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“Hélas ! une foule d’hommes, tous distingués par l’ampleur de la boîte cérébrale et par la
lourdeur, par les circonvolutions de leur cervelle ; des mécaniciens, des géomètres enfin ont
déduit des milliers de théorèmes, de propositions, de lemmes, de corollaires sur le mouvement
appliqué aux choses, ont révélé les lois du mouvement céleste, ont saisi les marées dans
tous leurs caprices et les ont enchaînées dans quelques formules d’une incontestable sécurité
marine; mais personne, ni physiologiste, ni médecin sans malades, ni savant désœuvré, ni fou
de Bicêtre, ni statisticien fatigué de compter ses grains de blé, ni quoi que ce soit d’humain,
n’a voulu penser aux lois du mouvement appliqué à l’homme !”

Honoré de Balzac
Théorie de la démarche (1833)
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Abstract

Despite the large number of deaf individuals throughout the world using Sign Lan-
guages (SLs) to communicate, the vast majority of current communication tools only
rely on spoken or written languages. Many technological barriers must be tackled
in order to provide communication tools in SLs in the same way as for spoken lan-
guages, in particular by developing SL generation models.

The progress of motion capture (mocap) systems has considerably improved SL
generation models, allowing for the animation of highly natural and comprehen-
sible virtual signers. It has raised, however, an unexpected problem related to the
human ability to identify individuals from their movements. Compared to the au-
ditory domain where a speaker can remain anonymous by modifying specific voice
characteristics, little is known about the motion features that characterize a signer’s
identity. Producing anonymized content with virtual signers is a crucial problem
(e.g., for anonymized testimonies on journalistic websites). Yet, current research
about person identification from SL motion remains sparse (if any).

Identity can be extracted from human movements, such as walking or dancing.
What about SL, whose movements are not only constrained by biomechanical rules,
but also by linguistic ones? The present thesis aimed to (1) gain insights into how
the complex structure of SL movements can be modeled; (2) assess whether human
perceivers actually manage to identify signers from SL motion; (3) determine the
motion features allowing for signer identification and (4) develop computational
models to control identity in SL motion generation. On the basis of a 3D mocap
corpus in French Sign Language, the present thesis provides five main contributions.

First, we investigated the spectral content of the mocap data of spontaneous LSF.
This study revealed that SL motion can be limited to a 0–12-Hz bandwidth, which
is substantially wider than state-of-the-art estimates on isolated signs. These results
suggest that SL motion involves higher frequencies in real-life conditions.

Additionally, we used Principal Component Analysis (PCA) to decompose spon-
taneous SL discourses into elementary movements called principal movements (PMs).
Although the mocap data were not synchronized in time across signers and exam-
ples, PMs extracted separately for each signer and PMs extracted from the data of
all signers were highly similar and explained the same amount of variance. These
results suggest that SL may have a common structure that can be decomposed into
simpler patterns using PCA.

Using Point-Light Displays, a visual perception study then revealed that deaf
perceivers managed to identify familiar signers above chance level. Combining com-
putational analyses of both the mocap data and the participants responses, the re-
sults of this study revealed that mocap data contain sufficient information to identify
signers, beyond simple cues related to morphology.

A machine learning model was then trained for the automatic identification of
signers, from statistics of the mocap data. The performance of the model was not af-
fected when information about size and shape of the signers was normalized and it
remained (although it decreased) over five times superior to chance level when pos-
ture normalization was applied. These findings demonstrate that a signer’s identity
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can be characterized by specific statistics of kinematic features, beyond information
related to size, shape and posture.

Finally, a synthesis algorithm is proposed in order to re-synthesize natural SL
movements for which the identity of the signer is modified. To do so, the identity-
specific feature statistics (extracted by the model above) are manipulated. For in-
stance, the impact of identity-specific features of the signer can be reduced (i.e.,
anonymization), and the importance of identity-specific features of another signer
can be increased (i.e., identity conversion).
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Résumé en français

Malgré le grand nombre de personnes sourdes utilisant les langues des signes (LS)
pour communiquer, la majorité des outils actuels de communication ne reposent que
sur les langues parlées ou écrites. De nombreux obstacles technologiques doivent
être surmontés afin d’outiller les LS de la même manière que les langues parlées, en
particulier en développant des modèles de génération des LS.

Les progrès des systèmes de capture de mouvement (mocap) ont considérable-
ment amélioré les modèles de génération des LS, permettant d’animer des signeurs
virtuels réalistes et compréhensibles. Ils ont cependant soulevé un problème inat-
tendu, celui de l’identification du signeur à partir de ses mouvements. Comparé
au domaine auditif où un locuteur peut rester anonyme si l’on modifie certains as-
pects de sa voix, on ne sait que peu de choses sur les aspects du mouvement qui
permettent d’identifier un signeur.

L’identité peut être extraite de mouvements humains, comme la marche ou la
danse. Qu’en est-il de la LS, dont les mouvements ne sont pas seulement contraints
par des règles biomécaniques, mais également par des règles linguistiques ? Cette
thèse vise à (1) comprendre comment la structure complexe des mouvements de
la LS peut être modélisée ; (2) évaluer si les humains parviennent à identifier des
signeurs à partir de leurs mouvements ; (3) déterminer les aspects du mouvement
permettant l’identification du signeur et (4) développer des modèles informatiques
pour contrôler l’identité lors de la génération du mouvement des LS. Sur la base
d’un corpus de mocap 3D en Langue des Signes Française, cette thèse fournit cinq
contributions principales.

Premièrement, nous avons étudié le contenu spectral des données mocap issues
de discours spontanés en LSF. Selon cette étude, le mouvement de la LSF peut être
limité à une bande passante de 0-12 Hz, ce qui est considérablement plus large que
les estimations antérieures réalisées sur des signes isolés. Ces résultats suggèrent
que le mouvement de la LS implique des fréquences plus élevées en conditions
réelles.

Nous avons également utilisé l’analyse en composantes principales (PCA) pour
décomposer des discours spontanés de LS en mouvements principaux (PM). Les
PM extraits séparément pour chaque signeur et ceux extraits pour l’ensemble des
six signeurs sont très similaires, et expliquent la même quantité de variance. Ces
résultats suggèrent que le LS doit avoir une structure commune, qui peut être dé-
composée en éléments simples à l’aide de la PCA.

Une étude de perception visuelle a ensuite évalué la capacité de participants
sourds à identifier des signeurs à partir de stimuli « Point-Light ». En combinant
des analyses informatiques des données mocap et des réponses des participants, les
résultats de cette étude ont révélé que les données mocap contiennent suffisamment
d’information pour identifier les signeurs, au-delà des indices liés à la morphologie.

Nous avons ensuite entraîné un modèle d’apprentissage automatique pour l’iden-
tification de signeurs, à partir de statistiques des données mocap. La performance
du modèle n’a pas été affectée lorsque les informations sur la taille et la forme des
corps des signeurs ont été normalisées. Elle est restée plus de cinq fois supérieure
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au niveau du hasard lors de la normalisation de la posture. Ces résultats démon-
trent que l’identité d’un signeur peut être caractérisée par des statistiques liées à la
dynamique, au-delà des informations liées à la taille, la forme et la posture.

Enfin, un algorithme de synthèse est proposé afin de re-synthétiser des mouve-
ments de LS tout en modifiant l’identité du signeur. Pour ce faire, les statistiques
spécifiques liées à l’identité (cf. modèle ci-dessus) sont manipulées. Par exemple,
l’impact des caractéristiques spécifiques à l’identité du signeur peut être réduit (i.e.,
anonymisation), et l’importance des caractéristiques spécifiques à l’identité d’un
autre signeur peut être augmentée (i.e., conversion d’identité).
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Chapter 1

Introduction

The present thesis is the result of research in the fields of motion, computer science
and visual perception. It investigates how complex human movements are struc-
tured, how they are perceived by human observers, and how human characteristics
are encoded in motion patterns. In particular, this thesis tackles how identity infor-
mation is encoded in the movements of signers in Sign Language.

1.1 The social impact of Sign Language automatic processing

Sign Languages (SLs) are the first languages of 70 million deaf people in the world
(WFD, 2016). Like any other natural language, SLs follow specific rules defined
by a linguistic system. In the case of SLs, this linguistic system is structured on
a visual-gestural modality. SL users express themselves producing a continuous
stream of movements with numerous body parts, such as hands, torso, or face. there
are over 300 different SLs used around the world. They are distinct from spoken
languages and have no written form. For instance in France, many deaf individuals
have French Sign Language (LSF) as a first language, French being only a second
one. Therefore, for deaf persons, reading written content means reading a second
language, which is not always mastered (Holt, 1993).

Yet, the vast majority of existing communication tools are designed in spoken
or written languages. Indeed, extensive research and developments have provided
numerous tools for the automatic processing of spoken languages, including tasks
such as speech recognition, speech segmentation or text-to-speech conversion. For
a decade now, a wide variety of devices are equipped with voice assistants, such
as Apple’s Siri or Amazon’s Alexa, which can interpret human speech and respond
via synthesized voices. By contrast, although some promising SL applications have
been developed in the past decade (e.g., "Jade", "Keia" for LSF), further work is still
needed to provide tools for SLs in the same way as for spoken languages. Improve-
ments in SL automatic processing (that is SL automatic recognition, generation and
translation) would thus allow breaking communication barriers faced by deaf SL
users with most existing tools designed in spoken or written languages.

One reason for the current limitations of SL automatic processing is that SLs are
poorly endowed and not yet fully described. Research on SL is recent and remains
sparse, compared with that of spoken languages. Moreover, most SL research has fo-
cused on linguistics while the design of new SL technologies can benefit from other
fields, such as computer science. For instance, developing computational models
for the generation of SL movements could allow personal assistants to respond not
only with synthesized voices, but also with synthesized signed movements. In that
respect, there has been recent interesting developments toward the automatic pro-
duction of SL messages via virtual signers (or signing avatars) (Filhol et al., 2017;
Filhol and Mcdonald, 2020; Wolfe et al., 2011).
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1.2 Improving virtual signers: toward natural motion

Virtual signers have many advantages. Unlike pre-recorded videos, virtual signers
can be used in dynamic and interactive scenarios, as the content of the animation
can be modified (Kipp et al., 2011). Moreover, the appearance of virtual signers
can be manipulated, which allows adapting the agent to specific audiences. With a
controlled appearance, virtual signers also provide new potentials for the produc-
tion of anonymized SL messages, which was not possible with pre-recorded videos.
Note that in the following sections, the main contributions of the present thesis will
outline that controlling appearance, however, contributes to only some aspects of
anonymization.

Despite the numerous advantages mentioned above, the use of virtual signers is
still limited to date. The high number of body segments and the variety of linguis-
tic structures involved in SL make it challenging to design efficient computational
models that generate natural motion. This limitation can severely affect the per-
ception of virtual signers, as the human brain is extremely sensitive to biological
motion, that is the movements of humans and other vertebrates. Humans are able
to detect actions (Johansson, 1973) as well as to derive information about other indi-
viduals from motion, such as gender (Cutting et al., 1978) or emotion (Venture et al.,
2014). The ability to distinguish the dynamic regularities of biological motion from
non-biological motion seems to appear very early in human life (Méary et al., 2007).
Generation models thus have to ensure that virtual signers produce natural move-
ments (i.e., that can be perceived as biological), in order to make them perceptually
acceptable and comprehensible.

We are still far from having enough knowledge about SL motion perception to
produce natural movements with purely synthetic animations. One way to over-
come this limitation is to replay movements that were recorded on humans. Using
motion capture (mocap) systems, the movements of real persons can be recorded
with high accuracy and the virtual signers can be animated using the pre-recorded
movements (Lu and Huenerfauth, 2010; Gibet, 2018). In addition to naturality, mo-
cap also allows for the production of SL messages with high comprehensibility,
which is another crucial challenge for the animation of virtual signers (Kipp et al.,
2011).

1.3 The naturality vs. anonymity dilemma

Mocap systems provide more natural and comprehensible motion. They raise, how-
ever, another unexpected problem, notably related to person identification. As for
spoken languages in the auditory domain, where voice parameters inform about a
speaker’s identity, a signer’s identity could be conveyed by his or her movements.
This observation questions the possibility to produce anonymized, non-identifiable,
content with virtual signers. This problem is crucial (e.g., for sharing anonymized
testimony) given that SLs have no written form (see Section 1.1). Compared to the
auditory domain where a speaker can remain anonymous by modifying specific
voice characteristics, little is known about the motion features that characterize a
signer’s identity and how these features could be manipulated in SL animations.

Up to now, current research about person identification in SL motion remains
sparse (if any). Compared to prior evidence provided for other human movements,
further research is needed to gain insights into the signer identification problem in
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SL, which in particular raises two major questions. First, visual perception experi-
ments could evaluate to which extent humans actually manage to infer identity from
SL motion displayed as Point-Light Displays, as previously shown for other human
movements (Troje et al., 2005; Loula et al., 2005; Sevdalis and Keller, 2009; Bläsing
and Sauzet, 2018). Second, computational approaches, including machine learning,
could shed light on how identity is encoded in the movement patterns of the sign-
ers, similarly to prior work on the gender attributes of gait (Troje, 2002a), or on the
identity-specific features of dance (Carlson et al., 2020). These two approaches will
be used in the present thesis to tackle the signer identification problem, as well as
other computational methods in order to better understand the general kinematic
properties and complex structure of SL movements, beyond the question of identifi-
cation.

1.4 Outline of the dissertation

For all these reasons, based on prior studies in human perception and computational
analysis of motion (Part I), the present thesis investigates the encoding of identity in
SL motion. We present contributions in the computational processing, analysis and
decomposition of SL mocap data (Part II), and in the extraction of identity from SL
motion, using computational and visual perception methods (Part III).

Part I aims to introduce the context and related literature which form the the-
oretical foundations of the research carried out in this thesis. We first explore the
underpinnings of motion perception from gait to Sign Language, and discuss how
identity can be inferred from movements by human observers (Chapter 2). Then, we
outline the crucial contributions that mocap and computational approaches, includ-
ing machine learning, can have for gaining insights into the complex structure of SL
movements and into the encoding of human characteristics in SL motion. We elabo-
rate on the technical advances of mocap systems, on the motion representations that
can be derived from these systems and on their contribution to SL research (Chapter
3). Moreover, we present how mocap data allow for quantitative analyses of mo-
tion and we discuss how computational models could provide further insights into
how to extract identity-specific features from motion and how to manipulate these
features in novel synthesized movements (Chapter 4).

Within this theoretical framework, the main contributions of the present thesis
are twofold. First, kinematic analyses of French Sign Language (LSF) 3D mocap
data are reported (Part II). The original 3D mocap corpus used in all of the following
studies is described, a new version of the corpus is proposed and novel mocap data
processing tools are presented (Chapter 5). Inspired by other fields of signal process-
ing, time-frequency analyses of mocap data are then proposed in order to determine
the kinematic bandwidth of SL (Chapter 6)1. Moreover, Principal Component Anal-
ysis (PCA) is applied to mocap data in order to test the decomposition of complex
and non-synchronized SL movements into simpler, elementary, movements (Chap-
ter 7)2. Additionally in this chapter, we question to which extent these elementary
movements are identity-specific and discuss the potential limits of temporal-based
approaches for investigating the encoding of identity information in motion.

The second main contribution of this thesis concerns the extraction of identity
features from motion, from both perceptual and computational perspectives (Part

1Chapter 6 is partly reproduced from Bigand et al. (2021b).
2Chapter 7 is partly reproduced from Bigand et al. (2021a).
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III). We first address this problem with a visual perception experiment, which pro-
vides the first insights into the actual ability of deaf perceivers to identify signers
from mocap data (Chapter 8)3. We further present and discuss a machine learn-
ing framework, which is aimed to determine which parts of motion information are
responsible for signer identification (Chapter 9)4. Furthermore, we propose a syn-
thesis algorithm in order to manipulate identity-specific kinematic features in SL
mocap animations while preserving the semantic content (e.g., for anonymization)
(Chapter 10). The contributions of this thesis are finally summarized and discussed
toward future research.

3Chapter 8 is partly reproduced from Bigand et al. (2020).
4Chapter 9 is partly reproduced from Bigand et al. (2021c).
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Part I

Background and related work
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Chapter 2

Human perception of biological
and Sign Language motion

Human observers exhibit an impressive ability to process the information contained
in the movements of their conspecifics, whether for recognizing actions or for in-
ferring higher-level information, such as emotion, gender or identity. We elaborate
on this ability in human movements, such as walking or dancing (Section 2.1), as
well as for SL motion (Section 2.2). More specifically, we discuss the human abil-
ity to identify individuals from motion and outline why further investigations are
necessary to better understand this ability, in particular for SL motion (Section 2.3).

2.1 Human perception of biological motion

Human perception of biological motion has been a focus of study for decades. Vi-
sual perception studies have shown that humans can efficiently infer a rich amount
of information about their conspecifics from their movements (Section 2.1.1). Dif-
ferent theories have been proposed to determine the mechanisms that account for
this impressive ability (Section 2.1.2). Moreover, in addition to the understanding of
others’ movements, prior work has outlined the ability of human observers to infer
human characteristics from biological motion, notably identity (Section 2.1.3). A few
studies have also investigated which parts of the motion information allow for the
identification (Section 2.1.4).

2.1.1 The impressive human visual sensitivity to biological movements

The perception of biological motion, that is the movements of humans and other ver-
tebrates, has been studied using Point-Light Displays (PLDs). These displays were
constructed by attaching lights to the major joints of moving persons (Johansson,
1973; Johansson, 1976). PLDs isolate information given by motion cues from infor-
mation given by other characteristics, such as shape or other aspects of the agent’s
body. Using PLDs, the demonstrations of Johansson were twofold. First, human
observers never interpreted the static set of dots as a human body, but they were
able to identify human movements, such as walking, running or dancing, when the
dots were put into motion (Johansson, 1973). Second, observers managed to identify
the human movements rapidly, with exposure times as short as 200 ms (Johansson,
1976). Moreover, 100 ms were enough for 40% of the observers to perceive a human
body in the moving dots, although specifying the type of movement was too hard.

Further studies then have outlined the human ability to recognize various cate-
gories of movements (Dittrich, 1993; Bertenthal and Pinto, 1994; Poizner et al., 1981)
as well as to infer other information such as intention (Runeson and Frykholm, 1983),
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FIGURE 2.1: The first example of Point-Light Display (PLD) (Johansson, 1973).
Schematic of the setup on walking or running persons (A) and the resulting PLD

(B).

emotion (Brownlow et al., 1997; Dittrich et al., 1996; Venture et al., 2014; Atkinson
et al., 2004; Camurri et al., 2003a; Lagerlöf and Djerf, 2009; Hietanen et al., 2004))
or musical expression (Luck et al., 2010; Dahl and Friberg, 2007; Davidson, 1993).
Based on PLDs, humans are also able to rapidly detect specific information related
to the task, such as the weight of a lifted box (Runeson and Frykholm, 1981) or the
direction or speed of walkers (Jacobs and Shiffrar, 2005), even in greatly degraded
conditions (e.g., adding masks to the PLDs, displaying a reduced number of body
joints or drastically reducing exposure time) (Cutting et al., 1988; Neri et al., 1998;
Jacobs et al., 2004).

Furthermore, this sensitivity to biological motion seems to appear very early in
human life. Fox and McDaniel (1982) have demonstrated that infants 4 to 6 months
of age preferred biological motion patterns (i.e., upright PLDs of walking persons)
to artificially manipulated motion patterns (i.e., upside-down versions of the walk-
ers’ PLDs). This orientation-specific visual preference has also been reported for 3-
an 5-month-old infants (Bertenthal et al., 1984; Bertenthal et al., 1987). Similarly to
Johansson (1973), infants were able to discriminate between upright and inverted
moving PLDs but not between static ones, which supports the idea that sensitivity
to biological motion is developed early in human life. In addition to these studies us-
ing PLDs of multiple point lights, Méary et al. (2007) have also reported differences
in the looking behavior of 4-day-old human neonates when perceiving biologicial or
non-biological PLDs of one moving point light.
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2.1.2 What’s behind?

The human brain is extremely sensitive to biological movements. This raises the
question of which mechanisms account for this sensitivity. In that respect, two
classes of theories have been proposed. On the one hand, the visual perception
of an action benefit from the observer’s ability to produce the same action, that is
motor experience. On the other hand, the visual sensitivity of human observers is
enhanced by the elevated frequency with which they perceive others’ movements in
their environments, that is visual experience.

Studies in psychology (Prinz, 1997), neuroscience (Rizzolatti and Craighero,
2004) and computer science (Wolpert and Ghahramani, 2000) have supported the
theory of an intrinsic linkage between visual and motor systems (i.e., perception-
action coupling). Motion perception and production may share representations for
the same actions (Prinz, 1997). Numerous evidence from neurophysiological data
have supported motor simulation as having a crucial role in the perception of oth-
ers’ actions (Blakemore and Decety, 2001). In Rizzolatti et al. (2001), mirror neurons
in the premotor cortex of the macaque monkey were found to respond both when
performing an action and when observing the same action performed by another
monkey. Imaging data of the human brain have revealed that comparable mecha-
nisms can be located in the inferior frontal cortex, notably in Broca’s area (Iacoboni
et al., 1999). In addition, several psychological accounts have suggested that prop-
erties of the motor experience influences the visual perception of a person’s own
movements and of the movements of other people (Reed and Farah, 1995; Viviani
and Stucchi, 1992; Grèzes et al., 2004; Knoblich and Flach, 2001; Jacobs and Shiffrar,
2005).

However, some characteristics of motion perception can hardly be explained by
perception-action coupling. For instance, the perception of depth structure in PLDs
is facilitated by usual viewpoints, which suggests that observers rely on visual ex-
perience (Bülthoff et al., 1998). According to Johansson (1973), the vividness with
which observers perceive human movements may be due to previous experience
with these movements. Neurophysiological data have also reported that brain re-
sponse was modulated with visual experience (Grossman and Blake, 2001) in an
area selective to biological motion (the posterior superior temporal sulcus (pSTS)
(Grossman et al., 2000)).

The role of motor and visual experience in human perception of movements has
been a central question in the field of visual and motion perception. Moreover, it
has raised a further problem: person identification. Visual perception studies have
suggested that observers perform better at identifying the moving person with their
own moving PLDs than with those of their friends (Beardsworth and Buckner, 1981;
Loula et al., 2005). In addition to this higher sensitivity to one own’s movements,
Jacobs et al. (2004) have shown that person identificiation from walking PLDs was
more accurate when viewing possible rather than impossible gaits, which support
perception-action coupling theories. In summary, although the several studies men-
tioned above have outlined the role of motor experience in various visual perception
tasks on human movements, the specific problem of person identification is particu-
larly suited to explore that question. Indeed, identifying one own’s movements with
higher accuracy than those of others support motor experience as key contributor to
motion perception, as individuals hardly ever see their own movements, compared
to those of others.
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2.1.3 Person identification from human movements

Not only can human observers derive relevant information from others’ movements,
such as category of action, intention or emotion (see Section 2.1.1), but they can also
determine the moving person’s gender (Kozlowski and Cutting, 1977; Mather and
Murdoch, 1994) and identity (Cutting and Kozlowski, 1977; Troje et al., 2005; Loula
et al., 2005; Sevdalis and Keller, 2009; Stevenage et al., 1999). The first study by
Cutting and Kozlowski (1977) has reported modest performance, but significantly
above chance level, for human identification of walkers from PLDs. These results
have suggested that, although the task was not easy, PLDs contained important in-
formation to allow for person identification. In Jacobs et al. (2004), observers were
able to discriminate between the identity of two walkers with a 73% accuracy, when
they previously had greatly interacted with each other (over 20 hours a week). Per-
formance lowered to chance level (50 %) when participants had previously seen the
walkers only 5 hours a week, or less. Troje et al. (2005) have confirmed that person
identification from PLDs requires prior visual experience, or training, with the walk-
ers’ movements. After training steps to familiarize with the individuals to be recog-
nized, identification performance of the participants reached 79%, over five times
higher than chance level (14 %). These results have suggested that prior exposure to
the others’ movements (e.g., with prior social interaction or with pre-training) was
required to accurately identify other people. However, beyond the human ability
to recognize familiar individuals, Baragchizadeh et al. (2020) have recently demon-
strated that motion cues also allow for the perceptual discrimination of the identity
of unfamiliar people, without any prior training.

Using PLDs, behavioral studies have shown that the identity of individuals can
be inferred from various human movements, such as walking (Cutting and Ko-
zlowski, 1977; Troje et al., 2005; Jacobs et al., 2004; Stevenage et al., 1999) but also
dancing (Bläsing and Sauzet, 2018) or clapping (Sevdalis and Keller, 2009). In partic-
ular, Loula et al. (2005) have investigated person identification from PLDs depicting
a wide variety of different actions, such as jumping, hugging, boxing, running or
ping-pong playing. Interestingly, the highest human performance in person identi-
fication occurred for PLDs of dancing, boxing, jumping and ping-pong playing indi-
viduals. Identification of walkers or runners was much lower, which is in line with
the modest recognition reported by prior studies on point light walkers (Cutting and
Kozlowski, 1977; Jacobs et al., 2004). These results suggest that person identification
may be facilitated by movements with more complex spatiotemporal structures.

2.1.4 Unveiling the encoding of identity information in human move-
ments: where do we stand?

Beyond the overall ability of humans to infer identity from motion, only a few visual
perception studies have aimed to determine the cues that allow for the identification.
Previous findings using PLDs have outlined that critical features for gender classi-
fication of gait seem to be in the frontal plane, which are, therefore, best visible in
frontal view (Mather and Murdoch, 1994; Troje, 2002a). A similar behavioral study
has also reported that human observers were better able to identify walkers from
PLDs when presented in frontal view (Troje et al., 2005). However, although the
frontal view allowed for an overall higher recognition, observers were better able to
identify walkers in new viewpoints when they had been trained (i.e., familiarized
with the walkers to be recognized) on half-profile PLDs. Moreover, no overall ad-
vantage for the frontal view has been reported by Westhoff and Troje (2007), whose
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gait PLDs only included kinematic information. Therefore, although most of the crit-
ical information reported by prior studies seem to be in the frontal plane, half-profile
and profile views may still provide critical information. According to Westhoff and
Troje (2007), we could hypothesize a higher role of these viewpoints especially for
kinematic information.

A few studies have assessed the role of specific motion components in identifi-
cation. According to Troje et al. (2005), removing the walkers’ size and shape infor-
mation from PLDs had only low impact on human identification accuracy, which
was still five to six times above chance level. More recently, Simhi and Yovel (2020)
have conducted a virtual reality study with human participants, which highlighted
that walking persons can be identified beyond face and body information. These
results suggest that most of the information used for identification is conveyed by
motion kinematics. The nature of such kinematic cues remains relatively unclear
up to now. According to Troje et al. (2005) and Westhoff and Troje (2007), gait fre-
quency may not play a major role in identification. The most critical information for
identification seems to be conveyed by the first harmonic and the amplitude spec-
trum of walking patterns (Westhoff and Troje, 2007). Further investigation is needed
to better understand the role of kinematic cues in the perception of an individual’s
identity, in particular for Sign Language (SL). One specific aspect of SL is to be gov-
erned not only by biomechanic rules, but also by linguistic ones, which may thus
reveal SL-specific signatures for signers’ identity.

2.2 Human perception of Sign Language motion

SLs are unique cases of biological motion, as not only are they constrained by biome-
chanical rules but also by linguistic ones. At the same time, SLs are unique languages
as they involve a visual-gestural modality (Section 2.2.1). The information may thus
be processed differently by human observers (in particular, signers (i.e., SL users))
when perceiving SL movements than when perceiving purely biological ones (Sec-
tion 2.2.2).

In the following sections, although there is a wide variety of Sign Languages
(SLs) throughout the world, we will sometimes refer to Sign Language (SL) in gen-
eral when observations can be extended to all SLs.

2.2.1 Sign Language: language and gesture

SLs are languages that have naturally evolved in deaf communities throughout the
world (Klima and Bellugi, 1979). Like spoken languages, SLs are governed by a lin-
guistic system including syntactic, morphological and phonological structures (Em-
morey, 2001). However, unlike spoken languages, the linguistic system of SL also in-
cludes other structures related to their visual-gestural modality. For instance, signers
rely on an extensive use of space to build their SL discourse, as well as of iconicity,
that is the strong iconic resemblance of the form of signs to what they represent (Sal-
landre and Cuxac, 2002). Note that there is no consensus on the description of SLs
amongst linguists as yet. Furthermore, SLs are oral languages (i.e., involving face-
to-face communication rather than written). A signer produces a message in SL and
an observer perceives the message (Figure 2.2), like speakers and listeners in spoken
languages.

Neurophysiological data have shown that, like speech production, SL execution
activates Broca’s area (Corina et al., 1999; Hickok et al., 1996), which suggests that
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FIGURE 2.2: Sign Languages: oral languages via a visual-gestural modality
(schematic taken from Guitteny (2006)).

the specificity of this brain region is not limited to speech processing. Neville et al.
(1998) have reported that not only did American SL (ASL) elicited brain activation of
native signers in areas involved in speech processing, but also in homologous areas
within the right hemisphere. Furthermore, the right hemisphere has been shown to
be involved in ASL processing only in native signers, by contrast with signers who
had learnt ASL after puberty (Newman et al., 2002). This suggests that, on one hand
SL shares common mechanisms with spoken languages, but on the other hand it has
specific requirements that involve other brain regions.

Moreover, the reported co-activation of Broca’s area during both the execu-
tion and the perception of SL by native signers (Okada et al., 2016) supports
the perception-action coupling theory developed in biological movements (Section
2.1.2). As a reminder, neurophysiological studies have reported that Broca’s area,
which has been shown to be the motor area for speech, is involved in sensorimo-
tor integration (Iacoboni et al., 1999). This suggests that human language may have
evolved from a cortical system understanding movement, more specifically manual
gestures (Corballis, 1999). SL is thus an intruiguing domain for the investigation of
perception-action coupling, as it connects sensorimotor processes in language and
gesture. Unlike other biological movements, such as walking or jumping, SL move-
ments convey linguistic meaning and signers process SL movements of other signers
in order to comprehend it. Similarly to the prior research on biological motion men-
tioned in Section 2.1, visual perception studies have allowed better understanding
how signers perceive and process SL movements.
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2.2.2 Visual perception studies on Sign Language motion

Following Johansson (1973), PLDs have been used to investigate SL perception, more
specifically SL comprehension (Poizner et al., 1981; Tartter and Knowlton, 1981).
Poizner et al. (1981) have tested which parts of the moving body were crucial for the
human comprehension of ASL using PLDs with reduced sets of body markers. Their
findings have suggested that the more distal the joint of the body (e.g., fingers), the
more information it carries. In Tartter and Knowlton (1981), pairs of participants
managed to have discussions in ASL by the only means of 27 lighting spots attached
to hand articulations. These moving dots were sufficient to understand one another
despite the reduced information and the increased difficulty of the task.

Additionally, some studies have further investigated the strategies of signers
when perceiving visual stimuli, such as static faces or SL movements. Watanabe
et al. (2011) have outlined differences in eye gaze between deaf signers and hearing
non-signers during face perception. Signers focused on the eyes more frequently and
longer than hearing non-signers who focused on the central face area more than the
eyes. In addition to these spatial differences, Stoll et al. (2018) have shown that deaf,
but also hearing, signers were slower than hearing non-signers to recognize faces,
but that they recognized faces with higher accuracy. This suggests that beyond dif-
ferences between deaf and hearing people, sign language acquisition influences the
processing of human faces.

During the comprehension of ASL videos, eye movements have revealed that
hearing beginning signers mostly fixate near signers’ mouth, while deaf native sign-
ers focus on the eyes (Emmorey et al., 2009), as shown for face perception (Watanabe
et al., 2011). These differences may be explained by the fact that beginners mainly re-
lied on English mouthing (i.e., production of visual syllables with the mouth while
signing). Muir and Richardson (2005) have also reported that deaf native signers
fixated the facial region and used peripheral vision when viewing videos of British
Sign Language (BSL). In addition to the reliance of beginning signers on mouthing
for ASL comprehension (Emmorey et al., 2009), the perception of handshape and
hand location compared with that of ASL signs have revealed that non-native sign-
ers predominantly focus on handshape during ASL comprehension (Morford and
Carlson, 2011; Morford et al., 2008). Taken together, the studies mentioned above
suggest that beginning signers concentrate on mouth movements, notably to infer
information from mouthing, as well as on manual parameters, notably to process
lexical information given by the hands. By contrast, native signers focus on the
eyes and the facial regions while perceiving additional relevant information using
peripheral vision.

2.3 The perception of identity information in SL movements:
a need for further investigations

In this chapter, we reviewed visual perception and neurophysiological studies on
the human perception of biological and SL motion. Using PLDs, visual percep-
tion studies have highlighted the exceptional sensitivity of human observers to the
movements of their conspecifics. This sensitivity may be facilitated by the high fre-
quency with which individuals perceive human movements in social environments,
but also with the motor representations they have acquired in order to execute the
same movements. Action execution and action perception may be intrisically linked,
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link which could play an important role in the social-cognitive development of hu-
man beings, including the sense of self, of other, and the interaction between self
and other (Lewis, 1999; Meltzoff and Moore, 1995).

Visual perception studies on PLDs have shown that this sensitivity to biological
motion allows humans to identify other individuals from their movements. Human
observers were able to infer identity from PLDs of a wide variety of human move-
ments. However, although a few behavioral studies have tested the role of different
classes of motion information in identification (Troje et al., 2005; Westhoff and Troje,
2007), how identity is encoded in the movements remains unclear, in particular in
SL, which may reveal SL-specific patterns.

Indeed, the perception of SL motion may be distinct from that of other human
movements. Not only does SL involve biological movements, but it is also con-
strained by linguistic rules and probably shares common processing mechanisms
with spoken languages (Okada et al., 2016; Corina et al., 1999; Hickok et al., 1996).
SL interestingly bridges language processing and sensorimotor integration. Likely
because of this language component, the vast majority of perception studies on SL
motion have investigated SL comprehension. Visual perception experiments have
allowed gaining insights both into the critical motion information necessary for SL
comprehension (Poizner et al., 1981; Tartter and Knowlton, 1981), and into the dif-
ferent perceptual strategies of native and non-native signers when processing SL
discourses (Emmorey et al., 2009; Muir and Richardson, 2005).

However, to the author’s knowledge, there were virtually no attempts neither
to assess to which extent human observers actually manage to identify signers from
their movements in SL, nor to determine the encoding of identity in the signers’
movements. In addition to human perception measurements, other approaches,
such as motion capture and machine learning, can provide further insights along
this line.
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Chapter 3

Capturing human movements

The current knowledge of the human perception of biological motion is still incom-
plete, notably because of its intrinsic complexity. However, recent advances in mo-
tion capture (mocap) have broken down barriers along this line, by providing tools
to obtain realistic motion data in three dimensions (Section 3.1). From the raw mo-
tion data obtained with mocap systems, various higher-level features of motion can
be processed (Section 3.2) whether for motion analysis, for automatic recognition
of gestures or for motion generation. In particular, the advances of mocap have
provided new crucial tools for research on SLs, the latter being complex to model
because of the various body movements they involve (Section 3.3).

3.1 Motion capture technologies

Current mocap systems allow researchers and computer scientists to record, analyze
and re-generate human movements, with high accuracy. From the beginnings of mo-
cap to most recent advances, a wide variety of mocap systems have been developed.
In the following sections, we briefly present the evolution of the mocap methods
through the years (Section 3.1.1) and review the current state-of-the-art mocap tech-
nologies (Section 3.1.2).

3.1.1 Historical evolution

Motion capture (mocap) is the process of tracking the trajectories of the key points of
a moving object over time. For instance, it can translate live human movements into
an interpretable digitized representation (e.g., temporal vectors in three dimensions)
(Menache, 2000). For more than a century, mocap has been accomplished via various
techniques. In the late 1800s, scientists, including Etienne-Jules Marey, introduced
the chronophotography technique (see example in Figure 3.1). Photographs cap-
turing the successive phases of an individual’s, or animal’s, motion allowed them
to study biological movements (Marey, 1874; Muybridge, 1887). These studies were
the first investigations of locomotion, which then has been assessed with Point-Light
Displays (PLDs) (see Chapter 2). A few decades after, in the film industry, mocap
was achieved via rotoscoping. Tracing over an original movie, frame by frame, this
technique allowed animators to produce realistic movements from drawings, such
as in Snow White and the Seven Dwarfs, Peter Pan or Alice in Wonderland. Rotoscoping
is still used, notably for the processing and generation of Sign Language (SL) motion
(Segouat and Braffort, 2009). Similarly in the early 1900s, Bernstein et al. have de-
veloped efficient analyses for biomechanics based on images of light bulbs attached
to the moving body, captured at high frame rates (Kay et al., 2003; Bernstein, 1927).

