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Abstract
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Doctor of Philosophy

Analysis and Design of Higher-Symmetric Metasurfaces

by Mohammad BAGHERIASL

Higher symmetries in periodic structures are internal symmetries in each
unit cell that are additional to the periodic symmetry. The use of higher
symmetries in the unit cell of periodic structures provides interesting elec-
tromagnetic characteristics. The higher symmetries used in a unit cell can be
of the two types: glide symmetry or twist symmetry. Glide symmetry is en-
countered when each cell is invariant after a translation of half a period and
a mirror reflection of the structure, and twist symmetry is the invariability
of each unit cell after a translation and a rotation (twist) around the trans-
lation direction. Recent research on structures with these higher symme-
tries has shown that the addition of higher symmetries in periodic structures
can increase the bandwidth of their stopband. It has also shown that these
structures achieve a nearly constant refractive index over an ultra wide band
which supports a dispersion-less propagation of the wave. These two char-
acteristics along with the absence of dielectric losses of holey metasurfaces
make higher symmetric holey metasurfaces a good candidate for design of
reconfigurable waveguide technology. In addition, to utilize higher symmet-
ric structures more efficiently in the design process of the new waveguide
technology, a reliable modeling of these structures is of great importance.
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Chapter 1

Introduction

Higher symmetric periodic structures have recently drawn huge attention in
the electromagnetics research due to their unique characteristics. Elimina-
tion of the stopband between the first and the second Bloch mode, exhibiting
a strong and wide stopband region between the second and the third Bloch
mode and demonstrating a linear dispersion diagram in their first passband
are three of the main characteristics of higher symmetric periodic structures.
This different electromagnetic behavior between such periodic structures and
those with no higher symmetry provides myriads of opportunities in design
of electromagnetic components. Higher symmetries can be realized in three
dimensional configurations of metallic structures with no dielectric mate-
rial. The absence of the dielectric losses in these all-metallic structures makes
them appropriate for usage in higher frequencies. An all-metallic structure
with glide symmetry which is a type of higher symmetry could be realized
in two separate parts which could then be positioned with no contact be-
tween them. Their respective position can be adjusted accordingly to allow
for reconfigurability in the structure. Our goal in this work is to first come up
with an analysis method that can obtain the dispersive behavior of periodic
structures with higher symmetries very efficiently, one which can provide a
framework for understanding the reason behind the different behavior of the
structures with and without higher symmetry. Study of higher-symmetric
and non-higher-symmetric unit cells using our analysis approach leads to
some interesting conclusions on the effect of higher order modes in consti-
tuting the different electromagnetic characteristics between the two. As a
second goal of this work, we investigate the possibility of reconfigurability
of higher symmetric structures to come up with a reconfigurable waveguide
technology that leads to design of an on/off waveguide switch.

1.1 Organization of the Document

In Chapter 2 we introduce periodic structures and discuss wave propagation
in these structures. We also introduce higher symmetries in periodic struc-
tures and discuss previous studies on this topic. We furthermore review their
applications and end the chapter with a motivation of our work presented in
the following chapters of the thesis.

In Chapter 3, we introduce a multimodal analysis method based on the
transmission matrix of periodic unit cells. We then extend this method to
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specific formulations for different higher symmetries which reduces the com-
plexity of their analyses and also their computation time. Next, we apply
our analysis method to higher symmetric structures to observe the impact of
higher order modes on the dispersive properties of these structures.

In Chapter 4, we provide at first an introduction on millimeter-wave switch
technologies. We then discuss the design of two reconfigurable waveguides
that can act as an on/off waveguide switch giving a step by step design pro-
cedure with achieved results and their explanations. We finally discuss why
the second design outperforms the first and complete a set of performance
tests on this final design.



3

Chapter 2

Periodic and Higher Symmetric
Structures

This chapter introduces periodic structures and focuses on periodic struc-
tures with higher symmetries. First in Sec. 2.1, periodic structures are de-
fined and fundamental properties of wave propagation in periodic structures
are recalled. Sec. 2.2 introduces higher symmetries in periodic structures
and defines two possible spatial higher symmetries called “glide symmetry”
and “twist symmetry”. Sec. 2.3 discusses characteristics and applications of
higher symmetric structures. The existing models for higher symmetry are
discussed in Sec. 2.4. Sec. 2.5 expresses the content of the thesis.

2.1 Wave Propagation in Periodic Structures

2.1.1 Periodic Structures

A structure is periodic along a direction with period p if it is invariant under
a translation of length p along that direction. For instance, the structure in
Fig. 2.1 (a) is periodic along the x direction, meaning that it is invariant under
the translation operator Tpx̂:

Tpx̂ : (x, z)→ (x + p, z) (2.1)

Similarly, a 2-D periodic structure with periods px and py along x and y
directions respectively would be invariant under the 2-D translation operator
Tpx x̂Tpyŷ:

Tpx x̂Tpyŷ : (x, y, z)→
(
x + px, y + py, z

)
(2.2)

An example of a 2-D periodic structure is shown in Fig. 2.1 (b).

2.1.2 Floquet Theorem

Assuming time dependency of ejωt, one can use Maxwell equations to show
that in a linear, isotropic and loss-less material the electromagnetic fields sat-
isfy the following equations [1]:

∇× [∇× E (r)] =
(ω

c

)2
εr (r) E (r) (2.3)
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x x
y

(a) (b)
p px

py

z

FIGURE 2.1: (a) part of 1-D periodic layers in x direction (b) part
of a 2-D periodic pattern of squares in x and y directions.

∇×
[

1
εr (r)

∇× H (r)
]
=
(ω

c

)2
H (r) (2.4)

where E (r) and H (r) are the electric and magnetic fields respectively. εr (r)
is the relative permittivity of the material and its relative permeability is µr =
1, under the hypothesis of a non-magnetic medium. Solving one of these
equations provides E (r) or H (r). Then the other field can be found using
the Maxwell’s curl equations:

H (r) =
j

ωµ0
∇× E (r) (2.5)

E (r) =
1

jωε0εr (r)
∇× H (r) (2.6)

For mathematical convenience, it is preferred to solve (2.4) and (2.6) to
obtain the electromagnetic fields instead of (2.3) and (2.5) [1]. Therefore, the
rest of the discussion uses (2.4) as the initial equation.

The Floquet theorem provides the general form of the solution of the elec-
tromagnetic modes for periodic structures. Let the 1-D periodic structure
along the x direction of Fig. 2.1 (a) be invariant along the y direction. The unit
cell is defined as the smallest section of the structure that can be repeated in-
definitely to recreate the periodic structure. The unit cell in Fig. 2.1 (a) has a
length of p which is called the period or the lattice constant. The structure is
invariant under translation operators with the lattice vectors R = lpx̂ where
l is an integer. For l = 1, the lattice vector becomes R = p = px̂, which is
called the primitive lattice vector. The corresponding translation operator in
this case is Tpx̂ given in (2.1).

The solutions of (2.4) are separable in x and y. As stated earlier, the struc-
ture is invariant along y direction. This symmetry is a continuous transla-
tional symmetry [1] and leads to a y dependence of the solutions of the fol-
lowing form:

H (r) ∝ e−jkyy (2.7)
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where ky is the wavevector along the y direction. The solutions of (2.4) are
the eigenfunctions of the translation operator TR. The eigenfuntions of trans-
lation operators are the modes with an exponential form:

TR

[
e−jkxx

]
= e−jkx(x−lp) =

(
ejkx lp

)
e−jkxx (2.8)

where similarly, kx is called the wavevector along x direction. It is important
to note that any eigenfunction in (2.8) with kx = kx0 has the same eigenvalue
as all the eigenfunctions with kx = kx0 + mq where q = 2π/p and m is an
integer. q is called the primitive reciprocal lattice constant and q = qx̂ is
the primitive reciprocal lattice vector. The fields with kx = kx0 + mq form
a degenerate set of solutions, called harmonics. Any linear combination of
these fields gives an eigenfunction with the same eigenvalue. Therefore, us-
ing (2.7) and (2.8), the solution of (2.4) for the wave vector k = kx x̂ + kyŷ can
be generally expressed as:

Hkx,ky (r) = e−jkyy ∑
m

ckx,m (z) e−j(kx+mq)x (2.9)

= e−jkyye−jkxx ∑
m

ckx,m (z) e−jmqx (2.10)

= e−jkyye−jkxxukx (x, z) (2.11)

where ckx,m (z) are the expansion coefficients and ukx (x, z) is a periodic func-
tion with a period p along the x direction. This means that the electromag-
netic field modes in a periodic structure with a period p along the x direction
are plane waves multiplied by a periodic function with the same period p
along the x direction. Hence, the electromagnetic fields are of the following
form:

E (x, y, z) ∝ e−jkxxukx (x, y, z) (2.12)

H (x, y, z) ∝ e−jkxxukx (x, y, z) (2.13)

These modes are called the Bloch modes (or Floquet modes) of the struc-
ture. Applying the translation operator Tpx̂ to these modes leads to:

Tpx̂ [E (x, y, z)] = E (x + p, y, z) = e−jkx pE (x, y, z) (2.14)

Tpx̂ [H (x, y, z)] = H (x + p, y, z) = e−jkx pH (x, y, z) (2.15)

These equations are known as the Bloch theorem (or Floquet theorem).
In general, kx is a complex quantity and can be written as kx = βx − jαx.

Its real part (βx) is called the phase constant and it represents the change in
phase of the electromagnetic fields per unit length along the x direction at
any instant. The opposite of its imaginary part (αx) is the attenuation con-
stant of the corresponding Bloch modes. This quantity is of importance in
stopbands where attenuation of the fields occurs to estimate the attenuation
strength and in passbands where propagation exists to estimate losses in-
cluding material and radiation losses.
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2.1.3 Dispersion Relation and Brillouin Zone

Propagation properties of a structure are obtained by studying its disper-
sion relation. The dispersion relation is a relation between the frequency and
propagation constants of an electromagnetic mode. It is commonly visual-
ized in a plot showing the frequency vs. the phase constant of the Floquet
mode: the dispersion diagram. Substitution of (2.13) in (2.4) provides the
dispersion relation for the 1-D periodic structure along the x direction. As it
was mentioned before, changing kx by integral multiples of q = 2π/p does
not change the corresponding frequency. This means that the dispersion re-
lation ω (kx) is periodic with period q which means that it is enough to find
the dispersion relation for −π/p < kx < π/p and the rest of the dispersion
diagram is known from the periodicity of the result. This region of kx values
is called the Brillouin zone.

When a periodic structure has a rotation, mirror reflection or inversion
symmetry, its dispersion diagram (ω (k) where k is the wave vector) is also
symmetric with the same symmetry [1]. In these cases, there are further re-
dundancies within the Brillouin zone and the smallest region for which the
frequency band is not repeating itself is called the irreducible Brillouin zone
[1].

The Brillouin zone for a periodic structure is defined by its lattice vec-
tors. For instance, a periodic structure with a rectangular lattice is shown in
Fig. 2.2 (a). The lattice vectors are px = px x̂ and py = pyŷ. The reciprocal
lattice vectors in kxky plane are qx = (2π/px) x̂ and qy =

(
2π/py

)
ŷ which

are depicted in Fig. 2.2 (b). The Brillouin zone is shown in Fig. 2.2 (c) with
orange rectangular area around the center which is bounded by red lines
kx = ±π/px and ky = ±π/py.

(a) (b) (c)

𝐩𝐲 = 𝑝𝑦 ො𝐲

𝐩𝒙 = 𝑝𝑥 ො𝐱

𝐪𝐲 =
2𝜋

𝑝𝑦
ො𝐲

𝐪𝐱 =
2𝜋

𝑝𝑥
ො𝐱 𝑘𝑥

𝑘𝑦

− Τ𝜋 𝑝𝑦

Τ𝜋 𝑝𝑦

− Τ𝜋 𝑝𝑥 Τ𝜋 𝑝𝑥

FIGURE 2.2: (a) Lattice vectors of a 2-D periodic structure with
period px along x direction and period py along y direction. (b)
The reciprocal lattice vectors in kxky plane (c) Brillouin zone (or-

ange rectangle).

For a periodic structure with a square lattice (px = py = p), a 90◦ rotation
symmetry exists in addition to the translation symmetry imposed by the pe-
riodicity. A square lattice with its corresponding lattice vectors are shown in
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Fig. 2.3 (a). In this case, the Brillouin zone is defined as a square limited by
the lines kx = ±π/p and ky = ±π/p. This area is shown in Fig. 2.3 (b). The
irreducible Brillouin zone is a triangle wedge that is also shown in Fig. 2.3 (b)
(the red triangle) and its area is 1/8 of the Brillouin zone area. It is common
to obtain the dispersion diagrams of these periodic structures over the edges
of the irreducible Brillouin zone. These edges connect the points Γ, X and M
shown in Fig. 2.3 (c).

In addition to the dispersion diagram which plots the frequency vs. the
phase constant of a Floquet mode, an attenuation diagram is sometimes plot-
ted. This diagram plots the frequency vs. the attenuation constant of a mode.
It provides the extra information missed by the phase diagram on the com-
plex nature of a mode or on the evanescent nature of a mode in its stopbands.

𝐩𝒙 = 𝑝ො𝐱

𝐩𝒚 = 𝑝ො𝐲

− Τ𝜋 𝑝

− Τ𝜋 𝑝

Τ𝜋 𝑝

Τ𝜋 𝑝

𝚪 𝐗

𝐌

𝑘𝑦

𝑘𝑦

𝑘𝑥

𝑘𝑥

(a) (b) (c)

FIGURE 2.3: (a) Lattice vectors of a 2-D periodic structure with
the same period p along x and y directions. (b) The Brillouin
zone (orange square) and the irreducible Brillouin zone (red tri-
angle) (c) Irreducible Brillouin zone and the conventional name

of its 3 corners.

2.2 Higher Symmetries in Periodic Structures

Periodic structures with higher symmetries are structures that can be de-
scribed by additional geometrical operations beyond the usual periodic con-
dition. Periodic structures are invariant under translations of period length.
In periodic structures with higher symmetries, in addition to the periodic
condition, the unit cell is invariant under a composite transformation consist-
ing of either translation and rotation or translation and mirroring. The higher
symmetry that is constructed by translation and rotation is called twist sym-
metry (also called screw symmetry) and the one constructed by translation
and mirroring is called glide symmetry.

Fig. 2.4 shows two structures with glide symmetry. A translation of half
a period and a mirroring operation with respect to the mirroring plane (also
called the glide plane) ensures a periodic structure with a glide symmetry.
Fig. 2.4 (a) shows a 1-D glide symmetry which is achieved by translation
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and mirroring of the PEC slabs in the line. Fig. 2.4 (b) shows glide symme-
try in a 2-D periodic structure. To better understand the glide symmetry in
periodic structures, we define the glide symmetry operator in one and two
dimensions. The 1-D glide symmetry operator Gpx̂ can be considered as a
composition of an x-translation of length p/2 and a z-reflection around the
glide plane (here we choose z = 0 as the glide plane) [2]:

Gpx̂ : (x, z)→ (x + p/2,−z) (2.16)

(a) (b)

p

p/2

z=-h/2

z=+h/2
z

x

pxpy

xy
z

glide

plane

FIGURE 2.4: Geometry of glide-symmetric structures: (a) 1-D
glide symmetry in a line loaded with PEC slabs (b) 2-D glide
symmetry in a parallel plate waveguide loaded with rectangu-

lar pins

A 1-D glide-symmetric periodic structure is invariant under this glide
symmetry operator. A comparison of (2.16) and (2.1) shows that composi-
tion of two glide symmetry operators is the translation operator (G2

px̂ = Tpx̂).
This was of course expected as a glide-symmetric structure is periodic in its
nature.

Similar to a 1-D glide-symmetric structure, the 2-D version is invariant
with respect to the glide symmetry operator. The 2-D glide symmetry opera-
tor Gpx x̂,pyŷ for a periodic structure with periods px in x and py in y direction,
is defined as:

Gpx x̂,pyŷ : (x, y, z)→
(
x + px/2, y + py/2,−z

)
(2.17)

Just as in the 1-D case, the defined glide symmetry operator provides peri-
odicity, since two consecutive applications G2

px x̂,pyŷ = Tpx x̂Tpyŷ give the 2-D
translation operator defined in (2.2). This assures the periodicity of the struc-
ture.

Fig. 2.5 shows an example of a periodic structure with twist symmetry.
The structure is a coaxial cable in which half-rings are attached to its outer
conductor. These half-rings are rotated and translated along the coaxial ca-
ble’s length to create twist symmetry. A twist-symmetric object is obtained if
the object replicates itself indefinitely when translated p/N along a line and
rotated an angle 2π/N around the same line (where N is an integer). After N
such transformations, the object has experienced a net translation of p, thus
defining a period composed of N adjacent parts, each of them identical apart
from a rotation. This symmetry is called an N-fold twist symmetry. This
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(a) (b) (c)

p p p

p/3 p/4 p/5

zzz

FIGURE 2.5: Geometry of a twist-symmetric structure (a coaxial
cable with metallic half-rings attached to the outer conductor:
(a) 3-fold twist-symmetric (b) 4-fold twist-symmetric (c) 5-fold

twist-symmetric.

naming is due to the fact that the unit cell of such structure has N sub-unit
cells that are rotated and translated with respect to each other. We can define
the N-fold twist symmetry operator as [2]:

SN,pẑ : (ρ, φ, z)→
(

ρ, φ +
2π

N
, z +

p
N

)
(2.18)

N consecutive applications of the N-fold twist operator result in the 1-D
translation operator SN

N,pẑ = Tpẑ of a period length, which confirms that a
twist-symmetric line is also periodic.

The two higher symmetries described here are of interest in electromag-
netics research. In fact, these symmetries provide periodic structures with
new interesting characteristics that can be used to enhance different features
of many microwave components. They have recently found applications in
numerous areas, such as wideband artificial lenses, leaky-wave antennas and
electromagnetic bandgap materials. This motivates a need for proper model-
ing of higher symmetric structures, which can help the design of new devices
and which can give physical insight into their physical properties. The appli-
cations of higher symmetric structures will be covered in more depth in the
next section.

2.3 Applications of Higher Symmetries

2.3.1 Early studies

Introducing a spatial higher symmetry within a unit cell of a periodic struc-
ture provides interesting dispersive properties that make these structures
proper candidates for numerous electromagnetic applications. In the 1960’s
and 70’s, one dimensional periodic structures with twist and glide symme-
tries were studied using a generalized Floquet theorem to provide initial in-
sights on the characteristics of these symmetries [2, 3, 4, 5]. In these works,
the influence of higher symmetries on the propagation characteristics of the
guided and radiating fields were studied. [2] introduces a generalized Flo-
quet theorem for periodically loaded closed waveguides possessing twist
and glide symmetries. The theorem states that the Bloch modes are eigen-
vectors of the glide or twist symmetry operator characterizing the structure.
Based upon this theorem, it also presents a method to construct the Brillouin
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diagrams of higher symmetric structures qualitatively. This method predicts
which stop bands will be present or absent in the dispersion diagram by con-
sidering the mode couplings between modes of the unloaded structure and
their space harmonics. [3] discusses the higher symmetry operators as well.
By means of mode-coupling theory it discusses how higher symmetries can
uncouple some space harmonics of the unloaded guide and then suppress
some stopbands. The results of these classical theoretical studies, such as
the lack of a stopband and a larger passband will be discussed in the next
paragraphs.

𝑝

ℎ

𝑔

𝑑

FIGURE 2.6: Unit cell structure of periodic bed of nails: (a) non-
glide symmetric (b) glide-symmetric.

2.3.2 Reduced frequency dispersion and lens antennas

Recently, a surge of interest in studying 2-D periodic structures with glide
symmetry has started in the framework of metamaterial research [6, 7, 8, 9,
10]. It was demonstrated in [11] that application of higher symmetries to two
dimensional periodic structures reduces their frequency dispersion. To un-
derstand this phenomenon, let’s consider the periodic bed of nails structure
with a top plate whose unit cell is shown in Fig. 2.6 (a). Fig. 2.6 (b) shows
the glide-symmetric version of this structure which is achieved by mirroring
the central pin to the top plate and moving half a period P/2 in both the
lateral directions. Fig. 2.7 depicts the normalized phase constant versus the
frequency for the two aforementioned unit cells. The parameters were cho-
sen as p = 4 mm, d = 0.5 mm, h = 1 mm and g = 0.1 mm. Firstly, the
stopband has moved to higher frequencies for the glide-symmetric structure.
Secondly, the curve of the first Bloch mode has become almost straight for the
glide-symmetric cell. This linear dependency over a wide range of frequency
means that this mode is essentially nondispersive.

[11] also investigates a glide-symmetric holey structure rather than the
bed of nails configuration. Glide-symmetric holey metasurfaces show similar
characteristics to their bed of nails counterparts. Fig. 2.8 (a) shows the unit
cell of a holey periodic structure with a top plate cover. Fig. 2.8 (b) shows
the glide-symmetric counterpart where the glide symmetry was achieved by
moving the mirrored holes half a unit cell P/2 in both lateral directions. The
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FIGURE 2.7: Dispersion diagram of glide-symmetric versus
non-glide symmetric bed of nails shown in Fig. 2.6.

dispersion diagram of these two unit cells are compared in Fig. 2.9. This
figure shows that the glide-symmetric unit cell has a higher refractive index
compared to the non-glide symmetric cell, realizing a denser material. This
is very useful for lens design. We also notice that similar to the bed of nails
configuration, the glide-symmetric holey structure is again nondispersive.
This can be observed by the linear dependence of the phase constant on the
frequency for the first Bloch mode.

