N
N

N

HAL

open science

Design and optimization of cache systems for small cell
networks

Guilherme Iecker Ricardo

» To cite this version:

Guilherme Iecker Ricardo. Design and optimization of cache systems for small cell networks. Network-
ing and Internet Architecture [cs.NI]. Université Céte d’Azur, 2021. English. NNT': 2021COAZ4075 .

tel-03574320

HAL Id: tel-03574320
https://theses.hal.science/tel-03574320
Submitted on 15 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-03574320
https://hal.archives-ouvertes.fr

Ve ECOLE DOCTORALE

UNIVERSITE -6%: samicic ...
COTE DAZUR L'INFORMATION ET DE

LA COMMUNICATION

THESE DE DOCTORAT

Conception et Optimisation des Systemes

de Cache pour les Réseaux Small Cell

Guilherme IECKER RICARDO

EURECOM et Inria Sophia Antipolis - Méditerranée

i i , . Devant le jury, composé de :
Présentée en vue de I’obtention
Ilenia Tinnirello, Universita di Palermo, Président
Anastasios Giovanidis, CNRS Lab LIP6, Rapporteur
Francesco De Pellegrini, Université d’Avignon, Rapporteur
Daniel Sadoc Menasché, UFRJ, Examinateur

Giovanni Neglia, Inria, Directeur

Petros Elia, EURECOM, Co-Directeur

Thrasyvoulos Spyropoulos, EURECOM, Co-Encadrant

du grade de docteur en Informatique
d’Université Cote d’Azur

Dirigée par : Giovanni Neglia / Petros Elia
Co-encadrée par : Thrasyvoulos Spyropoulos
Soutenue le : 09 septembre 2021

A
A y 4

EURECOM (reeia—

Sop hi a Antipol is






Design and Optimization of Cache Systems
for Small Cell Networks

Jury:

President

Ilenia TINNIRELLO
Reviewers

Anastasios GIOVANIDIS

Francesco DE PELLEGRINI
Examiners

Daniel SADOC MENASCHE
Director

Giovanni NEGLIA
Co-Director

Petros ELIA
Co-Supervisor

Thrasyvoulos SPYROPOULOS

Assistant Professor

Chargé de Recherche

Professeur

Assistant Professor

Directeur de Recherche

Professor

Assistant Professor

Universita di Palermo

Sorbonne Université - Lab LIP6

Université d’Avignon

Universidade Federal do Rio de Janeiro

Inria

EURECOM

EURECOM






Résumé. Les techniques de mise en cache ont été largement étudiées et déployées
en tant que solutions puissantes pour améliorer la performance d’une grande variété de
systemes informatiques. Motivée par les nouvelles technologies et les défis émergeant des
architectures cellulaires prospectives, cette these propose la conception et 'analyse de
nouvelles techniques de mise en cache visant 'amélioration de la qualité d’expérience
des utilisateurs mobiles. Nous sommes attentifs aux réseaux dits small cell dotés de
la technologie CoMP Joint Transmissions. Tout d’abord, nous étudions le scénario
ou le placement de contenu est effectué par une intelligence centralisée conscience de
la popularité des fichiers précédemment estimée et de la topologie du réseau dans son
ensemble. Le meilleur placement du contenu est obtenu en résolvant un probléme
d’optimisation que nous approchons via un algorithme glouton efficace. Cette solution
dépend d’hypotheses strictes et peut ne pas capturer la variabilité de popularité du
contenu & petite échelle. Cependant, il est utile de déterminer les limites de performance
et de fournir des informations sur les compromis inhérents au probleme. Ensuite, nous
introduisons un cadre dynamique, dans lequel chaque cache met a jour individuellement
son contenu a la volée en réponse aux demandes entrantes en se basant sur des politiques
de mise en cache prédéfinies. Les politiques proposées définissent un ensemble de regles
probabilistes qui prennent en compte le gain de performance global de toute opération de
mise a jour du cache. Notre premiere politique réalise une coordination implicite entre
les caches et converge asymptotiquement vers la configuration de cache optimale sous des
séquences de demandes stationnaires. Nous étudions également le cas ou les demandes
ne sont pas stationnaires et fournissons une politique qui donne des résultats pratiques
satisfaisants. Enfin, nous présentons quelques expériences basées sur des simulations
numériques congues pour capturer les attributs intrinseques de véritables réseaux small
cell. Les résultats empiriques confirment la tendance asymptotiquement optimale de
notre premiere politique. Nous observons que nos politiques proposées atteignent des
niveaux de performance souhaitables lorsqu’elles sont exposées a la fois a des séquences
de demandes stationnaires et non stationnaires. De plus, nos politiques surpassent les
autres politiques de pointe dans tous les scénarios testés.

Mots clés. Mise en cache, algorithmes distribués, optimisation, stochastique






Abstract. Caching techniques have been extensively studied and deployed as powerful
solutions to performance improvement in a wide variety of computer systems. Motivated
by new technologies and challenges emerging from prospective cellular architectures,
this thesis proposes the design and analysis of novel caching techniques targeting the
improvement of mobile users’ quality of experience. We are particularly attentive to
small cell networks enabled with Coordinated Multi-Point (CoMP) Joint Transmissions
(JT) technology. First, we study the scenario where content placement is performed by
a centralized intelligence aware of previously estimated files popularities and the whole
network topology. The best content placement is obtained from solving an optimization
problem that we approximate by an efficient greedy algorithm. This solution depends on
strict assumptions and may fail to capture short-scale content’s popularity variability.
However, it is useful to determine performance bounds and to provide insights on the
problem’s inherent trade-offs. Then, we introduce a dynamic framework, where each
cache individually updates its content on-the-fly as a response to arriving requests based
on pre-defined caching policies. The proposed caching policies define a set of probabilistic
rules that take into account the overall performance gain of any cache update operation.
Our first policy achieves implicit coordination between caches and asymptotically converge
to the optimal cache configuration under stationary request sequences. We also study the
case where requests are non-stationary and provide a policy that provides satisfactory
practical results. Finally, we present a set of experiments based on numerical simulations
designed to capture intrinsic attributes of real small cell networks. The empirical results
confirm the asymptotic convergence to an optimal solution of our first policy. We observe
that both proposed policies achieve desirable performance levels when exposed to either
stationary or non-stationary request sequences. Furthermore, our policies outperform
other state-of-the-art policies in all tested scenarios.

Keywords. Caching, Distributed Algorithms, Optimization, Stochastics

iii






Acknowledgements

First of all, I would like to thank my advisors, Giovanni and Akis, for their generosity
and all the invaluable advice and lessons. I am really grateful to have had the chance to
share my work environment with so many brilliant and kind people such as Alison, Jonas,
Lorenzo, Marina, Matteo, Naser, Roya, and Thomas, from EURECOM, and Abhishek,
Dimitra P., Foivos, Max, Mikhail, Natasha, and Vera, from Inria. Special thanks to
Dimitra T. and Fionn, for witnessing (too) many of my near-death experiences. Also, to
Chuan, for teaching me that empathy, kindness, and hard work are the best combination
to thrive in academia (these do not apply to ping-pong though).

Some people keep supporting me regardless the distance. In my family, I would like
to thank my grandparents, Dulce, José, Maria, and Waldemir, my godparents, Rosangela
and Joselias, my cousin, Fldavia, and my uncles, Arménia and Leopoldo. I am also
fortunate enough to have life-long friendships and I am really grateful to them for never
giving up on me, no matter what, specially Fernando, Lucas, Marcel, Maria Thereza,
Matheus, and Ttlio. Thank you all.

Luckily, I was able to find amazing people who also participated in my journey and
helped me go through all the adversities of daily life. Thanks Sil and Lucas, for being
with me since day one, and Gui, Joy, and Luigi, for being my family here whenever I
needed them. I would also like to thank Ismail for showing me how fun life can be if we
do things with passion and if we accept ourselves the way we are, and Harald, for having
this habit of saving my life.

Finally, I would like to thank my sister, Beatriz, for being my first friend, my
accomplice, and for always being there for me, and to Samuel, for bringing the joy I
needed to help me go through these last months. Most importantly, I would like to
dedicate this thesis to my parents, Hélio and Dulceléa, my best friends and biggest
supporters. I will never be able to thank enough for all the effort and sacrifices they have

made in order for me to be here. This thesis is to them, for them, and because of them.