The widely used PLDs in motion perception studies similarly displayed mov-
ing light bulbs, which had been attached to major joints of the body (Johansson,
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FIGURE 3.1: Example of chronophotography. A runner photographed by Georges
Demenÿ (taken from Véray, 2007).

1973) (see Chapter 2 for further details). Yet, these displays rarely allowed per-
ceiving or analyzing the movements in three dimensions, except for a few stud-
ies. Among these few studies, Poizner et al. (1981) have considered the three-
dimensionality of SL production using a tachistoscope for stereoscopic presenta-
tion of videotaped PLDs. In some further computational and mathematical analyses
of human movements, the trajectories of the body articulations have been manu-
ally digitized from videos (Foulds, 2004; Young and Reinkensmeyer, 2014). Recent
technological advances have allowed overcoming the limitations of these frame-by-
frame approaches, by providing three-dimensional recordings of human movements
with high spatial and temporal accuracy.

3.1.2 Motion capture today

Since the 1980s, considerable progress has been achieved in mocap technologies.
In this overview, three main categories of state-of-the-art techniques are presented:
optical, mechanical and inertial systems. Further details about other techniques,
such as magnetic tracking, can be found in Menache (2000).

As shown in Figure 3.2, optical systems utilize multiple cameras (e.g., 6 to 24
cameras for Optitrack systems) and markers placed on the moving body. The three-
dimensional trajectories of the markers are obtained by triangulation using the over-
lapping images of the calibrated cameras. Passive optical systems (e.g., Optitrack or
Vicon systems) estimate the position of the moving agent with retroreflective mark-
ers, which reflect the infrared emissions produced by the mocap system. By contrast,
the markers of active optical systems (e.g., the PhaseSpace system) are powered to
emit their own light following a specific synchronization so that the position of each
marker can be identified separately. Optical systems are one of the most used mocap
technologies for film and video making, but also for motion analysis in biomechan-
ics or medicine. One main advantage of these systems is their extremely high spatial
accuracy (< 1 mm). However, they often involve recovering missing data due to oc-
clusions, light interferences or confusions between markers (Tits et al., 2018). Other
camera-based techniques can be markerless, such as the Microsoft Kinect, which,
with one camera alone, allows for the extraction of 3D trajectories thanks to a depth
infrared emitter. Markerless systems have the advantage of considerably improv-
ing feasibility and ecological naturalness of mocap recordings but, up to now, they
hardly provide sufficient accuracy, compared with state-of-the-art mocap systems.

Mechanical mocap systems directly track the angle data of multiple markers at-
tached to the body thanks to a wearable body-shaped structure, called exoskeleton
(see the example of Gypsy 7 in Figure 3.3). During the movements, the system con-
verts the analog voltage changes of the potentiometers placed on the exoskeleton’s
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FIGURE 3.2: Example of an optical mocap system using multiple cameras and
body markers (from Optitrack).

articulations into motion data. Although their use tends to decrease, some stud-
ies still conduct motion analyses with mechanical systems, including in SL (Malaia
and Wilbur, 2012; Malaia et al., 2013). Mechanical tracking of finger movements has
also been developed with gloves, such as the Xsens gloves, which are provided with
sensors detecting the flex of finger joints. Gloves have been used extensively for au-
tomatic SL recognition (Grimes, 1983; Fels and Hinton, 1993; Liang and Ouhyoung,
1998; Oz and Leu, 2011; Saggio et al., 2020). However in SL, these systems, often
built by hearing teams, do not reflect real-world use cases. For instance, gloves only
focus on hands while SL is a continuous stream of various motion features, includ-
ing hand gestures, but also torso movements, facial expressions or eye gaze (Erard,
2017).

FIGURE 3.3: Example of the Gypsy 7 mechanical mocap system.

Like mechanical systems, inertial mocap systems do not involve cameras. These
systems rely on Inertial Measurement Units (IMUs), which combine miniature sen-
sors, including accelerometers, gyroscopes and magnetometers (Xsens, 2021). As
shown in Figure 3.4, IMUs are wireless and can be attached to key body joints via
wearable suits, as for optical mocap technologies. The IMU sensors provide raw
measures of linear acceleration, angular velocity and global orientation, which are
interpreted by the software and mapped to a skeleton using biomechanical models
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and sensor fusion algorithms. Because of their portability and ability to commu-
nicate wirelessly, inertial and accelerometer-based systems are often used for the
development of motion interfaces, notably for the analysis and control of musical
gestures (Schoonderwaldt et al., 2006; Bevilacqua et al., 2007; Rasamimanana et al.,
2010).

FIGURE 3.4: The Xsens Mtw Awinda inertial mocap equipment and its software
MVN Animate.

Among the mocap techniques mentioned above, researchers must assess the
trade-off between accuracy and portability. For instance, accelerometer-based sys-
tems allow recording movements in various environments and in larger areas than
optical systems. However, the state-of-the-art precision of optical systems and their
ability to record full-body motion make them better suited for accurate analyses
of human movements. For these reasons, the mocap data used in the present the-
sis were obtained using an Optitrack mocap system, equipped with optical passive
markers and 10 cameras with a spatial resolution under 1 mm and a temporal reso-
lution of 250 fps.

3.2 Motion representations: from body markers to high-level
features

(A)

(B)

FIGURE 3.5: Motive software (Optitrack): (A) Body joints structure of the skeleton
proposed, (B) mapping of the markers positions and orientations to the skeleton.
Images were taken from the Optitrack documentation and Motive 2.1 | What’s New.
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The mocap technologies reviewed above can provide measures of positions (Sec-
tion 3.2.1) and angles (Section 3.2.2) in different manners. Positions and angles
are measured at key articulations of the body. They can be processed either inde-
pendently for each marker or following a hierarchical structure defined by a stan-
dardized skeleton, often provided by mocap softwares (e.g., Motive for Optitrack,
as shown in Figures 3.5a and 3.5b). Further descriptors of the movements, such as
kinematic and kinetic features (Section 3.2.3) or Principal Movements (Section 3.2.4),
can then be derived from these raw data for specific motion analyses. The latter
higher-level motion descriptors have been the basis of most studies investigating
the extraction of human characteristics from biological movements (Troje, 2002a),
including identity (Zhang and Troje, 2005; Carlson et al., 2020).

3.2.1 Position data and the impact of anthropometrics

Measures of position of the body markers are given by the 3D Cartesian coordinates
estimated by triangulating the images of the different cameras involved in the mo-
cap system. This representation allows for the visualization of human movements
using stick figures, or PLDs. Indeed, most recent studies investigating the human
perception of biological motion have constructed their PLDs using mocap record-
ings (Troje, 2002a; Westhoff and Troje, 2007; Bläsing and Sauzet, 2018; Sevdalis and
Keller, 2009; Baragchizadeh et al., 2020). In further computational analyses of mo-
tion, these position data are often converted into a reference system centered on a
root marker, such as the pelvis (Carlson et al., 2020), the body Center of Mass (CoM)
(Zago et al., 2017a) or more specific key points related to the task (Federolf et al.,
2014) (see an example in Figure 3.6). In most cases, these derived references attached
to the moving persons are more appropriate than stationary external references, no-
tably for the analysis of multiple motion examples performed by different persons
who may have been oriented differently in the capture area.

FIGURE 3.6: Example of body-centered reference system, with the midpoint be-
tween the two skis of the subject as origin (Federolf et al., 2014).

Either with external or body-centered references, 3D Cartesian coordinates al-
low reconstructing a moving skeleton, but they include anthropometric measures
(e.g., height or shoulder width) specific to each individual. Some methods have
been proposed to filter out anthropometric differences in mocap datasets of multi-
ple persons. The coordinates of body markers can be scaled by dividing them by a
reference length, such as the torso height or the distance between the head and the
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origin (e.g., pelvis) (Sie et al., 2014; Morel et al., 2016). In other studies, the compari-
son between the motion of different individuals was eased by a normalization of the
average mocap postures. This was achieved by subtracting the average posture of
each individual from their mocap postures (i.e., at each frame), and replacing it with
the mean norm of average postures across all individuals (Troje et al., 2005; Westhoff
and Troje, 2007; Zago et al., 2017a; Federolf et al., 2013b). Additionally, Troje et al.
(2005) have introduced a method to make the mocap data of multiple walkers share
the same body height while keeping information about the shape of their body (e.g.,
shoulder width) intact, using linear regression. In Chapter 5 of this thesis, we repli-
cate these techniques, propose further normalization steps and apply them to LSF
mocap data.

The methods mentioned above have proposed simple mathematical transforma-
tions of mocap data in order to decrease the effect of anthropometric differences
in motion analyses. Other morphology-related influences can correlate with differ-
ences in the movements of multiple individuals. For instance, the weight and height
of one’s body may influence the kinematics of his or her movements. Taking this
effect into account, Tits et al. (2017) have proposed a method to directly remove the
influence of morphology-related factors on motion features (e.g., speed, acceleration
peaks) via linear regression. By contrast with scaling approaches, this latter method
can be generalized to any morphology-related factor and, more importantly, directly
manipulates the effect of morphology on the high-level features.

FIGURE 3.7: Results reported by Tits et al. (2017) using their method (MIRFE)
for morphology-independent processing of mocap data. Their method drastically
reduces the correlation between motion features statistics and morphology-related

factors, compared with classical scaling methods, which reduce it only partly.

Considering the 3D Cartesian coordinates of each body marker independently
thus increases the impact of anthropometric factors. Moreover, the lack of con-
straints for the segment lengths can be problematic for some applications, such as
motion synthesis. Unless imposing the size invariance of the segments in the syn-
thesis algorithm, the generated animations can produce movements with segments
varying their sizes, which is likely to be unrealistic. To overcome these two limita-
tions, a standardized skeleton can be used with fixed segment lengths, irrespective
of the anthropometric measures of the moving person. In most cases, these skeleton
mappings require further information in addition to position data, notably about the
orientations and angles of the body joints.
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3.2.2 Angular data

In most cases, the standardized skeleton used when capturing human motion is a hi-
erarchical chain of body articulations with fixed segment lengths whose movements
are described as 3D rotations with respect to their preceding articulation (recursively
toward the root marker) (see Figure 3.5a). A 3D rotation can be described using mul-
tiple rotation representations, such as Euler representation. The three Euler angles
represent three successive rotations with respect to the axes of the 3D coordinate
system Oxyz. For instance, in the rotation given by the Euler angles (φ, θ, ψ) (Figure
3.8), φ corresponds to the angle of the first rotation around the z-axis. θ corresponds
to the angle of the second rotation around the x′-axis (former x-axis). ψ corresponds
to the angle of the third rotation around the z′-axis (former z-axis). The new rotated
coordinate system is Ox′y′z′.

FIGURE 3.8: The successive steps of rotation for Euler angles (Taken from Schwab
and Meijaard (2006)).

The 3D rotation can also be described using a 3× 3 rotation matrix. For instance,
the full rotation shown in Figure 3.8 can be seen as the matrix product of three rota-
tion matrices, corresponding to the successive rotations described above:

A = BCD (3.1)

where A corresponds to the resulting 3D rotation and D, C, B corresponds to the
successive rotations around the z-, x′- and z′-axes, respectively.

The parameters of the rotation matrix A can be found using Euler angles, as each
of the matrices D, C and B are described by their respective Euler angles:

D =


cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1

 (3.2)

C =


1 0 0

0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)

 (3.3)
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B =


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (3.4)

Therefore, although the 3D rotation matrix A is defined by nine parameters, it
can easily be described using three parameters: the Euler angles. The low dimen-
sionality of the Euler representation allows for successful fast calculation of rota-
tional motion. However, the major drawback of the Euler representation is its ambi-
guity. For instance, the three Euler angles can be applied to different axes, depending
on the convention used (we used the “x-convention” above). Moreover, even using
a fixed convention, different combinations of Euler angles can refer to the same ro-
tation. This rotation representation is thus not unique. For these reasons, the quater-
nion representation (Hamilton, 1866) can be preferred to Euler angles. Quaternions
are similarly low-dimensional, as they are defined by four parameters (i.e., one scalar
and three complex components), and they do not suffer from ambiguity, as they rep-
resent a unique rotation.

An extensive description of the quaternion representation is out of the scope of
the present thesis, in particular as most of the prior work that formed the theoretical
foundations of this thesis do not rely on this representation. Indeed, quaternions,
and rotation representations in general, are mostly used for motion synthesis and
animation applications, in order to produce realistic movements (Tilmanne and Du-
toit, 2010; Tilmanne et al., 2014; Tilmanne et al., 2012; Felis et al., 2015; Brand and
Hertzmann, 2000; Alemi et al., 2015). By contrast, motion analysis studies mostly
rely on 3D Cartesian coordinates, and more specifically on higher-level (e.g., kine-
matic and kinetic) features processed from these coordinates.

3.2.3 Kinematic and kinetic features

A wide majority of motion analyses have assessed the kinematic properties of the
movement. Kinematics refer to the aspects of motion, without considering masses or
forces involved in it. For instance, the instantaneous linear velocity and acceleration
of body markers are often derived from their positions:

p(t) = xi + yj + zk (3.5)

where p(t) is the 3D position vector of a given body marker and x, y, z are the
3D Cartesian coordinates along the i, j, k unit vectors of the 3D reference system.

v(t) =
dp
dt

=
dx
dt

i +
dy
dt

j +
dz
dt

k (3.6)

where v(t) is the linear velocity vector.

a(t) =
dv
dt

=
d2x
dt2 i +

d2y
dt2 j +

d2z
dt2 k (3.7)

where a(t) is the linear acceleration vector.
These linear kinematic features are frequently used in the motion analysis of SLs

(Catteau et al., 2016; Blondel et al., 2019; Malaia and Wilbur, 2012; Malaia et al., 2013).
Analogous computations can be done to quantify the kinematics of rotating objects,
by deriving the angular velocity and acceleration of the object from its angular posi-
tions. Higher-order derivatives of position can also be of interest. For instance, jerk
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quantifies the rate at which an object’s acceleration changes with respect to time.
It has been used to assess the smoothness of movements, notably in musical con-
ducting (Sarasúa and Guaus, 2014). Moreover, kinematic features can be interpreted
using their average, rather than instantaneous, values. For instance, the average ve-
locity of all body markers can be computed to account for the overall Quantity of
Motion (QoM), often used for the analysis of dance or musical movements (Sarasúa
and Guaus, 2014; Camurri et al., 2003b; Camurri et al., 2003a).

In addition to kinematic features, kinetic measures can also be used to assess
movements (Toiviainen et al., 2010; Reid, 2010; Winter, 2009; Luck et al., 2009).
Unlike kinematics, kinetics assess the relationships between the movement and its
causes, such as masses and forces applied to it. For instance, the kinetic energy of a
body is the energy due to its motion. It depends on the speed and mass of the body.
First, the position of the body Center of Mass (CoM) (i.e., the mass-weighted aver-
age of the positions of body segments) is calculated (equation 3.8) (Winter, 2009).
Second, the kinetic energy is computed based on the overall mass of the body and
on its translational and rotational velocity calculated at the CoM location (equation
3.9) (Winter, 2009):

pCoM =
1
M

N

∑
i=1

mipCoMi (3.8)

where pCoM is the position vector of the body CoM, M is the total mass of the
body, mi and pCoMi are the mass and CoM position vector of body segment i, respec-
tively, N is the total number of body segments.

Ekin(t) = Etrans(t) + Erot(t) =
1
2

Mv2
CoM(t) +

1
2

Iω2(t) (3.9)

where Etrans and Erot are the translational and rotational kinetic energy, respec-
tively, M is the total mass of the body, vCoM is the linear velocity of the body CoM, I
is the moment of inertia of the body and ω is the angular velocity of the body CoM.

3.2.4 Principal Movements

As mentioned above, from the raw mocap data, motion studies can use specific
higher-level (e.g., kinematic or kinetic) variables of the movements, defined by re-
searchers. Some studies have taken another approach to describe movements from
a holistic perspective, using Principal Component Analysis (PCA). Unlike the anal-
ysis of pre-selected variables, this data-driven method has allowed disentangling
how complex multi-segmental movements were structured, without any a priori
hypotheses. Troje (2002a) first used PCA to extract motion patterns allowing for
the gender classification of gait. Similarly to “eigenfaces” (O’Toole et al., 1993) or
“egeinvoices” (Kuhn et al., 2000), the whole walker’s movement was decomposed
into simpler one-directional principal movements (PMs) (i.e., time series of “eigen-
postures”), which maximized the variance in the original motion (for further details
about PM decomposition, see the Methods section in Chapter 7). Based on the tem-
poral characteristics of a reduced set of PMs, a linear classifier was then able to pre-
dict the gender of the walker. Similar studies have also reported that PMs allowed
for automatic prediction of a walker’s identity (Zhang and Troje, 2005) and mental
state (Sigal et al., 2010).

Concerning other movements, Federolf et al. (2014) have introduced this decom-
position method for the evaluation of an athlete’s technique, taking skiing as an
example. Using the invertibility of PCA, PMs were projected back onto the original



24 Chapter 3. Capturing human movements

3D space and were visualized (Figure 3.9). This allowed interpreting and compar-
ing the skiing movements of athletes in terms of distinct PMs, such as lateral body
inclination, flexion-extension of the legs or rotation of the skis.

FIGURE 3.9: The first five Principal Movements (PMs) in skiing, reported by
Federolf et al. (2014)). Postures at 1, 2 and 3 represent the PM at the time in-
stants corresponding to a large positive, small, or large negative PM weighting,

respectively.

The same method has been successfully applied to other sports. Combined with
other features, PMs have allowed for the automatic estimation of karatekas’ expe-
rience (Zago et al., 2017a), or for the automatic evaluation of dives (Young and
Reinkensmeyer, 2014). In juggling, individual differences due to experience have
been found in specific PMs (Zago et al., 2017b). Moreover, such differences in PMs
have allowed determining discriminant patterns between healthy and pathologi-
cal gait (Federolf et al., 2013a; Zago et al., 2017c). Several studies have also used
this technique to investigate human posture control (Federolf et al., 2013b; Federolf,
2016; Longo et al., 2019; Haid et al., 2018; Berret et al., 2009). More specifically, Haid
et al. (2018) have reported age effects in postural control characterized by control
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differences in specific PMs. In the artistic domain, Tits et al. (2015) have showed
that the finger gestures of pianists can be decomposed into eight PMs and that the
complexity of the decomposition was a function of pianists’ expertise.

3.3 Motion capture corpora in Sign Language

Motion is a crucial component of SLs, as they rely on a visual-gestural modality.
SL corpora thus combine information of various types, such as videos, pictures, an-
notations or 3D motion data, in order to describe the movements involved in SL
productions. They can be used for various purposes, such as motion analysis, lin-
guistics or computer science. Beyond the first corpora made using video recordings
(Section 3.3.1), the advances of motion capture have allowed building SL corpora
with 3D motion data (Section 3.3.2). These corpora have allowed providing tools for
SL automatic processing (Section 3.3.3), as well as for the fundamental analysis of
SL motion.

3.3.1 Video corpora

Up to now, most of SL corpora have been constructed using video recordings. Video
recording, whether using one or more cameras, is the simplest and most low-cost
form of production of SL corpora. Videos have allowed for the production of SL
lexicons, such as the American Sign Language Lexicon Video Dataset (ASLLVD)
(Neidle et al., 2012). In this corpus, 2284 lexical American Sign Language (ASL)
signs were recorded, using multiple cameras at different resolutions and frame rates
(i.e., 1600 × 200 at 30 fps and 640 × 480 at 60 fps), and from different viewpoints
(i.e., frontal and profile views) (Figure 3.10). In MS-ASL, Joze and Koller (2018) have
gathered up to 1000 ASL signs using Youtube videos of ASL lessons. Video lexicons
have been proposed for other SLs. For instance, the Signum corpus (Von Agris and
Kraiss, 2007) provides 450 lexical signs of German Sign Language (DGS) recorded
using RGB cameras, with a 776 × 578 resolution at 30 fps.

FIGURE 3.10: The different viewpoints from which the ASLLVD corpus was
recorded (Neidle et al., 2012).

In addition to isolated lexical signs, the DGS Signum corpus also incorporates
continuous SL (e.g., DGS sentences formed with the isolated signs mentioned above)
(Von Agris and Kraiss, 2007) (Figure 3.11a). Unlike spoken languages, which can
be seen as concatenations of words, spontaneous SLs are continuous and complex
streams of multiple movement patterns. Corpora of isolated signs thus only partly
account for the production of SLs in real life. For this reason, some SL corpora have
aimed to include continuous SL in their recordings. For instance, in the RWTH
Phoenix corpus (Forster et al., 2014; Koller et al., 2017), the spontaneous produc-
tions of weather forecasting in DGS were recorded for multiple interpreters, using
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an RGB camera at 25 fps and with low spatial resolution (210 × 260 pixels) (Figure
3.11b). The Auslan corpus (Johnston et al., 2009) comprises 300 hours of naturalistic
Australian Sign Language (Auslan), recorded on digital videotapes. Video corpora
of continuous SL are also available in ASL. For instance, the Purdue RVL-SLL cor-
pus (Martínez et al., 2002) contains ASL productions of multiple signers recorded on
videotapes, including isolated lexical signs as well as short discourse examples.

(A) (B)

FIGURE 3.11: Examples of the video recordings provided by SL video corpora. (A)
Signum corpus in DGS (Von Agris and Kraiss, 2007), (B) RWTH Phoenix corpus in

DGS (Forster et al., 2014).

Other continuous SL corpora have been released in different SLs (e.g., BSL corpus
in British Sign Language (Vinson et al., 2008), LSFB corpus in French Belgian Sign
Language (Meurant and Sinte, 2016), NGT corpus in Dutch Sign Language (Cras-
born and Zwitserlood, 2008)). In some cases, multiples SLs are also incorporated in
the same corpus. For instance, the Dicta-Sign corpus (Efthimiou et al., 2010) have
gathered videos of SL productions in four different SLs: British (BSL), Greek (GSL),
German (DGS) and French (LSF). For a more complete list of SL video corpora, see
surveys by Reiner Konrad1 and Koller (2020).

Moreover, some SL video corpora, such as the RWTH Boston corpus (Zahedi
et al., 2006), have used multiple cameras, in particular pairs of cameras in frontal
view in order to provide stereo recording of the signers, which can allow obtain-
ing three-dimensional data. Indeed, one major limitation of video corpora is that
no 3D information about the movements is provided when using RGB videos. As
shown in Figure 3.10 for ASLLVD (Neidle et al., 2012) and in Figure 3.12 for RWTH
Boston (Zahedi et al., 2006), some video corpora include recordings in both frontal
and profile views, which allow gaining insights into the SL movements along medi-
olateral, anteroposterior and vertical directions. However, no accurate 3D informa-
tion is available from video corpora, which can be a consequent limitation for SL
applications. For instance, the automatic recognition of SL can be quite challeng-
ing without any information about depth (e.g., for distinguishing between different
handshapes in 3D). To overcome this limitation, an increasing number of SL corpora
have taken advantage of the advances of motion capture in order to record 3D data
of SL movements.

3.3.2 From videos to 3D full-body motion capture

Some SL corpora have used depth cameras, such as the Microsoft Kinect, which al-
low reconstructing the 3D positioning of the main body articulations. For instance,

1https://www.sign-lang.uni-hamburg.de/dgs-korpus/files/inhalt_pdf/
SL-Corpora-Survey_update_2012.pdf

https://www.sign-lang.uni-hamburg.de/dgs-korpus/files/inhalt_pdf/SL-Corpora-Survey_update_2012.pdf
https://www.sign-lang.uni-hamburg.de/dgs-korpus/files/inhalt_pdf/SL-Corpora-Survey_update_2012.pdf


3.3. Motion capture corpora in Sign Language 27

FIGURE 3.12: The two different viewpoints (top: frontal / bottom: profile) from
which the RWTH Boston corpus was recorded, for three different signers (Zahedi

et al., 2005).

the DEVISIGN (Chai et al., 2014) and CSLR (Huang et al., 2018) corpora in Chinese
Sign Language have used Microsoft Kinect cameras in order to record isolated lexical
signs and continuous SL, respectively. Using these cameras, both corpora include a
combination of RGB and depth images. Depth cameras have also allowed for the
recording of SL corpora in Greek and German Sign Language (Cooper et al., 2012)
(Figure 3.13) as well as in Polish Sign Language (Oszust and Wysocki, 2013). The 3D
trajectories of the body articulations can be reconstructed from the depth data, which
has allowed improving the performance of SL recognition models (Pu et al., 2016).
Dilsizian et al. (2016) further have shown the importance of 3D trajectories for dis-
tinguishing between signs of similar handshapes, by training an SVM (Support Vec-
tor Machine) classifier that successfully recognized ASL signs from Microsoft Kinect
data.

FIGURE 3.13: Body articulations used to extract the 3D motion trajectories of sign-
ers, from Microsoft Kinect recordings, in Cooper et al. (2012).

It thus appears essential that computational models of automatic SL processing
take 3D information into account. For this reason, state-of-the-art full-body mocap
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systems have been of particular interest in order to develop SL corpora with 3D mo-
tion data. Their limited use in SL corpora so far, compared to that of simple video
cameras, can be explained by practical factors. Unlike RGB and depth setups, these
systems involve a high number of cameras as well as numerous markers to be fixed
on the signer. Moreover, mocap systems, such as those of Optitrack or Vicon, are
expensive and require specific logistical conditions in order to achieve accurate 3D
recordings (e.g., enough room for the multiple infrared cameras, controlled light-
ing to avoid interferences). Still, state-of-the-art 3D mocap systems allow obtaining
highly accurate recordings of the 3D movements of signers (e.g., with a spatial res-
olution under 1 mm and at high sampling rates, such as 100 or 250 fps) and thus
have opened up promising perspectives toward the collection of SL corpora with 3D
motion data.

In ASL, Lu and Huenerfauth (2010) have used multiple 3D mocap systems to
record natural discourses produced by signers for the CUNY corpus (Figure 3.14a).
The inertial mocap systems Animazoo IGS-190 and Intersense IS-900 were used to ob-
tain the 3D trajectories of the upper-body joints (i.e., wrists, elbows, shoulders, clav-
icle, neck and waist) and of the head of the signer, respectively. Additionally, two
sensor gloves recorded finger movements and one eye tracker recorded the signer’s
eye gaze direction. In its latest version, the CUNY corpus comprised ASL produc-
tions of eight signers (Lu and Huenerfauth, 2014). For more specific analyses, Malaia
et al. (2008) have recorded the 3D movements of one signer producing over 50 verb
signs in ASL, using a Gypsy mechanical mocap system (Figure 3.14b). In Tyrone et al.
(2010), the 3D movements of the head, torso and arms of multiple signers producing
ASL discourses were recorded by means of a Vicon optical mocap system.

(A) (B) (C)

FIGURE 3.14: Examples of the 3D mocap systems used for the collection of SL
corpora. (A) CUNY 3D ASL corpus (Lu and Huenerfauth, 2014), (B) 3D mocap
data of ASL verb signs (Malaia et al., 2008), (C) 3D mocap corpus in Finnish Sign

Language (Jantunen et al., 2012).

Optical mocap systems have also been used to collect 3D motion data in Finnish
Sign Language (Jantunen et al., 2012) (Figure 3.14c) and French Sign Language (LSF)
(Duarte and Gibet, 2010; Heloir et al., 2005; Catteau et al., 2016; Benchiheub et al.,
2016b). More specifically in Heloir et al. (2005), a 3D motion acquisition protocol
has been proposed to record LSF movements using a combination of an optical Vi-
con mocap system and two sensor gloves. In Catteau et al. (2016), a Vicon mocap
system allowed recording the 3D movements of one signer when producing poetic
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LSF sequences. In the present thesis, we used the MOCAP1 corpus, an LSF cor-
pora in which the 3D movements of eight signers were recorded using an optical
Optitrack mocap system (Benchiheub et al., 2016b). The movements of various body
parts (including movements of the head, arms, hands and upper-body as well as
facial expressions) of the eight signers were recorded during the description of dif-
ferent pictures in spontaneous LSF. For further details about the MOCAP1 corpus,
see Chapter 5.

3.3.3 What for?

One major application of motion capture in SL is automatic SL processing, that is au-
tomatic SL recognition, translation and generation. The first studies in automatic SL
recognition have relied on video recordings and image processing methods, notably
for the recognition of isolated signs (Tamura and Kawasaki, 1988; Grobel and Assan,
1997; Charayaphan and Marble, 1992). For instance, Tamura and Kawasaki (1988)
have built a computational system capable of classifying Japanese Sign Language
isolated signs from motion features computed from the signer’s hands regions. To
do so, the hands regions were extracted using skin color thresholding on the video-
tapes. Similar hand tracking approaches, whether using skin color detection meth-
ods or colored gloves, have allowed for quite accurate video-based recognition of
continuous ASL (Starner and Pentland, 1997). In addition to these studies focusing
on handshapes, some accurate video-based SL recognition systems have been pro-
posed using further bodily motion features, such as full upper-body pose or facial
expressions (Forster et al., 2014).

As mentioned in Section 3.3.2, 3D trajectories can be crucial for the automatic
recognition of SL (e.g., for recognizing signs of similar handshapes (Dilsizian et al.,
2016)). Focusing on the important role of finger movements in SLs, in particular for
lexical signs or fingerspelling (i.e., spelling out isolated words using the manual rep-
resentations of letters of the alphabet, mainly used for proper nouns with no signed
equivalent), most studies first used sensor gloves to consider three-dimensional mo-
tion data of the signers’ fingers (Grimes, 1983; Fels and Hinton, 1993; Liang and
Ouhyoung, 1998; Oz and Leu, 2011). For instance, the Glove-Talk system (Fels and
Hinton, 1993) accurately produced spoken words from the automatic recognition of
203 hand gestures (less than 1% error rate), many of them being derived from the
ASL. Gloves have also been used to automatically recognize LSF signs from lexi-
cons as well as from continuous utterances (Braffort, 1996). Similarly in Liang and
Ouhyoung (1998), isolated signs and sentences in Taiwanese Sign Language were
automatically recognized in real-time, using a sensor glove on the dominant hand
of the signer, with an average accuracy of 80.4%. In the latter study, a 3D tracker
of hand orientation was used jointly with the sensor glove, similarly to Oz and Leu
(2011) in ASL. Note that most studies mentioned above concern ASL, which particu-
larly involves hand and finger movements, such as in fingerspelling. Moreover, even
in ASL, neither can SL be restricted to hand gestures nor to fingerspelling. In addi-
tion to hand gestures and fingerspelling, SL production involves multiple features,
including rapid manual (e.g., pointing) and non-manual (e.g., eye gaze) movements.

In that regard, depth cameras, as well as being non-intrusive compared to 3D
body sensors, have allowed developing SL recognition systems using further body
features. Even though depth cameras still have been used in some studies to focus
on hand gestures (Lang et al., 2012; Uebersax et al., 2011), they also have allowed
recognizing SL discourses from 3D motion features of other body joints, such as el-
bows, shoulders and neck (Zafrulla et al., 2011). SL recognition systems have also
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been proposed using a combination of multiple cameras and accelerometers, in or-
der to track multiple 3D motion features, such as movements of the wrists and torso
(Brashear et al., 2003). However, the recent impressive advances of machine learn-
ing, in particular deep learning and Convulational Neural Networks, have allowed
obtaining convincing recognition systems based on video corpora, rather than using
3D data from glove sensors, depth cameras or accelerometers (Cui et al., 2019; Koller
et al., 2018; Shi et al., 2018; Koller et al., 2019; Forster et al., 2014; Belissen et al., 2020).
For further details about automatic SL recognition, including extensive descriptions
of motion extraction techniques and of recognition methods, see Koller (2020).

The second main field of automatic SL processing is automatic SL translation.
For instance, some systems use automatic SL recognition and then translate its out-
put into written representations. Up to now, neither do SLs have a written form
nor a graphic system. Still, notation systems, such as SignWriting (Sutton, 2009) or
Hamnosys (Hanke, 2004), have been proposed to represent SLs. Some other studies
have used deep learning methods to develop translation systems that automatically
recognize SL discourses from videos and provide their translations into spoken lan-
guages (i.e., sign-to-speech) (Koller et al., 2016; Koller et al., 2018; Camgoz et al.,
2018). In addition to the translation of SL into written and spoken forms, an im-
portant part of research in SL processing has focused on the translation of written
and spoken languages into SL (i.e., text-to-sign and speech-to-sign) (Davydov and
Lozynska, 2017; Elliott et al., 2000; Veale et al., 1998; Zhao et al., 2000; Karpouzis et
al., 2007; Ebling and Glauert, 2016). As shown in Figure 3.15, translation machines
from spoken languages to SL thus involve the generation of SL animations using
virtual signers (or signing avatars).

(A) (B)

FIGURE 3.15: ViSiCAST project for the automatic translation from text to SL (El-
liott et al., 2000). (A) Signer wearing the 3D mocap setup during the recording of
SL discourses or isolated signs, (B) Example of virtual signer to which the mocap

SL data can be mapped.
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Automatic SL generation and virtual signers allow producing accessible content
in SL for deaf individuals whose first language is an SL and whose comprehension
of written content is not always mastered. Moreover, the use of virtual signers brings
many additional advantages, by contrast with pre-recorded videos of signers: it is
possible to reuse, adapt, or modify the content of the animation; the appearance of
avatars (age, gender, style of clothing, etc.) can be modified according to the target
population; they can be dynamic and interactive (Kipp et al., 2011). Virtual signers
are thus particularly suited for automatically generating dynamic content (e.g., for
journalistic websites or TV announcements). Compared to automatic recognition,
whose state-of-the-art models mostly rely on video datasets, an increasing number
of SL studies use 3D motion capture data to provide realistic and comprehensible
virtual signers animations. Indeed, although 3D mocap is not the only method used
to animate virtual signers (e.g., key-frame animations for the Paula system shown
in Figure 3.16 (Filhol et al., 2017; Filhol and Mcdonald, 2020)), most 3D mocap SL
corpora presented in Section 3.3.2 were built for animation purposes (Lu and Huen-
erfauth, 2010; Lu and Huenerfauth, 2014; Duarte and Gibet, 2010; Gibet, 2018; Naert
et al., 2020) (Figure 3.17).

In summary, capturing SL motion using either 2D videos or 3D mocap record-
ings has allowed developing tools for the automatic processing of SL. While deep
learning techniques have improved state-of-the-art SL automatic recognition sys-
tems from 2D videos, 3D mocap data have a crucial role for the animation of realistic
and comprehensible virtual signers, as they allow replaying real human movements
on a controlled virtual agent. However, tools for automatic SL processing are far
from being as effective and as deployed as for spoken languages, notably because of
the lack of SL datasets but also because of the intrinsic complexity of the movement
features involved in SLs. There is still much to learn about the characteristics of SL
movements in order to produce convincing synthetic animations. For this purpose,
the 3D motion capture of SL movements brings another substantial contribution to
SL research: motion analysis. The advances of 3D mocap techniques jointly with
those of computational methods, including machine learning, have allowed analyz-
ing complex movements with high accuracy and thus gaining insights into the char-
acteristics of SL movements for various purposes (Benchiheub et al., 2016b), such
as linguistics, motion science, visual perception as well as for technological applica-
tions, such as motion generation for virtual signers.
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(A) (B)

FIGURE 3.16: Animation of the Paula system for two different SL expressions (Fil-
hol and Mcdonald, 2020).

(A) (B)

FIGURE 3.17: The CUNY ASL Corpus for the animation of virtual signers (Lu and
Huenerfauth, 2010; Lu and Huenerfauth, 2014). (A) Signer wearing the 3D mocap
setup during the recording of ASL discourses (left) and the corresponding avatar
skeleton (right), (B) The resulting virtual signer animated using the 3D mocap

data.
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Chapter 4

Motion analysis and machine
learning

Machine learning models are computational models able to learn from amounts of
data in order to predict some output variable from unknown data. By optimizing a
mathematical model, machine learning models are able to extract specific aspects
of the input data and to link them with the desired output (i.e., learning). This
mathematical relationship between inputs and outputs is then used by the model
in order to provide accurate predictions from novel data. Machine learning models
have been widely used from audio data for various automatic applications, such as
speech recognition (Amodei et al., 2016), speech separation (Pariente et al., 2020) or
speech synthesis (Oord et al., 2016). Similarly from images, machine learning has
allowed for face automatic recognition (Tolba et al., 2006; Valentin et al., 1994) and
synthesis (Blanz and Vetter, 1999). Moreover, it has been succesfully used for action
recognition from human motion (Lu and Little, 2006; Dalal and Triggs, 2005; Bobick
and Davis, 2001). In particular, it has provided crucial contributions to SL automatic
processing tasks, such as automatic SL recognition (see Section 3.3.3 or Koller (2020)
for a survey).

