
HAL Id: tel-03575632
https://theses.hal.science/tel-03575632v1

Submitted on 15 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precise timing and computationally efficient learning in
neuromorphic systems

Omar Oubari

To cite this version:
Omar Oubari. Precise timing and computationally efficient learning in neuromorphic systems. Artifi-
cial Intelligence [cs.AI]. Sorbonne Université, 2020. English. �NNT : 2020SORUS402�. �tel-03575632�

https://theses.hal.science/tel-03575632v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité : Ingénierie Neuromorphique

École doctorale nº391: Sciences mécaniques, acoustique, électronique et robotique

réalisée

à l’Institut de la Vision - Équipe vision et calcul naturel

sous la direction de Ryad B. Benosman et Sio-Hoi Ieng

présentée par

Omar Oubari

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse :

Precise timing and computationally efficient learning in
neuromorphic systems

soutenue le 14 décembre 2020

devant le jury composé de :

Pr. Alejandro Linares Barranco Rapporteur
Pr. Emre Neftci Rapporteur
Dr. Laurent Perrinet Examinateur
Dr. Sylvain Argentieri Examinateur
Pr. Ryad B. Benosman Directeur de thèse
Dr. Sio-Hoi Ieng Co-Directeur de thèse

Precise timing and computationally efficient learning in
neuromorphic systems

Abstract: From image recognition to automated driving, machine learning nowadays is all around us
and impacts various aspects of our daily lives. This disruptive technology is rapidly evolving at a huge
cost in terms of energy consumption. Machine learning models are usually trained on powerful GPUs,
limiting the potential for edge computing. Processing data locally instead of relying on cloud computing
brings about improvements in speed and latency, which are essential for real-time applications. The field
of neuromorphic engineering tries to solve the energy bottleneck problem through bio-inspired hardware
and computation techniques. In particular, neuromorphic vision sensors feature independent pixels
that asynchronously generate millions of events per second with high temporal precision, depending
on the dynamics of a visual scene. The goal of this thesis is to take advantage of precise timing on
neuromorphic architectures in order to develop computationally-efficient learning algorithms. We
approach the issue through two different perspectives: spiking neural networks and probabilistic models.
We introduce a delay-learning rule for spiking neural networks that relies on highly redundant sparse
connectivity. We also develop bio-inspired learning techniques on a dedicated hardware with ultra-low
power requirements and latency. The system implements synaptic plasticity using a memristive crossbar
array to learn from the output of event-based vision sensors in the context of autonomous driving.
When working with very large streams of events, we introduce two clustering techniques based on
Gaussian mixture models that set a new state of the art in terms of computational efficiency.

Keywords: Neuromorphic engineering, event-based processing, energy efficiency, spiking neural
networks, probabilistic models

Apprentissage dans des systèmes neuromorphiques: précision
temporelle et efficacité calculatoire

Résumé : De la reconnaissance d’image à la conduite autonome, l’apprentissage machine est
omniprésent dans notre vie quotidienne. Cette technologie de rupture évolue rapidement mais consomme
énormément d’énergie. Les modèles d’apprentissage actuels utilisent généralement des GPU puissants
qui ne permettent pas de traiter des données localement, alors que ceci améliore la vitesse et la latence
indispensables aux applications en temps réel. De ce fait, le domaine de l’ingénierie neuromorphique
tente de résoudre ce problème et de baisser le budget énergétique grâce à l’introduction des systèmes
et des techniques d’apprentissage bio-inspirés comme notamment les capteurs de vision événementiels.
Ces derniers comportent des pixels indépendants qui génèrent de manière asynchrone des millions
d’événements par seconde avec une grande précision temporelle, en fonction de la dynamique d’une
scène visuelle. Le but de cette thèse est de tirer profit de la précision temporelle des architectures
neuromorphiques afin de développer des algorithmes d’apprentissage efficaces. Nous abordons la
problématique selon deux approches différentes : celle des réseaux de neurones impulsionnels et celle
des modèles probabilistes. D’abord, nous présentons un système d’apprentissage à délai pour les
réseaux de neurones impulsionnels qui repose sur une connectivité éparse et hautement redondante.
Ensuite, nous proposons des techniques d’apprentissage bio-inspirées sur du matériel dédié à basse
latence et consommation énergétique. Le système implémente la plasticité synaptique à l’aide d’un
réseau de memristors, pour l’apprentissage à partir de capteurs de vision événementiels dans le contexte
de la conduite autonome. Enfin, nous introduisons deux techniques de partitionnement basées sur des
modèles de mélange de gaussiennes qui établissent un nouvel état de l’art en termes d’efficacité de
calcul.

Mots clés : Ingénierie neuromorphique, traitement des signaux événementiels, efficacité énergétique,
réseau de neurones impulsionnels, modèles probabilistes

Acknowledgements

I would first like to thank my supervisor Dr. Ryad Benosman for giving me the time and
opportunity to enter a new field of research, for giving me the freedom to explore my own
ideas, and also for providing me with a nice environment to work in.

I would also like to thank my co-supervisor Dr. Sio-Hoi Ieng for his valuable guidance and
advice throughout my thesis, and for proving me with the exciting opportunity to meet
and work with various collaborators on a trans-disciplinary project.

I am grateful to Dr. Georgios Exarchakis for sharing some of his ideas with me, and for
his patience and support in some of the more mathematically advanced concepts of this
thesis.

I am also grateful to Sylvain Saighi and the rest of the team at IMS Bordeaux for all the
fruitful discussions about integrated circuit design.

I also wish to thank Gregor Lenz for being a true brother and keeping me sane during
these past few years; Alexandre Marcireau for making me into a better programmer; and
the rest of my teammates for all the adventures.

I thank El bira 7aram, “bas ntebho mish 3am na3mol di3ayat”. I also thank The Usual for
all the unforgettable memories we’ve shared these past few years.

Finally, I would like to thank my sister Rewa for being a role model in perseverance and
determination and for always believing in me; my parents, Bassem and Rana, for their
unconditional love and support; and the rest of my family for simply being the best.

iii

Publications

[1] G. Haessig, M. B. Milde, P. V. Aceituno, O. Oubari, J. C. Knight, A. van Schaik,
R. B. Benosman, and G. Indiveri, “Event-Based Computation for Touch Localization
Based on Precise Spike Timing,” Frontiers in Neuroscience, vol. 14, p. 420, May 2020.
[Online]. Available: https://www.frontiersin.org/article/10.3389/fnins.2020.00420/full

[2] P.-H. Prévot, K. Gehere, F. Arcizet, H. Akolkar, M. A. Khoei, K. Blaize, O. Oubari,
P. Daye, M. Lanoë, M. Valet, S. Dalouz, P. Langlois, E. Esposito, V. Forster,
E. Dubus, N. Wattiez, E. Brazhnikova, C. Nouvel-Jaillard, Y. LeMer, J. Demilly,
C.-M. Fovet, P. Hantraye, M. Weissenburger, H. Lorach, E. Bouillet, M. Deterre,
R. Hornig, G. Buc, J.-A. Sahel, G. Chenegros, P. Pouget, R. Benosman, and S. Picaud,
“Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human
primates,” Nature Biomedical Engineering, vol. 4, no. 2, pp. 172–180, Feb. 2020.
[Online]. Available: http://www.nature.com/articles/s41551-019-0484-2 xii, 9, 16, 18

[3] O. Oubari, G. Exarchakis, G. Lenz, R. Benosman, and S.-H. Ieng, “Computationally
efficient learning on very large event-based datasets,” In preparation.

[4] G. Exarchakis, O. Oubari, G. Lenz, R. Benosman, and S.-H. Ieng, “Efficient clustering
by sampling-based training of a gaussian mixture model,” In preparation.

[5] G. Lenz, O. Oubari, G. Orchard, S.-H. Ieng, and R. Benosman, “Neural computation
using precise timing on loihi,” In preparation.

Open-source software

• Hummus: Event-based spiking neural network simulator (chapters 2 and 3)

• Peregrine : Framework for efficient Gaussian mixture models (chapter 4)

• e-PSC: Probabilistic sparse coding algorithms for event-based data

• Tonic (minor contribution) : Library for event datasets and data augmentation

– Added support for averaged time surfaces [1]

v

https://www.frontiersin.org/article/10.3389/fnins.2020.00420/full
http://www.nature.com/articles/s41551-019-0484-2
https://github.com/OOub/hummus
https://github.com/OOub/peregrine
https://github.com/neuromorphic-paris/e-psc
https://github.com/neuromorphs/tonic

Contents

Introduction xi

1 State of the art 1
1.1 The visual system . 1

1.1.1 Visual processing in the retina . 1
1.1.2 Visual processing in cortical pathways 3

1.2 Event-based vision sensors . 5
1.3 Pattern recognition on event streams . 9

1.3.1 Event-to-frame methods . 9
1.3.2 Event-by-event methods . 10

a) Time surface based algorithms 10
b) Spiking neural networks 12

1.4 Efficient hardware for machine learning 14
1.5 Visual restoration in non-human primates 15

2 A Myelin plasticity model for spiking neural networks 19
2.1 Introduction . 19
2.2 Methodology . 20
2.3 Validation experiments . 22
2.4 Touch localisation with precise timing . 25

2.4.1 Methodology . 25
2.4.2 Results . 26

2.5 Discussion . 29

3 Bio-inspired learning in a low-power visual data processing system 31
3.1 Introduction . 31
3.2 The memristor: fourth fundamental circuit element 33
3.3 System and network architecture . 35

3.3.1 General system on chip design . 35
3.3.2 FTJ memristor model . 38

a) The STDP learning rule 38
b) Validation . 40

3.3.3 CMOS leaky integrate and fire neuron model 40
3.3.4 Choice of classifier . 42

a) Heuristics-based classifier 42

vii

viii CONTENTS

b) Logistic regression classifier 42
3.4 Numerical experiments . 44

3.4.1 Handwritten digit classification: the N-MNIST dataset 44
a) 3-class N-MNIST . 44
b) 10-class N-MNIST . 45

3.4.2 Critical parameters . 46
a) Logistic regression training set size 46
b) Optimal number of epochs for training the logistic regression 48

