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Résumé

Dans cette thèse, nous nous intéressons à la nage ondulatoire des animaux aquatiques à des nom-
bres de Reynolds élevés, et donc à des régimes pour lesquels les forces inertielles prédominent. La
locomotion aquatique implique une interaction complexe entre le corps du nageur et l’écoulement
induit dans l’environnement. Pour étudier cette question, nous devons considérer à la fois
l’interaction fluide-structure d’un nageur se déplaçant dans un fluide et la perception sensorielle
qui en résulte et dicte l’activité motrice. L’interaction fluide-structure est d’abord étudiée dans
le premier chapitre à l’aide d’un nageur rigide en forme de profil d’aile qui effectue des mouve-
ments de rotation qui entrâınent un déplacement translationnel du nageur. Ensuite, les forces
du fluide générées par le mouvement du nageur sont calculées à l’aide de la théorie des fluides
parfaits, et la vitesse de locomotion est obtenue en résolvant les lois de Newton. Une résolution
numérique des équations est complétée par des calculs perturbatifs dans la limite des petites
amplitudes d’oscillation. Ces deux approches permettent d’obtenir une expression de la vitesse
de nage en fonction des autres paramètres du problème. Dans le deuxième chapitre, l’activité
motrice du poisson n’est plus prescrite mais dépend de l’interaction avec l’environnement. Nous
formulons l’hypothèse qu’une boucle de rétroaction basée sur le sens de la proprioception en-
trâıne une instabilité qui engendre la locomotion. Cette hypothèse est testée sur une plateforme
expérimentale en utilisant un robot biomimétique attaché à un capteur de force. Nous prouvons
que la proprioception est capable de générer des oscillations spontanées de la nageoire du robot,
ce qui nous permet de valider l’idée que les nageurs sous-marins pourraient sélectionner leur
amplitude et leur fréquence de battement à l’aide de capteurs mécaniques. Nous comparons les
résultats expérimentaux à un modèle simple mais générique avec un excellent accord. Enfin,
dans le troisième chapitre, nous analysons les allures ondulatoires en fonction de l’adaptation
du nageur à son environnement en optimisant deux quantités fondamentales: la vitesse de nage
et la dépense énergétique. En imposant différentes cinématiques de déformation, nous étudions
dans quelles conditions la vitesse de nage est maximisée. En recherchant des solutions qui
minimisent la dépense d’énergie pour des contraintes données, différentes allures de nage sont
trouvées. L’allure à mouvement sinusöıdal correspond à celle qui minimise le “cost of trans-
port” pour une amplitude de nage typique donnée. Les résultats analytiques sont comparés à
des simulations numériques de type Reinforcement Learning.

Mots clés: Nage, Interaction Fluide-Structure, Proprioception, Instabilités, Optimisation
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Abstract

In this thesis, we are interested in the undulatory swimming of aquatic animals at high Reynolds
numbers, where the inertial forces predominate. Aquatic locomotion involves an intricate inter-
action between a swimmer and its environment. Therefore, understanding this process requires
to consider the fluid-structure interaction of the swimmer moving within a fluid and the sensory
perception that feeds back its motile activity. The fluid-structure interaction is studied in the
first chapter utilizing a rigid airfoil-shaped swimmer that performs an oscillatory motion con-
verted into a translational motion. Then, the fluid forces generated by the imposed kinematics
are calculated using inviscid fluid theory, and the locomotion velocity is obtained by solving
Newton’s laws. The numerical solution of the equations is further complemented with pertur-
bative calculations in the limit of small oscillation amplitudes. Both approaches are consistent
and give predictions of the swimming velocity as a function of the parameters of the system. In
the second chapter, the interaction with the environment is extended and the motile activity of
the fish is not prescribed anymore but is driven by the fluid-structure interaction. We hypothe-
size that a feedback loop based on the proprioception sense results in an instability, driving the
locomotion. This hypothesis is tested on an experimental platform using a biomimetic robot
attached to a sensor force. We prove that proprioception is able to generate spontaneous un-
dulations of the robot, which validates the idea that underwater swimmers might select their
amplitude and beating frequency using mechanical sensors. We compare the experimental re-
sults to a simple yet generic model with excellent agreement. Finally, in the third chapter, we
investigate the undulatory gaits as functions of the swimmer’s adaptation to the environment
by optimizing two fundamental quantities: the swimming speed and the energy expenditure.
By imposing different deformation kinematics, we study what are the conditions to maximize
the swimming speed. By requiring that satisfactory swimming gaits are solutions that minimize
the energy expenditure for some given constraints, several sets of gaits are found. The harmonic
gait is recovered as the one that minimizes the cost of transport for a given typical tail beat
amplitude. The analytical results are compared with numerical simulations performed with a
Reinforcement Learning algorithm.

Keywords: Swimming, Fluid-Structure Interaction, Proprioception, Instabilities, Optimiza-
tion
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ah́ı, sin desfallecer, en las buenas y en las no tan buenas, haciendo lo imposible. A mi t́ıa
Raquel, mi tita prefe, que siempre me ayuda en las gestiones, me pregunta por mis pececitos,
me mira vuelos para ir a casa y que se preocupa enormemente y sólo quiere lo mejor para
mı́. A mis abuelos, Loli y Juan, que más que abuelos son unos segundos padres, y que me
muestran el cariño y el amor que me tienen todos y cada uno de los d́ıas; espero que puedan
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Chapter 1

Introduction

Nature constitutes the living system par excellence. Over millions of years, it has proven to
have sufficient mechanisms for managing and using its resources efficiently and continuously.
These mechanisms, moreover, have made the life and organisms of the planet an excellent
model to imitate in a multitude of aspects of our lives. Animals, plants, and living beings in
general, through evolution, have developed biological mechanisms to cope with the challenges
of the environment with the sole purpose of survival [1]. The variety of habitats and ecosystems
is gigantic, yet the organisms living there have always found ways to optimize and devise new
strategies to ensure the perpetuation of the species. That is why nature constitutes the reference
and the primary source of inspiration that has enabled the progress of humanity throughout
history [2]. The sustainable design demonstrates that the human being, to evolve, has to explore
and learn from the place they come from. Among all the possible interactions between man and
his environment, the seas have fascinated humans ever since they first became aware of the world
in which they live in [3]. The vast and unreachable expanses of water that stretch before the
eyes of man have always provoked his curiosity. Civilizations have always tried to develop their
potential by the seas, taking advantage of the enormous resources they can provide and giving
men an immense desire to dominate the oceans to explore the unknown. Nevertheless, and in
spite of this close relationship, even today, there is not a complete knowledge of what happens in
these places that constitute about three-quarters of the Earth. Over 80 percent of the oceans are
still unexplored [4]. One of the reasons is the lack of efficient locomotion strategies to move in
this huge three-dimensional space. The total lack of maneuverability in the marine environment
has led humans to conceptualize and develop strategies to make sailing or extracting food and
different goods from the sea possible. The technological and industrial progress emerged over
the years has substantially improved the means used to carry out these two tasks while adding
new interactions between the environment and man through leisure in the form of recreational
travel or water sports. All this brings a growing industrial interest in offshore applications,
constituting a backbone in the economies of many countries and sectors. For example, only
in 2017, the cruise industry contributed 47.86 billion to the European economy [5]. Similarly,
USA Navy’s shipbuilding plan is estimated to cost about $ 21 billion, also in 2017 [6], and the
impact of commercial and recreational saltwater fishing in the United States in the same year
supported 1.7 million jobs in communities across the country [7].

To master what happens in the oceans, we have to look at how their principal inhabitants
behave. Fish exhibit an optimized locomotion strategy, both in terms of energy consumption and
maneuverability, with efficiencies clearly exceeding those achieved by human designers. Such
is the case that even studies carried out on actual swimmers could not explain this gigantic
efficiency, since according to some of the swimmers’ muscle power was not enough to overcome
the drag power experienced. This fact is known as Gray’s paradox [8], who formulated this
statement when studying dolphins swimming, but that today is considered solved thanks to
revisions of his work and genuine results issued by advanced experimental methods [9, 10].
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2 Chapter 1. Introduction

This is partly due because the physics of fish locomotion is still an open field of research and
essential challenges need to be overcome. Understanding the physics at play is a prerequisite
to imagine smart innovations in the field of transport and exploration (marine vehicles) as
well as for the survey of the oceans (autonomous underwater robots). For the latter, robotic
fish constitute the natural solution inspired by nature and an unimaginable source of future
opportunities and applications [11]. In the context of the scientific exploration of the seabed,
this will help to better analyze and understand marine animals’ ecology and ethology and the
biodiversity of habitats at great depths (especially micro-habitats). Such robots can also be
used by oceanographers to study the oceans’ currents, salinity, and oxygen and carbon dioxide
content. Finally, exploring shipwrecks or archaeological submarines sites could be facilitated
by the use of highly maneuverable robots. Another possible field of application that might
be interesting is bio-hydraulic studies. For example, the construction of structures on rivers,
like locks or dams, impacts the environment. These robots might be beneficial to explore as
fish the consequence of constructions led by humans. Actually, fishlike robotic systems have
proven to be very efficient underwater vehicles from early attempts [12, 13] to very advanced
prototypes [14–16]. Their ability to probe the environment [17–19] or their own deformation [20]
opens the route toward fully autonomous artificial swimmers in the near future.

Imitating as much as possible natural swimmers is a proposed goal to extrapolate this
information to artificial systems. First, however, it is fundamental to really understand how
fluid mechanics works in this system to decipher the way forward in optimizing these devices.
Nevertheless, modeling swimming is not straightforward, as we will adequately justify in this
manuscript. The first significant breakthroughs in the understanding of swimming mechanisms
were made in the 1950s by Richard Bainbridge [21]. Bainbridge’s work was one of the first
experimental setup to study the relation between the kinematic characteristics of swimmers
(mainly tip-to-tip tail beat amplitude A and frequency f) and the swimming speed, U .

14

Figure 1.1: Annular rotating vessel used by Bainbridge to perform the experiments on actual
swimmers. From Bainbridge [21].

For this purpose, Bainbridge devised an ingenious experimental device, depicted in figure
1.1. It consists of an annular rotating vessel whose control parameter is the rotational speed.
A fish is introduced into this vessel; as soon as it starts swimming, the wheel is rotated at
the same speed but in the opposite direction to his movement, keeping him stationary relative
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to the observer [21]. Then, in the steady-state regime, a camera placed just above the place
where the fish swims gets the images from which amplitude and frequency can be measured.
He obtained a simple relation linking length, frequency and velocity:

U

L
=

3

4
f − 1.

In addition, Bainbridge showed that the tail amplitude of the swimmers remained approximately
constant for any oscillation frequency or velocity, and that this constant value was around 0.2:

A

L
≈ 0.2.

These two empirical results motivate finding a direct relationship of the swimming speed with
two fundamental quantities that the swimmer can vary, the amplitude and the frequency. This
relationship is realized through a dimensionless number known as Strouhal number and defined
by the following expression:

St =
fA

U
.

This quantity receives much attention because it turns out to be approximately constant for
animals of many different species and scales. Actually, it is shown that these animals cruise
in a relatively narrow range of Strouhal numbers, around 0.3 [22–25], as depicted in figure 1.2.
According to Bainbridge’s measurements, the Strouhal number resulting from his empirical
relationship is 0.27, which is in good agreement with the data for biological swimmers.
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Figure 1.2: Strouhal number for 42 species of flying and swimming animals. Most of these
animals cruise at a Strouhal number between 0.2 and 0.4. From Taylor et al. [23].

Theoretical models attempting to explain these facts were subsequently developed and we
give them an extensive treatment in chapter 2. However, along with the flourishing of analytical
and numerical models to describe the swimming mechanisms, new experimental methods aimed
at establishing new relationships and uncovering new mechanisms. The methods involving living
animals are, although much more realistic, undoubtedly complicated since total control over the
animals does not exist, and their physical condition can affect their performance. Nevertheless,
over the last few years, real technological challenges have been achieved in acquiring data from
actual swimmers, such as the placement of accelerometers on cetaceans to understand how these
animals move [26,27].
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This is why numerous artificial systems have been studied, such as rigid foils undergoing
heaving and pitching motions [12, 28, 29], flexible panels [25, 30], or robots [15, 16]. Although
conceptually different, most experiments consist in varying the kinematic parameters A and f
and finding the free-swimming velocity U , as well as characterizing the force exerted by the
fluid on the swimmer. These experiments have yielded promising results in the understanding
of the swimming phenomenon: experiments performed with NACA airfoils [31] to mimic the
motion of the caudal fin have proposed as an energy efficiency explanation the setting of the
value of St (figure 1.3a). The maximum efficiency of the appendage for a fixed A/L value is
found around the value St ∼ 0.3, implying that natural selection has tuned animals to use this
range of Strouhal numbers because it confers high-efficiency [31]. Similarly, experiments with
flexible panels [25] have shown that fixing the value of St is not the only requirement for higher
energy efficiency, but also the value of A/L is critical. These experimental results issued by
Saadat et al. (figure 1.3b) suggest that a swimmer can minimize its input power by selecting a
value of A/L close to 0.2, which would agree with Bainbridge’s experimental results.
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Figure 1.3: a) Efficiency curve as a function of St. The maximum value of efficiency is achieved
for St ∼ 0.3. From Floryan et al. [31]. b) Power coefficient for different Reynolds number as
a function of A/L. There is a value of A/L around 0.2 which minimizes the power coefficient.
From Saadat et al. [25].

All these experimental results are further supported by theoretical considerations using scal-
ing laws. The complete understanding of swimmers’ locomotion involves an enormous number
of different and complicated shapes and geometries. Thus, instead of finding exact expressions
taking into account all the characteristics of the swimmers’ shapes, it is advantageous to know
the functional relationships between swimmers and fluid as a function of the most important
parameters. Formulating a scaling law requires a large and statistically acceptable set of data
collected in nature, which is usually challenging to obtain. Performing the experiments to col-
lect such data is an investigation in itself. In addition, the data are not always published, and
accessing them usually means an extensive literature search. For example, let us consider the
relationship between the oscillation frequency of a swimmer f and its length L. As a general
rule, it seems clear that smaller animals move their appendages faster than larger ones. This
observation could be perfectly described by a scaling law connecting the two variables by the
following expression:

f ∼ L−a, (1.0.1)

with a a strictly positive coefficient realizing that for increasing lengths the frequency must be
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a decreasing function.

A relationship such as the above is called an allometric relationship [32] since it relates some
characteristics of an animal to its body size or body mass. Many papers have tried to establish
a reasonable explanation for this relationship; however, not all of them agree on the exponents
they give, and the comparison with measurements taken from biological swimmers may appear
biased at some point. Wu [33] presents the exponent a of equation 1.0.1 as a function depending
on the metabolic rate, Bale et al. [34] and Sato et al. [35] find an exponent a = 1 while Bejan and
Marden [36] and Gough et al. [37] recover a value near 0.5. Our swimmers data are represented
in figure 1.4. These data consist in length, amplitude, frequency and velocity of the swimmer,
and are collected from a multitude of animals ranging from some centimeters to 20 meters and
from different species and shapes. The articles we have used to extract these data are cited
next [21,38–51].
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Figure 1.4: Oscillation frequency as a function of animal’s length. The blue points represent
the experimental data gathered in actual swimmers while the black line correspond to the fit
f = 1.98L−0.51.

According to the graph, we see a large dispersion of the data. We do not know under
which conditions these experiments have been performed nor what levels of activity each of
these swimmers were developing, factors that might cause this dispersion. Scaling laws have
already been obtained with experiments performed at the same performance level, such as
the one from Hirt et al. [52] where an allometric law of the maximum locomotion velocity is
deduced. However, we realize that a fit of the type f ∼ L−0.51 recovers the decreasing trend of
the frequency quite well, a trend that we also find in the literature [36, 37] (figure 1.5a). Our
hypothesis to explain this behavior is that the lateral power generated by the muscles must
be of a sufficient order of magnitude to overcome the power dissipated by the drag force. The
power of the muscles is equal to the force generated by the muscles, EL2, multiplied by the
lateral displacement velocity, i.e., the tail velocity:

Plat ∼ EL2Af,

with E the Young’s modulus.

On the other hand, the drag force reads:

Fdrag ∼ ρL2U2,
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which, multiplied by the swimming speed yields the expression for the power dissipated:

Pdrag ∼ ρL2U3,

with ρ the density of water. If we balance both quantities and use the fact that U ∼ Af and
A/L ∼ cte we finally obtain that the oscillation frequency of the tail should be written as:

f ∼
√
E

ρ
L−1.
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Figure 1.5: Comparison of theoretical predictions with the motion frequencies a) and force
outputs b) for a wide variety of running, swimming and flying animals. From Bejan and
Marden [36].

As we can see, the coefficient we obtain is not at all the one we observe in the figure
1.4. For both to coincide, the velocity of wave propagation in the swimmer, which is precisely
the term

√
E/ρ, should be proportional to the length of the swimmer in order to obtain the

desired exponent. The stiffness of swimming animals is a feature susceptible to be varied to
achieve a better swimming performance [53–55], which could mean a possible dependence of the
propagation velocity with the swimmer’s length. We aim at exploring a different supposition, so,
in what follows, we consider that the density of the medium is a constant quantity and so is the
Young’s modulus of the animal muscles [56]. The point where our argument seems to fail is in the
scaling of the muscle force that produces the lateral undulations. This force is proportional to
a cross-sectional area, which implies that this area must be proportional to L2 for geometrically
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similar animals. Structures of different sizes are geometrically similar if each of their linear
dimensions can be related by a common proportion [57]. This characteristic is true for aquatic
animals: cetaceans ranging from small dolphins to blue whales have lengths proportional to
M0.34, with M the mass of the animal, very close to geometric similarity [58], and fish of
different sizes also tend to be close to geometric similarity [32]. Even when complying with the
precepts of geometric similarity, like a large majority of terrestrial mammalian species [59], the
force-generating capacity of some limb muscles is bigger than expected in this theory due to the
positive allometric scaling (exponent of L larger than 2) of muscle fiber cross-sectional area [60].
In addition, the maximum force capable of delivering the muscles of swimming animals appears
to scale as a single isometric function of the animal mass [61], as shown in figure 1.5b.

In this case, we need to take into consideration that forces may not depend on a cross-
sectional area but on the animal’s mass. Muscle cells are composed of contractile elements
called sarcomeres, which are the basic units of contraction generation [62]. The hypothesis is
that the length of a sarcomere does not vary much depending on the animal’s length and can be
considered almost a constant quantity. However, the size of the muscles does depend on the size
of the animals, being bigger the larger they are. To relate both observations, we can suppose
that, although the size of the sarcomeres does not vary from animal to animal, the number of
sarcomeres Nsarc does vary from individual to individual and can be written as:

Nsarc ∼
L3

l30
,

where l0 is the typical length of a sarcomere.
Thus, the lateral force generated by a muscle will be equal to the force generated by a single

sarcomere, F0, multiplied by the number of sarcomeres present:

Flat ∼ NsarcF0 =
L3

l30
F0.

Multiplying by the lateral velocity, Af , to obtain the power and balancing with the drag power,
ρL2U3, we get the scaling law for the oscillation frequency, which in this case reads:

f ∼
√
F0

ρl30
L−

1
2 .

The value of the coefficient
√
F0/ρl30 is approximately 6 m1/2.s−1 for typical values of l0 ≈ 3

µm [63] and F0 ≈ 1 pN [64], which is in entire agreement with the data in the figure 1.4. This
scaling result also shows how the acceleration provided by the muscles F0/ρl

3
0 ∼ 36 would be

of the same order of magnitude as the gravity acceleration, g, which would imply the ability of
animals to counteract gravitational effects.

The introduction that we have developed here shows problems that require an elaborated
understanding to comprehend swimming. The scaling laws we have just derived do not yet
show a satisfactory explanation of the relationship between length and frequency of oscillation of
aquatic animals. It is a challenge to know how the kinematic parameters of these animals, such as
the frequency and amplitude of oscillations, are configured in the way we observe them in nature.
Or understand how the Strouhal number, which relates the kinematic parameters to the cruising
speed, is a quantity that remains almost constant for the vast majority of aquatic organisms,
despite their morphological or physiological differences. It is an open question whether these
facts respond to energetic criteria or synergies between the interaction of the swimmer with its
surroundings. The optimization of locomotion according to undulatory gaits or the selection
of the swimmer’s dynamics from a closed-loop feedback with the environment are some of the
hypotheses that we tackle in this manuscript to attempt to answer these questions satisfactorily.
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Organization of the thesis

Apart from the introduction and conclusions, this thesis is divided into three chapters:
In the second chapter, we introduce the traditional mathematical models in the study of

swimming. We then enunciate a model that contain the minimal ingredients to trigger swim-
ming. We make a dynamic analysis to understand how the swimming speed and Strouhal
number depend on the kinematic characteristics of the swimmer and the physical parameters
of the fluid.

In the third chapter, we point out the problem that exists in many models and experiments
where the kinematics of the swimmer must be imposed. Employing a simple model of interaction
with the environment, we propose a mechanism that induces the swimmer to select its amplitude
and swimming frequency according to the interaction with its surroundings. The predictions of
the model are compared with experimental results obtained with a biomimetic robotic swimmer.

In the fourth chapter, we explore different optimization strategies. We study different tail
dynamics and maximize the speed or thrust force as a function of different parameters. More-
over, without considering any prefixed motion, we obtain the tail movement that minimizes
the energy spent by the swimmer to move. Finally, the theoretical results are compared with
numerical simulations performed with Machine Learning.

Moreover, three appendices at the end of the manuscript provide complementary information
to better understand our approaches. The first one describes exhaustively the experimental
setup and the techniques to perform the measurements. The second one introduces the multiple
scale method for solving problems using a perturbative development, which we exploit in the
chapters 2 and 3. Finally, the third appendix introduces the notions of dynamical system and
bifurcation, paying particular attention to the change of stability of a system by means of a
Hopf bifurcation, a concept that constitutes a fundamental part of the chapter 3.



Chapter 2

A minimal model of self propelled
locomotion

2.1 Introduction and context

The motion of an organism in a fluid results from the coupling of the dynamics of the swimmer
and the surrounding fluid. In this fluid-structure interaction (FSI) problem, the exact resolution
becomes very complicated for two fundamental reasons. First, the deformation of the animal
itself viewed solely from a mechanical point of view (i.e., without consideration of how the
information is transmitted from the motor neurons to the movement mechanisms) introduces
severe problems in identifying and calculating the stresses and loads applied to the animal.
Even with all the loads completely calculated, the equations governing the dynamics of the
deformations are not simple and depend strongly on the magnitude of the deformations and/or
rotations produced and the materials of the structure itself. The theory of linear elasticity deals
with the dynamics of small deformations. However, it ceases to be valid as soon as the difference
between the shape of the deformed and undeformed structure is very different, which usually
occurs in the case of biological soft tissue, which composes the animals material. This will
then lead to the application of more general frameworks where nonlinear terms taking account
of large deformations are included (large deformation theory) [65]. However, many exciting
results have indeed been obtained in the case of small deformations, simplifying the complex
shapes of animals to that of beams and consequently using the classical beam theory, mainly
Euler-Bernoulli [66–68].

In addition to its deformations, animals move in a fluid medium generating a distribution
of velocities and pressures in its environment. The knowledge of the forces distribution that
the fluid exerts on the organism is essential to understand the loads and the fluid-structure
coupling, and this knowledge is only possible if the velocity and pressure fields in the animal’s
environment are known. The unknowns, in this case, are the three components of the fluid
velocity, u, (since the animals move in a three-dimensional space) and the pressure, p, which
is a scalar quantity. The first equation is the mass balance equation, which links the temporal
evolution of the density to the mass flux [69]; it writes as:

∂ρ

∂t
+∇ · (ρu) = 0,

where we introduce the density of the fluid, ρ.

However, most of aquatic animals live in water, whether fresh or salt, whose density does
not crucially depend on either space or time (for a given pressure and temperature set). Fluid
is defined as incompressible, and the continuity equation takes the following form:

∇ · u = 0. (2.1.1)

9
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The fluid can be considered incompressible as long as the typical velocity of the fluid is con-
siderably less than the propagation velocity of pressure waves. Bearing in mind that under
standard conditions of pressure and temperature, the speed of sound for fresh and saltwater is
approximately 1500 m.s−1 [70] we can ensure at all times that the displacement of the animal
is in the subsonic regime and therefore the velocity field will remain divergence-free.

The conservation of momentum equations are the three additional equations which, coupled
to the continuity equation, constitutes the system to be solved. The vector equation reads:

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p+ µ∇2u, (2.1.2)

with µ the dynamic viscosity of the fluid.

The set of equations 2.1.1 and 2.1.2 is known as the Navier-Stokes equations and governs the
dynamics of Newtonian and incompressible fluids. In addition to these equations, the boundary
conditions must be given, forcing the compliance that the fluid velocity in the region bounded
by the swimmer must be identical to the velocity of the material point on the body’s surface,
S.

Analytical solutions are not abundant and are reduced to a scarce number of cases [71]. In
addition, another fundamental problem is added, and that is that the surface, S, can have a
time-dependent shape, which will also depend on the response of the fluid. To simplify the
problem somewhat, it is always possible to take a rigid surface and observe the fluid forces
exerted on the body to deduce the thrust and the lift forces. In case there is no hypothesis
about the surface, its motion must also be found as part of the solution [72].

Therefore, once the problem has been solved, the forces on the organism are calculated as
follows:

F =

∫∫
S
σ · ndS,

where n denotes the normal vector to the surface and σ is the classical stress tensor in fluid
mechanics, defined as:

σ = −p Id + µ
[
∇u+ (∇u)T

]
,

where Id denotes the identity matrix and the superscript T the transpose of a matrix.

The stress tensor is composed of two terms, one dependent only on the pressure field and an-
other that captures the effects of viscosity. Whether one force dominates over the other depends
mainly on the characteristics of the flow produced by the motion of the organism. A dimen-
sionless quantity known as the Reynolds Number, Re, is defined to distinguish which regime
dominates or when the overlap between them occurs. This dimensionless number measures the
ratio of the orders of magnitude of the inertial terms to the viscous forces. For example, by
introducing a characteristic length of the system, the size of the animal, L, and a characteristic
velocity, the swimming speed, U , the Reynolds number reads:

Re ∼ ρ (u · ∇)u

µ∇2u
∼ ρU2/L

µU/L2
=
ρUL

µ
.

Very small Reynolds numbers Re � 1 exhibit a predominance of viscous forces and are the
typical scenarios where microorganisms and animals of sizes typically smaller than a millime-
ter coexist. In this case, the inertial terms of the equation 2.1.2 disappear and the equation
becomes linear, and traditional mathematical methods based on the superposition principle
can be exploited. The Navier-Stokes equations reduce to the Stokes equations with significant
consequences for locomotion [73–75]:

∇p = µ∇2u.
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Figure 2.1: Inertial swimmers considered in this manuscript and their associated Reynolds
number, gathering larvae, fish, amphibians, reptiles, marine birds and large mammals. From
Gazzola et al. [24].

The objective of my PhD project is the study of locomotion in animals of macroscopic size,
as those depicted in figure 2.1. These animals vary in length from a few centimeters to the
approximately 30 meters that can reach blue whales, the largest animal inhabiting the oceans,
and that therefore will not be affected by viscous forces in the same way as by the inertial
terms of the Navier-Stokes equations, where the latter will dominate the dynamics. The main
difference with the Stokesian case is the loss of linearity due to the nonlinear convection terms
and thus the reduction of analytical methods to treat the system.

However, in this vast range of animals coexist species from different kingdoms with various
physiological characteristics, but among which we find an enormous variety in morphology,
size and shape. This diversity influences the behavior of macroscopic animals and has led to
evolutionary groups of animals sharing very similar swimming patterns. We can consider, for
example, animals that propel themselves using their appendages as oars, either employing their
wings or legs, as in the case of aquatic birds or certain amphibians. Others manage to propel
themselves by ejecting a jet of water out of their specially prepared contracting body cavities,
as is the case of jellyfish, squids or cephalopods and even bivalves (figure 2.2). We refer to
Alexander’s fantastic book [76] which delves into the mathematical description of these modes
of locomotion.

The large group that we focus on are those animals that move their spines and propagate
deformation waves throughout the body to propel themselves [77] (figure 2.2). This mode of
locomotion has long aroused the curiosity of scientists and engineers because it allows good ma-
neuverability, high energy efficiency and an elevated swimming speed. Within this group, there
is also a great variety, and classification has been established according to the distribution of
amplitudes during undulation along the body by Lauder and Tytell [77]. These authors consider
four possible locomotion modes: Anguilliform, Subcarangiform, Carangiform and Thunniform
(figure 2.3). Each of these modes is named after a characteristic fish species that performs that
mode of locomotion: the first is typical of eels and very slender fish and is characterized by
the almost total oscillation of the entire body with wavelengths that do not usually exceed the
length of the animal at any time [78]. Subcarangiform and Carangiform modes are characterized
by oscillations concentrated closer to the tail where the whole body is not involved and with
larger amplitudes, locomotion typically used by animals such as trouts, jacks, or mackerels. Fi-
nally, the Thunniform mode, whose name is reminiscent of larger animals such as tuna and also
includes sharks, exhibits hardly any body movement; oscillation occurs in the tail while the rest
of the body remains fixed and without any apparent bending. These modes of locomotion also
share certain similarities with the first group of animals that moved thanks to their appendages.
Especially in the Thunniform case, we can consider most of the body as a non-flexible surface
with a tail that acts as a hydrofoil and is responsible for the inertial thrust. In addition, the
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various dorsal, pectoral and ventral fins influence the swimming gait by shedding vortices and
accelerating the flow [77].

14

Figure 2.2: Different swimming patterns in aquatic environments. In the upper part of the
figure, we consider propulsion by jet ejection, a method of locomotion used by jellyfish and
octopuses, and in the lower part locomotion by body undulations, which is the swimming that
sharks and manatees perform. From [79–82].

A theory that regroups all these modes and attempts to describe them in a single framework
will have to consider the kinematic characteristics of the swimmers, which are primarily the
frequency with which the oscillations occur, ω, and the amplitude of these oscillations. One
way to account for body undulations is to admit as a representative parameter the amplitude of
the tail oscillations, A. This choice is quite natural in the Thunniform and Carangiform modes
since most of the oscillations occur around the tail. For the other modes, although ripples are
propagating beyond the tail, the most important in magnitude occur at the tip of the tail [83,84].
These two kinematic parameters, ω and A, together with the physical parameters of the fluid,
such as its density ρ and dynamic viscosity µ or kinematic ν, determine the locomotion of these
swimmers.
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Figure 2.3: Classification of swimming undulation gaits according to total or partial oscillation
of the whole body. From Lauder and Tytell [77].

Calculating the exact dependence of the aquatic gait on these parameters is, as we have
already stated above, a task that, in principle, exceeds our capabilities. The work of Gazzola et
al. [24], however, essentially solves this problem by shedding light on what is the mathematical
relationship between swimming velocity U , beating frequency ω, tail amplitude A and kinematic
viscosity of the fluid ν. To do so, the authors rely on simple scaling arguments about the forces
acting on the system by imposing only the equality of the two forces that dominate locomotion,
the thrust force, T , and the drag force, D. When both forces are equal, the animal’s swimming
speed is nearly constant, being perturbed only by small terms that, on average, do not affect
the value of the velocity. The thrust force is calculated as a function of the fluid displaced by
the tail movement, assuming that the amplitude of oscillation of the motion is small compared
to the length of the organism, L and that it is slender, implying that the acceleration of the
fluid can be channeled into longitudinal thrust. The approach is two-dimensional because the
undulatory motions are considered to be in the plane, so forces are all calculated per unit depth.
Thrust force per unit depth scales as:

T ∼ ρω2A2L.

Concerning the drag force, there are two different regimes to study depending on the value of the
Reynolds number. Since the Reynolds numbers we consider are significantly larger than unity,
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viscous forces can be neglected throughout the fluid around the body except in a small region
where velocity gradients will be high. This region is confined in the boundary layer, where most
of the body’s drag is generated. This boundary layer is affected by the Reynolds number and
undergoes a transition around a critical value Rec ≈ 3000 [24]. For Reynolds numbers lower
than this critical value, which we call the laminar regime, the skin drag force is dominated by
the viscous shear. For higher values, the boundary layer becomes turbulent, and the pressure
drag dominates the skin friction. The drag forces per unit depth corresponding to each of these
situations are:

D ∼ ρ(νL)1/2U3/2 , Re < 3000.

D ∼ ρLU2 , Re > 3000.

14

Figure 2.4: Reynolds number as a function of the swimming number Sw for different species of
animals showing the existence of two regimes for inertial swimmers, a laminar and a turbulent
regime. From Gazzola et al. [24].

Balancing thrust and drag predicts the animal’s swimming speed in each of the different
regimes.

U ∼ A4/3ω4/3L1/3ν−1/3 , Re < 3000.

U ∼ Aω , Re > 3000.
(2.1.3)

These two scaling laws deduced from simple arguments turn out to be efficient and perfectly
predict swimming speed as a function of A and ω. A dimensionless quantity called Swimming
Number, Sw, has been introduced, defined by

Sw =
ωAL

ν
,

which is a kind of transverse Reynolds number since it takes as its characteristic velocity the
tail velocity. The tendency 2.1.3 can be rewritten in terms of Sw and Re = UL/ν as:

Re ∼ Sw4/3 , Re < 3000.

Re ∼ Sw , Re > 3000.
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And whose behavior has been validated both in numerical simulations [24] and in the natural
behavior of biological swimmers, as shown in figure 2.4, remarkably matching theory and data
beyond seven orders of magnitude in Re.

Although there is a large amount of works developed since the middle of the last century,
we will focus primarily on the seminal work of Lighthill and Wu and the use of airfoils to
describe these movements’ swimmers. In addition, we present the simple model we have derived,
which, although straightforward, captures the fundamental characteristics of locomotion and the
relationship of the kinematic parameters of the swimmer to its velocity.