Contents

Résumé [Francais] . . . .. . ... ... .. ... .. i
Abstract . . . . . . L iii
Acknowledgements . . . . . . .. v
Contents . . . . . . . . vii
List of Figures . . . . . . . . . . e viii

1 Introduction 1
1.1 Background and Technologies Overview . . . . .. .. .. .. .. ..... 1
1.1.1 Cache Systems . . . . . . . . .. 1

1.1.2 Cache-Enabled Small-Cell Networks . . . . . .. ... ... .... 8

1.1.3  Coordinated Multi-Point (CoMP) Technologies . . . . . . ... .. 9

1.2 Goals and Objectives . . . . . . . . . . . . . 10
1.3 Related Work . . . . . . . . .. 11
1.3.1 Static Caching Solutions . . . . . . . .. .. ... .. ... ... 11

1.3.2 Dynamic Caching Solutions . . . . . . . .. ... ... ... .... 13

1.4 Contributions and Thesis Outline . . . . . . ... ... ... ... ..... 14

2 System Model and Operation 17
2.1 Network Model . . . . . . . . . . 17
2.2 The Berlin Network . . . . . . . . ... .. 18
2.3 Content Delivery . . . . . . . . . .. 19
2.4 Operation Example . . . . . . . ... L o 20

3 Static Caching Solutions 23
3.1 System Model and Operation . . . . . .. .. .. .. .. ... ....... 24
3.2 Problem Definition . . . . . . . ... L oo 27
3.3 Hit Rate Maximization . . . . . . . . .. ... .. Lo 27
3.4 Average Delay Minimization . . . . . . . ... ... ... oL 30
3.4.1 Homogeneous SNRs: Full-Coverage . . . . . ... ... ... .... 33

3.4.2 Homogeneous SNRs: General Topology . . . .. .. ... .. ... 37

3.4.3 Heterogeneous SNRs . . . . . . .. .. .o oL 39

3.5 Special Case: Heterogeneous File Sizes . . . . . .. ... ... ... .... 40

vii



Contents

4 Dynamic Caching Solutions 45
4.1 System Model and Additional Notation . . ... .. ... ... ...... 46
4.2 Optimal Caching for Stationary Requests . . . . . . ... ... ... ... 47

4.2.1 Modeling gLRU-A as a Markov Chain . . . . . . . ... ... ... 52
4.2.2  Optimality of gqLRU-A . . . . .. ... 64
4.2.3 Application of ¢gqLRU-A . . . . . . ... .. 67
4.3 Handling Non-Stationary Requests . . . . . . . ... ... ... ... ... 70
4.4 Special Case: Heterogeneous File Sizes . . . . . . . ... .. ... ... .. 74

5 Experimental Results 81

5.1 Experimental Setup . . . . .. ... ... . 82
5.1.1 Cellular Network . . . . .. .. .. .. .. . ... 82
5.1.2 Caching schemes . . . . . . .. .. .. L L. 83
5.1.3 Request Generation Mechanisms . . . . ... ... ... ... ... 85

5.2 ¢LRU-A Convergence to an Optimal Allocation . . . ... ... ..... 85
5.2.1 Convergence of qLRU-Ah — Hit Ratio . . . . ... ... ... ... 85
5.2.2  Convergence of gqLRU-Ad — Average Delay . . . . . ... ... .. 86
5.2.3 Convergence under different cache capacities . . ... ... .. .. 88
5.2.4 Convergence under different d®? and A ¢ — Average Delay . . . .. 88
5.2.5 The role of popularities in the convergence process . . . . . . . .. 88
5.2.6 Convergence speed — Average Delay . . . . . ... ... ... ... 90

5.3 Comparison with other Caching Policies . . . . . ... ... ... ... .. 92
5.3.1 Effect of network density — Stationary requests . . . . . .. .. .. 92
5.3.2 Effect of network density — Trace-based requests . . . . .. .. .. 94
5.3.3 Performance under heterogeneous SNRs . . . . . . ... ... ... 94

5.4 Special Case: Heterogeneous File Sizes . . . . . . . ... ... ... .... 97
5.4.1 Convergence Analysis . . . . ... ... ... oL 98
5.4.2 Comparison with other Caching Policies . . . . . . . ... ... .. 99

6 Conclusion 105

Appendices 107

A Proofs for Chapter 3 109
A.1 Proof of Proposition 1 . . . . . . .. ... 109
A2 Proofof Lemma 2 . . . . . . . ... 110
A.3 Proof of Proposition 3 . . . . . . .. ... 111
A4 Proofof Corollary 4 . . . . . . . .. . 112
A.5 Proof of Proposition 5 . . . . . . . . . ... 114
A6 Proofof Lemma 6 . . ... ... ... ... ... 117
A.7 Proof of Proposition 9 . . . . . . .. ... 120

viii



List of Figures

1.1
1.2
1.3
14
1.5

2.1

2.2
2.3

3.1
3.2

4.1

4.2
4.3
4.4
4.5

5.1

Data flowchart for a simple web caching example. . . . . . . . . ... ...
Change of paradigm: From classic client-server to CDN architecture. . . .
Practical LF'U Operation Example (scheme extracted from [1]) . . . . . .
Practical LRU Operation Example (scheme extracted from [1]) . . . . . .

Classic cellular heterogeneous network with macro-, pico-, and femto-cells.

Example of a CCSC network with B = 3 BSs and its bipartite graph
representation. . . . . .. L L oL

Berlin network BSs position with different coverage area sizes. . . . . . . .

Example of transmission situations emerging from the CCSC architecture.

Examples of different coverage area overlap levels for 2 BSs. . . . . . . ..

Extreme allocations regions for different setups. Axes are in log scale.

Poisson arrival process with rate 3 - AG(fb) representing the MTF events

for file f at BS b. It is obtained from thinning the original Poisson process
of arriving requests from the different UEs for file f with rate A, with
probability pgcb)(u). ...............................
CTMC Xy(t)for B=2BSs. . ... .. ... .. ... .. .........
Resistance graph G; of DTMC Xf(k) for B=2BSs.............
Example of in-tree over G rooted at state 2 for B=2BSs. . .. ... ..
Iustration of 2LRU-A operation from the perspective of a single BS b
when UE w has requested file f.. . . . . .. .. ... ... ...

Convergence analysis: (a) hit ratio and (b) average delay as ¢ tends to 0.
Setup: Berlin topology with density p = 5.9 BSs/UE, a = 1.2, d®H =
100 ms, and V = 10 dB. Besides the gLRU-A specialized implementation
and greedy algorithm corresponding to each metric, results are show for
qgLRU and FIFO. . . . . . .. ..

X

21

o4

62



List of Figures

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Convergence analysis: (a) hit ratio and (b) average delay as cache capac-
ity C increases. Setup: Berlin topology with density p = 5.9 BSs/UE,
a =12, d%" =100 ms, V = 10 dB, and ¢ = 0.001. Besides gLRU-A
and greedy algorithms corresponding to each metric, results are shown for
qgLRU and FIFO. . . . .. .. . . 89

Convergence analysis: average delay provided by ¢LRU-Ad in comparison
with GREEDYAD for increasing (left) Zipf exponent and (right) backhaul-
access delay. Setup: Berlin topology with density p = 5.9 BSs/UE,
V=10dB,and ¢ =0.001. . . . . . . . ... ... 90

Convergence analysis: ¢gLRU-Ah (left) and ¢LRU-Ad (right) starting the
simulation with the respective greedy allocation for different levels of noisy
popularity estimations, represented by variance o2. The solid curves are
the average of 100 different simulation rounds. Setup: Berlin topology
with density p = 5.9 BSs/UE, a = 1.2, d®" = 100 ms, V = 10 dB, and
g=0.001. . . . ... 91

Convergence analysis: Evolution of the average delay (left) and hit ratio
(right) achieved by different policies versus the requests (plotted at every
100 requests). Setup: Berlin topology with density p = 9.4 BSs/UE,
a=1.2d*H =100 ms, V=10dB, and ¢ =0.001. . .. ... ....... 92

Performance evaluation in terms of (a) Normalized average delay and (b)
hit ratio of various policies and greedy algorithms versus the network
density. Setup: Berlin topology with o = 1.2, d®H = 100 ms, V = 10 dB,
and ¢ = 0.001. . . . . 93

Normalized average delay of various policies and greedy algorithms versus
the network density. Setup: Berlin topology with d®? = 100 ms, V =
10 dB, and ¢ = 0.001. The request process is based on a real trace from

which requests were during 5 days. . . . . .. ... oL 95

The normalized average delay achieved by various policies versus the
SNR variation in (a) slow and (b) fast SNR variability regimes. Setup:
Berlin topology with density p = 5.9, d®% = 100 ms, ¢ = 0.001, and base
SNR Vo =10dB. . . . . . . . 96

Convergence Analysis: Average delay d (left) and hit ratio (right) versus g.
Setup: Berlin topology with density p = 5.9, RBH = 100 Mbps, M = 10 ms,
V =10 dB, C = 50.0 GB, Syin = 1.0 GB, and AS = 9.0 GB. . . . . . . . 98



List of Figures

5.10

5.11

5.12

5.13

Convergence Analysis: Average delay d (left) and hit ratio (right) versus the
requests. Results of gLRU-HS and ¢LRU-Ad are shown for ¢ = 10~ and
g = 107%. Setup: Berlin topology with density p = 5.9, RBH = 100 Mbps,
M =10 ms, V =10 dB, C' = 50.0 GB, Spin = 1.0 GB, and AS = 9.0 GB. 100
Performance Evaluation: Average delay (left) and hit ratio (right) achieved
by various policies versus increasing cache capacity. Setup: Berlin topology
with density p = 5.9, RBH =100 Mbps, M = 10 ms, V = 10 dB, ¢ = 1073,
Smin =1.0GB,and AS=90GB. ... ... ... ... .......... 101
Performance Evaluation: Average delay (left) and hit ratio (right) achieved
by various policies versus increasing network density. Setup: Berlin
topology with RPH = 100 Mbps, M = 10 ms, V = 10 dB, ¢ = 1073,
C =30.0GB, Spin=10GB,and AS=90GB. . ... .......... 102
Performance Evaluation: The ratio between the average delay achieved
by various policies and IGA versus size variability (left) and backhaul-
access overhead. Setup: Berlin topology with density p = 5.9 BSs/UE,
RBH =100 Mbps, V =10 dB, ¢ = 1073, C = 30.0 GB, and Smi, = 1.0 GB.103

xi






Chapter 1

Introduction

This introductory chapter provides an overview of the main technologies and challenges
that commonly motivate and shape the different problems studied in this thesis. We
present a summary of these problems and list the set of goals that we wish to achieve.
Then, we discuss the existing variants and solutions in a comprehensive list of related
work. Finally, we outline the thesis contributions and present how they are organized in

the next chapters.

