solved by using COMSOL Multiphyics® software[92]. The experiments have been per-
formed by in situ ferromagnetic resonance (FMR) spectroscopy[191, 16, 26]. Analysis
of the data shows that the di�erent magnetic modes can have their frequency modi�ed,
the shift being strongly dependent on their localization (di�erence of several tens of %).
Furthermore, the rotation of the system as referred to the external strains (and magnetic
�eld) causes a strong modi�cation of this dependence since it changes the localization of
the magnetic modes and the mechanical strains. In the remainder of this paper, we �rst
present the experimental setup used and the methodology adopted to study the phenom-
ena of interest, then the magnetic behavior of the studied system is reported including
the numerical comparison. Then, the strain localization in the corresponding structure
is studied to �nally adjust a magnetoelastic model to reproduce the magnetic behavior
of the localized modes.

6.1 Localized magnetic modes in absence of elastic strains

Usual magnetic characterizations were carried out in the present study. Typically the
angular resonance �eld dependence and the frequency resonance dependence. Figure
6.2displays the angular dependence obtained at 8 GHz dynamic �eld frequency and
mostly three intense modes were pointed out. Similar study was carried out on hexagonal
antidot arrays with di�erent holes diameters and reported ref.[192] . Two major modes
have opposite angular dependencies (black and blue dots) and the third one is almost
linear and doesn't show high variation with respect to the applied �eld direction.

Depending on the angle between the antidots array and the main axis of the ferroelectric
substrate, two con�gurations have been studied. The �rst one has been obtained by
gluing the antidot array along the main axis (x−axis) of the ferroelectric substrate while
the second one has been obtained by gluing the antidot array at 45° with respect to
x−axis; a sketch of each con�guration is presented in �gures 6.1-a) and 6.1-b). Thereafter,
the �rst con�guration will be called Square Array (SA) system and the second one will be
called Centered Square Array (CSA) system. This two extreme con�gurations have been
de�ned in order to obtain signi�cantly di�erent strain heterogeneity maps, as described
in the following sections. Finally, for comparison, a reference 20 nm thick Ni60Fe40

continuous �lm has been also fabricated and studied.
FMR response of the antidot arrays was measured at room temperature by sweeping
the applied magnetic �eld in the range 0-2500 Oe at di�erent �xed frequencies (from 0.1
to 15 GHz). In �gure 6.3-b), a typical FMR spectrum recorded at 8 GHz from the SA
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Figure 6.2: Angular resonance �eld dependence of the studied antidot arrays. Measure-
ment was carried out at 8 GHz excitation �eld frequency with aimutal angle
vaying from 0 to 360 degrees.

system is presented. A multi-modal response (see stars) is clearly observed as compared
to the reference continuous �lm which presents a unique mode (not shown here). In
this spectrum, we observe two prominent peaks and two weaker ones (highlighted by a
zoom-in). This di�erence in intensity between peaks suggests that they originate from
fundamental resonance of di�erent spatial regions of the antidot system [193, 194, 195,
196, 169]. We have plotted the whole experimental frequency peak positions in �gure 6.3-
a) that are represented by open symbols. At low frequencies (below 6 GHz), some modes
(open black symbols) with very weak intensities are present at high magnetic �eld that
are generally due to a dynamic precession at the edge of the nano-holes [195, 197, 198]. At
higher frequencies (above 7 GHz), the two major peaks (blue and red stars in �gure 6.3-b))
are easily detectable in almost the entire range of frequencies (7-14 GHz) while the weaker
ones were only intermittently detectable, certainly due to their weaker initial intensity.
Micromagnetic simulations giving the frequency positions and relative intensities are also
presented in �gure 6.3-a) using a relative color mapping from 0 to 1. One can note the
good agreement between experimental and simulated data at a high frequency (above
7 GHz) while small discrepancies appear for the modes represented with black open
symbols. However, these discrepancies are not surprising since these modes are certainly
very localized (edge modes) and are known to be strongly sensitive to small defects
[170, 199, 171] (roughness of the nano-holes, small variation of the nano-holes diameter
or in the composition just near the nano-holes,...) that are di�cult to simulate precisely.
Similar results have been obtained in the CSA system. A typical spectrum recorded at
8 GHz is presented in �gure 6.3-e) showing again two pronounced peaks (red and blue
stars) and one weaker peak (green star). We note that the peaks are closer in term of
energy. Indeed, the di�erence between the two pronounced modes is ∼ 300 Oe for the
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Figure 6.3: Experimental and numerical results obtained with a magnetic �eld applied
along x-axis in absence of electric �eld for the two studied systems. a-c)
SA system and d-f): CSA system. a),d)) Frequency as function of the ap-
plied magnetic �eld. The colors correspond to the relative power spectrum
density obtained by micromagnetic simulations while the open symbols are
experimental data. b),e) Typical experimental spectrum recorded at 8 GHz,
the stars are used to identify the di�erent peaks. c),f) Spin precession am-
plitudes at H = 750 Oe (applied along x−axis) obtained by micromagnetic
simulations (spatial Fourier transform) showing the localization of the modes
identi�ed in the FMR spectra. The colors encode my component, the red
part re�ects a high precession amplitude while the blue one means zero pre-
cession amplitude. The stars inside the images correlate the mode pro�les
with positions in the FMR spectra (a) and d)).
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CSA system (see �gure 6.3-e)) and ∼ 800 Oe for the SA system (see �gure 6.3-b)). This
shrinking of the FMR spectra is con�rmed by the whole frequency dependence (see �gure
6.3-d)) where the experimental data are represented by open symbols. In addition, we
also note a permutation in the relative intensities between the higher frequency (blue star)
peak and the lower frequency (red star) one as compared to the SA system. For instance,
in �gures 6.3-b) and 6.3-e), the intensity ratio between the higher frequency peak and
the lower frequency one is Iblue

