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Résumé

La production primaire est la synthese de matiere organique a partir de molécules in-
organiques et, dans la plupart des écosystemes, elle est réalisée a travers de la photo-
synthese. Les microbiens eucaryotes phototrophes et mixotrophes sont les principaux
contributeurs a la production primaire dans ’océan oligotrophe global, soutenant les
processus de transfert trophique d’énergie et de biomasse a 1’échelle planétaire. Mal-
gré la valeur écologique de ces organismes, leur grande diversité taxonomique et
fonctionnelle reste largement inconnue. Dans cette these, nous utilisons différents
types de données moléculaires obtenues a partir de I'expédition circumglobale de
Tara Oceans pour évaluer la composition et la diversité trophique des producteurs
primaires picoeucaryotes dans I'océan oligotrophique. Dans la premiere partie de la
these, nous comparons les données métagénomiques et de métabarcodage pour éva-
luer la diversité évolutive et ’abondance relative des organismes picophototrophes.
Nous avons identifié les bactéries phototrophes comme trois fois plus abondantes et
significativement moins phylogénétiquement diversifiées que les picoeukayrotes pho-
totrophes. Les Prymnesiophyceae, Mamiellophyceae, Pelagophyceae et Dictiocho-
phyceae sont apparus comme les groupes dominants de picoeucaryotes phototrophes
en termes de richesse relative et d’abondance. Dans le quatrieme chapitre, nous dé-
crivons un modele prédictif pour quantifier 'abondance des groupes trophiques dans
les échantillons métagénomiques. Cette approche, qui ne dépend pas de la attribu-
tion taxonomique, a révélé la dominance des organismes phototrophes dans tous les
bassins océaniques, tandis que la contribution des phagomixo- et phago- trophées
oscillait autour de 25% de I’abondance relative dans la plupart des échantillons.
Dans la derniere étude incluse dans cette these, nous évaluons la distribution d’une
collection de single-cell amplified genomes dans les échantillons de Tara Oceans. Nos
résultats soutiennent que la technique de séquengage unicellulaire a le potentiel de
récupérer le génome des protistes dominants dans 'océan oligotrophique global avec
un effort d’échantillonnage relativement modeste. Dans ’ensemble, ce travail décrit
un certain nombre d’approches basées sur des données moléculaires pour évaluer
la distribution et la diversité des producteurs primaires dans les environnements
marins.

Mots-clés : producteurs primaires, eucaryotes microbiens, mixotrophie, méta-omiques,
modélisation trophique, Tara Oceans.
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Abstract

Primary production is the synthesis of organic matter out of inorganic molecules, and
in most ecosystems is achieved through photosynthesis. Eukaryotic microbial pho-
totrophs and mixotrophs are main contributors to primary production in the global
oligotrophic ocean, supporting processes of energy and biomass trophic transfer at
a planetary scale. Despite the ecological value of these organisms, their wide tax-
onomic and functional diversity remains largely unknown. In this thesis, we use
different types of molecular data obtained from the Tara Oceans circumglobal ex-
pedition to assess the composition and trophic diversity of picoeukaryotic primary
producers in the oligotrophic ocean. In the first part of the thesis, we compare
metagenomic and metabarcoding data to assess the evolutionary diversity and rela-
tive abundance of picophototrophic organisms. We identified phototrophic bacteria
as three-fold more abundant and significantly less phylogenetically diverse than pho-
totrophic picoeukayrotes. Prymnesiophyceae, Mamiellophyceae, Pelagophyceae and
Dictiochophyceae appeared as the dominant groups of phototrophic picoeukaryotes
in terms of relative richness and abundance. In the fourth chapter, we describe a pre-
dictive model to quantify the abundance of trophic groups in metagenomic samples.
This taxonomy-free approach revealed the dominance of photo-trophic organisms
across all ocean basins, while the contribution of phagomixo- and phago-trophs os-
cillated around 25% of the relative abundance in most samples. In the last study
included in this thesis we assess the distribution of a collection of single-cell am-
plified genomes across all Tara Oceans samples. Our results argue that single-cell
sequencing technique has the potential to recover the genome of dominant protists
in the global oligotrophic ocean with a relatively low sampling effort. Overall, this
work describes a number of approaches based on molecular data for the assessment
of primary producers distribution and diversity in marine environments.

Keywords: primary producers, microbial eukaryotes, mixotrophy, meta-omics, trophic
modeling, Tara Oceans.
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1. General Introduction

1.1 Primary producers and their role in the bio-
sphere

Life on Earth is sustained by primary producers: organisms capable to synthesise
organic matter out of inorganic carbon-containing molecules. Virtually all primary
production in our planet is achieved through oxygenic photosynthesis. This process
is carried out in the so-called reaction centres, complexes of proteins and light-
absorbing molecules stored within cells. Fuelled by carbon dioxide, water and light
energy, oxygenic photosynthesis yields carbohydrates and oxygen, as described in
the following equation:

COy + HyO + photons — [COs] + Oy

Through this chemical reaction, photosynthetic organisms transform light energy
from the sun into chemical energy that can later be used by the rest of organisms
in the ecosystems. Besides transferring energy and biomass to upper trophic levels,
phototrophs also rule two central processes for life on Earth: oxygen and carbon
cycles. They synthesise the ~8,390 x10'2 moles O2 yr~! needed to maintain the
current oxygen levels in the atmosphere (Walker, 1980), and absorb 104.9 Pg of CO2
per year (Field et al., 1998), contributing to carbon sequestration and balancing
climate dynamics. Phototrophs are widespread around the terrestrial globe (Figure
1.1) and organisms from terrestrial and oceanic ecosystems contribute to the global
net primary production in comparable sums (Field et al., 1998).
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Figure 1.1 — Global distribution of phototrophs abundance across oceanic
and terrestrial ecosystems from September 1997 to August 2000. The
quantification of biomass was obtained through estimates of chlorophyll A in ma-
rine regions and through the normalised difference vegetation index (NDVI) in the
terrestrial biosphere. The image is provided by the SeaWiFS Project, NASA /God-
dard Space Flight Center and ORBIMAGE.

1.2 Evolution and diversity of marine primary pro-
ducers

Photosynthesis evolved in cyanobacteria 2.7 billion years ago (Gould, Waller & Me-
Fadden, 2008). Cyanobacteria was the only group of organisms able to perform
oxygenic photosynthesis up until the Proterozoic, when the capacity for photosyn-
thesis was transferred to eukaryotes through an event of primary endosymbiosis
(Reyes-Prieto, Weber & Bhattacharya, 2007). During that process, the ancestor of
glaucophyta, red algae and green algae engulfed a cyanobacteria, giving rise to the
origin of plastids (Figure 1.2).

Eukaryotic plastids radiated into further eukaryotic groups through events of sec-
ondary and tertiary endosymbiosis. Green algae were captured by euglenids, chlo-
rarachnophytes and a group of dinoflagellates, while plastids from red algae were
transferred to haptophytes, cryptophytes, stramenophyles and alveolates (Keeling
et al. 2010). Some of the taxa descending from red algae lost their plastids and
became non-photosynthetic, but the groups from this lineage that still maintain the
capacity for photosynthesis (including prymnesiophyctes, dinoflagellates and ochro-
phytes) are the most abundant groups of eukaryotic phototrophs in today’s oceans
(Pierella et al., in press).
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Figure 1.2 — Representation of the main events along the process of pho-
tosynthetic groups radiation and dispersion. Phototrophy was transferred to
eukaryotes when a cyanobacteria was taken up by a eukaryotic heterotroph around
1.5 billion years ago. Glaucophyta, red algae and green algae diverged from that
ancestor and eventually transitioned towards marine ecosystems. Dominant groups
of eukaryotic phototrophs in nowadays oceans include chlorophytes, dinoflagellates,
haptophytes, pelagophytes and diatoms; except for chlorophytes, all these groups
are characterised by hosting plastids from red algae acquired through secondary or
tertiary endosymbiosis. On the other hand, terrestrial ecosystems were colonised by
land plants, which evolved from green algae ~450 million years ago. Image reprinted
from Pierella and Bowler (in press).

1.3 Mixotrophy: when photosynthesis is not enough

Mixotrophs are organisms capable to use multiple metabolic strategies to acquire nu-
trients or energy. Herein, we restrict the term “mixotrophy” (or phago-mixotrophy)
to refer those microbes that feed through a combination of photosynthesis and phago-
cytosis. As described above, phototrophy is the capacity to fix inorganic carbon
using the energy from the sun. On the other hand, phagocytosis involves the as-
similation of prey through vacuole internalisation and its posterior digestion within
a lysosome. Mixotrophs have been largely overlooked in planktonic communities
due to the technical difficulties to study this trophic group. However, along the last
decades it has become more and more clear that mixotrophy is not only a widely
spread nutritional strategy among protists (Stoecker et al. 2017) but also a key piece
for the functioning of planktonic systems (e.g. Ward and Follows, 2016).

Mixotrophy appeared through different evolutionary paths in groups that acquired
the capacity for photosynthesis at the same time that they maintained the mech-
anisms for phagotrophy. Mixotrophs can show very different nutritional strate-
gies, ranging from almost purely phototrophic metabolism to mostly relying on
phagotrophy. Studies like Jones 1997, Stoecker 1998 and Mitra et al. 2016 at-
tempted to delimit mixotrophs functional diversity by establishing classification
frames based on physiological attributes. In the later study, Mitra et al. (2016)
divided mixotrophs according to the following traits: inherent capacity for pho-
totrophic and phagotrophic activity, retention of plastids from prey (kleptoplas-
tidity), and achievement of autotrophy through phototrophic endosymbiosis. Or-
ganisms from each of these groups can respond very differently to prey and light
availability (Liu et al., 2016), and because of the technical complexity to study



4 1. General Introduction

mixotrophs’ physiology and to grow them in cultures, we still lack information about
the exact nutritional strategy of many mixotrophs.

Recent studies on plankton modelling have shown that the presence of mixotrophs in
microbial communities enhances primary production and energy transfer to higher
trophic levels in ocean ecosystems (Mitra et al., 2014; Ward and Follows, 2016). The
distribution and activity of mixotrophic organisms is predicted to be influenced by
changes associated to climate change (Wilken et al., 2019). Discerning the response
of the different mixotrophic species to an increase of temperature and stratification
will be essential to predict ecosystem changes in future scenarios.

1.4 How do we study microbial primary produc-
ers in the ocean?

Back in the 1980s, the introduction of flow cytometers in microbiological research
lead the first steps towards the automation of phytoplankton cell counting (Ol-
son et al. 1983; Li 1989), pigment content evaluation (Olson et al., 1988) and
biomass quantification (Li, Irwin, Dickie, 1993). Later on, high-performance liquid
chromatography (Mackey et al., 1996) and the combination of flow cytometry with
molecular probes (Simon et al., 1995; Not 2002 et al., 2002) allowed finer species
identification based on pigments content. During the last decades, the improvement
of DNA sequencing techniques has opened a new level of taxonomic resolution in the
evaluation of microbial communities, unveiling a high diversity of protists (Massana
et al., 2014; Liu et al. 2009; de Vargas et al. 2015).

DNA sequencing allows the identification of species present in environmental sam-
ples, as well as the characterisation of the genomic and functional traits of single
species or whole microbial communities. In this thesis, we have used a combina-
tion of metabarcoding (metaB), metagenomic (metaG) and single-cell sequencing
approaches to study phototrophic and mixotrophic microbes. MetaB technique con-
sists on sequencing DNA regions with low intra-specific and high inter-specific vari-
ability for the taxonomic profiling of environmental samples. Typically, the DNA
region (or “marker gene”) chosen to identify bacterial species is 165 rDNA, while
the barcoding of eukaryotic genome and plastids is based on 18S rDNA and 16S
rDNA gene sequencing, respectively. On the other hand, metaG approach consists
of sequencing genome fragments from all organisms in a sample. Once assembled,
metaG reads allow us to characterise the functional potential of species present in a
given community. Finally, single-cell sequencing technique involves isolating single
cells from microbial samples and sequencing their genome or transcriptome indi-
vidually. The obtention of single-cell amplified genomes (SAGs) or transcriptomes
from environmental samples offers tremendous advantages for two main reasons: (i)
it allows the obtention of genomes/transcriptomes from uncultivable taxa; and (ii)
facilitates the study of genome intra-specific variability.
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1.5 Assessing of the global map of marine primary
producers with the data from Tara Oceans
expedition

The exploration of the plankton systems in the global ocean started with the ex-
pedition Challenger (1872-1876). During the last decade, the Global Ocean Survey
(2003-2010) and Malaspina-2010 campaigns surveyed the ocean with new molecular
techniques, coinciding with the beginning of Tara Oceans expedition (2009-2013)
(Karsenti, 2012). 7Tara Oceans (Figure 1.3) attempts to understand the spatio-
temporal dynamics and evolutionary principles of plankton ecosystems at a plane-
tary scale. For this purpose, the Tara Oceans oceanographic campaign generated
eco-morpho-genetic data from 152 stations and 3 depths covering most of the oceanic
regions. The golden repository of molecular data from Tara Oceans allows us to
study planktonic communities in the global oceans in a standardised way.
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Figure 1.3 — Geographic location of the 152 scientific stations sampled
during Tara Oceans expedition 2009-2012. Chart edited by Noan Le Bescot
- Tara Oceans Foundation.

1.6 Objectives and content of this thesis

The aim of this thesis is to explore patterns of functional and phylogenetic diversity
of microbial primary producers in the global ocean. The major accomplishments
from this project include (i) the characterisation of the global relative abun-
dance and phylogenetic diversity of picophototrophs in marine ecosystems;
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(ii) the assessment of trophic diversity in piconano- and nano- size frac-
tion communities, and (iii) the evaluation of the potential and limitations
of metabarcoding, metagenomic and single-cell sequencing data for the
study of microeukaryotic primary producers. The thesis is divided in the following
chapters:

Chapter 2: describes the PhotoRefT 16S rDNA reference tree and a phylogeny-based
pipeline for the assessment of picophototrophs richness and abundance.

Chapter 3: includes the evaluation of picophotorophs global distribution and evolu-
tionary diversity through a combination of metagenomic and metabarcoding data.

Chapter 4: contains the description of a taxonomy-free model for the assessment
of trophic diversity in metagenomic samples, together with the characterisation
of photo-, phagomixo-, phago- and osmo-trophic groups distribution across Tara
Oceans stations.

Chapter 5: includes the assessment of 903 single-cell sequenced genomes distribution
across Tara Oceans stations to evaluate the potential of single-cell sequencing for
obtaining the genomes of the most cosmopolitan and abundant protists in marine
ecosystems.

Chapter 6: includes a discussion about future prospects of the study of marine
primary producers in the context of the overall results described.



2. PhotoRefT: a general
framework to assess
picophototrophic communities
through phylogenetic placement

The aim of this chapter is to introduce the PhotoRefT reference tree and its as-
sociated pipeline for the assessment of picophototrophic communities. PhotoRefT
offers the foundation to study the abundance and diversity of phototrophs through
phylogenetic placement out of 16S Ribosomal DNA (rDNA) metagenomic (metaG)
and metabarcoding (metaB) data.

In this chapter, we use Tara Oceans 16S rDNA metaB and metaG data for the
evaluation of the phylogenetic placement pipeline, and the description of the pi-
cophototrophic communities based on the two datasets is depicted in Chapter 3.
Therefore, we refer the reader to Chapter 3 for details about the sequencing proto-
col and composition of 16S rDNA Tara Oceans metaB and metaG datasets. Here
we describe the composition of PhotoRefT and we show it can work as a phyloge-
netic taxonomic annotation tool, and a promising alternative to annotation methods
that depend on similarity thresholds -less adequate for marker genes like 16S rDNA
which evolve at different rates among domains and lineages of life-.

2.1 INTRODUCTION

Phototrophs measuring 0.2 — 3um (namely picophototrophs) are major contributors
to the primary production in the oligotrophic ocean (Li 1994; Pérez et al., 2006;
Jardillier et al., 2010). After decades of studying these communities, which include
Oxyphotobacteria and phototrophic picoeukaryotes (PPEs), we still lack a compre-
hensive picture of their taxonomic composition and phylogeographic distribution.
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Past studies have evaluated picophototrophs through 16S rDNA (Shi et al., 2011;
Kirkham et al., 2013), a marker gene that can identify at once both bacterial and
eukaryotic phototrophs through their cellular and plastidial genomes, respectively.
However, the lack of plastidial reference sequences has limited the potential of 16S
rDNA in phototrophs diversity surveys. This situation changed recently, when De-
celle et al. (2015) published PhytoREF, a database of plastidial 16S rDNA se-
quences. PhytoREF covers all major lineages of photosynthetic eukaryotes, including
terrestrial plants, and provides a valuable resource for the annotation of environmen-
tal 16S rDNA metabarcodes obtained by high-throughput sequencing data.

In this study, we assembled reference sequences from eukaryotic plastids (including
those published in PhytoREF), Oxyphotobacetria, and heterotrophic prokaryotes
(as outgroups) to build a reference 16S rDNA phylogenetic tree for assessing pho-
totrophic life. This reference tree, named PhotoRefT, covers the diversity of the
main known picophototrophic lineages. The tree was further used to optimise a
bioinformatics pipeline based on phylogenetic placement (Barbera et al., 2018) for
the annotation of picophototrophs’ metaB and metaG sequences. We show that
by using this new phylogenetic framework we are able to identify a higher number
of PPE environmental sequences than through the Basic Local Alignment Search
Tool (BLAST) (i.e. a method based on sequences similarity). PhotoRefT provides
a new tool for the characterisation of picophototrophs diversity which is designed to
further evolve to represent additional phototrophic clades.

2.2 METHODS

2.2.1 Construction of PhotoRefT

PhotoRefT was built using sequences from the following databases: Genbank (Ben-
son et al., 2017), RefSeq (O’Leary et al., 2016) and ENA (Harrison et al., 2019) for
heterotrophic bacteria and archaea; PhytoREF (Decelle et al., 2015) for eukaryotic
plastids, and SILVA SSURef_ NR99_128 (Quast et al., 2013) for cyanobacteria.

From the PhytoREF database, we filtered out most of the sequences classified as
Streptophyta, keeping only 6 representative sequences from that clade, and retain-
ing all plastidial sequences from the other groups. From SILVA SSURef NR99_128,
we only selected cyanobacterial sequences. The taxonomy of Oxyphotobacteria in
SILVA v128 was obtained using the Candidate Taxonomic Unit approach (Yarza
et al. 2014) for establishing genus boundaries and its nomenclature relied on the
Genome Taxonomy Database taxonomy (Parks et al. 2018). The annotation of
the SILVA v128 cyanobacteria sequences was corrected with SATIVA (Kozlov et
al., 2016), and sequences with incomplete classification were discarded. Addition-
ally, we appended the sequences from 9 ecologically important Prochlocococcus and
Synechococcus strains from an in-house database (labeled as PRJNA) that were not
included in SILVA v128. To include representatives from the main groups of archaea
and heterotrophic bacteria, we downloaded the 16S rDNA sequences from 85 bacte-
ria and 10 archaea from Genbank, RefSeq and ENA. Finally, the IDs from the total
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of 8,167 reference 16S rDNA sequences were standardised to include five taxonomic
ranks.

In order to decrease the complexity of the PhotoRefT, these >8 000 reference
sequences were clustered at 99% identity using USEARCH (sequences classified
as Melainabacteria and Sericytochromatia, non-oxyphotogenic cyanobacteria, were
clustered at 85% identity to keep only some representatives from these groups).
The resulting 4, 181 sequences were aligned with MUSCLE v3.8.31 (Edgar, 2004).
We selected the V2-V9 region from the alignment in order to build the PhotoRefT
with as much information as possible, and the references with incomplete V2-V9
fragment or looking clearly misaligned were filtered out. Exceptionally, reference
sequences classified as Dinophyceae, Dictyochophyceae, Chrysophyceae, Cercozoa,
Haptophyta, Chrysophyceae and Pelagophyceae were kept as long as they covered
the V4-V5 region, because these are important groups of PPEs and their represen-
tation in PhytoREF is already limited. We realigned the output sequences using
MAFFT v7.299b (Katoh & Standley, 2013) with the options -ep 0.2 and -op 2.5.
Misaligned sequences were filtered out, leading to a final set of 3,042 reference se-
quences. Next, we trimmed non-informative positions from this reference alignment
using trimAL v1.4.revl5 (Capella-Gutiérrez, Silla-Martinez & Gabaldén, 2009) with
the options -gt 0.3 -st 0.001 -cons 70.

Finally, we build a Newick tree forcing well-known taxonomic paths of eukaryotes
and Oxyphotobacteria to constrain the topology of our final inferred reference tree.
In particular, we constrained the topology of Oxyphotobacteria using the five lev-
els of their taxonomic annotation, while eukaryotic sequences were only clustered
at domain level (letting sequences from the same plastidial lineage arrange accord-
ingly). We inferred the final PhotoRefT using RAxML v8.2.9 (Stamatakis, 2014) by
conducting 100 rapid bootstrap inferences and 20 independent maximum likelihood
tree searches, using the GTRGAMMA model. Archaea reference sequences were
used for arbitrary rooting. The obtained tree was visualised with Archaeopteryz
(Han 2009). In order to remove redundant branches, we reduced the size of the tree
to 802 leaves using the Average Distance to the Closest Leaf (ADCL) minimisation
algorithm (Matsen, Gallagher & McCoy, 2013). The ADCL algorithm reduces the
size of a tree by picking up the sequences that represent the local diversity (i.e. tries
to find the central branches). The final version of the PhotoRefT and its align-
ment, together with the list of reference sequences’ accession number and original
classification, can be found online at https://github.com/lrubinat/PhotoRefT .

2.2.2 Meta-omics data for the evaluation of PhotoRefT

We used 16S rDNA metaG reads an V4-V5 amplicons from Tara Oceans to evalu-
ate the performance of our pipeline. In total, we screened the data from 42 Tara
Oceans stations covering a large extension of the temperate and oligotrophic global
ocean. Details on the sequencing protocol and post-sequencing steps followed for the
obtention of these datasets are specified in Chapter 3 (Section 3.2.1). The metaB
dataset, rarefied at 201,404 reads per sample, contained a total of 8,257,564 reads
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and 68,293 OTUs. MetaG data was rarefied at 40,590 reads per sample and con-
tained 1,704, 780 reads.

2.2.3 Framework for phylogenetic placement of environmen-
tal 16S rDINA sequences

The PhotoRefT tree only covers the diversity of heterotrophic bacteria superficially.
In order to minimise possible misplacements of heterotrophs’ 16S rDNA sequences
into phototrophic branches of the PhotoRefT, we pre-filtered the metaB and metaG
datasets. Sequences matching heterotrophic bacteria or archaea references in SILVA
v123 (with identity cutoff > 99% in BLAST search) were discarded. Following
the pipeline described by Czech & Stamatakis (2019), we deduplicated the rest
of the query sequences using the GAPPA command chunkify, and aligned to the
PhotoRefT alignment with PaPaRa (Berger & Stamatakis, 2012). In the case of
metaG, because sequences can cover any region of the PhotoRefT alignment, we
selected the aligned reads that overlapped to the V4-V5 region with at least 125nt.
Finally, we placed the aligned queries on the PhotoRefT with EPA-ng (Barbera
et al., 2018) and subsequently reduplicated into per-sample result files using the
GAPPA command unchunkify.

We observed long branch attraction in the placement that can lead to long pendant
lengths (i.e. long lengths of the edges connecting queries with the reference tree). In
order to discard possible misplacements due to this effect, we filtered the placement
results with a custom program built with the GENESIS library (Czech, Barbera &
Stamatakis, 2019) available at

https://github.com/Pbdas/genesis-apps/blob /master /jplace-filter.cpp. In this fil-
tering step, we compared the pendant length of each placement with the average
branch length of its 10 neighbour edges (or local average). The placements were cut
away when the pendant length was four times greater than the local average.

We used the function edit accumulate from the GAPPA program to gather queries
into the basal branches where they accumulated 0.95 of their likelihood weight mass.
We visualized the results with the GAPPA subcommand examine heat-tree. Finally,
we obtained the diversity and abundance values of our phototrophic groups of in-
terest (see Table for complete list of groups considered) with the GAPPA sub-
command prepare extract. In this step, we selected those placements that observed
an accumulated likelihood weight ratio (or confidence value) higher than 0.95 in
any phototrophic clade. Queries placed in Apicomplexa, Streptophyta, archaea or
heterotrophic bacteria were discarded.

2.2.4 Taxonomic assignment of metaB sequences through
sequence similarity

In order to compare the placement results with the traditional annotation approach -
based on sequences similarity-, we annotated the metaB dataset through BLAST and
using PhytoREF as reference database. PhytoREF was clustered at 99% identity
and metaB reads were blasted against it using an identity threshold of 97% and
filtering by >80% coverage. Reads classified as Streptophyta were discarded.
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Domain Phylum Class
Bacteria Oxyphotobacteria Limnotrichales
Bacteria Oxyphotobacteria Nostocales
Bacteria Oxyphotobacteria Pseudanabaenales
Bacteria Oxyphotobacteria Synechococcales
Eukaryota Cercozoa Chlorarachniophyceae
Eukaryota Chlorophyta Chlorodendrophyceae
Eukaryota Chlorophyta Chlorophyceae
Eukaryota Chlorophyta Mamiellophyceae
Eukaryota Chlorophyta Nephroselmidophyceae
Eukaryota Chlorophyta Pedinophyceae
Eukaryota Chlorophyta Other prasinophytes
Eukaryota Chlorophyta Chloropicophyceae
Eukaryota Chlorophyta Trebouxiophyceae
Eukaryota Chlorophyta Ulvophyceae
Eukaryota Cryptophyta Cryptophyceae
Eukaryota Euglenozoa Euglenophyceae
Eukaryota Glaucophyta Glaucocystophyceae
Eukaryota Haptophyta Pavlovophyceae
Eukaryota Haptophyta Prymnesiophyceae
Eukaryota Haptophyta Rappephyceae
Eukaryota Ochrophyta Bacillariophyceae
Eukaryota Ochrophyta Chrysophyceae
Eukaryota Ochrophyta Dictyochophyceae
Eukaryota Ochrophyta Eustigmatophyceae
Eukaryota Ochrophyta Pelagophyceae
Eukaryota Ochrophyta Phaeophyceae
Eukaryota Ochrophyta Raphidophyceae
Eukaryota Rhodophyta Bangiophyceae
Eukaryota Rhodophyta Florideophyceae
Eukaryota Rhodophyta Porphyridiophyceae
Eukaryota Rhodophyta Rhodellophyceae

Table 2.1 — List of phototrophic groups analysed classified by domain, phylum and

class.
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2.3 RESULTS

2.3.1 PhotoRefT composition

PhotoRefT contained a total of 802 reference sequences covering the main groups
of picophototrophs (Figure . With 482 reference sequences (60% of the total),
Oxyphotobacteria was the group with larger number of sequences. Eukaryotic plas-
tids accounted for 239 reference sequences (~30% of PhotoRefT), while archaea and
heterotrophic bacteria included 83 reference sequences (~10% of the total).

The branch length in PPE groups was visibly longer than in Oxyphotobacteria
clades, illustrating the wide evolutionary radiation among plastids. The reference
sequences from Chlorophyta, Cercozoa, Euglenida and the Dinoflagellata genus Lep-
idodinium clustered together naturally when inferring the tree, reflecting the shared
evolutionary origin of their plastids. In a similar way, the plastid derived from the
red algae lineage (Haptophyta, Ochrophyta and the rest of Dinoflagellates genera
[Karlodinium, Gyrodinium and Karenial) also grouped together despite the distinct
evolutionary history encoded in their nuclear genomes.

