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RÉSUMÉ LONG

Les robots d’assistance ou de compagnie font l’objet d’une attention croissante de la part
de la société, du commerce et de la recherche en tant que moyen d’améliorer la qualité de
vie et le bien-être des personnes [1, ch. 53, 54], par exemple en soutenant les activités de la
vie quotidienne [2]. Cela concerne plus particulièrement les pays développés où la baisse du
taux de natalité, combinée à l’amélioration de la qualité de vie, entraîne une augmentation
de l’espérance de vie et, par conséquent, un manque de professionnels humains pour
accompagner les personnes âgées. Face à ce défi, des efforts constants sont déployés pour
pallier les déficiences motrices ou cognitives en complétant la perte d’autonomie par la
technologie robotique [3, 4]. Poussés par la nécessité de développer des robots capables
de soutenir physiquement mais aussi socialement ou émotionnellement les personnes dans
le besoin, des paradigmes technologiques tels que l’assistance à l’autonomie à domicile
(AAD), les soins infirmiers robotisés et la robotique d’assistance ont vu le jour [5] et
peuvent compléter les capacités motrices et sensorielles d’une personne de différentes
manières [6].

Parmi les différents défis qui persistent pour faire des services robotiques susmention-
nés une réalité, un élément crucial consiste en la capacité de naviguer en toute sécurité
dans des environnements peuplés d’humains, composés de sols en 2D qui sont générale-
ment reliés par des marches ou des escaliers. Doter les robots mobiles de capacités de
navigation 3D avancées devient donc un sujet de recherche actif, tant au niveau de la
conception du matériel et de la structure cinématique qu’au niveau du contrôle du com-
portement.

En ce qui concerne le matériel, la capacité de naviguer en 3D et de négocier des escaliers
dépend étroitement du type de locomotion du robot sous-jacent, tel que roues, jambes,
hybride ou piste. [7].

La locomotion des robots à chenilles représente une alternative [8, 9] car ces robots
ont en général un centre de gravité plus bas et une plus grande surface de contact avec le
sol, ce qui les rend comparativement plus stables. Bien que des comportements ad-hoc ou
codés en dur utilisant la cinématique exacte du robot et les caractéristiques de l’escalier
aient été recherchés [10, 11], une telle approche n’est généralement pas robuste car les
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comportements développés ne sont pas facilement transférables à différents robots ou
escaliers. Cela devient encore plus évident lorsqu’il s’agit du transport d’objets. En effet,
ce problème a été, à peine, traité conjointement avec la mobilité 3D, malgré l’attention
considérable qu’il a suscité ces dernières années.

La tâche de transport d’objets potentiellement sensibles lors de la traversée d’un es-
calier est une problématique importante dans le contexte d’un scénario d’assistance per-
sonnelle. En ce qui concerne les robots à chenilles, cette tâche a été principalement étudiée
dans les applications de recherche et de sauvetage où les robots sont confrontés à des con-
traintes différentes de celles de la robotique de service : [9, 12, 13]. Dans ce contexte,
il est essentiel de garantir la sécurité des objets ou de l’environnement. En effet, les bi-
ens matériels des personnes peuvent être facilement endommagés dans les applications
robotiques d’assistance, ce qui n’est guère acceptable, contrairement aux applications de
recherche et de sauvetage.

La plupart des travaux antérieurs dans ce domaine s’appuyaient fortement sur l’expertise
humaine et les approches conventionnelles de planification et de contrôle. À titre indicatif,
les auteurs de [9] ont proposé une infrastructure logicielle pour la planification autonome
de la trajectoire et du mouvement en 3D, incluant le contrôle des flippers pour les robots
à chenilles. L’idée principale est de maintenir les flippers tangentiellement à la surface de
contact. Deux essais ont été suffisant pour en démontrer toute l’efficacité. Dans l’article
[14], un robot à chenilles avec des sous-rampes passives affronte des obstacles qui dépassent
les capacités de négociation d’obstacles de [9]. Il utilise un système d’avertissement fondé
sur la marge de stabilité énergétique normalisée (NESM) et un algorithme de traversée
qui utilise les flippers pour exercer une force contre les obstacles traversés. Les approches
fondées sur la NESM pour l’évaluation de la stabilité se sont répandues en robotique. Elles
sont faciles à comprendre car le critère de stabilité repose sur le calcul de la déviation
verticale par rapport à la position stable la plus basse du châssis robotique principal [15].

En raison du manque de généralité et de robustesse de ces approches pour différents
robots ou environnements, l’utilisation d’approches fondées sur l’apprentissage automa-
tique et, plus largement, sur l’intelligence artificielle, offre de nouvelles possibilités d’exploration
pour faire progresser l’état de l’art. En particulier, la branche de l’apprentissage automa-
tique liée à l’apprentissage par renforcement (RL) s’est révélée particulièrement promet-
teuse en robotique pour éviter les solutions ad hoc qui sont conçues pour des plateformes
particulières, ce qui la rend particulièrement pertinente pour l’application de la négocia-
tion d’escaliers par un robot à chenilles. Néanmoins, l’application de la RL peut s’avérer
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particulièrement difficile lorsque les espaces d’état et d’action sont de grande dimen-
sion tout en satisfaisant des contraintes de sécurité qui ne devraient jamais ou au mieux
rarement être violées [16]. Un travail de référence dans cette direction, [17] a présenté
l’application de la RL pour le scénario de la traversée d’un escalier en introduisant des
contraintes dans l’algorithme de recherche de politiques contextuelles d’entropie relative
[18], alternant entre la simulation et la réalité.

Dans l’ensemble, les points précédents convergent vers la nécessité d’un traitement
plus élaboré des divers défis communs auxquels est confrontée la navigation de robots 3D
par des robots à chenilles. En retour, cela motive l’examen de questions spécifiques qui
constituent l’objet de recherche principal de cette thèse.

Pour résoudre le problème de la commande de la navigation sûre en 3D de robots
articulés à chenilles, nous utilisons un paradigme d’apprentissage par renforcement en
utilisant une approche de la politique fondée sur la recherche comme moyen de réduire la
quantité de supervision experte et d’augmenter la robustesse et la généralité sous diverses
conditions tout en respectant la sécurité.

Les questions de recherche permettant de répondre à ce scénario sont les suivantes :

1. Comment pouvons-nous développer une approche fondée sur l’apprentissage de la
commande de robots pour la tâche de montée et de descente d’escaliers ?

2. Comment les actions générées par le robot peuvent-elles garantir l’accomplissement
de l’objectif principal de la traversée de l’escalier tout en respectant les objectifs
secondaires relatifs à la sécurité ?

3. Comment la tâche de traversée d’un escalier est-elle influencée par la présence d’un
bras actif portant un objet ?

4. Comment réduire l’écart entre la simulation et la réalité pour qu’un comportement
appris en simulation puisse être transféré avec succès dans la réalité ?

Pour répondre à ces questions, les contributions de cette thèse se situent à l’intersection
de l’apprentissage par renforcement, de l’apprentissage par transfert et de l’apprentissage
incrémental, de manière à rendre le développement de comportements de navigation de
robots 3D moins dépendants d’une plateforme particulière ou de l’expertise humaine et,
par conséquent, plus efficaces et généralisables à la réalité.
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État de l’art de la navigation intérieure 3D des robots
à chenilles

Architecture du système de navigation

Le champ d’application de cette thèse étant la navigation intérieure, cela suppose la
capacité de naviguer aussi bien en 2D qu’en 3D, et plus particulièrement sur le sol et dans
les escaliers. Au vu de la littérature existante, nous estimons que la navigation 2D standard
ou fondée sur l’apprentissage a été traitée de manière exhaustive et que de nombreuses
solutions peuvent être exploitées. Ceci est vrai pour la navigation sans apprentissage,
tandis que les contrôleurs réactifs de bout en bout pour la navigation à plat développés
avec des algorithmes RL profonds tendent à devenir également répandus et communs.

Alors que les solutions existantes pour la navigation 2D sont facilement utilisables, un
système de navigation complet nécessite le développement d’un contrôleur de navigation
3D afin de couvrir l’ensemble des tâches de négociation d’obstacles dans les environ-
nements intérieurs. Avec deux solutions de navigation de ce type, il serait alors simple
de les intégrer dans une architecture hybride. Les auteurs de l’étude [19] ont jugé cette
solution plausible en soulignant qu’il est bon de mettre en place les deux méthodes con-
ventionnelles et RL. Un planificateur diviserait un trajet à plusieurs étages en un ensemble
de sous-objectifs pour naviguer d’un point à un autre sur la surface plane et du début à
la fin d’un escalier pour les transitions entre les étages. Ainsi, la navigation 2D point à
point pourrait être traitée indépendamment de la traversée des escaliers.

Apprendre à naviguer et apprentissage par renforcement

Les méthodes RL se divisent principalement en deux catégories : les méthodes fondées sur
la valeur et les méthodes fondées sur la politique du gradient (PG). La première fait en
sorte qu’un agent évalue la qualité d’une action prise dans un certain état par le calcul de
la fonction de valeur en fonction de la récompense cumulative attendue. Les méthodes du
second groupe ont tendance à être plus avantageuses dans les applications robotiques. Les
raisons en sont la facilité de mise en œuvre grâce à la complexité réduite de l’approximation
de la politique et le fait que des petits changements de politique n’entraînent pas de
changements radicaux dans le comportement, contrairement aux méthodes fondées sur la
valeur où un agent peut commencer à exploiter une politique nettement moins favorable
après la mise à jour de la politique.
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À titre indicatif, nous adoptons la méthode Soft Actor-Critic (SAC) [20], qui déplace
l’espace d’action discret vers un espace continu en tant qu’amélioration retardée de la
politique. Elle s’appuie sur le double apprentissage Q clippé et le lissage de la politique
cible combiné à une nouvelle maximisation de la politique fondée sur l’entropie. De plus,
nous utilisons aussi un algorithme antérieur, Proximal Policy Optimization (PPO) [21],
qui produit des mises à jour plus conservatrices.

Les travaux [22–24] sont particulièrement inspirants en ce qui concerne la minimisation
de la complexité du modèle du monde pour le paradigme réactif ou, même, la recherche
d’une méthode de bout en bout, car elle permettrait d’éviter les modèles du monde com-
plexes au niveau de la perception par une mise en correspondance directe des observations
brutes avec les actions sans phase de planification coûteuse en calcul. Ils s’appuient princi-
palement sur des algorithmes RL profonds. A notre tour, nous aimerions utiliser les mêmes
algorithmes car la structure d’un problème robotique peut être naturellement considérée
comme un problème de RL [25], et elle montre la capacité de développer une expertise de
niveau humain [26], tout en rendant possible les méthodes conventionnelles.

Ainsi, cela nous motive à résoudre un problème d’apprentissage du contrôle en utilisant
des algorithmes RL avec une représentation de politique par un réseaux de neurones. L’idée
principale consiste à effectuer l’ascension du gradient sur les paramètres de la politique
afin de maximiser le rendement attendu du gradient. A propos du type de contrôleur,
notre ambition est de doter le contrôleur de compétences pour atteindre l’objectif avec
des comportements supplémentaires.

Nous pouvons distinguer deux types de réseaux neuronaux, à savoir, les réseaux su-
perficiels [27, p. 223] et les réseaux profonds [27, p. 436]. Les NNs peu profonds avec
une couche cachée ont plus de paramètres pour approximer la même fonction que les
réseaux profonds. Les réseaux profonds ont moins de paramètres et la capacité supplémen-
taire d’apprendre différentes représentations à des niveaux intermédiaires. Leur utilisation
comme représentation de la politique dans le RL a donné lieu à des succès étonnants en
robotique [28, 29], et on les appelle le RL profond ou DRL.

Les algorithmes DRL peuvent obtenir d’excellents résultats dans les simulations. Cepen-
dant, dans la réalité, leur déploiement est limité par l’écart entre le monde simulé et le
monde réel, appelé problème de transfert "sim-to-real" [30].

La littérature sur le transfert sim-to-réel pour les tâches de navigation a commencé à
attirer l’attention ces dernières années. De manière indicative, les auteurs de [24] effectuent
une randomisation du domaine par la création de trois environnements plats avec une
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complexité croissante entre eux dans le cadre du "déplacement vers le but". On considère
que le robot passe à l’environnement suivant plus complexe sur la base de ses résultats
d’apprentissage. L’approche présentée dans [31] entraîne un robot à six pattes à atteindre
un objectif sur une surface plane. La caractéristique principale de ce travail est le mélange
entre l’apprentissage du programme [32] et la randomisation du domaine, qui modifie la
complexité de l’environnement en fonction d’un programme prédéfini.

Cela nous motive à incorporer des méthodes permettant de surmonter l’écart entre
la simulation et la réalité. Les escaliers varient dans les habitations humaines, et par
conséquent, si nous formons un robot à négocier un escalier, il ne fonctionnera pas sur un
autre. Ainsi, nous cherchons à incorporer la technique DR dans notre travail pour acquérir
des compétences de négociation sur autant d’escaliers que possible.

Techniques d’évaluation de la sécurité

Un des problèmes clés traités dans cette thèse est l’incorporation de propriétés de sécurité
dans le comportement du robot développé. Nous distinguons deux types de traversées
d’escaliers - la montée et la descente - et quantifions la sécurité différemment dans chaque
cas. Nous choisissons d’associer la stabilité classique du robot [33] comme une mesure de
sa sécurité dans les négociations d’escaliers ascendants.

Nous basons notre travail sur le NESM comme l’un des critères les plus développés,
qui a reçu une popularité considérable à travers différentes études sur les robots chenillés
[9, 14, 34]. De plus, l’analyse de stabilité statique attire notre attention en tant que moyen
complémentaire pour l’estimation de la stabilité.

Nous constatons que le robot peut naturellement descendre l’escalier en appliquant
une vitesse constante sans aucune reconfiguration active, ce qui peut ne pas entraîner de
violation de la stabilité. Cependant, le robot peut être endommagé par l’impact d’une
chute ou un choc dû à une vitesse linéaire ou angulaire élevée lorsque le robot passe les
bords de l’escalier. Pour résoudre ce problème, nous nous inspirons de l’idée de détection
de bumpiness de [23] où les auteurs détectent un événement de bumpiness lorsque les
magnitudes de vitesse angulaire mesurées par l’IMU dépassent un certain seuil. Ainsi, les
magnitudes de vitesse angulaire pourraient nous servir de moyen pour quantifier l’impact
de la chute auquel le robot est soumis.
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Figure 1: Instantanés de la négociation d’un escalier avec un contrôle congruent de 5
dimensions de liberté (DOF). Colonne de gauche : montée en minimisant la déviation
du centre de gravité. Colonne de droite : descente en minimisant la vitesse angulaire de
tangage.

Simulations de robots et d’environnements

La simulation de l’environnement et du modèle de robot est essentielle au développement
des compétences des robots par le biais de la RL. Malgré une multitude d’environnements
sophistiqués pour différents types de robots, les robots articulés à chenilles sont faiblement
représentés, notamment dans le simulateur Gazebo, qui figure parmi les outils les plus
utilisés pour le développement d’applications robotiques. Cependant, il est loin derrière
Gazebo en termes d’intégration avec ROS, qui est l’état de l’art pour le développement de
la robotique moderne. Nous nous appuyons sur Gazebo et ROS dans notre travail, ainsi
que sur le modèle de mouvement sur la surface de contact [35]. Ce modèle trouve la force
nécessaire pour déplacer le robot à une certaine vitesse. Il ne simule pas les crampons
("grouzers") ou les pistes déformables.
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Prototypage d’un système de montée d’escalier fondé
sur l’apprentissage par renforcement.

Au début du manuscrit, nous présentons une version initiale de l’infrastructure logicielle
RL avec un environnement simplifié pour l’apprentissage du contrôle de la négociation
d’escaliers. Au sein d’un petit nombre de trajectoires apprises qui correspondent, le robot
a appris à traverser en toute sécurité des escaliers avec des contremarches et des angles
d’escaliers variables, représentatifs du monde réel. Nous concevons et comparons trois
fonctions de récompense alternatives. L’incorporation de la maximisation de la projection
dans la fonction de récompense produit le comportement souhaité en termes d’adhérence
du flipper à l’escalier. En même temps, la politique fondée sur le NESM se comporte
mal par rapport à la politique fondée sur la maximization de projection. Les politiques
apprises présentent une bonne capacité de généralisation lorsqu’elles sont appliquées à des
paramètres d’escalier nouvellement rencontrés. Enfin, nous découvrons que les données
sensorielles bruyantes peuvent diminuer le taux de convergence, mais que la politique de
contrôle finale atteint la récompense maximale dans la plupart des cas.

Ce prototype sert de paradigme pour le développement de compétences plus élaborées
du robot, afin de mieux prendre en compte la présence d’un bras actif et de traiter la
seconde moitié de la tâche de négociation d’un escalier complet, à savoir la tâche plus
risquée de la descente tout en portant potentiellement une charge. En outre, cette étude a
permis d’identifier les points faibles de l’environnement de simulation et du robot simulé
afin de faire évoluer notre infrastructure logicielle vers une simulation plus réaliste.
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Montée complete d’escaliers fondée sur l’apprentissage
par renforcement

Nous utilisons un modèle CSM réaliste de chenilles qui est plus léger en termes de vitesse
de calcul et plausible sur des terrains plats et accidentés. Nous instançions un modèle
du robot Jaguar V4 et ajoutons une plateforme de bras manipulateur (voir Figure 1)
en y incorporant ses paramètres géométriques et de distribution de masse. Les chenilles
principales sont reliées au châssis par des joints fixes. Les flippers sont situées à chaque
extrémité des deux chenilles et sont fixées par des articulations à rotule, qui peuvent
tourner dans les limites de sécurité autour de la configuration "étendue". Les articulations
à bras pivotant ont les mêmes limites de sécurité. Une charge utile de masse variable peut
être fixée à l’effecteur du bras du robot. Le modèle peut être contrôlé par des topics de
ROS. Les articulations du bras et du flipper sont contrôlées en position. Nous pouvons
contrôler la vitesse du robot en définissant des valeurs de vitesse linéaire et angulaire.
Le plugin Gazebo proposé dans [35] calcule et applique les forces correspondantes au
robot. Le robot contient un capteur ROS IMU standard qui peut fournir des accélérations
linéaires et angulaires ainsi que l’orientation. Enfin, nous plaçons un capteur RVB-D à
l’avant du robot.

Dans cette thèse, nous instancions une formalisation et un traitement fondés sur
l’apprentissage par renforcement de la tâche de négociation complete d’un escalier pour
un robot activement articulé équipé d’un bras. Nous présentons une infrastructure logi-
cielle fondée sur l’apprentissage par renforcement pour le problème de l’apprentissage de
la politique de contrôle pendant la descente et la montée de l’escalier, en étudiant plus en
détail l’influence d’un bras intégré, du bruit et de la présence d’une charge utile. Le robot
est capable d’apprendre sa dynamique et ses contraintes de sécurité tout en négociant des
escaliers variables. Nous prouvons que l’estimation automatisée du coefficient d’échelle
est efficace pour contraindre les retours d’épisodes à des échelles appropriées et éviter de
biaiser la convergence des politiques optimales obtenues.

Nous étudions l’optimisation des critères NESM, projection, COG et vitesse angu-
laire de tangage pour la montée et la descente. L’incorporation de la maximisation de la
projection dans la fonction de récompense produit le comportement souhaité en termes
d’adhérence du flipper à l’escalier. En même temps, la politique fondée sur le NESM se
comporte mal par rapport à la politique de la maximization de projection. Les politiques
apprises ont présenté une bonne capacité de généralisation lorsqu’elles ont été appliquées
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à des paramètres d’escalier nouvellement rencontrés. Enfin, il a été découvert que les
données sensorielles bruyantes peuvent diminuer le taux de convergence, cependant, la
politique de contrôle finale atteint la récompense maximale dans la plupart des cas.

Les politiques fondées sur le COG ont montré de meilleures performances en termes
de stabilité et ont qualitativement présenté le même comportement de contrôle optimal
du bras en comparaison avec le contrôle ordinaire. Malgré l’ajout de plus de DOF, le
contrôle du bras offre une meilleure stabilité globale au robot pendant la traversée. La
minimisation de la vitesse angulaire a montré des améliorations mineures de la politique et
a indirectement amélioré la déviation du COG. Le contrôle appris a montré une certaine
résilience dans l’application à différentes charges de transport. Enfin, les évaluations des
tests de la politique ont montré que l’optimisation du critère COG permet l’exécution de
la montée et de la descente d’une manière plus sûre.

(a) (b)

Figure 2: (a) Configuration de l’expérimentation et hiérarchie du cadre de coordonnées ;
(b) architecture du système robotique déployé.
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Portabilité des politiques et transfert de la simulation
à la réalité

Nous démontrons un transfert "zéro coup" des comportements appris en simulation vers
un robot et des escaliers réels (voir figure 2), ainsi qu’une application à un second robot
simulé ayant des capacités de mobilité similaires. Nous nous appuyons sur l’acquisition
de contrôleurs de robot présentant les propriétés de comportement souhaitées, telles que
la sécurité et la minimisation des bosses, par la conception de fonctions de récompense,
conformément à nos résultats antérieurs. En particulier, nous consolidons la formation de
contrôleurs efficaces en simulation, en développant et en comparant ces compétences sur
deux robots articulés à chenilles distincts en simulation, puis nous transférons et déployons
avec succès les politiques formées sur l’un des robots réels.

En plus d’atteindre notre objectif principal qui consiste en la négociation réussie d’un
escalier par le robot réel, nous présentons également de nouvelles idées qui sont le produit
d’une comparaison croisée quantitative et qualitative des comportements entre les vari-
antes de tâches et entre les robots. Concrètement, le travail présenté fait progresser l’état
de l’art sur les points suivants :

• Nous avons réussi à acquérir des contrôleurs de négociation d’escaliers basés sur
RL pour deux plates-formes robotiques en simulation, toutes deux présentant les
propriétés de comportement souhaitées.

• Nous comparons quantitativement les contrôleurs obtenus pour différents robots et
variantes de tâches via la divergence de Kullback-Leibler.

