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Abstract
The DASH (Dynamic Adaptive Streaming over HTTP) standard is widely adopted for video

streaming. The Adaptive BitRate (ABR) style adaptation mechanism, which is a key component

of DASH, is not standardized, since it must take various elements into account, in particular the

context of the communication and the system, but also the quality perceived by the users, to

maximize the QoE (Quality of Experience). Many ABR algorithms have been proposed. Few

of them attach importance to perceived, and objectively calculated, quality as an adaptation

parameter. This thesis proposes a generic framework, called VQBA (Video Quality Metric Based

Adaptation algorithm), allowing to integrate an objective metric of the video quality of one’s

choice as an adaptation parameter. The idea is to maximize the efficient use of the available

bandwidth by deciding to switch to a higher speed not only because it is feasible, but also

because it provides a significant visual improvement. We carried out numerous tests with video

sequences of various kinds and by placing them in real network situations with traces from

operational mobile networks. These tests, through three usual video quality metrics, namely

SSIM (Structural Similarity Index Measurement), PSNR (Peak Signal to Noise Ratio) and

VMAF (Video Multimethod Assessment Fusion), and in comparison with a selection of ABR

algorithms, show that the path we explored, that is to say, giving importance to video quality as

an adaptation parameter, is an effective path for better QoE.

Keywords— Video Streaming; QoE; ABR; DASH; SSIM; PSNR; VMAF; Mobile Networks.
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Résumé
La norme DASH (Dynamic Adaptive Streaming over HTTP) est largement adoptée pour la

diffusion de vidéo. Le mécanisme d’adaptation du style ABR (Adaptive BitRate), qui est un des

composants clé de DASH, n’est pas normalisée, car il doit prendre divers éléments en compte,

notamment le contexte de la communication et du système, mais également la qualité perçue par

les usagers, pour maximiser la QoE (Quality of Experience). De nombreux algorithmes ABR ont

été proposés. Peu d’entre eux accordent une importance à la qualité perçue, et objectivement

calculée, comme paramètre d’adaptation. Cette thèse propose un cadre générique, nommé VQBA

(Video Quality Metric Based Adaptation algorithm), permettant d’intégrer une métrique objective

de la qualité vidéo de son choix comme paramètre d’adaptation. Le principe consiste à maximiser

l’utilisation efficace de la bande passante disponible en décidant d’adopter un débit plus élevé

non seulement parce qu’il est faisable, mais aussi parce que cela apporte une amélioration visuelle

significative. Nous avons mené de nombreux tests avec des séquences vidéo de diverses natures

et en les plaçant dans de vraies situations de réseaux avec des traces issues des réseaux mobiles

opérationnels. Ces tests, à travers trois métriques usuelles de la qualité vidéo, nommément SSIM

(Structural Similarity Index Measurement), PSNR (Peak Signal to Noise Ratio) et VMAF (Video

Multimethod Assessment Fusion), et en comparaison avec une sélection d’algorithmes ABR,

montrent que la voie que nous avons explorée, c’est-à-dire, accorder une importance à la qualité

vidéo comme paramètre d’adaptation, est une voie efficace pour une meilleure QoE.

Mots-clés Streaming Video; QoE; ABR; DASH; SSIM; PSNR; VMAF; Réseaux mobiles.
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Introduction

“Great things are done by a series of small things brought

together. ” Vincent van Gogh

1.1 Overview

Video communication is taking more and more importance both in our professional activities

and our everyday life. This trend is regularly monitored and predicted by major actors, for

instance Cisco Systems’s 2016’s white paper, Cisco Global Cloud Index: Forecast and Methodology,

2015–2020 (C11-738085-00, 11/16). As a collateral effect, it is being dramatically accelerated by

the ongoing global COVID-19 crisis.

The popularity of video streaming, as well as applications using video-streaming, is increasing

steadily these last years. This includes the major video-based entertainment activities and social

networking, such as those provided by NETFLIX or YouTube. Video streaming takes a prominent

place in video communication and occupies a huge and increasing part of Internet traffic. More

and more streamed video contents are "consumed" on mobile devices (such as smart phone).

Thus, it is not surprising to learn that, according to a recent report of CISCO, the video content

now dominates cellular traffic, with a weight of about 60% of all mobile data traffic and and is

expected to reach 82% by 2022 [1].

Today’s dominant video steaming technology is the Dynamic Adaptive Streaming over HTTP
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(DASH) [2, 3] system which is an international standard (MPEG-DASH). DASH is an adaptive

bitrate streaming technique that enables high-quality streaming of media content over the Internet

through conventional HTTP-based web services.

Video content delivered over the networks suffers from different kinds of distortions on

their path from the source to the user, such as the fluctuations/limitation of bandwidth, etc.

Consequently, the quality of the video eventually received by the user may be not as good as the

original one.

This leads to an need of accurate and efficient assessment of perceptual image and video

quality at the user side, under different kinds of distortions [4,5]. Actually, the perceptual quality

is the single most important criterion for a video service. By nature, the perceptual quality is

subjective. For obvious operational reasons, this kind of assessment should be objectively and

automatic.

From networking’s viewpoint, the multimedia services such as video streaming depends on a

set of QoS parameters (e.g., bandwidth, delay, etc.) which have direct impact on the perceptual

quality. For instance, packets loss may cause mosaic in images. However, QoS is not the sole

factor for image quality, which is, it worth to be recalled, basically subjective. Different strategies

of transmissions and/or playback policies may lead to totally different perceptual quality, even

under the same networking environment.

The term Quality of Experience (QoE) has been coined to take into account all the parameters

to be considered in order to achieve the best possible perceptual quality. Actually, the ultimate

criterion for a video streaming service is the feeling that users get through their eyes.

The term Quality of Service (QoS) is conventionally used to assess transmission quality

through network, i.e. quality of the transmission service provide by the underlying network. A

satisfactory QoS depends on the availability of resources.

QoE is a combined measure of performance expectations of the end-user; it depends on QoS

which ensure the necessary quantitative resources for video transmission, It also take into account

parameters which do impact on the perception, such as the quality of the video, but also other

parameters, such as the pattern (duration, frequency) of sequence freezing. The latter will be

one of our major concerns, under the vocabulary of rebuffering.

The correlation between the technology-focused QoS and the user-aware QoE has captured

huge interest in both industry and academic community during the last years. Efforts have been

done on investigation of reliable and objective (and so computable) metrics for linking together

technical system parameters (e.g. delay, jitter, loss rates, connection setup time, and further
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typical QoS parameters) with the perceptual quality of the user [6]. nowadays, QoE is usually

assessed through a set of objective measures, such as mean bitrate, rebuffering frequency/duration,

instability frequency, objective video quality measurements, etc.

Adaptive BitRate Streaming was introduced with the main goal of adapting video quality to

network bandwidth variations in order to decrease video buffering (also known as stalling/freezing)

and maximize the overall video quality. This leafs to the DASH (Dynamic Adaptive Streaming

over HTTP) approach, which is the current standardized framework for video streaming.

Hereafter, we give a short history of investigation on video adaptation mechanisms which

eventually leads to DASH. Since 2008, several adaptive streaming mechanisms have been proposed,

among which we can mention (cf Fig. 1.1): DASH, HTTP Live Streaming (HLS) of Appel,

IIS Smooth Streaming (SS) of Microsoft, and HTTP Dynamic Streaming (HDS) of Adobe. All

of these mechanism take the Adaptive BitRate (ABR) approach to dynamically adjust the

video quality in function of the currently available bandwidth. The common principle of these

mechanisms is the following (cf Fig. 1.1):

• Video service provider cut the original video content into segments (referred as chunk).

• Each chunk is pre-compressed with several versions, at various coding schema, resolution

and/or bitrate levels. Thus, needs for bandwidth can be finely tuned with the granularity

of the duration of a chunk. This provides freedom for adaptation mechanism.

• Actual adaptation decision is made by Client: For each chunk, client issues a fetch order for

a particular version (and so at a certain bit level), according to some adaptation algorithm.

Figure 1.1: Overview of various adaptive bitrate (ABR) streaming proposals
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DASH became a Draft International Standard in January 2011, and an International Standard

in November 2011. The standard DASH has been published in April 2012. It has been revised in

2019 as MPEG-DASH ISO/IEC 23009-1:2019.

DASH aims to deliver video with high Quality of Experience [7–9]. The principle of DASH

consists in sending video chunks through the HTTP protocol. For DASH, versions of a video

chunk are ranged through their bitrate, from best (highest bitrate, best quality) to worst (lowest

birate, 1st grade quality). Content description (in particular, information about the media, such

as bitrate (qualities), segment lengths, format, URL, etc., is provided by Media Presentation

Description (MPD). MPD is encoded in XML format and is made available to end users by

DASH server. In this way, the receiver (end-user) can decide which bitrate level is most suited

and then fetch it from the DASH server. Figure 1.2 depicts the DASH streaming process.

Figure 1.2: DASH streaming flow process.

DASH marks several points:

• It can be built above the omnipresent HTTP;

• It privileges user context by allowing users to choose the best suited solution which is

adapted to his/her networking context in order to provide an optimal watching experience;

• it is open to various existing video encoding technologies and easily evolving to future

technologies.

Today, the majority of the video content providers such as (NETFLIX & YouTube) use DASH.
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Among the major challenges related to DASH, the video playback freezing, termed as

rebuffering, is a main issue. This phenomenon occurs when the network is incapable of transmit

subsequent video chunks before the starvation of the already downloaded video content. This is

typically an adaptation problem: the required video chunks need better networking conditions to

be downloaded on time. In other words, there is a lack of adequation between the version of

video chunks being downloaded and the networking context.

A corollary phenomenon is the instability of the visual quality of the video being played

back. This phenomenon occurs when there are frequent fluctuations of video quality during

the video playback. Indeed, different versions of chunk encoding offers different video quality

(due to different bitrates and/or resolutions). When two adjacent video chunks are displayed

with different versions, it is possible that the difference in video quality produces an unpleasant

watching experience.

DASH offers a framework for adaptation, whereas it is up to each end-user to make the

adaptation decision. The adaptations strategy, termed subsequently as adaptive bitrate mechanism

(ABR), is thus a very critical point. The ABR mechanism is located on the user’s side. It tries

to select the optimal version of the next chunk to be fetched (downloaded) based on various

parameters, such as estimated bandwidth, buffer occupancy etc.

It is not easy to design an ABR streaming algorithm to achieve a balance between conflicting

metrics, including minimizing rebuffering events, minimizing instability, or maximizing mean

bitrate. For instance, minimizing jointly the risk of rebuffering and also the instability is really a

challenging issue. Actually the natural approach for avoiding rebuffering and the one for avoid

instability are not quite the same:

• the former consists in predicting the most suitable version, with possible switching to a

new one, i.e. frequent version changes if necessary; whereas

• the latter advocated for conservation of the existing version as long as possible.

Furthermore, the predicting itself is not a easy job, since it is based on the prediction of the

evolving networking conditions. A ”safe” way to minimize both rebuffering and instability would

be keeping claiming the lowest bitrate version. Of course, it is at the price of the lowest bitrate

by wasting available bandwidth. It offers certainly the worst video quality and so watching

experience.

Most of the proposed adaptation mechanisms work mainly with parameters at network

and/or system level, such as the bandwidth forecast, buffer occupation, etc. We believe that it
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is important to give importance to objective video quality measurements in the design of ABR

algorithm, and consider it as a key parameters, in addition to the more widely technical and

resources-oriented parameters such as buffer occupancy, bandwidth. Indeed, the user’s watching

experience has to be taken into account. Objective video quality measurement offers an efficient

way to combine the feasibility (offered by the automatic computation) and the user experience

(quality metric). This is the general guideline and motivation of this thesis.

1.2 Motivations and Contributions

The main objective of this thesis aims to propose a novel adaptation framework for DASH-based

ABR which takes into account the user QoE in general, and, more particularly the objective

video quality. The main idea of this framework is the following:

• we make use of objective video quality metric (which is rarely used in the existing works)

for the simple reason that, after all, users are fundamentally and mainly aware of video

quality.

• based on this objective indicator, we develop our adaptation mechanism in a way that a

possible upgrade to a higher bitrate version, which is possible according networking context

forecast, takes actually place only when it does carry a noticeable upgrade in video quality

also. In other words, we decide to:

– increase the bitrate level only when the objective Video-Quality-Metric (VQM) in-

dicates a significant improvement in the video quality (in this way, we reduce the

no-necessary bandwidth consumption and minimize the risk of rebuffering), and

– decrease the bitrate level only when there is a real risk of rebuffering (thus minimize

the instability).

• The combined effect of this approach contributes to maximizing the video quality and

minimizing the rebuffering and instability.

From operational point of view, our approach is compatible with the DASH scheme, since

the objective video quality metric can be pre-computed and made available, through MPD, to

end-user for adaptation purpose.

This idea can be applied to all objective video metric. In this sense, we consider it as a

generic framework. We have firstly tested it with the Structural Similarity Index Measurement
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(SSIM) [10]. We then carried experiments [11] with Peak Signal-to-Noise Ratio (PSNR) and

Video Multimethod Assessment Fusion (VMAF) as well.

We have carried experiments under real traffic situations, by using traces captured in real

mobile network. Our studies were conducted with comparison to some non video-quality-aware

ABR (BBA, FESTIVE, OSMF, see § 3.5 for a detailed presentation of these algorithms). These

studies show that our framework does achieve our design objectives.

Our works have been published on two international conferences [10,11]. Also, there is an

ongoing submission process to the journal Signal, Image and Video Processing (Springer).

1.3 Outline

The rest of this thesis is organized as follows:

i. Chapter 2 presents and analyses fundamental concepts and related works about quality-of-

service (QoS), quality-of-experience (QoE). We then make focus on visual quality metric

(VQM) assessment, which is a key component of this thesis. We presents and analyses

fundamental concepts and works related to visual quality assessment. We then deal with

DASH-related adaptive bitrate (ABR) streaming algorithm.

ii. Chapter 4 presents firstly our generic framework termed as Video-Quality metric Based-

Adaptation algorithm (VQBA). We then present our experimentations with the SSIM visual

quality metric (VQM). The results prove that our design goals are justified.

iii. Chapter 5 extends the studies to other two common VQM, i.e. PSNR and VMAF. We

provide also a focused study on the rebuffering phenomena with our algorithm.

iv. Chapter 6 presents the conclusions and future working directions.
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State of the Art on QoS & QoE for Video Streaming

“To know what you know and what you do not know, that

is true knowledge. ” Confucius

This chapter first introduces the fundamental concepts on quality-of-service (QoS) and

quality-of-experience (QoE). A state-of-the-art on visual quality assessment for video streaming

is then presented where the different QoE assessment techniques are discussed. The concept of

objective visual quality assessment (VQM) metrics is presented where the most common and well

known objective metrics to assess/enhance the QoE for video streaming such as SSIM, PSNR

and VMAF are presented.

2.1 Quality of Service and Quality of Experience

2.1.1 Quality of Service (QoS)

The concept of Quality-of-Service (QoS) was proposed by the International Telecommunication

Union (ITU) in 1994 [12]. QoS refers to the measurement of the performance of a service, such

as a computer network or a cloud service, seen by the users of the service.

Typical QoS metrics of the network service include packet loss, jitter, transmission delay,

throughput, bitrate, etc. QoS characterises services provided by the underlying netwoking

infrastructure. Adequat resource dimensioning and/or provisioning allow to ensure a specific
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level of performance to a data flow, or data flows. QoS metric related to video streaming services

include usually packet loss, transmission delay, throughput, bitrate.

2.1.2 Quality of Experience (QoE)

The term Quality of Experience (QoE) refers to the overall perception by a user of the quality

of a video under his/her visioning. According to ITU-T [13], QoE is the overall acceptability

of an application or service, as perceived subjectively by the end-user. For video QoE, it is a

perceptual assessment that reflects viewers’ satisfaction with their video streaming experience.

It is obviously a paramount concept for all video communications systems, It is also by

definition a very subjective concept. Moreover, it is also application and context dependent.