2.2 Classical models of undulatory locomotion

Before exploiting the mathematical techniques to adress the problem of aquatic locomotion,
it is necessary to establish the hypotheses that will be taken for granted from now on. As
discussed at the beginning of the chapter, swimming is based on the interaction between an
organism and the surrounding fluid. A complete theory must describe the forces generated
by the muscles and their effect on the fluid, as well as the feedback that exists between the
force generated by the fluid and detected by the organism. The animal will adapt its form and
the intensity of its muscular activity according to this force. In what follows, such coupling
will not be granted, and we will consider a prescribed shape and kinematics of the swimmer to
calculate the forces exerted by the fluid. Another approach that is often used when dealing with
theoretical models is to reduce the dimensionality of the problem. Aquatic animals live in three-
dimensional space. Models of locomotion try to describe the shape of these animals as much as
possible, which generally share a common geometrical characteristic with few exceptions; their
bodies have a finite length and width. Still, they are thin in the third dimension, which leads
to disregarding one dimension and establishing the movement only in the other two. Aquatic
organisms have also evolved mechanisms to be neutrally buoyant so that dispensing with a
third spatial dimension is an approach that we should find moderately justified. Last but not
least, viscosity effects will be neglected at all times, except in the boundary layer. The fluid is
considered inviscid unless otherwise stated.

In the models we deal with, the thrust calculation becomes the fundamental magnitude to
be solved. The drag forces can be calculated quite accurately taking into account the behavior
of the boundary layer and paying special attention to the conduct of the drag coefficient as a
function of the Reynolds number and the surface area exposed to the fluid, which also has to
be correctly considered. These models are mainly divided into two main types, resistive and
reactive, depending on the thrust search strategy. These models are named after how this force
is calculated: resistive models are based on estimating the thrust from the drag forces that a
system receives and must overcome for locomotion to occur. Such models are found in the work
of Taylor [85], in which the swimmer’s body is divided into many segments, and in each segment
the drag forces per unit length, D, are estimated as a function of the fluid velocity and the
angle between the flow and the position of the element:

D =
1

2
ρU2dCD,

where U is the velocity of the incoming flow, d is a characteristic length of the segment and CD

the vectorial drag coefficient, which depends on the angle between the flow and the position of
the segment.

Following the notation of Taylor [85] in each of the segments into which the body is divided,
the drag coefficient is calculated using:

CD = [CD]p + [CD]f ,
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where the subscripts p and f represent the normal and tangential components to the surface,
respectively. The main drawback of this procedure is the geometrical calculation of the coeffi-
cients for all the divisions into which the body has been divided, which results in a lengthy and
tedious method.

Reactive models have been more fruitfully developed and are the cornerstones of the analyt-
ical theory of swimming. These models calculate thrust by analyzing the reaction in the fluid
caused by the accelerations of the organism itself, a much less passive method than that used
in the resistive models. They consider the effect of added mass, which arises when a body is
accelerated in a fluid. If we think a body of mass m accelerated by an acceleration a, we are not
only accelerating the body but also the surrounding fluid, which gains velocity [86]. Therefore,
the force that is intended to move the body has to do work on increasing the kinetic energy not
only of the body but also of the fluid, which leads to this force having an additional term:

F = (m+madd)a,

where madd is the fluid added mass.

2.2.1 Lighthill Model

Lighthill [87,88] developed his first work on swimming based on the small perturbation theory of
slender swimmers. Lighthill defines a swimmer as slender when its dimensions and movements
perpendicular to its direction of locomotion can be judged small compared to the length of the
animal, L, as shown in the figure 2.5. Furthermore, we can consider the swimmer permanently
in the same position x while performing lateral movements in order to counteract the force
arising from a flow coming from the left in the positive direction of the axis with velocity U ,
which is no more than the swimming speed.

15

Figure 2.5: Sketch of a slender swimmer, see text for description of variables. From Childress
[72].

The variable s(x) represents the cross-sectional area at position x. Besides, we also require
that the tangent plane to the surface forms at all times and positions a small angle with respect
to the direction of locomotion, as well as that the variation of s(x) is smooth. Mathematically,
this condition is fulfilled if: ∣∣∣∣ dsdx

∣∣∣∣� 1.

The variable h(x, t) represents the lateral deformation of the organism, and based on the theory
of small amplitudes, we require: ∣∣∣∣∂h∂x

∣∣∣∣� 1,

∣∣∣∣∂h∂t
∣∣∣∣� U.
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The objective is then to calculate the thrust forces produced by the animal to overcome the drag.
For this, we consider that the flow can be decomposed into two contributions, one corresponding
to the steady flow when the animal does not make any movement and h(x, t) is null for any
position x; and the other in which we take into account the flow produced by the oscillations of
the lateral movements h(x, t). Finally, the velocity of this flow is given by the material derivative
of the lateral displacements:

V (x, t) =
D

Dt
h =

(
∂

∂t
+ U

∂

∂x

)
h.

This flow has a momentum per unit length associated with it which can be written as

ρA(x)V (x, t),

where ρA(x) has dimensions of mass per unit length and is what we call added mass term. A(x)
is the area of an infinite cylinder in the z direction inscribed in s(x). We need the force per
unit length in the direction z produced by the fluid on the body (called lift, FL) to be equal
and of opposite sign to the material derivative of the fluid momentum passing over s(x). Then
we have

FL(x, t) = −ρ
(
∂

∂t
+ U

∂

∂x

)
(A(x)V (x, t)) .

The work done by the fish in maintaining the transverse oscillations is

W = ρ

∫ L

0

∂h

∂t

(
∂

∂t
+ U

∂

∂x

)
(A(x)V (x, t)) dx

=
∂

∂t

[
ρ

∫ L

0

∂h

∂t
V A(x)dx− 1

2
ρ

∫ L

0
V 2A(x)dx

]
+ ρU

[
∂h

∂t
V A(x)

]L
0

.

If we average over a very long time, we see that the only term contributing to the average is the
last one, evaluated between the length of the animal L and 0. The first term is 0 on average
because it is the average of the derivative of a fluctuating quantity. A(0) = 0 is usually taken
as a value at x = 0, as we can see in the figure 2.5. Assuming then a finite value of the surface
at the trailing edge, we have that the time average value of the work is:

W = ρUA(L)

[
∂h

∂t

(
∂h

∂t
+ U

∂h

∂x

)]
x=L

.

On the other hand, there is also a “spent energy” term, which represents the rate at which the
kinetic energy of the fluid is shed to the wake at the trailing edge. This term is written as:

1

2
ρV (L, t)2A(L).

However, these two quantities do not precisely compensate each other, at least not generally.
Therefore, subtracting the last two quantities, we obtain the power available for a thrust force
to be produced on average, that is:

TU = W − 1

2
ρV 2AU,

with T the mean thrust force. Isolating and simplifying this quantity we obtain:

T =
1

2
ρA(L)

[(
∂h

∂t

)2

− U2

(
∂h

∂x

)2
]
x=L

.
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Thus, the thrust force is perfectly calculated as a function of the animal’s kinematics, par-
ticularly the lateral displacements’ variations in time and space. This theory is only valid
for small amplitudes of movement. Subsequently, Lighhill in [89–91] developed a theory on
long amplitudes, moving from his slender body theory model to elongated body theory (EBT).
Candelier [92] extended EBT to account for motions in three-dimensional space, as well as non-
uniform flow. Yu and Eloy [93] have corrected certain aspects of that theory to allow aspect
ratios of order unity as well as to consider the effect of the Kutta condition.

2.2.2 Wu Model

In the same way that Lighthill developed his model of a slender and flexible swimmer, Wu
performs the same study to find the propulsive forces of a waving plate in the case where its
depth is large enough we can neglect the effects on this dimension [94, 95]. Wu’s theory is
intimately related to the linear theory of airfoils, which we will see in the next section. Consider
then a flexible flat body of negligible thickness spanning from x = −1 to x = 1 performing
lateral motions of small amplitude immersed in a flow of constant velocity U in the positive
direction of x. The lateral motion of the plate is given by the expression.

y = h(x, t), −1 < x < 1.

Again, being in a linear frame, the maximum amplitude h and its derivative with respect to
the position must be required to be small compared to unity. The flow is decomposed into the
constant velocity U and the velocities created by the oscillations of the plate, which we write,
following Wu’s notation as:

q = (U + u, v).

Of course we have an incompressible fluid, so the velocity fields originated by the vertical
translation of the organism must obey the continuity equation:

∇ · q =
∂u

∂x
+
∂v

∂y
= 0.

Considering at all times that the velocities u and v are small compared to U , in the same way
as we demanded above, the equations governing the fluid dynamics are:(

∂

∂t
+ U

∂

∂x

)
q = −1

ρ
∇p = ∇φ,

where we have introduced the Prandtl’s acceleration potential defined as

φ =
p∞ − p
ρ

,

with p∞ the fluid pressure at infinity. By taking the divergence of the Euler equations we derive
the Laplace equation for the potential:

∂2φ

∂x2
+
∂2φ

∂y2
= 0.

Laplace equation is a more familiar type of partial derivative equation with more standard
methods for giving a final solution than the original Euler equation. Once the solution is
obtained, the difference of pressures between the top and bottom face of the plate is calculated
as:

∆p = p(x, 0−, t)− p(x, 0+, t) = ρ
[
φ(x, 0+, t)− φ(x, 0−, t)

]
.

The lift force is calculated by simply integrating this pressure variation over the entire surface:

FL =

∫ 1

−1
∆pdx.
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And the organism thrust with:

T =

∫ 1

−1
∆p

∂h

∂x
dx+ Ts,

where Ts is a force known as leading-edge suction, whose physical meaning will be rationalized in
the next section. To maintain the motion of h(x, t) an external force equal but of opposite sign
to the fluid force on the organism must be applied. The power, P , required for this purpose is
equal to the time rate of work done by the plate against the reaction of the fluid in the direction
of transverse motion:

P = −
∫ 1

−1
∆p

∂h

∂t
dx.

From the principle of conservation of energy, the energy supplied by the animal per unit time
must be equal to the rate of change of the work done by the thrust force, TU , plus the kinetic
energy supplied to the fluid per unit time, E. Therefore, mathematically the relationship
between these three variables is:

P = TU + E.

This equation determines whether the swimmer can develop a full thrust force sufficient to
propel itself or, on the contrary, will suffer a drag that will prevent it from moving forward.
First, assume that E, which is nothing more than the energy losses of the organism, is a quantity
greater than or equal to 0 for a given velocity U and motion h(x, t). According to the energy
balance we have that:

P ≥ TU.
Locomotion can only exist if T > 0 and large enough to counteract the drag force, which
automatically implies that P > 0 too. Consequently, there must be a power that can maintain
the oscillations. The conditions for finding a positive thrust depend on how the lateral motions
and the resulting pressure distribution are organized. The development for certain cases of
interest, such as harmonic lateral displacements, is described in Wu [94]. An extension towards
a nonlinear theory can be found in the literature [96–98].

2.3 Theory of unsteady airfoils

Another possibility that we have in terms of modeling the behavior of aquatic swimmers lies in
the theory of unsteady airfoils. Strongly developed throughout the 20th century [99–108], its
main objective is to determine the characteristics of the flow around a streamlined structure
moving at a velocity U(t) while performing unsteady motions in the direction perpendicular
to the direction of travel. Although mainly focused on the characterization of flows around
aircraft, this theory has been easily extended to the description of the locomotion of flying
animals [109–112], as well as of aquatic animals [12, 13, 28, 29]. In the latter case, which is the
one we focus on, the use of the theory is due to the enormous similarity between the shape of
an airfoil and the tail of an animal that propels itself by means of tail undulations [76].

We now describe two different formulations of the theory of unsteady airfoils. First of all,
we explain Theodorsen’s model and Garrick’s application in detail since it has been the starting
point for developing our self-propelled locomotion model. Then, we study the model by Von
Karman and Sears as a more general framework to deal with this kind of problems and achieve
a more precise physical interpretation by identifying the force terms that depend on the added
mass and the wake contribution. Both formalisms share approximations that allow us to solve
the models: we are dealing with linear theories. So it is required that the amplitudes of the
motion and velocity perturbations created by the airfoil are small. As in Wu [94,95], the model
is carried out in the plane considering that the wings have infinite span, which leads to a two-
dimensional treatment of the problem. Unlike this one, the bodies’ flexibility is forgotten and we
will deal only with rigid structures. The remaining approximations concern the character of the
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wake: the various forces on the airfoil are affected not only by the instantaneous position of the
airfoil but also by the strength and position of the wake vortices, which implies that the entire
history of the airfoil motion will affect the value of these forces. To simplify this effect as much
as possible, a flat wake is considered by exploiting the fact that airfoil lateral displacements
are small. Moreover, the advection velocity of the wake is the same velocity as the one of the
free stream U , which again, considering that the lateral motion of the airfoil induces only tiny
perturbations in the flow, allows approximating the velocity of the airfoil correctly.

15

Figure 2.6: Representation of a thin airfoil in the Theodorsen formalism, with the definition of
all relevant parameters.

2.3.1 Theodorsen and Garrick

In his seminal work, Theodorsen calculates all the hydrodynamic forces exerted on a plate of zero
thickness with a flap [100]. The effect of the flap is perfectly taken into account in the original
article; however, since in our future model we do not make use of it, in this introduction we
consider that the airfoil is composed of a single piece without a flap. This corresponds, following
the notation of the original article, to take c = 1 and β = β′ = β′′ = 0. All the lengths in
the system are made dimensionless by using the half chord, L/2. With this normalization, the
plate has a length equal to 2, where a represents the point of rotation of the entire foil. h is the
vertical coordinate of the axis of rotation with respect to a fixed reference frame and is positive
downward. α is the angle of attack referred to the direction of incident flow, represented by U ,
and is positive clockwise. The parameters are defined in figure 2.6.

Theodorsen’s approach consists of solving the entire flow from the calculation of the velocity
potential. Recall that for an inviscid, incompressible, and irrotational fluid, there is a scalar
function called velocity potential which is related to the velocity according to this relation:

u = ∇φ.

The fluid is not assumed irrotational as a whole. In the boundary layer, the influence of
viscosity cannot be neglected, and then we will have to assume that the fluid remains irrotational
elsewhere [113]. Using the equation 2.1.1, we obtain that the velocity potential obeys:

∇2φ = 0.
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Figure 2.7: Conformal transformation of a circle using the equation 2.3.1. The blue circle
becomes the orange outline. The position of the center of the circle as well as the value of its
radius generates different types of airfoil like shaped.

The Laplace equation has a fundamental characteristic that makes it suitable to solve the
problem. It is a linear PDE: given any n solutions, the linear combination of those will also be.
This is, the flow is solved by calculating the velocity potential of each of the parts of the system
independently and then applying the superposition principle to all of them. Theodorsen sepa-
rates the two potential contributions into non-circulatory terms, representing the disturbance
caused by the airfoil, and circulatory terms taking into account the vorticity of the wake. As
the infinitely thin plate is a delicate geometry to solve all the potentials associated with the
different movements, Theodorsen’s cunning uses a very well-known geometry where it is easy
to implement the different flows: a cylinder. The passage from one geometry to another is done
through a conformal transformation, that is, an application in the complex plane whose most
important characteristic is that it preserves the angles [114]. In particular, the transformation
that allows going from the flow around a cylinder to the flow around an airfoil is depicted in
figure 2.7 and is known as Joukowsky transformation:

z =
1

2

(
Z +

R2

Z

)
, (2.3.1)

with z = x + iy and Z = X + iY the complex coordinates in the transformed and unmapped
variables, respectively, and R is the radius of the cylinder.

Non-circulatory terms

The non-circulatory terms correspond to the disturbance produced by the airfoil in the fluid. For
this, Theodorsen imposes a set of sources in the upper half of the cylinder and the same number
of sources in the lower half to model the obstacle, in the same way as a Rankine solid [69]. The
potential of the source or sink is given in the cylinder coordinates by

Φ = ± ε

4π
log
[
(X −X1)2 + (Y − Y1)2

]
,

where (X1, Y1) and ε refer to the coordinates and the strength of the source or sink, respectively.
The variables in capital represent the magnitudes in the unmapped space before aplying the
conformal transformation.
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Being a source or a sink corresponds to taking the positive or negative sign of the potential.
So, by placing a source of strength 2ε at a point (X1, Y1) and a sink of strength −2ε at (X1,−Y1)
the total potential is the sum of the individual potentials:

Φ =
ε

2π
log

[
(X −X1)2 + (Y − Y1)2

(X −X1)2 + (Y + Y1)2

]
.

The transformation to the plate is carried out by means of the equation 2.3.1, where the rela-
tionship established between the variables before (lowercase) and after (uppercase) the trans-
formation are:

x = X, y = 0.

So the potential on the plate reads:

φ =
ε

2π
log

(x− x1)2 +
(√

1− x2 −
√

1− x2
1

)2

(x− x1)2 +
(√

1− x2 +
√

1− x2
1

)2

 .
However, this only represents having placed a source and a sink at two opposite points on the
cylinder. To extend the procedure to the whole circle, let us consider that the strength is a
function possibly dependent on distance and time and integrate over the whole x1 to obtain the
response of the whole structure.

φ =
L/2

2π

∫ 1

−1
ε(x, t) log

(x− x1)2 +
(√

1− x2 −
√

1− x2
1

)2

(x− x1)2 +
(√

1− x2 +
√

1− x2
1

)2

 dx1.

The impermeability condition requires that the flow normal to the surface be zero. Applying
this condition gives a relationship between the strength of the potential and the shape of the
airfoil which leads to [115]:

ε(x, t) = U
∂y

∂x
+
L

2

∂y

∂t

Furthermore, by performing the integrals, we obtain the classical Theodorsen terms: the effect
of the angle of attack α, the effect of the airfoil moving with a velocity h′, and the rotation
around a point a at an angular velocity α′:

φα = Uα
L

2

√
1− x2,

φh′ = h′
L

2

√
1− x2,

φα′ = α′
(
L

2

)2(1

2
x− a

)√
1− x2,

φNC = φα + φh′ + φα′ .

Once the potentials are known, we calculate the pressures and by integration the forces on
the plate. For unsteady potential flow, the pressure is determined with the unsteady Bernoulli
equation and the local pressure is defined as:

plocal = −ρ
(
u2

local

2
+
∂φ

∂t

)
,

where ulocal is defined as:

ulocal = U +
∂φ

∂x
.



2.3. Theory of unsteady airfoils 23

Considering that U is much larger than the velocity perturbations given by the derivative of
the potential, we calculate the pressure difference between the top and bottom of the plate as:

∆p = −2ρ

(
U
∂φ

∂x
+
∂φ

∂t

)
. (2.3.2)

The integration of this pressure difference yields the non-circulatory lift per unit length:

FL,NC = −ρπ
(
L

2

)2(
Uα′ + h′′ − L

2
aα′′

)
.

Circulatory terms

The problem with the potential calculated from the non-circulatory terms is that it generates a
diverging velocity at the leading edge of the plate (x = 1), which is not physically acceptable.
To compute the final solution of the flow, circulatory terms must be added to solve this problem.
Theodorsen then considers the effect of a vortex element in the wake and its mirror image in the
cylinder so that, by virtue of Kelvin’s theorem, the circulation remains constant. The potential
due to a vortex of strength ∆Γ is:

Φ =
∆Γ

2π
tan−1

(
Y − Y1

X −X1

)
,

where X1 and Y1 refer in this case to the coordinates of the vortex. Considering that the vortex
in the wake is at a position X0 from the center of the cylinder and outside the cylinder and
its mirror image with opposite strength at 1/X0 but inside the cylinder, the potential of both
flows is:

Φ =
∆Γ

2π

[
tan−1

(
Y − Y0

X −X0

)
− tan−1

(
Y − Y0

X − 1
X0

)]
=

∆Γ

2π
tan−1

 Y
(
X0 − 1

X0

)
X2 + Y 2 −X

(
X0 − 1

X0

)
+ 1

 .
The transformation implies X0 = x0 +

√
x2

0 − 1 on the x axis and X = x, Y =
√

1−X2 on the
circle. Therefore the potential in the geometry of the plate is:

φC = −∆Γ

2π
tan−1

(√
1− x2

√
x2

0 − 1

1− xx0

)
.

We apply Bernoulli’s relation 2.3.2 again but we note that the vortex element propagates at the
free stream velocity U and then:

∂φ

∂t
= U

∂φ

∂x0
.

Therefore, the pressure difference in this case reads:

∆p = −2ρU

(
∂φ

∂x
+

∂φ

∂x0

)
.

Deriving the potentials with respect to x and x0 the final expression becomes:

∆p = −ρU∆Γ

π

x0 + x√
1− x

√
x2

0 − 1
.

We express the strength of the circulation as:

∆Γ = γdx0, (2.3.3)
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where γ = f(Ut − x0) is a function representing the wake surface strength and t is the time
since the motion started.

We then integrate to obtain the expression for the lift force per unit length corresponding
to the circulatory terms:

FL,C = −ρL
2

∫ ∞
1

x0√
x2

0 − 1
γdx0,

Kutta’s condition determines the magnitude of the vorticity γ [116]. The condition states that
the velocity of the flow at the trailing edge must be finite. It is then required that:

∂

∂x
(φNC + φC)

∣∣
x=1

= finite.

This leads directly to:

1

2π

∫ ∞
1

√
x0 + 1√
x0 − 1

γdx0 = Uα+
L

2

(
1

2
− a
)
α′ + h′ = Q.

The circulatory lift becomes after introducing the constraint imposed by the Kutta condition:

FL,C = −πLρUQC,

with the parameter C expressed as:

C =

∫∞
1

x0√
x2

0−1
γdx0∫∞

1

√
x0+1
x0−1γdx0

. (2.3.4)

To solve these integrals, it is necessary to prescribe the behavior of γ, defined in equation 2.3.3,
as a function of x0. However, given the wake approximations we made to develop the model, it
is more beneficial to prescribe the airfoil behavior and then determine the resulting value of γ.
Theodorsen imposes a sinusoidal airfoil motion of frequency ω with small amplitude for α and
h. In this case, the form of γ is sinusoidal near the airfoil and we write

γ = γ0e
iωte−iω

L
2
x0/U .

An additional parameter called reduced frequency, k = ωL/2U , is defined to express the equa-
tion 2.3.4 as a function of a single parameter:

C(k) =

∫∞
1

x0√
x2

0−1
eikx0dx0∫∞

1

√
x0+1
x0−1e

ikx0dx0

=
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

= F (k) + iG(k).

The function C(k) is known as Theodorsen function [100], H
(2)
1 , H

(2)
0 are Hankel functions of

the first and second kind defined as of Bessel functions of first and second kind [117] and F,G
represent the real and imaginary part of Theodorsen function, respectively.

The total lift can then be written as:

FL = FL,NC + FL,C = −ρπ
(
L

2

)2(
Uα′ + h′′ − L

2
aα′′

)
− πLρUQC(k). (2.3.5)

Thrust derivation

In his paper, Garrick takes up Theodorsen’s work on the periodic oscillations of an infinitely
thin plate and calculates the propulsive forces that such a structure experiences in a constant
air stream [101]. The energy balance formula that Garrick proposes is:

W = E + TU,
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with W the average work done per unit time to maintain the oscillations against the fluid forces
and moments. E represents the average increase in kinetic energy per unit time in the vortex
wake, and TU denotes the average work done per unit time by the propulsive force.

The instantaneous rate of work W ′ is easily defined from the plate motion:

W ′ = −(FLh
′ +Mα′),

where M is the moment of force that the fluid exerts on the plate.

We are interested in calculating the thrust force T . According to Garrick, the propulsive
force has two contributions:

T = αFL + πρS2.

The first term is the projection taking into account the small-angle regime of the lift force
in the direction of motion, and the second corresponds to what is known as the leading-edge
suction force, which represents a suction force due to the flow passing around the leading
edge [113]. Indeed, if we look close at the non-circulatory potential, we remark that there are
two divergences in it. One at x = 1 (trailing-edge), which has already been solved with the
application of the Kutta condition, and the other at x = −1 (leading-edge), which causes an
infinite velocity at this point and which we cannot physically admit. The application of the
Kutta condition imposed a relation between the circulatory and non-circulatory potentials to
avoid the divergence of the velocity at the trailing edge and assume that it is equal to 0 so that
the flow leaves the trailing edge smoothly. In the case of the leading edge, there is no possibility
of establishing another relation between the potentials, so Garrick’s idea, based on the work of
Von Karman and Burgers [118], is to calculate S knowing that the leading edge suction tends
to infinity in a functional form given by 1/

√
1 + x. The leading-edge vorticity may be written

as

2
∂

∂x
(φNC + φC)

∣∣
x=−1

=
2S√
1 + x

.

By introducing the expression of the potentials, together with the Theodorsen function and the
value of Q the expression of S is:

S =

√
2

2

[
2C(k)Q− L

2
α′
]
.

Thus, the total propulsive force can be written as a function of the variables α, h and their
derivatives as follows

T = α

(
−ρπ

(
L

2

)2(
Uα′ + h′′ − L

2
aα′′

)
− πLρUQC(k)

)
+ πρ

1

2

(
2C(k)Q− L

2
α′
)2

.

The propulsion efficiency is, according to Garrick’s definition:

η =
TU

W
.

For example, for the case of an airfoil that has no pitch motion, i.e., α(t) = 0 ∀t, but does
heave, h(t) 6= 0, the efficiency takes the following form as a function of the real and imaginary
parts of the Theodorsen function:

η =
F 2 +G2

F
.

Investigating the behavior of F and G as a function of the frequency of motion, this equation
shows that the efficiency tends to 0.5 when the frequency of oscillation tends to infinity, a result
that is not physically possible. In the spirit of correcting this behavior in Garrick’s framework,
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Fernandez-Feria [119, 120] applies Sears and Von Karman theory to improve this result with
efficiency tending to 0 for infinite oscillation frequencies.

Theodorsen and Garrick’s work lays the cornerstone upon which many modifications and
improvements have been made to extend the applicability of Theodorsen’s formalism. Green-
berg [106] performed the calculation of forces considering a time-dependent flow velocity in
a sinusoidal shape, Edwards [121] supposed plate oscillations not purely sinusoidal, or Patil
and Walker, among others, examined the possibility of having deformable airfoils by applying
Chebychev polynomials [115,122,123]

2.3.2 Von Karman and Sears

The theory developed by Theodorsen for oscillatory motions of an airfoil mainly lacks a clear
physical interpretation of the various calculated force terms. While only circulatory and non-
circulatory terms enter into his classification, the theory now discussed by Sears and Von Kar-
man [103], in the words of the authors, eliminates unnecessary mathematical complications and
attempts to use only the basic concepts of vortex theory. They separate the lift contributions
into steady, added mass, and wake contributions. In the description of this theory, we use
Johnston’s approach [124], which in turn is based on McCune [108], to derive Von Karman and
Sears’ formulation of unsteady airfoil theory.

The unsteady Bernoulli equation is written acording to [113] as:

∆p = ρU(t)γ(x, t) + ρ
∂

∂t

∫ x

0
γ(x0, t)dx0,

where γ is the vorticity in an airfoil extending from x = 0 to x = L, where L is the length of
the airfoil. Integrating this pressure difference we obtain the lift force:

FL = ρU(t)

∫ L

0
γ(x, t)dx+ ρ

∫ L

0

∂

∂t

∫ x

0
γ(x0, t)dx0.

Integrating the second term by parts we have:

FL = ρU(t)

∫ L

0
γ(x, t)dx+

∂

∂t
ρ

[
x

∫ x

0
γ(x0, t)dx0

∣∣∣∣L
0

−
∫ L

0
xγ(x, t)dx

]
,

which is equivalent to:

FL = ρU(t)

∫ L

0
γ(x, t)dx+

∂

∂t
ρ

[∫ L

0
(L− x)γ(x, t)dx

]
. (2.3.6)

The first term is defined as the Jowkoski lift because it corresponds to the force that appears
due to the application of the Kutta-Jowkoski theorem, and the second is the term corresponding
to the added mass. For the development of the expression, it is necessary to understand what
is the nature of the vorticity γ. The circulation, Γ, around the airfoil is related to the vorticity
employing:

Γ =

∫ L

0
γ(x, t)dx.

Kelvin’s theorem states that the circulation in an incompressible, inviscid, irrotational fluid
must remain constant, implying that the change in vorticity around the airfoil must be equal
to the vorticity shed into the wake. This leads to:

d

dt

∫ L

0
γ(x, t)dx =

d

dt

∫ ∞
L

γw(ξ, t)dξ,
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where γw is the vorticity distribution strength due to the wake. Vorticity may then be decom-
posed into two contributions:

γ = γ0 + γ1,

where γ0 is the quasi-steady component of the vorticity due to the instantaneous state of the
airfoil and is computed using steady thin airfoil theory. γ1 is the wake induced component of
the vorticity, which may be written by integrating into the entire wake as:

γ1 =
1

2π

∫ ∞
L

γw(ξ)

ξ − x

√
L− x
x

√
ξ

ξ − Ldξ.

If the new γ expression is entered in equation 2.3.6, the lift reads

FL = ρU(t)

∫ L

0
(γ0 + γ1)dx+

∂

∂t
ρ

[∫ L

0
(L− x)(γ0 + γ1)dx

]
,

which can be separated into two terms in which each accounts for the contribution of γ0 and
γ1:

∆FL,γ0 = ρU(t)Γ0 −
∂

∂t
ρ

[∫ L

0

(
x− L

2

)
γ0dx

]
+ ρ

L

2

∂Γ0

∂t
,

∆FL,γ1 = ρU(t)Γ1 −
∂

∂t
ρ

[∫ L

0

(
x− L

2

)
γ1dx

]
+ ρ

L

2

∂Γ1

∂t
,

with

Γ0 =

∫ L

0
γ0dx,

Γ1 =

∫ L

0
γ1dx =

∫ ∞
L

γw(ξ)

(√
ξ

ξ − L − 1

)
dξ,

representing the circulations due to γ0 and γ1, respectively. The contribution to the lift ∆FL,γ1

can be further simplified if we perform the integral inside using the above relation between γ1

and γw: ∫ L

0

(
x− L

2

)
γ1dx =

∫ ∞
L

γw(ξ)

(√
ξ2 − ξL− ξ +

L

2

)
dξ.

If we derive the latter expression with respect to time:

d

dt
ρ

∫ ∞
L

γw(ξ)

(√
ξ2 − ξL− ξ +

L

2

)
dξ = −ρL

2

dΓw
dt

+ ρU(t)

[
Γ1 −

∫ ∞
L

γw(ξ)
L
2√

ξ2 − ξL
dξ

]
.

Recalling that Kelvin’s theorem imposes the conservation of the total circulation:

∂Γ0

∂t
+
∂Γ1

∂t
+
∂Γw
∂t

= 0,

the total lift can be rewritten in a much more abbreviated form taking into account the latter
equality and the cancellation of the ρU(t)Γ1 terms:

FL = ρU(t)Γ0 −
∂

∂t
ρ

∫ L

0

(
x− L

2

)
γ0dx+ ρU(t)

∫ ∞
L

γw(ξ)
L
2√

ξ2 − ξL
dξ.
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This is the result of Von Karman and Sears. The first term, FL,0, represents the quasi-steady
Joukowski lift. The second FL,1, represents the added mass of a foil with zero or constant
circulation. Finally, the third term, FL,2, models the influence of the wake on the foil’s lift:

FL,0 = ρU(t)Γ0,

FL,1 = − ∂

∂t
ρ

∫ L

0

(
x− L

2

)
γ0dx,

FL,2 = ρU(t)

∫ ∞
L

γw(ξ)
L
2√

ξ2 − ξL
dξ.

It is interesting to note how with this approach, the case of oscillating Theodorsen airfoils can be
recovered, as indicated by Sears, [104] and Johnston [124]. If we consider a sinusoidal variation
of FL,0 that has occurred for a very long time, so that the wake extends to infinity:

FL,0 = (A+ iB)eiωt,

with A and B constants and ω the frequency of oscillation. Then, FL,2 can be rewritten as:

FL,2 = (C(k)− 1)FL,0.

To calculate the thrust, we rely on the article by Fernandez-Feria [119] which uses the Sears
and Von Karman formulation to determine the thrust of the three lift forces calculated above:

T = T0 + T1 + T2.

where the first term coincides precisely with the Garrick vertical force projection term, T1 is
the added mass contribution and T2 is the wake contribution.

The framework of Sears and Von Karman can be extended to include nonlinear terms in
their formulation. In fact, this is the idea that Wu later develops for his nonlinear swimming
theories [96–98].

2.4 A minimal model of self-propelled locomotion

In order to understand how swimming is influenced by the kinematic parameters of the animal
and the physical characteristics of the fluid, we have developed a minimal model of aquatic
locomotion to explain the mechanics associated with the fluid-structure interaction problem.
Therefore, a large part of our study will consist of calculating the Strouhal number, St, as-
sociated with this swimmer which, as already stated in the Introduction is an approximately
constant quantity for most biological swimmers. The experiments carried out in order to obtain
this magnitude consist in varying the kinematic parameters, the tail beat amplitude A and
the frequency f , to find the free swimming velocity U . Experiments performed with flexible
panels [25,30] and robots [15] undergoing heaving or pitching motions show that St is relatively
constant, independently of f , as long as the dimensionless amplitude A/L remains small. As
an example it varies less than 50% up to A/L = 0.35 for the robotic fish studied by Gibouin
et al. [15]. On the other hand, experiments performed with rigid foils undergoing heaving and
pitching motions propose a slightly different approach: the Strouhal number is found to depend
on the tail beat frequency for a given value of A/L. For instance it varies in the range 0.1–1.5
for A/L ∼ 0.2 in experiments by Quinn et al. [125]. Our motivation and the underlying ques-
tion is whether or not the Strouhal number depends on the tail beat frequency since results are
different depending on the experimental systems and this discussion should help to understand
the mechanisms at play.
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15

Figure 2.8: Sketch of the swimmer and relevant quantities. We note m the mass of the swimmer
per unit length in the third dimension and ρ the density of the fluid. Angles are counted
positively clockwise.