2.3.2 Long branch attraction effect

The placement of metaB and metaG reads on PhotoRefT revealed comparable re-
sults of relative abundance in most of the groups, except for Dinoflagellata and
Euglenozoa (Figure , upper treemaps). While Dinoflagellata accounted for < 1%
in metaB, they contributed to ~20% of the reads in metaG. On the other hand,
Euglenozoa represented 0.07% of the reads in metaB and up to 2.6% in metaG.

The differences in Dinoflagellata and FEuglenozoa between the two datasets was not
only concerning their abundance but also the pendant length of their placements:
reads classified as Dinoflagellata and Euglenozoa branched with longer pendant
branches in metaG than in metaB. Most of the metaG reads classified as Dinoflag-
ellata were placed in the inner branch of PhotoRefT that connects the group Lepi-
dodinium with Chlorophyta; that branch is by far the longest node in the tree. In
order to avoid possible misplacements in metaG caused by long branch attraction,
we filtered placements by pendant length. As described in Section 1.2.3, the filter-
ing step consisted of discarding those placements whose pendant length was four
times greater than the local average branch length. After applying this filter, the
relative abundance of Dinoflagellata and Euglenozoa in metaG decreased by more
than 15-fold, while it barely affected their frequency in metaB (Figure 2.2 lower
treemaps).

2.3.3 Comparison between annotation approaches

After feeding the classification algorithms with the collection of 2,544,771 metaB
sequences, we obtained 577,675 reads classified as PPE through phylogenetic place-
ment and 555, 215 reads through BLAST. Regardless that for most of the groups we
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Figure 2.1 — Composition of PhotoRefT 16S rDNA sequences. (A) Dis-
tribution of PhotoRefT clades coloured by supergroups, include the following cat-
egories: archaea, heterotrophic bacteria, Oxyphotobacteria and Eukaryota. (B)
Distribution of PhotoRefT clades coloured at group level (in the case of archaea
and heterotrophic bacteria) and at phylum level (in the case of Oxyphotobacte-
ria and Eukaryota). Oxyphotobacteria is represented by the following lineages:
Eurycoccales, Geitlerinematales, Gloeobacterales, Leptolyngbyales, Limnotrichales,
Neosynechococcales, Nostocales, Phormidesmiales, Pseudanabaenales, Synechococ-
cales and Thermosynechococcales. Eukaryota include the following phyla: Apicom-
plexa, Cercozoa, Chlorophyta, Cryptophyta, Dinoflagellata, Euglenozoa, Glauco-
phyta, Haptophyta, Rhodophyta and Streptophyta.
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Figure 2.2 — Relative abundance of PPE groups according to (A) metaB
data and (B) metaG data. The two upper treemaps show the contrlbutlon of each
group before applying any filtering step. The two lower treemaps show the relative
abundances after excluding reads placed with pendant branches 4 times longer than
their local average.
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recovered a higher amount of reads through placement, the composition of PPE com-
munity in terms of groups’ relative abundance showed comparable results between
the two annotation approaches (Figure. Haptophytes, Chlorophytes and Ochro-
phytes dominated PPE community according to both techniques. The only groups
contributing to more than 1% of the relative abundance and showing significant
differences between methods were Dictyochophyceae and Prasinophyceae Clade VII
(or Chloropicophyceae). The relative abundance of Dictiochophyceae was two-fold
higher in the assessment based on phylogenetic placement than in BLAST results.
On the contrary, Prasinophyceae Clade VII accounted for 3% of the relative abun-
dance according to placement and up to 7% according to BLAST. Pedinophyceae,
Pavlovophyceae and Chrysophyceae accounted for less than 1% of the relative abun-
dance according to BLAST approach while presented frequencies from 2 to 3 orders
of magnitude higher through placement.

A

Figure 2.3 — Estimates of PPE relative abundance in metaB dataset ob-
tained through (A) phylogenetic placement using PhotoRefT as reference tree and
(B) BLAST screening against PhytoREF database.

2.4 DISCUSSION

PhotoRefT is, to our knowledge, the first reference phylogenetic tree covering the
wide diversity of 16S rDNA from all known groups of photosynthetic organisms.
Most of the reference sequences in the tree correspond to Oxyphotobacteria, as a re-
sult of the extensive representation of this group in reference databases. The higher
phylogenetic diversity and longer branches observed in PPE clades, in comparison
with the low radiation within Oxyphotobacteria, suggests that there is still a signifi-
cant amount of diversity to uncover in PPE. The publication of PhytoREF database
(Decelle et al., 2015) was an important contribution towards the identification of 16S
rDNA environmental sequences, but a much broader diversity of reference plastidial
sequences from eukaryotic microalgae need to be implemented into PhytoREF in
the future. Dinoflagellata acquired plastids through the endosymbiosis of organelles
from diatoms, haptophytes, cryptomonads and green algae (Keeling 2010). In Pho-
toRefT we have only included representatives from two of the complex evolutionary
origins of Dinoflagellata plastids: the group of plastids acquired from haptophytes
(with representative sequences from Karenia, Karlodinium and Gyrodinium) and
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the plastids from the green algal lineage (with references from Lepidodinium). Until
reference sequences representative from the other evolutionary origins of Dinoflag-
ellata are not available, the evaluation of environmental sequences from this group
through PhotoRefT will be incomplete.

Unlike metaB reads, metaG sequences seemed to be susceptible to long branch at-
traction in placement. Most likely, this bias was only due to the short length of
metaG reads and could be corrected by excluding placements with long pendant
length. The annotation of PPEs showed highly similar results between placement
and BLAST approaches, with the main difference that phylogenetic placement al-
lowed to annotate more than 20, 000 additional sequences.

Overall, we show that PhotoRefT provides a reliable and unifying support to evalu-
ate the structure of phototrophic communities across any environment using meta-
omics data. This reference tree is meant to evolve in the future and include further
16S rDNA sequences from all phototrophic lineages.



3. Diversity and structure of
photosynthetic picoplankton in
the world surface ocean: a
unifying, cross-domain
perspective

Oceanic phytoplankton are composed of photosynthetic cyanobacteria (Oxyphoto-
bacteria) and eukaryotes, and generates nearly half of planetary primary production.
Despite their critical importance for the Earth system, ocean phytoplankton are still
relatively poorly characterised in terms of taxonomic abundance, as compared to
terrestrial plants. Traditionally, microbial phototrophs have been measured through
flow-cytometry and chromatography analyses of pigment extracts on one hand, with
very low taxonomic resolution, and PCR-based rDNA clone-libraries or metabar-
coding one the other hand, with poor quantitative resolution. Here we re-assess
the biodiversity of open ocean pico-phytoplankton using a phylogenetic placement
approach of PCR-free 16S rDNA metagenomics data from two circum-global expe-
ditions (Tara Oceans and Malaspina) onto a reference tree containing representa-
tive rDNA sequences from all known prokaryotic and eukaryotic phototrophs. This
approach minimises the quantitative biases associated to amplicon-based metabar-
coding, it uses a single marker gene to assess the diversity of both photosynthetic
prokaryotes and eukaryotes, and allows taxonomic assignation across the entire phy-
logenetic diversity of photosynthetic life. Our results show that assessment of total
phototrophic picoplankton through 16S rDNA extracted from metagenomes is highly
congruent with measures based on 16S rDNA metabarcoding, as well as 18S rDNA
recruitment from metagenomes. Oxyphotobacteria were three-fold more abundant
than phototrophic pico-eukaryotes (PPEs) in surface waters of (sub)tropical to tem-
perate oceans. However, PPEs were four-fold richer than Oxyphotobacteria, and
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essentially composed of micro-algae derived from secondary or higher-level of plas-
tid endosymbiosis, mostly Prymnesiophyceae, Pelagophyceae and Dictyochophyceae.
PPEs also displayed a significantly higher evolutionary diversity than Oxyphoto-
bacteria, presenting variances across groups and with Chlorophyta emerging as the
eukaryotic microalgae with the highest plastidial phylogenetic diversity. Overall,
our results support the use of metagenomic 16S rDNA phylogenetic placement as a
unifying, trans-domain method to assess total phototrophic communities. Finally,
the relatively good agreement between state-of-the-art meta-omics, old-style molec-
ular ecology, and traditional organismal/biochemical approaches to assess picophy-
toplankton indicate that the knowledge of the biodiversity of the organisms that
make up the bulk of primary production in the oceans is on its way to completion.

This Chapter corresponds to the draft manuscript submitted to PeerJ and is co-
authored by my supervisors Colomban de Vargas and Ramiro Logares; our colleagues
from the Heidelberg Institute for Theoretical Studies, Pierre Barbera and Lucas
Czech; my group colleagues Nicolas Henry, Ewen Corre and Cédric Berney; Pelin
Yilmaz, from the Max Planck Institute for Marine Microbiology, and members from
Tara Oceans and Malaspina consortia Julie Poulain, Susana Agusti and Carlos M.
Duarte. The body of the chapter is followed by the figures and tables corresponding
to the Supplementary Material.

3.1 Introduction

Oceans compose the largest continuous ecosystem on Earth and are populated by an
astronomical number of floating and drifting microbes. In the sunlit ocean, phyto-
plankton -all bacterial and eukaryotic microbes performing oxygenic photosynthesis-
is generating nearly half of planetary primary production (Field et al. 1998). By
doing so, phytoplankton sustains the whole ocean ecosystem, it also influences the
concentration of COy in the atmosphere (Westberry et al., 2008), and contributes to
the export of organic matter into the deep ocean (biological carbon pump, Passow &
Carlson, 2012). Understanding the compositional and functional dynamics of phy-
toplankton communities is critical to better predict the evolution of ocean eco- and
geochemical-systems, especially in a context of climate change, when these mecha-
nisms could be seriously perturbed (Ciais et al., 2013; Thornton, 2014; Ibarbalz et
al., 2019).

Ocean primary production has traditionally been attributed mostly to Oxyphoto-
bacteria, the cyanobacteria that perform oxygenic photosynthesis and whose origin
goes back to around 2.7 billion years ago (Gould, Waller & McFadden, 2008). In
the last two decades however, a few studies have reported eukaryotic plankton to
be capable of fixing significantly higher amounts of carbon than Oxyphotobacte-
ria despite being less abundant (Worden, Nolan & Palenik, 2004; Jardillier et al.,
2010; Rii et al., 2016). Eukaryotic phytoplankton originated from the primary en-
dosymbiosis between a heterotrophic protist and a cyanobacterium in the Protero-
zoic (Reyes-Prieto, Weber & Bhattacharya, 2007). The first major group of known
photosynthetic eukaryotes, Chlorophyta, is thought to have diversified later in the
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late Proterozoic / early Palaeozoic (Leliaert, Verbruggen & Zechman, 2011), and
thrived in marine waters until the Permo-Triassic mass extinction event. In the
early Mesozoic, numerous eukaryotic lineages with secondary plastids (e.g. hapto-
phytes, dinoflagellates and ochrophytes), diversified and replaced chlorophytes as the
dominant eukaryotic phytoplankton. In today’ oceans, the phototrophic eukaryotes
measuring <3pm (namely phototrophic picoeukaryotes or PPEs) have been found
to be responsible for up to 50% of picoplanktonic biomass and more than 40% of
CO. fixation in some oligotrophic waters (Not et al., 2008; Jardillier et al., 2010).
Despite the obvious ecological importance of these communities, we still lack an
accurate comparison on the overall abundance, richness and phylogenetic diversity
of PPEs vs. Oxyphotobacteria in modern world oceans.

Estimates of abundance and/or diversity of Oxyphotobacteria and PPEs in marine
waters have been performed primarily using flow cytometry and HPLC analyses of
pigment extracts (i.e. Li, 1989; Mackey et al., 1996; Buitenhuis et al., 2012). While
flow cytometry studies have demonstrated that Oxyphotobacteria account for ~30%
of the picophototrophs biomass in the global ocean (Buitenhuis et al., 2012), pigment
data has shown the prominence of haptophytes, diatoms and chlorophytes amongst
PPE lineages in marine waters (Latasa M & Bidigare, 1998; Not et al., 2005; Liu
et al. 2009). Over the last three decades, the poor taxonomic resolution power of
these methods was complemented by DNA metabarcoding survey of various marker
genes, such as 16S rDNA (e.g. Huang et al., 2012) and petB (e.g. Farrant et
al., 2016) for Oxyphotobacteria, or 185 rDNA (e.g. de Vargas et al. 2015) and
plastidial 16S rDNA (e.g. Kirkham et al., 2013) for PPEs. However, these different
molecular barcodes are hard to compare, and their amplification from environmental
DNA extracts by PCR may lead to serious quantification biases, mainly for the
18S rDNA genes whose copy numbers vary extensively amongst eukaryotes (see
supplementary figure W3 in de Vargas et al., 2015) and can display considerable
genetic variation even in a single species (e.g. Pillet, Fontaine & Pawlowski, 2012).
In addition, some of the PPEs, especially Dinophyceae and Chrysophyceae, contain a
significant proportion of taxa that have lost photosynthesis and became heterotroph;
studies based on nuclear 18S rDNA marker gene cannot distinguish them from their
phototrophic siblings.

In Chapter 3, we use a single marker gene - the V4V5 fragment of the 16S rDNA-
to assess and compare the entire bacterial and eukaryotic biodiversity of picopho-
totrophs in the world sunlit tropical and temperate ocean. Oxyphotobacteria of the
order of Synechococcales tend to have between one and four copies of 16S rDNA per
genome (Engene et al. 2011), thus allowing theoretically unbiased quantification in
this group. In eukaryotic chloroplasts, the number of plastidial genomes can vary
from 50 to 100 copies per organelle (Decelle et al., 2015), and we examined how this
could affect the quantification of PPE groups by comparing their abundance with
complementary analyses of 185 rDNA marker gene. In addition to using metabar-
coding datasets, we quantified the abundance of 16S rDNA reads directly from
metagenomic libraries generated from picoplankton total DNA extracts. These are
not subject to the exponential PCR amplification process used to generate amplicon
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data and thus should provide more accurate quantification of abundance. Finally,
in order to compare across domains and between sequencing methods (metabarcod-
ing and metagenomics), we developed a unifying phylogenetic placement strategy
allowing to quantify the number and diversity of DNA reads along a tree with rep-
resentative sequences of all known picophototrophic life (except for dinoflagellates).
Using this new framework, we reassessed the global relative abundance and diver-
sity of PPEs and Oxyphotobacteria in 52 samples from the Tara Oceans (Karsenti,
2012)and Malaspina (Duarte, 2015)expeditions, providing and new global view of
picoplanktonic phototrophic life in modern oceans.

3.2 Methods

Our goal was to reassess the diversity and distributions of marine pico-phytoplankton
using a plastidial rDNA marker gene obtained via different DNA sequencing proto-
cols and from two independent circumglobal oceanographic expeditions. We anal-
ysed sequence data collected from marine waters during the Tara Oceans and Malaspina-
2010 expeditions. All samples analysed were collected from surface waters (3 to 5
meters) and corresponded to the pico-plankton size-fraction (0.2 - 3 pm). In the
Tara Oceans dataset we selected the 42 stations available for combined metage-
nomics (metaG) and metabarcoding (metaB) data. The Malaspina-2010 dataset
included 10 matching stations for metaG and metaB data. All together, our data
covers large geographic areas of the tropical and temperate oceans in the Pacific,
Atlantic, and to a smaller extent Indian basins (Figure[S3.1). A detailed description
of Tara Oceans and Malaspina-2010 sampling stations and biological material pro-
cessing procedures can be found in Pesant et al., (2015)and Estrada et al. (2016),
respectively.

3.2.1 DNA sequencing data

The abundance and phylogenetic diversity of Oxyphotobacteria and Photosynthetic
Pico-Eukaryotes (PPEs) was compared by analysing 16S rDNA metabarcoding (metaB)
and metagenomic (metaG) datasets generated from the same Tara Oceans and
Malaspina-2010 samples (Section 3.2.2). The datasets from the two expeditions
were analysed independently and used as replicates for 16S metaB vs. metaG com-
parison. Additionally, we used 18S rDNA metaG reads from Tara Oceans samples to
cross-check the estimates obtained for the different groups of PPEs using both plas-
tidial and nuclear marker genes (Section 3.2.4). Figure describes the datasets
used.

3.2.1.1 Tara Oceans metabarcoding (metaB) datasets

The Tara Oceans dataset included 16S V4-V5 rDNA metaB sequences from 41 pi-
coplankton samples available at ENA repository XXXX. The primers used for am-
plifying 16S rDNA V4-V5 region were 515yF 5-GTGYCAGCMGCCGCGGTAA-3’
and 926R 5-CCGYCAATTYMTTTRAGTTT-3’ (Parada, Needham & Fuhrman,
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2016). DNA amplification was followed by Illumina sequencing with the Hiseq2500
system. After cleaning and filtering the metaB as described in Mahé et al.(2017),
the reads were clustered into operational taxonomic units (OTUs) using the Swarm
v2 clustering software (Mahé et al., 2015), resulting in 87,634 OTUs and 14,145,403
reads, each OTU containing at least 2 reads from 2 different samples. The resulting
OTU table comprising 41 Tara Oceans samples represented an average of ~345,010
reads per sample and ~7,408 OTUs per sample. We rarefied the dataset to the
lowest number of reads per sample (i.e. 201,404 reads) using the rrarefy function
from the R package vegan (Oksanen et al., 2018). The rarified table had a total
of 8,257,564 reads, 68,293 OTUs and an average of 5,652 OTUs per sample (Fig-
ure [S3.2). We refer to the rarefied table as TO-16S-metaB (for Tara Oceans 16S
rDNA metaB).

3.2.1.2 Malaspina-2010 metabarcoding datasets

For the Malaspina metaB dataset, we used the 16S rDNA data published in Logares
et al., (2018). The 16S rDNA V4-V5 sequences of Malaspina samples were amplified
by PCR using the same primers as in Tara Oceans metaB (515yF and 926R), and
sequenced on an Illumina MiSeq sequencing platform. Amplicons were processed us-
ing the pipeline available at https://github.com/ramalok/amplicon_processing. In
this pipeline, the obtained paired-end reads were merged using PEAR (Zhang et
al., 2014), and only those assembled sequences measuring over 100 bp were selected.
Next, USEARCH (Edgar, 2010) was used for read quality checking, dereplication,
OTU clustering (UPARSE algorithm, similarity 99%) and chimera filtering using
SILVA v.119 (Quast et al., 2013) as the reference database. The OTU table com-
prising the 10 Malaspina samples included 429,116 reads and 5,936 OTUs, with an
average of ~42, 912 reads per sample and ~1,765 OTUs per sample. After rarefying
(same procedure as with TO-16S-metaB) to 5,557 reads per sample, the obtained
dataset had 55,570 reads, 3,370 OTUs and an average of 750 OTUs per sample.
The Malaspina rarefied OTU table is referred as MSP-16S-metaB (for Malaspina
16S rDNA metaB).

3.2.1.3 Metagenomic sequence datasets

For community analyses based on rDNA from metagenomic reads, we used datasets
from 42 Tara Oceans samples (Sunagawa et al., 2015) and 10 Malaspina-2010 pi-
coplankton samples. MiTag sequences are publicly available at ENA under the
project YYYYY. In both cases, the environmental samples were sequenced with
umina HiSeq2000. The total metaG reads were filtered with HMM profiles to
extract the sequences belonging to 16S rDNA (in both Tara Oceans and Malaspina-
2010 samples) and 18S rDNA (in Tara Oceans samples) and analysed as described
in Logares et al. (2013).

We subsampled the 16S rDNA datasets from 42 Tara Oceans samples and 10
Malaspina samples to the lowest number of reads per sample in each dataset us-
ing VSEARCH v2.4.3 (Rognes et al., 2016). The subsampling value was 40,590
reads per sample for the Tara Oceans dataset and 14,808 reads per sample for the
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Malaspina dataset. Hereafter, the 16S rDNA metaG datasets from Tara Oceans and
Malaspina are referred as TO-16S-metaG and MSP-16S-metaG, respectively.

Contrary to the 16S rDNA datasets, we did not perform taxonomic assignment of
Tara Oceans 18S rDNA metaG reads through phylogenetic placement (see Section
2.2.1), but rather through miTags clustering (Logares et al., 2013). We mapped
the reads to reference OTUs deriving from an ad-hoc Sanger database that included
SILVA v.119 for 18S rDNA reads. This database was pre-clustered at 97% using
USEARCH and the cluster-representative sequences became reference OTUs. OTU
delineation was performed using UCLUST with the following parameters: identity
>99%, coverage 90%, --maxaccepts 5,000 and --maxrejects 5,000. The output table
contained 183,939 reads and 7,663 miTags, with an average of ~4, 380 reads and
1,348 miTags per sample. We refer to the table as TO-185-metaG (for Tara Oceans
18S rDNA metaG).

3.2.2 Characterisation of phototrophic group richness and
relative abundance

We assessed the community in picophototrophs in metaB and metaG data using
the annotation pipeline described in Chapter 2. In short, the method consisted on
placing 16S rDNA reads into the PhotoRefT reference tree. PhotoRefT contains 802
16S rDNA sequences representing the main lineages of Oxyphotobacteria and PPE,
together with ~90 outgroup sequences from Streptophyta, archaea and heterotrophic
bacteria. This tree provides the support to identify high-throughput reads from
picophototrophs through phylogenetic placement. In our study, MetaB and metaG
reads were placed in PhotoRefT using EPA-ng (Barbera et al., 2017). Placements
with pendant branches four-times longer than the local average were excluded. We
obtained the estimates of abundance and diversity for the different groups under
study (see Table 2.1) by filtering placements with a likelihood weight mass threshold
of 0.95 using GAPPA (Czech & Stamatakis, 2019).

3.2.3 Phylogenetic diversity measurements

We compared the phylogenetic structure of the different phototrophic communities
using Faith’s phylogenetic diversity metric (PD) and the mean pairwise distance
(MPD) divergence index. While PD measures the evolutionary diversity in a com-
munity, MPD tells us about the average phylogenetic diversity of species within
samples. We limited our diversity measurements to the TO-16S-metaB dataset as
its higher sequencing depth allows for the evaluation of the largest possible diversity
of Oxyphotobacteria and PPEs in the analysed samples.

We selected the 12,709 OTU sequences from TO-16S-metaB which were classified
as phototrophic after phylogenetic placement to build a phylogenetic tree. We then
aligned these sequences using MAFFT v7.299b (method FFT-NS-2, parameters --ep
0.2 --op 2.5). The output was trimmed with ¢rimAL using options -gt 0.2 -st 0.0005.
The resulting alignment was passed to RAzML-NG (Kozlov et al., 2019)to infer 20
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trees using the GTRGAMMA model. Tree searches were topologically constrained
at phylum level and GloeobacterPCC7421_AF132791 was used as the outgroup. We
selected the best-scoring maximum likelihood tree for PD and MPD analyses. PD
was calculated using the pd function from the R package Picante (Kembel et al.,
2010)and normalizing it by number of species in each sample. MPD was computed
with the function ses.mpd from the same package, weighting species by abundance.

3.2.4 Cross-validation of meta-omics approaches

We compared the estimates of the PPE groups’ relative abundances between meta-
omics approaches (PCR-free metaG vs. PCR-based metaB) and marker genes (plas-
tidial 16S rDNA ws. nuclear 185 rDNA) [SF1] using Tara Oceans datasets: TO-16S-
metaG, TO-16S-metaB and TO-18S-metaG. The taxonomic groups that appeared
in less than 50% of the samples were excluded from the analysis. We normalised
the data using the centred log-ratio (clr) transformation to later test for variation
between samples in each dataset through Principal Component Analysis (PCA). We
compared the equivalence between dataset ordinations using the symmetric Pro-
crustes rotation function protest from vegan with 999 permutations.

3.3 Results

3.3.1 Global contribution and distribution of PPEs and Oxypho-
tobacteria

A total of 1,970,069 reads and 12,709 OTUs from TO-16S-metaB were classified
as phototrophs, representing 24% of reads and 19% of OTUs. While the Oxypho-
tobacteria accounted for >70% of picophototrophs’ global relative abundance, they
represented only ~20% of their richness (Figure . Synechococcales was the dom-
inant group in Oxyphotobacteria while the remaining phyla contributed to less than
3% of the phototrophic bacteria fraction abundance and richness. In the PPE com-
munity, Prymnesiophyceae, Mamiellophyceae, Pelagophyceae and Dictyochophyceae
were the most abundant and diverse groups (Figure , jointly contributing to 90%
and 83% of the total relative abundance and richness in PPEs. Remarkably, Prymne-
siophyceae alone (with 5,917 OTUs) accounted for about 60% of the relative richness
in the picoeukaryotic community and ~47% of the overall richness of photosynthetic
picoplankton in the analysed samples.

A total of 74,688 reads (4.4%) from TO-16S-metaG were placed in some phototrophic
groups. The results of abundance and richness obtained in this metagenomic dataset
(Figure were remarkably comparable to the ones described for TO-16S-metaB.
Most of the groups’ abundances were correlated between metabarcoding and metage-
nomics sequencing techniques (Figure ; only low abundance groups (relative
abundance <1%) showed some differences. Groups like Cryptophyta, Euglenozoa,
Chlorarachniophyceae, Rhodophyta, Ulvophyceae and Nephroselmidophyceae were
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Figure 3.1 — Composition of Oxyphotobacteria and PPE communities in
the 41 TO-16S-metaB samples according to (A) relative abundance and (B)
richness. The relative contribution of each group is represented both as (i) heat
trees -where each branch of the 16S rDNA reference tree is colored according to
accumulated placement mass-, and (ii) tree maps. The heat trees include reference
sequences from Oxyphotobacteria (green labels); archaea and heterotrophic bacteria
(blue label), and PPEs (grey labels). PPE references include the following groups:
Euglenozoa, Cercozoa, Chloroplastida, Ochrophyta, Rhodophyta, Haptophyta, Di-
noflagellata, Apicomplexa, Cryptophyta and Glaucophyta. Oxyphotobacteria I en-
compasses Eurycoccales, Leptolyngbyales, Limnotrichales, Phormidesmiales, Pseu-
danabaenales, Synechococcales and Thermosynechococcales, while Oxyphotobacte-
ria II corresponds to Nostococales.
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Figure 3.2 — Correlation of phototrophic groups’ relative abundance ob-
tained in metabarcoding (TO-16S-metaB) and metagenomic (TO-16S-
metaG) datasets. (A) Correlation of Oxyphotobacteria and PPE phyla (Dino-
phyta excluded). (B) Correlation of the PPE groups within the three main eukary-
otic phyla (Chlorophyta, Haptophyta and Ochrophyta).
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better captured by metaG, while Chloropicophyceae, Pavlovophyceae and Raphido-
phyceae showed higher values in the metaB approaches (Figure [3.2)).