Beyond automatic recognition purposes, machine learning, jointly with classic
signal processing methods, has also allowed gaining insights into the complex struc-
ture of human motion. Whether based on video recordings or on 3D mocap data
(from simple motion trackers to state-of-the-art full-body setups), several analyses
have been conducted in order to quantitatively define properties of human and Sign
Language motion (Section 4.1). Some studies have also further explored how indi-
vidual characteristics may be encoded in motion patterns, for movements such as
walking or dancing (Section 4.2). In particular, machine learning techniques have
allowed automatically identifying individuals from their movements and, thus, ex-
tracting identity-specific features from motion data. Prospects for the development
of similar automatic systems controlling identity-specific features of signers in SL
movements, in particular for motion synthesis, are discussed in Section 4.3.

4.1 Analysis of human and Sign Language motion

Human motion is governed by biomechanical constraints and motor control laws. In
addition to the rules followed by human motion, SL motion is also governed by lin-
guistic rules. For both SL and non-SL movements, specific properties and laws have
been established thanks to motion analysis studies. In this section, we elaborate on
these properties based on studies using classic signal processing techniques and on
others using automatic, machine learning, methods. First, like vocal sounds whose
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production and perception is limited in frequencies by human physiological prop-
erties, human movements have been shown to lie within a limited frequency range
(Section 4.1.1). Within this bandwidth, the motor control system follows specific
laws (Section 4.1.2), which can be different when producing SL movements (Section
4.1.3). Moreover, the use of machine learning techniques has allowed providing fur-
ther data-driven descriptions of motor strategies, including for the identification of
pathological movements (Section 4.1.4) and for the automatic evaluation of expertise
in sports and musical gestures (Section 4.1.5). We elaborate on these methods, which
could be of particular interest for the problem of automatic signer identification. In-
deed, if machine learning can be used to automatically classify groups of individuals
(e.g., healthy vs non-healthy patients, or expert vs novice athletes), what about iden-
tifying individual signers based on their identity? The underlying problem is highly
similar in both cases, as the variable to predict (e.g., expertise or identity) varies from
one individual to the other while being invariant across various movement execu-
tions. For instance, the predicted level of expertise of a diver should be the same
across different dives and the identity of a signer may not vary from one discourse
to the other. By contrast, machine learning models used for gesture recognition (e.g.,
for SL automatic recognition) extract aspects of the movements that are characteristic
of the gesture, regardless of the individual who produced it.

4.1.1 Spectral analyses for determining kinematic bandwidths

In order to design relevant models of SL, it is necessary to properly estimate the
frequency content of SL movements, provided by motion capture (mocap). First,
considering the Nyquist-Shannon theorem (Shannon, 1949; Nyquist, 1928), the sam-
pling rate of mocap systems should be at least twice the actual motion bandwidth.
For instance, in the auditory domain, audio signals are often sampled at 44,100 Hz
as they have frequencies within the range of roughly 20 to 20,000 Hz, which cor-
responds to the lower and upper limits of human hearing, respectively. Moreover,
state-of-the-art mocap systems now allow for the recording of human movements
at high frame rates (e.g., 120, 250 frames per second (fps)). With such high frame
rates, mocap data may be noisy and thus are often filtered for human motion anal-
yses (Zago et al., 2017a; Carlson et al., 2020), which requires estimating an optimal
cutoff frequency. Up to now, it is unclear what actual bandwidth should be taken to
properly model human motion, in particular SL motion. SL movements differ from
non-linguistic ones, as they are constrained by not only biomechanic but also lin-
guistic rules. More specifically for technological application perspectives, this prob-
lem must be answered in order to better understand whether the spectral content
of SL motion is entirely represented when extracted from videos at low frame rates
(e.g., 24 fps) (Cao et al., 2019). Indeed theoretically, videos sampled at 24 fps convey
spectral information up to 12 Hz only.

The estimated bandwidth of human arm and head motion lies between 2 and 20
Hz, according to Bishop et al. (2001). While investigating gait kinematics, Winter
(2009) has reported that most of the spectral energy of a walking body was in a 0–6-
Hz range. His analysis revealed more rapid movements for markers on the foot
(e.g., heel or ball), which produced frequencies up to 6 Hz, and slower movements
for markers on the upper body (e.g., hips or ribs), which produced frequencies up to
3 Hz only. More recently, Skogstad et al. (2013) also have shown that rapid arbitrary
motion of the hand may have an upper-bound frequency between 15 and 20 Hz.
As shown in Figure 4.1, these rapid hand movements had significant power up to
approximately 20 Hz.
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FIGURE 4.1: Spectral power estimation of rapid arbitrary hand movements in
Skogstad et al. (2013). The data presented were averaged across 20 mocap record-
ings. The dashed horizontal line represents the estimated noise level of the mocap

recordings.

The spectrum of SL motion has been investigated with isolated signs. Individual
lexical signs were produced by one signer and taken out of context. Poizner et al.
(1986) have suggested that most of the energy of SL motion may lie below 6 or 7
Hz. According to Foulds (2004), a 0–3-Hz range is enough to understand American
SL (ASL) isolated signs and fingerspelling. In the latter study, a first frequency es-
timation was carried out on the movements of the dominant-hand index finger of
an ASL signer producing isolated signs, by means of an electromagnetic position
and orientation sensors (see examples of the spectral analyses in Figure 4.2). These
analyses suggested that the spectral energy of the signed movements was predom-
inantly below 3 Hz. A further visual perception experiment was then conducted
during which human participants were asked to identify various ASL signs from
stick figures similar to Point-Light Displays (PLDs), at different levels of spatial or
temporal compression. Although spatial compression significantly decreased the ac-
curacy of participants to identify the signs, limiting the spectral range of the stimuli
to 0–3 Hz had no impact on the intelligibility of the signs. Sperling et al. (1985) also
have reported no significant intelligibility loss for ASL isolated signs from 30 to 10
fps, suggesting a 0–5-Hz bandwidth. In the present thesis, the extent to which these
results shown for isolated signers are confirmed for more realistic, spontaneous, SL
productions was assessed (see Chapter 6). In McDonald et al. (2016), a signal pro-
cessing tool was developed for properly removing the noise from continuous SL
mocap data. For that aim, McDonald et al. (2016) used estimates of the frequency
content relevant for SL modeling. Therefore in Chapter 6, we discuss our quanti-
tative results as compared to their estimation, which interestingly support similar
conclusions about the frequency ranges to consider when modeling continuous SL
motion for animation purposes.

4.1.2 Human motor control and laws of motion

Human motion is multi-segmental and involves a high number of degrees of free-
dom (Bernstein, 1966; Saltzman, 1979). Individuals thus have to master the resulting
high-dimensional space of potential solutions to successfully execute a particular
movement (Hebb, 1949). This high-dimensional problem is achieved thanks to the
human motor control system which observes internal and external constraints in or-
der to make the movement successful. Analyses of human movements have allowed
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(A) (B)

(C)
(D)

FIGURE 4.2: Spectra of the movements of the dominant-hand index finger along
the Y axis in Foulds (2004) for two ASL signs: (A) sign CELEBRATE, made by cir-
cling the hands in the air (C), (B) sign STOP, made with a chopping action of the
dominant hand into the palm of the nondominant hand (D) (Sign picture descrip-

tions taken from Tennant et al. (1998)).

shedding light on specific motion principles that may be the reflection of general
rules followed by the human motor control system in order to solve this problem.

For instance, Viviani and McCollum (1983) have shown that the speed of draw-
ing movements was increased proportionately with the trajectory distance, in order
to keep the execution time of these complex trajectories independent of the move-
ment size. The study of kinematics during reach-to-grasp movements of macaques
has also outlined that the amplitude of arm peak velocity was correlated with the
distance to be covered (Sartori et al., 2013). Termed as isochrony principle, this lin-
ear relationship between velocity and the extent of the trajectory has been demon-
strated for a variety of actions, such as writing (Michel, 1971), lifting weights (Ga-
choud et al., 1983), kicking activity in infants (Thelen and Fisher, 1983) or hand and
arm movements (Freund and Büdingen, 1978). Further studies have shown that
the isochrony principle was independent of age for drawing movements of 5- to
9-year-old children, while context had a significant impact on the strength of this
relation between speed and trace length (Vinter and Mounoud, 1991). Moreover,
the isochrony principle can be affected by the range of the movements. For instance,
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when executing wide movements, although velocity is increased, the movement du-
ration may also increase (Berret and Jean, 2016). In other words, although the motor
control system compensates the increase in amplitude by increasing the movement
velocity, this phenomenon is not always sufficient to ensure the independence of
duration from the movement extent.

In the case of curvilinear trajectories, the kinematic analysis of drawing move-
ments has revealed another well-known law of motion: the two-thirds power law
(also called one-third power law) (Lacquaniti et al., 1983). The results of the latter
study have suggested that the velocity of the drawing movements was correlated to
the value of the curvature, so that velocity increases in less curved portions of the
trajectory and, inversely, decreases in more curved portions of the trajectory. The
two-thirds power law was then formulated in the following ways:

A(t) = kC(t)
2
3 (4.1)

log A(t) = log k +
2
3

log C(t) (4.2)

where V(t) is the tangential velocity, A(t) = V(t)/R(t) is the instantaneous an-
gular velocity, R(t) is the radius of curvature, C(t) = 1/R(t) is the curvature of
the trajectory and k is the gain velocity factor, which depends on the tempo of the
movement and is often considered as constant by the total length of the trajectory or
within units of motor action.

These equations can also be formulated in an equivalent way, which justifies the
other designation of the law (i.e., one-third power law):

V(t) = kR(t)
1
3 (4.3)

log V(t) = log k +
1
3

log R(t) (4.4)

Equations 4.3 and 4.4 are illustrated in Figure 4.3, which demonstrates the two-
thirds power law (i.e., the linear relationship between the logarithms of the tangen-
tial velocity and the radius of curvature for elliptical movements).

In addition to the 2D drawing movements investigated in Viviani and Schneider
(1991), the two-thirds power law has been confirmed in further cases, such as 3D
drawing (Massey et al., 1992) or eye movements (de’Sperati and Viviani, 1997). It
also has been used as an evidence that certain properties of the motor system implic-
itly influence perceptual interpretation of the visual stimulus (see perception-action
coupling theory in Section 2.1.2) (Viviani and Stucchi, 1992). Moreover, if age had
no effect on the isochrony principle in drawing movements of 5- to 9-year-old chil-
dren (Vinter and Mounoud, 1991), Viviani and Schneider (1991) have outlined age-
dependent differences for both the phenomena of isochrony and two-thirds power
law between the movements of adults and children. In the following sections, we
further elaborate on how human attributes, such as age but also gender or iden-
tity, could be automatically identified by specific aspects of motion using machine
learning techniques.

Other important laws of motion have been formulated thanks to motion anal-
ysis. For instance, individuals need to reduce the speed of their movements in or-
der to ensure the accuracy of their action (i.e., “speed-accuracy trade-off”). This
phenomenon, now called Fitt’s law, has been formalized by Fitts (1954) through an
equation linking the time required to rapidly move to a target area with the distance
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FIGURE 4.3: Illustration of the two-thirds power law from Viviani and Schneider
(1991): linear relationship between the logarithms of the radius of curvature and
the velocity of the hand during the drawing of ellipses of perimeters 6.63 cm (P4)
and 26.51 cm (P8). Following experimental measurements, the β exponent in the

authors’ formula is a constant that takes values close to 1/3.

to the target and the width of the target. Moreover for vertical arm movements, it has
been shown that the motor control system optimizes the energy expenditure, by in-
tegrating gravitational forces and thus processing an upward movement differently
than a downward movement (Berret et al., 2008).

Beyond the effects of age and context mentioned above, recent research has ques-
tioned the impact of the linguistic structure of SL movements on laws of motion,
investigating the isochrony principle, the two-thirds power law and the integration
of gravitational forces during vertical movements (Benchiheub et al., 2016b; Benchi-
heub, 2017). Although the validity of all the three laws was confirmed during SL
movements, whether within a sign or between two signs (i.e., transitional move-
ments), the analyses have outlined some intriguing effects of SL on the aspects of
both vertical movement law and isochrony principle. For instance, both these laws
were unchanged during transitional movements while SL-specific aspects, such as
longer acceleration times for vertical movements and stronger emergence of the
isochrony principle, appeared during the production of signs. These results sug-
gest that the linguistic property of SL has a significant impact on how the motor
control system plans the execution of a signer’s movements in SL. In relation to the
present thesis, this impact of SL linguistic structure on motor control calls for further
investigations on how the extraction of human characteristics from motion could be
specific to SL, compared to prior research carried out on walking or dancing move-
ments.

4.1.3 The specific parameters of Sign Language movements

Some motion analyses have tackled further intriguing questions related to the spe-
cific features in SL movements. As already briefly mentioned in Section 4.1.1 for
spectral analyses of motion, SL movements can be executed with varying velocities
depending on linguistic properties. For instance, lexical signs have been shown to
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be executed faster when they are produced in context, compared to when they are
produced in isolation (Braffort et al., 2011). Moreover, Benchiheub et al. (2016b) have
shown that not only may the speed of SL productions increase in spontaneous dis-
courses, by contrast with isolated signs, but it may also be affected by the nature
of linguistic structures within the discourse. For instance, across the sponteanous
SL discourses of four different signers describing pictures in French Sign Language
(LSF), the mean velocity of the signer’s dominant hand was lower in lexical signs
than in depicting signs (e.g., that describe size and shapes of entities), which was
lower than in transitional movements between signs. These results suggest that mo-
tor control is impacted when movements convey some meaning (e.g., lexical and de-
picting signs), which may result in slower executions than for non-SL movements.
This is in line with SL-specific observations made on motor laws (Benchiheub, 2017)
(see Section 4.1.2), which were impacted during the production of signs but not dur-
ing transitional movements. Benchiheub et al. (2016b) have also shown that the
dominant hand of signers could be automatically detected, by comparing the dis-
tances covered by the two hands, which is higher for the dominant hand. This ob-
servation is the same as with any other human movement: signers preferably use
their dominant hand, as it provides faster or more precise performance. Interest-
ingly, the distance ratio between the two hands was quite consistent across different
signers.

Motion analysis of American Sign Language (ASL) has also shown that the kine-
matic properties of linguistic stress can be characterized as peak velocities during the
production of a sign (Wilbur, 1999), jointly with larger movements and signs being
made higher in the signing space (Wilbur and Schick, 1987). Moreover, in Ameri-
can and Croatian Sign Language, Malaia and Wilbur (2012) and Malaia et al. (2013)
have shown that motion kinematics were recruited by signers to express linguistic
properties in verb sign production. The productions of telic and atelic verbs were
compared. Telic verbs describe events as homogeneous (e.g., swim or walk) while
atelic ones describe events as heterogeneous phenomena involving a change (e.g.,
fall or break). In both studies, kinematic features (e.g., peak speed, instantaneous ac-
celeration) of verb signs were affected both by predicate type (telic/atelic) and by
the position of the sign within the sentence (medial/final). In LSF, Catteau et al.
(2016) have outlined kinematic strategies of deaf poets (e.g., acceleration peaks of
the whole-body joints) to convey prosodic variation. Signers may also use their ges-
tures in order to control intonation during their discourses, including movements of
the arms, hands and upper-body but also facial expressions (Weast, 2008).

Taken together, these analyses of SL motion suggest that kinematics may con-
vey relevant information about semantic, syntactic and prosodic features. It can
be hypothesized that motion features, including kinematics, could also reflect non-
linguistic properties of the SL productions of signers, such as identity. Some ef-
fects of individual characteristics, such as signer’s age, on SL production have been
shown. Indeed, the study of LSF mocap from elderly signers has suggested that
specific kinematics, such as signing rate, may provide a prosodic characterization
for the age of a signer (Blondel et al., 2019). However, to the author’s knowledge,
there were virtually no attempts to characterize the motion features that allow for
inferring the identity of a signer from his or her movements in SL.

Furthermore, beyond the specific problem of signer identification, the present
thesis aims to conduct quantitative motion analyses in order to provide novel de-
scriptions of SL movements. All the analyses presented in these first sections (Sec-
tion 4.1.1, Section 4.1.2 and the present section) have used pre-defined motion vari-
ables, including kinematic ones, in order to gain insights into the motion properties
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of both human and SL motion. The present thesis aims to propose holistic motion
descriptions using data-driven approaches, which may provide unexpected insights
into how the complex movements of SL are structured. We thus further discuss how
data-driven analyses of human motion have contributed to the understanding of
motor control, including postural control, and how it can be useful to quantify spe-
cific aspects of a movement for various purposes, such as clinical research or motor
learning.

4.1.4 Data-driven approaches for the analysis of postural control and for
the identification of pathological movements

As described in Section 4.1.2, the motor control system integrates various internal
and external constraints in order to coordinate the multiple segments of the human
body and to execute movements in an optimal manner. Pre-defined motion vari-
ables, such as instantaneous velocity or acceleration of body joints, have allowed re-
searchers to formalize various laws of motion. As previously introduced in Section
3.2.4, unlike the use of pre-defined variables, some studies have used data-driven
approaches to provide holistic descriptions of the movements. In particular, the
application of Principal Component Analysis (PCA) to motion data (Federolf et al.,
2014) has allowed unveiling human movement strategies for postural control as well
as detecting differences in movements between healthy individuals and individuals
with pathological conditions.

Some first studies have applied PCA to motion data in order to decompose hu-
man movements, such as walking (Troje, 2002a) or skiing (Federolf et al., 2014), into
Principal Movements (PMs) (see Section 3.2.4). PM decomposition can be used to
quantify the motion patterns utilized by individuals to maintain an upright posture
(Federolf et al., 2013b) or to control their posture while executing reaching motor
commands (Berret et al., 2009). In addition to the first formulation of the PMs,
Federolf (2016) has proposed a further approach deriving “principal positions”,
“principal velocities” and “principal accelerations”. Using a 3D mocap system, the
postural movements of participants were recorded when standing on a force plate.
The resulting PMs explained the variance of the body Center of Pressure (CoP) with
high accuracy. More importantly, these variables have allowed gaining insights into
how the postural control system govern the body movements. In particular, the
integration of “principal accelerations” has provided information about the neuro-
muscular control, as muscle synergies are intrinsically linked with accelerations be-
tween body segments. Longo et al. (2019) then have also supported that “principal
accelerations” obtained by PM decomposition, beyond “principal positions”, pro-
vide a significant contribution to the understanding of human movement control, in
a bimanual repetitive tapping task. Further frequency analyses have shown that pos-
tural control involves small-amplitude but accelerated fast movements, which are
precisely well captured by “principal accelerations” (Promsri and Federolf, 2020).
Based on these observations, the latter study has outlined the relevance of using
cut-off frequencies between 5 and 10 Hz when filtering human motion data for the
analysis of postural control. Compared to the spectral estimates of human move-
ments presented in Section 4.1.1, this bandwidth is specific to the study of postural
control and to the measurement of small-amplitude, but fast, postural movements.

PMs have also provided crucial contributions to the identification of pathological
motion patterns. For instance in Federolf et al. (2013a), a 3D mocap setup recorded
full-body gait movements of healthy participants and of participants with medial
knee osteoarthritis (OA). Group differences were found in the temporal weightings
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of the PMs, revealing that greater upper-body (e.g., shoulder or pelvis) movements
in OA patients were linked with changes in ground reaction forces, which thus sug-
gests specific compensatory movements of OA patients due to their pathology. Sim-
ilarly, decomposing human movements into PMs has allowed detecting key aspects
of the gait kinematics of children with spastic diplegia (Zago et al., 2017c). 3D mocap
recordings of gait cycles executed by healthy children and by children with spas-
tic diplegia were decomposed into their PMs, which allowed detecting changes in
the synergies of body segments for pathological movements. For instance, more
PMs were needed to explain the gait movements of children with spastic diplegia
than those of healthy children. Moreover, these higher-order PMs have then been
found to represent compensatory patterns that occured with a high level of individ-
ual specificity for the children with spastic diplegia.

In addition to the studies mentioned above, PM decomposition has allowed de-
scribing further aspects of human motor control, including age effects. For instance
in Haid et al. (2018), PMs were obtained applying PCA to the full-body 3D mocap
recordings of young and older individuals performing 80-second tandem stances.
Age effects were found only on specific motion patterns (i.e., PM2, PM8 and PM9),
older adults presenting less tight and more irregular control in PM2 but tighter con-
trol in PM8 and PM9. The extent to which PM decomposition can be used to describe
SL motion and to investigate our specific problem of signer identification will be dis-
cussed later in this thesis (see Chapters 7 and 9).

4.1.5 Automatic evaluation of gesture expertise

Beyond the study of human motor control, Principal Movements have been widely
used to evaluate the degree of expertise of human gestures. The automatic evalu-
ation of gesture expertise is of particular interest for learning complex movements
and for improving their execution, using visual feedback of the gestures from poor
to excellent performance. Federolf et al. (2014) has been one of the first to apply PM
decomposition to sport science. As previously described in Section 3.2.4, the PMs
extracted in this study have allowed visualizing the main motion patterns of skiing
and, more importantly, comparing the techniques of different athletes. For instance
in the first PM, which described lateral body inclination (see Figure 3.9, first row),
athletes displayed differences in how fast they tilted their body during the turn and
how fast they came back to the upright posture. Visualizing the PMs thus allow
for some interpretation of differences in the techniques used by athletes with differ-
ent levels of expertise. Some studies have further used these descriptions obtained
with PMs to train machine learning models in order to automatically evaluate ges-
ture expertise. As the principle of PM decomposition has already been introduced
in Section 3.2.4, the present section will mainly focus on how the level of gesture
expertise can be automatically predicted from the PMs.

For instance in karate (Zago et al., 2017a), PM decomposition has allowed ob-
taining five PMs that described most of the information about the movements of
both professional and amateur karateka. Then, a linear classifier (i.e., PCA followed
by linear regression) successfully predicted the karateka’s years of practice from the
PMs (i.e., their posture vectors and temporal weightings), jointly with the Center
of Mass (CoM) positions and kinematics. First, by comparing the accuracy of the
predictions of the model when trained on different subsets of PMs, one can extract
the PMs of importance for the evaluation of expertise. Second, by visualizing these
PMs of importance for athletes with different levels of expertise, one can quantify
the motion patterns that may account for experience level. For instance in Zago et
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al. (2017a), experienced karateka raised their left leg higher than amateur karateka
during kicking (see Figure 4.4).

FIGURE 4.4: Example of one PM of importance (PM2) in the model of Zago et
al. (2017a) for automatic gesture evaluation. The PM is executed by one karateka
with 33 years of experience (black markers) and by one karateka with 5 years of

experience (white markers).

Similarly, in addition to classic features used for judging dives (i.e., body center
coordinates and splash area), PM vectors and temporal weightings have allowed
Young and Reinkensmeyer (2014) to accurately predict actual judges’ scores. Like
Zago et al. (2017a), the scores were predicted using linear regression. Moreover,
novel dives reflecting specific judges’ scores were synthesized as stick figures. This
method has allowed visualizing how divers could modify their diving performance
in order to improve the judges’ score.

PMs have also been successfully used to automatically identify motion patterns
related to experience in juggling (Zago et al., 2017b). As shown in Figure 4.5, al-
though the dimensionality of the PMs was the same between the two groups in jug-
gling up to 4 balls, intermediate jugglers showed higher-order PMs compared with
experts in the most complex task (i.e., 5-balls juggling). Most of these higher-order
PMs reflected upper limbs movements, which may be unwanted movements used
by intermediate jugglers to compensate for throwing errors. In other words, the
reduction of higher-order PMs resulting from years of practice may reflect how pos-
tural movements are adjusted by the motor system in order to facilitate the juggling
performance.

FIGURE 4.5: Automatic identification of differences related to experience in jug-
gling (Zago et al., 2017b). For complex tasks (i.e., 5-balls juggling), movements
of experts involve less PMs, which outlines the optimized movement synergies of

experienced jugglers.

In the artistic domain, Tits et al. (2015) have extracted PMs from finger gestures
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in piano playing using a 3D mocap system, which recorded movements of the ar-
ticulations of the hands of four pianists. Across different piano pieces, the finger
movements of more trained pianists involved more PMs (i.e., eight to ten PMs) than
those of less trained pianists (i.e., six PMs). Interestingly, the relationship between
the number of PMs involved in the gestures and the level of gesture expertise is in
line with the prior investigations mentioned above for juggling (Zago et al., 2017b).
However, it yields different interpretations. While higher-order PMs used by inter-
mediate jugglers in Zago et al. (2017b) seemed to reflect unwanted compensatory
movements, the higher number of PMs involved in the finger gestures of expert pi-
anists may be due to the finer movements learnt through more years of practice and
acquired by playing pieces of higher complexity.

In most of the studies mentioned in this section, significant inter-individual dif-
ferences have been outlined in the execution of movements in sports or music per-
formance. Rather than being only specific to each individual, the extracted motion
patterns have allowed distinguishing between groups of individuals as a function of
their level of gesture expertise. What about other attributes that characterize human
beings, such as identity? The following section will focus on how the field of motion
analysis have allowed automatically extracting motion features related to human
characteristics, in particular identity, beyond the general kinematic properties of hu-
man movements reported in the present section.

4.2 Automatic extraction of human attributes from motion

Human observers are able to infer socially relevant information about individuals
from their movements. Some visual perception studies have aimed to determine the
type of motion information that allows for such recognition, revealing a potential
major role of kinematic cues (e.g., for gender classification or person identification)
(see Section 2.1.4). Still, the nature of such kinematic cues remains unclear up to now.
In addition to human perception measurements, other approaches, such as machine
learning, can provide further insights along this line. As previously shown for faces
(Section 4.2.1), machine learning models can be trained to describe human move-
ments and to extract motion features that allow for automatic gender classification
(Section 4.2.2) and person identification (Section 4.2.3).

4.2.1 In the footsteps of face processing

The studies mentioned in Section 2.1.4 have tested the impact of pre-selected mo-
tion features, which were potential candidate features to carry critical information,
on human recognition. The features were manipulated in Point-Light Displays
(PLDs) and the effects on the recognition accuracy of human observers were assessed
(Mather and Murdoch, 1994; Kozlowski and Cutting, 1977; Troje et al., 2005; West-
hoff and Troje, 2007). Using machine learning techniques, further studies have been
able to treat the problem without any a priori assumption about candidate features.
These studies have trained machine learning models (e.g., classifier, linear regres-
sion models) to automatically detect characteristics of individuals, such as gender
or identity. Then, the discriminant features used by the machine learning model
could be scrutinized, in order to gain insights into the critical information contained
in the movements for the recognition.

For that aim, first studies have developed linear models (i.e., that optimizes a lin-
ear mathematical function between the input variables and the output). For instance,
Troje (2002a) has trained a linear classifier for the automatic gender classification of
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gait. These models took their inspiration from prior work on faces images. Several
studies have applied PCA to pixel-based representations of faces, which provided
ideal low-dimensional descriptions of the faces for different purposes. Indeed, as
shown by Sirovich and Kirby (1987), eigenvectors (called eigenfaces) can be obtained
from the application of PCA to an ensemble of face images (see Figure 4.6). Then,
any face can be defined in a coordinate system formed by the eigenfaces. In the lat-
ter study, cropped faces could be reconstructed as a linear combination of a reduced
set of eigenfaces, as shown in Figure 4.7. Sirovich and Kirby (1987) have shown that
the error between the reconstructed face and the original one was reduced to 3%
when using 40 eigenfaces. This suggests that a face can be characterized using a
low-dimensional representation of faces, instead of the whole pixel-based dataset.

FIGURE 4.6: The first eight eigenfaces obtained from an ensemble of cropped
grayscale face images in Sirovich and Kirby (1987). Subfigures must be read from

left to right, ending at lower right.

Intriguing findings have then been shown using similar low-dimensional rep-
resentations of faces. As mentioned above, the first eigenfaces of the PC space (i.e.,
those with larger eigenvalues) may be optimal to reconstruct faces, as they minimize
the error between reconstructed and original faces (Sirovich and Kirby, 1987). The
first eigenfaces have also been shown to be optimal for the gender classification of
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FIGURE 4.7: Example of one face image of the dataset in Sirovich and Kirby (1987),
reconstructed using 10, 20, 30 and 40 eigenfaces. Subfigures must be read from left

to right, ending at lower right.

faces. For instance in O’Toole et al. (1993), of 100 eigenfaces, the highest correla-
tions between eigenface weights and gender were found in eigenfaces with largest
egeinvalues, most of them being within the 15 first eigenfaces. In particular, the
largest amount of explained variance of the gender variable was found for the sec-
ond eigenface, as shown in Figure 4.8. For instance, adding the second eigenface to
the first one generates a masculine face (Figure 4.8(c)), while subtracting it from the
first eigenface generates a feminine face (Figure 4.8(d)).

FIGURE 4.8: Low-order eigenfaces are optimal to characterize gender (O’Toole et
al., 1993): (a) First eigenface, (b) Second eigenface, (c) Second eigenface added to

the first one, (c) Second eigenface subtracted from the first one.

However, low-order eigenfaces may not be optimal for recognizing particular
faces. Interestingly, while these low-order eigenfaces are optimal for face reconstruc-
tion and for gender classification, higher-order eigenfaces (i.e., with smaller eigen-
values) have been shown to convey much more information for face recognition
(O’Toole et al., 1993). A computational model was trained to distinguish between
known and unknown faces from reconstructions of faces achieved using different
ranges of 15 eigenfaces. Like Sirovich and Kirby (1987), the error between recon-
structed and original faces decreased as the range of the used eigenfaces changed
from low-order to high-order eigenfaces. However, the ability of the model to rec-
ognize the reconstructed faces increased with ranges of higher-order eigenfaces.
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Ranges between 45 and 80 eigenfaces allowed for the highest recognition accuracy.
This phenomenon is illustrated in Figure 4.9. When reconstructing a face using
mainly high-order eigenfaces, information about the identity of the person remains
quite visible (Figure 4.9(a), centre and right panels), while when reconstructing the
same face with only low-order eigenfaces, the person can hardly be identified (Fig-
ure 4.9(b), centre and right panels).

FIGURE 4.9: High-order eigenfaces carry accurate information for face recognition
(O’Toole et al., 1993): (a) the original face (left), its reconstruction without using
the first 20 eigenfaces (center) and without using the first 40 eigenfaces (right); (b)
the original face (left), its reconstruction using only the first 20 eigenfaces (center)

and using only the first 40 eigenfaces (right).

Other studies have proposed similar low-dimensional representations of faces,
but applying PCA to correspondance-based rather than pixel-based representations
of images. Correspondance-based representations describe face images with dis-
tinct vectors of shape and texture (Vetter and Troje, 1995; Vetter and Troje, 1997).
Similarly, the eigenvectors derived from these face representations have allowed for
accurate gender classification using linear classifiers, even with smaller errors than
when using pixel-based representations (Troje and Vetter, 1996).

Although other techniques have been succesfully used for face recognition (Guo
et al., 2000), the fascinating results presented in this section suggest that PCA can
be used to decompose a dataset of face images into uncorrelated eigenfaces and
that, depending on the amount of overall variance they explain in the original data,
these eigenfaces carry discriminant information about different human characteris-
tics, such as gender or identity. In the present thesis, PCA will be applied to different
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motion descriptions, notably to find discriminant information for signer identifica-
tion. The extent to which the techniques used in the present thesis are in line with
the previous observations made on faces will be discussed. We will also question
whether identity information could similarly be carried by high-order eigenvectors
of SL motion, more than by low-order ones.

4.2.2 From faces to motion: the example of gender classification of gait

As we have already pointed out, the analysis of human motion is complex, notably
because of the high number of body articulators and, thus, degrees of freedom in-
volved in the movements. The potential of PCA to reduce dimensionality is thus
of particular interest for motion models. As shown for faces in the previous section
(O’Toole et al., 1993; Troje and Vetter, 1996; Sirovich and Kirby, 1987), PCA has been
applied to motion data in order to obtain uncorrelated motion patterns and to inves-
tigate whether these patterns could carry discriminant information related to human
characteristics of the moving persons.

For instance, Troje (2002a) has applied PCA to 3D mocap data of human gait.
As already mentioned in Section 3.2.4, the first four Principal Movements (PMs) (or
eigenmovements) obtained by this PCA explained 98% of the overall variance in
the walking movements, across walkers. Compared to eigenfaces, the description
of PMs is more complex as they vary over time. However, because of the specific
structure of walking movements, Troje (2002a) has been able to describe the tempo-
ral behavior of the four PMs with simple sine functions, each characterized by its
frequency, its amplitude, and its phase. This decomposition is thus very similar to
Fourier decomposition, priorly used in Unuma and Takeuchi (1991) and additionally
described in Troje (2002b), where the two methods are compared for the classifica-
tion of gender or other attributes. However, unlike Fourier decomposition, PM de-
composition can be applied to any type of movement including non-periodic ones,
which is of particular interest for the analysis of complex SL movements carried out
in the present thesis.

PMs are defined by their posture vector (i.e., eigenposture) and their temporal
behavior. In Troje (2002a), any gait could thus be reconstructed using the average
posture vector, the four eigenposture vectors and the frequency and phase corre-
sponding to their sinusoidal temporal behavior. From these features, a second PCA
followed by a linear classifier was applied in order to predict the gender output. The
weights of the classifier were optimized using a set of walking patterns (i.e., training
data) and their respective labels (i.e., 1 if the walker was a man, -1 if the walker was a
woman), giving greater importance to some motion features than to others, depend-
ing on how they allow for accurate classification of new gait examples. Using this
approach, Troje (2002a) has been able to show that, apart from size, the structural
information contained in the average posture of walkers does not play a major role
in gender classification. Indeed, the model classified the gender of new gaits with a
15% error when trained on the four size-normalized eigenpostures, their phases and
their frequency, while classification error was 17.5% when the model was trained on
the full vector, which additionally included the average posture vector.

As a reminder, one motivation of the present thesis is to further determine the
aspects of motion, in particular SL motion, that carry critical information about the
moving person, in particular identity. We already mentioned that kinematics may
play a major role in both person identification and gender classification by human
observers (see Section 2.1.4), which is confirmed by the computational results of
Troje (2002a) for automatic gender classification of gait. It has also been outlined
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that behavioral experiments were quite limited in further quantifying the specific
kinematic parameters that allow for these recognitions. We argue that this limita-
tion can be overcome using machine learning models. In Troje (2002a), neither did
walking frequencies nor relative phases of walking patterns seem to play a major
role in predicting gender. For instance, training the model with the relative phases
of the four PMs led to a 37.5% classification error. Similarly, this machine learning
approach has allowed quantifying the distinct roles of the four PMs in predicting the
gender of walkers. For instance, training the model with the first PM alone resulted
in a performance almost as good as the one obtained with all four PMs.

In summary, using the approach described above, the importance of various in-
put motion features in classifying gender can be scrutinized. Note that the model
of Young and Reinkensmeyer (2014) for automatic gesture evaluation of dives (see
Section 4.1.5) was highly similar to the dual-layer PCA approach of Troje (2002a)
presented in this section, except that the first model was trained to predict a lin-
ear variable (i.e., quality of dives) while the second was trained to predict a binary
variable (i.e., gender). Machine learning models thus have opened up new possibil-
ities to unveil the encoding of relevant information, such as expertise or gender, in
human movements. What about identity information?

4.2.3 Person identification from motion: from gait to SL movements

Following the same procedure as in Troje (2002a), Zhang and Troje (2005) have been
able to automatically identify walkers from 3D mocap data. PCA was applied to key
postures (analogous to the eigenpostures used in Troje (2002a)) across various walk-
ers and the resulting principal components allowed predicting the identity of the
walker from different viewpoints. Although the methodology was highly similar
to the one used for gender classification, Zhang and Troje (2005) have put a further
focus on the impact of viewpoint on automatic person identification. Overall, all
viewpoints allowed for high identification accuracy (> 91.8%). However, the high-
est performance of their model (98.8%) was obtained from a 3/4 view, which is in
line with prior work on face recognition (Bruce et al., 1987).