• L’efficacité des contrôleurs obtenus est démontrée dans la réalité par le transfert à
un robot commercial.
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Figure 3: Vue d’ensemble de l’infrastructure logicielle proposée

Infrastructure logicielle d’apprentissage incrémental par
randomisation de domaine

Une infrastructure logicielle accessible au public pour l’apprentissage et l’évaluation de la
navigation dans des environnements intérieurs 3D (voir figure 3). Ce logiciel est unique
en son genre en ce qui concerne le type de tâche pour lequel il est destiné à être utilisé,
intégrant la randomisation du domaine et la possibilité d’un apprentissage incrémental,
accompagné de deux modèles de robots articulés à chenilles.

Le logiciel appliqué à l’apprentissage du contrôle de la montée et de la descente
d’escaliers avec des contraintes de sécurité a montré la capacité d’apprendre des compé-
tences raisonnables avec le contrôle du bras articulé en se basant sur les caractéristiques
de l’image de l’environnement. De plus, l’amélioration du DR avec l’échantillonnage des
configurations de l’environnement à partir d’une distribution gaussienne, qui est contrôlée
par l’estimation de la progression de l’apprentissage, a montré des résultats supérieurs en
comparaison avec l’environnement uniforme.

Nous pensons que ce logiciel pourrait stimuler la recherche et l’expérimentation dans
diverses directions. Par exemple, de futures améliorations possibles du logiciel pourraient
prendre en compte la génération d’escaliers en spirale ou des variations plus complexes
des obstacles au sol afin d’augmenter la complexité de l’apprentissage du contrôle 2D et
de mieux prendre en compte la complexité structurelle des environnements du monde
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réel. Une autre extension pourrait concerner la variation du nombre de DOF des robots
dans un cadre d’apprentissage incrémental, par exemple, en commençant l’apprentissage
à l’aide de 2 DOF correspondant au contrôle de la vitesse linéaire et angulaire, puis en
ajoutant progressivement des DOF supplémentaires de contrôle du flipper et du bras à
mesure que la complexité de l’environnement augmente.
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Conclusion

Nous proposons une solution RL qui peut être appliquée sur une variété de plateformes et
garantir la sécurité en quelques étapes d’apprentissage. En ce qui concerne l’applicabilité
de nos résultats à la recherche et à des fins commerciales, nous promouvons les résultats de
cette thèse et laissons un logiciel qui peut être utilisé pour la recherche et le développement
futurs de la négociation d’escaliers et des compétences de navigation intérieure. Ce logiciel,
qui incorpore nos résultats de recherche, permet d’éviter le développement d’algorithmes
personnalisés pour le contrôle des robots articulés et, plus important encore, de doter le
robot des comportements nécessaires, par exemple, l’orientation vers la sécurité qui a été
étudiée dans cette thèse.

Malgré l’importance des résultats, notre travail souffre de plusieurs limitations. Tout
d’abord, nous nous sommes appuyés sur la configuration extéroceptive dans notre travail.
Pour y remédier, un des développements futurs possibles pourrait concerner la création
d’un système de localisation basé, par exemple, sur la localisation et la cartographie
simultanées (SLAM) [36] qui serait capable de suivre les nouvelles caractéristiques de
l’escalier et de calculer la pose du robot.

Une perspective de travail possible pourrait consister à intégrer les contrôleurs fournis,
un système de localisation d’escalier et la pile de navigation. Dans le cadre de ce travail,
nous n’avons montré que la performance du contrôleur de bout en bout en simulation.
Elle peut être étendue à la réalité.

Une autre limitation de notre travail est que nous produisons un contrôleur par tâche,
cependant il est possible d’appliquer une approche hiérarchique comme dans [37] où un
contrôleur étant continuellement formé sur différentes tâches traitera toutes les tâches.
De même, quelqu’un peut s’inspirer de [23] et entraîner un réseau neuronal pour naviguer
dans l’ensemble du bâtiment.
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Chapter 1

INTRODUCTION

Thanks to the recent evolution of robots, machines designed to work with and for human
beings, the borders between science fiction and reality are constantly revised. Driven
by decades of development of robotic technology, such machines are applied in diverse
domains such as search and rescue, industry, agriculture, space, forestry and more lately
in the tertiary sector [1].

Following this trend, assistive or companion robots have been receiving increasing
societal, commercial and research attention as a means for improving the quality of life
and well-being of people, for example by supporting activities of daily living [2]. This
concerns developed countries more particularly, where birth rate decline combined with
the improvement of quality of life lead to higher life expectancy and in turn lack of
human professionals for accompanying seniors. In view of this challenge, consistent efforts
are being made towards palliating motor or cognitive impairments by complementing
autonomy loss with robotic technology [3, 4]. Driven by the need for developing robots
that can physically but also socially or emotionally support people in need, technological
paradigms such as ambient assisted living (AAL), robotic nursing, and assistive robotics
have emerged [5] that can complement a person’s motor and sensory skills in different
ways [6] :

• Transportation; fetching a desired object or helping a person to move from one place
to another

• Object manipulation; remote manipulation of a distance object, person feeding

• Route guidance

Among different challenges that persist in making the aforementioned robot services a
reality, a crucial component consists in the capacity to navigate safely in human pop-
ulated environments, composed of 2D floors that are typically interconnected by steps
or staircases. Endowing advanced 3D navigation skills to mobile robots thus becomes an
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active research topic both at the level of hardware design and kinematic structure as well
as at the level of behavior control.

Insofar as hardware is concerned, being able to navigate in 3D and negotiate staircases
is tightly dependent to the underlying robot locomotion type, such as wheeled, legged, hy-
brid or tracked [7]. Legged robot locomotion is instigated by biped (see Figure 1.1 (a, b))
or quadruped paradigms of mobility, which makes legged robot designs bear a significant
potential for advanced 3D mobility such as staircase traversal. However, the combined
effect of an elevated center of mass, small contact footprints and complex gait dynamics
make the problem of safety very difficult to address. Although conventional wheel loco-
motion is destined for 2D navigation, hybrid wheel-based designs have been explored for
obstacle negotiation tasks, for example using re-configurable pivoting segments (see Fig-
ure 1.1 (c, d)) or crawler-type platforms [38]. In view of such diversity in robot designs and
locomotion types, developing control for 3D navigation for each robot instance becomes
a particularly cumbersome task, be it in terms of research or engineering.

Tracked robot locomotion (see Figure 1.1 (e, f)) represents an alternative [8, 9] as such
robots have in general lower center of mass and larger area of footprint contact, which
make them comparatively more stable. Although ad-hoc or hard-coded behaviors that
make use of the exact robot kinematics and staircase characteristics have been sought
[10, 11], in general terms such an approach is not robust as the developed behaviors are
not easily transferable to different robots or staircases. This becomes even more evident
when object transportation is further concerned, where despite considerable attention in
recent years [39–41] it has barely been treated jointly with 3D mobility.

The task of transporting potentially sensitive objects while performing staircase traver-
sal is a topic of special interest in the context of a personal assistance scenario. As far as
tracked robots is concerned, this task has been mainly studied in search and rescue ap-
plications where robots face different constraints compared to service robotics [9, 12, 13].
Crucially, ensuring object or environment safety is usually less of an issue in destructed
sites whereas in assistive robot applications it is more probable and at the same time
more inadmissible to damage human property.

Most earlier works in this field relied heavily on human expertise and conventional
planning and control approaches. Indicatively, the authors of [9] proposed a framework
for autonomous 3D path and motion planning, including flipper control for tracked robots
where the main idea is to keep flippers tangentially in contact with the surface, demon-
strating performance in just two trials. In [14], a tracked robot with passive sub-crawlers
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(a) HRP4 [42] ©2019 IEEE (b) HRP-4C [43] ©2010 IEEE (c) Wheel-on-leg robot [44]
©2017 IEEE

(d) RT-Mover PType WA Mk-
II [38]

(e) Jaguar V4 with Manipula-
tor [45]

(f) Tracked vehicle [9] ©2008
IEEE

Figure 1.1: Robots with obstacle negotiation capabilities

faces obstacles that surpasses obstacle negotiation capabilities of [9], using a warning sys-
tem based on the normalized energy stability margin (NESM) and a traversal algorithm
that makes use of flippers to exert force against traversed obstacles. NESM-based ap-
proaches for stability assessment became widespread in robotics while at the same time
being easy to understand because the stability criterion supposes the calculation of vertical
deviation from the lowest stable position of the main robotic chassis [15].

Due to lack of generality and robustness of such approaches in different robots or
environments, employing machine learning-based and more broadly speaking artificial
intelligence-based approaches, provides new possibilities of exploration for advancing the
state-of-the-art. In particular, the branch of machine learning related to Reinforcement
learning (RL) has shown particular promise in robotics for avoiding ad-hoc solutions that
are engineered to particular platforms [46], which makes it particularly relevant to the
application of staircase negotiation by a tracked robot. Still, the application of RL can
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prove particularly challenging when state and action spaces are high-dimensional while
satisfying safety constraints that should never or at best rarely be violated [16]. A work of
reference in this direction, [17] showcased the application of RL for the scenario of palette
traversal by introducing constraints within the contextual relative entropy policy search
(Contextual REPS) algorithm [18], altering between simulation and reality.

Overall, the previous points converge towards the need for a more elaborate treatment
of the various common challenges that are faced in 3D robot navigation by tracked robot
manipulators and the application of interest. In turn, this motivates the examination of
specific questions that constitute the particular object of research of this thesis.
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1.1. Research questions and contributions

1.1 Research questions and contributions

To address the problem of control for 3D safe navigation of articulated tracked robot
manipulators, we pursue a reinforcement-learning paradigm using a policy search-based
approach as a means for reducing the amount of expert supervision and increasing ro-
bustness and generality to various conditions while respecting safety.

Different questions are raised to accommodate this scenario. How can we develop a
learning-based approach for robot control for the task of staircase ascent and descent?
How can the generated robot actions ensure the accomplishment of the primary goal
of staircase traversal while respecting secondary goals pertaining to safety? How is the
staircase traversal task influenced by the presence of an active arm carrying an object ?
How can the gap between simulation and reality be reduced so that a behavior learnt in
simulation can be successfully transferred to reality ?

To address these questions, the contributions of this thesis reside at the intersection
of reinforcement-learning, transfer learning and incremental learning, so as to render the
development of 3D robot navigation behaviors less dependent on a particular platform or
human expertise and in turn, more efficient and generalizable to reality. In particular, the
major contributions of this thesis dissertation are as follows :

1. A reinforcement-learning based formalization and treatment of the com-
plete staircase negotiation task for an actively articulated robot equipped
with an arm. In particular, we successfully tackle the problem of staircase ascent
and descent by satisfying the primary goal of traversing the staircase as well as
the secondary goal associated to safety constraints, using congruent control of the
degrees of freedom associated to the tracks, flippers and arm joints.

2. Demonstrated, zero-shot transfer of the behaviors learnt in simulation
to a real robot and staircases, along with an application to a second
simulated robot of similar mobility skills. The transfer to reality and the
application to two robots corroborate the generality and robustness of contribution
#1.

3. A publicly available software framework for navigation learning and eval-
uation in 3D indoor environments. Its architecture allows a user to interface
between different RL libraries and algorithm implementations. At the same time,
learning can be customized to endow specific properties within a control skill. To
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show its utility, we focus on the case of staircase ascent and descent using depth
sensory data while respecting safety via reward function shaping.
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1.2. Manuscript organization

1.2 Manuscript organization

The organization of the dissertation is as follows:
In Chapter 2, we review the state-of-the-art in the areas of interest of the dissertation

highlighting the relevant tracked robot control architectures.
The subsequent chapters unfold the details of the contributions of this thesis. Due to

the complexity of the overall problem, these contributions were sought during the thesis
by starting from moderate hypotheses and constraints and progressively scaling up to
harder challenges until the final application to the real robot. We chose to follow a similar
mode and order of presentation in the organization of the manuscript, so as to better
comprehend the different milestones that lead to the final contributions. An implicit,
secondary contribution of the dissertation could thus consist in guiding the reader in the
development of similar approaches in an incremental and principled manner.

Chapters 3 and 4 present the details of the claimed contribution #1. In Chapter
3, we formalize the problem of the staircase traversal and start by developing a wheel-
based robot model within a simplified reconfigurable staircase environment. This leads to
a prototype application where the integration of constraints within a policy is success-
fully employed through penalty introduction. In the sequel in Chapter 4, we proceed by
introducing more accurate, simulated robot models using exact geometric characteristics
and a robotic arm. The degrees of freedom of the arm are then introduced within the
control learning problem, we extend the staircase negotiation problem to further account
for staircase descent and identify adequate safety criteria for either ascent or descent. Us-
ing the proposed environment, we present extensive qualitative and quantitative results
where simulated robots learn to negotiate staircases of variable size while being subjected
to different levels of sensing noise.

Chapter 5 consolidates contribution #2 of the dissertation. Here we present the
applicability of our framework on a real robot and juxtapose obtained performances in
two simulated robots. We qualitatively and quantitatively discuss the comparison of the
policies obtained on different platforms. Through variations of the task and the conditions
of its execution, we demonstrate the framework’s robustness at different levels of risk,
stochasticity and control dimensionality.

Chapter 6 presents the epitome of the previous results and insights by providing an
incremental learning-based, software framework based on standard tool-kits and middle-
ware and its application to end-to-end control learning for 3D staircase negotiation in
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simulation (contribution #3). Quantitative and qualitative results show favorable results
when the robot makes use of depth images.

Chapter 7 concludes the dissertation by discussing its impact, remaining challenges
and questions to be addressed in future developments.
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Chapter 2

STATE-OF-THE-ART IN 3D INDOOR

NAVIGATION OF TRACKED ROBOTS

This chapter discusses related works that motivated and guided the developments and
contributions sought through this dissertation. In Section 2.1 we specify the scope of our
research topic within a general navigation framework. Then, in Section 2.2 we briefly
overview learning approaches in navigation and present RL notions.

We present the hardware of modern tracked robots and their navigation behavior in
Section 2.3, showing the evolution of tracked robots, their complexity, the various problems
encountered towards increasing their autonomy, which altogether motivated our research
goals. Given that one of our contributions concerns the integration of safe behaviors in
robot control, we devote Section 2.4 to this theme. In Section 2.5, we conclude this chapter
by presenting available simulation environments, suited for articulated robot modeling.
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2.1 Fundamental navigation system architectures

Understanding the landscape of robot architecture paradigms and general navigation sys-
tems was instrumental in our study, as it precedes our preference for the development of
a learning-based approach for control skills acquisition.

According to [47], there exist three main components in a mobile robot navigation
system. The first one is Sense and performs data collection. This concerns not only ex-
teroception but also proprioception to know the robot state as well. The second is Plan
and follows the sensory data acquisition step, producing a path that optimizes a given
criterion. Finally, the Act component is responsible for translating the plan to real-world
actions that can be executed by the robot.

Within the component Sense, the robot has to perceive the environment, create its
representation and localize itself within the environment. Commonly, this problem is
referred to as simultaneous localization and mapping (SLAM) [36] and is a problem of
fundamental importance in mobile robotics. To solve it, we can rely on diverse SLAM
techniques [48–51], which manage to produce a map of the environment and estimate the
robot pose, both of which are necessary to perform path planning.

The Plan component concerns the task of path planning within a navigation system,
that can be performed at different spatio-temporal horizons, which allows to deal with
the question of how to move from one place to another at different scales [52]. In local
path planning one calculates the path accounting for the presence of dynamic and newly
encountered objects. On the other hand, in global path planning, we are concerned with
the global, static structure of the environment. Usually, both path planners implement
an algorithm from the following groups: graph search-based algorithms [53, 54], rapidly-
exploring random trees [55] or probabilistic roadmaps [56].

Once a path is found, the robot employs the Act component to execute the path. This
component can be associated in different ways with respect to the previous two com-
ponents. The first attempt resulted in the so-called hierarchical architecture presented in
Figure 2.1 (a) and was commonly applied in early robotics works [57]. At step SENSE, the
robot senses the environment, creates its model if necessary and localizes itself. Thereupon,
the Plan-based module takes the perceived model and the goal and plans the directives
to reach the goal. At ACT, the robot generates actions and actuator commands according
to the calculated plan. However, the main inconvenience of this approach is the cost of
world modeling and of the planning phase.
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2.1. Fundamental navigation system architectures

Figure 2.1: Robotics systems architectures: hierarchical architecture (a), reactive archi-
tecture (b), hybrid architecture (c)

These drawbacks motivated the development of the reactive architecture presented in
Figure 2.1 (b), which omits the planning phase and results in no world model, making the
sensing and acting phases tightly coupled. This architecture results in fast actions in the
real world that make it efficient. For example, the subsumption architecture [58] enhances
the purely reactive architecture through the layered structure of behaviors.

The authors of [59, p. 33] notice that the subsumption architecture could be directly
mapped to behavior trees. They show tele-reactive programs, which allow the system to
achieve a specific goal and to be responsive to environment changes defining the behavior
of a robotic system. The tele-reactive program is represented by a set of a condition-
action, where an action is usually durative, rules that directs the agent to a goal, while
a sub-set of programs monitor the environment. It possesses an intuitive structure that
is particularly responsive to environment changes, however, it is difficult to maintain and
handle failures. The inconvenience of the reactive approach is, naturally, the absence of
plan capability, making it challenging to achieve long-term goals.

To alleviate the problems of reactive and hierarchical architectures, the hybrid architec-
ture [47] was proposed (see Figure 2.1 (c)). The robot creates a model of the environment
and decomposes the accomplishment of the long-term goal into a set of sub-goals where
each has an attributed behavior. The robot operates in a reactive manner moving between
sub-goals executing a behavior, yet the Plan component interacts with it in three ways:

• Providing information on which the reactive layer acts;

• Changing the world state or updating the robot behavioral parameters;

• Interacting with the reactive layer in real-time.

The scope of this thesis being on control for 3D navigation, we concentrate on the
control-related Act component of a robot architecture. Tzafestas et al. [60, 61] recently
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provided a global overview of mobile robot control and navigation methodologies, iden-
tifying different families of methods: standard controllers, adaptive, robust, fuzzy, vision-
based and neural network-based (NN) controllers. We refer in the sequel to a couple of
those works to show the evolution in concepts and paradigms used.

For example, the authors of [62] implemented a feed-forward, pure-pursuit controller
[63] to follow the path, wherein the Sense component relies on machine learning for
traversability estimation. The work [64] presents the system that won in the Defense
Advanced Research Projects Agency challenge. The developed software is broken down
into several layers, where the control layer plans the trajectory in velocity and steering
space, passed through two trajectory tracking controllers responsible for steering and
throttle/brake control.

Alternatively to conventional learning-free controllers, NN-based controllers are re-
ceiving increasing attention in recent years [46]. Indicatively, the approach presented in
[23] proposes a fully learning-based navigation system that operates outdoors while being
trained on-line. Using a self-labeling technique, the authors develop a predictive model,
which enables the system to search less-bumpy and collision-free paths towards the goal.
On the other hand, the system necessitates considerable interaction with the environment,
making it less suitable for indoor applications where collisions are unacceptable. Still, it
can be thought as one of the most noticeable works of autonomous control.

Tai et al. [22] present a system capable of map-less navigation through end-to-end
learning. They transform raw laser data into sparse rays, group up the latter with the
goal position in the robot frame and pass it through a "map-less motion planner" to
obtain linear and angular velocity commands. The trained planner is represented by a
combination of dense NN layers [65, ch. 6] and trained by Deep Deterministic Policy
Gradient algorithm [66]. The reward function guides learning towards the acquisition of
skills to move the robot to the goal while avoiding obstacles.

Chaffre et al. [24] also present a robot for map-less 2D navigation. The difference in
comparison to [22] is that they rely on the depth image observations and perform the
policy update through Soft Actor-Critic (SAC) [20].

2.1.1 Recapitulation

The scope of this dissertation being on 3D indoor navigation, this supposes the capacity
to navigate in 2D as well in 3D, and more specifically, onto floor and staircases. In view of
the existing literature, we deem that standard or learning-based 2D only navigation has
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been exhaustively addressed and numerous solutions can be exploited.
While existing solutions for 2D navigation are readily available to use, a complete

navigation system requires a 3D navigation controller to be developed in order to cover
the entire spectrum of obstacle negotiation tasks in indoor environments. Given two such
navigation solutions, it becomes straightforward to integrate them into a hybrid archi-
tecture. That was assessed plausible by the authors of [19] who summarize that it is a
good practice to match conventional and RL methods. A planner would divide a multi-
floor path into a set of sub-goals to navigate point-to-point on the flat surface and from
the beginning to the end of a staircase in inter-floor transitions. Thus, point-to-point 2D
navigation could be treated independently from staircase traversal.
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2.2 Learning to navigate

Guastella et al. [67] present a general overview of learning-based methods adopted for
unmanned ground vehicles. Accordingly, learning-based methods can decomposed into
two groups: end-to-end methods and terrain traversability analysis (TTA) [68] (see Figure
2.2), matching the distinction made within [46] as well. As we can see in that figure,
TTA methods involve all three navigation components presented in Figure 2.1. End-to-
end methods directly map the component Sense to the component Act relating to the
reactive architecture.

TTA refers to the robot capability to move through terrain accounting for world and
vehicle models, kinematic constraints, and eventual optimization criteria. Accordingly, it
involves the Plan component. However, the problem of staircase negotiation is not complex
in terms of planning, since the goal is located either upstairs or downstairs. Thus, in our
work,we can overlook the Plan phase supposed by the TTA methods and focus more on
the lower-level control which could generate actions in a reactive manner.

End-to-end methods directly map robot observations to actions putting perception
and control into a single block leading to the reactive control paradigm and commonly
employing supervised, self-supervised, imitation learning, or reinforcement learning.

Guastella et al. distinguish the main differences in training between common learning
techniques. Supervised learning demands labeling of training data by an expert. Self-
supervised learning assumes labeling of training data by an autonomous tool. Imitation
learning capitalizes on expert demonstrations. RL relies on a rewarding environment and,
commonly, artificial neural networks for policy approximations in a deep learning setting.