Photosynthetic groups displayed biogeographic trends associated to oceanic basins
(Figure , Figure and Figure . For instance, Oxyphotobacteria showed
significantly lower relative abundance in the South Atlantic Ocean, in comparison
with the sampling sites in the South Pacific Ocean and Indian Ocean (Scheffe’s
Test p < 0.05). Contrarily, Mamiellophyceae constituted more than half of PPE
abundance in some samples from the North Atlantic, Indian and first stations of
the South Atlantic Oceans, while they were almost absent in most samples of the
Pacific Ocean. Prymnesiophyceae fluctuated notably across regions, ranging from
8% to 78% in PPE relative abundance. Other dominant groups like Pelagophyceae
and Dictyochophyceae showed their highest peaks in relative abundance (of up to
58% and 36%, respectively) around the stations of South Pacific and South Atlantic
Oceans.

The relative richness of groups like Oxyphotobacteria, Haptophyta and Chloro-
phyta fluctuated proportionally to their contribution to the relative abundance (Fig-
ure , showing correlation values above +0.8 between the two indexes. In op-
position, the distribution of Ochrophyta’s relative richness was strikingly constant
across sampling sites.

As for Malaspina results (Figure [S3.8), in MSP-16S-metaB we classified 23,286
reads and 781 OTUs (42% and 23% of the total reads and OTUs, respectively)
as phototrophic. In MSP-16S-metaG, we classified 2,761 reads (2% of the total) as
Oxyphotobacteria or PPE. The main difference between the results from Malaspina
and Tara Oceans data was that in the former dataset, Oxyphotobacteria accounted
for a larger proportion of phototroph abundance (>98% in MSP-16S-metaB and
>92% in MSP-16S-metaG). In terms of diversity, we found Oxyphotobacteria to
be the dominant group in MSP-16S-metaB, with 74% of the OTUs. Cryptophyta,
Rhodophyta, Euglenozoa and most of the groups under 1% of abundance in the
Tara Oceans samples were not detected at all in Malaspina samples. Despite these
discrepancies, the results from the Malaspina stations were also consistent between

sequencing methods (metaB vs. metaG) (Figure [S3.9)).

3.3.2 Characterisation of phylogenetic diversity between pho-
totrophic communities

The global phylogenetic diversity of phototrophic communities as measured by the
PD index, was significantly higher (p < 0.01 Wilcoxon test) in PPEs (PDz = 0.092,
PDgp = 0.055) when compared to that of Oxyphotobacteria (PDZ = 0.032, PDgp =
0.003) (Figure [3.3A). Similarly, MPD (Figure 3.3B) was higher (p < 0.01 Wilcoxon
test) in PPEs (MPDzZ = 0.984, MPDgp = 0.325) than in Oxyphotobacteria (MPDZ
= 0.047, MPDgp, = 0.018).

Regarding PPE groups, the ones with highest PD values were Chlorophyta (z =
0.318, PDgp= 0.25), Rhodophyta (PDZ = 0.374, PDgp = 0.285) and Euglenozoa
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(PDz = 0.34, PDgp = 0.215). In contrast, the two other dominant PPE phyla,
Haptophyta (PDz = 0.051, PDgp = 0.023) and Ochrophyta (PDz = 0.076, PDgp =
0.033), displayed lower PDs. Chlorophyta (MPDz = 1.13, MPDgp = 0.863) was the
group that contributed the most to PPEs” MPD and showed differences of up to 16-
fold between the samples. Within Haptophyta, MPD was low and constant across
samples (MPDZ = 0.205, MPDgp = 0.022). In comparison, Ochrophyta showed
greater MPD average and variance (MPDz = 0.337, MPDgp = 0.177).

3.3.3 Sequencing methods comparison

The quantification of PPE groups’ relative abundances with different marker genes
chloroplastic 16S ws. nuclear 185 rDNA) and meta-omics approaches (metaB vs.
metaG) showed strongly correlated results (Table 3.1). The symmetric Procrustes
analysis indicated that the correlations (Procrustes.,,) between datasets ordinations
were above 4-0.8 in all cases, meaning that they provide a similar view of PPE com-
munity structure. The ordinations of TO-metaG-16S and TO-metaG-18S samples
correlated slightly better between themselves (Procrusteseo, = 0.896) than when
they were compared against the results of TO-metaB-16S (Procrustes.,, = 0.804,
in both cases). The permutation p-values were 0.001 in all comparisons, indicating
that the similarity between datasets ordinations was significant. The fact that TO-
metaG-16S correlated better with TO-metaG-18S than with TO-metaB-16S argues
that the quantification of PPEs was more susceptible to biases derived from the
adopted meta-omics approach than from the differences that we could expect from
amplifying two different marker genes. On the other hand, the strong correlation
between metaG datasets points out that 16S and 18S rDNA provide close estimates
of PPE when analyzed through metaG approach.

3.4 Discussion

3.4.1 MetaB and metaGG sequencing approaches to assess
the diversity of ocean picophytoplankton.

In general, our results show that the assessment of total phototrophic picoplankton
(both prokaryotes and eukaryotes) through 16S rDNA metaB and metaG sequenc-
ing yield strikingly similar results. The strong correlation between both methods
suggests that the plastidial sequence-based measure used herein is not significantly
conditioned by the potential biases associated with each sequencing approach. In
addition, this suggests that reads as short as 100bp (as found in metaB) hold suf-
ficient information for taxonomic profiling of most of the PPE plastid groups, as it
was observed in bacterial communities (Hao & Chen, 2012; Logares et al., 2013).
In fact, low-abundance PPE groups such as Cryptophyta, Euglenozoa, Cercozoa,
Rhodophyta, Ulvophyceae or Nephroselmidophyceae were detected in higher pro-
portion through metagenomic data than in amplicons sequencing. Such difference
could be explained by primer mismatch in these groups during metaB amplification,
or PCR underestimation of low-abundance species (Gonzalez et al., 2012). On the
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TO-16S-metaB TO-16S-metaG TO-18S-metaG
1 0.8047 0.8049
TO-16S-metaB
p-value 0.001 p-value 0.001 p-value 0.001
0.8047 1 0.8960
TO-16S-metaG
p-value 0.001 p-value 0.001 p-value 0.001
0.8049 0.8960 1
TO-18S-metaG
p-value 0.001 p-value 0.001 p-value 0.001
Table 3.1 — Comparison of Tara Oceans datasets composition based

on relative abundance of PPEs. Individual datasets variation was evaluated
through PCA and later compared with the rest of datasets with Procrustes correla-
tion. The correlation between datasets ordinations is above 0.8 in all comparisons
and the significance of the Procrustes statistic obtained after 999 permutations is
positive in all correlations (p-value = 0.001).

other hand, the low abundance or lack of detection of Chloropicophyceae, Pavlovo-
phyceae and Raphidophyceae in 16S rDNA extracted from metagenomes could be
explained by the significantly lower amount of data recovered by metaG as com-
pared to deep-sequencing metaB. These groups could have been under-estimated or
missed due to low sequencing coverage. Overall, low abundance PPE groups seem
to be underrepresented in both sequencing approaches. While metaG sequencing
might be more accurate when it comes to quantify the relative abundance of rare
groups, metaB sequencing is more likely to detect their presence or absence without
requiring the sequencing depth applied to metaG.

As in Tara Oceans datasets, the assessment of Oxyphotobacteria and PPE groups
in Malaspina samples displayed comparable results between sequencing approaches.
This suggests that the differences in the groups’ relative abundances between the
two expeditions may be related to variations in their sampling routes, temporal
changes in communities or seasonality, or generated by the different DNA extraction
protocols.

We did not identify significant differences between 16S rDNA and 18S rDNA on
PPE screening, as reported in Shi et al. (2011). On the contrary, the high sim-
ilarity between T'O-16S-metaB and TO-16S-metaG with TO-18S-metaG validates
the use of the bacterial/plastidial 515yF-926R primers and whole plankton metaG
sequencing for assessment of PPE community. Furthermore, the positive correlation
of PPE groups’ relative abundances obtained through the plastidial and nuclear
marker genes could indicate that the ratio between 16S and 18S copy number in
PPEs remains proportional across groups.
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3.4.2 Community structure of Oxyphotobacteria and PPEs

According to both metaG and metaB, Oxyphotobacteria were three-fold more abun-
dant than PPEs in surface oligotrophic waters of temperate and tropical ocean re-
gions. This is consistent with the higher biomass of Oxyphotobacteria in temperate
surface waters reported previously by Bouman et al. (2011) and Buitenhuis et al.
(2012). In agreement with preceding studies based on flow cytometry (e.g. Buiten-
huis et al., 2012), molecular probes (Kirkham et al., 2013), and pigment markers
(Bouman et al., 2011), we also observed an increase of PPE relative abundance as
latitude increases. Eukaryotic plastidial genomes contain between 1 and 10 copies
of 16S rDNA, although typically they hold two replicates of the gene (Decelle et
al. 2015, Green 2011). Even if most PPEs tend to have one or very few plastids
per cell, the number of plastidial genomes per chloroplast in eukaryotic cells ranges
between 50 and 100 copies for what we know (Decelle et al. 2015). We still lack
detailed data about the variability in the number of plastidial genomes per cell
across the different eukaryotic groups, making it hard to estimate PPE cell number
through 16S rDNA counts. In the case of Oxyphotobacteria though, we can infer cell
number quite directly through ribosomal genes because the number of 16S rDNA
copies per genome only oscillates between 1 and 4. The low number of 16S rDNA
copies per cell in Oxyphotobacteria, in comparison with that in PPEs, reinforce the
greater dominance of this group within picophototrophic communities in terms of
cell number.

In terms of richness, PPEs accounted for ~80% of picophototrophs total richness,
thus largely dominating Oxyphotobacteria. The principal groups were Prymne-
siophyceae, Mamiellophyceae, Pelagophyceae and Dictyochophyceae. Overall, eu-
karyotic microalgae from the ‘red lineage’ (containing ‘red’ plastids from secondary
or higher-level endosymbiosis), essentially mixotrophic, are dominating open ocean
PPE communities. The strong diversification and cosmopolitanism of Prymnesio-
phyceae in the open oceans, which account for ~60% of PPE richness in our datasets,
has been highlighted previously through molecular hybridisation and 16S rDNA
(Jardillier et al., 2010; Kirkham et al., 2013) and 28S rDNA (Liu et al. 2009)
Sanger-sequenced libraries, as well as via pigment data (Not et al. 2008, Liu et al.
2009), and using Illumina-sequenced 18S V9 amplicons data (De Vargas et al., 2015).
Pelagophyceae displayed an average relative abundance of 14% within PPEs. Not
et al. (2008) identified this group as dominant in the surface of the Indian Ocean,
contributing 28% of picoeukaryotic pigments. Using 16S rDNA Sanger-sequenced
libraries, Shi et al. (2011) also detected a high abundance of Pelagophyceae in the
South Pacific, accounting for 60-17% of the sequences. Additionally, the abundance
of Pelagophyceae in our results match fairly well the estimates from the Tara Oceans
stations in common with our study reported by de Vargas et al. (2015) and based
on massive 185 V9 rDNA metaB. Dictyochophyceae accounted for 5-8% of PPEs
global relative abundance in metaB and metaG, respectively. Shi et al. (2011) and
de Vargas et al. (2015), show relative contributions of Dictiochophyceae comparable
to our observations.
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Chlorophyta accounted for 26% of the global relative PPEs abundance and this
group displayed high variability across basins: while they contributed to 12.4% of
the reads in the South Pacific Ocean -consistently with the results reported by Shi et
al. (2011)-, in the Indian Ocean they reached ~46% of the reads in the community.
In de Vargas et al. (2015), the contribution of Mamiellophyceae to PPE relative
abundance is half of what we observed in the matching stations. The difference on
the quantification of this group in comparison to our study could be due to the fact
that piconano-size fraction in de Vargas et al. (2015) [0.8-5pm] is slightly bigger
than the one used in this survey (0.2-3pm), but also because of primer mismatch
in Mamiellophyceae 185 V9 rDNA or over-quantification of this group through 16S
rDNA.

While Chrysophyceae accounted for <3% of the relative abundance in metaB and
metaG, it is one of the dominant groups in the study of Kirkham et al. (2013), where
they analyse over 90 stations covering the major ocean basins through 16S rDNA dot
blot hybridisation and cloning-sequencing data. The frequency of Chrysophyceae is
also comparatively higher in Shi et al. (2011), where the group accounts for ~20%
of the total relative abundance. In contrast, the contribution of Chrysophytes in de
Vargas et al. (2015), as measured by massive Illumina sequencing of nuclear 185-V9
metaB, is similar to that in our results. This suggests that the relatively high abun-
dance detected previously for this group could be due to PCR amplification biases
of the relatively larger DNA fragment used for Sanger-sequenced clone-libraries a
decade ago.

Recent studies have reported Chloropicophyceae as a prevalent group in the olig-
otrophic ocean (Dos Santos et al., 2018; Tragin & Vaulot, 2018; de Vargas et al.,
2015). Overall, we detected an abundance of less than 1% of Chloropicophyceae in
both our metaB and metaG datasets. Since we do not observe differences between se-
quencing approaches, the underestimation of Chloropicophyceae in our results could
derive from post-sequencing analyses like an incomplete representation of this group
in the PhytoRefT database.

In summary, we show that the structure of picophototrophic communities obtained
by metaB (using the 515yF-926R 16S rDNA primers) and metaG sequencing is
broadly comparable to the estimates obtained through flow cytometry, molecular
probes hybridisation, pigments data, 16S rDNA clone libraries or 18S rDNA ampli-
cons. Most of the groups could be identified through phylogenetic placement and
our approach provides phylogenetic information of picophototrophs diversity that
we miss through methods that only rely on similarity to reference sequences for
taxonomic identification.

3.4.3 Phylogenetic assessment of picophototrophic commu-
nities
Despite Oxyphotobacteria displayed higher richness than PPEs in some stations, we

observed a significantly lower phylogenetic diversity in this group than in the PPE
community. The diversity of Oxyphotobacteria, mainly concentrated in a single
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taxonomic rank, contrasts with the pattern revealed in PPEs, where divergence is
scattered through polyphyletic eukaryotic lineages. The higher evolutionary diver-
sity observed in eukaryotic plastids reflects the wide variety of functional strategies
known (and still unknown!) in photo/mixotrophic protists, and could also be ex-
plained by the fact that endosymbionts’ genomes evolve faster than those of related
free-living lineages (Moran, 1996).

The dominant PPE groups differed in PD and MPD: in comparison with Ochrophyta
and Haptophyta, Chlorophyta plastids displayed a larger PD and MPD. The high
evolutionary diversity in Chlorophyta could indicate faster evolutionary rates, longer
evolutionary history, and/or lower purifying selection in the organelles of this group.
However, plastid evolution is so complex that it cannot be inferred using 16S rDNA
as the only marker gene (Keeling, 2004; Sanchez-Puerta & Delwiche, 2008). Analyses
of further genes related to the photosynthetic machinery of PPE would help to
better disentangle the causes for differential evolutions of PPEs’ plastids. Besides,
nuclear-encoded genes can show different evolutionary pathways compared to plastid
genome-encoded markers (Cuvelier et al., 2010) and complementing these results
with analyses of 185 rDNA PD and MPD will also be necessary to clarify if the
diversity observed in PPE plastids is consistent with the evolutionary signal encoded
in their nuclear genomes.
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3.5 Supplementary Figures

®Malaspina
®Tara Oceans

Figure S3.1 — World map with the distribution of the Tara Oceans and
Malaspina samples analysed.



3. Diversity and structure of photosynthetic picoplankton in the world surface

34 ocean: a unifying, cross-domain perspective
16S rDNA 18S rDNA
metaG metaB metaG

] | |

MP-16S-metaG TO-16S-metaG MP-16S-metaB TO-16S-metaB TO-18S-metaG
10 samples 42 samples 10 samples 41 samples 42 samples
14,808 reads/sample 40,590 reads/sample 5,557 reads/sample 201,404 reads/sample 4,380 reads/sample

750 OTUs/sample 5,652 OTUs/sample

1. Characterisation
of richness and
abundance
distribution

3. Sequencing
methods
comparison

2. Phylogenetic

diversity analysis

Figure S3.2 — Methods diagram describing the input datasets and their
use in the different analyses.
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Figure S3.3 — Relative abundance of Oxyphotobacteria and PPEs com-
munities in the 42 samples of TO-16S-metaG. The relative contribution of
each group is represented both as (i) heat tree displaying the number of metage-
nomic reads (16S rDNA) placed in our summary tree of photosynthetic life, and (ii)
tree map showing the relative proportion of metagenomic reads amongst photrophic
phyla. The heat tree includes reference sequences from Oxyphotobacteria (green la-
bels); archaea and heterotrophic bacteria (blue label), and PPEs (grey labels). List
of groups as in Figure 3.1.
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Figure S3.4 — Global relative abundance and richness of Oxyphotobac-
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Figure S3.6 — Global abundance and diversity of PPE at class level across
sampling stations. Ocean basins acronyms as in Figure S3.4. (A) Relative abun-
dance of PPE groups in TO-16S-metaB stations. (B) Relative abundance of PPE
groups in TO-16S-metaG. (C) Relative richness of PPE groups in TO-16S-metaB
stations.
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Figure S3.8 — Composition of Oxyphotobacteria and PPE communities
in the 10 Malaspina samples. (A) Relative abundance of phototrophic groups in
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(C) Relative richness of phototrophic groups in MSP-16S-metaB. The relative con-
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heat trees include reference sequences from Oxyphotobacteria (green labels); archaea
and heterotrophic bacteria (blue label), and PPEs (grey labels). List of groups as
in Figure 3.1.
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4. Modelling metagenomes to
assess pico/nano-plankton
trophic diversity across the
world ocean

Marine microeukaryotes present a diversity of trophic strategies. While some of these
organisms feed purely through photosynthesis or phagotrophy, phago-mixotrophy is
increasingly being recognized as an inherent capability of many eukaryotic plank-
ton groups that inhabit the photic-zone. The identification of a protist’s trophic
mode can be challenging because most groups are uncultured and their physiol-
ogy can change across life-cycle, season and region. In this chapter, we built up
and describe a new model that allows the quantification of different trophic groups
(photo-, phagomixo-, phago- and osmo-trophs) in metaG samples. The model was
fed with the collection of genes recruited from 7Tara Oceans metagenomic samples to
evaluate the prevalence of the different trophic groups across the oligotrophic ocean
and plankton size-fractions. Next, we evaluated the correlation of trophic groups’
estimates with environmental parameters. Our results indicated that phototrophs
account for more than half of the taxa in most piconano- and nano- size fraction
samples. We also observed that phago- and phagomixo-trophs contribute to about
one quarter of the planktonic communities each. The trophic composition of the eu-
karyotic communities showed comparable results across plankton size fractions and
between surface and ‘deep-chlorophyll maximum’ depths, but we detected differences
among size fractions and depths when compared with environmental factors.

The model described in this chapter was developed by our collaborators John Burns
(Bigelow Laboratory for Ocean Sciences) and Giulio Trigila (Baruch College). The
analysis of Tara Oceans metaG datasets was done in collaboration with John Burns,
my supervisors Colomban de Vargas and Olivier Jaillon, and our colleagues Eric
Pelletier and Nicolas Henry.
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4.1 INTRODUCTION

Energy and mass flows in marine systems are still poorly understood. This is in part
due to our limited knowledge about the exact nutritional strategy of many groups
of microeukaryotes. The quantification of trophic groups in plankton ecosystems
has been tackled through field surveys and, more recently, by means of modelling.
Field studies based on taxonomic identification provide us with a broad picture of
community composition (e.g. de Vargas et al., 2015), but the identification of trophic
mode is only possible for those relatively few species or groups with known trophic
physiology (Faure et al., 2019). On the other hand, numerical models have provided
us with a holistic view of marine plankton ecosystems functioning (e.g. Mitra et
al. 2014; Ward and Follows, 2016), but they lack physio-taxonomic precision and
thus depend on highly idealized simulations. Despite the ecological importance of
microbial food-webs in the ocean, we still miss a comprehensive measure of the global
distribution and abundance of plankton trophic groups.

Recently, Burns et al. (2018) published a model that can predict the trophic mode
of an organism based on its genotypic composition. In Burns’ study, they screened
polyphyletic reference genomes representative for phago-, photo- and proto-trophic
organisms, and identified a set of proteins enriched for each trophic group. Based
on the presence of such proteins in a query genome, their model predicts capacity
for phagocytosis, phototrophy and prototrophy in individual species.

In the present study, we adapted the model described in Burns et al. (2018) to
predict the proportion of photo-, phagomixo-, phago- and osmo-trophic groups
in any planktonic community through its metaG signature. With this new ap-
proach, we screened the catalog of ~116 million unigenes (or assembled transcripts)
generated from Tara Oceans metaG samples (Carradec et al., 2018) to describe
the trophic composition of eukaryotic plankton communities across the global olig-
otrophic ocean. Some phago-mixotrophic protists in large size fractions only have
the intrinsic capacity to perform phagocytosis but are able to exchange nutrients
with symbiotic phototrophs (Stoecker et al., 2017). Since this model is not able
to distinguish phago-mixotrophic activity derived from symbiotic relationships (i.e.
involving multiple genomes), we limited our analyses to piconano- (0.8-5um) and
nano- (5-20pm) size fractions. Lastly, we compared the frequencies of the different
trophic modes with environmental parameters to try to identify which factors drive
trophic communities’ structure.

4.2 METHODS

4.2.1 DMarine plankton unigenes selection

We screened the collection of ~116 million transcripts from Tara Oceans to identify
unigenes matching the proteins predictive for trophic mode. Such proteins were the
ones used by the model published in Burns et al. (2018). The original version of
Burns’ model uses a set of ~14, 000 predictive proteins profiled into Hidden Markov
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Models (HMMs). In the first round of unigene identification, we used a reduced
version of the model based on 2,000 HMMs with the purpose of minimising the
complexity of the unigene collection. We translated unigene sequences into the six
possible protein coding frames using transeq (Madeira et al., 2019) and compared
them against the 2,000 HMMs using hmmsearch v3.162 (Eddy, 1998) to look for
significant sequence matches. We normalised the alignment e-values based on the
size of the unigene database and selected the hits with hmm e-value < 107° and
domain e-value < 107%. Next, we refined the identification of unigenes by feeding
the obtained hits into the model from Burns et al. (2018) once more, this time using
the version of the algorithm that includes 14,000 HMMs in order to obtain more
accurate annotations. The results were normalised and filtered by e-value using the
same parameters as in the first identification cycle. Among the selected unigenes,
those classified as metazoa were excluded from downstream analyses. This yielded
a total of 2,061,313 unigenes predictive for trophic mode.

We selected the unigenes appearing in samples from piconano- and/or nano- size
fractions located in surface (SUR) and deep chlorophyll maximum (DCM) depths.
Overall, the final unigenes dataset comprised 171 samples covering 63 sampling
sites. We selected unigenes with >3 reads per sample and used unigene count data
normalised per sample using the following formula:

=

J

A= o 41
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where Aj; represents the relative abundance of unigene j in sample 7; R; is the
number of reads mapped on unigene j; L; is the length of unigene j covered by
reads, and Zé\f:l R;; is the total amount of reads in sample ¢ that mapped on all
unigenes.

4.2.2 Model for trophic diversity prediction

The model described in this section was designed to determine the proportion of
trophic groups (including photo-, phagomixo-, phago- and osmo-trophs) in a metaG
sample based on its gene content. The approach used a set of ~600 predictive genes
from the collection of 14,000 proteins described in Burns et al. (2018), selected by
virtue of their low copy number in the reference genomes (see the list of reference
genomes in the Table 4.1).

To infer trophic group proportions from metaG data, the model of Burns et al.
(2018) was extended to a likelihood mixture estimate approach whose mathematical
procedures will be described in detail in a future publication by Trigila, Rubinat
and Burns. In brief, the approach estimates the mixture of reference genomes that
best represents the gene counts observed in metaG samples for proteins belonging
to each predictive model. As represented in a simplified schema in (Figure the
likelihood mixture model is provided with (i) count data of the predictive genes
in a metaG sample of unknown composition and (i) the frequency data of the
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PHOTOTROPHS
R T

Arabidopsis thaliana Chloroplastida
Brachypodium distachyon Chloroplastida
Chlamydomonas reinhardtii Chloroplastida
Chlorella variabilis Chloroplastida
Cyanidioschyzon merolae Rhodophyta
Mimulus guttatus Chloroplastida
Oryza sativa Chloroplastida
Physcomitrella patens Chloroplastida
Picea abies Chloroplastida
Selaginella moellendorffii Chloroplastida
Volvox carteri Chloroplastida

PHAGOTROPHS

Acanthamoeba castellani Amoebozoa
Acytostelium subglobosum Amoebozoa
Bodo saltans Euglenozoa
Dictyostelium discoideum Amoebozoa
Drosophila melanogaster Insecta
Entamoeba histolytica Amoebozoa
Fonticula alba Holomycota
Mus musculus Mammalia
Paramecium tetraurelia Alveolata
Reticulomyxa filosa Rhizaria
Rozella allomycis Rozella
Tetrahymena thermophila Alveolata
Thecamonas trahens Apusozoa
Trichomonas vaginalis Excavata

PHAGO-MIXOTROPHS

IR T

Bigelliowiella natans Rhizaria
Chrysochromulina tobin Haptophyta
Cymbomonas tetramitiformis Chloroplastida

Prymnesium parvum Haptophyta

OSMOTROPHS

Allomyces macrogynus Fungi-Blastocladiomycota

Batrachochytrium dendrobatidis Fungi-Chytridiomycota

Conidiobolus coronatus Fungi-Zygomycota
Neocallimastix californiae Fungi-Neocallimastigomycota
Puccinia sorghi Fungi-Basidiomycota
Rhizophagus irregularis Fungi-Glomeromycota
Saccharomyces cerevisiae Fungi-Ascomycota
Schizosaccharomyces pombe Fungi-Ascomycota

Table 4.1 — Taxa included in the collection of reference genomes for the
selection of ~600 genes predictive for trophic mode. Table adapted from of

Burns et al. (2018).
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predictive genes in each of the 37 reference genomes. The model tries to minimise
the difference between the observed gene count distribution from metaG samples and
the gene count distribution inferred from reference genome mixtures, as expressed
in the following equation:

R= ivj(Df’g — > 1,DE? (4.2)

geG

where N is the number of genes considered; D% is the distribution of gene k in
sample S; G is the set of reference genomes g; D;f is the distribution of gene k
in genome g; I, is the weight of genome ¢, and R is the residue between the gene
distributions in sample S and in the reference genomes mixture. The contribution
of each reference genome in the mixture that best represented each metaG sample
is summed according to its known trophic group to infer the relative proportions of
trophic groups present in each metaG sample.

4.2.3 Community response to environmental variables

We analysed the relationship between Tara Oceans metadata (Pesant et al., 2015)
variation and changes in trophic groups’ abundances through Spearman correla-
tions. We selected for results with R > 0.4 and p < 0.05. The parameters analysed
included NO2, NO3, Si, PO4, chlorophyll A, latitude and temperature. The nu-
trients concentration in station 85 differed significantly from those in the rest of
the samples, and we excluded this sampling site from the analyses to keep it from
skewing the results. See Figures and for details on the variation range of
the parameters along Tara Oceans’ stations.

4.3 RESULTS

4.3.1 Distribution of trophic groups

From the original selection of 173 Tara Oceans metaG samples screened with the
model, 137 of them contained enough predictive genes for reliable estimations and
were selected for downstream ecological analyses. Piconano-plankton size fraction
was represented with a total of 51 samples in surface (SUR) and 31 samples in Deep
Chlorophyll Maximum (DCM), while from nano-plankton size fraction we analysed
35 samples from SUR and 17 samples from DCM.