This is very important for the design of planar lens antennas since the
bandwidth can be noticeably increased. [11] discusses this characteristic and
suggests that the less dispersive behavior of metasurfaces with higher sym-
metries can be utilized in the design of ultrawideband lenses. The paper
furthermore discusses how the glide-symmetric holey surfaces can be used
to achieve the refractive index profile of a two-dimensional Luneburg lens.
Different hole depths h could be used to achieve different refractive indices
required to realize a Luneburg lens.

h

g d

p

(b)(a)

FIGURE 2.8: Holey unit cells with top cover: (a) non-glide sym-
metric (b) glide-symmetric.
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[12] [13] designed and fabricated a fully metallic Luneburg lens for 5G
communications at Ka-band. The fully metallic structure ensures lower losses
at millimeter waves due to the absence of the dielectric material. These con-
cepts were later reviewed in [14] with a focus on the prospect of the bene-
fits of metasurfaces with higher symmetries in 5G technology. Fully metal-
lic glide-symmetric metasurfaces were proposed as a low-cost, low-loss and
wideband solution to 5G communications in millimeter wave regimes.

Based on these results, [15] proposes a transformation-optics rule to con-
vert the circular focal curve of a conventional Luneburg lens realized with a
bed-of-nails to a flattened focal line. This simplifies the feeding network and
reduces the lens size. The refractive index distribution of the transformed
lens is realized by choosing the height of the pins in a glide-symmetric bed
of nails configuration. Results are given using electromagnetic simulations.

FIGURE 2.9: Dispersion diagram of glide-symmetric versus
non-glide symmetric holey structure shown in Fig. 2.8

2.3.3 Backward radiation and leaky-wave antennas

Glide-symmetric open waveguides have also been studied in order to imple-
ment leaky-wave antennas [7]. The structures discussed in [7] are shown in
Fig. 2.10. The structure is a U-shaped metallic groove with periodic metal-
lic slices. These metallic slices could be aligned in a non-glide symmetric
periodic pattern as shown in Fig. 2.10 (a) or in a glide-symmetric pattern as
shown in Fig. 2.10 (b). The dispersion diagrams of these two structures are
shown in Fig. 2.11. The geometrical parameters were chosen as h = 23 mm,
h1 = 5 mm w = 10 mm w1 = 5 mm, w2 = 2.5 mm, d = 9 mm and
a = 2.25 mm. Fig. 2.11 (a) depicts the normalized phase constant versus
the frequency for the non-glide symmetric structure. We know that for open
structures, if the dispersion curve of a Bloch mode in the first Brillouin dia-
gram lies below the line of light, it means that the mode is bound to the struc-
ture and is not radiating. On the other hand, if part of the curve lies above
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the line of light (the radiation region), that part of the curve corresponds to
a radiating wave. The propagation constant will be complex to take into ac-
count of radiation losses, and the wave will radiate as it propagates along the
line. A quick look at the figure suggests that in the non-glide symmetric case,
dispersion curves of the first two modes are below the line of light. There-
fore, there is no radiation. The cut-off frequencies of the first two modes are
6.19 GHz and 14.05 GHz respectively while the asymptotic frequencies of
these modes are 10.65 GHz for the first mode and 14.512 GHz. Therefore,
the first mode has a bandwidth of 4.46 GHz while a stopband separates the
passbands of the first and second mode.

h

W1

W2d

a

W

h1

(a) (b)

FIGURE 2.10: Geometry of the structures discussed in [7]: (a)
non-glide symmetric structure (b) glide-symmetric structure.

(a) (b)

FIGURE 2.11: Dispersion diagram of the structures in Fig. 2.10
repeated from [7]: (a) non-glide symmetric structure (b) glide-

symmetric structure.

Fig. 2.11 (b) depicts the dispersion diagram for the glide-symmetric ver-
sion of the structure. We observe that in this case, the first and the third mode
have a positive group velocity while the second and the fourth mode show
negative group velocities. Similar to the closed structures discussed before,
we notice that the dispersion curve of the first mode has become linear. Since
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part of the second mode’s curve (including the cut-off frequency) are below
the line of light, these frequencies can also act as a passband for transmission
of the wave. Therefore, the lowest passband here corresponds to both first
and second mode. The structure shows a bandwidth of 7.467 GHz (from the
cut-off frequency of the first mode at 4.696 GHz to the frequency in which
the second mode’s curve passes the line of light at 12.163 GHz) which shows
a 67% increase compared to non-glide symmetric structure. Furthermore, we
see that the second mode passes the line of light at 12.163 GHz. This means
that this mode is radiating at frequencies higher than 12.163 GHz. Therefore,
this structure can be used to design leaky-wave antennas with beam scan-
ning capabilities in this frequency range. A very recent design of leaky-wave
antenna using glide-symmetric structures can be found in [16]. The authors
of that paper use the novel multi-modal analysis method that we have pre-
viously introduced (and that is described in the next chapter as part of this
thesis) as a tool for design of the antenna.

(a) (b)

(c) (d)

g
g

h

d

p
p

h

FIGURE 2.12: (a) Holey non-glide symmetric unit cell (b) Ho-
ley glide-symmetric unit cell (c) Bottom plate of the glide-

symmetric cell (d) Top plate of the glide-symmetric cell.

2.3.4 Enhanced stopband and microwave components

Higher symmetries have also recently been used in design of low-loss waveg-
uide structures. This is due to improvement of both the frequency width and
the attenuation of stop-bands offered by 2-D glide-symmetric metasurfaces
with respect to simple periodic structures. These configurations offer new so-
lutions for field confinement and gap-waveguide technology [17, 18, 19]. [17]
studies the basic glide-symmetric holey metasurface as an electromagnetic
bandgap structure. The metasurface is shown in Fig. 2.12 (b) while its cor-
responding non-glide symmetric unit cell is given in Fig. 2.12 (a). To better
visualize the unit cell, the bottom and top sections of the glide symmetric
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unit cell are given in Fig. 2.12 (c) and (d) respectively. Considering the pa-
rameters p = 5 mm, d = 2.8 mm, h = 2 mm and g = 0.05 mm, complete
dispersion diagrams for the non-glide symmetric and glide symmetric struc-
tures are shown in Fig. 2.13 and Fig. 2.14 respectively. A quick comparison
of the two figures show that the stopband in the non-glide symmetric case
has a wide bandwidth only in the X-M direction while the stopband has a
low bandwidth in the Γ-X and M-Γ directions. On the other hand, the intro-
duction of the glide symmetry provides a wide bandwidth for the stopband
in all directions. This is very useful in gap-waveguide technology to confine
the fields in the waveguiding areas and prevent the leakage of power. [17]
executes a parameter analysis on the aforementioned glide-symmetric holey
metasurface and demonstrates that the periodicity of holes determines the
center frequency of the stopband while the gap can be adjusted to achieve the
required stopband range. This provides the designer with an effective way of
modifying the stopband range according to the requirements. [18] uses these
observations and proposes a cost-effective gap waveguide technology based
on the glide-symmetric holey metasurfaces. Three cases of straight waveg-
uide, double 90° bent waveguide and coupled waveguides were simulated,
fabricated and measured to demonstrate the feasibility of the waveguiding
structure.

X
Γ

M

FIGURE 2.13: Complete dispersion diagram of the non-glide
symmetric unit cell in Fig. 2.12 (a)

The implementation of glide symmetric structures as efficient EBG ma-
terials in gap waveguide technology opens up a wide variety of opportuni-
ties for design of different components aimed at various applications. For
instance, [19] uses the holey metasurface with glide symmetry for design-
ing a phase shifter in the U-band by using a thin dielectric slab inserted in
the waveguide to control the phase shift of the signal. Another more recent
implementation of the holey glide-symmetric structures in gap waveguide
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X
Γ

M

FIGURE 2.14: Complete dispersion diagram of the glide sym-
metric unit cell in Fig. 2.12 (b)

technology is given in [20] which designs a 4× 4 slot array antenna. This de-
sign uses a higher order mode excitation TE40 based on a TE10 to TE20 mode
converter. Two converters are used to produce the TE40 mode from two in-
phase adjacent TE20 modes. This feeding network eases the manufacturing
process by avoiding drilling of thin and vertical metallic walls as a separation
between waveguides. Finally, since dielectric loss are absent in gap waveg-
uide technology and the leakage can be properly limited through efficient
glide-symmetric EBG, the designed antenna proved to have low loss.

2.3.5 Breaking glide symmetry

Another interesting recent application of glide symmetry is the breaking of
the glide symmetry in holey metasurfaces as in Fig. 2.15 (a) [21]. It is shown
that by breaking the glide symmetry, the bandgap can be split into two sep-
arated ones. In fact, the second mode shifts toward higher frequencies thus
introducing a passband within the original bandgap. Different transforma-
tions can break the glide symmetry. The aforementioned work proposes
the combination of two transformations: varying independently the radii of
glide symmetric holes in the top and bottom surfaces, as in Fig. 2.15 (b), and
introducing an additional misalignment between the top and bottom sur-
faces, as in Fig. 2.15 (c). The first transformation creates a new passband, ab-
sent in glide-symmetric structures, and controls its bandwidth. The second
transformation moves the central frequency of the new passband. Therefore,
proper combination of these two methods leads to bandwidth splitting in
gap waveguide technology. Fig. 2.15 shows the unit cell of a holey periodic
structure and the two methods to break its glide symmetry.
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(a) (b) (c)
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FIGURE 2.15: Holey unit cell (a) with glide symmetry (b) with
broken glide symmetry achieved by using different radii for the
holes on the top and bottom plates (c) with broken glide sym-
metry achieved by offsetting one of the two plates of a distance

dx and dy in x and y directions respectively.

Fig. 2.16 shows the effect of breaking the glide symmetry. Fig. 2.16 (a) dis-
plays the full dispersion diagram of the glide-symmetric structure depicted
in Fig. 2.15 (a). As expected, the diagram shows a stopband only between the
second and third Bloch mode. By breaking the symmetry using an additional
offset shift between the plates , the dispersion diagram achieved is shown in
Fig. 2.16 (b). The second Bloch mode has been shifted to higher frequencies
thus splitting the wide stopband into two smaller ones. Finally, Fig. 2.16 (c)
displays the full dispersion diagram of the holey structure when the symme-
try is broken by varying the size of hole radii in the two plates in addition
to offsetting the two. Similar to the previous case, the broken glide symme-
try results in splitting the stopband in two. Therefore, controlling hole radii
variation and the offset between the plates provides proper means of tuning
the two stopbands and hence the passband between them.

The extra tunable passband between two bandgaps in structures with bro-
ken glide symmetry opens new possibilities in electromagnetic applications.
For instance, this passband can be used for filtering purposes of a desired
frequency band in gap waveguide technology by suppressing the lateral con-
finement of the fields in the guide in that band. This means that at the sup-
pressed frequency the signal would leak transversely through the gap and
would be prevented to reach the output port of the waveguide. A sheet of
an absorbing material can rapidly dissipate the leaked fields and avoid un-
desired coupling in other parts of the structure. Even though this proposed
filtering technique does not allow to accurately define a filter in terms of band
rejection, it can still be useful when integration of a filtering cavity into the
available space is not possible or an extra filtering is needed in a certain fre-
quency band.

In the previous application, a filtering effect was integrated into the gap
waveguide structure through breaking the glide symmetry of the lateral EBG.
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(a) (b)

(c)

FIGURE 2.16: Full dispersion diagram of the holey structure
in Fig. 2.15 with p = 2.8 mm, g = 0.05 mm, h = 2 mm, (a)
r1 = r2 = r = 1.1 mm and dx = dy = 0 mm (glide symmetry)
(b) r1 = r2 = r = 1.1 mm and dx = dy = 0.5 mm (broken glide
symmetry due to offsetting the two plates) (c) r1 = 1.1 mm, r2 =
r = 1.2 mm and dx = dy = 0.2 mm (broken glide symmetry due
to both offsetting the two plates and varying the hole radius in

the two plates).

However, it is also possible to use similar ideas to design filters based on
broken glide symmetric periodic structures in the guiding medium. This has
been done in [22] using braided glide symmetry. This symmetry is the re-
sult of combination of two 1-D glide symmetries: one along the longitudinal
direction and the other along the transverse direction. Fig. 2.17 shows the
braided glide-symmetric unit cell composed of holes in metallic plates. The
braided glide symmetry increases the attenuation per unit cell in the stop-
band. This minimizes the required space for a given level of attenuation.
The broken glide symmetry is used in [22] to create multiple passband and
stopbands and suppress higher-order harmonics (in this case, the second-
order harmonic). The main difference with the previous example is that here
the stopband is used to filter the wave propagation in the guiding region
whereas in the previous example, the periodic structure was used as an EBG
and the passband was used to deactivate the EBG and to suppress the field
by making it laterally leaking. The advantage of this technology compared to
other similar filtering periodic structures such as waffle iron [23] is due to its
cost-efficiency and robustness. The designed filter can be integrated into an
antenna to reduce the overall loss. As a disadvantage, it needs a very narrow
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air gap to achieve high attenuation in small distances.

(a) (b) (c)

x
y z

FIGURE 2.17: (a) Unit cell of a braided glide symmetric struc-
ture. (b) Bottom layer of the unit cell (c) Top layer of the unit

cell.

2.3.6 Glide-symmetric flanges

Glide symmetry has also found application in waveguide flanges. Leakage
at microwave joints can be caused by undesired gaps between flanges of the
two mating waveguides due to misalignment, surface curvature, dirt or hu-
man mistakes. At higher frequencies this leakage is more significant since
the small air gaps are comparable to the wavelength. Due to the air gap be-
tween the two waveguides, the transition between them behaves as a cavity,
exciting multiple resonances. In addition, the extra pin and screw set up that
are used for alignment of the waveguides may also excite new resonances.
If any of these resonances are inside the operational frequency, the transmis-
sion may get affected significantly. [24] proposes a glide-symmetric holey
structure on the flanges which minimizes the effect on the transmission in
the presence of an air gap. The proposed method has multiple advantages
over the previous pin-type EBGs used on flanges [25]. The first advantage
is an easier manufacturing since drilling holes is simpler than milling cor-
rugations. Another advantage is in the larger period required in the glide-
symmetric holey structure compared to pin-type structures. This larger pe-
riod provides less sensitivity to manufacturing tolerances. Finally, the depth
of these holes does not significantly affect the resulting stopband. This pro-
vides a small sensitivity to manufacturing tolerances.

2.3.7 Matching improvement of dielectric discontinuities and
printed circuits

Recently, glide symmetry has also been used to match discontinuities due
to highly dense dielectric profiles illuminated under a wide angle and in a
broad bandwidth [26]. Fig. 2.18 (a) shows a parallel plate waveguide filled
with a medium with εr1 = µr1 = 1 that faces a denser dielectric slab with



20 Chapter 2. Periodic and Higher Symmetric Structures

(a) (b)

εr1
εr1εr2 εr1

εr1εr2

FIGURE 2.18: A parallel plate waveguide with two differ-
ent media with permittivities εr1 and εr2 inside with: (a) Un-
matched impedances that cause reflections between the two
media (shown with red arrows) (b) matched impedances by us-
ing subwavelength glide-symmetric structures over the middle

media.

εr2 > 1 and µr2 = 1 which presents a classical problem of electromag-
netic reflection at the interface between two media. If the value of perme-
ability of the denser media is somehow changed to µr2 = εr2/εr1, the two
media will have the same impedance and the reflections will vanish. To
do so, sub-wavelength scatterers are able to mimick a certain permeabil-
ity. For instance, sub-wavelength periodic holes on metallic plates can in-
crease the effective permeability. This is shown in Fig. 2.18 (b) where the sec-
ond media in the parallel plate waveguide is covered with glide-symmetric
holey metallic plates. [26] has successfully used this method to match the
impedance for normal incidence in a parallel plate configuration and has val-
idated it through experiments. It also considers the case of oblique incidence
for which it uses full wave simulations to show how using this method, it is
possible to match the profile of a dielectric hyperbolic lens to free space.

In addition to the applications in gap waveguide technology, configura-
tions exhibiting glide-symmetry can also improve devices realized in planar
technologies such as printed circuit boards. For instance, [27] has demon-
strated that introduction of glide symmetry in a double-sided array of par-
allel strips using printed corrugations can suppress a stopband between the
first and the second mode while keeping a high linearity of the propagation
constant. Furthermore, it shows how breaking this symmetry can cause fil-
tering effects which can be used in this technology. Other results [28] shows
how to improve the stopband of a conventional mushroom-like EBG struc-
ture in microstrip technology by simply introducing a glide symmetry in its
structure. The conventional mushroom-type EBG has all its vias on one side
with no glide symmetry. By placing the vias in a glide-symmetric fashion, it
is possible to achieve a 80 % higher stopband bandwidth.
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2.3.8 Properties of twist symmetric lines

Despite less research has been performed on twist-symmetric lines, many of
the characteristics of the glide symmetry are also relevant in twist symme-
try. For instance, [29, 30, 31, 32] show that similar to the glide symmetry,
twist symmetry can be used to reduce the frequency dispersion of a periodic
structure in addition to controlling the location and width of the stopbands.
Moreover, by changing the number of folds in a twist symmetry the equiva-
lent refractive index of the media can be controlled [29]. Due to the similarity
of their behavior to glide-symmetric structures, twist-symmetric structures
may also find potential applications in leaky-wave antennas and fully metal-
lic filters and phase shifters.

2.4 Existing models for higher symmetries

As it was described in Sec. 2.3, the interesting dispersive effects of higher
symmetries and their applications in microwave technology have recently
stimulated research in numerical and analytical methods in order to explain
the effect of these symmetries in periodic structures. On one hand, the prox-
imity required between glide-symmetric surfaces to obtain these interesting
effects can lead to time-consuming simulations when commercial software
is used due to the need of meshing small geometrical details. On the other
hand, such a difference between glide and non-glide surfaces is not yet fully
explained, and physical insight would allow for a better comprehension of
these structures.

Recently, mode-matching has been proposed for glide-symmetric holey
metasurfaces and corrugations. [33] proposes a mode matching technique ca-
pable of deriving efficiently the dispersive characteristics of glide-symmetric
metallic plates with periodic rectangular holes. It exploits the higher symme-
try of each cell and uses the generalized Floquet theorem to enforce bound-
ary conditions only on one of the two surfaces. This leads to a discussion
of the symmetric properties of the Floquet harmonics, whose parity depends
on the parity of the order of the harmonic. It also studies and confirms the
potential of tuning the refractive index of the structure by changing differ-
ent geometrical parameters which makes them suitable for design of ultra-
wideband lenses. [34] analyzes the glide-symmetric 2-D doubled corrugated
metasurface using the mode-matching technique. The result is accurate and
the method is computationally faster than commercial software.

Despite its advantages, mode matching does not provide a physical in-
terpretation of the impact of the higher symmetries in a periodic structure.
Instead, the simplicity of circuit-based modeling methods can lead to a bet-
ter physical explanation of glide-symmetry effects. For this reason, this ap-
proach was chosen in [35] and [30] for simpler 1-D glide and twist configura-
tions, respectively. Specifically, the structure analyzed in [35] consists of two
glide-symmetric corrugated structures. Under the assumption that each cor-
rugation can be replaced by Marcuvitz’s closed form equivalent circuit [36], it
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was easily shown that the glide symmetry effect is equivalent to simply halv-
ing the spatial period of the waveguide and removing the glide symmetry.
[37] discusses reduced representations of several kinds of higher-symmetric
periodic lines proposed in [38]. It demonstrates that a more correct condition
for this equivalence would be neglecting the interactions due to localized ex-
citation of higher-order waveguide modes.

2.5 Content of the thesis

In summary, the interesting characteristics of higher symmetries in periodic
structures have led to a large number of recent applications in microwave
and millimeter-wave devices. This recent interest together with the large im-
pact of symmetric configurations on different propagation features, is moti-
vating research devoted to understand the fundamental differences between
a glide-symmetric structure and its simpler periodic counterpart, obtained by
suitably removing the glide symmetry. This can be done by removing the off-
shift between the metasurfaces, or by moving the scatterers originally placed
on the top surface on the bottom one. It is clear from the results shown in this
chapter that these simple operations strongly affect the electromagnetic prop-
erties of the resulting structures. This is not a trivial observation: if the two
metasurfaces in a glide-symmetric configurations are each one replaced with
a homogenized model, the off-shift between them should not have any im-
pact on their behavior. The glide-symmetry effects are clearly not described
by usual homogenized models even in well-known metasurfaces (e.g., metal-
lic corrugations).

Furthermore, in order to clearly observe the higher-symmetry proper-
ties, the two metasurfaces must be in close proximity so that the interaction
among the top and bottom components is enhanced. This strong interac-
tion prevents the use of simple homogenized models available for a single
metasurface, as expected. As explained in Sec. 2.4, this close proximity may
also be a problem for the efficiency of numerical simulations of these kinds
of structures: a very fine meshing is required to correctly describe the field
behavior, and different geometrical scales can be involved in the definition
of the complete structure. This motivates the development of ad-hoc tech-
niques, particularly adapted to higher-symmetric structures.