1.1 Background and Technologies Overview

In this section we cover in detail the technological background of the problems we study
in the next chapters. First, we provide an overview of general cache systems and, then,
we discuss how they can be deployed in small-cell networks. Finally, we introduce the
Coordinated Multi-Point (CoMP) technology and emphasize what are the key aspects

for our models and solutions.

1.1.1 Cache Systems

Caching techniques have been studied as performance improvement solutions for a large
variety of data-oriented applications; from “high-level” applications, e.g., web (browser)
caching [2], to “low-level” computer systems, e.g., hierarchical memory schemes [3]. In
its broadest definition, cache is a hardware or software component that is able to store
and/or serve data at a lower cost, e.g., smaller retrieval latency, in comparison to the
original data server. A fundamental characteristic of cache systems is that the available
storage capacity is more limited than in the original data servers, so only a small fraction

of the whole catalog of files can be cached. The performance boost essentially comes from



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 2

the fact that a selection of the most “useful” files (according to a well defined objective)
can be cached and served at a lower cost. The subset of files comprising the cache current

state is referred to as the cache allocation (or cache configuration).

Example 1 (Standard Web Caching): Consider a classic internet-based client-server web
application. The standard data flow is the following: An HTTP request is issued by the
client, e.g., web browser, and go all the way through the internet to the back-end server;
then, the server sends back the requested page to the client. If caches are deployed on
the client side, whenever a new page needs to be retrieved from the server, the browser
may opt to retain a local copy of that page at its cache. Then, we introduced a shortened
data flow: Whenever a user revisits a web page, it may be rendered immediately directly
from the cache, without being downloaded from the server. We illustrate, in Figure 1.1,

how the data flow changes with the deployment of a cache system.

Application Standard data flow
Cache

Shortened data flow

;
-

Application HTTP HTTP
User Client Server

Figure 1.1 — Data flowchart for a simple web caching example.

The primary advantage of web caching, as it is the case for the majority of cache
systems, is to reduce the retrieval latency and, consequently, improve overall Quality
of Service (QoS) experienced by the application’s clients. There are many other ways
computer systems and applications can profit from cache systems. For example, additional
positive effects of web caching include the ability to (i) alleviate the original servers’
access traffic load, in case an excessive number of users is simultaneously querying the
server [4] and (ii) reduce the traffic in the intermediate links between the users and
remote servers, preventing congestion and misuse of network resources [5]. We discuss a

more complex cache system in the next example.

Example 2 (CDN Caching): In Content Delivery Networks (CDNs) [5], part of the content
provided by the original server is replicated into many different edge servers, sometimes

also referred to as Points of Presence (PoPs). Therefore, we move from a centralized



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 3

single-server architecture (Figure 1.2a) to a more distributed one, where content is placed
closer the end user (Figure 1.2b). Edge servers deployment strategy depends on the
CDN’s business model, e.g., based on geographical and economic characteristics. Besides
the advantages already discussed for the web caching example, this server replication
architecture may also provide other benefits, e.g., overall internet traffic reduction,

implementation of exclusive services and content to different edge servers, and so on.

= e

~
s ,' ~ ~ ” <
= %
=
e
Tl = ‘
_..'.=
Edge aaL Edge
Server - Server
Server
% <
Y
a4 4 | Edge | <« I
Server
(a) Classic Client-Server Architecture (b) CDN Architecture.

Figure 1.2 — Change of paradigm: From classic client-server to CDN architecture.

CDN caching can be seen as a generalization of the standard web caching technique,
where the caches at the edge-servers are able to serve multiple users with web pages and
other types of frequently downloaded files, such as music, videos, etc. In this context,
caching decisions tend to be more complex because caches take into consideration the

preference of multiple concurrent users, which is shaped by social and geographic aspects.

We discuss next how to evaluate cache solutions’ performance and what we should

consider in order to design efficient systems.

Performance of Cache Systems

The most intuitive way to evaluate the performance of a cache system is through the
(cache) hit rate (or hit ratio) metric. The cache hit is the event where a requested file is
found at the cache and hit rate is the number of hits relative to the total of requests. In

general, a high hit rate indicates that a considerable amount of requests are being served



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 4

directly from the cache, which intuitively suggests an efficient cache system.’

Therefore, considering hit rate as the main performance metric, a natural goal for any
caching strategy is to maximize the hit probabilities (of the lowest cost/closest) caches. A
major obstacle in doing so, is that we do not generally know which file will be requested
next. For this reason, some metric of file popularity is needed (or must be learned),
that captures the overall user preferences and/or request patterns. Files popularities
are central to the design and performance evaluation of cache systems, because they
define the probability of each file to be requested in the future. In an alternative web
caching implementation from Example 1, if the browser somehow knows before-hand an
estimation for the pages popularities, it could prefetch these pages and place them into
the cache and provide faster retrieval even upon a page’s first access.

The hit rate is widely adopted in related literature as a very versatile performance
metric. However, for some other applications, it may not be the most suitable metric to
evaluate the underlying cache system’s performance. For example, in the coded-caching
framework [6,7], the concept of cache hit is not enough to characterize good QoS and to
capture the system’s trade-offs. As we will discuss in the next chapters, we can define
QoS for small-cell networks in terms of the average delay experienced by the user to
retrieve the requested file. In this case, achieving a high hit rate does not necessarily
mean that we are providing satisfactory QoS. Therefore, in these cases, popularities
alone are not enough to decide which files should be cached; other parameters must be
considered as well, e.g., the network topology.

Now, we can discuss cache solution strategies, i.e., how cache content can be managed,
targeting the optimization of a desired performance metric. Until the end of this
subsection, we exclusively focus on the hit rate as a performance metric, because it

provides a more intuitive notion of performance.

Cache Solution Frameworks

We categorize caching strategies into two different groups: static and dynamic cache
(solution) frameworks. Each cache framework establishes the general operation and
constraints of the underlying cache system.

In the static cache framework, the entire cache allocation is updated all at once every
fixed time interval. In this framework, there is a centralized oracle that is aware of the
whole system topology and parameters. Usually, in this kind of approach, the cache

system operation is split into two main phases:

Tn a symmetric way, we can define the cache miss (i.e., the event where a requested file is not cached).
In this case, an efficient cache system may be characterized by a low cache miss rate.



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 5

1. the measurement phase, where requests are observed and application relevant

statistics, e.g., files popularities, users activity level, etc., may be estimated;

2. the placement phase, where files are fetched from the original data servers and

effectively stored at the cache server.

We focus on the placement phase. The idea is to find the cache allocation that is able
to optimize a performance metric of interest, assuming the statistics from the previous

measurement phase are available.

Example 3 (CDN Hit Ratio Maximization): In some related work, CDNs are studied in
the static framework (see Example 2), where the two phases take place on a daily-basis.
Usually, the measurement is performed during the day, when users are more active
and the data traffic is more intense (generating more data and more reliable statistics
estimations). Then, during the night, when the network resources are more abundant,
the cache content is updated, based on the previously estimated statistics. If we wish
to maximize the hit rate at one of the edge cache servers in this scenario, the solution
is rather trivial: it needs to cache all the most popular files among its users. If the
estimated popularities from the previous day represent the files probabilities of being
requested, by caching the most popular files, we maximize the expected cache hit rate of

the requests on the next day.

In the dynamic cache framework, the cache content is updated on-the-fly as new
requests arrive. In this thesis, we consider that the cache is structured as an ordered
queue and may admit files metadata or auxiliary data structures. Upon every request,
the cache may perform one or more of the following operations: (i) insert a new file,
(ii) evict (or remove) a cached file, or (iii) move a cached file from its current position
in the queue to a new position. The set of applicable operations and update rules are
specified by online caching policies, commonly referred to as just policies throughout this
thesis. Caching policies are designed aiming to converge to an allocation that is able to
provide a good performance on average.

One important aspect for the design of dynamic solutions is to understand the
underlying request process. In most of the related literature, request processes are often
modeled under the Independent Reference Model (IRM). In IRM, the request process
for each file is represented as a Poisson arrival process, with a rate that is related to its
popularity, and independent from the other files. We also refer to IRM-based request
processes as stationary processes. Although real systems usually have non-stationary
request processes, where files popularities may change drastically in short periods of

time [8], IRM is still able to provide useful insights.



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 6

Example 4 (LFU Caching Policy): Revisiting the CDN edge cache server hit rate max-
imization example, now in the dynamic framework, the classic ideal LFU policy is
well-known to achieve optimal results under IRM. The idea behind LFU is that the
cache server maintains a counter associated to every file in the catalog accounting the
number of times it has been requested. Whenever a file that is not cached is requested,
the least-frequently-used file, i.e., the one with the smallest counter, is evicted from the
cache to make room for the new file. In this case, the LFU policy was named after its
least-frequently-used eviction rule.

We illustrate LE'U’s operation in Figure 1.3: In step 1, file “D” is requested and its
counter is incremented by 1, moving one position up in the queue (swapping places with
file “C”.) Then, in step 2, file “B” is requested, its counter is updated, but it does not
change its position in the queue. In step 3, file “F” is requested and it is not in the
cache, then the least-frequently-used file (the file at the rear of the queue), i.e., file “E”,
is evicted to make room for file “F” to be inserted (with a brand new counter.)