The prediction of trophic groups abundance revealed that phototrophs dominated
in all depths and size fractions, ranging from 30% to 80% in the overall samples
(Figure . Phago-mixotrophs were the second most abundant group, accounting
for 10%-40% of organisms in the community, while phagotrophs contributed to 5%-
25% of the relative abundance. Osmotrophs were the least abundant organisms in
all datasets, accounting for less than 10% of the relative abundance.
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Figure 4.1 — Simplified representation of the steps followed by the likeli-
hood mixture model. Firstly, the model is fed with the occurrence data of ~600
predictive genes k in a query metaG sample S. Next, the model evaluates the occur-
rence of the same ~600 genes in a number of reference genomes. Here, the reference
genomes are named A, B and C'. Following a maximum likelihood approximation,
the model combines the distribution of predictive genes in the reference genomes
(D%, D% and DE) to find a configuration similar to the one observed in the metaG
sample (D). In the third step, the model evaluates if the configuration of the gene
occurrence in the metaG sample is close enough to the one proposed by combining
the gene distribution of the reference genomes. If the two configurations are close
enough, the model is able to tell the approximate proportion of the different trophic
groups based on the classification of the reference genomes. In this particular exam-
ple, the reference genomes A, B and C are classified as phototrophic, phagotrophic
and mixotrophic, respectively. Phototrophs are predicted to account for 50% of the
weight in the metaG sample, while phagotrophs and phagomixotrophs account for
25% of the weight each.
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We observed no remarkable differences between group proportions in piconano- and
nano- size fractions. Within piconano- samples, only osmotrophs were significantly
lower in SUR waters (T-test, p < 0.01), in comparison with DCM samples. In
the case of nano- size fraction, groups presented comparable abundances between
depths.

The samples in the Southern Ocean showed a different composition than the rest of
basins in several datasets (Figure [4.2). Piconanoeukaryotes in SUR showed lower
relative abundance of phototrophs in the Southern Ocean than in the Mediterranean
Sea and the Indian Ocean (Scheffe’s Test, p < 0.01), while phago-mixotrophs were
more abundant in the Southern Ocean than in the rest of basins (excluding the
South Atlantic Ocean and the South Pacific Ocean) (Scheffe’s Test, p < 0.05).

Similarly, in piconano- size fraction and DCM depth, phototrophs had a lower rela-
tive abundance in the Southern Ocean than in the rest of basins (Scheffe’s Test, p
< 0.05), while phago-mixotrophs had a higher relative abundance in the Southern
Ocean than in the other regions (Scheffe’s Test, p < 0.01). Additionally, we also
observed a significantly lower proportion of phago-mixotrophs in the Mediterranean
Sea than in the South Pacific Ocean (Scheffe’s Test, p < 0.05). Phagotrophic pi-
coeukaryotes in the DCM only showed a significantly higher relative abundance in
the Southern Ocean in comparison with the Mediterranean Sea (Scheffe’s Test, p <
0.05).

Most of the groups in nano-plankton size fraction presented no regional differences;
only phagotrophs contributed in higher proportions in the North Atlantic Ocean
than in the Indic Ocean (Scheffe’s Test, p < 0.05).

4.3.2 Correlation between trophic groups distribution and
environmental variables

In piconano- size fraction and SUR samples, phago-mixotrophs’ abundances cor-
related positively with the concentrations of NO2, NO3 and PO4 (Figure [4.4),
whilst phototrophs® relative abundances correlated negatively with these parame-
ters. Phagotrophs and osmotrophs abundances showed weaker correlations with
NO2, NO3 and PO4 (R < 0.5), which was positive in the case of phagotrophs
and negative for osmotrophs. Contrarily, piconano- communities from DCM depth
showed no correlation with NO2, NO3 and PO4 (Figure [4.5)); only the proportions
of phototrophs and phagotrophs were moderately correlated with Si concentrations.

Phototrophs’ relative abundance within samples from nano- size fraction and SUR
depth seemed to decrease with higher concentrations of NO2, while phago-mixotrophs
proportions augmented (Figure . In the same samples, phagotrophic eukaryotes
correlated positively with Latitude and decreased with Temperature. Temperature
was the only environmental parameter correlated with changes in groups’ abundance
from nano- size fraction and DCM depth (Figure : while phototrophs tended to
be more abundant with higher temperatures, phago-mixotrops and phagotrops de-
creased.
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Figure 4.3 — Distribution of trophic groups’ relative abundance across
samples. Data shown by individual datasets, divided by size fraction and depth.
The ocean basins acronyms correspond to the following regions: MS, Mediterranean
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Figure 4.4 — Spearman correlation between trophic group’s relative abun-
dance and metadata in piconano- size fraction and SUR depth. Groups’
abundances were compared against the following environmental parameters: NO2,
NO3, Si, PO4, Chlorophyll A, Latitude and Temperature. Red squares highlight
plots with R > 0.5;pink squares highlight plots with R > 0.4 and p < 0.05.
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dance and metadata in piconano- size fraction and DCM depth. Environ-
mental parameters analysed as in Figure

> 0.4 and p < 0.05.

. Pink squares highlight plots with R
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Figure 4.6 — Spearman correlation between trophic group’s relative abun-
dance and metadata in nano- size fraction and SUR depth. Environmental
parameters analysed as in Figure Red squares highlight plots with R > 0.5;
pink squares highlight plots with R > 0.4 and p < 0.05.
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Figure 4.7 — Spearman correlation between trophic group’s relative abun-
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parameters analysed as in Figure

Red squares highlight plots with R > 0.5.
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4.4 DISCUSSION

The model described in this study predicts dominance of phototrophs in piconano-
and nano-plankton size fractions, at both SUR and DCM depths. Phago-mixotrophs
and phagotrophs accounted for approximately half of the organisms in all eukaryotic
communities. Osmotrophs, here understood as taxa that could not be classified
as photo-/phagomixo-/phago-trophic, had a lower relative abundance in piconano-
samples from SUR depth than in the rest of the datasets. This could indicate
that piconano- samples from SUR depth contained a lower proportion of purely
osmotrophic organisms like fungi. Yet, it could also mean that the model recognized
a larger proportion of protists as photo-/phagomixo-/phago-trophs in these samples
because their gene composition was closer to those of the photo-/phagomixo-/phago-
trophic reference genomes from the training set.

Despite the overall contribution of the trophic groups being comparable between
size fractions and depths, we observed different regional patterns among datasets.
A higher relative abundance of picoeukaryotic phago-mixotrophs and a decrease of
picophototrophs in the Southern Ocean appeared in both SUR and DCM layers. The
dominance of phago-mixotrophs in these samples could be explained by community
changes related with seasonal succession. Upwellings shape plankton ecosystems in
Polar seas, and while they encourage the blooming of phototrophs and phagotrophs
at the beginning of the community transition, the mature stages of the ecosystems
are more advantageous for mixotrophs due to the decreasing availability of nutrients
and abundance of prey (Mitra et al., 2014; Stoecker and Lavrentyev, 2018). Tara
Oceans samples in the Southern Ocean were collected during early January, (i.e.
towards the end of the Antarctica’s summer), consistently with the higher relative
abundance of mixotrophs expected when the ecosystem has transitioned to a mature
state.

In the nano-plankton size fraction, the only group displaying regional differences
were phagotrophs, showing lower relative abundances in the Indian Ocean than in
the North Atlantic Ocean. Phagotrophs’ relative abundance in this size fraction
correlated negatively with temperature, but we do not expect this environmental
parameter to explain the low frequencies of phagotrophs in the Indian Ocean, since
high temperatures tend to favour growth rates of heterotrophs (Rose and Caron,
2007). The fact we only identified differences between two basins in nano- size
fraction could be influenced by the low number of samples analyzed from this com-
munity.

Nutrients concentration affects biomass and productivity of all trophic groups either
as direct food source in the case of phototrophs and phago-mixotrophs or by influ-
encing prey availability in phago-mixotrophs and phagotrophs. Our results revealed
differential relationships of environmental parameters in trophic groups’ proportions
among datasets. The increase of phagotrophs’ and phago-mixotrophs’ relative abun-
dance in the piconano- size fraction correlated with concentrations of NO2, NO3 and
PO4 in SUR depth. In the DCM layer, however, the proportion of phagotrophs’ rel-
ative abundance was only moderately correlated with silica concentrations while
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the proportion of phago-mixotrophs’ relative abundance was not significantly as-
sociated with any environmental variable. In the nano- size fraction, temperature
correlated with photo-, phagomixo-, and phago-trophs’ relative abundances; pho-
totrophs and phago-mixotrophs showed correlations with NO2 in SUR depth, and
phagotrophs’ relative abundance increased with latitude. Among all environmental
parameters analysed, only NO2 and temperature correlated with trophic groups’
frequencies in similar ways across different datasets. The disparity of correlations
between trophic group’s abundance and environmental parameters among datasets
suggests that either some of these correlations are not strictly causative, and/or that
the communities in the different size fractions and depths respond to environmental
changes in different ways.

Based on theoretical trophic modelling, Ward and Follows (2016) observed that
phago-mixotrophy could be an advantageous trophic strategy in environments with
limiting nutrient concentration, particularly for nano-plankton. According to this
study, phago-mixotrophs would be favoured in oligotrophic waters due to their abil-
ity to support and supplement photosynthesis through prey ingestion. Contrarily,
our results pointed out that phago-mixotrophic and phagotrophic picoeukaryotes
present a higher relative abundance than pure phototrophs in samples rich in in-
organic nutrients. As commented above, the higher relative abundance of phago-
mixotrophs and phagotrophs in these samples could be related with seasonal bloom-
ing, but enhanced grazing functionality could also be triggered by the presence of
inorganic nutrients. Remarkably, the relationship between nutrients and trophic
modes is absent or weaker in DCM and large size fractions.

Overall, the similar frequencies of trophic groups between size fractions and depths
indicates that, despite the expected variation in taxonomic and functional diver-
sity among datasets (de Vargas et al., 2015; Carradec et al., 2018), all communities
maintain a remarkably stable trophic structure. However, the similarity in trophic
composition does not necessarily reflect equal contribution of groups to the food net-
work. For instance, mixotrophs present comparable frequencies across samples, but
these organisms can follow very different nutritional strategies, favoring phototrophy
or heterotrophy depending on their physiology and environmental conditions (Mitra
et al., 2016).

In this study we show that trophic groups’ frequencies in metaG samples can be
quantified through gene frequencies. The obtained predictions indicate that the rel-
ative abundance of the different trophic groups is comparable between size fractions
and depths, with few changes among oceanic regions. The environmental parame-
ters analysed here did not show consistent correlations among the composition of
communities from different sizes and depths. The predictions of our model could be
inaccurate if the set of reference genomes does not represent the complete genomic
signature of the different trophic groups; therefore, diversifying and complementing
the training set with further reference genomes could help to reduce possible biases.
Expanding the analyses with further environmental variables and additional samples
could help explain the variability of trophic groups’ frequencies among communities.
Future work should also incorporate measurements of functional activity, so that we
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can better couple variations in community composition with trophic contribution in
the ecosystems.
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Figure S4.1 — Measurements of environmental parameters in SUR depth
across Tara Oceans stations, including concentrations of NO2, NO3, Si, PO4
and Chlorophyll A; Temperature, and Latitude.
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Figure S4.2 — Measurements of environmental parameters in DCM depth
across Tara Oceans stations. Same variables as in Figure



5. Assessment of single
environmental cell sequencing
for the obtention of genomes
from the dominant protists in
the ocean

Traditionally, the obtention of microbes’ reference genomes has relied on the se-
quencing of cells grown in wvitro. This is radically changing with the development of
single-cell genomics, a technique that allows the sequencing of genomes or transcrip-
tomes from individual environmental cells (e.g. Pachiadaki et al. 2019). Single-cell
sequencing has an enormous potential in marine protistology, since the majority of
taxonomic groups of microbial eukaryotes are unknown or cannot be grown in cul-
tures. In this chapter, we explore the extent of the taxonomic diversity of marine
protists covered by a collection of 903 Single-cell Amplified Genomes (SAGs) gen-
erated randomly from a few cryopreserved Tara Oceans samples. We show that by
sequencing only a few hundred SAGs from 8 marine plankton samples it is possible
to cover a large fraction of the most abundant and cosmopolitan taxa in the open
ocean. Part of the results described in this chapter were integrated in the publication
of Sieracki et al. (2019), which I co-authored and can be found in Appendix [A.1]

5.1 Introduction

The use of molecular data in microbial ecology surveys is severely constrained by
the lack of reference genes and genomes for taxonomic annotation. In particular in
the case of microbial eukaryotes, the diversity of reference genomes available is still
extremely limited (del Campo et al., 2014). The first large-scale effort to cover this
gap started with the generation of reference eukaryotic transcriptomes in the frame of
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the The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)
(Keeling et al., 2014). MMETSP assembled and annotated ~650 transcriptomes
from cultures of marine microbial eukaryotes. MMETSP cultures provide the first
integrated, cross-eukaryotes information for gene annotation and activity analyses.
Yet, a tiny minority of protists (mostly phototrophic) can be maintained in cultures
and not all genes are equally expressed in culturing vs. natural conditions; thus, it
is essential to complement these reference transcriptomes with genome sequencing
from unculturable taxa.

Sieracki et al. (2019) did another step forward towards the expansion of protists’
reference genomes databases by generating a collection of 903 single-cell amplified
genomes (SAGs) from Tara Oceans cryopreserved samples . Sieracki et al. (2019)
showed that the diversity of groups obtained through single-cell sequencing was
comparable to that observed through metabarcoding, indicating that the technique
is not biased against any phylogenetic group. Using the same SAG collection, here
we assess the potential of single-cell technique to cover the diversity of protists in
the global open ocean.

5.2 Methods

As described in Sieracki et al. (2019), the collection of 903 Tara Oceans eukaryotic
SAGs was obtained from 8 stations located in the Adriatic Sea, the Arabian Sea
and the Indian Ocean (Figure . Whole water subsamples of 4 mL were resus-
pended in glycine betaine, and cryopreserved on board Tara and in the laboratory
before their molecular analysis. Individual cells measuring <5um were then sorted
in microplates by flow-cytometry, and their genomic DNA was amplified through
multiple displacement amplification (Sieracki et al., 2019). The amplified genomic
DNA from each SAG was used as a template for 18S rDNA amplicon sequencing
to check their taxonomic identity. In our study, in order to compare the taxonomy
and diversity of SAGs to that of MMETSP cultures and Tara Oceans eukaryotic
metabarcodes, we retrieved the 18S rDNA V9 fragment from the 903 SAGs using
the sequences from the primers 1389F 5- TTGTACACACCGCCC -3’ and 1510R
5- CCTTCYGCAGGTTCACCTAC -3’ (Amaral-Zettler et al., 2009), and we re-
covered a total of 868 sequences. Similarly, we fetched the V9 from 537 MMETSP
transcriptomes by screening their 185 rDNA with the same primers, and retrieved
a total of 385 V9 rDNA sequences from the MMETSP database.

We explored the distribution of the Tara Oceans SAGs and MMETSP transcrip-
tomes across the world ocean by mapping their 185 V9 rDNA against the 18S rDNA
V9 amplicons from Tara Oceans (see de Vargas et al., [2015] for details about data
sampling and sequencing). Overall, we selected 337 Tara Oceans metaB samples
corresponding to piconano- (0.8-5um) plankton size fractions. These samples rep-
resented a total of 105 stations and were obtained from both SUR and DCM water
depth. The metaB dataset contained 435,240,095 reads. We clustered the reads
into OTUs using SWARM 2.1.1 (Mahé et al., 2015), generating a total of 271,787
OTUs. MMETSPs” and Tara Oceans SAGs’ V9 rDNA sequences were then blasted
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Figure 5.1 — Geographical location of the Tara Oceans stations at which the 903
SAGs were sampled.

on these OTUs ranked by their abundance and occurrence. We filtered the results
by >97% similarity and >80% coverage and obtained a total of 671 SAGs and 212
MMETSP mapped on the collection of oceanic OTUs.

In order to assess the extent to which SAGs and MMETSP represent the taxa in the
global oligotrophic ocean, we then mapped the 18S rDNA OTUs from Tara Oceans
metaB on SAGs and MMETSP. The mapping was done using BLAST and the
results were filtered by 80% coverage. For each Tara Oceans station, we aggregated
the total amount of reads and OTUs mapped at 80-85%, <90%, <95%, <97%,
<99%, <100%, 100% identity thresholds.

The taxonomic annotation from SAGs and MMETSP was obtained by mapping
their V9 rDNA against the PR2 database (Guillou et al., 2013) at >97% similarity
and >70% coverage. Additionally, we also used the published annotation of SAGs
based on V4 rDNA mapping against MAS and NCBI databases (Sieracki et al.,
2019), together with the original annotation from Tara Oceans metaB OTUs (de
Vargas et al., 2015).

5.3 Results

The mapping of Tara Oceans SAGs against Tara Oceans 185 rDNA OTUs (Fig-
ure[5.2}A) showed that SAGs represent a considerable number of the most abundant
and cosmopolitan taxa in the world oligotrophic ocean. At the same time, SAGs also
matched a few OTUs identified as globally rare. In comparison with the TO SAGs
snapshot, the number of MMETSP cultures represented in the 18S rDNA dataset
was much lower (Figure [5.2:B). MMETSP matched few of the dominant OTUs and
were spread across the gradient of OTUs’ occurrence and abundance.

The frequency of SAGs and MMETSP in the individual samples from Tara Ocean
was explored in detail in Figure 5.3 (available at https://figshare.com/articles/
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Figure_5_3_Inference_of_SAGs_and_MMETSP_relative_abundance_across_Tara_
Oceans_stations_based_on_the_distribution_of_the_0TUs_to_which_they_have_
been_assigned_/11342576 due to its large size). As expected, the stations that
were better represented in the SAGs collection were those around the Indian Ocean,
while the sampling sites from the Southern Ocean were the ones presenting lower rel-
ative abundance of V9 rDNA amplicons matching SAGs and MMETSP. The SAGs

and MMETSP showing higher abundance and widespread distribution belonged
essentially to the following groups: MAST (MArine STramenopiles), MALV (MA-
rine ALveolates) Pelagophyceae, Prymnesiophyceae, Telonemida, Chrysophyceae,
Mamiellophyceae and Dictiochophyceae.

Furthermore, the amount of 185 V9 rDNA amplicons matching SAGs at 100% iden-
tity was 7.4% per sample, on average (Figure [5.4+A). In the case of MMETSP
(Figure B), the number of reads mapped with the same similarity threshold was
significantly lower (4.3% on average). When decreasing the identity threshold of the
mapping, we obtained similar relative abundances of reads mapped to SAGs and
MMETSPs. In most of the stations, ~25% of the 185 rDNA reads matched SAGs
and/or MMETSPs at >97% identity, and around 50% mapped at >90% identity.

Regarding richness, the amount of OTUs mapped at 100% against SAGs accounted
for ~1.5% of the OTUs in each sample, on average, and was significantly higher
than the amount of OTUs matching MMETSP at 100% identity (~0.6% of reads
per sample) [Figure 5.5]. The amount of OTUs with matches at lower similarity
thresholds was slightly higher when mapped against SAGs than against MMETSP,
but overall the comparison against the two datasets showed similar trends of OTU
aggregation across stations. Most of the stations contained a minimum of 50% of
OTUs mapped at >85% similarity on some SAGor MMETSP.
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5.4 Discussion

The relatively few Tara Oceans SAGs analysed from a handful of Tara Oceans
stations represented many of the most abundant and cosmopolitan OTUs in Tara
Oceans metaB dataset, indicating that single-cell sequencing is potentially an ex-
tremely powerful approach for recovering the genomes of dominant taxa in the ocean.
In contrast, MMETSP did not seem to represent as widely the dominant contributors
of protists in open ocean communities.

In the publication of MMETSP dataset (Keeling et al., 2014), the authors remark
that the collection is mainly composed of phototrophic organisms due to the diffi-
culty of maintaining heterotrophic organisms in cultures. They also predict that the
advent of single-cell sequencing will help correcting this bias, diversifying the trophic
diversity of protists’ reference genomes available. Indeed, some of the most abun-
dant SAGs in our collection corresponded to taxa classified as heterotrophic (e.g.
MAST and Telonemida), mixotrophic (e.g. Prymnesiophyceae, Chrysophyceae and
Dictiochophyceae) or parasitic organisms (e.g. MALV), confirming that single-cell
sequencing is a valid and critical alternative for accessing the genomes of uncultured
micro-eukaryotes that make up the large majority of oceanic protists (de Vargas et
al. 2015).

In our results we identified that a number of SAGs as locally abundant and globally
rare, manifesting the influence of geographic structuring in the composition of SAGs
collection. Future efforts should focus on diversifying the collection of Tara Oceans
SAGs by sorting cells from different oceanic regions and environments.
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6. General Discussion

6.1 Summary of the main results

In this thesis we have explored the diversity and distribution of microbial eukary-
otic primary producers inhabiting the global oligotrophic ocean. For this pur-
pose, we have analysed different types of molecular data, including metabarcodes,
metagenomes and single-cell genomes. Our work contributes to better understand
the composition of marine pico/nano phototrophic and mixotrophic communities by
means of taxonomic mapping, phylogenetics, as well as trophic modeling .

In Chapter 2, we described PhotoRefT and the pipeline used for picophototrophs
phylogeny-based assessment. PhotoRefT is a 16S rDNA reference tree containing
sequences from the main known groups of picophototrophic eukaryotes and Oxypho-
tobacteria. This tree can be used as a support for the taxonomic annotation of 16S
rDNA metaB and metaG reads through phylogenetic placement. The annotation
pipeline was implemented in Chapter 3 for the identification of Oxyphotobacteria
and eukaryotic plastid sequences from marine communities.

In Chapter 3, we analysed 16S rDNA metaB and metaG data from over 50 sta-
tions and observed that Oxyphotobacteria are three-fold more abundant than PPEs
plastids in surface waters of the tropical and temperate ocean. Within the PPE plas-
tidial community, Prymnesiophyceae, Mamiellophyceae, Pelagophyceae and Dicty-
ochophyceae were the dominant groups in terms of abundance and richness. PPE
plastids accumulated higher evolutionary diversity than Oxyphotobacteria and showed
differences in PD and MPD magnitude between groups. The predictions obtained
for picophototrophs taxonomic profiling using 16S rDNA 515yF-926R were compa-
rable to those yielded by 16S rDNA and 18S rDNA metaG. Overall, our results
supported the use of 16S rDNA metaG and metaB sequencing as trans-domain,
unifying methods for the assessment of picophototrophs.

In Chapter 4, we described the results of a new mathematical model to predict
the trophic diversity of pico- and nano-eukaryotic communities out of metagenomic
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samples. The approach is based on the quantification of genes identified as enriched
in photo-, phagomixo-, phago- and osmo-trophs in individual samples and further
comparison against gene frequencies in reference genomes. This model was used to
screen Tara Oceans metaG datasets. The results showed remarkably comparable and
stable proportions of trophic groups across size fractions and depths. We observed
regional variations in trophic groups distribution and differences in communities’
response to environmental variables. This work provides the first taxonomy-free
assessment of pico- and nano-eukaryotes’ trophic structuring.

In Chapter 5, we tested the potential of single-cell sequencing to obtain the genomes
from abundant marine microeukaryotes. We compared a set of 903 SAGs with a
collection of 18S rDNA oceanic OTUs and observed that a fraction of the SAGs
mapped highly abundant and cosmopolitan taxa. In comparison, the genomes ob-
tained from MMETSP transcriptomes represented less extensively the community
of piconano- and nano- microeukaryotes in the open ocean.

6.2 Potential and limitations of phylogeny-based
community assessments

The increasing generation of sequencing data from environmental samples has al-
lowed the inference of phylogenies for many microbial groups. The use of phylogenies
for biodiversity studies provides information about species’ evolutionary and pheno-
typic relationships that cannot be predicted through sole taxonomic description of
microbial communities.

The need for building larger reference trees faces scalability challenges: as the num-
ber of taxa in trees increases, the running time for their construction grows exponen-
tially. The development of faster and more scalable tools for tree inference
will be key to meet the demand for larger phylogenies. On the other hand, building
larger trees will require longer alignments to keep up tree inference accuracy.
In this regard, multigene trees and long read sequencing will become valuable tools
to obtain information enough for inferring larger phylogenies.

Methods for environmental sequences’ annotation based on phylogeny can produce
more accurate results than traditional approaches relying on sequence similarity
(Berger et al. 2010). This idea motivated the construction of PhotoRefT and the
use of phylogenetic placement to explore picophototrophs’ communities. Although
PhotoRefT has proven useful, further efforts to improve the tree should focus on ex-
panding the diversity of references covering picoeukaryotic phototrophs.
The databases of plastidial 16S rDNA sequences are still limited (Decelle et al., 2015)
and do not encompass the diversity of important groups like Dinophyceae. This gap
of information could be quickly cut down using cultivation-independent tools like
long read and single-cell sequencing (e.g. Jami et al., 2019; Pachiadaki et al., 2019)
for the obtention of complete ribosomal genes from environmental samples.
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6.3 Next steps in the exploration of trophic di-
versity through modelling

The characterization of plankton food-webs is an essential step towards the under-
standing of ocean ecosystems and biogeochemical cycles. Until now, several studies
have attempted to model plankton contribution to energy transfer across trophic
levels (e.g. Stickney, Hood, Stoecker, 2000; Mitra et al., 2014; Ward and Follows,
2016). These approaches rely on simplified, theoretical pictures of the system’s bio-
complexity and would greatly benefit from more accurate information about the
actual, measured trophic composition of planktonic communities.

The model described in Chapter 4 allows a taxonomy-free assessment of trophic
structuring. This model will improve accuracy as more reference genomes repre-
senting well-defined trophic groups become available. The collection of reference
genomes used by the model is fairly complete for phototrophs and phagotrophs,
but the quantification of phago-mixotrophs would strongly benefit from
adding further genomes from this group in the training set, and eventu-
ally sub-divide them by effective trophic strategy.

In a recent study, Ward and Follows (2016) compared different numerical simulations
of marine plankton and predicted a shift from autotrophic to heterotrophic nutrition
with increasing size fraction. In contrast, our survey did not reflect compositional
differences between size fractions. Future work should focus on complementing
our predictions with phenotypic information. Including information about
prey ingestion rates and phototrophic activity would allow to better compare trophic
groups’ abundance with their contribution into energy and mass flows.

Finally, modeling approaches require validations in which their predictions are com-
pared to real-world data. In our work, we did a first attempt to validate the
model described in Chapter 4 by comparing its output with that obtained from
binned genomes (also named “metagenomic based transcriptomes” or MGTs). The
procedure consisted on classifying the MGTs obtained from Tara Oceans samples
(Vorobev et al., 2019) as photo-, phago- and mixo-trophic using the model from
Burns et al. (2018). Later, we compared their contribution (as photo-, phago- and
mixo-trophs) in each sample with the relative abundance of each trophic group pre-
dicted by our model. However, only 80 out of 924 MGTs could be classified into some
trophic group due to low genome coverage, representing less than 10% of the relative
abundance in most of the samples. Since the coverage and abundance of the MGT's
is still not high enough for a proper validation, we are planning to test the model
using synthetic mock-communities as an alternative. This approach would consist of
mixing known proportions of cultures from strains representing the different trophic
modes and sequencing the metagenome of the resultant populations. Next, we would
feed the model with the obtained metaG data to test if its predictions agree with
the trophic composition of the culture mixtures.