The perceptual system of human-being is specific to each person, the perceived quality

threshold varies from user to user. A user may not perceive a service in the same way as his/her

peers. Thus, the perceptual quality is by definition subjective and application dependant.

One of the major challenge for video content provider is how to delivery the video content to

end-user with the best achievable QoE under various networking and system constraints. One of

the major challenges for networking operators is how to achieve a fair-share of network resources

so that the user QoE is maximized for all users in a network.

Roughly speaking, the concept of QoE describes the subjective perceived quality of end-

users versus a service, which is typically a video service. [14–17]. In some extends, it offers a

user-oriented complementary indicator to the (very) objective QoS metrics.

2.2 Relation between QoS and QoE

The term "quality of experience" itself is an extension of the "quality of service" concept from the

networking community. The relationship between QoS and QoE can be illustrated as given by

Fig 2.1 [18,19].

Since the 1990s, as the video communication was taking an increasing importance, it becomes

obvious that the sole networking-oriented QoS parameters can no longer provide satisfactory

criteria for video communication.

The purpose of QoE is to understand the end user’s experience and expectations (the end

user’s experience and their level of satisfaction with the offered service). The QoE metrics help

improving existing technologies and developing better future services.

User experience and the concept of QoE was originally promoted by Human-Computer

Interaction (HCI) researchers to stress concern with the outcomes of people’s experience with-
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Figure 2.1: The relationship between QoS and QoE.

/through technology [20]. Some researchers give the QoE even a wider definition by stating:

quality of experience deals with all relevant aspects that define how satisfied a person is with a

service [21,22]. The perceptual system of human-being is specific to each person, the perceived

quality threshold varies from user to user. A user may not perceive a service in the same way as

his/her peers. Thus, the perceptual quality is by definition subjective and application dependant.

While monitoring and managing QoS parameters are important for high quality delivering of

video content, it is also important to evaluate the received video’s perceptual quality from the users’

perspective. Indded, the latter has a major impact on QoE. QoE-based video quality evaluation

is challenging because the user experience is subjective, hard to quantify, and measure. The QoE

is then a set of performance metrics that concentrates on the viewpoint of user satisfaction. The

current measurement studies typically classify QoE into two categories: subjective QoE versus

objective QoE. Fig. 2.2 gives [23] some of the existing metrics of QoE and QoS, respectively.

Subjective QoE is based on users’ opinions. An example of the most generally used subjective

QoE metric is the Mean Opinion Score (MOS). In this thesis, we concentrate on the objective

metrics, i.e., metrics that can be automatically computed.

2.3 QoE Impact Factors

The existing QoE prediction models take into consideration the so called Influence Factors (IFs)

(cf. Figure 2.3 [24]).

A QoE IFs is ”any characteristic of a user, system, service, application, or context whose

actual state or setting may have an influence on the QoE for the user” [24, 25]. The impact
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Figure 2.2: Some metrics of QoE and QoS .

Figure 2.3: the model QoE influence factors.
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factors on any QoE model can be categorized into four multi-dimensional spaces [24,26,27]:

i. System IFs: includes many aspects that are related to media such as characteristics that

determine the technically produced quality of an application or service or network related

such as (wired/wireless/mobile, bandwidth, delay, jitter, packet loss, etc.).

ii. Human IFs: include individual characteristics of a user such as memory and recency effect,

his usage history of the application (e.g., browsing history), his expectations from the

service and the characteristic can describe the demographic and socio-economic background,

the physical and mental constitution, or the user’s emotional state.

iii. Context IFs: include location, viewing environment, time of the day, type of usage, and

time of service consumption; "are factors that embrace any situational property to describe

the user’s environment in terms of physical, temporal, social, economic, task, and technical

characteristics" (peak time, etc.).

iv. Content IFs: explains the characteristics of the contents such as type of video, its duration

and content aspects related to complexity including (temporal and spatial complexity).

2.4 Measurement of QoE

Service Providers (SPs) use often QoS parameters, such as bandwidth, jitter or delay as indicator

of QoE. Actually, these ones are valuable operational parameters. However, we know that they

are not enough.

The ultimate performance indicator for video streaming services is clearly the end-user

QoE [28–31].

The challenging point of QoE is two folders:

• How to find pertinent networking and system parameters?

• How to choose and take into account other parameters with impact on QoE?

In [29], the issue of fair QoE measurements in networking is addressed, in order to enhance the

user experience (to get user satisfaction). Their work provides a brief survey on how to measure

the quality of the experience and how different layers in the network environment affect the

quality of the perceived experience. To control their resources while maintaining user satisfaction,

the video content providers need to take into account not only the QoS, but also the QoE.
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In [31], they offer three approaches namely subjective approach, objective approach, and

hybrid approach in order to assess as accurately as possible this perceptual quality in video

streaming applications over wireless networks in different network conditions. They focus on

a hybrid approach called Pseudo Subjective Quality Assessment (PSQA), which can be run in

real-time.

In [28] they conducted their experiments based on the subjective video quality assessment

(MOS) to determine user satisfaction of video streaming services. They investigated video-user

interaction (engagement) through various video QoE metrics such as i) buffering ratio, ii) average

bitrate and iii) buffering events, etc.

In [30] they proposed two dynamic server selection systems based on users’ QoE feedback for

the Video on Demand (VoD) system, where they use users’ an online QoE model (that evaluates

bitrate and rebuffering events for each video chunk during the video streaming session) as an

assessment of server performance.

2.5 Basic Concepts on Video Quality Assessment

Most of the visual quality assessment metrics were first designed to evaluate the visual quality

of the distorted images and were later extended to videos [32]. The VQA of a distorted video

can be performed in two ways: subjectively or objectively. The subjective VQA follows the

protocol described in the standard [33]. Under the same experimental conditions, a large panel of

observers evaluate the quality of a given video. Each observer ranks the observed video according

to his/her visual perception on a scale ranging from 1 (i.e., worst quality) to 5 (i.e., best quality).

The final score, known as the MOS (Mean Opinion Score), is obtained by averaging the individual

assessments [34]. Although the subjective VQA is in accordance with the human perception, its

implementation remains complex (e.g. the cost of conducting this type of experiment is high and

requires a large number of participants, etc). Table 2.1 compares the video quality assessments

methods (subjective and objective).

However, objective VQA is derived from an analytical expression validated by subjective

quality analysis during its development [35]. Indeed, several objective metrics with reference

(i.e. Full-Reference (FR) such as SSIM, MS-SSIM VQM VFD, MOVIE, ST-MAD, VMAF and

FLOSIM), without reference (i.e. No-Reference (NR) such as MREBN) or Reduced-Reference

((RR) such as STRRED) have been proposed, for more details one can refer to [36]. Most of

them aim to get as close as possible to the Human Visual System (HVS) to apprehend the

visible distortions. Next section proposes the study to a wider overview of video streaming QoE
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Table 2.1: Comparative of quality assessments methods.

Characteristic Subjective methods Objective methods

A direct measure of QoE Yes No

Real-time No Yes \ No

Cost High Low

Wide Application Limited Limited

assessment methods.

2.6 QoE Video Quality Assessments Methods

The scientific literature shows that video quality assessment results naturally from the techniques

originally proposed to assess the visual quality of distorted still images. To measure the QoE,

one can classify the proposed VQA methods into subjective and objective methods.

The subjective method refers to the evaluation of the quality of the services, where human

subjects measure or quantify performance and quality (many participants observe a sample video

to understand their personal perception of quality service). The main drawbacks of the subjective

method is that they cannot be implemented in real-time due to the lack of repeatability. These

limitations and challenges have encouraged and motivated the creation and development of

objective methods that predict subjective quality from the network/media parameters. However,

it is difficult to correlate the objective methods to human perception and some may require high

computational.

There are different strategies for measuring subjective and objective visual quality. Table

2.1 compares the subjective and objective VQA methods. The following subsections discuss the

common QoE measurement methods [37].

2.6.1 Subjective Quality Assessment

The International Telecommunication Union (ITU) describes QoE as the total admissibility

of service, as perceived subjectively by the end-user. For the quality of service DASH video

streaming, it can be concluded that the users’ satisfaction level of video content delivered by the

video content server which is considered. This definition means that the evaluation of the quality

of experience of video streaming is done through subjective experiments. Subjective experiments



16

represent the most accurate method for obtaining visual quality ratings. In subjective tests,

commonly a number of users are required to observe a set of video clips for later on to rate

what they have seen and experienced. The evaluation is usually done in accordance with the

MOS. The quality level of a video sequence based on a MOS model is evaluated on a scale

ranging from 1 to 5. Observers are required to rate quality parameters utilizing a standardized

five-point scale with labels such as Excellent, Good, Fair, Poor and Bad, where 5 is the best

quality while 1 represents the worst one [34]. Since this is in the subjective domain, one has to

expect some variability of the users’ ratings as people have different interests and expectations

for the video. One can minimize such factors through specific guidance and training. The ITU

proposes standard viewing conditions, criteria for evaluation procedures for selecting test users

and techniques for analyzing data and materials.

2.6.2 Objective Quality Assessment

Objective measurements are typically technology-centric where data is automatically collected

by monitoring tools. User tests are then essential to identify and verify the relationship between

technical parameters and the perceived quality (which is part of QoE). Objective QoE measuring

techniques are based on network-related parameters that need to be gathered to predict the

users’ satisfaction. Objective measurement methods follow either an intrusive approach, requiring

image/video reference content, or a non-intrusive approach that does not require reference

information to predict the quality of the experience. Many algorithms referred to as objective

quality metrics have been proposed in the existing work for the in-service objective quality

evaluation of video sequences. The objective quality assessment methods can be based on full

reference quality metric, reduced-reference quality metric and no-reference quality metric.

The studies carried out on video streaming work show that VQA metrics are used for a

variety of purposes:

• to assess the quality of the received video using VQA metrics;

• to improve the quality of the transmitted video; and

• to predict the QoE that should be correlated to the subjective VQA.

In what follows, full-reference video objective metrics as well as for improving or predicting

the QoE are first described.
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2.6.2.1 Full-Reference Video Quality Metrics

Full-reference video quality metrics are the most common, normally use as an evaluation of the

degree of distortions in the received content [38]. The simplest way to assess the video quality

metrics and most widely technique is the Mean Squared Error (MSE), which is computed by

averaging the squared intensity differences of distorted values from the original values. These are

attractive because they are simple to compute meanings. But these metrics are not very well

since they do not correspond to the perceived visual video quality. In the latest three-decade,

a major effort contributed to the development of video quality assessment methods that take

into account the features of the HVS. The majority of the suggested perceptual quality evaluates

models that followed a strategy of modifying the MSE measure so that errors are penalized in

accordance with their accuracy. Evaluation of image quality algorithms based on a full reference

video quality assessment measure like the MSE, SSIM and PSNR.

Full-reference video quality metrics that are usually used in video codecs comparisons are

expected to reflect any variations and changes in videos. The only weakness of the FR approach

compared to the others is the need to have the original video for comparison with the encoded

video (observed), which is often not handy (unavailable). For example, SSIM, as it is a full-

reference metric (i.e., its computation requires full information of the original video chunk), it

cannot be calculated at the client video streaming side, but its values when varying the video

representation can be conveniently pre-computed, stored on the video streaming server-side, and

included as a matrix in the MPD. The computational procedure for calculating the SSIM values

is done on the video streaming server-side. [39–41].

2.6.2.2 No-Reference Video Quality Metrics

Contrary Non-Reference metrics are metrics assessing the visual quality of the distorted infor-

mation without using the original information as a reference. These kinds of QoE metrics are

more related to online services, where the delivery network is shared by other services. In video

streaming services, it is hard to determine if the variation in the quality is due to the quality of

the reference or due to the intermediate elements. Therefore NR metrics are the most suitable to

measure the online streaming services, due to the distance between the video users and the video

streaming server and also due to a lack of separate feedback channels. This is a hindrance to

deriving QoE-QoS relationships aiming at capturing the impact of the network [42]. In many

practical applications, where the reference image/video is not available, and a no-reference or

“blind” quality assessment approach is desirable. This is because no-reference metrics assessment

are designed to imitative visual perception (i.s., learned from large-scale perceptual scores)
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without requesting original images as a reference to be compared. Objective metrics such as the

bitrate, no-reference metrics, which gauge the video distortion solely from the received frames

(i.e., no external quality reference is provided). No reference image quality assessment algorithm

that corresponds to visual perception [39]. Existing NR image quality evaluation methods are all

learning-based, but the training images are low quality by compression, noise or fast fading rather

than high-resolution. As a result, state-of-the-art on NR image quality evaluation methods are

less effective for accounting for the artefacts such as incorrect high-frequency details introduced.

2.6.2.3 Reduced Reference Video Quality Metrics

The RR video quality assessment, where only incomplete information from the reference can be

made available in addition to the distorted video to conduct quality evaluation RR video quality

assessment methods estimate the amount of distortion in the distorted video using particular

information from the original video. RR methods only use a limited number of features of the

original video. The same set of parameters are derived and compared from both reference and

encoded copy. Certain parameters can exist at the network layer such as packet loss or at the

application layer such as bitrate [43–45].

2.7 SSIM, PSNR and VMAF metrics

Among the different metrics available in the scientific literature, the section below presents the

relevant metrics on which we have based the proposed Adaptive BitRate algorithms that will be

presented in the next two chapters.

2.7.1 Structural Similarity Index Measurement (SSIM) QoE Metric’s

The SSIM is a metric that predicts the perceived goodness of images and videos. The basic model

was developed in the Laboratory for Image and Video Engineering (LIVE) at the university of

Texas at Austin and further developed jointly with the Laboratory for Computational Vision

(LCV) at New York university [39]. SSIM metric intended to take the HVS aspects into

consideration throughout the evaluation process. The SSIM index is a full reference metric, the

measurement or prediction of image/video quality is related to the original image/video as a

reference. The SSIM is a based design taking into account the image/video degradation as the

perceived changes in the structural information including important perceptual aspects such as

luminance and contrast aspects and combining them into a single value, called index. The SSIM

index is a decimal value ranging between 0 and 1, where zero represents the worst visual [39].

Figures 2.4, 2.5 and 2.6 provide the SSIM values of different video quality levels using
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"animation", "documentary" and "sport" video test used during our experiments (cf. § 4.4.3 for a

more detailed explanation of these sequences).

Figure 2.4: SSIM values of different video quality levels using "Animation" video test.

Figure 2.7 shows the SSIM index map of the movie Big Buck Bunny.

The SSIM metric computed between the original samples x and its distorded version denoted

y is given as follows [39,46]:

SSIM(x,y) = [l(x,y)]α[c(x,y)]β [s(x,y)]γ , (2.1)

where l(x,y) is given by:

l(x,y) = 2µxµy +C1
µ2
x +µ2

y +C1
, (2.2)

and c(x,y) is the constrat comparison given by:

c(x,y) = 2ϕxϕy +C2
ϕ2
x +ϕ2

y +C2
, (2.3)

and s(x,y) is the structure comparison defined as follows:

s(x,y) = ϕxy+C3
ϕxϕy +C3

. (2.4)

where µx, µy, ϕx, ϕy and ϕxy are the local means, standard deviations and cross-covariance for

samples x, y.

Setting the weights α, β, γ to 1 and C3 = C2
2 the formula can be reduced to the form shown

at the top of this section.
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Figure 2.5: SSIM values of different video quality levels using "Documentary" video test.

Figure 2.6: SSIM values of different video quality levels using "Sport" video test.
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Figure 2.7: Comparison of SSIM index - the movie (Big Buck Bunny).
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Table 2.2: Mapping of objective QoE (SSIM) to subjective QoE (MOS).

MOS Quality SSIM

5 excellent > 0.99

4 good ≥0.95 and: <0.99

3 fair ≥0.88 and: < 0.95

2 poor ≥0.5 and: < 0.88

1 bad < 0.5

This results in a specific form of the SSIM index:

SSIM(x,y) = (2µxµy +C1)(2ϕxy+C2)
(µ2
x +µ2

y +C1)(ϕ2
x +ϕ2

y +C2) , (2.5)

where C1, C2, C3 are constants for the luminance, contrast, and structure, specified as a

non-negative numbers.