After some “warm-up” time (characterizing the transient phase), the cache converges
to the optimal allocation, i.e., storing the most frequently used (or the most popular)
files.

D B F
v v v
Font| A =@ [ A PG [ A =G | A (2
B (30) B (30 B (31 B (31
C [>(26) D (7 D () D (7
D —b- i —b- C + C +
Rear| E —p E —b E + F +
L E

Step1 —» Step2 ——» Step3 ——— Step 4

Figure 1.3 — Practical LFU Operation Example (scheme extracted from [1])

Although the ideal LFU policy is optimal under IRM, its implementation is com-
putationally costly. For some applications, keeping track on the request frequency of
cached files may be hard or infeasible.? Moreover, according to [9], real request processes

have strong temporal locality property, where if a file is requested, then it is likely that

2Tt is also common to find the practical implementation of LFU, where caches maintain counters
only for the cached files. This simplification reduces the computational resources requirements for LEU
deployment, although the optimality guarantee may no longer hold.



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 7

the same file will be referenced again in the near future. There is temporal proximity
between consecutive requests to the same file. In this case, it is common to make efforts
to cache a copy of recently requested files to reduce the latency of subsequent requests.
The LFU policy may fail at capturing this notion of time, given that the counters reflect
the general request frequency and they are not sensitive to changes in popularity in a

short time scale.

Example 5 (LRU Caching Policy): In order to handle the issues pointed out previously,
i.e., (i) to provide a lighter computational implementation and (ii) to deal with non-
stationary request processes being sensitive to temporal locality, the LRU policy is a
strong candidate to replace LF'U in more practical systems.

The LRU implements the following rules: Whenever a non-cached file is requested, it
is inserted at the front of the cache, pushing down in the queue all the other cached files.
If the cache is already full, the least-recently used file, i.e., the one at the rear of the
cache is evicted to make room for the new file. If a cached file is requested, it is moved
from its current position to the front of the cache, also shifting the in-between files one
position down in the queue.

We illustrate LRU’s operation in Figure 1.4: Files from “A” to “E” are requested in
sequence and inserted into the cache in that order, always pushing back older files one
position at every new insertion. Then, file “F” is requested and, because the cache is full,
the least-recently-used file (at the rear), i.e., file “A”, is evicted and “F” is inserted at
the front. Then, file “C” is requested and, since it is already in the cache, it is moved
from its current position (second-to-last) to the front of the cache. Finally, file “G” is

requested and is inserted at the front of the cache, causing file “B” eviction.

i A B c D E F il c G

A S G G B U

! Front A B C D E|li[F c G

! A B C D |ii|E F C

E - - = A = B [ C H i: D —» E (> F

i A B ||| C D E

i Rear Al 1| B B D

e oo e e e e —————————————————— / 'y Pe———- r====s
LA LB

Eviction Eviction

Figure 1.4 — Practical LRU Operation Example (scheme extracted from [1])

LRU does not require additional data structures and higher level computer operations,

so it tends to be computationally lighter than LFU. Moreover, the least-recently-used



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 8

eviction rule keeps files in the cache while they are still likely to be requested, promising
good results under real request processes. Due to these advantages, LRU and its variants,
e.g., gQLRU (which inserts new content with probability ¢), are widely deployed in real
systems. Besides, our proposed policies, which we will discuss in Chapter 4, are built on

top of LRU’s basic operation rules.

1.1.2 Cache-Enabled Small-Cell Networks

With the ever-growing popularization of social media and on-demand video streaming,
cellular data consumption has experienced an unprecedented increase. According to
latest CISCO’s forecast [10], by 2023 there will be 13 billion mobile connections, showing
an increase of nearly 50% over 2018. Network densification is considered a key strategy
to cope with the traffic deluge in future networks [11]. For example, the standard
3G /4G macro-cell topology will be enriched by a large number of overlapping and often
heterogeneous cells (e.g., femto, pico), in order to improve both coverage and capacity [12].

On top this architecture, network slicing is a technique that allows virtualization
and sectorization of physical resources, e.g., routing and package switching, bandwidth,
and storage capacity. Network slicing enables customized and dedicated infrastructure
to specific applications and services, offering a profitable business model for network
operators to be considered in the design of 5G and beyond cellular architectures [13]. For
example, content providers, e.g., CDN operators and video streaming companies, may
reserve their own virtual slice on a cellular network comprising storage capacity in order
to empower their data distribution services with caching capabilities. By implementing
cache systems closer to the mobile users, companies are able to serve content with much
lower latency and, consequently, provide better QoS [14].

In this thesis, we consider a dense cellular network, where a significant fraction of
users is “covered” by several base stations (BSs), whose cells are said to “overlap.” BSs
are connected to the back-end servers through a high-latency backhaul network (also
called core network) and are able to fetch content in order to be served to mobile users.
We assume that network operators and content providers interplay closely, for example
via network slicing so that application-level cache systems may be deployed at every
BS [15]. By doing so, BSs function as front-end servers to the application users such
that cached content may be served directly from the BSs, promptly being transmitted
through the wireless channel.

Figure 1.5 shows the classic cellular heterogeneous architecture: “multiple tiers (or
layers) of networks of different cell sizes/footprints and/or of multiple radio access

technologies” [16], leading to overlapping cells. In this case, we have a macro-cell and its



1.1. BACKGROUND AND TECHNOLOGIES OVERVIEW 9

»@ Back-haul

Back-haul
Network

p [ %m @-\-4

=

=

% e

Figure 1.5 — Classic cellular heterogeneous network with macro-, pico-, and femto-cells.

subjacent smaller cells. In the same figure, we see that the different BSs are equipped
with caches and are independently connected to the internet via the backhaul network.
Moreover, user equipments (UEs) may be located in the overlapping coverage area of
multiple BSs.

On top of a small-cell network, the cache system must be designed to optimize a
performance metric of interest. Since we are interested in providing better QoS to mobile
users, we focus on the average delay to serve a request (for a UE to download a desired
file) as a user-centered metric. Intuitively, if the requested file is cached, it will be served
faster, so, in principle, the hit ratio may still be a reasonable performance metric to be
adopted. However, as we discuss in the next subsection, we add to our model a set of
cooperative transmission technologies that promise to provide an even better performance
(i.e., smaller delays) for content delivery in small-cell networks. We emphasize that, in

this case, higher hit ratio may not necessarily imply smaller experienced delay.

1.1.3 Coordinated Multi-Point (CoMP) Technologies

In standard macro cellular networks, e.g., LTE 3G/4G architecture, UEs at the cell
borders experience lower throughput than those closer to the BSs due to inter-cell
interference. This issue cannot be solved by simply increasing the transmitted power,
for example. Therefore, in order to provide a more even user experience throughout the
whole network, BSs must be able to (i) handle inter-cell interference and (ii) reduce the

gap between “cell edge” and “average” throughput.



1.2. GOALS AND OBJECTIVES 10

This was the motivation behind the conception of Coordinated Multi-Point (CoMP) [17]
technology. The term CoMP refers to the group of techniques where nodes (e.g., BSs)
coordinate or cooperate to mitigate and/or to exploit interference of the physical layer
(PHY). CoMP techniques are commonly categorized into three different groups: (i)
Dynamic Point Selection (DPS), (ii) Coordinated Scheduler / Coordinated Beamforming
(CS/CB), and (iii) Joint Transmissions (JT). In this thesis we focus exclusively on CoMP
JT, where, in short, two or more BSs coordinate their transmissions so the combined
received signal at the UE has enhanced power. The enhanced received power reflects
in a better Signal-to-Noise Ratio (SNR), which produces higher transmission rates and,
consequently, the UE experiences smaller delays to obtain the requested content.

Unfortunately, there are many incompatibilities between CoMP techniques and LTE-
like legacy systems that make CoMP performance far from its theoretical predictions or
even infeasible to be deployed on top of already existing infrastructures. However, as
suggested by [18,19], 5G and beyond cellular networks can be designed to implement the
necessary infrastructure, particularly on top of heterogeneous small-cells architectures,
with special effort to tackle synchronization in time and frequency, provision of accurate
channel state information (CSI) to the transmitter, and user scheduling and precoding.

On top of the small-cell network discussed in Section 1.1.2, we assume a distributed
implementation of CoMP JT: The network obtains channel information from the UEs
over a feedback link, whereas CSI synchronization control messages are directly exchanged
between BSs, e.g., via optical X2 interface [20]. By sharing the CSI related to a common
UE, the neighboring BSs are able to determine how beneficial CoMP JT is in this case.
Then, they dynamically self-organize into small cooperation groups (this process is called

CoMP clusterization) in order to jointly transmit data to the UE.

1.2 Goals and Objectives

This thesis investigates how to design cache systems deployed on top of small-cell
networks aiming to provide users better QoS. Our primary goal is to understand how
the combinatorial structure emerging from the small-cell architecture along with the
performance boost elements provided by CoMP influence caching strategies. Although
we explore both solution frameworks detailed in Section 1.1, we are mostly interested
in answering how efficient dynamic caching can be. In other words, we want to answer
whether the implementation of distributed online policies can converge to the optimal
allocation resulting from the static optimization. In order to systematically approach the

overall problem, our objectives are organized as follows:



1.3. RELATED WORK 11

1. Development of efficient algorithms to solve the static content placement opti-
mization problem and evaluation of how the optimal solutions are affected by the

system’s parameters.