Here we consider a simple model of aquatic locomotion to give further insights. Our model is
not aimed at describing a specific fish in particular, we focus on the minimal ingredient to trigger
motion. We consider an airfoil-shaped, rigid and two-dimensional body performing a kinematic
motion of amplitude A and frequency f . This body is free to move contrary to the experiments
and is not prescribed to a given position. Only the orientation of the body with respect to a fixed
frame of reference is forced and the rest is predicted by the second law of Newton. Expressions
of the thrust and drag forces are based upon Theodorsen’s approach [100, 101] in the realm of
perfect fluid, but we take into account an additional pressure drag, which cannot be predicted
in this framework. First, we show that such a swimmer initially at rest, starts to propel itself
as the body oscillates. It exhibits both heaving and pitching motions and will finally cruise at
constant speed whatever the initial conditions. Second, in the limit of small tail beat amplitude,
we predict the locomotion velocity, and the Strouhal number. The latter does not depend on
the tail beat frequency but is strongly correlated with the drag coefficient. For classical values
of this coefficient, we find that St is almost constant, around 0.1–0.3, in agreement with natural
and artificial systems. In addition to this very good predictive capacity, we demonstrate how
the physical parameters prescribe the phase angle between pitch and heave.

We assume our swimmer to be a two-dimensional thin body, composed by a point mass
(2D mass m, unit kg m−1) attached to a straight, rigid and massless foil of length L, which
models the tail. In the reference frame of the laboratory, this tail is inclined by an angle α with
respect to the x axis and is counted positive clockwise, as seen in figure 2.8. The center of mass
is located at the algebraic distance aL/2 from the center of the tail, with a a dimensionless
number in the range [−1, 1]. As example, for a = 0, the center of mass coincides with the center
of the tail. The swimmer evolves inside an inviscid fluid of density ρ. Swimming is triggered by
imposing the harmonic forcing of amplitude α0 and angular frecuency ω = 2πf :

α(t) = α0 sin (ωt) .

We expect the swimmer to evolve in average in the x direction, because the trailing edge sits
in the right part of the foil. We note u(t) and v(t) respectively the instantaneous velocities of
the center of mass in the x and y directions. In the following, we will define U = 〈u(t)〉 as the
average swimming velocity in steady state, where 〈.〉 consists in averaging over one period of
the harmonic forcing α:

〈X(t)〉 =
ω

2π

∫ 2π/ω

0
X(t)dt.
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Assuming small angles (α0 � 1), we rely on the linear approach developed by Theodorsen and
Garrick to calculate the forces at play. In Theodorsen’s equations we can set the position of
the center of mass at aL/2 by setting xα = 0 and h′ = v(t) with Theodorsen’s notations. In
addition, β = 0 since we do not consider any flap. The y direction force, Fy, writes, as we stated
in equation 2.3.5:

Fy = −πρ
(
L

2

)2 [
u(t)α′(t) + u′(t)α(t) + v′(t)− aL

2
α′′(t)

]
− πρLu(t)C(k)

[
u(t)α(t) + v(t) +

(
1

2
− a
)
L

2
α′(t)

]
,

(2.4.1)

where C(k = ωL/2u(t)) is the Theodorsen function, defined in equation 2.3.4, introduced to
account for the history of the shed vortices. Even if C(k) is difficult to compute because it is a
non-local quantity that accounts for the vorticity distribution in the entire wake of the airfoil we
use the Theodorsen approach by assuming sinusoidal oscillations to write C(k) as a composition
of Hankel functions.

Note that the term α(t)u′(t) does not appear in Theodorsen’s derivation, in equation 2.3.5,
but arises immediately as soon as we consider temporal variations of u, as remarked in Greenberg
[106]. Theodorsen’s approach exploits the linearity of the equation of the velocity potential, and
predicts Fy(t) by adding the potentials induced by the motions of the airfoil like the vertical
displacement and the variation of the attack angle. To take into account the effect of an unsteady
streaming flow, it is necessary to add the supplementary potential induced by a longitudinal
velocity u(t), which turns out to be zero, because the airfoil is infinitely thin. Consequently the
potential flow of an airfoil, submitted to an unsteady velocity u(t) does not lead to an additional
contribution to the non-circulatory velocity potential and takes the same form as prescribed in
Theodorsen’s model. Nevertheless, to compute the pressure exerted by the fluid, we use, as
usual, the Bernoulli relation which generates the extra term α(t)u′(t), as in Greenberg [106].

An important point we make is the identification of the pitch axis with the center of mass,
i.e., when a changes, it is not the position of the pivot that changes but the center of mass.
Since our swimmer is free to move, the position of the axis of rotation defined in Theodorsen
is not relevant here, and everything can be expressed in terms of the position of the center of
mass only. This identification does not change the results for those obtained by Theodorsen
but gives a different interpretation. To show that both equations are equivalent, let us take the
equation of motion in the vertical coordinate according to Theodorsen [100], with Ch = 0 and
β = 0, as well as all its derivatives with respect to time:

mh′′ +m
L

2
xαα

′′ = Fy(a),

where we have made explicit only the dependence of equation 2.4.1 with respect to the parameter
a. We recall that Theodorsen’s formulation is based on taking h as the vertical coordinate of
the axis of rotation referred to point a [100], whereby, if we want to express the equation of
motion in terms of the center of mass, whose position is given by:

ycm(t) = h(t) +
L

2
xαα(t).

If we reintroduce this variable in the equation of motion we obtain:

my′′cm = Fy(a+ xα),

which results in the new position a+ xα being the only quantity of interest in the kinematics.
Therefore choosing as center of mass the point a by imposing xα = 0 does not generate any
additional problems in the equations.
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Following Garrick [101], the force Fx induced by the inviscid fluid in the x direction accounts
for two contributions:

Fx = αFy + FLE .

The first contribution αFy corresponds to the projection of the Theodorsen pressure in the x
direction and FLE stands for the leading-edge force which results from the presence of a singular
flow: an infinitely thin body would lead to a divergence of the pressure at the leading-edge of
the swimmer. To avoid for this non physical effect, we use the expresion of Garrick [101] by
adding FLE .

FLE = πρ
L

2

1

2

[
2C(k)

(
v(t) + u(t)α(t) +

(
1

2
− a
)
L

2
α′(t)

)
− L

2
α′(t)

]2

.

We remark here that Garrick introduced a regularization to smooth the horizontal velocity,
i.e., the horizontal component of the gradient of the velocity potential, and therefore does not
introduce any temporal derivative of u(t), v(t) or α′(t). The resulting force, known as the
leading edge suction, appears to be significant for biological swimmers, as shown by recent
measurements [126].

In this approach, note that Fy is a second-order approximation in α, while Fx accounts for
third-order terms as well. Finally, the velocities of the swimmer are calculated following the
second law of Newton:

mu′ = Fx − ρcdLu2,

mv′ = Fy.

We recall here that these momentum balances are written per unit length. To take into account
the drag induced by the boundary layers, we have added a horizontal pressure drag force. This
coefficient is measured using the “wetted area” as the reference area since fish are considered as
slender bodies [91,127–130], defining the wetted perimeter as 2L, this force writes 1

2ρu
2cd(2L),

with the drag coefficient cd. We keep the same definition for consistency.

In short, the locomotion problem resides in this case in solving both equations of motion and
analyzing the behavior of the swimming velocity u(t) as a function of the different parameters
included in these equations. A thorough analysis of the system leads us to make dimensionless
both equations to obtain a simplification of the equations and uncover the number of relevant
parameters in the system. According to the Buckingham π theorem [131], if we define the
number of fundamental quantities in our problem (in this case 3: length, mass and time) and
the number of parameters in the equations (we have 7: length and mass of the swimmer, L and
m, the density of the fluid ρ, drag coefficient cd, position of the center of mass a, amplitude and
angular frequency of the oscillations α0 and ω), we can find that any dimensionless quantity
will be a function of only 4 parameters [131] which we will define later.

To transform the equations into dimensionless we introduce a new time and velocity that
scales as 1/ω and ωL/2, respectively, and define the new dimensionless variables:

t̃ = ωt, ũ =
2u

Lω
, ṽ =

2v

Lω
.

Using these variables, we obtain the two dimensionless differential equations that we use for the
resolution of our system:

Mũ′(t̃) = F̃x −
2

π
cdũ(t̃)2,

Mṽ′(t̃) = F̃y,



32 Chapter 2. A minimal model of self propelled locomotion

where the following definitions stand for F̃x and F̃y:

F̃x = α(t̃)F̃y +
1

2

[
2C

(
1

ũ(t̃)

)(
ṽ(t̃) + ũ(t̃)α(t̃) +

(
1

2
− a
)
α′(t̃)

)
− α′(t̃)

]2

,

F̃y = −
[
ũ(t̃)α′(t̃) + ũ′(t̃)α(t̃) + ṽ′(t̃)− aα′′(t̃)

]
− 2ũ(t̃)C

(
1

ũ(t̃)

)[
ũ(t̃)α(t̃) + ṽ(t̃) +

(
1

2
− a
)
α′(t̃)

]
.

And where the only 4 dimensionless parameters that we will use for the complete characteriza-
tion of the system appear:

1. The parameter M stands for the ratio of the swimmer mass to the added mass and it will
be called henceforth dimensionless mass of the swimmer. It is defined by:

M =
4m

πρL2
.

2. The drag coefficient, cd.

3. The dimensionless position of the center of mass, a.

4. The driving amplitude of the oscillation, α0, which appears in the expression of α.

The Strouhal number St, the fundamental quantity on which our study is based will be
represented in dimensionless variables by:

St =
Af

U
=
ÃL

2 f
L
2ωŨ

=
Ã

2πŨ
,

where A is the peak-to-peak tail beat amplitude.
The only thing that remains to be clarified is the value that the Theodorsen function takes

in all the dynamics. As we will introduce later, both in the perturbative calculation and in the
numerical resolution of the system, the argument of the Theodorsen function 1/ũ(t̃) is going to
be much larger than unity, which allows us to get rid of the imaginary character of the function
and set its real part to 1/2, as can be seen in figure 2.9. In fact, if we use the asymptotic
development of Hankel functions for large arguments, k � 1, we get [132]:

H(2)
p (k) ∼

√
2

πk
exp

[
−i
(
k − pπ

2
− π

4

)]
.

If we calculate the Theodorsen function taking into account this development:

C(k � 1) =
exp

[
−i
(
k − 3π

4

)]
exp

[
−i
(
k − 3π

4

)]
+ i exp

[
−i
(
k − π

4

)] =
1

2
+ 0i,

which justifies taking this value when the arguments of the function are very large compared to
unity.
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Figure 2.9: Behavior of the Theodorsen function C as a function of its argument k.

2.4.1 Perturbative approach

To go in depth in understanding this minimal model and how the different parameters influence
swimming, we perform a perturbative development in order to determine an analytical expres-
sion for the velocities. Self propelled swimmers rarely exhibit high values for α. In fact, α0 = 0.2
is a typical value for fish [21, 25, 38, 133], so α and α0 are assumed small compared to unity.
We make a perturbative expansion with the assumption α0 � 1. For simplicity, we remove
the tilde above the dimensionless quantities and we use the notation ε = α0 to emphasize this
hypothesis. The angle α(t) writes:

α(t) =
ε

2i
eit + c.c.,

where i is the imaginary unit, and c.c. means complex conjugate. In the spirit of perturbation
theory and following the Appendix B, we proceed to solve the system using the multiscale
method by introducing a slow time scale τ = εt to capture transient regimes. We develop both
horizontal and vertical velocities as:

u(t) = εu1(t, τ) + ε2u2(t) + ε3u3(t) +O(ε4),

v(t) = εv1(t, τ) + ε2v2(t) +O(ε3).

The equations we find at first order are:

∂

∂t
u1(t, τ) = 0,

∂

∂t
v1(t, τ) =

a

2(1 +M)

(
ieit + c.c.

)
.

Integrating the system we obtain:

u1(t, τ) = U1(τ),

v1(t, τ) = V1(τ) +
a

2(1 +M)

(
eit + c.c.

)
,
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where we observe how the swimming velocity does not depend on t at the first order but on the
slow time τ . Subsequently, we will calculate this quantity that will mark the behavior of the
transient period and the final value of the swimming velocity. On the other hand, the vertical
velocity has an associated term also dependent on τ and that, a priori, prevents the average of
v to be zero, as we should expect in the movement of the animal only in the x direction. To
understand this, it is necessary to write the equations to second order, which, once introduced
the previous solutions and putting at all times the value of the Theodorsen’s function equal to
1/2 remain:

∂

∂t
u2(t, τ) = − ∂

∂τ
U1(τ) +

1

16M

(
8V1(τ)2 − 32cdU1(τ)2

π
+

(1 +M − 2aM)2

(1 +M)2

)
− V1(τ)

1 +M + 2aM

4M(1 +M)
eit +

1 +M(2 +M + 4a(3 + (3 + a)M))

32M(1 +M)2
e2it + c.c.,

∂

∂t
v2(t, τ) = − ∂

∂τ
V1(τ)− U1(τ)V1(τ)

1 +M
+ U1(τ)

M(2a− 3)− 3

4(1 +M)2
eit + c.c. .

In both equations at second-order, we detect a constant term followed by specific periodic terms.
In both ODEs, we observe that if the constant terms are not equal to zero, then the amplitudes
of u2 and v2 will increase linearly in time, so that we will have u2 � u1 and v2 � v1 for large
times, which breaks our expansion. To maintain the validity of the ansatz, we need to set these
terms to 0 as a solvability condition. In other words, we invoke the Fredholm Alternative as we
define it in Appendix B. In this case, both equations are decoupled and no formal treatment is
extremely necessary. Applying the theorem to each equation separately, we obtain the following
two conditions:

∂

∂τ
U1(τ) =

1

16M

(
8V1(τ)2 − 32cdU1(τ)2

π
+

(1 +M − 2aM)2

(1 +M)2

)
, (2.4.2)

∂

∂τ
V1(τ) = −U1(τ)V1(τ)

1 +M
. (2.4.3)

Solving these equations is not possible with analytical methods, but it is not really necessary.
We will demonstrate by analyzing the associated dynamical system that V (τ) is a function that
always tends to 0 for any initial condition and therefore, its effect in the stationary regime,
which is the one we are interested in, can be neglected. To do this, we first calculate the fixed
points of the above differential system:

U∗1 =

√
π

2cd

1−M(2a− 1)

4(1 +M)
, V ∗1 = 0,

with U∗1 positive, as we could not expect otherwise being the swimming speed. Actually solving
the equation gives an additional fixed point that we do not consider because it leads to an
imaginary speed.

The Jacobian matrix associated with the system is:

J =


−4cdU1

πM

V1

M

− V1

1 +M
− U1

1 +M


(U∗1 ,V

∗
1 )

,

whose eigenvalues are:

λ1 = −4cdU
∗
1

πM
, λ2 =

−U∗1
1 +M

,

both negative, showing the stability of the fixed point. For any initial condition, (U1(0), V1(0)),
the horizontal velocity tends to a constant value at the first order approximation. On the other
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hand, the term that prevents the vertical velocity from having zero mean over a period tends to
0 in the steady-state and only influences the dynamics in the transient regime. By concentrating
specifically on the organism’s behavior when it reaches its cruising velocity, we will consider that
the initial condition for the vertical velocity is always zero, and therefore, V1(τ) is identically
zero from the beginning of the motion. This translates into the equation 2.4.2 having as its
solution:

U1 = U∗1 tanh

[
τ

τsat
+ tanh−1

(
U∗1 (0)

U∗1

)]
,

U∗1 =
1 +M − 2aM

4(1 +M)

√
π

2cd
,

τ−1
sat =

1 +M − 2aM

2M(1 +M)

√
cd
2π
,

with U∗1 (0) the initial condition which can be taken equal to 0 without loss of generality, U = εU∗1
is the asymptotic locomotion velocity and τsat the characteristic transient time. Inserting the
expression of U1(τ) into the equation of u′2(t), we derive the equation that determines u2(t):

d

dt
u2(t) =

1 + 2M(1 + 6a) +M2(1 + 4a(a+ 3))

32M(1 +M)2
e2it + c.c..

We obtain by integrating:

u2(t) = Ku2 − i
1 + 2M(1 + 6a) +M2(1 + 4a(a+ 3))

64M(1 +M)2
e2it + c.c..

The equation v2(t) is deduced from the second order of the vertical momentum balance:

d

dt
v2(t) =

2a− 3

4(1 +M)
U1(τ)− U1(τ)

1 +M
v1(t),

and we solve it:

v2(t) = Kv2 + i
3 + (3− 2a)M

4(1 +M)2
U1(τ)eit + c.c..

Again the integration constant Kv2 is set to zero to remove any vertical drift.
At third order in perturbation theory, the expression becomes very lengthy, but the equation

for u3 presents the same form as that of u2:

d

dt
u3(t) = Ku3 + oscillating terms,

with Ku3 a constant. By invoking the solvability condition to maintain the validity of the
expansion, the constant Ku3 is set to zero and we finally get:

Ku2 = 0.

Then the solution up to second order of the problem can be written as:

u(t) = εU∗1 tanh

[
τ

τsat

]
+ ε2 1 + 2M(1 + 6a) +M2(1 + 4a(a+ 3))

32M(1 +M)2
sin(2t),

v(t) = ε
a

1 +M
cos(t) + ε2U1

M(2a− 3)− 3

2(1 +M)2
sin(t).

To compute the phase angle between pitch and heave in the steady state, we first rewrite the
expression of the lateral velocity at the second-order:

v(t) = ε
a

1 +M
cos(t) + ε2U∗1

M(2a− 3)− 3

2(1 +M)2
sin(t).
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In order to compare the heave and the pitch, we decompose this expression using only one
trigonometric function:

v(t) = − aε

1 +M

√
1 + ε2

(
U∗1

M(2a− 3)− 3

2(1 +M)2

)
sin(t− φv),

φv = arctan

[
2a(1 +M)

εU∗1 (3−M(2a− 3))

]
,

which gives the position of the center of mass after integration:

ycm(t) =
aε

1 +M

√
1 + ε2

(
U∗1

M(2a− 3)− 3

2(1 +M)2

)
cos(t− φv).

By comparing the above expression of ycm(t) with respect to α(t) = ε cos(t − π/2) we finally
deduce the phase shifting in the heave-pitch motion:

φ = −π
2

+ φv = −π
2

+ arctan

[
2a(1 +M)

εU∗1 (3−M(2a− 3))

]
.

Up to now, we have exposed the general method and calculated without making any hypothesis
with respect to the parameters, reason why the expressions that appear are, on certain occasions,
long and cumbersome. From now on, in the analysis that we will do, we will consider the limit
of small M . Recall that this parameter, the dimensionless mass of the swimmer, is the quotient
between the swimmer’s mass per unit length and the mass per unit length of a circle of water
of diameter the length of the swimmer:

M =
4m

πρwaterL2
∼ 4ρfishLd

πρwaterL2
∼ d

L
� 1,

where d is the swimmer’s width, but since we are considering very thin swimmers, this parameter
will be much smaller than the length L. In the approximate calculation of this quantity we
have taken ρfish ∼ ρwater [134]. Although we have wanted to be general in our perturbative
treatment, the parameter M represents a quantity that is also of order ε or lower and therefore,
we will take the limit M � 1 from now on. In this limit, the velocities in the steady-state write:

u(t) = ε

√
π

32cd
+ ε2

[
1

32M
sin(2t)

]
+O(ε3), (2.4.4)

v(t) = εa cos(t)− ε2 3

2

√
π

32cd
sin(t) +O(ε3). (2.4.5)

u(t) and v(t) reach their steady state values after a transient time t ∼M/ε
√
cd : this reflects that

a heavy swimmer will need time to reach its cruising velocity. An oscillatory function, whose
frequency is doubled as compared to the driving angle, is superposed to the mean swimming
velocity. We remark here that this expansion in terms of the small parameter ε is formal and
might break the assumption of a small transverse velocity in comparison to the longitudinal
velocity. Nevertheless, on one hand, we recall that the pressure drag coefficient is quite small,
of order 0.01, as we will later justify, and this value permits to finally verify that the locomotion
velocity is larger than the transverse velocity. On the other hand, experimental data suggest
that the thrust derived from the linear theory likely extends beyond the small amplitude regime
[135,136]. The dimensionless swimming velocity U = 〈u(t)〉 is given by

U = ε

√
π

32cd
+O(ε3). (2.4.6)
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The steady state transverse velocity v(t) is a harmonic function of time. By integrating this
velocity, the dimensionless y-position of the center of mass is given by

ycm(t) = εa sin(t) + ε2 3

2

√
π

32cd
cos(t) =

√
ε2a2 + ε4

9

4

π

32cd
sin(t− φ).

From this expression we can infer the phase angle φ between the oscillations of the position of
the mass center and the driving angle α:

φ = −π
2

+ arctan

[
8a

3ε

√
2cd
π

]
. (2.4.7)

Still in the small angle limit, the dimensionless y-position of the tip of the tail is given by

yt = ycm + (1− a)α = ε sin(t) + ε2 3

2

√
π

32cd
cos(t).

The dimensionless tail beat amplitude Ad is thus given by:

Ad = 2ε

√
1 +

(
ε

3

2

√
π

32cd

)2

+O(ε3) = 2ε+O(ε3). (2.4.8)

As a consequence the physical tail beat amplitude A is given by 2εL/2 and A/L = α0. The
position of the tail is in phase with the driving angle, while the phase of the position of the
center of mass depends on a: it is in phase if a → 1 and the phase shift equals −π if a → −1.
Given that U and Ad are calculated up to the second order in ε, the Strouhal number St can
be calculated up to the first order in ε:

St =

√
32cd
π3/2

+O(ε2). (2.4.9)

In this first-order approximation, only the constant term is nonzero. Remarkably, it emphasizes
that the Strouhal number is strongly correlated to the drag coefficient and barely depends on
the other parameters.

2.4.2 Numerical approach

The equations are solved numerically with a Runge–Kutta method at the fourth-order approx-
imation [137]. We impose as initial conditions u(0) = v(0) = 0, although, as we have already
shown, the same steady-state will be reached for any set of positive initial conditions, and let our
model evolves towards the cruising locomotion regime, which is reached after the aforementioned
transient time M/α0

√
cd.
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Figure 2.10: u and v as functions of t for the set of parameters [α0 = 0.2, a = 0, cd = 0.01] and
M = 0.01, 0.02 and 0.04 represented by the green, orange and blue lines respectively.

In all our simulations, the forcing in the pitch results in a cruising self propelled swimmer, for
physically acceptable dimensionless parameters. In figure 2.10, we show a typical time evolution
of the velocities u and v: as expected after a transient time which depends on M , the swimmer
cruises in the steady state regime. Theodorsen’s approach has been designed for a finite stream
velocity. The model is robust with respect to the unsteadiness but is expected to be less precise
in the transient regime or at least during the very beginning of the motion, in particular if the
swimmer starts from rest. In addition, for very low velocities, it would be necessary to add the
skin friction drag, or even a Stokes’ drag if the velocity tends to zero. As stated above, we focus
on the steady state regime and we assume the Reynolds number to be larger than 103 − 104 so
that pressure drag is the relevant drag at play.

We remark here that the horizontal component of the locomotion oscillates around the steady
value given by equation 2.4.6, with a frequency doubled with respect to the pitch forcing. We
present the numerical simulations of the dynamics of the angle α, the y-position of the center
of mass ycm and the x-component of the velocity, obtained after the transient regime in figure
2.11. u(t) oscillates twice faster than α and ycm, as predicted by the asymptotics, equations
2.4.4 and 2.4.5.
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2.4.3 Results

The model depends on four dimensionless numbers and it is necessary to explore the parameter
space in order to gain a complete outlook of the predictions of the system. In this part, we
systematically study the effects of varying the values of α0, a, M and cd. We then vary most of
these parameters while maintaining some of them fixed.
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Figure 2.11: α, ycm and u as functions of t in the steady state for the set of parameters
[α0 = 0.2, a = 0,M = 0.01, cd = 0.01].

The perturbative analysis shows that α0 ≈ A/L. Consequently, we have chosen as reference
value α0 = 0.2, which is typical for fish [21,25,38,133]. a = −1/2 corresponds to the particular
case, where the center of mass is situated in the middle of the leading part of the fish. Since
the swimmer is considered as a thin body, we expect M � 1. M = 0.01 is taken quite
arbitrarily since we will show that in this limit, M does not have a significant effect on the
measured quantities in the steady state. Values of the drag coefficient cd are more difficult to
infer from experiments since they require measurements when fish do not make any movement.
Nevertheless some data were collected either with dead fish or during gliding deceleration.
Lighthill reviewed data obtained with salmon, herring and trout and emphasized coefficients
around 0.01 [91]. Cods exhibit value around 0.011–0.015 [127], bluegill around 0.015 [129]
and dolphins between 0.003 and 0.03 [128, 130]. The drag coefficient seems to depend on
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the experimental procedure, but in most cases the coefficients range between 0.01 and 0.1
for Reynolds numbers ranging between 103 and 3 ·106 [129]. In the light of these measurements,
we take cd = 0.01 as the reference value.

We tune our controlling parameters to the typical values measured in underwater swimming
animals. The reference values are set to:

α0 = 0.2, a = −1

2
, M = 0.01, cd = 0.01.

Strouhal number

The Strouhal number is assessed from the steady state values of U and Ad in simulation.
In figure 2.12, color plots represent St as a function of cd (from 10−3 to 10−1) and another
parameters among α0 (from 0.003 to 0.3), a (from −1 to 1) and M (from 10−3 to 10−1). This
choice follows the observation that St is strongly correlated to cd around the reference values,
independently of the other parameters. This is consistent with the first-order approximation
obtained theoretically (see equation 2.4.9).

The perturbative approach and the numerical simulations are compared in figure 2.13. They
are in very good agreement with each other and support the trend St ∝ √cd. More quantita-
tively, using the analytical expression of the Strouhal number at the first-order approximation,
2.4.9, with values of the drag coefficient measured with fish (0.01–0.1), we obtain values of St
between 0.1 and 0.3. It is remarkable that our simple model recovers quantitatively the values
measured in biological swimmers.

14

Figure 2.12: Variation of the Strouhal number, as the dimensionless numbers M , cd, α0 and
a are varied. From left to right: [a = −1/2 and α0 = 0.2], [M = 0.01 and a = −1/2] and
[M = 0.01 and α0 = 0.2].

The study emphasizes that St barely vary with α0, a or M , but we recall that M and
α0 play a role in the transient state since the cruising swimming velocity U is reached after
a typical time t ∼ M/α0

√
cd. When the swimmer has reached a nearly constant velocity in

the steady state, shown in figure 2.11, the inertia terms (closely related to the parameter M)
become negligible and do not play any important role in the final swimming velocity, because
this quantity is only determined by the equilibrium between thrust and drag forces as proved
by [24].
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Figure 2.13: Top figure. Strouhal number St as a function of the drag coefficient cd [α0 = 0.2,
a = −1/2 and M = 0.01]. The blue thick curve is obtained numerically, while the red curve
corresponds to the prediction, equation 2.4.9. From left to right at the bottom we display St as
a function of α0 [a = −1/2, M = 0.01 and cd = 0.01] and a [α0 = 0.2, M = 0.01 and cd = 0.01].

Tail beat amplitude

In figure 2.14, A/L is represented as a function of α0, both in simulations with the parameters
[a = −1/2,M = 0.01, cd = 0.01] and in theory with the second-order approximation (A/L =
Ad/2 in equation 2.4.8). We see that A/L ' α0 is a very good approximation in the small
angle limit. For A/L = 0.2 (α0 = 0.17), there is a 15% difference between what is obtained in
simulation and in theory. This means that we probe the limit of the small angle regime (and
the validity of our equations as well) and it is remarkable that natural fish are found there, at
the onset of a strongly nonlinear regime where a third-order approximation would be required.
Saadat et al [25] have shown that a criterion on the minimal energy assumption sets A/L ∼ 0.2,
which would emphasizes that higher order terms become rapidly inefficient. The same argument
would hold in the study performed by Florian et al. [31] since they find that the St number at
maximal efficiency is still very close to the one obtained in the small angle limit.
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Figure 2.14: Tail beat amplitude A/L as a function of the driving angle α0. The blue symbols
are obtained numerically, while the red curve corresponds to the prediction from equation 2.4.8.
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Figure 2.15: φ as a function of
a
√
cd

α0
. The red curve is the analytical prediction of equation

2.4.7, φ(x) = −π/2 + arctan
(

8
3

√
2
πx
)

. In all the simulations we vary a and use the value

M = 0.01, and the results are displayed for several values of cd and α0. Triangles and squares
correspond to cd = 0.01 and 0.1, respectively, and large black and small blue symbols correspond
to α0 = 0.02 and 0.2, respectively.
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Phase angle between heave and pitch

Our asymptotics computations conjecture through equation 2.4.7 the existence of a master curve

for the phase φ as a function of
a
√
cd

α0
. We have collapsed various results of numerical compu-

tations onto this sigmoid curve in figure 2.15: it appears that our small angle approximation
successfully predicts the phase angle between pitch and heave, and φ takes value in the ranges
[−π, π/2] and [−π/2, 0] for a < 0 and a > 0, respectively.

Thanks to pioneering studies in driving a NACA airfoil, there exist some measurements with
respect to the synchronization of the pitch and heave undulations [13, 138]. To compare our
results with these studies, we define ψ = φ + π the phase angle between pitch and heave with
angles α counted positively counterclockwise (all along our study we have used the clockwise
definition taken by [100]). The aforementioned studies demonstrate that the best thrust perfor-
mance is reached as the phase angle ψ is close to 90◦ for a driven airfoil, or equivalently φ close
to −90◦, following our notation. In the light of our results, this suggests that the best thrust
performance is obtained as a

√
cd/α0 → 0 or |a| � α0/

√
cd. We remark here that if a < 0, ψ

tends to 0, for very low amplitude of the tail α0 → 0. We also emphasize that the phase ψ is
equal to 90◦, independently of any controlling parameter if a = 0. All these arguments indicates
that the location of the mass center should have an impact on the thrust performance.

2.5 Discussion and conclusions

The most important models and approaches to treat the swimming problem mathematically
have been introduced, and the expression of the thrust force was derived in function of the
imposed deformation. Then, we proposed our minimal model of self propelled locomotion by
using Theodorsen and Garrick’s formalism [100,101].

First, with our set of equations we expect St to be a function of the dimensionless quantities
α0, cd, a and M . None of them is a function of the tail beat frequency f . This means that
the Strouhal number of a free-swimming, airfoil-shaped, rigid body does not depend on the
frequency. This behavior is different from the one of the same kind of bodies performing
pitching and heaving motions in classical water tunnel experiments [125,139]. In this case, the
body is not free to move since the longitudinal position is fixed and the transverse motion is
imposed. These constraints allow pitching and heaving motions to be set independently, which
is accounted for by an additional dimensionless number that includes the tail beat frequency.
With a free-swimming body, pitching and heaving motions cannot be dissociated and the tail
beat frequency is not relevant in determining the Strouhal number. Second, the model makes
explicit the trend St ∝ √cd expected from a simple thrust–drag balance [15, 24]. This result
obtained with a free-swimming body in the small amplitude regime stems from a thrust scaling
as A2f2. This scaling seems to be validated beyond the small amplitude regime with constrained
systems such as heaving foils [30], pitching foils [139], foils combining both of them [31] and
flexible robotic fish [15]. We have studied a minimal model of fish locomotion. Our model is a 2D
thin airfoil-shaped body which performs an oscillating motion; its cruising swimming velocity
is predicted both numerically and theoretically in the small amplitude regime as a function
of several parameters: the body length, the amplitude and frequency of the tail motion, the
dimensionless mass, the position of the center of mass and the drag coefficient. We show
that the Strouhal number is strongly correlated to the drag coefficient, while the effect of the
other parameters can be neglected at the first order approximation. Given that natural fish
exhibit values of cd about 0.01 − 0.1, we find an almost constant Strouhal number, around
0.1− 0.3, in very good agreement with values measured in biological swimmers. This study has
been extended by Gross et al. [140], who shows that St is also a constant quantity when the
oscillation amplitude is bigger and vortex-induced drag is considered. In addition, we uncover
that the position of the center of mass has an effect on the phase angle between pitch and
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heave, and should consequently influence the thrust performance. Our simple model accurately
predicts the cruising motion of swimmers, but it remains dependent on the choice of the tail
dynamics. It would be engaging to implement a mechanism that automatically selects the
kinetics of the tail, without imposing either the amplitude α0 or the beat frequency. We believe
that a proprioceptive approach, like those proposed in [141], would be a good research direction
and this idea is developped in the next chapter.

These results are published in the Journal of Fluids and Structures [142].



Chapter 3

Swimming gait driven by
proprioceptive feedback

3.1 Introduction

The problem of aquatic locomotion is seen under two main visions: one in which the animal’s
movements are prescribed, and the solution of the problem consists in finding the forces applied
on the system for the generation or not of an effective thrust. In this approach, which is the one
presented in the previous chapter, no reaction of the swimmer in function of the surrounding
fluid is assumed, and the animal dynamics, already fixed, do not consider what is happening
around it. Although effective in a dynamic treatment where the forces exerted on the system
are calculated, this vision is somewhat simplistic and unambitious for giving the swimming
problem a global treatment where factors that are not purely physical (in the context of fluid
mechanics) are added and taken into account. The characterization of the organism as a being
capable of sensing what is happening around it, processing this information, and sending orders
to the motor units to carry out one instruction or another according to the information received
is undoubtedly a natural projection in understanding the problem.

Aquatic animals sense the environment and interact with it [143], a fact shared with the rest
of living beings and that evolution has been in charge of perfecting in order to be able to detect
pressures or forces around them, as well as the direction of currents to orient themselves and
migrate, or the detection of chemical in water through chemoreceptors, among other capabilities
[144–146]. The existing hydrodynamic feedback also allows fish to adjust their gait according to
the flow around them. It is in the work of Liao and Beal [147–149], where they show the change
of fish behavior in response to the environment. They placed a trout Oncorhynchus mykiss in
a water tunnel where they analyzed its movement and then immediately compared it to the
movement produced by the trout when an obstacle was placed directly in front of the exit of
the flow in the water tunnel. The flow produced in this configuration is called Kármán vortex
street [150], and is characterized by being composed of a set of columnar vortices of opposite
sign, which are shed periodically and are equally spaced. The motion patterns of the animal in
both scenarios turned out to be completely different; see the comparison between B and C in
figure 3.1. The amplitudes and body curvatures are much more significant in swimming with
obstacles than those found in the absence of the cylinder.