In our work, we calculate the video quality metric (SSIM) for each video chunk as an average

of the SSIM of each image of the video as:

SSIM(k,r) = 1
T ×FPS

∑
x=0

SSIM(K,r)x, (2.6)

where k is the chunk at the r-th bitrate level and T is the video chunk duration. Each video

chunk is encoded in a given frames per seconds (FPS).

Among the different metrics, the similarity index is considered as a good objective metric

due to its proven performance [32]. The state of the art shows that this metric has also been

selected as a metric to assess the QoE (see e.g., [47–50]).

The metric outputs a value from 0 to 5 (5 is the best possible score) to present the image/video

quality level based on the human visual system and subjectivity aspects, including blurring,

block distortion and color distortion. Table 2.2 represents a mapping of objective QoE (SSIM)

to a nominal 5-point MOS scale subjective quality assessment QoE based on [39,51].

2.7.2 Peak Signal-to-Noise Ratio (PSNR) QoE Metric’s

The objective quality assessment metric PSNR is just a logarithmic representation of the MSE,

computed between the original (i.e. reference) visual information and its degraded version [38,52].

The PSNR mathematically is as simple to understand and implement as it is easy and fast to
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compute. Over the years, video researchers have developed a familiarity with PSNR that allows

them to interpret the values immediately [52,53]. The higher the PSNR, the better the quality of

the compressed, or reconstructed image. At the other end of the scale, a small value of the PSNR

implies high numerical differences between the original and a decoded image. PSNR is based on

a pixel by pixel comparison of the data without considering what the pixels actually represent,

and thereby only represents an approximate relationship with the video quality perceived by

human observers.

Consider an original image denoted I of size M ×N and K its distorted version. Denoted

I(i, j) the pixel of the image I located at position (i, j). Denoted m the number of the bits used

to represent a pixel. The PSNR, then comparing the distorted image to its original version, is

given by the following expression:

PSNR = 10log10

(
b2

MSE

)
, (2.7)

where

b= 2m− 1, (2.8)

and

MSE = 1
N.M

N−1∑
i=0

M−1∑
j=0

[I(i, j)−K(i, j)]2. (2.9)

The full reference metric (PSNR) is one of the most popular image quality metrics. It is a

well-known measurement method that aims to also measure the video fidelity. In our thesis, we

calculate the video quality metric (PSNR) for each video chunk as of the PSNR values to all

images as:

PSNR= 10log10

(
b2

1
T×FPS

∑
x=0 MSE(K ,r)x

)
, (2.10)

Table 2.3 presents a mapping of the objective QoE (PSNR) to a nominal 5-point MOS scale

subjective quality assessment [54,55].

2.7.3 Multimethod Assessment Fusion (VMAF) QoE Metric’s

Video multimethod assessment fusion has been developed by Netflix [56]. VMAF is a metric

that needs the availability of a full reference information. VMAF is a fusion-based metric

that is gaining popularity in the area of video quality assessment. Its essential concept is to

combine multiple elementary video quality features, to balance between high performance and

computational efficiency, such as (i) Visual Information Fidelity (VIF) [57] (ii) Detail Loss Metric

(DLM) [58] and (iii) Temporal Information (TI). All these features/metrics are integrated into a
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Table 2.3: Mapping of objective QoE (PSNR) to subjective QoE (MOS).

MOS Quality PSNR

5 excellent ≥ 45

4 good ≥ 33 and: < 45

3 fair ≥ 27.4 and: < 33

2 poor ≥ 18.7 and: < 27.4

1 bad < 18.7

final metric using a machine learning algorithm Support Vector Machine (SVM). A large sample

of MOS scores were used as ground truth to train a quality estimation model. The resulting

regressor is used for estimating per-frame quality scores on new videos. VMAF which combines

scores from three different metrics which were mentioned above to obtain a single score between

0 and 100, with a higher score denoting a higher quality, where observed that VMAF predictions

have a very high correlation with subjective video quality rating.

2.8 Conclusion

This chapter introduces the background information and related work of this thesis. We firstly

provide an introduction to the concepts fundamental concepts of quality-of-service (QoS), quality-

of-experience (QoE) as well as related work on QoS and QoE. We then make focus on objective

visual quality metric (VQM) assessment, which is a key component of this thesis. In the next

chapter, we will present also background information and related to Dynamic Adaptive Streaming

over HTTP (DASH) standards and DASH problems, in addition to reviewing the specimen of

Adaptive Bitrate (ABR) algorithms that we used in our work.
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State of the Art on DASH Video Streaming

“Though no one can go back and make a brand new start,

anyone can start from now and make a brand new ending.

” Carl Bard

In this chapter, we present the Dynamic Adaptive Streaming over HTTP (DASH) standards

and its chalenges. Following, this chapter reviews the significant Adaptive Biterate (ABR)

algorithms to improve the Quality of Experience (QoE) for video streaming application.

3.1 MPEG-DASH Technology for Multimedia Streaming

The dominant video streaming technology is Dynamic Adaptive Streaming over HTTP (DASH)

through the Internet based on TCP/HTTP [2,3,7,59]. Where the live and Video on Demand (VoD)

services increasingly using this technology, which is an international standard MPEG-DASH.

Figure 3.1 depicts the DASH flow streaming process.

DASH uses Hypertext Transfer Protocol (HTTP) as application layer protocol and Transmis-

sion Control Protocol (TCP) as the transport protocol. Where, DASH consists of the Adaptive

Bitrate (ABR) algorithm as a key element, wherever ABR still remains an open issue.

Today, many video content providers (including NETFLIX and YouTube) have switched

to ABR streaming to maximize Quality of Experience (QoE) for video users [7, 60]. Adaptive

bitrate streaming was introduced with the primary purpose of adapting video quality to network
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Figure 3.1: DASH Streaming Flow Process.

bandwidth variations to decrease video rebuffering, rate switching, and maximize the overall

video quality in order to achieve the satisfaction of the end user of the video.

Well-known standards for ABR algorithms were introduced by Move Networks and are now

being developed and used by Adobe Systems, Apple, and Microsoft, etc. Streaming includes the

following:

• Adobe: HTTP Dynamic Streaming (HDS)

• Apple: HTTP Live Streaming (HLS)

• Microsoft: Smooth Streaming (MSS)

• HTTP Adaptive Streaming (HAS)

In addition, the DASH industry forum has been formed in order to enable smooth implementation

of DASH, one of their achievement is DASH-AVC/H264 a recommendation of profiles and settings

serving as guidelines for the DASH implementation with H.264/AVC video. Despite the many

ABR implementations that have been proposed related to the DAHS approach. Nevertheless,

there are still differences not only between commercial products but also inside the same product,

even within MPEG-DASH, such as:

(a) the buffer size of playback,

(b) duration of the video chunk, and

(c) the conditions of the ABR algorithm that selects the bitrate level of the next video chunk.
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The impact of QoE metrics such as (Rebuffering, Rate switching, etc.) on user satisfaction

(DASH users) is significant [41,61]. This is due to the fluctuations of the mobile network over

time.

Additionally, the use of HTTP allows efficient traffic of NATs and Firewalls [62], This is

not the case with Real-Time Transport Protocol (RTP) over User Datagram Protocol (UDP)

streaming solutions.

In the DASH server, the media file is segmented into chunks of fixed duration, e.g., (1 10)

seconds, which can be pre-compressed with several versions at different bitrates and/or qualities.

For instance, when using a single (multi) layer codec such as AVC (SVC), each segment has

different versions (layers). The segments are provided on a web server and can be downloaded

through HTTP standard-compliant GET requests. The adaptation to the bitrate is done on

the client-side for each segment, e.g., the client can switch to a higher bitrate - if bandwidth

permits - on a per-segment basis. The temporal and structural relationships between segments

are described in the Media Presentation Description (MPD) file.

3.1.1 DASH Server Side

The common principle of server-side DASH is as follows [63–67]:

i. The original video segmented into chunks.

ii. Each video chunk is pre-compressed with several versions at a different resolution, and/or

bitrate levels; where the information about each video chunk used like an elementary unit

for adaptation. Our contribution is to add additional information about each video chunk

based on video quality metrics into MPD in order to optimize the adaptation mechanism

video QoE.

iii. Actual adaptation decision is made by client: we propose an ABR algoritme based on video

quality metrics.

3.1.2 DASH Adaptation Interaction: Server/Client

The DASH streaming flow process is the interaction between the server and the client. Where on

the client-side, the DASH player requests chunks decode and displays them successively on the

client screen. To load a video [63,66,67]:

• A video client periodically requests an individual chunk from a video server.

• As the video chunks are downloaded, they are stored in a playback buffer.
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• Video players use ABR algorithms to selects bitrate for the next video chunk.

The specificity of DASH streaming technology is that it offers an adaptation to the net-

work/system conditions; in fact, it enables the DASH client to switch from one bitrate level

to another within the same DASH server video content stream; in our contribution: we add

additional information related to visual quality metrics for each video chunk for adaptation. In

common ABR implementations, the selection of the bitrate level of each requested chunk depends

essentially on the estimation of the available bandwidth on the client-side.

This can become problematic if the chunks we request have higher bitrates than the network

can support, this ultimately leads to an empty buffer and thus a rebuffering period. To prevent

issues like this, video players use ABR algorithms.

3.2 Progressive download of video chunks via HTTP

The process of transmission video streaming refers to the delivery of the video content where

the video chunk is displayed at the video client-side while being delivered by a video content

provider simultaneously. The video client-side starts to download the video chunks progressively

and stored them in the application buffer (playback buffer). Definitely, the first video chunk

starts playing just when it’s completely downloaded on the video client-side. The video chunks

are downloaded at the same time as the video is playback, i.e., the buffer is filled with newly

downloaded chunks, while it replaced as the downloaded chunks are played out [68,69].

With fluctuating mobile network conditions, the buffer slowly fills compared with video

playback time, resulting in re-buffering events. Conventional, the video content server was based

on protocols such as Real-Time Protocol (RTP) and Real-time Streaming Protocol (RTSP) for

real-time delivery of video content to the video client side. However, with UDP, video playback

may experience degradation, that is, some video frames might get distorted or dropped due to

packet losses. While modern video streaming systems today use the HTTP protocol to stream

video content. Transmission of existing models via Internet standards established protocol in

the TCP transport layer, HTTP in the application layer. Nevertheless, major developments

like the current HTTP / 2 Template Challenge, for example, attempt to predict instances

of buffering loading times of videos and web pages (websites) to adapt to new transmission

technologies. The general assumption is that a standard HTTP infrastructure (omnipresent

interface to applications) is used which is deployed on top of TCP for the delivery of both MPD

and video segments (which provide Reliable data transfer).
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3.3 Transmission Control Protocol (TCP) & DASH

As we mentioned earlier, there has been a move to the ABR algorithm (video streaming

technologies) as it has many advantages over conventional (non-adaptive) vide. Additionally,

HTTP over TCP has gained popularity as a criterion transmission protocol due to various

deployment advantagesas shown in3.2.

Figure 3.2: Diagram of HTTP messages.

TCP is used to transfer data in network communications such as the Internet. It is connection-

oriented, a connection between the client and the server is established before data can be sent

"Three-way handshake, retransmission, and error detection process; this is the reason why TCP

is a reliable protocol". TCP used by DASH was intended for general purposes and not for

video streaming in special. Indeed, the TCP congestion control protocol target to take the

whole end-to-end available bandwidth and its behavior may have many differences with DASH

streaming technology behavior. Nonetheless, these variants have various behaviors that may

induce forked impacts on the QoE of DASH and the QoS of the access network. Moreover, the

competition between DASH video clients for bandwidth is a special situation of competition

between TCP flows; the only difference is the download of numerous video chunks, instead of a

unique video file, within the same TCP session [70].

Video streaming service running over HTTP due to its ability to traverse through network

address translations and firewall, reliability of video packet transfer, flexibility to respond to

unstable network conditions, which uses TCP, devices of users receive all the information sent

from the video server via IP networks for these matters the video player is incorporated into a

web browser [62,71,72]

However, if the TCP control mechanisms discover losses on the IP network, the TCP transfer

rate drops. Therefore, the quality of experience of users during a video streaming session under
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network congestion is mostly affected by rate switching or rebuffering event [73–75].

In recent years, it has been shown that TCP does not necessarily increase the performance of

video streaming applications, particularly if the video player is able to adapt to large variations

in throughput. A streaming protocol based on TCP, progressive downloading over HTTP, was

used by the first generations of HTTP / TCP-based video streaming applications [76].

Nowadays, the majority of video content providers have chosen to use DASH technology, to

adopt the video bitrate based on the capacity of the network on the user side; in order one goal,

to improve the users’ QoE during video streaming session. Nevertheless, if the quality of the

video changes frequently, the user’s attention may be negatively affected and other events may

occur such as video playback freezing during the video session, all of this led to leaving the user

the video session.

3.4 QoE Issues with DASH

3.4.1 General consideration

Traditional objective Video Quality Assessment (VQA) metrics were designed for quality estima-

tion of video at various (destructive) compression levels. These metrics also take into account

the impact of packet loss during the transmission process.

With Dynamic Adaptive Streaming over HTTP (DASH), the transmission mode has changed.

There is no more packet loss, due to the use of TCP. Instead, the phenomena of content stravation,

termed as rebuffering, occur and become one of the most critical issues. Indeed, with the TCP-

based per chunk transmission scheme, it is possible that the playback buffer is empty before the

reception of the next chunk.

Another phenomenon, always due to the chunk granularity, and also the possibility of multi-

rates contents per chunk, is the video quality instability. Indeed, it is possible to fetch two

adjaent chunks at totally different bitrate levels, and so with totally different video qualities.

There are quite a number of technical indicators, each of them provides some insight about

the overall QoE. For instance, a high mean bitrate suggests a playback which is done with a good

visual quality in general. However, the watching could be boring if the rebuffering phenomena

are quite frequent. In a similar way, an overall good playback with a few moments of low quality

would also provide a high mean bitrate. However, it is solely up to the user to prefer a fluid

and stable yet mean quality playback, or a high quality playback with some rebuffering and/or

quality switching.

DASH provides an architecture which allows end-users to make adaptation to the current
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networking and systems contraints, in order to get a best possible overall QoE. Adaptation

mechanism is the central point of a DASH-based video streaming system.

QoE is a combination of many factors, including, on the physical conditions: chunk resolution,

per chunk available video bitrates, available bandwidth, buffer size. Among these factors, the

first two are provider dependant but is known to end-users through MPD. The solution is to

hold a balance between these factors [77,78].

As we already stated, QoE is a complex issue. In fact, the importance and effect of each QoE

metric depends on the opinion of end-users [7, 79, 80]. In general, each QoE metric offers only a

partial viewpoint on QoE. For this matter, to characterize the overall QoE, there is a need to

consider multiples QoE metrics. In the case of QoE for DASH-based video streaming, we usually

use these metrics:

• Average BitRate-Video Quality: the average bitrate of the video chunks that have been

displayed on the screen. Low video bitrate leads generally to bad quality (and so bad user

experience). However, a high video bitrate, while providing better quality, claims also more

bandwidth and so is more sensitive to bandwidth fluctuation.

• Rebuffering Events: Several indicators can be driven to this phenomenon: frequency,

maximal single duration, total duration. Long and/or frequent rebuffering are irritating

and can lead to the abandon of a playback session [7, 81]. We consider here the total

duration of the freezing events during the video session. Actually, a well designed ABR

mechanism will not allow frequent rebuffering phenoma, but the adaption strategy does

have impact on rebuffering duration.

• Video Quality Switching: This concerns video quality changing when the adjacent chunks

belongs to two different encoding versions. This objective video quality switch can be

perceptible by users and impact on their experience.