2. Explore the open question regarding the existence of general (and computationally
efficient) distributed strategies for small-cell network coordination, which are able

to provide guarantees on global performance metrics.

In the next section, we discuss some related problems and caching solutions proposed

in other works in the scientific literature.

1.3 Related Work

In this section, we provide a bibliographic review on caching solutions, with a focus on
networks of caches. We cover the related work following the static and dynamic taxonomy
introduced in Section 1.1.1. In parallel, we explore some other caching problem variants
that will provide more insights on the big picture of how caching is being considered in

different applications and domains.

1.3.1 Static Caching Solutions

The idea of statically coordinating the placement of content in a network of cache servers
recently gained popularity when the authors in [21] and its extension [7] investigated such
problem under the name of FemtoCaching. Assuming that files have known popularities
and are requested according to IRM, the FemtoCaching problem is to find the content
allocation that minimizes the retrieval delay. Although the FemtoCaching problem was
proven to be NP-hard, the authors approached it as a submodular optimization problem
and efficiently solved it via a greedy algorithm, with %—approximation guarantee.

To the best of our knowledge, [22] was one of the first papers to explore, using the
idea of collaborative joint transmissions, the trade-off between hit rate and delay savings.
In this context, it might be more advantageous to eliminate copies of less popular files in
order to make room for multiple copies of more popular files, creating joint transmissions
opportunities and, consequently, reducing the experienced delay. The authors proposed
a first approach based on a heuristic with Maximum Ratio Transmission and a second
approach based on Zero-Forcing BeamForming. However, both approaches lack for
theoretical optimality guarantees. Introduced by [23], the average delay minimization in
FemtoCaching framework under CoMP assumption can be formulated as a combinatorial

optimization problem. Although this problem is NP-Hard, submodularity properties are



1.3. RELATED WORK 12

guaranteed under specific assumptions. Then, the greedy algorithm can again be used
to find a content allocation that is % far from the optimal. Reference [24] considers two
different CoMP techniques, i.e., joint transmission and parallel transmission, and derives

formulas for the hit rate using tools from stochastic geometry.

Authors of [25] included the bandwidth costs in the formulation, and proposed an
on-line algorithm for the solution of the resulting problem. This line of work has been
further extended in [26], which also considers the request routing problem. In [27], the
authors generalized the approach of [7,21], providing a formulation for the joint routing
and placement problem that maximizes the hit ratio. The routing-caching problem was
later revisited in [28,29]. Still in the joint optimization context, other problem variants
consider different optimization metrics, e.g., energy saving [30,31], and variables, e.g.,
user association [32-35]. The latter reference also considers content recommendation,

which is playing an important role in nowadays applications and cache systems design.

If we look at the application layer and consider recommendation systems solutions, [36]
and [37] explored the joint optimization of content placement and recommendation. The
idea is that the hit rate might increase if users accept the recommendation of an already
cached alternative content. This kind of problem has common elements with similarity
caching [38], an emerging caching framework that considers the benefit of serving a

similar cached content in exchange for some performance reduction.

Reference [39] revisited the optimal content placement problem within a stochastic
geometry framework and derived an elegant analytical characterization of the optimal
policy and its performance. In [40] the authors developed a few asynchronous distributed
content placement algorithms with polynomial complexity and limited communication
overhead (communication takes place only between overlapping cells), whose performance

was shown to be very good in most of the tested scenarios.

When files have different sizes, the problem (that was already NP-Hard in its
homogeneous-sizes variant) becomes significantly harder to approximate. In [41], a
computationally low-cost heuristic is proposed to find good solutions, although no opti-
mality guarantees are provided. A natural approach is to map this heterogeneous-sizes
problem variant to the Submodular Multiple Knapsack Problem (SMKP) or, more gener-
ally, to the Submodular General Assignment Problem (SGAP). Specifically, for SMKP, an
“unfeasible” greedy algorithm with optimality guarantees was proposed by [42] (we discuss
this idea in Chapter 3). Additionally, in the context of streaming algorithms, [43,44]
proposed a computationally efficient algorithm with a satisfactory optimality guarantee

that is enough to motivate its application to recommendation systems, for example.



1.3. RELATED WORK 13

1.3.2 Dynamic Caching Solutions

A common drawback of the aforementioned works is the difficulty to find the adequate
timescale for popularity estimation that is long enough to provide accurate measurements
and still able to capture short-term variations. In any case, reliable popularity estimates
over small geographical areas may be very hard to obtain [45]. Instead, online policies,
such as LRU and its variants, are widely deployed because they do not require popularity
estimation. Additionally, they enjoy robust analytical performance evaluation tools, e.g.,
the celebrated Che’s approximation [46,47].

Another downside of static centralized solutions is that, in a dense cache network,
having a centralized oracle aware of the entire topology may not be feasible due to
the network structure complexity. Dynamic solutions with online policies do not face
the same issues because each cache takes individual decisions based on the experienced
requests and possibly some limited information exchange with neighboring caches.

Although they are devoted to a single-cache problem, [48,49] provided important
insights for our proposed solutions, mainly when we discuss about scenarios with het-
erogeneous file sizes. The authors proposed an online caching policy originally designed
to minimize HD-RAM systems service time, that was later extended to general utility
functions. Similarly, [50,51] proposed a simulated annealing approach, which, in turn,
was adapted to an online caching policy.

Considering a dense cellular network, [52] introduced two caching policies: MULTI-
LRU-ONE and MULTI-LRU-ALL. In the former, each user is assigned to a reference BS.
When a user poses a request, its associated BS will update its cache, independently of
which BS provided the file. In the latter, all neighboring BSs update their caches. The
updates are based on the Least-Recently-Used (LRU) single-server policy.

Authors in [53,54] proposed general framework to evaluate the performance of online
policies in systems with multiple caches. In [55], the authors designed a distributed
algorithm based on Gibbs sampling, which was shown to asymptotically converge to the
optimal allocation. In [56], the authors proposed a model based on Che’s and exponential
approximations able to evaluate the performances of interacting caching policies in a
dense cellular network. Moreover, they present a distributed online policy with provable
convergence properties for the FemtoCaching setup.

Non-IRM request processes, where files have time-varying popularities, were studied
for single-cache scenarios in [57]. Later, authors of [58] proposed a probabilistic approach
that outperforms other adaptive policies, including kLRU, under different trace-based

request processes.



1.4. CONTRIBUTIONS AND THESIS OUTLINE 14

In the heterogeneous-sizes problem variant, to the best of our knowledge, the current
scientific literature lacks for provably efficient dynamic solutions. In the single-cache
scenario, [59] proposed a caching policy that is based on the greedy criterion for hit rate
maximization. As we mentioned earlier, [50,51] proposed a simulated annealing approach,
which, in turn, was adapted to an online caching policy. However, when different file
sizes are considered, a common work-around is to split files into chunks of equal size, as
proposed in [60]. This approach is particularly suitable to video streaming applications.
For example, a modification of LRU is proposed in [61] for a single-server setup and [62]

introduce an MDP-based policy for networks of caches.

1.4 Contributions and Thesis Outline

Now we provide an outline of this work and we briefly summarize the contributions of
each of the following chapters.

In Chapter 3, we model the content placement of the static framework as an opti-
mization problem to minimize the average delay in small-cell networks. We prove the
optimization problem is NP-Hard and propose a greedy algorithm to find an approximate
solution. Assuming the network’s SNRs are homogeneous, the problem can be expressed
as a maximization of a monotone, submodular function subject to partition matroid
constraints, which grants the greedy algorithm a %—approximation guarantee. We study
the special case where all BSs overlap and extract important insights on the solutions

characteristics. The main contributions of this chapter are:

e We provide more insight on the static problem’s solution by studying a simple
scenario that we call full-coverage. In this case study, we prove conditions for the
optimal caching strategy to consist of replicating or diversifying contents throughout

the network.

e We formalize the static delay minimization problem of allocating contents in a

caching network with CoMP transmissions. We prove that the problem is NP-Hard.

e For the same problem, we prove that, under homogeneous transmission conditions,
the objective function is submodular, so the greedy algorithm provides a solution

. 1 . . .
with 5-approximation ratio.

Part of the work included in Chapter 3 has been published/submitted in [63-65].



1.4. CONTRIBUTIONS AND THESIS OUTLINE 15

In Chapter 4, based on the static optimization problem defined in Chapter 3, we
propose a novel general-purpose caching policy, gLRU-A, that asymptotically converges
to an optimal allocation under IRM request process. We observe the convergence for
the hit rate maximization and average delay minimization cases. In the end, with a few
modifications to its operation, we show that the policy may also converge to the optimal
allocation in the case where files have heterogeneous sizes. In another special case, we
tackle non-stationary request processes by proposing a new caching policy 2LRU-A, that

promises good results in practice. The main contributions of this chapter are:

e We propose a distributed online caching policy, gLRU-A, that, under a stationary
request process, achieves an optimal configuration as the parameter ¢ tends to 0.
In this policy, BSs use only local information to update their cache states, taking a

probabilistic drift towards improving the problem’s objective.

e We show how the policy can be adapted to tackle the hit rate maximization problem
and average delay minimization problem and show empirically its convergence via

simulations.

e We also propose 2LRU-A policy that addresses the problem of non-stationary

requests, offering better performance in real scenarios.

e We propose a variant of ¢gLRU-A that is able to handle the cases where files have
heterogeneous sizes. We call this policy ¢gLRU-HS and prove that, when we consider
the performance gain relative to the file size (i.e., its cost-benefit), it converges to

an optimal allocation when ¢ tends to 0

Part of the work included in Chapter 4 has been published/submitted in [64—66].