Ired
' 0.18 for the SA system whereas it is Ired

Iblue
' 0.19 for

the CSA system. In order to precisely determine the microscopic origin of each peak of
both systems (SA and CSA), we have used spatial Fourier transform imaging. The main
results are presented in �gures 6.3-c) and 6.3-f) where mappings of the spin precession
calculated for a magnetic �eld of 750 Oe are presented. The colors encodemy component,
the red part re�ects a high spin precession amplitude while the blue one means zero spin
precession amplitude. For both systems, all the modes correspond to spin excitation that
are localized in more or less extended regions.
Concerning the SA system, we have the con�rmation that the higher peak (red star) in
intensity corresponds to a mode localized in a broader region than the other ones. This
mode corresponds to a �spin wave� that extends through the antidot array and can be
considered as a backward volume type mode [198, 200]. Indeed, in �rst approximation,
an e�ective quantized wave-vector can be associated to this mode along x-axis, i.e. in the
direction of the applied magnetic �eld ~H (and to the static magnetization that is almost
homogeneous, at least above 500 Oe) [200]. On the other hand, the higher frequency
mode is related to the spin excitation located between neighboring nano-holes and can
be considered as a Damon-Eshbach-type mode [88, 201]. Indeed, in this case, an e�ective
quantized wave-vector can be associated to this mode along y-axis, i.e. in the direction
perpendicular to the applied magnetic �eld [200]. Concerning the CSA system, it is in-
teresting to note that higher and lower frequency modes possess pro�les quite resembling
those obtained for the SA system and can be explained if one remembers that the di�er-
ence between SA and CSA in the subsection is only a 45° rotation of the applied magnetic
�eld. Furthermore, one can note that the higher frequency mode (blue star) pro�le is
now more extended than the lowest frequency one, explaining the intensity inversion in
the FMR spectra. Finally, it is worth noting that the pro�le evolutions displayed for
SA and CSA systems show that the lower frequency mode pro�le is sharpened along x
(and presents an oscillatory pro�le along y) while the higher frequency one is broadened
along y. The e�ective wave-vector associated to these mode pro�les is thus enhanced for
the lower frequency mode (red stars) when switching from SA to CSA system while it is
reduced for the higher frequency mode (blue stars). Consequently these evolutions yield
an increase of the lower frequency mode energy and a decrease of the higher frequency
mode energy because of exchange contribution and can explain the closeness of the FMR
peak modes in the CSA system as compared to the SA one.
After this magnetic mode identi�cations, it is important to link it with the strain distri-
butions in the antidot systems induced by the application of an electrical voltage inside
the PZT substrate. This evaluation has been performed thanks to full-�eld modeling and
is presented in the next subsection.
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Figure 6.4: a-b) Sketches of the simulated systems, SA and CSA . The imposed strains to
the Kapton® layer εsubxx and εsubyy are the ones determined from digital image
correlation measurements in the continuous �lm system.c) Mean values of
in-plane strain components (εxx and εyy) measured in the �lm system and
calculated in the SA and CSA systems.

6.2 Heterogeneous strain �elds and the substrate/ �lm
mechanical contrast e�ects

As discussed in the introduction, the voltage induced strain �eld distribution is hetero-
geneous in our antidot arrays due to the presence of free surfaces and is enhanced by
the mechanical contrast between Kapton® and Ni60Fe40 material as we will see in this
subsection. We have �rst characterized the strains in the continuous �lm that are totally
transmitted between the PZT substrate and the top surface of continuous �lm by using
the Digital Image Correlation technique from optical tracking of the mottled surface;
more details about this technique can be found in ref. [17]. The deduced mean in-plane
strain components (εsubxx and εsubyy ) as a function of the applied voltage (by step at around
2 V) are presented in �gure 6.5-b) (blue and red circles). One can note that εsubxx is found
to be positive and εsubyy is found to be negative in the range (0-100 V) and that they vary
almost linearly. The maximum values at 100 V are found to be ∼ 0.1 × 10−2 for εsubxx

and ∼ −0.05× 10−2 for εsubyy . Moreover, non-linear and hysteretic behaviors for εsubxx and
εsubyy can be observed if the voltage is swept backward from 100V to 0V (not shown here)
due to the intrinsic properties of the PZT substrate [202]. DIC measurements performed
in the antidot systems show similar results. Indeed, the resolution of our DIC technique
was not su�cient to depict local strain heterogeneities at the surface of the antidot sys-
tems. This is the reason why we have decided to perform numerical simulations using
COMSOL Multiphysics® software [92].
Figures 6.4-a) and 6.4-b) show a schematic presentation of the simulated systems: SA
(a) and CSA (b). The strain values imposed on the Kapton® layer are those derived
from DIC measurements. We have applied four pairs of strains to the Kapton® layer
corresponding to applied voltage of 25, 50, 75 and 100 V. In the simulations, we assumed

115



6 2D arrays of ferromagnetic antidots submitted to heterogeneous strain

exx

x

y

eyy

exx

eyy

x

y

a) b)

c) d)
eyy

exx

Figure 6.5: 2D mapping of the in-plane strains (εxx and εyy) in the SA (a-b) and CSA
(c-d) systems. These maps have been obtained with imposed strains corre-
sponding to a voltage of 100V.

isotropic mechanical properties for both Kapton® (YKapton = 4 GPa for the Young's
modulus and νKapton = 0.3 for the Poisson's ratio) and Ni60Fe40 materials (YNi60Fe40 =
205 GPa and νNi60Fe40 = 0.3 obtained by a homogenization method from the bulk material
[174]). As experimentally observed by DIC, the mean in-plane strains calculated in the
antidot arrays are close to the one of the continuous �lm. Indeed, in �gure 6.5-b), we
have reported the calculated mean in-plane strains inside the antidot systems (square
symbols correspond to the SA system while stars correspond to the CSA system). In
addition, we have also estimated the mean strains for a continuous �lm of the same xy
dimensions, one can note that the calculated mean strains are also very close to the one
imposed by the Kapton® layer.