72 6. General Discussion

6.4 Advent of single-cell sequencing

Single-cell genomics and transcriptomics have great potential to generate reference
genomes from unicellular eukaryotes, to study cell-to-cell interactions, and to explore
genome and transcriptome heterogeneity within species (e.g. Mangot et al., 2017;
Yoon et al., 2011; Liu et al., 2017). Because of the apparent homogeneity of microbial
communities across the temperate and tropical oceans, this approach seems to be
able to recover the most abundant taxa in these ecosystems by sorting a
relatively low number of samples (Sieracki et al., 2019; Pachiadaki et al., 2019).

However, the use of single-cell sequencing still suffers from important technical lim-
itations when applied to eukaryotic cells. For instance, there is no universal method
to cell lysis due to the wide diversity of membranes and covers in eukaryotic cells
(Lynn DH, Pinheiro M, 2009; Woyke T, Doud DFR, Schulz F, 2017), and the low
coverage in genome completion requires the co-assembly of multiple genomes and
lost of infraspecific genetic variability (Liu et al., 2017; Mangot et al., 2017). While
cell lysis issues might require approaches individually adapted to the dif-
ferent cell types, improvements in whole-genome amplification techniques
are on track (Stepanauskas et al., 2017) and will probably help expanding protists
SAGs collections very fast.

6.5 Future perspectives for the assessment of pri-
mary producers in the ocean

Amplicon sequencing of 16S rDNA enables a universal and low-priced approach for
the taxonomic profiling of primary producers in environmental samples. However,
this technique does not allow the inference of functional traits nor the distinction
of phototrophs from phago-mixotrophs. These limitations can be tackled through
metagenomes assembly or modeling. Yet, similarly as in metaB sequencing, metaG-
based approaches also depend on annotation steps against reference databases that
are still limited. In order to improve precision in the analysis of picoeukaryotic
phototrophs and mixotrophs through molecular methods, we have to guide se-
quencing efforts towards the expansion of reference genomes and marker
gene databases. As discussed along these pages, single-cell sequencing and long
read sequencing will become valuable resources for the recovery of environmental
references.

Molecular techniques allow us to obtain a rather complete view of the diversity and
taxonomic composition of the phototrophic and mixotrophic communities in the
oceans. What is largely missing in this picture is detailed information about the
metabolic activity of these communities. In this regard, the data obtained from
genomic and transcriptomic data should be complemented with physi-
ological analyses of protists’ feeding behaviour under different environ-
mental scenarios. This information will be essential to improve the indirect mea-
surements of microbes trophic activity through modeling, so we can better predict
the evolution of Earth’s climate and ecosystems dynamics.
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A.1 Single cell genomics yields a wide diversity of
small planktonic protists across major ecosys-
tems (Sieracki et al., 2019)

In this study, Sieracki et al. generated a collection of 903 single-cell amplified
genomes from picoeukaryotes and showed that single-cell sequencing approach is not
biassed against or towards any taxonomic group. My contribution to this manuscript
consisted of analysing the distribution of the SAGs collection across Tara Oceans
stations and comparing it with the one of MMETSP transcriptomes (Figure 6).
These results are included in the Chapter 5 of the thesis.



74 A. Co-autored papers

SCIENTIFIC REPLIRTS
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Marine planktonic protists are critical components of ocean ecosystems and are highly diverse.
Molecular sequencing methods are being used to describe this diversity and reveal new associations

: and metabolisms that are important to how these ecosystems function. We describe here the use of

. the single cell genomics approach to sample and interrogate the diversity of the smaller (pico- and

: nano-sized) protists from a range of oceanic samples. We created over 900 single amplified genomes

: (SAGs) from 8 Tara Ocean samples across the Indian Ocean and the Mediterranean Sea. We show that

: flow cytometric sorting of single cells effectively distinguishes plastidic and aplastidic cell types that
agree with our understanding of protist phylogeny. Yields of genomic DNA with PCR-identifiable 185

© rRNA gene sequence from single cells was low (15% of aplastidic cell sorts, and 7% of plastidic sorts) and

. tests with alternate primers and comparisons to metabarcoding did not reveal phylogenetic bias in the
major protist groups. There was little evidence of significant bias against or in favor of any phylogenetic
group expected or known to be present. The four open ocean stations in the Indian Ocean had similar
communities, despite ranging from 14°N to 20°S latitude, and they differed from the Mediterranean

. station. Single cell genomics of protists suggests that the taxonomic diversity of the dominant taxa

. found in only several hundreds of microliters of surface seawater is similar to that found in molecular

. surveys where liters of sample are filtered.

Planktonic protists in the surface ocean are ubiquitous, abundant and highly diverse. They range in size from
the smallest known eukaryote, Ostreococcus spp. (0.8 um)’, to large ciliates, radiolarians, and protist colonies
100’s of micrometers across and visible to the naked eye. They function as primary producers, grazers and para-

. sites, and influence the packaging and recycling of carbon and nutrients in marine ecosystems. Protists associate

. with prokaryotes, sometimes endosymbiotically, to conduct fundamental biogeochemical transformations such

: as nitrogen fixation®. Despite this ecological importance in the structure and function of marine ecosystems the
smaller planktonic eukaryotes are not as well characterized as the larger microplankton due to their small size,
lack of distinctive morphological features, and the lack of cultures of many dominant forms, especially of the
aplastidic bacterivorous protists®.

As with prokaryotes, genetic methods have revealed remarkably diverse ocean planktonic protist commu-
nities®. These methods include direct cloning of environmental DNA, fingerprinting methods, tag sequencing,
and metagenomics of filtered or sorted fractions of the community. These methods have various advantages and
disadvantages depending upon the science question being addressed®. For assessing the diversity of the dominant
forms present in seawater, clone libraries and tag sequencing have been the favored approaches. These methods
have the disadvantage of being biased in favor of particular, often larger, cell types, which can have 10’s to 100’
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of copies of target genes per cell (in particular the 185 rDNA®) and thus are artificially overrepresented in these
surveys’. This seems to be especially true of the alveolates, including marine alveolate groups I and II, dinoflagel-
lates, and ciliates. Fine plankton nets and filter fractionation is often used to characterize plankton communities,
but these can break up fragile animals, colonies, and individual cells, sending their DNA into small size fractions®.

It has been known for some time that many marine protists are mixotrophic and are not easily assigned
to photo- or heterotrophic categories®!. More recent results confirm that many of the small planktonic
chlorophyll-containing cells are mixotrophs, ingesting bacteria!!'2. Flow cytometry easily distinguishes cells
containing chlorophyll from those that do not by the presence of chlorophyll autofluorescence. We, therefore, use
the terms “plastidic” and “aplastidic” here to distinguish the presence or absence of chloroplasts, without assign-
ing a trophic category to them. In this nomenclature plastidic cells are most likely phototrophic or mixotrophic,
although some could also be heterotrophs with a phototroph in their food vacuole. Aplastidic cells are most
likely to be heterotrophic, but could be phototrophs or mixotrophs with reduced chloroplasts or faint chlorophyll
fluorescence.

The single cell approach has proven its power in the discovery of new potential metabolisms in uncultured
prokaryotes'?, and has the advantage of yielding large amounts of genomic DNA from individual microorgan-
isms for further sequencing and investigation. Early results from one coastal Maine sample revealed significantly
higher protist diversity in whole water samples using the single cell approach compared to clone libraries’. The
bias due to gene copy number in the clone libraries was the likely cause of the underestimation. Sequencing of
three “picobiliphyte” (now Picozoa) SAGs from that sample showed how this approach can reveal microbial inter-
actions between eukaryotes, prokaryotes and viruses'*.

Here we report on a larger set of protist SAGs collected across a wider range of ocean samples for single cell
genomics on the Tara Oceans expedition'®. We analyzed the 18S rDNA sequences of over 900 SAGs from the
Adriatic Sea, Arabian Sea and the Indian Ocean across a wide latitudinal gradient. A subset of these SAGs has
recently been more fully sequenced and assembled'®". These studies demonstrate that, although individual SAGs
may represent only a portion of the cellular genome, the co-assembly of multiple SAGs can improve genome
recovery significantly. For MAST-4 clade, the co-assembly of 14 SAGs yielded ~74% of genome recovery'®, and
for Monosiga brevicollis four co-assembled SAGs yielded 46% of the genome!”. Single cell genomes were used
as reference genomes to match with metagenomic data and reveal biogeographic patterns of Bathycoccus's, and
unexpected functional diversity of the dominant MAST-4 heterotroph clade!®. The work reported here shows
that our sampling and cell handling approach appears to accurately sample the diversity of the dominant oceanic
eukaryotes in the pico- to nanoplankton size range (<5 um).

Methods

Cryopreservation and flow cytometric detection. Tests were done to confirm and optimize the cry-
opreservation of marine protists for single cell genomics using marine samples from 1 m depth at the dock in
Booth Bay, Maine, a coastal Atlantic site. The cryoprotectant glycine betaine?® had previously proven to preserve
prokaryotic cells, allow identification of nucleic acid stained cells by flow cytometry, and not interfere with sin-
gle cell amplification, PCR screening, and sequencing reactions?'. Live (aplastidic) protists had been sorted and
successfully amplified and PCR screened using light scatter properties and Lysotracker staining”*>. Lysotracker,
however, only stains live cells with active vacuoles and does not stain cryopreserved cells. As an alternative, we
adopted the method of Zubkov, et al.>* based on SYBR Green I staining for detecting aplastidic cells. Plastidic cells
are easily distinguished by red autofluorescence of chlorophyll emitted by chloroplasts using flow cytometry. An
experiment was conducted to compare the cell numbers of aplastidic cells obtained by flow cytometry using both
fresh and cryopreserved samples with the cryoprotectants glycine betaine (GBe, 7% v/v, Sigma) and glycerol-TE
(Gly-TE, 5% glycerol 4 1x TE buffer, Sigma). Counts of the cryopreserved samples were determined after staining
with SYBR Green I (1:5,000 dilution; ThermoFisher Scientific, USA), while counts of fresh samples were deter-
mined after samples stained with both SYBR Green I (SYBR, 1:5,000 dilution; ThermoFisher Scientific, USA) and
Lysotracker (LT, 75 nmol; ThermoFisher, Scientific, USA).

Ocean sampling. Whole water samples were taken from surface ocean water, or from the deep chlorophyll
maximum (DCM), by a submerged impeller pump. Sample sites included the Adriatic Sea, Arabian Sea and the
Equatorial Indian Ocean. Subsamples were dispensed into replicate 4 mL cryovials containing GBe as a cryo-
protectant (7% w/v, final conc.). The cryovials were flash frozen and stored in liquid nitrogen (LN) until SV Tara
reached a shipping port.

Hydrographic data, including salinity and temperature, was determined at each station using a CTD with
a bottle rosette onboard SV Tara. Bottle samples were analyzed for chlorophyll by HPLC, and for counts of the
small cells using standard flow cytometry methods*.

Single cells.  Samples were express-shipped on dry ice to Bigelow Laboratory for Ocean Sciences where they
were stored in LN until sorting. SAG generation and identification were performed at the Single Cell Genomics
Center at Bigelow (scgc.bigelow.org). On the sorting day tubes were thawed at room temperature and a subsam-
ple was stained with SYBR Green I. Sorting was conducted on a Beckman-Coulter MoFlo sorter outfitted with a
Cyclone™ robotic arm for sorting into plates. Single plastidic cells were sorted using the natural chlorophyll auto-
fluorescence within an unstained subsample and single aplastidic cells were sorted using a SYBR Green I (1:5000
dilution) stained subsample®. All single cells were sorted into 384 well plates containing 0.6 uL TE buffer per well.
Multiple plates were prepared for unstained plastidic and stained aplastidic cells from each sample. After sorting,
all plates were stored frozen at —80°C.
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23 11/18/09 Ad 42.18986 17.71670 55 17.32 38.201 0.139 (0.04) 10,448 19,390 392 699 24 118
39 03/18/10 Ar 18.57138 66.53050 N 26.82 36.285 0.099 (0.02) 146,758 125,121 3,275 2,165 38 52
418 03/30/10 10 14.59540 69.98100 N 29.09 36.025 0.020 (0.02) 13,703 119,176 3,507 1,393 57 88
41D | 10 « « 59 27.21 36.499 0.373 (0.11) 3,809 245,757 888 nd 64 141
46 04/15/10 M —0.66245 73.16097 N 30.13 35.111 0.122 (0.01) 178,299 157,827 10,607 596 72 78
47 04/16/10 10 —2.04653 72.15680 N 30.20 34.912 0.007 (0.01) 210,569 1,398 677 677 26 26
48 04/19/10 10 —9.40295 66.36804 S 29.83 34.175 nd 497 119,104 498 nd 37 21
51 05/11/10 10 —21.50212 54.35328 S 27.26 34.901 0.040 (nd) 1,336 221,147 653 nd 35 26

Table 1. Samples station locations, dates, water characteristics, pico- and nanoplankton cell abundances, and
numbers of plastidic and aplastidic SAGs obtained. The small and large plastidic eukaryotes were identified
and counted by flow cytometry triggered on chlorophyll autofluorescence, so aplastidic protists are not counted
here. *Ad = Adriatic Sea, Ar = Arabian Sea, IO-Indian Ocean, M = Addu Atoll, Maldives, s.e. = standard error,
S =surface (<3 m), sample depths greater than 50 m were targeted at the subsurface chlorophyll maximum,

nd =not detected.

Lysis and MDA. Attempts to improve the amplification yield of single cells were made by increasing the
number of freeze-thaw cycles and incubating with KOH at 20 °C. Incubating with KOH at higher temperatures
resulted in lower yields, probably due to DNA degradation. We settled on 5 cycles of freeze-thaw as optimal.

Genomic DNA from single cells was amplified using the phi-29 polymerase (real-time multiple displacement
amplification, rtMDA) method in 384-well format'®. Amplification reactions were run overnight (ca. 18h) and
monitored in real time based on DNA fluorescence. Critical point (Cp) values for each well were determined as
the reaction time when well fluorescence reached half the maximum value. Based on these Cp values we selected
those SAGs having Cp values below 14h for further analysis.

PCRscreening. The genomic DNA produced by MDA served as template for screening using universal 18S
rRNA gene eukaryotic PCR primers. All wells were screened regardless of their MDA Cp values. Primers used
were Euk528 (forward)® and Euk B (reverse)?® which amplify two thirds of the gene (ca. 1200 bp)**. PCR ampli-
cons were sequenced using Sanger technology using the same two primers. Sequences were curated manually and
compared to sequences in GenBank using BLAST to determine similarity to known sequences. Closest matches
and closest cultured matches were recorded. Sequences were aligned using MAFFT and compared to each other,
and to reference sequences for some groups, using maximum likelihood trees (RAXML) to achieve a final phy-
logenetic assignment. To assess primer bias in sampling protistan diversity we additionally screened one plate
each of plastidic and aplastidic protists from one sample, Stn 41 surface, with two additional primer sets targeting
the variable V4 and V9 regions of the rRNA gene (see PCR protocols and primer sequences in refs.?”-, for V4
and V9 regions, respectively).

Comparison of SAG sequences with metabarcoding data. We compared the relative community
composition at three Tara Oceans stations using available V9 metabarcodes at the group level with the SAG sam-
ples. Detailed information on sampling and metabarcoding (iTAG) sequencing can be found in Pesant et al.? and
de Vargas et al.?%, respectively. We separated the iTAG sequences into plastidic and aplastidic types by assigning
them to class-level groups, removing groups not targeted in the SAGs such as ciliates, diatoms, dinoflagellates,
MALVs, radiolarians and unassigned. Then the proportions were calculated on the remaining 33 groups for
comparison with SAGs.

We also used the V9 metabarcodes obtained from Tara Oceans samples to explore the occurrence and abun-
dance of SAGs in the global ocean. For this analysis, we only considered samples obtained from the photic zone
(surface and DCM) and the smaller size fractions, piconano- (0.8-5pum) and nano- (5-20 um) sized cells. We
ended up with a dataset containing barcodes from 337 samples deriving from 105 stations. The resulting metabar-
code table had 435,240,095 V9 sequence reads grouped into 4,298,066 valid barcodes. The barcodes were clus-
tered into OTUs using SWARM 2.1.129 with default options (local clustering threshold d = 1), generating a total
0f 271,787 OTUs?*. We mapped the V9 sequences of 868 SAGs on these OTUs using BLAST 2.6.0 and selected the
671 hits that were retrieved with similarity >97% and coverage >80%.

For comparison, we also mapped the Marine Microbial Eukaryote Transcriptome Sequencing Project
(MMETSP)*® V9 sequences onto these oceanic OTUs. Among the 385 MMETSP transcriptomes for which we
could recover sequences of the V9 region, 212 were mapped on some OTU at similarity >97% and coverage
>80%.

Results

Sample locations and water properties. Sample locations, water properties, and number of recovered
SAGs are shown in Table 1. All stations are open water except for station 46, which was in the middle of a tropical
lagoon (Supplementary Fig. S1).
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Figure 1. Comparison of flow cytometric cell counts of aplastidic protists counted live and with two
cryoprotectants. Triplicate samples of coastal Maine water were run live and stained with either Lysotracker
(LT) or SYBR green. Replicate samples were stored with the cryoprotectants glycine betaine (GBe) or glycerol
- TE (Gly-TE) at —80°C and then stained with SYBR green before enumeration. Each replicate was run with
the flow cytometer triggered by green fluorescence (FL1) or by side scatter (SSC). Errors bars show standard
deviations of triplicate samples.

Cryopreservation. Preliminary tests using the cryoprotectant glycine betaine (Gbe) indicated that this
method worked well for sorting and single cell genomics of protists. Chlorophyll fluorescence was preserved
in the plastidic cells for discrimination by flow cytometry (Supplementary Fig. S2). Aplastidic cells preserved
this way could be stained using SYBR Green I and a sort region was created similar to that in Zubkov et al.*
(Supplementary Fig. $2). We then compared cryopreservation with the live staining methods for cell counts of
aplastidic protists, and found that the GBe method showed the lowest cell loss compared to live samples, or the
other cryoprotectant glycerol-TE (glyTE) (Fig. 1). In fact, live cell counts determined by SYBR Green I staining
were higher than by Lysotracker staining, and the counts in the GBe cryotreatment were not significantly different
from those using SYBR Green I stained cells.

MDA and PCR performance. Initial rtMDA results for the protists yielded fewer positive wells (<20%)
than what we usually observe for oceanic prokaryotes (average 27%)*'. We tried different lysis protocols including
multiple freeze-thaw cycles and increasing the temperature of the 10 minute KOH incubation, but these simple
modifications did not improve yield significantly (data not shown).

Generally we found that plastidic cells had a lower yield of good quality 185 rRNA gene sequences than aplas-
tidic cells (Supplementary Table S1). Twenty-nine plates were processed and analyzed, comprising 9,135 one cell
wells (non-controls). We recovered good quality 18S rRNA gene sequence from 7.2% of the plastidic cell wells,
and from 14.7% wells of aplastidic cells. These were statistically different at a confidence level of 95% (Student’s
t-test, p=0.046). There are 3,408 one-cell wells (37%) with good MDA, but no 18S rRNA gene identity. These
wells are likely to contain amplified eukaryote genomic DNA, but where 18S rRNA genes could not be recov-
ered due to uneven MDA, PCR primer mismatches, long inserts in 185 rRNA genes, or other interferences®.
Conversely, there were some wells (124, 1.4%) with good 18S rRNA gene identity but with poor MDA (Cp > 14h).
These could contain a limited amount of genomic DNA. The list of SAGs with good 18S rRNA gene identity is
given in Supplementary Table S2. Sequences have been submitted to the European Nucleotide Archive (ENA,
accession numbers PRJEB31452).

V4-V9 primer screens.  The numbers of SAGs identified by each of the three primer sets used showed that
the addition of the V9 primer screen identified 11 additional SAGs from each plate tested, one plastidic and one
aplastidic sort (Supplementary Fig. S2). The addition of V4 only identified six more SAGs from the plate of plas-
tidic cells, and three more from the aplastidic plate. Conversely, the V4 primers missed 23 SAGs (13 plastidic,
10 aplastidic) that were identified by the Euk528/B primer set, and the V9 primers missed 16 SAGs (8 from each
plate). There were no major new groups that were picked up by the new primers in these plates.

Distribution of sorted cells across phylogenetic groups.  The distributions of plastidic and aplastidic
cells, as determined by flow cytometry (i.e. presence or absence of chlorophyll fluorescence), is shown in Fig. 2
for the defined taxonomic groups. Twenty-two of these groups were represented essentially by aplastidic cells
and twelve of them by plastidic cells. Interestingly, some of the groups represented by cells from both sorts (i.e.
Chrysophyceae, Chlorarachniophyta, Dictyochophyceae) are also well known for containing both plastidic and
colorless species. More intriguing was the presence of MALV-II among the two sorts. Generally, the distribution
of chloroplasts across these groups is as expected based on what we know about their phylogeny and evolution®.

Protist communities. The protist communities recovered by the SAG approach were quite diverse in most
samples (Fig. 3). Richness, calculated at the level of the groups defined here, was highest for station 41 surface,
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Figure 2. Distribution of plastidic and aplastidic SAGs within the major taxonomic groups found. The bars
show the proportion of SAGs in each group that were sorted as aplastidic (blue bars) and plastidic (orange bars)
cells. The groups are ranked by proportion and the number of identified SAGs for each is given in parentheses.

and lowest at stations 23, 39, and 46, while diversity (Shannon H) was highest at station 51, and evenness was
highest at station 48 (Supplementary Table 3).

The plastidic cells for three stations, 39, 41 deep chlorophyll maximum, and 46, were dominated by
Mamiellophyceae (Fig. 3a), specifically mixed blooms of Micromonas and Ostreococcus spp. with identical 185
rRNA sequences. Station 23D, in the Adriatic, was distinctive in that Pelagophyceae dominated the plastidic cells.
The remaining stations (48, 51, 47 and 41S) had more diverse and similar community compositions with a mix of
Prymnesiophyceae, Chrysophyceae, and Dictyochophyceae dominating.

The aplastidic protist communities were more similar to each other than the plastidic communities across sta-
tions at the taxonomic levels chosen (Fig. 3b). Overall three marine stramenopiles types, MAST-4, 3 and 7, made
up about 50% of the aplastidic cells. Other dominant types of the aplastidic community across the other stations
were Chrysophyceae, Bicosoecida, MALV-I, MALV-II, Telonema, Dichtyochophyceae and Picozoa. There are 9
cells that are from metazoans, mostly ctenophores and salps. One metazoan SAG with a novel 18S rRNA gene was
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Figure 3. Heat maps showing the SAG composition of the (a) plastidic community and (b) aplastidic community
at each station. The values on the color scale are the number of SAGs of each type transformed by log,(x) + 1 (with
zeros left as zeros)*’.

found and appears to be from an acorn worm. Metazoan SAGs could have come from single cells from damaged
animal tissue, fecal material, or as free-swimming gametes.

The analysis of iTag sequences® from the 3 samples where we could directly compare, revealed a general posi-
tive trend with the SAG groups with the exception of some groups found by the iTag method, but not in the SAGs
(Fig. 4). The metabarcode (iTag) approach revealed groups that were not detected in the SAGs (points on the left
of Fig. 4). This is likely due to differences in sampling between the two methods, most importantly the fewer cells
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Figure 4. Comparison of the relative abundance of taxonomic groups found in the SAG collections and in
metabarcoding dataset (iTAGs) at three stations for plastidic (green symbols) and aplastidic (blue) protists.
Each station has a different plot symbol: circle (23-D), square (41-S), and triangle (41-D).
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Figure 5. Comparison of the proportion of types found in SAGs (blue columns) and metabarcoding (iTAGs,
orange columns) at three stations (23, 41S and 41D, represented by the different color shades) for the various
MAST clades. Data calculated as percent of total MASTs.

identified per sample through the SAG approach. The SAGs were derived from small, whole seawater samples
(ca. 300 microliters subsampled from several milliliters), whereas the metabarcoding samples were comprised of
many liters of seawater size fractionated and collected on filters. For the SAG samples only the small, and most
dominant protists were chosen for sorting. Analysis of the outliers - groups that were relatively underrepresented
in the SAG data - was not particularly enlightening (data not shown). In the comparison of only marine stra-
menopile groups (Fig. 5) showed a similar distribution between the methods.

The comparison of the SAG sequences against oceanic metabarcoding V9-swarms (Fig. 6a) shows that the
SAGs represent the most abundant types (bubbles in the upper right) presumably corresponding to ecologically
important groups. Some matches were also found to types rarer in the metabarcodes (Fig. 6b, lower left). In con-
trast to the SAGs, the sequences in the Marine Microbial Eukaryote Transcriptome Sequencing Project database
(Fig. 6b) were more representative of rare types in the oceanic metabarcodes, with fewer matches in the upper
right compared to the SAGs (Fig. 6a).

Discussion

We have found that single cell methods developed to preserve samples and amplify genomic DNA for plank-
tonic prokaryotes were generally transferrable to eukaryotes. The major difference is that Gly-TE, although a
preferable cryoprotectant for prokaryotes, appears to be less effective for protists than GBe. We noticed that the
yields of SAGs from protist plates, especially for the plastidic types, were lower than what we usually observed for
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Figure 6. Mapping of SAG (a) and MMETSP (b) V9 sequences onto the Tara Oceans metabarcode V9 OTUs.
The size of the colored bubbles represents the number of matching SAG or MMETPS sequences in each OTU.
SAGs dataset represents a number cosmopolitan and abundant taxa while the MMETSP sequences have fewer
matches and are spread across the range of dominance distribution.

planktonic prokaryotes. Our attempts to make simple modifications to our lysis methods failed to significantly
increase yields of SAGs. The test of additional PCR primers to identify positive cases did yield some more identi-
fied SAGs, but did not reveal whole new cell types not seen with the Euk528/B primer set. We conclude from this
test that the use of these additional primer screens slightly increased yield, but not diversity.

‘We observed that more of the cells sorted as aplastidic yielded successful MDA product than those sorted as
plastidic. This could be due to lower lysis success with these groups, or interference with the MDA reaction by
constituents such as polysaccharides, either within the cells or on the cell wall of plastidic cells. While the single
cell approach avoids some biases, there may be others that affect our results. These include a possible lysis bias
with some cell types being less likely to be opened and their genomes available for amplification than other types.

The sorting strategy using plastid autofluorescence was very effective, as the majority of the groups were sorted
either in aplastidic or in plastidic sorts (not both, Fig. 1). Groups containing a mix of plastidic and aplastidic
cells (Fig. 1) could be explained by several factors. Some groups (e.g. Choanomonada, MAST-3, and -4) are pre-
dominantly aplastidic bacterivores with only a few instances of plastidic types. These could be herbivores with a
recently ingested plastidic cell’®. For instance, it has been seen that MAST-4 is able to graze both on bacteria and
plastidic picoeukaryotes®. In this case the fluorescence in their food vacuoles would cause it to be classified as
plastidic. Other groups (e.g. Diatomea, Mamiellophyceae, and Prymnesiophyceae) are predominantly plastidic
phototrophs where some cells might have very weak autofluorescence (little chlorophyll) and were not detected
as plastidic. More interesting were the groups with similar numbers of aplastidic and plastidic cells (e.g. MALV-II,
Chrysophyceae, Chlorarachniophyta and Dictyochophyceae) as most of these groups are known to contain plas-
tidic and aplastidic species. They can also include species with weak fluorescence plastids or that change the
pigment content depending upon circumstances. We may also have sorted infected autotrophs with degraded
host nuclear DNA. The presence of the putative MALV-II parasite within this category is intriguing and deserves
further analyses.