The authors of [46] have recently advocated the application of deep learning (DL)
techniques in mobile robotics. They show that learning techniques are primarily used
in robotics perception for object detection and environment/place visual recognition and
control tasks. Most interestingly, DL is used in robotic control, where the authors organize

Figure 2.2: TTA and end-to-end methods comparison [67]
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control problems treated by DL into three groups:

• Deep data-driven sensory-motor system;

• Deep model-predictive control;

• Deep reinforcement learning (DRL).

Deep data-driven sensory-motor models address the problem of visual feedback control,
where the raw sensor inputs are directly related to the control commands, often through
training of deep neural networks and convolutional neural networks (CNN) in a supervised
way. Deep model-predictive control tackles complex non-linear dynamics of the robotic
tasks learning a dynamics model and producing optimal control. Authors particularly
mention that DRL suits well robotic tasks, because they both share the same temporal
nature.

Works [22–24] are particularly inspiring in minimizing the complexity of the world
model for the reactive paradigm through direct mapping of raw observations to actions
without any computationally expensive planning phase. In our turn, we will partly rely
on the paradigms put forward by such works because the structure of the robotic tasks
that we address can be naturally viewed as a RL problem [25] and RL has shown the
ability to develop human-level expertise [26].

2.2.1 Reinforcement learning

The key idea behind RL is the interaction between an agent and the environment in which
it operates. Being in a particular state, the robot interacts with the environment through
an action defined by a policy, transits to the next state receiving a reward issued from
the reward function, which guides learning of the robot and can additionally incorporate
penalty terms allowing to obtain a policy with desired properties. The objective of RL is
to maximize the expected reward by learning an optimal policy.

RL methods could be mainly divided into value-based and policy gradient (PG)
methods. The first makes an agent evaluate the quality of an action taken in some state by
calculation of the value function in accordance with the expected cumulative reward. Deep
Q-Network (DQN) was one of the first deep RL algorithms and had shown fascinating
results at that time [26]. Over the years, RL algorithms have witnessed a significant
evolution. The current state-of-the-art is composed of actor-critic [27, p. 331] algorithms
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Figure 2.3: Evolution of interest in learning-based algorithms for navigation learning (cf.
Zhou et al. [19, Figure 5])

that benefit from state-action value estimation as in pure value-based DQN and directly
optimize policy parameters through gradient ascent.

Methods of the second group tend to be more advantageous in robotic applications
[25, 69]. The authors of [19] track the evolution of attention towards RL (see Figure 2.3)
in motion planning learning. The reasons for this are ease of implementation thanks to
reduced complexity of policy approximation and the fact that small policy changes do not
lead to drastic changes in behavior in contrast to value-based methods where an agent
can start to exploit a significantly less favorable policy after policy update.

Indicatively, the off-policy [27, p. 257] Deep Deterministic Policy Gradient (DDPG)
[66] algorithm moved discrete action space to a continuous one as an approximate DQN.
Still, the significant improvement of DDPG, which has introduced Twin-Delayed DDPG
(TD3) [70], corresponds to enhanced DDPG with delayed policy improvement, clipped
double Q-Learning, and target policy smoothing. In parallel to the latter algorithm,
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SAC [20] was proposed, which contains the same features combined with a novel policy
entropy-based maximization. An earlier on-policy algorithm is Proximal Policy Optimiza-
tion (PPO) [21] which yields more conservative updates. We will consider SAC and PPO
algorithms as state-of-the-art in the work of this dissertation and use them to learn the
various desired policies.

Policy approximators

Applying RL to robotics, it is unavoidable to use function approximators [25] due to high-
dimensional action and observation spaces or the necessity to operate within continuous
states and actions.

In designing a controller learned via RL, several alternatives can be considered [27].
Approximators such as tile or coarse coding tend to suffer from the curse of dimensionality
and do not generalize well due to sensitivity to grain size. The main advantage of artificial
neural networks over other function approximators is their generalization capability and
straightforward increase of depth which was well studied.

PG algorithms directly optimizes policy parameters, which can be achieved in any
way if the policy is differentiable to its parameters. A common choice is radial basis
function RBF networks which were widely applied before the emergence of artificial neural
networks. RBF networks converge quickly to global optima with fewer trials and errors.
Still, they have proved of limited use due to the absence of tractable and stable integration
into more complex neural network architectures.

We can distinguish two types of neural networks, namely, shallow [27, p. 223] and deep
[27, p. 436]. Shallow NNs with one hidden layer have more parameters to approximate the
same function than deep networks. Deep NNs have fewer parameters and the additional
ability to learn different representations at intermediate levels. Their usage as a policy
representation in RL led to amazing success in robotics [28, 29].

The above observations motivate us to address the control learning problem using RL
algorithms, eventually using a NN policy representation. The main idea consists in per-
forming gradient ascent over policy parameters to maximize an expected episode return.
In the scope of this thesis, we considered the employment of DL to be disproportionate to
the relatively small observation space, as will be shown in Chapter 3. Using DL becomes
more pertinent as one shifts towards end-to-end learning, a direction that we only lately
started to investigate in Chapter 6.
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Figure 2.4: NN structure used in [71] ©2021 IEEE, where CONV represents a convolutional
layer, FCL is a fully connected layer, filter size F, stride S, and padding P (cf. Goodfellow
et al. [65, chapters 6 and 9]).

Simulation-to-reality transfer

RL algorithms can exhibit excellent results in simulations. However, their direct deploy-
ment in reality is limited by the gap between the simulated and real worlds, referred to
as the "sim-to-real" transfer problem [30]. System identification is a natural method to
overcome the discussed gap by creating a precise mathematical model of the robot within
its environment. This is challenging and not always possible because of the necessity to
account for varying conditions like temperature, humidity, and others. Learning with dis-
turbances introduces environmental and reward perturbations in the simulation. Domain
adaptation exploits the idea of source domain data usage for training in the target do-
main. This method is more broadly used in vision-based tasks. Domain randomization
(DR) represents a method which aims to randomize the simulation environment parame-
ters, so that they cover real-world parameter distribution. The authors distinguish visual
randomization, where camera position, texture, and lighting vary, and dynamics random-
ization. The latter alters objects and robot link masses, object dimensions, robot joint
damping coefficients, actuator force gains, and surface friction coefficients.

The sim-to-real transfer literature for the navigation tasks starts attracting more at-
tention during last years. Indicatively, the authors of [24] perform domain randomization
through the creation of three flat environments with increasing complexity between them
in the "move to the goal" setting. The robot is considered to pass to the next more com-
plex environment on the basis of its learning results. The approach presented in [31]
trains a six-legged robot to reach a goal on the flat surface. The key feature of this work
is the mix between curriculum learning [32] and domain randomization, which change the
environment complexity according to a pre-defined curriculum.

Hu et al. [71] develop a navigation system based on deep NN and Asynchronous Ad-
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vantage Actor-Critic [72]. This system achieves point-to-point navigation in 3D cluttered
environments by a wheeled robot. One of the key features of this work is using the ele-
vation map in the observation space and the robot pose. The rewarding process guides
learning to the goal and avoids undesirable states. Another feature of this work addresses
the simulation-to-reality gap in the scope of point-to-point navigation learning through
domain and dynamics randomization. The authors first vary the terrain steepness, which
allows avoiding unfeasible paths during deployment in reality. Then, they perform the
motion disturbance where they apply disturbance represented as uniform distributions to
the travel distance and the yaw rotation angle of the robot. Finally, they add Gaussian
error to the pose estimation to treat eventual inaccurate localization in reality.

This section highlights our interest in methods enabling us to overcome the gap be-
tween simulation and reality. Staircases vary in human livings, and therefore, if we train a
robot to negotiate one staircase, it would not work on another one. Thus, we will seek the
integration of a DR stage in our work in order to endow the staircase negotiation skills
with increased generalization and robustness when deployed in the real-world.
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2.3 Tracked robot control

Robot navigation and control are dictated by the environment wherein the robot oper-
ates. As obstacle negotiation in outdoor and indoor environments may require advanced
traversability skills, tracked robots equipped with additional sub-tracks (flippers) have
been developed. More recently, the obstacle negotiation potential of such platforms is
being studied for improving the autonomy of frail people, either for transporting humans
or objects in 3D environments.

This has incited a particular interest within the scientific community for modeling
the kinematics and dynamics of such robots in order to better exploit their potential.
Although the articulated front and rear flippers drastically increase the negotiation capa-
bility of complex obstacles, they inevitably increase the complexity of control, kinematics
calculation, and estimation of robot dynamics. Furthermore, the presence of a robotic arm
increases even more the difficulty of control due to additional degrees of freedom (DOF)
and safety constraints.

Among various conventional control methods reviewed by [60], neural-network-based
control without reliance on expert, emerges as a means for learning effective controllers for
high-dimensional observation and action spaces or decision making from raw input data
such as pixels [67]. In the sequel, we review representative works from learning-free (LF)
and learning-based (LB) categories that treated the problem of indoor navigation of
tracked robots while highlighting limitations and open challenges. For reference, Table 2.1
provides a coarse overview of those works that we find the most representative.

2.3.1 Conventional control

Before the development of autonomous staircase negotiation controllers, the focus was
directed onto remote robot control. Authors of [73] notice difficulties that a teleoperated
articulated robot is unstable in an open-loop control due to limited sensor indications
available to an operator and track slippage. Therefore, a stabilizing feedback controller
for semi-autonomous staircase negotiation is proposed for Andros Mark VI (see Figure 2.5
(d)) to prevent misalignments which are due to track disturbance, gravity, and inherent
differential track velocities. Accelerometers issue an acceleration signal proportional to
the sine of heading, which is then passed through a low-pass filter, and heading deviation
is calculated. This is then used to correct the heading for ascent stabilization of a tele-
operated robot, making this work one of the very first to treat the staircase negotiation
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Learning-free
Work Method DOF Input data (sensors)
Martens et al. [73] Stabilizing feedback controller 1 Accelerometer
Helmick et al. [10] Pole placement 3 LADAR, gyroscopes
Mourikis et al. [8] State-feedback linearization 3 RGB camera,gyroscope
Nagatani et al. [9] Fuzzy, vision-based 4 Laser sensors
Ben-Tzvi et al. [74] Fuzzy 3 Motor encoders,compass
Colas et al. [75] Fuzzy 4 Lidar, IMU

Zhang et al. [76]
Fuzzy, resolved motion

rate controller 3 Gyroscope
Gianni et al. [77] Feedback control 6 IMU, lidar
Endo et al. [78] Proportional-integrative 4 IMU
Xie et al. [79] Fuzzy 4 IMU
Oehler et al. [80] Optimization 10 Odometry, IMU, lidar

Learning-based
Zimmermann et al. [81] Imitation learning, RL 4 Lidar, 3 cameras, IMU, GPS
Ejaz et al. [82] Neural, RL end-to-end 2 Depth camera
Pecka et al. [17] Neural, RL 2 IMU, laser sensors

Table 2.1: Overview of related works

problem.
The analysis of a tracked mobile robot stair-climbing ability is proposed in [83] (see

Figure 2.5 (e)). The authors evaluate the kinematics and dynamics of a specific modular
robot architecture in three phases of the climbing process: riser climbing, riser crossing,
and nose line climbing. One of the main drawbacks is that the modular mechanical design
of the robot is unique in its kind and was not encountered in other works.

Authors of [10] develop a Kalman filter for laser and image data fusion and the attitude
estimate (see Figure 2.5 (b)). To control a tracked robot in the staircase ascent, they create
a physics-based controller which minimizes the heading error and optimizes the velocity.
The proposed method is versatile, accounts for imagery data and localization techniques
but still, it controls only 2 DOFs without accounting for flipper control.

Another early work was presented in [8] acclaiming robustness combined with per-
formance under real-world conditions. The authors developed an extended Kalman filter
for orientation and the offset from the staircase center estimation. This information is
used by a centering controller, which provides the reference rotation signal. Using this
information, the authors design a state-feedback heading controller which calculates the

45



Chapter 2 – State-of-the-art in 3D Indoor Navigation of Tracked Robots

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Tracked robot mechanical complexity variation: (a) simple [82] ©2020 IEEE,
(b) front flippers [84]1, (c) front and rear flippers [17] ©2016 IEEE, (d) flippers and
manipulator [84]1, (e) custom design [83] ©2005 IEEE, (f) Scewo Bro wheelchair https:
//scewo.ch/en/bro/

required rotational velocity to align the robot with the heading direction computed by
the centering controller. This work shows noticeable results. However, staircase descent
was not considered, and the heading controller is customized for a specific platform. More
critically, this work only addresses adjusting the angular velocity to keep it aligned to the
staircase and keep the robot close to the centerline.

A highly customized Linkage Mechanism Actuator LMA (see Figure 2.6) tracked mo-
bile robot was presented in [74]. The tracked robot consists of two main tracks, which
contain actively articulated pendulums or, as it is referred to in work, flippers. It carries
only a 3D compass for inclination estimation. Additionally, a rule-based algorithm per-

1Reprinted/adapted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Robotics in Hazardous Applications by James P. Trevelyan, Sung-Chul Kang, William R. Hamel
©2008

46

https://scewo.ch/en/bro/
https://scewo.ch/en/bro/


2.3. Tracked robot control

Figure 2.6: Side view of the LMA [74]

forms the step height estimation. The robot is destined to ascend and descend staircases.
To do so, authors implement rule-based control algorithms which correspond to differ-
ent stages of the traversal, such as the “riding on nose line,” “going on nose line,” and
“landing” stages. Due to the particularities of this robot design, however, it is unknown
whether its method of control can serve as a paradigm for other platforms.

Semi-autonomous control architectures were also considered to palliate the increased
cognitive load experienced by users who teleoperate such platforms. The authors of [9]
propose a framework for motion planning of active flippers, the direction of robot move-
ment is assumed to be set by an operator. A robot named KENAF is used that has two
laser range sensors placed on the left and right sides. Autonomous flipper motion con-
trol relies on range data and estimates every rotation angle of the flipper. Furthermore,
authors perform stability analysis and integrate a rule based on the Normalized Energy
Stability Margin (NESM) [15] within the system to stop motion and halt the task. Upon
defining the robot negotiation limits, the authors consider that the system can negotiate
any uneven terrain, yet this supposes the availability and use of exhaustive sensory data.
At the same time, linear velocity and angular velocity control are not addressed. The
system only alarms the user about tipping-over of the robot.

The authors of [75] develop a navigation system within the tracked robot Absolem.
The authors accommodate 3D point cloud data and work on path planning and execution.
They use sensor data to localized the robot using the iterative closest point algorithm. The
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path is planned with D* Lite where the cost of every cell is adapted to ease traversability
by the robot. For example, neighbors with lower slopes are preferred. The planned path is
executed with two controllers. The first controller selects flipper configuration accordingly
to the environment geometry around the robot. The second controller guides the robot
to the farthest point in the path.

Suzuki et al. [14] propose a control framework. The robot receives the driving speed
and movement direction commands from the user, and separate front and rear flippers
are assumed to push against a traversed obstacle to improve traction, combined with an
accident warning system based on the NESM. Still, the robot is not fully autonomous,
and the overall approach is weakly generalizable.

The authors of [77] introduce a performant approach for effective path tracking. The
proposed controller calculates commands to robot tracks and simultaneously adapts flip-
per configuration according to a provided feasible path. The authors rely on the precise
kinematic analysis of the robot, that may not always be known or available to the expert.

Another motion control algorithm is presented in [79] for a tracked robot with two
front flippers. This work also assumes accurate knowledge of the exact robot kinematics.
Moreover, motion control is only applied to the traversal of a palette.

Another approach relying on the precise estimation of the staircase configuration was
proposed in [78] where the robot could autonomously negotiate a staircase using proprio-
ceptive state estimation based on sensory data of an IMU. Staircase ascent is thoroughly
analyzed and divided into three stages: the pitch-up ascend, normal climbing up, and
pitch-down ascend phases. Staircase descent is divided into the descend-ready, pitch-up
descend, normal climbing-down, and pitch-down descend phases.

Most importantly, the authors describe failure modes. The first one is slippage which
can be caused by insufficient traction between the tracks and the steps. Falling backward
is one of the most common failures and occurs when the robot body rotates around the
lowermost contact points. A erroneous robot heading can make the robot deviate from
the goal, but it can hardly be considered as a failure. Still, the robot might tip over on
zither side. Lastly, the robot might undergo excessive shocks, which exceed the acceptable
level caused by falling and touching the surrounding environment. Flippers controllers are
based on IMU data and designed with respect to the transition phase taking into account
eventual failures. The approach showed prominent performance. However, the system
could only negotiate a staircase known beforehand.

Another detailed analysis of kinematics was presented in [76] using a common tracked
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Figure 2.7: Stair climbing experiment by the SSR robot [76, Figure 16]

platform with two additional DOF due to a controllable arm (see Figure 2.7). The authors
propose a new tip-over avoidance method based on adjustment of the system centroid po-
sition (SCP), which relies on the exact knowledge of robot geometry and mass distribution
and 3-axial gyroscope data. The key idea of the developed strategy is to reconfigure the
robot arm and place it in front of the robot when climbing a staircase or to move it
back during the descent. The derived analytical solution indicates the high complexity of
modeling the interaction between a multi-DOF system and the traversed surface. That
system lacked congruent control of tracks, flippers and the arm, and needed full knowledge
of geometry, kinematics and physical characteristics, which can be difficult to acquire.

Oehler et al. [80] advance ideas of [85] by proposing optimal path planning and path
execution maximizing the contact points number and stability. While the reactive task
corrects execution disturbances like slippage or unstable terrains, the robot obtains tra-
jectories based on the environment map for all its joints through the pre-planning task,
representing the focus of their work. The authors solve an optimization problem with
constraints for the whole body motion separately for flippers. They achieve maximum
traction through the maximization of the number of contact points and the arm. The
latter is used to decrease the force angle stability margin [86] while avoiding self-collisions
or with the environment. Their developments were tested both in simulation and in reality
on two platforms Hector Tracker and DRZ Telemax (see Figure 2.8 (a, b)) and showed
positive results. This work goes clearly beyond the previous standard control works re-
garding the number of DOFs, constraints, and portability to different platforms. However,
it relies on a detailed map of the environment, while combining alternative constraints
requires a new formalization of optimization objective functions and constraints, which
may be tedious.

Overall, we highlight that the works of Zhang et al. [76] and Oehler et al. [80] are

49



Chapter 2 – State-of-the-art in 3D Indoor Navigation of Tracked Robots

particularly inspiring in the scope of this dissertation, as they correspond to the most
rigorous approaches in the domain of learning-free robot control with safety constraints.
Throughout the thesis, we wish to address their limitations through the RL setting ap-
plication.

(a) (b)

Figure 2.8: Platforms [80, Figure 1]: (a) Hector Tracker, (b) DRZ Telemax

2.3.2 Learning-based approaches

In view of the different challenges encountered when modelling control of highly special-
ized vehicles, with difficult to model kinematics and dynamics, employing learning-based
control can provide more flexibility. Works [67] present the diversity of employed learning
techniques along with challenges. One of the main requirements is scalability to high-
dimensional state and action spaces. While priors can bootstrap learning, more attention
is required in the design of the search policy algorithm in order to ignore irrelevant pol-
icy properties. Generalization and robustness are particularly relevant for robots that are
required to learn various tasks under varying conditions.

One of the early approaches that employed reinforcement learning for Adaptive Traversabil-
ity learning is presented in [81]. The authors have developed an RL-based solution for
rough terrain traversal. Their approach assumed a mapping between a state to a robot
compliance mode represented by five different robot morphological configurations achieved
through flipper control. The state contains Haar-like local neighborhood terrain features
computed with the Digital Elevation Map, robot speed, pose, flipper angles, compliance
thresholds, and actual flipper mode. The fitted Q-iteration algorithm [87] is applied to
learn the Q-function. The expert’s manual control is required to produce the first train-
ing samples after which the robot operates independently for data acquisition. Despite
the prominent results shown, expert manual assistance is required in the learning process
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while actions are limited by pre-defined morphological configurations while contemporary
RL methods [20, 21] allow the robot to discover such configurations alone.

Another recent work [82] proposes a RL-based control for a tracked robot (see Fig-
ure 2.5 (a)). The authors improve dueling double deep Q-network (D3QN) by adding a
normalization layer and noise injection in the network parameters, which correspondingly
accelerate training and improves the exploitation-exploration trade-off towards more ex-
ploration nature. D3QN is a model-free, value-based method that tackles double-deep
Q-network (DDQN) and deep Q-network (DQN) issues. The later models overestimate
each action value in every state, but D3QN uses two networks instead: one calculates the
state value, and another is used for the advantage action calculation. Learning was per-
formed in simulation and the obtained controller was tested in reality showing promising
results. Still, this approach is only employed for navigation on 2D surfaces.

Figure 2.9: Absolem robot traversing a EUR palette [17] ©2016 IEEE

Another approach is proposed by Pecka et al. [17] for the platform in Figure 2.5 (c).
The authors’ contribution amounts to the development of RL algorithms for Search and
Rescue scenarios. They implement constraints in the contextual relative entropy policy
search (Contextual REPS) algorithm [18]. That extension showed that a small number of
iterations is sufficient to learn flipper control for the traversal of an unknown obstacle (see
Figure 2.9) where a physics-based simulator computes the safety of a rollout. The simu-
lator represents software simulating the main interactions and influence of the real-world
system and determining the safety of the rollout as 1 if it is safe or 0 otherwise. However,
the authors did not investigate the impact of context represented by variables like the
height of an obstacle that does not change during the task execution but might change
from task to task. Furthermore, the necessity to perform fine-tuning in reality increases
the training burden on the user, eventually making this approach difficult to transfer
to reality. We consider this work as one of the most representative works in the field of
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learning-based control learning of an actively articulated tracked robot. It motivates us
to tackle its limitations, such as the necessity to perform real-world verifications and the
absence of context addressing.

2.3.3 Recapitulation

Most previous works on the development of active 3D obstacle negotiation [10, 10, 79,
88, 89] by tracked robotic vehicles are customized to specific platforms, accurately known
robot kinematics, robot characteristics, and staircase parameters [74]. The domain of
tracked robot control has started to attract interest in search and rescue scenarios and
more recently in navigation in spaces populated humans. The fact that a robot may carry
payloads of different weight, from humans (see Figure2.5 (f)) to everyday objects further
has a direct effect on the variation of the hardware design.