3.4.3 Results with alternative event-based datasets 48
3.4.4 Hardware design trade-offs . 49

3.5 Scalability analysis . 50
3.5.1 Improved architecture with local sparse connectivity 50
3.5.2 Scalability and performance analysis on N-MNIST 52

a) Differences in learning across architectures 52
b) Memristor conductance 54
c) Number of neurons . 55

3.5.3 Scalability and performance analysis on N-CARS 57
3.5.4 Energy consumption analysis . 58

3.6 Discussion . 59

4 Probabilistic models for event-based data 61
4.1 Introduction . 61
4.2 Sub-linear stochastic learning in a GMM 62

4.2.1 Event-based vision processing . 63
a) Feature Extraction Methods 63
b) Clustering with time surfaces 64

4.2.2 Stochastic approximation of expectation maximisation on a Gaussian
mixture model . 64
a) Implementation details 68

4.2.3 Experiments and results . 69
a) Artificial data . 70
b) Clustering analysis . 71

4.2.4 Event-based classification . 77
4.3 A sampling-based approach for efficient learning in a GMM 78

4.3.1 EM with sparsely sampled clusters for GMMs 79
a) Implementation details 83

4.3.2 Experiments and results . 83
a) Artificial data . 84
b) Clustering analysis . 85

4.3.3 Large scale feature extraction for classification 88
4.4 Discussion . 89

5 General discussion 91

A Hummus: event-based spiking neural network simulator 95

B Solution to the LIF membrane potential equation 99

CONTENTS ix

C Deriving GMM parameter updates 101
C.1 Deriving the variance σ2 . 102
C.2 Deriving the mean µ . 103
C.3 Deriving the prior distribution α . 104

Bibliography 105

Introduction

Computer vision started taking shape in the early 1960s as a way to automate image
analysis and achieve a full understanding of visual scenes by extracting 3D geometrical
information [2, 3]. Building on Hubel and Wiesel’s pioneering work on edge detection and
orientation selectivity in neurons of the visual cortex, and on hierarchical models of the
visual system [4, 5], researchers gradually moved away from the 3D blocks representation
and started focusing on low-level features such as edges, corners and curves that get
increasingly complex as we move along the hierarchy. This approach to computer vision
led to major breakthroughs in artificial intelligence (AI) and inspired state of the art
deep learning models such as convolutional neural networks (CNN) [6, 7, 8] and recurrent
neural networks (RNN) with applications in facial recognition, self-driving cars and natural
language processing among others.

Approaches based on neural networks have yielded impressive results as of late. Machines
are now more than capable of outperforming humans in difficult tasks such as mastering the
game of Go [9] or even creating artistic images based on a painter’s style [10]. In the words
of Alan Turing (1951), “it seems probable that once the machine thinking method had
started, it would not take long to outstrip our feeble powers”. The reality however is more
complicated. Tasks such as context awareness and common-sense understanding are easily
solved by humans, yet still pose a significant challenge for machines [11]. Furthermore,
training deep learning models for large tasks requires massive datasets and powerful
systems with high performance graphics processing units (GPU) that consume a lot of
energy and are only available to a handful of research laboratories and server farms
belonging to large companies [12]. These requirements hinder the deployment of machine
learning models and limit Internet of Things (IoT) devices to cloud computing, which is not
ideal for embedded systems without a reliable internet connection (e.g. satellites equipped
with cameras) or real-time applications requiring fast processing. Nevertheless, combining
algorithmic breakthroughs like transfer learning [13], the lottery ticket hypothesis [14]
and TinyML [15], with AI hardware accelerators such as Google’s tensor processing unit
(TPU) [16] or Intel’s vision processing unit (VPU) [17], paves the way for energy-efficient
inference at the edge. On-device training however, remains an open issue.

In contrast, the brain is capable of sophisticated cognitive functions such as learning with
a mere 20 watts of power [18]. It remains unclear how the brain actually accomplishes
this feat; even so, the sparsity of neural spike-based computation is thought to be at
the centre of the learning process [19, 20]. In the early 1990s, researchers designed a
silicon retina inspired by the human visual system, effectively establishing the field of

xi

xii Introduction

neuromorphic engineering which aims to solve the energy bottleneck through processors
and computation techniques inspired by biological systems [21, 22, 23]. Instead of working
at a fixed frequency as is the case in classical Von Neumann architectures, neuromorphic
hardware only responds to changes in the data, resulting in a dramatic reduction in power
consumption, lower bandwidth, and a high temporal resolution [24]. Latest advances
include processors such as the Intel Loihi chip with spiking neural networks-based learning
and inference [25], high definition vision sensors [26, 27], and artificial cochleas [28].

Neuromorphic cameras such as the Asynchronous Time-based Image Sensor (ATIS) [29]
have independent pixels that emit spatially and temporally sparse events with a very low
latency, in response to brightness changes in a visual scene. Properly taking advantage of
all the benefits of neuromorphic vision sensors requires a novel approach to computer vision
and machine learning techniques. State of the art algorithms designed for handling streams
of events either (i) convert them into dense frames that can be passed to conventional
CNNs, at the expense of the benefits gained from using event-based sensors, or (ii) rely on
data-driven approaches that individually handle each event to extract spatio-temporal
features. The latter approach while very promising, quickly becomes very expensive as
streams of events get larger.

The goal of this thesis is to exploit precise timing on neuromorphic architectures towards
a more computationally-efficient learning. With Moore’s law becoming less valid due
to physical limitations to transistor scaling, it is increasingly complicated to get better
processor performance. Meanwhile, artificial intelligence models require more power than
ever as the demand increases across multiple fields. Neuromorphic architectures and
low power machine learning strategies have the potential to make edge computing, or in
other words, on-chip learning, a reality. The gains in processing speed and computational
efficiency [30] can be particularly useful for low-power embedded systems with event-
based cameras directed towards fast motion tasks and pattern recognition applications.
Examples include gesture recognition in mobile phones [31], or even smarter and more
natural implant stimulation in neuromorphic vision restoration systems [32, 33, 34] that
extract relevant features from the environment without compromising the high temporal
resolution of event-based cameras. Coming up with new ways to take advantage of precise
timing in learning tasks can also help elucidate some of the obscure mechanisms behind
the brain’s efficient cognitive functions. We approach this issue through two different
angles: spiking neural networks and probabilistic models.

• Spiking neural networks are the natural choice for dealing with the output of event-
based vision sensors since they compute with voltages intrinsic to the system, instead
of expensive floating points. We introduce a delay learning rule aimed at exploring
the benefits of temporal coding, where the precise timing of spikes holds meaningful
information [35]. In parallel, we also explore a hardware spiking neural network with
memristive synapses as part of the EU-funded ultra-low power event-based camera
(ULPEC) project. The device is embedded on a system on chip (SoC) with the goal
of designing a low-power memristor-based visual data processing system targeted at
autonomous driving and the recognition of traffic events.

• Probabilistic models work with probability distributions that can model uncertainty
inherent in natural data. We introduce a framework for novel sublinear complexity

xiii

clustering algorithms that are perfectly suited for dealing with large streams of
events such as those generated by the latest HD event-based cameras [26, 27].

Chapter 1

State of the art

1.1 The visual system

Fig. 1.1 Edge completion in Kanizsa’s triangle. When we look at an image
with missing parts, the brain tends to fill in the blanks and form a recognisable
pattern. This phenomenon is thought to have been advantageous for survival,
particularly for identifying predators when limited information is available.

Pattern recognition is a fundamental cognitive process that forms the basis of learning
in human and non-human animals alike. For instance, the ability to identify sound and
environmental cues can be advantageous for growth and survival [36, 37]. Nowadays, this
process appears in every aspect of our daily lives through facial recognition, language
comprehension or simply the identification of various objects around us. In the visual
system, pattern recognition begins in the retina. Bipolar and retinal ganglion cells can
extract important features from the available information before further visual processing
in downstream brain areas [38, 39]. The brain is capable of carrying out these powerful
computations with only 20 watts [18], and therefore merits a closer look in order to improve
modern pattern recognition and feature extraction algorithms. This section provides an
overview of the visual system and some of the principles governing pattern recognition in
the retina.

1.1.1 Visual processing in the retina
Human beings rely heavily on visual perception to make sense of the world around them,
to such an extent that the visual cortical areas occupy a large part of the cerebral cortex.

1

2 Chapter 1. State of the art

Fig. 1.2 The human eye. Incoming light is focused on the retina after passing
through the cornea, pupil and lens. The retina then extracts visual information
through specialised neurons for further processing by the visual cortex. Adapted
from [40].

Vision begins when light passes through the eye, into the retina, where it is converted
to electrical signals that can be processed by downstream areas. This phenomenon is
called phototransduction. In the visual cortex, the visual information is interpreted into
meaningful representations of the world through the interaction between various neurons
involved in colour perception, motion, object recognition, and orientation and direction
selectivity [40].

The bulk of the eye is designed to focus light reflected from the visual field onto the retina
through a process called refraction. More specifically, incoming light is first refracted
by the cornea before passing through the pupil. The iris is in charge of controlling the
diameter of the pupil in order to regulate the amount of light entering the eyeball. Light
rays are refracted once more by the lens, to a more finely adjusted focus. This process can
be visualised in Fig. 1.2.

The retina is a highly organised structure consisting of layers of neurons specialised in
capturing and processing visual information (Fig. 1.3). Photoreceptors are responsible
for light transduction into electrical signals that are propagated to subsequent layers of
retinal neurons. The retina typically contains two types of photoreceptors, rods and cones.
Rods mediate vision in low-light conditions. They are mostly concentrated at the outer
edges of the retina, and have a low spatial acuity. Cones on the other hand, are involved
in colour vision, and are mostly the only cells present in the centre of the retina.