One of the first studies to develop algorithms for the automatic identification of
moving persons may be Niyogi, Adelson, et al. (1994). From gait video sequences,
the contours of five different walkers were extracted and were used to define stick
figure models. Applying a simple nearest neighbor technique with Euclidean dis-
tances to the trajectories of the stick model (two sticks per leg, and another for the
torso, see Figure 4.10), their identification methods reached recognition rates as high
as 81%. Later, Little and Boyd (1998) have shown that automatic identification was
possible using optical flow in gait videos. Time series of moving points were ob-
tained from optical flow images. Across walkers, these series shared similar walking
frequency but differed in their respective phases. Automatic identification was thus
accomplished using the phase vectors as input. Similarly to Niyogi, Adelson, et al.
(1994), the walker was predicted taking the nearest neighbor of its gait sequence, in
terms of Euclidean distance between phase vectors. Using this approach, the accu-
racy of identification could reach 95.2%. Interestingly, the latter analysis has aimed
to gain insights into the features that allow for person identification, rather than to
focus on identification performance per se, which is a central question of the present
thesis. In that regard, the reported minor role of walking frequency in automatic
identification is in line with behavioral data (Troje et al., 2005).

Another intringuing approach is the one taken by Murase and Sakai (1996),
which additionally emphasizes how PCA-based face recognition algorithms have
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(A)

(B)

FIGURE 4.10: Gait data extracted from 2D videos for walker identification in
Niyogi, Adelson, et al. (1994). (A) walker contours, (B) stick figure model.

been a source of inspiration for person identification from motion. Moving silhou-
ettes of walkers were extracted from video images and then decomposed into eigen-
vectors that captured the spatio-temporal changes of the silhouette. As observed
by Troje (2002a) and Troje (2002b) (see Section 4.2.2), eigenvectors of gait were inti-
mately linked with walking frequencies (e.g., low-order eigenvectors corresponded
to low frequencies while higher-order eigenvectors corresponded to higher frequen-
cies). Recognition from the projections of gait sequences onto this eigenspace al-
lowed identifying 10 different walkers with accuracy levels up to 100%. Egeinspace
transformation, jointly with other motion descriptors, has similarly allowed for ac-
curate automatic identification of walkers from videos in Huang et al. (1999).

PCA-based and Fourier decompositions have allowed modeling gait patterns
and successfully training machine learning systems to identify walkers. Using these
methods, some studies have been able to provide insights into the specific roles of
gait parameters in identifying the walkers. For instance, some studies mentioned
above have reported high identification accuracy using phase information (Little
and Boyd, 1998). Moreover, other analyses precisely have pointed out the impor-
tant role of phase information in walker identification, revealing that walkers were
better identified when using the magnitude spectra of gait patterns multiplied by
its respective phase, rather than when using the magnitude spectra alone (Cunado
et al., 1997; Cunado et al., 2003). These observations can be surprising, as phase in-
formation did not seem to play a major role in automatic gender classification of gait
(Troje, 2002a). This illustrates how the encoding of identity in motion patterns is still
unclear and how computational, including machine learning, analyses of motion
can contribute to further determining the motion features that carry identity.

In more recent studies, the discriminant representations provided by deep neural
networks have allowed automatically identifying walkers from their gait (Babaee
et al., 2019; Huynh-The et al., 2020; Liu et al., 2018) or “re-identifying” them (i.e.,
re-associating a specific walker across non-overlapping cameras) (Yan et al., 2016),
using RGB and depth videos. However, these features are often hard to interpret.
Moreover, all of the identification methods presented above have been applied to
gait, which is very specific. Gait patterns present a temporal behavior quite easy to
model, in particular using sine functions. That is hardly the case of SL movements,
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which involve a wide variety of motion patterns, from various body parts and within
a continuous and complex stream.

All of the methods mentioned so far in this chapter form the theoretical founda-
tions of the computational models that will be developed in the present thesis, but
some recent studies have been particularly inspiring in how machine learning mod-
els can extract relevant information from motion data that are neither defined by
a clear invariant temporal behavior nor synchronized in time across motion exam-
ples and individuals. For instance, a machine learning model has been successfully
trained to identify dancers (Carlson et al., 2020) from time-averaged statistics of 3D
full-body mocap data. Using a non-linear classifier (Support Vector Machine), the
mocap data of 73 individuals dancing freely to music allowed for automatic per-
son identification with a 94.1% accuracy, across eight musical genres. As shown in
Figure 4.11, the performance of the model was significantly higher for person iden-
tification than for musical genre classification, despite a lower chance level (1.37%
compared to 12.5%). This study has demonstrated that the identity of a dancer may
be encoded by the covariance of 3D movements between specific body markers.

FIGURE 4.11: Accuracy of the model of Carlson et al. (2020) for automatic clas-
sification of musical genre and for person identification (termed as “participant
classification” in the original study) from dancing mocap data, per musical genre.

Interestingly, the results of Carlson et al. (2020) support that most of the criti-
cal information for identifying dancers was conveyed by motion kinematics, as for
the automatic person identification (Zhang and Troje, 2005) and gender classification
(Troje, 2002a) of walkers. Similarly, for the automatic evaluation of gesture expertise,
a linear regression model trained by Tits (2018) has been able to accurately predict
the level of expertise from gesture in Taijiquan, based on mean and standard devia-
tion of position and velocity. As a reminder, unlike this statistical-based approach, all
the gesture evaluation models presented in Section 4.1.5 relied on temporal, frame-
by-frame, comparisons of the different gestures to assign an accurate expertise level.
Of all the machine learning models mentioned in this chapter, a summary of those
of particular relevance for the present thesis is presented in Table 4.1. The general
framework shared by all these models can also be found in Section 4.3, with the
additional final step related to motion synthesis and visual feedback.
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TABLE 4.1: Summary of important machine learning (ML) models of motion, from
various motion representations and for various automatic problems.

Study Type of
motion

Problem Motion features Dimension
reduction

ML model

Young and
Reinkensmeyer
(2014)

Diving Evaluation of expertise PCA-based:

– Eigenpostures

– Their temporal curves

– The body center 3D posi-
tion

– The splash area vector

– The board tip 3D position

PCA Linear regression

Zago et al.
(2017a)

Karate Evaluation of expertise PCA-based:

– Eigenpostures

– Their temporal curves

– The CoM 3D position

– The CoM 3D velocity

PCA Linear regression

Troje (2002a) Gait Gender classification PCA-based:

– The average posture

– Eigenpostures

– The fundamental frequency

– The relative phases

PCA Linear regression

Troje (2002b) Gait Gender classification Fourier-based:

– The average posture

– Key postures (related to
harmonics)

– The fundamental frequency

PCA Linear regression

Zhang and Troje
(2005)

Gait Person identification Fourier-based:

– The average posture

– Key postures (related to
harmonics)

PCA Nearest neigh-
bor (Euclidean
distance)

Carlson et al.
(2020)

Dancing Person identification Statistical-based:

– Covariances of velocity for
all body markers in 3D

L1-norm
SVM

L2-norm SVM

Taken together, these results call for further investigation into the role of kine-
matic cues in the perception of an individual’s identity, in particular for SL. As al-
ready mentioned, one specific aspect of SL is to be governed not only by biome-
chanic rules, but also by linguistic ones, which may thus reveal SL-specific signa-
tures for signers’ identity. The present thesis aims to test both frame-by-frame and
time-averaged statistical approaches. Still, as shown for speaker identification in the
auditory domain (Latinus and Belin, 2011; McDermott et al., 2013), it is hyposethized
that statistics may provide a particularly well-suited description to extract identity
information, as identity is a time-invariant property that humans are able to recog-
nize from different utterances of the same individual. Moreover, in addition to the
determination of motion features that allow for signer identification, the further ob-
jective of this thesis is to manipulate the discriminant features in motion generation
models, in order to control the identity of signers in the movements of SL anima-
tions.
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4.3 From automatic recognition to synthesis

We mentioned several times in this chapter the potentials brought by PCA and PM
decomposition (see Section 3.2.4) in terms of dimensionality reduction. One other
main advantage of PM decomposition is that it allows resynthesizing PMs in the
original 3D space. Motion sequences are generated from a linear combination of
the PMs, whose temporal weights can be manipulated in order to either amplify or
reduce the impact of specific PMs in the synthesized motion. It has been widely
used for evaluating the quality of gestures (see Section 4.1.5), as it provides athletes
with a visual feedback highlighting the aspects of specific motion patterns that can
be modified in order to improve their performance. In that regard, these methods
could also help sports coaches and facilitate motor learning in various domains, such
as sports but also music performance.

This technique can be generalized to many other types of motion representations
and for the manipulation of many other attributes, such as gender or identity. The
general framework can be defined as follows (for further details about the specific
models, see Table 4.1):

• First, the motion data are described using a given representation, or feature
vector, which often includes various features (e.g., PM posture vectors, their
temporal weightings and the CoM positions and kinematics in Zago et al.
(2017a), or the average posture vector, PM posture vectors and their respec-
tive phase and frequency in Troje (2002a)).

• Very often, the dimensionality of this feature vector is reduced using tech-
niques such as PCA (Zago et al., 2017a; Young and Reinkensmeyer, 2014; Troje,
2002a; Tits, 2018) or L1-norm SVM-based feature selection (Carlson et al., 2020).

• Then, a machine learning model (e.g., linear regression in Zago et al. (2017a),
or L2-norm SVM in Carlson et al. (2020)) is trained on the feature vectors of
the training data, in order to accurately predict the desired output from the
feature vectors of novel data. To do so, the machine learning model optimizes
the weights of its mathematical function that links the input variables to the
output variable. These classifier weights can then be scrutinized in order to
find the motion features that have been used.

• Features that have been assigned a high weight by the classifier are diagnostic
for the classification (e.g., gender classification or person identification). There-
fore, novel motion sequences can be synthesized by either amplifying or reduc-
ing the importance of these features in the movements. A convincing illustra-
tion of that concept is shown for faces in Figure 4.9 (O’Toole et al., 1993) where,
depending on the weight given to the second eigenface in the reconstruction,
the reconstructed face could appear to be feminine or masculine.

The fourth step of the framework presented above raises a main question for
the synthesis of moving patterns with controlled attributes: how to amplify (or re-
duce) the importance of discriminant features in the synthesized movements? The
answer to that question is entirely dependent on the motion representation used in
the first step. As mentioned in the first paragraph, many studies have used PMs
to describe the motion data, which were easily manipulated based on their impact
on classification. For that aim, the PM posture vectors and their respective weights
were modified in the linear combination used to reconstruct the original data (Young
and Reinkensmeyer, 2014). In fact, by contrast with face synthesis, one of the main
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difficulties of this procedure is to properly model the temporal behavior of the syn-
thesized movements while manipulating certain aspects related to the attribute of
interest. In Troje (2002a), this problem was overcome by modeling the temporal
curves of the main PMs using sine functions. Based on the weights that the classi-
fier assigned to the different features (i.e., the average posture, the four PM postures
and the phases and frequencies defining their temporal sine curves) in order to ac-
curately predict gender of the walkers, new motion patterns could be synthesized
while manipulating the gender attribute (see Figure 4.12).

FIGURE 4.12: Interactive application of Troje (2002a) allowing for the synthesis of
walking patterns as stick figures, while manipulating the gender attribute. Users
can choose whether to impact all the motion features related to gender, or only

structural (“only structure”) or kinematic (“only dynamics”) ones.

Various other methods, using other motion representations, have been applied
to generate new motion patterns. For instance, Hidden Markov Models (HMM)
(Tilmanne et al., 2012; Tilmanne et al., 2014) as well as Gaussian modeling (Tilmanne
and Dutoit, 2010) have been used in order to manipulate the style of synthesized
gaits. Both these methods have allowed modeling temporal aspects of the move-
ments, such as the duration of cycles in the gait (Tilmanne and Dutoit, 2010). For
gesture evaluation, Tits (2018) has used a Generalized Regression Neural Network
(GRNN) based on evaluation scores in order to synthesize motion animations repre-
sentative of a given skill level. From a motion example executed by the user, the syn-
thesis model aimed to provide a visual feedback showing the user how to improve
the quality of his or her movement. In addition to the GRNN, scaling methods, in-
cluding temporal scaling methods (i.e., Dynamic Time Warping) were used in order
to be aligned with the sequence of the user and thus provide consistent feedback.

Therefore, depending on the motion representations that seem best suited for
signer identification, one objective of the present thesis is to develop synthesis algo-
rithms that allow manipulating the features that carry identity information in novel
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SL motion animations. Based on this theoretical framework, we propose a machine
learning model for the automatic identification of signers from motion statistics (see
Chapter 9) and present synthesis algorithms for re-generating SL mocap discourses
while controlling the discriminant motion statistics that carry identity information,
according to the identification model (see Chapter 10).

Part I Summary

From a very young age, humans develop an impressive ability to decode bio-
logical movements. For instance, whether from walking, dancing or jumping
movements, human observers can recognize human attributes, such as the
identity of the moving person. This raises the possibility that signers could
be identified from their movements when signing, in the same way as speak-
ers can be identified from their voice when speaking. For now, it is unclear
whether Sign Language (SL) users actually manage to identify signers from
motion and which parameters of the movements allow for the identification.
Determining these parameters and controlling them in the animation of vir-
tual signers (e.g., for anonymization purposes, see Chapter 1) is a complex
task, as SL involves a wide variety of motion features. The present thesis aims
to develop computational models for the description of these complex move-
ments (Part II) and to uncover the motion information that allows inferring
the identity of a signer (Part III). For that aim, models could be used to pro-
pose novel relevant descriptors for SL movements and to gain insights into
their complex properties, using 3D motion capture data. Furthermore, these
models could be tested in order to shed light on the motion features that allow
predicting the identity of the signers, as previously done for the recognition of
expertise, gender or identity from non-SL movements. The discriminant fea-
tures could then be controlled in SL animations in order to change the identity
perceived by human observers when viewing the movements.
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Part II

Kinematic analysis of Sign
Language
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Chapter 5

MOCAP1: 3D mocap corpus of
spontaneous French Sign Language

The 3D SL mocap data used in the present thesis were taken from a previously re-
ported corpus: MOCAP1 (Benchiheub et al., 2016b; Benchiheub et al., 2016a). This
corpus provides highly accurate 3D motion recordings of spontaneous French Sign
Language (LSF) across multiple signers, which makes it ideally suited for the aims of
this thesis (Section 5.1). From the mocap data of the original corpus (Section 5.2), we
present some further contributions, including new data representations and meth-
ods of preprocessing, normalization and visualization (Section 5.3). Note that, al-
though the following contributions (from Chapter 5 to Chapter 10) were carried out
on LSF mocap data, most outcomes can actually be extended to all SLs. When dis-
cussing the results, we then often refer to SL (general) or SLs.

5.1 Why MOCAP1?

Up to now, the majority of SL corpora are video corpora (see Section 3.3). RGB
2D videos, jointly with depth videos, have allowed training convincing models for
the automatic recognition of SL, notably thanks to the impressive progress of deep
learning techniques (see Section 3.3.3). Moreover, recent computational methods
have been proposed to extract the trajectories of human skeletons from 2D videos
(Cao et al., 2019). Some SL recognition models can even derive the 3D trajectories
of these skeletons using deep neural networks trained on both 2D videos and 3D
motion data (Belissen et al., 2020). State-of-the-art image processing techniques, in-
cluding deep learning, could thus enable researchers in SL automatic recognition to
be satisfied with video corpora.

For SL motion analysis instead, the lack of 3D mocap corpora can be quite lim-
iting, notably in terms of spatial and temporal precision of the recorded data. For
instance, although some techniques mentioned above can be used to estimate the
2D and 3D poses of signers from 2D videos, the estimated trajectories are by defini-
tion limited to the spatial and temporal precisions of the video recording, which are
significantly lower than those provided by state-of-the-art 3D mocap setups. The tra-
jectories estimates can also be approximate (e.g., inaccurate estimate, missing body
joint or confusion between body joints) depending on the performance of the esti-
mation model. Furthermore, most SL video corpora have been created specifically
to create lexicons, to develop SL automatic recognition models or to address linguis-
tic problems, rather than to conduct motion analyses, which often makes them not
ideally suited for the questions addressed in the present thesis.

At the intersection of multiple disciplines, such as motion science, human vi-
sual perception, motion analysis and machine learning, the present thesis required
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3D motion data recorded with high accuracy and whose SL content was tailored to
our specific problems. For instance, 3D mocap corpora made with only one signer
(Malaia et al., 2008; Duarte and Gibet, 2010) hardly allow developing automatic
models of person identification, as multiple identity labels are needed to train the
model. Furthermore, most existing 3D mocap SL corpora created for motion analy-
ses have been designed very specifically for the purposes of the corresponding study.
Therefore, they often provide a limited representation of SL movements in addition
to being of short duration. Finally, not only has a limited amount of accurate and
well-suited 3D mocap SL data been recorded, but they are often also not publicly
available.

MOCAP1 is a 3D mocap SL corpus of spontaneous French Sign Language (LSF)
and it has been made fully available (Benchiheub et al., 2016b; Benchiheub et al.,
2016a). In brief, the part of MOCAP1 used in the present thesis provides sponta-
neous LSF descriptions of various pictures produced by multiple signers. The LSF
productions are termed spontaneous as signers freely described pictures without any
constraints in time, signs or structure. Therefore, this corpus allows investigating
the complex structure of SL movements in more realistic conditions than other cor-
pora (e.g., ones made in isolation) and how to model it for application purposes
(see Chapters 6 and 7). Furthermore, the LSF movements of MOCAP1 have been
recorded across different signers, which makes it well suited for the study of person
identification. For instance, insights could be gained into the human ability to infer
identity from the movements of signers in spontaneous SL discourses (see Chapter
8), into the further specific aspects of motion that carry identity information (see
Chapters 8 and 9) and into how to manipulate these identity-specific features in the
movements of SL animations, not only for isolated signs but also for real-life inter-
actions (see Chapter 10). To the author’s knowledge, the only other 3D mocap SL
corpus that could have been used to conduct the present studies is the CUNY ASL
corpus (Lu and Huenerfauth, 2014). Testing the models developed in this thesis on
other corpora, such as CUNY, could be of great interest in future work, notably in
order to assess the extent to which our results would generalize to other motion data
and other linguistic contexts.

5.2 Description of the original corpus

This thesis investigated movements of signers taken from picture descriptions in
LSF, which are one part of the whole MOCAP1 corpus (Section 5.2.1). Thanks to an
optical state-of-the-art mocap setup, this corpus provides 3D motion data of various
upper-body parts involved in signing (Section 5.2.2). Extensive description of the
corpus collection can be found in the original work of Benchiheub (2017).

5.2.1 Participants and Sign Language discourses

In the original MOCAP1 corpus, eight deaf fluent signers have used French Sign
Language (LSF) during five different tasks: (1) description of pictures, (2) translation
of short journalistic texts, (3) description of procedures for transport, (4) storytelling
based on pictures and (5) storytelling based on movies. The signers were aged from
24 to 58 years old and all of them had high fluency with signing in LSF. Four of
them were native signers, two of them learned LSF at the age of 2 and two of them
learned LSF later (after 8 years-old). Although being all fluent in LSF, the signers had
grown up in different family environments. Half of the signers had grown up with
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hearing relatives while the other half had deaf people in their family environment.
The dominant hand of all signers was the right hand.

All of the recorded LSF discourses were monologues. Of the five tasks, only the
mocap data of the first one (i.e., picture description) have been publicly released
(Benchiheub et al., 2016a). The studies carried out in the present thesis were based
on this description task. For this task, signers freely described the content of 25
pictures (see three examples in Figure 5.1 and all the 25 pictures in Appendix A).
Pictures were chosen to show specific geometric shapes (e.g., rounded, horizontal
and vertical forms in Figure 5.1, respectively). After looking at a given picture for a
few moments, signers were asked to spontaneously describe it in LSF. Using picture
description as a task particularly allowed eliciting spontaneous SL discourses, which
are more likely to reflect real-life SL productions. For instance, eliciting SL discourse
with fixed sentences (e.g., in French) would constrain the SL syntax, biased by the
sentence language (e.g., French) syntax system. Furthermore, picture descriptions
elicited a wider variety of SL linguistic forms beyond lexical signs, such as depicting
ones. For further details about the four other tasks included in the original MOCAP1
corpus, see Benchiheub (2017).

FIGURE 5.1: Examples of pictures described by the signers in MOCAP1 corpus
(Benchiheub, 2017).

5.2.2 Motion capture data

FIGURE 5.2: Arrangement of the markers used in MOCAP1 corpus (Benchiheub,
2017). Left: marker positions seen as mocap data. Right: markers placed on one

signer of the corpus.

3D mocap data and 2D video data were recorded during the LSF productions.
Using an optical mocap system equipped with 10 cameras (Optitrack S250e), the 3D
mocap data consisted of the upper-body movements of the signers as well as their
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facial expressions, recorded at 250 fps. For that aim, a set of 40 passive retroreflec-
tive markers was used. Signers were wearing suits provided with 23 markers to
record the movements of upper limbs, including shoulders, elbows, wrists, hands
and chest. Four additional markers were attached to a cap in order to record the
head movements. A set of 13 markers was used to record the movements of various
facial parts, including eyebrows, eyelids, cheeks, chin and mouth. The arrangement
of the markers is shown in Figure 5.2. Finger movements were not recorded. All
markers were described as 3D global Cartesian coordinates in an external reference
system with the center of the room as origin. For further technical details about the
recording protocol, such as camera placement, camera settings or calibration, see
Benchiheub (2017).

In parallel with 3D mocap data, 2D videos were recorded using a classic HD
videocamera sampled at 25 fps. The mocap recordings then could be downsampled
from 250 to 25 fps in order to be synchronized with the video data for corpus an-
notation. Different types of SL movements were manually annotated using ANVIL
(Kipp, 2001), notably in order to distinguish signed content from transitional (i.e.,
between two signed entities) movements. As shown in Figure 5.3, the annotation
data provide information about eye gaze, manual signs and movements of the two
hands. An extensive description of the annotation data is out of the scope of this
thesis, as they were finally not used (for further details, see Benchiheub (2017)).

FIGURE 5.3: Manual annotation of MOCAP1 corpus (Benchiheub, 2017) using
ANVIL (Kipp, 2001). The annotation tracks entitled in French (bottom) stored
information about: eye gaze (Regard), manual signs (Main droite - Signe) and move-

ments of the two hands (Main droite/gauche - Mvt).

5.3 MOCAP1-v2 and the PLmocap library: novel tools for the
analysis of Sign Language motion

For now in MOCAP1, the mocap data of only four signers have been made publicly
available (referred to as Signers 1, 4, 5 and 6, in Chapters 6, 7, 8, 9 and 10). The
mocap data of the two additional signers (Signers 2 and 3) present in this thesis was
released as part of a second corpus version: MOCAP1-v2. The motion of the last
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two signers (Signers 7 and 8) could finally not be used, because of recording condi-
tions making the data non-recoverable. Beyond the additional data of Signers 2 and
3, further processing of MOCAP1 mocap data has been carried out and is available
in MOCAP1-v2. Most of the methods developed in that regard have been publicly
released as part of the PLmocap Python library1. First, a slightly new representa-
tion of the mocap data has been proposed (Section 5.3.1). Then, further processing
methods have been implemented in order to normalize the mocap data with respect
to structural features including size, shape and posture of the signers (Section 5.3.2).
Finally, some visualization tools have been developed for the purposes of SL motion
analysis, including the studies presented in Chapters 6, 7, 8, 9 and 10 (Section 5.3.3).

5.3.1 Preprocessing the original mocap data

In the first task of MOCAP1, 25 picture descriptions were recorded. From these 25
mocap recordings, only 24 were taken into account in our version, as one of them
was not available for one of the additional signers (Signer 3). Correspondences be-
tween the data present in the original version of MOCAP1 corpus and those present
in MOCAP1-v2 can be found in Appendix B. Moreover, from the 27 original body
markers, we derived 19 secondary markers that optimally describe the major joints
of the body, as previously done in many motion analysis studies (Carlson et al., 2020;
Troje, 2002a; Toiviainen et al., 2010). This notably eased subsequent visualizations
and synthesis computations, using stick figures or Point-Light Displays (PLDs). As
shown in Figure 5.4, the derived markers were (L = left, R = right, F = front, B =
back): (1) pelvis, (2) stomach, (3) sternum, (4) LB head, (5) LF head, (6) RB head, (7)
RF head, (8) L shoulder, (9) L elbow, (10) LB wrist, (11) LF wrist, (12) LB hand, (13)
LF hand, (14) R shoulder, (15) R elbow, (16) RB wrist, (17) RF wrist, (18) RB hand,
(19) RF hand.

FIGURE 5.4: The 19 markers of MOCAP1-v2 in the “T” reference posture.

1PLmocap library. Python code available here: https://github.com/felixbgd/PLmocap.

https://github.com/felixbgd/PLmocap
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The 13 original facial markers were not included in this version of the dataset, as
our main analyses and processing techniques focused on more global movements of
the upper limbs, based on the hypothesis that they may be the most important part
of the motion features involved in person identification. Moreover, the social issue of
signer identification from virtual signers has been raised (including by professional
journals that provide accessible content in SL, such as Media’Pi!2 in France) while
animation models rarely, or only partly, convey facial expressions of the signers.
Still, further investigations of the role of facial expressions in signer identification,
as previously done for intonation (Weast, 2008), could be of great interest.

The positions of the 19 secondary markers were originally provided as 3D Carte-
sian coordinates in an external reference system (Benchiheub et al., 2016b). Orienta-
tions of the body joints were not available from the original corpus. In the dataset
presented here, these positions were defined in reference to the pelvis (used as the
origin) in order to allow for a better comparison between individuals across mo-
cap examples (see Section 3.2.1 for further discussion about external versus body-
centered reference systems). PLmocap Python library also provides methods to
transform the mocap data from a global coordinate system to a local coordinate
sytem (i.e., that defines each marker in reference to his parent marker). For instance,
the position of the wrist can be defined in reference to the position of the elbow.

5.3.2 Normalization of structural features

In Section 3.2.1, we discussed how the study of human movements can be influenced
by multiple factors, in particular ones related to anthropometric measures. In that re-
gard, two classes of information can be dinstiguished when studying motion science
and motion perception: structural and kinematic information. Motion-mediated
structural features were defined by Troje et al. (2005) as the invariant information
specifying the structure which is put into motion. Structural features thus reveal in-
formation about the average posture, and the anthropometric characteristics of the
person’s body. For structural features to be perceived, PLDs must be in motion.
Motion-mediated structural features thus differ from static information, which can
be perceived from a static PLD image. However, although they are inferred from
moving PLDs, structural features also differ from kinematic ones, which refer to the
motion of the body markers itself.

In some of the following studies, the impact of anthropometric measures had
to be removed, in order to allow comparing and manipulating the movements of
multiple signers per se, irrespective of anthropometric differences across individu-
als (Chapters 6, 7 and 10). Furthermore, in order to evaluate the distinct roles of
structural and kinematic information in automatic signer identification (Chapters 8
and 9), the original mocap data (referred to as ‘ORI’) used in the present study were
gradually normalized in three steps (illustrated in Figure 5.5), with respect to size
(SI), shape (SH) and posture (POST) of the signers, respectively3. Size was defined
as the overall length of the body of the signer along the three dimensions. Shape
was defined as the individual lengths of the signer’s body segments, such as shoul-
der width, arm length or dimensions of the head. Posture was defined as the average
position of the signer’s body markers (i.e., how the signer holds his or her body) over
all mocap examples. Compared to the two-step normalization procedure proposed

2https://media-pi.fr/
3The visual perception study of Chapter 8 is an exception: in this study, human observers viewed

non-normalized PLDs and the influence of anthropometric cues on their decisions was assessed a
posteriori using computational methods.

https://media-pi.fr/
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by Troje et al. (2005), the three normalization steps proposed here allowed us to dis-
tinguish the role of postural information from the one of size and shape, which latter
are related to the dimensions of one’s body, regardless of his or her average posture.

FIGURE 5.5: The three cumulative steps of normalizations of structural features:
The stick figures correspond to a given frame of the description of the first picture
by Signer 3. For each step, the normalized and non-normalized stick figures are
compared. The original motion data (i.e., without any normalization) are referred

to as ‘ORI’.

Size normalization (SI) was carried out as in Troje et al. (2005). In MOCAP1
corpus, reference “T” postures had been recorded for each signer, at the beginning of
each mocap recording (Figure 5.7a). In order to estimate body size differences across
signers (see Figure 5.7a), we additionally computed a global reference posture by
averaging the reference postures of all signers. The slope of the regression between
the 3D positions of each individual reference posture and of the global reference
posture was then computed (see Figure 5.6). These slopes defined relative sizes for
each signer, which are shown in Table 5.1.

TABLE 5.1: Relative sizes of signers computed from their mocap data, using linear
regression.

Signer Relative size

Signer 1 1.000

Signer 2 1.075

Signer 3 0.924

Signer 4 1.003

Signer 5 0.996

Signer 6 1.003

As shown in Figure 5.7b, after dividing the mocap 3D coordinates of signers by
their relative sizes, they all had the same size, while keeping intact shape (i.e., the rel-
ative positions of the articulations). Shape normalization (SH) was then computed
from the new reference “T” postures of the size-normalized data of each signer (Fig-
ure 5.8a). A new global reference “T” posture was defined as the average across
signers. Shape-normalized data were obtained by subtracting the individual refer-
ence postures from each frame then adding the global reference posture. As shown
in Figure 5.8b, after that transformation, all signers had the same reference “T” pos-
ture (i.e., same relative positions of the articulations).
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FIGURE 5.6: Scatterplots of the 3D positions of the individual reference posture
of each signer, as a function of the global reference posture averaged across all
signers. For sake of clarity, computations shown in this figure were made with the
first four signers only. Dots represent the marker positions along X (red), Y (green)
and Z (blue) axes, respectively. Red lines represent the linear curve estimated by
the regression model. The slope of this line defines each signer’s relative size. Blue
dotted lines represent the linear curve y = x. Signers whose regression curve (red)
is near the blue dotted line (e.g., Signer 1) have a body size near the global average

across signers and thus will not be affected significantly by the normalization.

Finally, posture normalization (POST) was applied to shape-normalized data,
which are also size-normalized. Posture-normalized data were obtained by subtract-
ing the average posture of each signer (i.e., averaged over time over all their mocap
examples, see Figure 5.9a) from each frame, then adding the global average posture
computed over all signers. As shown in Figure 5.9b, after these three normalizations,
all signers had the same size, same shape, and same average posture.

5.3.3 Visualization tools

Various visualization tools have been developed in Python for the aims of the
present thesis. They have been publicly released as part of the PLmocap Python
library and can be downloaded and re-used here: https://github.com/felixbgd/
PLmocap. All methods can be used to visualize motion data from 2D/3D Cartesian
coordinates of the body markers. A summary of these functions and of examples of
use are shown in Table 5.2 and in Figures 5.10 and 5.11.

https://github.com/felixbgd/PLmocap
https://github.com/felixbgd/PLmocap
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FIGURE 5.7: Size normalization: original (A) and size-normalized (B) reference
“T” postures of the mocap data of the first four signers.
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FIGURE 5.8: Shape normalization: size-normalized (A) and shape-normalized (B)
reference “T” postures of the mocap data of the first four signers.
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FIGURE 5.9: Posture normalization: shape-normalized (A) and posture-
normalized (B) average postures of the mocap data of the first four signers.
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TABLE 5.2: Visualization methods developed as part of the PLmocap library.

Method name Description Example of use

data_viz_3d Animated real-time visualization of mo-
cap data in the 3D space, shown as Point-
Light Display or stick figure. One specific
body marker can be highlighted.

Figures 5.10a and 5.10b

data_viz_2d Animated real-time visualization of mo-
cap data in the 2D frontal plane, shown as
Point-Light Display or stick figure. One
specific body marker can be highlighted.

Figures 5.10c and 5.10d

plot_frame Visualization of 1 given frame of mocap
data in 2D or 3D, shown as Point-Light
Display or stick figure.

Figure 5.4

compare_Nframes Comparison of N postures of mocap data
in the 2D frontal plane.

Figures 5.7, 5.8 and 5.9

video_PL Generation of a mocap video as Point-
Light Display in 2D in either the frontal,
sagittal or transverse plane, exported in
MPEG-4 format (using ffmpeg).

Point-Light videos4

plot_2frames Visualization of mocap data in 2D at 2
given frames, in either the frontal, sagit-
tal or transverse plane. The 2 postures are
shown as overlapped gray and black stick
figures.

Figure 5.11a

plot_3frames Visualization of mocap data in 2D at 3
given frames, in either the frontal, sagit-
tal or transverse plane. The 3 postures are
shown side-by-side. Overlapping stick
figures of two different individuals can be
plotted for comparison.

Figure 5.11b

4Mocap video examples used in the present thesis are available here: https://zenodo.org/
record/5215804#.YRzcFtMzba4.

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
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(A) (B)

(C) (D)

FIGURE 5.10: Real-time visualization of mocap recordings (here shown as screen-
shots taken at specific frames during the animation): 3D visualization of the data
shown as Point-Light Display (A) or stick figure (B). 2D visualization in the frontal
plane of the data shown as Point-Light Display (C) or stick figure (D). In all figures,

marker 18 (RB hand) is highlighted.
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(A)

(B)

FIGURE 5.11: 2-frame (A) and 3-frame (B) visualizations of the mocap data shown
as stick figures in the frontal plane. The movement can be described showing key
frames (e.g., minimum, mean and maximum of the movement). In the 2-frame
example (A), minimum (gray) and maximum (black) of the movement are shown.
In the 3-frame example, (B), the movement execution is compared between Signer

1 and Signer 3. These representations were mainly used in Chapter 7.
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Chapter 6

How fast is Sign Language? A
reevaluation of the kinematic
bandwidth

This chapter tackles a traditional problem of signal processing: spectral estimation.
As previously mentioned in Section 4.1.1, the goal of spectral estimation is to charac-
terize the frequency content of a temporal signal. In particular, given the hypothesis
that a signal is composed of a limited number of frequencies in addition to noise, one
main objective of the estimation is to find the location and intensity of these actual
frequencies in order to distinguish them from noise. This problem has been widely
investigated in various domains, such as neuroscience where techniques have been
developed to remove unwanted noise components from neurophysiological record-
ings (e.g., sensor noise related to electronics, physiological noise related to brain
activity other than of interest or environmental noise related to other signals present
in the recording area) (De Cheveigné and Simon, 2007; De Cheveigné and Simon,
2008; Narayan, 2018). In the case of mocap data, noise components are mainly due
to measurement conditions (e.g., calibration, light interference, marker fixation).

In this thesis, we investigated spontaneous Sign Language (SL) movements us-
ing 3D mocap data sampled at high frame rates and thus subject to noise. Filtering
the mocap data using a reasonable cutoff frequency could thus provide a mean-
ingful representation of the actual motion for subsequent analyses, while removing
unwanted noise components. However, little is known about the kinematic band-
width of SL, apart from isolated signs. Prior studies examining isolated signs have
suggested that SL could be limited to relatively low frequencies. This is unlikely to
be appropriate for real-life conditions (i.e., spontaneous productions) where signs
are produced faster and are combined with several other rapid motion features (Sec-
tion 6.1). The study presented in this chapter investigated the spectral content of the
MOCAP1 multi-signer mocap corpus of spontaneous signing in French Sign Lan-
guage (LSF), using Power Spectral Density estimation and residual analysis of the
mocap data (Section 6.2). In order to further address the importance of kinematic
bandwidth estimation for the purposes of this thesis, bandwidth limited mocap data
were used to train a preliminary machine learning model to identify the six signers
of the corpus. The performance of the model was assessed, as a function of the
used bandwidth (Section 6.3). Results are finally discussed in terms of fundamental
findings on the kinematic properties of SL and in terms of application perspectives
(Section 6.4).

This chapter is partly reproduced from Bigand et al. (2021b).
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6.1 Answers from isolated signs: how incomplete?

Human motion has been shown to lie within a range of low frequencies (i.e., below
20 Hz, see Section 4.1.1). Some studies investigating SL movements have shown
that American Sign Language (ASL) isolated signs displayed motion frequencies
within even narrower bandwidths than those of non-SL movements, such as 0–6 Hz
(Poizner et al., 1986), 0–5 Hz (Sperling et al., 1985) or 0–3 Hz (Foulds, 2004). The lim-
itation of these studies is that SL cannot be restricted to isolated signs taken out of
context. Because of coarticulation, the duration of signs is shorter when produced in
context rather than isolated (Braffort et al., 2011; Koech, 2006). In addition to lexical
signs, SL production is a continuous stream that involves multiple features, includ-
ing rapid manual (e.g., pointing) and non-manual (e.g., eye gaze) movements. It
can therefore be hypothesized that the actual bandwidth of SL motion is wider than
previous estimates. As a matter of fact, one of the few studies that have investigated
real conversation conditions precisely have indicated that a 5-fps video sampling
rate was too low for a comfortable SL conversation (Cherniavsky et al., 2007). Ad-
ditionally, the studies mentioned above have assessed the signed movements of one
individual, which does not account for differences in speed between signers.