3.4.2 About Rebuffering

The Rebuffering concept is defined: as the freezing of video playback during the video streaming

session these events happen when the playout buffer gets empty. If the video bitrate is higher than

the throughput of the video streaming application, the playout buffer will consume. Ultimately,

insufficient data is available in the buffer and the playback of the video cannot continue. The

playback is interrupted until the buffer contains a certain amount of video data [59]. The impact

of rebuffering events on video streaming QoE has been widely studied in literature and is shown
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to depend on the number, the duration, and the position of the rebuffering (freezing playback)

events in the playout, where the rebuffering events considered among the most important metrics

that affect the user’s QoE. These rebuffering events during the playback (video streaming session)

lead to a bad user experience [82]. In [83], show that an increased duration of rebuffering

decreases the quality of experience. They also find that one long rebuffering event is preferred to

frequent short ones. In [84] they show interesting results that there is an impact of the position

of freezing events to video streaming users’ responses, where the video user reacts differently

with regard to the rebuffering location where the problem happens. This indicates that the

rebuffering and its location have a combined impact on human perception. While the users who

experienced more rebuffering in the video tends to watch the video for shorter durations [61] and

are expected to be not satisfied in the case of four or more rebuffering events for videos [85].

Rebuffering is a complex issue. As a matter of fact, it is not easy to choose the ideal bitrate

for the next video chunk, since it depends basically on the network bandwidth availability

forecast. An aggressive (higher bitrate) choice leads more probably to depletion of the buffer

but offers better overall bitrate so video quality; a conservative (lower bitrate) choice prevents

buffer depletion but offers lower overall bitrate (bad so worse video quality). There is clearly a

trade-off between video quality and rebuffering risk.

Recent studies on video QoE (cf. for instance, [79]) converge to the conclusion that the

rebufferings in DASH should be avoided in order to enhance the QoE. However, users’ QoE can

vary depending on the manner of rebuffering : for instance how long or how often rebufferings

arise during video playback.

Concerning a single rebuffering event, a duration of up to approximately 360 ms has been

showed to be acceptable by the end-users [81]. S. van Kester et al. provided a detailed study [81]

on the impact of a single rebuffering as well as multiple rebufferings on the perceived quality of

the users. A subjective test was performed to study how these rebuffering influence the quality

perceived by users through MOS records. This study reveals that an acceptable rebuffering

time (MOS>3.5) is 360 ms. This study also showed that the perceived quality depends not

only on the duration of the rebuffering but also on the number of rebuffering. It depends also

on the pattern of rebuffering: actually, we may have a single long rebuffering or multiple short

rebuffering periods.

A large scale study has been presented in [7]. This study is based data collected, by using

the YouSlow tool, from more than 400,000 YouTube views situated at over than 100 countries.

The authors found that the viewers stay 5 minutes and 1 second on average per video session,
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including rebuffering and start-up latency. More than 40% of viewers closed YouTube videos in

the middle of the playback, due to unexpected playback events such as rebuffering and bitrate

changes. They compared in particular rebuffering against two other factors which are start-up

delay and bitrate switching:

• Rebuffering vs start-up delay: In terms of abandonment, the rebuffering events cause video

users abandonment rates six times compared with start-up delay during the video session.

• Rebuffering events vs switching bitrate: This study is focused on the comparison between

two groups: in the first group, there are 9,577 video sessions where the viewers experienced

a single rebuffering event without any bitrate changes and any ads. The second group is

constituted with 4,991 video sessions where the viewers experienced a single bitrate change

with no rebufferings and no ads. The first group (rebuffering) has an abandonment rate

which is three times higher than that of the 2nd group (bitrate switching).

3.4.3 About Bitrate Switching

Quality instability due to bitrate switching is particularly present in wireless mobile networks.

In [86], a subjective video QoE study has been conducted on multiple mobile platforms and

encompassed a wide variety of distortions, including dynamically-varying distortions as well as

uniform compression and wireless packet. They observed that time-varying quality has a definite

impact on video end-user subjective judgement of quality. Their study revealed also that humans

appear to be far more forgiving of lost segments than they are of switching quality. Also, humans

seemingly prefer longer rebuffering event over more frequently but shorter rebuffering events.

In [87], they proposed QoE aware quality-level switching algorithm, in order to adaptive

video streaming with fluctuating network , where this systme switching adaptively based on the

network-throughput estimations. Their proposal works on the controller of DASH system. This

system has two features: insertion of average quality level and determination of quality-level

switching. Generally this method have shown effectiveness to enhance QoE through fluctuating

network.

In [88], they suggest analytical framework in wireless networks to compute starvation prob-

ability of the buffer, continuous playback time and average video quality, given the switching

bitrate logics. where this framework can be used to predict the QoE metrics of dynamic adaptive

streaming with a set of features: a) buffer-aware bit-rate switching b) receiver-side stream control.

In this work they proposed two frame work analytical the first analytical framework to predict

the QoE of adaptive streaming is based only on channel variation (wireless channel is modelled



34

as a continuous time Markov process), while the second framework is the bit-rate switching

algorithms is based on both channel variation and buffer length (playout buffer is modelled as a

fluid queue with Markov modulated fluid arrival). Where their study in this work shows good

practical value in guiding the design of the bitrate switching algorithm.

In [89], they proposed control algorithm called BOLA that uses Lyapunov optimization to

minimize rebuffering and maximize video quality. Where they show how BOLA can be adapted

to avoid switching bitrate events during video playback; despite the switching bitrate are less

annoying than rebuffering events, but in their work they see the switches bitrate events when it

occur too frequently, it will effected negatively in user involvement.

In [90] they propose an in-network resource management framework, AVIS, that schedules

HTTP-based adaptive video flows on cellular networks, is to control the frequency bit rate

switching per user via scheduling, AVIS is effective in allocating the resources of a base station

across multiple adaptive video flows and effectively balances between three important goals: 1)

fair resource allocation 2) Stability of a user’s bit-rate (average bit rate switches between different

users) and 3) enables a balance of optimal bit rate for individual users. Therefore a good QoE

are obtained.

3.5 ABR Algorithms for DASH

3.5.1 ABR Algorithms

As stated before, Adaptive BitRate (ABR) algorithm is a key element in DASH. There are many

factors to be taken into account when making adaptation on the one hand, and, on the other

hand, various ways to take these factors individually into account, as well as to make balance

among them. in addition, the target QoE may also have various factors. Thus, there are quite a

number of ABR algorithms which have been developed and this topic still remains an open issue.

In this section, we will review related work on ABR algorithms. ABR algorithms are usually

categorized into three classes:

i. Buffer-based Adaptation: these adaptation algorithms mainly utilize only the client’s

current buffer level to select a bitrate quality of next video chunks for playback. For

example, a low buffer level means the adaptation algorithm selects the lowest quality for

download and enters a conservative mode of behavior. Similarly, higher buffer levels means

an increasingly aggressive quality selection process as the buffer fills up. (e.g., BOLA and

BBA by NETFLIX) which avoids rebuffering events by constantly monitoring the buffer

levels before selecting a quality for download [60,91].
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ii. Rate-based Adaptation: these adaptation algorithms simply selects a quality for next video

chunk based on the measured download rate use the throughput achieved in recent prior

downloads for decision-making (e.g., throughput rule in dash.js and Fair, Efficient, and

Stable adapTIVE algorithm (FESTIVE)) [92,93].

iii. Mixture: a mix of the two previous categories (algorithms combine both types of informa-

tion) [47].

3.5.2 The Buffer Based Adaptation (BBA) Algorithm

Huang et al. proposed the Buffer Based Adaptation (BBA) [60,94] method. Briefly, the algorithm,

which was part of a wide-scale Netflix experiment, defines a class of functions that map current

buffer occupancy to a quality bitrate (denoted rate map) which aims to: a) Avoid unnecessary

rebuffering and b) Maximize the overall video quality. They used the buffer occupancy as a

control signal to select the level (bitrate) of the next video chunk instead of the estimated

bandwidth. They calculate dynamically a couple of <maximum, minimum> bitrate levels. When

possible, the actual video rate keeps growing to the maximum, until there is not enough (with

respect to a threshold value) room in buffer, then the video bitrate drops to the minimum level.

To guarantee that the algorithm never unnecessarily buffers is to simply fetch rate Rmin

when the buffer approaches empty (When the buffer indicator falls in critical zone), permitting

the buffer to grow as long as C(t) > Rmin. Inspired by this observation, Huang et al. design

their algorithms BBA as follows. First step , they focus on a buffer-based design: BBA select the

video rate directly as a function of the current buffer level. They call this design the buffer-based

approach. Their suggestion might be thought of as an “likeness” of Figure 3.4 [60]: namely,

they start by using only the playback buffer, and then “regulate” this algorithm using capacity

estimation if necessary.

An ABR algorithm is buffer-based if it selects the level of next video chunk as a function of

the current buffer occupancy, B(t). The model space for this category of algorithms is explained

as a buffer-rate plane where the buffer-axis is buffer occupancy and the rate-axis is video rate.

The region between [0, Bmax] on the buffer-axis and [Rmin, Rmax] on the rate-axis defines the

feasible region. Any curve f(B) on the craft within the funciolnal region defines a rate map, a

function that produces a video rate between Rmin and Rmax given the current buffer occupancy

see Figure 3.3 [60].

To avoid rebuffering, it is important to get content when the buffer occupancy approaches

empty (when the buffer indicator falls in critical zone). The best way to get content is to use the
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minimal rate. Then, when the buffer is being refilled, it is possible to get a higher download rate

(see Figure 3.3 [60]).

Figure 3.3: The rate map used in the buffer based algorithm.

Inspired by this observation, Huang et al. design their algorithms BBA which is mainly uses

buffer-indicator to estimate the level of the next chunk to be fetched. Nevertheless, they also

uses (networking) capacity estimation as a regulator parameter. This leads to the following

closed-loop adaptation schema (see Fig. Figure 3.4 [60]).

Figure 3.4: Current practice adjusts the estimation based on the buffer occupancy.

The BBA algorithm permits to reduce the rebuffer rate by 10˘20% compared to the ABR

algorithm used by Netflix at that time, while delivering a similar average video rate, and a higher
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video rate in steady state.

3.5.3 The FESTIVE algorithm

Within the context of multiple bitrate-adaptive players share a bottleneck link, and for achieving

three key metrics: efficiency, fairness, and stability, Jiang et al. proposed a general bitrate

adaptation algorithm framework called (FESTIVE) [92].

This adaptation algorithm aims to improve fairness, stability and efficiency of the DASH

player by predicting throughput to be the harmonic mean of the experienced throughput for the

past downloaded chunks, as well as a stability score as a function of the bitrate switches in the

past chunks. As the prediction does not take into account the buffer occupancy, FESTIVE may

have rebuffering which affects the QoE performance.

Through this framework, they identify the underlying causes of several unwanted interactions

that have severe negative impact on video bitrate adaptation over HTTP. From that, they develop

a generic framework to achieve trade-offs between stability, fairness and efficiency with a solid

video adaptation shema. Figure 3.5 [95] gives an overview of FESTIVE.

Figure 3.5: Overview of the FESTIVE adaptive video player.

FESTIVE has Three Key Components:

i. The harmonic bandwidth estimator computes the harmonic mean of the last throughput

estimates. In the premier stage (before having a enough number of samples), FESTIVE

does not use any rate switches because its bandwidth estimate will be unreliable.
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ii. The stateful and delayed bitrate update module receives throughput estimates from the

bandwidth estimator and computes a reference bitrate. As a specific implementation, they

use a gradual switching strategy; i.e., switchs are made only to the next higher/lower level.

This ensures that the bitrates eventually converge to a fair allocation despite the biased

bitrate-to-bandwidth relationship.

iii. The randomized scheduler The next chunk is downloaded immediately if its playback buffer

is less than the target buffer size. Otherwise, the next chunk is scheduled with a random

delay by selecting a randomized target buffer size. This ensures there are no start time

biases.

3.5.4 The Open Source Media Framework (OSMF)

The Open Source Media Framework (OSMF) [96] is an HTTP video streaming platform developed

by Adobe Systems, for building solid, feature-rich video players. It is designed as a flexible

architecture permitting developers to easily adjust their player for the browser. OSMF combines

plug-ins for video content delivery along with standard player features such as play/pause,

download progress, buffering, and bitrate switching. Figure 3.6 [97] shows basic structure of

an OSMF player. The OSMF decreases the complexity of player development, permitting the

developer more time to focus on the overall video user experience.

The bitrate adaptation algorithm in OSMF [78,98, 99], mainly uses these inputs to select the

quality of the next video chunk:

i. video chunk duration;

ii. the time needed to download the last video chunk;

iii. the current bitrate;

iv. the potential bitrate candidate for the next video chunk;

v. lowest quality level;

vi. highest quality level; and

vii. available bitrate.

OSMF’s adaptation algorithm uses an indicator (a kind of quality switching ratio) α which is

computed with the last last downloaded video chunk. More precisely, α is computed by dividing
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Figure 3.6: Basic structure of an OSMF player.

the time duration of the last downloaded video chunk by the actual duration of its download.

Thus α < 1 means that the download time is larger than the playback time, if this situation

continues, a rebuffering would happen. On the contrary, α > 1 suggests that the networking

conditions allow a higher volume (higher level) to be downloaded.

The OSMF works as follows

(a) If α < 1, then a lower level (lower bitrate) is selected for the next chunk. This process

continue, if necessary, until the the lowest bitrate is selected.

(b) For α > 1, a higher bitrate is selected as a potential candidate until the highest one.

With the bitrate adaptation algorithm in OSMF, the performance quality of video-rate

switching is very frequently. This is due to the fact that the quality adaptation does not take

into account the available buffer occupancy.

3.6 Video-quality metrics as adaptation factor

Video-quality metrics are valuable factors for video adaptation. We present hereafter works using

respectively SSIM, PSNR and VMAF metrics
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3.6.1 With SSIM

In [50], the authors used SSIM as objective QoE metrics in their framework for video streaming

systems based on the H.264/SVC codec, the scalable extension of H.264/AVC. They took into

account the nature of the video (e.g., interview, soccer match, movie). Their results showed that

they can use SSIM to determine the QoE behaviour of different contents. They also showed

that video sequences with lower resolution perform better than video sequences with a lower

frame-rate.

In [48], the authors also incorporated the SSIM into their Utility Function as a quality metric.

The rationale can be summarized as follows:

• The relationship between bitrate and perceptual quality is not linear; the bitrate increases,

the gain in video quality is gradually saturated.

• The equal division of network bandwidth for video streams of different resolutions results

in unfair video quality levels as perceived by end-users.

In [49], the authors used the SSIM to measure the quality of video transmission through

their system (Compressive Distortion Minimizing Rate Control, C-DMRC). The latter uses a

distributed cross-layer control algorithm that aims to maximize the received video quality over a

multi-hop wireless network with lossy links.

In [100], they proposed a SSIM-based adaptation algorithm for DASH with SVC in mobile

networks to improve overall QoE through delivering high average quality with low switching

frequency in fluctuating mobile network conditions. This paper considered the difficulty that

faces the ABR video streaming algorithms for appropriate evaluation of the video quality. The

majority of the ABR streaming algorithm takes bitrate as the input to evaluate the quality of

the video. However, bitrate is not strongly correlated with the visual quality. In this work, to

make the adaptation process more reliable, the authors proposed to exploit SSIM of individual

video chunks as an adaptation algorithm input.

In [36], the authors introduced a classification scheme for FR and RR media-layer objective

video quality assessment. They shown that the natural visual statistics based MultiScale-

Structural SIMilarity index (MS-SSIM), the natural visual feature based Video Quality Metric

(VQM), and the perceptual spatio-temporal frequency-domain based MOtion-based Video In-

tegrity Evaluation (MOVIE) index give the best performance for the LIVE Video Quality

Database.
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In [101], the authors considered three metrics influencing the QoE for DASH: (i) instantaneous

visual quality using SSIM; (ii) quality fluctuation and (iii) rebuffering events.

3.6.2 With PSNR

In [51], the authors rely on the video quality QoE metrics like PSNR which allows to carry large

measurement studies and to derive simple relationships applicable in QoE control. In special,

to take a closer look at the impact of (i) the video resolution; (ii) the scaling method; (iii) the

impact network conditions, respectively packet loss; and (iv) the video content types on the QoE

by means of PSNR full-reference metrics.

In [102], in order to evaluate the level of satisfaction for the users in the connected emotion-

aware intelligent system network, the authors suggested in their work three metrics as the QoE

measurement: PSNR, buffering ratio that captures the stalling periods of video playing observed

by users and modified the MOS which is determined by the average bitrate and packet loss.