Nevertheless, it is not only the body undulations of the animals that are altered but also the
frequency of movement of the tail, which matches the vortex shedding frequency of the cylinder.
Therefore, trout are also altering their body kinematics to synchronize with the shed vortices
using a mechanism that may not involve propulsive locomotion [147]. The conjecture employed
to explain this behavior suggests that the fish may be able to reduce locomotor costs by altering
their body kinematics to capture energy from the high-vorticity regions of the wake [147].

To test this hypothesis, Liao performed measurements of muscle activity [148] and oxygen

45
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consumption [151]. The results on muscle activity showed that the fish was using its muscle
power to stabilize and control position rather than generate effective propulsion. Measurements
of oxygen consumption also showed that this gait was energetically more favorable than steady
swimming since the amount of oxygen consumed by the animal was considerably less.

13

Figure 3.1: Body outlines of a Oncorhynchus mykiss for three different configurations: (A) A
dead (B) and live trout behind a cylinder and (C) a live trout with no obstacle. From Liao [148].

One of the unknowns about this behavior is whether it was active or passive, that is, if
the animal was acting deliberately to take advantage of the environment’s energy. The same
experiment of analyzing the trout’s gait was performed, but this time with a particularity: the
animal had been euthanized shortly before the experiment in order to avoid the rigidity typical
of lifeless bodies. They attached a thin line into the trout’s mouth and placed it in the water
tunnel after the obstacle. Surprisingly, the gait of the dead animal maintained many similarities
with the movement when it was alive, the body oscillated with amplitudes and frequencies not
too far apart and advanced towards the obstacle [148], although when it approached it lost
stability and returned to its original position, see A in figure 3.1. This demonstrates, then, that
passively, the fish body is able to extract energy from the environment and use it to reduce
the energy expended by the fish, showing the existence of an interaction between organism and
environment.

However, in order for them to interact with this environment, they must be able to detect
changes and act on it to influence it. Fish possess sensors that allow them to analyze the
changes they encounter in the environment. They rely on vision as an essential source of
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sensory information, which allows them to recognize obstacles around them and their position
as well as to detect disturbances created by the flow. Most fish have well-developed eyes. The
specific movements and variety of colors available to them allow comparison even with visually
advanced species of mammals or birds, which gives a clue to the importance of vision in these
animals [152]. Not only does vision constitute one of the significant sensory sources in these
organisms, but fish also possess a highly refined organ called lateral line, which allows them to
detect movements in the water, changes in pressure, or both [153]. The lateral line consists of
two types of neurons, some distributed along the animal’s skin and sensitive to flow velocity, and
others also present along the body but concentrated near the head that would be responsible
for sensing pressure variations [154,155].

13

Figure 3.2: Block diagram of a PID control.

These sensory mechanisms must therefore be coordinated with the movement-generating
mechanisms to generate harmonious and efficient movements. For most animals, this process
is carried out by the central nervous system: complex neural circuits in the brain initiate
locomotion and control the speed of movements by exciting neural networks located in the
spinal cord. These local networks are responsible for starting and stopping muscle contractions
that generate sufficient force to initiate movement. They are of vital importance and are called
Central Pattern Generators (CPG). A CPG is a neural network capable of producing coordinate
patterns of rhythmic activity without any inputs from sensory feedback or higher control centers
[156]. Almost all known vertebrates are equipped with CPG [157, 158]. Even if they do not
require any external driving, CPG are affected by sensory feedback because the motion must be
obviously adapted to the environment of the moving organism [159–162]. Sensory information
encompasses the traditional five senses as well as proprioception. Proprioception, although
not one of the five senses traditionally stipulated by the human being (sight, smell, touch,
taste, hearing), is taken as an acute sixth sense in the relationship of living beings with their
environment: proprioception is the capacity of our brain to know the exact position of all
the parts of our body at any given moment. The proprioceptive system “processes” the signals
received from joints and muscles to accomplish this task. This system then interprets whether it
is necessary to react immediately by activating other muscle groups in response to disturbances
that interfere with the desired movement of the body or that could lead to a harmful situation.
For example, if somebody tries to balance on one leg and is pushed, his body will immediately
send a signal to the leg suspended in the air to brace itself on the ground and avoid a fall.
This command occurs before one is aware that one must move to ensure stability. This sense
is thus responsible for regulating balance and coordinating movements, as well as maintaining
the alertness levels of the nervous system, from receptors included in muscles, joints, ligaments
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or tendons [163, 164]. This last class of sensing is usually responsible for the adaptation of
the rhythmic driving of the muscles [165, 166], and suggests that locomotion is driven through
proprioceptive feedback. In fact, several types of fish have been found to possess proprioceptive
feedback of their fins [167–170], specialized mechanoreceptors along their spinal cord providing
feedback and modulating the CPG behavior [171, 172], or specialized sensory endings in the
subcutaneous tissue, exterior to muscles [159].

Feedback from the environment on the organism configures what is known as a closed-
loop controller in control theory. Within this field, there are several techniques and methods
to explain and model the behavior of closed-loop systems. Among them, the Proportional-
Integral-Derivative (PID) controllers, widely used for their more than satisfactory performance
given the simplicity of the elements that compose it, stand out. A prototypical feedback control
system is shown in the figure 3.2. The value of the setpoint, or the desired target is continuously
adjusted to match the measured process variable, representing the current state of the system.
The control is disturbed by the environment, which acts on the system and modifies the process
variable. Through the feedback provided by the sensors, once the control is applied, the outgoing
signal changes acting on the process.

The control device aims to reduce the error between the desired signal or setpoint and the
output signal or process variable. We write this error as:

e(t) = r(t)− y(t),

where r(t) and y(t) are the reference signal and process variable, respectively.

10

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ●

●
●

● ● ●
● ●

●
●

●

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

-4 -2 0 2 4
x

PD
F

b)

13

10

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ●

●
●

● ● ●
● ●

●
●

●

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

-4 -2 0 2 4
x

PD
F

a)

13

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

13

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

10

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ●

●
●

● ● ●
● ●

●
●

●

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

-4 -2 0 2 4
x

PD
F

b)

13

10

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ●

●
●

● ● ●
● ●

●
●

●

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

f (s-1)

A
(m

)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

f

A

-4 -2 0 2 4
x

PD
F

a)

13

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

13

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

-4 -2 0 2 4
x

PD
F

a)

-4 -2 0 2 4
x

PD
F

b)

Figure 3.3: Graphic representation of the mechanism underlying integral a) and derivative b)
control in PID systems.

If we call u(t) the function that controls the current error, we have that a PID controller is
represented mathematically by these three terms:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
,

where Kp, Ki and Kd are just proportionality coefficients for each actuator.
PID control is so named because it is based on three operations to reduce the error between

the desired and output signals. The corrections applied belong to three categories: proportional,
integral, and derivative, corresponding to the first, second, and third terms of the equation,
respectively. The term proportional to the error considers the control process’s present; if the
error is large, the output control will also be large to ensure the convergence of the control.
The integral term somehow regroups the effect of the past on the control, as we see in the
figure 3.3a, thanks to the geometrical interpretation of the integral, that is, the area under the
curve of a given function. This term gives us an indication of the residual error that has been
made throughout the control. Finally, we see the meaning of the derivative control, in the same
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figure 3.3b. The geometric interpretation of the derivative is the slope of the tangent line to the
curve at a given point. This term gives us information about the “future” of the control, the
foreseeable trend of the error, and whether we can anticipate the growth of the error. The choice
of the proportionality constants and the importance of each of the terms will depend on the
specific system to be controlled and the level of complexity required of the control device [173].

3.2 A proprioceptive hypothesis
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A B

C D
Information Sensing

Integrating Deforming

Figure 3.4: Phases of proprioceptive swimming. A) The swimmer lives in an environment
from where it can extract information. B) In a state of constant information exchange, the
organism detects certain information that can alter its current state and change its locomotion
regime. C) The signal is perceived by the animal and passes to the central nervous system,
which processes and integrates the signal. D) The integration of the signal sends an order to
the muscles and motor systems that produce a deformation in the animal and initiate a different
state of locomotion.

Therefore, the motivation of the problem is clear: we want to relate in a general way the neural
dynamics of the organism itself with the muscular activity and its perception of the environment.
However, formulating a general theory requires taking into account the tremendous diversity in
physiology and shape that multicellular organisms exhibit. This variety is usually rationalized
by the adaption to their environment within the Darwinian evolution but also by the functions
needed by the animals to live [174]. Among these functions, there is lomocotion, which is the
function motivating us, as motions result from a mechanical interaction of the organism with its
environment. Thus, despite the vast variations of gaits in animals for achieving locomotion [175]
we expect general mechanisms to be at play because all the movements result from mechanical
principles.

Gazzola et al. [141] already showed how a simple form of proprioceptive feedback was suf-
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ficient to drive elastic instabilities associated with thrust production and led to a spontaneous
swimming gait without the need for a central pattern generator. Their swimmer is consid-
ered as a slender and elastic sheet for which a dynamical analysis is carried on by prescribing
expressions for the organism internal stresses, decomposing it into different contributions and
highlighting two of them. An active torque in the form of a traveling wave [83], and a torque due
to proprioceptive feedback. The reason for adding these two is that, by itself, the introduction
of only an active torque is not fully satisfactory because it does not provide any insight into
the mechanisms that lead to such a wave. Nevertheless, the muscle torques can be related to
the neural network’s response driven by the proprioception of the fish shape. Biologically, this
finds an explanation in that deformations of the animal’s body are sensed by receptor neurons
in some organisms such as lampreys, and it has been shown how variations in their curvature
can affect muscle activity [162]. Proprioceptive feedback then enters through the swimmer’s
equations of motion by modeling the force moments.

Sensing Integrating

Deforming
Figure 3.5: Proprioception scheme: the extension of the muscles providing the deformation is
moderated by the integration of the information from the proprioceptive sensors.

Following this spirit, our proprioceptive swimmer is a system that interacts with the envi-
ronment by exchanging information of various kinds but selecting only those that are relevant
for locomotion, as explained in figure 3.4. This scheme can be generalized as shown in figure
3.5. We propose the first demonstration of swimming following the simple scheme shown in
figure 3.5 using a robotic fish that undulates in a thunniform way. This proprioceptive robot
swims without any input from an operator, i.e., where before we needed imperatively to choose
by ourselves a given amplitude and frequency to describe the locomotion, now these parameters
are not selected by us. However, the swimmer itself selects them according to the interaction
strength of the proprioceptive feedback, which now becomes the only control parameter. Fur-
thermore, we show that the activation of the robot is ensured by an oscillatory instability whose
threshold matches the environment: the robot does not move in air as it does in water.

The information collected in our setup is carried out through a force sensor described in
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Appendix A, capable of measuring the two components Fx and Fy of the force exerted by the
fluid on the swimmer, respectively aligned and normal to the swimming direction. We use Fy
as the proprioceptive information to trigger locomotion. The choice of the normal force as
proprioceptive input is motivated by the biological character of the sensors in fish, mainly by
the existence of the lateral line, a mechanism that is supposed to be responsible for detecting
pressure changes in the environment [153]. The normal force corresponds to the integration of
the pressure variations around the swimmer, which motivates our choice of sensory information.
As done by Gazzola et al. [141], we want to relate the hydrodynamic information to the muscular
mechanisms and the deformation produced by them in the animal’s body. In an attempt to
make a simple model and based on the rigid airfoil theory formulation of Theodorsen and
Garrick [100, 101], we neglect in a first approximation elastic effects and consider that the
deformation is equal throughout the airfoil and depends only on the pitch angle, α. In order to
match this approximation with our experimental system, in which obviously the deformation is
not homogeneous, we will reduce the reference deformation to a point located in the middle of
the tail, as we can see in figure 3.6. A possible relation between the deformation and the normal
force could be given by the PID control algorithm, with the target angle αc being proportional
to Fy and the integral and derivative of the force. Apart from a relative increasing complexity,
nothing prevents us from implementing this formalism, especially for the proportional and
integral terms. Nevertheless, for the sake of simplicity, we keep just the proportional term as a
first approximation. The relation we are looking for is then:

αc ∝ Fy.
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Figure 3.6: Top view of the fishlike robotic system: the white material is 3D printed using soft
polymers. The tail is driven by two cables attached to a waterproof servomotor.

However, the access to the oscillations of the swimmer’s tail is not direct. Still, it is done
through a servomotor controlled by an Arduino Mega micro-controller, whose movement is
transmitted to the tail by two wires. This can be seen in the figure 3.7, where the servomotor
reacts when the force sensor is touched in any direction, thus moving the tail of the robotic fish.

Therefore, the actual relationship that we formulate as a proprioceptive hypothesis is the
following:

φc = −γFy,
where φc is the instruction angle as defined in the Appendix A, and γ is here the control
parameter of the proprioceptive driving.

Note that we will focus on positive values of γ in what follows since negative values do not
induce locomotion and lead the system to a stable steady-state. Let us take as an example the
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figure 3.6, where the tail is moving by increasing the angle α. We see how, according to the
action-reaction principle, the fluid exerts a normal force directed in the negative direction of y.
According to a proprioceptive hypothesis of opposite sign, the instruction angle φc would be
negative, inducing a movement in the servomotor that would lead the tail to descend in order to
decrease the angle α. In this process, however, as the tail moves in the opposite direction, the
force that the fluid would exert on it would now be positive, leading φc to be positive. Therefore
it would continue again the path it took before, repeating this endless loop, and thus leading it
to a state of no movement and stability.

13

Figure 3.7: Application example of the proprioceptive robotic fish: touching the forces sensor
induces a proportional motion on the servomotor and consequently on the tail.

3.3 Experimental validation

First, we show that the proposed hypothesis actually induces a movement of the robotic fish
without the need to set amplitude and frequency a priori. The only parameter that is varied
systematically is the intensity of the interaction γ. To obtain the amplitude and frequency as
functions of γ, we introduce the robotic fish into the water tunnel without imposing a flow
velocity. First, we impose γ = 0 to calibrate the force sensor and get rid of any offset in Fx or
Fy. Just after that, the desired value of γ is imposed. The robotic tail is then allowed to oscillate
for a sufficient time to ensure that the system converges to its steady-state, which we take to
be about twenty periods of robot tail oscillation. Once this time has elapsed, we measure the
forces on the sensor and film the oscillations. From the images, we compute the peak-to-peak
amplitude α0 and frequency ω of the signal α(t) (figure 3.8). The experimental points do not
correspond to a single experience but result from an average over several experiences. Likewise,
the error bars have been obtained by calculating the standard deviation of the data set, taking
into account the different experiences.

According to these graphs, we can distinguish three clearly delimited zones:

1. For values of γ smaller than a certain critical value, γc,exp ∼ 0.72 rad.N−1, the system
relaxes toward the equilibrium state characterized by α = α′ = 0. For any initial pertur-
bation, the system tends to equilibrium with a relaxation time that is strongly related to
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the closeness of the control parameter to its critical value. The closer we are to γc,exp the
longer we have to wait to obtain the equilibrium state, typical behavior of the dynamics
near a bifurcation point.

2. In this second phase, already above γc,exp, the robotic tail undergoes spontaneous os-
cillations with a well-defined angular peak-to-peak amplitude α0 and frequency ω. The
amplitude takes off smoothly from the no-motion regime and increases as γ grows pro-
portional to

√
γ − γc,exp for γ close to γc,exp, typical of Hopf bifurcations, as explained

in the Appendix C. On the other hand, the frequency takes a finite value at the birth of
the bifurcation and then decreases as the control parameter increases. Before the bifur-
cation, the system is stable and relaxes to the motionless regime where the frequency is
not defined.

3. Finally, when γ ∼ 2 rad.N−1 the system saturates, and both amplitude and frequency
values are not altered no matter how much we vary γ. This zone is given by the physical
limitation of the system: the maximum amplitude and operating speed of the servomotor.
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Figure 3.8: Experimental values and error bars of amplitude, α0, and frequency, ω, as functions
of the control parameter γ.
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Figure 3.9: a) A typical temporal variation on the feedback parameter γ. b) The dynamics
of the angles α (blue) and φ (orange) as the controlling parameter γ is varied. The angular
frequency ω is deduced from the period 2π/ω. c) Temporal evolution of the lateral force Fy
(green) and of the thrust T = −Fx (gray) with Fx the longitudinal force. We also show the
mean thrust T in steady state for γ = 1.65 rad.N−1 (dashed horizontal line). α0, Φ, and F0

denote the peak-to-peak amplitudes of α(t), φ(t), and Fy(t), respectively.
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In figure 3.9, we present the typical temporal evolution of the angles (φ and α) and forces
(T = −Fx and Fy) as the controlling parameter γ is varied. Summing up, for γ < γc,exp, the
system is stable, and no locomotion is expected: for any initial condition the system decays to
the equilibrium characterized by α = α′ = 0. Nevertheless, as γ > γc,exp, an instability occurs
and leads to a periodic undulation of the tail. This oscillation produces a nonzero mean thrust
T = −Fx > 0, which indicates the capacity of the proprioceptive loop to induce a propulsion
motion.

3.4 Theoretical characterization

Having demonstrated the efficiency of the loop to induce locomotion, we propose a simple, yet
generic, model to shed light on the instability and discuss how it relies on the feedback loop
depicted in figure 3.5. According to such scheme, it is necessary to understand the interactions
between the different stages. Each step of the proprioceptive loop is associated with a relevant
magnitude within the system, and our objective is to relate them to each other. The integrating
stage has already been defined when we have proposed the proprioceptive hypothesis, and we
have remarked as a reference variable for this stage the angle instruction φc, which we have
related to the normal force. As this information is related to the normal force, Fy is the
significant magnitude and relates to the deformation stage. The latter is represented by the
angle α, and it also involves the dynamics of the servomotor, which we also model appropriately.

3.4.1 Integration stage

It is the only phase that is not motivated by physical criteria. In this phase, we impose the
relationship between normal force and instruction angle:

φc(t) = −γFy(t).

In this case, unlike Gazzola et al. [141], we do not consider any temporal delay between the
force signal and force integration. Gazzola et al. justifiably choose a time lag between the
proprioceptive force moment and the deformation of the animal to account for the inherent
delays in biological feedback loops [176, 177]. In our case, the situation is somewhat different.
The temporal delay does not come from the dynamics of the excitatory-inhibitory neural network
but from the response time that the Arduino takes between detecting the force signal and
transmitting it to the servomotor. This time turns out to be about 20 ms. The times we are
dealing with in our system, however, are much longer than the force transmission time, so that
this time can be neglected assuming that the signal is instantaneous, facilitating the theoretical
and numerical resolution of the system and without having to resort to the formalism of the
delay differential equations [178].

3.4.2 Sensing stage

At this stage, we are interested in finding out the relationship of the normal force to the tail
dynamics. An exhaustive calculation of these forces is entirely beyond our scope. In an attempt
to simplify the problem but highlighting the underlying physical mechanisms, our approach
relies on Theodorsen formalism [100]. The computation of the forces generated by a hydrofoil
oscillating with a relatively small amplitude, α � 1, within a perfect fluid takes the following
expression, which we already deduced in the previous chapter:

Fy = −Kα′′α
′′ −Kα′α

′ −Kαα.

where Kα′′ , Kα′ and Kα are parameters characterizing the medium, the material, or the sub-
strate with which the swimmer interacts and could by construction account for inertial, viscous,
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and elastic effects. According to the dimensional analysis, the dimensions of these terms must
be:

[Kα′′ ] = ML, [Kα′ ] = MLT−1, [Kα] = MLT−2.

Where [. . .] represent the dimension of a quantity and M, L, and T are the dimensions of the
fundamental magnitudes mass, length and time, respectively. During the motion of a fish of
length L in a fluid of density ρ at velocity U , a simple scaling analysis recovers the terms found
by Theodorsen in his theory of oscillating airfoils, assuming that inertia is dominant [100].

Kα′′ ∼ ρL4, Kα′ ∼ ρUL3, Kα ∼ ρU2L2,

where ρ takes the value 1000 kg.m−3 for water, and L ∼ 10 cm, the typical length of the fish.
The first term Kα′′ accounts for the added mass due to the bolus of water accelerated during
the tail oscillation, while the last two terms account for the lift of a moving and inclined airfoil
in a flow. To guess which term is dominant, we compute the ratios

Kα′′α
′′

Kα′α′
∼ ω? and

Kα′′α
′′

Kαα
∼ ω?2,

where we have introduced the dimensionless number

ω? =
ωL

U
.

This parameter is usually called reduced frequency [25, 30] and it appears that, for biological
swimmers, this dimensionless parameter is large [25], ω? ∼ 10. However, at first, our experi-
ments run with zero flow velocity, so our first impression is that the terms proportional to α′

and α do not play any vital role. To verify this assumption and obtain the coefficients’ experi-
mental values, we impose a known dynamic on the servomotor and measure the forces arising
as a function of the tail behavior. In all the situations where we try to obtain an experimental
characterization of the system, we always impose a harmonic response on the servomotor. The
reason is that the tail angle, as we have defined it, reproduces harmonic behavior exceptionally
well if it is forced in the same way by the servomotor. Furthermore, we prototypically expect the
swimmers to exhibit periodic behavior with fixed values of amplitudes and frequencies, which
we recover by assuming harmonic forcings. If we then take an oscillation of the following form

α(t) =
α0

2
sin(ωt),

the normal force in the limit of small amplitudes reads:

Fy(t) = −1

2
α0Kα′ cos(ωt)− 1

2
α0(Kα −Kα′′ω

2) sin(ωt),

which may be expressed more compactly as:

Fy(t) =
F0

2
sin(ωt+ ψ),

with F0 as the amplitude of the force and ψ the phase shift, expressed by:

F0 = Kα′′α0ω

√(
Kα − ω2Kα′′

ωKα′′

)2

+

(
Kα′

Kα′′

)2

(3.4.1)

ψ =
ωKα′

ω2Kα′′ −Kα
(3.4.2)



58 Chapter 3. Swimming gait driven by proprioceptive feedback

Thus, to determine the coefficients appearing in the force expression, we measure the amplitude
F0 and the phase shift ψ of the force as a function of α0 and ω. We impose harmonic oscillations
of the servomotor wheel following the equation:

φc =
Φ

2
sin(ωt), (3.4.3)

with Φ ranging between 0 and 1.9 rad and f between 0 and 1.4 Hz. In all cases, we record α(t)
and Fy(t) in steady state and measure α0 and F0. In the setting where these experiments were
performed, the measurement of ψ was not entirely satisfactory and could be misleading, which
led us to erase it from the experimental procedure.

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ω2 (s-2)

F
0

ω
α
0

2

(
N
2
.s
2
)

Figure 3.10: (F0/α0ω)2 is plotted as a function of ω2. The solid line is a linear function, which
comparison with the model gives a slope K2

α′′ and an intercept K2
α′ .

Given the form of the equation 3.4.1, we plot in figure 3.10 the quantity (F0/α0ω)2 as a
function of ω2. Developing the expression (F0/α0ω)2:(

F0

α0ω

)2

= K2
α′′

[
ω2 +

(
Kα

ωKα′

)2

− 2Kα

Kα′
+

(
Kα′

Kα′′

)2
]
,

we realize that considering a linear dependence on α disagrees with what we see in the figure
3.10, where we should see higher values near the origin. This leads us to consider Kα = 0, as
we predicted. According to our initial hypothesis, however, we expect only one dominant term,
the one corresponding to the added mass, Kα′′ . The problem is then in the starting hypothesis
since if we only consider this term, our experimental curve should pass through the origin and
not have such an important intercept as we see in the figure. Keeping the terms Kα′′ and Kα′

we have: (
F0

α0ω

)2

= K2
α′′

[
ω2 +

(
Kα′

Kα′′

)2
]
.

So we can identify the slope of the line with the parameter K2
α′′ and the intercept with K2

α′ . This
validates the force expression and, from the best interpolation, we measure Kα′′ = (14.7± 0.6)
mN.rad−1.s2 and Kα′/Kα′′ = (8.7± 0.4) s−1. As a consequence:

Kα′′α
′′

Kα′α′
' ωKα′′

Kα′
∼ 1,
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around ω ∼ 10 s−1. This implies that Kα′α
′ cannot be discarded in the force expression even if

U 6= 0. We interpret this term as a viscous force due to the oscillation of the tail inside a fluid
of viscosity η ∼ 1 mPa.s for water. As an example, the case of a cylinder of radius and length
L [69] leads to a rough estimate of Kα′ ∼ 2πL3

√
2ρηω ∼ 30 mN.rad−1.s, which is in agreement

with the precise measurement mentioned. As discussed in Landau and Lifshitz [69], convective
terms in the Navier-Stokes equation can be dominated by unsteady terms in oscillatory flow.
This could explain the prevalence of the linear term in α′. Still, the origin of this term is not
completely clear because studies on swimming obviously presuppose a non-zero flow velocity,
with which we can justify the terms arising from Theodorsen’s inviscid flow theory [100]. The
term is measured anyway, so we consider it in the treatment of the problem at all times. A
detailed study is being carried out to understand the origin of this force.

Even if we remain in the linear approximation, nonlinear terms could be expected as a
transverse pressure drag force writing

−cyρL4α′|α′|,

with cy a dimensionless coefficient. However, experimentally we expect this coefficient to be
minimal, cy � 1 for the following reasons:

1. We do not observe any significant change of frequency in the temporal signal of the
transverse force Fy (figure 3.9). In fact, if we developed in Fourier series the term in
pressure drag, we would obtain:

cos(ωt)| cos(ωt)| ∼ 8

3π
cos(ωt) +

8

15π
cos(3ωt),

where we see how the term with triple frequency accounts for just over 15% of the total
term contribution.

2. As shown later in figure 3.15, the amplitude of the force is proportional to the amplitude
of the harmonic forcing since we do not observe any quadratic tendance when we vary α0.

Additionally, if we did not consider the term in α′ but the quadratic term in α′|α′|, we would
also observe a zero intercept in the figure 3.10 as there would exist a ω2 term in front of α′|α′|.
Nevertheless, accounting for this nonlinear term improves the matching between the model and
the experimental data at high α0 values, as we will show in the section 3.5.2.

For consistency with what follows, we rewrite

Fy = −Kα′′
(
α′′ + ξω0α

′) , (3.4.4)

with ξ a dimensionless factor and ω0 a quantity that has the dimension of a frequency and that
we will properly justify later.

3.4.3 Deforming stage

At this stage, we study the phenomenon of tail deformation as a function of the external forcing
and bring out the essential parameters characterizing the structure’s response. In the first step,
the flexibility effects are neglected, and the deformation of the robot fish is quantified by the
tail angle α(t). The motion of the servomotor wheel imposes a deformation of the tail through
the tension of cables inside the soft structure, as we explain in the section A.4 of the Appendix
A. In the quasistatic regime, there is a monotonic relation between the two quantities, as shown
in figure 3.11. This relation is well fitted by a linear relation α = K1φ with K1 = 0.549± 0.007.
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Figure 3.11: α as a function of φ in the quasistatic regime. The linear behaviour α = K1φ is
represented by the blue line, with K1 = 0.549.

To predict the dynamic behavior of the angle α, we apply Newton’s second law on the tail,
taking into account that mainly two forces act on the system: Fy which is the fluid-structure
interaction force that we have already characterized previously in equation 3.4.4, and Fd the
driving force in the y direction. This force has a restoring nature and arises from the arrangement
of the wires connecting the servomotor wheels to the tail to align α and φ at all times. This
force fulfills two conditions:

• First, it drives the angle α with respect to the control angle

α∗ = K1φ.

• Second, at the leading order deformation, Fd is modeled by a polynomial function of

δα = α− α∗.

We consider a linear term proportional to δα to account for the linear elastic response
without a quadratic monomial due to the symmetry of the problem. A linear response
might seem satisfactory at first, however, experimental data performed with the same
robotic fish model [15] or flexible panels in other setups [30, 179–181] show a shift of the
resonant frequency as a function of the oscillation amplitude. In figure 3.12a, we show the
data corresponding to the study of Gibouin et al. [15], where the oscillation amplitude of
the tail A as a function of the servomotor forcing frequency, f , for different servomotor
forcing amplitudes is shown. In this image, we observe how the resonant frequency shifts
toward the left of the graph as the servomotor amplitude increases. This effect is typical
behavior of the Duffing oscillator, a forced oscillator with a cubic nonlinear term, which
can be rewritten in dimensionless form as:

α′′ + p1α
′ + α+ p2α

3 = cos(ft),

with p1 and p2 dimensionless parameter characterizing the strengh of the dissipation and
nonlinear terms, respectively.

The parameter p2 is responsible for causing the resonant frequency to shift towards lower
frequencies if p2 < 0 and vice versa if p2 > 0. The typical behavior of this nonlinear
oscillator with negative p2 is shown in figure 3.12b, compared together with an oscillator
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without a cubic term. An increase in forcing creates a shift toward lower resonant fre-
quencies than those obtained with small forcings, unlike linear oscillators, in which the
maximum frequency of the system always lies at the same value of f [182].
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b)Figure 3.12: a) A as a function of f for several Φ (20, 40, 60, 80, 100, 120 and 140 ◦ from
bottom to top). The black arrow shows the shift of the resonant frecuency. Adaptation from
Gibouin et al. [15]. b) Frequency response for a linear, damped, harmonic oscillator in black
and for a Duffing oscillator in blue and orange. Orange dashed line corresponds to the unstable
frequency response.

Consequently, we write
Fd(t) ∝ −δα(t)

[
1−K2δα(t)2

]
, (3.4.5)

with K2 a positive parameter that weights the nonlinear term with respect to the linear one.
The tail angle then, can be predicted by the dynamics of a weakly nonlinear oscillator driven

by the servomotor. By exploiting the momentum balance applied to the tail along the y axis,
we write

mtLα
′′ = Fy + Fd,

with mt the mass of the tail and Fy and Fd defined in equations 3.4.4 and 3.4.5, respectively.
Given that Kα′′ ∼ ρL4 and that fish in general, and the robotic fish in particular, are slender

objects [142], we expect mt � ρL3 and the dynamical equation becomes

α′′ + ξω0α
′ + ω2

0 (α−K1φ)
[
1−K2 (α−K1φ)2

]
= 0, (3.4.6)

with ω0 now interpreted as the linear regime oscillation frequency of the tail around its equi-
librium value K1φ. In addition, ξ is interpreted as the damping factor of the oscillator. In
order to quantitatively compare the dynamics of the experiments with those of the model, it is
necessary to accurately measure the value of ω0, ξ and K2 in the last equation. To achieve this
objective, we measure the tip-to-tip angular response of the robotic tail, α0, for the harmonic
forcing described in equation 3.4.3. Several values of Φ and f were probed as shown in figure
3.13. We have numerically integrated the system and compare the predicted α0(Φ, f, ω0, ξ,K2)
to the experimental measurements α0(Φ, f).
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Figure 3.13: α0 as a function of f for three values of Φ (0.24, 0.94 and 1.65 rad from bottom to
top). The solid lines are the prediction of the model with the parameters ω0 = 13 s−1, ξ = 1.0
and K2 = 1.6.

We have constructed an error function e(ω0, ξ,K2) that measures the absolute error between
the numerical prediction and the experimental data for each set of parameters ω0, ξ and K2.
The three parameters are systematically varied and a minimum of the error function is found
around ω0 = 13 s−1, ξ = 1.0 and K2 = 1.6 (solid lines in figure 3.13). Uncertainties are
quantified by 10% of the error function. This leads to an acceptable domain in the parameter
space (figure 3.14), with the typical range given by:

12.75 < ω0 < 13.50, 0.97 < ξ < 1.05, 1.55 < K2 < 1.65

11

Figure 3.14: Location of the minimum of the error function and its acceptable domain in the
parameter space of ω0, ξ and K2.

The force expression we derived in the previous section (equation 3.4.4) has been introduced
into the oscillator equation 3.4.6 by redefining the parameter proportional to α′ as:

Kα′ = Kα′′ξω0.

Depending on the sensing and deforming stage, we have two ways to calculate this term. Either
by doing a fit of the data in figure 3.10 or by calculating ξ and ω0 directly from figure 3.13. We



3.4. Theoretical characterization 63

observe that by carrying out the second option, the best parameters are ξ = 1 and ω0 = 13,
which results in

Kα′

Kα′′
= 13 s−1.

However, a fit of the data in the figure 3.10 results

Kα′

Kα′′
= 8.7 s−1.

Both values are, in fact, very close, which supports the model. To be consistent with the determi-
nation of the nonlinear oscillator parameters, we fix Kα′/Kα′′ = 13 s−1 since the value obtained
by the other technique does not allow us to get a good representation of the oscillator dynam-
ics. We then determine the parameter Kα′′ by plotting F0 as a function of α0ω

√
ω2 + (ξω0)2.

Both quantities are proportional as expected (figure 3.15) and the proportionality ratio equals
Kα′′ = (11.3± 0.1) mN.rad−1.s2 from the best interpolation. We keep this value for the rest of
the study.
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Figure 3.15: F0 is plotted as a function of α0ω
√
ω2 + (ξω0)2. The solid line is the best relation

of proportionality with Kα′′ as the proportionality constant.

3.4.4 Modeling the servomotor internal dynamics

To close the system, we now model the response of the servomotor to account for the error
between the instruction angle φc and the output angle φ associated with this element in the
proprioceptive loop. We model the response of the servomotor driven by a reference value;
more precisely the angle of the steering wheel φ(t) in response to the instruction angle φc(t).
As a simple benchmarking of the servomotor, we study its dynamics as we harmonically force
it with the the instruction angle defined in equation 3.4.3 with amplitude Φ/2 and frequency
ω = 2πf . For small amplitude Φ and frequency f , we expect the servomotor to have a low load
and the wheel angle φ to instantaneously follow the instruction φc, such that φ(t) = φc(t). For
larger amplitude Φ and frequency f , the servomotor might not be fast enough, and we expect
a difference between the requested angle φc and the real wheel angle φ.
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Figure 3.16: φc, φ and φ′ as functions of time for two different driving signals. a) A sinusoidal
signal with amplitude Φ = 1.77 rad and frequency f = 1.2 Hz. b) A rectangular signal with
amplitude Φ = 1.18 rad and frequency f = 1.2 Hz. The black lines represent the maximum
angular velocity of the servomotor, Ω = 7.0± 0.1 rad.s−1.
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Figure 3.17: φ′(t) as a function of φc(t)−φ(t) for six different experiments. For harmonic signals
we show: in red Φ = 1.18 rad, f = 2.2 Hz, in blue Φ = 1.77 rad, f = 1.2 Hz, in green Φ = 0.59
rad, f = 2.2 Hz and in grey Φ = 1.18 rad, f = 1.2 Hz. For rectangular signals we have: in
purple Φ = 1.18 rad, f = 1.2 Hz and in brown Φ = 1.18 rad, f = 2.2 Hz. The black curve
represents the function Ω tanh((φc − φ)/∆φ), with Ω = 7.0 rad.s−1 and ∆φ = 0.26 rad.