Based on these considerations, in Chapter 3 special analysis methods are
presented for these structures which can shed light into the reasons behind
the specific behaviour of higher symmetries. Such methods could possibly
lead to further knowledge about the potentials of such symmetries which in
turn may lead to better utilisation of them in novel applications such as in re-
configurable waveguide components. A novel analysis method is discussed,
based on the generalization of a Bloch-analysis technique to a multimodal de-
scription of the unit cells. A specific formulation is given for periodic struc-
tures with higher symmetries. Both the glide- and twist-symmetric cases are
analyzed in detail. Despite being recently proposed in this thesis, the method
has already been used by several research groups for the study and design of
different prototypes.
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In the following Chapter 4, this method is used to design a millimeter-
wave reconfigurable glide-symmetric waveguide capable to enable or pre-
vent propagation. This is achieved by means of a simple reconfiguration of
one geometrical parameter only, controlled by a low-consumption piezoelec-
tric actuator. This technology has potential applications for millimeter-wave
switches for the feeding networks of multibeam antennas for 5G communi-
cations.

Conclusions and future research works are presented in Chapter 5.
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Chapter 3

Multimodal T Matrix Analyses for
Cells with Higher Symmetries

In this chapter, we generalize a method to calculate the dispersive proper-
ties of periodic structures, the transmission-matrix method. It enforces the
Floquet theorem by means of the transmission matrix of a unit cell of the pe-
riodic structure. First in Sec. 3.1, we introduce the conventional transmission-
matrix method. In Sec. 3.2, we extend this method to a formulation with mul-
tiple background modes. This enables us to achieve a higher accuracy when
periodic scatterers interact strongly among them. This extended method is
also suitable to describe the difference between glide and simple periodic
structures. This is shown in Sec. 3.3, where we apply the extended method
to glide symmetric structures (along one and two directions) and reformu-
late this method for such structures. In Sec. 3.4, we reformulate the extended
method for twist-symmetric structures.

3.1 Transmission-Matrix Analysis

As explained in Section 2.1, the unit cell of a periodic structure is usually the
minimal unity that can be used by means of repeated translations to create
the full structure. Different methods can be used to study these unit cells,
such as methods of moments, finite-difference time-domain, finite-element
methods, mode matching [39, 40, 41, 42, 43, 44]. All of them require enforcing
the periodic condition on the electromagnetic fields at the boundary of a cell.
The method discussed here is based on a description of the unit cell as a two-
port linear network, characterized by a 2× 2 matrix (the presentation follows
Ch. 8 in [45]).

Fig. 3.1 shows an example of a periodic structure which is a microstrip
line that is periodically loaded with stubs. To study periodic structures, one
can define a multi-port network for their unit cell and uses its transmission
matrix (T matrix) to define the governing dispersion relation. For instance,
for a one-dimensional (1-D) periodic structure, we can associate a two-port
network to its unit cell as shown in Fig. 3.2. The transmission matrix T of this
two-port network is defined as:[

V1
I1

]
= T ·

[
V2
I2

]
(3.1)
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FIGURE 3.1: A portion of an infinite periodic structure: mi-
crostrip with periodic stubs [45].

FIGURE 3.2: A two-port network [45].

The Floquet periodicity conditions verified by Bloch modes can be written
for the port voltages and currents as:

V1 = e+jkx pV2

I1 = e+jkx p I2 (3.2)

where, as it was described in Sec. 2.1.2, kx is the propagation constant of
the existing Bloch modes and it can be written as kx = βx − jαx where βx
is the phase constant and αx is the attenuation constant. Combining these
equations with (3.1) gives the following result.[

T − e+jkx p I
] [V2

I2

]
= 0 (3.3)

For a nontrivial solution to this equation, the matrix on the left side must
have a zero determinant. Therefore, finding the zeros of the determinant
provides the propagation constant k of the Bloch modes. We call this analysis
procedure "the T matrix method". Once k is known, the equivalent refractive
index of the structure can also be calculated by:

n =
β

k0
(3.4)

where β is the phase constant of the Bloch wave and k0 is the propagation
constant of electromagnetic waves in free space.

We now consider the periodic example in Fig. 3.1 to demonstrate the ap-
plication of this analysis. Often, a transmission line with light periodic dis-
continuities can be modeled as a line with periodic lumped shunt (or se-
ries) reactances embedded into a transmission line. This equivalent circuit
is shown in Fig. 3.3. To be able to use the formulations discussed above, we
need the T matrix of the unit cell. In the simple case of this equivalent circuit,
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FIGURE 3.3: Equivalent circuit of a periodically loaded trans-
mission line. The unloaded line has characteristic impedance

Z0 and propagation constant k [45].

we know the T matrix of a transmission line and that of a shunt susceptance.
We also know that the total transmission matrix of N cascaded networks can
be determined as the product of the T matrices of all N networks. Therefore,
the T matrix of the unit cell simplifies to a cascade of a transmission line of
length d/2, a shunt susceptance b, and another transmission line section of
length d/2:

T =

 cos
(

k0d
2

)
j sin

(
k0d
2

)
j sin

(
k0d
2

)
cos

(
k0d
2

)  [ 1 0
jb 1

]  cos
(

k0d
2

)
j sin

(
k0d
2

)
j sin

(
k0d
2

)
cos

(
k0d
2

) 
=

 cos (k0d)− b
2 sin (k0d) j

(
sin (k0d) + b

2 cos (k0d)− b
2

)
j
(

sin (k0d) + b
2 cos (k0d) + b

2

)
cos (k0d)− b

2 sin (k0d)

 (3.5)

Where k0 is the propagation constant of the unloaded line. Now the T
matrix in (3.5) can be used in (3.3) to find:

cosh kd = cosh αd cos βd + j sinh αd sin βd = cos k0d− b
2

sin k0d (3.6)

In lossless lines, the right hand side is purely real. Therefore, two solu-
tions are possible for this equation. The first solution is when α = 0. This
corresponds to a non-attenuated propagating wave on the periodic structure
and defines the passband of the structure. In this case, (3.6) reduces to:

cos βd = cos k0d− b
2

sin k0d (3.7)

which requires that the module of the right-hand side is smaller than 1. The
second case happens when α 6= 0 and β = 0, π. For these solutions, the wave
is attenuated along the line and does not propagate. This corresponds to a
stopband. The attenuation constant α can then be calculated from:

cosh αd = |cos k0d− b
2

sin k0d| (3.8)
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These results demonstrate how application of this theory provides infor-
mation both on the propagation and the attenuation of the waves in passband
and stopband frequencies. In the next section, we will extend the transmis-
sion matrix to higher-order transmission matrices for our analyses. However,
we will still use the term “T matrix method” for brevity. It will be shown that
the procedure used here is a special case of the more general procedure pre-
sented in the next section.

3.2 Extension of the T Matrix Analysis

The basic T matrix method was introduced in Sec. 3.1. For solution purposes,
the T matrix of each unit cell can be easily calculated from the scattering ma-
trix (S matrix). To obtain the S matrix of each cell, a waveguide-port excita-
tion is applied at each side of the unit cell in which only the dominant mode
is excited for these measurements. However, we aim here at extending this
theory to the case of N excited modes and we will show that this will increase
the accuracy of the results. Such method has been used for different analysis
and modeling purposes [46, 47, 48, 49]. We will demonstrate that the exten-
sion to multiple modes is in fact necessary for the analysis of some classes of
periodic structures, and namely for many higher-symmetric structures.

3.2.1 Multimodal T Matrix

The monomodal T matrix of a 1-D periodic structure was defined for its unit
cell in (3.1). The multimodal T matrix is a transmission matrix which consid-
ers multiple modes as sources instead of only one and relates among them
the equivalent voltages and currents of these modes at the boundaries of the
unit cell. Both 1-D and 2-D cases are defined in the next subsections.

In the following studies, we calculate the T matrix of a unit cell from its
impedance matrix Z, which can be computed with a full-wave method sim-
ulating one single unit cell excited with suitable waveguide ports. In our
case we use the CST Microwave Studio frequency solver, which calculates
the impedance parameters from the scattering parameters automatically by
means of a post processing algorithm. We now explain how the T matrix can
be computed from the Z matrix. If we consider N modes on each periodic
boundary, the unit cell of a 1-D periodic structure having two opposite peri-
odic boundaries has 2N voltages and 2N currents. For a 2-D periodic struc-
ture, having four periodic boundaries, this will correspond to 4N voltages
and 4N currents. In both cases, the total number of voltages or currents are
even. Therefore, let’s imagine that the total number of equivalent voltages or
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currents are 2N. The Z matrix relates the voltages to the currents:
V1
V2
...

V2N

 = Z ·


I1
I2
...

I2N

 (3.9)

where Z =

[
Zaa Zab
Zba Zbb

]
Let’s assume that we have numbered the voltages and currents in such a way
that the first N voltages and N currents correspond to input ports and the rest
of the currents and voltages correspond to output ports. Remembering that
the T matrix relates the voltages and the currents on the output port to the
input port, we divide (3.9) into the following two equations:

V1
V2
...

VN

 =
[
Zaa

]
·


I1
I2
...

IN

+
[
Zab

]
·


IN+1
IN+2

...
I2N

 (3.10)


VN+1
VN+2

...
V2N

 =
[
Zba

]
·


I1
I2
...

IN

+
[
Zbb

]
·


IN+1
IN+2

...
I2N

 (3.11)

Multiplying (3.10) by
[
Zab

]−1 gives:
IN+1
IN+2

...
I2N

 =
[
Zab

]−1


V1
V2
...

VN

− [Zab
]−1 ·

[
Zaa

]
·


I1
I2
...

IN

 (3.12)

Inserting (3.12) in (3.11) results in:


VN+1
VN+2

...
V2N

 =
[
Zbb

]
·
[
Zab

]−1 ·


V1
V2
...

VN



+
([

Zba
]
−
[
Zbb

] [
Zab

]−1 [Zaa
])
·


I1
I2
...

IN

 (3.13)
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(3.12) and (3.13) can be merged to achieve the following:

VN+1
...

V2N
−IN+1

...
−I2N


=


[
Zbb

] [
Zab

]−1 [
Zba

]
−
[
Zbb

] [
Zab

]−1 [Zaa
]

−
[
Zab

]−1 [
Zab

]−1 [Zaa
]

 ·


V1
...

VN
I1
...

IN


(3.14)

This gives us the definition of the T matrix based on the Z matrix:

T =


[
Zbb

] [
Zab

]−1 [
Zba

]
−
[
Zbb

] [
Zab

]−1 [Zaa
]

−
[
Zab

]−1 [
Zab

]−1 [Zaa
]

 (3.15)

In all the following sections, we use (3.15) to obtain the T matrix from the Z
matrix that is calculated by CST Microwave Studio.

It is known that in the case of non-TEM excitation modes, the voltage and
current definitions and therefore the characteristic impedance are not unique
[45]. An important discussion is the uniqueness of the eigensolutions of the
T matrix method, which is based on an arbitrary definition of the character-
istic impedance, voltage and current of non-TEM background modes. These
arbitrary definitions will lead to different transmission matrices and it is im-
portant to see how this will affect the eigensolutions. In this regard, it can
be easily shown that if the same voltages, currents and hence characteristic
impedances are defined on two opposite ports, the eigensolutions are un-
changed no matter how these parameters are defined. To prove this claim,
we can start by the conversion formula for obtaining the Z matrix based on
the scattering matrix S [50]:

Z =
√

Z0 (I + S) (I − S)−1√Z0 (3.16)

I is the 2N × 2N identity matrix and
√

Z0 is defined as:

√
Z0 =

[√
Z01

0
0

√
Z02

]
(3.17)

0 is the N × N null matrix and
√

Z0i
corresponds to the ith boundary and

is defined as:

√
Z0i

=



√
Z(1)

0i
0 · · · 0

0
√

Z(2)
0i

. . . 0
... 0 . . . 0

0 0 0
√

Z(N)
0i

 (3.18)
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√
Z(j)

0i
is the characteristic impedance of the jth mode on the ith boundary.

By defining z as the Z matrix that corresponds to the choice of
√

Z(j)
0i

= 1 for
all the modes, (3.16) can be reformulated as:

Z =
√

Z0 · z ·
√

Z0

=


[√

Z01

]
·
[
zaa
]
·
[√

Z01

] [√
Z01

]
·
[
zab
]
·
[√

Z02

]
[√

Z02

]
·
[
zba
]
·
[√

Z01

] [√
Z02

]
·
[
zbb
]
·
[√

Z02

]
 (3.19)

It can be shown that inserting the sub-matrices of the Z matrix from (3.19)
in (3.15) results in the following equation:

T =

[√
Z02 0
0

√
Z02

−1

]
· t ·

[√
Z01

−1 0
0

√
Z01

]
(3.20)

where t is the normalized T matrix which corresponds to the normalized

Z matrix z. If
√

Z(j)
01

=
√

Z(j)
02

for all modes j, then the relation
√

Z01
=
√

Z02

holds. In this case, according to (3.20) the matrices T and t are similar and
hence share the same eigenvalues.

3.2.2 Analysis of 1-D Periodic Structures

Let’s imagine a 1-D periodic structure with period p along the x direction.
Again, we can use the Floquet boundary conditions for the two sides of the
unit cell that are faced along the +x and −x directions. However, this time,
instead of one set of voltage and current for each side, we consider N sets.
These sets can be attributed to N different excitation modes that will be ap-
plied at the two sides of the unit cell. The unit cell can therefore be modelled
by a 2N-port network with N input ports and N output ports. We define a
multimodal transmission matrix T as follows:[

V1
I1

]
= T ·

[
V2
I2

]

where Vi =


V(1)

i
V(2)

i
...

V(N)
i

 and Ii =


I(1)i
I(2)i

...
I(N)
i


(3.21)

V(n)
i and I(n)i are the voltage and current on side i of the unit cell due to

the nth excitation mode. Therefore, Vi and Ii are column vectors containing
respectively the voltages and currents corresponding to the N modes. Again,
in order to solve for the dispersion relation, we apply the Floquet conditions
at the boundaries of the unit cell as it was done in Sec. 3.1. The Floquet
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D3

L

d

D1

D2

FIGURE 3.4: A coaxial cable loaded with periodic pins.

conditions will be expressed as:[
V1
I1

]
= e+jkx p

[
V2
I2

]
(3.22)

Applying (3.22) to (3.21) gives the eigenvalue problem in (3.23). The so-
lution of this equation provides the dispersion results of the structure under
study. [

T − e+jkx p I
] [V2

I2

]
= 0 (3.23)

Finding the zeros of the determinant of the left hand side’s matrix pro-
vides the propagation constants of the Bloch waves. To put the formulation
to test, we apply it to the 1-D periodic structure shown in Fig. 3.4. The struc-
ture is a coaxial cable that is periodically loaded with circular pins. Fig. 3.5
depicts the dispersion diagram of this structure when the parameters are
D1 = 2.4 mm, D2 = 4.84 mm,D3 = 2.2 mm, L = 2 mm and d = 5 mm.
It is observed from the figure that using a single mode (N = 1) gives incor-
rect results for the dispersion diagram while using N ≥ 2 modes (N = 3 and
N = 4 modes are shown in the figure) results in the correct solution which
matches the solution provided by the CST eigensolver. This example stresses
why the extended T matrix formulation presented in this section should be
preferred to the conventional formulation with N = 1 mode that was covered
in Sec. 3.1. As we progress through this chapter, we provide more examples
where the conventional formulation falls short in solving the problem.

3.2.3 Analysis of 2-D Periodic Structures

Let’s imagine that we want to study a structure that is 2-D periodic with
periods px and py in x and y directions respectively. An example is given in
Fig. 3.6 (a). The unit cell is bound in the area 0 < x < px and 0 < y < py
(shown in Fig. 3.6 (b)). In this case, our unit cell would have 2 faces along
the x axis (namely, x = 0 and x = px) and 2 faces along the y axis (y = 0
and y = py). We number these 4 faces in the following way: The x = 0
face is numbered 1 and the y = 0 face is numbered 2. x = px and y = py
are each numbered 3 and 4 respectively. Now, we can define the T matrix
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FIGURE 3.5: Normalized phase constant βd/π versus fre-
quency for the structure given in Fig. 3.4.

px

py

xy

z

(a) (b)

x = 0

x = pxy = 0

y = py

(1)

(2)

(3)

(4)

FIGURE 3.6: Parallel plates where the bottom plate is periodi-
cally loaded with rectangular pins: (a) part of the structure (b)

the unit cell.

and the Floquet conditions according to these 4 boundary faces. Considering
N modes on each of these faces makes the unit cell equivalent to a 4N-port
network. Therefore, we define the T matrix:

V1
V2
I1
I2

 = T ·


V3
V4
I3
I4

 (3.24)

where Vi and Ii (i = 1, 2, 3, 4) are voltage vectors and current vectors as de-
fined in (3.21). The Floquet conditions are:
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FIGURE 3.7: Dispersion diagram of the 2-D periodic structure
in Fig. 3.6


V1
V2
I1
I2

 =


e+jkx px V3
e+jky pyV4
e+jkx px I3
e+jky py I4

 (3.25)

Combining (3.24) and (3.25) provides the following eigenvalue problem:T −


e+jkx px 0 0 0

0 e+jky py 0 0
0 0 e+jkx px 0
0 0 0 e+jky py

 I




V3
V4
I3
I4

 = 0 (3.26)

Again, we look for the zeros of the determinant of the left hand-side ma-
trix. Fig. 3.7 plots the dispersion diagram of the structure shown in Fig. 3.6
for propagation in the x direction (ky = 0, kx 6= 0) where px = py = d. The
results from the extended T matrix formulations are compared to the result
from the CST eigensolver. The results show that also in this case a single
N = 1 mode is not sufficient to achieve convergence to the CST results. A
minimum of N ≥ 3 modes are needed for that matter. It can be observed
in the figure that the results with N = 3 and N = 4 modes agree with the
result from CST. Once again, it was important to consider the higher-order
modes to increase the accuracy of the results. In the next sections, we apply
this method to periodic structures with higher symmetries.

3.3 Glide Symmetric Structures

This section aims to use the eigenvalue problems in (3.23) and (3.26) to ex-
tract the dispersive relations of 1-D and 2-D glide-symmetric structures. The
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transmission matrix in these equations is calculated through the procedure
discussed in Sec. 3.2.1: First, the impedance matrix is calculated by CST Mi-
crowave Studio. Then this matrix is converted to the transmission matrix T
using (3.15). We will compare the dispersion results of our proposed Bloch
mode analysis with the results directly obtained from the eigensolver anal-
ysis of the CST Microwave Studio. This will validate our proposed method
by verifying its accuracy. It is good to note that the imaginary part of the
wavenumber cannot be compared to the CST eigensolver results as the latter
software does not compute this quantity.

3.3.1 Glide Symmetry Along One Direction

Periodic-structure associated to a glide structure

Fig. 3.8 shows a 1-D glide-symmetric structure composed of two corrugated
metallic surfaces off-shifted of half a period with respect to each other. For
simplicity, the structure is assumed invariant along the y direction. We re-
mind the reader that this structure is invariant under the 1-D glide symme-
try operator and the 1-D translation operator given in (2.16) and (2.1) respec-
tively.

(a)

(c)

(b)

z
x

z
x

z
x

z = h/2

z = ‒ h/2

h

h2h1

p

d

x = 0 x = p

p

p/2

FIGURE 3.8: (a) 1-D glide-symmetric line whose period is p. (b)
Non-glide symmetric periodic line obtained by moving the top
metals to the bottom plate. Its period is p/2. (c) Unit cell of the

glide-symmetric structure.

Before we apply the transmission matrix method developed in Sec. 3.1,
we would like to discuss another structure which will help us gain some
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physical insights into the higher order mode interactions at the unit cell level.
Fig. 3.8 (b) is a periodic non-glide symmetric structure with period p/2. This
structure was obtained by mirroring the upper corrugations in the glide-
symmetric structure shown in Fig. 3.8 and moving them from the top plate
to the bottom. We will calculate the dispersion diagrams of both of the struc-
tures given in Fig. 3.8 (a) and (b). We will refer to them as the glide-symmetric
and the non-glide symmetric structure. We will show that the comparison
of these structures will provide useful information on the effect of the glide
symmetry in periodic structures.

[35] has discussed the equivalence between the structures of Fig. 3.8 (a)
and Fig. 3.8 (b) based on the validity of an equivalent circuit proposed there.
This equivalent circuit neglects the higher-order modes at the two borders of
the unit cell. Therefore, it corresponds to the formulation given in Sec. 3.2.2
with N = 1, where only one mode is retained on each unit cell’s face. This
assumption is shown to be valid as long as d > p/2 [35]. In this sub-section,
we use this observation to class glide-symmetric structures in two newly-
defined kinds, namely reducible and irreducible structures. We will show that
this classification is related to the nature of the modal interaction between
adjacent cells.

Reducible and irreducible glide-symmetric structures

We define a reducible glide-symmetric structure as a structure where the mir-
roring operation of the glide operator does not have an impact on the disper-
sion diagram. For instance, a reducible line as in Fig. 3.8 (a) has the same dis-
persion relation as the structure in fig 3.8 (b) with the same parameter values.
Conversely, we define an irreducible glide-symmetric structure as a structure
where the mirroring operation does have an impact, so that an irreducible
line with the shape of Fig. 3.8 (a) exhibits a different dispersion relation from
the structure in Fig. 3.8 (b). It will be shown that the same geometry can be
classified as a reducible or an irreducible structure according to the values
of its geometrical parameters and the frequency range of interest. Using the
T-matrix analysis, we aim at demonstrating that the difference between re-
ducible and irreducible structures lies in the impact of higher-order modes
on each unit-cell boundary. Reducible structures require only one mode at
each face, whereas irreducible lines need higher-order modes at each face to
compute the dispersion diagram correctly.