In Chapter 5, we first discuss the convergence of ¢gLRU-A for different performance
metric and under different experimental setups. Then, we evaluate the performance of
gLRU-A’s variant, gLRU-Ad and qLRU-AR, for different network density levels, request
processes, and SNRs regimes. Finally, we consider the special case where files have
different sizes and observe ¢gLRU-HS convergence and performance. Finally, we compare
the policies performance with other policies from the literature, using the optimal static

allocation as a baseline. The main contributions of this chapter are:

e Using an extensive set of simulations, we demonstrate ¢gLRU-A’s convergence
properties, and we observe both its ability to outperform other state-of-the-art

policies in all considered scenarios.



1.4. CONTRIBUTIONS AND THESIS OUTLINE 16

e We also show empirically that 2LRU-A outperforms other policies, including
gLRU-A, for the case where files are requested according to a non-stationary

process.

e We propose a series of experiments to study ¢gLRU-HS’s convergence in practice as

well as its performance with respect with other solutions from the literature.

Part of the work included in Chapter 5 has been published/submitted in [63—-66].



Chapter 2

System Model and Operation

2.1 Network Model

In the rest of this thesis, we consider a small-cell network, which is a simplification
of the heterogeneous architecture introduced in Section 1.1.2 where all layers equally
participate in the content delivery process. Therefore, we do not make any distinction
between cells, i.e., macro, femto, and pico cells play the same role in the content provision.
Therefore, we define the CoMP-aided cache-enabled small-cell (CCSC) network model
as the small-cell network architecture deploying a cache system at the BSs level and
empowered with dynamic CoMP JT technology.

A generic instance of CCSC network consists of a set [B] of base stations (BSs)
arbitrarily located in a given area A C R?, where [n] denotes the set {1,...,n}. Moreover,
there is a set [U] of user equipments (UEs) spread across area A that can connect to at
least one BS.

We abstract the downlink channel, including fading effects (such as geographic barriers
and secondary interference sources), by encapsulating all the physical characteristics into
the Signal-to-Noise Ratio (SNR) quantity. Let V¥ € R* be the SNR of the wireless
channel between BS b and UE w. If the channel SNR is below a minimum SNR value, Viin,
we assume u and b cannot communicate, and set Vu(b) =0.

Because of the high density of BSs, each UE w will, in general, be within communication
range of multiple BSs. We denote by I, = {b € [B]: Vu(b) > 0} the set of UE u’s
neighboring BSs, i.e., all BSs that have UE « within their coverage area and are able to
receive requests and transmit content back to u.

The most important aspects of CCSC networks is the way UEs are connected to
the BSs, which, in turn, will help describe how data should be allocated in the BSs

and available to the UE. It is very useful to represent small-cell networks as a bipartite

17



2.2. THE BERLIN NETWORK 18

graph. We provide an example for B = 3 BSs in Figure 2.1. There are two separate
groups of nodes, BSs and UEs, interconnected by edges representing the actual network’s
neighboring relationships. It may be useful to assign weights to the edges and nodes
of such graph trying to capture other system’s characteristics, e.g., edge weights are
expected download delays or available bandwidth, and node weights are UEs activity
levels (probability to generate a request). Whenever we mention the network topology or
network of caches, we are actually making a reference to the bipartite graph structure

with its possible weights.

dddddddddd

- LY L
r f" ‘\-\
# | | i % “
i - . 1
¢ BS1 ¢ » BS2 = ¢
i i i i
I . I I . 1
[} i
' e R 1 - =
. 4 - 4 Bipariite Graph
— , .
- L Representation
£ P 1 F
“":-._....--""' ‘-..q--'--'..}l..-“
! . ;
¥
L) BS3 '
-
N\. . f}
e -
. -

Figure 2.1 — Example of a CCSC network with B = 3 BSs and its bipartite graph
representation.

We can control the cells sizes by changing the transmission power of each BS. Therefore,
a larger transmission power defines a larger coverage area, which in turn, will provide a
network with highly overlapped coverage areas. We define the density level p of a network
as the average number of BSs that each UE is connected to. In highly dense networks,
UEs are connected to many BSs on average and this affects (i) the number of possible
sources to download files from and (ii) the number of CoMP JT opportunities (also how
many BSs are available to participate in CoMP JTs). If we consider a fixed number of
UEs, for different density levels, we observe the formation of distinct user areas, where
we say that two areas are distinct if the covered UEs are in the transmission range of
different sets of BSs.

2.2 The Berlin Network

As an example of a CCSC network, we show in Figure 2.2 the Berlin network, where B =
10 T-mobile BSs are located in the city of Berlin. This scheme is extracted from [67].

We also use this network in our simulations described in Chapter 5.



2.3. CONTENT DELIVERY

19

& ) . -t
i -——
f § ¥ ’1" L
] =
[P TR o - =
. ‘)-F\ Ay [ ’ ] i "
' ’
AV Y \_ o et T
r e i o - By e G
el = AR e
| B Wy " o A Aaa -
v i " " A n
1 k., ] ] . il =T w
i o | ¥ ' - o 11
~ '“‘L’ [ 1, r " -
ol T e I I —==n
e e N " !
N ) I
- . ]
) b Y N
¢ d = -
i , i P il
. ' Ny »
iy L &t il ,r. t,
b 4 I [ 1
~ .
. s% L Ty 1
n NN .
] T
- . 5
n .

(a) Small coverage area — small density

-
- T— -
- . T o W
| s a A —— A
:__‘-.d L P l|l-|
El 1 A - i
i’ - i il
. ® SN + aF e e
[ # E A - = 1 ts
i 2 o 1 e - 1
r LI L - Ty
I Y f X a b P
1
L [ o | i 1] ," '
i L] ) T [} u o, f
- W -
i Lo Y U L] # £
| & ;. LIS I
L e Py NE v e _,
e g iy | et '-..
X ’ w "'—.""\-I —— -
r Pl L -~
N i ol Lrse
“ d . y -
- - e - L b =
s I?ﬂ.._l_.__," ' e o S
[} . ,}v\- 1
= [} < - ".'
1 T e m= i - -
v T, L
R * - -
’ »
. 1 -
. L
kS ’i‘,'i
= L

(b) Large coverage area — large density

Figure 2.2 — Berlin network BSs position with different coverage area sizes.

Also in Figure 2.2, we show how much more overlap is created (i.e., how much

denser the network gets) by moving from a case where BSs have small coverage areas

(Figure 2.2a) to a case with larger coverage areas (Figure 2.2b). In Table 2.1, we see how

Berlin network density changes and its associated number of distinct user areas as we

increase the coverage area.

Coverage Radius [m] 10 25 | 50 | 100 | 150 | 200 250

. 1 10
Density p [BSs/UE] (No overlap) 1.1]1.7]135(59 |94 (Full overlap)
Number of distinct areas 10 17 1 37 | 78 | 66 | 17 1

Table 2.1 — Berlin network: the radius, in meters, defining the BSs circular coverage areas
and their corresponding network density p, in BSs/UE.

2.3 Content Delivery

In CCSC networks, the content delivery operation depends on the cache configuration

as well as the transmission conditions (SNRs) experienced by the UE at the moment

when the request for content is posed. Because CoMP techniques are supported, all the
neighboring BSs caching the file may coordinate to jointly transmit it to the UE. We

describe the network operation as follows:

1. When a UE has a request, it broadcasts an inquiry message to its neighboring BSs.

2. Then, according to the current cache state, there are three possibilities:




2.4. OPERATION EXAMPLE 20

(a) Cache miss: No cached copy of the requested content was found in the
neighborhood. Then, the UE sends a direct request to one of its neighboring

BSs, which will need to retrieve it from the content provider’s back-end server.

(b) “Sufficient” cache hit: One or more copies of the requested content were found
in the neighborhood. Then, the UE sends an explicit request to download the

content to one (or more) of the neighboring BSs caching it.

(¢) “Insufficient” cache hit: One or more copies of the requested content were
found in the neighborhood, but for some reason, it is worthy to choose one
additional BS to retrieve a copy of the content from the backhaul network and

jointly transmit the file along with the BSs already caching the content.

We illustrate the network operation in the following example.

2.4 Operation Example

Consider a small scenario with a UE requesting a file to its 2 neighboring BSs where
its SNR with BS 1 is much greater than the SNR of BS 2, i.e., SNR; > SNRs. In this
example, we describe in more detail how the network operates and delivers contents
to mobile users. In particular, this operation is based on the delay d(SNR) the user
experiences to download the requested content through the wireless channel, which is
inversely proportional to log of the SNR, i.e., d(SNR) o log™!(1+SNR). In this example,
we denote the delay to retrieve the content from the back-end server through the backhaul
network as dPH.

We show four possible transmission cases in Figure 2.3 and we describe them as

follows:

1. Cache Miss (Figure 2.3a): If the UE’s requested file is not found at the caches
of its neighboring BSs, the BS with the highest SNR (BS 2) will retrieve the file
from a back-end server and transmit it back to the UE. In this case, the UE will
experience a service time equal to the back-end server fetching time plus the time
to receive the file through the wireless channel, i.e., d® + d(SNR;).