The aim of the present study was to overcome these limitations by evaluating
the spectral content of spontaneous, continuous, signing and over multiple signers.
For that aim, a two-step computational analysis of the mocap data was conducted
(Section 6.2). Power Spectral Density estimation and residual analysis were applied
to the spontaneous LSF mocap data of the six signers presented in the MOCAP1-
v2 corpus (see Section 5.3 for corpus description). To the author’s knowledge, the
present study is the first to use this computational workflow for SL. Moreover, the
high precision of the 3D mocap system used for the recordings allowed for the eval-
uation of higher frequencies compared with state-of-the-art studies on SL (250 fps
vs. 30 fps (Foulds, 2004; Sperling et al., 1985)). Note that interesting observations
had been made on the frequency content of ASL continuous discourses for avatar
animation purposes in McDonald et al. (2016). We further provide a discussion of
our results as compared to the latter study in the present thesis (see Section 6.4). Us-
ing a different computational approach, we were able to complement the findings of
McDonald et al. (2016) with further quantitative analyses of the mocap data in order
to determine the bandwidth to be used when modeling SL movements in real-life
conditions.

6.2 Frequency content estimation of spontaneous LSF mocap

Similarly to Skogstad et al. (2013), a two-step analysis was conducted in order to de-
fine the optimal kinematic bandwidth of SL. First, the frequency content of the move-
ments of each signer was estimated by measuring Power Spectral Density (PSD)
(Section 6.2.1). Then, a residual analysis of the mocap data allowed further distin-
guishing actual motion information from noise components (Section 6.2.2) and thus
choosing the optimal cutoff frequency for low-pass filtering (Section 6.2.3). The main
findings of these estimations are that SL involves finer motion patterns than non-SL
movements, but also faster motion when the SL discourse is produced in a sponta-
neous, realistic, manner rather than in isolation (Section 6.2.4).
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6.2.1 Power Spectral Density estimation

Power Spectral Density (PSD) was estimated using the Welch method (Welch, 1967).
Trajectories were split into overlapping segments over time, then the periodogram
(i.e., magnitude squared of the windowed Discrete Fourier Transform) of each seg-
ment was computed. The PSD estimates were finally obtained by averaging the
periodogram values over all segments. The present analysis was carried out using a
Hann window of size 250 (1 sec), with 66% overlap.
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FIGURE 6.1: Power Spectral Density estimation of the mocap data of the six sign-
ers. Dashed horizontal lines indicate the noise floor estimate, for each signer. Error

shaded regions indicate standard deviations over mocap examples.

The PSD estimates of the mocap data of the six signers are shown in Figure 6.1.
The PSD values were averaged over body markers and over mocap examples. Noise
floors were estimated by a visual analysis of the PSDs. Signers 1, 2, 4 and 6 reported
similar noise floor (-6 dB/Hz), while it was higher for Signer 5 (-2 dB/Hz) and addi-
tionally higher for Signer 3 (+2 dB/Hz). Most of the power distribution lies between
0 and 5 Hz, with a 3-Hz peak, for all signers. Still, higher frequencies seem to con-
tribute significantly as the associated PSD values are distinct from the noise floor up
to 50 Hz (or higher, e.g., for Signer 3).

6.2.2 Residual analysis

In order to further understand whether these higher frequencies related to actual
motion information or to measurement noise, a residual analysis was conducted in
the same way as in Winter (2009). This method consists of measuring the average dif-
ference between the unfiltered and filtered signal, over several cutoff frequencies. In
this study, the mocap data were low-pass filtered using a fourth-order Butterworth
filter.

Results of the residual analysis between unfiltered and filtered mocap data are
displayed in Figure 6.2. As for PSD estimation, the residual values were averaged
over markers and examples. The estimates of noise residuals were obtained by defin-
ing the regression line from 40 Hz to f ps/2 Hz. Indeed, theoretically, the residual
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FIGURE 6.2: Residual plot between the unfiltered and filtered mocap data of the
six signers, as a function of the filter cutoff frequency. Dashed lines indicate the
noise residual estimate, for each signer. Error shaded regions indicate standard

deviations over mocap examples.

curve of noise is a linear curve from an intercept at 0 Hz to the ( f ps/2 Hz, 0 mm)
point.

This 0-Hz intercept provides an estimate for the Root Mean Square (RMS) of
noise, following the definition of Winter (2009). In other words, this value reflects
the mean displacement of sensors caused by measurement noise. Estimated RMS of
noise were similar for Signer 1 (0.11 mm), Signer 2 (0.12 mm), Signer 4 (0.14 mm) and
Signer 6 (0.14 mm). Higher values were reported for Signer 5 (0.19 mm) and addi-
tionally higher for Signer 3 (0.37 mm). These results confirmed the PSD estimation,
suggesting that the mocap data of Signers 3 and 5 were the noisiest.

Interestingly, Figure 6.2 shows that the residual values relating to Signer 5 (cyan
curve) are lower than those of Signers 2, 4 and 6 (yellow, red and magenta curves,
respectively) in low frequencies (below 8 Hz), but higher in high frequencies (above
8 Hz). The latter high-frequency comparison is in line with the noise RMS calcula-
tions. This suggests that most of the actual motion information of Signer 5 may be
in lower frequencies (i.e., slower movements), while his mocap recording is noisier.

6.2.3 Choosing an optimal bandwidth

We then assessed different cutoff frequencies in order to define the optimal kine-
matic bandwidth of our data. Based on prior work, three cutoff frequencies were
compared: 6, 12 and 25 Hz. The lower frequency relates to a 1-mm residual1, 1-mm
deviations being imperceptible for arbitrary hand motion (Skogstad et al., 2013). The
upper one is the frequency for which the residual equals the noise RMS1. Using this
cutoff value, the signal distortion should equal the amount of noise allowed through
(Winter, 2009). Finally, 12 Hz is an intermediate value of great interest as it would be
the highest cutoff frequency possible with most video systems (sampled at 24 fps),
following the Nyquist-Shannon theorem (Nyquist, 1928; Shannon, 1949).

1When different frequencies were possible across individuals, the maximum frequency was chosen,
in order to minimize signal distortion.
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When looking at slow motion (Figure 6.3), the 6-Hz and 12-Hz filters seem to
be optimal solutions for denoising the data. The 6-Hz filter might even be slightly
more promising, as it filters out more artifacts than the 12-Hz one. However, this
finding is not confirmed with rapid motion (Figure 6.4), where filtering at 6 Hz can-
cels important fast movements. For instance, the residual values relating to Signer 3
almost double from 6 Hz (0.56 mm) to 12 Hz (1.00 mm). Interestingly, the 12-Hz filter
smoothes out most of the signal, while keeping fast oscillations intact. Filtering at 25
Hz instead of 12 Hz does not seem to add substantial information and differences in
the residuals are negligible (M = 0.08 mm, SD = 0.04).
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FIGURE 6.3: Example of slow motion: Z-axis trajectory of the right hand of Signer
5, for mocap example 5. Subplots allow for comparison between unfiltered and

filtered ( fc = 25, 12 or 6 Hz) mocap data.
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FIGURE 6.4: Example of rapid motion: Z-axis trajectory of the right hand of Signer
3, for mocap example 17. Subplots allow for comparison between unfiltered and

filtered ( fc = 25, 12 or 6 Hz) mocap data.
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According to these results, the conclusions about the three proposed bandwidths
for SL motion are summarized as follows:

• 0–6 Hz: The main movements are captured and the noise artifacts are drasti-
cally reduced. However, rapid motion is filtered out, which distorts the motion
representation for faster signers.

• 0–12 Hz: The fastest movements are captured while the noise artifacts are still
importantly reduced.

• 0–25 Hz: Noise artifacts are allowed through, while the additional information
compared with a 0–12-Hz range is negligible, as regards residual values.

6.2.4 Spontaneous Sign Language movements: finer and faster

Based on the combined results of residual analysis and data visualization, 0–12 Hz
was found to be a reasonable bandwidth for our SL mocap dataset. This is notice-
ably wider than the 0–3-Hz (Foulds, 2004) or 0–6-Hz (Poizner et al., 1986) previously
reported bandwidths. More specifically, a 0–6-Hz range was not able to account for
the rapid signed motion. This range was associated with a 1-mm residual, which
was reported to be an unsignificant distortion for rapid arbitrary motion (Skogstad
et al., 2013). A 1-mm deviation may thus not be negligible for SL motion, suggesting
that this latter contains finer movements. This is consistent as, compared to arbi-
trary hand motion, SL obeys to specific linguistic constraints and requires precise
movements of the hands and fingers for comprehensibility (Poizner et al., 1981).
The precision of the analyzed motion may also have been caused by the high level
of expertise of the six signers, all being highly fluent in LSF.

It was not clear whether a 0–25-Hz bandwidth actually provided additional in-
formation about the real motion rather than noise. Although it was negligible here,
it might be possible that higher frequencies relate to actual motion, particularly for
fast signers. Further work measuring eye movements could also refine the relevance
of a wider bandwidth.

6.3 Why care about kinematic bandwidth estimation?

We further assessed the importance of kinematic bandwidth estimation for the pur-
poses of the present thesis. First, the estimation can impact the extraction of high-
level features derived from the mocap data, such as velocity and acceleration (Sec-
tion 6.3.1). Moreover, as such features are often the basis of machine learning models
of motion, wrong estimations of the kinematic bandwidth can further cause mislead-
ing results of the model (Section 6.3.2). These observations emphasize the need for
defining an optimal kinematic bandwidth when developing analyses and machine
learning of SL motion, in particular for the main focus of this thesis: signer identifi-
cation (Section 6.3.3).

6.3.1 The effect of kinematic bandwidth estimation on feature extraction:
the example of velocity and acceleration

Computational models rely on features derived from the trajectories of markers,
such as velocity or acceleration, which are highly sensitive to prior filtering of the
mocap data. As shown in Figure 6.5, the amount of noise is amplified at each step
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of differentiation. More interestingly, without filtering, the acceleration data are al-
most not readable, which may cause wrong interpretations of inter-individual dif-
ferences (e.g., acceleration peak of Signer 5, instead of Signer 3). Person identifica-
tion is particularly suited to further illustrate this issue, as wrong interpretations of
inter-individual differences may cause wrong predictions of the identified person.
Moreover, person identification from motion recently raised important social issues
about the confidentiality of signers in SL (see Section 1.3). Therefore, using signer
identification as an example, a machine learning model was further trained and its
performance was assessed, as a function of the used bandwidth.
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FIGURE 6.5: Z-axis velocity (left) and acceleration (right) curves of the right hand,
for all signers, for mocap example 1. Subplots allow for comparison between unfil-
tered and 12-Hz filtered mocap data. Note the scale difference of the Y dimension

for acceleration, which reflects the unrealistic values caused by unfiltered data.

6.3.2 Further implications for machine learning models of motion

The model was designed using a statistical-based approach. Statistics (mean and
standard deviation) were measured from temporal features of each mocap example.
The used temporal features were a combination of local position, velocity and accel-
eration. The identification step consisted of applying Principal Component Analy-
sis to the statistics (µpos, σpos, µvel , σvel , µacc, σacc) of all examples and finally training a
multinomial logistic regression model on the extracted Principal Components (PCs).
The model was trained iteratively on N-1 (23) examples for each signer, and the re-
maining 1 observation was used as test exemplar. Performance was computed as an
average over the 24 test iterations. Note that this model was preliminary and was
used to shed light on the potential effects of kinematic bandwidth estimation on our
subsequent investigations. The further development of machine learning models for
automatic signer identification will be presented in Chapter 9.

In order to illustrate the impact of the bandwidth estimation on the model, the
first extracted PC was analyzed. This PC was highly correlated with global dynamic
statistics (σvel , σacc) for both unfiltered (r(16416) = .63, p < .001) and 12-Hz filtered
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(r(16416) = .65, p < .001) inputs2. Yet, when trained on this PC, the model provided
different results between the two filtering conditions. Figure 6.6 displays the pro-
jections of all the mocap exampels onto the first two PCs and the model confusions
when trained on PC1.
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FIGURE 6.6: Left column: projection of all the mocap examples over the first two
PCs extracted by the model. Right column: confusion matrix showing the identifi-
cations of the model (averaged over 24 tests), when trained only on PC1. The two

rows allow for comparison between unfiltered and 12-Hz filtered mocap data.

For unfiltered mocap data, the PC1 weights of Signer 5 (M = -0.15) were confused
with those of Signer 2 (M = -1.43), Signer 4 (mean = -2.72) and Signer 6 (M = -1.04). By
contrast, Signer 1 had lower weights (M = -7.72) and Signer 3 was surprisingly highly
separated from the 5 other signers (M = 13.07). The performance of the model trained
on PC1 confirmed this idea, as Signer 1 (91.7 %) and Signer 3 (100%) were correctly
identified, by contrast with Signer 5 (41.7 %). However, when applying a 12-Hz
filtering, the PC1 weights of the mocap data were different. Signer 1 still had the
lowest weights (M = -10.4), but signer 5 (M = -5.05) was separated from Signer 2 (M=
2.17), Signer 4 (M = 1.99) and Signer 6 (M = 1.67). The highest weights reported were
still those of Signer 3 (M = 9.62), but the gap with other signers was lower. This time,
the model succeeded in identifying Signer 5 with a higher accuracy (62.5%) based

2By contrast, the correlation between this PC and static statistics (µpos) was not significant for unfil-
tered (r(8208) = −.02, p = .14) and 12-Hz filtered (r(8208) = −.02, p = .18) inputs.
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on his dynamic differences, and Signer 3 was still identified (83.7%) but potentially
based on a more realistic interpretation of PC1. Finally, when the model was trained
on 6-Hz filtered mocap data, the identification accuracy significantly decreased for
the fastest signer, Signer 3 (70.8 %).

6.3.3 A crucial first step in investigating signer identification

These results reflect the observations made in Section 6.2. With the wrong band-
width estimation, our model may have misidentified Signer 5 because of slower but
also noisier motion data, compared to Signers 2, 4 and 6. Similarly, the separation of
Signer 3 from other signers was surprisingly wide, which may have been caused by
the fact that the mocap of Signer 3 contained the fastest but also noisiest data. The
results using a 6-Hz filter also confirm that a 0–6-Hz range distorts rapid motion
and thus provides an incomplete representation for models. Based on the example
of PC1, 12-Hz filtered data provided the best representation to correctly differentiate
between the dynamics of the six signers.

6.4 Conclusion and discussion

The present study provides a new estimate of the kinematic bandwidth of Sign
Language using computational methods, as was done for gait and hand motion
(Skogstad et al., 2013; Winter, 2009). Compared to prior work on SL isolated signs
or fingerspelling (Poizner et al., 1986; Foulds, 2004; Sperling et al., 1985), our re-
sults suggest that SL motion contains higher frequencies (0–12 Hz). In the present
study, signers had freely described pictures in French Sign Language without any
constraints in time, signs or structure. These results thus support the hypothesis
that signing may be faster when it is done in context, rather than when it is isolated
(Braffort et al., 2011). Furthermore, the use of the mocap data of six signers allowed
for more generalization, compared to prior work. Interestingly, our estimate is in
line with the prior work of McDonald et al. (2016) on continuous SL, which sup-
ported 0–12-Hz as a proper kinematic bandwidth for animating virtual signers with
realistic movements. More precisely, the latter study distinguished two bandwidths.
Although only the movements within a 0–4-Hz spectral range may convey linguistic
meaning, movements within a 4–12-Hz range may still be related to actual human
motion rather than noise and should thus be taken into account for enlivening vir-
tual signers. In our study, we focused on a different purpose than animation (e.g.,
machine learning classification task) but our results yielded similar conclusions. In-
deed, the performance of our machine learning model was optimal when using a
0–12-Hz bandwidth, which further emphasizes the need for a correct filtering of mo-
cap data when designing SL models. For technological application purposes, these
results support the potential for SL motion data extracted from videos at 24 fps (Cao
et al., 2019). Despite the fact that estimating movements from videos remains lim-
ited to two dimensions, it may properly capture spectral information, following the
Nyquist-Shannon theorem (Nyquist, 1928; Shannon, 1949). These outcomes call for
additional research further investigating the kinematic bandwidth of SL across other
signers and within different linguistic contexts.
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Chapter 7

Decomposing Sign Language into
Principal Movements

The high number of body segments and the variety of linguistic structures involved
in SL movements make their modeling particularly challenging. Compared to other
human actions with simpler temporal structures, such as walking, skiing or jug-
gling, the extent to which SL complex movements could be reduced to a lower di-
mensional space remains unclear (Section 7.1). This chapter tackles this problem by
testing Principal Movement (PM) decomposition (see Section 3.2.4) on full-body 3D
mocap data of spontaneous SL. For that aim, Principal Component Analysis (PCA)
was applied to the mocap data described in Chapter 5 in order to determine the
PMs of French Sign Language (LSF) (Section 7.2). We aimed to provide qualitative
descriptions of these PMs, and to question whether the extracted PMs were signer-
specific or shared by all signers (Section 7.3). The main findings of this study are then
discussed as compared to prior work on non-SL movements and on SL movements
made in isolation (Section 7.4).

This chapter is partly reproduced from Bigand et al. (2021a).

7.1 Fundamental and application perspectives from Princi-
pal Movement decomposition

Investigating new computational models for the description of SL movements
presents a two-fold interest. First, it would allow gaining fundamental insights into
the structure of SL movements. Second, it could be used in order to improve techno-
logical tools dedicated to SL. As previously mentioned (see Chapter 4), the progress
of mocap systems has enabled researchers to study human movements, based on
large amounts of data from multiple body markers of moving persons. Still, most
studies have relied on specific variables of the movements defined by researchers
in order to anlyze human movements, in particular in SL. For instance, the mocap
analyses of Malaia et al. (2008) and Malaia and Wilbur (2012) have assessed the re-
lationship between pre-selected kinematic features (e.g., peak speed or acceleration)
and linguistic features of American and Croatian SL. Similarly, the motion features
conveying prosodic variation of poetic sequences in Catteau et al. (2016) have been
unveiled by comparing the behavior of candidate kinematic features (i.e., thought to
have a role in the prosodic variations) and the poetic annotations.

By contrast, some studies investigating non-SL motion have taken another ap-
proach to describe the movements from a holistic perspective, using PCA. Unlike
the analysis of pre-selected variables, this data-driven method has allowed for dis-
entangling how complex multi-segmental movements, such as gait, karate, skiing or
juggling, were structured, without any a priori hypotheses (see Section 3.2.4). To the



80 Chapter 7. Decomposing Sign Language into Principal Movements

author’s knowledge, such a holistic evaluation of the full-body movements of spon-
taneous SL has not been proposed yet. The only insights gained into potential PM
decompositions of SL movements have been obtained from gestures of the dominant
hand of signers during the production of highly constrained isolated ASL signs (Yan
et al., 2020). In the latter study, 11 PMs accounted for 95% of variance in the original
hand movements produced when signing isolated alphabetical letters or numbers
from 0 to 10. Producing ASL letters or numbers with the hand is only a reduced
part of particular ASL signs. Moreover, as pointed out repeatedly in this thesis, SL
productions made in isolation hardly provide complete descriptions of how SL is
used by signers in real-life conditions, even for more complex signs than letters or
numbers. We precisely demonstrated that spontaneous SL mocap recordings could
reveal faster movements than prior estimates made on isolated signs (see Chapter
6). Finally, SL motion involves far more body parts than just the dominant hand,
including the other hand, but also torso, head, shoulders and arms. Interestingly,
the mocap data used in the present thesis include full-body trajectories compared
to Yan et al. (2020), which have investigated the kinematics of the dominant hand
only. Inversely, Yan et al. (2020) have applied PCA to precise recordings of finger
gestures, while our mocap data were recorded on various upper limbs but only in-
cluded global motion data of the wrists and hands. Applying PM decomposition to
the full-body mocap data provided by MOCAP1 (Chapter 5) would thus interest-
ingly complement these prior analyses made on a limited subset of ASL signs.

PM decomposition is a data-driven method that may provide unexpected funda-
mental insights into how complex movements of SL are structured and how compu-
tational models could automatically decompose SL into simpler, elementary, move-
ments. Moreover, this method is also of particular interest for application purposes
because it allows for dimensionality reduction. Computational models of SL mo-
tion could rely on dense mocap datasets by processing only a reduced subset of PMs
while keeping most of the information about the original movements.

7.2 Methods

Similarly to Chapter 6, this study was conducted on the LSF mocap data of the six
signers of MOCAP1-v2 (Section 7.2.1). In order to assess the extent to which PMs
of SL may be specific to each signer or shared by all signers, common PMs were
extracted from the mocap data of all signers, while individual PMs were extracted
from the mocap data of the six signers separately (Section 7.2.2).

7.2.1 Mocap data processing

The mocap data were low-pass filtered using a 4th-order Butterworth Filter with a
cutoff frequency of 12 Hz, following the estimations of Sign Language kinematic
bandwidth presented in Chapter 6. From each of the 24 original recordings pro-
vided by MOCAP1-v2 (see Chapter 5), one mocap recording unit with the duration
of 5 seconds was extracted from the beginning of the utterance, irrespective of the
semantic content. Each mocap recording unit was thus related to a different pic-
ture description in LSF. This resulted in 24 mocap examples per signer, of 5-second
duration each (see examples in Videos 7.1 to 7.6).

The movements of each individual signer (i.e., the concatenation of their 24 mo-
cap examples) were described in a matrix containing 30,000 posture vectors (rows)
defined by the 3D coordinates of the 19 markers (columns) at each time frame t:

https://zenodo.org/record/5215804#.YRzcFtMzba4


7.2. Methods 81

p(t) = [x1(t), y1(t), z1(t), ..., x19(t), y19(t), z19(t)] (7.1)

where p is the posture vector.
Based on prior definitions of a “posture space” (Troje, 2002a; Federolf et al., 2014),

movements of the signers were thus described as time series of postures, in a 57-
dimensional space. Postures were normalized in order to filter out anthropometric
differences. Each signer’s average posture was subtracted from posture vectors at
each frame, and replaced by the average posture over all signers, similarly to Troje
et al. (2005). The six distinct matrices of individual signers were used to analyze the
movements of each signer separately. In order to test the extraction of common
motion patterns across individuals, these matrices were also concatenated into a
(180, 000× 57) matrix containing the posture vectors of the six signers.

7.2.2 Principal movements

As outlined by Troje (2002a), a set of human posture vectors can be highly redun-
dant, because of biomechanical constraints and motor control laws. PCA is a math-
ematical method that appears well suited to measure this redundancy. PCA de-
composes the original matrix into a set of uncorrelated Principal Components (PCs),
which are the eigenvectors of the covariance matrix of the original data (Abdi and
Williams, 2010). This new PC space is organized so that the first PCs maximize the
amount of the variance in the data, which makes it possible to conduct analyses on
a reduced set of PCs. Here, we applied PCA to the centered posture matrix (i.e.,
we subtracted the mean from the matrix columns). Based on the 57× 57 covariance
matrix of the posture data, PCs (or eigenvectors) and their respective eigenvalues
were computed. The normalized egeinvalues indicated the percentage of variance
explained by the related PCs. We were then able to define each posture p(t) as a
linear combination of the PCs:

p(t) = p0 +
K

∑
i=1

wi(t)Vi (7.2)

where wi(t) is the projection of the posture vector p(t) onto the ith PC (or eigen-
vector) Vi. p0 is the average posture vector over time. K is the number of PCs used
to reconstruct p(t), K ∈ [1, 57].

The PCs captured directions of high variability in the original movements. In
other words, PCA allowed decomposing the movements of multiple inter-correlated
markers in three dimensions into elementary one-directional movements, called
principal movements (PMs). First, a PCA was applied to the whole dataset con-
taining the movements of all signers. This first PCA enabled us to extract common
PMs, shared by the six different signers. Second, a PCA was applied to the mocap
data of each signer, separately. This second PCA provided individual PMs specific
to each signer. The number of PMs needed to account for most of the variance in the
SL movements was assessed, and compared between individual and common PMs.
Moreover, by projecting separately each specific PC back into the original 3D space,
PMs were resynthesized using stick figures (equation 7.3). This allowed characteriz-
ing the PMs and comparing the motion patterns they described over signers.

pvi(t) = p0 + wi(t)Vi (7.3)
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where pvi(t) is the posture vector that describes the movements of the ith PM.
wi(t) is the projection of the posture vector p(t) onto the ith PC (or eigenvector) Vi.

7.3 Results

First, common PMs of the spontaneous LSF movements provided a low-dimensional
space explaining most of the variance in the original movements (Section 7.3.1).
Then, differences in the execution of common PMs were found across signers (Sec-
tion 7.3.2). Finally, individual PMs were compared with common PMs in terms of
the motion patterns they quantified, and in terms of the number of PMs needed to
explain a sufficient amount of variance in the original movements (Section 7.3.3).

7.3.1 Common Principal Movements

As shown in Figure 7.1, the first eight common PMs explained most of the variance
in the mocap data containing the 24 examples of the six signers. Combined, they
explained 94.9% of the cumulative variance.

FIGURE 7.1: Variance explained by the first 15 common PMs.

The first eight common PMs (Videos 7.7 to 7.14) are shown in Figure 7.2 and are
described in details in Table 7.1. In summary, the first eight PMs were mainly defined
as motion patterns visible in the frontal and sagittal planes. PM1 to PM4 quantified
movements of the two hands along the vertical, anteroposterior and mediolateral
axes, as well as upper-body rotation around the vertical axis. PM5 and PM6 quan-
tified movements of the hands, similarly to the first three PMs, but with parallel
rather than opposite movements of the hands, or vice versa. For instance, parallel
mediolateral movements of the hands were found in PM5, jointly with lateral sway,
compared with the opposite movements of PM3. Similarly, opposite vertical move-
ments of the hands were found in PM6, compared with the parallel movements of
PM1. Higher-order PMs (PM7 and PM8) extracted finer movements, such as flexion

https://zenodo.org/record/5215804#.YRzcFtMzba4
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of the wrists or shoulder abduction. Moreover, PM8 reported covarying movements
between the head and the arms of the signers. For instance, a low negative weighting
of PM8 was related to high flexion of the head and high abduction of both shoulders.

TABLE 7.1: Characterization of the first eight common PMs. EV is the Explained
Variance in original movements.

PM EV (%) Description

1 26.9 Vertical parallel movement of the hands.

2 20.9 Anteroposterior parallel movement of the hands.

3 14.4 Mediolateral opposite movement of the hands achieved with internal rota-
tion of the arms.

4 13.1 Upper-body rotation around the vertical axis, jointly with internal rotation of
the arms.

5 7.8 Parallel shift of the two hands along the mediolateral axis, jointly with slight
mediolateral sway of the upper-body.

6 6.6 Opposite vertical movement of the two hands.

7 3.8 Upper-body rotation around the vertical axis, jointly with wrists flexion.

8 1.4 Abduction of both shoulders while elbows are flexed, jointly with head tilt.

FIGURE 7.2: The first eight common PMs. Stick figures represent the PM at the
time instants corresponding to the minimum (gray) and the maximum (black) PM
weighting, across signers and examples. PMs are displayed in their main plane of
motion (e.g., frontal or sagittal). For sake of visibility, the PM weightings of PM2

were attenuated with a factor 0.75.
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7.3.2 Inter-individual differences in the execution of common Principal
Movements

Common PMs were used differently across signers. To illustrate that, the execution
of the first four PMs was compared between Signer 1 and Signer 3, as shown in Fig-
ure 7.3. For instance, in PM1, Signer 1 reported higher positive weightings (of max-
imum value 0.50) while Signer 3 reported lower negative ones (of minimum value
-0.60). This corresponds to higher position of the two hands for Signer 1 and lower
position of the two hands for Signer 3, respectively. In PM2, Signer 1 showed mainly
positive weightings (M=0.11, SD=0.24) while Signer 3 showed mainly negative ones
(M=-0.14, SD=0.17), revealing more remote position of the hands from the body, in
average, for Signer 3 than for Signer 1. PM3 reported another pattern of differences,
as the two signers presented similar mean and minimum postures, but a consequent
gap between their maximum postures. At the lowest level, hands of the signers were
similarly close, while at the highest level, the hands of Signer 3 were spaced wider
apart, compared with Signer 1. In PM4, Signer 1 showed mainly positive weightings
(M=0.03, SD=0.09) while Signer 3 showed mainly negative ones (M=-0.11, SD=0.08),
revealing slightly higher leftward rotation of the body for Signer 1 and rightward
rotation for Signer 3, respectively.

PM1

PM2

PM3

PM4

Minimum Mean Maximum

FIGURE 7.3: The first four common PMs, for Signers 1 and 3. Left: weightings.
Right: stick figures of important postures during the PM (minimum, maximum

and mean of the signer’s first mocap example, along the direction of the PM).
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7.3.3 Individual Principal Movements compared with common Principal
Movements

As shown in Figure 7.4, the first eight individual PMs explained most of the variance
in the mocap data of individual signers. Combined, they explained 95.9% (SD=0.6%)
of the cumulative variance. By comparison, the first eight common PMs explained
94.9%, and the first seven individual PMs explained 94.6% (SD=0.8%). Therefore,
although the common dataset contained unsynchronized movements performed by
six different signers, the common PMs explained a similar amount of the movements
variance, compared with PMs computed separately for each signer.

FIGURE 7.4: Variance explained by the first 15 individual PMs. Error bars indicate
standard errors across signers.

The first eight individual PMs of Signer 2 (Videos 7.15 to 7.22) are shown in Fig-
ure 7.5. Most of the individual PMs were similar to the common PMs, although they
were sometimes ranked in a different order. For instance, PM1 was characterized as
vertical parallel movements of the hands, jointly with anteroposterior parallel move-
ments of the hands. This first individual PM was thus a combination of common
PM1 and PM2. PM2 was characterized as mediolateral opposite movements of the
hands (common PM3), PM4 as vertical parallel movements of the hands (common
PM1), PM5 as mediolateral parallel shift of the hands (common PM5), PM7 as shoul-
der abduction jointly with head tilt (common PM8) and PM8 as wrists flexion jointly
with upper-body rotation around the vertical axis (common PM7). Other individ-
ual PMs were a combination of a similar common PM with additional motion pat-
terns. For instance, PM6 quantified vertical opposite movements of the two hands
(common PM6), but combined with lateral sway of the upper-body. PM3 quantified
upper-body rotation around the vertical axis (common PM4), but combined with
mediolateral movement of the left hand toward the right hand. Individual PM3
could also be considered as specific to Signer 2, because this mediolateral movement
of the left hand only did not occur in the common PMs, and the upper-body rotation

https://zenodo.org/record/5215804#.YRzcFtMzba4
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it quantified was not as wide as in common PM4. Moreover, the mediolateral move-
ments of the hands in PM2 and PM3 of Signer 2 were mainly related to one specific
hand. For instance, the right hand had a higher movement amplitude in PM2, while
the left hand had a higher amplitude in PM3. Thus, common PM3 can be seen as the
combination of PM2 and PM3 of Signer 2.

FIGURE 7.5: The first eight individual PMs of Signer 2. Stick figures represent
the PM at the time instants corresponding to the minimum (gray) and maximum
(black) PM weighting, across the 24 examples of the signer. PMs are displayed in

their main plane of motion (e.g., frontal and/or sagittal).

These observations can be extended to the other signers. For instance, the charac-
teristic patterns of common PM1 similarly occurred in PM1 of Signer 3 (Video 7.23)
or in PM1 of Signer 5 (Video 7.24). PM1 of Signer 1 (Video 7.25) was a combination
of common PM1 and PM3. Similarly, PM3 of Signer 1 was a combination of common
PM2 and PM3 (Video 7.26). In summary, most of the individual PMs were similar to
the common ones. They were sometimes performed differently from one signer to
another, or were combinations of several common PMs. A few signer-specific PMs
were found. Still, most of them could be interpreted as signer’s specific execution of
common PMs.

7.4 Discussion

In the present chapter, we used PCA to decompose the mocap data of spontaneous
LSF produced by six signers into a reduced set of simpler, elementary, movements.
The original motion data were transformed into a new space spanned by principal
components, called principal movements (PMs). The first eight individual PMs (i.e.,
computed separately from each signer’s mocap data) explained 95.9% (SD=0.6%) of

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
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the variance in the movements of individual signers. To the author’s knowledge,
this is one of the highest numbers of PMs needed to account for such amounts of
variance, compared with other similar motion data. Troje (2002a) has reported that
98% of the variance in walking patterns was covered by the first four PMs. The first
four PMs also covered 98% of the overall variance in diving (Young and Reinkens-
meyer, 2014) and 95.5% of the variance in skiing (Federolf et al., 2014). For juggling,
even in the hardest conditions (5-balls handling), six PMs were sufficient to explain
over 96% of the variance (Zago et al., 2017b). This result supports SL as a complex
set of movements involving multiple body parts and various semantic structures. A
higher number of PMs have been reported for the finger gestures of pianists, whose
first four PMs only explained 60% of variance in Furuya et al. (2011) and which re-
quired eight to ten PMs to explain 95% of the overall variance in Tits et al. (2015).
Similarly, six to nine PMs were needed to explain 95% of the variance of finger ges-
tures during hand manipulation, such as grasping, holding keys or reading a book
(Todorov and Ghahramani, 2004). As regards SL motion, 95% of variance in the fin-
ger gestures of ASL alphabetical signs was accounted by 11 PMs in Yan et al. (2020).
Therefore, finger gestures may involve higher dimensions than movements of other
body parts in motor control, including for SL production. However, in both finger
gestures (Yan et al., 2020) and upper-body movements (the present study), SL seems
to require a higher number of motor components, compared to non-SL movements.

Still, despite the complexity of SL, the number of PMs reported in the present
study remains relatively low. Moreover, a similarly low number of common PMs
(i.e., computed on the whole dataset containing all signers) accounted for 94.9% of
the overall variance. This is a particularly intriguing result as the analyzed move-
ments were not synchronized in time across signers and examples. Indeed, in the
present study, each signer freely described pictures in LSF, without being required
to use specific gestures. By contrast, most of the studies mentioned above have in-
vestigated movement sequences that shared similar temporal structures (e.g., gaits
(Troje, 2002a), karate’s kata (Zago et al., 2017a), dives (Young and Reinkensmeyer,
2014), juggling patterns (Zago et al., 2017b) or isolated ASL alphabetical and number
signs (Yan et al., 2020)). In Tits et al. (2015), finger gestures were potentially not syn-
chronized across pianists and excerpts. However, PMs were extracted separately on
each excerpt, which may have reduced the variability of the analyzed movements.

Moreover, the amount of variance explained was very similar between common
and individual PMs, suggesting a common structure of SL movements shared across
signers. The distinction between individual and common PMs was inspired by the
prior work of Federolf et al. (2014) on skiing. By comparison with our study, the
PMs common to all skiers did not represent the original skiing movements as well as
the PMs computed for each skier. The first four common PMs explained 88% of the
variance, compared with 95.5% (SD=0.5%) for individual PMs. Again, signers in our
study freely produced movements to describe the different pictures, while skiiers in
Federolf et al. (2014) executed trials under the same race conditions. This outcome
suggests that SL motion presents less variablity across individuals and examples,
compared with other movements.

The motion patterns described by common PMs were mostly visible in the frontal
and sagittal planes, in line with the vast majority of prior studies (Troje, 2002a;
Federolf et al., 2013b; Federolf et al., 2013a; Federolf et al., 2014; Federolf, 2016;
Zago et al., 2017a; Zago et al., 2017c; Promsri and Federolf, 2020). However, Zago
et al. (2017b) have reported important PMs of juggling, such as trunk rotation or
upper-limbs internal flexion and extension, in the transverse plane. In the present
study, common PM4 (i.e., trunk rotation) can be described in the transverse plane
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but it was clearly visible from a frontal view. PM2 was best visible from a sagittal
view. Still, the patterns quantified by most PMs were occurring in the frontal plane.
Similarly to prior work, first PMs quantified simple movements, while higher-order
PMs extracted finer motion descriptors, such as shoulder abduction or wrist flexion.
Some motion patterns seemed to be specific to SL, compared with previously stud-
ied movements. For instance, a high number of PMs quantified hand movements
and some PMs outlined specific covarying movements between the head and the
arms. Further work examinating mocap data of fingers or facial expressions could
be of interest, in order to extend these first observations. Testing PM decomposition
on larger datasets could also allow for some generalization, beyond specifities due
to the linguistic context or to signer-specific occasional movements.