As a result, changes of the platform (recall Figure 2.5) or the task may render the
adaptation of such solutions cumbersome, if not impossible. They complicate portability
to platforms with different or unknown kinematics or poor environment observability,
weakly considering the dynamics of physical interaction. Additionally, the development
of a robot controller necessitates domain expertise or experience, which may not be easy
or even feasible to acquire, e.g., for search and rescue environments [77].

On the other hand, learning-based, and in particular RL-based, control of flippers
[81, 82] allows to make less restrictive hypotheses concerning the structure of the envi-
ronment, robot kinematics, and dynamics. It also allows to more easily endow a behavior
with additional properties. Using machine learning then raises the question of the type of
learning to be sought, such as learning from demonstration (LfD) [90], behavior cloning
[91], RL or their combination [92]. For the staircase negotiation task that we consider, it
is impractical, if not impossible, to obtain sufficiently rich demonstrations because con-
trolling multiple degrees of freedom in parallel is not intuitive and incurs a high cognitive
load.

To increase autonomy in the process of learning robot mobility, we therefore investi-
gate the acquisition of such skills via RL. Its algorithms in particular [28, 67], that have
drastically developed during the last decade may even outperform human experts [26]. RL
can favor the emergence of the desired control properties through the appropriate design
of reward/penalization functions and state/action domains [93].
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2.4 Safety assessment techniques

One of the key problems treated in this thesis is the incorporation of safety properties in
the developed robot behavior. Independently of the underlying locomotion type, a robot
is expected to operate in a safe and reliable manner. This is even more pertinent to
actively articulated robots that are more subjected to tip-overs during staircase traversals
due to active articulation of flippers and, most importantly, of an arm that shifts the
robot center of gravity (COG) higher. Despite a plurality of stability measures that were
initially proposed for walking robots [94], there is no single optimal criterion for all possible
applications. This section presents the most common techniques for the estimation of robot
stability.

Stability criteria can be static or dynamic. The latter group of criteria is popular in
legged robotics due to dynamic effects that emerge during walking. A popular stability
assessment method widely applied on legged robots is the Zero Moment Point (ZMP)
[95]. It represents a point on the supporting polygon, formed by connecting footprints,
where the moment due to terrain-reaction forces and moments becomes zero. The Force-
Angle Stability Margin (FASM) [86] calculates the angle between the normal vector to
the rotation axis from the COG and the resulting forces acting from the COG. FASM
considers if angles are positive, then the system is dynamically stable. However, ground
robots do not develop the same complex dynamics effects. In our work, we assume that
the robots operates at low velocity or with low-velocity changes. Thus, we opt the static
stability analysis as it was performed in [9, 14] and in the PhD thesis of Brunner [96].

One of the first static stability criteria was proposed in [97] and was named the Center
of Gravity Projection Method. The robot operating at constant speed and direction is
considered stable if its COG horizontal projection resides within the supporting polygon.
The Static Stability Margin (SSM) [98] further elaborates the COG Projection Method
and consists of the evaluation of the distance between the projection of the COG onto the
supporting polygon (SP) and its lowest border. The system loses stability if this distance
approaches zero. The more convenient Energy Stability Margin (ESM) [99] evaluates the
potential energy necessary to tip over the robot. A popular extension of ESM named the
Normalized Energy Stability Margin (NESM) [15] normalizes this energy to the robot’s
weight, and, as authors show, it is an adequate static stability margin.

We distinguish two types of staircase traversals - ascent and descent - and quantify
safety differently in each case. We choose to associate the classical robot stability [33] as
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a measure of its safety in ascent staircase negotiations and base our work on the NESM
as one of the most developed criteria, which has received considerable popularity across
different studies on tracked robots [9, 14, 34]. Additionally, the SSM attracts our attention
as a complementary mean for stability estimation. Its consideration along with the NESM
for designing a reward function in RL will be described later in chapter 4.1

We find that the robot can naturally descend the staircase through an application of
constant speed without any active reconfiguration, which may not lead to any stability
violation. Still, the robot could be damaged due to the drop impact or shock due to high
linear or pitch angular velocity when the robot passes the staircase edges. To address this
problem, we draw inspiration from the idea of bumpiness detection from [23] where the
authors detect a bumpiness event whenever the angular velocity magnitudes measured by
the IMU exceed a certain threshold. Thus, the angular velocity magnitudes could serve
us as a mean for quantifying the drop impact that the robot is subjected to.
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2.5 Robot and environment simulations

The simulation of the environment and the robot model are essential in the development
of robot skills through RL. Despite a multitude of sophisticated environments for different
types of robots, articulated tracked robots are weakly represented, especially within the
simulator Gazebo [100], which is among the most widely used tools for robot application
development. V-REP [101] is another common simulation tool commonly used in robotics
that provides a user-friendly world and robot model configuration tools, exhibiting com-
parable computational cost and simulation accuracy [102]. Still, it is far behind Gazebo in
terms of integration with ROS which is state-of-the-art for modern robotics development.

In relation to indoor navigation and control learning, the AI2-THOR framework [103]
provides near-realistic 3D indoor scenes for AI research where agents can navigate and
interact with the environment. Authors consider that it can be helpful not only for rein-
forcement learning but also for learning by interaction, imitation learning, etc. Still, this
framework supports only discrete actions and does not address robot dynamics where
agents operate in continuous action spaces. The work [104] presents Interactive Gibson
Benchmark which includes a renderer and over one hundred 3D reconstructed environ-
ments. To the best of our knowledge, it is one of the best current environments able to
generate highly realistic images and simulate physical interaction. In its most recent ver-
sion, domain randomization is integrated for objects and materials [104]. However, tracked
articulated robots are still not included into this framework.

Various research groups study navigation learning in indoor environments by using
popular tools such as Gazebo and ROS. For example, authors of [105] train a robot
to navigate in only two instances of a 2D environment. Tai et al. [22] also limit their
environment variation by two pre-constructed settings. The robot can cross one real-
world maze to reach a goal, but its scalability in a general setting is unknown. Concerning
learning environments, authors of [106] offer a total set of 6 settings and three robots to
use with RL algorithms. Yet, multi-floor domains are not considered neither is domain
randomization for ground obstacles, which could serve as a data augmentation technique.

Indoor environments are often populated with complex but traversable terrains such as
stairs, where robot dynamics become harder to model and necessitate additional attention
to safety. Furthermore, the environment should vary sufficiently to cover the multitude
of situations that can be encountered in reality [45]. Unfortunately, we can hardly refer
to any available simulation environment that accounts for this demand for articulated
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Figure 2.10: Models of tracks [35] ©2017 IEEE. Top left: Chain-like deformable tracks.
Top right: CSM-based tracks. Bottom left: Track approximation with 4 wheels. Bottom
right: Track made of 2 cm plates with grousers

tracked robots.
As it was stated, Gazebo is widely used in robotics applications thanks to its ability

to accurately and precisely simulate robots in complex indoor and outdoor environments
and bind with ROS. This simulator supports cylinder, sphere and box primitives out-
of-the-box1, or alternatively, one can use custom 3D meshes. Those components can be
coupled together through the "joint" element which can be of different types. Commonly,
fixed, revolute and continuous joints can be used. The different types of joints that are
supported can be used to model the actuation of an arm or of the legs of an articulated
robot.

Tracks modelling To model a robot track, one might use cylinder and box components
with fixed, revolute or continuous hinge joints to create a precise chain-like track model
(Figure 2.10, top left). However, this solution is computationally expensive and unstable
due to multiple constrained dynamic elements [107]. Furthermore, authors of [108] reveal
problems associated with the development of such models within Gazebo due to model
instability.

Pecka et al. [35] perform the most detailed analysis of robot tracks within Gazebo and
develops the Contact Surface Motion (CSM) model. In that work, it was shown that tracks
made of wheels (see Figure 2.10, bottom left) are not plausible on rough terrains because

1https://wiki.ros.org/urdf/XML
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friction forces have unrealistic directions. Still, it is computationally light and simple
to produce. The model of tracks based on plates (see Figure 2.10, bottom right) can
realistically simulate deformable tracks, grouser interaction with rough and flat surfaces.
However, it slows down the simulation to the point that it can take 1 or 2 orders of
magnitude more time than the CSM or wheeled-based model.

The no-friction model is also presented. Its principal idea is to set the track friction to
zero and apply the constant force to the gravity center to move the robot. It is the most
computationally efficient approach. However, it does not adequately address the rough
terrain traversal due to the friction absence necessary to keep the robot static.

Finally, the authors also introduce the CSM model where they rework the dynamic
simulation formulation, and this model finds the force to move the robot at a certain
velocity. It does not simulate grousers or deformable tracks. Still, it is the best trade-off
between track simulation adequacy and the computational overhead of simulation and
plausible on flat and rough terrains.
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Chapter 3

PROTOTYPING REINFORCEMENT

LEARNING BASED STAIRCASE ASCENT

In this chapter we present a learning-based control approach for the problem of staircase
ascent, applied to an articulated, wheeled-based robot model within a simplified simulated
environment, employing a RL-based pipeline. Our focus here is on the constraints of the
control policy that we wish to satisfy, such as safety or traction. To demonstrate the
generalization ability of the framework, the policy is learnt and tested for a variety of
staircases of different step heights and angles, while evaluating its capacity to cope with
different levels of noise in its sensory data. This initial work on simulation can serve
as paradigm for more elaborate development in other platforms but it can also provide
insights when modelling the negotiation of staircases shapes of diverse riser and tread
size.

The remaining of the chapter is organized as follows. In section 3.1 the proposed base-
line reinforcement learning framework is presented, we formulate the notion of safe stair
ascent and study a first reward function candidate. Finally, in section 3.2 the experimental
setup is presented together with the obtained results.
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3.1 Reinforcement Learning Framework

To address the problem in consideration, we develop a RL framework following [27]. RL
resides in generating data through agent interaction with an environment where every
time step t, an agent being in a state st ∈ S selects an action at ∈ A with respect to
its policy πθ where θ is the vector of policy parameters, transits to a new state st+1

receiving a scalar reward rt. The multitude of transitions from the initial state s0 to the
termination state sT is called a trajectory τ = (s0,a0, s1, ..., sT−1,aT−1, sT ) where T is
the number of time steps of an episode. A policy πθ is a function parameterized with θ,
that sets a rule for preferring a particular action among multiple alternatives. It can be
either deterministic at = f(st) where an action is taken at a specific state or stochastic
via πθ(at|st) which specifies a conditional probability distribution and provides the action
probabilities in a defined state from which we sample the most probable action. During
learning, policy parameters θ are trained to maximize the expected return:

θ∗ = argmax
θ

Eτ∼πθ
[R(τ)] (3.1)

where R(τ) = ∑T
t=0 γ

trt is the return over a trajectory τ , T is the episode length, γ is a
discount factor, which can used to decrease the influence of future rewards in the learning
process or set to 1 if we wish that the agent learns to maximize the return taking equally
into account all rewards. A specific form given to rt then becomes an object of research
as will be discussed in the section 3.1.3.

Going beyond a basic treatment of the problem of RL as described above, it is crucial
to account for differences occurring between training and testing time. This is particularly
relevant in indoor environments that can vary significantly and unless this is accounted
for during training, the gap between simulation and reality will reduce the performance
of the policy during testing, whether it is deployed in simulation or in the real-world.

As a means for covering various possible environment configurations, we can endow RL
with DR. To do so, we parameterize the training domain by eξ where each configuration
ξ ∈ Ξ ⊂ RN . If a policy is learnt on a multitude of parameterized environments chosen
randomly, this favors generalization and we thus seek to maximize the expected return
over a distribution of configurations. The optimal policy parameters are therefore obtained
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by:

θ∗ = argmax
θ

Eξ∼Ξ[Eτ∼πθ ,eξ
[R(τ)]] (3.2)

In previous years, PG algorithms attracted significant attention because of their direct
policy optimization in contrast to value-based methods where the policy is obtained via
its relation with the learnt approximator. The main idea behind these algorithms is the
gradient ascent over the policy approximator parameters θ using the policy gradient
∇θJ(πθ),

θk+1 = θk + α∇θJ(πθk
) (3.3)

where α is the learning rate and J(πθ) is the expected return that could be written as
follows considering domain randomization:

J(πθ) = Eξ∼Ξ[Eτ∼πθ ,eξ
[R(τ)]] (3.4)

3.1.1 Flipper Control Problem Formalisation

Our next task concerns the expression of staircase ascent negotiation for an articulated
tracked robot, on the basis of the RL framework presented above. In doing so, we observe
that robot control could be divided into reactive main track and flipper control [14, 17]
where reactivity implies that the controller directly maps sensor input to desired actions.
In this chapter, we will assume an independently developed main track controller (i.e. a
global path planner) that moves the robot forward at constant speed and focus only on
the development of flipper control whose objective is to perform a mapping between the
pose of a robot on a staircase and the appropriate flipper commands.

We further assume that the robot is initially orientated so that if faces the staircase.
Naturally, such a set-up leads us to accept that a pair of front (or rear) flippers will have
a single degree of freedom. In other words, that the flippers at each side should perform
the same action, since we deal with straight staircases. We consider the robot to select
two rotational displacements ψfronta , ψreara where angle limits [ψmina , ψmaxa ] are defined by
the user forming an action vector:

a = (ψfronta , ψreara ) ∈ [ψmina , ψmaxa ]2 (3.5)
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Figure 3.1: Relative distance of the robot centroid to the next step edge/nosing

for the front and rear flippers while constant effort is applied to each track moving it
forward. The state vector:

s = (px, py, ψfronts , ψrears ) ∈ S (3.6)

consists of the distances px, py of the robot centroid to the next step nosing along the
axes X and Y (see Figure 3.1) where the origin corresponds to the step center. It fur-
ther includes the flipper angles ψfronts and ψrears in each flipper frame which belong to
[ψmins , ψmaxs ] defined by the robot design where ψmins < ψmina < ψmaxa < ψmaxs .

In accordance with the reactive control architecture 2.1, the task to be learned treats
the first half of the complete staircase negotiation problem as stated by contribution
#1, section 1.1, namely, flipper reconfiguration accomplishing the primary goal of the
staircase ascent and the secondary goal of policy constraints satisfaction such as traction
and stability.

3.1.2 Policy and its training

We wish to map the robot state represented by a vector s to a vector of actions a
under the policy π, which requires a good policy function approximation. Following up
on the discussion at section 2.2, artificial neural networks have demonstrated remarkable
results in machine learning as well as in reinforcement learning in particular, and could be
well suited for nonlinear function approximation [25, 27]. Having small input and output
vectors of estimated robot state and corresponding actions, we approximate the control
policy with a multi-layer perceptron, in contrast to [109] which employs a complex CNN

62



3.1. Reinforcement Learning Framework

because of necessity to treat complex image input data. The first layer is composed of 4
neurons on which the state vector s is received every time step. In the sequel, the input is
forwarded through 2 dense layers, where each of them has 64 neurons with tanh activation
function, to the output layer which forms the action vector.

Among various possible PG algorithms, we have selected PPO [21, 110] as a state-of-
the-art algorithm that exhibits good trade-off between ease of tuning, sample complexity,
ease of implementation and good performance [111]. This algorithm updates the policy
with stochastic gradient ascent while keeping a new policy close to the previous one that
could be completed either by penalisation of Kullback–Leibler divergence or specialized
clipping in the objective function. Besides the control policy approximation, PPO resides
on a critic network for value function approximation, which has the same inner structure
as the policy network.

3.1.3 Reward function design

Default reward function for primary goal

The first and most simple examined reward function remunerates the robot according to
the travelled distance on the staircase. It receives the positive reward rpt :

rpt = ∆xt/‖Dmax‖ (3.7)

where ‖Dmax‖ = x0, which is the distance from the robot centroid center to the goal at
the episode first time step t = 0 (see Figure 3.2 (a)), and ∆xt is the travelled distance to
the goal at time step t as represented by the next formula:

∆xt =

 |xt −min(x0, . . . , xt−1)|, if xt < min(x0, . . . , xt−1)
0, otherwise

(3.8)

where xt and xt−1 are distances from the robot to the goal at time steps t and t − 1.
This implies that we do not assign the positive reward twice if the robot slips back and
re-travels an already seen position. The robot receives the baseline reward when it starts
to touch the staircase, which happens when it comes closer than D2 = d + 0.5l on the
ground to the first stair step (see Figure 3.2), while the episode ends when the robot
reaches a distance of D4 away from the upper nosing on the stair landing.

That episode return hence ranges from 0 to 1 depending on the effectiveness of the
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policy. If the robot gets closer than D2 without appropriate flipper actions, it could be
stuck (episode return 0). The episode is considered terminated if the distanceD4 is crossed
on the upper landing (episode return 1). D4 is chosen to be equal to D2 in order to
guarantee that the robot loses the contact with the stair at the end of the episode and
the ascent is successfully accomplished.

NESM constraint reward function for secondary goal

Following the idea of applying negative rewards to unsafe states, we incorporate a negative
penalty term by introducing a stability criterion into the reward function. In detail, we
employ the NESM criterion that is based on the fact that the robot rotates around a
support line when tumbling/tipping over. We deduce the margin E as the difference
between the maximum centroid height and its current height [14]:

E = Hmax −H (3.9)

Based on this measure, which tends to be low the less stable the robot is, we associate
robot instability I as equal to the current height H over the hyperplane A′ (see Figure
3.2 (b)). Thus, when I = 0 the robot is considered as maximally safe, whereas when
I = Hmax/1m the robot is maximally unsafe. Division by 1 m ensures independence from
the chosen units of measurement. The value Hmax is the distance of the robot centroid
to the hyperplane A′ when the robot is pivoting over the lower support polygon foothold.
We consider the negative reward based on NESM to be rnt = −I. Thus, the reward per

(a) Stair ascent task illustration (b) Robot and environment notations

Figure 3.2: Modelling of a staircase and the robot used for the RL problem description
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time step is:
rt = rpt − I (3.10)

Every time step the robot can thus obtain a positive reward along with a negative one only
if its gravity center G moves away from the hyperplane A′, whenever the robot centroid
projection is located within the first and last nosings on the hyperplane A′. We assume
that flipper rotations do not shift the center of gravity position G, because the total mass
of flippers is negligible to the base mass.

Projection constraint reward function for secondary goal

We refer to projection as a measure of robot tracks contact with the traversed surface
and as a measure of stability. The idea of maximizing the contact of the tracked robot
parts to the traversed surface is commonly employed as a measure of traversability. For
example, authors of [9] suggested to set the orientation of flippers tangential with respect
to the traversed surface during obstacle negotiation in order to maximize traction while
in [14] flippers are even pushed against the traversed surface in order to enforce contact.

It is reasonable to assume that a minimal contact surface area should be maintained,
between the flippers and the obstacle being negotiated, otherwise the exerted control
actions might not have the desired effect. On the other hand, depending on the geometry
of the robot and the staircase, maximizing surface contact might drive the robot to poses
from which it would be impossible to successfully traverse the staircase.

Knowing the actual size proportions between a conventional staircase and commer-
cial tracked robotic vehicles, maximizing both traction and stability while traversing a
staircase indeed amounts to moving at an angle equal to the inclination of the stair-
case. Therefore, we assume that the maximum stabiltiy and traction with the surface are
achieved when the robot maximizes its projection on the staircase hypersurface. The max-
imum surface area Pmax is then the projected surface area of the robot on the hyperplane
A when the robot is located on the staircase with a flat configuration, namely, with flat
flippers.

We let P be the surface area of the robot body when orthogonally projected on the
hyperplane A. In order to favor a control policy where the robot has decreased projection,
a negative reward is considered at each time step rnt = −(Pmax − P )/(Pmax). Thus, the
overall reward per time step is:

rt = rpt − (Pmax − P )/Pmax. (3.11)

65



Chapter 3 – Prototyping Reinforcement Learning based Staircase Ascent

3.2 Experiments

In this section, we present the experiments that we conducted to evaluate the RL control
pipeline as was described earlier in Section 3.1, quantitatively as well as qualitatively, by
varying the form of staircases and in the presence of different levels of simulated noise.

3.2.1 Experimentation description

Policy training protocol

We simulate the control-learning pipeline of the robot in the Gazebo, physics-based sim-
ulation environment (gazebosim.org). The tracked robot is endowed with front and rear
flippers and its task is to learn how to mount a five-step staircase whose tread and riser
are randomly chosen. Among various alternatives for simulating mobile robot tracks, we
employ the common approximation of representing tracks by an ensemble of overlapping,
non self-colliding, tracked wheels (cf. [35]).

Experiments were performed repeatedly for a given randomly generated configuration
of a staircase whose geometry was representative of real-world scales. At each time step
the robot observes the state vector s which is comprised of relative distances to the next
step nosing px and py. The former varies from the minimum distance pminx = 0 to the
horizon of step observation pmaxx = 1 m, which is manually set based on the idea that
the robot is moving on the flat surface if there are no close step observations. Relative
distance along Y axis has as its maximum value the biggest height pmaxy which depends
on the obstacle negotiation capability Hcritical and βcritical of a particular robot, namely,
the maximum riser height and staircase inclination that the robot is able to ascend.

In every episode, irrespective of the results of the previous episode, a new domain eξ
of 5 steps staircase is generated in the following way. First, a random riser size Hrise ∈
[Hmin

rise , H
max
rise ] is sampled where Hmin

rise ≥ 0 and Hmax
rise ≤ Hcritical. Second, the stair angle

β ∈ [βmin, βmax], where βmin ≥ 0 and βmax ≤ βcritical, is randomly sampled. Last, the
tread size is calculated as Dtread = Hrise/ tan(β). Thus, the domain configuration ξ is
represented by a vector (Hrise, β,Dtread) (see Figure 3.3).