The unit cell of the glide-symmetric line is depicted in Fig. 3.8 (c). First, let
us consider the structures in Fig. 3.8 (a) and (b) with geometrical parameters
of p = 3 mm, d = 0.25 mm, h1 = 0.35 mm, h2 = 0.45 mm and h = 1 mm.
Their dispersion diagrams are plotted in Fig. 3.9. Firstly, the results com-
puted with the CST eigensolver are plotted and compared with each other
in Fig. 3.9 (a). One can easily notice that the glide and the non-glide struc-
tures have the same dispersion diagram. This corresponds to a reducible
glide symmetry. In Fig. 3.9, we plot the diagrams obtained with the T-matrix
method. 1,2 and 3 modes were used and their dispersion diagrams were
plotted. It is clear that using higher-order port modes does not change the
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(a) (b)

FIGURE 3.9: Dispersion diagram of the structures in
Fig. 3.8 (a) and (b) with geometrical parameter: p = 3 mm,

d = 0.25 mm, h1 = 0.35 mm, h2 = 0.45 mm and h = 1 mm.

results as the first mode is already enough to reach the accurate dispersion
diagram.

To present an example of an irreducible line, a change of the parameters
should be enforced. Let us consider again the same structure of Fig. 3.8 (a)
with its corresponding non-glide symmetric line of Fig. 3.8 (b). We choose
the parameters as p = 1.5 mm, d = 0.5 mm, h1 = 0.35 mm, h2 = 0.45 mm
and h = 1 mm. This structure has a shorter period and a wider corrugation
compared to the previous example. This means that the corrugations are now
tightly adjacent to each other. We expect the proximity of these scatterers to
form an irreducible line. Fig. 3.10 (a) uses the CST eigensolver to sketch the
dispersion diagram of the glide-symmetric structure and its non-glide sym-
metric counterpart with halved period. Unlike the reducible line example
discussed above, the dispersion diagrams for these structures are completely
different. A tight adjacency of the scatterers in the glide-symmetric topol-
ogy produces a dispersion response which is quite different from the non-
glide symmetric counterpart. To validate our T-matrix method for irreducible
structures, we plotted in Fig. 3.10 (b) the results that are obtained with this
method using multiple modes. Investigation of these curves demonstrates
that inclusion of just one waveguide mode provides the wrong dispersion di-
agram with an incorrect stop-band at mid-frequencies. In opposition, adding
a second mode leads to the correct dispersion diagram. The result with N = 3
modes have also been plotted: it exactly matches the curve with N = 2
modes and demonstrates the convergence of the results. This confirms that
the mirrored nature of half-cells in glide symmetries treats modes with dif-
ferent types of symmetry differently. It also emphasizes the need to use the
multimodal transmission matrix to obtain more accurate results. In the next
section, we use this observation to suggest a modified analysis that uses the
higher symmetry to obtain the dispersion relation from half of a unit cell.
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(a) (b)

FIGURE 3.10: Dispersion diagram of the structures in
Fig. 3.8 (a) and (b) with parameter values: p = 1.5 mm, d = 0.5

mm, h1 = 0.35 mm, h2 = 0.45 mm and h = 1 mm.

3.3.2 1-D Glide-Symmetric Boundary Conditions Along One
Direction

In this section, we exploit glide symmetry in order to limit the computational
domain to a sub-region of the entire unit cell. A generalized Floquet theorem
discussed in [2] shows that the study of a glide-symmetric line can be limited
to half of its unit cell (the region 0 < x < p/2 in Fig. 3.8 (c)) by formulating
the following eigenvalue problem associated to the glide operator:

Gpx̂ [E (x, z)] = E (x + p/2,−z) = e−jkx p/2E (x, z) (3.27)

This means that the field measured after a translation of half a period
and a mirroring with respect to the glide plane is a scalar multiple of the
field at the initial position. It is evident from (3.27) that two consecutive Gpx̂
operations give the eigenvalue problem in (3.23). It is important to remark
that a minus sign could be added to the last term of (3.27): this will still
be consistent with (3.23). When a − sign is added, the kx wavenumber is
transformed into the k′x = kx + 2π/p wavenumber which is a harmonic of
the same Bloch mode [33]. For this reason, the + sign will be retained here
without loss of generality.

We want to formulate the glide eigenvalue problem for a sub-region of
the unit cell by means of a multimodal transmission matrix that we defined
earlier in Sec. 3.2.2. To this aim, we define the multimodal transmission ma-
trix T1/2 associated to one half of a unit cell (0 < x < p/2 in Fig. 3.8 (c)).
This transmission matrix performs a translation along the line from x = 0
to x = p. However, the glide operator in (3.27) consists of a translation and
a mirroring. To overcome this issue, we write the translation operator Tp

2 x̂
in terms of the the glide operator Gpx̂. We will show that this results in an
eigenvalue problem for the transmission matrix T1/2. Before writing the re-
lation between the translation operator and the glide operator, we define the
mirror operator Mẑ as:
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Mẑ [E (x, z)] = E (x,−z) (3.28)

We can express the translation operator Tp
2 x̂ as a composition of the glide

operator Gpx̂ and a mirroring operator:

Tp
2 x̂ [E (x, z)] = MẑGpx̂ [E (x, z)] = e−jkx p/2Mẑ [E (x, z)] (3.29)

In order to proceed, we need to convert this equation to a matrix form.
By considering each Bloch mode as a composition of the background modes
defined at the geometrical ports of the half cell, the translation operator Tp

2 x̂
corresponds to the multi-modal transmission matrix T1/2. To obtain the ma-
trix equivalent of the mirroring operator, we need to understand the effect
of mirroring on the background modes. Each mode is either odd or even
with respect to the mirroring plane (z = 0) and it is here named Eeven and
Eodd respectively. Here, we considered the z components of modal electric
fields (ez), used to define equivalent voltages at each port. However, due to
the bi-dimensional nature of the problem, the same symmetry holds for the x
components of the modal magnetic fields, which define equivalent currents.
For both of these components, the mirror operation reduces to ±1 multipli-
cation factor, according to the mode parity. The mirror is expressed as:{

Mẑ [eeven
z (x,−z)] = eeven

z (x, z)
Mẑ
[
eodd

z (x,−z)
]

= − eodd
z (x, z)

(3.30)

The conditions in (3.29) and (3.30) lead to the following eigenvalue prob-
lem for the half-cell:

T1/2 ·
[

V1
I1

]
= e−jkx p/2

[
Q 0
0 Q

]
·
[

V1
I1

]
(3.31)

where 0 is the N × N null matrix and Q is a sign matrix that corresponds to
the mirror operation. It is a diagonal matrix defined as:

Q =


q(1) 0 · · · 0

0 q(2) . . . ...
... . . . . . . 0
0 · · · 0 q(N)

 (3.32)

where q(i) =
{

+1 mode i has even symmetry
−1 mode i has odd symmetry

For example, in a simple case where only two modes with different parity
are retained, (3.31) reads as
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T1/2 ·


V(1)

1
V(2)

1
I(1)1
I(2)1

 = e−jkx p/2


V(1)

1
−V(2)

1
I(1)1
−I(2)1

 (3.33)

With this equation, the dispersion relation of a glide-symmetric structure
is solved by considering the network parameters (namely, the transmission
matrix) of only half of its unit cell. On one hand, from (3.31) and (3.33), it
is clear that in reducible lines, where only one mode is retained, the glide-
symmetric problem is equivalent to a periodic problem whose period is di-
vided by two (p/2 instead of p). On the other hand, in irreducible lines,
the presence of higher-order modes with different parity along the mirror-
ing direction is responsible for a different interaction between elements with
respect to the non-glide periodic line.

(a) (b)

FIGURE 3.11: Dispersion diagram of the glide-symmetric struc-
ture in Fig. 3.8 (a) obtained from the simulation of half of a cell
with N modes on each geometrical face. Geometrical parame-
ters: p = 1.5 mm, d = 1 mm, h1 = 0.45 mm, h2 = 0.55 mm and
h = 1 mm. N = 1 mode (dotted blue line), N = 2 modes (solid
red line), N = 3 modes (dashed green line). (a) Normalized phase
constant βp/π vs. frequency. CST comparison (solid thin line),
line of light dashed dotted gray line. (b) Normalized attenuation

constant α/k0 vs. frequency.

To put the formulation to test, we apply (3.31) to the example of the ir-
reducible glide-symmetric line studied in the previous section. Fig. 3.11 de-
picts the results using the half-cell formulations. In Fig. 3.11 (a), the phase
constant β from the half-cell transmission matrix is compared to the solution
provided by the CST eigensolver. Again three cases of N = 1, N = 2 and
N = 3 modes are considered. It is easy to notice that the dispersion diagram
was fully predicted for N = 2 and N = 3 modes and that consideration of
a single mode (N = 1) is not enough for proper modeling of the periodic
structure. Like the full-cell configuration, the perfect agreement between the
results obtained with 2 and 3 modes at each face validates the convergence
of the solution. Fig. 3.11 (b) plots the normalized attenuation constant of the
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propagating Bloch wave (α/k0) with respect to frequency. Similar conclu-
sions are made with this plot, namely, the convergence of the method and
the necessity of considering multiple modes. In Fig. 3.11 (b), there is no com-
parison with CST results. This is due to the inability of the CST eigensolver
method to calculate α. The calculation of the imaginary part (α) in addition to
the real part (β) of the wavenumber is one of the advantages of the T-matrix
method.

3.3.3 Glide Symmetry Along Two Directions

In this section, the T-matrix analysis of 2-D periodic structures that were dis-
cussed in Sec. 3.2.3 is applied to 2-D configurations exhibiting glide symme-
try. Similar to the 1-D case, 2-D glide boundary conditions are introduced to
be used on a sub-region of each unit cell. Then, the eigenvalue problem for
this sub-region is presented. In this section’s formulations, the two axes of
periodicity are assumed orthogonal, but the formulation of the problems and
all the results hold in the case of general skewed axes.

𝑝𝑥

𝑝𝑦
ℎ1

ℎ

𝑑

𝑑

𝑝𝑥′
𝑝𝑦′

(a)

(b)

FIGURE 3.12: (a) 2-D glide-symmetric surfaces whose periods
are px and py. (b) Non-glide symmetric periodic surfaces ob-
tained by moving the top pins to the bottom plate. If px = py

its periods along the rotated axes are px′ = px/
√

2 and py′ =

py/
√

2.
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Fig. 3.12 (a) shows a 2-D glide-symmetric structure. Similar to a 1-D glide-
symmetric structure, the 2-D version is invariant with respect to the glide
symmetry operator. The 2-D glide symmetry operator Gpx x̂,pyŷ for a periodic
structure with periods px in x and py in y direction, was defined in (2.17).

In a similar approach to the one we used for 1-D structures, a non glide-
symmetric periodic structure in Fig 3.12 (b) can be obtained from the glide-
symmetric structure in Fig. 3.12 (a) by mirroring the upper pins and moving
them from the top to the bottom plate. If px = py, this transformation yields
a periodic structure whose periods are p/

√
2 along the 45° rotated x′, y′ axes.

If px 6= py, the formulation still applies, but a different rotation is required
and different period values are obtained. The glide-symmetric unit cell is
shown in Fig. 3.13, where black and white rectangles represent bottom and
top vertical pins.

The eigenvalue condition in a 2-D periodic structure as Fig 3.12 (a) is:

Tmpx x̂Tnpyŷ [E (x, y, z)] = E
(
x + mpx, y + npy, z

)
= e−j(mkx px+nky py)E (x, y, z) (3.34)

m, n being arbitrary integers. The choice of m = 0, n = 1 and m = 1, n = 0
enforces two independent conditions covering the full boundaries of a single
minimal unit cell shown in Fig. 3.13 (in solid line):

E (x + px, y, z) = e−jkx px E (x, y, z)

E
(
x, y + py, z

)
= e−jky py E (x, y, z)

(3.35)

Γ X

M

x

y

FIGURE 3.13: Top view of the periodic structure in Fig. 3.12 (a).
Black and white squares are bottom and top pins, respectively.
At the bottom left, the minimal unit cell (0 < x < px, 0 < y <
py) used in (3.35) is shown (solid lines). The centrally symmetric
minimal unit cell is shown at the top left(dotted lines). At the
right, the non-minimal unit cell and its quarter used in (3.37)

are shown (dashed lines).
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In order to simplify the eigenvalue problem (3.35) and transform it into
a finite-dimensional problem, we need to define four geometrical faces of
the unit cell, i.e., the four straight boundaries of the unit cell in Fig. 3.13.
N modes are attributed to each geometrical face. The unit cell would then
be equivalent to a 4N-port network of the kind described in Sec. 3.2.3. This
means that to solve the dispersion problem, we need to find the roots of the
determinant of the matrix on the left side of (3.26). In this section, we only
consider an irreducible structure of the kind presented in Fig. 3.12.

To demonstrate the relevance of the inter-cell interactions of the higher-
order modes in 2-D glide-symmetric structures, we apply this method to the
unit cell of a glide-symmetric structure. The parameters for the structure in
Fig. 3.12 (a) are h = 1.15 mm, h1 = 1 mm, p = 1.2 mm and d = 0.5 mm.
Fig. 3.14 (a) plots the dispersion diagram of the glide and the correspond-
ing non-glide structures. It shows that this is an irreducible glide-symmetric
structure. Fig. 3.14 (b) depicts the dispersion diagram of this structure when
propagation is in the x direction (kx 6= 0 , ky = 0). We computed the dis-
persion diagram using two methods: our transmission-matrix method and
the CST eigensolver. We plotted both results for comparison. Considering
the CST results as our reference, the comparison of the curves proves that a
transmission-matrix with one mode on each face (N = 1) does not yield the
correct answer. On the other hand, one with 11 modes on each face obtains
a perfect match with the CST eigensolver. Fig. 3.14 (c) plots the normalized
attenuation constant of the Bloch wave (αx/k0) with respect to frequency.
Once again, these cannot be compared to CST as the latter provides no data
on the attenuation constant. The agreement between the results with 11 and
12 modes (for both phase constant and attenuation constant) confirm that
adding extra modes does not change the converged result. These diagrams
show that the periodic structure is indeed irreducible according to the defini-
tion given in previous sections, as higher-order mode interactions are needed
to obtain an accurate result. Fig. 3.15 sketches the full 2-D dispersion diagram
using the transmission-matrix analysis with 11 modes and compares it to the
CST eigensolver solution. A good match between the two curves validates
that the extended T-matrix method presented in Sec. 3.2.3 provides correct
results for all propagation directions. In the next section, we try to reduce
the computation domain of our problem to a volume smaller than a unit cell.
This will decrease the computational cost of the method.

3.3.4 2-D Glide Conditions on the Boundaries of a Quarter of
a Non-Minimal Unit Cell

In Sec. 3.3.2, we exploited the higher-order symmetries of the 1-D glide-
symmetric structures and simplified the calculations. We follow the same
approach in the 2-D domain. We will use one quarter of a unit cell to obtain
the dispersion relation. First, we need to search for a quarter-cell unit that has
proper symmetric characteristics to utilize. The generalized Floquet theorem
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(a) (b)

(c)

FIGURE 3.14: Dispersion diagram assuming a propagation
along the x direction (i.e., ky = 0) for the glide-symmetric struc-
ture in Fig. 3.12 (a). Geometrical parameters: px = py = 1.2

mm, d = 0.5 mm, h1 = 1 mm and h = 1.15 mm.

_

+

FIGURE 3.15: Full dispersion diagram of the structure in
Fig. 3.12 (a). Geometrical parameters: px = py = 1.2 mm,

d = 0.5 mm, h1 = 1 mm and h = 1.15 mm.

for 2-D glide symmetric structures, not treated in [2], reads

Gmpx x̂,npyŷ [E (x, z)]

= E
(
x + mpx/2, y + npy/2,−z

)
= ±e−j(mkx px/2+nky py/2)E (x, y, z) (3.36)
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where m, n are odd integers. The factor ± in the last term of (3.36) allows to
recover the translation property (3.34) if two glide operations are applied.
Note that in order to apply 3.36 (in the general case of m 6= 0, n 6= 0),
the boundaries of the minimal unit cell defined by (3.35) are not useful. We
choose to enforce (3.36) on the boundaries defined by the two independent
conditions m = 1, n = 1 and m = 1, n = −1:

E
(

x +
px

2
, y +

py

2
,−z

)
= ±e−j(kx

px
2 +ky

py
2 )E (x, y, z)

E
(

x +
px

2
, y−

py

2
,−z

)
= ±e−j(kx

px
2 −ky

py
2 )E (x, y, z) (3.37)

These boundaries define a quarter of the non-minimal cell in the new rotated
(x′, y′) Cartesian reference system of Fig. 3.13 (dashed lines).

In order to recover the plus sign in (3.34) after the two glide operations
are applied sequentially, the same ± signs must be chosen in both equations
of (3.37). Notice that if either kx or ky is fixed, the sign choice is arbitrary as in
the 1-D case, as long as the same sign is chosen. A change in both equations
changes the harmonic of the fixed wavenumber. On the contrary, the choice
is important if propagation along a certain skew direction is considered and
the condition ky = ckx is enforced, with c a non-zero constant. In this case,
the choice of the (same) sign in (3.37) depends on the Floquet mode to be
found (more specifically, on its behavior within each unit cell). This will be
explained for the numerical example shown.

We transform the conditions of (3.37) into a finite-dimensional problem
whose domain is restricted to the quarter of non-minimal unit cell whose
transmission matrix is T1/4:

T1/4 ·


V1
V2
I1
I2

 = ±
[

Q 0
0 Q

]
·


e−j(kx

px
2 +ky

py
2 )V1

e−j(kx
px
2 −ky

py
2 )V2

e−j(kx
px
2 +ky

py
2 )I1

e−j(kx
px
2 −ky

py
2 )I2

 (3.38)

where the ± sign, being the same in the two boundaries, can be brought
outside the vectors in the right terms. The matrix Q is defined as in (3.32)
with respect to the parity of the vertical components of the modal electric
fields ez, used to define the equivalent voltages.

We have computed the full dispersion diagram of the irreducible struc-
ture of Fig. 3.12 (a) using the T matrix of a quarter of the unit cell using
(3.38) and added the result to Fig. 3.15. The plot shows that with 11 modes, a
convergence to the correct solution is reached. As an example, the first four
relevant modes are those of a rectangular waveguide with PMC lateral walls.
They are the TEM, TM01, TE10 and TE11 modes. The TEM and TE10 have even
symmetry with respect to z, so the sign factors q(1) and q(3) are chosen equal
to +1. In contrast, TM01 and TE11 have odd symmetry in the z direction and
a q(i) factor of -1 is adopted for these modes. The same procedure applies to
the higher modes.
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(a) (b)

(c)

FIGURE 3.16: Number of modes needed for convergence of
the T-matrix method: (a) Versus period p (h1 = 0.5 mm,
h = 1.15 mm and d = 0.1 mm). (b) Versus pin width d
(h1 = 0.5 mm, h = 1.15 mm and p = 4 mm). (c) Versus pin

height h1 (p = 4 mm, h = 1.15 mm and d = 0.1 mm).

Close to each curve, we show the sign used in (3.38) to recover the mode.
As stated previously, in the segments Γ− X and X−M the choice of the sign
is arbitrary since ky = 0 and kx = π/px is fixed, respectively. In the segment
M−Γ, kx = ky and the sign used is shown close to each curve.

3.3.5 Parameter Study on the Reducible Condition

Now, we perform a parameter study on the structure of Fig. 3.12 (a). We
consider the propagation of the Bloch waves to be in the x direction, and
we look for the number of modes needed for convergence of the first two
Bloch modes (e.g., from 0 to 100 GHz) using the transmission-matrix method.
Fig. 3.16 (a) shows the required number of port modes for different periods
while all the other parameters are kept constant. One can observe that as the
period increases, fewer modes are needed for the convergence. This could
be predicted since as the period increases, the corrugations are further away
from each other, causing weaker couplings between them. Fig. 3.16 (b) shows
a similar plot for different pin widths (d) and Fig. 3.16 (c) demonstrates the
role of the height of the pins (h1). Studying these two figures confirm that
an increase in h1 or in d, increases the number of modes required for the
method’s convergence. This can be explained by the fact that the increase of
these values causes a closer proximity of the corrugations, thus making more
waveguide modes significant.

The requirement of higher-order modes is partially related to the cut-off
frequencies of the waveguide modes. In fact, as the number of modes in-
creases, the higher-order modes become significant according to the order
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of their cutoff frequencies. However, modes can be necessary even if under
cutoff. For instance, the first two Floquet modes of the 2-D glide-symmetric
structure of Fig. 3.12 (a) in Fig. 3.14 are both below the cut-off frequencies of
all TM and TE modes of the exciting waveguide. Nevertheless, 11 modes are
still needed to calculate the dispersion diagram.