However, while the strain distributions are homogeneous in the continuous �lm, they are
very heterogeneous in the antidot systems. For instance, �gures 6.5-a-c) and 6.5-b-d)
show the calculated strain distributions at the top surface of the SA and CSA systems
under 100 V. We clearly observe local strain variations of several tens of percent. Note
that the scale color of εxx is positive while it is negative for εyy. Interestingly, one can see
that to some extent, the strain �elds mimic the magnetic pro�les whatever the direction
of the imposed principal strain and the static applied magnetic �eld, respectively. Indeed,
for instance, we retrieve the oscillating behavior of the low frequency mode in the CSA
system through an oscillating εxx strain �eld and the more localized pro�le of the high
frequency mode between nano-holes in the CSA system through the εyy strain �eld .
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Moreover, as for the magnetic mode pro�les evolution between SA and CSA system, we
found that the εxx strain �eld is sharpened while the εyy strain �eld is broadened. These
behaviors are certainly due to the symmetry of the antidot array which imposes in a
certain sense these magnetic and mechanical �con�nements� of the magnetic modes and
of the strain �elds, respectively. Afterward, we will take advantage of this symmetry
to study the in�uence of these local strains on the magnetic mode energies because
this will impose heterogeneous magnetoelastic �elds that in �ne will mimic the strain
distributions.
Finally, as written before, this heterogeneity is a priori enhanced by greater mechanical
contrast between the antidot and the Kapton® strained by the PZT substrate. In this
highly mechanically contrasted system (YNi60Fe40 = 205 GPa, YKapton = 4 GPa), we
obtain a range of strains that can vary over two orders of magnitude. However, we
wanted to show that this heterogeneity is indeed much lower for the systems with lower
mechanical contrast. For this purpose, simulations varying the Young's modulus of the
supporting layer were carried out. The results are shown in �gure 6.6 representing the 2D
strain �eld for a Kapton® layer and a 1D pro�le for substrates of various Young moduli,
for εxx (�gure 6.6-a)) and εyy (�gure 6.6-b)). It is clearly seen that the amplitude of
the strain variation decreases as the Young's modulus increases, i.e. as the mechanical
contrast decreases. In this case, for an applied voltage of 100 V, the strain state in the
substrate is given by εxx = 0.1% and εyy = -0.05%. Even if the homogeneous strain
state is never reached because of the nano-holes, it is still approached when the Young's
modulus of the substrate is close to that of the antidot, as it would be the case for
a rigid substrate (around 200 GPa). And, on the contrary, when the supporting layer
is very compliant like Kapton®, the strains can be much higher or much lower than
those imposed on the substrate. This shows that the high substrate compliance is a
determining factor in the search for highly contrasted local magnetoelastic �elds over
the entire surface of the antidot, thus allowing very diverse variations in localized mode
frequencies to be obtained by controlling strain heterogeneities in antidot systems.

6.3 Strain control of the localized magnetic modes

As discussed before, mapping of the elastic strain �eld and of the magnetic modes has
highlighted some similarities that will be very helpful in this subsection. Indeed, due
to obvious square-symmetry reasons, the magnetic mode pro�les remain unchanged if
a transverse in-plane magnetic �eld is applied (i. e. along y-axis), except that their
localization pattern undergoes a 90° rotation [198]. On the other hand, the elastic strain
�eld remains unchanged because it is not sensitive to this applied magnetic �eld. Thus,
a given magnetic mode can be studied under two distinct strain states geometry by
successively applying the magnetic �eld along x and y.

Figures 6.7-a-c) present typical FMR spectra at zero applied voltage (blue lines) and
at 100 V (red lines) from the reference continuous �lm, the SA and the CSA systems,
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Figure 6.6: Evolution of the strains heterogeneities as function of the mechanical contrast
between the antidots and the substrate: a-b) Pro�les of in-plane strains (εxx
(a), εyy (b)) for di�erent values of the Young's modulus substrate, from 4
GPa to 250 GPa. The cut-lines are indicated by dashed lines in the maps.
The in-plane strains of the substrate have been �xed at εxx = 1 × 10−3 and
εyy = −0.5× 10−3.

respectively. These spectra have been recorded in similar conditions, i.e. at 8 GHz
and by applying a static magnetic �eld along x. All the spectra present a shift of all
the absorption peaks. As previously mentioned, the continuous �lm presents a unique
peak which corresponds to the uniform precession mode. We observe an up-shift of its
resonance �eld (∼ 96 Oe at 100 V) which means that the magnetostriction coe�cient
is positive. By applying the methodology presented in ref. [16], one can quantitatively
determine the magnetostriction coe�cient λ. Thus, the resonance �eld shift δHres =
Hres(0)−Hres(V) can be well �tted using the following relation for an applied magnetic
�eld along x [124, 202]:

Hres =

√(
2πMs −

3λ

Ms
σsubyy (V)

)2

+

(
2πf

γ

)2

− 2πMs

− 3λ

Ms

(
2σsubxx (V)− σsubyy (V)