The robot starts at a front-parallel position with respect to the staircase at a distance
of D1 + D2 from the lowermost step. Once the robot goes through D1, upon application
of an action the robot obtains a reward r that accounts for the primary reward that
is proportional to the traveled distance and potentially for the secondary goal of safety,
quantified by the chosen penalty function (see section 3.1.3). An ascent traversal is deemed
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Figure 3.3: Domain configuration for each step of a staircase

as successful if the robot succeeds in traversing over D4 on the upper landing from the
last nosing. The episode return of one trajectory represents the proportion of travelled
distance and could vary from 0 to 1 if we do not model safety. This sequence is repeatedly
executed until the end of an episode that is set to occur after a maximum number of
100 time steps. If the standard deviation of 25 most recent robot position estimations
along the X-axis drops under 0.01 m, the episode stops assuming that the robot has been
“stuck”. To set time boundaries of experiments, we allocate 10000 time steps in total for
all experiments that translates to 250 episodes on average, as a consequence of shortened
episodes after fast traversals or accident induced terminations. Remaining parameters
were chosen in accordance with [21].

Policy testing

While a policy is being learnt it is in parallel evaluated on stair configurations that have
not necessarily been encountered. In particular, policy testing starts to be performed after
the first policy update and subsequently at a fixed frequency of 8 policy updates on three
stair configurations of different difficulty, whose parameters are presented in Table 3.1. We
have empirically chosen that testing frequency as an acceptable trade-off between policy
learning speed and testing regularity. During this assessment, we plot the evolution of the
episode return (see Figure 3.4 (b)), stability (see Figure 3.5 (b)) and projection (see Figure
3.6 (b)) averaged over 3 cases which correspond to small, medium and big staircases also
called configurations.
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Table 3.1: Staircase configurations used in evaluation

Type Step height Stair angle
Small Hmin

rise βmin
Medium 0.5(Hmin

rise +Hmax
rise ) 0.5(βmin + βmax)

Big Hmax
rise βmax

3.2.2 Reward function evaluation

Evaluation metrics

We assess the effectiveness of the learning process on the basis of the average episode
return evolution during learning. This evaluation enables us to estimate whether learning
has converged, after which further learning does not improve an agent’s performance.
Typically, at the beginning of learning, the average episode return shows high variance
and quick increase of its value, which indicates that learning has been initiated. Towards
the end, the mean value reaches a plateau while variance decreases, that indicates learning
convergence.

For every type of reward function, we performed a total 3 training trials used for com-
puting the average performance. We adopt this experimentation setting throughout the
different experiments presented in the dissertation. The number of trials naturally raises
the question about confidence of learning and our reasoning about successful learning
convergence. The Student’s t-distribution [112] allows to calculate the margin of error, on
which we rely, for small samples. The margin of error (ME) of a sample can be calculated
as follows [113, ch. 9]:

c = t
σ√
n

(3.12)

where σ =

√√√√ n∑
i=1

(xi−x̄)2

n−1 is the sample standard deviation, n is the sample size, t is the
confidence level for the t-distribution and x̄ is the sample mean of all samples xi. For
example, if we wish to estimate the reward confidence interval within an episode, the
sample size is 3 that leads to 2 degrees of freedom and, if we want to obtain 95% confidence,
the confidence level is t = 2.92.

To evaluate correctness of learning, we can rely on the evolution of the ME of the
episode return. The policy parameters θ are random in the beginning, which can lead to

68



3.2. Experiments

different behaviours in the simulation leading to varying episode returns and high ME.
During training, they are optimized to an optimum. Therefore, if all policies reach the same
optimum parameters θ∗ the robot has to exhibit similar behaviors and episode returns
should not be very different which translates to a smaller ME than in the beginning. Thus
convergence of learning can be deemed to be achieved when the ME becomes small but
also stable across the most recent history of episodes, as further policy updates do not
change the policy.

Reward evaluation

Along with the quantitative results presented later in this section, we provide a video of
qualitative results of the learnt policies for staircases of varying difficulty, accessible in
(https://partage.imt.fr/index.php/s/pBSzKaoeDnqFSyA/download).

During experiments, episode return (see Figure 3.4), NESM-based instability measure
I and estimated robot projection ratio P/Pmax were measured (see Figures 3.5 and 3.6
respectively).

Figure 3.4 (a) presents the smoothed return per learning episode and similarly for
testing in 3.4 (b), using min-max bands. Hereinafter, the mentioned smoothing is accom-
plished using an exponential moving average (EMA) [114] with a coefficient 0.95 and 0.8
for learning and testing curves respectively.

With respect to learning performance (Figure 3.4 (a)), the NESM-based and projection-
based policies converge as early as the default policy (at around 175 episodes) and their
mean episode returns vary from 0.5 at the beginning of learning, converging to 0.9 at the
end. We can observe the presence of non-zero episode return in the beginning that could
be provoked by random actions that the robot makes in the beginning of training which
allows it to reach half of its chassis length on the staircase. On the other hand, the optimal
reward values per episode are slightly lower for policies that incorporate safety, because of
unavoidable necessity to perform less safe actions in order to mount the staircase. We can
further observe that max bands of learning curves reach the maximum return after 100
episodes for all types of reward function. This means that although policies are able to
perform appropriate flipper control min bands are constantly increasing due to behaviour
improvement on unseen staircases. By 200 episodes, the mean curves converge suggesting
that learning is complete.

With respect to testing performance (Figure 3.4 (b)) for stair configurations of varying
difficulty (cf. Table 3.1), we observe that the mean reward tends to become higher during
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(a) Learning

(b) Testing

Figure 3.4: Smoothed episode return R(τ) during (a) learning and (b) testing

learning for the various staircases being encountered for all three reward function designs.

Specific behavior development

We now shift our attention from the evolution of the total reward, on how different policies
affect a given measure for achieving the secondary goal of safety. In the first case where
safety is quantified by instability I (recall eq. (3.10), based on the results shown in Figure
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(a) Learning

(b) Testing

Figure 3.5: Smoothed instability I during learning and testing for all three alternative
reward designs

3.5 (a), we can deduce that the robot is maximally safe in the beginning of learning, i.e.
before 100 episodes, but this barely allows the robot to traverse the staircase and very
often leads to episode failures. Instability for all 3 policy types starts to increase after
100 )episodes which correlates to learning curves whose max bands reach the maximum
episode return 1. We can therefore deduce that a safety drop is unavoidable in
order to accomplish the main task of stair ascent. By the end of the training,
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(a) Learning

(b) Testing

Figure 3.6: Smoothed projection ratio P/Pmax during learning and tests

the lowest instability corresponds to NESM-based and default (unsafe) policies, while
the instability of the projection-based policy tends to be higher. Test instability curves
(see Figure 3.5 (b)) demonstrate the same behaviour, the projection-based policy is less
safe by the end of training, while the NESM-based and unsafe policies have the same
instability values. One notable difference on test learning curves (Figure 3.5 (b)) in the
beginning of learning, namely, is that the projection-based policy is considerably more
unstable compared to the two other policy types.
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In the second case where traction and stability are quantified by the ratio of the
surface area projection of the robot, based on the results shown in Figure 3.6 (a), the
projection-based policy tends to better ensure a flat robot configuration compared to
the other policies. The projection-based policy tends to increase its projection, while the
NESM-based policy does not influence it. In accordance with the tests in Figure 3.6 (b),
the projection-based policy tends to increase robot alignment with the staircase. The
NESM-based policy does not have an impact on the projection. The default policy even
decreases projection.

Interestingly, the safety-based NESM and default policy seem to exhibit the same
behaviour (see Figures 3.5 (b), 3.6 (b)) in terms of instability and traction. In our un-
derstanding, the reason for such behavior is that the robot tends to be flat to traverse a
staircase as expected in the NESM-based policy, but this configuration turns out to be
necessary more generally as a default behavior within the default policy. We believe this
to happen due to inadequate interaction of tracks and flippers with the staircase, that
are modelled in the simulation by a series of wheels. This suboptimal simluation of tracks
leads to constant slippage effects and necessity to maximize the number of contact points
to reduce it. That maximization is possible when the main tracks touch the staircase
surface, which also lowers the robot gravity center and decreases instability I.

3.2.3 Resilience of policy learning to noise

Our targeted application in the context of AAL where the robot is integrated within
a smart space/house [3], suggests a relatively well-controlled environment. The part of
the state of the robot concerning its relative position with respect to the traversed steps
could be obtained by fusion of on-board sensors with ambient sensors. Nevertheless, due
to potential slipping of the platform while traversing the staircase it is important to assess
the robustness of policy learning in the presence of varying levels of noise, since erroneous
state estimation could lead to wrong actions and influence the robot performance even
making it impossible to attain the desired goal.

Thus, noise should be accounted for during learning at the moment when we provide
the robot with estimation of its relative position to the next step. We simulate corrupted
estimation of px, py via a Gaussian error model, namely, p̂i ∼ N (pi, σi) where p̂i is the
noisy position, pi is the true position given by the simulation environment, σi = ι · Vmax
is the chosen standard deviation, i denotes either X or Y axes, Vmax stands for the
maximum possible observation value and ι is a parameter modelling different noise levels.
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We experiment with three levels of noise, abbreviated as low, medium and high, that
correspond to ι = {0.1, 0.3, 1.0}.

Firstly, three sets of experiments were conducted for each noise level using the default
reward function. We can observe (see Figure 3.7 a)) that policies learned with low or
medium noise converge as the default policy without the presence of noise. On the other
hand, high noise in state estimation decreases the learning convergence rate, but eventu-
ally, the same episode return is attained after 250 episodes. During testing (see Figure 3.7
(b)), high noise levels seemed to have a more notable impact on the final episode return,
yet, we do not expect such extreme noise levels to be representative of real conditions of
an AAL scenario. For reference, the average values obtained over all 250 episodes provided
in Tables 3.2, 3.3 demonstrate that noisy state estimation does not have an noticeable
impact on safety and projection constraints.

Table 3.2: Resilience to noise for safety and projection constraints during learning

Measure Level of noise
type Without Low Medium High
I 0.017 ± 0.021 0.015 ± 0.018 0.013 ± 0.025 0.005 ± 0.009

P/Pmax 0.962 ± 0.05 0.986 ± 0.007 0.966 ± 0.028 0.967 ± 0.024

Table 3.3: Resilience to noise for safety and projection constraints during testing

Measure Level of noise
type Without Low Medium High
I 0.018 ± 0.009 0.022 ± 0.008 0.017 ± 0.009 0.015 ± 0.009

P/Pmax 0.991 ± 0.003 0.99 ± 0.003 0.992 ± 0.002 0.99 ± 0.003
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(a) Learning

(b) Testing

Figure 3.7: Smoothed episode return R(τ) during (a) learning and (b) testing for the
default reward function when perturbed by different noise levels.
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3.3 Summary

In this chapter we have presented an initial version of the RL framework with a simplified
environment for the staircase negotiation control learning. Within 200 trajectories which
correspond to 60 policy updates, the robot learned how to safely traverse staircases con-
sisting of 5 steps with varying riser and stair angle that were representative of real-world
ranges.

We have designed and compared three alternative reward functions. Incorporating the
projection maximization into the reward function produces the desired behavior in terms
of the flipper sticking to the staircase. At the same time, the NESM-based policy behaved
less favorably with respect to the projection-based policy. Overall, learnt policies exhibited
a good generalization capability when applied to newly encountered stair parameters.
Finally, it was observed that noisy sensory data may decrease convergence rate, however,
the final control policy attains the maximum reward in most cases.

This prototype serves as a paradigm for the development of more elaborated robot
skills, in order to further account for the presence of an active arm and treat the second
half of the complete staircase negotiation task, namely, the riskier task of descent while
potentially carrying a load. Furthermore, this study allowed to identify weak points of
the simulation environment and the simulated robot so as to upgrade our framework to
a more realistic simulation.
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Chapter 4

COMPLETE STAIRCASE NEGOTIATION

WITH ARM CONTROL

The prototype presented in the previous chapter serves as a paradigm based on which
we can now focus on reducing the gap between simulation and reality and address more
thoroughly the problem of staircase negotiation for a real tracked robot manipulator. This
means going beyond a wheel-based model of tracks that is sub-optimal in modelling the
interaction of the robot with a staircase, further account for an active arm transporting
a load and finally, tackle the problem of staircase descent. In detail :

• We upgrade the simulated robot model using geometric, kinematic and physical
characteristics of the commercial robot Jaguar V4 with Arm1 and adopt the Contact
Surface Motion (CSM) [35] approach for the simulation of robot tracks (see Figure
4.1).

• We revise the initial RL-based problem formalization to allow learning of staircase
ascent as well as descent and further investigate the influence of an active arm during
staircase negotiation.

The methodological details of these aspects are provided in section 4.1 and finally, in
section 4.2, the experimental setup is presented together with the obtained qualitative
and quantitative results.

1jaguar.drrobot.com/specification_V4Arm.asp
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(a) (b) (c)

Figure 4.1: Jaguar V4 Manipulator with raised arm (a), the corresponding CSM simulated
model carrying a load (b) and simulated ascent staircase negotiation using a learnt policy
(c)

4.1 Reinforcement Learning Framework

In this section, we rely on the same RL formalism detailed in Section 3.1.

4.1.1 Extended Flipper Control Problem Formalisation

In the previous chapter where we opted for independent tracks and flipper control, the
robot was able to learn a behavior required for accomplishing staircase ascent while re-
specting NESM-based and projection-based criteria. However, with the inclusion of the
DOF of an articulated arm, separate control of the main tracks with the arms actuators
can be sub-optimal.

This motivated us to extend the previous action and state (recall eq. (3.5) and (3.6))
spaces and explore two types of action spaces; (i) when the robot controls 3 DOF consisting
of the robot base linear velocity, front flipper and rear flipper angles and (ii) 3 + 2 = 5
DOF where the 2 additional DOF correspond to the joints of an arm. With reference to
(i), the robot selects 3 action parameters, namely, front and rear flippers rotation angles
and velocity of the base forming an action vector:

a = (ψfronta , ψreara , va) ∈ [ψmina , ψmaxa ]2 × [vmin, vmax] (4.1)

where ψfronta and ψreara are front and rear rotational displacements and va is the applied
linear velocity to main tracks. For case (ii), the previous action vector is extended with
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the joint angles of the arm:

(φ1
a, φ

2
a) ∈ [φmin1 , φmax1 ]× [φmin2 , φmax2 ] (4.2)

that correspond respectively to the rotational displacements of the first and second joints
(see Figure 4.2).

The state space structure is set as follows. For case (i), the observation vector is
represented as:

s = (pfrontx , pfronty , prearx , preary , vs, ψ
front
s , ψrears ) (4.3)

where pfrontx , prearx are distances of the chassis geometrical center relative to the next and
previous nearest step edge along the X-axis of the robot as shown in Figure 4.2, with
pfronty , preary corresponding to the relative distances along the Y -axis and vs ∈ [vmin, vmax]
being the current linear velocity. The state further includes ψfronts and ψrears as the current
flipper angles. For case (ii), the state vector is extended with the arm joint angles φ1

s, φ
2
s.

Despite these changes, we can still rely on the same RL-based problem statement
described in section 3.1 after changing accordingly the input and output neurons of the
neural network to match the new state and action vectors. On the other hand, a more
mindful treatment is required for the design of reward functions due to the increased risk
of staircase traversal failure.

Figure 4.2: Front and rear obstacle (step edge) coordinate systems
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4.1.2 Policy and its training

We use a two-layer perceptron for policy representation and PPO for its parameters
optimization as in Section 3.1.2.

4.1.3 Reward function design

In this section we present reward functions used for learning staircase ascent and de-
scent. In detail, we employ the same positive reward as in chapter 3 representing the
total travelled relative distance on the stairs which drives learning according to eq. (3.7).
As stated earlier, learning with constraints can be performed through accounting for a
negative reward (penalty) within an episode. However, it is necessary to rethink the neg-
ative penalty which drives acquisition of specific skills due to presence of the arm and of
different dynamics during descent.

We first propose a reward function that addresses the problem of robot stability for
ascent negotiation and respects both SM and NESM criteria. Then, a reward function
meant to reduce the pitch angular velocity experienced by the platform during descent is
proposed.

Center of Gravity stabilization

The center of gravity of the robotic platform is known to be instrumental in preventing
tip-over accidents and improving stability [76, 115]. In chapter 3 we enabled a robot to
learn a stable behavior by favoring robot poses with low center of gravity with respect
to the underlying surface A′ that represents NESM. The presence of an arm, nonetheless,
may place the COG low but also close to the "safety zone" border [76], without violating
the NESM.

To overcome this problem, we use the SSM [98] that estimates the distance between
the lower footprint and the COG projection on the ground. Since it is generally not
straightforward to estimate where exactly the lower footprint touches the ground and it
is necessary to acquire no or low penalties when the robot is in or near its stable state,
we instead minimize the deviation of the COG projection on the stair surface Cx from
the projection point O of the centroid of the robot base. We termed earlier the point Cx
as "projection" as well as for the rest of the manuscript for convenience and simplicity.
More formally, Cx is obtained when a line parallel to gravity that passes through COG
intersects the hyperplane A′. Minimizing this deviation, we can guarantee that the robot
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respects the SM criterion. We require that the arm contributes in placing the COG as
close as possible to the point O - the most stable point (see Figure 4.3) along both the X
and Y axes, optimizing both for SM and the NESM.

Thus, we need minimize Ddev =
√
δ2
x + δ2

y , that we refer as "deviation", where δx and
δy are the distances between O and the projections of the COG on X and Y axes. This
minimization serves the purpose of improving stability through the SM and NESM criteria
but also redistribute symmetrically the weight forces exerted by the moving robot tracks
to the staircase.

We further wish to strictly penalize the robot when it loses stability and tips over that
happens when the pitch angle of the robot |θpitch| reaches π/2.

Thus, letting the COG deviation at every time step be Ddev
t , the corresponding nor-

malized negative reward is defined as:

rn, COGt =

 −1, if tip over |θpitch| > π/2
−KD ∗Ddev

t , otherwise
(4.4)

where the scaling coefficient KD is used for normalization as will be explained later in
4.1.3. Thus, the total time step reward for the COG deviation is:

rt = rpt + rn, COGt (4.5)

Besides safety, we further observed that the contact of the robot tracks with

Figure 4.3: Side schematic view of the robot manipulator on a staircase
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the surface cannot alone guarantee proper traction. In practice, it is essential
that sufficient force is exerted from the robot tracks to the ground. This is
better ensured when the projection of the COG Cx is located near the projection O of
the geometrical robot center onto the staircase plane, as this leads to a more uniformly
distributed traction along the entire tracks of the platform.

Drop impact reduction

Robot dynamics are different between ascending and descending a staircase, as gravity
hinders the accomplishment of the former and it may conduct the robot to fall in the latter.
Even if no accident happens, repetitive collisions caused by every step negotiation during
descent would have impact on the robot. Such events appear when the COG crosses step
edges and the chassis starts rotating downwards which yields an increase of pitch angular
velocity that we refer as drop impact (bumpiness). As a way to prevent such behavior, the
robot can learn to better control such dynamics through a pitch angular velocity based
penalty. The robot has also increased chances of experiencing a frontal tip-over when the
pitch angle of the robot reaches −π/2, that we wish to penalize as well.

We follow the idea of drop impact measurement discussed in Chapter 2.4. Wt denote
the threshold average pitch angular velocity as the last time step mean value over ob-
servations of Wi, which is the i-th threshold pitch angular velocity of the last time step
defined as follow:

Wi =

 |Wi|, if |Wi| > Wthreshold

0, otherwise
(4.6)

Wthreshold is the threshold angular velocity, which is manually adjusted to cut off the
observation noise of the IMU. Then, the corresponding normalized negative reward is:

rn, angt =

 −1, if tip over |θpitch| > π/2
−KW ∗Wt, otherwise

(4.7)

This penalty is assigned only in descent tasks and when the robot traverses the stair-
case, namely, when the COG projection on the staircase is located between the staircase
nosing limits. In this case, the total time step reward is:

rt = rpt + rn, angt (4.8)

82



4.1. Reinforcement Learning Framework

Adjustment of scaling coefficient

A learned policy is determined by the reward function that guides learning of a specific
task. At the same time, it can endow the policy with specific characteristics such as
improvement of traction and respect of safety. While there is no ambiguity when a task
is learned with a single reward, direct summing of multiple rewards or penalties, may
mislead - bias the robot to concentrate on respecting the auxiliary constraints rather
than the main task.

It becomes therefore necessary to control the arbitrary bias of (positive or negative)
rewards, through scale normalization, that we also refer as reward or penalty scaling, that
can balance the learning of the main task along with the desired property. Note that for
the positive, default reward related to the travelled distance (recall section 3.1.3) this is
straightforwardly obtained.

To assess the amplitudes and in turn the biases for the negative penalties described
previously, we initiate a small set of trial experiments for the first n steps where we do not
assign negative rewards, in order to acquire sufficient statistics related to the target value
V , for example, COG distance Ddev or angular velocity Wi (see eq. 4.6). When used as a
superscript, V denotes either COG or ang. This results in making the robot optimize its
behavior only with respect to the main task as specified by the positive reward, setting
aside the consideration of the penalty term. Upon the completion of the nth step, we
calculate the "sub-optimal" mean target value V̂ = ∑n

t=0 Vt/n , then the scaling coefficient
as follows:

KV = (V̂ · Tmax)−1 (4.9)

where Tmax is the maximum episode length. The episode return could be expressed as
follows:

R(τ) = Rp(τ) +Rn(τ) =
T∑
t=0

rpt +
T∑
t=0

rn,Vt (4.10)

where rn,Vt is the target value normalized negative reward. The total positive trajectory
return Rp varies from 0 to 1 by definition. Normalization guarantees that the total tra-
jectory penalty without tipping over penalization Rn(τ) varies from −1 to 0. This can be
easily seen by defining the :

Rn(τ) = KV

T∑
t=0

Vt =
∑T
t=0 Vt

V̂ · Tmax
· T
T

= V̂τT

V̂ · Tmax
(4.11)
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where V̂τ is the mean target value during the episode after trial experiments.
We suppose that in the beginning of learning the policy is sub-optimal, thus the "sub-

optimal" mean target value V̂ calculated in trial experiments relates to further target
value mean observations as V̂τ ≤ V̂ . Since the rollout length does not exceed its maximal
length T ≤ Tmax, we can conclude:

V̂τT ≤ V̂ · Tmax (4.12)

It was finally observed that the tip-over penalty prevents learning of sub-optimal policies,
therefore we added auxiliary negative reward −1 and end the episode in such cases, thus,
Rn(τ) ∈ [−2, 0]. Finally, we obtain the limits for the episode return as R(τ) ∈ [−2, 1].
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4.2 Experiments

In this section we present the experiments that we conducted, allowing us to obtain stair-
case ascent and descent policies with desired properties. We also provide a qualitative anal-
ysis of learned behaviours (available at partage.imt.fr/index.php/s/JBdmEXaWcjLmgmB/
download as a part of the publication [45]).