The study of the convergence can be performed by running different sim-
ulations for increasing N, until the convergence is met. However, one can
eliminate this step by knowing in advance how many modes are needed from
the beginning. Our experiments show that the magnitude of the scattering
parameters can be a good predictor of the number of significant modes. Sig-
nificant modes are those for which at least one of the scattering parameters
has a magnitude higher than a certain threshold (in our numerical results, a
threshold of -10 dB is sufficient).

3.3.6 Computation Time

In this section, we study the time cost of our multimodal transmission matrix
method. it would be useful to have a comparison between the computational
time of the transmission-matrix method and the CST eigensolver. To this aim,
we apply the two methods to the same structure and compare the execution
time for each one. We consider the 2-D glide-symmetric example discussed
in Sec. 3.3.3 and Sec. 3.3.4. For the calculations, we used a computer with 128
GB of RAM and an Intel(R) Xeon(R) CPU with 6 cores and a base frequency
of 3.60 GHz for its CPU cores. First, it is necessary to note that it is not very
straightforward to compare the time cost of these two methods due to the dif-
ference in their nature. For instance, the CST eigensolver performs a sweep
of the phase constant, whereas the transmission-matrix method perform a
sweep on the frequency.

For our comparison, we computed 74 points on the dispersion diagram
in each method. The execution time of the CST eigensolver, in this case, was
402 seconds. Next, we applied the transmission-matrix method in two steps.
In the first step, we used the CST Frequency solver to extract the scattering
parameters for the quarter of a unit cell used in Sec. 3.3.4. For this matter,
the frequency range of 0-90 GHz was used and four waveguide ports were
applied with 12 modes at each port. This provided us with the multimodal
scattering matrix for N ≤ 12. The execution time for the first step was 82
seconds. Then, we calculated the transmission matrix from the CST scat-
tering parameters using a simple MATLAB code [51], whose execution time
(around 10 ms) is negligible. In the second step, we used the algorithm in [52]
to find the complex roots of the eigenvalue problem in (3.38). This part was
also done in MATLAB. The execution time of the second step is given in Ta-
ble 3.1, and it is clearly much faster than the full-wave simulation. In fact,
calculation of all the first 11 cases (11 modes were needed for convergence)
takes less than 4 seconds in total. As a result, the standard CST eigenvalue
solver (solving for a full cell) required 402 s, while the transmission matrix
method (solving for a quarter of cell) with 12 modes required 82+1.13 s with
12 modes at each port.
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TABLE 3.1: Computational time for solving the eigenvalue
problem in (3.38)

Number of
modes (N)

Time
(seconds)

Number of
modes (N)

Time
(seconds)

1 0.04 7 0.39
2 0.07 8 0.49
3 0.07 9 0.52
4 0.08 10 0.64
5 0.11 11 0.88
6 0.16 12 1.13

3.4 Twist-Symmetric Structures

In this section, first we apply the 1-D transmission matrix eigenvalue prob-
lem that was developed in Sec. 3.2.2 to a few twist symmetric structures.
Then, we try to come up with a new eigenvalue problem that concerns only
one of the N sub-unit cells to reduce the computational complexity of the
analysis.

d3
d2

d1

p

h

(a) (b)

(c) (d)

FIGURE 3.17: pin-loaded coaxial transmission lines: (a) 2-fold
twist-symmetric (b) 4-fold twist-symmetric (c) Non-twist sym-
metric with 2 pins (d) Non-twist symmetric with 4 pins (d1 =

2.4 mm, d2 = 4.84 mm, d3 = 2.4 mm and h = 2 mm).

3.4.1 Reducible and Irreducible twist structures

Fig. 3.17 (a) and (b) show the unit cells of twist-symmetric coaxial transmis-
sion lines loaded with circular pins. Fig. 3.17 (a) has a 2-fold twist symmetry.
Therefore, the two pins are distanced half a period and rotated 180° with re-
spect to each other. Fig. 3.17 (b) shows a 4-fold twist symmetry with 4 pins
in each unit cell. The translations of the sub-unit cells have a length equal to
a quarter of a period and the rotation between adjacent sub-unit cells is 90°

in this case.
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(a) (b)

(c) (d)
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FIGURE 3.18: Dispersion diagram comparison of the twist-
symmetric and their non-twist symmetric structures shown in
Fig. 3.17: (a) with 2 pins (p = 15 mm) (b) with 2 pins (p = 7
mm) (c) with 4 pins (p = 15 mm) (d) with 4 pins (p = 10 mm).

Similar to the glide symmetry, we consider an equivalent non-twist sym-
metric unit cells to distinguish reducible and irreducible structures. The non-
twist symmetric equivalent unit cells are shown in Fig. 3.17 (c) and (d). These
unit cells are derived by ignoring the 2π/N rotation of the sub-unit cells
while retaining their π/N translations. It is easy to notice that this equiva-
lent structure is a loaded periodic structure with period p/N.

Fig. 3.18 (a) shows the comparison between the dispersion diagram of
a 2-fold twisted structure as in Fig. 3.17 (a) and its non-twisted associated
structure as in Fig. 3.17 (c). The results are obtained with the CST eigensolver
tool (CST ES) [53]. The structure in Fig. 3.17 (a) is reducible to a non-twisted
periodic line, since the two dispersion curves are perfectly superimposed.
The rotation of its sub-unit cells does not have an impact on its dispersion
diagram. Fig. 3.18 (b) depicts the dispersion diagrams of similar structures
as in Fig. 3.17 (a) and (c) but with different parameters (a shorter period of
p = 7 mm). This time, the twisted line is irreducible, since it has a different
dispersion diagram with respect to the non-twisted one. Fig. 3.18 (c) de-
picts the dispersion diagrams for a 4-fold twisted structure as in Fig. 3.17 (b)
and its associated non-twisted structure as in Fig. 3.17 (d) with p = 15 mm.
The comparison of the diagrams suggests that the 4-fold twisted line is irre-
ducible at higher frequencies while it can be reduced to a simple non-twisted
structure with smaller period in the lower frequencies. Fig. 3.18 (d) depicts
the dispersion diagrams for the the same structures where the twisted line
has a smaller period of p = 10 mm. The difference between the two results
in this case demonstrates that this 4-fold twisted line is irreducible even at
low frequencies.
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(a)

(c)

(b)

(d)
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FIGURE 3.19: (a) Dispersion diagram of 2-fold twist-symmetric
structures in Fig. 3.17 derived from the T matrix method and
CST ES applied to their unit cells. (a) Twisted (p = 15 mm)
and (b) associated non-twisted (p = 15 mm). (c) Twisted (p =

7 mm) and (d) associated non-twisted (p = 7 mm).

To examine the T-matrix method analysis on periodic structures with twist
symmetry, we apply the 1-D eigenvalue problem of (3.23) to the unit cells of
Fig. 3.17 and we compare the results to the CST eigensolver. Fig. 3.19 (a) de-
picts the dispersion curves obtained with (3.23) for the 2-fold reducible twisted
cell studied in Fig. 3.18 (a). It also plots the dispersion diagram obtained with
CST eigensolver for comparison. We observe that in this case, a monomodal
T matrix (1 mode) is already enough to match the results obtained by CST.
The results for a T matrix with 3 modes also matches the monomodal T ma-
trix and the CST eigensolver results. This demonstrates that adding an extra
set of degenerate modes does not vary the already converged results.

Fig. 3.19 (b) shows the same results for the associated non-twisted line.
Also in this case, one single mode is sufficient to reach convergence. This
confirms that in a reducible case a single mode is sufficient to accurately cal-
culate the dispersion diagram of both the twisted and non-twisted lines.

Fig. 3.19 (c) depicts the dispersion diagram of the irreducible (p = 7 mm)
2-fold twisted unit cell studied in Fig. 3.18 (b) together with the dispersion
diagram calculated with the CST eigensolver. Here a monomodal T-matrix
method leads to the correct dispersion curve in the lower range of frequency.
At higher frequencies, at least 3 modes are required. The results for 5 modes
is also sketched in the figure to further emphasize the convergence.

Fig. 3.19 (d) shows the same results for the associated non-twisted line.
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In this case, one mode only is not enough even at low frequencies. This
confirms that the irreducibility of a twisted line is related to the presence
of coupling through higher-order modes either in the twisted line or in its
associated non-twisted line. These higher order modes interact with each
other differently in presence or in the absence of twists, and lead to different
dispersive behaviors.

Fig. 3.20 (a) depicts the dispersion diagram for the 4-fold twisted cell ir-
reducible at high frequencies studied in Fig. 3.18 (c); Fig. 3.20 (b) shows the as-
sociated non-twisted line. Again, in the frequency ranges where the twisted
line is irreducible, the presence of higher-order modes is necessary in at least
one the two lines (the non-twisted line). This confirms that the difference
between the lines arise from the presence of higher-order modes.

The same results are confirmed in Fig. 3.20 (c) and Fig. 3.20 (d) (4-fold
twisted cell irreducible over the entire frequency range studied in Fig. 3.18 (d)):
higher order modes are important in the non-twisted line over the entire
range.

(a)

(c)

(b)

(d)

p p

p p

FIGURE 3.20: (a) Dispersion diagram of 4-fold twist-symmetric
structures in Fig. 3.17 derived from the T-matrix method and
CST ES applied to their unit cells. (a) Twisted (p = 15 mm)
and (b) associated non-twisted (p = 15 mm). (c) Twisted (p =

10 mm) and (d) associated non-twisted (p = 10 mm).

These results confirm that, while reducible structures need a single funda-
mental mode, irreducible structures have a more complex modal interaction:
either they or their associated non-twisted line need a multimodal T matrix.
In this specific structure, the proximity of the pins is the key parameter that
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makes higher-order modes relevant. The more tightly coupled the pins are,
the more relevant the higher-order modes become. For instance, a reducible
twisted structure in Fig. 3.17 (b) could become an irreducible structure by
decreasing the period and increasing the size of the pins since these changes
will move the pins closer to each other.

We have shown that modelling a unit cell with a multimodal T matrix
is required for accurate dispersion results. As in the previous glide case, this
approach can also be an effective alternative to retaining multiple unit cells as
in [54]. Finally, we stress that also in this case this method leads to accurate
results also when current eigenvalue tools of commercial software are not
available, for example in the case of open structures, where the attenuation
constant α can be related to radiation (e.g., leaky waves).

3.4.2 Twist Symmetry Conditions on a Sub-unit Cell

The N-fold twist symmetry operator defined in (2.18) is repeated here:

SN,pẑ : (ρ, φ, z)→
(

ρ, φ +
2π

N
, z +

p
N

)
(3.39)

We again observe from (3.39) that a composition of N twist operators
gives Tpẑ, the translation operator of length p along z (SN

N,pẑ = Tpẑ) which is
expected since a twist-symmetric structure is also a periodic structure. Sim-
ilar to the glide symmetry, the twist symmetry operator will help us to sim-
plify the eigenvalue problem by reducing the computational domain from
the unit cell to a sub-unit cell. Again, we consider n background modes for
our analysis. Since the background structure has a circular section, the radial
component of the electric field of the background modes has the following
profile:

Ψ(m,i),e/h
(±) (ρ, φ) = fm,i (ρ) e±jmφ (3.40)

where fm,i are suitable linear combinations of Bessel functions expressing
the radial dependence of each mode. The index m represents the order of
angular dependence (e±jmφ), the index i the radial dependence, and e and h
in the superscript stand for a TM and TE mode, respectively.

In periodic lines, Bloch modes are eigensolutions of the translation oper-
ator Tpẑ:

Tpẑ [E (ρ, φ, z)] = E (ρ, φ, z + p) = e−jkz pE (ρ, φ, z) (3.41)

By virtue of the twist symmetry, Bloch modes are also eigensolutions of the
twist operator SN,pẑ [2]:

SN,pẑ [E (ρ, φ, z)] = λE (ρ, φ, z) (3.42)

where λ is the relevant eigenvalue. Note that the twist operator acts here on
the observation point, and does not rotate the E field. Since SN

N,pẑ = Tpẑ, from
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(3.41) we can state that λN = e−jkz p, and :

λ = e−jkz
p
N (3.43)

where the different Nth roots merely correspond to different Floquet har-
monics, so that they do not appear in (3.43).

The new eigenvalue problem in (3.42) with λ given in (3.43) determines
the Bloch modes. However, we are interested to formulate an eigenproblem
for the translation operator T p

N ẑ rather than the twist operator. In fact, com-
mercial software can easily compute a sub-cell transmission matrix, which
describes the translation of fields and not the twist transformation. To over-
come this problem, we first define the rotation operator:

R 2π
N ẑ [E (ρ, φ, z)] = E (ρ, φ + 2π/N, z) (3.44)

and we express the translation operator T p
N ẑ as a composition of the symme-

try operator SN,pẑ and the inverse rotation operator R−1
2π
N ẑ

= R− 2π
N ẑ:

T p
N ẑ [E (ρ, φ, z)] = R−1

2π
N ẑ

SN,pẑE (ρ, φ, z) = e−jkz
p
N R−1

2π
N ẑ

E (ρ, φ, z) (3.45)

The T-matrix formulations requires to express the Bloch mode as a com-
position of the modes of the background structure. This is a convenient basis
when dealing with rotations, since each background mode in (3.40) satisfies
the simple property:

R−1
2π
N ẑ

[
Ψ(m,i)
(±) (ρ, φ)

]
= e∓jm 2π

N Ψ(m,i)
(±) (ρ, φ) (3.46)

(the e/h polarization is not stated for simplicity). If the transmission matrix
of a single sub-unit cell of an N-fold twisted structure, associated to the trans-
lation operator T p

N ẑ, is T1/N, the conditions in (3.46) and (3.45) lead to the
following eigenvalue problem:

T1/N

[
V
I

]
= e−jkz

p
N

[
Q 0
0 Q

]
·
[

V
I

]
(3.47)

where V is the voltage and I is the current vector defined as:

V =



VTEM

...
V(m,i),e/h
(±)

...
V(M,I),e/h
(±)


and I =



ITEM

...
I(m,i),e/h
(±)

...
I(M,I),e/h
(±)


(3.48)
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The matrix Q can be written as:

Q =


1 0 · · · 0

0 q(m,i)
(±)

. . . ...
... . . . . . . 0
0 · · · 0 q(M,I)

(±)

 (3.49)

where q(m,i)
(±) = e∓jm 2π

N , and 0 is the null square matrix.
Solving the generalized eigenvalue problem in (3.47) gives the propaga-

tion constant kz starting from the simulation of a sub-unit cell of the twisted
line. This formulation reduces the volume of the computational domain of
the periodic problem by a factor N.

However, commercial electromagnetic software often calculates scatter-
ing parameters by means of waveguide modes with angular dependence
of the trigonometric forms cos (mφ) or sin (mφ) rather than the exponential
form of e±jmφ. Therefore, a generalized eigenvalue problem based on these
functions is useful for a practical implementation of the method. The radial
components of the electric fields of these trigonometric modes are:

Ψ(m,i),e/h
cos (ρ, φ) = ge/h

(m,i) (ρ) cos(mφ)

Ψ(m,i),e/h
sin (ρ, φ) = ge/h

(m,i) (ρ) sin(mφ) (3.50)

where ge/h
(m,i) are suitable radial functions. Applying the inverse rotation op-

erator to these electromagnetic fields gives (note again that the rotation is
performed on the observation point, not on the vector field):

R−1
2π
N ẑ

[
Ψ(m,i),e/h

cos (ρ, φ)
]
=

[
cos

(
2πm

N

)
Ψ(m,i),e/h

cos (ρ, φ)

+ sin
(

2πm
N

)
Ψ(m,i),e/h

sin (ρ, φ)

]
(3.51)

R−1
2π
N ẑ

[
Ψ(m,i),e/h

sin (ρ, φ)
]
=

[
− sin

(
2πm

N

)
Ψ(m,i),e/h

cos (ρ, φ)

+ cos
(

2πm
N

)
Ψ(m,i),e/h

sin (ρ, φ)

]
(3.52)

It is interesting to note that the rotation (and then also the twist condition)
is no more diagonal in the trigonometric basis: rotating one mode gives a
combination of two degenerate modes, with the only exception occurring for
m = 0, where only the cos term exists. This means that we have to retain
both the cos and the sin modes for each m 6= 0.
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The generalized eigenvalue in (3.47) changes to:

T1/N

[
V ′

I ′

]
= e−jkz

p
N

[
Q′ 0
0 Q′

]
·
[

V ′

I ′

]
(3.53)

where the primed voltage and current vectors V ′ and I ′ are defined based on
the trigonometric background modes:

V ′ =



VTEM

...
V(m,i),e/h

cos

V(m,i),e/h
sin

...
V(M,I),e/h

cos

V(M,I),e/h
sin


and I ′ =



ITEM

...
I(m,i),e/h
cos

I(m,i),e/h
sin

...
I(M,I),e/h
cos

I(M,I),e/h
sin


(3.54)

The definition of the primed matrix Q′ is also given here:

Q′ =



1 0 · · · · · · · · · · · · 0

0 . . . . . . . . . · · · · · · ...
... . . . cos

(2πm
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)

sin
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)
· · · · · · ...

... . . . − sin
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)

cos
(2πm

N
)
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... . . . . . . . . . . . . 0 0
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)
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N
)

0 · · · · · · · · · 0 − sin
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N
)
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(3.55)

(a) (b)

FIGURE 3.21: Dispersion diagram derived with T matrix
method on the sub-unit cell of the structure in Fig. 3.17 (b)
(p=15 mm): (a) Normalized phase constant βp/π vs. frequency.
(b) Normalized attenuation constant α/k0 vs. frequency (k0 be-

ing the free-space wavenumber).
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TABLE 3.2: Computational time for solving the periodic struc-
ture in Fig. 3.17 (b)

1 frequency
point

T matrix
(sub-unit cell)

T matrix
(unit cell)

CST
(eigensolver)

Time (s) 12 19 13
76 frequency

points
T matrix

(sub-unit cell)
T matrix

(unit cell)
CST

(eigensolver)
Time (s) 21 88 780

Fig. 3.21 (a) plots the normalized phase constant of a structure with a 4-
fold twist-symmetry in Fig. 3.17 (b) (p = 15 mm) derived with (3.53) and
compares it to the results given by CST. It is observed that a single mode
does not provide the correct dispersion diagram at high frequencies, whereas
considering 3 modes (TEM mode and the first two degenerate higher order
modes) leads to the accurate diagram which matches the CST results over the
entire frequency band shown. To further emphasize the advantages of the T
matrix method, the normalized attenuation constant of the structure is also
given in Fig. 3.21 (b) where it is easy to notice that the stopband predicted
with a single mode is not correct while using 3 modes correctly predicts the
frequency range of first stopband. These results could not be compared to
CST since the commercial software does not provide such information. The
results with inclusion of 5 modes is also plotted in these two figures and they
match the results of 3-mode T matrix method. It is important to note that
even though we have used the pin-loaded transmission lines in Fig. 3.17 to
verify our method, the eigenvalue problems in (3.47) and (3.53) are general
and they can be applied to any structure with a twist symmetry. Further-
more, the method is also valid for a larger class of structure, characterized by
the invariance under the twist transformation (2.18) with non-integer N. In
this last case, the structure is no more periodic and therefore cannot be stud-
ied with available commercial software. The present approach still holds and
at the best of the author’s knowledge is the only formulation available for a
rigorous solution of the problem.

Finally, it is interesting to compare the solving time of the T-matrix method
applied to a sub-cell and the CST eigensolver in an entire unit cell. To do so,
we consider the more complex case of the 4-fold twist symmetry where 3
modes were needed in the T matrix method. To make this comparison, we
choose 76 points on the first passband and solved the problem for this fre-
quency range. For CST eigensolver, an adaptive mesh refinement with max-
imum of 1% relative error in frequency is defined using tetrahedral meshes.
As a result, the cell is meshed with 19 850 tetrahedrons. For CST frequency-
domain solver, a relative error of 1% for scattering parameters is defined in
the adaptive mesh refinement routine with tetrahedral meshes, resulting in
a total of 14 310 tetrahedrons for the entire cell and 4 016 tetrahedrons for
the sub-cell. We have used a computer with 128 GB of RAM and an Intel(R)
Xeon(R) CPU with 6 cores and a base frequency of 3.60 GHz for its CPU cores.

The computation time for these methods are included in Table 3.2. A
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quick comparison for the case of a single frequency point shows that even
though the T matrix method with a unit cell has a higher computation time
compared to CST, the T matrix method with the sub-unit cell is slightly faster
than CST. It should be noted that a higher computation time of the unit cell
formulation may be justified since the T matrix generally produces extra in-
formation on the attenuation constant of the Bloch waves and can be applied
also to open structures. As we consider a large frequency range, the computa-
tion time difference changes dramatically. The T matrix method has a shorter
computation time for both the unit cell and sub-unit cell formulations (88 and
21 seconds respectively) compared to CST (780 seconds). This occurs because
the computation of the scattering parameters is accelerated significantly by
the broadband sweep techniques. The rest of the computation (solving the T
matrix eigenvalue problem) is executed very fast. For instance, this part was
executed in less than 2 seconds for 76 frequency points and 3 modes for both
the unit cell and the sub-unit cell formulations. This is a significant reduction
in computation time compared to the CST eigensolver.