)
(6.1)

where σsubxx (V) and σsubyy (V) are the in-plane principal stress tensor components of the �lm
calculated from the measured in-plane strains εsubxx (V) and εsubyy (V) and the Hooke's law
[10]. Under these conditions, the magnetostriction coe�cient is found to be λ = 12×10−6.
This value has been obtained by �tting the whole δHres voltage as presented in �gures
6.8 and 6.9 where the black symbols are experimental data and the black line is the
calculated �t. In the following, we assumed that λ is the same for Ni60Fe40 antidots
which have been elaborated at same time.
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Figure 6.7: Typical 8GHz-FMR spectrum obtained at 0V (blue lines) and at 100 V (red
lines) for the continuous �lm (a), the SA system (b) and the CSA one with a
magnetic �eld applied along x. Sketches presenting the SA and CSA system
are also depicted to see the coordinates; the mapping correspond to the low
frequency mode in both cases (red stars in the spectra).
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Concerning the SA and CSA spectra presented in �gures 6.7-b) and c), we clearly observe
that all the modes also present an up-shift which is however lower in magnitude than
that in the continuous �lm. In addition, the shifts are not similar for all peaks in a
speci�c system. For instance, in the SA system, the high frequency mode (blue star)
presents a shift of ∼ 50 Oe while it is around 90 Oe for the low frequency one (blue
star). A similar tendency is observed in the CSA system, the high frequency mode (blue
star) presents a ∼ 50 Oe shift while it is around 80 Oe for the low frequency one. The
weaker mode in intensity (green star) presents an intermediate shift of around 60 Oe.
Thus, we have conducted FMR measurements in the range 0-100 V with a step of 1V
at 8 GHz. Figures 6.8-a) and 6.9-a) present the resonance �eld shifts of the di�erent
modes as a function of the applied voltage. It should be noted that, for the SA system,
we do not plot the results of the two satellite peaks (green stars in �gure 6.3) because
of their weak intensities giving too dispersed results as a function of the applied voltage.
This can be seen in the δHres voltage dependence of the CSA modes: the higher the
initial intensity of the modes, the lesser noise is generated by the voltage dependence.
We have the con�rmation that lower �eld shifts are obtained for the antidot systems as
compared to the continuous �lm. Interestingly, the FMR shift is very di�erent for the
high frequency and low frequency modes in both antidot systems. We are convinced that
this is due to their spatial localization and consequently to the local magnetoelastic �eld
that is strongly heterogeneous as discussed in the precedent subsection. To con�rm this
assumption, we have taken advantage of the square-symmetry to perform measurements
with an applied magnetic �eld along y. All other things being equal, only the magnetic
modes have their localization rotated by 90° [198], notwithstanding the quality of the
arrays that we have tested by FMR. Indeed, at zero applied voltage, the frequency
dependencies as a function of an applied magnetic �eld obtained at 0 and 90° are very
similar in both systems (not shown here). This can be seen in the mapping of the strain
�eld and of the the magnetic mode pro�les presented in �gures 6.8-a and 6.9-b). In each
�gure, we have plotted the εxx and εyy strain �elds as well as the pro�le of each studied
magnetic modes. We clearly see that a speci�c mode (the high frequency mode of the SA
system for instance) sees its pro�le rotate by 90° while the strain �elds remain unchanged.
The corresponding δHres voltage dependencies are presented in �gures 6.8-a) and 6.9-b)
for the SA and CSA systems, respectively. To more directly compare the results, we have
plotted −δHres values.

120



6 2D arrays of ferromagnetic antidots submitted to heterogeneous strain

a) SA system

SA system
x

y
exx

eyy

H
!

exx

eyy

H
!

x
y

b)

Figure 6.8: Resonance �eld shift as function of the applied voltage for the two systems
with a magnetic �eld applied along (a-b) and perpendicular (c-d) to the PZT
substrate. The di�erent magnetic mode pro�les are represented by maps
where the colors encode either my (in a) or mx (in b) components. We also
present the maps of the in-plane strains (εxx and εyy) calculated in the antidot
array systems. The colored symbols correspond experimental data while the
color lines are calculated using the di�erent αxx and αyy (see table 6.1). The
black lines and symbols (full and dotted) correspond to experimental data
and simulated line for the continuous �lm .
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Figure 6.9: Resonance �eld shift corresponding to the CSA system with the steady mag-
netic �eld applied along (in a) or perpendicularly (in b) to the PZT substrate.
Magnetic and strain spatial cartographies calculated in the two cases ( par-
allal and perpendicular applied �eld to the PZT substrate axes).
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Magnetic mode
~H ‖ ~x ~H ‖ ~y

αxx αyy αxx αyy

Continuous �lm
Uniform Mode 100 100 100 100

Square Array
High Frequency Mode
F

0.67 0.55 0.92 0.43

Low Frequency Mode
F

0.79 1.03 0.94 0.92

Centered Square Array
High Frequency Mode
F

0.59 0.47 1.05 0.85

Satellite ModeF 0.56 0.72 1.01 0.69
Low Frequency Mode
F

0.78 1.01 0.66 0.54

Table 6.1: Strain transmission factors αxx and αyy for the di�erent modes and con�gu-

rations , i. e. ~H along or perpendicular to the main axis of the PZT substrate
(along x or y).