4.2.1 Robot model improvement

We shift from a wheeled-based simulation of robot tracks to the more realistic CSM model
[35] that is more lightweight in terms of computational speed and plausible on even and
rough terrains. We instantiate a model of the robot Jaguar V4 and add a manipulator arm
platform (see Figure 4.4) incorporating its geometrical and mass distribution parameters.
The hardware description of the robot, when the manipulator is folded, are presented
in Table 4.1 from where the manipulator can reach 0.707m, while mass is set to half of
the real robot to deal with instabilities occurring in the simulation environment Gazebo
due to increased forces. Therefore, the COG is not altered and corresponds to the same
position as for the original total mass.

The change of mass does not impact angular velocity either. When the robot rotates
around a step edge it transforms its potential energy into rotational kinetic energy that we
could approximate through the next formula mghpot ∝ ZW 2, which gives W ∝

√
mghpot

Z
,

wherem is the robot mass, g is the gravitational constant, hpot is the vertical displacement
of the COG, Z is the moment of inertia and W is the pitch angular velocity. We can
state that m = ρF , where ρ is the mean density, F is the robot volume. We assume
that the body density is uniform, because the robot is composed of heavy metal parts,
therefore we can neglect the presence of plastic parts. Therefore Z = ρ

∫
F x

2dF , where x
is the distance from the axis of rotation to the element dF . We can deduce that W ∝√

ρFghpot

ρ
∫

F
x2dF

=
√

Fgh∫
F
x2dF

. Thus, pitch angle velocity does not depend on the density, and
mass change of the platform has an insignificant impact under assumption that the body
density distribution is uniform.

The main tracks are connected to the chassis through fixed joints. Flippers are located
at each end of both tracks and attached through the revolute joints, which can rotate in
the following safety limits [−π/4, π/4] around the "extended" configuration. Revolute arm
joints 1 and 2 have the same safety limits. A payload with variable mass can be attached
at the end-effector of the arm joint 2. The model can be controlled through ROS topics.
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The arm and flipper joints are position controlled. We can control the velocity of the robot
by setting linear and angular velocities. The Gazebo plugin proposed in [35] calculates
and applies corresponding forces to the robot. The robot contains a standard ROS IMU
sensor which can provide linear and angular accelerations and orientation. Finally, we
place an RGB-D sensor at the front of the robot.

4.2.2 Experimentation set-up

Policy training protocol

We improve the simulation environment of Chapter 3 as illustrated in Figure 4.4. Staircase
size is still varied in ranges corresponding to real-world staircases to address the domain
randomization as in Chapter 3. However, we increased the maximum total number of
steps from 5 to 10, and the number of steps is randomly generated every episode.

To account for the influence of transporting objects we perform learning with a cargo
added permanently to the robot end-effector that constitutes 10% of total robot mass
and corresponds to the heaviest permissible load of the real robot. In the beginning of
the ascent tasks, the robot starts at the start point (see Figure 4.5) being orientated
towards the stairs. It has to traverse the distance from the start to the finish line. For the
descent tasks, start and goal positions are swapped. We assign both positive and negative
rewards from the beginning of the episode to its end. The episode ends when either the
robot reaches the finish line, goes out of the training zone (rectangle defined by red, blue
and green lines), tips over or number of time steps exceeds the maximal episode length.

We studied learning a total of 5 variants of the staircase traversal task, distinguished
by the staircase negotiation direction, DOF involvement and penalty optimization cri-
terion as summarized in Table 4.2, where COG deviation and angular velocity criteria
correspondingly refer to Equations 4.4 and 4.7.

For all experiments the robot arm starts with the same, vertically stretched, initial
configuration perpendicular to the robot base (see Figure 4.4 (c)). We select this initial
arm pose as it cuts through symmetrically the arm workspace and thus does not add a

Parameter Mass, kg Length, m Width, m Height, m
Value 20.5 0.98 0.7 0.4

Table 4.1: Jaguar characteristics in simulation
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(a) (b)

(c) (d)

Figure 4.4: CSM Jaguar model in the "extended" configuration. Robot front view (a),
robot top view (b), robot side view (c), robot joints (d)

particular bias to the COG when moving on flat terrain. On the other hand, such pose
may severely hinder staircase traversal and should therefore incite the robot to learn to
move the arm at a better pose. We recall that in the case of a 3DOF action space, the
arm remains fixed in this pose.
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Figure 4.5: Simulation environment with robot positions

4.2.3 Reward function evaluation

Staircase ascent performance for simulated Jaguar V4 with Arm

Three independent learning trials were performed for each task (i) and (ii) (see Table 4.2),
after which we average the obtained performances. Figure 4.6 (a) presents the average over
all trials of the exponentially smoothed episode return with min-max bands, as was done
in Chapter 3.

Task id Direction DOF Criterion
i Ascent 3 COG
ii Ascent 5 COG
iii Descent 3 Ang. vel.
iv Descent 5 Ang. vel.
v Descent 5 COG

Table 4.2: Description of tasks
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(a)

(b)

Figure 4.6: Ascent task learning analysis

At the end of learning, a total relative reward difference of 0.21 is observed between
the tasks, clearly suggesting that the robot learns to control the arm in a way
that optimizes the respective criterion. Even if the min-max episode reward spread
increases by the end of learning, we conclude that the robot acquires the necessary skills,
because the COG deviations curves (Figure 4.6 (b)) converge to a plateau while decreasing
the min-max COG deviation spread.

Episode return curves do not reach their maximum positive return value of 1 because
of the minimal COG bias that results from its inability to put the COG closer to the base
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centroid than a certain distance. It is worth noticing of the considerable distance between
the two curves by the end of learning, explained by the fact that the robot with static
raised arm and only using its flippers, is unable to attain the same level of positive reward
because of the higher COG deviation.

Figure 4.6 (b) shows how the COG deviation evolves during the learning process. The
purple curve associated with the policy (ii) "no reward scaling" shows the importance
of the scaling coefficient presented in Section 4.1.3. This curve is produced by directly
accounting for the penalty but without the KD multiplier in Formula 4.5. We see that the
COG deviation goes up and reaches a plateau around 0.225m by 3000 time steps, which
indicates absence of any meaningful optimization even degeneration in comparison to the
beginning of learning.

By contrast, the policies (i) and (ii) exhibit successful learning through constant de-
crease of the COG deviation and reaching a plateau by 8000 time steps correspondingly
at 0.13m and 0.11m. The robot learns to control better its dynamics in both tasks. It also
shows that the robot converges to a better behaviour in a similar pace. Eventually, the
arm control in task (ii), allows to decrease the COG deviation by 0.03 m lower compared
to the policy (i) by the end of learning, which favors usage of the arm control.

Staircase descent performance for simulated Jaguar V4 with Arm

Episode return curves are presented in Figure 4.7a. We can see that the reward for all
tasks reaches approximately the value 0.6 and does not attain the maximal reward 1
because of constant presence of a minimal negative reward.

Figure 4.7b shows the evaluation of the COG deviation during learning. As expected,
we observe that the most unstable robot behavior is obtained for task (iii), where the
reduction of COG distance due to the flipper control from the centroid projection point
is low. Results of pitch angular velocity optimization with moving arm (iv) seems to
improve stability, allowing to reduce the COG deviation by a total of 0.02m. Still, direct
minimization of the COG distance (v) provides the best overall results, wherein the COG
decreases by more than 0.03 m and attains the lowest absolute value among tasks.

The pitch angular velocity evaluation is presented in Figure 4.7c. Comparing the pitch
angular velocity and COG optimizations (iv) and (v) we can observe that, as expected,
the former yields a slightly lower angular velocity. Comparing with the performance of
task (iii), we could more confidently claim that the mean pitch angular velocity is smaller
if the arm does not move, which merits further attention. As we have seen, the initial,
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(a)

(b)

(c)

Figure 4.7: Descent task learning analysis
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vertically stretched arm performs the worst in terms of stability easily leading to frontal
tip-over, end of episode and penalization by −1. Thus, starting in a vertically stretched
arm position, the robot would experience more tip-overs that drives the arm control to
more stable configuration even if this increases pitch angular velocity during movements.
Therefore, this turns out to be a plausible behavior in reality, as we would prefer to
undergo small bump impacts due to increased pitch angular velocity instead of a drastic
accident.

Policy test analysis

To assess the effectiveness of learning, we no longer focus on the set-up presented in Section
3.2.1 as we consider that test curves of episode return do exhibit the same evolution as
corresponding values during learning.

Instead, we now perform testing of policies after the complete learning convergence by
measuring the COG deviation and pitch angular velocity in trials on the medium staircase
(see Section 3.2.1). This is shown in Figure 4.8, where we show evolution of optimized
parameters during a trial and discuss it after.

We refer the interested reader to the qualitative results provided in the accompanying
video2, which presents the policies learned for the ascent and descent tasks in simulation.
Policy learning time is constrained by action execution duration in the simulation. Using a
contemporary machine, a 10000 time step simulation required approximately 20 minutes.

Figure 4.8a presents mean values with min-max of the COG distance during 10 test
episodes in simulation for ascent tasks (i) and (ii). We can see that after the initial phase
of the task progress, i.e. from 30% of the ascent of the staircase, the COG deviation for the
policy (ii) is lower than for the policy (i), further illustrated by Figure 4.10 which presents
mean values of COG deviations and angular velocities with their standard deviations
during simulation test deployment for the corresponding experiments of Table 4.2. The
mean COG deviation of the policy (i) is higher than the policy (ii) by 0.03 m.

Figure 4.9 provides indicative snapshots of robot configurations during ascent (a)
and descent (b) transitions while respecting the COG criterion. We can see that the
robot pushes its arm in front during ascent, thanks to which tip-over of the
platform is largely avoided. The front flippers are raised during ascent while
rear flippers are pushed down and vice versa in descent. Such configuration

2partage.imt.fr/index.php/s/JBdmEXaWcjLmgmB/download
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(a)

(b)

Figure 4.8: Evolution of penalty values during task execution

improves robot traction with front and rear step edges and also reduces the
chance of a tip-over.

Mean curves with min-max bands given in Figure 4.8b show the evolution of the
angular velocity during descent negotiation in simulation for tasks (iii), (iv) and (v). To
evaluate policy effectiveness in the descent, tasks we compare quantitatively corresponding
policies with the help of Figure 4.10. Angular velocity optimization shows better results
for the policies (iii) and (iv) in contrast to the policy (v) which is correspondingly higher
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(a) front arm configuration (b) rear arm configuration

Figure 4.9: Robot during transitions on the staircase

by around 0.04 rad/s and 0.05 rad/s. Yet, the latter shows the smaller COG deviation
by 0.018 m and 0.028 m.

The robot configuration respecting the COG criterion during descent negotiation is
shown in Figure 4.9 (b). Flipper rotation angles are set in a manner where front and rear
flippers touch correspondingly lower and upper obstacles making transitions smoother.
Thus, front flippers prevent the robot from dropping forward while rear flippers allow the
robot to descend smoother from the rear step edge.

While we favor pitch angular velocity reduction in the descent tasks (iii) and (iv)
achieving the better optimization for the policy (iv), preserving stability in task (v) re-
mains important. We deem that the angular velocity minimization with arm control as
the most favorable criterion to optimize in descent, as it directly leads to minimization
of the angular velocity while it also seems to implicitly improve stability of the robot
through arm manipulation.

Payload presence analysis

As we have mentioned, learning is performed with a payload which represents 10% of
robot mass. This is used to show the adaptation of the policy to load variation via test
roll-outs with masses that constitutes 5% to 15% of total robot mass.

We have performed additional tests on the medium staircase configuration (see Section
3.2.1) in the ascent and descent tasks for the same policies when the end effector holds
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Figure 4.10: Performance of learnt policies with varying weight of transported object (see
Table 4.2 for task definitions)

loads constituting 5 to 15% of the robot mass. We can observe from Figure 4.10 that
the robot is capable of controlling the COG deviation if load mass changes in the ascent
tasks (i) and (ii). For example, the robot controls the arm in a manner that it improves
the target value for tests with loads of 5, 10 and 15% of the robot mass by 0.046, 0.044
and 0.083 m in comparison with the stretched arm tests. In the descent tasks, the COG
deviation is the highest in the task (iii) for all load types. Then, it is decreased if the
robot controls its arm to minimize the angular velocity, but the minimal target value
corresponds to the policy of the task (v). The mean angular velocity decreases along with
load mass augmentation for all tasks. We can conclude that the angular velocity is smaller
for tasks (iii) and (iv) than for task (v).
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4.3 Summary

We have presented an improved RL-based framework for the problem of control policy
learning during staircase descent and ascent, further investigating the influence of an in-
tegrated arm. Within 150 episodes, the robot is able to learn its dynamics and safety
constraints while negotiating varying staircases. The automated scaling coefficient esti-
mation proved effective by constraining episode returns to appropriate scales and avoiding
biasing the convergence of the obtained optimal policies.

We have studied optimization of the COG and pitch angle velocity criteria for both
ascent and descent. The COG based policies have exhibited better performance in terms
of stability and qualitatively presented the same optimal arm control behavior as it would
be expected by classical control. Despite the addition of more DOF, the control of the
arm yields better overall stability to the robot during traversal. The angular velocity
minimization seemed to indirectly improve the COG deviation. The learned control has
shown resilience and appropriate adaptation to different carrying loads.
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Chapter 5

POLICY PORTABILITY AND TRANSFER

FROM SIMULATION TO REALITY

In this chapter, we built upon the acquisition of robot controllers with desired behaviour
properties such as safety and bumpiness minimization through reward function design, in
line with our earlier works [45, 116] and previous chapters. In particular, we consolidate
the training of effective controllers in simulation, by developing and comparing these skills
on two distinct articulated, tracked robot vehicles in simulation and further successfully
transfer and deploy the trained policies onto one of the real robots.

On top of attaining our main goal that consists in successful staircase negotiation by
the real robot, we also present new insights that are the product of quantitative as well
as qualitative cross-comparison of behaviors among task variants and between robots.
Concretely, the work presented in this chapter and detailed in [117] advances the state-
of-the-art in the following points :

• We successfully acquire RL-based staircase negotiation controllers for two robotic
platforms in simulation, both exhibiting the desired behavior properties.

• We quantitatively compare controllers obtained for different robots and task variants
via Kullback-Leibler (KL) policy divergence.

• The efficacy of the obtained controllers is demonstrated in reality by transfer to a
commercial robot (see Figure 5.1).

In the sequel, we present the experiments that we performed with two different plat-
forms, namely, Absolem1 [17] and Jaguar V4 Manipulator2. Extensive simulated and
real-world experiments were performed with varying degree of difficulty for the task of
staircase negotiation, allowing us to successfully deal with the associated challenges (see
also associated video partage.imt.fr/index.php/s/LDyp6QRp4nGGKd2/download).

1bluebotics.com, github.com/mariogianni/trav_nav_indigo_ws
2jaguar.drrobot.com/specification_V4Arm.asp
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Figure 5.1: Pipeline overview: the desired behavior is developed via RL in simulation and
transferred in reality

The rest of the chapter is organized as follows. Section 5.1 presents the robot platforms
along with the characteristics of the tasks and the policies that were trained followed by
the presentation of policy comparison. We discuss ascent and descent learning results and
the procedure for transferring and evaluating the obtained behaviors onto a real robot in
section 5.2.
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5.1 Policy comparison

5.1.1 Description of platforms and associated tasks

We rely on the simulation environment, learning workflow, action and observation spaces
from chapter 4 and additionally acquire a model of Absolem (see Figure 5.2) 3 that we
endow it with the CSM model for track simulation, whose hardware description can be
found in Table 5.1 and we refer to the Ph.D. thesis of M. Pecka [118, p. 10] for details.
Adding a new robot has no impact on the overall training time since each robot controller
can be trained independently and all of them in batch, server-side simulations.

In Table 5.2 we juxtapose the two articulated tracked robots for which we trained the
various controllers. Their simulated models matched the geometric characteristics of the
real ones, making use of vendor provided The mass characteristics of Absolem matches
the real ones while those of Jaguar follow the description of Section 4.2.1. The two robots
possess similar obstacle negotiation properties thanks to the presence of flippers, with the
main difference being that Absolem can independently move each flipper in contrast to
Jaguar where front and rear flippers are coupled. To make consistent comparisons, we
therefore chose to couple Absolem flippers as well.

3bluebotics.com, github.com/mariogianni/trav_nav_indigo_ws

Parameter Mass, kg Length, m Width, m Height, m
Value 29 1.196 0.61 0.46

Table 5.1: Absolem hardware description

Figure 5.2: Absolem
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Task Policy id Policy id
Ascent, 3DOF,
Default

Jag-Asc-3-Def Abs-Asc-3-Def

Ascent, 3DOF,
COG

Jag-Asc-3-COG Abs-Asc-3-COG

Descent, 3DOF,
Ang.

Jag-Des-3-Ang Abs-Des-3-Ang

Ascent, 5DOF,
COG

Jag-Asc-5-COG None

Descent, 5DOF,
Ang.

Jag-Asc-5-Ang None

Table 5.2: Task and policy variants to the tested robots

It follows that each robot has at most 4 DOFs corresponding to linear velocity, angular
velocity, front and rear flipper angles, with Jaguar having 2 additional DOFs due to its
arm. For the staircase traversal task though we have deemed that yaw angular velocity
control was unnecessary during traversal after the following observations; (i) a robot can
easily align itself with the staircase before traversal and (ii) the robot remains aligned
during traversal thanks to the coupled front and rear flippers grip on the steps. Thus,
the maximum number of DOF is 3 for Absolem and 5 for the Jaguar. We fix the heaviest
admissible payload to the Jaguar end-effector in tasks during learning to account for the
presence of a payload, where all 5 DOFs are involved. When Jaguar is trained with 3
DOFs for comparison with Absolem, we remove that payload.

Each task of Table 5.2 is thus characterized by the direction of traversal (Ascent or
Descent), the number of DOF of the action space and the type of reward used to guide
learning (Default refers to the use of Equation 3.7, COG refers to the use of Equation 4.5
and Ang refers to the use of Equation 4.8).

We evaluate 8 task variants as listed in Table 5.2 differing by traversal direction, DOF
variation, applied criterion and robotic platform. The Jaguar robot model starts always
with a vertically stretched arm that is fixed in 3 DOF tasks, flippers of both platforms
are parallel to the floor in the beginning and φ1

a, φ
2
a ∈ [−0.5π, 0.5π]2. Finally, penalties are

evaluated and assigned only when robots reside on the staircase.
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5.1.2 Policy comparison

A recurrent question arises from the moment where we can develop multiple different
policies, depending on the reward function design, task characteristics or robot platform;
how can we quantitatively compare policies and the associated behaviors?
In answering this question, we make use of a commonly used probability distribution
divergence measure, namely, the KL divergence [119]. Our motivation comes from the
observation that, RL algorithms often exploit the divergence as metric to be optimized
or as a constraint of policy updates as for example in PPO where updates of the policy
parameters are constrained through a penalty on KL divergence.

We denote the reference policy for a given task as πq and we wish to find how the
policy πp diverges from πq (assuming same observation and action spaces). The process of
learning a policy amounts to learning the mean and variance statistics of the underlying
probability distribution, rather than the exact probability distribution for each possible
state-action pair. Making the hypothesis of a normally distributed policy with mean and
variance that depend on the state, a policy can then be sampled randomly over the total
space of observations with actions chosen according to that policy. Thus, once a total set
of observations has been obtained, the corresponding actions are prescribed by one of the
two policies being compared, namely, the reference policy πq. After having determined
the state-actions pairs over which the policies will be compared, we then calculate the
divergence as:

DKL(πp, πq) =
∑
s,a

πp(s,a)logπp(s,a)
πq(s,a) (5.1)

Training a policy is always a stochastic procedure and as such the vector of policy
parameters is a random variable itself, together with the number of state-action pairs that
we choose to calculate divergence. Recalling our discussion in Section 3.2.2 on confidence
levels, the number of times a policy is trained to assess its convergence rate, will also
determine our confidence for the KL-divergence between the compared policies.

5.1.3 Learning performance in ascent tasks

Figure 5.3 (a) shows the mean smoothed episode return over independent learning trials
with min-max bands, for (Jag-Asc-3-COG) and (Abs-Asc-3-COG).

Mean episode return starts from −0.23 and −0.44 for the two tasks, because of the
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(a)

(b)

Figure 5.3: Ascent task learning analysis

negative penalty and the failure of the robots to advance to the goal, and converges to 0
by the end of learning for both policies. The max bands can attain the values of 0.26 and
0.28 episode return respectively. This means that the robots learn to control flipper angles
and the linear velocity. The episode return for the policy (Abs-Asc-3-COG) is lower in
the beginning because the Absolem COG is higher and car tip-over more easily. None of
the two learning curves reaches the maximum return 1 as it is impossible to put the COG
closer to the point O (see Figure 4.3) than a certain distance. This is normal since the
robots cannot be entirely parallel to the ground while they traverse the staircase.

Figure 5.3 (b) shows the evolution of the COG during learning. Both policies reduce
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the COG deviation at the same pace and reach minimal values after 8000 time steps, or
120 episodes. The Absolem policy exhibits higher COG deviation equal to 0.19 m due to
the higher COG placement in the initial configuration where flippers are extended, still,
it decreases the initial COG by 17%. The Jaguar policy decreases the COG deviation by
36% down to 0.075 m that approximately represents the COG deviation along the Y axis.