Further downstream, bipolar cells transmit signals from photoreceptors to ganglion cells,
which digitalise the visual information into time-coded spike trains that are relayed to the
brain through the optic nerve [41, 42]. Bipolar and ganglion cells form an image processing
network capable of simplifying and extracting important features such as motion. These
retinal neurons are of two types: ON bipolar and ganglion cells that are active in the
presence of light, and OFF bipolar and ganglion cells that emit spikes in darkness. These

1.1 The visual system 3

Fig. 1.3 Organisation of the retina. Light passing through the retina is captured
by rods and cones photoreceptor cells and converted into an electrical signal that
propagates to downstream retinal neurons, mainly bipolar and ganglion cells, in
charge of processing the visual information before sending it to the brain via the
optic nerve. Adapted from [40].

cells have a concentric organisation characterised by a centre-surround antagonism [43].
For instance, ON-centre ganglion cells have an OFF-surround field and vice versa. This
antagonism serves to enhance contrast, promotes edge detection and even plays a role
in colour vision. Some specialised ganglion cells are also capable of temporal processing
and respond selectively to moving stimuli. The retina is even capable of using predictive
coding to compensate for delays in signal transmission [38, 44].

The visual system is able to analyse and understand a visual scene within 100ms [45]. In
that regard, the retina adopts a first-spike spatiotemporal coding scheme where the relative
timing of spikes is considered to carry meaningful information. In contrast, poissonian
rate coding schemes integrate spikes over discrete time intervals in order to correlate
the firing rate of a retinal neuron to the strength of a stimulus. Taking advantage of
precise spike timing allows for the visual cortical pathways to efficiently decipher retinal
information [46, 47].

1.1.2 Visual processing in cortical pathways

The visual system, unlike other sensory nervous systems, performs most of the visual
processing in the retina. The visual centres of the brain use the information received

4 Chapter 1. State of the art

Fig. 1.4 Anatomy of the visual system. Retinal signals are sent to the visual
cortex via the thalamus. Each visual area of the thalamus, also known as
the lateral geniculate nucleus (LGN), receives input from both eyes. Adapted
from [40].

from retinal ganglion cells for multiple purposes: mediating subconscious optical reflexes
that control the pupil and lens, regulating the circadian rhythm to the 24-hour day-night
cycle, centring a visual target on the fovea, and visual processing to extract meaningful
information [48].

The optic nerve of each eye sends retinal spike trains to the visual cortex via the thalamus.
More precisely, the visual pathway passes through the lateral geniculate nuclei (LGN)
which organise and integrate the input from both eyes. The LGN maintains a retinotopic
mapping which is useful for enhancing the contrast discrimination brought about by centre-
surround antagonism. Neurons from the LGN project directly to the primary visual cortex
(V1). At this point, the retinal information splits into information processing streams
that traverse other areas of the brain. The dorsal stream, or the "where/how pathway",
is concerned with spatial location, motion and depth, and essentially facilitates visually-
guided actions such as grabbing an object [49]. The ventral stream otherwise known as
the "what" pathway is involved in object recognition, form analysis and colour [50, 51, 52].
However, recent studies suggest that the two visual processing pathways might not be as
functionally distinct as once thought [53].

The ventral stream of the visual pathway dealing with pattern recognition is thought to
be organised in a hierarchical manner [5, 4]. The outline of all objects can be broken
down into a series of linear segments. As one moves along the hierarchy of the ventral
stream, neurons gradually become responsive to increasingly complex stimuli, starting
from oriented bars, gratings and edges in the primary visual cortex and ending with
objects and faces in higher areas of the visual pathway. Instead of the centre-surround
concentric receptive fields found in the retina and the LGN, neurons in the primary visual
cortex have an elongated receptive field that responds to bars or gratings at a preferred

1.2 Event-based vision sensors 5

+ -

+ -

+ -
+ -

ON-centre
OFF-surround
receptive field

Simple cell
receptive field

stimulus

Reponse

LGN neuron V1 neuron

+ -

+ -

Fig. 1.5 Receptive fields of LGN and V1 neurons. LGN neurons have a centre-
surround antagonism that is used to enhance luminance contrast discrimination.
V1 neurons have elongated receptive fields that respond to bars of light at a
preferred orientation.

orientation (Fig. 1.5). Orientation selectivity and contrast discrimination are achieved by
flanking the stimulus with inhibitory regions. These neurons come in a variety of types
that provide information about the orientation, direction, length, corners and edges of a
stimulus [54]. This information, in combination with input from other brain areas, is also
used for depth and motion analysis. We can distinguish two types of orientation-selective
cells in the primary visual cortex: simple cells respond to oriented bars and gratings at
a precise location within their receptive fields; complex cells on the other hand respond
anywhere within the receptive field. The hierarchy of the ventral visual pathway integrates
the input from simple and complex cells to construct increasingly complex features and
develop translation invariance to them [55].

This hierarchical model of vision is considered the source of inspiration for popular
deep learning architectures such as convolutional neural networks (CNN) which aim at
solving computer vision tasks [6, 7]. These architectures will be further explored in
section 1.3.

1.2 Event-based vision sensors

Computer vision is a branch of artificial intelligence that allows machines to analyse
and interpret visual scenes. The first applications of computer vision dealt with optical
character recognition [56]. Nowadays, increasingly sophisticated algorithms have expanded

6 Chapter 1. State of the art

Frame-based Camera

Time

X

Y

Event-based Camera

Fig. 1.6 Output of conventional cameras and event-based cameras. (Top)
Conventional frame-based cameras capture dense images at fixed time intervals.
(Bottom) Event-based cameras independently update each pixel in an asyn-
chronous manner depending on luminance changes in a visual scene. The output
is a spatially sparse representation with microsecond time resolution. Colours are
artificially injected for better visualisation. Data courtesy of Alexandre Marcireau.

1.2 Event-based vision sensors 7

the capabilities of computer vision into numerous fields such as facial recognition [57],
recognition of traffic events for self-driving cars [58], and medical diagnosis [59]. These
algorithms have traditionally relied on conventional cameras that capture dense frames at
fixed time intervals [60]. A global shutter simultaneously captures light from all pixels,
over a specific exposure time, resulting in redundant visual data representing an average
luminance.

Unlike frame-based vision sensors, the human retina can adapt to a broad range of
illumination levels. As seen in section 1.1, photoreceptors propagate analog signals for
further processing in downstream layers of the retina. In the early 1990s, Misha Mahowald
and Carver Mead devised a silicon retina that mimics the behaviour of biological retinas
to a certain extent, effectively starting the field of neuromorphic engineering [21, 22,
23]. Early iterations of the silicon retina included a logarithmic pixel design, a spatial
contrast discrimination circuit based on the centre-surround antagonism observed in bipolar
cells [43], and circuits dedicated to pre-processing the visual scene [61, 62]. The vast
majority of computer vision research was at the time, and still is to this day, dominated
by digital computers with Von Neumann architectures. Developing novel algorithms
compatible with the fully analog design of silicon retinas was therefore quite a challenging
task.

The Dynamic Vision Sensor (DVS) developed in 2008 [63], streamlined the architecture
of silicon retinas by dropping the spatial contrast enhancement circuit and adopting
the Address Event Representation (AER) protocol [64]. This communication protocol
converts an analog signal into a spatially sparse stream of events, or spikes, with sub-
millisecond temporal resolution. We can visualise the output of these event-based vision
sensors in contrast to conventional frame-based cameras in Fig. 1.6. Combining the
silicon retina’s analog circuits with a digital output solves the compatibility problem with
conventional computer architectures and makes it easier to transfer the data between chips
or develop machine learning algorithms that analyse and interpret a visual scene. This
latest generation of vision sensors reaches a new level of performance by independently
updating each pixel in an asynchronous manner. An event is triggered when the logarithmic
luminance of a pixel crosses a threshold (Fig. 1.7), and is characterised by a set of spatial
coordinates x and y, a timestamp t and a polarity p that encodes either an increase (ON
events) or a decrease (OFF events) in luminance. The total amount of events is directly
driven by the activity of a scene. Consequently, event-based cameras need to be either
constantly in motion to update the visual scene, or capture moving targets when the
camera is static. This event-based architecture holds several advantages over conventional
cameras:

• high dynamic range: Event-based cameras can operate under a broad range of
illumination levels due to a significantly high dynamic range (> 120dB) compared
to conventional cameras (60dB).

• low motion blur: Conventional cameras can lead to streaking of rapidly moving
objects when an image being captured changes during a single exposure time. This
motion blur phenomenon is less of an issue in event-based cameras as the pixels
are independent and do not rely on a global exposure time. Nevertheless, motion
blur in the order of 1ms still occurs in event-based cameras, and is typically the

8 Chapter 1. State of the art

Time

Time

Lo
g

pi
xe

l i
llu

m
in

an
ce

C
ha

ng
e

D
et

ec
tio

n

ON
OFF

Change detection

Fig. 1.7 Behaviour of a single pixel in an event-based vision sensor. A new
event is triggered when the logarithmic luminance of a pixel crosses a user-defined
threshold. ON events (bright pixels) indicate an increase in luminance while OFF
events (dark pixels) represent a decrease in luminance.

result of multiple events being generated by the same pixel in response to a change
in luminance [24].

• high temporal resolution and low latency: Event-based cameras can detect
luminance changes with sub-millisecond temporal resolution and output events at a
very low latency, making them ideal for high speed motion perception. The DVS
for example, has a minimum latency of 15µs [63], but real-world usage brings the
latency in the order of a few milliseconds [24].

• low power: The power consumption of an event-based vision sensor is reduced
to less than 10mW by eliminating the redundancy in the data and only updating
relevant pixels [65]. Efficient algorithms would need to be developed in parallel to
fully take advantage of the reduction in energy demands.