For the SA system, the low frequency mode (red star) is only slightly a�ected by this
rotation (δHres evolves from ∼ 90 Oe to ∼ 80 Oe at 100 V) while the high frequency
one (blue star) is more seriously a�ected (δHres evolves from ∼ 50 Oe to ∼ 85 Oe at
100 V). This also applies to the CSA system, we clearly see that three studied modes
are di�erently a�ected. Indeed, the low frequency mode then the high frequency one
and �nally the �satellite� mode are increasingly a�ected by this rotation. Indeed, the
δHres amplitude at 100 V increases by ∼ 5, ∼ 10 and ∼ 25 Oe, respectively. So, we have
an evidence that the di�erentiated evolution of these modes depends on the local strain
�eld experienced by each mode. Thus, from the results obtained in the two previous
subsections, we extracted the local strain �eld by making a mask for each magnetic
mode which we stick on the elastic strain distribution maps to extract mean values for〈
εmodexx

〉
and

〈
εmodeyy

〉
. Then, one can de�ne two factors that express the strain localization

(αxx and αyy) [124]:

αxx =

〈
εmodexx

〉
〈εsubxx 〉

and αyy =

〈
εmodeyy

〉〈
εsubyy

〉 (6.2)

The di�erent extracted values are reported in table 6.1 for each mode. One can note good
correlation between αxx and αyy values and the FMR peak shift of each corresponding
mode. For instance, the αxx and αyy values of the low frequency mode are bigger in the
four studied situations in comparison to the low frequency mode values which e�ectively
presents higher δHres variations. Those values also corroborate the wide δHres variations
of magnetic modes when applying the magnetic �eld at 0° and 90°. It is for instance the
case for the high frequency mode in the SA system whose maximum values of δHres at 100
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V increase from ∼ 50 Oe to ∼ 85 Oe while the (αxx;αyy) evolves from (67; 55) to (92; 43)
and for the satellite magnetic mode (green) of the CSA system which δHres values at 100
V evolves from ∼ 55 Oe to ∼ 80 Oe while the (αxx;αyy) evolves from (56; 72) to (101; 69).
In addition, as pointed out in the previous subsection, some αxx and αyy are found to be
higher than 100% meaning that the magnetic mode is located in a region where we have
a concentration of the strain higher than the imposed one. Finally, we have used simple
modeling by using equation 6.1 and by replacing σsubxx (V) by σmodexx = αxxσ

cf
xx(V) and

σsubyy (V) by σmodeyy = αyyσ
cf
yy(V) to try to �t the experimental data. The continuous lines

in �gure 6.8 and 6.9 are the corresponding �ts. It is worth noting that we have made no
supplementary �t than the one performed for the continuous �lm when determining λ.
One can note good correlation between the modeling and the experimental data. This
good correlation is partly due to the fact that the studied magnetic modes correspond
to a static situation where the magnetization are almost uniform.
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Conclusion

The objectives of the present thesis are articulated around two main aspects, namely
a numerical aspect which consisted in setting up a non-exhaustive numerical code for
the study of the e�ects of magnetoelastic couplings in �exible magnetic systems and a
purely experimental aspect which consisted in studying the magnetoelastic properties
in magnetic systems nanostructured or not on �exible substrates. The whole allows to
give a new insight on the relations between strain distribution and static and dynamic
magnetic properties.

Regarding the numerical aspect of the work, a �nite element code has been developed
in the Comsol Mutliphysics® software in order to simulate, in a fully coupled way, the
magnetoelastic e�ects in magnetic nanostructures by taking into account their elastic
deformation state, which is not possible in the commonly used classical micromagnetic
codes. In fact, it is possible to include a known strain �eld in OOMMF but it must be
spatially uniform. Thus, the development of the present code in ComSol Mutliphysics®
has been an important step towards a good understanding and prediction of the ef-
fects resulting from the mechanical loading of magnetic nano-objects. The code has
been implemented and validated by following di�erent elementary steps and comparing
the results obtained with those from Nmag simulations. Di�erent application examples
were simulated such as the Larmor precession phenomenon which was compared with
the analytical form, the magnetization equilibrium and the magnetostatics in di�erent
nano-objects (disks, spheres and nanowires). The results obtained in the case of mag-
netostatic studies were compared with those obtained by simulating the same situation,
the same object with the same magnetic parameters under Nmag. Our results were in
good agreement with those obtained from the calculations made with the Nmag soft-
ware. Indeed, a comparison of the temporal evolution of the demagnetization �eld and
magnetization was made between the results obtained from the two codes (Nmag and
in-house code). This comparison showed small discrepancies. We also performed calcu-
lations on the magnetoelastic e�ects in which we highlighted the e�ects of mechanical
heterogeneities and the shape of the prototypical object. Two con�gurations were stud-
ied, the supported nanowire (deposited on a �exible substrate) and the self-supported
nanowire subjected to the equivalent homogeneous strain �eld. These phenomena have
been studied in static and dynamic cases. In the dynamic study, it was shown that the
only di�erence between the two cases (homogeneous and heterogeneous deformed objects)
consists in the di�erence of the trajectories of magnetization and the initiation of the
movement of magnetic moments. Thus, we observed that in the case of a homogeneous
strain of a magnetostrictive object, the reversal of the magnetization is coherent and its
trajectory presents attenuated concentric circles whereas the heterogeneous deformation
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Figure 6.10: 3D schem of antidot nanostructres with the simulated micromagnetic modes
(a) and micromechanical strain �els.

presents less coherence in the trajectory and �oating phenomena were observed on the
temporal evolution of the components of the magnetization. This �utter comes from the
initiation of the movement of the spins located in the zones undergoing a higher value of
deformation than elsewhere in the object and propagates under the exchange interaction.
This phenomenon can be likened to an avalanche e�ect. A fast Fourier transform was
performed on the components of the oscillating magnetization showing that in fact, in
the case of homogeneous deformation, there is mainly one excited mode while we found
at least two modes in the case of heterogeneous deformation. However, the estimated
area under the FFT curves in both cases is the same which con�rms the fact that the
conservation of magnetic energy is respected. Note that a magnetoelastic module resem-
bling our code was developed in Mumax in 2021 [203], showing that these approaches
are needed by the nanomagnetism community.