3.6.3 With VMAF

In [103], the authors proposed a learning-based approach for QoE prediction model taking into

account the memory features, video quality models, and rebuffering-aware.

In [104], a strong correlation between subjective MOS and the computed objective VMAF

score with a high correlation has been shown.

In [105], the authors suggested a QoE prediction model based on three QoE-aware inputs: an

objective measure of perceptual video quality; a QoE memory of prior events; and rebuffering-

aware information. They selected various VQA models, including VMAF for quantitative analysis

of the outcomes of the experiment.

3.7 Conclusion

This chapter introduces the background information and related work of this thesis. We present

and analyze the fundamental concept of Dynamic Adaptive Streaming over HTTP (DASH) and

its challenges. We then deal with the DASH-related adaptive bitrate (ABR) streaming algorithm.

As a conclusion of this presentation of the state of the art related to various topics concerned by

the DASH based video streaming, we do think that there is a need to investigating some new

adaptation algorithms which make a combination of Qos-related factors and video-quality-related

factors. This will be our working direction. Our proposal and results will be presented through

the two next chapters.
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A Generic framework for Video-Quality metric-Based Adap-

tation Algorithm (VQBA)

“Our greatest weakness lies in giving up. The most certain

way to succeed is always to try just one more time. ”Thomas A. Edison.

4.1 Introduction

In this chapter, we present our proposal of a generic framework, named Video-Quality Metric

Based-Adaptation Algorithm (VQBA for short) for the DASH-based video mechanism. We

consider it as a framework since it is designed for various objective video quality metrics, among

them we have tested SSIM, PSNR and VMAF.

This generic framework is based on a joint consideration of a) the objective Video-Quality-

Metric (VQM) such as (SSIM, PSNR, and VMAF) and b) the physical resources such as buffer

occupancy and estimation bandwidth, to minimize both rebuffering and visual quality instability,

as well as to maximize the overall video quality given by the objective video-quality metric.

The main idea of this framework can be stated as follows.

• We give importance to objective video quality metric by making use of it in our adaptation

scheme (which is rarely used in the existing work) for the simple reason that, after all,

users are aware of video quality.
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• Based on this objective indicator, we develop our adaptation mechanism in a way that a

possible upgrade to a higher (bitrate) level, as predicted by networking context forecast,

takes actually place only when it carries a noticeable upgrade in video quality also. In this

way, we try to maximize the use of bandwidth for effective quality contribution and avoid

rebuffering.

Most of the proposed work is mainly driven by networking (bandwidth) and/or system (buffer

occupation) conditions. Few of the existing ABR algorithms really take into account the video

quality as a main parameter for adaptation.

From the view point of image (and video) processing, the quality improvement is not directly

proportional to the video bitrate increase, but follows a more complex relation. Figure 4.1 helps

to better illustrate this point. It gives the contrast between two chunks of a video sequence. It

can be observed that for chunck number 27, all the bitrate levels (x-axis) offer nearly the same

(SSIM) value [39]; whereas for chunck number 140, the lifting in SSIM value for higher bitrate

levels are rather noticeable.

Figure 4.1: SSIM for different resolution for the chunks number 27 and 140.

We believe that the visual quality, that we can assess through some objective metric, is a key

parameter for adaptation. This has been the start point of our working direction, which led to an

algorithm [10] using the SSIM as a main adaptation metric, which is the first version of VQBA.
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4.2 Rational and Illustration

The rationale of our algorithm (cf. section 4.3 for more details) consists in using the video quality

metric as a criterion for an actual bitrate increase when the latter is allowed by networking

conditions. Our algorithm aims to prevent bitrate increases which do not really bring a significant

visual improvement. Indeed, each bitrate increase comes with a higher rebuffering risk, we use

SSIM to know if the increase is really worth the risk.

In order to illustrate the basic idea of our proposal, we present these two examples (cf. Figures

4.2, 4.3). We consider the SSIM metric. Our algorithm keeps trace of SSIM of the video chunks

being displayed (i.e. the SSIM of video actually viewed by end-user). In particular, we compute

the SSIM variation between adjacent video chunks (the blue curve), from this, we compute also

a SSIM threshold curve (the red curve).

In addition to the system/networking conditions, which are the usual criteria for bitrate

adaptation, in particular for an increase of the bitrate for the next video chunk, our proposal

checks also the impact of a bitrate increase: we try to figure out if this increase worth really to

be done, which is if it really gives a real gain in visual quality to improve overall QoE.

In the first example (Fig. 4.2), the SSIM variation is smaller than the SSIM threshold; the

bitrate will be kept at the same level for the next video chunk. In the second example (Fig. 4.3),

the SSIM variation is bigger than the SSIM threshold; an bitrate increase can be taken place for

the next video chunk.

From an operational point of view, our approach is compatible with the DASH scheme.

Actually, the objective video quality metrics (such as SSIM, PSNR and VMAF) can be pre-

computed for each level of each video chunks. These metrics can also be made available to

end-user (the adaptation maker) through the MPD.

4.3 A Video-Quality Metric Based-Adaptation Algorithm (VQBA)

In this section, we provide a detailed presentation of our framework.

4.3.1 Conditions and Notations

The video stream is encoded at R bitrate levels, denoted asR= {rj}j=1...R with r1 < r2 < · · ·< rR,

and it is divided into K chunks (video segments) of equal duration (denoted as T ). We have thus

a total of K ×R elementary video contents which are qualified for being fetched then displayed.

Let v(k,r) denotes such a content of k-th chunk at r-th bitrate level.

Each elementary video content v(k,r) is associated with its corresponding VQM, noted as
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Figure 4.2: 1st example: SSIM indicator to determine the bitrate level for the next video chunk.
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Figure 4.3: 2nd example: SSIM indicator to determine the bitrate level for the next video chunk.
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Q(k,r). This metric depends of course of the target quality assessment (SSIM, PSNR, VMAF in

our study). It is pre-computed and stored in the server. During a DASH session, the client can

get it through the MPD mechanism.

4.3.2 Rationale of the Adaptation Logic

Recall that the main point of this framework is a joint consideration of the networking level

control (buffer-based and rate-based) and the target video quality metric. Of course, we still

have to take into account the networking and buffer conditions are Indeed, these ones are hard

constraints that we have to respect. The key point here consists in using the video quality

metrics indicator as an additional criterion to determine the level (bitrate and so video quality)

of the next chunk to be fetched.

Hereafter is the guideline behind the design of our algorithm, for the choice of the bitrate of

the next chunk (assumed to be the l-th one).

• Our primary concern is to prevent rebuffering. Thus, we aims to insure a minimum amount

of available video content by establishing a critical zone. When the buffer occupancy is

below a critical value (Lc, cf. § 4.3.3), we adopt a TCP-like approach by imposing the

lowest bitrate. This is in particular true when a rebuffering actually happens, as well as at

the initial phase. Indeed, it is the most secure way to (re)fill the buffer.

• When the buffer occupancy is out of the critical zone, we then first estimate the available

bandwidth (denoted by EBW (l)).

– If EBW (l)< r1, the networking condition is critical, we have to take r1 which is the

lowest available bitrate.

– Otherwise, possibility of a bitrate switching exists among {r2, . . . , rR}.

∗ If the network conditions go worse, we decide to keep the current bitrate, since the

degradation could be temporary and we still have some margin (buffer occupancy

is not critical). In this way, we try to avoid unnecessary quality switching.

∗ If the network conditions go better, there is possibility of bitrate increase. At this

time, we make use of our criterion on video quality metric. We actually increase

the bitrate to the best allowed level, say u, only if this one (Q(l,u)) does bring a

significant improvement (versus some threshold) of quality. Otherwise, we keep

the current bitrate level (so no bitrate switching).
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Thus, our algorithm clearly gives priority to prevent rebuffering by minimizing visually

non-effective bitrate increases. It tries also to minimize the visual effect oscillation by minimizing

the bitrate switching in case of network condition degradation.

4.3.3 Presentation of the VQBA algorithm

Hereafter, we give the formal description of the Video-Quality Metrics Based-Adaptation algorithm

framework (cf. pseudo-code in Figure 4.4) and present the parameters and metrics used by it.

• l is the number of the next chunk to be fetched, f is the bitrate level at which the next

chunk will be fetched.

• b is the current buffer occupancy and Lc is the critical value.

• α(l) is the current VQM threshold, dl−1 is the bitrate level at the past ((l− 1)-th) chunk.

• The available chunks and their levels (R), as well as the associated Video Quaity Metric

(Q) are provided by the server and can be got by the client through MPD at initialization.

• EBW (l) is the estimated bandwidth which would be available during the fetching of the

next (l-th) chunk.

Input: R, QV QM , b, Lc, l, αV QM (l), EBW (l), dl−1,

Output: f

1: if (b ≤ Lc) OR (r1 ≥ EBW (l)) then

2: f = 1

3: else

4: f = max{j / rj ∈R, rj <EBW (l)}.

5: if Q(l,f)−Q(l− 1,dl−1)≤ α(l) then

6: f = dl−1 (No significant improved, keep the current)

7: end if

8: end if

9: return f (the level at which the next chunk will be fetched)

Figure 4.4: The Video-Quality metrics Based-Adaotation algorithm framework (VQBA).

The VQBA algorithm is run each time a fetch order can be issued, i.e. either when a chunk

is totally downloaded or, upon the first availability of a free space (this is the case when a chunk

is totally whereas the buffer was previously full).
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The parameters (α(l) and EBW (l)) are assumed to be estimated through parallel processes.

Indeed, quite a number of options can be made about these two metrics.

4.3.4 Discussions

This framework is rather generic, since it offers room for various declinations:

• First of the declinations is the video metric. This point, which is main focus of this thesis,

will be deeply investigated in the rest of this manuscript. In § 4.4, there is a general

presentation of these tests and experimental conditions.

• The success of adaptation depends also on the accurary of the bandwidth forecast. This

challenging topic is still an open research problem. We give subsequently (cf. § 4.3.4.1) a

short description of the default algorithm we used

• Our adaptation algorithm relies also on the delta in terms of gain about video quality.

Again, there are quite a lot possibilities to determine the threshold values. In § 4.3.4.2, we

give discussions on this issue.

4.3.4.1 Available Bandwidth Forecast

The forecast of available bandwidth, noted here as EBW (estimated bandwidth), is a challenging

issue. In the current version, we adopt a very classical approach. The EBW is estimated with

a simple smoothing function which computes the average bitrate at which the past chunks were

actually downloaded. EBW (l), the estimated bandwidth for the coming l-th chunk, is estimated

as follows.

EBW (l) =
∑l−1
i=1UBW (i)
l− 1 , (4.1)

where UBW (i) is the actual bitrate at which the i-th chunk has been downloaded (UBW stands

for used bandwidth). It is obtained by.

UBW (i) = Vi
ti− si

, (4.2)

where ti (resp. si) is the instant at which the fetch of the i-th chunk ended (resp. started), and

Vi is the volume of the i-th chunk.

4.3.4.2 Quality Improvement Threshold (α(l))

The setting and computation of the quality improvement threshold (α(l)) depends on the nature

of the metric. Indeed, different metrics have different value spaces. SSIM (resp. VMAF) provides

a normalized ((0..1) (resp.(0..100)) objective visual quality metric, whereas PSNR is a metric in
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dB. Besides, different strategies of threshold setting have obviously impact on the behaviour and

performance of the algorithm.

Without loss of generality, we present here a very simple threshold setting scheme, which

consists in getting the mean value of the quality change, in order to smoothing the quality change.

A more detailed study focusing the threshold is given in § .

• For each chunk (say l for l > 1), we compute the the variation ∆(l) in terms of VQM related

to the previous chunk (l− 1), i.e.

∆(l) =Q(l,dl)− (l− 1,dl−1)

where dl and dl−1 are the respective bitrate levels of chunk l and chunk l− 1.

• The cumulative variation till l is then computed with:

S(l) =
l∑

k=2
∆(k).

• The adaptive threshold α(l) is then computed with:

α(l) = S(l)
l− 1 =

∑l
k=2∆(k)
l− 1 . (4.3)

Notice that, in practice, the video playback begins with the pre-fetch of several chunks, so

l > 1 is assured.

4.4 Experimental analysis of VQBA Framework

4.4.1 Presentation

We have carried extensive experimental studies of our algorithms in order to assess the performance

of our algorithm and its behaviour with three of the most used visual quality metrics, namely

SSIM, PSNR and VMAF, with real network traces.

In order to get better understanding about the behavior and effectiveness of the VQMs,

• we also carried runs, under the same networking conditions, of three of the non-quality-aware

ABR, namely BBA [60,94], FESTIVE [92] and OSMF [96].

• We have tested three kinds of video : Animation, Documentary and Sport (cf § 4.4.3)

All these experimental results allow us to carry various comparative studies : between VQMs,

between VQBA and traditionnl ABR, for various types of video sequence.

Hereafter, we will provide description of components of this evaluation framework.
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4.4.2 Realistic Networking conditions

In order to obtain a realistic networking case, we have used two sets of real traffic traces.

The first set (24 traces [10]) has been captured by ourselves from the 4G mobile network

of a big network provider, at different locations and timeslots in Paris city. For this, we used

the iPerf tool with the command iperf3 -c iperf.scottlinux.com. Details are given in § 7.1.

This set of traffic will be referred as USPN-set.

The second set is constituted of traces available at [106]. These traces were collected from 4G

networks within the city of Ghent, Belgium, in January and February 2016 [107], over various

routes while downloading a large file over HTTP through various modes of mobility: foot, bicycle,

bus, tram, train and car. This set of traffic will be referred as BE-set.

By default, and except explicitly mentioned otherwise, we use the USPN-set.

4.4.3 Test sequences

For the evaluation test, among the test video sequences used in DASH, we select the following

three :

• Animation (Big Buck Bunny) a 9-min, 56s video [108],

• Documentary (Of Forests and Men) is created a 7-min, 33s short film on forests filled with

aerial images [109]. and

• Sport (The World’s Best Bouldering in Rocklands, South Africa) a 13-min, 18s video [110].

Figures 4.5, 4.6 and 4.7 provide an idea of each of these three sequences: a) Big Buck

Bunny_animation b) Of Forests and Men_documentaryand c) The World’s Best Bouldering in

Rocklands, South Africa_sport used in our experiments.

These videos are encoded at 24 frames/s (FPS) with the FFMPEG package by using its

H.264 codec. We generate a video at 10 (R = 10) different resolutions (in kbps) (the same as

those used by Netflix [111,112]):

R= {235,375,560,750,1050,1750,2350,3000,4300,5800}

Videos are then split into chunks of 4 (T = 4) seconds by using MP4Box-GPAC framework [113].

Each elementary video content unit v(k,r), i.e. the content of kth chunk coded at rth bitrate

level, has a corresponding metric value given by th VQM Matrix (Q(k,r)). This value is computed

as the mean value of the metric for each image. For instance, if the target metric is SSIM, then

the VQM metric value Q(k,r) is computed as the mean value of the SSIM of each single image
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(a)

(b)

(c)

Figure 4.5: Quality images for video chunks of the movie (Big Buck Bunny) {(a) Low Quality=235 kbps,

(b) Medium Quality =1050 kbps and (c) Reference}.
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(a)

(b)

(c)

Figure 4.6: Quality images for video chunks of the movie (Of Forests and Men) {(a) Low Quality=235

kbps, (b) Medium Quality =1050 kbps and (c) Reference}.
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(a)

(b)

(c)

Figure 4.7: Quality images for video chunks of the movie (The World’s Best Bouldering in Rocklands,

South Africa) {(a) Low Quality=235 kbps, (b) Medium Quality =1050 kbps and (c) Reference}.
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in v(k,r). In this way, the VQM matrices can be pre-computed and stored in the server. We

racall that for DASH operations, clients can get it through the MPD mechanism.