In figure 3.16a, we plot φc, φ and φ′ as functions of time for typical experiments. φ′ saturates
as it approaches the maximal value Ω that the servomotor can deliver; the manufacturer’s
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technical manual estimates it at approximately 7 rad.s−1. This limitation is confirmed by
imposing rectangular signals (figure 3.16b), and we measure Ω = 7.0± 0.1 rad.s−1 in agreement
with the data provided by the manufacturer.

In figure 3.17, φ′ is plotted as a function of the tracking error φc(t) − φ(t) and all the
data collapse on a single master curve whatever the amplitude, the frequency and the shape
of the forcing signal. Given the shape of the master curve, we fit the data with the following
expression:

φ′ = Ω tanh

(
φc − φ

∆φ

)
,

where ∆φ = 0.26 ± 0.05 rad is obtained from the best interpolation over all the data and
represents the typical angle difference between the instruction and the wheel angle at which the
servomotor achieves maximum velocity. This equation is used to model the servomotor inside
the proprioceptive loop. We have chosen to model the saturation with a hyperbolic tangent for
simplicity among other sigmoid functions.

3.4.5 Theoretical computation of the weakly nonlinear dynamics of the swim-
mer

In the previous sections, we have measured all the relevant parameters, shown in the table 3.1,
which we now use for the application of the model.

ω0 ξ Ω ∆φ K1 K2 Kα′′

13.0 s−1 1.0 7.0 rad.s−1 0.26 rad 0.55 1.6 rad−2 11.3 mN.rad−1.s2

Table 3.1: Measured parameters.

Our complete system is mathematically described by the following four algebraic-differential
equations, where the first three characterize the integration, sensing and deforming stages and
the last one models the servomotor:

φc = −γFy,
Fy = −Kα′′

(
α′′ + ξω0α

′) ,
α′′ = −ξω0α

′ − ω2
0 (α−K1φ)

[
1−K2 (α−K1φ)2

]
,

φ′ = tanh

(
φc − φ

∆φ

)
.

If we group the first two equations and introduce them in the last one, we finally obtain the
differential system that we have to solve:

α′′ = −ξω0α
′ − ω2

0 (α−K1φ)
[
1−K2 (α−K1φ)2

]
,

φ′ = tanh

(
γKα′′(α

′′ + ξω0α
′)− φ

∆φ

)
.

This set of equations constitutes a generic model for proprioceptive locomotion. This system has
a steady solution α = φ = 0, which corresponds to a nonmoving swimmer. Our conjecture is that
an oscillatory instability is responsible for the proprioceptive locomotion. Following this idea,
we perform a standard linear stability analysis around the stationary state (α = α′ = φ = 0).
We aim to carry out a weakly nonlinear analysis for characterizing the bifurcation. As usual,
near the instability, the dynamics of the system undergoes slow temporal evolution. In order to
properly describe the transition to the slow dynamics, we rewrite the full system as:

∂tu = Lu+N(u)
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with:

u =

αα′
φ

 , L =

 0 1 0
−ω2

0 −ξω0 K1ω
2
0

−K3γΩω2
0

∆φ 0 − Ω
∆φ +

K1K3γΩω2
0

∆φ

 ,

N(u) =

 0

ω2
0K2 (α−K1φ)3

Ω
∆φ

[
K2K3γω

2
0(α−K1φ)3

]
+ Ω

3∆φ3

[
φ+K3γω

2
0 (α−K1φ)

]3
 ,

where we have separated the linear part Lu from the nonlinear one N(u). We assume a small
parameter γ − γc � 1, where γc is the critical value at which the bifurcation appears, and we
propose, as it is standard in asymptotic analysis for bifurcations, described in the Appendix C,
the following ansatz:

γ = γc + ε2γ2,

u = εu1(t, t2) + ε3u3(t, t2) +O(ε4),

L = L0 + ε2L2,

t2 = ε2t,

where the parameter ε controls the distance to the bifurcation threshold. The variable t2 has
been introduced to represent the slow dynamics of the oscillation amplitude, as explained in
Appendix B.

At order ε, the system to solve takes the form of a linear ODE :

∂tu1 = L0u1,

with

L0 =

 0 1 0
−ω2

0 −ξω0 K1ω
2
0

−K3γcΩω2
0

∆φ 0 − Ω
∆φ +

K1K3γcΩω2
0

∆φ

 .

Figure 3.18: Real and imaginary parts of the eigenvalues, λ, in function of the control parameter
for the proprioceptive system. We show the dependence of the real and imaginary parts of the
three eigenvalues in blue, orange and green. A Hopf bifurcation occurs at γc ∼ 0.75 rad.N−1,
characterized by the cancellation of the real part of the orange and green eigenvalues. The green
and red zones correspond to the stable and unstable regions, respectively.

Where we have assumed L0 = Lγ=γc . Following the main text definitions, γc is the value of
the feedback parameter for which the matrix L has three different eigenvalues that we denote
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as λ. These eigenvalues are iωc, −iωc and one negative. We show the behavior of the three
eigenvalues of the system as function of γ in figure 3.18, where we recognize the point γc
characterized by two eigenvalues with zero real parts and one being negative. This occurs as

ωc = ω0

√
2(1− ξ2)

2

√√√√1 +

√
1 + 4

ξΩ

∆φω0(1− ξ2)2
, (3.4.7)

γc =
2ξ + ω0∆Φ

Ω

(
1 + ξ2 −

√
1 + 4ξ Ω

ω0∆Φ − 2ξ2 + ξ4
)

2K1Kα′′ξω
2
0

. (3.4.8)

Consequently, we propose as solution for the unknown u1(t, t2):

u1 = A(t2)eiωctζ +A(t2)e−iωctζ, (3.4.9)

iωcζ = L0ζ, (3.4.10)

where ζ is the eigenvector of L0 associated to λ = iωc:

ζ =

 1
iωc

ω2
0+iξω0ωc−ω2

c

K1ω2
0

 .

We note here that the oscillation amplitude A(t2) varies slowly in time. We use the previous
result L0u1 = 0 to obtain:

L0 = ∂t − L0,

L0ζe
iωct = 0.

Because of the symmetry and the ansatz, no terms need to be balanced at this order so we can
immediately get to order ε3, for which we get the following equation for the unknown u3.

∂tu3 − L0u3 = −∂t2u1 + L2u1 +N(u1).

Here we recognize an equation which takes the form L0u3 = R3. This equation has no solution
in general, because the operator L0 has one element in its kernel: L0ζe

iωct = 0, as shown in
equation 3.4.10. In such cases, the only technique to compute u3 is to apply the Fredholm
alternative: R3 must be orthogonal to the elements of the kernel of the adjoint operator, as
derived in the Appendix B. In order to apply this compatibility condition, we define the following
scalar product:

〈u|v〉 =

∫ 2π/ωc

0
u · vdt,

where 2π/ωc is the period at the onset of the limit cycle. The adjoint operator L†0 of the operator
L0 under the above scalar product is written as:

L†0 = −∂t − Lt0,

This operator has two elements in its kernel:

Ker(L†0) = {eiωctζ†, e−iωctζ†},

with

ζ† =

 1
1

ξω0−iωc
∆φ

K3Ωω2
0γc

(
iωc − ω2

0
ξω0−iωc

)
 .
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Consequently, the Fredholm alternative is written:∫ 2π/ωc

0
(−∂t2u1 + L2u1 +N(u1))) e−iωctζ†dt = 0,

which determines the equation for the slowly varying amplitude of the oscillations:

∂t2A = (µr + iµi)γ2A− (αr + iαi)|A|2A,

where the parameters µr, µi, αr and αi are computed by evaluating the previous integral. This
equation is the amplitude equation of the oscillation, as in equation C.0.8, and it corresponds
to the normal form of the Hopf bifurcation. By setting A = Reiθ, we determine the oscillation
dynamics:

∂t2R = µrγ2R− αrR3,

∂t2θ = µiγ2 − αiR2.

Hence after a transient regime, the amplitude of the oscillation becomes steady and a detuning
in frequency αi (γ − γc) appears because of the weakly nonlinear corrections.

R = 4
√
µr/αr

√
γ − γc = 4Θ

√
γ − γc,

ω = ωc − (γ − γc)
(
µr
αi
αr
− µi

)
= ωc − (γ − γc)ω2,

where we define:

Θ =

(
2K3

1K3x
3y(1 + Ξ)Ω2

denΘ

)1/2

,

and the expression of the Θ denominator, denΘ, reads:

denΘ = 3K2
1K2∆φ2(2(1 + y) + x(1 + Ξ)(2 + xΞ(Ξ− y)))− x2(1 + Ξ) (y

−3(2 + Ξ) + x(y(3 + Ξ(3 + Ξ + x(1 + Ξ)2))− Ξ(7 + Ξ(5 + Ξ + x(1 + Ξ)2))− 4)
)

where we have introduced the additional parameters:

y =

√
(ξ2 − 1)2 +

4

x
, x =

ω0∆φ

ξΩ
, Ξ = ξ2 − 1.

This relation predicts that the oscillation amplitude grows as the square root of the distance to
the threshold.

Concerning the nonlinear corrections to the oscillation frequency, we obtain:

ω2 = ωc

(
Θ2 numω2

2K2
1x

2∆φ2(2 + y − xyΞ(1 + Ξ) + Ξ(3 + xΞ(1 + Ξ)))

+
K1K3x

2(1 + Ξ)(2− y + Ξ)Ω2

2∆φ2(2 + x(y − Ξ + 2yΞ))

)
,

with the expression of the ω2 numerator, numω2 , is defined as:

numω2 = 3K2
1K2∆φ2(2 + x(2 + 2x(y − 2Ξ)(1 + Ξ) + x2(y − Ξ)Ξ2(1 + Ξ) + Ξ(2− y + Ξ)))

− x3(1 + Ξ)2(6− 2y + 4Ξ + x(1 + Ξ)(2− y(3 + Ξ(1 + x+ xΞ)) + Ξ(5 + Ξ(1 + x+ xΞ)))).

These calculations determine the first-order amplitude and frequency corrections as a func-
tion of γ and predict the behavior of the system in a neighborhood of the bifurcation point
γc.
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3.5 Results

From the values of the parameters (table 3.1), we found from equations 3.4.7 and 3.4.8 the
predicted threshold value for γ to be γc = 0.75 rad N−1 and the oscillation frequency to be
ωc = 15.6 rad s−1, while the experimental values are γc,exp ∼ 0.72 rad N−1 and ωc,exp ∼ 14.8
rad s−1. The agreement is very satisfactory given there is no free parameter once the physical
model parameters are measured, as we show in figure 3.19, where we compare the numerical
predictions of our model with the experimental values.
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Figure 3.19: Oscillatory characteristics of the proprioceptive loop. a) Angular amplitude of the
tail oscillation α0 as a function of γ. b) Angular frequency ω as a function of γ. The experimental
measurements and their error bars are drawn in blue. In a), the blue curve passing through the
data is an interpolation with the function α0 = Θexp

√
γ − γc,exp with γc,exp ∼ 0.72 rad N−1 and

Θexp = 0.72 rad1/2 N1/2. The numerical predictions are represented by thick black lines.



70 Chapter 3. Swimming gait driven by proprioceptive feedback

Using a fourth-order Runge-Kutta algorithm, we have numerically integrated the complete
nonlinear system, and we compare the model prediction to the experimental measurements.
It appears that both the oscillation angular amplitude and frequency in experiments are well
captured by the simple model, taking into account again that there is no free parameter. We
note here the square root behavior for the amplitude, which is characteristic of Hopf bifurcation,
and we show by using the calculations of the precedent section that

α0 = Θ
√
γ − γc,

where Θ = 0.97 rad1/2 N1/2. In experiments, Θ is evaluated to Θexp = 0.72 rad1/2 N1/2, and
the agreement is again very satisfactory.

3.5.1 Long tail analysis and saturation effect

To check the robustness of our approach we proceed by modifying the structure of the robotic
fish with a longer and more rigid tail (figure 3.20). The coefficients K1, Ω and ∆φ remain the
same since they characterize the servomotor only, but ω0, ξ, K2 and Kα′′ are expected to vary
due to a change of the fluid-structure interaction.

14

Figure 3.20: Robotic fish with a longer and more rigid tail.

We follow the same procedure to find the coefficients (figure 3.21) and we obtain ω0 = 7
s−1, ξ = 1.3, K2 = 0.7 and Kα′′ = 0.020 N.rad−1.s2.
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Figure 3.21: Long tail analysis. a) α0 as a function of f for three values of Φ (0.24, 0.94 and 1.65
rad from bottom to top). The solid lines are the prediction of the model with the parameters
ω0 = 7 s−1, ξ = 1.3 and K2 = 0.7. b) F0 as a function of α0ω

√
ω2 + (ξω0)2. The solid line is

the line of best fit with Kα′′ = (20.3± 0.3) · 10−3 N.rad−1.s2 as the proportionality constant.
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The results of the experiments performed with both the regular and long tails are reported
in figure 3.22. We observe that γc is higher and ωc is smaller for the long tail. For the long tail,
comparison with the model again gives a very good agreement, at least up to γ = 2.5 rad.N−1.
Beyond that, both α0 and ω seem to saturate. Actually this feature had already been observed
for the regular tail and γ > 1.8 rad.N−1. To describe this feature we need to account for another
limitation of the servomotor: the angle φ is restricted to the range [−π/3 rad, π/3 rad]. We can
account for this limitation in the model and achieve a better match between the model and
experiments.
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Figure 3.22: Comparison of the angular amplitude, a), and frequency, b), as functions of γ for
the two tails. Blue circles and orange squares represent the regular and long tails, respectively.
Solid lines hold for the model with (thick) and without (thin) saturation. The perturbative
approach is represented by the dashed lines.
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Figure 3.23: Comparison of the angular amplitude, a), and frequency, b), as functions of γ
for different values of the coefficient cy. Blue circles correspond to experiments. The model is
calculated with cy = 0 (black), 0.005 (gray), 0.01 (red), 0.05 (green) and 0.1 (orange).

3.5.2 Effect of the quadratic drag in the transverse force expression

As discussed above, a nonlinear term accounting for the transverse pressure drag might be
expected in the sensing stage 3.4.4 because of the high value of the Reynolds number charac-
terizing the lateral oscillations. This term writes −cyρL4α′|α′| with ρ = 1000 kg.m−3, L = 10
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cm and cy a dimensionless coefficient we expect to be small. The comparison between the ex-
perimental data, the model without quadratic drag and several simulations with small values
of the coefficients cy is shown in figure 3.23. The introduction of this nonlinear drag does not
change the threshold nor the angular frequency at γc, as these quantities are issued of a linear
stability analysis. Taking cy ∼ 0.05 slightly improves the matching between the model and the
experimental data at high α0 values.

3.6 Swimming driven by the proprioceptive loop

To conclude on the capacity of the proprioceptive loop to induce locomotion, we have submitted
the robotic fish to an imposed fixed velocity flow into the water tunnel. Following Garrick [101]
we expect the thrust T to scale as Fy · α in the small amplitude regime. For a harmonic signal
α = α0 sin(ωt), we expect the mean thrust T = −Fx(t) to be positive and proportional to α2

0ω
2

from equation 3.4.4. Note that the α′ term in this equation is π/2-shifted so that α′(t)α(t) = 0.
The proportionality between T and α2

0ω
2 is tested experimentally by imposing a harmonic signal

to φc, as in equation 3.4.3. Several values of Φ and ω, in the ranges [0, 1.9] rad and [0, 8.8] s−1

respectively, were tested and results are given in figure 3.24. There is a very good linear relation
between both quantities. This result is in agreement with previous measurements performed in
a former study [15] as well as data obtained with foils [30, 31,139].
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Figure 3.24: Measurement of the mean thrust T for a harmonic forcing of the wheel angle
at amplitude Φ and frequency ω. The angle α0 is directly measured in the images. The
experimental points are shown as disks, and the linear fit is the thick line.

To determine the drag coefficient of the robotic fish, we measure the mean longitudinal
force Fx felt by the sensor keeping the fish at rest, α = 0, during this set of experiments. We
then impose a flow in the water tunnel varying the velocity U from 0 to 0.11 m.s−1. Given
the orientation of the x-axis, Fx is positive in this case. As we are dealing with high Reynolds
numbers we expect this drag force to be proportional to U2, a tendency which is confirmed in
figure 3.25. Assuming that the pressure drag is:

Fx = ρCdL
2U2,

the best interpolation gives Cd = 0.254± 0.004 with ρ = 1000 kg.m−3 and L = 10 cm.
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Figure 3.25: Mean longitudinal force, Fx, as a function of the water tunnel velocity, U , for
α = 0. Inset: log-log plot of the same data.
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Figure 3.26: a) Fx as a function of U for γ = 1.06 rad.N−1 following the first protocol. The swim-
ming velocity for this particular value of γ is indicated with the horizontal line. b) Swimming
velocity U as a function of γ obtained with the first (squares) and second (circles) protocols.
See the main text for the protocols definition.

As the device is attached to the force sensor, the cruising velocity of the swimmer can be
measured by zeroing the value of the longitudinal force Fx with the tuning of the inflow velocity.
For a swimmer in motion, the locomotion velocity is reached when the propulsive and resistive
components of the total force applied on the swimmer compensate each other. For γ > γc, the
oscillation of the tail triggers a net thrust. At the same time the robotic fish is immersed in a
water channel, the velocity of which can be varied between 0 and 0.11 m.s−1, and is subject to
a net drag force. The swimming velocity is measured with either of two protocols. In the first
protocol, γ is fixed to a given value and the velocity of the water tunnel is increased progressively.
The average longitudinal force Fx probed by the sensor is initially negative, increases with the
velocity U and finally becomes positive. The swimming velocity corresponds to the transition
from negative to positive values (figure 3.26a). In the second protocol, U is fixed and the initial
force is positive. γ is increased and the force transits from positive to negative values. In that
case, the γ that corresponds to this transition is associated with the swimming velocity U . Both
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protocols give coherent results that are summarized in figure 3.26b.
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Figure 3.27: Swimming velocity U as a function of the proprioceptive feedback parameter γ.
The experimental points are shown. The curve represents the fit U ∼ 0.14

√
γ − γc in SI units.

In figure 3.27, we show the swimming velocity dependence as a function of the feedback
parameter γ. We now compute a first-order approximation for the thrust. This quantity results
from the projection of the normal force to the fin toward the x axis [101]. Assuming a harmonic
motion, α and α′ are π/2 phase shifted and the term in α′ does not contribute to the thrust.
Only added mass effects are relevant and the average thrust equals

α(t)Fy(t) '
Kα′′ω

2α2
0

8
' Kα′′ω

2Θ2

8
(γ − γc).

By balancing the thrust with the typical drag, which is dominated by the pressure drag CdρU
2L2

we determine that the velocity scales as

U ∼
√

Kα′′

8CdρL4
ωLΘ

√
γ − γc ∼ 0.17

√
γ − γc,

with SI units, and the order of magnitude of the proportionality constant is in good agreement
with that obtained in experiments. This relation is a consequence of the simple force balance
and consequently retrieves the constancy of the Strouhal number ωLα0/(2πU), around 0.3 for
Reynolds numbers larger than 3000 [12, 24, 140]. The fact that both α0 and ω are functions
of γ does not modify this balance, so that tuning γ gives a direct control over the swimming
velocity.

3.7 Conclusions

Sensing the environment and the sense of proprioception result to be very important in the
locomotion of swimmers. Therefore, we have hypothesized that a feedback closed-loop system
relating information from the environment to the swimmer’s deformation is a fundamental
element to consider in swimming.

We have proposed a mechanism for driving bioinspired fish swimming locomotion based
on proprioceptive sensing. Proprioception provides information about and representation of a
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body’s position, motion, and acceleration in addition to the usual five senses. We hypothesize
that a feedback loop based on this “sixth” sense results in an instability, starting the locomotion.
In order to test our assumptions, we have introduced a generic model for describing swimming
driven by proprioception. Beside the general framework we have introduced, we have developed
a simple experiment that enabled us to validate the idea that underwater swimmers might select
their amplitude and beating frequency using mechanical sensors. Our simple model permits the
realization of a tractable experiment; beside its simplicity, it is shown to have excellent predictive
capabilities.

These results are published in Physical Review Letters [183].
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Chapter 4

Optimization of oscillatory gaits

4.1 Introduction

In the previous chapters, we have extensively characterized and discussed the fluid-structure
interaction that appears between the swimmer and its environment. In fact, in chapter 2,
we calculated the forces exerted by the fluid on the swimmer within a linear framework for
any movement of the swimmer. The calculation of forces allows the knowledge of the swimming
velocity as a function of the system’s physical parameters via the solution of Newton’s equations.
However, for an organism, the swimming speed is nothing more than a response to the complex
situations it has to face: mating, migrating, escaping from a predator, hunting for food. In each
of these situations and many others, the animal’s behavior is different and is manifested by
choosing different body dynamics to achieve different objectives. An activity such as migrating
is not comparable to another, such as hunting. At the same time, in the former, the animal
must travel long distances without faltering; in the latter, it is expected to move quickly, during
a short time, with which it can surprise and catch its prey. In these two situations, the aim
is to optimize a different quantity: in the first, the objective is to keep energy expenditure as
low as possible [184–186] while in the second, an explosive movement with the fastest possible
speed is expected.

Both magnitudes (velocity and energy) are closely related, and therefore it is of interest
to know how they behave as a function of each other. One way to observe how close this
relationship is consists in identifying the activity levels of a specimen. Unfortunately, activity
levels in swimming fish are often difficult to characterize [187–189] due to the number of external
factors that can affect a swimmer’s performance, as well as the individual’s own preparation
and the variety of experimental devices, which only complicates the comparison between the
different results obtained [21,190–194].

However, in some species, it has been possible to establish a clear pattern and differentiated
performance levels, as in the case of salmon [189,195,196]. Brett found three different scenarios
by measuring how long the animals were able to maintain a given swimming speed before
becoming fatigued and stopping completely, which are depicted in figure 4.1. These three
regimes are defined by the time the organisms are able to maintain a given speed. For reduced
speeds, the animal develops a sustained activity and can swim at these speeds for extended
periods (on the order of several hours). In prolonged exercise, characterized by a higher range
of speeds, the animal can maintain its performance for one or two hours but eventually becomes
fatigued. Finally, the animal may develop an explosive phase, burst activity, at very high speeds
at the cost of maximum effort for a minimal amount of time (about 30 seconds).

77
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Figure 4.1: Activity levels of sockeye salmon and rainbow trout. Transition zones are represented
by broken lines. From Wu [33].

A higher swimming speed leads to faster fatigue, which needs no remarkable intuition:
anaerobic exercises are more intense and shorter in duration than aerobic ones [197]. However,
in addition to qualitative deductions, it is necessary to mathematically relate the swimmer’s
energetic variables to the swimming speed and the forces they are able to exert. One of the
measures that allows us to establish a relationship between the conversion of total energy into
kinetic energy of the swimmer is the Froude efficiency, η [31, 33,87]:

η =
U T

P
,

where T is the mean net thrust that propels the animal, U is the mean swimming velocity and
P is the mean power input required to create the thrust. Certain definitions use the drag force
D instead of T , since in the animal’s stationary swimming regime, both forces are assumed to
balance and therefore T = D. A similar definition contemplates expressing the numerator as
UT , the average of the propulsive power. However, considering that the swimming velocity is
usually a constant quantity perturbed by small terms, both definitions give similar estimates.
Power, in this case, might be taken as the mechanical power to produce the oscillations or the
metabolic power of the organism. However, both quantities are not equal since the mechanical
power to create the lateral oscillations will depend on the animal’s muscular power, which, in
turn, depends on the power given by the metabolism. The measurements of the metabolic
rate of an aquatic animal are based mainly on the consumption of oxygen when it develops an
activity [76]. Furthermore, metabolic power is strongly influenced by a myriad of factors such
as sex and age of the specimen, preparation prior to the experiment, environmental factors,
etc. [198]. There exist, however, scaling laws relating metabolic expenditure to swimmer mass
(or length). Kleiber’s law is one of the most representative, showing that for the majority of
animals, the metabolic rate scales as W 3/4, being W the mass of the animal [199]. Explanations
about this exponent rely on the transport of essential materials through fractal networks of
branching tubes [200].
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Another widely used measure of the energy expenditure of an organism is the so-called cost
of transport, COT , defined as the energy used to move an animal over a distance d and which
can be expressed as [32,34]:

COT =
E

d
=
P

U
,

where E, d, P and U correspond to the variables metabolic energy, distance, metabolic power
and velocity, respectively. Analogous definitions include in the denominator of the expression
the mass of the animal [201], or the acceleration of gravity, g = 9.81 m.s−2, to make the
quantity dimensionless [33]. This quantity is more convenient to represent the swimmer’s energy
expenditure as it does not involve the animal’s thrust, a magnitude that may be ambiguous as
there is no single method to determine it [202].

12

Figure 4.2: Left: snapshots of two swimming dynamics for two different swimming speeds.
Right: three tail-tip kinematics extracted from actual swimmers. From Li et al. [201].

The COT turns out to be a very interesting quantity because, by examining the energetic
expenditures of a swimmer, it can give us some insights on what should be its optimal speed to
perform this [203]. Although we can determine the speed that optimizes the COT , we still lack
essential information about the dynamics of the fish itself, i.e., the body movements it performs
to obtain this speed. Considering that the scaling law of the swimming speed depends on the tail
beat amplitude and frequency, calculating an optimal speed does not adjust both parameters,
and we have an endless number of possibilities. However, understanding the behavior of the
COT could make us go further; the measurement of energetic efficiency could also give us clues
to determine which are the most efficient gaits in biological swimmers. Or even proceeding
backward, choosing the speed and power produced by one type of oscillation could give us clues
to investigate how a given gait is energetically desirable compared to others.

It is, in fact, the latter strategy that is used to explain why certain fish choose an intermittent
swimming dynamics, known as burst-and-coast (or kick-and-glide), which consists of cyclic
bursts of swimming movements followed by a coast phase in which the body is kept motionless
and straight [203]. An example of this swimming dynamic can be seen in the first sequence
of the figure 4.2, where the swimmer oscillates its tail for a time Tburst and then keeps its tail
totally immobile during another phase of duration Tcoast [201]. Intermittent swimming predicts
an energy savings of 50% if this strategy is used instead of steady swimming with the same
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average velocity [204–206], verifying that for a given swimming velocity, the burst-and-coast
strategy corresponds to a gait that minimizes the global cost of transport [201]. Therefore, it
is essential to establish the relationship between the different body movements that a swimmer
can perform and the speeds derived to compare and judge which of them is more efficient.

4.2 Setting the model up

Since our objective now is not to perform a thorough characterization of the existing fluid-
structure interaction but rather to develop simple models where we characterize the swimming
speed as a function of the tail behavior, we will oversimplify the fluid-structure interaction and
write that thrust or propulsive force of the animal is dominated by the added mass acceleration:

T = −CThα(t)α′′(t),

with CTh the dimensional thrust coefficient. This simplification assumes that swimming ve-
locities might be considered small in order to neglect the terms α2 and αα′ in equation 2.4.1
[100,101].

Considering again Reynolds numbers greater than Rec ∼ 3000, where pressure drag domi-
nates skin friction [24], the modulus of the drag force reads:

D = CDu(t)|u(t)|,

with CD the dimensional drag coefficient.
Newton’s second law, in this case, is written as:

mu′(t) = T −D = −CThα(t)α′′(t)− CDu(t)|u(t)|, (4.2.1)

where m is the animal’s mass.
This equation is specially adapted to describe swimming in the steady-state since Theodorsen’s

approach has been designed for a finite stream velocity. The model is robust with respect to the
unsteadiness but is expected to be less precise in the transient regime. The system is written
in a single dimension; we consider at all times that the swimmer can only move in a straight
line. The equation 4.2.1 is made dimensionless if we introduce a time, tc, and a characteristic
length, lc. We note:

x = lcx̃, t = tct̃, u =
lc
tc
ũ,

where ·̃ · · denotes the dimensionless variables and we write:

mlcũ
′(t̃) = −CThα(t̃)α′′(t̃)− CDl2c ũ(t̃)|ũ(t̃)|.

By writing the characteristic length as:

lc =

√
CTh
CD

,

we write equation 4.2.1 in which only one parameter appears:

Mũ′(t̃) = −α(t̃)α′′(t̃)− ũ(t̃)|ũ(t̃)|.

with M a parameter that weights the inertia of the system and is expressed as:

M =
m√
CThCd

To set up the differential equation, we need the expression of α(t) and its second derivative.
This is precisely what we will seek next; we will characterize the swimmer’s swimming speed
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from these already prescribed quantities. We distinguish from now on two possible ways of
controlling the swimmer’s dynamics: one of them, somewhat idealized in which we assume
that all or some of the dynamical variables only take discrete values and which corresponds to
discrete control, and the other we will call continuous control, where the continuity of all the
variables is mandatorily required.

4.2.1 Acceleration control by impulses

Here we investigate the control over a quantity that can only take discrete values. In the first
place, the control hypothesis is made on the angular acceleration, α′′, since the simplest case of
control of the dynamics of a swimmer might be seen as one where there are only three possible
actions to take: a positive angular force, a negative one and a zero one. Consequently, the
variables α and α′′ are not always differentiable quantities in the classical sense. Therefore, the
applied angular acceleration, not dimensionless, in this framework is written as:

α′′(t) = Γ
∑
i=0

εiδ(t− i∆t),

with εi = 0,+1,−1 corresponding to standing by, adding or retrieving an elementary angular
force Γ, respectively. δ(t) corresponds to Dirac delta function, which is applied at every interval
of time ∆t.

The function δ(t) represents what is known as a distribution or generalized function [207],
which takes the value 0 at all t except at the value t = 0 and whose integral over an interval
that includes the origin is worth unity. Such a function can be approximated by taking the
limit of specific functions that we easily construct:

δ(t) ≡ lim
σ→0

1

σ
√

2π
e−

t2

2σ2 .

Appropriately choosing the characteristic time defined above, tc = Γ−1/2, the control equation
of α′′ is:

α′′(t̃) =
∑
i=0

εiδ(t̃− i∆̃t).

To lighten the notation, we get rid of the variables with a tilde. So from now on, all the variables
we deal with in the discrete case are dimensionless.

First, since accelerations occur discontinuously with positive, negative, or zero unitary
pulses, we think that a first model of dynamics is one where negative and positive pulses
alternate in time, to establish a periodical structure in the acceleration, that is to say:

α′′(t) =

n∑
i=0

(−1)b
t−∆t/2

∆t
cδ(t− i∆t) (4.2.2)

where btc is the floor function which takes as input a real number t and gives as output the
greatest integer less than or equal to t and ∆t is the time between two consecutive δ.

Being interested in the average velocity and in the variations of the velocity over time, we
will solve the equation in the steady-state. This means that the transient regime where the
speed starts from any value until it converges to a state where the variable becomes periodic is
not solved. This greatly simplifies our calculations, and in addition, we lose little information
since we also know that the behavior of the swimming is not as well described in the transient
regime as in the steady-state [142].

For the calculation of velocities, we discretize the system. We assume that all variables can
be labeled at the points i∆t where the function δ acts, as depicted in the figure 4.3. At each of
these points, the velocity, displacement, and angular velocity are represented by ui, αi, and α′i,
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respectively. The green line indicates all the instants in which the angular acceleration is zero;
therefore, αα′′ = 0.
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Figure 4.3: Scheme of the discretized forcing. The red arrows represent positive impulses, while
the blue one corresponds to a negative impulse. The green line corresponds to times where the
thrust force is 0.

Between two consecutive ∆t, the equation we have to solve for the velocity is:

Mu′(t) = −u(t)2,

with the initial condition u(i∆t) = ui. We find that the solution of the equation is:

u(t) =
Mui

M + ui (t− i∆t) . (4.2.3)

Likewise, since the angular acceleration is zero in this space, the angular variable reads:

α(t) = αi + α′i (t− i∆t) .

We observe that the tail movement describes triangular signals with period 2∆t, as it could
not be otherwise. The angular velocity, on the other hand, is a square signal of the same
period. Both functions are not derivable in the usual sense, but they are in the sense of the
distributions. Actually, we show that the values of α′i are already prescribed and this is not a
variable parameter of the system. If we integrate the angular acceleration in a neighborhood of
a point i∆t: ∫ i∆t+ε

i∆t−ε
α′′(t)dt = α′(i∆t+ ε)− α′(i∆t− ε) = εi

because α′′(t) = εiδ(t− i∆t). εi is, as we defined previously, a parameter taking the values +1
or −1 depending on how we defined the sequence of impulses in equation 4.2.2:

εi =

{
−1, if 0 < mod(t, 2∆t) < ∆t

1, if ∆t < mod(t, 2∆t) < 2∆t
=

{
−1, if i = 2m

1, if i = 2m+ 1
,

with m ∈ N0, representing the ensemble of natural numbers including 0.
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This calculation shows that the angular velocity is a discontinuous quantity and that the
difference between values when an impulse is applied may be 1 or −1:

α′i − α′i−1 = εi.

For symmetry arguments (intervals between impulses are constant in time) and keeping in mind
that the average of the angular velocity should always be 0 (otherwise we would have a drift in
α and it would no longer be periodic) the natural condition α′i has to fulfill is:

α′i = −α′i−1,

which implies:

α′i = εi
1

2
.