In this set of protist SAGs we found 9 Picozoa cells* (formerly Picobiliphytes®), all in aplastidic sorts. This
continues to confirm our observations of these organisms from Booth Bay, Maine’, where these types only
appeared in sorts of cells without chlorophyll fluorescence. Yoon et al.'* found no genetic evidence of plastids
in the partial genomes of three SAGs, and Seenivasan et al.** obtained the first picozoan culture and found no
evidence of plastids in serial thin sections.

There are a variety of factors that can bias our determination by the single cell approach of the community
composition of marine microeukaryotes’. Koid et al.” found that diatoms appear to be underrepresented in clone
libraries, likely due to difficulties in lysing the cells and releasing the genomic DNA. Amacher et al.* noted biases
in clone libraries related to abundances of both target and co-occurring species. In our results we obtained 18
diatoms: 15 out of 353 plastidic SAGs, and an additional 3 from the 550 aplastidic SAGs. This might seem a small
number, but we targeted a flow cytometric region that only contained small cells (about 2-5 pum in size) and
diatoms are generally larger than this. Therefore, it is not clear if we missed diatoms due to inefficient lysis or
because they were not included in the sorting gates. At any rate, the data shown here reveals that the community
composition derived from the analysis of dozens of SAGs per sample is comparable with the more common
metabarcoding molecular surveys.

The community composition of protists we observed in the Indian Ocean (Fig. 3) has some similarities and
differences from previous observations based on clone libraries®”. On a cruise from the southwest to the northeast
Indian Ocean, adjacent to the Tara Oceans Expedition, reaching similar latitudes (25°-12°S) east of our transect,
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clone libraries of the cells passing a 3 um filter revealed a somewhat different pattern of community structure than
what we observed at our comparable stations (41, 47, 48 and 51)*’. They found higher proportions of dinoflag-
ellates, marine alveolates (esp. MALV-I), and radiolarians than we observed. They also found lower proportions
of MAST, Chrysophytes, Dichtyochophytes, and Prymnesiophytes. Prasinophytes were common in both studies.
The major differences between these studies seem to relate to the biases we have seen in clone libraries due to gene
copy number. The types overrepresented in the Not et al.*” study relative to this study are types known to contain
many copies of the targeted rDNA operon.

Assembling whole genomes from SAGs is generally difficult, and gets particularly challenging for eukaryotic
genomes, which can be complicated by heterozygosity, and putatively massive repeated regions. New informa-
tion can be obtained from partially assembled genomes, however, especially from uncultivated cell types'*16-12,
Due to the nature of MDA, some sections of the genomic DNA are over amplified while other sections may not
be amplified at all*?, preventing sequencing and assembly of complete genomes from single cells. This appears
to involve stochastic processes when amplifying a single DNA molecule as a starting template, as well as a bias
against sequences with high G + C content®'. Recent work has shown that co-assembly of eukaryote SAGs from
several cells of the same population significantly increases the proportion of the genome that can be recovered®'”.

As with prokaryotes, the high diversity of single celled eukaryotes in marine ecosystems is problematic for
metagenomic or metatranscriptomic approaches alone. Without assembled genomes it is difficult to assign
functional genes to species®. In addition, most marine eukaryotes have not been cultivated, especially the het-
erotrophic types®, so traditional genome sequencing is not a viable option. The Marine Microbial Eukaryote
Transcriptome Sequencing Project sought to sequence the transcriptomes of about 650 important marine micro-
bial eukaryotes, and has produced a powerful sequence dataset®. It is limited, however, in only including cul-
tured types with an emphasis on phototrophs. Keeling et al.*® acknowledge that single cell genomics will play an
important complementary approach to gain understanding of these diverse protists. The approach is a powerful
complement to environmental metatranscriptomics®.

For prokaryotes the high potential metabolic diversity of communities is well established, and advances in
understanding the relationships between genetic diversity and ecosystem function is currently an area of active
ecological research not only in environmental systems, but microbiomes of metazoans including humans. The
high diversity of eukaryotic protists in the ocean is less well appreciated, but similarly enigmatic. Conventional
knowledge has limited their metabolic or ecological function to phototrophy and heterotrophy. New evidence,
however, reveals complexities of mixotrophy, endosymbiosis, and parasitism that could dominate the functions
of marine protists. More intricate relationships based on small scale physical structuring, resource sharing, and
chemical communication could be the basis of niche separation allowing the high diversity observed. Sequencing
single eukaryotic cells sampled directly from the ocean as described here offers a way forward in deciphering who
is doing what and how in the ocean.
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A.2 Disentangling the mechanisms shaping the
surface ocean microbiota (Logares et al., (2019)

This study describes the influence of natural selection, ecological drift and dispersal
as mechanisms shaping the composition of eukaryotic and prokaryotic picoplanktonic
communities in marine ecosystems. I contributed to this manuscript by curating part
of the Malaspina-2010 metadata, used for comparing the effects of environmental
variables in community dynamics.
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ABSTRACT

Background

The ocean microbiota modulates global biogeochemical cycles and changes in its
configuration may have largescale consequences. Yet, the underlaying ecological
mechanisms structuring it are unclear. Here we investigate how fundamental
ecological mechanisms (selection, dispersal and ecological drift) shape the smallest
members of the tropical and subtropical surface-ocean microbiota: prokaryotes and
minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting
abiotic selection on this assemblage as well as the spatial patterns emerging from the
action of ecological mechanisms. To explore the previous, we analysed the
composition of surface-ocean prokaryotic and picoeukaryotic communities using
DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal

expeditions Malaspina-2010 and TARA-Oceans.

Results

We found that the two main components of the tropical and subtropical surface-ocean
microbiota, prokaryotes and picoeukaryotes, appear to be structured by different
ecological mechanisms. Picoeukaryotic communities were predominantly structured
by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the
combined action of dispersal-limitation, selection and drift. Temperature-driven
selection appeared as a major factor influencing species co-occurrence networks in
prokaryotes but not in picoeukaryotes, indicating that association patterns may
contribute to understand ocean microbiota structure and response to selection. Other

measured abiotic variables seemed to have limited selective effects on community
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structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher
spatial differentiation between communities and a higher distance decay when
compared to prokaryotes, consistent with a scenario of higher dispersal limitation in
the former after considering environmental heterogeneity. Lastly, random dynamics or
drift seemed to have a more important role in structuring prokaryotic communities

than picoeukaryotic counterparts.

Conclusions

The differential action of ecological mechanisms seems to cause contrasting
biogeography, in the tropical and subtropical ocean, among the smallest surface
plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the
main constituents of the ocean microbiota should be considered in order to understand
its current and future configuration, which is especially relevant in a context of global
change, where the reaction of surface ocean plankton to temperature increase is still

unclear.

Keywords: microbiota, ocean, picoeukaryotes, prokaryotes, ecological processes,

plankton, selection, dispersal, drift, structure

BACKGROUND

The surface ocean microbiota is a pivotal underpinning of global biogeochemical
cycles [1, 2]. The smallest ocean microbes, the picoplankton, have a key role in the
global carbon cycle, being responsible for an important fraction of the total

atmospheric carbon and nitrogen fixation in the ocean [3-5], which supports ~46% of
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the global primary productivity [6]. Oceanic picoplankton plays a fundamental role in
processing organic matter by recycling nutrients and carbon to support additional
production as well as by channelling organic carbon to upper trophic levels through
food webs [5, 7, 8]. The ocean picoplankton includes prokaryotes (both bacteria and
archaea) and tiny unicellular eukaryotes (hereafter picoeukaryotes), which feature
fundamental differences in terms of cellular structure, feeding habits, metabolic
diversity, growth rates and behaviour [9]. Even though marine picoeukaryotes and
prokaryotes are usually investigated separately, they are intimately connected through
biogeochemical and food web networks [10-12].

The underlying ecological mechanisms determining the biogeography of
prokaryotes and picoeukaryotes in the global ocean are unclear. In particular, we do
not know whether these crucial components of the ocean microbiota are structured by
the action of the same or different ecological processes. Comprehending such
processes is fundamental, as their differential action can produce changes in the ocean
microbiota composition that could impact global ecosystem function [13-15]. A
recent ecological synthesis explains the structure of communities and the emergence
of biogeography as a consequence of the action of four main processes: selection,
dispersal, ecological drift and speciation [16]. Selection involves deterministic
reproductive differences among individuals from different or the same species as a
response to biotic or abiotic conditions. Selection can act in two opposite directions, it
can constrain (homogeneous selection) or promote (heterogeneous selection) the
divergence of communities [17]. Dispersal is the movement of organisms across
space, and rates can be high (homogenising dispersal), moderate, or low (dispersal

limitation) [17]. Dispersal limitation occurs when species are absent from suitable
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habitats because potential colonizers are too far away [18], and the significance of
dispersal limitation increases as geographic scale increases [19]. Ecological drift
(hereafter driff) in a local community refers to random changes in species’ relative
abundances derived from stochastic birth, death, offspring production, immigration
and emigration [16]. The action of drift in a metacommunity, that is, local
communities that are connected via dispersal of multiple species [20], may lead to
neutral dynamics [19], where random dispersal is the main mechanism of community
assembly. Finally, speciation is the evolution of new species [16], and it will not be
considered hereafter as it is expected to have a small impact in the turnover of
communities that are connected via dispersal [21], being also difficult to measure this
ecological process in the wild.

The action of the previous ecological processes is typically manifested as
different taxonomic or phylogenetic patterns of community turnover, that is, -
diversity. At the moment, there are several estimators of -diversity which capture
different aspects of community turnover [22]. Most of these indices consider
taxonomic or phylogenetic aspects of communities, but not species-association
patterns, which can also manifest the action of ecological processes. For example,
selection exerted by an environmental variable can drive species co-occurrences
generating groups of highly associated species or modules in association networks that
correspond with specific environmental conditions [23]. Different members of these
modules may be more abundant in specific regions of the ocean, contributing to
increase -diversity estimates between these regions when based on standard
compositional or phylogenetic -diversity metrics. Yet, -diversity estimates based on

association-aware metrics may point to higher similarity between these regions, as
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taxa belong to the same modules. Furthermore, modules may display correlations with
environmental heterogeneity. Thus, association aware metrics of -diversity may allow
unveiling community patterns and their relationships with environmental variables
(i.e. selection), which would be missed by standard approaches [24]. So far, most
studies investigating the structure of the ocean microbiota have not considered species
associations in their analyses of -diversity.

The differential action of selection, dispersal and drift may generate different
microbial assemblages that could feature diverse metabolisms and ecologies [14, 15].
Moderate or high selection together with moderate dispersal rates may couple
environmental heterogeneity with combinations of species, leading to a spatial pattern
known as species sorting [25]. In contrast, high or low levels of dispersal may
decouple environmental heterogeneity (i.e. selection) from the composition of species
assemblages. High dispersal rates may maintain populations in habitats to which they
are maladapted [14, 20]. Inversely, low dispersal rates may promote microbial
assemblages that become more different as the geographic distance between them
increases (distance decay). If environmental heterogeneity and geographic distance
covary, then distance decay could reflect both selection and dispersal limitation [26].
Drift is expected to cause important random effects in local community composition
in cases where selection is weak and populations are small [13, 27].

Here we investigate the mechanisms that shape the surface-ocean microbiota
by using DNA-sequence data collected in two of the largest circumglobal
oceanographic expeditions to date, Malaspina 2010 [28] and TARA Oceans [29].
Specifically, we ask: What is the relative importance of selection, dispersal and drift

in structuring the surface ocean microbiota? Do these processes act similarly on main
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components of this microbiota (prokaryotes and picoeukaryotes)? What are the main
agents that exert abiotic selection? Do species association networks reflect the action
of selection in the upper ocean microbiota? What are the main spatial-structure

patterns that emerge due to the action of selection, dispersal and drift?

RESULTS

Quantifying the mechanisms that structure the surface ocean picoplankton

We analysed 16S and 18S rRNA-genes from prokaryotes and picoeukaryotes in 120
globally-distributed tropical and subtropical stations sampled during the Malaspina
2010 expedition [28] (Figure 1A). Note that the nature of the TARA Oceans data
precluded using them in these analyses (see Methods). Operational Taxonomic Units
were delineated at 99% similarity (OTUs.g9%,) and as unique sequence variants (OTUs.
Asvs, the maximum resolution for the 18S and 16S rRNA-gene). Analyses using both,
OTUs.99% and OTUs.asvs indicated that dispersal limitation was the dominant factor
structuring picoeukaryotic communities, explaining 76-67% of community turnover,
while this process had a lower importance in prokaryotes (~35-25%) [Figure 1B].
Note that percentage refers to the percentage of pairs of communities that appear to be
driven by dispersal limitation. In contrast, homogenizing dispersal had a very limited
role in the structuring of the tropical and subtropical upper-ocean microbiota (<3% for

both picoeukaryotes and prokaryotes). Drift had a limited role in the structuring of
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picoeukaryotic communities as indicated by both OTUs.g9, and OTUs.asvs,
representing ~21-6% of community turnover (Figure 1B). In contrast, drift appeared
as a relevant factor structuring prokaryotic communities, explaining ~44-31% of the
community turnover according to OTUs.g9¢;, and OTUs.asvs (Figure 1B). The role of
selection was higher in prokaryotes compared to picoeukaryotes according to both
OTUs.99% and OTUs.asvs, explaining ~34-27% of the turnover of prokaryotic
communities, and ~17-11% of that in picoeukaryotes (Figure 1B). Heterogeneous
selection had a relatively higher importance in structuring picoeukaryotes as compared
to prokaryotes (~16-7% vs. ~9-4%, respectively). Instead, homogeneous selection
appeared more important in structuring prokaryotic (~24-23%) than picoeukaryotic (~
1-4%) communities (Figure 1B).

Our quantifications indicated different roles of ecological processes in
structuring communities of marine prokaryotes and picoeukaryotes populating the
tropical and subtropical surface-ocean (Figure 1B). We then aimed at confirming
these results using other more traditional approaches. In these analyses, considering
Malaspina data, we used OTUs.g9%, given that these likely correspond to well-defined
lineages, while OTUs.asys may reflect, in some cases, intraspecific variation [30]. We
found moderate correlations between picoeukaryotic and prokaryotic -diversity (Bray
Curtis: =0.58, gUniFrac: =0.61, p=0.01, Mantel tests; Figure S2, Additional file 2).
Given that rare species tend to occupy less sites than more abundant ones [31],
communities featuring different proportions of abundant or rare species may display
different spatial turnover. We found that picoeukaryotes had proportionally more
regionally rare (i.e. mean abundances across all samples <0.001%) species than

prokaryotes (71% vs. 48% respectively) [Table S1, Additional file 3; Figure S3,
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Additional file 4]. This is consistent with the observation that picoeukaryotes had
more restricted species distributions (i.e., occurring in <20% of the stations) than
prokaryotes (95% vs. 88% of the species respectively) [Table S2, Additional file 5;

Figure S3, Additional file 4].

Selection acting on the microbiota

We investigated the agents exerting abiotic selection on the tropical and subtropical
surface-ocean microbiota by analysing -diversity together with the environmental
variables included in the Meta-119 dataset (Temperature (°C), Conductivity (S m™),
Fluorescence, Salinity and Dissolved Oxygen (ml L1)). We used different indices that
capture distinct facets of -diversity (Bray-Curtis, TINA,, PINAy, gUniFrac; see
Methods). Water temperature was the most important driver of selection on
prokaryotes (Figure 2), ranging between 15.7 - 29.3 C, with a mean of 24.5 C and a
standard deviation of 3.2 C across the whole Meta-119 Malaspina dataset (Figure
1A). Furthermore, water temperature appeared to affect prokaryotic association
networks, given that TINAy [24] explained ~50% of community variance (ADONIS
R?) [Figure 2], while other used -diversity indices that do not consider species
associations explained considerably lower proportions (Figure 2). In contrast,
temperature had limited effects on picoeukaryotic community turnover (Figure 2).
Analyses using both the Malaspina and TARA Oceans datasets indicated stronger
positive correlations between TINA, and water-temperature differences in
prokaryotes (Mantel r =0.8-0.5, p<0.01) than in picoeukaryotes [Mantel r =0.3,
p<0.05] (Figure 3). TARA Oceans samples displayed a higher correlation with water

temperature than Malaspina samples (Figure 3), which likely reflects the wider
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temperature range covered by TARA Oceans samples (range ~0-30 C, mean ~21 C,
standard deviation ~7 C) compared to Malaspina (range ~15-30 C, mean ~24 C,
standard deviation ~3 C). Overall, TINA,, results indicate that locations with similar
temperatures include prokaryotic species that tend to co-occur, with this pattern
disappearing as the temperature difference between stations increases. The previous
pattern was either weak or non-existent in microbial eukaryotes (Figure 3).

We expanded the exploration of the role of abiotic selection on microbiota
structuring by analysing a larger number of environmental variables (total 17) that
were available for only 57 globally distributed Malaspina stations (see details in
Supplementary Methods, Additional file 6; Figure S4, Additional file 7). Results
supported the importance of temperature-driven selection for prokaryotic community
structuring (Figure S5, Additional file 8) and indicated that fluorescence (a proxy for
Chlorophyll a concentration) explained 31% of PINAy-based prokaryotic community
variance (ADONIS R?), being non-significant for picoeukaryotes (Figure S5,
Additional file 8). The remaining tested abiotic variables explained a minor fraction
of community variance, suggesting that abiotic selection, at the whole ocean-
microbiota level, operates via few agents, mainly temperature, although we cannot
rule out that other unmeasured abiotic variables may also be exerting selection.

The different correlations between temperature and -diversity as measured by
TINAy in prokaryotes and picoeukaryotes suggest that they may feature different
species association networks. We found that prokaryotes sampled in both Malaspina
and TARA Oceans were more associated between themselves than protists (Figure S6,
Additional file 9; Table S3, Additional file 10; Table S4, Additional file 11; Table

SS, Additional file 12). Furthermore, the prokaryotic networks were more modular
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(in terms of cliques) than the picoeukaryotic counterparts (Table S3, Additional file
10), which may reflect to certain extent, temperature-driven selection [23].

Given that selection exerted by variables that lack phylogenetic signal,
typically biotic variables, could inflate estimates of dispersal limitation, we have
checked whether the high dispersal limitation we estimated for picoeukaryotes could
reflect zooplankton grazing. For that, we have analysed globally-distributed surface
TARA Oceans stations for which we could estimate both the community composition
of picoeukaryotes (here defined as the 0.8-5 um size-fraction; 36 or 38 stations) as
well as that of microzooplankton (20-180 pm size-fraction; 36 stations) or
mesozooplankton (180-2,000 pum size-fraction; 38 stations) based on 18S-rRNA genes
[32]. Analyses considering abiotic (total 6, see Supplementary Methods, Additional
file 6) and biotic (estimated zooplankton abundance) variables indicated that micro-
and mesozooplankton had a minor influence on picoeukaryotic community structure
(~5% of the variance explained, ADONIS R?). In addition, the correlation between
picoeukaryotic and zooplankton -diversity was either weak (microzooplankton, =0.34)
or absent (mesozooplankton) [p<0.01, Mantel tests]. Thus, zooplankton grazing does

not appear to influence -diversity in picoeukaryotes.

Selection acting on single species

The previous analyses investigated how selection may operate on the entire
assemblage of species, without considering the different responses to selection that are
expected in individual species. We therefore evaluated the potential action of selection
on single species by determining their individual correlations with multiple abiotic

environmental variables using the Maximum Information Coefficient (MIC). In the
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Malaspina dataset (Figure 1A), temperature was the variable with the highest number
of associated prokaryotic species (1.7%), representing ~17% of the 16S rRNA gene-
sequence abundance, while picoeukaryotic species displayed limited associations with
temperature (~0.3% of the species representing ~5% of the 18S rRNA gene-sequence
abundance) [Figure S7, Additional file 13]. Picoeukaryotic and prokaryotic species
were also associated with oxygen, conductivity and salinity (Figure S7, Additional
file 13), which co-vary with temperature. The remaining variables displayed limited
associations with individual prokaryotic or picoeukaryotic species (Figure S7,
Additional file 13), thus agreeing with our previous results suggesting that abiotic
selection on the tropical and subtropical surface-ocean microbiota operates via few
variables, with a dominant role for temperature among prokaryotes. Overall,
prokaryotes featured proportionally more individual-species associations with
environmental parameters than picoeukaryotes (Figure S7, Additional file 13),
suggesting that environmental heterogeneity in the tropical and subtropical surface-
ocean has a stronger effect on prokaryotic assemblages than on picoeukaryotic
counterparts. Analyses of TARA Oceans data supported the previous results by
indicating that prokaryotic species were associated predominantly with temperature
and oxygen in the upper global ocean, while unicellular eukaryotes had weak

associations to multiple variables (Table S6, Additional file 14).

Dispersal
Abiotic environmental conditions in adjacent stations over the trajectory of the
Malaspina cruise, typically separated by 250-500 km, in the tropical and sub-tropical

ocean (Figure 1A) are generally comparable [33]. Therefore, compositional
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differences between pairs of neighbouring communities could manifest the differential
capability of distinct microbial assemblages to disperse. Following these premises, we
analysed the change in picoeukaryotic and prokaryotic community composition along
the trajectory of the Malaspina cruise by comparing each community to the one
sampled immediately before in a sequential manner (i.e. sequential -diversity) [Figure
4]. Both picoeukaryotic and prokaryotic communities displayed variable amounts of
sequential -diversity (Figure 4, Panels A and B), although picoeukaryotes featured,
on average, a higher sequential -diversity than prokaryotes (Figure 4, Panel C). This
agrees with the overall mean -diversity, which was significantly higher for
picoeukaryotes than for prokaryotes (Figure S8, Additional file 15). Tests by
subsampling the number of picoeukaryotic OTUs.g9y, to the same number of
prokaryotic ones (7,025) indicated that different numbers of OTUs.g9¢, in these groups
did not affect mean Bray-Curtis estimates of -diversity displayed in Figure S8,
Additional file 15 [34].

When geographic distance covary with environmental heterogeneity, spatial
community variance may be the manifestation of both selection and/or dispersal
limitation. -diversity in picoeukaryotes and prokaryotes displayed positive correlations
with geographic distance (i.e. distance decay) predominantly within 1,000 km (Figure
4, Panel D). Yet, correlations were weaker in prokaryotes than in picoeukaryotes,
pointing to stronger dispersal limitation or selection in the latter. Variance partitioning
analyses considering both environmental [Temperature (°C), Conductivity (S m),
Fluorescence, Salinity and Dissolved Oxygen (ml L')] and geographic variables
(ocean basin and subdivisions, as well as Longhurst biogeographic provinces [35] ,

Figure S1, Additional file 1) indicated that in prokaryotes, geographic variables
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explained most of the variance (24%), while environmental variables explained 10%,
and 13% was explained by both variables; 53% of the variance remained unexplained.
In contrast, picoeukaryotes displayed non-significant results in the same analyses.
Still, after controlling for the effects of the most important environmental variables,
Longhurst provinces (but not ocean basins nor subdivisions) accounted for ~20-25%
of community variance in both picoeukaryotes and prokaryotes (ADONIS R?) [Figure
2]. All in all, the previous analyses seem coherent with our quantifications of
ecological processes (Figure 1B), in the sense that they indicate that both selection
and dispersal limitation (represented by geographic variables such as distance or
ocean provinces), do seem to have a role in the structuring of the surface ocean
picoplankton.

Selection and dispersal limitation may operate more strongly in geographic
areas that constitute ecological boundaries, leading to abrupt changes in microbiota
composition. We identified 14 communities where sequential -diversity displayed
abrupt changes, with 11 of them coinciding for both picoeukaryotes and prokaryotes
(Figure 4, Panels A & B). The Local Contributions to Beta Diversity (LCBD) index
[36] (Figure S9, Additional file16) indicated that ~22% of both picoeukaryotic and
prokaryotic communities (26 stations each, totaling 36 different stations) contributed
the most to the -diversity, with 16 communities coinciding for both prokaryotes and
picoeukaryotes (Figure S9, Additional file16; Table S7, Additional file 17). In
addition, 8 of the 36 stations featuring a significant LCBD were also identified as
zones of abrupt community change in sequential -diversity analyses (Table S7,
Additional file 17). These zones point to selection or dispersal operating

simultaneously and strongly upon both prokaryotic and picoeukaryotic communities in
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the surface ocean.

DISCUSSION

Applying an innovative ecological framework [21] allowed us to quantify the
mechanisms that shape the tropical and subtropical upper-ocean microbiota. Yet, this
approach has limitations (summarised by Zhou & Ning [17]) that need to be
considered in the context of our results. First, our results represent the overall action
of ecological processes at the whole microbiota level, and not their operation on every
taxonomic group or lineage (for example, different taxonomic Classes may be
structured by different processes). In addition, our results reflect the action of
ecological mechanisms at the global ocean level, and we expect that other spatial
scales (ocean basin for example) may lead to other results. Furthermore, our results
provide a snapshot of the importance of ecological processes at the global-ocean scale,
and future studies should investigate how the relative importance of these mechanisms
change over time [37]. Second, the measured ecological mechanisms are associated
with the evolutionary diversification that is reflected by the variation in the chosen
molecular markers. OTUs.g9¢, and OTUs.asvs based on the 16S and 18S rRNA genes
likely reflect defined species (or gene flow units [38]) or in some cases population
variation [30], and therefore, the measured ecological mechanisms in the tropical and
subtropical ocean apply to those evolutionary levels. Hence, our results do not reflect
the mechanisms shaping intra-population variation or those shaping taxonomic ranks
above the species level. Furthermore, our results indicate that delineating OTUs based
on sequence clustering (OTUs.g9%) or sequence variants (OTUs.asys) can affect

measurements of ecological mechanisms, although in our study, main trends were
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maintained. It could be hypothesized that OTUs.g99, and OTUs.asys may represent
different taxonomic units in prokaryotes or picoeukaryotes, especially if one group
was evolving faster than the other. Yet, both prokaryotes and picoeukaryotes show a
wide range of evolutionary rates [39, 40], including lineages evolving slow or fast,
therefore potential differences in unit definitions associated to different evolutionary
rates will likely compensate when analysing complex assemblages of species. Third,
failure to detect selection could inflate estimates of dispersal limitation. We consider
that our estimates indicating substantial dispersal limitation in picoeukaryotes were
not inflated, as picoeukaryotes displayed more restricted spatial distributions than
prokaryotes and important biotic variables, such as potential zooplankton grazing, did
not seem to affect the structure of picoeukaryotic assemblages. Furthermore, another
study also suggests that dispersal limitation influences protist distributions in the
global ocean [32]. Altogether, the used framework [21] can be considered as a guide
that can provide important insights on the ecological mechanisms structuring the
global ocean microbiota, while more data (e.g. single nucleotide variants in genes or
genomes) and experiments are necessary to understand such mechanisms in further
detail.