2. Cache “Sufficient” Hit (Figure 2.3b): This is the most standard case where the file
is found at one of the neighboring BSs cache, say the BS with the highest SNR,
and therefore it is directly transmitted without being fetched from the back-end

server. In this case, the UE will experience a service time equal to d(SNR;).



2.4. OPERATION EXAMPLE 21

dike [dike

IBS1IIUEIIEISZI |BS1||UE||552|
m REQ m REG

— =

/ A(ENR;)

b—""] b—"]
d(SNR,)
J—
(a) Cache miss (b) Cache (Single) “Sufficient” Hit
@
( Backhaul ) ( Backhaul )
] [Les2 |

o /

"’>< d(SNR,) /ﬁ’/

]
—

.

(c) Cache Multiple Hits (d) Cache “Insufficient” Hit

Figure 2.3 — Example of transmission situations emerging from the CCSC architecture.



2.4. OPERATION EXAMPLE 22

3. Multiple (“Sufficient”) Hits (Figure 2.3c): Thanks to CoMP JT, if the file is cached
at two or more neighboring BSs, it is jointly transmitted with a higher rate so the
UE will experience an even smaller delay, that we denote by d(SNR; 4+ SNRy).

4. Cache “Insufficient” Hit (Figure 2.3d): This is a very particular case where, even
when the file is found at a neighboring cache, it is more effective to retrieve an
additional copy from the back-end server and perform CoMP JT. For example,
the file is cached at BS 2 that has a very weak SNR with the UE, causing a very
long wireless channel transmission time, say d(SNRg). Then, BS 1 may opt to
download an extra copy of the requested file from the back-end server in order
to jointly transmit it along with BS 2. In this case, the UE will experience the
time to retrieve the file from the back-end server plus the joint transmission time
through the wireless channel, i.e., d®" + d(SNR; + SNRy). Note that this is only
the case when dP" +d(SNR; +SNR3) < d(SNRz). In general, scenarios with highly
heterogeneous BSs within range of a UE, the ones currently having a cached copy
might have weak SNRs, and the additional backhaul delay to fetch an extra copy
to the BS with highest SNR might be amortized by the better overall channel
performance. We note that it is possible to have multiple “insufficient” hits, i.e.,
multiple BSs cache the requested file but it is still worthy to include another BS
(for example, with significantly higher SNR).



Chapter 3

Static Caching Solutions

In this chapter, we discuss how to perform the static placement by solving a correspond-
ing optimization problem, given that other system’s parameters are known, e.g., files
popularities and network topology. First, we introduce the retrieval delay model based
on the CoMP-aided cache-enabled small-cell (CCSC) network (presented in Chapter 2).
Then, we formalize the general optimization problem and discuss its properties and
possible solutions. We show how the general problem may be adapted to maximize hit
rate, as in related literature, and to minimize the average delay. Extending the average
delay minimization case, we study in detail the particular scenario where SNRs are homo-
geneous for which we prove that the corresponding objective function is monotone and
submodular. As a consequence, a greedy algorithm enjoys a %—approximation guarantee.
We provide some more insight on the problem’s solution by evaluating a simple scenario
where BSs completely overlap. We confirm that the general delay minimization problem,
for heterogeneous SNRs, does not enjoy the same optimality guarantees by providing a
counter-example where submodularity condition does not hold. Finally, we discuss the

nuances of the delay minimization problem variant where files have heterogeneous sizes.

23



3.1. SYSTEM MODEL AND OPERATION 24

3.1 System Model and Operation

We consider a general instance of CCSC network as introduced in Section 2.1. Each BS
is equipped with a cache that can store up to C files from a catalog [F] = {1,..., F'} of
files. We assume that the aggregate request process follows the IRM model: each request
is for file f with probability A; independently from the past, where Ay > Ao > --- > Ap
and ) fFelF) Ar = 1. We refer to the probability A; as the popularity of file f. In general,
every file f € [F] has size S¢, in bytes. However, most results of this chapter are for the
case where files have the same size, i.e., Sy = S,V f € [F], which is widely considered in
the literature (e.g., [23,51,66,68,69]) as large files are often split into smaller chunks of
roughly equal sizes. In Section 3.5, we discuss the general case where files have different
sizes and the associated problem’s complexity and possible solutions.

We characterize the cache variables using a set notation, such that the ground set is
denoted by Q = [B] x [F], where element (b, f) €  represents the placement of file f in
BS b’s cache and we represent a cache allocation set by X C Q. Let Q) = {b} x [F] be
a subset of () representing the possible file placements in BS b. An allocation X C ) is

feasible if it satisfies the caches capacity (cardinality) constraints, i.e.,
\mez(b)) <C,vbe B (3.1)

For simplicity, we consider that UEs are equally probable to generate a request, i.e.,
with probability % Because of the high density of BSs, each UE u will, in general, be
within communication range of multiple BSs. We remind that I,, = {b € [B]: v > O}
is the set of UE u’s neighboring BSs, i.e., all BSs that have UE u within their coverage area
and are able to receive requests and transmit content back to u. Among u’s neighboring
BSs, under allocation X, a subset J,, ¢(X) ={b€ I, : (b, f) € X} is actually caching f.

Retrieval Delay Model

Assume now that a set of BSs, B C I,,, uses CoMP to jointly transmit the same file f to

UE w. Then, the wireless channel access delay is given by
a S
W - log, <1 +3 vu(”)>

beB

tu(B) (3.2)

where W is the channel bandwidth and we consider ¢,(0)) = +oo.
As discussed in Chapter 2, in order for UE u to pose a new request for file f, it

broadcasts an inquiry message for file f that is received by its neighboring BSs in I,,.



3.1. SYSTEM MODEL AND OPERATION 25

Then, according to the current cache state, UE u will experience a delay that is a
consequence of one of the following cases:
e If J, s (X) = 0 (Cache Miss), the BS with the highest SNR, i.e., b* £ arg max {Vu(b)}

bel,
downloads f from the back-end server and then transmits it to w. In this case, u

experiences a delay of

"M 4 £, ({b°}),

which consists of (i) the backhaul access delay to retrieve f from the back-end

servers, i.e., d®H, plus (ii) the wireless channel access delay to download from b*,

ie., t,({0*}).
o If J, ¢ (X) # 0 (Cache Hit), then:

— If it is a “sufficient” hit, all BSs in J,, ¢ (X) can jointly transmit the file so u

will experience a retrieval delay of

tu(Ju,f(X))'

— Otherwise, if it is an “insufficient” hit, the BS with the highest SNR in
I\ Ju, ¢ (X), say it b, can retrieve an additional copy of f and then the BSs in
Ju,f(X) U {b'} can jointly transmit to u. The experienced delay in this case is

AP 4t (Ju (X)) U{Y'}).

The system will opt for the solution with the smallest delay.

Finally, we define the total experienced delay by UE w to download file f under

allocation X as
du,f(X) £ min (tu(Ju,f(X))7 a?t + tu(Ju,f(X) U {b/})) > (3'3)

where b’ £ argmax {Vu(b)}. Note that Equation (3.3) also captures the delay when
beLN\Ju. £ (X)

misses at all caches occur, i.e., J, ¢(X) = 0. In this case, I, \ Jy (X) = I, so BS b’ = b*
will fetch the file from the backhaul and transmit it to u.

We summarize in Table 3.1 the most important notation used throughout this chapter.



3.1. SYSTEM MODEL AND OPERATION 26
Table 3.1 — Notation Summary — Chapter 3
’ Symbol ‘ Description
[B] set of BSs [B] ={1,2,...,B}
U] set of UEs [U] ={1,2,...,U}
[F] set of files [F] ={1,2,...,F}
C cache capacity
S file size
Af popularity of file f
w channel bandwidth
aBt backhaul access delay
Vu(b) SNR of the wireless channel between w and b

&

P 20
2B

w
£

A
=
T
S
S—

S ESIHFEDOS
Z,
—~
»
S~—

B

<
~

SNR of all communicating pairs of BS-UE (homogeneous snr regime)

ground set of possible placements
set of UE w’s neighboring BSs
set of u’s neighboring BSs caching f under allocation X

wireless channel access delay between u and BSs in B C I,

experienced delay by u to get f under allocation X
gain function

average gain function over all UEs

average gain over all UEs and files

marginal gain for v by caching f at b under X
indicator function for event e

hit ratio under allocation X

average experienced delay under allocation X

average delay saving provided by allocation X
marginal delay saving for v by caching f at b under X
size of file f (heterogeneous file sizes)

Backhaul transmission rate

Backhaul latency

backhaul-access delay for file f (heterogeneous file sizes)




3.2. PROBLEM DEFINITION 27

3.2 Problem Definition

Consider a non-negative utility set function gs(X,u) representing the performance gain
(under an arbitrary metric) experienced by UE u for delivering file f under allocation
set X. Then, we define the average performance gain over all UEs related to file f and
allocation X as
Gy(X) é% > A gp(Xow).
u€e(U]
Our goal is to find a feasible allocation set X, i.e., satisfying the cardinality con-

straints (3.1), that maximizes the total average performance gain g¢(-) for all f € [F1:

Problem 1 (General Static Optimization — GSO):

. . A
(GSO) maximize G(X) = Z Gr(X) (3.4)
N felF]
subject to ’X N Q(b)‘ <C,Vbe B

For the rest of this chapter, we will focus on finding practical solutions using the
submodular optimization framework [70]. In this case, it is important to define the
discrete derivative AG((b, f)| X) of the gain function G(-) as the marginal gain for adding
element (b, f) € € to allocation X, i.e.,

AG((b, )| X) = GX U{(b. /)}) - G(X), (3.5)

where we stress that the marginal gain of an element already in solution X is null, i.e.,
if (b, f) € X, then AG((b, f)| X) = 0.
In the next sections, we present how the GSO problem may be specialized to different

performance metrics.