Several cameras that behave similarly have been developed since then, with reduced sensor

1.3 Pattern recognition on event streams 9

noise [66] and improvements to the dynamic range [67], sensitivity [68, 69], latency [70]
and spatial resolution [71]. Noteworthy event-based cameras include the ATIS [29], the
Dynamic and Active-pixel Vision Sensor (DAVIS) [70], and a DVS camera developed by
Samsung [71]. Lately, the industry’s increased interest in neuromorphic technology led to
the development of the first HD event-based cameras by Celepixel [26, 72] (Celex) and
Prophesee [27]. This technology opens the door to a wide variety of applications where
fast motion perception, precise timing and energy efficiency are important. Some examples
include autonomous cars that use visual processing for navigation [1, 73], positioning
and collision avoidance in robotics [74], and even medical applications such as visual
prosthesis [34].

1.3 Pattern recognition on event streams
Extracting features from a stream of events is not particularly straightforward. The
asynchronous and sparse nature of the data is incompatible with gradient-based opti-
misation algorithms such as backpropagation which form the backbone of modern deep
learning [75, 6, 7]. The precise timing of events adds further complexity to the task,
since standard computer vision algorithms do not consider the temporal dimension. The
neuromorphic community is constantly experimenting with new ways to represent streams
of events in order to facilitate the development of algorithms that can handle the spatial
and temporal sparsity of the data. In the context of pattern recognition for event-based
data, algorithms fall into two main categories: event-to-frame methods that generate
frames from batches of events to take advantage of decades of computer vision research,
and event-by-event methods that process each event individually and require rethinking
from the ground up. Lesser known approaches consist in voxelising the stream of events
and passing it through a CNN [76, 77] or a broad learning system (BLS) [78] which is more
suitable for learning in a big data environment since it does not require any layer stacking.
Other approaches involve converting the stream of events into geometric data structures
such as 3D point clouds that can be processed by neural network architectures [79, 80]
based on PointNet [81], or graphs [82] that can be used as input to a CNN.

1.3.1 Event-to-frame methods

The first approach to feature extraction in the context of computer vision involves
converting event streams into image sequences through simple approaches like binning
events [73, 83], counting events [84] or even summing polarities [85] in a pixel-wise manner
over a user-defined integration time. More recently, [86] was able to reconstruct high-
quality frames by passing temporal bins of events through a recurrent CNN. The generated
frames provide a familiar two-dimensional grid representation that is compatible with
standard computer vision algorithms such as CNNs, at the detriment of the sparsity and
temporality of event data [85, 86, 87]. The reliance on dense data and optimisation-based
methods negates most of the advantages of neuromorphic vision sensors, particularly
the energy efficiency aspect which is central to the neuromorphic computing paradigm.
Nevertheless, frame integration procedures that include a decay based on past events
such as leaky surfaces [88] or memory surfaces [89] are better able to preserve the time
resolution of event-based vision sensors, and are generally more robust to noise. [88] takes

10 Chapter 1. State of the art

Time surface

Stream of events

Y

X
Time

Neuromorphic camera

ROI

Time

Am
pl

itu
de

Exponential kernel
on past events in the ROI

Fig. 1.8 Time surface generation pipeline. For a given stream of events, we
apply an exponential decay on past events in a region of interest (ROI) centred
around each event. The resulting grid structure describes the spatio-temporal
context around an event. The dashed line represents the timestamp of the centre
event.

it a step further with fcYOLE and tries to re-inject sparsity into CNNs by only looking at
regions in frames where events are received, bridging the gap between fully frame-based
and fully event-based algorithms.

1.3.2 Event-by-event methods
The algorithms introduced throughout this doctoral thesis fall under this broad category.
These methods trigger a series of computations at each event, taking advantage of all the
benefits of neuromorphic vision sensors (see section 1.2). Feature extraction algorithms
that work on an event-by-event basis generally aim for a low power consumption that
enables on-device processing towards IoT applications [31], and a low latency which is
very useful in tasks requiring a fast reaction time [1, 90]. Making algorithms more energy
efficient can be achieved through biologically plausible architectures and by exploiting
the sparsity of event-based data [91]. Indeed, neuromorphic vision sensors naturally
extract spatio-temporal features and enhance edges which greatly simplifies the end-to-end
classification pipeline. Utilising the high temporal resolution of neuromorphic vision
sensors not only contributes greatly towards lower latency algorithms but also offers a
level of performance that is superior or matches state-of-the-art frame-based algorithms in
some recognition tasks [92, 1]. In any case, simpler computations are usually preferred in
event-based programming due to the large number of events generated by neuromorphic
vision sensors. To put this into perspective, an ATIS vision sensor generates on average one
million events per second. Spiking Neural networks (SNN) are a natural choice for dealing
with event streams on an event-by-event basis [93, 92, 94, 95, 96, 97]. We can also make
use of handcrafted grid-like structures called time surfaces that take into consideration
the spatio-temporal context around each event [90, 98, 99, 100, 1].

a) Time surface based algorithms

For a given stream of events, we look into the spatio-temporal neighbourhood of each event
ei to create a time surface as formally introduced in [100], which resembles a local image
patch that represents the temporal relation between events. The surface is locally updated

1.3 Pattern recognition on event streams 11

using a decay function within a (2r + 1)2 spatial neighbourhood σi, centred on (xi, yi) at
time ti (Fig. 1.8). We use an exponential kernel to decay the most recent activations such
that:

Si : σi ∈ R2 → R

(xk, yk)T 7→ Si(xk, yk) = exp
(
tk−ti
τ

) (1.1)

where τ is the decaying factor reflecting the scene dynamic. Since ti is the time of the
current and most recent event, we always have tk ≤ ti.

The exponential decay is a costly function to compute. As an alternative, we can use a
piece-wise linear function to approximate the exponential decay and speed up computation
without dramatically affecting the performance in classification tasks [90], such that:

Si : σi ∈ R2 → R
(xk, yk)T 7→ Si(xk, yk) = max(0, tk−tiτ ′ + 1), (1.2)

where τ ′ is a decay constant similar to τ .

The HOTS algorithm proposed in [100] and improved upon by [31] makes use of pattern
matching to learn from time surfaces a set of representative features referred to as
prototypes, using an online clustering technique. It is important to note that any clustering
technique, online or offline can be used in this step. The algorithm can be employed in a
hierarchical manner by stacking layers that have a different spatial neighbourhood size or
decaying factor τ . Prototypes from the final layer of this pattern matching network are
gathered and used in a distance-based linear classifier such as the k-nearest neighbours
algorithm (k-NN) [31], or more complicated classifiers, namely extreme learning machines
(ELM) which are feedforward neural networks that converge faster than networks trained
using backpropagation [90]. Although, these classifiers cannot reach the performance of
backpropagation-based training methods.

HOTS prompted the development of various algorithms centred around representing an
event as a spatio-temporal context. FEAST [99] extends HOTS with adaptive thresholds,
or in other words, a homeostasis mechanism that promotes competition and regulates the
overall activity of prototypes [101, 102]. HATS [1] reduces temporal noise in time surfaces
by taking into consideration all past events in a ROI, instead of limiting it to the most
recent ones. HATS completely bypasses the pattern matching step by averaging the new
time surfaces into a histogram that can be used to train a support vector machine (SVM)
classifier. DART [98] builds upon the fact that rotations and scale changes in a Cartesian
system appear as translations in the log-polar domains [103], and adds rotation and scale
invariance by encoding the spatio-temporal context as a log-polar grid instead of a Moore
neighbourhood. DART, along with the descriptor proposed in [90], tries to solve the time
surface’s inability to handle variable motion and different data rates by using a decay
kernel dependent on incoming events instead of a time constant τ .

Time surface-based methods are promising in regards to pattern recognition. However,
event-by-event methods are data-driven, and therefore largely bound by the number of
events in a visual scene. Feature extraction algorithms have so far been tested in small
event-based datasets with very low spatial resolution vision sensors. With the advent of
high definition cameras that can output up to 50 million events per second [26, 27], methods

12 Chapter 1. State of the art

Synapse

Presynaptic end
transmits signals

Postsynaptic end
receives signals

Axon

Electrical signal travels
down the axon

Soma

Dendrites

a b
Artificial neuron

input spikes output spikes

Spiking neuron

Fig. 1.9 Neural computation. (a) In a biological neuron, electrical signals travel
through the axon and are propagated to a postsynaptic neuron via synapses. (b)
Artificial neurons take continuous values as inputs and instantly compute the
output. Spiking neurons in comparison communicate with spikes and have an
internal state Vt that integrates spikes over time.

relying on clustering such as HOTS and DART would be unable to handle the stream of
events in a reasonable time frame. For this particular reason, apart from research labs,
key players in the industry are as of now relying on event-to-frame strategies [104].

b) Spiking neural networks

SNNs are widely considered to be the third generation of artificial neural networks
(ANN) [35]. Much like their biological counterpart, spiking neurons communicate via
sparse and asynchronous binary signals that are transmitted and processed in a massively
parallel manner, and are therefore able to directly process the output of neuromorphic
vision sensors. The membrane potential Vt of a neuron integrates incoming spikes over
time (Fig. 1.9). The neuron emits a spike of its own once Vt reaches a certain threshold,
and propagates it throughout the network via synapses characterised by a weight and
optionally, a delay [105]. Spike-based communication is however costly to simulate on the
classical Von Neumann architecture, and dedicated hardware is usually required in order
to unlock the full potential of SNNs [106, 107, 25], namely, energy-efficiency and real-time
inference [108].