3.5 Conclusions

In summary, in this chapter, we developed and introduced a multimodal T
matrix method to obtain the Bloch modes of periodic structures. we used
this method to investigate the relation between higher-symmetric and non-
higher-symmetric structures with reduced periods. We discussed the idea of
reducibility based on whether a higher symmetric structure is equivalent to
a non-higher-symmetric structure with no higher symmetry. We studied the
relevance of higher order modal interactions between the unit cells to give a
more precise definition of the concept of reducibility of a higher-symmetric
configuration. We then used the symmetry operators corresponding to the
two higher symmetries, namely glide and twist symmetries, to present a
new formulation of the multimodal T matrix method which utilizes a sub-
region of the unit cell instead of the entire cell. We showed that this leads to
faster computation time for structures with higher symmetries. We pointed
out how this multimodal method computes both phase and attenuation con-
stants of Bloch modes, which is not achieved with commercial software. This
characteristic makes such method useful for applications such as electromag-
netic bandgap materials or leaky-waves.
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Chapter 4

Reconfigurable Waveguide
Technology Based on Glide
Symmetry

4.1 Introduction on MM-Wave Switches

Fifth-generation (5G) of mobile communication systems tackles the prob-
lem of ever-growing capacity demands and aims to provide higher through-
put wireless connectivity [55, 56, 57]. High data rate of the order of giga-
bits per second (Gb/s), a latency time in milliseconds, high traffic volume
density, and improved spectral and energy efficiencies are the main require-
ments that are attributed to this new generation of wireless communications.
Millimeter-wave (MMW) wireless systems are emerging as a promising tech-
nology for achieving these requirements [58, 59, 60, 61]. Recent advances in
design of low-cost high performance integrated circuits (ICs) at MMW fre-
quencies and the large amount of underutilized spectrum in these frequen-
cies are the main factors in their emergence as the go-to technology in 5G
[62, 63, 64]. Therefore, frequency bands such as 28 GHz and 40 GHz have
been authorized for 5G use while the 3GPP release 17 is currently investi-
gating the spectrum above 52.5 GHz, with a specific focus on the 60 GHz
licence-free band [65]. MMW multibeam antennas (MBAs) are considered
in the phase 2 of 5G deployment with suitable beamforming techniques to
achieve massive multiple-input, multiple-output (MIMO) [66, 67, 68]. This
significantly enhances the spectral and energy efficiency while it minimizes
interference levels.

The most expensive parts of a wireless transceiver are the radio frequency
(RF) chains, digital-to-analog converters (DACs), and analog to digital con-
verters (ADCs). In MMW massive MIMO wireless systems, a huge number
of antennas are used to mitigate the large free-space attenuation. Therefore,
employing one RF chain and one ADC or DAC for each antenna would prove
too costly. Furthermore, it would also increase the energy consumption of
the transceiver to an unacceptably high degree. Hence, employing one RF
chain for each antenna is not feasible. Hybrid analog/digital beamforming
architectures are proposed as a solution to this limitation [69, 70, 71, 72]. In
such architectures, the number of RF chains is typically much lower than the
number of antennas and therefore, analog beamformers with phase shifters
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[73], Butler Matrices [74], or lenses [75], are considered to feed all antennas.
While Butler-Matrix-based and lens-based hybrid arrays exhibit less com-
plexity, they require a beam selector made of switches to map the few RF
chains to the large number of analog beamformer inputs [75].

Recently, switching networks have also been suggested to replace phase
shifters in analog beamformers in order to reduce their complexity while in-
creasing their power and spectral efficiencies [76]. Consequently, the design
of power-efficient millimeter-wave switches is a key aspect in the implemen-
tation of hybrid analog/digital massive MIMO systems.

Typical conventional waveguide switches are represented by mechanical,
semiconductor pin diodes, and FET switches [77]. Mechanical switching is
done by physically blocking or opening the transmission path in a device, by
activating an electromagnetic relay with a control signal. An electromagnetic
relay normally uses an electromagnet that moves an armature for actuation.
A control spring is also used to pull the armature back to its initial position.
Electromechanical switches demonstrate low insertion loss and high isola-
tion and they can handle high power applications. However, they are bulky
and very slow in their switching speed. For applications where the switching
speed is more important than the power handling, solid-state semiconductor
switches are preferred. These electronic switches use either diodes or FETs as
their semiconductor switching element. These semiconductor devices have
a semiconductor junction acting as an electronic control element which can
be switched on or off by controlling its bias voltage. [78] discusses the series
and parallel configuration of PIN diodes in waveguide switches at MMW fre-
quencies. Furthermore, FET switches are regarded as important monolithic
microwave integrated circuits (MMIC) elements. Compared to PIN diodes,
the MMIC switches operate over a broad bandwidth, lower power consump-
tion and faster switching speed whereas they exhibit a higher insertion loss
[77]. For signal frequencies above 1 GHz, the solid-state switches have large
insertion loss and poor isolation [77]. These limitations in solid-state technol-
ogy has led to research for alternative technologies.

To summarize the characteristics of these two classes of switches, solid-
state switches have low power handling and high insertion loss, while elec-
tromechanical switches can handle high power with low insertion loss, but
are useful only at lower RF frequencies and operate at slower switching
speeds. This led to the emergence of the microelectromechanical systems
(MEMS) as a technology which incorporates the advantages of both solid-
state and electromechanical systems. MEMS switches have low insertion
loss, good isolation and low power consumption while they have a better
power handling capability than semiconductor switches. Different actuation
mechanisms exist for MEMs technology and they include electrostatic, elec-
tromagnetic, piezoelectric, magnetic and thermal actuation. One of the main
disadvantages of MEMS switches is the low switching speed compared to
solid-state switches [77]. Multiple MEMS-based waveguide switches have
been designed for the MMW frequency band [79, 80, 81]. [82] reviews the
research and analysis of MEMS switches in different frequency bands.
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We are here interested to develop a reconfigurable technology capable
to drive a millimeter-wave multi-beam antenna (Butler-Matrix or lens-like
based) by selecting the input port of the system. The frequency range is the
unlicensed band 57-70 GHz. The switching technique is chosen to be based
on piezoelectric actuator, because of their low power consumption, despite
the low switching rate. We use SLC-1730 linear piezoelectric actuators from
the SmarAct company with dimensions of 30× 17× 8.5 mm and weight of
20 N. It has a velocity of more than 20 mm/s, closed loop resolution of 50 nm
and closed loop repeatability of 1000 nm.

Since the switch is capable of modifying mechanically the distance be-
tween different surfaces (by pulling or pushing them apart), it is compat-
ible with a common millimeter-wave technology, the with gap waveguide
[83]. In this technology, the electromagnetic wave is guided in an air re-
gion rather than inside a dielectric, resulting in reduced losses compared e.g.
to substrate-integrated waveguides. Gap waveguide technology uses two
contact-less plates that are separated by a gap. This not only eases the manu-
facturing process (which can be performed in two separate parts) but also al-
low to modify their distance with the aim of reconfiguring the wave propaga-
tion properties of the device. In gap waveguides, perfect magnetic conductor
(PMC) boundary conditions are created on the two sides of the waveguide
by means of an electromagnetic band-gap (EBG) material [84, 85, 86]. Bed-
of-nail metasurface is among the most widely used configurations for this
purpose [87, 88].

As said in Ch. 2, new EBG designs for gap waveguides have been pro-
posed in order to enhance their confinement properties without adding sig-
nificant complexity to the design by means of glide-symmetric holes or pins
[17, 18]. This symmetrical configuration exhibit wider and stronger stop-
bands compared to non-glide-symmetric periodic structures, which explains
the motive to use them as EBG materials for gap waveguides. These prop-
erties along with the contact-less nature of the metasurfaces, make glide-
symmetric metasurfaces an interesting candidate to embed reconfigurable
properties in gap waveguides. The impact of multiple geometric parameters
on the transmission properties of glide-symmetric waveguides was studied
in recent work [89]. Recently, a mechanical waveguide switch was designed
in Ku frequency using the contact-less properties of the gap waveguide tech-
nology [90].

In this chapter, we propose an integrated waveguide presenting a two-
state functioning. An “on-state” allows the propagation through the guide,
while an “off-state” stops the propagation. Thanks to the contact-less con-
figuration, the switching between the two states is done by mechanically ad-
justing the distance between the top and bottom plates. In this design, glide-
symmetric EBGs offer strong stop-band characteristics while glide-symmetric
pin-like medium inside the waveguide ensure nearly dispersion-less wave
propagation. This kind of geometry can open the implementation of switches
where the signal propagation can occur along different paths, each one formed
by a reconfigurable waveguide described here.
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4.2 Reconfigurable Waveguide Design

The aim of this section is to propose a structure to implement a reconfig-
urable artificial waveguide that can alternate between “on” and “off” states
in MMW region. It discusses the design of both “on” and “off” states and
provides simulation results of the waveguide to study its performance in the
two states.

The artificial waveguide employs EBG structures at its lateral boundaries
to confine the field inside the guide. Fig. 4.1 shows a perspective view of an
artificial waveguide with its different medium regions. The guiding medium
is sandwiched between the two EBG regions and the propagation direction is
shown with an arrow. The EBG medium confines the fields within the guid-
ing medium while the guiding medium propagates them along the direction
shown by the arrow. In our design, the guiding region is filled with an ar-
tificial medium to create possibilities for reconfiguration of the waveguide.
The choice of the artificial media and the complete design procedure of dif-
ferent parts of the waveguide, including the guiding medium, the EBG, and
a matching section is discussed in the subsequent subsections.

FIGURE 4.1: Division of medium regions in an artificial waveg-
uide.

The artificial waveguide employs two parallel plates. These parallel plates
are loaded with pins to create glide-symmetric pin-like media as in Fig. 3.12.
In the EBG regions, the pin-like medium is designed to create strong EBG
performance (namely, a high attenuation in the operating frequency range
of interest). In the guiding medium, the geometric parameters ensure that a
passband exists to enable wave propagation.

The reconfiguration is achieved by modifying the distance between the
pin-like surfaces. One of the two surfaces can be pulled/pushed by means of
a piezoelectric actuator. Therefore, when passing from the “on” to the “off”
state the PPW height of both EBG and guiding medium will vary of the same
quantity. Going into the “off” state, the EBG must keep its bandgap proper-
ties and the guiding medium must transform its passband into a stopband to
prevent wave propagation.
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4.2.1 Design of Guiding Medium and EBG

It was discussed in Ch. 2 that glide symmetric structures achieve wider and
stronger stopband compared to a single metasurface with no glide symme-
try [17]. Therefore, to achieve a high EBG performance, a glide-symmetric
configuration of pins is chosen as the EBG medium. The guiding medium of
the waveguide is also realized with a pin-like pair of metasurfaces exhibiting
glide symmetry in order to benefit of its weak frequency dispersion.

The unit cells of both EBG and guiding media are shown in Fig. 4.2. It
is important to note that the different behavior between the unit cells are
achieved by only modifying the period p of the unit cell while keeping all
the other parameters the same in the two. A parametric study on the unit
cell of the glide-symmetric pin-like unit cells shown in Fig. 4.2 is adopted
next to provide information on the effects of modifying different geometric
parameters. This study clarifies how modification of the period can create
the desired behaviors in the two media.
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FIGURE 4.2: Unit cells of the glide-symmetric pin-like media
used in the artificial waveguide. The unit cell on the left hand
side is for the guiding medium and the one on the right hand
side is for the EBG. The unit cells are shown with the correct ra-
tio to highlight the differences in their geometrical parameters.

Parametric Study of the EBG Unit Cell

The main target in design of EBG materials is to maximize their stopband.
Therefore, a parametric study is performed on the unit cell shown in Fig. 4.2
to provide some guidelines on the design of the EBG medium. In the para-
metric studies the period is referred to simply as p instead of pguide or pEBG.
The stopband is calculated from the full dispersion diagram of the 2-D peri-
odic unit cell along the edges of the irreducible Brillouin zone determined by
the ΓXM triangle shown in Fig. 4.2. The eigenmode solver of CST Microwave
Studio is used to find the dispersion diagrams in this chapter [53]. The unit
cell with p = 3 mm, d = 0.8 mm, g = 0.25 mm and h = 1.2 mm is taken as
the reference case and its full dispersion diagram is shown in Fig. 4.3. The
lower and higher limits of the stopband in this example are given by the sec-
ond and third Bloch modes and are 40.624 GHz and 83.909 GHz respectively.
Next, the effect of different parameters on the lower and higher limits of the
stopband will be studied.
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FIGURE 4.3: Full dispersion diagram of the unit cells shown in
Fig. 4.2 with parameters p = 3 mm, d = 0.8 mm, g = 0.25 and

h = 1.2 mm.
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FIGURE 4.4: Effect of the ratio d/p in the unit cell of Fig. 4.2
on the lower and upper limits of the stop-band for a num-
ber of periods. Other geometrical parameters: g=0.25 mm and

h=1.2 mm.

Fig. 4.4 depicts the lower and upper limits of the stopband versus the
ratio d/p for a number of periods. Investigation of the results suggest that
the change of d/p affects the upper limit more than the lower limit of the
stopband. In addition, the bandwidth increases while increasing d/p up to
a certain value and decreases after that value. Finally, it is observed that in-
creasing the period p moves the stopband region to lower frequencies. To
better visualize these findings, two new representation of the same results is
given in the next two figures. Fig. 4.5 depicts the center frequency of the stop-
band versus d/p for a number of periods. This figure clearly displays how
the period p affects the center frequency of the stopband. This is analogous
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to photonic crystals where the periodicity controls the center of the stopband
[1]. Fig. 4.6 plots the percentage of the stopband bandwidth around its center
frequency for a number of periods. It shows that for each period there is a
maximum for a particular value of d/p. This optimum occurs for d/p val-
ues between 0.25 and 0.3. For lower p, this optimum happens more towards
d/p = 0.25 while for higher p, it occurs closer to the d/p = 0.3 value.
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FIGURE 4.5: Effect of the ratio d/p in the unit cell of Fig. 4.2 on
the center frequency of the stop-band fc for a number of peri-
ods. Other geometrical parameters: g=0.25 mm and h=1.2 mm.
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FIGURE 4.6: Effect of the ratio d/p in the unit cell of Fig. 4.2
on the percentage of stopband bandwidth around its center fre-
quency fc for a number of periods. Other geometrical parame-

ters: g=0.25 mm and h=1.2 mm.

Next, the effect of the normalized gap size g/p is studied. Fig. 4.7 demon-
strates the lower and upper limits of the stopband for several d/p. It is no-
ticeable that the smaller the gap is, the wider the stopband becomes. This
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FIGURE 4.7: Effect of the normalized gap size g/p in the unit
cell of Fig. 4.2 on the lower and upper limits of the stopband for
a number of d/p ratios. Other geometrical parameters: p=3 mm

and h=1.2 mm.

means that to have a better EBG with wider stopband, it is desirable to have
the lowest gap possible between the parallel plates. Also, the figure shows
that when then gap is larger than a particular value, the stopband no longer
exists. This value is different for different d/p ratios and it is seen that it
decreases as the d/p ratio increases meaning that for a higher filling factor
(d/p ratio) a closer pin-plate configuration is necessary (the maximum g/p
leading to a stopband is lower). Finally, it is noticeable that for any value of
the normalized gap size g/p, the stopband corresponding to d/p = 0.275 is
wider than those for d/p = 0.15 and d/p = 0.4 which is in accordance with
the results obtained from Fig. 4.4.

Finally, the effect of the normalized pin height h/p is studied. Fig. 4.8
plots the lower and upper limits of the stopband versus h/p ratio for sev-
eral values of d/p. It is observed that no stopband exists below a certain
h/p value which means that a minimum pin height is needed to achieve a
stopband. Furthermore, it is seen that increasing the h/p ratio decreases the
lower stopband limit while the upper limit stays almost constant up to a
certain h/p and decreases after. For higher values of h/p the slope of the de-
crease in the higher limit is steeper than that of the lower limit. This results
in the stopband getting narrower. Therefore, an optimum stopband band-
width is achieved at mid h/p range. To better visualize the changes in the
bandwidth, the percentage of bandwidth around the center frequency of the
stopband is plotted versus h/p in Fig. 4.9. It confirms that no stopband exists
for low h/p values. Then by increasing h/p ratio, the stopband appears, gets
wider and reaches a maximum for a certain h/p value.
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FIGURE 4.8: Effect of the normalized pin height h/p in the unit
cell of Fig. 4.2 on the lower and upper limits of the stopband
for a number of d/p ratios. Other geometrical parameters: p =

3 mm and g = 0.4 mm.
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FIGURE 4.9: Effect of the normalized pin height h/p in the unit
cell of Fig. 4.2 on the percentage of bandwidth of the stopband
for a number of d/p ratios. Other geometrical parameters: p =

3 mm and g = 0.4 mm.

The graphs and the discussions that were presented in these parametric
studies can be used as guidelines for design of an EBG material using glide-
symmetric pin-like medium. For instance, to design an EBG material with
near optimum stopband bandwidth, one can choose an arbitrary period p.
Then Figs. 4.4 and 4.6 suggest that a d/p = 0.275 ratio provides a near op-
timum design to maximize the stopband bandwidth. Therefore, d is chosen
accordingly. Next, Fig. 4.7 shows that the lower the gap size g, the larger the
stopband is. Hence, the lowest possible g based on the design requirements
is chosen. After that, a h/p = 0.5 ratio can be chosen as an initial value for
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the pin height while this parameter can be tuned for maximum bandwidth.
Finally, if the center frequency of the designed stopband is different from the
desired center frequency, all the parameters can be scaled to scale the disper-
sion diagram along the frequency axis.

The “on” State

The first step in design is the “on” state of the waveguide. In this state,
the guiding medium needs to be designed to be in its pass-band, while the
EBG needs to be in its stop-band to attenuate the fields outside the guiding
medium. It was shown in Fig. 4.5 that modifying the period modifies the cen-
ter frequency of the stopband. Therefore, choosing two periodic media that
only differ in their period can produce two media with shifted stopbands that
can be used as EBG and guiding medium. An EBG and a guiding medium
are designed with this strategy. Fig. 4.10 plots the full dispersion diagrams
of their unit cells that were shown in Fig. 4.2. The geometrical parameters of
the guiding medium are pguide = 1.5 mm, h = 1.2 mm, d = 0.5 mm and g =
0.25 mm. The parameters for EBG unit cell are pEBG = 3 mm, h = 1.2 mm,
d = 0.5 mm and g = 0.25 mm. The potential operating frequency range
is highlighted by an orange rectangle in Fig. 4.10 and covers the 42-71 GHz
bandwidth. Indeed, within this range, the guiding medium exhibits a linear-
frequency-dependent propagation constant and the EBG medium exhibits a
bandgap. The field can therefore propagate while being confined with no
dispersion.
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FIGURE 4.10: Full dispersion diagram of the structure with the
unit cells shown in Fig. 4.2 in the “on” state. Geometrical pa-
rameters of the guiding medium and EBG: d = 0.5 mm, h =
1.2 mm and g = 0.25 mm, pguide = 1.5 mm and pEBG = 3 mm.
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Two-State Reconfigurability

The next step is to realize a transition from the “on” (or propagating) state to
an “off” (or attenuating) state. In the “off” state, both the EBG and the guid-
ing medium should still present stop-band characteristics within the waveg-
uide’s operating frequency range. This prevents any wave propagation in
the longitudinal direction of the waveguide and ensures attenuation of the
fields in all directions.

To achieve such a transition from the “on” to the “off” state, the contact-
less configuration of the structure is employed. Such configuration allows for
adjusting the distance between the two plates. Next, the effect of variation in
the parameter g of the unit cells shown in Fig. 4.2, i.e. the distance between
the top of a pin and the opposite metallic plate is investigated again to prove
that it provides a meaningful way to control the transition from the “on”
to the “off” state. The distance can be easily controlled by moving the two
metallic plates either closer to or further away from each other. Since no
deformation occurs in the plates, both unit cells should be modified with the
same ∆g variation.

Fig. 4.11 (a) depicts the full dispersion diagrams of the guiding medium
when varying the gap g of ∆g = 0.15 mm. The two different gaps are
goff = 0.1 mm and gon = 0.25 mm. Similar to Fig. 4.7, we notice that by
decreasing the gap g, the stop-band of the guiding medium is increased
around its center frequency. Hence, part of the frequency region that was
highlighted in Fig. 4.10 with an orange rectangle now passes from an “on”
state (pass-band) to an “off” state (stop-band). This frequency range which
covers 54 − 71 GHz is shown by a gray rectangle. The operating frequen-
cies of the waveguide is given by the intersection of the orange rectangle in
Fig. 4.10 and the gray rectangle in Fig. 4.11 which results in the gray rectan-
gle.

Next, the same gap variation ∆g = 0.15 mm is investigated on the EBG
(varying the gap from gon = 0.25 mm to goff = 0.1 mm). Fig. 4.11 (b) displays
the full dispersion diagrams of the EBG medium for the two aforementioned
gap sizes. Similar to the guiding medium, it is observed that the smaller
the gap gets, the wider the stop-band becomes and the material still behaves
as an EBG in the gray-shaded frequency range. Therefore, both the guiding
medium and the EBG medium attenuate the fields with the smaller gap g =
0.1 mm and the design of the “off” state is complete.