The learning process for two robots is fairly similar. Furthermore, the same value of
episode return is achieved by the end of training. The COG curves exhibit similar be-
haviour and converge at different values, due to differences in mass distributions. Those
differences also change robot control features, still both robots achieve the goal by min-
imizing the COG deviation. Note, however, that the absolute COG deviation difference
between Absolem and Jaguar noticed at the end of learning in Figure 5.3 (b), is not trans-
posed to an equivalent absolute difference in the total reward in Figure 5.3 (a), thanks
to the normalization of each negative penalty. These results strongly indicate that the
framework is applicable to different robot models for the ascent task.

5.1.4 Learning performance in descent tasks

Figure 5.4 (a) presents learning curves for tasks (Jag-Des-3-Ang) and (Abs-Des-3-Ang).
The firsts starts at −0.1 episode return and converges to the value 0.1. The second policy
convergences similarly but starts at −0.3 episode return and ends at −0.1. Both platform
policies exhibit similar learning behaviour separated by around 0.2 that can be explained
by robot dynamics, because the Absolem is exposed to higher pitch angular velocity. This
is seen in Figure 5.4 (b) where the mean angular velocity of a platform during an episode
is higher for the Absolem, due to a higher centroid position over the surface in the resting
state. The Absolem policy decreases its angular velocity by the end of learning by 13%,
while the Jaguar policy drops it by 10%. Minimal angular velocity values are attained by
5000 steps, but from this moment onward the learning curves slight increase. This may
happen due to optimization of traversal time as the robot spends less time in staircase
traversal. As before, these results suggest that the framework is effective for both robots.

5.1.5 KL divergence between policies

Figure 5.5 presents KL divergences for learned controllers in the 3 DOF tasks. We omitted
5 DOF tasks since the simulated model of Absolem robot does not include an arm. An
(i, j)th cell of the heat map represents the divergence between a controller with row index
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(a)

(b)

Figure 5.4: Descent task learning analysis

i and a controller with column index j, namely, to DKL(πi, πj). If the KL divergence is
low for two policies, then this implies that very similar actions are chosen for the same
observations.

The heat map allows the extraction of some very useful insights. For example, for a
given staircase traversal direction and total reward design, the two robots develop different
policies. This can be particularly seen in divergences (1,4) and (2,5) and demonstrates
the importance of separate controller training for the different robots. Despite the fact
that, in simulation, the robots share the same motors, the same observations
and the same action space, the differences in geometry and mass distribution
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Figure 5.5: Kullback-Leibler divergence between policies

result in different necessary flipper actions throughout the traversal. It further
suggests an operator that is sufficiently skilled to operate a given platform, will
not be necessarily equally competent to operate a slightly different platform.
We can further observe that for a given robot and traversal direction, alternating the total
reward function also induces a quantitative change in the employed actions, for example in
divergences (1,2) and (4,5). This justifies our interest for optimizing staircase negotiation
with more elaborate criteria than merely arriving to the goal.

Finally, the highest divergences are noticed between policies where the staircase traver-
sal is different, namely for (1,6) and (2,6). This clearly suggests that staircase ascent and
descent require independent treatment, as dynamics and risks significantly differ. Two
pairs of policies were found unexpectedly similar however, i.e. (1,5) and (3,4), an event
that can be attributed to the stochasticity of training.

We finally performed a quantitative analysis of policy adequacy on different platforms
provided in Figure 5.6. This experiment is destined to assess how well a policy trained on
one robot would perform when deployed to another robot. We performed 10 such trials
(rollouts) for a given task. Policies (Jag-Asc-3-Def) and (Abs-Asc-3-Def) are evaluated
on the basis of time steps spent in a rollout. As we can see, if we deploy a policy on a
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Figure 5.6: Performance evaluation of policies when deployed on Absolem (left) and Jaguar
(right) robots.

platform for which it was trained, then the robot spends less episodes until task com-
pletion. Characteristically, rollous tested on Absolem last around 47 time steps if we use
the (Abs-Asc-3-Def) policy against 80 time steps if (Jag-Asc-3-Def) policy is used where
performance is significantly degraded. Similarly, deployment of the (Jag-Asc-3-Def) on
Jaguar requires on average 39 time steps as opposed to 51 when the (Abs-Asc-3-Def)
policy is applied.

Deployment of (Jag-Asc-3-Cog) on Absolem further reveals a slight performance degra-
dation in terms of COG deviation measured at 0.206 against 0.188 when (Abs-Asc-3-Cog)
is deployed. In contrast, the deployment of these two policies on Jaguar seems equally
performant.

With respect to descent, the deployment of the (Jag-Des-3-Ang) and (Abs-Des-3-Ang)
policies on the Jaguar robot clearly favors the robot specific policy, but the same policies
perform equally well on Absolem. We can conclude that a policy trained and deployed
on the same robot provides the best performance, otherwise performance can only be
degraded.
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5.2 Policy transfer

5.2.1 Platform description

In this section we describe the commercial platform Jaguar V4 with Manipulator
Arm4, that we refer as Jaguar, used for the deployment of the trained policies. An
overview look is given in Figure 5.7, Table 5.3 shows its physical characteristics. Jaguar is
a ground actively articulated tracked robot with dimensions 0.98x0.7x0.4m (manipulator
at rest), manipulator reach is 0.707m, and its mass is 41kg with the maximum payload
4kg. The robot is equipped with GPS and 9 DOF IMU, which includes a gyroscope, ac-
celerometer and compass for autonomous navigation. The real robot arm has 4 DOFs,
however, only 2 DOFs, related to joints 1 and 2, changes the COG position.

The velocity-controlled main tracks are attached to the chassis and fixed. Each track
has a flipper on both ends. Front and rear flippers are coupled and positional-controlled.
They can continuously rotate, however, we programmatically provide limits ([−π/4, π/4]
from the "extended configuration") to avoid potentially dangerous states leading to high
currency and burining out of motors. The robot manipulator Figure 5.7 (b) has the same
limits [−π/4, π/4] to avoid self-collision and, also, position-controlled. According to the
specification, the robot can climb obstacles with the height up to 0.3m.

5.2.2 System description

We begin by presenting the experimentation set-up used to obtain the ground-truth robot
and environment state. This allows to establish an upper bound on the effectiveness of
a controller in reality with moderate state errors while allowing the development and
evaluation of alternative robot localization approaches later on. On the other hand, we
opted for injecting noise in the state during policy learning in simulation to make it more
robust to errors in general as well as to reduce the risk of accidents.

4jaguar.drrobot.com/specification_V4Arm.asp

Parameter Mass, kg Length, m Width, m Height, m
Value 41 0.98 0.7 0.4

Table 5.3: Jaguar hardware description
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(a) (b)

(c) (d)

Figure 5.7: Jaguar in the "extended" configuration. Front view (a), top view (b), side view
(c), "in-action" view (d)

To obtain the robot pose we employed visual markers whose pose can be reliably
obtained via calibrated cameras and standard toolkits56. We distinguish markers into
static and dynamic with associated coordinate frames Sm and Dm (see Figure 5.8). We use
the notation jTi for the transformation between coordinate frames, denoting translation
and rotation of the coordinate frame i within the coordinate frame j. We can then obtain
transformations CTSm and STSm , the latter being measured manually. The dynamic marker
is placed onto the robot and used to locate its base coordinate frame with respect to
camera C, via a constant transformation RTDm set manually.

5http://wiki.ros.org/aruco_detect
6http://wiki.ros.org/camera_calibration
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(a) (b)

Figure 5.8: (a) Experimentation setup along with coordinate frame hierarchy; (b) archi-
tecture of deployed robot system

The camera was placed in front of the operational space of the robot, ensuring proper
coverage of the robot as well as the staircase. Its purpose is to associate the robot and
the staircase into a common hierarchy of coordinate frames, allowing at any moment to
retrieve the coordinates of the front and rear step edges with respect to the robot. The
staircase is then represented as a series of static transformations SiTS where Si is the
coordinate frame associated to a step edge.

We note that the staircase perception task could also be performed by a robot (either
by dynamic [120] or by static environment cures [121]) using its on-board sensors but we
refrain to do so to keep our set-up generic and independent of the robot. Perception of a
staircase before descent is more challenging yet this problem resides out of the scope of
this work.

5.2.3 Policy deployment from simulation to reality

In the beginning of an experiment the robot faces the staircase and the controller is
activated upon the approaching of front and rear step edges. For the task of staircase
negotiation, it turns out that only a subspace of the entire action space spanned by the
flipper and arm joints is useful. This is something that we take into account by constraining
the action space from which actions can be sampled. As a direct consequence of the fact
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that joints are allowed to move in a significantly smaller space, this provides sufficient time
to perform a necessary action and adaptation of low-level controllers from the simulated
platform to the real one and makes this transfer zero-shot. Crucially, constraining the
action space further serves in ensuring safety of the platform, since learning is stochastic
and non-previously encountered conditions may lead to accidents. For example, overly
raising rear flippers while ascending or front flippers while descending, combined with
acceleration can provoke a tip-over. To prevent such behaviours, the limits of rear flippers
while ascending and front flippers while descending were set as ψrears , ψfronts ∈ [−π/4, 0]2

respectively.
The deployed system architecture is shown in Figure 5.8 (b). The Marker monitor

detects markers in the camera image. The Environment monitor builds and maintains the
geometric relationships between the staircase and the robot, within a single transformation
hierarchy and provides the front-most and rearmost step coordinates. The Robot state
monitor provides information about the robot flippers and arm configuration, its velocity
and IMU data. The Safety estimator receives the output of Environment monitor and
Robot state monitor, evaluates safety metrics such as the COG deviation and angular
velocity and its output is concatenated with data provided by Environment monitor.
That output is fed to Execution controller which decides whether to block motors in the
case of upcoming accidents or halt the system when the experiment terminates. Otherwise,
state output data pass to Policy which samples the action vector a which is sent to the
robot actuators. The latter executes those actions and Marker monitor observes changes
in the environment. Finally, the output of Safety estimator is logged via Logger.

5.2.4 Real-world performance

Policies (Jag-Asc-5-COG) and (Jag-Des-5-Ang) were tested in two staircases presented
in Table 5.4 (we recall that the arm is actively involved in the optimized controllers).
The respective experiments are included in the supplementary video7. Overall, we have
performed 10 trials for each policy id (5 trials per staircase) discussed in this section, all
of which were successful.

Policy (Jag-Asc-5-COG) was tested on the big staircase, the robot achieving the task
by keeping the rear flippers pushed down, the front flippers up, the first arm joint was
inclined clockwise and the second arm joint counter-clockwise. The flipper configuration

7partage.imt.fr/index.php/s/LDyp6QRp4nGGKd2/download
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Name Number of steps Height Length
Big 5 0.195 0.275
Small 3 0.17 0.305

Table 5.4: Staircases configurations

Policy id Stair Cy, m D, m Ang. vel., rad/s
Jag-Asc-5-COG Big 0.11 ± 0.01 0.12 ± 0.01 0.33 ± 0.06
Jag-Asc-5-COG Small 0.1 ± 0.01 0.11 ± 0.01 0.36 ± 0.09
Jag-Des-5-Ang Big 0.16 ± 0.02 0.09 ± 0.02 0.23 ± 0.06
Jag-Des-5-Ang Small 0.12 ± 0.02 0.05 ± 0.02 0.23 ± 0.09

Table 5.5: Observed mean target values on real staircases

ensures that the robot has the contact points with rear and front stair steps. The entire
arm is moved forward to decrease COG deviation, which minimizes tip-over risks or getting
stuck. A point of ambiguity emerges for the arm as certain configurations decrease Cy and
increase Cx at the same time, or vice versa, hence minimizing COG deviation D is not
straightforward. Remarkably, the obtained results of the learnt controller show that the
robot learnt to incline forward the first arm link and backward the second link, which is
indeed the best configuration. For reference, Table 5.5 provides average observed values
for some key parameters.

The accomplishment of the descent task (Jag-Des-5-Ang) on the big staircase merits
more attention. One of the most important aspects is the linear velocity control (see
provided video), where the robot moves smoothly and adapts its velocity very attentively
that leads to increased time in the staircase traversal. Naturally, this greatly reduces the
mean perceived angular velocity by 0.1 rad/s, as opposed to the ascent task.

The ascent and descent tasks were further successfully accomplished on the small
staircase composed of 3 steps, each of height 0.17 m and length 0.305 m. The values
reported in Table 5.5 allow us to draw the same conclusions between ascent and descent,
as for the big staircase.
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Figure 5.9: Snapshots of staircase negotiation with congruent control of 5 DOF. Left
column; ascent by minimizing COG deviation. Right column; descent by minimizing pitch
angular velocity.
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5.3 Summary

We have presented an effective RL framework for control learning of staircase negotiation
in multiple task variants. In particular, we trained controllers for two robotic platforms in
simulation with reward function designs suited for ascent and descent and different stair-
cases. Results show learning convergence and optimization of targeted behaviour features
for both platforms within 150 episodes. We employed KL divergence to quantitatively
compare the obtained policies, allowing us to consolidate earlier empirical findings.

Most importantly, we succeeded in deploying the controllers learned in simulation to
a commercial robotic platform in firstly encountered real-world staircases. The robot was
able to successfully ascend and descend while respecting the underlying criteria.
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Chapter 6

INCREMENTAL DOMAIN RANDOMIZATION

LEARNING FRAMEWORK

At the intersection of the contributions presented in the previous chapters, we unfold
in this chapter the architectural details of the developed software that binds together
learning, simulation and evaluation into a single entity. Recalling Chapter 2, there exists
a small number of frameworks for robot control learning in 3D environments, none of which
seems to allow domain randomization for generating diverse staircases. That motivated us
to create and share a generic an incremental domain randomization learning framework
in order to facilitate future research on this topic.

In addition, there is no publicly available software framework that addresses robot
safety by simulating control learning in the case of ascent and descent of staircases for
tracked robots, optionally equipped with an arm. This is combined with a lack of common
utilities for development and comparison of tracked robot controllers, which constrains
researchers to develop custom robot models from scratch.

In view of these shortcomings, our goal in to provide a software framework (see Figure
6.1) [122] (under revision) that goes beyond the current state-of-the-art in the following
directions :

• Development of a simulation framework and pipeline for 2D navigation combined
with staircase negotiation using RL for articulated tracked robots.

• Provision of two trainable robot models.

• Examples of successful control learning for staircase ascent and descent, showing
the clear benefits of incremental domain randomization over conventional uniform
domain randomization.

The remainder of the Chapter is organized as follows. Section 6.1 discusses the intention
of the developed framework. Section 6.2 provides a formal description of the RL problem
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Figure 6.1: Global overview of the proposed software framework

that is treated by our framework. Section 6.3 presents all framework components allowing
potential users to experiment with alternative ways of learning control for tracked robots
in indoor 3D environments. Finally, in Section 6.4 we show its application on control
learning for staircase ascent and descent traversals.
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6.1 Objective of the framework

We propose a framework which consists of a ready-to-use simulation environment that
can be used for control learning of articulated tracked robots via RL. The framework
is customizable, allowing the user to control the environment and adapt the evaluation
accordingly. It is built upon and extends our earlier works [116], [45] and [117] that
allowed learning in simulation and transferring of policies onto a real commercial robot.
Our framework supports out-of-the-box NNs, although other types of controllers can be
used since they do not interfere with framework components. To solve a control learning
problem, it applies RL along with contemporary algorithms implemented in [110].

In an indoor navigation setting , the control learning problem can be distinguished in
three principal tasks: 2D navigation, ascent and descent traversals of a staircase.
In each of them, the learning objective is to move the robot to a goal, namely, a point
in space, avoiding ground obstacles on the floor or negotiating a staircase. The user can
then impose additional constraints as secondary goals, which can be optimized jointly
with goal reaching.
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6.2 General problem statement

To address the problem of 2D, ascent and descent navigation, the framework contributes a
RL episode life-cycle similar to that used in Chapters 3 and 4. We have already introduced
the notion of the action and state spaces, yet, we present in this section a more general
problem formalization for the case when the robot relies directly on its camera sensor.
When using the framework, the user can then choose what parts of state and action
vectors he(she) wants to adopt.

We assume that to navigate within an indoor environment a robot has access to the
following state:

s = (vs, ws, ψfront_lefts , ψfront_rights , ψrear_lefts , ψrear_rights , φ1
s, φ

2
s, θp, θr, o1, ..., oNf

) (6.1)

where vs and ws represent state linear and angular velocities, ψfront_lefts , ψfront_rights ,
ψrear_lefts , ψrear_rights , φ1

s and φ2
s flipper and arm joint angles (see Figure 4.2), where rota-

tion of robot links is considered around red x-axes, the arm link 2 rotates around the green
y-axis (see Figure 4.4 (d)), θp and θr are pitch and roll angles of the platform chassis,
o1, ..., oNf

are Nf environment depth features. Note that this general form of the state
vector can be altered by the user through an experiment configuration file (ECF), for
example, in a case where the robot does not require angular velocity or arm control.

The control vector a is composed of commands that can be sent to the robot as follows:

a = (va, wa, ψfront_lefta , ψfront_righta , ψrear_lefta , ψrear_righta , φ1
a, φ

2
a) (6.2)

where va and wa are linear and angular velocity commands, ψfront_lefta , ψfront_righta , ψrear_lefta

and ψrear_righta are flipper rotation angles, φ1
a and φ2

a are arm control angles. As in the case
of the state vector, the usage of the control vector components can be controlled through
the ECF and connected to used robot parts, as will be presented in detail in the next
section.
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6.3 Framework architecture

This section presents the framework and its components, unfolds its workflow from its
most low-level parts such as the simulator to the high-level ones such as RL algorithm
employment and automation tools. It serves as a guide for the manual modification of inner
components to integrate new algorithms, sensors and experiment workflows. Hereafter,
we present the simulation environment, the robot command dispatching and perception
utilities and the learning environment which drives the learning process. Finally, we discuss
algorithm and library integration utilities. We recommend to the reader to use Figure 6.1
as a basis and a guide for keeping track of the various notions that will be presented along
with their interactions.

World Our framework is based on the open source physics-based Gazebo simula-
tor which resides at the core of our system. This simulator is widely used and popular
within the robotics community and already contains multiple functionalities for control
of simulated robot models. World accepts requests from simulation utilities which will be
described next Section 6.3.1 and spawns a corresponding 3D simulated environment for
training. Robot operates in this environment and provides the output to Sensors 6.3.1.

Robot The framework operates with a simulated tracked robot model in the unified
robotic description format (URDF1) which consists of a body, front and rear flippers and
that can be equipped with an arm, whose mass and geometry can be set to match those
of a real robot. Interaction between tracks and staircase surface is performed by adopting
the CSM model [35]. Front and rear flippers can be jointly or separately controlled. This
component receives commands from Low-level control 6.3.1.

Simulated Jaguar (see Figure 4.4 and Table 4.1) and Absolem (see Figure 5.2 and
Table 5.1) can be trained or operated in simulation. Each robot possesses at least 4 DOFs
which consist of linear velocity, angular velocity, front and rear flipper angles. This means
that the pair of front flippers is controlled by only DOF, and similarly for the pair of rear
flippers. In the case of separate flipper control, robots have 6 DOFs while if an arm is also
present and controlled, the total number of DOF raises to 8. These robots possess similar
negotiating capabilities. The user can add the payload to the end-effector of Jaguar to
enhance resilience to the payload influence.

1https://wiki.ros.org/urdf/
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6.3.1 ROS components

ROS (Robot Operating System) [123] is open source software under a BSD license. It
helps to develop software for robot applications through provision of commonly used li-
braries and tools. They consist of device drivers, hardware abstraction, visualizers, generic
libraries, package management, message-passing, and more. The following components of
our framework are developed using ROS standards.

Simulation utilities

By careful parameterization of the source domain in simulation, i.e. the definition of Ξ
and its samples ξ (see Chapter 3, Section 3.1), we seek to generate a sufficiently rich and
representative set of situations for the three main tasks of indoor navigation corresponding
to 2D navigation, staircase ascent and descent whose environments are presented below.
Simulation utilities accept commands from Gym environment 6.3.3, produce models that
are usable within World and requests the latter to load them.

Domain Randomization for 2D navigation In indoor environments which are
organized in piece-wise orthogonal configurations (seeManhattan world assumption [124]),
the robot has to ordinarily traverse hallways or perform more complex zigzag navigation
on a 2D ground, as shown in Figure 6.2 (a) and (b). D,W,L are constant environment
parameters which define the size/scale of the environment, the width and the length
of the obstacle area. By varying obstacle parameters within the constant environment,
the framework forms an environment configuration vector ξ = (W1, L1,W2, L2, C), where
Wi ∈ [W2 −

C
2 ,W − C] and Li ∈ [L−W,L] are the width and length of obstacles 1 and 2

respectively and C ∈ [Cmin, Cmax] is the minimum distance between obstacles.
The framework generates with equal probability a hallway or a zigzag environment.

In the first case, L1 and L2 are equal L, C and W1 are uniformly sampled within their
limits, W2 is sampled from [0, L−W1−C]. In the second case, we sample ξ from defined
uniform distributions.

The user defines in the experiment configuration file (ECF) whether goal and robot
spawning is random or fixed. The appearance at random can be seen as a part of domain
randomization enhancement where we vary unseen situations through experiment episode
initialization. To spawn a robot and the goal, the framework provides 2 separated ROS2

services. In the case of random goal appearing, the goal can appear either in the rectangle
2http://wiki.ros.org/Documentation
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of random goal spawning area (see Figure 6.2 (a)) or at its geometrical center in the fixed
goal appearing situation. The framework puts the robot on spawning line either at a
random point on the same line and random orientation to the goal or at the center of the
spawning line with perpendicular orientation.

Domain Randomization for staircase negotiation Two other tasks involved in
indoor navigation concern staircase ascent and descent making a staircase generation an
important feature of our framework. A straight staircase can be represented by the step
length Lstep, the step height Hstep and the number of steps Nstep, i.e. by an environment
configuration ξ = (Lstep, Hstep, Nstep).