Details of the preparation of these video sequences can be found in § 7.2

4.4.4 DASH Emulation

We developed (in Python) a simulator in order to evaluate the performance of DASH-based

adaptation algorithms. This simulator can work in trace-driven mode, i.e., the networking context

is reconstituted with real networking traces. The simulator reproduces timely the instants of

video chunk download completion (which depends on network condition) as well as the video

chunk playback (which can be blocked by re-buffering).

The main objective of this simulator is to assess the performance of ABR algorithms for DASH

video streaming using video chunks encoded and streaming it over the collected bandwidths

traces.

The default critical value for buffer occupancy (Lc) is set to 12 seconds (3 chunks). The

default different buffer sizes is either BS = 120 seconds or BS = 240 seconds.

4.4.5 Performance metrics

The performance of the algorithms is assessed through 4 metrics (i.e., Rebuffering, Instability,

SSIM, birate). For each metric, the average value is computed on 24 tests:

i. Average Rebuffering is the average value of rebuffering (freezing) duration.

ii. Average Instability is the average value of bitrate changes.

iii. Average of SSIM is the average value of the SSIM of the video being displayed.

iv. Average of bitrate is the average bitrate of the video being displayed.

4.5 A First Experimental Study of VQBA Framework with SSIM Metric

In this section, we present a first study of our VQBA framework with SSIM as video quality

metric. For short, we refer it as SBA (SSIM-Based Adaptation).

Recall that the main idea of our framework resides in the fact that we decide to:

• Increase the bitrate level only when the SSIM indicates a significant improvement in the

video quality (thus getting more video content at almost the same user perceived video

quality);
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• Decrease the bitrate level only when there is a real risk of rebuffering (thus minimize the

instability).

This study compares and discusses the performance of the SBA to the following three

traditional ABR: BBA, FESTIVE and OSMF.

We have tested two scenarios with two different buffer sizes: a) BS = 120 seconds, b)

BS = 240 seconds. Each scenario is tested with 24 different traces (our traces ). The threshold

value (Lc) is set to 12 seconds (3 chunks) in both scenarios.

4.5.1 SBA with Animation Video

Here are the experimental results by using the Animation video stream. We first give presentation

at a per metric basis. We then provide summarized results in Table 4.1.

4.5.1.1 Rebuffering

Figure 4.8 shows that the SBA algorithm introduces zero rebuffering for both scenarios. Actually,

we give priority to rebuffering avoidance by setting a critical zone with drastic bitrate drop-off.

As BBA works in a similar way, it shows also the same zero rebuffering. We can actually notice

that neither SBA nor BBA is visible. On the contrary, FESTIVE and OSMF have rebuffering

during video playback for 21.208 and 46.25 seconds respectively. Here, our algorithm achieves its

design goal and performs better than FESTIVE and OSMF for the given scenarios.

Figure 4.8: Average Rebuffering duration for different algorithms with buffer sizes of 120 and 240 seconds

and with animation (big buck bunny).
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4.5.1.2 Instability

Figure 4.9 shows that SBA achieves good performance, since it is respectively at the first (for

BS = 120 sec.) and second (for BS = 240 sec.) places. For the scenario with BS = 240 seconds,

BBA algorithm is slightly better than SBA: this is due to a more conservative bitrate increase

approach of BBA. But the price to pay is a much lower average bitrate of BBA compared to the

others, where as our algorithm keeps the highest average bitrate (cf. Figure 4.11).

Figure 4.9: Average Instability for different algorithms with buffer sizes of 120 and 240 seconds and with

animation (big buck bunny).

4.5.1.3 Video quality (SSIM)

Concerning the video quality (here the SSIM metric), we can observe that SBA and BBA have

similar performance (see Figure 4.10), which is much better than the two others. This means in

particular that our choice of upgrading only if there is a real gain in SSIM is justified.

4.5.1.4 Average bitrate

Figure 4.11 gives the average bitrate for different algorithms. As it is shown, our proposal SBA

achieves the highest average bitrate for both scenarios. We notice also that BBA, which have

similar performance as our algorithm for the first 3 metrics, gets here the lowest bitrate, probably

because there is an excessively conservative consideration for rebuffering avoidance.

4.5.1.5 Summary

Table 4.1 summarizes the results of the two scenarios. For the first 4 lines of the table BS = 120

s, whereas for the last 4 lines BS = 240 s. One can observe that the SBA algorithm achieves the
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Figure 4.10: Average SSIM for different algorithms with buffer sizes of 120 and 240 seconds and with

animation (big buck bunny).

Figure 4.11: Average Bitrate for different algorithms with buffer sizes of 120 and 240 seconds and with

animation (big buck bunny).
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Table 4.1: Summarized results of the two scenarios with Animation.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0.0 20.25 0.967 3035.165

BBA [94] 0.0 21.166 0.960 2270.699

FESTIVE [92] 21.208 30.208 0.638 2968.263

OSMF [96] 46.25 75.166 0.492 2926.625

SBA 0.0 20.083 0.964 3039.998

BBA [94] 0.0 15.583 0.942 1629.180

FESTIVE [92] 21.208 30.208 0.638 2968.263

OSMF [96] 46.25 75.166 0.492 2924.321

desired objective with shorter rebuffering, less instability at a good bitrate level.

4.5.2 SBA with Documentary and Sport Videos

We also conducted experiments with the Documentary and Sport videos streams. The results

are summarized in Table 4.2 (for Documentary) and Table 4.3 (for Sport).

We observed results which are similar to those obtained with Animation video stream. One

can notice that for both scenarios, our proposal SBA (SSIM-Mode) of VQBA framework, achieves

better ranking for most of the metrics.

4.6 A Study on the Choice of Threshold Value for SSIM Metric

4.6.1 Motivation

As stated earlier, we use the video quality metrics as a key criterion for bitrate adaptation

to optimize the use of available bandwidth. A higher bit rate is chosen not only because the

network resources allow to do so but also due to the significant improvement in visual quality

(here measured through SSIM metric). In this manner, an upgrade in bandwidth utilization is

allowed only when there will be a significant visual quality observed.

Thus, a critical issue is how to determine what is a significant visual improvement. In the

previous study, we used a dynamic function which provides the threshold. Here, we go further

on the investigation of the impact of the threshold for the SSIM metric (which is normalized to
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Table 4.2: Summarized results of the two scenarios with Documentary.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0.0 23.5 0.941 2927.646

BBA [94] 0.0 19.916 0.921 2326.034

FESTIVE [92] 22.625 29.708 0.601 2963.134

OSMF [96] 44.625 76.958 0.459 2848.442

SBA 0.0 23.416 0.941 2929.382

BBA [94] 0.0 14.458 0.941 1635.275

FESTIVE [92] 22.625 29.708 0.601 2963.134

OSMF [96] 44.625 76.958 0.459 2841.568

Table 4.3: Summarized results of the two scenarios with Sport video test.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0.0 17.791 0.957 3086.453

BBA [94] 0.0 17.875 0.952 2470.888

FESTIVE [92] 18.541 28.0 0.673 2992.655

OSMF [96] 46.625 77.083 0.478 2866.815

SBA 0.0 17.75 0.954 3078.769

BBA [94] 0.0 12.708 0.929 1937.89

FESTIVE [92] 18.541 28.0 0.673 2992.655

OSMF [96] 46.625 77.083 0.478 2864.495

0..1), through various options. Our comparative studies are always based on real networking

context (mobile network) captures and real video sequences. Without loose of generality, there

are two approaches: fixed threshold vs dynamic one.
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4.6.2 Fixed Threshold

For fixed values, we tested the set {0.005,0.02,0.1} which offers a certain idea both on range

and granularity. These fixed values have been chosen after a preliminary study on the SSIM

variation between adjacent chunks at adjacent levels1 for the three sequences under test. The

results are shown through 4.12, Fig. 4.13 and Fig. 4.14, respectively. For these figures, we

computed the SSIM variation for three couples of bitrates: low (235 vs 375), middle (1050 vs

1750) and high (5800 vs 4300). These variations are compared against fixed values (horizontal

lines) and the dynamic formula α(l). Variations are mainly of small extend. It is why we selected

{0.005,0.02,0.1} in a non-linear manner.

Figure 4.12: Variation of SSIM for high, medium and low quality levels for Animation.

4.6.3 Dynamic Threshold

For dynamic one, we conducted the following experiments. We first measure, for each chunk

(say l for l > 1), the variation (∆(l) in terms of SSIM related to the previous chunk (l− 1), i.e.

∆(l) =Q(l,dl)−Q(l− 1,dl−1) where dl and dl−1 are the respective bitrate levels of chunk l and

chunk l− 1. We then memorize the sum till l with S(l) =∑l
k=2∆(k). The adaptive threshold

α(l) is then computed with:

α(l) = S(l)
l− 1 =

∑l
k=2∆(k)
l− 1 . (4.4)

1Indeed, a major part of the bitrate increases are gradual.
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Figure 4.13: Variation of SSIM for high, medium and low quality levels for Documentary.

Figure 4.14: Variation of SSIM for high, medium and low quality levels for Sport.
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Table 4.4: Summarized results with Animation.

Scenarios Rebuffering Rate Switching SSIM BitRate

thSSIM=α(l) 0.7 17.3 0.934 2202.3109

thSSIM=0.1 0.9 13.0 0.930 2163.437

thSSIM=0.02 0.7 21.8 0.936 2345.468

thSSIM=0.005 1.2 22.1 0.933 2437.971

BBA 0.0 23.1 0.956 1852.852

FESTIV E 28.0 38.6 0.504 2609.941

OSMF 60.6 76.1 0.299 2737.966

Notice that, in practice, the video playback begins with the pre-fetch of several chunks, so l > 1

is assured.

4.6.4 Results and analysis

For the evaluation test, we still use the Animation, Documentary and Sport video streams. The

performance is always assessed through 4 metrics (Rebuffering, Rate Switching, SSIM, bitrate).

Each sequence is tested with 10 different traces. For each metric, we provide its average value

over the 10 tests.

The results (in terms of mean values) are shown through the following three tables, Table 4.4,

Table 4.5 and Table 4.6, for each of the three sequences through four QoE metrics: Rebuffering

(in seconds), Rate Switching (times), SSIM (value between 0-1) and BitRate (kbps).

Each table has actually two parts: the upper part gives results obtained with our SBA

algorithm with various threshold values. The second part gives, as comparison, the result of the

same sequence with three other adaptation algorithms (BBA, FESTIVE, OSMF) under the same

experimental conditions.

We begin our discussion by consider only the first parts of the tables, i.e., we limit our

discussion inside the SBA algorithm. From these tables, we get the following observation and

analysis.

• We can see that the fixed threshold at 0.1 would offer the worst QoE based on BitRate.

Indeed, among the 4 metrics, it offers only the lowest rate switching. But, when looking at
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Table 4.5: Summarized results with Documentary.

Scenarios Rebuffering Rate Switching SSIM BitRate

thSSIM=α(l) 0.3 13.0 0.899 2227.075

thSSIM=0.1 0.0 12.8 0.905 1867.652

thSSIM=0.02 1.1 13.0 0.885 2241.053

thSSIM=0.005 1.0 17.4 0.891 2414.369

BBA 0.0 20.5 0.916 1876.896

FESTIV E 31.0 39.5 0.448 2588.269

OSMF 61.0 77.9 0.300 2620.008

Table 4.6: Summarized results with Sport.

Scenarios Rebuffering Rate Switching SSIM BitRate

thSSIM=α(l) 0.5 10.6 0.937 2424.941

thSSIM=0.1 0.1 5.9 0.929 1820.094

thSSIM=0.02 0.6 17.4 0.932 2424.555

thSSIM=0.005 1.1 19.6 0.919 2487.851

BBA 0.0 18.8 0.948 2078.227

FESTIV E 19.7 28.2 0.635 2724.609

OSMF 63.6 76.8 0.331 2691.957

the bitrate, which is the lowest, we can also conclude that this is because the bitrate is often

kept at lower level since the threshold is too high. So, 0.1 seems to be a too conservative

threshold.

• At the other end, the threshold value of 0.005 makes the adaptation too agressive. Actually,

also it provides a slightly higher bitrate, it also leads to higher rebuffering and rate switching,

both are rather irritant. After all, it does not offer a better SSIM.

• Between the fixed threshold at 0.02 and the dynamic α(l), the tie-break is not so easy:
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(i) The fixed threshold at 0.02 offers a slightly better SSIM and higher bitrate, whereas ;

(ii) The dynamic threshold seems offers a lower rebuffering risk. As the rebuffering is our

primary concern, we have a preference for the dynamic threshold.

We then take the whole table into account, i.e. we make a comparative study of SBA

algorithm and the three others. SBA algorithm offers in general a more balanced result among

the 4 metrics, even for fixed thresholds at 0.1 and 0.05. This confirms the phenomenon we

already observed with only the dynamic threshold (α(l)) in our previous studies.

4.6.5 Conclusion

In conclusion, the results support the following two points:

• The use of an objective visual quality metric as an adaptation parameter is really effective

in termes of QoE improvement, versus some representative algorithms which are not visual

quality aware, both with fixed and dynamic threshold values.

• In the case of SBA, an adaptive threshold is better suited since it provides a better trade-off

between various factors of a video streaming session.

4.7 Experimental analysis of VQBA with a second set of traces (BE traces)

4.7.1 Presentation

This section provides another set of experiments under the SBA mode, by using the Belgium

traces (BE-set) (cf. § 4.4.2 available at [106].

A comparative study has been made with BBA, FESTIVE and OSMF algorithms through

the same performances metrics (§ 4.4.5)

4.7.2 Detailed results

Hereafter, we present results in a per metric basis, for different experiments based on types of

videos (animation, documentary and sport).

4.7.2.1 Rebuffering

Concerning the Rebuffering, Figure 4.15 shows that our proposal SBA and BBA continue to

avoid rebuffering. On the contrary, FESTIVE and OSMF suffer from many rebuffering events

during video chunks playback.
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Figure 4.15: Average Rebuffering for different algorithms based on types of videos (Animation, Documentary

and Sport).

4.7.2.2 Instability

Figure 4.16 shows in particular that our proposal SBA achieves good performance. BBA algorithm

is slightly better than our proposal SBA: this is probably due to a more cautious bitrate increase

approach of BBA. But the price to pay is a much lower average bitrate of BBA compared to the

others ABR algorithms, where as our algorithm keeps the good average bitrate (cf. Figure 4.18).

4.7.2.3 SSIM

Figure 4.17 shows that SBA and BBA ostensibly have achieved a much better performance for

SSIM than FESTIVE and OSMF. This means in particular that our choice of upgrade only if

there is a real gain in SSIM is jonce again ustified.

4.7.2.4 Average bitrate

Figure 4.18 represents the average bitrate, as shown, our proposal SBA (SSIM-Mode) achieve

good average bitrate. We notices also BBA, which have good performance as our algorithm

for the first 3 metrics, gets here the lowest bitrate, probably due to its excessively conservative

rebuffering avoidance policy.

4.7.3 Summary and conclusion

The following tables summarizes the results, namely Table 4.7 (for Animation), Table 4.8 (for

Documentary) and Table 4.9 (for Sport).
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Figure 4.16: Average Instability for different algorithms based on types of videos (Animation, Documentary

and Sport).

Figure 4.17: Average SSIM for different algorithms based on types of videos (Animation, Documentary

and Sport).
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Figure 4.18: Average BitRate for different algorithms based on types of videos (Animation, Documentary

and Sport).

Table 4.7: Summarized results with Animation.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0,1 45,6 0,949 2635,094

BBA [94] 0 23,5 0,956 1972,148

FESTIVE [92] 85,5 75 0,372 2735,336

OSMF [96] 147,4 130,1 0,272 2742,497

We can conclude that through this serie of experimentation under different networking

conditions (in Gant, Belgium), we got observation of the performance comparison between our

algorithm (SBA mode) and non VQM-aware ones which are similar to those we got under our

1st serie of experimentation (in Paris, France).

4.8 Conclusion

In this chapter, we presented a generic framework, named Video-Quality Metric Based-Adaptation

algorithm (VQBA), to be used under the DASH paradigm for video streaming. The main goals

of this contribution are:

• It aims to combining information given by objective video quality metrics, along with those
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Table 4.8: Summarized results with Documentary.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0,3 31,1 0,906 2851,748

BBA [94] 0 20,7 0,908 1836,882

FESTIVE [92] 55,3 49,8 0,4 2772,336

OSMF [96] 98,7 115,8 0,261 2696,007

Table 4.9: Summarized results with Sport.