Our results indicated that the differential action of ecological processes may
promote different biogeographic patterns in prokaryotic and picoeukaryotic
assemblages in the upper global-ocean. This is consistent with other works using
similar approaches to ours indicating that protistan and bacterial assemblages are
shaped by different ecological processes [37, 41-43]. In particular, selection, which is
known to have an important role in structuring prokaryotic communities [25, 26],

explained a higher proportion of community turnover in surface-ocean prokaryotes (~
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34-27% of the turnover) than in picoeukaryotes (~17-11%). This modest role of
selection in structuring the tropical and subtropical sunlit-ocean microbiota is
consistent with the moderate environmental gradients characterizing this habitat. In
other habitats featuring a higher selective pressure, the role of selection in structuring
prokaryotes is expected to be higher [41]. The quantifications of the importance of
selection are also associated to the global scale of our survey. Thus, for example, at
smaller geographic scales, where dispersal limitation is expected to have a lower
impact than at global scales [18], the relative importance of selection could increase.
Congruently, in surface waters of the East China Sea it was found that selection was
40% more important than dispersal limitation in structuring bacterial communities
[42], while in our global study, selection and dispersal limitation had a similar
importance in structuring prokaryotes. Furthermore, the previous study [42] found that
selection was considerably more important than dispersal limitation in structuring
communities of microbial eukaryotes. In contrast, our global assessment yields
dispersal limitation to be ~5 times higher than selection in structuring picoeukaryotic
communities.

We found that heterogeneous selection was more important in structuring
picoeukaryotic than prokaryotic communities, while homogeneous selection was more
important in structuring prokaryotic than picoeukaryotic communities. This suggest
that prokaryotes and picoeukaryotes respond differently to the same environmental
heterogeneity, which in the tropical and subtropical surface-ocean would be
preventing community divergence in prokaryotes while promoting it in
picoeukaryotes. Different adaptations in prokaryotes and picoeukaryotes [9] may

determine such contrasting responses to the same environmental heterogeneity. For
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example, a given environmental heterogeneity could select for a few species featuring
wide environmental tolerance or several species that are adapted to narrow
environmental conditions.

Diverse large-scale studies have indicated that temperature is one of the main
variables structuring the ocean microbiota [44-49]. Consistent with our results,
Sunagawa et al. [50] reported strong correlations between prokaryotic global-ocean
microbiota composition and temperature, and weak correlations with nutrients. The
previous agrees with our results indicating that temperature is one of the most
important agents exerting abiotic selection on the surface-ocean microbiota, although
we cannot rule out the selective action of other unmeasured abiotic factors.
Furthermore, temperature is one of the main abiotic variables structuring microbial
assemblages in seasonal time-series, pointing also to the importance of this variable at
local scales over yearly cycles [51-53]. Our analyses also unveiled an additional layer
of information by indicating that temperature-driven selection affects prokaryotic taxa
co-occurrences, a pattern not observed in picoeukaryotes. Such -diversity related to
species associations is typically not captured by classic compositional indices like
Bray Curtis, possibly due to variations in the relative abundance of the co-occurring
species [54]. In contrast to prokaryotes, less is known about the effects of temperature
on the community structure of ocean picoeukaryotes, which according to our results
are modest. Yet, specific picoeukaryotic lineages, such as MAST-4, do seem to be
affected by temperature [55], pointing to taxonomic-group specific responses to
selection. One of the possible reasons why picoeukaryotes do not show co-occurrence
patterns comparable to those observed in prokaryotes is dispersal limitation, which

precludes picoeukaryotic species with similar niches to share the same geographic
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zone. Overall, our work indicates that species association patterns are informative on
the -diversity of marine prokaryotes, therefore taxa association networks should be
contemplated in future analyses of the ocean microbiota.

To what extent dispersal limitation affects the distribution of ocean microbes
is a matter of debate. The impact of dispersal limitation is expected to increase with
increasing body size [56], therefore, larger protists are expected to be more limited by
dispersal than smaller prokaryotes. Ocean protists seem to follow the previous tenet,
as it has been observed that dispersal limitation appears to increase with increasing
cell size [32]. Furthermore, in surface open-ocean waters, prokaryotes typically
display abundances of 106 cells/mL, while picoeukaryotes normally have abundances
of 103 cells/mL [57]. Due to random dispersal alone, the more abundant prokaryotes
are expected to be distributed more thoroughly than the less abundant picoeukaryotes
[31]. Thus, both cell size and abundance could partially explain our results indicating
a higher dispersal limitation in picoeukaryotes than in prokaryotes. Yet, multiple
studies of aquatic unicellular eukaryotes point to restricted dispersal [32, 58, 59],
while other studies indicate the opposite [55, 60, 61]. This could reflect different
dispersal capabilities among unicellular eukaryotes [58, 62] and the generation of
dormant cysts in some species [63, 64], which may increase dispersal. Yet, cyst
formation has not been reported for picoeukaryotes [9] and this may partially explain
their limited dispersal. Regarding prokaryotes, previous studies indicate that dispersal
limitation has a modest influence in the structure of marine communities [50, 65, 66]
which is coherent with our results. In particular, Louca et al. [67] indicate that there is
virtually no dispersal limitation in surface ocean prokaryotes within specific ocean

regions, suggesting that the importance of dispersal limitation may increase across
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large oceanic regions or basins. Nevertheless, dormancy in prokaryotes seems to be
more common than in picoeukaryotes [9, 68], and this may allow the former to
disperse more thoroughly by reducing their metabolisms when moving through
unfavorable habitats [69].

The importance of drift in structuring microbial communities is unclear [25,
70]. Our results, considering both OTUs.99%, and OTUs.asvs indicated that drift has a
modest role in structuring picoeukaryotic communities in the tropical and subtropical
surface ocean. In contrast, both OTUs.99¢, and OTUs.asvs indicated that drift has a
more important role in structuring prokaryotic counterparts. Another study also found
a larger importance of drift in determining the community structure of bacteria when
compared with phytoplankton populating freshwater and brackish habitats [71]. In
contrast, drift was the prevalent community-structuring mechanism in unicellular
eukaryotes populating lakes in a relatively small geographic area that features a strong
salinity gradient, having a low importance for the structuring of prokaryotic
counterparts [41]. Drift is expected to have a more important role in small
populations, which is normally not the case for microbes in the global ocean. Yet,
other random processes could have effects similar to drift in large microbial
populations. For example, the evolution or arrival of a new bacteriophage may attack
abundant bacteria in a local community, randomly reshuffling species abundances.
Likely, the importance of drift in structuring microbiotas is dependent on taxa
adaptations (e.g. the presence of habitat generalists or specialists), selection strength,
ecological redundancy, as well as on the dimensions of the analysed habitats.

A decrease in community similarity with geographic distance (distance decay)

can be the manifestation of selection and/or dispersal limitation [26]. Distance decay

20




106 A. Co-autored papers

has been evidenced in diverse studies focusing on the surface and deep ocean
microbiotas [65, 72, 73]. In our study, we have used different analyses (variance
partitioning and ADONIS based on measured environmental variables and geographic
features; see Methods) to interpret the measured distance decay. Variance partitioning
suggested that both geography (i.e. dispersal limitation) and environmental variation
(selection) likely explain distance decay in prokaryotes, with geography having
potentially a more important role, which agrees with our ADONIS analyses based on
Bray Curtis and gUnifrac distances (Figure 2). Interestingly, variance partitioning was
not significant in picoeukaryotes, although ADONIS analyses based on Bray Curtis
and gUnifrac distances indicated that geography, and to a lesser extent temperature,
would partially explain picoeukaryotic distance decay (Figure 2). Overall,
provincialism, as measured by Longhurst provinces (Figure S1, Additional file 1)
was the most relevant spatial feature for the community structuring of both
prokaryotes and picoeukaryotes (Figure 2). Possibly, this reflects dispersal limitation,
as the selective effects of main environmental variables that covary with these
provinces were considered during ADONIS analyses. Longhurst provinces may also
reflect, to certain extent, different water masses or currents that impose restrictions to
microbial dispersal. Yet, it may be possible that dispersal limitation in picoeukaryotes
is only partially reflected by provincialism, thus explaining the lack of significance in
variance partitioning analyses as well as the differences between the magnitudes of
dispersal limitation suggested by provincialism analyses using ADONIS (Figure 2)
and those estimated by analyses of ecological processes (Figure 1B). Alternatively,
dispersal limitation in picoeukaryotes may be better reflected by geographic distances

between communities, as suggested by sequential Bray-Curtis analyses (Figure 4C) as
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well as their stronger distance decay when compared to prokaryotes (Figure 4D).
Interestingly, a study investigating surface marine bacteria along ~12,000 km in the
Atlantic Ocean found that provincialism explained an amount of community variance
comparable to our results [65]. Furthermore, and consistent with our results, a study of
the sunlit global-ocean eukaryotic microbiota indicated that basin, which may be
associated to provincialism and dispersal limitation, was one of the most important
variables explaining community turnover [32]. In sum, Longhurst provinces, as a
spatial feature, seem to partially reflect the dispersal limitation measured for upper-
ocean picoplankton.

In the surface ocean, drastic changes in microbial species composition across
space may point to strong changes in abiotic selection (as expected to occur across
oceanographic fronts [74, 75]), or high immigration. We identified 14 stations
featuring abrupt changes in prokaryotic or picoeukaryotic community composition as
well as 36 stations with a “unique” species composition. Some of these areas
correspond to nutrient-rich (selection) coastal zones (the South African Atlantic coast
and the South Australia Bight) or potential upwelling (dispersal) zones, such as the
Equatorial Pacific and Atlantic as well as the Costa Rica Dome. These findings were
coherent with Spatial Abundance Distributions (SpAD) of bacterioplankton in the
tropical and subtropical surface-ocean [33]. Altogether, the previous suggests strong
selective changes or immigration from deep water layers into the surface associated to
upwellings, affecting both prokaryotic and picoeukaryotic community structure. Such
immigration events into the surface, when random, may partially explain the measured

drift.
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CONCLUSION

Our results indicate that selection, dispersal and drift have different roles in shaping
the main components of the picoplankton (prokaryotes and picoeukaryotes) in the
tropical and subtropical surface ocean. This highlights the importance of
comprehending the characteristics of the different constituents of microbiotas in order
to understand their structure. Our results also suggest that the surface ocean
picoplankton may not show a single response to global change, and that perhaps
prokaryotes will display more pronounced changes in their community structure as a
response to temperature increase than picoeukaryotes, considering that temperature
seems to affect more prokaryotic than picoeukaryotic assemblages. Future studies on
the ocean microbiota should investigate the change in the role of selection, dispersal
and drift with ocean scale (from meters to kilometers), depth, latitude and longitude as
well as with time, taxonomic ranks (e.g. Class, Family, etc.) and molecular markers
that evolve at different rates. Such studies will likely provide a more comprehensive
understanding of the underlaying mechanisms shaping the ocean microbiota at
different evolutionary levels (from lineages to populations) and will also provide

insights on the environmental variables that could modify its current configuration.

METHODS

Sample collection

Surface waters (3 m depth) from a total of 120 globally-distributed stations located in
the tropical and sub-tropical ocean (Figure 1A) were sampled as part of the
Malaspina 2010 expedition [28]. Sampling took place between December 2010 and

July 2011 and the cruise was organized in a way so that most regions were sampled
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during similar meteorological seasons. Samples were obtained with a 20 L Niskin
bottle deployed simultaneously to a CTD profiler that measured conductivity,
temperature, oxygen, fluorescence and turbidity for each sample. About 12 L of
seawater were sequentially filtered through a 20 pm nylon mesh, followed by a 3 pm
and 0.2 um polycarbonate filters of 47 mm diameter (Isopore, Millipore, Burlington,
MA, USA). Only the smallest size-fraction (0.2 -3 um, here called “picoplankton”
[8]) was used in downstream analyses. Samples for inorganic nutrients (NO3~, NOy,
POs*, SiO;) were collected from the Niskin bottles and measured
spectrophotometrically using an Alliance Evolution I autoanalyzer (Frépillon, France)
[76]. Chlorophyll measurements were obtained from Estrada et al. [77]. In specific
samples nutrient concentrations were estimated using the World Ocean Database [78]
due to issues with the measurements. Since not all environmental parameters were
available for all stations, two contextual datasets were generated: Meta-119, including
119 stations, 5 environmental parameters and 5 spatial features (all except one station
in Figure 1A) and Meta-57 (Figure S4, Additional file 7), including 57 stations and
17 environmental parameters (the 5 environmental parameters included in Meta-119

were considered here as well). See Supplementary Methods, Additional file 6.

DNA extraction, sequencing and bioinformatics

DNA was extracted using a standard phenol-chloroform protocol [79]. Both the 18S
and 16S rRNA-genes were amplified from the same DNA extracts. The hypervariable
V4 region of the 18S rRNA gene (~380 bp) was amplified with the primers
TAReukFWD1 and TAReukREV3 [80], while the hypervariable V4-V5 (~400bp)

region of the 16S rRNA gene was amplified with the primers 515F-Y - 926R [81],
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which target both Bacteria and Archaea. Amplicon libraries were then paired-end
sequenced on an [llumina (San Diego, CA, USA) MiSeq platform (2x250bp) at the

Research and Testing Laboratory facility (http://www.researchandtesting.com/).

Reads were processed following and in-house protocol [82]. Operational
Taxonomic Units (OTUs) were delineated at 99% similarity using UPARSE
V8.1.1756 [83], producing 42,505 picoeukaryotic and 10,158 prokaryotic OTUs.g9v.
Taxonomic assignment of OTUs._g9¢, was generated by BLASTing OTU-representative
sequences against different reference databases. BLAST hits were filtered prior to
taxonomy assignment using an in-house python script, considering a percentage of
identity >90%, a coverage >70%, a minimum alignment length of 200 bp and an e-
value > 0.00001. Metazoan, Streptophyta, nucleomorphs, Chloroplast and
mitochondrial OTUs were removed from the OTUs.g9y, tables. See Supplementary
Methods, Additional file 6 and Table S8, Additional file 18.

Additionally, to investigate the effects of clustering on the estimation of
ecological mechanisms (Fig. 1B), we determined OTUs as Amplicon Sequence
Variants (ASVs) using DADA?2 [84]. For the 18S, we trimmed the forward reads at
240 bp and the reverse reads at 180 bp, while for the 16S, forward reads were trimmed
at 220 bp and reverse reads at 200 bp. Then, for the 18S, the maximum number of
expected errors (maxEE) was set to 12 and 20 for the forward and reverse reads
respectively, while for the 16S, the maxEE was set to 2 for the forward reads and to 4
for the reverse reads. OTUs.asvs were assigned taxonomy using the naive Bayesian
classifier method [85] together with the SILVA version 132 [86] database as
implemented in DADA?2. Eukaryotic OTUs.asvs were also BLASTed [87] against the

Protist Ribosomal Reference database (PR2, version 4.11.1; [88]). Streptophyta,
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Metazoa, nucleomorphs, chloroplasts and mitochondria were removed from OTUs.
asvs tables. Tables of OTUs.asvs were rarefied to 20,000 reads per sample with the
function rrarefy in Vegan. Only OTUs.asvs with abundances >100 reads were used for
the calculation of ecological mechanisms (Fig. 1B).

We used publicly-available data from the TARA Oceans global expedition [29]
in multiple analyses. This expedition took place between September 2009 - March
2012, and includes samples from the same hemisphere during different meteorological
seasons. Due to the nature of the TARA Oceans dataset, we did not perform all the
analyses that were run for the Malaspina dataset. Specifically, short V9 18S rRNA-
gene reads or 16S rRNA-gene miTags [89] from TARA Oceans precluded robust
phylogenetic reconstructions, which instead were possible with the longer reads
produced for Malaspina. We used data from TARA Oceans surface (~5 m depth)
stations only, including 41 samples (40 stations) for pico-nano eukaryotes (0.22-3 m
[1 sample] and 0.8-5 m [40 samples]; 18S-V9 rRNA gene amplicon data) [32] as well
as 63 stations for prokaryotes (picoplankton, 0.22-3 m [45 samples] and 0.22-1.6 m

[18 samples]; 16S rRNA genes, miTags) [50].

General analyses and phylogenetic inferences

Tables including OTUs.g9¢, were sub-sampled to 4,060 reads per sample using rrarefy
in Vegan [90], resulting in sub-sampled tables containing 18,775 picoeukaryotic and
7,025 prokaryotic OTUs. OTUs.g9y, with mean relative abundances >0.1% or <0.001%
were defined as regionally abundant or rare respectively [91]. Phylogenetic trees were
constructed by aligning 16S or 18S OTUs.g99, representative sequences against an

aligned SILVA [86] template using mothur [92]. Afterwards, poorly aligned regions
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or sequences were removed using trimAl [93]. A phylogenetic tree was inferred using
FastTree v2.1.9 [94]. Most analyses were performed in the R statistical environment
[95] using APE [96], ggplot2 [97], gUniFrac [98], Maps, Mapplots, Picante [99] and
Vegan. The Vegan function adonis and adonis2 were used to investigate the amount
of variance in community composition explained by environmental or geographic
variables. Variance partitioning analyses were run with varpart in Vegan and tested
for significance with ANOVA. Distance decay, which refers to the decrease in
microbial community similarity as geographic distance between communities
increases was investigated in R using Mantel correlograms between geographic
distance and -diversity, considering distance classes of 1,000 km. Local Contributions
to Beta Diversity (LCBD) [36], which indicates the degree of uniqueness of each
community in terms of its species composition, was measured with adespatial [100].

See Supplementary Methods, Additional file 6.

Quantification of selection, dispersal and drift

These processes were quantified using an approach that relies on null models,
consisting of two main sequential steps: the first uses OTU phylogenetic turnover to
infer the action of selection and the second uses OTU compositional turnover to infer
the action of dispersal and drift [21]. The action of selection, dispersal and drift was
quantified using both OTUs.99%, and OTUs.asvs. In order to determine the action of
selection using phylogenetic turnover, we first checked whether habitat preferences of
phylogenetically closely related taxa (according to the 16S and 18S rRNA-genes)
were more similar to each other than to those of more distantly related taxa, what is

known as phylogenetic signal [101, 102]. We tested for phylogenetic signal using
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temperature and fluorescence, which were the two variables that explained the highest
fraction of community variance. We detected phylogenetic signal at relatively short
phylogenetic distances (Figure S10, Additional file 19; Figure S11, Additional file
20), which is coherent with previous work [21, 103, 104]. We measured phylogenetic
turnover using the abundance-weighted -Mean Nearest Taxon Distance (MNTD)
metric [17, 21], which quantifies the mean phylogenetic distances between the
evolutionary-closest OTUs in two communities. MNTD values can be larger, smaller
or equal to the values expected when selection is not affecting community turnover
(that is, expected by chance). MNTD values higher than expected by chance indicate
that communities experience heterogeneous selection [17]. In contrast, MNTD values
which are lower than expected by chance indicate that communities experience
homogeneous selection. Null models included 999 randomizations [21]. Differences
between the observed MNTD and the mean of the null distribution are denoted as -
Nearest Taxon Index (NTI), with [NTI>2 being considered as significant departures
from random phylogenetic turnover, pointing to the action of selection.

The second step uses OTU turnover to calculate whether the -diversity of
communities not structured by selection could be generated by drift (i.e. chance) or
dispersal. We calculated the Raup-Crick metric [105] using Bray-Curtis dissimilarities
(hereafter RCpray) [21]. RChray compares the measured -diversity against the -diversity
that would be obtained under random community assembly (drift); randomizations
were run 9,999 times. RCpray values between -0.95 and +0.95 point to a community
assembly governed by drift. On the contrary, RCpry values >+0.95 or <-0.95 indicate
that community turnover is driven by dispersal limitation or homogenizing dispersal

respectively [105]. See Supplementary Methods, Additional file 6.
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Estimation of interaction-adjusted indices

Taxa INteraction-Adjusted (TINA) and Phylogenetic INteraction Adjusted (PINA)
indices were estimated following Schmidt et al. [24]. TINA is based on taxa co-
occurrences while PINA considers phylogenetic similarities. TINA quantifies -
diversity as the average association strength between all taxa in different samples.
Thus, communities which are identical or include taxa that are perfectly associated
will give a TINA value of 1. TINA values will approach 0.5 in communities sharing
no taxa or having neutral associations, and approach 0 if taxa display high avoidance.
Dissimilarity matrices were generated as 1-TINA and used in downstream analyses
(e.g. Figure 3). Full picoeukaryotic and prokaryotic subsampled OTU_g9y, tables were
used to calculate the abundance-weighted TINA,, and PINA,. TINAy was calculated
using picoeukaryotic and prokaryotic data from 119 Malaspina surface stations (most
stations in Figure 1A). In addition, TINA,, was calculated using data from TARA
Oceans, including 63 surface stations for prokaryotes and 40 surface station for small
unicellular eukaryotes (Figure 3).

Associations between taxa and environmental parameters

We analysed whether OTUs.g9v, displayed associations with environmental variables
and between themselves. Firstly, we used the Maximum Information Coefficient
(MIC) which captures diverse relationships between two pairs of variables [106]. The
Malaspina dataset consisted of 119 stations and 17 environmental variables. In the
TARA Oceans dataset, prokaryotes were analysed across 63 surface stations (including
8 environmental variables), while microbial eukaryotes were analysed across 40

surface stations (including 6 environmental variables) [see Supplementary Methods,
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Additional file 6]. In both datasets, MIC analyses were run using CV=0.5, B=0.6, and
statistically significant relationships with MIC >0.4 (Malaspina) or MIC >0.5 (TARA
Oceans) were considered (MIC thresholds were adjusted to the characteristics of the
datasets). MIC significance was assessed using precomputed p-values [106].
Secondly, we constructed association networks with the Malaspina dataset
considering OTUs.g9, with >100 reads using SparCC [107] as implemented in
FastSpar [108]. To determine correlations, FastSpar was run with 1,000 iterations,
including 1,000 bootstraps to infer p-values. We used OTUs.g9y associations with
absolute correlation scores >0.3 and p<0.01. Networks were visualized and analysed

with Cytoscape [109] and igraph [110].
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FIGURE LEGENDS

Figure 1. Ecological mechanisms shaping the tropical and subtropical surface-
ocean picoplankton. Panel A) Position of the 120 stations included in this work that
were sampled as part of the Malaspina-2010 expedition (green dots) in the tropical
and subtropical ocean. A snapshot of the global sea surface temperature, a main
environmental driver affecting microbial distributions, is shown as a general
representation of the temperature gradients in the surface ocean (as inferred using the
‘optimum interpolation sea surface temperature’ dataset from the NOAA
corresponding to the 17 of March of 2018). Note that temperatures measured in situ
were used in all analyses, not the ones displayed here. Panel B) Percentage of the
community turnover associated to different ecological processes in prokaryotes and
picoeukaryotes in the tropical and subtropical ocean as calculated using OTUs.g9%, and
OTUs.asvs. Note that percentage refers to the percentage of pairs of communities that

appear to be driven by a given process.

Figure 2. Main variables influencing the structure of the surface-ocean

microbiota as captured by different -diversity metrics. Percentage of variance in

picoeukaryotic and prokaryotic community composition (ADONIS R?) explained by
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Water Temperature and Longhurst Provinces when using different -diversity metrics.
Figure based on the Malaspina Meta-119 dataset (see Methods). TINAy: TINA
weighted, gUniFrac: Generalized Unifrac, PINAw: PINA weighted. N.S. = Non-
Significant. Note that TINA., which considers species association networks, captures
a significantly higher proportion of community variance associated to temperature
than Bray-Curtis, a compositional index, in prokaryotes.

Figure 3. Temperature-driven selection seems to affect species association
networks in prokaryotes but not in pico-/nano-eukaryotes. Differences in
community composition (as 1-[TINA-weighted] = TINA, dissimilarities) vs.
temperature differences (as Euclidean distances based on dimensionless z-scores) for
both small unicellular eukaryotes and prokaryotes sampled during the Malaspina and
TARA Oceans expeditions. Note that, in contrast to other indices, TINA,, considers
species-association patterns (i.e. co-occurrences and co-exclusions ) when estimating -
diversity [24]. NB: While only picoeukaryotes were contemplated in Malaspina (cell
sizes <3 um), TARA Oceans data included pico- and nano-eukaryotes (cell sizes <5
pum). Pico- and nanoeukaryotes from both expeditions (left panels) displayed low or
no correlations between TINA,, distances and temperature differences (Mantel test
results included in the panels). On the contrary, prokaryotes (right panels) displayed
high to moderate correlations between TINA,, distances and temperature differences.
These differences in the correlations are likely due to the wider temperature ranges
covered by TARA Oceans compared to Malaspina (see Results). The regression line is
shown in red (Malaspina microbial eukaryotes N.S., Malaspina Prokaryotes R?=0.3,
TARA Oceans microbial eukaryotes R?=0.1, TARA Oceans Prokaryotes R?*=0.7;

p<0.05). The maps at the bottom indicate the surface stations from the expeditions
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Malaspina (119 stations for both prokaryotes and picoeukaryotes) and TARA Oceans
(63 stations for prokaryotes and 40 stations for small unicellular eukaryotes) that were

used to calculate TINA,.