In addition to the similar amounts of variance they explained, individual and
common PMs described highly similar motion patterns. Some individual PMs could
be considered as signer-specific but most of them quantified the same movements
as common PMs, either separate or combined. These inter-individual observations
are in line with the ones made in skiing (Federolf et al., 2014). Unlike Tits et al.
(2015) or Zago et al. (2017b), no major inter-individual differences were found in the
number of PMs needed to account for high variance in the movements. This may
reflect that the six signers of this study presented a similar level of expertise in SL
gestures, all being fluent signers. However, common PMs were sometimes executed
differently by signers, as shown for skiing (Federolf et al., 2014). For instance, PM2
revealed more remote position of the hands from the body for Signer 3, compared
with Signer 1. During the hands movements of PM3, signers also differently spread
their hands apart. Moreover, PM4 outlined that the upper-body rotation of Signer 1
was mainly leftward, while the one of Signer 3 was mainly rightward.

Taken together, these results suggest that SL motion has a common structure
across signers and discourses that can be decomposed into a reduced set of elemen-
tary movements. This specificity, compared to priorly studied movements, such
as walking (Federolf et al., 2013a; Troje, 2002a), may be explained by the fact that
not only are SLs constrained by biomechanical rules but they also follow a highly-
structured linguistic system, which is shared among signers. Taking inspiration from
prior research in sport science, gait analysis and postural control, the application of
PCA has several advantages and opens up promising perspectives for research in SL.
Overall, this decomposition method is of great interest as it allows extracting motion
patterns from a holistic perspective, which can be considered as analogous to how
human observers may quantify movements (Federolf et al., 2014). More specifically,
its potential contributions to SL are two-fold. First, its invertibility allows resynthe-
sizing PMs in the original 3D space. Researchers can gain insights into the complex
structure of SL movements, by visualizing these directions of high movement vari-
ability and by assessing inter-individual differences. For these reasons, PM decom-
position has been widely used to evaluate gesture expertise and could be of inter-
est for SL problems, such as motor learning (Zago et al., 2017b; Zago et al., 2017a;
Young and Reinkensmeyer, 2014). Second, it allows for dimensionality reduction. A
few studies previously aimed at drastically reducing the frame rate (Foulds, 2004) or
the number of markers (Tartter and Knowlton, 1981) in SL telecommunication, for
bandwidth reasons. Following the present results, dense mocap datasets could be
considerably reduced using only a subset of PMs while keeping most of the informa-
tion. This outcome calls for further work evaluating the observers’ comprehension
of SL messages when resynthesized from the PMs. Furthermore, both the potential
to resynthesize movements from the PMs and the potential to reduce dimensional-
ity make PM decomposition very promising for the improvement of technologies
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for SL automatic processing. For instance, it could ease the incorporation of high-
dimensional mocap recordings in SL movement generation and, thus, break down
barriers caused by the lack of naturality and comprehensibility of virtual signers.

Part II Summary

In real-life conditions, Sign Language (SL) is a complex and continuous stream
of motion features from various body parts, which makes it challenging to
model. The main objective of this part of the thesis was to provide novel rep-
resentations and processing tools for modelling and analyzing spontaneous
SL motion. For that aim, we used the MOCAP1 corpus, which provides 3D
motion capture (mocap) data of spontaneous French Sign Language (LSF) ut-
terances produced by six different signers. Using this corpus, preprocessing
methods were developed, including the normalization of mocap data with
respect to the size, shape and posture of the signers. We then showed that
the frequency content of spontaneous LSF movements could be properly de-
scribed using a 0–12-Hz bandwidth. This range is wider than prior estima-
tions made with isolated signs but is still drastically lower than the raw spec-
tral information provided by most mocap systems. Furthermore, although
spontaneous SL involves a wide variety of motion patterns and linguistic
forms, a Principal Component Analysis (PCA) applied to our mocap data re-
vealed that the LSF discourses could be described by a reduced set of eight
simple, one-directional, Principal Movements (PMs), across signers and lin-
guistic contents. In summary, despite the intrinsic complexity of spontaneous
SL motion, the actual information needed to analyze it seems to lie within
spaces of lower dimensions (e.g., in low frequencies or low-order PMs). Could
these motion representations (or further ones) be used to automatically iden-
tify signers during SL discourses, as previously shown for non-SL movements
(see Chapter 4)? We aim to answer this question in Part III.
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Part III

Person identification from motion:
the case of Sign Language
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Chapter 8

Identity information in the
movements: insights from human
perception

Humans observers can identify individuals from biological movements, such as
walking or dancing (see Section 2.1.3). It remains to be investigated whether SL
motion, which obeys to linguistic constraints in addition to biomechanical ones, also
allows for person identification. The study of the present chapter is the first to in-
vestigate whether deaf perceivers actually identify signers based on mocap data
only, using Point-Light Displays (Section 8.1). Further computational analyses of
the mocap data were then conducted in order to test the role of morphological dif-
ferences between signers in the identification (Section 8.2). The present behavioral
and computational findings suggest that mocap data contain sufficient information
to identify signers, beyond simple cues related to morphology. These results form
the basis for the further machine learning developments of this thesis (see Chapter
9). Indeed, they scientifically demonstrate that human observers can identify signers
from their movements, which confirms the need for novel technological tools able to
control identity-specific aspects of SL motion, in particular for anonymization pur-
poses. Moreover, the minor role of morphology-related cues in the human ability
to identify the signers calls for further work, including machine learning studies,
investigating the role of other motion features, in particular kinematic ones (Section
8.3).

This chapter is partly reproduced from Bigand et al. (2020).

8.1 Human ability to identify signers from mocap data

The present study evaluated the ability of deaf perceivers to identify signing indi-
viduals that were presented as Point-Light Displays (PLDs). PLDs were computed
from a subset of MOCAP1-v2 corpus (see Chapter 5) in which four different signers
freely described pictures in French Sign Language (LSF). The specific four signers
were chosen because of their different levels of exposure to the general public in
deaf communities. With these different levels of exposure, we hypothesized that
the participants may report different degrees of familiarity with the signers. The fa-
miliarity with each signer was reported by the participants at the beginning of the
experiment. Then, short excerpts of the LSF descriptions were randomly presented
to the participants. For each excerpt, participants were asked to identify the signer
with a four-alternative forced choice (Section 8.1.1). Depending on familiarity level
with participants, some signers were identified with substantial accuracy (Section
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8.1.2), which is discussed as compared to prior work on non-SL movements (Section
8.1.3).

8.1.1 Methods

Participants

24 participants (mean age = 42.0, SD of age = 11.0) took part in the study. The Re-
search Ethics Committee of Paris-Saclay University validated the experiment. All
participants were deaf and were users of French Sign Language. Language level
was self-assessed in the beginning of the experiment. Participants mainly reported
the highest levels C1-C21 (79,17%). 12% reported advanced levels (B1-B2). 8.33%
reported intermediate level A2.

Stimuli

PLDs were generated, similarly to the original idea of Johansson (1973). Major joints
of the body were displayed with white dots on a black background, based on the
3D motion data of MOCAP1-v2 (see Chapter 5). From this dataset, we selected 16
different descriptions performed by the first four signers and trimmed them regard-
less of the linguistic content. The four signers were chosen so that we could expect
familiarity with signers to be gradual (see Section 8.1.2). All markers were presented
as global positions in a reference system with the pelvis as the origin (see Figure 8.1).
All the stimuli were displayed in front view (see Video 8.1).

FIGURE 8.1: Example of the Point-Light Displays (PLDs) used in the experiment
(all in front view).

1European CECRL levels

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://www.visuel-lsf.org/certification-de-competences-en-lsf-langue-2-cc-lsf-l2
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Design and procedure

The participants took part in the experiment via an online survey. The mean du-
ration of the survey across participants was 11.04 min. Most participants used a
computer (70.83%) rather than a tablet or smartphone.

First, the familiarity of the participants with the four signers was expected to
be variable because of their different exposure to deaf people. Signer 1 has been
a popular story-teller for children and producer for deaf TV shows, being the first
deaf person seen on TV in France, in 1979. Signer 2 is an LSF translator and ac-
tor. He notably worked as a translator for Websourd, a highly popular deaf media.
Signer 3 is a young LSF journalist working for different media. We were expect-
ing that she would get lower recognition rates as she only recently appeared in the
field. Signer 4 is involved in some projects on LSF but with lower exposure. She has
worked as an LSF translator and trainer but mainly in a local environment. To verify
these background differences, before the test session, all of the four signers were pre-
sented on the screen with their names and three photos taken from public content
(TV, Youtube, conferences...) (see Figure 8.2). Participants were then asked to report
their familiarity with each signer by answering this question : “Have you ever seen
this person?”. Four levels could be reported: “No, never” (0), “Yes, occasionally” (1),
“Yes, often” (2) and “Yes, very regularly” (3).

FIGURE 8.2: Example of the presentation of the signers (here Signer 1) and fa-
miliarity evaluation. Participants were asked to report their familiarity with each
signer on a four-level scale: “Have you ever seen this person?”. Possible answers
were as follows: “No, never” (0), “Yes, occasionally” (1), “Yes, often” (2) and “Yes,

very regularly” (3).

After that, the test session consisted of 16 trials (4 signers x 4 picture descrip-
tions). In each trial, the Point-Light Display (PLD) (mean duration = 10.8s, SD
= 2.6) was presented, followed by the presentation of four buttons, illustrated by
each signer’s photo (see Figure 8.3). The PLD videos were launched automati-
cally, played only once and participants could neither pause the video nor rewind it.
When the video was finished, the survey automatically displayed the four choices
shown in Figure 8.3. Then, participants were asked to identify the signer in this
four-alternative forced choice where each choice was one of the four signers. All of
the 16 stimuli were presented in random order. No response feedback was given to
the participants. All instructions were given in both written French and French Sign
Language using pre-recorded videos (see Figure 8.4).
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FIGURE 8.3: Example of the four-alternative forced choice presented after the
moving Point-Light Display (PLD) example: “Please select the person you have recog-

nized”. Each choice was one of the four signers, each illustrated by their photo.

FIGURE 8.4: Example of instructions provided in written French and French Sign
Language (here before the test session): “Let’s take the test. You will watch a total of
16 short videos of LSF. In the videos, the people are represented only by white dots on their
body joints. When the video is over, please click on the picture of the person you think you
recognized. It will be one of the four people you saw earlier. The task is not easy, but it is

important to complete the test: even your mistakes will help us. Good luck!”.

8.1.2 Results

A repeated-measure one-way ANOVA was performed with signer (four levels) as
within-subjects factor and self-reported familiarity as dependent variable. A signifi-
cant main effect of signer was found on self-reported familiarity (F(3, 69) = 6.65, p <
.001, η2 = .13). Bonferroni-adjusted post-hoc tests revealed that familiarity was sig-
nificantly lower for Signer 4 (M=0.96) than for Signer 1 (M=1.75, p < .01), Signer 2
(M=1.67, p < .01) and Signer 3 (M=1.71, p < .05). No significant differences were
found between the 3 first signers. Self-reported familiarity levels as a function of the
four signers are shown in Figure 8.5.

Then, a repeated-measure one-way ANOVA was performed with signer (four
levels) as within-subjects factor and correct identification as dependent variable.
A significant main effect of signer was found on correct identification (F(3, 69) =
12.36, p < .001, η2 = .25). Bonferroni-adjusted post-hoc tests were performed to
test for differences between signers. They revealed a significant increase (p < .001)
in performance between Signer 4 (M=30.2%) and Signer 1 (M=65.6%). There was
an increase between all four signers (30.2%, 36.5%, 45.8%, 65.6%) but no significant
differences were found between Signer 4 and both Signers 2 and 3.
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One sample Student’s t-tests revealed that identification performance was sig-
nificantly above chance level (25%) for Signer 1 (t(23) = 8.21, p < .001), Signer
2 (t(23) = 4.05, p < .001), Signer 3 (t(23) = 2.30, p < .05) but not for Signer 4
(t(23) = 1.16, p = .26). Identification scores as a function of the four signers are
shown in Figure 8.6.

FIGURE 8.5: Self-reported familiarity for each signer, averaged over participants.
Error bars indicate standard errors. Significant differences between signers : *(p <

.05), ** (p < .01).

FIGURE 8.6: Performance scores from the four-alternative forced choice identifica-
tion task, averaged over participants. Dashed horizontal line indicates the chance
performance level (i.e., 25%). Error bars indicate standard errors. Significant dif-

ferences from chance level : * (p < .05), *** (p < .001).
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8.1.3 Discussion

Although it is not an easy task for participants to evaluate the familiarity with sign-
ers, the analysis revealed significant differences, distinguishing Signer 4 from the
three other signers. This finding provides a partial account for the correct identifica-
tion scores, which differed from chance level for all signers except for Signer 4. This
lower value could be explained by the lower exposure of Signer 4 to the general pub-
lic. In other words, participants managed to identify familiar signers above chance
level. It suggests that the mocap data we used in the experiment included suffi-
cient information for participants to identify familiar signers. Further work would
be needed to explain the differences in correct identification between the three first
signers, despite equal self-reported familiarity.

The first study by Kozlowski and Cutting (1977) has reported performance scores
above chance level (16%) but only reaching 38%. Troje et al. (2005) have reported 76%
correct identifications but involving extensive pretraining for the participants. Our
results (Figure 8.6) included the responses of all participants, whatever their famil-
iarity with signers. In addition, limitations of the online survey could be discussed.
The design of the survey ensured that participants were not able to pause the video
or to stop it before the end, but the conditions under which each participant re-
sponded to the survey could still vary. Therefore, reaching identification scores such
as 65.6% or 45.8% for some signers suggest that their movements provided critical
information for identification. Further computational analyses of the mocap data
then allowed us to better understand the nature of this information, in particular as
regards morphology of the signers.

8.2 The role of morphology in the identification

The excerpts that were presented to the participants were rather short (mean dura-
tion = 10.8s, SD = 2.6) and were randomly extracted from the original recordings, re-
gardless of the linguistic content. The data we used neither did include facial nor fin-
ger markers. Prior studies have demonstrated that a precise display of the fingertips
was needed to ensure comprehensibility in SL, especially for lexical signs (Poizner
et al., 1981). Other studies have pointed out the crucial role of facial components
during the comprehension of ASL (Emmorey et al., 2009), in particular mouthing
and eye gaze. None of these informations was present in the PLDs presented here
to the participants. It is therefore assumed that the identification of signers was
achieved beyond simple differences in linguistics. One aspect of motion informa-
tion present in the PLDs that we thought important to test is morphology. Based
on data-driven methods, we defined a morphology factor that optimally described
morphological differences between the four signers (Section 8.2.1). We then assessed
the extent to which this factor was correlated with the participants’ responses in the
visual perception experiment presented in Section 8.1 (Section 8.2.2). These analyses
revealed that, beyond morphology, further motion features needs to be investigated
to account for the human ability to identify the signers (Section 8.2.3).

8.2.1 Morphology: a PCA-based definition

As presented in section 8.1.1, skeletons of the four signers were displayed as global
coordinates for which the pelvis was the origin.
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FIGURE 8.7: Reference posture of the four signers.

This coding allowed for consistent comparison of the signers who had been
placed and oriented differently in the motion capture space. Nevertheless, differ-
ent morphologies of the four signers were represented in this coordinate system, as
shown in Figure 8.7. To evaluate the role of these differences in the identification,
we used a PCA-based approach in order to compute morphological similarities and
to compare it with participants’ confusion errors between signers.

Our aim was to assess the extent to which morphology could account for par-
ticipants’ performance in the experiment. As it can be defined with various indices
such as height or shoulder width, we ran a PCA to find the most relevant variables
to represent morphology. Similarly to Tits (2018), PCA was performed on distance
from head to pelvis, distance from hand to hand (in extension), shoulder width, and
individual segment lengths (trunk, arm and forearm).

The first principal component accounted for 72% of variance in the data, and it
was highly correlated with the distance from head to pelvis (r(2) = .99, p < .05).
Consequently, this variable was chosen to define morphology. Figure 8.8 illustrates
morphological differences between all signers, using this factor. This emphasizes an
important gap between Signer 2 (highest) and Signer 3 (lowest) values, and specifies
a higher value for Signer 1 than for Signer 4, although both fit in a similar range.

8.2.2 Influence on participants’ responses

Based on the morphology factor defined in the previous section, a similarity ma-
trix was computed among all signers. Using the Euclidean distance, similarity was
computed as follows :

si,j =
1

1 +
√
(mi −mj)2

(8.1)

where mi is the normalized morphology factor of Signer i.
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FIGURE 8.8: Ranking of the four signers as a function of the normalized morphol-
ogy factor.

The computed similarity matrix is shown in Figure 8.9 (left). Each row represents
the amount of similarity of a signer with the three other signers. According to this
representation, Signer 2 is more likely to be confused with Signer 1 (39%) than with
Signer 3 (26%). Signer 4 would have equal chances to be confused with both Signers
2 and 3. This measure based on computational and statistical analyses of the mocap
data allowed us to predict confusions related to morphological cues in the identifi-
cation of signers. We compared the similarity measures to the actual confusions of
participants in the experiment, across the four signers. As shown in Figure 8.9, 43%
of the confusions for Signer 2 are made with Signer 3, while the latter signer reported
the lowest similarity measure (26%) with Signer 2. In the case of these two signers,
the less morphologically similar they are, the more confused they seem to be. This
suggests that morphology may not be the main information used by participants to
identify the signers.

The Pearson’s correlation between the similarity matrix and the confusion matrix
was measured. The resulting coefficient revealed that correlation is not significant
(r(10) = −.36, p = .26). Taking into account only familiar signers (i.e., the three first
signers, see Figure 8.5), correlation between morphological similarities and partici-
pants’ confusions is also not significant (r(7) = −.20, p = .61).

FIGURE 8.9: Morphological similarity among signers (left). Participants confu-
sions between signers (right).
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8.2.3 Discussion

As previously detailed in Section 3.2.1, the role of morphology in motion perception
has been a matter of debate for several types of movements. Sie et al. (2014) have
proposed a simple skeleton scaling method, by placing the coordinate system on a
reference node of the body (i.e., on the pelvis), and dividing all node coordinates
by the torso height. Troje et al. (2005) have used normalizations with respect to size
or/and shape, using linear regression models. In the specific context of LSF motion,
our computational analysis based on PCA revealed that morphological similarities
between signers were not correlated with participants’ confusions. This suggests
that morphology alone cannot account for correct signer identifications and calls for
further investigations of other candidate features for identification.

8.3 Further insights from machine learning: preliminary ob-
servations

The visual perception experiment of the present study (Section 8.1) provides the
first evidence that deaf perceivers managed to identify familiar signers, shown as
PLDs, above chance level, as demonstrated for walking (Troje et al., 2005) or danc-
ing (Loula et al., 2005). The second outcome of the study is that morphology was
not sufficient to identify the signers (Section 8.2). A computational analysis based
on PCA revealed a non-significant correlation between the participants’ confusion
errors and the morphological similarities among signers. This is also consistent with
prior studies on the perception of identity from gait (Troje et al., 2005). In the latter
study, even after having removed size and shape information, the different walk-
ers were still identified with high accuracy (i.e., about five to six times higher than
chance level).

Combining human data and computational analyses, the main findings of the
present study suggest that SL mocap data contain enough information for signers
to be identified, and this beyond morphology-related cues. Given that the present
PLDs were as short as 10 seconds, randomly selected in the original recordings and
as it was demonstrated that fingers were needed for SL comprehensibility (Poizner
et al., 1981), linguistics were unlikely to play a major role in the identification. Par-
ticipants thus may have used other cues, such as kinematic cues in particular. To
address this question, we aimed to develop a machine learning model for automatic
signer identification.

Before the extensive developments of the machine learning model (Chapter 9),
preliminary analyses of the mocap data of the four signers used in the human exper-
iment were conducted. The aim of these preliminary tests was to assess the extent
to which kinematic features could be used by machine learning models to distin-
guish between signers from mocap data. From each of the 24 mocap recordings, a
10-sec mocap excerpt was extracted. Each mocap recording was then represented as
a (1× 142, 500) flattened vector (i.e., 3D coordinates of 19 markers during 10 secs,
sampled at 250 fps). PCA was applied to the matrix containing the 24 mocap vectors
of all signers. Using the computational methods presented in Section 5.3.2, the mo-
cap vectors could be normalized with respect to size and shape (shape-normalized
data being also size-normalized). Preliminary observations were made on the first
two PCs extracted by the PCA. Without any normalization (ORI), the first two PCs
explained 38% of the variance in the original vectors and also accounted for some
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differentiation between signers, as shown in Figure 8.10. We also noted that the dif-
ferent mocap examples of each signer were consistently distributed across the two
axes. The first PC allowed differentiating Signer 2 from all other signers, while the
second PC allowed differentiating Signer 3 from Signers 1 and 4. Interestingly, these
PC projections highly reflect the ranking of the four signers as a function of mor-
phology (Figure 8.8), which suggests that the first PCs captured critical information
about the morphology-related cues of the signers.
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FIGURE 8.10: Projections of the original (ORI) mocap data onto the first two PCs.

When the mocap data were size- and shape-normalized, the first two PCs ac-
counted for a lower amount of variance (27%) in the mocap vectors than for original
motion but they still allowed for some differentiation between signers, as shown
in Figure 8.11. The first component discriminated between Signer 3 and Signer 4,
while the second component discriminated between Signer 1 and all other signers.
The lower percentage of information given by these two components was expected
as data were normalized. The main outcome of these preliminary results is that
PCA still extracted substantial information that discriminates between signers, even
when size and shape information were removed.

Although the mocap data analyses conducted in this preliminary step were quite
simple, the observations made on PC1 and PC2 support the possibility to automat-
ically identify signers from mocap data, beyond cues related to anthropometric dif-
ferences (e.g., in body size or shape). The role of cues related to the posture of the
signers was not the focus of this study. It will be further assessed in Chapter 9.
Beyond postural information, as motivated by prior evidence from both human vi-
sual perception (Troje et al., 2005; Westhoff and Troje, 2007) and machine learning
models (Zhang and Troje, 2005; Troje, 2002a; Carlson et al., 2020), kinematics may
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FIGURE 8.11: Projection of the shape-normalized (SH) mocap data onto the first
two PCs.

play a major role in how observers extract human attributes from motion. Taken to-
gether, these outcomes call for additional research further investigating the motion
cues that allow for signer identification, in particular kinematic ones. Based on the
prior work presented in Chapter 4, an original machine learning model aimed to
automatically determine the identity-specific features of signers is proposed in the
following chapter.
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Chapter 9

Machine learning of motion reveals
the kinematic signature of identity

As shown in Chapter 8, SL motion contains information about the identity of a
signer, as does voice for a speaker or gait for a walker (see Section 2.1.3). However,
how such information is encoded in the movements of the signers remains unclear.
In the present chapter, a machine learning model was trained to extract the motion
features allowing for the automatic identification of six signers, based on the mocap
data of MOCAP1-v2 (see Chapter 5 for corpus description) (Section 9.1). The perfor-
mance of the model on original, size-, shape- and posture-normalized mocap data
further confirmed that the identity of a signer can be conveyed by kinematics alone.
The further discriminant statistics used by the model in the identification defined
the kinematic signature of the identity of signers (Section 9.2). These findings con-
stitute a first step toward determining the motion descriptors necessary to account
for the human ability to identify signers (Section 9.3).

This chapter is partly reproduced from Bigand et al. (2021c).

9.1 Methods

Based on various motivations, notably related to the time-invariant property of iden-
tity and the structure of spontaneous LSF motion, a statistical-based approach was
taken to model the mocap data of the signers of MOCAP1-v2 (Section 9.1.1). PCA,
followed by a linear classifier was used to automatically identify the six signers (Sec-
tion 9.1.2). This machine learning model was then trained and tested using cross-
validation across the 24 mocap examples. Finally, the discriminant statistics used by
the classifier to identify the signers were analyzed (Section 9.1.3).

9.1.1 Motion model: a statistical-based approach

Similarly to Chapter 7, 24 mocap examples of 5-second duration each were extracted
from the original recordings of MOCAP1-v2 (see Chapter 5) and low-pass filtered
using a 4th-order Butterworth Filter with a cutoff frequency of 12 Hz. The start
frame of each mocap example was fixed after the initial “T” posture of the signers.
The end frame was then deduced from the 5-second duration, irrespective of the
semantic content in the original recording. For each signer, each mocap example was
related to a different picture description in LSF. This resulted in 24 mocap examples
per signer, of 5-second duration each (see examples in Videos 7.1 to 7.6). Using
the computational methods presented in Section 5.3.2, all mocap examples could
be kept as original (ORI) or normalized with respect to size (SI), shape (SH) and

https://zenodo.org/record/5215804#.YRzcFtMzba4
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posture (POST) of the signers. As a reminder, size, shape and posture of the signers
are structural cues (see Section 5.3.2), by contrast with kinematic ones.

The machine learning workflow aimed at automatically identifying the signers
is displayed in Figure 9.1. The mocap data of the pelvis marker were ignored as
it was set as the origin, which leads to zero vectors. Position and velocity of the
18 other markers were used as temporal features. Velocity was estimated by time
differentiation of the mocap position coordinates (ORI, SI, SH or POST). Then, we
measured time-averaged statistics of these temporal features.

FIGURE 9.1: Schematic representation of the steps used in the machine learning
model for identification.

The use of time-averaged statistics, rather than temporal-based methods (for a
comparison, see Section 9.2.4), was motivated by the following assumptions. Iden-
tity is a time-invariant property that humans are able to recognize from different
utterances of the same individual. This makes time-averaged statistics a particularly
suited description to extract identity-specific features. In the auditory domain, Lat-
inus and Belin (2011) have shown that speakers’ dissimilarities, across brief vowel
utterances, were well explained using the average fundamental frequency of phona-
tion (f0) and the average first formant frequency (F1). The role of statistics for cat-
egorical discrimination of sounds have further been shown with human behavioral
data in McDermott et al. (2013), revealing that discrimination of sounds improved
with longer excerpts, notably for the recognition of a single speaker. Converging
evidence has also been provided by machine learning of human motion: a linear
regression model trained by Tits (2018) has been able to accurately predict the level
of expertise from gesture in Taijiquan, based on mean and standard deviation of
position and velocity. Moreover, Carlson et al. (2020) recently demonstrated that
a dancer’s identity may be encoded by the covariance of three-dimensional move-
ments between specific body markers.

Statistics of motion were computed as follows. Based on previous research inves-
tigating the perception of auditory and visual textures (McDermott and Simoncelli,
2011; Portilla and Simoncelli, 2000), we measured the first four moments of posi-
tion and velocity (Equation 9.1), and covariances of velocity between body markers
(Equation 9.2). The first four moments of position and velocity described their sta-
tistical distributions, which may vary from one individual to another, as shown for
expert gesture analysis (Tits, 2018). For instance, for position, the mean provides in-
formation about the average posture of the signers, and the standard deviation pro-
vides information about the amplitude of their movements. For velocity, standard
deviation provides information about the amount of velocity of a signer’s markers
in any of the three dimensions. Although the interpretation of the other moments is
more challenging, their role in the identification was tested, similarly to McDermott
and Simoncelli, 2011. Moreover, the covariance of velocity allowed for quantifying
the extent to which any two markers covaried with each other, in two directions.
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This latter statistic has been shown to allow for automatic person identification from
dance movements (Carlson et al., 2020).

For each mocap example, the triangular part of the covariance matrix was re-
shaped into a vector of length 1431 and concatenated with the moments of position
and velocity, of length 53 each. The concatenated statistics constituted the feature
vector used in our person identification model. By definition, posture-normalized
data had the same mean position so this latter statistic was not included in POST
condition. The computation of the first four moments (Equation 9.1) and covariance
(Equation 9.2) is detailed as follows:

M1,m = µm =
1
T

T

∑
t=1

xm(t), M2,m = σm =

√√√√ 1
T

T

∑
t=1

(xm(t)− µm)2,

M3,m =
1
T ∑T

t=1(xm(t)− µm)3

σ3
m

, M4,m =
1
T ∑T

t=1(xm(t)− µm)4

σ4
m

− 3

(9.1)

where xm is the temporal feature (position or velocity) of marker m, along one of
the three directions, m ∈ [1, 54].

Ci,j =
1

T − 1

T

∑
t=1

(xi − µi)(xj − µj) (9.2)

where xi,j are velocity features related to two markers i, j. µi,j is the mean of the
feature, i, j ∈ [1, 54].

The relevance of using these statistical measures for signer identification was ad-
ditionally supported by observations made on our mocap data, which showed that
statistics varied substantially across the mocap data of different signers. For instance
in Figure 9.2, the position and velocity data of one body marker are distributed dif-
ferently across signers, for one mocap example (i.e., similar picture description in
LSF). Distributions of position data differ in location of the peak (captured by the
mean), width (captured by the standard deviation), asymmetry (captured by the
skew) and tails created by outliers (captured by the kurtosis).
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FIGURE 9.2: Distributions of position and velocity data of the RF hand marker
along the Z axis, for mocap example 24. Dashed vertical lines represent the means.
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FIGURE 9.3: The four moments of the position data along the Z axis, for all mark-
ers and all 144 mocap examples. Thick lines represent the average statistics of each

signer across their 24 examples.

FIGURE 9.4: The four moments of the velocity data along the Z axis, for all markers
and all 144 mocap examples. Thick lines represent the average statistics of each

signer across their 24 examples.
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The extent to which the four moments of position can capture these differences in
the distributions was further supported by the values of the moments themselves, as
shown in Figure 9.3. Similar observations can be made for the velocity distribution
in Figure 9.2, except maybe for the mean, which is similar across signers and near
zero for this mocap example. This could be explained by the fact that mocap exam-
ples represent continuous SL discourses with posture changes toward both negative
and positive directions along the three axes (i.e., making velocity zero-centered) and
with breaks (i.e., instantaneous zero-velocity). Still, as shown in Figure 9.4, the four
moments of velocity seemed to capture susbtantial differences across signers, mean
included. Further tests of the need for all these statistics to correctly identify the
signers are presented in Section 9.2.6.

The remaining statistics are the velocity covariances. They capture different as-
pects of motor coordination between the markers in three dimensions, which can
differ across signers. Various distinct coordination patterns can be extracted. For
instance, for mocap example 24, the movements of Signer 2 show an overall sub-
stantial (positive) covariance between body markers along the Y axis, while this
covariance is near zero for Signer 4 (Figure 9.5.A). Inversely, Signer 4 displays an
important (negative) covariance of movements of the right arm and hand along the
Y axis with the trunk (i.e., stomach and sternum) and head markers along the X axis,
while this covariance is less important for Signer 2 (Figure 9.5.B). Various patterns
may be extracted from this latter statistic because of the high number of markers and
dimensions. To overcome this problem, PCA was used (see 9.1.2), which allowed re-
ducing dimensions of the statistical features and extracting distinct motion patterns
that may account for signer identification.

Signer 2 Signer 4

B

A

FIGURE 9.5: The covariance of velocity between body markers (rows and columns)
of Signer 2 and Signer 4 in the three dimensions, for mocap example 24. Markers
are sorted from the 1st to the 19th as presented in Section 5.3.1, along X, Y and Z
axes. Coefficients correspond to the covariance measures centered and standard-
ized across examples and signers. Blue represent positive covariances, while red
represent negative ones. (A) overall covariance between markers along the Y axis.
(B) covariance between the right hand and arm markers along the Y axis, and the

trunk and head markers along the X axis.
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9.1.2 Person identification model

To predict the identity of the signer, Principal Component Analysis (PCA) followed
by a classifier was used. PCA was applied to the motion statistics (contained in a
matrix either of length 144× 1863 for ORI, SI, SH; or 144× 1809 for POST) and pro-
vided uncorrelated Principal Components (PCs) (or eigenvectors), which are linear
combinations of the original statistics:

D = d0 + XV (9.3)

where the matrix D contains the original statistics of all examples, vector d0 con-
tains the average statistics across examples, matrix X contains the coefficients of the
original statistics of all examples in the PC space, matrix V contains the PCs (or
eigenvectors).

This data-driven method allowed extracting candidate components for the char-
acterization of identity, without a priori hypotheses on the statistics. It also allowed
for dimensionality reduction, enabling us to retain a reduced number of PCs. The
number of retained PCs has often been chosen on the basis of the amount of vari-
ance they explained (Zago et al., 2017a). In the present study, the number of selected
PCs was chosen so that it maximized identification accuracy, by testing the model
with an increasing number of PCs (based on the descending order of the variance
they explained). This follows the approach proposed by O’Toole et al. (1993) who
have shown that for face identification, higher-order PCs, which explain only few
variance, capture identity-specific features while most of the variance is covered by
low-order PCs (see Section 4.2.1).

On the reduced set of PCs, a classifier was trained. We have tested the differences
in performance between three important different classifiers: multinomial logistic
regression, linear SVM and RBF kernel SVM. The main difference we aimed to test
was between linear (i.e., logistic regression and linear SVM) and non-linear models
(RBF kernel SVM). Although it is always specific to the dataset used in the study,
the optimal classifier choice can be hypothesized based on some machine learning
theories (Murphy, 2012). For instance, if N f eat (i.e., the number of features) is sig-
nificantly larger than Nex (i.e., the number of examples), it is general practice to use
a linear model, such as logistic regression or linear SVM. If N f eat is small and Nex
is slightly larger, non-linear models, such as SVM with a kernel, are generally pre-
ferred. However, when Nex becomes greatly larger than N f eat, non-linear SVMs are
hardly optimal, in which case methods for increasing the N f eat/Nex ratio should be
found and then linear models can be used. In our case, when using all statistics de-
scribed above, N f eat equals 1863 (ORI, SI, SH conditions) or 1809 (POST condition)
while Nex equals 144. N f eat is thus significantly larger than Nex, which may provide
the machine learning model with enough dimensions to allow for a linear separation
of the mocap statistics across signers and examples. In that case, a linear classifier
could be optimal. To confirm this hypothesis, we assessed the performance of the
automatic identification model using the three classifiers (for further details about
the machine learning procedure used for automatic identification, see Section 9.1.3).
One major interest of SVM classifiers is that they can be applied to non-linear clas-
sification problems by using kernels, which allow projecting the original data in a
new dimensional space that is linearly separable (Cristianini, Shawe-Taylor, et al.,
2000). Still, we additionally tested a linear SVM (i.e., without kernel) as compared
with logistic regression, as the two models are built on different methods (i.e., ge-
ometrical (SVM) vs. statistical (regression) approaches) and may be more optimal
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depending on the feature set (e.g., for overfitting problems1). The performance of
the identification model as a function of the classifier is shown in Table 9.1:

TABLE 9.1: Identification performance of the different classifiers, averaged over
the four normalization conditions: ORI, SI, SH and POST.

Classifier Correct identification

Logistic regression 92.7% (SD = 3.5%)

Linear SVM 91.0% (SD = 4.8%)

RBF kernel SVM 85.8% (SD = 2.7%)

Theoretical predictions were thus confirmed, with an advantage of the linear
models over the non-linear one. We further present the classifier that reported the
highest performance among linear models, that is multinomial logistic regression.
For the prediction of each signer, a logistic regression model was trained, as defined
in equation 9.4.

P(S = s) =
eβs.X

∑6
k=1 eβk.X

(9.4)

where X is the vector containing the coefficients of the test data in the PC space,
the vector βk contains the regression coefficients optimized for the identification of
Signer k during the learning step, S is the signer variable. The signer s reaching the
highest probability P in the model is defined as the predicted signer.

9.1.3 Automatic identification procedure

A leave-one-out cross-validation was conducted: the model was trained on N-1 (23)
mocap examples for each signer, and the remaining mocap example was used as the
test example (i.e., an unknown example that the model must identify as the signer’s
production). All examples were used as test example so the model was tested 24
times and performance was computed as an average across these iterations. Using
this cross-validation step, we assessed the extent to which the classifier learned id-
iosyncratic movement statistics that generalize to new mocap examples.