4.2.2 Feeding Mechanism and Impedance Matching

To complete the design, a proper feeding mechanism along with a work-
ing impedance matching is necessary. Fig. 4.12 (a) shows a perspective view
of our waveguide including the feeding part and the impedance matching.
A standard rectangular waveguide feed with dimensions of 3.7592 mm ×
1.8796 mm (a standard WR-15 for V band) is used to excite the structure from
the bottom. The excitation accesses are indicated by black arrows. Fig. 4.12 (b)
displays a top view of the waveguide while the upper plate is removed for
a clear visualisation of the pins. While gray squares are pins on the bottom
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plate, white squares stand for the pins on the upper plate, removed from the
picture.

(a)

(b)

FIGURE 4.11: Full dispersion diagram of the unit cell shown
in Fig. 4.2 (a) for two values of g = 0.1 mm (off state) and
g = 0.25 mm (on state) in the guiding medium with geomet-
rical parameters: d = 0.5 mm, h = 1.2 mm and pguide = 1.5 mm
(b) for two values of g = 0.1 mm (off state) and g = 0.25 mm (on
state) in the EBG medium with geometrical parameters d = 0.5

mm, h = 1.2 mm and pEBG = 3 mm.

The waveguide can be divided into 3 sections: the guiding section in the
middle and two matching sections at both ends of the longitudinal x direc-
tion. Each matching section includes the feeding slot and the required taper-
ing for a smooth transition. The guiding section and one of the two matching
sections are shown in Fig. 4.12 (b).
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(a)

(b)

x
y

FIGURE 4.12: The designed artificial waveguide: (a) perspec-
tive view (b) the top view cut in half along the longitudinal
direction and with the top metal plate removed for better vi-

sualisation of the inner parts.

To better visualize the matching section, it is divided into two smaller
subsections that are shown in Figs. 4.13 (a) and (b). Fig. 4.13 (a) includes the
feeding slot at a distance l from the EBG at one end of the structure. With a
proper choice of l, the EBG medium reflects the wave from the feed towards
the waveguide. In Fig. 4.13 (b) the required matching tapering is shown. Two
types of tapering are used. Firstly, since the guiding medium in the guiding
section of Fig. 4.12 (b) has a different width from the subsection shown in
Fig 4.13 (a), a width tapering of the guiding medium is applied. For instance,
in the structure shown in Fig. 4.12 (b), the width of the guiding medium
is larger at the end of the matching section than the guiding section in the
middle of the waveguide. Therefore, as it is displayed in Fig. 4.13 (b), the
width of the guiding medium is tapered from narrow to wide. This is done
by slowly pushing the two side EBG media further away from each other.
Furthermore, it should be noted that as the width increases, extra rows of
pins are inserted into the guiding medium to completely fill that region. The
second type of tapering that we use in our designs is the tapering of the
pin height. The pin height can start from low and smoothly increase to the
final pin height that is used in the guiding section of the artificial waveguide.
These two types of tapering will provide a smooth transition in the guiding
medium and therefore prevent undesired reflection of the electromagnetic
wave due to abrupt changes in the guiding medium.
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(a)

l

(b)

FIGURE 4.13: The top view of (a) the first subsection of the
matching that includes the rectangular feed (the top metal plate
is removed). (b) the second subsection of the matching that
includes the tapering of pin height and width of the guiding

medium (the top metal plate is removed).

4.2.3 Simulation Results

In this subsection, the simulation results of the waveguide designed in pre-
vious subsections are studied and discussed. It is recalled that the guiding
medium is a periodic structure with a unit cell shown in Fig. 4.2 and pa-
rameters h = 1.2 mm, d = 0.5 mm, g = 0.25 mm and period pguide =
1.5 mm. The EBG medium has the same structure with the only difference
of a higher period pEBG = 3 mm. In Fig. 4.13 (b), it is seen that we chose 3
rows of pins in the guiding medium. This corresponds to a width of 1.5×
pguide which equals 2.25 mm. At the end of the waveguide, the width of the
guiding medium should be larger than the length of the WR-15 rectangular
waveguide feed. Thus, the minimum number of pin rows that qualifies is 7.
Hence, the width of the guiding medium at the end of the waveguide is set to
3.5×pguide or equally 5.25 mm. This means that a width tapering is required
to eliminate the width difference of the guiding medium in different sections
of the structure. A 10-step linear width tapering is applied to the structure.
Therefore, the width difference from one step to the next is always the same.
This part of the matching section is therefore 10×pEBG = 30 mm long. In
addition to width tapering, a 20-step linear pin height tapering is applied to
the guiding medium. The length of this tapering is 20×pguide = 30 mm
and therefore it does not add to the length of the matching. This is due
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to the fact that both the pin height tapering and the guide width tapering
are applied over the same length as it was already shown in Fig. 4.13 (b).
The EBG media surrounding the waveguide are chosen to have a width of
1.5×pEBG = 4.5 mm. This corresponds to 3 rows of pins in the EBG medium.
Furthermore, we found that the distance l which provides the best matching
bandwidth is 2.5 mm.

FIGURE 4.14: Scattering parameters of the structure shown in
Fig. 4.12 simulated with PEC and copper in the “on” state. Ge-
ometrical parameters: l = 2.5 mm d = 0.5 mm, h = 1.2 mm,

g = 0.25 mm, pguide = 1.5 mm and pEBG = 3 mm.

Fig. 4.14 plots the scattering parameter results from the simulation of the
designed waveguide with the aforementioned geometrical parameters. Two
simulations have been carried out: one with perfect electric conductor (PEC)
and the other with copper (a lossy metal) in the structure. Both results are
shown in the figure. The simulation results with PEC are shown in solid lines.
The S11 curve displays a -10 dB impedance matching bandwidth of 1.26 GHz
around the center frequency of 57.42 GHz. The S21 curve confirms the full
transmission of power from the first waveguide port at one end to the waveg-
uide port at the other end of the guide. The simulation results using copper
are shown in dashed lines. These results clarify the effect of introducing a
metal loss in the structure. We observe from the S11 result that the structure
with copper still provides the same -10 dB bandwidth as the structure with
PEC. The S21 curve, however, displays a drop of more than 1.5 dB compared
to the structure with PEC which corresponds to 0.053 dB/wavelength at the
center frequency. This emphasizes that the power loss due to the ohmic losses
in metal can be significant for long waveguides. In the simulated waveguide,
the length of the structure was approximately 29 times the wavelength at the
center frequency and the length of each matching section is approximately
11.5 times the wavelength of the wave at the center frequency. Therefore,
the matching sections are very large and they need to be minimized. Even
though this design verifies the possibility of implementing reconfigurability
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in the propagation of the waves using the proposed technology, the charac-
teristics of the design need further improvements to justify the use of such
technology. The next section focuses on improving the current design.

4.3 The Improved Reconfigurable Waveguide

We start this section by enumerating the shortcomings of the artificial waveg-
uide designed in the previous section. First, even though a working matched
bandwidth was achieved, the bandwidth was very narrow. It would be ben-
eficial to have a waveguide with a wider working bandwidth. Secondly, the
insertion losses due to the metal was not negligible. This makes the longer
versions of the design inefficient. A new design with less insertion loss due to
the lossy metal is desirable. Finally, the size of the matching sections was not
large. This leads to extra losses while making the structure less practical and
compact. Therefore, a new design with much smaller matching sections is
desired. In the next subsections, these needs are addressed with proposition
of a modified design.

To overcome the shortcomings of the previous design, two modifications
are applied to the waveguide structure. It will be shown later that these
modifications improve the performance and practicality of the design.

4.3.1 Modifications of the guiding medium

The first modification is applied to the unit cell of the guiding medium. In
the previous design the gap g was very small and the pins were very long.
In fact, the pins on the two opposite plates protruded through the vertical
mid-plane. In order to improve our design, we choose a new unit cell for the
guiding medium, whose geometry is closer to the free-space PPW and then
easier to match. In this new unit cell, we use shorter pins which leave an
empty space between the pins on the opposite plates. This modification is
shown in Fig. 4.15 in which the unit cell shown in Fig. 4.15 (a) displays the
one used in the previous design and the unit cell in Fig. 4.15 (b) exhibits the
new one for which the gap g is increased and the pin height h is decreased
while the sum g + h was kept the same as that in Fig. 4.15 (a).

By decreasing the pin height in the new unit cell, we decrease the lateral
surfaces of the metallic pins. We predict that with this modification the elec-
tromagnetic wave will now propagate mostly in the air gap between the top
and bottom pins. Hence, we expect that metal losses will decrease in the
new format. The second prediction concerns the cross-sectional field distri-
bution of the propagating waves. We predict that as the pins get smaller, they
will cause less perturbation in the modal fields of the rectangular waveguide.
We expect that smaller perturbation of the modal fields may lead to a larger
matched bandwidth for the structure. This also helps reduce the size of the
matching section as the smaller pins need less or no height tapering steps.

The chosen parameters for the new unit cells in the “on” state are g =
0.9 mm, hguide = 0.2 mm, dguide=0.4 mm and pguide = 1.5 mm.
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pguide
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hguide

g

FIGURE 4.15: Unit cell of the guiding medium in the “on” state:
(a) initial waveguide presented in sec. 4.2.1 (b) modified waveg-

uide presented in sec. 4.3

FIGURE 4.16: Full dispersion diagram of the unit cell shown
in Fig. 4.15 (b) for two values of g = 0.005 mm (off state) and
g = 0.9 mm (on state) in the guiding medium with geometrical
parameters: dguide = 0.4 mm, hguide = 0.2 mm and pguide = 1.5

mm.

To study the transition of the new guiding medium from the “on” to the
“off” state, its full dispersion diagrams in the two states are shown next
to each other in Fig. 4.16. The gray rectangle refer to the final operational
band of the complete structure and will be commented later. It is interest-
ing to note the difference between the guiding medium that was discussed
in Sec. 4.2.1 and the one discussed in this section in their “on” state. In the
former, the potential operating frequency region (shown by the orange rect-
angle in Fig. 4.10) belonged to frequencies at the end of the first passband and
therefore in proximity to the first stopband. In that case, a small change in the
gap g (from gon = 0.25 mm to goff = 0.10 mm, ∆g = 0.15 mm) could move
the stopband edge and transform a passband regime into a stopband one. In
the new unit cell “on” state, however, we do not operate close to a stopband
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edge. To create the stopband, a larger change of the gap g is required (from
gon = 0.09 mm to goff = 0.005 mm, ∆g = 0.085 mm).

4.3.2 Modifications of the EBG medium

Fig. 4.16 showed that the new guiding medium can be used to reconfigure
the structure between the states. However, this new design creates a new
challenge. The new design requires a gap variation of ∆g = 0.895 mm while
the previous design required a ∆g = 0.15 mm. This requires a new EBG
design. The EBG in Fig. 4.2 has a gap equal to g = 0.25 mm in the “on” state
and the change of ∆g = 0.895 mm is not possible for such a medium: the pins
would touch the opposite plates before the full variation occurred. A new
EBG medium design is required having a gap g larger than 0.895 mm. This
is why a new EBG unit cell is designed with parameters g = 0.9 mm, hEBG =
1.2 mm, dEBG = 0.8 mm and pEBG = 3 mm and is shown in Fig. 4.17 (a).
Here, the only difference between the new and old EBG is a larger gap g of
0.9 mm in the new design. The old EBG is shown in Fig. 4.17 (b) for the sake
of comparison.

(a) (b)

FIGURE 4.17: (a) Unit cell of the EBG media of the modified
waveguide presented in sec. 4.3 (b) Unit cell of the EBG media
of the initial waveguide presented in sec. 4.2.1. The unit cells
are shown with the correct ratio to highlight the differences in

their geometrical parameters.

Fig. 4.18 displays the unit cells of the EBG and the guiding media in the
modified waveguide next to each other. The full dispersion diagram of the
new EBG unit cell is shown in Fig. 4.19. The gray region of frequencies covers
the whole stopband of the new EBG in the “on” state, and it is the same
shown in Fig. 4.16. To confirm the effectiveness of the EBG design in the
“off” state, we have also plotted the dispersion diagram of this unit cell when
its gap g decreases to 0.005 mm. The new curve proves that the width of
the stopband increases and the structure stays a good EBG in our desired
frequencies. The two curves show that the EBG medium works as expected
while the structure is reconfigured.
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FIGURE 4.18: Unit cells of the glide-symmetric pin-like media
used in the modified artificial waveguide presented in sec. 4.3.
The unit cell on the left hand side is for the guiding medium
and the one on the right hand side is for the EBG. The unit cells
are shown with the correct ratio to highlight the differences in

their geometrical parameters.

FIGURE 4.19: Full dispersion diagram of the unit cell shown
in Fig. 4.18 (b) for two values of g = 0.005 mm (off state) and
g = 0.9 mm (on state) in the EBG medium with geometrical
parameters dEBG = 0.8 mm, hEBG = 1.2 mm and pEBG = 3 mm.

It is interesting to compare the EBG medium in this new waveguide de-
sign with the previous one in terms of their attenuation characteristics. To
do so, Fig. 4.20 plots the normalized attenuation constant versus frequency
for the two EBG media and for different values of transversal phase shift
ky p = 0, ky p = π/2 and ky p = π. The results are calculated by the multi-
modal T-matrix method developed in Ch. 3. It was discussed there that an
advantage of the method is the calculation of the attenuation constant in ad-
dition to the propagation constant of the wave. The attenuation constant of
an EBG in its stopband is an important value since it clarifies how strongly
the EBG attenuates the unwanted electromagnetic fields.

The first noticeable difference between the two EBG media is the de-
creased stopband width in the new EBG. This was already expected from
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(a)

(b)

(c)

FIGURE 4.20: Normalized attenuation constant α/k0 vs. fre-
quency for the EBG media designed for the two proposed
waveguides in this chapter with (a) ky p = 0, (a) ky p = π/2
and (c) ky p = π. The “on” state of the waveguides are consid-
ered. Geometrical parameters of the old EBG: pEBG = 3 mm,
dEBG = 0.5 mm, hEBG = 1.2 mm and gEBG = 0.25 mm. Geomet-
rical parameters of the new EBG: pEBG = 3 mm, dEBG = 0.8 mm,

hEBG = 1.2 mm and gEBG = 0.9 mm.
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the findings of Fig. 4.7 which predicts a smaller stopband width when the
gap g increases while keeping the other parameters constant. However, the
very large stopband of the old EBG was not used, since the final matched fre-
quency range was much smaller than the EBG’s stopband width. Therefore,
loosing part of the EBG bandwidth with the aim of improving the match-
ing bandwidth is considered acceptable. It is also interesting to note from
Fig. 4.20 (a) that the normalized attenuation constant has been approximately
divided by 5 around 60 GHz when ky p = 0. The decrease in normalized at-
tenuation constant is also observed for ky p = π/2 and ky p = π even though
the decrease is not as much as for ky p = 0. These results mean that the mod-
ifications to improve the matching bandwidth lead to a weaker EBG. This
may lead to a wider EBG region around the guiding medium necessary in
order to achieve a good isolation if adjacent lines are present. However, this
is an acceptable downside if the operational bandwidth of the waveguide
improves dramatically. A discussion on the isolation between two adjacent
guides will be proposed after presenting the complete design.

4.3.3 The Final Structure

Fig. 4.21 (a) shows a perspective view of the modified waveguide structure.
It is important to notice the height difference between the guiding medium
and the EBG medium. This is because the distance between the two parallel
plates is no more the same in the new design. While in the previous design
the same distance between the plates defined a flat plane in the entire struc-
ture, here, we keep the bottom plate flat, and on the top plate a step is created
to tune the correct PPW distance according to the guiding/EBG region. The
feeding component is still attached to the bottom plate. Fig. 4.21 (b) dis-
plays the top view of the same structure while removing the top plates. Gray
squares are pins on the bottom plate and white squares are the pins locations
on the upper plate, removed from the picture. It is interesting to compare
the matching section of this structure with respect to the one of the previous
structure (Fig 4.21). The lack of tapering of the width of the guiding medium
and of the pin heights makes the matching section of this new structure much
shorter. The excitation is applied through a rectangular waveguide feed the
same way as before. The rectangular-waveguide feeding ports are displayed
with black arrows.

7 rows of pins have been used in the guiding medium. This corresponds
to a width of 3.5× pguide which equals 5.25 mm and is slightly wider than
the length of the rectangular waveguide feed. We have used a width of
1.5×pEBG = 4.5 mm for the EBG regions surrounding the waveguide. The
length of the structure is 25.5 mm. Furthermore, we empirically found that
the distance l = 3.4 mm provides the best matching bandwidth.

4.3.4 Simulation Results

In this section, the simulation results of the final reconfigurable waveguide
is studied. These simulations are operated for the two cases of single and
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(a)

(b)
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Matching Section Waveguide Matching Section

FIGURE 4.21: The designed artificial waveguide: (a) perspec-
tive view (b) the top view with the top metal plate removed for

better visualisation of the inner parts.

double waveguides. At first, the scattering parameters of a single waveguide
are studied to determine the matched bandwidth of the design. Then the
more specific case of two adjacent waveguides is considered to investigate
the correct operation of the designed waveguide. Moreover, the coupling
between the two waveguides is discussed and the required precision of the
mechanical adjustment for achieving the reconfigurability is studied.

Single Waveguide

Fig. 4.22 plots the simulated scattering parameters for the modified waveg-
uide with its aforementioned geometrical parameters and the gap g = gon =
0.9 mm (the “on” state discussed in the previous section). The simulations
are performed with both PEC and copper as the structure’s material to again
observe the losses due to the lossy metal. Looking at the simulation results
with PEC, the S11 curve displays a −10 dB impedance matching bandwidth
of 5.7 GHz between the frequencies fmin = 57.1 GHz and fmax = 62.8 GHz.
This shows a great improvement from the matched bandwidth of 1.26 GHz
in the initial design of the waveguide which was investigated in Sec. 4.2.3.
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The S21 curve confirms the full transmission from the first waveguide port
at one end to the waveguide port at the other end of the guide. S21 levels
are above -4 dB in the entire −10 dB impedance matching bandwidth. If S21
levels of higher than −0.7 dB are required, the bandwidth reduces to 5 GHz
between fmin = 57.1 GHz and fmax = 62.1 GHz.

56 57 58 59 60 61 62 63
f  (GHz)

-40

-30

-20

-10

0

S 
(d

B
)

S
11

 (PEC)

S
21

 (PEC)

S
11

 (copper)

S
21

 (copper)

FIGURE 4.22: Scattering parameters of the structure shown in
Fig. 4.21 in the “on” state. Geometrical parameters: l = 3.4 mm,
pguide = 1.5 mm, hguide = 0.2 mm dguide = 0.4 mm, pEBG =

3 mm, hEBG = 1.2 mm dEBG = 0.8 mm, g = 0.9 mm.

Copper and PEC results shows a close match between them. The matched
bandwidth is moved 0.3 GHz toward lower frequencies when using cop-
per. It is observed that S21 levels drops less than 0.05 dB for the structure
with copper compared to the structure with PEC and it corresponds to a loss
of 0.009 dB/wavelength at the center frequency. Therefore, the losses are
strongly reduced with respect to the previous design where the losses were
at 0.26 dB/wavelength. It is good to note that the length of the new struc-
ture is approximately 5 times the wavelength of an electromagnetic wave in
free space at the center frequency of its operating bandwidth. To observe
the linear response of the structure, Fig. 4.23 plots the phase of S21 versus
frequency. From the figure, it is clearly seen that the phase is linear in the
aforementioned bandwidth, which is typical of waveguides realized with
glide-symmetric geometries.

Next, the “off” state of the waveguide is studied. Fig. 4.24 displays the
S parameter results of the structure in Fig. 4.18 when the gap g = goff =
0.005 mm is considered. The result shows an insertion loss higher than 68 dB.
Therefore, this waveguide can implement a switch with satisfactorily high
isolation levels.
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FIGURE 4.23: Phase of S21 versus frequency for the structure
shown in Fig. 4.21 in the “on” state. Geometrical parameters:
l = 3.4 mm, pguide = 1.5 mm, hguide = 0.2 mm dguide = 0.4 mm,

pEBG = 3 mm, hEBG = 1.2 mm dEBG = 0.8 mm, g = 0.9 mm.
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FIGURE 4.24: Scattering parameters of the structure shown in
Fig. 4.21 in the “off” state. Geometrical parameters: l = 3.4 mm,
pguide = 1.5 mm, hguide = 0.2 mm dguide = 0.4 mm, pEBG =

3 mm, hEBG = 1.2 mm dEBG = 0.8 mm, g = 0.005 mm.

An important factor in the designed technology is the precision of the
mechanical adjustments needed to achieve reconfigurability. To recognize
the required precision, sensitivity of the design to changes in the gap g is
studied. Fig. 4.25 (a) depicts S11 results for the structure shown in Fig. 4.18
with g = 0.9 mm in the “on” state and compares it to the two cases for which
there is a ∆g = ±0.05 mm difference. The results confirm that a change of
this magnitude does not deteriorate the bandwidth by much. In fact, it only
moves the −10 dB bandwidth to slightly higher or lower frequencies in each
case. Fig. 4.25 (b) plots S21 results for the same structure with g = 0.005 mm
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in the “off” state and compares it to g = 0.008 mm and g = 0.009 mm.
Here, we observe that the gap change of ∆g = +0.003 mm does not prevent
the “off” state operation, since |S21| stays below −40 dB after this change.
The gap change of ∆g = +0.004 mm provides S21 levels that are lower than
−20 dB.