Until now, magnetomechanical properties have been the subject of many experimental
studies in continuous thin �lms on �exible systems subjected to small or large strains.
However, the e�ect of nanostructuring has not been studied in �exible systems subjected
to small strains. The objective of this thesis was also to experimentally characterize
the e�ects of magnetoelastic coupling in one- and two-dimensional nanostructures. We
thus performed in situ deformation tests (with a ferroelectric actuator) combined with
ferromagnetic resonance. The link with the numerical part is that the strain �elds are
potentially very heterogeneous. Moreover, numerical calculations are essential to inter-
pret the experiments properly. To this end, we chosen to study these e�ects in the case
of materials showing signi�cant magnetostriction (but not giant) such as Ni60Fe40. The
nanostructures studied are fabricated by interference lithography and concern arrays of
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Figure 6.11: Back cover of PSS-RRL [204]

nanowire with a width of 480 nm and a period of 600 nm as well as arrays of antidot
with a diameter of 250 nm and a period of 600 nm. These di�erent lateral structuring
give rise to very di�erent strain distributions. While the nanowires are subjected to
relatively homogeneous strain (but very di�erent from the substrate strain), the anti-
dots are subjected to very complex strain �elds. This has been analyzed by numerical
calculations. As a preamble, a continuous layer of the same thickness fabricated under
the same conditions with the same material was also studied in order to have reference
results (with homogenous strain fully transmitted from the substrate). These reference
results served as a basis to determine the e�ects of patterning on the magnetomechan-
ical behavior. These nanostructures and continuous �lm were fabricated with Ni60Fe40

having a magnetostriction of about 11×10−6.
It is well known in micromagnetism that the nanostructuration results in localized and
con�ned modes[205] (�gure-6.10-a). It is also well known in the �eld of mechanics that
the e�ects of systems with defects or geometric contrasts result in a concentration of
stress and a heterogeneous distribution of the strain and stress �eld over the considered
systems [206] (�gure-6.10-b). A methodology was emmployed to localize and estimate the
magnetomechanical e�ect in nanostrured surface. First, we made an identi�cation of the
magnetic oscillation modes in the considered nanostructures. After that, we estimated the
local concentration ratio of the di�erent strain tensor components used in the analytical
model for estimating the spectral shifts due to the presence of the strain.
Using this methodology, it was possible to study the behavior of the di�erent modes in
which we were interested in the two types of nanostructures, keeping the same static
magnetic parameters used in the case of the continuous �lm, i.e. magnetization, gyro-

127



6 2D arrays of ferromagnetic antidots submitted to heterogeneous strain

magnetic factor and magnetostriction coe�cient. This provides additional leverage for
the manipulation and control of magnetic modes in future applications in spintronics,
straintronics and �exible magnonics. From my point of view, my thesis has advanced the
state of the art on the heterogeneous magnetomechanical properties of nanostructures.
These heterogeneities are seen in a global sense since they concern the mechanical �elds
and the localization of the magnetic modes. This type of study will probably become
more widespread as the miniaturization of components and the increasingly complex
nanoarchitectures will generate this kind of complex coupled phenomena. 4 articles were
published in international journals [124, 73, 207, 208], while one of them have been object
of the RSS-RRL back cover (see �gure 6.11).
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Perspectives

The perspectives concerning my research group are numerous and currently follow two
axes. The �rst one concerns the in�uence of large strains damage on magnetization
curves, including new development of original experiments. As shown throughout this
manuscript, �exible or stretchable systems are very promising in di�erent applications
in di�erent �elds. In this context, the thesis of Hatem Ben Mahmoud which started
in October 2020 is a continuation of the present studies, namely the study of the in-
�uence of large strains on magnetic properties. The project concerns the study of the
anisotropy induced by plastic deformation/multicracking on continuous thin �lms and
nanostructures deposited on �exible substrates.

a) b)

c) d)

0%

0%

20%

20%

H

H H

H

Figure 6.12: Anisotropy tailoring in continuous magnetic thin �lms deposited on �exible
substrate and deformed in plastic regim. Typical MOKE hysterisis loop
without plastic deformations (a-c) and in presence of plastic deformation (
20% strain )

Figures 6.12 show typical hysteriss loops obtained with the corresponding sketches dis-
playing the applied �eld directions with respect to the applied loading. This study is
carried out in situ with MOKE to get relationship between plastic deformation, crack
apparition and magnetic anisotropy. Two extrem values of the induced strain are choosen
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in the present example (0% and 20%) obtained with a prior calibration using the well-
known digital image correlation. One can see the possibility to change the anisotropy axis
from easy axis to a hard axis natures (6.12a) showing an easy axis which is transformed
to a hard axes as displayed in 6.12b)). The other situation consists on reinforcing an
existant easy axis and induce an increasing in the coercitive magnetic �eld by changing
the steady magnetic �eld direction to a perpedicular direction with respecte to the ap-
plied displacement axis. These transformation are due to the negative magnetostriction
coe�cient of the cobalt �lm.
On the other hand, magnetic nanostructures deposited also on �exible substrates will
be studied using the same setup. These nanostructres concern dot arrays deposited on
�exible substrate or interfaced with magnetic continuous �lm ( �gure-6.13).
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Figure 6.13: Permalloy dot arrays deposited on Kapton® substrate. a) Topographic
image of the considered arrays obtained form atomic force microscopy char-
acterization and b) linepro�le of the height versus position.

The geometrical and magnetic properties combined give rise to di�erent magnetic con-
�gurations especially with the e�ect of interfaces and volumes as can be seen in �g-
ure6.14[209]. This latter represents topographic images of Py dots deposited on a cobalt
continuous �lm in c) and in Py in b). Here are two examples of votex con�guration in
the �rst nanostructure and magnetic domain in the seconde one.