Finally, to better understand the motion statistics that allowed for identification,
we scrutinized some discriminant PCs (i.e., PCs that contributed to a significant in-
crease in identification accuracy) in terms of the original statistics they described.
First, the general statistical patterns dn of each PC were described as the absolute
value of the PC (Vn) (equation 9.5). Based on these descriptions, we then proposed
some interpretation of the motion information these PCs might contain. Second,
the optimized regression coefficient that the classifier assigned to a given PC for the
identification of Signer k was projected onto the PC (equation 9.6). The resulting sta-
tistical patterns dn,k provided further insights about the differences between signers
along the given PC (Vn).

dn = |Vn| (9.5)

1Overfitting happens when a model learns the detail and noise in the training data to the extent
that it negatively impacts the performance of the model on new data. Depending on the structure of
the feature set, logistic regression can be more vulnerable to overfitting problems than SVM.
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dn,k = βn,kVn (9.6)

where Vn is the nth PC (or eigenvector) of the PC space, the scalar βn,k is the
optimized regression weight assigned to Vn by the classifier to identify signer k. dn
and dn,k are vectors containing the statistical patterns (e.g., of length 1809, in POST
condition).

9.2 Results

Size and shape normalizations of the mocap data did not affect the identification per-
formance of the model (Section 9.2.1). Posture normalization caused a significantly
lower identification accuracy, but it remained over five times superior to the chance
level (Section 9.2.2). The further kinematic cues used by the model to identify the
signers from the posture-normalized mocap data defined the kinematic signature
of the identity of each signer (Section 9.2.3). The statistics we used allowed for a
significantly higher identification performance than temporal descriptors, such as
the widely used principal movements (PMs) (Section 9.2.4). Moreover, although the
performance of the model was sensitive to the duration of the mocap examples, it re-
mained over two times superior to the chance level when using 0.1-s mocap excerpts
(Section 9.2.5). Finally, posterior analyses suggested that some statistical measures
(e.g., standard deviation of position and velocity, covariance of velocity) may have
a greater importance than others in the automatic identification of signers (Section
9.2.6). This information will be of particular intereset for the development of our fur-
ther synthesis algorithm, which is aimed at manipulating the discriminant statistics
of motion in order to control the identity of signers in SL animations.

9.2.1 The role of structural and kinematic features

FIGURE 9.6: Average correct identifications of the model, as a function of the nor-
malizations of structural features. ORI: original motion, SI: size-normalized, SH:
shape-normalized, POST: posture-normalized. Dashed horizontal line indicates
chance level. Error bars indicate standard errors across the 24 test folds. Signifi-

cant differences between normalizations: *(p < .05), **(p < .01).
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Correct identifications of the model as a function of the normalizations are shown
in Figure 9.6. A repeated measures one-way ANOVA with normalization (with its
four levels: ORI, SI, SH and POST) as within-test factor was run on correct identifi-
cations. As the assumption of sphericity was violated (Mauchly’s Test, p < .05), a
Greenhouse-Geisser correction was applied (ε = .61). The main effect of normaliza-
tion was significant (F(1.83, 42.07) = 5.46, p < .01, η2 = .19). Bonferroni-adjusted
post-hoc tests were performed to test for differences between normalizations. They
revealed a significant increase of identification accuracy from posture-normalized
(POST, mean = 86.8%) to shape-normalized (SH, mean = 93.8%, p < .05), size-
normalized (SI, mean = 95.1%, p < .01) and original motion (ORI, mean = 95.1%,
p < .01). No significant difference was found between ORI, SI or SH (p > .05).

9.2.2 Identification accuracy of the model for posture-normalized motion

Figure 9.7 displays the correct identifications of the model from posture-normalized
mocap data. The number of retained principal components varied from 1 to 144
(which corresponds to the number of mocap examples across signers) (see Section
9.1.2 for details about how the PCs were retained). The highest accuracy of 86.8%
was obtained using 69 components. The first component alone allowed for a 38.9%
average correct identification. The first 24 components alone contributed to most of
the correct identifications, with a 79.2% accuracy. Components 59 to 69 then con-
tributed to most of the increase toward the highest accuracy, from 77.8% to 86.8%.

FIGURE 9.7: Correct identifications of the model from posture-normalized motion,
as a function of the number of principal components used.

Table 9.2 shows the confusion matrix of the model trained with 69 components,
leading to the highest identification accuracy. It specifies the predictions for each
signer, across the 24 examples. One sample Student’s t-tests revealed that identifica-
tion performance was above chance level (16.7%) for all signers (p < .001 - Signer 1:
t(23) = 9.33, d = 1.91, Signer 2: t(23) = 10.27, d = 2.59, Signer 3: t(23) = 18.99, d =
4.69, Signer 4: t(23) = 7.47, d = 1.53, Signer 5: t(23) = 8.58, d = 2.19, Signer 6:
t(23) = 18.99, d = 4.69). No confusions were significant between signers (p > .05).
The lowest performance of the model occurred for Signer 4, with a 70.8% accuracy.
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TABLE 9.2: Confusion matrix in percent correct identification of the model, aver-
aged across examples (for posture-normalized motion). Accuracy values signifi-

cantly above chance level are shown in bold: ***(p < .001).

Signer 1 Signer 2 Signer 3 Signer 4 Signer 5 Signer 6

Signer 1 79.2*** 0 0 8.3 12.5 0

Signer 2 0 87.5*** 4.2 4.2 0 4.2

Signer 3 0 4.2 95.8*** 0 0 0

Signer 4 8.3 8.3 4.2 70.8*** 4.2 4.2

Signer 5 16.7 0 0 0 83.3*** 0

Signer 6 4.2 0 0 0 0 95.8***

9.2.3 Kinematic features of importance

In order to further understand which kind of information is useful for signer identi-
fication from posture-normalized motion, we examined the PCs used by the classi-
fier. The identification model was run on the whole dataset with the 69 components,
which allowed reaching the highest performance. Discriminant PCs were described
following equation 9.5 (see Section 9.1.3). The statistical patterns (referred to as dn
in equation 9.5) of some highly discriminant PCs are displayed in Figure 9.8. PC1,
PC2 and PC4 contributed to 38.9%, 10.4% and 7.6% of the cumulative correct identi-
fication, respectively (Figure 9.7).

PC1 mainly described relationships between movements along vertical (Z) and
anteroposterior (Y) axes, except between hand markers along the Z axis and head
markers along the Y axis (Figure 9.8.C). It also described differences in standard de-
viations of the position and velocity for all body joints along the Y axis (Figure 9.8.A),
and for the trunk and head along the Z axis (Figure 9.8.B). PC2 was mostly related to
movements along the mediolateral (X) (Figure 9.8.D) and Z axes (Figure 9.8.E). Co-
varying movements of the head with the right hand along the X axis (Figure 9.8.F)
are characteristic of this PC, as well as the right hand with the left hand along Z and
X axes, respectively (Figure 9.8.G). PC4 did not describe global movements along
one of the three axes, compared with PC1 and PC2. Instead, it mainly characterized
relationships between movements along the X and Y axes, particularly regarding the
right hand (Figure 9.8.H).

These PCs, either combined or independently, can be used to discriminate be-
tween individual signers. For instance, Figure 9.9 displays the idiosyncratic statisti-
cal patterns (referred to as dn,k in equation 9.6) of some signers, along PC1. Accord-
ing to PC1, the movements of Signer 1 presented little relationship between antero-
posterior and vertical axes (Figure 9.9.C1), and low variation in position and velocity,
along anteroposterior and vertical axes (Figure 9.9.A1 and B1). By contrast, Signer 2
was characterized by strong relationship between anteroposterior and vertical axes
(Figure 9.9.C2), and high variation in position and velocity, along anteroposterior
and vertical axes (Figure 9.9.A2 and B2). These discriminant PCs convey the motion
signature of each signer’s identity and they can be scrutinized in terms of the origi-
nal statistics. These findings mean that identity can be inferred from simple statistics
of kinematic features, with a consistent accuracy.
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FIGURE 9.8: Discriminant PCs for signer identification. Left: moments (columns:
std, skew, kurtosis) of position, for all markers (rows). Middle: moments
(columns: mean, std, skew, kurtosis) of velocity, for all markers (rows). Right:
covariance of velocity between markers (rows and columns). Markers are sorted
from 1 to 19 as presented in Section 5.3.1 along X, Y and Z axes. Some patterns
of importance are highlighted. For sake of clarity, the specific moments and body
markers are displayed only for these patterns of importance. PC1: Std of position
(A) and velocity (B) along Y and Z axes, for all markers; (C) Covarying movements
between all markers along Y and Z axes. PC2: Std of velocity along X (D) and Z
(E) axes, for all markers; (F) Covarying movements between the right hand, and
trunk and head markers, along X axis; (G) Covarying movements between the
right hand markers along Z axis, and the left hand markers along X axis. PC4: (H)
Covarying movements between the right hand markers along Y axis, and all other

markers along X axis.
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FIGURE 9.9: Classifier weights of PC1 for Signer 1 and Signer 2. Similarly to Figure
9.8, for Signer 1 (left) and Signer 2 (right): moments (columns: std, skew, kurtosis)
of position for all markers (rows), moments (columns: mean, std, skew, kurtosis)
of velocity for all markers (rows), covariance of velocity between markers (rows
and columns). Markers are sorted from 1 to 19 as presented in Section 5.3.1 along
X, Y and Z axes. Coefficients correspond to the logistic regression weights opti-
mized for each signer. Blue represents positive weight values, while red represents
negative ones. The three patterns of importance are highlighted: Std of position
(Ak) and velocity (Bk) of all body markers for Signer k; (Ck) Covariance of velocity

between all body markers along Y and Z axes for Signer k.
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9.2.4 The overall advantage of statistics over temporal-based approaches

As mentioned in Section 4.2.3 previously and in Section 9.1.2 of the present chap-
ter, we hypothesized that statistics of the mocap data would be particularly suited
for signer identification, as compared to temporal-based descriptions. The results
of the present study then confirmed that a statistical-based model could allow for
successful automatic signer identificaiton (Section 9.2.2) and determination of the
specific motion features used in the identification (Sections 9.2.1 and 9.2.3). To fur-
ther assess the relevance of choosing a statistical-based approach, we tested our ma-
chine learning model on a widely used temporal-based representation: principal
movements (PMs). In Young and Reinkensmeyer (2014), the quality of dives was
automatically evaluated across various athletes, using PM posture vectors and their
temporal weights, jointly with more traditional features used for dive evaluation
(e.g., splash area). PM posture vectors of individual walkers have also allowed for
automatic gender classification (Troje, 2002a) and person identification (using key
postures similar to PMs although they were obtained from Fourier decomposition)
(Zhang and Troje, 2005).

In the present study, we trained our model to identify signers from the temporal
weights of the PMs, similarly to Tits (2018) and Zago et al. (2017a). Although more
complete feature representations allowed for even more accurate prediction, Zago
et al. (2017a) have shown that PM temporal weights could allow predicting the ex-
pertise of karateka. Moreover, as demonstrated in Chapter 7, signers of MOCAP1-v2
shared common PMs but executed them differently. Eight common PMs were suf-
ficient to explain 95% of variance in the original LSF movements of all of the six
signers. Therefore, the model was trained on the weights of these eight common
PMs. In other words, we assessed the extent to which the differences in the ex-
ecution of the common PMs between signers allowed identifying them with high
accuracy, compared to our statistical-based approach. The automatic identification
model (see Section 9.1.2) and procedure (Section 9.1.3) used with statistics and prin-
cipal movements were identical. Finally, the identification performance of the model
was compared between the two approaches. As shown in Figure 9.10, the highest
identification accuracy using PM weights is 31% and is obtained with 27 PCs. Our
statistical-based approach outperforms the one based on PM weights, with a 86.8%
accuracy obtained with 69 PCs.
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FIGURE 9.10: Identification performance of our model using a statistical-based
approach, compared with our model using a temporal-based approach (i.e., prin-
cipal movement weights). Performance is plotted as a function of the number of

PCs used in the PCA step of the machine learning framework (see Section 9.1).
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9.2.5 Fast identification of signers: to which extent?

The results mentioned above pointed out an overall advantage of statistical over
temporal representations for the identifiaction of signers from our mocap dataset,
using 5-second mocap examples. Would statistics also allow for successful identifi-
cation in very short periods of time? Indeed, statistics are averaged over time, which
makes them sensitive to the duration of the mocap original examples. Beyond the
fact that one may expect identification to be easier with motion examples of longer
duration, we were interested in the extent to which very fast examples could still
allow for substantial identification. Humans are very fast (< 0.2 seconds) at recog-
nizing movement categories from PLDs (Johansson, 1976), as in the auditory and
vision domain, where human perceivers can categorize sounds (Bigand et al., 2011;
Agus et al., 2012) and human faces (Rousselet et al., 2003) very rapidly (< 500 mil-
liseconds). To address that question for the identification of signers from motion,
we trained our statistical-based model using mocap examples of various durations.
As expected, the identification accuracy of the model improved as a function of the
duration of the mocap excerpts (Figure 9.11), from 49.3% with 0.1-second excerpts to
86.8% with 5-second ones. When using examples of duration longer than 2 seconds,
the model managed to identify the signers with accuracy rates above 80%.
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FIGURE 9.11: Correct identifications of our model as a function of the duration of
the mocap examples.

Still, the fact that very fast, 0.1-second, mocap examples allowed for a substantial
(i.e., 49.3%) identification accuracy of the model was quite intriguing. We hypoth-
esized that our trimming method (i.e., the start frame of all mocap examples was
set just after the initial “T” posture) may have influenced the model and allowed
for such performance, assuming that signers could have made a similar movement
when beginning all their discourses. Therefore, a second analysis was then con-
ducted where the start frame was set to a random time (within a range of four sec-
onds) after the end of the initial “T” posture, rather than 0 initially. For instance,
the start frame could be set to 2.3 seconds after the “T” posture for one example,
while being set to 3.8 seconds for another example of the same signer, which re-
duced the potential influence of a “typical“ movement made by the signers at the
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beginning of all their discourses. All mocap examples were still of 5-second dura-
tion. As shown in Figure 9.12, the identification accuracy of the model was lowered
for rapid excerpts (e.g., from 49.3% to 38.2% for 0.1-second mocap excerpts) when
the start frames were set randomly. More interestingly, the gap in identification per-
formance between random and non-random conditions reduced as the duration of
the stimuli increased. If the performance of the model was 11.1% lower for 0.1-
second excerpts in the random condition than in the non-random one, it was only
2.8% lower for 5-second ones. These results are consistent with our hypothesis that
initial movements of the signers used to begin their discourses may have had a slight
influence on the predictions of the model. Indeed, these movements were potentially
important in short excerpts, while their importance may be reduced when averaging
the statistics on longer durations, for the benefit of other movements specific to the
discourse. Still, the 38.2% accuracy reported for 0.1-second mocap examples in the
random condition remains substantial, compared with the chance level (i.e., 16.7%).
This suggests that identity could be inferred from the movements of signers very
rapidly and emphasizes the idea that signer identification may be achieved beyond
semantic content, which is unlikely to be comprehensible in such short times.
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FIGURE 9.12: Correct identifications of our model as a function of the duration of
the mocap examples, in the two conditions: non-random (i.e., all mocap examples
are trimmed just after the end of the initial “T” posture) (blue) and random (i.e.,
the start frame after the end of the “T” posture is set to a random value, between

0 and 4 seconds, for each mocap example) (orange).

9.2.6 The statistics: all needed?

Finally, we assessed the necessity of using all statistical measures in our identifi-
cation model. As pointed out in Section 9.1.1, some statistics used in our model
could potentially contribute less to the identification than others. For instance, Fig-
ure 9.2 showed that the mean values of the velocity data were quite similar across
signers. We thus evaluated the identification accuracy of the model from posture-
normalized motion using different subsets of statistics. Interestingly, the model man-
aged to identify the signers with substantial accuracy (i.e., 65.3%, approximately
four times higher than the chance level) using the standard deviation (SD) of position
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data. The main significant increase in accuracy between conditions occurred when
adding the SD of velocity data (p < .05). Overall, performance of the model signif-
icantly increased from the input matrix containing only the SD of position (65.3%)
to the whole matrix containing all statistics (86.8%, p < .001). Extensive statistical
differences between conditions (i.e., using the different subsets of statistics) can be
found in Appendix C. The best identification performance was thus achieved using
all statistics. However, the three statistics that seemed to play a major role in the
ability of the model to identify the signers were SD of position, SD of velocity and
covariance of velocity. These results form the basis of the statistics that will be ma-
nipulated in our further synthesis algorithm aimed at controlling identity-specific
features in SL movements (see Chapter 10).

FIGURE 9.13: Average correct identifications of the model from posture-
normalized motion, as more statistics are used as input features. Two important
significant differences are shown between conditions (for the further differences
between all conditions, please refer to Appendix C). Dashed horizontal line in-
dicates chance level. Error bars indicate standard errors across the 24 test folds.

Significant differences between conditions: *(p < .05), ***(p < .001).

9.3 Discussion

The present study demonstrates that motion capture data convey critical informa-
tion to allow for robust identification of signers using machine learning, as previ-
ously shown for walking (Zhang and Troje, 2005) or dancing (Carlson et al., 2020).
PCA followed by a linear classifier managed to correctly identify signers from the
statistics of their movements recorded during the free description of pictures in
spontaneous French Sign Language (LSF). Even when deprived of structural infor-
mation about the signers, the model reported 86.8% accuracy, over five times higher
than chance level (Sections 9.2.1 and 9.2.2). These results are consistent with prior
findings on the human ability to identify individuals from walking (Cutting and Ko-
zlowski, 1977; Troje et al., 2005; Westhoff and Troje, 2007) and dancing (Loula et al.,
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2005; Bläsing and Sauzet, 2018) movements. In particular, this is in line with the out-
comes of Chapter 8, which demonstrated that humans are able to identify signers
from PLDs of their movements in LSF. Compared to the latter visual perception ex-
periment, which measured the human ability to identify signers, the present study
trained a machine learning model, which successfully identified signers from statis-
tics of mocap data. Although in Chapter 8, we have shown that size and shape of the
signers’ body may not have played a major role in the ability of the participants to
identify, the machine learning approach taken in the present chapter allowed further
determining the specific features that allow for the identification.

The second outcome of the present study is that kinematics alone allow for ro-
bust identification of the signers. Removing size and shape information did not
affect the performance of the model. Normalizing the mocap data with respect to
the signers’ postures led to a decline of identification accuracy. Nevertheless, the
remaining identification accuracy was significantly above chance level. The minor
role of anthropometric differences in identifying individuals from their movements
is consistent with prior behavioral studies on gait (Troje et al., 2005; Westhoff and
Troje, 2007) and LSF (see Chapter 8). Interestingly, the impact of the signers’ average
posture on our model’s correct identification was similar to the impact reported by
Troje et al. (2005) on human observers, causing a decrease of about 10% of accuracy.
The remaining ability of the model to identify signers without any of these struc-
tural cues confirms that kinematics alone are sufficient to achieve identification, as
previously suggested by Troje et al. (2005) and Westhoff and Troje (2007) for walking.

Further analyses of the contribution of kinematic features to the model’s iden-
tification revealed identity-specific characteristics of signers’ motion (Section 9.2.3).
In general, discriminant PCs described specific kinematic statistics in all three di-
mensions. For instance, PC1, PC2 and PC4, which accounted for 54.9% of correct
identification, were characterized by movements in the sagittal, frontal and trans-
verse plane, respectively. Previous findings have outlined critical features for gen-
der classification of gait in the frontal plane, which are, therefore, best visible in
frontal view (Mather and Murdoch, 1994; Troje, 2002a). However, although Troje
et al. (2005) have found an overall advantage for walker identification based on the
frontal view, training on half-profile views allowed for higher performance when
participants had to identify walkers from new viewpoints. Moreover, no overall ad-
vantage for the frontal view has been reported by Westhoff and Troje (2007), whose
gait PLDs were totally deprived of structural information. Whereas for now, human
perceivers’ ability to identify signers have only been studied using frontal views
(Chapter 8), half-profile and profile views may provide critical information, espe-
cially for kinematics. This observation is consistent with the recent machine learn-
ing model of dancer identification proposed by Carlson et al. (2020), which reported
kinematic features of importance along all three dimensions.

Similarly to Carlson et al. (2020), the discriminant PCs revealed distinct identity-
specific patterns over sensors and dimensions. For instance, whereas PC1 reflected
differences in the kinematics of all body markers along the anteroposterior axis, dif-
ferences along the vertical axis concerned only the trunk (e.g., stomach, sternum,
shoulders) and head markers. PC1, PC2 and PC4 reported different contributions of
each part of the signers’ bodies, often distinguishing groups of markers such as head,
trunk or hand markers. We also noticed distinct contributions of the two hands, such
as a lower impact of the left hand along the mediolateral axis in PC2 than the right
hand. This may be due to the motion differences caused by the dominant hand of
the signers, which was the right hand for all of them. Indeed, as with any other hu-
man movements, signers preferably use their dominant hand when signing, such as
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for pointing, fingerspelling, asymmetric two-handed signs (i.e., the dominant hand
moves with respect to the other hand, which stays still) or one-handed signs (i.e., the
sign is executed with the dominant hand only), as this hand provides faster or more
precise performance. Prior studies have highlighted inter-individual differences in
the execution of principal movements (or eigenmovements) for skiing (Federolf et
al., 2014), karate (Zago et al., 2017a) or pathological gait (Zago et al., 2017c). How-
ever, principal movements are based on frame-by-frame relations between gestures,
while SL movements are hardly ever synchronized across examples and individu-
als. Hence, as previously pointed out by Tits (2018), we outlined here the advantage
of using statistics as motion descriptors for identity, which is invariant to time and
independent of semantic content, over temporal-based approaches.

Unlike prior work on the recognition of familiar faces (O’Toole et al., 1993), which
had demonstrated that identity may be better characterized by high-order PCs of the
face space (i.e., with low eigenvalue) (see Section 4.2.1), most of the PCs that carried
critical information for the identification of signers in our study were in lower di-
mensions. Indeed, the first 24 PCs allowed the model to identify the signers from
posture-normalized motion, with a 79.2% accuracy. Beyond the differences in the
data representations to which PCA was applied (i.e., pixel gray levels of face images
in O’Toole et al. (1993) vs. statistics of mocap data in our study), further differences
in the structure of our dataset can have caused this low-dimensional representation
of identity in the movements. In O’Toole et al. (1993), 159 different faces were used
(i.e., 159 examples for 159 identity labels), while we used 24 mocap examples per
signer, resulting in 144 examples across all of the six signers (i.e., 144 examples for six
identity labels). We could hypothesize that the PCA interpreted information about
the identity of the six signers as category information that is shared by multiple ex-
amples (of the same signer) and thus represented in lower PC dimensions, rather
than as identity-specific information that is not shared by examples (i.e., related to
one specific example, as in O’Toole et al. (1993)) and thus better characterized by
higher PC dimensions. In other words, our machine learning model may have inter-
preted the six identity labels of the signers as six categories across mocap examples
(like gender was represented as two categories across face examples in O’Toole et al.
(1993)). This observation calls for further research investigating signer identification
from mocap datasets with more signers, each represented by one mocap example
only.

The differences we found in the information carried by low- and high-order PCs
was related to the statistical measures. For instance, PCs 1 to 24 were mainly related
to the standard deviation of position, standard deviation of velocity and covariance
of velocity. By contrast, PCs 59 to 69 mainly corresponded to finer patterns of skew
and kurtosis measures. This is in line with further analyses we conducted on the
specific importance of each statistical measure in the automatic identification (Sec-
tion 9.2.6). Although it was not clear whether the contribution of skew and kurtosis
measures could be considered as negligible, the statistics of greater importance in
the identification were the standard deviation of position, standard deviation of ve-
locity and covariance of velocity. Moreover, the mean velocity did not seem to play
a major role in the identification, as anticipated in Section 9.1.1. Additionally, the
impact of the duration of mocap examples on the performance of the model was as-
sessed (Section 9.2.5). The results showed that signer identification was still possible
to some extent with very short examples. For instance, signers were identified by the
model with a 38.2% accuracy (i.e., twice the chance level) when using 0.1-second mo-
cap excerpts. These results are in line with the ability of human observers to process
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motion patterns from PLDs in very short times, such as 0.2 seconds for recogniz-
ing human actions or 0.1 seconds for perceiving a human body in the movements
(Johansson, 1976).

The results of the present study suggest that signers have a kinematic signature,
which is invariant to the semantic content of their movements in LSF. We were able
to characterize this signature using 24 components extracted from PCA, leading to a
79.2% identification accuracy. Such a data-driven approach is particularly interest-
ing in the case of identification as the discriminant features are mainly idiosyncratic
and thus hard to define a priori for each individual. The other main advantage of
PCA is its invertibility, which makes it possible to recompute statistics by projecting
a linear combination of PCs back into the original space. These statistics could be
manipulated in order to resynthesize pre-recorded SL movements isolating, or exag-
gerating, the PCs of interest. To achieve this, we could develop algorithms similar to
the ones used to synthesize sounds with matching statistics (McDermott et al., 2009;
McDermott and Simoncelli, 2011; Norman-Haignere and McDermott, 2018). This
approach would allow for the visualization of specific PCs, by exaggerating their
weight in the combination of PCs, as previously shown for male and female gaits
(Troje, 2002a). Furthermore, being able to control identity-specific PCs in motion
synthesis would provide promising perspectives toward anonymizing SL motion
for virtual signers.
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Chapter 10

Synthesis algorithm for the
kinematic control of identity

The primary motivation of the present thesis was that novel engineering tools were
needed to allow controlling the features that carry identity information in the move-
ments of virtual signers, in particular for generating anonymized content (see Chap-
ter 1). Compared to speaker identification in spoken languages, little was known
about the critical motion features that allowed for signer identification in Sign Lan-
guages. From both human and computational data (see Chapters 8 and 9), this the-
sis has demonstrated that cues related to structural differences may not play a major
role in the identification of signers, except ones related to their posture, which may
provide a partial account for the identification. Identity may thus be mainly inferred
from the kinematic aspects of the movements. Using the machine learning model
developed in Chapter 9, we are now able to automatically extract the specific kine-
matic aspects of motion that carry identity using time-averaged statistics. Manipu-
lating these discriminant statistics in the generation of SL movements could allow
changing the identity perceived by the human observers (e.g., the movements of the
signer could be anonymized). This final contribution of the thesis presents a synthe-
sis algorithm developed in order to manipulate identity-specific kinematic statistics
from original mocap recordings (Section 10.1). Performance of the algorithm is as-
sessed in terms of convergence and quality of statistical matching, and is illustrated
with some examples of kinematic anonymization and identity conversion using SL
mocap data of MOCAP1-v2 (Section 10.2). Although this version of the algorithm
is a first prototype, it provided convincing results and opens up promising perspec-
tives toward the automatic control of identity in the movements of virtual signers, in
the same way as for the voice of a speaker, which can be anonymized by modifying
specific vocal parameters (Section 10.3).

10.1 Methods

The automatic signer identification model presented in Chapter 9 allowed extract-
ing specific kinematic statistics that carry identity information about the signers. An
original synthesis algorithm was further developed, which allowed reducing or ex-
aggerating these statistics in novel, synthesized, mocap examples in order to change
the identity inferred from the movements of the signers (Section 10.1.1). Moreover,
as previously outlined in this thesis (see Sections 1.2 and 3.3.3), one crucial challenge
of automatic SL generation is to keep the movements of virtual signers natural and
comprehensible. Therefore, not only was our synthesis algorithm aimed at imposing
new statistics but it also needed to preserve the original structure of the movements,
notably to keep the semantic content intact (Section 10.1.2).
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10.1.1 Imposing new statistics to the movements

The synthesis was driven by the discriminant statistics extracted by the signer iden-
tification model of Chapter 9. As detailed in equation 9.6, the identity of each signer
k was characterized by discriminant statistical patterns dn,k, each related to a spe-
cific PC Vn. Using the 24 PCs that allowed for a 79.2% identification accuracy of the
model (see Chapter 9), the overall discriminant statistical pattern of the identity of
each signer was formulated as follows:

dk =
24

∑
n=1

dn,k (10.1)

where dn,k is a vector containing the statistical patterns of the nth discriminant PC
for signer identification and dk is a vector containing the overall statistical patterns
of the first 24 discriminant PCs for Signer k.

The aim of the present synthesis algorithm was to impose new target statistics
d̃α to an original mocap recording of a given signer in order to reduce (α < 0) or
exaggerate (α > 0) the identity-specific aspects of motion that are characteristic of
Signer k, following Equation 10.2:

d̃α = dorig + αdk (10.2)

where d̃α is a vector containing the new target statistics imposed by the synthesis
alogrithm, dorig is a vector containing the original statistics of the mocap example, dk
is a vector containing the overall statistical patterns related to the identity of Signer
k, and α is a scalar related to the amount of reduction (α < 0) or exaggeration (α > 0)
of the identity attribute.

The different steps of the synthesis process are displayed in Figure 10.1. In sum-
mary, the synthesis process consisted of modifying (i.e., “re-synthezing”) an existing
mocap recording in order to change the identity attribute of the signer, according to
the following steps. First, statistics of the original mocap example are measured (for
further descriptions of the processing of mocap recordings and calculation of the
statistics, see Section 9.1.1), while the discriminant statistical kinematic patterns are
taken from the automatic identification model (see Chapter 9). Then, the discrimi-
nant statistics characteristic of Signer k are either added to (α > 0) or subtracted from
(α < 0) the ones of the original example (see Equation 10.2). Multiple manipulations
can then be done using this technique, depending on the values of k and α. For in-
stance, if the original mocap example relates to Signer 1, reducing the importance
of her identity-specific statistics (i.e., k = 1, α < 0) would make her less identifi-
able (i.e., kinematic anonymization). By contrast, increasing the importance of the
identity-specific statistics of Signer 2 (i.e., k = 2, α > 0) would make this latter signer
identifiable while the SL movements were originally executed by Signer 1 (i.e., kine-
matic identity conversion). Once the target statistics defined, they are imposed to
the original mocap signal by the algorithm, which creates a new mocap excerpt.

Target statistics were imposed using an iterative process where a synthesized
mocap signal (initialized with the content of the original mocap recording) is mod-
ified until its statistics are sufficiently close to the target ones d̃α. Mathematically,
the objective of this process is to minimize the loss function that calculates the mean
square of the differences between the target statistics and the statistics of the synthe-
sized movements (see Equation 10.3). In the prototype presented in this chapter, we
imposed the first two moments (mean and standard deviation (SD)) of position and
velocity data, and the covariance of velocity between markers. SD of position, SD of
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FIGURE 10.1: Schematic representation of the steps used in the synthesis algo-
rithm for the kinematic control of identity.

velocity and covariance of velocity were shown to be the most important statistics
that allowed for signer identification (see Section 9.2.6). Imposing the mean of po-
sition and mean of velocity of the markers was done to maintain consistent motion
data when synthesizing (e.g., to avoid the generation of unrealistic, non-biological,
movements), although these two statistics had only minor role in the identification.

loss =∑
m
(µpos,m,target − µpos,m,synth)

2 + ∑
m
(σpos,m,target − σpos,m,synth)

2

+ ∑
m
(µvel,m,target − µvel,m,synth)

2 + ∑
m
(σvel,m,target − σvel,m,synth)

2

+ ∑
i,j
(Ci,j,target − Ci,j,synth)

2

= loss1 + loss2 + loss3 + loss4 + loss5

(10.3)

where µpos,m, σpos,m, µvel,m and σvel,m are the first two moments of position and
velocity data of marker m (m ∈ [1, 54]), Ci,j is the covariance of velocity between
markers i and j. target and synth subscripts distinguish between target statistics
and statistics of the synthesized movements, respectively.

In order to be able to minimize all of the five loss components of Equation 10.3
despite the differences in ranges of amplitude across statistics, we used a weighted
loss function, whose weights then need to be optimized (see Equation 10.4). The loss
function was then minimized using the Adam optimization algorithm for gradient
descent. Each iterative step of the gradient descent modified the synthesized mocap
signals (i.e., position temporal curves of the 19 markers along the three dimensions)
so that they approached the target statistics.

loss = w1loss1 + w2loss2 + w3loss3 + w4loss4 + w5loss5 (10.4)

10.1.2 Preserving the original motion structure

Initially, there was no constraint in the synthesis process that forced the position and
velocity signals of the synthesized movements to remain consistent with their initial
temporal structure in the original movements. The limitation of this first version of
the algorithm is that, although it managed to impose the statistics present in Equa-
tion 10.3, the modifications applied to the new movements seemed to generate noise
artifacts rather than changing relevant aspects of the motion of the signer (see Video

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
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10.1). This problem is particularly visible in the temporal curves of position and
velocity data, as shown in Figure 10.2. In fact, the imposing algorithm managed to
impose the target statistics but by modifying the movements in an undesired man-
ner. First, low-energy segments of the motion were modified in the same way as
high-energy ones, which is not relevant as they may not be perceived by observers.
Moreover, reaching the target statistics caused very rapid oscillations in the syn-
thesized velocity temporal curves, which are unlikely to be perceived as biological
motion by the observers (but rather noisy, wobbling markers).

FIGURE 10.2: Example of the synthesis results with the first algorithm version,
for mocap example 1 of Signer 1. Position (left) and velocity (right) data of RF
hand marker along the Z axis are shown, for the original mocap recording and

synthesized mocap excerpt.

In order to modify the movements in proportion to their energy (i.e., modify
the aspects of the movement at relevant times of actual, perceptible, motion), we
included another target statistic in the imposing algorithm: the correlation of veloc-
ity between the original and synthesized movements. The algorithm then aimed to
minimize the mean squared error between this correlation and a value of 1, which
characterizes two signals that are perfectly positively correlated (see Equation 10.5).
In other words, imposing this additional statistic (Equation 10.6) allowed forcing
the velocity curves of the synthesized movements to be consistent with their initial
temporal structure in the original mocap recording (Figure 10.3).

loss6 = ∑
m
(ρvel,m,target − ρvel,m,synth)

2 = ∑
m
(1− ρvel,m,synth)

2
(10.5)

loss = w1loss1 + w2loss2 + w3loss3 + w4loss4 + w5loss5 + w6loss6 (10.6)

where ρvel,m is the correlation of velocity between the original and synthesized
movements of marker m (m ∈ [1, 54]). The target correlation value is set to 1 for all
markers, in order to preserve the original temporal structure of velocity curves.

As shown in Figure 10.3 (and Video 10.2), the second version of the imposing
algorithm managed to reach the target statistics but in a more relevant manner than
in its first version. Velocity data is highly more realistic, in particular as fast noisy
oscillations are removed. Moreover, reaching the target statistics modified the move-
ments at more relevant moments. For instance, the SD of velocity increased from the
original to the synthesized movement by generating wider movements (e.g., frames

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
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FIGURE 10.3: Example of the synthesis results when additionally imposing the
correlation between velocity curves of original and synthesized mocap examples,
for mocap example 1 of Signer 1. Position (left) and velocity (right) data of RF
hand marker along the Z axis are shown, for the original mocap recording and

synthesized mocap excerpt.

1000 to 1200 in Figure 10.3 (left)) with velocity peaks of greater importance (e.g.,
frames 1000 to 1200 in Figure 10.3 (right)). More global modifications of the marker
position also occurred (e.g., frames 0 to 600 in Figure 10.3 (left)) in order to reach
all of the target statistics, as compared to the first algorithm version, which caused
unrealistic modifications of the position at the frame level (e.g., frames 0 to 200, and
1200 to the end, in Figure 10.2 (left)).

In summary, the imposing algorithm iteratively modified the original move-
ments until their statistics (i.e., first two moments of position and velocity, and co-
variance of velocity between markers) approached the target ones defined by the
user to modify the identity attribute. Moreover, the velocity curves of the original
and synthesized movements were forced to be correlated in order to maintain a con-
sistent temporal structure. In the version of the imposing algorithm presented in
this thesis, parameters (see Table 10.1) were optimized manually for each synthe-
sized motion example.

TABLE 10.1: Summary characteristics of the imposing algorithm.

Statistics imposed µpos,m, σpos,m, µvel,m, σvel,m, Ci,j and ρvel,m (see Equations 10.3
and 10.5)

Imposing method Minimizing the loss function (see Equation 10.6) using gra-
dient descent (Adam optimizer)

Parameters – Weights of the loss function

– Number of iterations of the gradient descent optimizer

– Step size of the gradient descent optimizer

10.2 Results

Using a sufficient number of iterative steps, the imposing algorithm managed to
modify the movements so that their statistics approached the target ones (Section
10.2.1). This synthesis procedure was run on mocap examples of different signers
and for different modifications of the identity attribute. For instance, the movements
of Signer 1 were modified so that the perceived identity was that of Signer 2 (i.e.,
identity conversion) (Section 10.2.2). Then, they were modified to make Signer 1 not
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identifiable, without making another signer identifiable specifically (i.e., anonymiza-
tion) (Section 10.2.3). One further synthesis example of identity conversion (from
Signer 2 to Signer 1) is available in Appendix D.