SNNs have had great success in robotics applications [74, 109, 110]. Their performance
was until recently lacking in pattern recognition tasks compared to the state of the art
in deep learning networks [111, 112, 113]. Recent advances have shown great promise in

1.3 Pattern recognition on event streams 13

bridging the performance gap in object recognition tasks. Learning methods for SNNs can
be split into three broad categories:

• Hebbian-based learning: SNNs can be trained with biologically plausible unsu-
pervised local learning rules, the most popular one being Spike-timing-dependent
plasticity (STDP) [114, 19]. The majority of Hebbian learning rules are based on
synaptic weight modulation [113]. Long-term potentiation (LTP), or an increase
in synaptic weight, occurs when a presynaptic neuron fires before a postsynaptic
neuron. Whenever the opposite scenario occurs, synaptic weights are decreased in a
process called long-term depression (LTD). This process is considered local since it
only depends on information available to a given pre- and postsynaptic neuron pair.
STDP-based feedforward architectures dedicated to pattern recognition have been
well-explored [19, 113, 96, 115], and despite not being competitive compared to the
state of the art, their simplicity is coveted in low power end-to-end object recognition
systems [116, 117]. The state of the art in Hebbian-based learning includes supervised
variants of STDP [118] and deep architectures that utilise multiple STDP-based
convolution and pooling layers in an effort to gain more abstract and representative
features [119, 97, 120].

• ANN-to-SNN conversion: SNNs can also be converted from state of the art
ANNs trained with conventional optimisation-based deep learning algorithms [121,
122, 123, 124, 125]. The weights of the trained ANN are used in spiking neurons
for inference. Until recently, these conversion strategies were incompatible with the
temporal structure of SNNs. With the advent of streaming rollouts that essentially
enable propagation delays in ANNs [126, 127], these networks can now achieve state
of the art results in object recognition with event-based datasets. ANN-to-SNN
however remains a costly method bound by the current limitations of deep learning
when it comes to energy-efficiency.

• Gradient-based learning: Gradient-based approaches cannot be applied to SNNs
in a straightforward manner due to the non-differentiability of spikes activity. In
fact, a spike is modelled by the Heaviside step function H(x). Backpropagating
the error through a spiking neuron leads to zero gradients and no weight updates,
since the derivative of H(x), the Dirac function, is zero everywhere and undefined at
x = 0. Gradient-based learning can be achieved in various ways. For instance, recent
work suggests approximating the behaviour of spiking neurons with a differentiable
surrogate function, paving the way for SNN training algorithms that can make use
of the error backpropagation optimisation method [94, 128, 92, 93]. Other methods
of computing a gradient include latency learning [129, 130] and using continuously
valued neuron activity [95]. This category of direct training algorithms for SNNs can
offer the best compromise between performance and energy-efficiency, for instance
through layer-wise local losses [131, 93] or low precision weights [130, 132].

Throughout these learning rules, spiking neurons can employ different strategies for
computation. Rate coding takes into consideration the mean firing rate of a single neuron
or a population of neurons as an informational parameter [133]. SNNs being largely
data-driven, this encoding strategy can quickly become more costly than frame-based
methods especially when a great deal of spikes are required. Furthermore, visual perception

14 Chapter 1. State of the art

is incredibly fast. Temporal coding positions itself as an alternative strategy that assigns
meaning to the precise timing of spikes [35], reducing the number of spikes required to
encode information. Whether by relying on the first spike latency [38] or by looking at the
relative firing order of neurons [134], strategies based on precise timing provide a reasonable
explanation in regards to the brain’s energy-efficient learning. In fact, a number of studies
show the importance of temporal coding in sensory systems [135, 136, 137, 138, 139].
Beyond STDP [19] which has recently hit a wall in terms of performance, three-factor
learning rules that combine Hebbian learning and neuromodulation can take advantage
of temporal coding for more complex algorithms based on supervised or reinforcement
learning [140, 119, 141].

1.4 Efficient hardware for machine learning

In environments with power, latency or bandwidth constraints such as autonomous
vehicles [1, 73] or mobile phones [31], deploying machine learning algorithms at the edge and
reducing the dependency on cloud computing is increasingly sought after. The previously
explored event-based algorithms have the potential to make on-device computing a reality
when co-designed with dedicated hardware. Indeed, hardware and software integration
is essential for pushing the limits in terms of delivering high performance with a small
power footprint. In fact, most modern computer systems such as our phones and laptops,
include co-processors designed to accelerate specific tasks which cannot be efficiently
handled by the central processing unit (CPU). In vision and machine learning tasks,
graphical processing units (GPU) are by far the most widely used co-processors due to
their speed and flexibility. The high memory bandwidth and large number of cores makes
it particularly well suited for deep learning models as they enable parallel computation on
big datasets [7]. Reconfigurable devices such as field-programmable gate arrays (FPGA)
offer lower latency and better power-efficiency than GPUs by making it easier to adapt the
hardware according to the needs of the algorithm [142]. For maximum speed and efficiency
however, application-specific integrated circuits (ASIC) can be designed to perform a
narrow set of operations such as processing neural networks at the cost of programmability.
Examples of ASIC chips include Google’s tensor processing unit (TPU) [143, 16] and
Intel’s vision processing unit (VPU) [144]. Through low precision floating-points and
hardware-level optimisations these chips can significantly speed up inference. The Edge
TPU for instance, is capable of performing four trillion operations per second using only two
watts [143]. CPUs, GPUs, and AI accelerators are held back by the transfer rates between
the processing and memory units. Neuromorphic chips emulating neural networks in
hardware, tackle this problem, known as the Von Neumann bottleneck, with architectures
that have collocated processing and memory units, significantly improving parallelism
and energy efficiency [145]. These inherently low power chips rely on the event-based
computing paradigm to dramatically improve training and inference speeds [107, 146, 147],
bringing us closer to full edge computing without compromising the energy budget. Each
core in these processors can be implemented using digital or mixed-signal circuits. Digital
neuromorphic manycore processors include the IBM TrueNorth chip [147], SpiNNaker [107],
the Intel Loihi chip [25], ODIN [148], and more recently, the Akida neural processor [149].
Mixed-signal neuromorphic processors such as the DYNAP-SE [146], BrainScaleS [150]

1.5 Visual restoration in non-human primates 15

and Neurogrid [151] can take advantage of the device’s physical properties for an even
lower power footprint, but they are inherently noisy and require a physical circuit per
neuron or synapse which can take up more space on silicon.

1.5 Visual restoration in non-human primates

Fig. 1.10 Prototype for the PRIMA vision restoration system with a photovoltaic
subretinal implant that stimulates remaining retinal cells. This prototype was
based on the IRIS II vision restoration system which included an ATIS event-
based vision sensor that offers better compatibility with the biological retina than
conventional cameras [152, 32]. Implant picture courtesy of Paul-Henri Prevot.

16 Chapter 1. State of the art

Retinal degenerative diseases such as dry age-related macular degeneration (AMD) and
retinitis pigmentosa (RP) are highly prevalent diseases that can lead to the progressive de-
generation of photoreceptors and partial blindness [153]. Dry AMD for instance progresses
into a loss of central vision. Development of vision restoration solutions has been progress-
ing steadily. In fact, vision restoration systems based on retinal implants have already
reached clinical trials [32]. Early prototypes of the PRIMA vision restoration system devel-
oped by Pixium Vision exploited the high temporal resolution of event-based cameras for a
more natural simulation of the retina. The stream of events is converted to a near-infrared
light patterns that are used to stimulate remaining bipolar cells and retinal ganglion cells
through a photovoltaic subretinal implant that converts non-visible near-infrared light
into an electrical current. The full protocol can be seen in Fig. 1.10.

While frame-based video cameras are more commonly used in vision restoration sys-
tems [154], psychophysical experiments showed a noticeable improvement when performing
motion perception tasks with high temporal frequency simulations [155, 33, 156]. The
sub-millisecond temporal resolution of event-based cameras could therefore make it easier
for patients to solve everyday tasks involving moving stimuli. In fact, the biological retina
also functions at a high temporal resolution [157, 38]. Working with an event-driven vision
sensor increases the compatibility of the stimulus between the implant and downstream
layers of the retina, and holds additional benefits, including an enhanced contrast discrim-
ination, or in other words, built-in edge detection, and a high dynamic range that would
allow the vision sensor to easily function under a wide range of illuminations.

As part of the pre-clinical validation phase, we wanted to demonstrate the efficacy of the
PRIMA vision restoration strategy through a series of behavioural tests on non-human
primates implanted with the photovoltaic subretinal implant [34]. As a model for the
PRIMA system, we developed a split-lamp setup that allows ocular movement tracking
for analysis purposes, and achieves very precise in vivo near-infrared activations of the
subretinal implants at a high refresh rate. The behavioural experiments, my personal
contribution to this work, consisted in studying the saccadic response of a non-human
primate from a central fixation point, towards visual stimuli displayed for 500ms in the
peripheral visual field under near-infrared and visible light. The non-human primates
had healthy retinas with the exception of a blind zone over the implant. Fig. 1.11 shows
the response of two non-human primates to implant activation by near-infrared visual
stimuli. Visible stimuli elicit saccades everywhere except over the implant, while non-visible
near-infrared stimuli only elicit saccades over the implant, demonstrating the primates’
ability to perceive stimuli in their blind zone.

This project, published in Nature Biomedical Engineering [34], is one of the primary
motivations for the work presented in this doctoral thesis. Indeed, despite impressive
clinical trial results on other vision restoration systems such as the IRIS II or the Alpha
IMS [32, 158], the restored vision remains quite limited and highly variable across patients,
mainly due to the brain’s ability to reorganise itself and adapt to changes. Applying
machine learning algorithms to extract important features from visual scenes can help ease
the burden on remaining retinal cells by only sending the relevant visual information for a
particular task, potentially leading to improvements in the restored vision and facilitating
neural plasticity. Designing algorithms that can handle streams of events is a challenging

1.5 Visual restoration in non-human primates 17

task currently under active research by the neuromorphic community. For that reason, the
latest iteration of the PRIMA vision restoration system reverted back to a frame-based
solution, losing in the process, the bio-compatibility and the improvements in motion
perception which are important to a patient’s quality of life [155, 33, 156].