Adaptation Algo. Rebuffering Rate Switching SSIM BitRate

SBA 0,1 25,3 0,95 2390,165

BBA [94] 0 25,1 0,944 1964,502

FESTIVE [92] 75,5 78,2 0,402 2763,075

OSMF [96] 128,3 156,5 0,275 2779,043

provided by system/networking-aware information, to make adaptation decision;

• It aims to work with various Video Quality metrics.

To evaluate the performance of our proposal, we have conducted experimental tests, by means of

trace-driven emulation, under various networking conditions provided by real traffic traces and

with several types of video sequences.

As a first series of tests, we worked with the SSIM metric (the SBA declination of our VQBA

framework). Comparisons with some representative non-vido-quality-aware algorithms (BBA,

FESTIVE, OSMF) through an objective video quality metric (SSIM) show that our generic

framework achieves an efficient adaptation by minimizing both the effect of rebuffering and

instability, with good quality for video playback

We can conclude that these results validate our research direction, i.e., the VQM-ware

adaptation approach does provide good QoE.
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Further experimental Studies with VQBA

“In theory there is no difference between theory and practice.

In practice there is. ”Lawrence “Yogui” Berra,1925

In this chapter, we present our further experimental investigation of the VQBA framework.

We extend our studies to two other video quality metrics, namely PSNR and VMAF. For the

sake of simplicity, they will be referred as PBA (for PSNR-Based Adaptation) and VBA (for

VMAF-Based Adaptation), respectively. wth the Animation sequence.

For PSNR, we also carried experimentations on two other video sequences (documentation ,

sport).

Lastly, we also studied the rebuffering with SBA.

5.1 Performance Comparison of SBA, PBA and VBA algorithms

5.1.1 Presentation

We discuss and compare the performance between the different modes of VQBA framework (SBA,

PBA, VBA) and the BBA, FESTIVE & OSMF algorithms.

The tests presented here were done with the (already presented) Animation (Big Buck

Bunny) [108] sample video sequence (cf. § 4.4.3 for more details about preparation for the

experiments). Each sequence has been tested with buffer sizes of 240 seconds (60 chunks). The
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Table 5.1: Summarized results objective QoE (SSIM, PSNR & VMAF) With Animation.

Adaptation Logics SSIM PSNR VMAF

SBA 0,942 35,981 54,405

PBA 0,954 35,443 53,150

V BA 0,950 36,446 57,288

BBA 0,958 35,387 29,830

FESTIV E 0,636 25,251 43,806

OSMF 0,323 30,291 47,483

critical value for buffer occupancy (Lc) is set to 12 seconds (3 chunks).

The performance of the algorithms is assessed through 6 metrics :

• Three video quality metrics: SSIM, PSNR, VMAF;

• Three more conventional QoE metrics: Rebuffering duration, Bitrate Switching, Mean

BitRate.

Each sequence is tested with 20 different traces. For each metric, we provide its average value

over the 20 tests.

5.1.2 Performance Comparison between SBA(SSIM), PBA(PSNR) and VBA(VMAF)

Table 5.1 summarizes the results of our experiments for different adaptation algorithms by using

buffer size 240 seconds & with Animation through three objective QoE metrics (SSIM, PSNR

& VMAF). One can observe that different modes (SBA, SBA & VBA) of VQBA framework

achieved a good performance through QoE metrics (SSIM, PSNR & VMAF) compared with the

(control) relevant algorithm.

The following three figures (Figure 5.1, Figure 5.2, Figure 5.3) provide a more visual compar-

ison.

5.1.2.1 With SSIM metric

Figure 5.1 shows that our modes (SBA, PBA & VBA), along with BBA algorithm, ostensibly

have achieved a better average of SSIM compared with the two other algorithms (FESTIVE &

OSMF). More precisely (cf. Table 5.1), BBA achieved the first ranking while the PBA, VBA,
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SBA, FESTIVE & OSMF achieved the (second, third, fourth, fifth & sixth) ranking respectively.

Figure 5.1: Average SSIM for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).

5.1.2.2 With PSNR metric

Figure 5.2 shows that our modes (SBA, PBA & VBA) have achieved a better average of PSNR

compared to non VQM-aware algorithms (BBA, FESTIVE, OSMF). More precisely (cf. Table

5.1), VBA arrives at the first rank, SBA the second, while PBA (resp. BBA, FESTIVE & OSMF

achieved the third (resp. fourth, fifth & sixth) ranks.

5.1.2.3 With VMAF metric

Figure 5.3 shows that the VBA ostensibly has achieved the best average of VMAF, compared to

SBA & PBA on the one hand, and, on the other hand, BBA, FESTIVE & OSMF algorithms.

More precisely (cf. Table 5.1), SBA that achieved the second-ranking while PBA, OSMF,

FESTIVE & BBA achieved the (third, fourth, fifth & sixth) ranking respectively.

5.1.3 Performance Comparison with other QoE metrics

Figure 5.4, Figure 5.5 & Figure 5.6 show that our modes (SBA, PBA & VBA) of VQBA framework

ostensibly have achieved a good performance also through the classicl QoE metrics (Rebuffering,

Rate Switching & BitRate) compared with BBA, FESTIVE & OSMF algorithms.
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Figure 5.2: Average PSNR for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).

Figure 5.3: Average VMAF for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).
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Figure 5.4: Average Rebuffering for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).

Figure 5.5: Average Instabilty for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).
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Figure 5.6: Average BitRate for different algorithms with buffer sizes of 240 seconds and with animation

(big buck bunny).

5.1.4 Conclusion

This study, which is conducted mainly through the viewpoint of video quality accessement,

confirm that our framework works not only for the SSIM metric, but also for other metrics. Here

the PSNR and VMAF metrics, which ar among the usual QoE metrics. A more comprehensive

conclusion is provided in § 5.3.

5.2 SBA and PBA with Documentary and Sport Videos

5.2.1 Presentation

To further validate our proposed VQBA framework, we conducted additional experiments on

Documentary and Sport video streams [109,110], in the SBA and PBA cases. Comparisons are

made with BBA, FESTIVE & OSMF through five quality metrics (Rebuffering, Rate Switching,

SSIM, PSNR & BitRate). The results are summarized in Table 5.2 (for Documentary) and Table

5.3 (for Sport), respectively.

5.2.2 SSIM and PSNR metrics with SBA experiences

Figure 5.7 and Figure 5.8 give respectively the SSIM and PSNR metrics under SBA (i.e. the

indicator metric is SSIM) with three types of videos streams (Animation, Documentary and

Sport) through 20 sets of bandwidth traces.
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Table 5.2: Summarized results with Documentary.

Adaptation Algo. Rebuffering Rate Switching SSIM PSNR BitRate

SBA 1,35 25,15 0,889 34,962 2760,669

PBA 0,7 25,85 0,917 34,803 2840,669

BBA [94] 0 17,45 0,909 33,986 1902,073

FESTIVE [92] 46,55 54,35 0,471 32,676 2884,559

OSMF [96] 66,4 120,7 0,405 32,219 2900,013

Table 5.3: Summarized results with Sport.

Adaptation Algo. Rebuffering Rate Switching SSIM PSNR BitRate

SBA 3,9 40,9 0,895 36,6 2640,24

PBA 4,25 42,3 0,947 34,799 2670,962

BBA [94] 0 25,4 0,946 35,601 2048,604

FESTIVE [92] 73,7 83,35 0,432 33,666 2733,326

OSMF [96] 126,2 160,5 0,298 31,815 2775,614

Figure 5.7: SBA performance with movies (Animations, Documentary and Sport) based on SSIM.
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Figure 5.8: SBA performance with movies (Animations, Documentary and Sport) based on PSNR.

5.2.2.1 SSIM and PSNR metrics with PBA

Figure 5.9 and Figure 5.10 give respectively the SSIM and PSNR metrics under PBA (i.e. the

indicator metric is PSNR) with three types of videos streams (Animation, Documentary and

Sport) through 20 sets of bandwidth traces.

Figure 5.9: PBA performance with movies (Animations, Documentary and Sport) based on SSIM.
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Figure 5.10: PBA performance with movies (Animations, Documentary and Sport) based on PSNR.

5.2.3 Average SSIM and PSNR metrics comparison

The previous results are brute data from our experiences, which are provided in order to get a

more insight vision of the various situations.

Figure 5.11 and Figure 5.12 provide a comparison of the average values (through the brute

data) of SSIM and PSNR, under respectively SBA and PBA, always in function of the type of

the video (Animation, Documentary and Sport).

Figure 5.11: SBA vs PBA with movies (Animations, Documentary and Sport) based on SSIM.



80

Figure 5.12: SBA vs PBA with movies (Animations, Documentary and Sport) based on PSNR.

5.3 Conclusion of extended studies to PSNR and VMAF

Through these extended studies to PSNR and VMAF, we obtained broader and consolidated

results related to our generic framework VQBA. This framework is actually designed to be used

by any objective video quality metric.

At this point, we recall the main features of our framework which are:

• Take advantage of the objective video quality metrics that are seldom used in the existing

ABR streaming algorithm for the simple reason that, after all, users are aware of video

quality,

• Based on the objective VQM indicator, we make adaptation decision for a better bitrate

(and so expected better QoE) in a way that thkis leverage does actually improves the video

quality (QoE) according to the VQM, not only because it is allowed by network conditions.

This allows to get more video content at almost the same user-perceived video quality.

• We make use a more efficient and effective use of the available bandwidth, which contribute

to minimise the rebuffering and the video quality fluctuation.

.

To evaluate the performance of this generic VQBA framework, we carried experimentations

by emulating real networking circumstance with various traffic traces captured from real mobile

networks and three types of video content (animation, documentary, Sport). We compared
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the performance of our algorithm (under SBA, PBA and VBA modes) with non VQM-aware

adaptation algorithms (BBA, FESTIVE & OSMF) through six video quality metrics (SSIM,

PSNR, VMAF, Rebuffering, Rate Switching & BitRate).

The good performance of our algorithms confirm that our proposal does make sense and make

difference by taking into account the objective video-quality metric as an adaptation parameter.

5.4 Analysis of the Rebuffering phenomena under SBA mode

5.4.1 Introduction

Recall that, with DASH, a video stream is segmented into contiguous chunks, each chunk is

downloaded via HTTP to the video end-user then stored in the buffer, before being played back

when its display times comes.

A very boring phenomenon is the absence of the chunk to be displayed when its time comes.

Actually, from the view point of application, the only possible action is to freeze (get a pause of)

the video playback, till the availability of this very chunk. One can easily imagine that this kind

of pause is not pleasant at all for end-users. This is the rebuffering phenomenon that we already

introduced.

These phenomena are usually due to the lack of adequation between the amount of data of

the chunk(s) that one claim and the actual available bandwidth.

As the bandwidth fluctuation is a reality, usually, there is always a prefetch of a first set

of chunks before the starting of playback. In this way, there is a margin for minimising the

rebuffering.

Many studies on DASH video streaming show that rebuffering events (freezing playback) are

the key influence factors of QoE [25,59,85,114]. Here, we will provide a detailed study of the

rebuffering events under the SBA mode.

5.4.2 DASH and Rebuffering Events

DASH player uses adaptation algorithms to determine the most suitable representation for the

next video chunk The representation is selected to play the best possible quality of the video

with the least number of interruptions. Thus, the DASH player is able to adjust the quality of

the video at the boundary of each segment in order to ensure uninterrupted playback [59,115].

This functional behaviour makes DASK very closely linked to the rebuffering, actually, a bad

adaptation could lead easily to rebuffering, which should be avoided [9].

The ABR algorithms aim to enhance the satisfaction of the video end-user by selecting
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the appropriate video bitrate for network conditions. However, selecting the suitable bitrate is

challenging due to variations in mobile network throughput specifically, to achieve the balance

between QoE metrics, which are conflicting in their nature (e.g. maximize video quality and

minimizing rebuffering/instability) [116,117].

It has been established for a while that QoE is influenced by both the duration and the

frequency of rebuffering events [118]. Rebuffering events have remarkably negative effects on

subjective QoE [119, 120]. It is interesting to notice that single rebuffering (long rebuffering

duration) is preferred compared to multiple short rebuffering and regular (e.g. one rebuffering

event every 3 s) over irregular video rebufferings.

5.4.3 Related Work on Objective QoE Metric-Rebuffering Events

With respect to rebuffering events: the majority of the recent studies on video QoE [79,82], agree

on the fact that it should be avoided rebufferings events. If possible to enhance the video QoE.

On the other hand, that satisfaction of the viewers can vary relying on a rebuffering manner,

i.e., how many times or the duration of the rebuffering events arise during video playback.

In general, the selection of the ideal bitrate for the next video chunk is very difficult because

of the coarse-grained nature of ABR decisions. Where the selection not good bitrate of the next

video chunk leads to depletion of the buffer and thus to the occurrence of rebuffering events

the cause of these events is due to the variability of network throughput and the conflicting

video QoE metrics requirements (minimize rebuffering and switching events and the same time

maximize average bitrate, etc.).

Many studies work in with the fact that video rebuffering in DASH should be avoided at

all times to get better QoE of user’s video streaming, while it is a common hypothesis that

rebuffering events are more annoying than video quality switching during video session. In

general, the conclusion that video rebuffering must be avoided at any time has been confirmed

(cf. § 3.4.2 see more related work on rebuffering events).

In [120] despite using DASH is being increasingly deployed by video content providers, such

as Netflix and YouTube. Where the client is able to fetch the appropriate bitrate for the next

video chunk to be played next based on the estimation bandwidth (network condition). However,

this can introduce impairment rebuffering events, which can severely impact an end user’s

quality of experience (QoE). They create a new video quality database, which simulates a typical

video streaming application, using long video sequences and interesting Netflix content, the new

database contains highly diverse video content and it includes the subjective opinions of a sizeable
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number of human subjects regarding the study on QoE of both rebuffering and compression

distortions. In their study, they observe that rebuffering is always clear or noticeable for the

video users and it is not preferred (unloved) to subjects, while switching bitrate may be less clear

due to content-related dependencies. the video quality drops were preferable over rebuffering.

In [121] one of their main contribution (based on consensus on the requirements for a good

ABR algorithm) designing and implement two novel ABR algorithms: BOLA-E and DYNAMIC.

The Both minimize rebuffering, while maximizing the average video quality. Maximizing the

QoE of the user includes metrics that are often in conflict. ABR algorithms must stream at a

high bitrate with low rebuffering. Also they developed a FAST SWITCHING adaption that

can replace video chunks that have already been downloaded with higher-quality video chunks.

The new adaptation provide higher QoE to the user in terms of higher video quality, thus some

oocurrence rebuffers eventes. In [122] their contribution aims to DASH video delivery rebuffering

events while ensuring a low latency delay between the displayed and the original video flows.

They suggested in their work to utilise a novel approach to deal with bandwidth lack occurring

through a video chunk delivery : The implementation of video frame ignore the policies with

HTTP/2 until an the end of video chunk they assess their adaptation by combining dynamic

and static videos with cellular and WiFi network bandwidth traces. They tried to get rid from

rebuffering events by developing optimal and practical video frame discarding algorithms to meet

the 1s latency constraint. In their algorithm, they request the video frames individually through

HTTP/2 multiple streams, and we selectively drop the least meaningful video frames thanks to

HTTP/2 stream resetting feature.

5.4.4 Analysis of Rebuffering Events with SBA

We present here a comparative experimental study which is focused on the the rebuffering

phenomenon, under SBA, BBA, FESTIVE and OSMF, respectively. The reference video stream

is the Big Buck Bunny (animation). The buffer size is set to 240 seconds. The tests have been

run for ten trafic traces.