The objective here is the study of small and high strains on the magnetic con�guration
in such nanostructures. This is prospective of the possibility to change the equilibrium
states in such nanostructures [210] or to stabilise and to stimulate other situations of
equilibrium with a view to applications in spintronics, particularly in the �eld of in-
formation storage. Exploratory micromagnetic simulations were performed using the
geometrical parameters obtaind from atomic force microscopy (AFM) in order to get a
mapping of the most intense and visible magnetic mode in such nanostructres (�gure-
6.15 and �gure-6.16). These results have been confronted with the preliminary results
obtained from ferromagnetic resonance spectroscopy. The same methodology that the
one used during this thesis will be adopted in the present case. Namely, the localization
of the modes we are interested in, the simulation of the deformation transmitted to the
nanostructures and the estimation of the induced e�ect.
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Figure 6.14: Permalloy dot deposited on a) cobalt continuous �lm and b) permalloy con-
tinuous �lm, repectively with the accompagned magnetic con�guration c)
related to the a) topography and d related to the b) topographic image.

4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0

5

1 0

1 5

2 0

 

 

A p p l i e d  f i e l d  ( O e )

Fre
qu

en
cy 

(G
Hz

)

1 E - 0 3

1 E - 0 2

2 E - 0 1

2 E + 0 0

3 E + 0 1

1 E + 0 21 E + 0 2

Figure 6.15: Frequency dependance calculated using OOMMF software using geometrical
characteristics obtained form AFM topography. The colorbar indicates the
intensity of the calculated spectral response.
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Figure 6.16: a) Typical calculated spectrum in the case of the Py dot array inder 1000G
magnetic �eld applied in plane of the sample. b) Magnetic mode pro�les
in Permalloy dots of 1µm diameter. The calculations were performed for
1000 Oe applied �eld in the longitudinal direction and the magnetization is
excited with a sinc radiofrequency �eld applied in the transversal direction
of the applied steady �eld.

Calculations using ComsolMultiphysics® ( �gure-6.17) show for a nanostructure with
the same geometrical characteristics (1um diameter dots with a periodicity of 2 um) the
transmitted strain is strongly heterogeneous and is essentially concentrated in the center
of each cylinder. The spatial extension of each dot being small (very important free
surfaces) would allow us, according to the estimations made using the same calculation,
to go to higher deformations without causing the deterioration of the nanostructures by
inducing cracks propagation.
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Figure 6.17: a) Snapshot of the mesh distribution generated by ComsolMultiphysics®
mesher, b) strain x-component line pro�le on the top surface of the Permal-
loy dots for a �xed value of the Kapton® Young moduli and dots Young
modulus ranging in 50 GPa to 250GPa , c)Spatial carthography of the x
and y-component of the strain tensor in the case of of 80 nm height and 1
µm diameter dots deposited on Kapton® substrate sbmitted to uni-axial
strain essay.

An other project is starting and concerns the PhD thesis of Stephan Chiroli, which will
begin in September 2021. The ElecAcouSpin project funded by ANR is dealing with
the study of the coupling between phononic and magnonic properties of nanostructure
arrays [211, 212], and the strain e�ects on the band structures. The magnonics crystals
being exhibit also phononic band structures[211, 213] making the interraction between
the two type of band structures possible. To descriminate the coupling e�ects within
the nanostructres, its is important to �manipulate� separately the two bands. The de-
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termining factors in the case of phononic band structures being mainly the density of
the material used and its elastic properties as well as the geometric factors of the nanos-
tructure makes it di�cult to manipulate the phononics branches with imposed strain in
a reversible way. On the other hand, it has been demonstrated the possibility to ma-
nipulate the branches of the magnetic band structure by applying an external magnetic
�eld inducing a gap of the order of GHz. This gap increasing depends on the intrinsic
properties of the used materials during the fabrication of the crystal and the geometrical
properties[214]. Considering the induced gap opening, it should be su�cient to control
the coupling between the two band structures which arise in the same arti�cial crystal.
Then, the project concerns �rst the identi�cation and the understanding of the strain
e�ects and magnetomechnical couplings on the magnonic band structures including the
e�ects of deformation heterogeneities[58] on such nanostructures after what the e�ect of
the induced changes in this latter on the phononic ones. Numerical simulations being
very important and prominent factor to good understanding and forecasting particularly
the determination of the geormetrical and intrinsic properties of such crystal making
then possible such coupling between the to band structures. Actually, it is also planned
to continue the development of the code built during this thesis in order to go towards
the simulation of phononic and magnonic band structures, as well as the di�erent ef-
fects induced by the presence of a deformation �eld and the identi�cation of the mutual
interractions between the two. The success of such a project would open the door to
a new type of applications and a new generation of electronic devices combining high
e�ciency, multiphysical characteristics and adaptability to di�erent media as they would
be �exibles.
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Abstract