Augmenting devices such the PRIMA vision restoration system with machine learning
requires algorithms and dedicated hardware capable of learning on the fly and adapting
to a broad range of tasks in a power and thermal-constrained environment. Frame-based
strategies are not particularly well-suited for the task. Building on the event-by-event
pattern recognition techniques seen in section 1.3, we propose, in the following chapters,
computationally-efficient unsupervised machine learning methods, as well as a bio-inspired
end-to-end hardware implementation of SNNs that can take advantage of all the benefits
offered by event-based cameras such as the high temporal resolution, towards advanced
vision applications with very low power and latency requirements.

18 Chapter 1. State of the art

Fig. 1.11 Subretinal implant activation in two non-human primates [34]. After
fixating on a central spot (black dot), visible and near-infrared visual stimuli are
displayed every 10° in the peripheral visual field. (a) Visible stimuli correctly
elicit a saccadic response by the non-human primates everywhere except over the
implant (delimited by the dotted black square). (b) Near-infrared stimuli only
elicit saccades over the implant. (c) Catch trials allow us to control for external
light sources as potential phosphene generators over the implant. Visual stimuli
were displayed without a visible or near-infrared light source.

Chapter 2

A Myelin plasticity model for spiking
neural networks

2.1 Introduction

Spiking neural networks (SNN) have traditionally relied on weight-based synaptic plasticity
for supervised and unsupervised learning. Besides the Hebbian-based STDP learning rule
and the backpropagation-based SNN algorithms discussed in section 1.3, [159] proposed the
tempotron model which modulates synaptic weights in a supervised manner. State of the
art algorithms cannot yet properly explain the learning mechanisms governing biological
neurons. Studies suggest precise spike timing and temporal coding play an important role
in learning and memory formation [160]. Spike transmission delays however, have not
been thoroughly explored in regards to understanding spatio-temporal sequences, and they
are generally regarded as a non-plastic process. [114] for instance, adds beneficial noise to
an STDP-based network by randomly initialising delays, and keeping them fixed.

Spikes are delivered to a neuron’s post-synaptic partners through its axon with a trans-
mission delay dictated by the axon’s conduction velocity. The conduction velocity is
dependent on both the diameter of the axon and the thickness of the Myelin sheath around
it [161]. Myelin is a phospholipid substance formed by glial cells and its presence increases
the conduction velocity of axons by wrapping around them and acting as an electrical
insulator. Auditory neurons for example, act as coincidence detectors by using interaural
time differences for sound localization [162, 163]. This particular mechanism involves
precisely tuned delay lines. Furthermore, it has recently been shown that the myelination
of axons can be influenced by neural activity [164, 165, 166, 167] suggesting that a form
of myelin plasticity is also at work – something that should be taken into consideration
when developing learning algorithms for SNNs [168, 169].

By optimizing conduction delays, a myelin plasticity-based model paves the way for
directly learning the time dynamics of incoming spikes and extracting meaningful spatio-
temporal patterns. However, the fundamental mechanisms dictating this type of plasticity
is still poorly understood, and there is a need to understand exactly how changes in
conduction velocity actually promote learning. Previous conduction delay plasticity

19

20 Chapter 2. Myelin plasticity

algorithms have often not been tested with practical tasks such as pattern recognition and
clustering [170, 171]. The deltron [172] takes inspiration from the tempotron model [159]
to adjust conduction delays through gradient descent dynamics. [173] extended the
polychronisation model developed by [114] to include learnable conduction delays for
classification and [174] applied this approach to pattern storage. [175] developed a
probabilistic delay learning model which adjusts conduction delays and synaptic weights.
However, [175] used this to classify time-invariant databases such as MNIST, which have
no temporal structure, making them a poor choice for evaluating computation based on
spike timing.

This chapter introduces a model for myelin plasticity that specialises postsynaptic neurons
to specific patterns through axonal delay modulation. The algorithm in question can be
unsupervised or supervised when a teacher signal with the desired spike timing is available.
We will start by introducing the learning rule and testing it on a one-dimensional artificial
dataset as a proof of concept. We will then present a real-life application to this delay
learning rule by solving a touch localisation task on a real dataset.

2.2 Methodology

output

input 1

input 2

input i

Fig. 2.1 Leaky integrate and fire model. The presynaptic input neuron sends a
spike to the postsynaptic output neuron at time ti, via a synapse i characterized
by a weight wi and a conduction delay di. The output neuron receives the spike
at time si, which is then integrated into the membrane potential V (t). Once
V (t) passes the membrane threshold Vth, the output neuron fires, its membrane
potential is reset and the neuron goes through a refractory period.

Drawing inspiration from the myelin plasticity discussed in section 2.1 and from previous
work on delay shifts [172, 176, 94], we will develop in this section an algorithm tailored
for extracting temporal features by modulating conduction delays. The proposed model
uses gradient descent dynamics to synchronize spikes emitted by pre-synaptic neurons,
by adjusting delays on the most recently active synapses within an experimentally set
temporal window (Fig. 2.2). Whenever a neuron fires, mutual inhibition is used to ensure

2.2 Methodology 21

output

input 1

input 2

input i

Time (ms)O
ut

pu
t p

ot
en

tia
l (

m
V)

-70

-80

-60

-50

1020 1040 1060 1080 1100 1120 1140

Before Learning

output

input 1

input 2

input i

Time (ms)

After Learning

-70

-80

-60

-50

1020 1040 1060 1080 1100 1120 1140

Fig. 2.2 Delay learning rule. (Left) State of the SNN before learning delays.
An input neuron emits a spike (vertical bar) from a synapse i at time ti. The
spike is received by the output neuron at time si after a delay di. The output
neuron in this case does not fire because V (t) < Vth represented here by the red
dashed line. (Right) State of the SNN after learning delays. Delays are gradually
modulated to make the input neurons fire concurrently. The output neuron’s
membrane potential is maximised, and reaches a value V max ≥ Vth.

that neurons specialise to a particular temporal pattern. The delay plasticity model works
in conjunction with leaky integrate and fire (LIF) neurons described by the following
differential equation:

τm ·
dV (t)
dt

= EL − V (t) +Rm · I(t) (2.1)

where Rm is the membrane resistance, and τm is the membrane time constant. The LIF
model, one of the simplest ways to describe neuronal activity, was chosen based on its
ability to asynchronously update the state of a neuron using the timestamp of input events.
Each spike triggers a current injection that gradually increases the membrane potential of
a neuron. Once the membrane potential reaches a certain threshold, the neuron fires and
propagates a spike throughout the network via synapses characterized by a weight w and
a delay d. The neuron’s potential is then reset back to its resting state.

We chose an exponential excitatory post-synaptic current (ESPC) shape such that the
input current I(t) at time t is:

I (t) = Iinj ·
∑
i

wi · e
− t−si
τsyn · H (t− si) (2.2)

22 Chapter 2. Myelin plasticity

where Iinj is the injected current every time a neuron fires, wi is the synaptic weight of
synapse i, τsyn is the synaptic time constant, H(t) is the Heaviside step function, and si is
the time of arrival of a spike, from a presynaptic neuron at time ti, to a post-synaptic
neuron with a delay di, such that si = ti + di.

When we study the dynamics of a single synapse i, we remove the discontinuities caused by
the input signal by focusing on the range [si, t] where H(t) = 1. Assuming initial conditions
such that Vi(si) = EL, we are restricting the network to only one spike per synapse. The
membrane potential is reset between each training example through a winner-takes-all
(WTA) algorithm and the membrane equation now has a solution:

Vi (t) = EL + Rm · Iinj · wi · τsyn
τm − τsyn

·
(
e−

t−si
τm − e−

t−si
τsyn

)
(2.3)

The time course of the potential follows a bi-exponential model with a finite rising time.
In order to maximise the membrane potential of a post-synaptic neuron – and ultimately
associate it with a particular temporal pattern – we compute the gradient of the neuron’s
potential ∂V (t, si)

∂si
and modulate di until all spikes are aligned. The model assumes only

one spike per synapse because the precise timing of each spike is considered to hold relevant
information. The partial derivative of V (t, si) with respect to si can then be written
as:

∂V (t, si)
∂si

= Rm · Iinj · wi
τm − τsyn

· (e−
t−si
τm − e−

t−si
τsyn) (2.4)

The delay update rule can be represented by the following equation:

dt+1
i = dti + η · ∂V (t, si)

∂si
(2.5)

where η represents the learning rate of a neuron, with η > 0. We decay the learning rate
across iterations to avoid large gradient steps. The myelin plasticity model can easily be
adapted into a supervised learning algorithm by aligning input spikes at a desired time
via a teacher signal, instead of aligning the spikes to the last arriving input si.

2.3 Validation experiments
We decided to start by classifying randomly generated one-dimensional spike patterns. We
wanted to confirm the algorithm’s ability to learn time dynamics by specialising a temporal
pattern to an output neuron. In that regard, we generated four different patterns consisting
of ten presynaptic neurons firing once, at different times within a 20ms time window.
Each pattern was presented 100 times to a single-layer SNN with ten input (presynaptic)
neurons and four output (postsynaptic) neurons, one for each of our classes. To make the
problem more complicated, up to 2ms of time jitter was added to the pattern.

We used biologically plausible values for all network parameters, with a membrane threshold
set to −50mV, a refractory period of 3ms, and a resting membrane potential equal to

2.3 Validation experiments 23

45.7 45.8 45.9 46 46.1 46.2 46.3 46.4 46.5 46.6 46.7
0

2

4

6

8

10

45.7 45.8 45.9 46 46.1 46.2 46.3 46.4 46.5 46.6 46.7
-70

-65

-60

-55

-50

-45

pattern 1 pattern 2 pattern 3 pattern 4

Time (s)

In
pu

t n
eu

ro
ns

Output neurons

M
em

br
an

e
po

te
nt

ia
l

(m
V)

Time (s)

Fig. 2.3 Myelin plasticity learning rule on a one-dimensional pattern recognition
tasks consisting of four different patterns, each with ten input neurons that fire
at different times within a 20ms time window. (Top) Raster plot representing
the four patterns in different colours. (Bottom) Membrane potential Vm for the
four output neurons after training with the myelin plasticity rule. Each output
neuron has maximised its membrane potential to a particular temporal pattern.