(a)

(b)

FIGURE 4.25: (a) Scattering parameters of the structure shown
in Fig. 4.21 for 3 different values of g in the “on” state. (b) Scat-
tering parameters of the structure shown in Fig. 4.21 for 3 dif-
ferent values of g in the “off” state. Geometrical parameters:
l = 3.4 mm, pguide = 1.5 mm, hguide = 0.2 mm dguide = 0.4 mm,

pEBG = 3 mm, hEBG = 1.2 mm dEBG = 0.8 mm.

Adjacent Waveguides

In this subsection, we study two adjacent waveguides to evaluate the cou-
pling between the two waveguides, both in the “on” and “off” states. This
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provides some insights regarding the use of such technology in a switch-
ing network. Fig 4.26 (a) displays the top view of the two adjacent waveg-
uides with the top plate removed to better visualize their inner structure. The
waveguide ports are numbered in the figure. We excite waveguide port 1 to
compute the power flow inside the two waveguides. The waveguides are
considered to be made of copper in the simulations. The distance between
the two waveguides is 7.5 mm (1.5λ0) and the length of the simulated waveg-
uides is 25.5 mm (approximately 5λ0) where λ0 is the wavelength of the elec-
tromagnetic wave in free space at 60 GHz. Fig 4.26 (b) displays the power
flow inside the waveguides at 60 GHz when the structure is in the “on” state.
The figure clearly displays that there is a power flow along the longitudinal
direction of the excited waveguide from port 1 towards port 2. It also dis-
plays that the EBG is completely confining the electromagnetic fields inside
the upper waveguide and consequently the good isolation between the two
waveguides. In contrast, Fig 4.26 (c) shows the power flow at 60 GHz when
the structure is in the “off” state. We observe that there is no power flow
along the length of the top excited waveguide. This means that the “off”
state is working properly and the waveguide is attenuating the wave in both
cross-sectional and longitudinal directions to avoid propagation of the wave
in any direction.

(a)

(b) (c)

1 2

3 4

s

FIGURE 4.26: Two coupled lines: (a) the top view with the top
metal plate removed for better visualisation of the inner parts
(b) power flow while exciting port 1 at 60 GHz in “on” state (c)

power flow while exciting port 1 at 60 GHz in “off” state.

Fig. 4.27 plots the scattering parameters of the structure in Fig. 4.26 (b)
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by exciting the upper waveguide through waveguide port 1. S11 and S21
curves are similar to those shown in Fig. 4.22 with copper as the material.
The matched bandwidth is the same and the waveguide is still functioning
correctly in it. The -10 dB S11 bandwidth is 57.4-62.8 GHz. The insertion loss
of less than 0.7 dB is achieved for most of the S11 bandwidth (57.4-62.2 GHz).
In a small portion of the S11 bandwidth (62.2-62.8 GHz) the insertion loss
goes beyond 0.7 dB and increases to a maximum of 3.3 dB at the end of the
S11 < −10 dB bandwidth. S31 and S41 results are plotted in addition to these
two curves to demonstrate the coupling between ports of the two waveg-
uides. We observe that there is a good isolation between the waveguides and
that the coupling is below -22 dB over the whole operational bandwidth.
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FIGURE 4.27: Scattering parameters of the structure shown in
Fig. 4.26 (a).

Fig. 4.28 (a) studies the coupling in more detail. It displays S31 for differ-
ent values of lateral spacing s between the two adjacent waveguides shown
in Fig. 4.26 (a). It is observed that the S31 decreases as the distance between
the two waveguides increases. Due to the increased distance, there is more
attenuation of the wave across the EBG region between the two waveguides
and lower S31 is achieved. An s = 1.5 pEBG results in S31 of below −40 dB
in the first 4 GHz of the S11 < −10 dB bandwidth. But it increases up to
-13.5 dB at one point in the higher frequencies of the bandwidth. Distances
of s = 2.5 pEBG and s = 3.5 pEBG provide better isolation and their S31 is be-
low -40 dB for a larger part of the S11 bandwidth. S31 levels for s = 2.5 pEBG
and s = 3.5 pEBG are respectively below -22 dB and -32 dB over the whole
bandwidth. The case s = 4.5 pEBG has S31 levels below -37 dB in the en-
tire S11 bandwidth. It is good to note that since pEBG = 3 mm, tthe spacing
s = 1.5 pEBG = 4.5 mm is ten percent smaller than the free space wavelength
λ0 = 5 mm at 60 GHz. Fig 4.28 (b) plots S41 for the same four values of
spacing s to study the effect of s on S41. The observations are similar to those
from S31. An increase of s leads to a decrease of S41. Similarly, s = 4.5 pEBG
achieves the lowest S41 levels which is lower than -44 dB in all the -10 dB S11
bandwidth.
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(a)

(b)

FIGURE 4.28: (a) S31 in the structure shown in Fig. 4.26 (a) for
different values of s (b) S41 in the structure shown in Fig. 4.26 (a)

for different values of s.

Comparisons with Non-Glide Waveguides

We investigate the results of the designed coupled waveguides when all the
pins on the top plate are removed. The S parameter results of this structure
in the “on” state are shown in Fig. 4.29. S11 < −10 dB occurs around the
center frequency of 62 GHz with only 1 GHz width, where S21 is below -7.4
dB. Therefore, there is almost no transmission from the first to the second
port. Furthermore, S31 and S41 show considerably higher levels in the same
frequency range which signals the inability of the new EBG to remove the
coupling between the two lines at these frequencies. To better explain this
observation, the full dispersion diagram of the new EBG which is obtained by
removing all the top pins from the glide-symmetric EBG is given in Fig. 4.30.
Only the first four Bloch modes are shown in this figure. It is easy to notice
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that the stopband of this new unit cells falls below the frequency range of our
design. This means that these frequencies fall in a passband region and hence
this structure does not act as an EBG in these frequencies anymore. This
explains why the coupling between the two lines were high for this structure.
To achieve a stopband region at the desired frequencies, this unit cell has to
be re-designed. Lower periods will be required to push the stopband region
to higher frequencies which will in turn lead to higher requirements in terms
of the fabrication precision.
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FIGURE 4.29: S parameters of the structure shown in
Fig. 4.26 (a) (with glide-symmetric EBG media) in the “on”
state with all the top pins removed. Geometrical parameters:
l = 3.4 mm, pguide = 1.5 mm, hguide = 0.2 mm dguide = 0.4 mm,

pEBG = 3 mm, hEBG = 1.2 mm dEBG = 0.8 mm, g = 0.9 mm.

FIGURE 4.30: The full dispersion diagram of the of the EBG
media with all the top pins removed. Geometrical parameters:

pEBG = 3 mm, hEBG = 1.2 mm dEBG = 0.8 mm, g = 0.9 mm.

It should also be noted that the guiding medium used in Fig. 4.26 falls
in the reducible glide-symmetry category meaning that it can be replaced by



88 Chapter 4. Reconfigurable Waveguide Technology Based on Glide
Symmetry

a non-glide-symmetric medium where all the upper pins are pushed to the
lower plate. This is related to the fact that the pins of the guiding medium are
not very close in the “on” state, and was of course purposely done to achieve
better matching as discussed in Sec. 4.3.1. The glide-symmetric configura-
tion has been preferred to the non-glide-symmetric one since it requires less
manufacturing precision.

4.3.5 Measurements

To perform the measurements on the designed reconfigurable waveguide,
two coupled lines similar to the one shown in Fig. 4.26(a) were fabricated.
The length of the waveguide was increased to allow for coaxial rectangu-
lar waveguide adapters to be screwed to the structure. Fig. 4.31 shows a
3D sketch of the final design for fabrication. The structure is designed to be
fabricated in three pieces. We chose to fabricate the bottom plate of the struc-
ture in one piece while fabricating the top plate in two pieces. This allows
the two top plates to move independently of each other and enables us to
adjust the gap between the top and bottom plates in each waveguide inde-
pendently. Therefore, any of the two waveguides can be placed in the “on”
or “off” state. To better understand the geometry of the final design shown
in Fig. 4.31, separate sketches of the top and bottom plates are helpful.

FIGURE 4.31: Perspective view of the final design for fabrica-
tion.

Fig. 4.32 (a) depicts the top view of the bottom plate while Fig. 4.32 (b)
shows the bottom view of the same plate. The four big rectangular holes in
this piece which are labelled “A” in the figures are included to provide the
arm of mechanical actuators the free space to move for adjustment of the
gap between the top and bottom plates. There are two of these rectangu-
lar holes next to each waveguide meaning that each of the top plates can be
controlled using two mechanical actuators inserted inside these holes. Four
smaller rectangular holes are also visible in the bottom plate which are not
labelled. These holes correspond to WR-15 rectangular waveguides dimen-
sions and will be connected to a coaxial to rectangular waveguide adapter
for measurements.

In addition to the rectangular holes, the bottom plate possesses many cir-
cular holes as shown in Figs. 4.32 (a) and (b). These holes account for the
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FIGURE 4.32: (a) Top (b) Bottom view of the bottom plate of the
final design for fabrication.

required screws. For instance, the actuators will be connected to the bottom
plate through metal brackets. For each bracket, four screws are used to con-
nect them to the bottom plate. This corresponds to a total of 16 screws for
the four actuators. The sets of four circular holes related to each bracket are
labelled “B” in the figure. Furthermore, for each waveguide, two alignment
holes have been placed in the bottom plate to make sure that the top and
bottom plates are well-aligned and the glide symmetry is not broken. This
results in a total of four alignment holes which are labelled “C” in the fig-
ure. We will see that similar alignment holes are included in the top plate
too. The alignment is done by passing long screws through these alignment
holes from the bottom to the top plates. Finally, Fig. 4.32 (b) shows other
circular holes which are not labelled. These holes correspond to the screws
of the coaxial to rectangular waveguide adapters. In our design, these holes
have been chosen according the specifications of the Quinstars QR-15 series
rectangular waveguide to coaxial adapters which are used to take the mea-
surements.

Similarly, Fig. 4.33 (a) demonstrates the bottom view of the two top plate
pieces while Fig. 4.33 (b) shows their top view. As mentioned earlier the
top plates also possess alignment holes. These holes are labelled “E” in the
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figure. It should be noted that for the correct alignment of the structure,
these holes should be placed at the same horizontal position as those labelled
“C” in Figs. 4.32 (a) and (b). We previously discussed that the base of each
actuator gets connected to the bottom plate with a bracket. In contrast, the
arm of the actuator gets connected to a top plate. Therefore, by placing the
bottom plate on a fixed surface, the top plate can be moved higher or lower
relative to the bottom plate through mechanical actuation. Again a bracket is
used for each connection between a top plate and an actuator arm. The holes
corresponding to screwing these brackets are labelled “F” in the figure.

(a)

(b)

E

E E

E

E

E E

E
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FIGURE 4.33: a) Bottom (b) Top view of the bottom plate of the
final design for fabrication.

Fig. 4.34 shows the photo of the fabricated bottom plate next to the top
plate piece. As the photo shows, a one euro coin is placed next to the pieces to
provide a visual comparison between the physical dimensions of the pieces.
The plates are fabricated in aluminum and coated with silver. The thickness
of the top plates is 7 mm while the thickness of the bottom plate is 5.5 mm.

As it was mentioned earlier, the actuators we use for mechanically switch-
ing the waveguides between the “on” and “off” states are from the SLC series
of SmarAct’s linear piezoelectric stages. Fig. 4.35 shows a photo of the piezo-
electric actuator model that we use in our prototype. This model provides a
high precision positioning with a linear travel range of 21 mm.
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FIGURE 4.34: The fabricated top and bottom pieces of the final
design.

FIGURE 4.35: The piezoelectric actuator used in our prototypes
for mechanically switching the waveguides between “on” and

“off” states.

To drive the actuators to the “on” and “off” required positions, a com-
patible controller from SmarAct’s CU series of controllers is used. These
controllers consist of two units each. The first one is the main control unit
and the second one is the driver. Fig. 4.36 (a) shows the main control unit
of our controller. This unit has a USB port for a connection with a personal
computer or a workstation for programming the actuation. Furthermore, it
connects to a power supply as well as the driver unit. The driver unit is
shown in Fig. 4.36 (b). It is a three channel driver which can drive up to 3
actuators with the same control unit. Therefore, for driving 4 actuators two
controllers are required. Fig. 4.37 displays a photo of the controller units and
an actuator connected together.
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(a) (b)

FIGURE 4.36: The two units of the controller used to drive the
actuator: (a) the main control unit (b) the three channel driver.

FIGURE 4.37: Connection of the controller unit and the actuator.
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FIGURE 4.38: Photo of the assembled prototype.

Fig. 4.38 shows a photo of the assembled prototype for which the mea-
surements are taken. Firstly, we note that the measurements are taken with
only one of the two adjacent waveguides assembled. This can be recognized
by observing only one top plate instead of two. Furthermore, it can be ob-
served that only one actuator is used instead of two. This is due to our obser-
vation that a single actuator could carry the weight of the top plate without
any problem in the actuation process. Therefore, there was no need to uti-
lize two actuators for each waveguide. This also allows us to use only one
controller instead of two for future measurements with the two waveguides
since there would be two actuators instead of four.

Fig. 4.39 displays a photo of the setup used to make measurements on the
prototype. In this setup, the controller is connected to a personal computer
for receiving commands. To send these commands, we have developed a
MATLAB code that moves the actuator to switch the waveguide between the
“on” and “off”states. The S parameter measurements are carried out using a
vector network analyzer which is also shown in the figure. Fig. 4.40 displays
the vector network analyzer used for our measurements. It is the Rhode and
Schawrz ZVA 67 model which covers the 10 MHz to 67 GHz frequency range.

Fig. 4.41 plots the measured S11 and S21 versus frequency for the “on”
state. In the “on” state, the waveguide is letting the wave propagate from one
port to the other. In fact, S21 has values higher than -0.9 dB from 56.2 GHz
to 62.8 GHz. This corresponds to an insertion loss of 0.09 dB/wavelength of
the structure, comparable with the insertion loss of 0.14 dB/wavelength of
the structure in previous simulations from 57.4 GHz to 62.2 GHz. We remind
the reader that the simulations and the prototype differ in the length of the
guiding medium and the S parameters cannot be directly compared. Also,
S11 shows a good matching at the input port of the waveguide. Notice that
S21 has been correctly measured by calibrating the connections between the
ports with the adapters used here so it is referred to the transmission inside
the waveguide as expected. Instead S11 is calculated right before the coaxial
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to rectangular waveguide adapter and therefore does not bypass the effect of
these connectors.

FIGURE 4.39: Photo of the measurement setup for the proto-
type.

FIGURE 4.40: Photo of the vector network analyzer used for
measurements.

Similarly, Fig. 4.42 plots the measured S11 and S21 versus frequency for
the “off” state. Again in calculation of the S11 the effect of the adapters are
not de-embedded. The figure clearly demonstrates the lack of wave propa-
gation along the waveguide as the measured S21 is below -20 dB at all the
frequencies. This result is higher than the simulated one (lower than -50 dB)
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and depends on the difficulty to achieve a uniform gap of 0.005 mm between
the surfaces avoiding any inclination between them.
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FIGURE 4.41: Plot of the measured S11 and S21 of the prototype
versus frequency in the “on” state.
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FIGURE 4.42: Plot of the measured S11 and S21 of the prototype
versus frequency in the “off” state.

4.4 Conclusions

In summary, in this chapter we investigated the possibility of achieving re-
configurability in glide-symmetric structures. In fulfillment of this investiga-
tion, we introduced a reconfigurable artificial waveguide based on a parallel-
plate waveguide technology where the propagation inside the waveguide is
enabled or disabled in a two-state reconfiguration mechanism. We accom-
plished this goal by using a mechanical reconfiguration of the structure to
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allow the guiding media to alternate between a passband and a stopband.
Piezoelectric mechanical switches can reconfigure the displacement between
the two metallic plates of the design. We designed our reconfigurable waveg-
uide to operate in 57.4-62.2 GHz frequency range. We achieved a measured
isolation higher than 20 dB in the off-state and a measured insertion loss of
less than 0.9 dB corresponding to 0.09 dB/wavelength of the structure. We
showed the low loss nature of the design due to the absence of dielectric ma-
terial. We furthermore pointed out the possibility of this device to find appli-
cation in design of low-loss RF switches that can be used in MMW multibeam
antennas.
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Conclusion

Higher symmetric periodic structures have emerged as interesting topologies
for different electromagnetic applications. Their different dispersive behav-
ior compared to their non-symmetric counterparts has given them the edge
in applications such as low dispersive propagation, filtering and electromag-
netic bandgap material. Due to these special characteristics and applications,
it is important to have accurate analysis tools to extract their exact behav-
ior and to understand the physical phenomenon that leads to their unique
characteristics. This understanding can result in a more efficient use of these
structures in novel applications. To this aim, we introduced a multimodal
approach based on the generalization of a single-mode Bloch analysis and
used this method to study the difference between the higher symmetric and
non-higher symmetric periodic unit cells. We then used this method in anal-
ysis and design of a mm-wave reconfigurable waveguide with the capability
to enable or prevent the propagation of the wave. We achieved the reconfig-
urability through controlling a geometrical parameter of the structure using
a piezoelectric actuator. This technology has potential applications for mm-
wave switches feeding multibeam antennas for 5G communications.

5.1 Contributions

This body of research has made several contributions to the field of electro-
magnetics theory and design.

• Presented a specific formulation of the novel analysis method for higher-
symmetric structures to analyze these structures more rapidly.

We reformulated the multimodal Bloch analysis method for glide-symmetric
and twist-symmetric periodic structures by taking into account the higher
symmetry of these structures. As a result, the novel formulation applies to
a sub-region of the unit cell and therefore less resources are needed to cal-
culate the transmission matrix of this smaller cell compared to the unit cell
itself. This has improved the calculation time of the dispersion diagrams for
these structures.

• Defined irreducible and reducible higher symmetry to describe the two
different behavior of higher symmetric unit cells.
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We observed that in some examples of higher symmetry, the dispersive
results are the same as those with the same geometrical parameters but with
no higher symmetry. We acknowledged the difference between these struc-
tures and those that demonstrate different dispersive behavior compared to
their counterparts with no higher symmetry. We called the first group of
higher symmetries reducible while we called the other group irreducible.
This labeling may infer whether a higher symmetric structure may or may
not be preferred to a periodic structure with no higher symmetry in a certain
application.

• Explained the different behavior of irreducible higher symmetric unit
cells with respect to their non-higher symmetric counterparts in terms
of inter-cell interactions of higher order modes

We were able to utilize the multimodal Bloch analysis method that we de-
veloped to demonstrate how the higher order modes interact with each other
differently in a periodic structure with and without higher symmetry in irre-
ducible structures while the same modes become non-important in reducible
structures which causes the higher symmetric structure to act similarly to its
non-higher symmetric counterpart.

• Studied the feasibility of reconfigurable on/off waveguide structure
with glide symmetric structures through reconfiguration of one geo-
metric parameter.

We designed glide-symmetric unit cells for EBG and guiding media and
showed that reconfiguration of the waveguide can be achieved by merely ad-
justing the distance between the two contact-less parts of the structure. We
showed how by alternating between two different values of this distance,
propagation of the wave could be enabled or prevented. This reconfigura-
tion scheme may possibly be used for the design of different reconfigurable
components.

• Designed two reconfigurable on/off waveguide using the aforemen-
tioned technology.

We completed the design by introducing a matching mechanism and a
feeding section to realize two configurations of reconfigurable waveguides.
We then explained why one of the two designs outperforms the other de-
sign in terms of its loss, matching bandwidth and size. We achieved a 57.4-
62.2 GHz working frequency range for our design with isolation levels better
than 65 dB and insertion loss lower than -0.7 dB. We finally investigated the
feasibility of the same design with non-glide-symmetric unit cells instead of
glide-symmetric ones.

5.2 Future Work

There are a variety of future research avenues stemming from this work. In
particular, we see a few main areas of further research.
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• Application of the developed analysis method to open structures for
design and analysis of leaky waveguides.

As, we have already said multiple times, an advantage of the developed
Bloch analysis method is its capability to solve for complex wave vectors. As
a result, it provides the attenuation constant in addition to the phase con-
stant. This means that this method can also be applied to open structures
such as leaky-wave antennas to compute radiation losses. Thus, as a future
work, this analysis method can be used to design and develop leaky wave
antennas.

• Application of the developed analysis method to design EBG structure
with strong attenuation.

We have shown that the strength of the attenuation in EBG materials
would be different for different EBG unit cells regardless of their stopband
frequency ranges. To find the exact value of the attenuation, a Bloch analy-
sis like that developed in this work are required to accurately compute the
values of the attenuation constant. This method can be used to compare dif-
ferent EBG unit cells and choose the best EBG material according to its appli-
cation.

• Design of other reconfigurable microwave components based on the
reconfigurable waveguide technology developed in this work.

We have developed a basic reconfigurable on/off waveguide that could
possibly find its way in design of waveguide switches in higher frequencies.
However, based on this reconfigurable waveguide technology, other recon-
figurable components could be designed and developed. For instance, as a
future work, it would be interesting to utilize this technology to design a
reconfigurable phase shifter in which the adjustment of the geometrical dis-
tance between its two sections will reconfigure the phase shift provided by
the component. Other reconfiguration strategies will aim at the design of
beam scanning planar antennas, where the direction of the radiated beam
is dependent on a geometrical parameter of the metasurfaces, which can
be modified with the considered actuators. Finally, surfaces based on holes
rather than on pins should also be explored in order to simplify the practical
realization.
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