αi is shown to have a relationship with α′i. Actually, if we suppose that α is a periodic function
with zero average, taking α(i∆t) = αi it is clear that for α((i + 1)∆t) we must find the same
value αi but with opposite sign. That is, we have:

α((i+ 1)∆t) = αi+1 = αi + α′i∆t = −αi,

which gives us a relation between αi and α′i:

αi = −α
′
i∆t

2
= −εi∆t

4
. (4.2.4)

A typical evolution of the angle and angular velocity is shown in figure 4.4.
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Figure 4.4: Dynamics of a) the tail angle α and b) angular velocity α′ for a period 2∆t = 1.

To compute the maximum velocity, which appears just after applying a unit impulse in the
acceleration, it may be convenient to rewrite the equation of motion:

Mu′(t) = −α(t)α′′(t)− u(t)2.

And integrate in a neighborhood of a point i∆t:

M

∫ i∆t+ε

i∆t−ε
u′(t)dt = −

∫ i∆t+ε

i∆t−ε
α(t)α′′(t)dt−

∫ i∆t+ε

i∆t−ε
u(t)2dt,

with ε� 1.
The first of the integrals is immediate and its result is:

M

∫ i∆t+ε

i∆t−ε
u′(t)dt = M (u(i∆t+ ε)− u(i∆t− ε)) = M∆u(i∆t),
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where ∆u is the velocity jump, this is, the difference between the velocity values before and
after applying the acceleration impulse, which shows that u may be potentially discontinuous.
The second integral is easily performed, taking into account one of the fundamental properties
of the Dirac delta function:

−
∫ i∆t+ε

i∆t−ε
α(t)α′′(t)dt = −εiα(i∆t) = −εiαi,

because α′′(t) = εiδ(t− i∆t).
Finally, the third integral is solved directly and gives:

−
∫ i∆t+ε

i∆t−ε
u(t)2dt = − 2M2u2

i ε

(M − uiε)(M + uiε)
,

that vanishes in the limit ε→ 0.

Therefore, in this limit, the equation of motion reduces to:

M

[
lim

t→i∆t+
u(t)− lim

t→i∆t−
u(t)

]
= M∆ui = −εiαi.

We rewrite the velocity jump, ∆ui, using the equation 4.2.3:

M

(
ui −

Mui
M + ui∆t

)
= −εiαi.

And taking the expression 4.2.4 for αi we obtain for the maximum velocity:

ui = umax =
∆t+

√
16M2 + ∆t2

8M
.

The minimum velocity is defined as the speed of the swimmer just before applying the δ function.
Again using the equation 4.2.3, this quantity is easily computed:

umin =
Mumax

M + umax∆t
.

The average velocity in this formalism is obtained by integrating the solution over one period:

U =
1

∆t

∫ (i+1)∆t

i∆t

Mumax

M + umax(t− i∆t)dt =
1

∆t
M log [M + umax(t− i∆t)]

∣∣∣∣(i+1)∆t

i∆t

=
M

∆t
log

[
M + umax∆t

M

]
=
M

∆t
log

1 + 8
(
M
∆t

)2
+

√
1 + 16

(
M
∆t

)2
8
(
M
∆t

)2
 .

There is only one fundamental parameter in this expression, the ratio between M and ∆t. The
mean swimming velocity is plotted as a function of the parameter M/∆t in figure 4.5. The
maximization of the swimming velocity is obtained when M/∆t tends to ∞, which, if we fix
the swimmer’s inertia M , might only be accomplished if the duration ∆t between two impulses
is negligible. In this limit, ∆t → 0, the three speeds coincide and are equal to a finite value
(figure 4.5):

lim
∆t→0

U = umax(0) = umin(0) =
1

2
.



4.2. Setting the model up 85

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

M / Δ t

U

Figure 4.5: Mean swimming velocity as a function of the ratio M/∆t. The orange line corre-

sponds to the asymptotic limit of the mean velocity
1

2
.

Taking the opposite limit, i.e., the one where the time interval between two pulses is very
long, ∆t → ∞, we find a different and unphysical situation: maximum velocity diverges and
minimum and mean velocity tend to 0. Furthermore, we may find huge values of αi. According
to equation 4.2.4, there exists a linear relation between αi and ∆t, so larger ∆t will cause the
divergence of αi, which is not physical since the amplitude of oscillations must remain bounded
below a biological limit, αi,max. The relation between this limit and the maximum period is:

∆tmax = 4αi,max,

so ∆t should always be smaller than this maximum value 4αi,max.
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Figure 4.6: Numerical simulations of the swimming velocity u, in blue, as a function of time
t. Time between pulses is ∆t = 0.5. The theoretical maximum and minimum velocities are in
orange and green, respectively, which characterize the steady-state of the swimming velocity.
We also show the predicted transient regime.
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Let us suppose that the swimmer’s aim is to maximize the average velocity. In that case, we
show that the best option is to perform movements very close together, without allowing much
time to pass between two, as we might intuitively think. An example of locomotion with this
tail dynamics is shown in figure 4.6, where we present the temporal evolution of the velocity
until it reaches its stationary state, as well as the maximum and minimum velocities expected
in this regime.

4.2.2 Acceleration control by constant piecewise functions

Although it is easily tractable and gives rise to non-zero locomotion velocities, this first model is
somewhat inaccurate for certain limits, especially that of ∆t→∞, showing a divergent velocity
and zero average velocities. In order to make it more realistic, we will increase the complexity
level by giving more freedom to the system. In our previous framework, accelerations could
only be applied at particular times marked by the ∆t parameter. As we have shown, setting
this parameter to 0 maximizes the average velocity, an objective that can be very desirable
in some situations. To incorporate this fact, let us assume that now the accelerations only
take the same three values, one positive, one negative, and one null. Still, now they extend
continuously in time (technically, what happens is that the mean time between two accelerations
is negligible compared to the order of magnitude of the time of the oscillation) arbitrarily. To
illustrate this behavior, we proceed as in figure 4.7, where the acceleration of the swimmer
can be written dimensionless by choosing the same characteristic time, tc = Γ−1/2, that in the
previous subsection:

α′′(t) =


−1, if 0 < mod(t, τ) < a1τ,

1, if a1τ < mod(t, τ) < a2τ,

0, if a2τ < mod(t, τ) < τ,

with τ the period of the motion and a1, a2 two parameters less or equal than unity which are
used to model what fraction of the period is occupied by one of the accelerations and which
satisfy a1 ≤ a2.

0 a1 τ a2 τ τ

-1

0

1

t

α
′′

Figure 4.7: Discontinuous angular acceleration over an oscillation period τ .
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Note that the order of the acceleration signs in the configuration has been chosen randomly,
and the ordering could have been different. Our only interest is to show that each of the piecewise
accelerations acts on the system for a particular non-zero time which is a fraction of the total
period of the motion. Of course, more complicated configurations could have been proposed
by adding more stages; however, for the sake of simplicity, we chose the most straightforward
model where each step appears only once.

If we integrate α′′(t) in one period, the solution writes:

α(t) =


α1(t) = −1

2 t
2 + C1t+ C2, if 0 < mod(t, τ) < a1τ,

α2(t) = 1
2 t

2 + C3t+ C4, if a1τ < mod(t, τ) < a2τ,

α3(t) = C5t+ C6, if a2τ < mod(t, τ) < τ,

(4.2.5)

with C1, C2, C3, C4, C5 and C6 integration constants determined by the conditions that we
now settle.

Since we describe the period dynamics of the tail of a swimmer, we need on the one hand
to impose the continuity of α over the whole period, that is:

α1(a1τ) = α2(a1τ), α2(a2τ) = α3(a2τ).

Likewise, the angular velocity must be continuous as well:

α′1(a1τ) = α′2(a1τ), α′2(a2τ) = α′3(a2τ).

If we also require periodicity in α and α′ we must demand:

α1(0) = α3(τ), α′1(0) = α′3(τ).

In matrix form the system is written as:

a1τ 1 −a1τ −1 0 0
1 0 −1 0 0 0
0 0 a2τ 1 −a2τ −1
0 0 1 0 −1 0
0 1 0 0 −τ −1
1 0 0 0 −1 0





C1

C2

C3

C4

C5

C6

 =



a2
1τ

2

2a1τ

−a2
2τ

2

2
−a2τ

0
0


.

However, this system is inconsistent, i.e., there is no solution for any value of the parameters.
In fact, if we calculate the rank of the coefficient matrix and the augmented matrix, we see
that these values are 5 and 6, respectively, making it impossible to solve the system. The row
echelon form of the augmented matrix is:

a1τ 1 −a1τ −1 0 0 a2
1τ

2

0 −1 0 1 0 0 a2
1τ

2

0 0 a2τ 1 −a2τ −1 −a
2
2τ

2

2

0 0 0 −1 0 1 −a
2
2τ

2

2

0 0 0 0 −τ 0 a2
1τ

2 − a2
2τ

2

2
0 0 0 0 0 0 a2

2τ
2 − 2a1a2τ

2


.

Then the ranks of both matrices (and therefore the possibility that at least one solution exists)
are equal if and only if:

a2 = 2a1.
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The solution a2 = 0 is automatically discarded as this would imply a1 = a2 = 0 and therefore
zero acceleration over the whole period, giving rise to no thrust force.

Surprisingly, a discontinuous acceleration as shown in the figure 4.7 is possible if and only if
each of the discontinuous stages has exactly the same duration. The values of a1 and a2 cannot
be arbitrary if we require the displacement and velocity to be continuous and periodic. The
solution of the system with a2 = 2a1 is:

C1 = a2
1τ, C3 = (a1 − 2)a1τ, C4 = C2 + a2

1τ
2,

C5 = a2
1τ, C6 = C2 − a2

1τ
2.

The system has infinite solutions as we present it here; the solutions of the coefficients Ci 6=2

depend on the parameter C2 and, a priori, this can take any value since we do not have an
additional bound. In order to resemble a little more to the biological swimmers and taking into
account that the locomotion is performed only in one direction, we will impose as a constraint
that the average of α in one period must be zero, otherwise the fish could turn and explore
a two-dimensional space that is not defined in our equations. Representing the average of a
quantity as:

〈X(t)〉 =
1

τ

∫ t+τ

t
X(t)dt,

the condition we add is 〈α(t)〉 = 0, which implies that C2 must obey the following equation:

C2 =
1

2
a2

1 (1− 2a1) τ2.

The condition 〈α(t)〉 = 0 is not critical in the sense that it does not affect the calculation of the
mean velocity, as we will see later. Typical oscillations are shown in figure 4.8. Here we also
calculate the maximum values of the oscillation as a function of the parameter a1:

αmax =
1

2
(a1 − 1)2a2

1τ
2. (4.2.6)

For fixed τ oscillation periods, this amplitude is maximized at a1 = 0.5. However, the value
αmax does not take any values because there are biological limits. The value at which most
biological swimmers swim is usually around 0.1 [21, 25, 38, 133]. This limit imposes a relation
between the period τ and the fraction time a1:

τ =

√
2αmax

|(a1 − 1)a1|
. (4.2.7)
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Figure 4.8: Angular amplitude as a function of time. a) For a1 = 0.5 and τ = 2. b) For
a1 = 0.25 and τ = 2. Orange lines represent ±αmax.
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With all the integration constants calculated, we finally proceed to compute the swimming
speed:

Mu′(t) = −α(t)α′′(t)− u2(t).

However, solving this differential equation with the dynamics prescribed by 4.2.5 is not straight-
forward and, although it can be solved analytically, the solution overshadows the correct physical
interpretation of the results. Therefore, instead of solving for the whole time interval and since
we are mainly interested in the behavior of the average locomotion velocity in the stationary
regime, we proceed to calculate the average speed in this framework. For this purpose, we
assume that in the stationary regime, u(t) can be decomposed as follows:

u(t) = U + δu(t), (4.2.8)

with U the average velocity we intend to calculate and δu(t) the fluctuations around this equi-
librium state which also satisfy:

δu(t)� U, 〈δu(t)〉 = 0.

The requirements for this hypothesis to be valid rely on the values of τ and M : increasing the
period τ implies increasing the amplitude of the oscillations according to the equation 4.2.6.
The larger the period is, the more significant the fluctuations will be due to the relation between
amplitude and period. For the parameter M , a small value will give rise to big fluctuations
because we will almost have u(t)2 ∼ −α(t)α(t)′′ and so the velocity will oscillate as the product
α(t)α(t)′′. Introducing the above decomposition 4.2.8 in the equation of motion, we obtain:

Mδu′(t) = −α(t)α′′(t)− U2 − 2Uδu(t)− δu(t)2.

If we average the whole equation, taking into account that the average velocity fluctuations are
zero and that this quantity is also small compared to the velocity, we find that the average
speed reads:

U2 = 〈−α(t)α′′(t)〉.
Here we see that if we replace α(t) by α(t) + α0, with α0 a constant, the average velocity does
not change because:

〈−(α(t) + α0)α′′(t)〉 = 〈−α(t)α′′(t)〉 − α0〈α′′(t)〉,

and the average of α′′(t) is identically 0. Injecting the expression of α and α′′ in U2 we finally
get:

U2 =
1

3
(2− 3a1)a3

1τ
2. (4.2.9)

The numerical solution of the motion equation for two different values of a1 is shown in figure 4.9,
as well as the value of the mean velocity predicted by equation 4.2.9, exhibiting an excellent
agreement. It is easy to show that the mean velocity reaches a maximum when a1 = 0.5,
which may be somewhat intuitive since this parameter cancels the null acceleration zone of the
formalism, allowing there to be a thrust force −αα′′ throughout the whole period of oscillation.
The maximum value of the average velocity is:

U =
1

4
√

3
τ.

The last calculation considered that both τ and a1 are independent quantities. If we consider
the constraint imposed by equation 4.2.7, the expression 4.2.9 may be written as:

U2 = αmax
2(2− 3a1)a1

3(a1 − 1)2
,
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where we have decided to explicit the dependence on a1 and the constant value αmax. An anal-
ogous expression with τ instead of a1 may also be considered if we already know the maximum
amplitude value.
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Figure 4.9: Numerical solution of the swimming velocity in function of time. a) For a1 = 0.5
and τ = 2. b) For a1 = 0.25 and τ = 2. In both simulations M = 1 and the initial condition is
u(0) = 0. We plot in orange the theoretical prediction of the mean swimming velocity.

4.2.3 Amplitude control in a relaxation dynamics

A control in torques (via choosing the values of the angular acceleration) has proved fruitful
in allowing us to calculate all the kinematic variables of the swimmer, as well as its average
propulsive velocity, which we have optimized thanks to handling the expressions that we have
derived. This type of control is very suitable for a theoretical treatment since, assuming instan-
taneous and perfectly characterized accelerations, it is possible to proceed backward integrating
to know the other variables of interest. Another alternative, much more realistic and more
adapted to experimental devices’ control, is to directly regulate the angular motion that we
want the swimmer to follow. Again, we could assume an instantaneous α angle and know the
other variables by derivation; however, at a practical level, this can be complicated if we do not
have full access to the motion of the prototype. Furthermore, it is also necessary to describe the
device’s behavior as a function of the controller input. That is, to solve the system, we must
be able to relate the equation of motion that associates the control variables (input) with the
actual movement we want to study (output), which in this case is the dynamics of the tail of a
fish-like system.

As a practical example, we are interested in the control of the robotic fish described in
Appendix A, which we have already characterized in chapter 3. The equation of motion of the
tail was described as a nonlinear damped oscillator forced by the servomotor. Removing the
nonlinear dependence completely and calling αc the external forcing, we write the equation of
motion of α as:

α′′(t) + 2ξω0α
′(t) + ω2

0 (α(t)− αc) = 0.

The coefficient 2 in front of the dissipative term, which did not appear in the previous charac-
terization, has been added for ease of use in the equations below.

In this discrete formalism, the amplitude control can only command the instruction to send
the tail to specific amplitude values. To keep the treatment simple, we choose a rule such that
the desired control is to bring the tail to a maximum angle αmax, a minimum angle −αmax or
zero amplitude:

αc = +αmax,−αmax, 0.

We render t dimensionless and we scale α taking the following characteristic quantities:

t̃ = ω0t, α̃ =
α

αmax
,
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and the oscillator equation can be written in dimensionless form as:

α̃′′(t̃) + 2ξα̃′(t̃) +
(
α̃(t̃)− α̃c

)
= 0.

with the dimensionless control:
α̃c = +1,−1, 0.

Dropping tildes, the solution of the equation (with ξ 6= 1) is:

α(t) = Aet(−ξ−Ξ) +Bet(−ξ+Ξ) + αc,

with A and B integration constants and Ξ =
√
ξ2 − 1, which is a imaginary quantity if ξ < 1.

Suppose a period of oscillation is defined as τ . In this case, we may impose a positive amplitude
value a time a1τ (a1 ≤ 1), then a negative one up to a2τ (a1 ≤ a2 ≤ 1) and finally a zero
amplitude until the end of the period. Under this choice the angular variable reads:

α(t) =


α1(t) = C1e

t(−ξ−Ξ) + C2e
t(−ξ+Ξ) + 1, if 0 < mod(t, τ) < a1τ,

α2(t) = C3e
t(−ξ−Ξ) + C4e

t(−ξ+Ξ) − 1, if a1τ < mod(t, τ) < a2τ,

α3(t) = C5e
t(−ξ−Ξ) + C6e

t(−ξ+Ξ), if a2τ < mod(t, τ) < τ,

where the integrations constants are calculated such that α and α′ are continuous and periodic
functions:

C1 =
eτ(ξ+Ξ) − 2ea1τ(ξ+Ξ) + ea2τ(ξ+Ξ)

2
(
eτ(ξ+Ξ) − 1

)
Ξ

(ξ − Ξ),

C2 =
1− 2e(a1−1)τ(ξ−Ξ) + e(a2−1)τ(ξ−Ξ)

2
(
eτ(−ξ+Ξ) − 1

)
Ξ

(ξ + Ξ),

C3 =
eτ(ξ+Ξ) − 2e(1+a1)τ(ξ+Ξ) + ea2τ(ξ+Ξ)

2
(
eτ(ξ+Ξ) − 1

)
Ξ

(ξ − Ξ),

C4 =
1− 2ea1τ(ξ−Ξ) + e(a2−1)τ(ξ−Ξ)

2
(
eτ(−ξ+Ξ) − 1

)
Ξ

(ξ + Ξ),

C5 =
1− 2ea1τ(ξ+Ξ) + ea2τ(ξ+Ξ)

2
(
eτ(ξ+Ξ) − 1

)
Ξ

eτ(ξ+Ξ)(ξ − Ξ),

C6 =
1− 2ea1τ(ξ−Ξ) + ea2τ(ξ−Ξ)

2
(
eτ(−ξ+Ξ) − 1

)
Ξ

(ξ + Ξ).

(4.2.10)

Unlike the previous case, the problem is univocally determined by the conditions of continu-
ity and periodicity. Therefore, it is not necessary to impose any additional equation, which
causes that the angle α does not have to be zero on average. In fact, integrating the angular
displacement over a period, we obtain that the average is:

〈α〉 = 2a1 − a2,

which, surprisingly, depends neither on the period nor on the damping factor, simply on the
coefficients a1 and a2, which mark the control behavior in time. Figure 4.10 shows two tail
dynamics for different a1 and a2 period fractions, but satisfying 2a1−a2 = 0, with the parameters
ξ and τ set to 0.8 and 10, respectively. These are completely arbitrary values since what we
want to show is how the value of a2 affects the behavior of α, performing a motion very similar
to burst-and-coast (4.10a) or swimming continuously (4.10b). In our discrete formalism this is
the first time we see intermittent swimming appear, by letting the system tend for a long time
to αc = 0.
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Figure 4.10: Temporal evolution of α. a) For a1 = 0.1 and a2 = 0.2. b) For a1 = 0.4 a2 = 0.8.
The values of the parameters are ξ = 0.8 and τ = 10. In orange we show the target amplitude
as a function of time.

Analogously to our previous approaches, we optimize the average swimming speed. Under
the same hypothesis we outlined before, we can get rid of the derivative term of the evolution
equation by assuming that the swimming velocity may be decomposed into a mean and a fluctu-
ating part, the latter being much smaller than the former. Under these hypothesis, maximizing
the average swimming speed is equivalent to maximize the average thrust force 〈T 〉, except for
a multiplicative constant. The average thrust force is calculated as:

〈T 〉 =
1

τ

(∫ a1τ

0
−α1α

′′
1dt+

∫ a2τ

a1τ
−α2α

′′
2dt+

∫ τ

a2τ
−α3α

′′
3dt

)
,

whose expression is too lenghty to be shown here.
Analytically optimizing this expression is not possible. There are four parameters to vary,

and the relationship between them is strongly nonlinear. However, we can always find the values
that maximize the force numerically. First, we want to understand what should be the optimal
fraction of time that the control should develop to set the values of a1 and a2. To do this,
we systematically vary the values of ξ and τ in the function 〈T 〉 (ξ, τ, a1, a2) and calculate the
values of a1 and a2 that maximize 〈T 〉 under the constraints 0 ≤ a1 ≤ 1 and a1 ≤ a2 ≤ 1. The
intervals of variation of ξ and τ are:

ξ ∈ [0.01, 2.01] , τ ∈ [0.1, 20.1] .

We find the optimal values of a1 and a2 with the Mathematica software, using the Differential
Evolution method [208], which, although numerically more expensive, gives more robust results.
The algorithm sets the value a2 = 1 for all cases since this value overrides the instants where
the control wants to bring the tail to 0, which is a phase where the thrust is reduced. The
value of a1, however, is not fixed to 0.5 as would be expected by symmetry arguments, at least
not for all parameter values, as we show in figure 4.11. For increasing values of the oscillation
period and damping rates always less than unity, the optimal values of a1 are less than 0.5
4.11. The optimal values are strictly less than 0.5 because there is a symmetry 〈T (a1, a2 =
1)〉 → 〈T (1− a1, a2 = 1)〉; the zones where the control angle is +αmax and −αmax are perfectly
interchangeable in the sense that they will give the same thrust average force.
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Figure 4.11: Values of a1 achieving maximum thrust force as a function of ξ and τ .

Figure 4.12: Maximum average thrust as a function of ξ and τ .
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Once a1 and a2 are fixed, we have to ask ourselves which are the maximum values of thrust
〈T 〉max as a function of ξ and τ . By the above simulation, we obtained, in addition to the
optimal values of a1 and a2, the values of the maxima, which we show in figure 4.12. The
maximum values are small for high damping rates and increase progressively as this parameter
tends to 0. In addition, we observe three peak-like structures in the limit ξ → 0. These peaks
are provoked by a divergence of 〈T 〉max, caused by a resonance effect on the angle α. Actually,
if we examine the integration constants in equation 4.2.10 and look deeper in the denominator
of these expressions we see that this term is written as:

eτ(±ξ+Ξ) − 1,

which, in the limit ξ → 0 is equal to 0 if and only if:

τ = 2πm,

with m ∈ N. This explains the occurrence of peaks around 2π, 4π and 6π.

4.2.4 Continuous control

Unlike the previous case, where at least one of the control variables could only take specific
discrete values or even only act at certain times, which meant that in general, some of the
functions describing the dynamics of the animal were neither continuous nor differentiable in
the usual sense, we get rid of that problem henceforth. All the variables we are dealing with
now are continuous, differentiable, and there is no a priori limitation on the values that these
functions can take. Precisely this is a drawback in our calculations from now on. Moreover,
since there are no limitations, the choice between one behavior or another is more complicated.

We may think that a function describing the behavior of the swimmer’s tail will be optimal if
it is able to optimize some interesting quantity of the organism: the energy to develop economical
swimming or the thrust force if it intends to reach high speeds, for example. At first, the
animal’s energy will be an excellent quantity to optimize (minimize) to observe what should be
the temporal evolution of the angle α. The energy expended by the animal to go from point A
to point B may be written as:

E =

∫ tAB

0
P (t)dt,

where tAB is the time took by the swimmer to get from A to B and P (t) is the power supplied,
which for the sake of simplicity, we assume is simply the mechanical power.

Focusing only on this quantity, we calculate it utilizing the following expression:

P (t) ∼ Fy(t)α′(t),

with Fy the force applied by the swimmer on the fluid in its normal direction and α′ the angular
velocity of the tail.

Following Theodorsen’s formalism [100] and using the notation we used in chapter 3 we
write the normal force as:

Fy = Kα′′α
′′ +Kα′α

′ +Kαα.

Thus, the expression of the energy is written as follows:

E ∼
∫ tAB

0

(
Kα′′α

′′ +Kα′α
′ +Kαα

)
α′dt.

We realize that this quantity and the COT are defined up to a constant, which is the distance
d. To treat the problem simply, we may define it as a constant quantity or one that depends on
the length of the animal L but which does not change our optimization problem at all. A final



4.2. Setting the model up 95

hypothesis that is fundamental to solving the problem is to assume, without loss of generality
actually, that the time taken to travel a distance d that we are taking is an integer multiple of
the period of oscillation of the tail.

tAB = mτ,

with m a positive integer. Therefore the functions α, α′ and α′′ are periodic functions with
period τ .

The problem is then the optimization of the functional

I =

∫ τ

0

(
Kα′′α

′′ +Kα′α
′ +Kαα

)
α′dt,

where, by hypothesis, the functions are periodic. With this fundamental fact, this functional
can be drastically simplified. Let α(t) be a periodic function that can be developed in Fourier
series:

α(t) =
n=∞∑
n=−∞

cne
i 2π
τ
nt,

being cn the Fourier coefficients and i the imaginary unit.
Its derivatives are easily identifiable from this expression:

α′(t) =
n=∞∑
n=−∞

(
i
2π

τ
n

)
cne

i 2π
τ
nt, α′′(t) =

n=∞∑
n=−∞

(
i
2π

τ
n

)2

cne
i 2π
τ
nt.

Multiplying a function by its derivative, α · α′ for example, we have:

αα′ =
2iπ

τ
e

2iπ
τ
t
∑
n=1

cnc1−n +
2iπ

τ
e

4iπ
τ
t

(
c2

1 + 2
∑
n=2

cnc2−n

)
+ · · ·+ c.c..

In short, infinitely many terms multiplied by e±2iπnt/τ , all terms that integrated over a period
yield zero. Thanks to this calculation, the functional can therefore be written simpler getting
rid of the terms αα′ and α′′α′:

I =

∫ τ

0
α′2dt.

However, finding the minimum of this functional inevitably leads to finding the trivial solution
if we require periodicity to the function, as we have assumed, in addition to continuity and
differentiability. It is then necessary to solve the Euler-Lagrange equation with certain con-
straints, which we introduce employing the formalism of the Lagrange multipliers [209]. Since
what we want is to find a function that is not zero over the entire interval and that can take a
fixed amplitude, the constraint we impose is that the average angular displacement squared is
equal to a constant:

1

τ

∫ τ

0
α(t)2dt =

α2
typ

2
, (4.2.11)

with αtyp a typical amplitude of the motion.
Thus, the functional that we will finally optimize is given by the following expression:

I[α] =

∫ τ

0
F
(
α(t), α′(t)

)
dt =

∫ τ

0

(
α′2 + λα2

)
dt. (4.2.12)

with λ a Lagrange multiplier.
The candidate to extremize this functional has to fulfill that the first variation of the func-

tional I is zero, which implies that the integrand must satisfy the Euler-Lagrange equation [209]:

∂F

∂α
− d

dt

∂F

∂α′
= 0.
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Which for our system is simply:
α′′(t)− λα(t) = 0.

Equation that only offers periodic solutions if λ < 0. We write then:

α(t) = A sin(
√
|λ|t+ ϕ),

with A and ϕ integration constants.
Surprisingly, the function that extremizes the energy expended by the motion of the swimmer

subjected to the above constraint is a sinusoidal function, with period τ = 2π/
√
|λ| and where

the integration constants can be chosen appropriately as a function of the initial conditions.
It remains to check whether the function we have found indeed corresponds to an energy

minimum or not. Then, proceeding analogously to the calculation of extrema in analysis of one
real variable, we have to find the second variation of the functional and study its sign. Without
going into details, the second variation, δI2, of a functional of this type is written as [209]:

δ2I =

∫ τ

0

(
Ph′2 +Qh2

)
dt,

with h a test function and P and Q defined as:

P (t) =
1

2

∂2F

∂α′2
, Q(t) =

1

2

(
∂2F

∂α2
− d

dt

∂2F

∂α∂α′

)
.

A necessary condition for the functional to have a minimum is that the second variation must
be strictly positive, which can be achieved by requiring only that the P term is purely positive,
known as Legendre’s condition [209]. This condition is satisfied in our system for every instant
of time since:

P (t) = 1.

Another necessary condition is that the interval of definition t ∈ (0, τ) has no points conjugate
to 0. A point t̄ is conjugate to the point t = 0 if the equation

− d

dt

[
P (t)h′(t)

]
+Q(t)h(t) = 0,

with boundary conditions h(0) = h(τ) = 0 has a solution that vanishes at t = 0 and at t = t̄
but is not identically null [209]. The above equation reads:

h′′(t) + |λ|h(t) = 0,

and unfortunately, vanishes at a point t ∈ (0, τ), namely at τ/2.
Both conditions are necessary independently, but the set of those two is the sufficient con-

dition that has to be satisfied to ensure the presence of an extremum. Given these results, we
could not conclude directly that the sinusoidal function is really a minimum of the functional
4.2.12. However, the existence or not of conjugate points depends on the upper bound of the
integral in equation 4.2.12. If it is less than or equal to τ/2, we can say that the solution of the
harmonic oscillator is genuinely a local minimum.

Rewriting the functional with the full expression of the power:

J [α] =

∫ τ/2

0

(
Kα′′

Kα′
α′′α′ + α′2 +

Kα

Kα′
αα′ + λα2

)
dt,

we calculate its Euler-Lagrange equation, which turns out to be the same as for the previous
case:

α′′ − λα = 0
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And calculate its second variation, which reads:

δ2J =

∫ τ/2

0

(
h′2 + |λ|h2

)
dt.

Then for this functional, we can confirm that both the necessary and sufficient condition ensure
that the harmonic solution is a minimum of the energy. Although “formally” it is required to
change the upper limit of integration to ensure convergence to the local minimum, it is not a
situation that sets any problems at physical level. The function that we obtain is the same,
and given the properties of the basic trigonometric functions, changing τ by τ/2 in the integral
only makes vary our functional a term 2, since the products of functions that we have there are
periodic with period τ/2.

In our simple and straightforward formalism, the energy put into play by the organism
is minimized by a sinusoidal function, which results in agreement with continuous swimming
used by large animals where they regulate their motion by modulating the amplitude and
frequency [39, 210]. However, as we mentioned in the introduction, some animals prefer to
choose a burst-and-coast strategy to reduce their COT [201], dynamics that we do not find using
this optimization. In order not to complicate the expression of the energy to be minimized but
to introduce changes in the solution of the Euler-Lagrange equation, we can look at possible
constraints to be fulfilled by the angle α. In this way, we will act on the presumed shape
desired by a swimmer in general by focusing on its tail angle. Analogously to the definition
in probability theory of the characteristics of a probability distribution, we can use the same
concepts to define what we want to achieve for our tail position.

In addition to the parameters measuring location, such as the mean, or scale, such as the
variance, the higher-order moments give information about the shape of the distribution. The
moments of order 3 and 4 are called skewness and kurtosis and provide us information about
the form of the function. The skewness is a measure of the asymmetry of the probability
distribution; positive skewness values indicate that the right tail of the distribution is longer
and the most probable values are concentrated on the left of the distribution, just the opposite
for negative skewness, as can be seen in figure 4.13a. On the other hand, kurtosis, although
it encounters more complications in its fundamental definition [211], can be understood as the
concentration or not of values around the peak and tails of the distribution. A high kurtosis
implies values near the peak and tails, while a reduced kurtosis maintains concentrated values
at all points of the distribution, including the shoulders, figure 4.13b.
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Figure 4.13: Continuous Probability Distribution Functions (PDF) as a function of the random
variable x. a) Graphical representation of skewness. The blue line corresponds to zero skewness,
while orange and green represent negative and positive skewness, respectively. b) Graphical
representation of kurtosis. In blue, a Gaussian PDF with kurtosis equals 3, while orange and
green PDFs correspond to kurtosis larger than and smaller than 3, respectively.

So, we add a constraint for each of the different definitions of a probability distribution:
mean, variance, skewness, and kurtosis, and require that α satisfies the values we deem conve-
nient. The constraints, in this case, would be:

1

τ

∫ τ

0
α(t)dt = ᾱ,

1

τ

∫ τ

0
α(t)3dt = α3

sym,

1

τ

∫ τ

0
α(t)2dt =

α2
typ

2
,

1

τ

∫ τ

0
α(t)4dt = α4

kur,

with ᾱ, αtyp, αsym and αkur the values that we want to assign to these integrals. If we want to
write a functional that agglutinates these four constraints, we must write:

K[α] =

∫ τ

0

(
α′2 +

4∑
i=1

λiα
i

)
dt,

where λi are all the Lagrange multipliers.

In order to maintain the symmetry α → −α and for ease of solving the Euler-Lagrange
equation, we cancel the coefficients λ1 and λ3 and write the equation that gives us the extrema
of the above functional:

α′′(t)− λ2α(t)− 2λ4α(t)3 = 0.

Introducing a characteristic time and angular amplitude, we rewrite this equation in dimension-
less form as:

α′′ ± α± α3 = 0, (4.2.13)

the equation of which is a nonlinear oscillator. To determine whether this equation has periodic
solutions, it is convenient to rewrite it by making explicit the potential function, V , from which
the forces are derived:

α′′ = −dV
dα

,

with V defined as:

V = ±1

2
α2 ± 1

4
α4,
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and which we treat individually by defining the potentials that correspond to each of the four
existing combinations:

V++ =
1

2
α2 +

1

4
α4,

V−+ = −1

2
α2 +

1

4
α4,

V+− =
1

2
α2 − 1

4
α4,

V−− = −1

2
α2 − 1

4
α4.