−70mV. We set the membrane resistance Rm = 1MΩ for simplicity. The membrane time
constant is set to τm = 25ms, the synaptic time constant to τsyn = 10ms, and the injected
current is set to Iinj = 80nA. Finally, we keep the learning rate at η = 1.

Fig. 2.3 shows a raster plot of each of the four patterns, represented in different colours for
better visibility. After learning, each postsynaptic neuron responds optimally to a specific
pattern as seen by the membrane potential plots. This is largely due to the gradient ascent
dynamics of the myelin plasticity algorithm. Fig. 2.4 shows the peristimulus histograms
(PSTH) for the postsynaptic neurons that specialised to the first and second pattern before
and after learning. Peristimulus time histograms allow us to visualise the timing and firing
rate at which neurons fire in relation to a reference event, which in our case is the firing
time of the postsynaptic neuron. More specifically, the input neurons are binned according
to the time difference from the reference timestamp. Before learning, the input neurons

24 Chapter 2. Myelin plasticity

0 2 4 6 8 10
Normalized t (ms)

0

2

4

6

8

10

Sp
ik

es
/s

Pattern 1 before learning

0 2 4 6 8 10
Normalized t (ms)

0

2

4

6

8

10

Sp
ik

es
/s

Pattern 1 after learning

0 2 4 6 8 10
Normalized t (ms)

0

2

4

6

8

10

Sp
ik

es
/s

Pattern 2 before learning

0 2 4 6 8 10
Normalized t (ms)

0

2

4

6

8

10

Sp
ik

es
/s

Pattern 2 after learning

Fig. 2.4 Behaviour of output neurons with myelin plasticity learning. For
simplicity, we only show two out of four output neurons that specialised for the
first and second patterns. The plots represent a peristimulus time histogram
(PSTH) averaged across the first and last 10 output neuron spikes before and
after learning, and tell us about the time at which the input neurons are firing.
Neurons are binned according to the time difference from a reference timestamp
(vertical red line) which is chosen to be the postsynaptic neuron’s firing time.
Before learning, neurons are firing at a similar firing rate throughout the range
of time differences (up to 10ms). After learning, most input neurons are firing
within 4ms of each other.

2.4 Touch localisation with precise timing 25

are firing at a similar rate across all time difference bins. After multiple repetitions of the
patterns, learning is turned off for cross-validation purposes. The PSTH after learning
has a higher firing rate for input neurons that spike within 4ms of the reference time,
indicating a lower variability in the spike times. The time differences therefore converge
towards zero due to the myelin plasticity learning rule, and each output neuron only
responds to a particular pattern.

2.4 Touch localisation with precise timing

In terms of information transmission strategies, the advantages of rate coding have been
thoroughly explored in the past decade [177, 178]. Rate coding makes use of the mean
firing rate of spiking neurons to encode continuous values, with individual spikes being
emitted according to a random Poisson distribution [179]. This differentiable output is
compatible with conventional artificial neural networks which are widely considered to be
the gold standard in terms of pattern recognition tasks. Biological systems also use the
precise timing of spikes to convey information [137, 138, 180, 139]. This strategy called
temporal coding is associated with fast visual processing [46], sound localisation [162, 181],
fine motor control [182], arbitrary nonlinear function approximation [183, 184], and even
for temporal pattern classification [185, 186, 187]. Considering performance in pattern
recognition tasks is usually based on classification accuracy and ignores latency and
computational efficiency, the context in which temporal coding tasks can outperform their
rate-based equivalent are a topic of current research.

Sand scorpions have the ability to accurately localise their prey using temporal information
based on vibrations from the environment that are detected using sensory organs situated
on their legs [188]. In this section we want to show that precise timing can be useful by
presenting a practical example based on the sand scorpion. The task consists in localising
the source of a vibration caused by tapping on a surface, via the spatio-temporal pattern
detected by an array of sensors [189]. More specifically, we want to assess the myelin
plasticity model’s ability to pick up both the direction and distance of the source from the
sensor device.

2.4.1 Methodology

As part of the data collection process, we rely on a neuromorphic tactile sensor consisting
of 8 piezoelectric accelerometers arranged in a regular octagon pattern (Fig. 2.5B). Each
accelerometer is connected to a microcontroller in charge of converting the analog signal
into events via level crossing. The dataset collected with this electronic device consisted
of 10 repetitions of 32 different stimuli elicited to tapping on a wooden surface from 8
different directions, each separated by a 45° angle, and 4 different distances from the
sensor (200, 400, 600 and 800mm). Since wood does not attenuate the signal as much as
sand, a high temporal resolution becomes a requirement in order for precise timing-based
algorithms to accurately mimic the localisation abilities of a sand scorpion.

The tactile sensor itself solves the localisation problem using an analytical solution that is
explained in detail in [189]. Indeed, while other solutions exist, we address the localisation

26 Chapter 2. Myelin plasticity

A B

Fig. 2.5 (A) Image of a sand scorpion. (B) Touch localisation prototype [189].

task by applying three constraints to our model, all of which are satisfied by the myelin
plasticity algorithm:

1. Only information which is local to a given pre-post synaptic neuron pair is used to
update synaptic parameters.

2. No a priori knowledge of the sensor system is required.

3. The model parameters must be updated in an unsupervised manner.

2.4.2 Results

The myelin plasticity network consists of eight pre-synaptic neurons, sparsely connected
in a random fashion to 50 LIF neurons. Sparsity is achieved by limiting the number of
connections towards a LIF neuron to N = 4. Synaptic delays are randomly initialized
according to a normal distribution with a mean of µ = 0.5 ms, and a standard deviation
σ = 0.3 ms and a fixed weight equal to w0

N with w0 = 1. The resting potential is set to
EL = −70 mV. The LIF neuron’s decay constant is set to τm = 2 ms, the synaptic time
constant is set to τsyn = 1 ms and the injected current Iinj is set to 80 nA to make sure
that each presented spike train is capable of causing a LIF neuron to fire. The learning
rate starts at η = 1 and decays by 10% after every 100 input spike trains to help the
network converge towards a local minimum.

Each postsynaptic neuron that responds starts specialising to a particular pattern by
synchronising its input spikes through a change in synaptic delays following Eq. 2.5. The
winner-take-all mechanism ensures that no other postsynaptic neurons synchronise their
input spikes. With each subsequent presentation of the pattern, the time differences
between input spikes gradually converge towards zero (Fig. 2.6A).

With a temporal resolution of 1ms, the myelin plasticity model successfully recovers all
eights angles with a 100% accuracy, as each angle is represented by at least one LIF
neuron (Fig. 2.6B). While previous implementations of learned delays relied on an all-to-all
connectivity scheme [172], the myelin plasticity model can obtain similar performances with
fewer connections through a randomly connected sparse network (Fig. 2.7). Additionally,

2.4 Touch localisation with precise timing 27

0 0.2 0.4 0.6 0.8 1
Normalized Δt (ms)

0

5

10

15

20

25

30

Sp
ik

es
/s

0 0.2 0.4 0.6 0.8 1
Normalized Δt (ms)

0

5

10

15

20

25

30

Sp
ik

es
/s

Preferred Position
270°, 800mm radius

A

B

Before Learning After Learning

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Target Position

0

1

2

3

4

Sp
ik

es
/s

Fig. 2.6 Behaviour of a postsynaptic neuron with myelin plasticity. (A) Peri-
stimulus time histogram averaged across 50 data points at the beginning and
towards the end of the simulation. The vertical red line represents the postsy-
naptic neuron’s firing time, chosen as a reference from which the time difference
is calculated. After learning, more presynaptic neurons fire with a lower time
difference compared to the postsynaptic firing time, due to the synchronisation
of input spikes. (B) Tuning curve of the postsynaptic neuron averaged across all
the data points where the neuron fired, linking the firing rate to each of the 32
different stimuli positions. Positions 21 to 24 correspond to the distances 200,
400, 600 and 800mm respectively, at a 270° angle [189].

28 Chapter 2. Myelin plasticity

2 3 4 5 6 7 8
Number of connections

85

90

95

100
An

gl
e

ac
cu

ra
cy

 (%
)

Fig. 2.7 Average angle accuracy for an increasingly sparse synaptic delay net-
work. We connected each LIF neuron to a random subset of 8 pre-synaptic
neurons representing the hardware sensors. We varied the size of the subset
across 35 different trials in order to assess the smallest number of connections
between pre-synaptic and LIF neurons capable of preserving an accurate temporal
representation of all 8 angles. A sparse synaptic delay network with only 2
connections per LIF can already represent all angles with an average accuracy of
95% and we can achieve 100% accuracy with only 4 connections [189].

the network successfully represents all eight angles with a 95% accuracy when the number
of connections per postsynaptic neuron are reduced even further to N = 2, but at least four
connections are required for best performances. In contrast to delay learning models with
fully-connected networks, a sparsely connected neural network with random connectivity,
in addition to being more efficient to simulate, increases robustness against systematic
noise originating from faulty sensors.