The rebuffering events took place in three out of ten sets of bandwidth traces and most of

these events did not occur at the beginning of the video streaming session. Hereafter, we will

only focus on these three traces. Figure 5.13 (for the 1st dataset traces), Figure5.14 (for the 2nd

dataset traces) and Figure 5.15 (for the 3rd dataset traces) give insight of bandwidth variation

related to eache of these three traces.
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Figure 5.13: The first dataset with bandwidth traces used in experiments.

Figure 5.14: The second dataset with bandwidth traces used in experiments.
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Figure 5.15: The third dataset with bandwidth traces used in experiments.

5.4.4.1 Observation at an ealy stage of playback with SBA

Figure 5.16 through mini-figures (a), (b) and (c) illustrates the video playback rates actually

chosen by our SBA algorithm during the time slice [100,180] (20 chunks) of the video streaming

session. We observe that when the rates are kept steadily at respectively 2350 kbps and 3000

kbps for the trace 1 and trace 3; there is an oscillation between 235 kbps and 4300 kbps the trace

2. There is no rebuffering, but a significant instability which does yield also a negative effect,

even though it is generally perceived as less boring than the rebuffering.

5.4.4.2 Rebuffering phenomena with SBA

The observed rebuffering phenomena occur relatively far away from the beginning. Figure 5.17

through mini-figures (a), (b) and (c) illustrate some rebuffering events that occurred for three

(out of ten) traces with our SBA algorithm. In our examples, the rebuffering last for 6, 3 and 1

seconds, respectively. The observation window is 60 seconds in all cases.

This kind if rebuffing has a limited negative impact on the overall QoE ( [83–85]), due to two

main reasons:

i. The rebuffering happen quite a few times (actually one time) and for a short period during

the observation window (60 seconds)

ii. The ebuffering did not occur at the beginning of the video session.

Figure 5.18 through mini-figures (a), (b) and (c) shows the estimation bandwidth by the SBA
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(a) (b)

(c)

Figure 5.16: The situation of video playback at the beginning the video session during using our SBA

mode.
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(a) (b)

(c)

Figure 5.17: The rebuffering events that happened during using our SBA mode with animation video.
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(a) (b)

(c)

Figure 5.18: The estimation bandwidth by the SBA (SSIM-Mode) of VQBA framework.

(SSIM-Mode) of VQBA framework using the first, second and third bandwidth traces when the

rebuffering events that occurred.

5.4.5 Phenonema under BBA, FESTIVE and OSMF

As a contrast, we provide the behavior of BBA, FESTIVE and OSMF for the same traces.

5.4.5.1 Behavior with BBA

Figure 5.19 through mini-figures (a), (b) and (c) illustrate the behavior of the BBA adaptation

algorithm with the same traces, at the same time range where rebuffering occurs with SBA. We

observed at there is no rebuffering event, but there is some rates instability for the trace 1 (1050,

1750 and 2350 kbps) and trace 2 (2350 and 3000 kbps).

Figure 5.20 through mini-figures (a), (b) and (c) show the estimation bandwidth by the BBA

adaptation algorithm using the first, second and third bandwidth traces related to Figure 5.19.
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(a) (b)

(c)

Figure 5.19: The situation of video playback during using BBA adaptation algorithm at the same pauses

places that happened during using our SBA mode.
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(a) (b)

(c)

Figure 5.20: The estimation bandwidth by the BBA adaptation algorithm.
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(a) (b)

(c)

Figure 5.21: The situation of video playback at the beginning the video session during using BBA adaptation

algorithm.

The Figure 5.21 through mini-figures (a), (b) and (c) show the situation at the begining of

the video playback, where the bitrate is kept at a low level.

5.4.5.2 Behavior with FESTIVE

Figure 5.22 through mini-figures (a), (b) and (c) illustrate the behavior of the FESTIVE algorithm

with the same traces, at the same time range where rebuffering occurs with SBA. We observe that

the rebuffering is much more frequent than for SBA. Actually, the rebuffering events happened

(3, 5 and 5) times for { (18, 3 and 2), (3, 7, 1 and 9) and (3, 3, 6, 3 and 6) } seconds respectively

for the first, second and third set of bandwidth traces.

Figure 5.23 through mini-figures (a), (b) and (c) show the estimation bandwidth by the

FESTIVE adaptation algorithm using the first, second and third bandwidth traces related to

Figure 5.22.
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(a) (b)

(c)

Figure 5.22: The situation of video playback during using FESTIVE adaptation algorithm at the same

pauses places that happened during using our SBA mode.
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(a) (b)

(c)

Figure 5.23: The estimation bandwidth by the FESTIVE adaptation algorithm.
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(a) (b)

(c)

Figure 5.24: The situation of video playback at the beginning the video session during using FESTIVE

adaptation algorithm.

Figure 5.24 through mini-figures (a), (b) and (c) give the behavior of FESTIVE at the

beginning of the video playback, where we can observe also frequent bitrate switching.

5.4.5.3 Behavior with OSMF

Figure 5.25 through mini-figures (a), (b) and (c) illustrated the behavior of the OSMF algorithm

with the same traces, at the same time range where rebuffering occur with SBA. We observe

both frequent rebuffering and bitrate switching.

Figure 5.26 through mini-figures (a), (b) and (c) show the estimation bandwidth by the

OSMF adaptation algorithm using the first, second and third bandwidth traces related to Figure

5.25.

Figure 5.27 through mini-figures (a), (b) and (c) give the behavior of OSMF at the beginning

of the video playback, where we can observe also frequent bitrate switching.
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(a) (b)

(c)

Figure 5.25: The situation of video playback during using OSMF adaptation algorithm at the same pauses

places that happened during using our SBA mode.
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(a) (b)

(c)

Figure 5.26: The estimation bandwidth by the OSMF adaptation algorithm.
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(a) (b)

(c)

Figure 5.27: The situation of video playback at the beginning the video session during using OSMF

adaptation algorithm.
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5.4.5.4 Summary comparison

We summarize the here-before detailled results through two figures.

Figure 5.28 gives the cumulative measures of rebuffering duration for the 10 tested traces.

This shows clearly the bad behavior of FESTIVE and OSMF.

Figure 5.28: The average of rebuffering events during a video session.

Figure 5.29 gives the respective duration of frozen and unfrozen video playback.

5.4.6 Conclusion of focused study on rebuffering

One of the most critical video streaming metrics versus QoE is the rebuffering duration for each

event. These detailed and focused comparative studies confirm one of the design goal of our

framework: our SBA has a better behaviour on the rebuffering phenomenon versus FESTIVE

and OMSF.

5.5 Conclusion

This chapter, together with the previous chapter, confirm the validity and efficiency of our

framework, which consists in giving a prominent role to the video-quality metric as a key

parameter for video streaming adaptation.
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Figure 5.29: Analysis of the video playback for video streaming sessions.
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Conclusion and future work

In this thesis, we presented a novel framework for video adaptation mechanism (ABR) for the

DASH based video streaming.

This work is mainly motivated by our believe on the the prominent role that objective video

quality metric should and could play in ABR mechanism.

After analysis of the existing works (Chapter 2), we proposed a generic framework for DASH

adaptation, termed as Video-Quality Metrics Based-Adaptation algorithm (VQBA) (cf. § 4.3).

This framework is designed for any objective Video-Quality-Metrics (VQM). In practice, we have

tested it with the following metrics: SSIM, PSNR and VMAF.

In order to validate this framework, and also to access its performance, we conducted numerous

experimental studies with real network traffic traces and test video sequences (cf. § 4.4). The

experimentation is also carried with

i. We first apply the VQBA framework to SSIM metric, termed as SSIM Based Adaptation

(SBA). This first set of results confirm our design goal with the SSIM metric (cf. § 4.5).

ii. We also investigated the choice of SSIM threshold (cf. § 4.6).

iii. We enlarge our experimental studies with a second set of network traffic traces, namely the

(Ghent, Belgium) 4G network traces, to check the performance of the SBA (cf. § 4.7).

iv. We then extend our studies to the use of PSNR and VMAF video quality metrics as

adaptation metrics, namely the PBA and VBA mechanism. We conducted comparative
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studies among them (SBA, PBA and VBA) (cf. § 5.1). We also made a more large

comparative study between SBA and PBA against various QoE metrics and several non

video-quality-aware adaptation ABR mechanisms (cf. § 5.2)

v. We also made a focused study on the rebuffering phenoma under SBA (§ 5.4)

We tested our generic framework VQBA using some objective VQM such as (SSIM, PSNR

and VMAF), where our studies were conducted with comparison to some non video-quality-aware

ABR (BBA, FESTIVE and OSMF). These studies show that our framework does achieve our

design objectives.

The demand for mobile video streaming services is increasing, and video end-user expectations

for the good viewing experience QoE it also goes up.

At the time that this thesis ends, under COVID-19, video streaming is taking a more and

more prominent place in our everyday life.

This thesis focuses on the mechanism of ABR streaming algorithms, with the general idea

of giving objective video quality metric a prominent role in the adaptation mechanism. Our

experimental results validated this approach with three metrics, namely SSIM, PSNR and VMAF.

One direction of our future consists in exploring this roadmap, which we believe to be

promising, with deeper studies with these usual metrics under more video sequences and/or

networking contexts. We are also identifying other candidate video quality metrics.

We hope the design principle derived from this thesis will contribute to deal with the

increasingly challenging environment in the future.
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Appendix

“Success is not final, failure is not fatal: it is the courage

to continue that counts. ”Winston Churchill.

7.1 Capture of Mobile Network Traffic

In order to obtain a realistic networking case, we have captured several real traffic traces over

the 4G mobile network of a big network provider. The bandwidth traces were collected from

different areas and periods in Paris to insure a large coverage of the traffic pattern. Figure 7.1

illustrate one of such traces.

For this, we used the iPerf tool with the command: iperf3 -c iperf.scottlinux.com.

Typical iPerf output contains a time-stamped report of the amount of data transferred and

the throughput measured, under the following form:

[ID] Interval Transfer Bandwidth

[4] 0.00-1.00sec 65.4 KBytes 534 Kbits/sec

where:

i. I
¯
nterval: specifies the time duration for which the data is captured.

ii. T
¯
ransfer: the captured (transferred) data’s size.

iii. B
¯
andwidth: the rate at which the data is transferred.
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Figure 7.1: The variation of throughput of one set that we collected from different sets of bandwidth traces.

7.2 Video Streaming Source Preparation

In what follows, we will describe the steps that we followed to prepare the video sequences we

used for our tests.

7.2.1 Video Sequences

Recall that we have chosen these three videos Animation (Big Buck Bunny, 9min56sec) [108],

Documentary (Of Forests and Men, 7min33sec) [109] and Sport (The World’s Best Bouldering

in Rocklands, South Africa, 13min18sec) [110]. These ones are available at high resolution

(1920x1080). We downloaded these high resolution version as our basic source.

7.2.2 Multi-resolution Encoding

We then used the FFmpeg encoder to recode the source video at ten resolutions different using

the set of <bitrate, resolution> shown in Table 7.1, which is the one used by Netflix.

More specifically, these videos are encoded at 24 frames/s (FPS) by using the H.264 codec of

FFMPEG. We give below the exact commands for the Big Buck Bunny sequence:

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 235k -s 320*240 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-235k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 375k -s 384*288 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-375k.mp4
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Table 7.1: Netflix Resolutions

Bitrate (kbps) Resolutions

235 320*240

375 384*288

560 512*384

750 512*384

1050 640*480

1750 720*480

2350 1280*720

3000 1280*720

4300 1920*1080

5800 1920*1080

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 560k -s 512*384 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-560k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 750k -s 512*384 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-750k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 1050k -s 640*480 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-1050k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 1750k -s 720*480 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-1750k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 2350k -s 1280*720 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-2350k.mp4
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ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 3000k -s 1280*720 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-3000k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 4300k -s 1920*1080 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-4300k.mp4

ffmpeg -i Big_buck_Bunny_Video_Source.mp4 -an -b:v 5800k -s 1920*1080 -vcodec libx264

-x264opts 'keyint=24:min-keyint=24:no-scenecut' -r 24 bbb-5800k.mp4

These commandes produced the following 10 files

bbb-235k.mp4, bbb-375k.mp4, bbb-560k.mp4, bbb-750k.mp4, bbb-1050k.mp4,

bbb-1750k.mp4, bbb-2350k.mp4, bbb-3000k.mp4, bbb-4300k.mp4, bbb-5800k.mp4

7.2.3 Making of chunks

We then proceed to cut each video sequence into chunks (each chunk has a duration of 4

seconde) [113]. For this, we use the MP4Box sofware, with the following command:

MP4Box -dash 4000 -rap -bs-switching no -profile live -out bbb.mpd

bbb-235k.mp4 bbb-375k.mp4 bbb-560k.mp4 bbb-750k.mp4 bbb-1050k.mp4

bbb-1750k.mp4 bbb-2350k.mp4 bbb-3000k.mp4 bbb-4300k.mp4 bbb-5800k.mp4

Once these steps are done, we save the different chunks in a folder

We developed a python script to get and store the size of each chunk. Figure 7.2 illustrates

chunk sizes at three different bitrate levels (235, 560 and 750 kbps) for the video sequence Big

Buck Bunny

7.2.4 Objective video quality computation

The last step is to compute the Objective video quality metric associated with each chunk at

each bitrate level.

For SSIM, we proceed as follows. We compare, for each chunk at each bitrate level, the

original video and the encoded one. As an example, the command for Big_buck_Bunny is

qpsnr -a avg_ssim -o blocksize=16:fps=24 -r Big_buck_Bunny_Video_Source.mp4 bbb-235k.mp4

bbb-375k.mp4 bbb-560k.mp4 bbb-750k.mp4 bbb-1050k.mp4 bbb-1750k.mp4 bbb-2350k.mp4

bbb-3000k.mp4 bbb-4300k.mp4 bbb-5800k.mp4 > bbb_SSIM.csv
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Figure 7.2: Chunk size at three bitrate levels (235, 560 and 750 kbps for the video sequence Big Buck

Bunny

We get, for each chunk at each bitrate level, a value between 0 and 1. The closer the value is

to 1, the closer the quality of the encoded video to the original one. These results will also be

stored to be explored by our adaptation framework.

The result of the order next is saved in the file “ssimtest.csv” in the form of a table in which

records the value of the correlation between the original frame (24 frames) and the frame of the

video encoded at all times for the 10 resolutions:

Figure 7.3 illustrates SSIM for three different bitrate levels (235, 560 and 5800 kbps) of the

sequence Big Buck Bunny

The PSNR values are obtained with similar commands:

qpsnr -a avg_psnr -o blocksize=16:fps=24 -r Big_buck_Bunny_Video_Source.mp4 bbb-235k.mp4

bbb-375k.mp4 bbb-560k.mp4 bbb-750k.mp4 bbb-1050k.mp4 bbb-1750k.mp4 bbb-2350k.mp4

bbb-3000k.mp4 bbb-4300k.mp4 bbb-5800k.mp4 > bbb_PSNR.csv

For VMAF, we used the following tool and command

vmafossexec.exe yuv420p 1920 1080 "C:\Users\Mustafa OTHMAN\Downloads\bbb.yuv"

"C:\Users\Mustafa OTHMAN\Downloads\bbb3000.yuv"

"C:\Users\Mustafa OTHMAN\Downloads\vmaf-master\vmaf

master\model\vmaf_v0.6.1.pkl" --psnr --ssim --ms-ssim --log MZ3000.csv
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Figure 7.3: SSIM metric of three different copy of the Video (235, 560 and 5800) kbps.
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Résumé : La norme DASH (Dynamic Adaptive Streaming over HTTP) est largement adoptée
pour la diffusion de vidéo. Le mécanisme d’adaptation du style ABR (Adaptive BitRate), qui est
un des composants clé de DASH, n’est pas normalisée, car il doit prendre divers éléments en compte,
notamment le contexte de la communication et du système, mais également la qualité perçue par
les usagers, pour maximiser la QoE (Quality of Experience). De nombreux algorithmes ABR ont
été proposés. Peu d’entre eux accordent une importance à la qualité perçue, et objectivement
calculée, comme paramètre d’adaptation. Cette thèse propose un cadre générique, nommé VQBA
(Video Quality Metric Based Adaptation algorithm), permettant d’intégrer une métrique objective
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