A confinement of the trajectories is only possible in the cases where the potential is V++,
V+− and V−+. Potential V−− is shown in figure 4.14 and it corresponds to an entirely repulsive
potential where periodic trajectories are not allowed. V++ reflects standard oscillatory dynamics
while V+− only allows trajectories confined around 0 with amplitudes that cannot exceed ±1.
The possible trajectories of V−+ are the most interesting in our study since a particle subjected
to this potential could oscillate back and forth in such a way that it would stay an arbitrarily
long time at the origin, which in this case turns out to be an unstable point, and roll back and
forth on the parabola. This behavior of α can be likened to that of an organism performing
intermittent swimming.
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Figure 4.14: Plot of the potential V−− = −1/2α2 − 1/4α4, for which there are no periodic
solutions.

The equation 4.2.13 admits analytical solutions [212] in terms of special functions known
as Jacobi elliptic functions. The solution of this equation subjected to the initial conditions
α(0) = A0 and α′(0) = 0 is:

α(t) = A0 cn

(
t
√

1 +A2
0,

A2
0

2(1 +A2
0)

)
,

α(t) = A0 cn

(
t
√

1−A2
0,

−A2
0

2(1−A2
0)

)
,

α(t) = A0 cn

(
t
√
−1 +A2

0,
A2

0

2(−1 +A2
0)

)
,

if

V (α) = V++ =
1

2
α2 +

1

4
α4,

V (α) = V+− =
1

2
α2 − 1

4
α4,

V (α) = V−+ = −1

2
α2 +

1

4
α4,

(4.2.14)

where cn is the Jacobi elliptic function cn [117]. The period of the function cn(ωt, k) is defined
through the following expression:

τ = 4
K(k)

ω
=

1

ω
F
(π

2
, k
)

=
1

ω

∫ π
2

0

dθ√
1− k2 sin2 θ

,
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where K represents the Legendre’s complete elliptic integral of the first kind and F the Leg-
endre’s incomplete elliptic integral of the first kind [117]. These functions respond differently
depending on the potential we use, as can be seen in the figures 4.15, 4.17, 4.18 and 4.19.
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Figure 4.15: a) Plot of the potential V++ =
1

2
α2 +

1

4
α4. b) Angular evolution for a potential

V++ with initial conditions α(0) = 2 and α′(0) = 0.

A potential of the type V++ =
1

2
α2 +

1

4
α4 automatically correlates the period of the os-

cillations with the amplitude of the oscillations because of adding the nonlinear cubic term to
the oscillator equation. In 4.15a we show the plot of this potential V++ and in 4.15b the cor-
responding solution 4.2.14 for this potential with initial condition α(0) = 2. Figure 4.16 shows
how the oscillation period τ varies as a function of the initial condition.
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Figure 4.16: Effect of the cuartic potential V++, the period of oscillation, τ , decreases as a
function of initial amplitude, A0.

The potential V+− =
1

2
α2 − 1

4
α4 is very interesting if the initial condition is chosen near

one of the two maxima of the graph 4.17a. In this case (figure 4.17b) the tail spends a long
time in a neighborhood of this point until it loses stability and moves very quickly to the other
maximum.
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Figure 4.17: a) Plot of the potential V+− =
1

2
α2 − 1

4
α4. b) Angular evolution for the potential

V+− with initial conditions α(0) = 0.999 and α′(0) = 0.
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Figure 4.18: a) Plot of the potential V−+ = −1

2
α2 +

1

4
α4. b) Angular evolution for the potential

V−+ with initial conditions α(0) = 0.85 and α′(0) = 0.
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Figure 4.19: Angular evolution for the potential V−+ with initial conditions α(0) =
√

2.00001
and α′(0) = 0. b) Phase space with same initial conditions.

However, the most interesting case is the one given by the potential V−+ = −1

2
α2 +

1

4
α4,

depicted in figure 4.18a. In a first case, oscillations centered around α = ±1 (figure 4.18b) are
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possible if the initial value of α is confined in (0,±
√

2). In the limit A0 → 0 from the right
or A0 →

√
2 from the left (or equivalently A0 → 0 from the left or A0 → −

√
2 from the right

if we consider the oscillation around the other equilibrium point) a homoclinic orbit appears.
A homoclinic orbit is a trajectory that starts and ends at the same saddle point and which
approach this point as t → ∞ [213]. For values of A0 larger than |

√
2| the oscillations occur

around the origin passing from one branch to another of the potential. For initial conditions
very close to the points where the graph cuts the abscissa axis, α = ±

√
2, but always greater in

absolute value than these numbers, the behavior of the angle performs something that we could
resemble intermittent swimming (figure 4.19). α oscillates from one branch to another of the
potential, but as it approaches the origin, its velocity decreases, causing the tail to remain with
values very close to 0 for a time τ?, which is greater the closer the initial value A0 approaches
|
√

2| for higher values.
Once all the solutions of the Euler-Lagrange equation have been characterized, it remains

to verify that the solutions correspond well to the minima of the functional. The Legendre
condition is assured without any problem, but it is necessary to confirm if there are conjugate
points in the interval (0, τ), which is known by solving the equation:

− d

dt

[
P (t)h′(t)

]
+Q(t)h(t) = 0,

with P (t) = 1 and Q(t) = λ1 + 2λ2α(t)2.
The equation, in this case, cannot be solved by usual methods. A detailed numerical study

must be performed to determine under which conditions the solutions found above constitute
true local minima of the functional.

Likewise, as we proceeded with energy as the quantity to optimize, we could have changed
the situation and chosen the thrust force to maximize the average speed. So, if the functional
chosen is:

IT =

∫ τ

0
FT (α′′, α′, α)dt =

∫ τ

0

(
−αα′′ + λTα

2
)
dt,

where the first term of the integral corresponds to the thrust force of our toy model and the
second to the bound given by equation 4.2.11, with λT the Lagrange multiplier. We find that
the function that extremizes this functional is:

α′′(t)− λTα(t) = 0

Again, for λT < 0, the solution of this equation are sinusoids, just as in the previous case. To
verify the maximum condition, we write its second variation:

δ2IT =

∫ τ

0

(
Ph′2 +Qh2

)
dt,

with

P (t) =
1

2

(
∂2FT
∂α′2

− d

dt

∂2FT
∂α′∂α′′

− 2
∂2FT
∂α∂α′′

)
,

Q(t) =
1

2

(
∂2FT
∂α2

− d

dt

∂2FT
∂α∂α′

+
d2

dt2
∂2FT
∂α∂α′′

)
.

The terms accompanying h′′ have been omitted as they are all null.
The polynomial P (t) in this case reads:

P (t) = − ∂2FT
∂α∂α′′

= 1.

And does not meet Legendre’s condition for a maximum, but rather the opposite. We can
actually compare the average thrust force for two different periodic functions and show that
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the thrust associated with a sinusoidal function will be smaller. For example, let us take two
different periodic functions with the same period:

α1 = A1 sn (t, k) ,

α2 = A2 sin

(
2π

τ
t

)
,

where sn is the Jacobi elliptic function sn [117] and τ is the period defined by:

τ = 4K(k).

In order to compare the resulting thrusts, both functions have to accomplish the condition
〈α2〉 = α2

typ/2 forcing the amplitudes A1 and A2 to be:

A1 =
αtyp√

2
k −

2E(k)
kK(k)

,

A2 = αtyp,

with E(k) the Legendre’s complete elliptic integral of the second kind [117]. Then, we calculate
the average thrust corresponding to each function:

〈T1〉 = −
∫ τ

0
α1α

′′
1dt = −

α2
typ (E(k)(1 + k) +K(k)(k − 1))

6 (E(k)−K(k))
,

〈T2〉 = −
∫ τ

0
α2α

′′
2dt =

π2α2
typ

8K(k)2
.

The ratio of both integrals 〈T1〉/〈T2〉 is represented in figure 4.20 as a function of the parameter
k. We observe that the average thrust 〈T1〉 is always bigger than 〈T2〉 except when k = 0, in
which both functions are identical.
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Figure 4.20: Ratio of the averages thrust 〈T1〉 and 〈T2〉 as a function of the parameter k. The
average thrust force of the sn function is always bigger than the thrust given by a sinusoidal
function except for k = 0.

Therefore, this approach cannot find true maxima of the thrust force, which may be moti-
vated by our oversimplification of the fluid-structure interaction or by a lack of more influential
constraints of the system.
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4.3 Teaching a fish how to swim

This section is part of a collaboration with Li Fu, currently postdoctoral researcher in our
group, who has performed the Reinforcement Learning simulations within the framework of a
joint project on underwater robotic swimmers.

The theoretical models we have discussed so far are helpful because they allow us to ap-
proximate complex situations and understand the influence of the different parameters at play
in swimmers’ behavior. However, the price to pay is a loss of interesting information necessary
to understand the swimming mechanisms. Moreover, the situations we have dealt with are
certainly ideal: we have only optimized two quantities in very differentiated frameworks, which
is not at all the case for a real animal, which is constantly subjected to external perturbations
and by which it must change its dynamics accordingly. Our natural next step is to elaborate a
procedure for the swimmer to learn to swim with given constraints, such as avoiding obstacles,
performing emergency sequences to move to the water interface, moving efficiently, achieving the
best acceleration, or many others. This task is only possible to develop by immersing ourselves
in Machine Learning. Machine Learning is a set of techniques that allows the extraction and
detection of patterns and the processing of information from a collection of data to learn and
make predictions. These algorithms can be classified according to the knowledge and human
intervention on this data, as depicted in figure 4.21 [214].
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Machine learning:
algorithms that
process and extract
information from data;
they facilitate
automation of tasks
and augment human
domain knowledge

Supervised learning:
learning from data
labeled with expert
knowledge, providing
corrective information
to the algorithm

Semisupervised
learning: learning
with partially labeled
data (generative
adversarial networks)
or by interactions of
the machine with its
environment
(reinforcement
learning)

Unsupervised
learning: learning
without labeled
training data

1. INTRODUCTION
Fluid mechanics has traditionally dealt with massive amounts of data from experiments, !eld mea-
surements, and large-scale numerical simulations. Indeed, in the past few decades, big data have
been a reality in "uid mechanics research (Pollard et al. 2016) due to high-performance comput-
ing architectures and advances in experimental measurement capabilities. Over the past 50 years,
many techniques were developed to handle such data, ranging from advanced algorithms for data
processing and compression to "uid mechanics databases (Perlman et al. 2007,Wu&Moin 2008).
However, the analysis of "uid mechanics data has relied, to a large extent, on domain expertise,
statistical analysis, and heuristic algorithms.

The growth of data today is widespread across scienti!c disciplines, and gaining insight and
actionable information from data has become a new mode of scienti!c inquiry as well as a com-
mercial opportunity. Our generation is experiencing an unprecedented con"uence of (a) vast and
increasing volumes of data; (b) advances in computational hardware and reduced costs for com-
putation, data storage, and transfer; (c) sophisticated algorithms; (d) an abundance of open source
software and benchmark problems; and (e) signi!cant and ongoing investment by industry on
data-driven problem solving. These advances have, in turn, fueled renewed interest and progress
in the !eld of machine learning (ML) to extract information from these data. ML is now rapidly
making inroads in "uid mechanics. These learning algorithms may be categorized into supervised,
semisupervised, and unsupervised learning (see Figure 1), depending on the information available
about the data to the learning machine (LM).

ML provides a modular and agile modeling framework that can be tailored to address many
challenges in "uid mechanics, such as reduced-order modeling, experimental data processing,
shape optimization, turbulence closure modeling, and control. As scienti!c inquiry shifts from
!rst principles to data-driven approaches, we may draw a parallel with the development of nu-
merical methods in the 1940s and 1950s to solve the equations of "uid dynamics. Fluid mechanics
stands to bene!t from learning algorithms and in return presents challenges that may further
advance these algorithms to complement human understanding and engineering intuition.

Support vector
  machines
Decision trees
Random forests
Neural networks
k-nearest
  neighbor

Linear
Generalized linear
Gaussian process

Linear control
Genetic
algorithms
Deep model
  predictive
  control
Estimation of
  distribution
  algorithms
Evolutionary
  strategies

Q-learning
Markov decision
  processes
Deep reinforce-
  ment learning

POD/PCA
Autoencoder
Self-organizing
  maps
Di!usion maps

Generative
  adversarial
  networks

k-means
Spectral
  clustering

Supervised Semisupervised Unsupervised

Classification Regression Optimization 
and control

Reinforcement 
learning

Generative 
models Clustering Dimensionality 

reduction

Figure 1
Machine learning algorithms may be categorized into supervised, unsupervised, and semisupervised, depending on the extent and type
of information available for the learning process. Abbreviations: PCA, principal component analysis; POD, proper orthogonal
decomposition.
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Figure 4.21: Classification of Machine Learning algorithms. From Brunton et al. [214].

Among these algorithms, a particularly exciting approach is Reinforcement Learning (RL).
Reinforcement learning is a field of Machine Learning that focuses on how agents perform actions
in an environment to maximize some notion of cumulative reward [215]. This framework has
become a very practical perspective for dealing with problems in fluid mechanics in general and
in bio-inspired locomotion in particular, for example soaring [216], behavior of individual fish
or groups of fish [217–220] or the optimization of the movement of microswimmers [221], among
others. In this framework, an agent is an individual that lives in an environment with which
it interacts and takes an action at each time step. The configuration of an agent at a given
time is called state and may change depending on the agent’s action. At each time interval,
the agent gathers its state from the environment, as well as the reward after having undertaken
previously an action. In simple words, the reward basically measures how good or bad it is for
the agent to be at a particular state after a given action. The agent’s objective is to maximize
its return which is the cumulative reward over all the time steps. The concept of reward is of
paramount importance, and it is, in fact, what will determine the success of the agent’s learning
process. The agent’s behavior in the environment is defined by a policy π(a|s), which gives the
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probability to take action a as the agent is in state s. In these algorithms, it is assumed that the
agent and its action can be modeled trough a Markov Process [215], and therefore the dynamics
of the agent only depends on its state at the previous time interval.

Actually, the two main approaches to train RL agent’s policy are the policy optimization
[222, 223] and the Q-learning [224]. While the first family of methods work directly on the
policy π(a|s), the second family of algorithms focuses on the learning action-value function
approximation Q(s, a). This function estimates the return of the agent taking an action a being
in state s.

Q-Learning is a reinforcement learning algorithm that does not need a model to operate (the
agent does not know the dynamics of the environment) and accomplish different tasks. It is
based on the “Q-table”, tabular representation of the action-value function, that is refreshed as
the agent interacts with the environment [225,226]. The objective of Q-Learning is to optimize
the action-values function Q(s, a): it measures the overall expected reward assuming the agent
is in state s and performs action a, and then the algorithm follows a greedy policy, which is the
strategy trying to maximize the received reward. The update process is:

Q (si, ai)← Q (si, ai) + αlr

(
R(si, ai) + γmax

a′
Q
(
si+1, a

′)−Q (si, ai)

)
, (4.3.1)

where si = s(i) and ai = a(i) are the state and action at i-th instant, αlr is the learning
rate (a measure of how much of the old value is retained), the function R gives the immediate
reward received after the action ai has been effectuated and γ ∈ [0, 1] is the discount factor
which determines how valuable is a reward in a future step. Q-Learning uses a greedy policy
to estimate the optimal action-value at i+ 1 instant, giving an expression of maxa′ Q (Si+1, a

′),
with a′ the accessible actions in state Si+1. Practically, the learning process can be realized
with the following steps. First, we initialize an arbitrary Q-table, covering the whole state
space and action space. Then, for each time-step, the agent chooses an action for the current
state according to its behavior policy, which usually is an ε-greedy policy. At each state, the
agent chooses either an action maximizing the reward with probability 1− ε or a random action
in order to explore the environment with probability ε, with ε < 1. It receives the reward
R(si, ai) and the Q-table is updated according to equation 4.3.1. We then iterate the process
for each time step for N episodes, and the total reward will be evaluated at the end of each
episode. The difficulty of this algorithm is that, for an agent with a multitude of spaces and
possible actions to take, the representation of this Q function is not simple, and a vast memory
capacity is necessary to store all these data. The Q-Learning algorithms use these tables and are
consequently restricted to low dimensional state and action space. In order to better represent
the return function, neuronal networks can be used, but the Q-learning has to be upgraded,
and the resulting RL technique is called Deep Q-Learning (DQN) [224].

DQN, on the other hand, is a reinforcement learning algorithm based on the Q-learning
approach with the use of neural networks to approximate the action-value function. A neural
network is a set of artificial neurons which compute nonlinear calculations. The fundamental
elements, the neurons, are units that receive specific signals and, through fundamental opera-
tions, produce an output [227]. Therefore, neural networks, being formed by a large set of these
units, can perform calculations very efficiently and quickly to obtain the desired output from
a given input. Furthermore, the use of neural networks allows generalizing different states and
making efficient policy approximations so that the amount of memory needed to perform the
processes is considerably reduced and it is heavily used in most complex problems.

4.3.1 Learning example I: the faster, the better

To begin to understand the learning process of a swimmer, we will consider simple situations
that we have already been able to deal with analytically to compare the theoretical solution of
the optimization problem with the solution given by the learning algorithms and understand
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the processes that occur and then be able to complexify them. First of all, we are thinking of an
organism whose objective is to cover a given distance d in the shortest possible time. In other
words, to maximize the swimming speed. Then, we take as a reference the control in forces of
the discrete case that we exposed at the beginning of the chapter:

α′′(t) = Γ
∑
i=0

εiδ(t− i∆t),

with εi = +1,−1, 0.
The possible actions of the agent in this case are a = {+Γ,−Γ, 0} and its state is determined

by the four variables s = {x, α, x′, α′}. The projection of the state space onto the variables (x, α),
as well as the reward/punishment dynamics is shown in figure 4.22. The swimmer, starting near
the origin (0, 0) performs at each time step ∆t an action a and at each of these steps receives
a negative reward of −1. The process terminates when one of these three situations occurs:

1. The variable α takes a value greater than α0, mimicking a biological limit. In that case,
the process terminates, and the agent receives a largely negative reward P .

2. The number of time steps exceeds the maximum simulation or learning time, represented
by the maximum number of steps Nt. The process ends without any feedback.

3. The fish reaches the desired point d with any given α value as long as it is within the
desirable limits. In that case, the reward is positive because the swimmer has met the
goal we intended.

12

α

x
(0,0)

(d,0)

(0,α0)

(0,-α0)

P

0

P

-1
-1-1

-1

Figure 4.22: Illustration of the state space and the rewards.
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Figure 4.23: Learning results for reaching a maximum swimming velocity. We show the dimen-
sionless position, x̃ (blue), velocity x̃′ (orangle), angle α̃ (red), and angular velocity α̃′ (purple).
a) and b) images correspond to the end of episode 1000, c) and d) for the episode 5000, and e)
and f) the episode 10000.

Of course, the agent will look forward to accomplishing the situation in which the biggest
reward is obtained. All the others are detrimental to him, and the learning process must be
developed so that the bad scenarios are eliminated and only the one in which the fish travels the
distance in the shortest possible time prevails. In addition, other requirements can be added,
such as never exceeding a maximum angular velocity.

The optimization problem is expressed as:

mu′(t) = −CThα(t)α′′(t)− CDu(t)|u(t)|,
α′′(t) = Γ

∑
i=0

εiδ(t− i∆t),

|α| ≤ α0.
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To make the problem dimensionless, it is convenient to choose a characteristic length equal to
the distance to travel lc = d, in addition to renormalizing the angle α to α0. In that case, the
dimensionless problem reads:

Mũ′(t̃) = −α̃(t̃)α̃′′(t̃)− C̃Dũ(t̃)|ũ(t̃)|,
α̃′′(t̃) = εδ(t̃− ∆̃t),

|α̃| ≤ 1.

Where M = m/CThd and C̃D = CThα
2
0/CDd

2. This changes slightly the final expression of the
average velocity that we obtained in the previous section in the equation 4.2.9, being necessary

to add only a factor

√
C̃D to homogenize with the definition that we have just given.

With the DQN algorithm defined above we solve this system to get the maximum speed.
The values chosen for the simulation are:

M = 0.1, C̃D = 0.01, ∆̃t = 0.1, Nt̃ = 2000/3.

As for the number of episodes, i.e., how many times we will simulate the situation in which
a fish from the origin reaches or does not reach the target distance in the shortest possible
time, we set a number of 10000 to ensure the convergence process to the target. We show three
simulations corresponding to three different episodes in the figure 4.23, where we present the
position x̃, the velocity, x̃′, the angle α̃ and the angular velocity α̃′, all dimensionless, for the
episode 1000 (figure 4.23a and b), 5000 (figure 4.23c and d) and 10000 (figure 4.23e and f). In the
episode 1000, we observe how the agent has not learned at all; in fact, the learning process ends
because the maximum number of steps Nt̃ has been exceeded. Episode 5000 reflects, however, a
noticeable improvement, a movement is observed that resembles the one predicted analytically.
However, the angle α exceeds the value 1, causing the simulation to stop completely. In episode
10000, we can affirm that the system has learned because the simulation’s last three periods are
uniform and reflect an oscillatory and almost periodical trend. The period measured averaging
the last three oscillations is, in steps number, 17.3, so we calculate the period in dimensionless
units using τ̃ = 17.3∆̃t = 1.73. Thus, the average theoretical swimming speed is:

Ũth =

√
C̃D

4
√

3
τ̃ = 0.0250.

We calculate the same magnitude from the simulations averaging the last 3 periods of the
figure 4.24a. The value obtained by this procedure is Ũnum = 0.0247, being about 1% the
difference between both values, showing the potential of the theoretical calculation as well as of
the learning process. The action is also shown in the figure 4.24b. At the end of the episode, we
observe the alternating values of the action, between positive and negative values, of the same
duration, as predicted by the optimization calculation.
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Figure 4.24: a) Dimensionless velocity and b) action by the end of episode 10000.
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4.3.2 Learning example II: maximum propulsion

Another test we have performed is the case where we control the angular amplitude of α. This
device is our robot defined in Appendix A, fixed, and that can only move its tail, defined with
the angle α. In this case, the control reads:

αc(t) = αmax

∑
i=0

εiδ(t− i∆t).
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Figure 4.25: Learning results for achieving maximum thrust force. We show the dimensionless
angle α̃ (red), angular velocity α̃′ (purple), mean thrust T̃ (turquoise) and action (green). a)
and b) images correspond to ξ = 0.2, c) and d) to ξ = 0.5, and e) and f) to ξ = 1.0.

The actions are a = {+αmax, -αmax, 0} and the state is defined by s = {α, α′}. Our objective
now is to achieve the most suitable tail dynamics to obtain the highest possible propulsive force
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on average. The problem in dimensionless form reads:

α̃′′(t̃) + 2ξα̃′(t̃) +
(
α̃(t̃)− α̃c

)
= 0,

α̃c(t̃) =
∑
i=0

εiδ(t̃− i∆̃t),

with the dimensionless actions {+1,−1, 0}.
The best learning results are shown in figure 4.25, where the time step has been ∆̃t = 0.05.

Each row of images corresponds to a different value of the parameter ξ: a and b to ξ = 0.2, c
and d to ξ = 0.5; finally e and f to ξ = 1.0. The process has taken care not only to choose the
time proportions of each action but also to choose the period that maximizes the thrust force
〈T̃ 〉 = −〈α̃α̃′′〉.

ξ τ̃learning τ̃theory 〈T̃learning〉 〈T̃theory〉
0.2 6.10 6.28 4.76 5.08

0.5 6.25 6.31 0.811 0.824

1.0 6.40 6.56 0.202 0.213

Table 4.1: Comparison between theoretical results and the learning process outcomes.

The period and the average thrust force have been calculated by choosing the best parame-
ters in the data from figures 4.11 and 4.12 and show an excellent agreement with the data found
from the learning process, as observed in the table 4.1.

4.4 Conclusions

We have proposed a set of control measures of the undulatory gait with which, employing simple
models, we have optimized the maximum swimming speed or the energy spent by the swimmer.
The results of the simple models have been contrasted with learning simulations using the DQN
algorithm within the Reinforcement Learning framework, showing how the numerical results
agree very well with those obtained theoretically. This verification represents a starting point
to formulate more complex and accurate physical models of swimming that learning techniques
can solve.
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Perspectives and conclusions

In this manuscript, we have investigated the locomotion of underwater swimmers from different
points of view: one purely mechanical where we have strived to compute the dynamics of a
swimmer for already prescribed motions and another in which we have attempted to formulate
a modest transition to a biological point of view, where we have characterized the swimmer’s
deformation (and its velocity) as a function of its interaction with the surrounding environment.
In addition, we have theoretically considered a varied set of gaits in order to optimize the most
significant variables of the locomotion problem and compare them with learning algorithms
performed with Machine Learning techniques.

From the potential fluid theory, we have characterized the fluid-structure interaction for an
airfoil-shaped rigid and two-dimensional body performing a kinematic motion of amplitude A
and frequency f . Furthermore, we have shown that, by imposing a pressure drag-type resistance
force and solving Newton’s equations, we obtain a theoretical verification with a simple model
of the scaling laws derived by Gazzola et al. [24]. The Strouhal number calculated by this
model is strongly correlated to the drag coefficient, while the effect of the other parameters
can be neglected at the first-order approximation. For values of the drag coefficient cd between
0.01 − 0.1, typically measured in biological swimmers, we find an almost constant Strouhal
number, around 0.1 − 0.3, which agrees perfectly with values of St found in nature. We also
show that the Strouhal number of a free-swimming, airfoil-shaped, rigid body does not depend
on the frequency, which differs from results found in other types of experiments where airfoils
perform pitching and heaving motions [125,139]. A detailed computation assuming a weak tail
beat amplitude α0 has allowed us to obtain analytical expressions for the swimming velocity
and to relate it to the swimmer characteristics and the physical parameters of the fluid.

One way to avoid imposing any kinematic forcing is the proprioceptive hypothesis developed
in this manuscript. By conjecturing that the deformation dynamics of the swimmer depends
on the normal hydrodynamic force felt by it at each instant we have proposed a mechanism for
bioinspired swimming locomotion. We have proved that proprioception is able to generate spon-
taneous tail oscillations in our experimental device: a biomimetic robot able to sense the forces
of its environment. Moreover, these oscillations are univocally characterized by an amplitude
and frequency that we do not impose but which depend only on the feedback between the swim-
mer and the environment. We have also introduced a generic model for describing swimming
driven by proprioception, and we found that the feedback loop based on this mechanism results
in an instability, provoking the locomotion. Our simple model allows the identification of the
most important parameters, and, besides its simplicity, it is shown to have excellent predictive
capabilities.

The adaptation of a swimmer to its environment has also led us to consider different situ-
ations where it must be able to change its gait to favor the achievement of an objective. We
further showed the conditions necessary to maximize the swimming speed for different undula-
tory gaits; moreover, using the formalism of functional analysis, we have demonstrated how the

111



112 Chapter 5. Perspectives and conclusions

minimization of a swimmer’s energy goes directly through the performance of sinusoidal swim-
ming dynamics, dynamics that we have used extensively in our studies but that we have never
attempted to justify. Finally, using learning algorithms, we have reproduced the dynamics we
solved theoretically to show how the optimization results obtained agree perfectly with those
we have already achieved analytically using standard techniques.

Throughout this work, new questions have arisen that we had not considered initially and
that have been the germ of future projects:

1. So far, our study has focused on a single swimmer and its interactions with the environ-
ment. However, in nature, the vast majority of aquatic animals are gregarious and live
in groups. There are complex social interactions hidden behind the swimmers’ motions
that lead to different organization levels that depend on each species needs and ways of
living. Fish schools are archetypes of these kinds of cohesive social systems, and they have
been discussed over now several decades [228,229]. Benefits from swimming in groups are,
apart from the inherent facts of socialization between individuals, a way to reduce risk
from potential predators or to maximize food search [229,230] and also a way to optimize
hydrodynamic interactions for a global power saving of the school [228,230,231]. At first,
we are content to understand the interaction within the smallest possible group, that is,
between two robotic fish. Then, taking advantage of the qualities of our experimental
platform and the ease with which we can produce and calibrate our robots (figure 5.1),
our goal is to understand the hydrodynamic forces at play that occur when both fish move
simultaneously with different sets of amplitude and frequency and how the distance be-
tween them can establish an appropriate regime for a locomotory advantage, as proposed
in the literature [232,233].

Figure 5.1: Random configuration of two robotic fish. Both are equipped with normal and
longitudinal force sensors.

2. Proprioception is becoming a hot topic due to the widespread use of bioinspired robotics
equipped with multiple sensors to better understand the mechanics and control of animal
movement [234–236]. Undoubtedly our work on this subject constitutes a starting point
to improve this model and make it more realistic, for example, by not considering the
tail angle that we have already exposed and considering an accurate measure of the robot
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deformation, which we can obtain employing deformation sensors such as the one shown in
figure 5.2. In analogy with the previous section, proprioception in two robotic swimmers
must be tested. In a first attempt, one of the fish can perform a sinusoidal motion with
given amplitude and frequency and act on the other fish in proprioception to observe how
its fundamental characteristics change compared to when there was no partner around.

Test 

Forces 
sensor

Deformation 
sensor

Figure 5.2: First tests with our robotic swimmer once the deformation sensor is in place. The
way the sensor is placed on the fish is essential to prevent the sensor from being damaged or
preventing the tail from working correctly. In this case, we have chosen to insert it inside the
structure to adapt the movement of the sensor to that of the robot.

3. It is indisputable that the robotic fish learning algorithms constitute one of the biggest
challenges so far. At this moment, the robot is not yet autonomous because it is still at-
tached to a fixed force sensor and is not equipped with any devices sensing its environment
further than normal and longitudinal forces. We plan to equip this robot with a set of
sensors to measure distance, pressure, acceleration, inclination, compass, or deformation,
as shown in figure 5.2. The current technology offers miniaturized yet simple and efficient
solutions to outfit our robots fully. The final objective is to provide an autonomous pro-
prioceptive biomimetic robotic unit, whose swimming gait will be only determined from
the measurements of its sensors: the robot will swim following what it feels. We will use
Machine Learning algorithms to provide the sought autonomy to our robots. Further-
more, embedded communication ports (infrared, Bluetooth) will provide an efficient way
for describing the robot’s state or possibly communicating with other robotic fishes in a
school configuration. Finally, it will be conceived to ensure compliance in all swimming
circumstances (quick start, steady swim at different speeds, turns).
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Appendix A

Experimental setup

Water tunnel

14

Figure A.1: Water tunnel used in the experiences with the most relevant parts highlighted.

All the experiments have been performed in the water tunnel, model 0710 developed by Rolling
Hills Research Corporation. The tunnel, shown in figure A.1, is 270 cm long, 110 cm wide,
and 30 cm high, with a capacity of approximately 500 L. The fluid employed is always water,
whose properties we consider constant over time with values of density, ρ = 1000 kg.m−3 and
kinematic viscosity, ν = 10−6 m2.s−1. In working conditions, the tunnel is filled until the water
reaches a height of about 25 cm.

The water tunnel is divided into three fundamental parts: the first upstream part from
which the liquid begins its movement, the delivery plenum. The working area or test section,
in which we place the robotic fish and perform all the experiments. This area is exceptionally
well suited for the experiments because of its easy access and good visibility, besides being the
section where we can get maximum speeds to test our device. Finally, the discharge plenum
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is a discharge area where the water is sucked and through closed-circuit returns accelerated
to the first part of the tunnel to continue the cycle. Water from the discharge plenum at the
end of the tunnel is drawn and pumped into the delivery plenum to create the flow, creating a
pressure differential that forces the liquid to move downstream. The water enters the top of the
tunnel through a perforated cylinder that expels the liquid at a constant flow rate by varying
the frequency of the pump, fp. Once water is expelled from the large cylinder in the delivery
plenum, the liquid flows through four horizontal perforated plates. The purpose of these plates
is to homogenize the outflowing fluid to be as laminar as possible and reduce the transverse
component’s velocity fluctuations. The rear contraction zone serves a similar purpose. The
tunnel length is smoothly reduced to a size six times smaller, which is also beneficial for further
reducing turbulence and increasing the velocity within the test zone. The smoothness with
which the transition occurs also prevents separation of the boundary layer. The experiments
take place in the test section. This zone is a parallelepiped of dimensions 30 high, 46 long, and
16 cm wide with two glass windows on the sides that illuminate the volume with external light to
reach high contrast levels in the images. Just at the interface of water-air separation, we placed
a tempered glass plate; this plate prevents the vertical oscillations of the fluid at the interface
that could affect the quality of the images and distort them. A GO-5100M-USB camera from
JAI is placed on top of this glass plate at a variable height and whose objective is to film all
the changes of the robot fish undulation. The last part of the water tunnel is the discharge
zone. Two perforated cylinders, smaller than the one found in the delivery section, absorb
the incoming water and transmit it upstream through a system of pipes. These cylinders are
surrounded by tunnel walls and are outside the dimensions of the test area, again to minimize
as much as possible a possible turbulence effect that could propagate upstream.
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Figure A.2: Flow velocity U as a function of the pump frequency fp. The experimental points
are shown as disks, and the linear fit is the thick line.

The velocity in the test section depends on the pump frequency which we can vary. A rela-
tionship between pump frequency and fluid velocity in the test section is sought to characterize
the response of the robotic fish in function of the properties of the flow. We introduce some
drops of dye whose trajectory we film for different frequencies of the pump. Assuming a con-
stant velocity, we calculate this magnitude as a function of the duration taken by the stain to
cross the entire test section. The trend, shown in figure A.2, reflects a perfect linear behavior
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which is well fitted by a linear relation U ∝ fp with a director coefficient (2.21 ± 0.02) · 10−3

m. This characterization fixes the maximum velocity we can obtain in the tunnel at about 11
cm.s−1.