Since its discovery in 1847 by Joule, magnetoelasticity has not ceased to be studied
not only for its most fundamental aspects but also for its potential application area.
This phenomenon has become particularly popular in recent years because it is involved
more or less directly in various types of magnetic systems that are widely studied in
the magnetism community. Among these, we can mention the �exible magnetic systems
which are generally composed of a magnetic deposit (thin layers or multilayers which can
be nanostructured) on a polymeric substrate whose applications range from everyday
gadgets to aerospace devices. During their use, these devices will be subjected to strong
(and complex) deformations that can modify the magnetic properties in operando. For
these applications, the in�uence of magnetoelasticity can be undesirable and it is therefore
necessary to �nd solutions to limit its e�ects. On the other hand, magnetoelasticity
can be advantageously used to control magnetic (and electronic) properties through the
application of controlled elastic strains: this has given rise to an emerging thematic
commonly called "straintronics" which includes, for example, "strain-mediated arti�cial
multiferroics". This magnetoelasticity is also found in so-called �exomagnetic systems,
which can induce complex magnetic con�gurations.
The objectives of this thesis are based on two main aspects: i) a numerical aspect

which consists in setting up a numerical code for the study of the e�ects of magnetoelas-
tic couplings in �exible magnetic systems and ii) an experimental aspect which consists
in studying the magnetoelastic properties in nanostructured magnetic systems on �exible
substrates. The whole allows to give a new light on the relations between the distribution
of the deformations and the static and dynamic magnetic properties. Concerning the nu-
merical aspect, a �nite element code has been developed under Comsol Mutliphysics®
in order to simulate, in a fully coupled way, the magnetoelastic e�ects in magnetic nanos-
tructures by taking into account their elastic deformation state, which is not possible in
the classical micromagnetic codes commonly used in the magnetism community. The
development of this code was an important step towards a good understanding and pre-
diction of the e�ects resulting from complex mechanical loading of magnetic nano-objects.
Based on these predictions, we have studied the dynamic magnetic response of magnetic
nanostructure arrays under controlled deformations (using a ferroelectric actuator). A
methodology has been developed to localize and estimate the magnetoelastic e�ects in
nanostructured surfaces. First, we proceeded to the spatial and temporal identi�cation
of the magnetic oscillation modes in the considered nanostructures. Then, we estimated
the local concentration ratio of the di�erent components of the strain tensor to estimate
the spectral shifts due to the presence of the deformation. Thanks to this methodology,
it was possible to study the behavior of the di�erent modes of interest in two types of
nanostructures. The results obtained provide an additional lever for the manipulation
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and control of magnetic modes in future applications in spintronics, straintronics and
�exible magnonics.
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Résumé

Depuis sa découverte en 1847 par Joule, la magnétoélasticité n'a céssé d'être étudiée
non seulement pour ses aspects des plus fondamentaux mais également pour ses aspects
applicatifs. Ce phénomène connaît un engouement particulier ces dernières années en
raison du fait qu'il intervient plus ou moins directement dans di�érents types de sys-
tèmes magnétiques très étudiés au sein de la communauté du magnétisme. Parmi ces
derniers, on peut citer les sytèmes magnétiques �exibles qui sont générallement com-
posés d'un dépôt magnétique (couches minces ou multicouches qui peuvent être nanos-
tructurées) sur un substrat polymère dont les applications vont de gadgets de la vie
quotidienne aux dispositifs aérospatiales. Durant leurs utilisations, ces dispositifs vont
être soumis à de fortes (et complexes) déformations qui peuvent modi�er les propriétés
magnétiques in operando. Pour ces applications, l'in�uence de la magnétoélasticité peut
être indésirable et il convient dès lors de rechercher des solutions a�n d'en limiter les ef-
fets. A contrario, la magnétoélasticité peut être avantageusement utilisée pour contrôller
les propriétés magnétiques (et électroniques) par le biais de l'application de déforma-
tions élastiques contrôllées: cela a donné naissance à une thématique émergente que l'on
nomme communément �straintronique� qui englobe par exemple les composés multifer-
roïques arti�ciels (�strain-mediated arti�cial multiferroics�). Cette magnétoélasticité se
retrouve également dans des systèmes dits �à gradient de déformations� induisant ainsi
des con�gurations magnétiques complexes.
Les objectifs de cette thèse s'articulent autour de deux aspects principaux: i) un as-

pect numérique qui a consisté à mettre en place un code numérique pour l'étude des
e�ets des couplages magnétoélastiques dans les systèmes magnétiques �exibles et ii) un
aspect expérimental qui a consisté à étudier les propriétés magnétoélastiques dans des
systèmes magnétiques nanostructurés sur des substrats �exibles. L'ensemble permet de
donner un nouvel éclairage sur les relations entre la distribution des déformations et
les propriétés magnétiques statiques et dynamiques. Concernant l'aspect numérique, un
code d'éléments �nis a été développé sous Comsol Mutliphysics® a�n de simuler, de
manière totalement couplée les e�ets magnétoélastiques dans des nanostructures magné-
tiques en prenant en compte leur état de déformation élastique, ce qui n'est pas possible
dans les codes micromagnétiques classiques couramment utilisés au sein de la commu-
nauté du magnétisme. Le développement de ce code a été une étape importante vers
une bonne compréhension et prédiction des e�ets résultant d'un chargement mécanique
complexe de nano-objets magnétiques. Fort de ces prédictions, nous avons étudié la
réponse magnétique dynamique de réseaux de nanostructures magnétiques sous déforma-
tions contrôllées (par le biais d'un actionneur ferroélectrique). Une méthodologie a été
développée pour localiser et estimer les e�ets magnétoélastique dans des surfaces nanos-
tructurées. Tout d'abord, nous avons procédé aux identi�cations spatiale et temporelle
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des modes d'oscillations magnétiques dans les nanostructures considérées. Ensuite, nous
avons estimé le rapport de concentration local des di�érentes composantes du tenseur de
déformation pour estimer les décalages spectraux dus à la présence de la déformation.
Grâce à cette méthodologie, il a été possible d'étudier le comportement des di�érents
modes qui nous intéressaient dans deux types de nanostructures. Les résultats obtenus
fournissent un levier supplémentaire pour la manipulation et le contrôle des modes mag-
nétiques dans de futures applications en spintronique, en straintronique et en magnonique
�exible.
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