3.3 Hit Rate Maximization

A request for file f by UE u experiences a cache hit if J,, (X)) # 0, i.e., when UE u request
file f, it has a non-empty set of BSs caching the file under allocation X. By using the
indicator function that we denote as 1(-), we represent the cache hit as 1(Jy, r(X) # 0).

The gain function in this case is simply the indicator function for a cache hit, i.e.,

95(X,u) = 1(Ju s (X) #0),



3.3. HIT RATE MAXIMIZATION 28

and the average gain over all UEs can be expressed as:

1
G(X)=Hp(X) £\ i > gr(X,u)
u€|U]

=Ar- = > L(Jup(X) #0),

u€[U]

where H(-) is the hit rate for a given file f € [F].

We define the hit rate maximization problem as follows:

Problem 2 (Hit Rate Maximization Problem):

(HRMax) maximize GX)=H(X)2 > Af% S (T (X)£0)  (3.6)
fEF] u€|U]

subject to ‘X N Q(b)‘ < C, Vb€ [B],

where function H(-) is the hit rate over all UEs and files.

In Problem 2, the solution is determined by (i) files popularities and (ii) network
topology. From now on, we focus on the latter; in particular, how the UEs are distributed
within the coverage areas. We show in Figure 3.1 three different UE distributions within
B =2 BSs and discuss how the optimal cache allocation changes as we vary the network
topology.

In Figure 3.1a, BSs serve disjoint sets of UEs, so the optimal cache allocation Xy is
to store the C' most popular files at each BS, we call this allocation full-replication. In the
other extreme, Figure 3.1b depicts a case where all UEs may connect to all BSs. In this
case, the optimal caching strategy is to diversify the available files, such that the two BSs
together cache the B - C' =2 - C most popular files, that we call full-diversity allocation
and denote by X{p. The interesting cases emerge when BSs partially overlap as in
Figure 3.1c. The optimal allocation X* is non-trivially obtained by solving Problem 2.

As proved by [68,69], Problem 2 is NP-Hard. Therefore, in order to approximate
the optimal solution X* for a general network topology, we use the greedy algorithm
proposed in [68,69], which we call GREEDYHR and describe in Algorithm 1. The same
authors also proved that objective (3.6) is a monotone, submodular set function and
that constraints (3.1) form a partition matroid. Therefore, GREEDYHR enjoys a %-
approximation guarantee, i.e., if X GREEOVHR g the solution provided by GREEDYHR,
then H (XGREEDYHR) > %H (X*)

Note that Algorithm 1 chooses the best pair (b*, f*) at every iteration, i.e., the one

with the largest marginal performance gain, in terms on hit rate H(-). As we discussed



3.3. HIT RATE MAXIMIZATION 29

—————————— —— ——
& e o Tn == T == T
- ~ ~ - - Y
Ea A # i ~
# ' LY LY F # 5 -
# | | r 5 5 ) ’ "
¥ - r 5 n \ # ¥ 5 5
[ (] ] — L] [} [ n 1
i 1 ] 1 i i ] i
| e @ ] - |
I I i i i L I 1 o 1
[ L ] 1 [ ' 1 ]
I | . ' ' i 1 A ’
L = ' .r 'l ; . \ r
. L = ¥ . L _.
- | ¢ o . L ¢
=3 = - LS » -
- e . ~ - -
e Cam o oarT "-__‘___..-" "-.,_‘___..-"'
(a) No Overlap (b) Full Overlap.
e e - -
- -
” f,\\ ‘-\
L
P | | a- 5 5
[ - r v | | 1
[ ' y - y
i i | i
| el o |
1 [ i i
. v i '
[ | 1 aa '
L L r [ |
. L i ¥
. | . ¢ -
b - Ll o«
£ -~ -
e Tae =T

(c) Partial Overlap.

Figure 3.1 — Examples of different coverage area overlap levels for 2 BSs.

in Section 3.1,

the marginal performance gain is characterized by the objective’s discrete

derivative, which, for the hit ratio maximization, is defined as follows

AH((b, f)| X)

where U(b) C

& H(X U{(b.)) ~ H(X) (37)
= A Y Wy (XULB AN~ X A 10 p (X))
fEF] u€[U] f'e[F) u€[U]
= Y A S (W (X U{b D)~ 10 p (X))
flelF) u€e|U]
1
Sy Hl))‘uezu%b) 1(Ju,p(X) = 0),

[B] is the set of UEs that are covered by BS b. We obtain the last line

of the above equations by noting that for all files different from f and all users that

are not covered by b their contribution to the marginal gain is null. Also, in the hit

rate maximization, we only profit from making the first copy of file f available to UE u,

ie., Juf(X) = 0. Otherwise, there is no gain because the cache hit for this request is

already guaranteed at some BS.



3.4. AVERAGE DELAY MINIMIZATION 30

Algorithm 1: GREEDYHR
input :[U], [F], [B], C,
I, Vu € [U], Jur(-),Vu € [U],Vf € [F], \f,Vf € [F], and H(-).
output: Allocation set X.
X« 0
while 3b € [B] : [X N QY| < C do

N e

3 | (0% f") < argmax {AH((b, )| X)}
(b,/)eO\X

4 X« XU{@ )}

5 end

6 return X

3.4 Average Delay Minimization

In this section we discuss cache solutions for the case where the performance metric is
given by the delay experienced by the UEs to have their requests served. In this case, for
a given allocation X, we define the average delay for a request over all UEs and files as
follows
AX)2 3 5 S dug(X), (3.5)
felF] uelU]
where d,, ¢(-) is the delay defined in Equation (3.3).

We define the general average delay minimization problem as follows:

Problem 3 (Average Delay Minimization Problem):

: e 7 1
(ADMin) Hll)I%lgHglllze d(X) = Z Af - i Z dy, £ (X)
felF] uelU]
subject to ‘X N Q(b)‘ < C,Vbe [B].

Now, we define the delay saving experienced by UE u when the requested file f is

cached within allocation X as follows
Su,p(X) 2 dyp(0) — dy (X)), (3.9)

where dy, ¢(0) = dB" + ¢, ({b*}) is delay experienced by UE u as if no files were cached
(also defined in Equation (3.3)).! Note that d,, (@) is the same for all files so we can
drop the subscript with respect to files and simply write it as d,(0). Then, the average

'The value of dy, f(0)) can be replaced with any arbitrarily large constant as long as s, f(X) is
guaranteed to be non-negative for all u, f, and X.



3.4. AVERAGE DELAY MINIMIZATION 31

delay saving provided by allocation X is defined as follows

e Y sus(x) (3.10)
uE[U]
Z YR Z u(0) = du g (X))
uG[U]

Now, using the notation introduced in Section 3.1, the performance gain function can
be defined as the delay saving (3.9), i.e

95(X;u) = sy, (X).

Similarly, the average gain over all UEs for a given file f € [F] in the current allocation
X is defined as

Gi(X)=Af- = Z g7(X,u) é Z Su,£(X),

ue U] u€elU]

such that the expected gain of allocation X is

= Y Gp(X

felF]
=3 A Z suf(X) = 5(X).
jem Y

Finally, consider the following optimization problem:

Problem 4 (Average Delay Saving Maximization Problem):

(DSMax) ma;(clgmglze G(X)=35(X)
subject to ‘X N Q(b)) < C, Vb e [B],

Note that the objective function (3.10) of Problem 4 can be expressed as follows

(X0 = 3 A 3 (dal0) — dus(X)

felF] uelU]

= S A S - Y A 3 dug(x

fE[F] u€[U] fE[F] uE[U



3.4. AVERAGE DELAY MINIMIZATION 32

1 _
=5 > du(0) - d(X)

u€ (U]
— o — d(X),

where dy = ¢ > uelv) du(D) is the average delay for a cache miss over all UEs and it
guarantees that 5(-) is a non-negative function. Therefore, the Problem 4 is equivalent to

Problem 3 in the sense that they share the same set of global optimizers.

We discuss the complexity of Problem 3 and its provided maximization counterpart,
Problem 4, in detail later. However, it is noteworthy that, even in ideal setups such as
in a full overlap topology (that would generate a full-diversity allocation in the hit rate
maximization case), its solution is not always straightforward. This is the case because
the optimal allocation now depends on (i) the files popularities, (ii) network topology,
(iii) the quality of the wireless channel between BSs and UEs (given by the SNRs), and
(iv) the backhaul-access latency. Therefore, even in the full overlap topology, the optimal
solution of Problem 3 may be achieved through any cache allocation from full-replication

to full-diversity.

A natural way to approach Problem 3 (and, consequently, Problem 4) is via a greedy
algorithm, comparable to the one proposed for the hit rate maximization problem. In this
case, we call it GREEDYAD and we present a general description in Algorithm 2. The
idea behind GREEDYAD, similarly to GREEDYHR, is to iteratively add the element that
provides the largest marginal performance gain. The most important results are stated
for maximizati