Robotic fish

All the experiments we perform have been realized with a robotic biomimetic fish built in the
laboratory, described in a former study [15]. The robot has been designed to resemble as closely
as possible a natural biological swimmer and is composed of a flexible body and tail and a
rigid head. We denote L the total length of the fish and l the length of the flexible tail with
dimensions L = 0.17 m and l = 0.035 m. The skeleton and tail are the soft parts of the robot.
These have been created from a computer-aided design (CAD) program and then printed on a
3D printer by Volumic from NinjaFlex fibers from Ninjatek. This material has been chosen for
its mechanical and elastic properties, allowing a flexible movement of the tail and skeleton and
good resistance to external forces. In the experimental protocol, we do not directly control the
tail dynamics. This task is performed from a Hitec HS-5086WP waterproof servomotor attached
directly to the fish skeleton, as shown in figure A.3. The servomotor transmits the rotational
motion of its wheels from two wires attached to the tail and guided to the head through holes
in the flexible skeleton. The rotation tightens one cable while relaxing the other, mimicking the
action of antagonistic muscles. This back and forth rotation causes both an undulation of the
flexible tail and a pitching motion. The servomotor has two main limitations that will affect
the performance of the robot’s motion: first, and imitating biological swimmers, the rotation of
the servomotor wheel cannot exceed an angular limit, which for our actual device is 2π/3 rad,
although it is true that we can even reduce this angular distance further in some experiments.
Furthermore, the maximum speed of the servomotor depends on the applied voltage and is given
by the manufacturer, 5.8 rad.s−1 at 4.8V and 7 rad.s−1at 6V. As for the rigid parts, we have
printed two shells to simulate the front of the animal. In this case, the material is Polylactic
acid (PLA), chosen for its rigidity and resistance since flexibility is not a property required by
this anatomy. The head fits on the servomotor, partially covering it and decreasing the friction
coefficient of the system. Finally, the servomotor is joined to a vertical rod connected to the
force sensor, which we introduce in the next section.
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Figure A.3: Side view of the robotic biomimetic swimmer.

An outer covering is desirable in aesthetic terms; however, the effect of covering the robot
by simulating an outer skin has been quantified, and we have found that this fact does not affect
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the measurements within the accuracy of our devices. Furthermore, it considerably simplifies
the measurement and observation of the servomotor dynamics, which would otherwise be very
difficult. That is why we will keep the skeleton uncovered in all our experiments.

The control of the servomotor is done via an Arduino Mega micro-controller. The Arduino
software allows us to control the rotation of the servomotor in any way we want. The code we
have created is a general code in which we can include any time-dependent function to move the
servomotor wheel. Parameters such as the amplitude of movement, frequency, waiting times,
velocity changes are varied at our convenience and depending on our needs. In general, we call
the angular trajectory that we want the servo motor to perform the angular instruction, and we
note it by φc. However, as we have already commented previously, the servomotor is not perfect,
nor can it follow instantaneously any instruction. That is why in moments where we demand to
go to a higher speed than allowed or to sweep amplitudes superior to the maximum, it will not
obey our orders. Therefore the actual trajectory of the servomotor will be different from the
imposed one. The actual angle of the servomotor that we measure experimentally is noted by
the letter φ, as depicted in figure A.4. We ask for a φc angle, the servomotor responds with an
angle φ similar, and the servomotor moves the tail an angle α in a way that we will determine
in chapter 3. In addition to the servomotor control itself, Arduino is a versatile software that
also allows the simultaneous acquisition of data from the force sensor.

Forces sensor

15

Figure A.4: Definition of the servomotor wheel angle,
φ, and of the tail deformation angle, α.

The locomotion dynamics is fundamen-
tal to understand how the different kine-
matic parameters are related to thrust
and friction forces. In the system,
there coexist mainly two groups of forces
that we analyze systematically: normal
forces, Fy, which act perpendicularly to
the fish’s motion, and longitudinal forces,
Fx, acting parallel. Normal forces are ex-
pected to scale as ρL3Aω2 [24]. Consid-
ering the length of our robot fish and the
standard operating regime when we im-
pose amplitude and frequency, we would
obtain normal forces of the order of Fy ∼
0.8 N.

We expect two types of longitudi-
nal forces; motor forces produced by the
tail undulations, responsible for locomo-
tion, and resistive forces, represented by
the drag forces that a mobile experiences
when moving within a fluid, arising when
we impose a non-zero tunnel water ve-
locity. Likewise, these forces scale as
ρL2A2ω2 and ρL2U2, for propulsive and
resistive force, respectively [24], giving
estimates of 0.2 and 0.1 N.

The robotic fish is attached to a rod
connected to a force sensor, a Honigmann
RFS® 150EI, permitting measurements

of both longitudinal and normal forces up to 5 N, which is more than enough given the orders
of magnitude of the hydrodynamic forces, with a precision of 10−4 N. This sensor is a small
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cylinder containing some gauges inside it. When a force in either direction is applied, these
gauges undergo a deformation involving a change in their length. The gauges are connected to
a circuit with a resistance capable of varying according to the deformation suffered by these
devices. When deformation occurs, the resistance varies. So does the circuit voltage, which
yields a value that we measure and related to the resulting force in the system through the
linear law of deformations F ∝ δ`. The tensions we measure are usually very small, which is
why we need an amplifier to be able to measure them correctly. The problem with the amplifier
is that in addition to amplifying the signal, it introduces noise at different frequencies that blur
the actual measurement. The sensor is connected to a filter to get rid of that noise and keep
the pure signal to measure this voltage with the Arduino Mega micro-controller. The sensor
calibration is made so that 1 N = 1 V to make our measures easier.

Tracking

Apart from the calculations of the different forces acting on the system, the experimental proto-
col aims to measure two fundamental characteristics of our robot fish: the amplitude of the tail
oscillations and the frequency of these oscillations. Furthermore, and especially in the chapter
3, we also need to know the temporal evolution of the servomotor angle to model the response
of the tail in function of the forcing.

15

Figure A.5: Tracking of servomotor wheel angle and tail angle from an initial position of coor-
dinates A to a final position B.
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Mathematica software allows us to obtain the evolution of any point given a set of images
in which that point follows a given trajectory over time. We record a set of images while the
fish is moving according to a given instruction. This set of images, together with the frequency
of acquisition of these images, is processed using the Mathematica function

ImageFeatureTrack[{initial_image, ... ,final_image }, {{xpoint, ypoint}}].

We need a sequence of images ordered from the initial to the final image and the coordinates of
the point we want to track in time in the initial image. The tracking process then selects the
(x, y) coordinates in the initial image that it will follow throughout the image sequence. The
duration of the process depends on the number of images, but it usually takes no more than a
few minutes. For example, for tracking one point in a sequence of 100 images, the process takes
about one and a half minutes.

However, to run smoothly from the first image to the last, two essential factors about the
image sequence must be considered. First, the acquisition rate of the camera must be sufficiently
high compared to the natural frequency of motion so that there are no abrupt or pronounced
“jumps” from one image to the next. The sequence of images must be continuous and uniform
in the sense that in two contiguous images, the point to be tracked has not changed its position
considerably. Mathematica can have issues, especially when there is a significant change between
one image and the previous one. While this is easy to achieve with a high acquisition rate, there
have been times in our experiments when the camera’s maximum rate (74 frames per second)
was not sufficient to track a set of coordinates accurately. Then the only remaining recourse is
to increase the number of images in our sequence, with the consequent detriment in terms of
the time the software will take to complete the analysis.

Another critical parameter is the contrast of the point we want to follow. The coordinates
from which we want to know its temporal evolution must represent a point well differentiated
from its surroundings, either by highlighting the point in question or by changing the background
surrounding the point. In any case, and particularly for our experiment, highlighting in black the
points we want to follow has proved to be a good strategy giving good results in tracking. That
is why three black points in the tail have been drawn to contrast nicely with the surrounding
skeleton, as shown in figure A.5.



Appendix B

Perturbation Methods: Multiple
Scale Method

Equations solutions do not always arise in terms of closed, known functions. Moreover, this is
precisely the most common, being impossible to obtain analytical solutions to any equation we
are facing. However, on many occasions, and we will justify these situations when appearing
in this manuscript, we can find methods to solve the equations under certain conditions or
hypotheses. The solutions obtained will not be exact in a general sense; that is to say, they
will not represent the authentic solution of the system for any instant of time. Nevertheless,
they will constitute an excellent approximation in the description of the system behavior if the
hypotheses giving rise to this treatment are not relaxed.

Generally, these conditions consist in assuming that one or more of the parameters included
in the equation are “small”. As we will always work in dimensionless variables, small here will
mean that the unit is much larger than the small dimensionless quantity. Following this spirit,
we may imagine the very first, straightforward expansion of an asymptotic solution to solve our
equation will be to develop in power series the variable in question:

x(t) =
∞∑
i=0

εixi(t), (B.0.1)

where ε is the parameter sought to be small.

This first expansion assumes that the zeroth-order solution consists simply of the solution
of the problem without perturbation. To this solution, we add terms that turn out to be small
and that take into account the perturbation introduced in the differential equation, but roughly
speaking and on time scales smaller than ε−1 we expect the error made in the approximation
of the whole solution to be small. As a matter of fact, this choice of ansatz may be suitable for
some situations, but it fails utterly for others very simple (or not as simple) systems in which
there exist two different time scales involved. The prototypical example where this expansion
fails is the harmonic oscillator with small damping [237] :

x′′ + 2εx′ + x = 0, (B.0.2)

whose exact solution is e−εt
(
c1 sin

(√
1− ε2t

)
+ c2 cos

(√
1− ε2t

))
, with c1 and c2 constants.

In effect, a development up to second-order such as the one proposed by equation B.0.1 leads
to:

x′′0 + x0 = 0,

x′′1 + x1 = −2x′0.

121
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We recognize at zero-order the equation of the harmonic oscillator, whose solution is expressed
in terms of periodic functions: x0(t) = A cos t + B sin t. Suppose we advance to the following
order and solve taking into account the previous answer. In that case, we obtain the solution
of the homogeneous equation that mimics the prior result. And also a particular solution,
−2At cos t−2Bt sin t, due to the time-dependent term, x0(t) that oscillates at the same frequency
as the homogeneous solution with the following known consequence: resonance. The first-
order solution x1 is not bounded; for times of order ε−1, it becomes comparable to the zeroth-
order solution, breaking the assumptions of perturbation theory and completely invalidating the
obtained result, as shown in figure B.1, where we compare the exact solution of the equation
B.0.2 with the straightforward method and the multiple-scale solution. In fact, this expansion
is associated with the ε→ 0 limit keeping the time t fixed, something that turns out to be valid
only for the time domains already mentioned, but that cannot hold uniformly for any subsequent
instance. The appearance of secular terms in the perturbative development becomes a significant
obstacle in approximating the solution of a differential equation. If we cannot even solve the
damped harmonic oscillator, how will we advance trying to find solutions to problems that are
impossible to treat analytically.
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Figure B.1: Comparison between the analytical solution of equation B.0.2, the approximation
made by the straightforward expansion and the solution given by the method of multiple scales
for ε = 0.1 and initial conditions x(0) = 1, x′(0) = 0.

But then, why such a straightforward method fails to solve the differential equation? Among
the possible reasons that prevent the correct approximation of the system, there is a decisive one.
It is precisely the existence of several very different time scales in the problem. First, we find a
time scale that governs the period of oscillation, and that isO(1). In addition, the small damping
introduces an amplitude dependence with time which, given the smallness of the perturbation,
is O(ε−1), and finally, there is a phase shift due to friction of O(ε−2). The uniformity of the
perturbative expansion is broken due to the non-uniformity of the time scales. Several physical
problems are distinguished by the presence of small disturbances, which, because they are active
over a long time, have a non-negligible cumulative effect. The straightforward method is well
adapted for solving the problems whose solutions are periodic but cannot correctly determine the
behavior of the solutions during the transient regime. This is the obstacle that the introduction
of the perturbation adds to the problem; it breaks this periodicity by imposing an amplitude of
motion that is no longer constant and decays slowly over time.

That is why for the case at hand, where there are usually many time scales involved, we
must take them into account when solving the problem. The method we use and present is the
so-called multiple scale method [238, 239], and it is specially adapted to the type of physical
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situations we want to deal with, being able to describe both transient and stationary behaviors,
besides being a versatile and relatively simple method to implement. This formalism no longer
considers time as the only variable that governs the system’s evolution but introduces new
variables totally independent of each other, each of them representing a characteristic time of
the system that describes the evolution of slower or faster phenomena. Thus, these new variables
are referred to t0, t1, t2, · · · , tm and are defined with respect to absolute time t as:

ti = εit.

The expansion of the time variable leads to a change in the representation of the system’s
dynamics. The evolution equations that govern the physical processes are ordinary differential
equations with only derivatives with respect to the independent variable, the time t. Considering
now that different time scales are mathematically independent, the equations completely change
their character and become equations in partial derivatives. For example, if we study the first
derivative with respect to time and apply the chain rule, we have:

d

dt
=
∞∑
i=0

∂

∂ti

∂ti
∂t

=
∞∑
i=0

εi
∂

∂ti
. (B.0.3)

We see that the application of the chain rule converts the equations into equations in partial
derivatives. A priori, we could think that the change from an ODE to a PDE brings more
problems than it solves. Solving an equation in partial derivatives is a complicated task, even
in the most accessible cases, with nothing to do with ordinary differential equations. There are
even techniques to solve strongly nonlinear equations. However, the procedure is clever, and
although speaking in explicitly mathematical terms, we are dealing with a system of PDEs, in the
application of the method, only ODEs are solved. The reason for this will be found later in the
development of the technique. Then, once all the independent variables have been introduced,
one can propose a power series expansion analogous to equation B.0.1 but considering that the
time dependence has been extended:

x(t) =
∞∑
i=0

εixi(t0, t1, · · · , tm). (B.0.4)

Therefore, the spirit of the process is the same: solve the unperturbed problem and add other
terms less critical than the leading one that modifies the solution and takes into account the
introduction of the perturbation. The particularity is that phenomena where slow modulations
of the pattern occur are already considered and incorporated directly into the solution thanks
to the different time scales.

Let us then expose the method, suppose in a general way an equation of evolution of a
physical process represented as follows:

dx

dt
= f(x, ε),

where x is a n components vector and f(x, ε) is a vector function depending on a small param-
eter ε and which may be decomposend in a linear and nonlinear part:

dx

dt
= Lx+ εN(x),

where L is a linear matrix operator, and N collects the nonlinear terms. Obviously, ε accompa-
nies the nonlinear part of the equation since it is precisely this term that prevents the analytical
resolution of the differential equation. Developing up to ε2 and introducing the expansions in
equations B.0.3 and B.0.4 in the expression we have:(

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · ·

)(
x0 + εx1 + ε2x2 + · · ·

)
= L

(
x0 + εx1 + ε2x2 + · · ·

)
+ εN

(
x0 + εx1 + ε2x2 + · · ·

)
.
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Nonlinear terms may be expanded in Taylor series:

N
(
x0 + εx1 + ε2x2 + · · ·

)
= N(x0) + εx1

∂N (x0)

∂x0
+ · · ·

Equating coefficients of like power of ε, we obtain at zero-order the solution to the unperturbed
problem:

∂

∂t0
x0 − Lx0 = 0.

As expected, this equation, which turns out to be an eigenvalue equation, is easily solvable.
Applying the methods of linear algebra and proposing x0 = c0ζe

λt0 we can obtain the solution
for both eigenvalues and eigenvectors univocally.

|λI − L| = 0, λζ = Lζ.

Before moving on to the following order, it is interesting to know how the solution of the linear
problem clearly reflects the dependence on t0, the fastest time scale. However, in equation
B.0.4 we see how each term of the expansion depends on all the time variables involved in the
system. Since the eigenvectors cannot reflect a dynamic condition, the only possibility that
these additional times are included is that all of them except t0 are regrouped in the expression
of the amplitude c0. Thus, just as the linear homogeneous problem ultimately determines ζ, this
is not the case, for now, for the amplitude c0, which, in principle, must be written as dependent
on the hierarchy of time scales.

At first order of perturbation theory, the equation reads:(
∂

∂t0
− L

)
x1 = − ∂

∂t1
x0 +N(x0).

It is interesting to note how the LHS of the equation resembles the equation of order 0, except
that in this case, the operator affects the variable x1. This is a constant for all subsequent
orders, the operator ∂/∂t0−L, which from now on we rename as L, will appear in all equations
in the LHS while the RHS will change. Previously, we mentioned how introducing an equation
in partial derivatives would facilitate obtaining an approximate solution to the problem. In this
first case, we see how, although theoretically, we are facing a PDE, in practice, the equation to
solve is an ODE, since the member of the right just involves functions of x0, whose behavior we
know because we have calculated it in the linear problem. We will find precisely the same for
higher orders, and the RHS always contains variables that have already been computed in the
previous orders. Therefore the whole problem reduces to solving the inhomogeneous differential
equation in each case. Thus, rewriting the above equation by introducing the new operator L
leaves:

Lx1 = − ∂

∂t1
x0 +N(x0) = q1. (B.0.5)

To solve the equation, we would have to solve the homogeneous equation and then look for
a particular solution as usual. In this case, we would find two obstacles; in the right-hand
member, we could observe secular terms that would again break the validity of the perturbative
expansion, and on the other hand, it would be impossible to determine the relation between the
amplitude c0 and t1, because x0 appears derived with respect to t1 in the equation.

Without going into the practical details of how to solve the equation, in formal terms, we
expect the solution of this equation to be given by x1 ∼ L−1q1. However, nothing has been
said about whether the operator L is invertible or not, and if so, how to compute it. Reasoning
in analogy with linear algebra and substituting the integro-differential operators by matrices,
we know the condition that the vector q1 must fulfill concerning the operator for the system
to have a solution. This necessary and sufficient condition is known as Fredholm’s Alternative
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Theorem [240], and it also applies outside linear algebra, being the tool we will use to solve
equation B.0.5. To apply the theorem, it is necessary to introduce a certain formalism of
functional analysis. Summarizing, we state that it is necessary to define the Hilbert space in
which the solutions of the equation live and the inner prbiaoduct that characterizes this space
and that we note employing 〈·, ·〉. Applying the alternative, we will say that the equation B.0.5
has solution if and only if q1 is orthogonal to the subspace engendered by the kernel of the
adjoint operator, q1 ⊥ Ker(L∗).

The concept of orthogonality is intimately linked to the existence of an inner product; we
will say that two elements of a Hilbert space are orthogonal when their product is 0. The kernel
or nullspace of the operator L∗ in this case is the subspace generated by all the Hilbert elements,
v, which satisfy L∗v = 0. The definition of adjoint operator is standard and for two elements
v1 and v2 satisfies:

〈Lv1,v2〉 = 〈v1,L∗v2〉 .
The fact of applying the alternative theorem and requiring q1 ⊥ Ker(L∗) is known as the
solvability condition and is of vital importance in the development of the perturbative technique
since it is this condition that guarantees the elimination of the secular terms.

Applying the alternative to equation B.0.5, the equation that arises is

−∂c0
∂t1

〈
ζeλt0 ,x∗

〉
+
〈
N
(
c0ζe

λt0
)
,x∗
〉

= 0,

where x∗ spans the kernel of the adjoint operator, i.e., L∗x∗ = 0. We finally deduce the
amplitude equation that gives us the dependence of c0 (and consequently of x0) as a function
of t1:

∂c0
∂t1

=

〈
N
(
c0ζe

λt0
)
,x∗
〉

〈ζeλt0 ,x∗〉 .

Once this amplitude equation is solved, the usual methods of solving equation B.0.5 will lead
to a correct x1 solution with no secular terms. The technique is consistent and extends to
subsequent orders both to compute the dependence of c0 on the other time scales and to obtain
the behavior of the future amplitudes of following orders, applying in all steps the alternative
theorem to get rid of the terms that break the perturbative expansion. The solution arising from
this method is shown in figure B.1, giving a good account of how, unlike the straightforward
approach, the multiscale method achieves a reasonably accurate approximation of the analytical
solution.
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Appendix C

Stability loss of a dynamical system:
the Hopf bifurcation

The theory of dynamical systems provides us with tools to describe the complex behavior of a
system without the need to know its exact solution. Stability is always a characteristic that, as
physicists, we are interested in knowing and interpreting, determining under what conditions the
problems we work with present, and how they can change depending on the control parameters
of the physical phenomenon. Among all the possibilities by which a system can lose or gain
stability as a function of a parameter, we are interested in a specific case, which we will develop
within its physical context in chapter 3: the Hopf bifurcation.

The physical laws describing the time evolution of a process can be represented mathemat-
ically through:

dx

dt
= f(x). (C.0.1)

Such a system will be called an autonomous or time-independent dynamical system. Undoubt-
edly the resolution of the set of equations is the best way to obtain the behavior of the system
as a function of time. However, as we have seen above, the systems do not offer solutions in the
form of generally known functions but rather the opposite. Even so, and without resorting to
perturbative methods, we can extract some characteristics of the process. One of the essential
features that can be found only through the behavior of f(x) is the existence of equilibrium
points of the system. These points, generally known as fixed points, are characterized by being
solutions that do not vary in time and therefore are identified by fulfilling:

f(xst) = 0.

These stationary states of the system have an interesting property: their stability. These points
can be classified into stable or unstable points depending on whether they behave as attractors
or repulsors in the phase space. Strictly speaking, a critical point should be considered a
stable state, insofar as once installed in it, the system does not evolve, by definition. However,
in the real world, a system never remains in one state as time passes. It is in contact with
a complex environment, with which it exchanges energy, momentum and, eventually, matter
randomly. To this, we must add the intrinsic variability of every macroscopic system, variability
that manifests itself in the form of thermodynamic fluctuations. This means that a stationary
state is continuously subjected to perturbations of greater or lesser size. We need to know
what happens to a steady state when it is perturbed. Does the subsequent time evolution
bring the system back or drive it away for good? We will then have to frame the concept of
stability within the context of reaction to perturbations. We will be interested, in short, in
the response to an initial perturbation to the stationary state. We will say that systems are
classified, roughly speaking, as stable, if for each neighborhood of the point in question, all
trajectories tend to it in infinite time or unstable if this neighborhood does not exist and the
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trajectories move away from the point in phase space. The concept of critical point stability
offers an important corollary; generally, the instability of such a point signals the occurrence of
more complex behavior. Consequently, the measurement of such a critical point’s stability (or
instability) is an unavoidable step when investigating the eventuality of complex solutions in a
system.

In this measure of stability, we will always speak of “small” perturbations since our formalism
does not allow us to consider any type. Consequently, the linear stability principle is postulated:
if we analyze the time evolution of small perturbations with respect to the fixed point y(t) =
x(t)− xst we will have developing in Taylor series:

dx

dt
=
dxst
dt

+
dy

dt
= f(xst) +

∂f(x)

∂x

∣∣∣∣
xst

y. (C.0.2)

Due to the non-dependence of the fixed point as a function of time and that the function
evaluated at the fixed point is identically null, we find:

dy

dt
=
∂f(x)

∂x

∣∣∣∣
xst

y, (C.0.3)

where the derivative of f(x) with respect to x denotes the Jacobian matrix of the system.
Therefore the stability of the fixed points of the equation C.0.2 will depend on the stability

or not of equation C.0.3 [241]. In general, the stability of the system is given by the eigenval-
ues, λ, of the Jacobian matrix. If all eigenvalues have negative real part, then the system is
asymptotically stable. On the contrary, if any of them is positive the system becomes unstable.

However, the linear character of these equations immediately raises a question as to how far
this justification resolves the appearance of the system adequately. Is there a point at which the
nonlinear effects completely change the system’s future, and the stability regime is disturbed
by them? The topology of a fixed point in the complete system C.0.1 is qualitatively the same
as if we consider the associated linear system, equation C.0.3, as long as the real part of the
eigenvalues of the matrix are different from 0. All fixed points that satisfy this last condition are
known as hyperbolic fixed points. We say in this case that both phase portraits are topologically
equivalents. There is an application between both spaces that distorts the trajectories; bending
or warping is allowed, but not ripping, yet it does not alter their fundamental characteristics.
This statement is known as the Hartman-Grossman theorem and is one of the most important
results of dynamical systems theory [242]. In the case of finding that the real parts of the
eigenvalues are zero, this theorem cannot solve anything, and it is necessary to resort to more
advanced techniques to determine the stability under perturbations, such as the technique of
center manifolds and normal forms.

This result is helpful because it allows us to know the behavior of strongly nonlinear sys-
tems through the linearization around the fixed point. The treatment of dynamical systems is
precisely the same if we now consider more general systems:

dx

dt
= f(x, γ), (C.0.4)

where γ is a control parameter that exerts a significant influence on our system. Although it
is possible to consider a family of parameters, we focus on the case in which there is only one
order parameter. The concepts of fixed point and stability remain unchanged; the computation
of them together with the calculation of eigenvalues of their linearization continue to be the
indicated methods to treat these systems, with the only problem that now both fixed points
and stability will potentially depend on the value of γ. The fixed points of the system now
occur on (xst, γc) and their stability is determined by the eigenvalues of the Jacobian matrix:

dy

dt
=
∂f(x, γ)

∂x

∣∣∣∣
(xst,γc)

y.
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Figure C.1: Eigenvalues crossing the imaginary axis
in blue (complex eigenvalues) and red (real eigen-
value). A Hopf bifurcation corresponds to the blue
case.

Again, if the eigenvalues of this ma-
trix have a real part different from 0,
there is no problem. The Hartman-
Grossman theorem solves the stability
of the complete nonlinear system. The
problem appears when at least one of the
eigenvalues has real part equal to 0. In
this case, and depending on the value of
γ concerning its critical value, the nature
of the solutions of the system have qual-
itatively different behaviors, being able
to exhibit creation and destruction of
fixed points, the appearance of periodic
or even chaotic behaviors. We say that
in this case, the system undergoes a bi-
furcation. More formally, the appearance
of a phase portrait of the system that is
not topologically equivalent to the initial
one due to the variation of parameters is
known as a bifurcation.

The classification of bifurcations and
their general treatment is extensive and
is totally out of our scope. We are some-

what interested in a particular one that receives the name of Hopf bifurcation.

A Hopf bifurcation is a bifurcation of codimension 1: only one parameter is necessary to
characterize the bifurcation, and it is characterized by the loss of stability of a fixed point
because two imaginary eigenvalues have crossed the axis of the imaginary and have changed
the sign of its real part, as outlined in figure C.1. This moment marks the birth of a periodic
trajectory independent of initial conditions known as a limit cycle.

Suppose then that the Jacobian matrix of equation C.0.4 has two purely imaginary eigen-
values, λ = ±iωc, and the rest with real part other than 0 in (xst, γc). In this case, we know
that the Jacobian matrix criterion is not valid to know the system’s behavior and that other
techniques are necessary for this. The theory of normal forms proves to be useful when the
linearization criterion fails. A normal form is the simplest mathematical expression that can
be obtained from the original dynamical system and therefore retains all its characteristics and
properties. Formally the calculation of a normal form is tedious and time-consuming, however,
the techniques shown in Appendix B may be extremely useful in this calculation.

Suppose then that the system C.0.4 can be written as:

dx

dt
= L(γ)x+N(x, γ), (C.0.5)

where, as we already know, L and N denote the linear and nonlinear part, respectively. The
fixed point condition imposes N(xst, γc) = 0 and the existence of non-hyperbolic fixed point
∂N(xst, γc)/∂x = 0. According to the starting assumptions, at γ = γc, we have a bifurcation
point and the eigenvalues of the matrix L are hyperbolic except for a pair of imaginary eigenval-
ues. Using the multiscale method, we can construct approximations to the solutions bifurcating
at γc. While this allows us to approach the solution of the nonlinear problem, on the other
hand, it limits the range of validity of the solution, since the very idea of perturbation restricts
the solution produced to amplitudes close to the reference solution x = xst or, equivalently,
to values of the control parameter close to the critical value itself, γ = γc. Let us make an
expansion of x in the neighborhood of γc in the usual way, i.e., in terms of a parameter ε. It
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seems logical to assume that this ε is simply the distance to the bifurcation point γ − γc. For
this purpose, we will assume that both quantities are expanded in power series as follows:

x = xst + εx1 + ε3x3,

γ = γc + ε2γ2.

Before the instability, the system is stable, and all modes relax towards x = xst. At the same
γc, the modes whose real part is negative relax, while the two modes that are going to become
unstable, which are those that in γc change the sign of their real part, vary very slowly until
they reach the stationary regime. The same happens when γ > γc since, by continuity, we
expect the unstable modes to vary as slowly as they did at the critical point. By extension, we
infer that the x solution of the nonlinear system near the critical point must be a function that
varies very slowly with time in the transient regime. This manifestation of the system near the
critical point allows the introduction of a hierarchy of time scales (t0, t2) such that:

d

dt
=

∂

∂t0
+ ε2 ∂

∂t2
,

as in equation B.0.3. Developing also L(γ) and N(x, γ) around x = xst and γ = γc, and
introducing all the above in equation C.0.5 we have up to order 3 the following set of equations:(

∂

∂t0
− L(γc)

)
x1 = 0, (C.0.6)(

∂

∂t0
− L(γc)

)
x3 = γ2

∂L(γ)

∂γ

∣∣∣∣
γ=γc

x1 +
1

6
x1x1x1

∂3N(x, γc)

∂x3

∣∣∣∣
x=xst

− ∂x1

∂t2
. (C.0.7)

The first of the equations, C.0.6, is an eigenvalue equation that will give us the value of the
frequency at the birth of the bifurcation, ωc. The second, C.0.7, will give us the amplitude
equation of x1 with which we will be able to determine the behavior of the solution as a
function of t2. Writing:

x1 = c1v1e
iωct0 + c.c.,

where c.c. denotes complex-conjugate, v1 is the solution of the homogeneous problem and c1 is
a function of t2 exclusively. The RHS of equation C.0.7 becomes:(

c1v1γ2
∂L(γ)

∂γ

∣∣∣∣
γ=γc

+
1

2
|c1|2c1|v1|2v1

∂3N(x, γc)

∂x3

∣∣∣∣
x=xst

− v1
∂c1
∂t2

)
eiωct0

+
1

6
c3

1v
3
1

∂3N(x, γc)

∂x3

∣∣∣∣
x=xst

e3iωct0 + c.c..

As we saw above, this term must be perpendicular to the subspace generated by the kernel of
the adjoint of the operator ∂

∂t0
− L(γc) satisfying the Fredholm Alternative [240]. It is clear

in this case that the equation contains secular terms, namely the terms accompanied by eiωct0

and its complex conjugate. Introducing the vectors that generate the nullspace of the adjoint
operator, v∗e−iωct0 + c.c., the Alternative then imposes:

∂c1
∂t2

= γ2µc1 + β|c1|2c1,

with µ and β complex quantities defined by:

µ = v1
∂L(γ)

∂γ

∣∣∣∣
γ=γc

· v∗,

β =
1

2
v1v1v1

∂3N(x, γc)

∂x3

∣∣∣∣
x=xst

· v∗.
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However, for physical purposes the important quantity is not c1 but rather the measurable
physical amplitude εx1. In correspondence z = εc1, moreover, considering that t2 = ε2t and
γ2 = γ−γc

ε2
we finally write the normal form of the Hopf bifurcation [243]:

dz

dt
= (γ − γc)µz + β|z|2z. (C.0.8)

Rewriting in polar coordinates z = reiθ and making µ = µr + iµi and β = βr + iβi where the
subindices r and i correspond to the real and imaginary parts, respectively, we can write the
equation C.0.8 as:

dr

dt
= (γ − γc)µrr + βrr

3,

dθ

dt
= (γ − γc)µi + βir

2.

r

r

a)

r

r

b)

r

r

c)

Figure C.2: Phase portrait of the radial coordinate r for µr > 0 and βr < 0. We show the cases
a) γ < γc , b) γ = γc and c) γ > γc. Just the scenario with γ > γc presents a stable limit cycle.

The phase portrait in figure C.2 shows how the system (for γ − γc > 0) give rise to a limit
cycle whose amplitude does not depend on the initial conditions:

rst =

√
−(γ − γc)

µr
βr
.

The equation for θ shows how the first correction to frequency depends on the amplitude squared,
prototypical behavior in this type of bifurcations. Substituting the limit cycle equation in the
corresponding one for θ, we find:

θ = θ0 + (γ − γc)
(
µi − µr

βi
βr

)
t,

where the dependent term of t is the correction to the oscillation frequency to order γ − γc,
which we call ω2; at first order for the limit cycle, the solution we have is:

x = rste
iθ0ei(ωc+ω2)tv1.

However, the normal form calculation should be used only when we already know which bifur-
cation we are facing. In any case, identifying a bifurcation involves studying the behavior of the
eigenvalues as a function of the control parameter. In recognizing a Hopf bifurcation, there are
also methods based on the observation of the phase space that do not involve the calculation
of eigenvalues, such as the Poincaré-Bendixson theorem, valid only in systems with two degrees
of freedom [213]. However, the following theorem assures the existence of a Hopf bifurcation if
there is a system such as the one given by equation C.0.4 having a fixed point at (xst, γc) and
that furthermore obeys [244]:

1. The Jacobian matrix ∂f
∂x at the fixed point has only one pair of purely imaginary values,

and all others have real part other than 0.
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2. The so-called transversality condition is satisfied, which implies:

d

dγ
[Reλ(γ)]

∣∣∣∣
γ=γc

6= 0.

In that case, the imaginary eigenvalues, λ(γ) and λ(γ), vary smoothly with γ in a neighborhood
of the bifurcation point and the normal form of the system can be written as in equation C.0.8.
Moreover, if βr 6= 0, there exist periodically stable trajectories for βr < 0 and repulsive ones if
βr > 0. Thus, if the two conditions of the theorem are satisfied, we know that we are dealing
with a Hopf bifurcation, and we can even know whether the limit cycle that arises will be
stable or not. Actually, the stability in function of βr is elementary to prove by analyzing the
r-coordinate evolution equation. The sign of βr further classifies these bifurcations into two
types, supercritical if βr < 0 and subcritical if βr > 0. To summarize, supercritical bifurcations
appear when the equilibrium point loses stability and becomes a stable limit cycle for γ greater
than γc, as shown in figure C.3. In contrast, subcritical bifurcations appear when the stable
equilibrium point becomes an unstable limit cycle and can become potentially dangerous for
stability as they can lead the system behavior to jump far away to non-desired scenarios [245].

15

x1

x 2

b)

x1

x 2

a)

Figure C.3: A supercritical Hopf bifurcation behavior showing a) stability, for γ < γc, and b) a
stable limit cycle, γ > γc.
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[99] H. Wagner, “Über die entstehung des dynamischen Auftriebes von Tragflügeln,” ZAMM -
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