10.2.1 Algorithm validation: convergence and statistical matching

In this section, the performance of the synthesis procedure is illustrated by the first
synthesized example presented in Section 10.2.2: identity conversion from Signer 1
to Signer 2, for mocap example 1. For this example, the synthesis was driven by the
following target statistics:

d̃100 = dorig + 100d2 (10.7)

where dorig are the statistics of the mocap example 1 of Signer 1, and d2 are the
discriminant statistical patterns of Signer 2.

The gradient descent procedure was run with 20,000 iterations and a step size of
0.001. The Adam optimizer converged to a low, but non-zero, value. In other words,
statistics of the synthesized movements may have approached the target ones but
not perfectly, as shown in Figures 10.5, 10.6 and 10.7.

0 2500 5000 7500 10000 12500 15000 17500 20000

20

40

60

80

100
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FIGURE 10.4: Loss curve for the kinematic identity conversion from Signer 1 to
Signer 2, using mocap example 1 of Signer 1.

As shown in Figure 10.5, target statistics differ from the ones of the initial syn-
thesized movements to various extents across markers. These gaps between target
and synthesized statistics depend on the discriminant identity-specific pattern that
is manipulated dk (in this example, k = 2) and on the amount of modification α that
is set. For instance, modifying the identity attribute in the movements toward Signer
2 involves significantly increasing the SD of position of the right hand markers along
the X axis (see Figure 10.5). By contrast, it involves reducing the SD of position of the
left hand markers along the Z axis. Then, the value of α defines the extent to which
all of these gaps are amplified (α > 0) or reduced (α < 0). As shown in Figure 10.5,
although a perfect maching of the statistics is not reached, the synthesis procedure
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allows the SDs of position across markers of the synthesized motion to approach
the target. For instance, the significant gap between the SD of position of the right
hand markers before the synthesis is now filled perfectly (or almost, for the RF hand
marker).

FIGURE 10.5: Standard deviation of position for all body markers before and after
the synthesis procedure, for mocap example 1 of Signer 1. Statistics of the synthe-
sized movements are shown in dark blue (before the synthesis procedure) and in
cyan (after the synthesis procedure). Target statistics are shown in white. Markers

are sorted from the 1st to the 19th along X, Y and Z axes.

Similar observations were made for the SD of velocity, as shown in Figure 10.6.
Main increases toward the target values can be seen for both hands along the X axis,
for the left hand along the Y axis and for the left hand along the Z axis (see Figure
10.6). Some decreases toward the target values were involved for the right hand
markers along the Y axis. As for the SD of position, our algorithm allowed the syn-
thesized movements to approach the target statistics. Statistics along the X axis were
almost perfectly matched (see Figure 10.6), while some approximations occurred
along the Y and Z axes, which notably caused higher values than the desired ones.

FIGURE 10.6: Standard deviation of velocity for all body markers before and after
the synthesis procedure, for mocap example 1 of Signer 1. Statistics of the synthe-
sized movements are shown in dark blue (before the synthesis procedure) and in
cyan (after the synthesis procedure). Target statistics are shown in white. Markers

are sorted from the 1st to the 19th along X, Y and Z axes.
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The quality of matching of the statistics between the target and the synthesized
movements was weaker for the covariance of velocity. As shown in Figure 10.7, al-
though some covariance values of the synthesized motion approached their target
values, others remained virtually unchanged. Yet, most of the discriminant statistics
approached their target values, which should have an effect on the perceived iden-
tity of the signers in their movements. In order to assess the extent to which the novel
movements generated by our algorithm could convey a modified identity attribute
(e.g., could be anonymized, or identified as movements of another signer), we tested
our automatic signer identification model (see Chapter 9) on the synthesized mocap
examples. If the identity-specific aspects of the movements are correctly modified
by the synthesis algorithm, then automatic identification from these synthesized ex-
amples should be compromised.

FIGURE 10.7: Covariance of velocity for all body markers and along the three di-
mensions before and after the synthesis procedure, for mocap example 1 of Signer
1. Statistics of the synthesized movements are shown in dark blue (before the syn-
thesis procedure) and in cyan (after the synthesis procedure). Target statistics are
shown in white. Covariance values are sorted from markers covarying along the X
axis to those covarying along the Z axis. The figure is zoomed in on some covari-
ance values in order to illustrate the degree of matching between the target and

synthesized statistics.

10.2.2 Example 1: identity conversion from Signer 1 to Signer 2

In this first example, the synthesis of the mocap excerpts was driven by the statis-
tics of Equation 10.7. The synthesis procedure involved 20,000 iterations and a step
size of 0.001, as explained in Section 10.2.1. Important statistics that carry identity
information, such as SD of position, SD of velocity and covariance of velocity be-
tween markers, were modified through the process (see Figure 10.8). For instance,
there was an overall increase of the SD of velocity for all markers along the Z axis.
The covariance of velocity between markers was further interestingly modified. For
instance, the synthesis procedure forced the movements of the left hand along the X
axis to significantly covary (negatively) with the trunk and head markers along the
Y and Z axes. These covarying movements of the trunk and head with the left hand
may be characteristic of Signer 2.

In order to visualize how these new statistics affected the movements of the SL
discourse of Signer 1, the original and synthesized mocap examples can be seen as
Point-Light Display (PLD) videos (see Videos 10.3 and 10.4). Additionally, Figure

https://zenodo.org/record/5215804#.YRzcFtMzba4
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FIGURE 10.8: Statistics of kinematic features of mocap example 1 of Signer 1,
before (original) and after (re-synthesized) the synthesis procedure: moments
(columns: std, skew, kurtosis) of position for all markers (rows), moments
(columns: mean, std, skew, kurtosis) of velocity for all markers (rows), covari-
ance of velocity between markers (rows and columns). Markers are sorted from 1
to 19 as presented in Section 5.3.1 along X, Y and Z axes. Blue represents positive
statistical values, while red represents negative ones. The three main classes of

statistics that carry identity information are highlighted.
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10.9 illustrates how the position and velocity of the RF hand marker were changed.
In line with the observations made in Section 10.2.1 from Figure 10.5, the SD of po-
sition of this marker were reduced along both X and Y axes. By contrast, the SD of
velocity was increased along the X axis while reduced along the Y one, as expected
from Figure 10.6. The automatic signer identification model identified the synthe-
sized mocap example as that of Signer 2, as shown in Table 10.2:

TABLE 10.2: Output of the automatic signer identification model. P is the proba-
bility that the movements were produced by the signer (see Equation 9.4).

Original mocap example Synthesized mocap example

P(S = 1) = 0.99 P(S = 2) = 0.99

FIGURE 10.9: Position and velocity data of the RF hand marker along X and Y
axes, for the original and synthesized movements.

10.2.3 Example 2: anonymization of Signer 1

In this second example, a synthesized mocap excerpt was generated in order to
anonymize the movements of Signer 1. For that aim, the synthesis procedure was
driven by the following target statistics:

d̃−50 = dorig − 50d1 (10.8)

where dorig are the statistics of the mocap example 1 of Signer 1, and d1 are the
discriminant statistical patterns of Signer 1.

The synthesis procedure involved 5,000 iterations and a step size of 0.0001. Im-
portant kinematic statistics characteristic of Signer 1 were modified through the pro-
cess (see Figure 10.8). For instance, the SD of position and SD of velocity of both
hands were increased along all of the three axes. Moreover, a significant (negative)
covariance between the right and left hand across the X axis was generated. A sig-
nificant (positive) covariance between the two hands also appeared along the Z axis.
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FIGURE 10.10: Statistics of kinematic features of mocap example 1 of Signer 1,
before (original) and after (re-synthesized) the synthesis procedure: moments
(columns: std, skew, kurtosis) of position for all markers (rows), moments
(columns: mean, std, skew, kurtosis) of velocity for all markers (rows), covari-
ance of velocity between markers (rows and columns). Markers are sorted from 1
to 19 as presented in Section 5.3.1 along X, Y and Z axes. Blue represents positive
statistical values, while red represents negative ones. The three main classes of

statistics that carry identity information are highlighted.
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As shown in Figure 10.11 (and Videos 10.5 and 10.6), the overall velocity of the
RF hand markers was modified so that the SD of velocity increased, along the three
X, Y and Z axes. This is in line with the previous observations made from Figure
10.10. Among other patterns, modifying these aspects of motion may allow Signer 1
to be non-identifiable. This latter hypothesis was confirmed by the automatic signer
identification model, which did not manage to identify Signer 1 from the synthesized
movements, as shown in Table 10.3:

TABLE 10.3: Output of the automatic signer identification model. P is the proba-
bility that the movements were produced by the signer (see Equation 9.4).

Original mocap example Synthesized mocap example

P(S = 1) = 0.99 P(S = 1) = 0.05*

* The highest probability was that of Signer 4 (P(S = 4) = 0.43).

FIGURE 10.11: Velocity data of the RF hand marker along X, Y and Z axes, for the
original and synthesized movements.

10.3 Discussion

In Chapter 9, we found that simple time-averaged statistics of kinematic features of
the movements could allow for the automatic identification of signers with a high
accuracy. In the present chapter, we demonstrated that the statistical patterns char-
acteristic of the identiy of the signers could be manipulated in the movements in
order to re-generate original mocap recordings with a modified identity attribute.
For that aim, the mocap data of a given SL discourse were modified so that a set of
their statistics (i.e., mean of position, mean of velocity, SD of position, SD of veloc-
ity and covariance of velocity between markers) reached target values. These target
values could be set for various manipulations, such as kinematic identity conver-
sion (from one signer to another) or anonymization. Using a sufficient number of
iterations and optimizing values for the step size and the loss weights, the algorithm
converged and the statistics of the synthesized movements approached the target
values.

When tested on the novel, synthesized, mocap examples, the output of the au-
tomatic signer identification model (see Chapter 9) was altered. For instance, exag-
gerating the kinematic aspects characteristic of Signer 2 in the mocap recording of
Signer 1 made this latter identified as movements of Signer 2 (see Section 10.2.2).
Moreover, reducing the kinematic aspects characteristic of Signer 1 in one of her

https://zenodo.org/record/5215804#.YRzcFtMzba4
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mocap recording made Signer 1 non identifiable (see Section 10.2.3). These compu-
tational findings call for further visual perception studies investigating the extent to
which the ability of human observers to identify signers would differ between orig-
inal and synthesized SL movements shown as PLDs. The second outcome of this
chapter is that the synthesis algorithm allows modifying the identity attribute in the
movements of signers while preserving the original temporal structure of the move-
ments. This is of particular interest for SL research as degrading temporal structure
could impair the comprehension of the SL discourse. Again, human experiments
would be needed to assess the comprehensibility of SL messages generated from the
synthesized movements.

The procedure modifying the statistics of the original movements was driven by
the discriminant statistical patterns established for each signer in Chapter 9. The
further computational development of this synthesis algorithm provides a tool for
visualizing these identity-specific aspects of motion by generating videos, such as
PLD ones (see Sections 10.2.2 and 10.2.3). Furthermore, it opens up promising per-
spectives toward controlling the identity attribute of SL movements in the animation
of virtual signers. For now, the synthesis process is achieved with parameters that
are optimized manually for each mocap example but further work could ease the
optimization process across examples and signers and allow automatically finding
the optimal parameters in order to anonymize the SL content of virtual signers.

The general idea of synthesizing new motion while manipulating the identity
attribute is to reduce or amplify the importance of discriminant features in the syn-
thesized movements. As previously discussed in Section 4.3, the main challenge of
such synthesis tools is to be able to project the identity-specific features back onto
the initial high-dimensional motion space. For that aim, studies have used various
methods, such as principal movement decomposition (Young and Reinkensmeyer,
2014; Troje, 2002a), Hidden Markov Models (Tilmanne et al., 2012; Tilmanne et al.,
2014), gaussian modeling (Tilmanne and Dutoit, 2010) or deep neural networks (Tits,
2018). In the present study, the identity-specific aspects of the movements were car-
ried by statistics. Therefore, we developed a novel synthesis algorithm that allows
modifying original movement recordings in order to reach some desired statistics.
Similar methods have been previously applied to audio signals (McDermott et al.,
2009; McDermott and Simoncelli, 2011; Norman-Haignere and McDermott, 2018) in
order to create various sounds from noise sharing the same statistics but with a dif-
ferent fine structure. To the author’s knowledge, this study is the first to propose
a synthesis method for re-generating mocap recordings while controlling specific
statistics of the motion. As already argued in Chapter 9, using statistics as a de-
scriptor for the identity of moving individuals is of particular relevance, as identity
is a time-invariant property that humans manage to infer from various discourses,
regardless of the semantic content. Moreover, our statistical-based method outper-
forms temporal, frame-by-frame, methods when applied to mocap recordings that
are not synchronized in time across examples and individuals (see Section 9.2.4).
Real-life movements are rarely synchronized in time across categories of actions
and individuals, even less across discourses in SL. Therefore, further developing
statistical-based methods for controlling specific aspects of motion could provide
novel tools of interest in addition to the existing temporal-based methods, in partic-
ular for controlling human attributes such as identity in virtual signers animations.
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Part III Summary

Can signers actually be identified when their movements are replayed via a
virtual signer? If so, which features of their movements make them iden-
tifiable? Finally, how could these features be manipulated when animating
virtual signers in order to control the identity attribute (e.g., to anonymize SL
messages)? In this part of the thesis, a visual perception study first demon-
strated that signers shown as moving Point-Light Displays (PLDs) could be
identified by deaf observers with a significant accuracy, similarly to prior
work on non-SL motion. Moreover, the perceptual judgments of the partic-
ipants were not correlated with cues related to the size and shape of the body
of the signers. In order to understand which further aspects of the motion may
allow for the identification, we trained a machine learning model to identify
signers from statistics of the motion capture (mocap) data. The performance
of the model revealed that the identity of signers could be characterized by
simple statistics of kinematic aspects of their movements. We finally proposed
a synthesis algorithm in order to re-generate mocap recordings while control-
ling the identity-specific features of the signer. Modified motion examples
produced by the algorithm allowed misleading the automatic signer identifi-
cation model, while maintaining the general structure of the motion. These
latter observations calls for further human experiments assessing the extent
to which the ability of participants to identify the signers from the synthe-
sized excerpts could be compromised while the comprehensibility of the SL
message could remain unaffected. Should this trade-off be reached, our algo-
rithm could allow virtual signers to produce anonymized SL messages, which
would open new horizons for deaf SL users.
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Conclusions

When technological developments meet fundamental re-
search

As developed in Chapter 1, deaf Sign Language (SL) users face many communica-
tion barriers. In particular, the vast majority of automatic communication tools are
not compatible with SL content, but only with spoken or written one. Developing
successful tools for automatic SL processing would allow breaking down these bar-
riers. For that aim, further insights must be gained into multiple disciplines, in par-
ticular motion science. Indeed, beyond the sparsity of research and developments
conducted in SL compared to spoken languages, the automatic processing of SL is
challenging because of the intrinsic complexity of SL movements. For instance, SL
involves multiple motion features from various body parts, such as movements of
the torso, arms, hands and fingers as well as facial expressions. Moreover, the spatial
and temporal coordination of SL gestures is driven by a highly structured linguistic
system, whose modeling does not yet meet with a broad consensus among linguists.

One important area of automatic SL processing is SL generation, which aims to
automatically produce SL messages using virtual signers, similarly to voice assis-
tants in spoken languages. Promising progress has been made along this line in
the past decade, notably with the ability to record the movements of a signer with
high accuracy in order to use it for the animation of the virtual signers. Still, many
technological developments are needed to provide tools for the automatic genera-
tion of SL messages in the same way as for spoken languages. In particular, the
present thesis aimed to gain insights into the possibility of anonymizing the move-
ments of a signer, in the same way as a speaker can remain anonymous by modify-
ing specific aspects of the voice. Up to now, no tool allows deaf SL users to remain
anonymous when producing a message in SL. Developing computational models
able to generate SL animations from the movements of signers while keeping them
non-identifiable would allow deaf SL users to further share testimonies that require
anonymity or to post comments on forums and social networks directly in SL in the
same was as written comments allow for some anonymity in other languages.

For all these reasons, this thesis investigated how computational models could
extract human attributes from the movements of individuals and how these at-
tributes could be controlled when generating motion, in the particular case of iden-
tity in SL. Beyond the aim of providing novel technological developments that could
improve communication tools for deaf SL users, this problem raised fundamental
research questions (Part I). First, we questioned the ability of human observers to
identify signers from SL movements, as previously shown for non-SL movements
such as walking or dancing (Chapter 2). We then aimed to determine the critical
aspects of the movements that may allow the observers to identify the person, using
state-of-the-art 3D motion capture (mocap) systems and computational methods, in-
cluding machine learning, for motion analysis (Chapters 3 and 4).
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Main contributions of the thesis

First, the present thesis provided insights into how the complex structure of SL mo-
tion in spontaneous discourse could be modeled (Part II), which was crucial for fur-
ther investigating the encoding of identity information in the movements. Many
prior studies have investigated SL motion in isolation (e.g., with isolated signs or
fingerspelling) and some of them have focused on only a few aspects of SL motion
(e.g., finger gestures), which has shed light on many properties of SL motion but
only for a limited subset of the movements produced in real conditions. One key ob-
jective of this thesis was to study SL movements within a more realistic framework.

For that aim, we used the 3D mocap recordings of MOCAP1 corpus, which
provides continuous French Sign Language (LSF) productions of multiple signers.
The mocap data we used in the present thesis consisted of the 3D trajectories of the
upper-body markers of six signers who had described 24 pictures in LSF in a spon-
taneous manner. We then developed novel motion representations and prepro-
cessing methods, in particular for visualization purposes and in order to normalize
the movements with respect to size, shape and posture of the body of the signers
(Chapter 5).

The limitations of analyzing SL motion in isolation were further outlined by a
spectral analysis of the mocap data of spontaneous LSF, which revealed that the
kinematic bandwidth of SL may be wider than priorly demonstrated with isolated
signs (Chapter 6). Combining Power Spectral Density estimation and residual anal-
ysis, results showed that a reasonable bandwidth for our SL mocap data was 0–12
Hz. The outcome of this reevaluation is twofold. First, it outlined important infor-
mation in the movements at significantly higher frequencies than prior estimations
made on isolated signs (i.e., 0–6 Hz). This suggests that SL movements may involve
higher frequencies in real-life conditions. Moreover, the estimated bandwidth pre-
sented in this thesis could be used as a reference when modeling SL movements in
real-life conditions for application purposes. For instance, mocap data sampled at
high frame rates (e.g., 120 or 250 fps) could be low-pass filtered using a 12-Hz cutoff
frequency. Interestingly, this 12-Hz value is compatible with the use of motion data
extracted from a video, which still is the most frequent type of data used in auto-
matic SL processing, in particular SL recognition. Indeed, the standard frame rates
of videos (i.e., 24 fps or higher) allow filtering the data with a 12-Hz frequency (or
lower), according to the Nyquist-Shannon theorem (Nyquist, 1928; Shannon, 1949).

Computational models for the automatic processing of SL thus could use a re-
duced representation of the movements in terms of frequencies. Mocap data of SL,
however, remain in a high-dimensional space, because of the high number of body
markers they involve. In Chapter 7, we tested a dimensionality reduction tech-
nique on the mocap data in order to assess the extent to which complex upper-body
movements of spontaneous SL could be decomposed into elementary movements.
Principal Component Analysis of the data revealed that the SL movements could be
reduced to a set of eight Principal Movements (PMs), which accounted for 95% of
the variance in the motion, both for the six individual signers and across all signers.
Unlike in most prior studies investigating PMs of human movements, our mocap
data was not synchronized in time across examples and signers. This suggests that
despite their complexity, the high-dimensional movements of SL in real-life condi-
tions may be characterized by key movements in a space of lower dimension. For
application purposes, these findings could ease the incorporation of dense 3D mo-
cap datasets in models of automatic SL processing, which could use a reduced subset
of elementary movements while keeping the information intact.
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As developed in Chapter 4, differences in the execution of these PMs between
individuals have been successfully used to automatically extract various relevant
attributes, such as neuromuscular disorders, gesture expertise or gender. The iden-
tity of moving individuals has also been predicted using further descriptions of the
movements, such as key postures for gait or kinematic statistics for dancing. There-
fore, we further investigated how signers could actually be identified from their mo-
tion in SL and how identity information could be encoded in the movements (Part
III).

First, a visual perception study was conducted where deaf observers were asked
to identify four signers from their movements in spontaneous LSF, shown as Point-
Light Displays (PLDs) (Chapter 8). The performance of the participants, jointly with
computational analyses of the mocap data, showed that the movements contained
enough information to allow for accurate identifications of the signers, beyond
cues related to the size and shape of the body of the signers. These results suggest
that identity information may be carried by further motion features, in particular
kinematic ones.

A machine learning model was thus trained on statistics of the mocap data for
automatic signer identification, in order to determine the further aspects of motion
that allow inferring the identity of a signer (Chapter 9). The performance of the
model using normalized mocap data confirmed the minor role of size and shape
differences in the identification. A significant effect of the average posture of the
signers was found. However, the identification accuracy of the model remained
substantial (86.8%) even when having normalized for size, shape and posture of
each individual. The kinematic signature of the identity of the signers was further
defined by distinct, uncorrelated, statistical patterns used by the model in the iden-
tification. Our statistical-based approach outperformed the widely used temporal-
based method mentioned above: PM decomposition. The successful extraction of
identity information from kinematic statistics confirms the fundamental statement
that human attributes may be carried mostly by the movements of the individuals
per se, rather than cues related to the structure of their body in motion. Moreover,
it opens up promising perspectives toward controlling the identity-specific aspects
of SL movements in real-life conditions (i.e., where movements are not synchronized
in time across individuals and examples, making temporal-based analyses complex)
for generation purposes.

To illustrate these potentials for automatic SL generation, we finally proposed a
synthesis algorithm which successfully allowed modifying the identity attribute
in existing SL mocap recordings (Chapter 10). In the synthesis procedure, the
statistics of the mocap example are measured while target statistics are defined in
order to reduce or exaggerate the statistical kinematic patterns characteristic of one
signer. This method can be used for multiple manipulations, such as anonymiza-
tion (i.e., reducing the importance of statistics characteristic of the signer) or identity
conversion (i.e., exaggerating the importance of statistics characteristic of another
signer). The target statistics were approached using an imposing algorithm, which
iteratively modified the mocap signals using gradient descent. Moreover, additional
constraints in the imposing algorithm allowed us to modify the identity attribute in
the movements, while preserving the initial temporal structure of the original move-
ments. These results call for further research investigating how the signers could be
misidentified by human observers from the modified motion examples shown as
PLDs, and how the comprehensibility of the SL content could remain unaltered.
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Future work and perspectives

The present thesis provided original contributions to the fields of motion, com-
puter science and visual perception. In particular, it shed light on how complex
SL movements could be modeled in realistic, spontaneous, discourses, and opened
up promising perspectives for automatically controlling identity information in the
movements for generation applications. More generally, the present machine learn-
ing developments for the kinematic control of identity could be of interest in a wider
area and for further motion aspects. For instance, similar methods could be applied
to emotion recognition in dancing, analysis of aging effects on gait or expertise eval-
uation in musical gestures. Still, further work is needed and some limitations of
the present work must be overcome in order to effectively use these tools in actual
applications, such as for anonymizing virtual signers in SL.

First, although we aimed to use SL mocap data as representative as possible of
real-life conditions (i.e., spontaneous LSF discourses), the data of MOCAP1-v2 was
limited to the movements of six signers. Moreover, the LSF discourses used in the
present thesis were picture descriptions, which may have involved specific linguistic
structures more than others (e.g., depicting ones). The different outcomes reported
from Chapter 6 to Chapter 10 should be further tested with other signers and in a
wider linguistic context. It should be noted that most prior SL studies investigated
the movements of a lower number of signers, notably because of the difficulty to
create accurate 3D mocap corpora with multiple individuals (see Chapter 3). Still,
one could expect the performance of automatic identification models to decline as
the number of individuals to identify increases, which motivates the need for further
tests of our methods on more signers.

Moreover, our studies neither focused on facial expressions nor on finger move-
ments of the signers. Our results involved various upper-body parts (i.e., stomach,
sternum, shoulders, elbows, wrists, hands and head), which may carry an impor-
tant part of the identity information in the movements. Still, signers could produce
identity-specific motion features with facial movements and finger gestures. For
instance, the performance of our automatic identification model could be assessed
using facial mocap recordings including eyebrows, whose motion has been priorly
shown to have a role in the intonation of SL discourses. This could be tested using
the facial mocap recordings of MOCAP1 (see Chapter 5).

Then, further work should be carried out with the aim of using the presented
methods in real-life applications for automatic SL generation. First, some improve-
ment prospects of the synthesis algorithm should be outlined. For instance, the
quality of matching of the statistics could be optimized. For now, statistics of the
synthesized movements significantly approach the target ones but sometimes with
non-negligible approximations, in particular for high-dimensional statistics (e.g., co-
variance of velocity between markers). Moreover, this first version of the algorithm
requires finding the optimal values for the parameters of the imposing procedure
manually (i.e., loss weights, step size, number of iterations), which is not well suited
for real-time and real-life applications. In order to overcome these limitations, fur-
ther machine learning techniques could be tested. Furthermore, the extent to which
the imposing algorithm manage to approach the target statistics may be limited by
the high number of statistics involved. To address that problem, we could build a
model that affect higher weights to the statistics of importance than to other ones,
in order to reduce the complexity of the imposing procedure. Additionally, further
methods could be tested in order to preserve the initial structure of the movements,
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as the one used in this thesis (i.e., imposing the correlation between original and
synthesized velocities) was quite empirical.

Finally, the main developments of this thesis open up promising application per-
spectives, which calls for further work investigating how our methods could be ap-
plied in real-life conditions. First, the mocap setup involved in the application could
be more portable and more accessible than state-of-the-art 3D mocap systems. Com-
pared to the optical Optitrack system used in the present thesis, the body trajectories
could be extracted from videos of markerless RGB or depth cameras, using image
processing techniques to recover the missing 3D information (Cao et al., 2019; Belis-
sen et al., 2020). This would allow testing our methods on a wider variety of motion
recordings and signers and could be useful to make this automatic SL processing
application accessible to the general public (e.g., for smartphone applications). Fur-
thermore, the synthesis algorithm for kinematic control of identity needs to be tested
with human participants. We should investigate three key problems: (1) identifia-
bility, by verifying that the ability of human observers to identify the signers is com-
promised when showing the synthesized modified movements, as compared to the
original ones; (2) comprehensibility, by evaluating the extent to which the observers
still understand the SL content in the modified motion examples; and (3) acceptabil-
ity, by assessing the deaf user perspective on the virtual signers animated with the
modified movements and discussing potential use cases (e.g., with focus groups).
Should these three fundamental points be validated, the present thesis could con-
stitute a first step of interest toward automatically controlling the identity of deaf
SL users when expressing themselves via virtual signers. In particular, this could
allow developing effective applications for the production of fully-anonymized SL
messages.
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Appendix A

Description of the pictures used in
the MOCAP1 corpus

FIGURE A.1: The 25 pictures described by the signers in MOCAP1 corpus (Benchi-
heub et al., 2016b; Benchiheub et al., 2016a).
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Appendix B

Correspondences between labels of
MOCAP1 and MOCAP1-v2

TABLE B.1: Correspondences between signer labels of MOCAP1 original corpus
and the new version MOCAP1-v2 used in the present thesis. *not present in the

public release (Benchiheub et al., 2016a).

MOCAP1-v2 MOCAP1
Signer 1 l2
Signer 2 l6*
Signer 3 l8*
Signer 4 l4
Signer 5 l1
Signer 6 l3
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TABLE B.2: Correspondences between mocap example labels of MOCAP1 original
corpus and the new version MOCAP1-v2 used in the present thesis. Example

labels correspond to the pictures described by signers.

MOCAP1-v2 MOCAP1
IM01 IM01
IM02 IM02
IM03 IM03
IM04 IM04
IM05 IM05
IM06 IM06
IM07 IM08
IM08 IM09
IM09 IM10
IM10 IM11
IM11 IM12
IM12 IM13
IM13 IM14
IM14 IM15
IM15 IM16
IM16 IM17
IM17 IM18
IM18 IM19
IM19 IM20
IM20 IM21
M21 IM22
IM22 IM23
IM23 IM24
IM24 IM25
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Appendix C

The role of the statistics in the
automatic signer identification

TABLE C.1: Bonferroni-adjusted post Hoc. Comparisons of the identification ac-
curacy of the model using different subsets of statistics.

Mean Difference SE t p

stdpos + skewpos 0.042 0.044 0.951 1.000

f + kurtpos 0.007 0.044 0.158 1.000

+ meanvel 0.021 0.044 0.475 1.000

+ stdvel -0.132 0.044 -3.019 0.083

+ skewvel -0.083 0.044 -1.907 1.000

+ kurtvel -0.111 0.044 -2.543 0.334

+ cov_vel -0.201 0.044 -4.607 < .001***

+ skewpos + kurtpos -0.035 0.044 -0.793 1.000

+ meanvel -0.021 0.044 -0.476 1.000

+ stdvel -0.174 0.044 -3.970 0.003**

+ skewvel -0.125 0.044 -2.858 0.135

+ kurtvel -0.153 0.044 -3.494 0.017*

+ cov_vel -0.243 0.044 -5.558 < .001***

+ kurtpos + meanvel 0.014 0.044 0.316 1.000

+ stdvel -0.139 0.044 -3.177 0.050*

+ skewvel -0.090 0.044 -2.066 1.000

+ kurtvel -0.118 0.044 -2.701 0.214

+ cov_vel -0.208 0.044 -4.766 < .001***

+ meanvel + stdvel -0.153 0.044 -3.494 0.017

+ skewvel -0.104 0.044 -2.382 0.515

+ kurtvel -0.132 0.044 -3.017 0.083

+ cov_vel -0.222 0.044 -5.082 < .001***

+ stdvel + skewvel 0.049 0.044 1.112 1.000

+ kurtvel 0.021 0.044 0.476 1.000

+ cov_vel -0.069 0.044 -1.588 1.000

+ skewvel + kurtvel -0.028 0.044 -0.635 1.000

+ cov_vel -0.118 0.044 -2.700 0.215

+ kurtvel + cov_vel -0.090 0.044 -2.065 1.000

* p < .05, ** p < .01, *** p < .001
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Appendix D

Synthesis example 3: identity
conversion from Signer 2 to Signer
1

In this third example, synthesized mocap excerpts were generated in order to make
the movements of Signer 2 identified as those of Signer 1. For that aim, the synthesis
procedure was driven by the following target statistics:

d̃50 = dorig + 50d1 (D.1)

where dorig are the statistics of the mocap example 1 of Signer 2, and d1 are the
discriminant statistical patterns of Signer 1.

The synthesis procedure involved 2,000 iterations and a step size of 0.001. The
PLD videos of the original and synthesized mocap excerpts can be found in Videos
10.7 and 10.8. The successful modifications of the synthesis procedure were con-
firmed by the automatic signer identification model, which identified the synthe-
sized motion as that of Signer 1 while it identified the original motion as produced
by Signer 2:

TABLE D.1: Output of the automatic signer identification model. P is the proba-
bility that the movements were produced by the signer (see Equation 9.4).

Original mocap example Synthesized mocap example

P(S = 2) = 0.99 P(S = 1) = 0.99

Further visualizations of the statistical modifications (Figure D.1) and how it af-
fected the mocap signals (Figure D.2) are available below.

https://zenodo.org/record/5215804#.YRzcFtMzba4
https://zenodo.org/record/5215804#.YRzcFtMzba4
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FIGURE D.1: Statistics of kinematic features of mocap example 1 of Signer 2, before
(original) and after (re-synthesized) the synthesis procedure: moments (columns:
std, skew, kurtosis) of position for all markers (rows), moments (columns: mean,
std, skew, kurtosis) of velocity for all markers (rows), covariance of velocity be-
tween markers (rows and columns). Markers are sorted from 1 to 19 as presented
in Section 5.3.1 along X, Y and Z axes. Blue represents positive statistical values,
while red represents negative ones. The three main classes of statistics that carry

identity information are highlighted.
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FIGURE D.2: Position and velocity data of the RF hand marker along the Z axis,
for the original and synthesized movements.
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Appendix E

Publications and communications
during the PhD

Peer-reviewed journal

• Bigand, F., Prigent, E., Berret, B., & Braffort, A. (2021). Decomposing spon-
taneous sign language into elementary movements: A principal component
analysis-based approach. PloS one, 16(10), e0259464.

• Bigand, F., Prigent, E., Berret, B., & Braffort, A. (2021). Machine Learning of
Motion Statistics Reveals the Kinematic Signature of the Identity of a Person in
Sign Language. Frontiers in Bioengineering and Biotechnology, 603.

Peer-reviewed conference, with proceedings

• Bigand, F., Prigent, E., Berret, B., & Braffort, A. (2021, August). How Fast is
Sign Language? A Reevaluation of the Kinematic Bandwidth using Motion
Capture. To be published in Proceedings of the 29th EUSIPCO.

• Bigand, F., Prigent, E., & Braffort, A. (2020, July). Person Identification Based
On Sign Language Motion: Insights From Human Perception and Computa-
tional Modeling. In Proceedings of the 7th International Conference on Move-
ment and Computing (pp. 1-7).

• Bigand, F., Prigent, E., & Braffort, A. (2019, October). Retrieving Human Traits
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Résumé : De nombreux obstacles tech-
nologiques doivent être surmontés afin
d’outiller les Langues des Signes (LS) de la
même manière que les langues parlées. Pour
ce faire, il est nécessaire d’approfondir les
connaissances dans de multiples disciplines,
en particulier les sciences du mouvement.
Plus précisément, cette thèse vise à étudier
la possibilité d’anonymiser les mouvements
d’un signeur, de la même manière qu’un lo-
cuteur peut rester anonyme en modifiant des
aspects spécifiques de sa voix.

Premièrement, cette thèse met en lu-
mière les propriétés cinématiques de la LS
spontanée afin d’améliorer les modèles de LS
naturelle. En utilisant des données de mou-
vements en 3D de plusieurs signeurs, nous
montrons que la bande passante cinématique
de la LS spontanée diffère fortement de celle

des signes isolés. Ensuite, une analyse en
composantes principales révèle que les dis-
cours spontanés peuvent être décrits par un
ensemble réduit de mouvements simples (i.e.,
synergies).

De plus, en combinant données humaines
et modélisation informatique, cette thèse dé-
montre que les signeurs peuvent être identi-
fiés à partir de leurs mouvements, au-delà de
la morphologie et de la posture. Enfin, nous
présentons des modèles d’apprentissage au-
tomatique capables d’extraire automatique-
ment l’information d’identité dans les mou-
vements de la LS, puis de la manipuler lors
de la génération. Les modèles développés
dans cette thèse pourraient permettre de
produire des messages de LS anonymes via
des signeurs virtuels, ce qui ouvrirait de nou-
veaux horizons aux signeurs sourds.

Title: Extracting human characteristics from motion using machine learning: the case of
identity in Sign Language
Keywords: Motion, Machine Learning, Feature extraction, Motion capture, Sign Lan-
guage, Perception

Abstract: Many technological barriers
must be tackled in order to provide tools in
Sign Languages (SLs) in the same way as
for spoken languages. For that aim, further
insights must be gained into multiple disci-
plines, in particular motion science. More
specifically, the present thesis aims to gain
insights into the possibility of anonymizing
the movements of a signer, in the same way
as a speaker can remain anonymous by mod-
ifying specific aspects of the voice.

First, this thesis sheds light on general
kinematic properties of spontaneous SL in
order to improve the models of natural SL.
Using 3D motion recordings of multiple sign-
ers, we show that the kinematic bandwidth
of spontaneous SL highly differs from that

of signs made in isolation. Furthermore, a
Principal Component Analysis reveals that
the spontaneous SL discourses can be de-
scribed by a reduced set of simple, one-
directional, movements (i.e., synergies).

Furthermore, combining human data
and computational modelling, we demon-
strate that signers can be identified from
their movements, beyond morphology- and
posture-related cues. Finally, we present
machine learning models able to automat-
ically extract identity information in SL
movements and to manipulate it in gener-
ated motion. The models developed in this
thesis could allow producing anonymized SL
messages via virtual signers, which would
open new horizons for deaf SL users.
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