Figure 4. Picoeukaryotic communities display a higher spatial differentiation
than prokaryotic counterparts in the tropical-subtropical surface-ocean. Panels
A-C: Sequential change in community composition across space (sequential -
diversity). Communities were sampled along the Malaspina expedition (Panels A and
B, black arrows), and the composition of each community was compared against its
immediate predecessor. In Panels A and B, the size of each bubble represents the
Bray-Curtis dissimilarity between a given community and the community sampled
previously. Blue squares in Panels A and B represent the stations where -diversity
displayed abrupt changes (Bray Curtis values >0.8 for picoeukaryotes and >0.7 for
prokaryotes). Abrupt changes coincided in a total of 11 out of 14 stations for both
picoeukaryotes and prokaryotes, while one station displayed marked changes only for
picoeukaryotes and two only for prokaryotes. Panel C summarizes the sequential
Bray-Curtis values for prokaryotes and picoeukaryotes (Means were significantly
different between domains [Wilcoxon text, p<0.05]). Panel D indicates the differences
in distance-decay between prokaryotes and picoeukaryotes in the tropical and
subtropical surface-ocean. Mantel correlograms between geographic distance and -

diversity featuring distance classes of 1,000 km for both picoeukaryotes and
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prokaryotes are shown. Coloured squares indicate statistically significant correlations
(p<0.05). Note that -diversity in picoeukaryotes displayed positive correlations with
increasing distances up to ~3,000 km, while prokaryotes had positive correlations with
distances up to ~2,000 km. Correlations tended to be smaller in prokaryotes than in

picoeukaryotes, indicating smaller distance decay in the former compared to the latter.
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Supplementary Methods
Sample collection

Surface waters (3m depth) from a total of 120 globally-distributed stations located
in the tropical and sub-tropical global ocean (Fig. S1) were sampled from December
2010 to July 2011 as a part of the MALASPINA-2010 expedition (1) conducted on the
R/V Hespérides. Water samples were obtained with a large (20L) Niskin bottle deployed
simultaneously to a CTD profiler that included sensors for conductivity, temperature,
oxygen, fluorescence and turbidity. After collection, ~12L of seawater were subsequently
pre-filtered through a 200um nylon mesh to remove large plankton, and then sequentially
filtered, using a peristaltic pump, through a 20um nylon mesh (at the entrance of the
tubing) and 3um and 0.2pm polycarbonate filters of 47mm diameter (Isopore, Millipore).
Filtration time was ~15 minutes. After filtration, filters were flash-frozen in liquid N> and
stored at -80°C until downstream analyses. Samples for inorganic nutrients (NO3", NO>",
PO.*, Si0,) were collected from the Niskin bottle, kept frozen, and measured
spectrophotometrically using an Alliance Evolution II autoanalyzer (2). In specific
samples, where the previous method failed or was not applied, we estimated nutrient
concentration using the World Ocean Database (3). Given that not all environmental
parameters were available for all stations, two contextual datasets were generated: Meta-
119, including 119 stations, 5 environmental parameters and 5 spatial features and Meta-
57, considering 57 stations and 17 environmental parameters (See below; Fig. S4). In
statistical analyses, continuous environmental variables were standardized as z-scores,

that is, deviations of the values from the global mean in standard deviation units.
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DNA extraction, amplicon sequencing and bioinformatic analyses

DNA was extracted using a standard phenol-chloroform protocol (4). Fragments
from both the 18S and 16S rRNA-gene were amplified from the same DNA extracts. The
hypervariable V4 region of the 18S (~380 bp) was amplified with the primers
TAReuk454FWDI1 and TAReukREV3 (5), while the hypervariable V4-V5 (~400bp)
region of the 16S was amplified with the primers 515F-Y - 926R (6), which targeted both
Bacteria and Archaea. Samples were amplified for sequencing in a two-step process. In
the first step, the forward primer was constructed with the Illumina i5 sequencing primer
(5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) and the TAReukFWD1
(18S) or S15F-Y (16S) primers. The reverse primer was constructed with the Illumina i7
sequencing primer (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’) and
the TAReukREV3 (18S) or 926R (16S) primers. Amplifications were performed in 25 pl
reactions with Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, California), 1ul of
each 5uM primer, and 1pul of template. Reactions were performed on ABI Veriti
thermocyclers (Applied Biosytems, Carlsbad, California) under the following thermal
“touchdown” profile: 95°C for 5 min, then 10 cycles of 94°C for 30 sec, 50°C for 40 sec
(+0.5°C per cycle), 72°C for 1 min, followed by 25 cycles of 94°C for 30 sec, 54°C for
40 sec, 72°C for 1 min, and finally, one cycle of 72°C for 10 min. Products from the first
amplification step were added to a second PCR based on qualitatively determined
concentrations. Primers for the second PCR were designed based on the Illumina Nextera
PCR primers as follows: Forward - 5°-
AATGATACGGCGACCACCGAGATCTACAC(]i5index] TCGTCGGCAGCGTC-3’

and Reverse - 5°-
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CAAGCAGAAGACGGCATACGAGATIi7index]GTCTCGTGGGCTCGG-3’. The
second stage amplification consisted in 95°C for 5 min, then 10 cycles of 94°C for 30
sec, 54°C for 40 sec, 72°C for 1 min, followed by one cycle of 72°C for 10 min.
Amplification products were visualized with eGels (Life Technologies, Grand
Island, New York). Products were then pooled equimolar and each pool was size selected
in two rounds using Agencourt AMPure XP (BeckmanCoulter, Indianapolis, Indiana) in a
0.75 ratio for both rounds. Size selected pools were then quantified using the Qubit 2.0
fluorometer (Life Technologies) and loaded on an /llumina MiSeq (Illumina, Inc. San
Diego, California) flow cell at 10 pM. Sequencing was performed using 2x250 bp.
Amplicon library construction and sequencing was performed at the Research and

Testing Laboratory facility (Lubbock, TX, USA; http://www.researchandtesting.com/).

A total of 71,391,060 (2 x 35,695,530) reads were produced for picoeukaryotes,
while 17,129,672 (2 x 8,564,836) reads were produced for prokaryotes. Reads were
processed following an in-house pipeline (7). Briefly, raw reads were corrected using
BayesHammer (8) following Schirmer et al. (9) Corrected paired-end reads were
subsequently merged with PEAR (10) and sequences longer than 200 bp were quality-
checked (maximum expected errors 0.5) and de-replicated using USEARCH (11). OTUs
were delineated at 99% similarity using UPARSE V8.1.1756 (12). To obtain OTU
abundances, reads were mapped back to OTUs at 99% similarity using an exhaustive
search (-maxaccepts 20 -maxrejects 50,000-100,000). Chimera check and removal was
performed both de novo and using the SILVA reference database (13). After our stringent
quality control, a total of 16,460,248 18S and 5,697,779 16S reads were considered,

which were associated to 42,505 18S and 10,158 16S OTUs. See more details on




144

A. Co-autored papers

sequence processing in Table S8. Taxonomic assignment of 18S OTUs was generated by
BLASTing (14) OTU-representative sequences against three reference databases, PR?
(15) and two in-house marine protist databases (available at https://github.com/ramalok),
one based on a collection of Sanger sequences from molecular surveys (16) and the other
based on 454 reads from the BioMarKs project (17). Metazoan, Charophyta and
nucleomorph OTUs were removed. Similarly, for 16S OTUs, taxonomic assignment was
based on BLASTing OTU-representative sequences against SILVA v123. Chloroplast
and mitochondrial sequences were removed. BLAST hits were filtered prior to taxonomy
assignment using an in-house python script, considering a percentage of identity >90%, a
coverage >70%, a minimum alignment length of 200 bp and an e-value > 0.00001.
Computing analyses were performed at the MARBITS bioinformatics platform of the

Institut de Ciencies del Mar (ICM; http://marbits.icm.csic.es) as well as in MareNostrum

(Barcelona Supercomputing Center). Sequences are publicly available at the European

Nucleotide Archive (http://www.ebi.ac.uk/ena; accession numbers PRJEB23913 [18S] &

PRJEB25224 [16S])

Statistical analyses and phylogenetic inferences

In order to allow for comparisons, both picoeukaryotic and prokaryotic datasets
were sub-sampled to 4,060 reads per sample using rrarefy in Vegan (18). The sub-
sampled picoeukaryotic and prokaryotic OTU tables contained 18,881 and 7,025 OTUs
respectively. All OTUs with mean relative abundances above 0.1% and below 0.001%

were defined as regionally abundant or rare respectively (19).
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Most analyses and graphs were performed in the R statistical environment (20)
using ggplot2 (21), Maps (22), Mapplots (23) and Vegan. Local Contributions to Beta
Diversity (24) was measured with adespatial (25). Phylogenetic trees were constructed
for both the 16S and 18S datasets using OTU-representative sequences. Reads were
aligned against an aligned SILVA template using mothur (26). Afterwards, poorly
aligned regions or sequences were removed using 7rimal [parameters: -gt 0.3 -st 0.001]
(27). A phylogenetic tree was inferred with FastTree (28) using the Generalized Time
Reversible (GTR) model of nucleotide substitution considering a CAT/Gamma-
distributed rate of variation across sites (including 20 rate categories). Other phylogenetic
analyses were performed with the R-packages picante (29), APE (30) and gUniFrac (31).

gUniFrac was run with an alpha value of 0.5.

Quantification of Selection, Drift and Dispersal

These processes were quantified using the approach proposed by Stegen et al.
(32) This methodology consists of two main sequential steps: the first step uses
phylogenetic turnover and the second step uses OTU turnover. Phylogenetic turnover is
measured by calculating the abundance-weighted B-mean nearest taxon distance
(BMNTD), which quantifies the phylogenetic distances between the evolutionary closest
OTUs in two communities. Short phylogenetic distances are considered in this approach,
as it has been found that closely related taxa have habitat preferences which are more
similar than the habitat preferences of distantly related taxa (32). BMNTD values can be
larger, smaller or equal to the values expected when selection is not affecting community

turnover (that is, expected under a random distribution). BMNTD values higher than
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expected indicate that communities are under heterogeneous selection (33). In contrast,
BMNTD values which are lower than expected indicate that communities are
experiencing homogeneous selection. Null models were constructed using 999
randomizations as in Stegen et al. (32) Differences between the observed BMNTD values
and the mean of the null distribution are denoted as -Nearest Taxon Index (BNTI), with |
BNTI | > 2 being considered as significant departures from random phylogenetic
turnover, pointing to the action of selection.

The second step of this process calculates whether the observed B-diversity, based
in OTU turnover, could be generated by drift or other processes. For this, we calculated
the Raup-Crick metric (34) using Bray-Curtis dissimilarities [hereafter RCoray], following
Stegen et al. (32). RCoray compares the measured B-diversity against the B-diversity that
would be obtained if drift was driving community turnover (that is, under random
community assembly). Randomizations were run 9,999 times and only OTUs with
>1,000 reads over the entire dataset were considered. These should provide the best
evidence on whether dispersal vs. drift structure communities, as such abundant OTUs
should be less prone to the potential effects of subsampling or sampling biases. RCoray
values between -0.95 and +0.95 point to a community assembly governed by drift. On the
contrary, RCpray values > +0.95 or < -0.95 indicate that community turnover is driven by
low/high dispersal respectively (34). According to Stegen et al.(32), dispersal limitation
is only expected to produce significant RCpray values when coupled to drift, which
introduces stochastic changes in community composition that magnify their
differentiation leading eventually to RCuray values > +0.95. In contrast, homogenizing

dispersal (similar to mass effects) could generate RCpray values < -0.95, reflecting a
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process in which the composition of two communities is more similar than expected by
chance due to high immigration rates.

The previous framework was applied as proposed by Stegen et al. (32): First, we
determined the fraction of total pairwise comparisons with a |[BNTI| > 2. This proportion
was interpreted as the overall action of selection in our picoplankton dataset. As a
consequence, the turnover of communities featuring |[BNTI| <2 should be driven by
dispersal limitation, homogenizing dispersal or drift. Thus, the second step in this
procedure was to calculate the RCypray for all those community pairs whose turnover was
not governed by selection (that is, those with |BNTI| < 2). Here, values of RCpray > +0.95
are interpreted as dispersal limitation, values of RCpry < -0.95 are interpreted as
homogenizing dispersal, while values of | RCoray | < +0.95 are associated to drift.
Subsequently, for the pairwise comparisons that did not indicate the action of selection,
we calculated the proportion of total comparisons that could be assigned to dispersal

limitation, homogenizing dispersal or drift according to their RCpray values.

Environmental datasets

The Meta-119 dataset, included 119 stations, 5 environmental parameters, and 5
spatial features for most stations. The 5 environmental parameters were: Temperature
(°C), Conductivity (S m™), Fluorescence, Salinity and Dissolved Oxygen (ml L"). Meta-
119 also considered the following spatial features: Longhurst Province (35), Ocean,
Ocean Subdivision, Distance to the coast <370km and Terrestrial influence.

The Meta-57 dataset considered 57 stations (Fig. S4) and 17 environmental

parameters for most stations. The 17 environmental parameters were: Temperature (°C),
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Conductivity (S m™"), Fluorescence, PAR (Photosynthetically Active Radiation; measured
with a sensor attached to the CTD), Turbidity, Salinity, Dissolved Oxygen (ml L),
Chlorophyll concentration (pg L) (36), Fluorescent Dissolved Organic Matter (FDOM,;
four peaks associated to humic and amino-acid substances were measured, indicated as
Fmax1, Fmax2, Fmax3, Fmax4; see (37)), TEP [Transparent Exopolymer Particles] (38),
POC (Particulate Organic Carbon) (38), NO;_Mala_ WOA13 (umol L") [Nitrate, values
from Malaspina and WOA13], POs_Mala WOA13 (umol L") [Phosphate, values from
Malaspina and WOA13], SiO4_Mala WOA13 (umol L") [Silicate, values from

Malaspina and WOA13] (37, 39, 40).

Maximal Information Coefficient (MIC) analyses

In MIC analyses (41), the same 17 environmental parameters used in the Meta-57
dataset were considered (see above Environmental datasets). In analyses of
picoeukaryotic or prokaryotic OTUs vs. environmental parameters, all OTUs were
considered, while in analyses including comparisons of all OTUs against each other plus
environmental parameters, only OTUs with >100 reads were included, due to
computational limitations.

MIC analyses using the TARA Oceans datasets included 8 environmental
parameters for prokaryotes (63 stations): Temperature (°C), Salinity, Oxygen (umol/kg),
NO; (umol/L), NO; (umol/L), PO4 (umol/L), NO2NO3 (umol/L) and SI (umol/L). These

data are publicly available in: http://ocean-microbiome.embl.de/companion.html. MIC

analyses of microbial eukaryotes from TARA Oceans considered 6 environmental

parameters (40 stations / 41 samples): Temperature (°C), Salinity, Oxygen (umol/kg),
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NOs (umol/L), PAR, Chlorophyll a (mg/m?). These data are available in:

http://taraoceans.sb-roscoff.fr/EukDiv/. In MIC analyses of OTUs against environmental

parameters, only OTU with > 30 reads were used for both microbial eukaryotes (10,115
OTUs, 61,407,151 reads) and prokaryotes (5,029 OTUs, 6,402,539 reads). Given the
large number of possible pairwise comparisons in analyses considering all OTUs and
environmental parameters against each other, only OTUs with > 500 reads were used for
prokaryotes (1,656 OTUs, 5,930,665 reads) while OTUs with > 1,000 reads were used for

microbial eukaryotes (2,026 OTUs, 59,897,456 reads).
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Fig. S1. Position of the 120 stations included in this work that were sampled as part of the
Malaspina-2010 expedition.
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Fig. S2. Bray Curtis and gUniFrac distances between picoeukaryotes and prokaryotes. Regression
(blue) and 0:1 (red) lines are indicated.
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Fig. S3. OTU mean relative abundance (i.e. regional abundance) vs. occurrence (i.e. number of
samples in which each OTU is present). The red and black horizontal lines indicate percentages of
occurrences of 80% and 20% respectively. Cosmopolitan OTUs were considered as those with a
percentage of occurrence >80%, while restricted OTUs were those with a percentage of occurrence
<20% (see Table S2). Blue and green vertical lines indicate regional abundances above and below
which OTUs are considered regionally abundant (>0.1%) or rare (<0.001%) respectively.
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Fig. S4. The 57 Malaspina stations for which 17 environmental parameters were available (Meta-

57 dataset).
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Fig. S5. Percentage of variance in Picoeukaryotic and Prokaryotic community composition

(PERMANOVA R?) explained by water temperature and fluorescence when using different B-
diversity metrics. Figure based on the Meta-57 dataset.
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Fig. S6. Left-hand side: Association networks of picoeukaryotes and prokaryotes considering
positive (red) and negative (blue) correlations in panels A) [Eukaryotic Network (+-e)] and B)
[Prokaryotic Network (+-e)], and only positive correlations in C) [Eukaryotic Network (+e)] and
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D) [Prokaryotic Network (+e)]. On the right-hand side, we present an alternative visualization of
the network as well as the following network characteristics: number of nodes (n), number of edges
with positive correlation (+¢) and negative correlation (-¢), average degree (avg. d), average path
length (avg. 1), global transitivity (t), number of modules with a least 3 nodes (m) and the number
of nodes in each of those modules (sizes: ). The smaller network visualization on the right-hand
side groups the nodes according to the modules. The color of nodes in Left- and Right-hand side
networks indicate the modules to which they belong.
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Fig. S7. Percentage of OTUs significantly associated to different environmental variables (MIC >
0.4) and their corresponding contribution to total abundance. NB: Temperature, Oxygen,
Conductivity and Salinity are correlated. OTUs can be associated to more than one variable.
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Fig. S8. Bray-Curtis dissimilarities and gUniFrac distances in Prokaryotes and Picoeukaryotes. In
both cases, mean differences were significant (Wilcoxon text, p<0.05). Prokaryotes (Bray Curtis
mean=0.61, SD=0.19; gUniFrac mean=0.30, SD=0.07); Picoeukaryotes (Bray Curtis mean=0.74,
SD=0.08; gUniFrac mean=0.50, SD=0.06).
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Table S1. Regionally abundant or rare prokaryotic and picoeukaryotic OTUs.

Prokaryotes (%) Picoeukaryotes (%)
Regionally abundant OTUs (>0.1%)" 1.46 (103) 0.84 (158)
Regionally rare OTUs (<0.001%)? 47.6 (3,343) 71.5(13,499)

1 OTUs featuring a mean relative abundance >0.1%. 2 OTUs featuring a mean relative abundance <0.001%. Percentages
as well as corresponding number of OTUs (within parenthesis) are indicated.
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Table S2. OTUs displaying Cosmopolitan, Intermediate and Restricted distributions.

Cosmopolitan (>80%)" Intermediate (80-20%)2 Restricted (<20%)3
Picoeukaryotes 0.3 (57) 5.1(954) 94.6 (17,870)
Prokaryotes 1.0 (68) 11.1(779) 87.9 (6,178)

Percentage of OTUs occurring in >80% of the samples (Cosmopolitan). 2 Percentage of OTUs occurring in 80-20% of
the samples (Intermediate distribution). 3 Percentage of OTUs occurring in <20% of the samples (Restricted distribution).
The number of OTUs is indicated within parentheses.
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Table S3. Summary of association networks based on SparCC (42).

Connected Positive Negative Average  Transitivity Average Number Mean clique  Number of modules
nodes’ edges? edges? degree* (globalp path of cliques size? (23 nodes)?
length® 23 nodes)”
Eukaryotes (+-¢) 114 (175%) 242 (535%) 210 (46.5%) 79 04 27 120 54 3(54437)
Prokaryotes (+-) 146 (32.6%) 480 (48.5%) 509 (51.5%) 135 05 24 262 114 3(44,53)
Eukaryotes (+e) 94 (144%) 242 (100%) 5 5.1 04 26 58 43 5(31,23,19,10,3)
Prokaryotes (+e) 131(20.2%) 480 (100%) s 73 05 22 103 62 3(58,53,4)

The eukaryotic and prokaryotic networks included 651 and 448 nodes (OTUs) respectively, featuring absolute correlation scores >0.3 with p<0.01.
Networks considering associations (edges) with both positive and negative scores (+-e) as well as networks including positive scores only (+e) are
indicated. * Number of nodes with at least one edge as well as the percentage they represent of all the analysed nodes. 2 Number of edges with a
positive correlation score and their percentage. * Number of edges with a negative correlation score and their percentage. 4 The degree indicates
the number of edges connected to a node; the average degree refers to the sum of all degrees divided by the number of connected nodes.
STransitivity measures the probability that two nodes that are connected to a third node are also connected (also known as Clustering Coefficient).
6The Average Path Length is the mean shortest distance between any pair of nodes in the network. 7 Cliques represent fully connected subnetworks
of a network; the number of cliques with at least 3 nodes is indicated. 8 Average number of nodes in the network cliques of at least 3 nodes. ¢ Number
of modules (highly connected areas of a network) with at least 3 nodes calculated with the method considering edge betweenness (43); the size of
each module, in terms of number of nodes, is indicated.
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Table S4. Summary of significant OTU-associations using MIC (41).

% OTUs (#)? (%) MICp2> 0.2 (%)
Eukaryote - Eukaryote (MIC>0.4)° 121 15(97) 16 51
Eukaryote — Eukaryote (MIC>0.3)° 914 60 (388) 61 7
Prokaryote - Prokaryote (MIC>0.4)° 618 51 (229) 7 54
Prokaryote - Prokaryote (MIC>0.3) 3,163 87 (389) 83 53
Eukaryote - Prokaryote (MIC>0.4)s 143 - - 75
Eukaryote - Prokaryote (MIC>0.3)s 1,507 - - 73
Eukaryotes in Eukaryote — Prokaryote associations (MiC>0.4) § = 7 (49) 8 =
Eukaryotes in Eukaryote - Prokaryote associations (MIC>0.3) 5 47 (302) 51 o
Prokaryotes in Eukaryote - Prokaryote associations (MIC>0.4) 5 12 (52) 46 -
Prokaryotes in Eukaryote - Prokaryote iations (MIC>0.3) - 54 (244) 73 -
Eukaryotes — Environment (MIC>0.4) 269 1(159) 15 87
Eukaryotes — Environment (MIC>0.3)° 3,165 8(1430) 74 92
Prokaryotes - Environment (MIC>0.4)% 403 3(212) 30 78
yotes - Envi (MIC>0.3)5 3,186 17 (1192) 88 85

All MIC values have a p<0.05. * Number of associations (NB: OTUs may feature more than one association). 2 Percentage of OTUs involved
in associations; corresponding OTU numbers are given within parentheses. ® Percentage of total abundance of OTUs involved in
associations. 4 Percentage of non-linear associations (MIC-p2 >0.2) out of all associations'. > Analyses included OTUs with >100 reads from
sub-sampled OTU tables (Picoeukaryotes: 648 OTUs; Prokaryotes:448 OTUs). 6 Analyses were done with an OTU table including all OTUs.
Prokaryotes: Total OTUs = 7,025, Total reads: 489,039; Eukaryotes: Total OTUs = 18,775, Total reads: 491,260. Included environmental

parameters are indicated in Environmental datasets above.
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Table S5. Summary of significant OTU-associations with MIC > 0.5 for the TARA-Oceans

dataset based on MIC.
Associations’ % OTUs (#)2 Abundance (%)*  MIC-p2 > 0.2 (%)*
Eukaryote - Eukaryote (MIC>0.8) 747 21.5 (437) 22.7 91.3
Eukaryote — Eukaryote (MIC>0.7) 3,238 50.7 (1,028) 66.4 89.6
Eukaryote - Eukaryote (MIC>0.5) 49,839 96.5 (1,956) 99.6 88.1
Prokaryote - Prokaryote (MIC>0.8) 2,270 46.6 (771) 69.0 23.6
Prokaryote - Prokaryote (MIC>0.7) 6,698 72.6 (1,203) 84.9 37.2
Prokaryote - Prokaryote (MIC>0.5) 73,705 97.2 (1,611) 99.2 63.4
Eukaryote - Environment (MIC>0.7) 248 1.96 (199) 4.0 99.1
Eukaryote - Environment (MIC>0.5) 2,811 19.3 (1957) 28.5 94.8
Prokaryotes — Environment (MIC>0.7) 66 1.0 (50) 0.99 92.4
Prokaryotes - Environment (MIC>0.5) 1,099 14.7 (740) 17.9 72.6

* Number of associations (NB: OTUs may feature more than one association). 2 Percentage of OTUs involved in

associations; corresponding OTU numbers are given within parentheses. 3 Percentage of total abundance of OTUs
involved in associations. 4Percentage of non-linear associations (MIC-p2 >0.2) out of all associations'
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Table S6. Significant MIC associations (MIC > 0.5) between OTUs and environmental
parameters for the TARA-Oceans dataset.

Envir tal variable Number of OTUs! %2 OTU abund (# reads)? %t
PROKARYOTES
Temperature (°C) 44 40.1 1,111,758 374
Salinity 4 04 6,365 0.2
Oxygen (umol/kg) 555 50.5 1,473,130 49.5
NOs (umolL) 2 0.2 7,189 0.2
NO2 (umollL) 37 34 176,421 5.9
POs (umol/L) 25 23 66,969 22
NO2NO3 (umol/L) 31 28 125,608 4.2
S| (umol/L) 4 0.4 7,209 0.2
MICROBIAL EUKARYOTES
Temperature (°C) 836 29.7 7,166,962 217
Salinity 464 16.5 4,172,647 16.1
Oxygen (umol/kg) 662 235 4,024,073 15.5
NOs (umol/L) 47 16.7 4,050,804 15.6
PAR 106 38 717,541 28
Chlorophyll a (mg/m3) 272 97 5,747,883 222

" Number of OTUs associated to each environmental parameter. 2 Percentage of total OTUs. 3 Number of reads
represented by the OTUs. 4 Percentage of total reads. NB: percentage columns do not sum 100% as OTUs can
be involved in associations with more than one environmental variable or they can present no associations with
them.
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Table S7. The 36 stations (out of 120) featuring a significant (p<0.05) Local Contribution to Beta
Diversity [LCBD (24)] in prokaryotes and/or picoeukaryotes.

# Station ID Sample Prokaryotes Picoeukaryotes
1 1 ST_1_MD28 * N.S.
2 7 ST_7_MD98 N.S. *
3 272 ST_27_MD458 * *
4 29 ST_29_MD506 * *
5 30 ST_30_MD528 N.S. *
6 372 ST_37_MD646 * *
7 382 ST_38_MD664 * *
8 39 ST_39_MD684 * N.S.
9 40 ST_40_MD712 * *
10 41 ST_41_MD734 * *
1 43a ST_43_MD753 * *
12 44 ST_44_MD778 * *
13 45a ST_45_MD806 N.S. *
14 53 ST_53_MD962 N.S *
15 54 ST_54_MD985 * *
16 58 ST_58_MD1080 N.S. *
17 67 ST_67_MD1246 N.S *
180 7 ST_71_MD1318? * *
180 7 ST_71_MD1324 b * N.S.
19 72 ST_72_MD1331 * N.S.
20 73 ST_73_MD1354 * N.S.
21 74 ST_74_MD1368 * *
22 75 ST_75_MD1398 * N.S.
23 76 ST_76_MD1421 * N.S.
24 77 ST_77_MD1425 N.S. *
25 89 ST_89_MD1629 * N.S.
26 92 ST_92_MD1672 * N.S.
27 94 ST_94_MD1724 * N.S.
28 95 ST_95_MD1744 * *
29 96 ST_96_MD1772 * N.S.
30 97 ST_97_MD1798 N.S *
31 124 ST_124_MD2332 * *
32 125 ST_125_MD2340 * *
33 130 ST_130_MD2474 N.S. *
34 132 ST_132_MD2562 N.S. *
35 1332 ST_133_MD259%4 * *
36 1352 ST_135_MD2662 * *

*LCBD p<0.05. N.S.: Non-significant. Both picoeukaryotes and prokaryotes featured 26 stations each with LCBD p<0.05,
totaling 36 stations. A total of 16 stations displayed samples with LCBD p<0.05 for both prokaryotes and picoeukaryotes
(shown in bold). 2 Stations identified also in sequential 3 diversity analyses (8 stations) as points of abrupt (3 diversity
change.® Two samples from the same station.
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Table S8. Reads and OTUs processed during different steps of our in-house workflow (7) for

picoeukaryotes and prokaryotes.

Processing step Picoeukaryotes Prokaryotes
Total reads 35,695,530 (100%) 8,564,836 (100%)
Merged reads (PEAR) 34,768,276 (97.4%) 8,516,553 (99.4%)
Reads passing quality control (max_ee =0.5) 19,230,661 (55.3%) 7,234,052 (84.9%)
Reads after HMM* (rDNA validation)? 19,230,187 (99.9%) 7,234,049 (99.9%)
De-replicated reads (incl. singletons) 5,644,422 1,748,584
Singletons 4,526,205 1,450,578
De-replicated reads (without singletons) 1,118,217 298,006
Chimeric reads (de-novo detection during Uparse) 192,186 (17.2%) 105,470 (35.4%)
Total OTUs (99% clustering UPARSE) 51,571 (100%) 13,300 (100%)
Chimeric OTUs (reference-based: positive) 6,605 (12.8%) 2,413 (18.1%)
Chimeric OTUs (reference-based: uncertain) 2,461 (4.8%) 729 (5.5%)
OTUs 99% - Non-Chimeric 42,505 (82.4%) 10,158 (76.4%)
Reads? mapped back to OTUs (99% similarity) 16,460,248 (85.6%) 5,697,779 (78.8%)
Reads? not mapping back to OTUs (99% similarity) 2,769,939 (14.4%) 1,536,270 (21.2%)

1 Hidden Markov Models. 2Indicate the reads that were mapped back to OTUs.
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