We enable two types of staircase generation. The first one assumes ξ is distributed
uniformly to generate samples and we term as uniform environment. The second type
assumes that ξ follows a normal distribution with a diagonal covariance matrix. The
corresponding mean and covariance matrix depend on a parameter ε ∈ [0, 1] which reg-
ulates the complexity (and in turn the difficulty), of the generated staircase. We term
environments produced with this technique as incremental Gaussian environments.

Equations 6.3a and 6.3b present sampling of the environment configuration ξ, where
∆ = ξmax − ξmin:

ξ ← N (ξmin + ε ·∆, ε · diag(∆1,∆2,∆3)) (6.3a)

ξ =


ξmax, if ξ > ξmax
ξ, if ξmin ≤ ξ ≤ ξmax
ξmin, otherwise

(6.3b)

where ξ is a candidate configuration,← N (·, ·) indicates random sampling from a normal
distribution, ξmin and ξmax represent minimum and maximum admissible environment
configurations. Equation 6.3a indicates that we sample a candidate experiment configu-
ration from the normal distribution with the mean ξmin + ε ·∆ and the covariance matrix
ε · diag(∆1,∆2,∆3), where ε enables to increase the mean and covariance and is auto-
matically reset according to learning progress that we define as mean positive episode
reward over last Nε episodes which is configured at the episode beginning. The value
of Nε was empirically determined allowing to obtain superior performance compared to
non-incremental domain randomization. This leaves space for further performance gains
if this point is addressed more thoroughly by the users of the framework. Equation 6.3b
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(a) (b)

(c)

(d)

Figure 6.2: Illustration of zigzag (a) and hallway (b) environments, complexity increment
of the staircase environment (c), ascent task environment (d)
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clips ξ, so that it fits limits.
Figure 6.2 (c) presents staircases sampled for 3 different ε values. As in the case of

2D environment, the user selects whether goal and/or robot are spawned randomly or at
fixed preset positions. In ascent, when random spawning is chosen, the robot can appear
at random position and orientation at Random spawning area (see Figure 6.2 (d)) or at
center start position being aligned with the staircase in fixed spawning. The goal can be
spawned in the same way either at spawning goal area or at central goal position. The goal
and robot spawning areas are reversed in descent.

Low-level control

The framework provides control software which accepts a sole ROS-based message issued
from Gym environment for controlling the entire action space of the robot, handles and
dispatches it to corresponding ROS and Gazebo low-level controllers and further provides
feedback through a message providing information about current linear and angular robot
velocity and joint configuration state. Then, flipper and arm joint rotation angles are
limited to reflect real robot operation. A spawned robot can be operated with a keyboard
and a ROS message.

Sensors

Another central infrastructure component of our framework is related to perception. Using
an RGB-D sensor to perceive the environment within World, the framework provides an
elementary depth-based feature extractor and dispatches its calculations down to Gym
environment and Monitor. We have preferred to rely on the depth image due to the poor
realism of simulated RGB images in the Gazebo simulator. The robot facing a staircase
and its depth perception is presented in Figure 6.3 (a) while Figure 6.3 (b) shows the
associated features whose coloring is reversed to avoid melding with the background.

Borrowing the idea of feature extraction from [22], we convert every depth image into
vertical and horizontal beam groups. The user can choose the cardinality of horizontal
and vertical beams after which the framework calculates beams positions and averages
non NaN, i.e. valid, depth image pixel values around them within an area predefined by
a user. As it was shown in [22], 10 horizontal beams are sufficient to learn map-less 2D
navigation, but we opt for using more vertical beams to better retrieve the structure of
the staircase in ascent and descent tasks.
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(a) (b)

Figure 6.3: (a) Robot in front of a staircase, (b) horizontal and vertical extracted features

The robot further contains a simulated inertial measurement unit, the output of which
is published within the ROS ecosystem and used in forming of the observation vector and
reward calculation. Alongside, the framework further provides the ground truth pose of
the robot.

6.3.2 Monitor

Rewards and episode termination signals are issued from Monitor (see Figure 6.1) whose
importance was particularly highlighted in our earlier work [117]. These calculations are
produced with help of Sensors output and, being concatenated with image features, goes
down to the Gym environment. An appropriate reward function drives learning towards
the acquisition of complex behaviours and a well implemented termination signal can
boost learning. As part of the framework and baseline methodology, we provide the exact
same set of three reward functions (see Section 4.1.3) which can be used to learn ascent
and descent staircase traversals, that could serve as a starting point for future research
and bench-marking.

Finally, the component Monitor receives data from the most of ROS utilities to pro-
vide an adequate guidance of the learning process. It monitors the robot-goal distance,
provides safety estimation, which monitors COG deviation and pitch angular velocity of
the platform, forms termination signals and sends data to a Database. We consider three
cases where Monitor triggers a termination signal, namely: (i) tipping over, (ii) exceeding
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Figure 6.4: ECF example

episode time steps and (iii) reaching the goal. Safety estimation is performed for stair-
case ascent when the component continuously monitors mean time step center of gravity
deviation and mean time step pitch angular velocity for descent.

6.3.3 Learning

This subsection unfolds the details of the learning components of the framework, as shown
in the beginning in Figure 6.1. Our framework allows to integrate different implementa-
tions of reinforcement learning algorithms as long as they support the OpenAI Gym [125]
which is a standard toolkit and operates as an interface between a RL algorithm and
an agent environment. The key component Learning of our framework encompasses RL
algorithms instantiation, an OpenAI Gym implementation and their ECF.

ECF Before every experiment, the user can instantiate an ECF (see Figure 6.4) which
is received from Server and contains all necessary details of the experiment loaded by Algo-
rithm and saved by database. File templates can vary for integration of custom experiments
and RL libraries. Finally, the ECF is used for policy testing saving robot performance such
as travelled distance and safety measures. Algorithm As soon as an experience starts
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ECF is consumed by Algorithm. The latter selects a library and a corresponding RL al-
gorithm with defined parameters. This also instantiates Gym environment after which
policy training is triggered.

Gym environment Our framework integrates an OpenAI Gym environment which
receives signals and calculations of Monitor, provides experiment data back to Algorithm,
requests Simulation utilities for a new environment and, finally, robot and goal respawning
controlling Robot through Low-level control. Gym environment dispatches rewards on
every time step to Algorithm as well as episode termination signals received from Monitor.
It forms the observation vector (cf. eq. (6.1)), which is passed to the policy πθ, obtains
an action vector and sends it to Low-level control. Finally, Gym environment receives
the output from Monitor related to time step reward and termination signals, based on
which the RL algorithm continues to perform policy optimization if required and the cycle
repeats.

6.3.4 Automation

Launching of all aforementioned components, creating the ECF and data saving can be
manually performed by the user. However, to simplify interaction with the environment
we provide certain Automation tools, listed below.

Graphical user interface (GUI) This component enables managing of experiments
and visualization of results through sending commands to Server. Figure 6.5 (a) and (c)
shows screenshots of its windows, the first one presenting the creation of a Configuration
file and the second a visualization of ongoing learning results.

Server This is a light-weight process which functions in parallel to the rest of the
framework, helps to visualize learning results and run experiments, without it every ex-
periment has to be manually launched. The user can start an experiment through GUI
which requests the Server, the later creates the ECF and launches Algorithm. To visual-
ize the data of the experiment, GUI interacts with Server, which requests Database, and
returns data.

Database To promote a disciplined approach to data management we employ a
database within the component Database. The later is a program which works in par-
allel to other components and stores data from ECF and every learning episode statistics
performing ordinary "create", "read", "update" and "delete" operations.
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(a) (b)

(c)

Figure 6.5: Framework GUI and simulation views: (a) experiment configuration, (b) robot
learning ascent task, (c) episode reward scatter
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6.4 Experiments

This section presents conducted experiments which allowed to obtain ascent and descent
policies with optimization of desired properties. We were inspired by the perception prin-
ciples from [22] where authors study the case of 2D navigation learning and investigate its
extension for control learning in ascent and descent tasks. The experiments that we present
in the sequel are provided as proof-of-concept for the utility of the framework, with the
hope of stimulating further research and allowing to benchmark different RL approaches
for learning control of articulated tracked robots in indoor environments. The chapter is ac-
companied by a repository where the framework is stored github.com/gwaxG/robot_ws,
additionally, GUI is located on github.com/gwaxG/robot-simu.

In the scope of this chapter, we employ SAC [20]. This is a recent RL algorithm which
has shown better performance compared to its counterparts. It optimizes a stochastic
policy in an off-policy way where its key feature is maximization of both the policy entropy
and the expected return. We employ SAC mostly with its original hyperparameters, policy
and Q-function parameters from the Stable baselines3 RL library [110] which contains
many other state-of-the-art algorithms.

Environment configuration We deploy our framework and obtain policies asc-inc-
cog, asc-uni-cog, des-inc-ang and des-uni-ang for tasks presented in Table 6.1 where the
staircase parameters are correspondingly sampled from incremental (*-inc-*) and uniform
(*-uni-*) distributions and Jaguar was employed using 5 DOFs which are linear velocity,
angles of paired front and rear flippers and 2 arm joint angles. We fix a payload to
the end-effector representing 10% of robot mass to enhance resilience to the influence
of a transported object. Commonly, in every experiment the robot starts off facing the
staircase. Angular velocity control is redundant in such setting because the robot can move
only forward, therefore it is omitted in the action vector as well as horizontal features
and roll base angle in the observation vector, and it makes sense to couple left and
right flipper angles at the front and at the rear respectively. The observation vector is
populated with (vs, ψfronts , ψrears , φ1

s, φ
2
s, θp, o1, ..., o60), i.e. linear velocity, front and rear

flipper angles where front and rear flippers are coupled, arm joint angles, pitch angle of
the platform and 60 vertical features extracted from the depth image. The action vector
contains (va, ψfronta , ψreara , φ1

a, φ
2
a) and represents commands for linear velocity, front and

rear flippers, and arm joints. We employ a 2-layer perceptron in which each inner layer
possesses 64 neurons whose weights are updated by SAC.
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Each task is performed three times in total and lasts up to 20000 time steps but can
be terminated earlier if the average return over the latest 30 episodes reaches an empirical
threshold value of 0.6 for descent and 0.5 for ascent when learning converges.

Task id Direction Environment Criterion
asc-inc-cog ascent incremental COG
asc-uni-cog ascent uniform COG
des-inc-ang descent incremental ang. vel.
des-uni-ang descent uniform ang. vel.

Table 6.1: Learning tasks

Ascent task performance analysis Figure 6.6 presents smoothed episode return
curves during asc-inc-cog and asc-uni-cog tasks learning with min-max bands. Since the
duration of each experiment can vary, the x-axis presents a universal learning time which
reflects scaling of all experiments time steps to the [0, 1] space. For the asc-inc-cog task,
we can see that episode return reaches up to 0.4 by the end of learning time. The task
asc-uni-cog exhibits a similar evolution, however its reward curve is mainly located below
the curve of asc-inc-cog task and converges to 0.0 which shows boost of learning with
Gaussian sampling of environment in comparison to uniform one. The convergence of the
COG deviation illustrated in Figure 6.7 shows the respective criteria are clearly optimized.
If the evolution of reward curves seems slightly different in comparison to Chapter 4, this
can be due to the differences in input modalities and, most importantly, to the usage of

Figure 6.6: Reward convergence
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(a)

(b)

Figure 6.7: Evolution of optimized values during task execution

SAC instead of PPO for optimizing the policy.

Figure 6.7 (a) shows evolution of COG deviation during learning, we can see that its
values significantly drops from 0.25 m down to 0.14 m. The agent shows its capability
to learn staircase traversal relying on visual perception and to increase its safety through
COG deviation minimization. Speaking about performance of the asc-uni-cog, we can see
that COG deviation is not optimized equally well and converges to 0.17 m, suggesting
that the incremental domain randomization leads to a more optimized behaviour.

Descent task performance analysis Figure 6.6 (b) presents episode return in des-
inc-ang and des-uni-ang tasks. Reward curves and mean episode pitch angular velocity
show the same pace of convergence and attain similar values. Reward curves begin at
−0.2 and −0.42, then they drastically increase up to 0.5 by the end of learning, and
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Figure 6.8: Comparison of environments

they slowly continue to improve after 0.8 of learning time. They both trigger termination
by the early stopping criterion when the value 0.5 is reached. Overall, however, the task
learnt incrementally des-inc-ang has fewer performance oscillations and hence seems more
stable than the non-incremental.

Mean time step angular velocity (see Figure 6.7 (b)) drops from 0.185 and 0.173 for
des-inc-ang and des-uni-ang respectively, to 0.155 by the end of learning for both tasks.
As previously, we can notice here too that overall the task learnt incrementally oscillates
less. In descent, the robot is always able to advance downstairs through even a small
velocity application, the principal goal is to mitigate drop impacts which could occur
even more often by inappropriate behaviours. Nonetheless, the curves of pitch angular
velocity evolution show that the robot achieves the prescribed goal.

Test performance Figure 6.8 presents how much the performance of a policy trained
in the uniform environment differs from a policy trained in the incremental environment
for ascent and descent tasks. To obtain these statistics, a policy trained for a given task
was applied 10 trials on a fixed staircase with an environment configuration of the highest
complexity ξ = (Hmax

step , L
max
step , N

max
step ). Then, relative travelled distance (progress), COG

deviation and angular velocity were recorded during trials.
Figure 6.8 (a) presents mean progress in ascent tasks over all trials, with error bars

corresponding to one standard deviation (we refrain from using progress as performance
measure in descent tasks, since the goal is reached more easily). As we can see, a policy asc-
inc-cog exhibits nearly perfect performance 0.965± 0.05 in contrast to asc-uni-cog policy
0.82± 0.24 which tends to reach the goal less often and has higher variance. At the same
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time, the COG deviation of the policy (see Figure 6.8 (b)) asc-inc-cog is 0.115± 0.008 m
which is lower than the COG deviation of the policy asc-uni-cog 0.125 ± 0.005 m by
0.01 m.

The incremental environment also improves performance in descent tasks (see Figure
6.8 (c)) where the policy des-inc-ang exhibits better performance 0.215± 0.15 m against
the one of the policy des-uni-ang 0.235± 0.14 m.
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6.5 Summary

This chapter presented a RL-based software framework for control learning of articulated
tracked robots. The framework is unique in its kind in terms of the type of task for
which it is destined to be used, integrating domain randomization and the possibility of
incremental learning, accompanied with two articulated tracked robot models.

The framework applied on control learning for ascent and descent staircase traversals
with safety constraints has shown ability to learn reasonable skills with joint arm control
relying on depth. Furthermore, enhancement of DR with sampling of environment con-
figurations from a Gaussian distribution, that is controlled by the estimation of learning
progress, has shown superior results in comparison to the uniform environment.

We believe that the framework could stimulate research and experimentation in vari-
ous directions. For example, possible future improvements of the framework could further
account for generation of spiral staircase generation or more complex variations of floor
obstacles to increase complexity of the 2D control learning and better address the struc-
tural complexity of real-world environments. Another extension could concern dynamics
randomization. To start, we can vary the number of DOFs of the robot in an incremental
learning setting, for example, by starting learning using 2 DOFs corresponding to linear
and angular velocity control and then progressively adding additional DOFs of flipper
and arm control while environment complexity increases. One could go even further by
varying dimensions and mass of chassis, tracks, arm and flippers. Thus, the learnt policy
could eventually attain generalization over different platforms.
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CONCLUSION

This dissertation investigated the problem of safe 3D navigation in indoor environments
for articulated tracked robots, focusing on the most challenging part related to staircase
negotiation. Based on a thorough and transverse study of the state-of-the-art, we inferred
that previously proposed solutions are largely over-customized, limiting their applicability
in different contexts. This prompted us to explore a reinforcement-learning based, con-
trol learning paradigm in order to reduce the amount of expert supervision and increase
flexibility to varying conditions.

In view of the complexity in modelling and addressing the complete task of staircase
negotiation, our approach in this dissertation was to start from moderate hypotheses and
constraints and progressively scale up to harder challenges until the final application to
the real robot. We began working within a simplified simulation environment where a
robot with tracks simulated by wheels was able to learn its primary goal of ascending a
staircase in a few learning episodes. Subsequently, we started to explore secondary goals
by endowing the main negotiation behavior with different properties created with the
help of designed reward functions based on conventional safety criteria such as SM and
NESM. This allowed us to have a first idea of the appropriateness of criteria that were
introduced in classic control, when employed in a RL setting. With a view towards a
better generalization in the real-world, we specifically accounted for the presence of noise
in state estimation while testing in unseen staircases.

The understanding of the main constituents of the problem then allowed us to fur-
ther investigate the integration of a robotic arm, descent traversal and improvement of
the fidelity of the simulation. This resulted in the development of a CSM-based simu-
lated model of the commercial robot Jaguar V4 with Arm, increasing the effectiveness
and efficiency of the simulation and significantly reducing the gap between simulation
and real-world, in terms of robot-surface interaction. To improve learning convergence of
desired skills and control bias of secondary properties of a behavior, we developed a sound
approach to estimate the scale of secondary rewards and used it as scaling coefficient. We
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further designed two dedicated reward functions for ascent and descent traversals based
on optimization of the COG and of the pitch angle velocity. Experimental results obtained
in simulation showed that behaviours respect safety constraints while negotiating varying
staircases with the active help of the arm. Despite the additional degree of complexity
due to the arm, the robot yields better overall stability during both traversal types even
in the presence of a carrying load.

As an ultimate indicator of the value of the previous work, we succeeded in performing
a zero-shot transfer to the real, commercial platform. The cross policy application tests
and KL divergence analysis have further allowed us to assess the applicability of the
approach to different platforms, demonstrating that the learnt behaviours are adapted to
a given platform and the imposed safety constraints.

To consolidate our framework and allow subsequent improvements by the research
community, we make it available publicly in an open-source repository1, destined for 3D
navigation and control learning of articulated tracked robots. This work is unique in
terms of type of tasks, the integration of domain randomization for staircases and the
possibility of incremental learning accompanied with two CSM-based articulated tracked
robot models. Using the framework, we could seek an end-to-end control learning in the
same environment setting as previously described.

1https://github.com/gwaxG/robot_ws
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7.1 Challenges and perspectives

With a view towards a ready-to-deploy system that would integrate the solutions devel-
oped in this dissertation, a number of secondary open points would merit further attention.
First of all, we have relied on a exteroceptive perception setup which allowed to estimate
poses of the robot base and of the staircase. This is a reasonable hypothesis for an indoor
service robot that can communicate with a smart living environment. If a higher degree
of autonomy is required, then the robot would inevitably need to rely on SLAM as well
as a staircase perception skill.

With a view towards a complete 3D indoor navigation system, the developed stair-
case negotiation controllers should be coupled with conventional 2D navigation based on
planning or end-to-end based for map-less navigation. The software framework that we
provide supports the second paradigm. Preferring the first of the second paradigm are
interesting topics as well as the transfer to reality in the second case.

Transfer and deployment to reality of the complete navigation system would face
various challenges, from domain differences between simulated and real RGB-D images,
to varying levels of noise or perturbations of the platform due to shaking or the question
of sensor placement on the platform.

We already rely on domain randomization in our work to partially deal with such chal-
lenges that could be even more alleviated by dynamics randomization. To do so, we could
vary mass and geometric characteristics, dynamics parameters of chassis, tracks, flippers
and arm links. Such technique could improve policy transferability to the destined plat-
form making policy deployment more reliable and address more difficult dynamics-related
problems. Furthermore, one could achieve transferability of one policy onto different plat-
forms making generalization over environments and robots at the same time.

Finally, while we manage to produce a dedicated controller per task, it could be envi-
sioned to apply a hierarchical approach where one controller could be continuously trained
on multiple different tasks, allowing one to train a single neural network to navigate an
entire building. In all cases, transferring to reality would be the most challenging problem
and at the same time the best criterion for the efficacy of the developed research.
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Résumé :
Le transport d’objets par un robot

d’assistance à chenilles équipé d’un bras,
constitue un moyen pour pallier à la perte
d’autonomie des personnes atteintes de dé-
ficiences cognitives ou motrices. Les travaux
de recherche précédents reposant sur un
contrôle conventionnel pour la navigation 3D,
ils manquent de généralisation et de portabi-
lité à différents robots ou environnements. Le
contrôle basé sur l’apprentissage par renfor-
cement (RL) constitue une alternative moins
supervisée, reposant sur des hypothèses
moins restrictives quant à la connaissance
de la dynamique du robot ou de la structure
de l’environnement.

.
Cette thèse propose une solution de na-

vigation 3D fondée sur le RL qui utilise tous
les degrés de liberté d’un robot. En particu-
lier, nous contribuons à la formalisation ainsi
qu’au traitement du problème de négociation
d’escalier pour la montée et pour la des-
cente avec contrôle du bras. Nous analysons
la portabilité de la solution à différents robots
et réalisons une démonstration du transfert
des contrôleurs sur un robot réel. Enfin, nous
avons développé et mis à disposition un envi-
ronnement logiciel pour l’apprentissage de na-
vigation intérieure 3D en simulation, capable
d’effectuer un apprentissage du contrôle de
bout-en-bout de façon incrémentale.

Title: Reinforcement Learning-based Control for Safe 3D Navigation of Articulated Tracked
Robot Manipulators

Keywords: Reinforcement learning, mobile robotics, tracked robots, safe control

Abstract:
Object transportation by an assistive

tracked robot equipped with an arm consti-
tutes a way to palliate the autonomy loss of
people suffering from cognitive or motor im-
pairments. As previous research works rely on
conventional control to perform 3D navigation,
they lack generalization and portability to dif-
ferent robots or environments. Reinforcement
learning (RL) based control is a less super-
vised alternative, based on less restrictive as-
sumptions on the knowledge of the robot dy-
namics or the structure of the environment.

This thesis proposes a 3D navigation so-
lution based on RL that uses all degrees of
freedom of a robot. In particular, we con-
tribute to the formalization and the treatment
of the staircase negotiation problem for ascent
and descent with arm control. We analyze the
portability of the solution to different robots
and perform a demonstration of the transfer of
controllers on a real robot. Finally, we have de-
veloped and made available a software envi-
ronment for learning indoor 3D navigation, ca-
pable of performing end-to-end control learn-
ing in an incremental manner.
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