For each angle, the next step in touch localisation is to determine whether the myelin
plasticity model can differentiate between stimuli at different distances. By looking into
the average firing rate of postsynaptic neurons for each of the 32 positions, we can identify
individual neurons that respond more frequently to specific positions after learning with the
myelin plasticity model (Fig. 2.6B). However, a more in-depth analysis shows that neurons
specialising to a particular angle have similar membrane potentials across distances, and
can therefore respond to more than one position. While a preferred distance can be
inferred by analysing the average firing rates across multiple repetitions, it cannot be
trivially obtained in an online manner unless the WTA scheme is disabled after learning is
done, and a supervised "voting" process is implemented. Indeed, the temporal signatures
across distances are not significantly different due to the slow attenuation of the waves
being measured. A simple solution involves recording stimuli on a surface with higher
attenuation such as sand. Adding sensors dedicated to measuring the amplitude of a signal
would also be beneficial for estimating the distance to the stimuli, assuming the same
pressure is used to elicit the taps.

In [189] we compare the myelin plasticity model to an analytical solution as well as four
different models based on spiking neural networks that classify spatio-temporal patterns

2.5 Discussion 29

using both supervised and unsupervised learning rules. All of the approaches are able to
distinguish between the angles, but the distances remain an open issue. Most strategies
require supervision or knowledge of the geometry of the sensor system with the exception
of the unsupervised structural plasticity model which pairs an STDP for synaptic weights
with an STDP for synaptic time constants. However, the reliance on two STDP learning
rules makes it quite expensive to simulate compared to the myelin plasticity model. My
personal contribution to this published work involves solving the touch localisation task
using myelin plasticity.

Table 2.1: Touch localisation with various models based on precise timing [189].

Method Angle accuracy (%) Distance accuracy (%)

Analytic solution 99.7 73.4
Temporal coincidence 100 37.5

Complex weights and delays 100 100*
Temporal difference encoders 100 N.A.

Myelin plasticity 100 N.A.
Structural plasticity 100 N.A.

(*) The complex weights and delays method requires an external linear classifier to successfully
differentiate between distances.

2.5 Discussion
We presented a myelin plasticity model for learning spatiotemporal patterns in an un-
supervised manner. This method relies on a gradient ascent approach which maximises
the membrane potential of postsynaptic neurons by aligning spikes originating from the
previous layer. After a few iterations, and with the help of a winner-takes-all mechanism,
the postsynaptic neurons end up specialising to a particular pattern.

Similar delay learning rules that are based on the principle of coincidence detection such
as the Deltron [172] and the Bayesian approach explored by [175] relied on fully connected
networks. Instead, we use a partially connected network with random connectivity that
exhibits an equivalent or better performance but with fewer connections, making it
more suitable for hardware implementations. The increased sparsity can (i) reduce the
complexity of the network by having a lower number of synapses to update, (ii) improve
efficiency if implemented on analog or mixed signal hardware [174, 190], (iii) decrease
the overall training time, and finally (iv) partial connectivity improves generalisation by
learning local features instead of synchronising spikes from all input connections as is the
case in the fully connected network topology.

The current-based LIF model with double exponential synapses does not have an analytical
solution and therefore cannot behave in a fully event-based manner. As an improvement,
we can use a box-shaped excitatory post-synaptic current instead of the double exponential
model to eliminate the time dependency of the input current. This essentially removes
the decay term which greatly simplifies the membrane equation solution, giving rise
to an event-based LIF neuron with complex current dynamics. In order to solve more

30 Chapter 2. Myelin plasticity

complicated classification tasks with the myelin plasticity model, a weight-based synaptic
plasticity rule needs to be combined with the delay learning rule in order to be able to
extract spatiotemporal patterns from extremely noisy signals instead of just synchronising
spikes. The benefits of using both delays and weights for pattern recognition was first
outlined in [114] with the theory of polychonisation, and then further evidenced by [175]’s
work on probabilistic delay learning. In our case, implementing a resource-dependent
synaptic plasticity [191] to work alongside the myelin plasticity rule seems to be the logical
step forward for Hebbian learning in SNNs.

Chapter 3

Bio-inspired learning in a low-power
visual data processing system

3.1 Introduction
Developing systems that are able to process the high temporal resolution information output
by event-based sensors without consuming much energy is a challenging yet important
task. In addition to lasting longer, energy-efficient systems have the potential to enable
advanced visual data processing in power-limited environments such as a car.

The latest high definition event-based cameras [26, 72] can generate millions of events
per second. When dealing with such a high bandwidth, the sub-millisecond temporal
resolution and power efficiency of event-based systems quickly become limited by the
Universal Serial Bus (USB) protocol used to transfer data to a computer for processing
with computer vision and machine learning algorithms [192, 193]. An obvious solution
consists in converting the events into dense frames through one of the techniques discussed
in section 1.3.1. Artificial intelligence hardware accelerators can then be leveraged for
efficient inference with pre-trained deep learning models, losing in the process most of
the benefits of neuromorphic vision sensors [143, 144]. We can circumvent this problem
and work in an event-based manner by directly interfacing the neuromorphic vision sensor
with a data processing CMOS architecture.

Spiking neural networks (SNN) are the natural choice for dealing with streams of events,
especially as they are built to be resilient to noise which can be quite prevalent in
neuromorphic vision sensors. Their massively parallel structure and recurrent connectivity
is however, very costly to simulate on CPU processors. The main bottleneck of the
Von Neumann architecture, contributing towards a higher power consumption and a
reduction in processing speed, is a result of the separation between the processor and the
memory [194, 147]. While GPU-based solutions are much better at simulating SNNs [195],
they ultimately suffer from the same memory access bottleneck [196, 197]. Looking into
biological neural networks for inspiration, dedicated neuromorphic architectures with an
event-based communication protocol and co-located processing and memory units can
overcome the limitations of the Von Neumann architectures and have the potential to

31

32 Chapter 3. Bio-inspired learning

outperform classical computing in terms of edge AI [147, 198]. These architectures are the
ideal candidates for extremely low power and highly scalable hardware implementations of
SNNs [117].

The goal of the Ultra-Low Power Event-Based Camera (ULPEC) project, presented in this
chapter, is to develop a visual data processing system with ultra-low power requirements
and ultra-low latency, aimed at the recognition and classification of traffic events towards
autonomous driving. Indeed, when it comes to self-driving cars, designing an energy-
efficient system-on-chip (SoC) becomes all the more necessary due to the limited power
available in the car. This can be achieved by reducing the latency and processing the
information closer to the sensor. The system consists of an event-based vision sensor
connected to a mixed signal hardware implementation of an SNN with solid-state synapses
called memristors [199, 200]. The memristor is a passive two-terminal component with
a variable conductance that can be adjusted by injecting voltage pulses. Simply put,
memristors can be thought of as plastic synapses where the conductance is essentially
the synaptic weight, or in other words, the strength of a connection between two nodes.
We can take advantage of this property and evolve the memristor conductance according
to the biologically plausible Hebbian spike-timing-dependent plasticity (STDP) learning
rule [201], bringing about a self-adapting electronic architecture capable of unsupervised
learning without any external control on the synaptic weights. In fact, the synaptic
strength is purely determined by the timing and coincidence of events originating from
the neuromorphic vision sensor.

The ULPEC project is the outcome of a consortium of three universities, Sorbonne
University, the University of Bordeaux, and the University of Twente, the CNRS research
institute, and technology companies including Prophesee, Bosch and IBM Research. This
multidisciplinary work encompasses various fields such as material science, integrated
circuit design, and machine learning, and is meant to strengthen Europe’s leadership in
miniaturised bio-inspired smart integrated systems. Designing the visual data processing
system can be summarised into three main tasks that were handled by different collaborators
according to the required expertise. For clarity, my contribution within the ULPEC project
is highlighted in bold.

1. delivering the memristor technology capable of multiple resistance states

2. integrating memristors with CMOS technology on an industrial scale

3. finding a suitable architecture and processing algorithm to implement
the hardware neural network

In order to test the ULPEC visual data processing system in a real-world situation,
Prophesee created N-CARS, a two-class dataset consisting of 12336 car samples (Fig. 3.1)
and 11693 background samples [1], each example having a resolution of 64× 56 pixels and
a duration of 100ms. The dataset was recorded from various driving sessions using an
ATIS event-based camera [29] mounted behind the windshield of a car. A newer, much
larger version of the dataset was recently made available [202], adding further complexity
to the task at hand.

3.2 The memristor: fourth fundamental circuit element 33

-60

-30

-20

-10

0

10

10
10 70605040

X
30201000

Y

Time

-50

5

-40

4

Fig. 3.1 Example of a car from the N-CARS dataset [1]

3.2 The memristor: fourth fundamental circuit element
The memristor, short for memory resistor, is a passive two-terminal electrical component
that is considered to be the fourth fundamental circuit element alongside the resistor,
capacitor and inductor [199]. The memristor was originally hypothesised to link the
magnetic flux Φ to the electrical charge q. More intuitively, its behaviour can be expressed
in terms of voltage and current according to the following equation:

V = M(q) · I (3.1)

where the memristance M represents the resistance that varies depending on the history
of the electrical charge passing through the device. In this device, the relationship between
voltage and current is highly non-linear and is often described by a pinched hysteresis
loop [203, 204]. The definition of a memristor was later expanded to include all two-
terminal non-volatile memory devices that exhibit resistance switching properties [205].
In a nutshell, the resistance of a memristor can be programmed by applying voltage
pulses, giving rise to interesting use cases such as a nano-scale low power alternative
to flash memory [206] and an artificial synapse with adjustable weights that can be
used for neuromorphic computing applications [201]. Memristors can be categorised
into two groups: (i) molecular and ionic thin film memristors, and (ii) purely electronic
memristors [207, 208].

Molecular and ionic thin film memristors: This category includes resistive random-
access memory devices (ReRAM) and other kinds of memristors which are built with a
metal-insulator-metal (MIM) configuration [200, 209]. By applying positive or negative
voltage pulses, these devices can switch between a high resistance (OFF) and low resistance
(ON) state through the formation or breakdown of conductive filaments in the insulator
layer between the two terminals. Our collaborators at the CNRS and the university of
Twente did not consider this particular type of memristors for the ULPEC visual data

34 Chapter 3. Bio-inspired learning

processing system due to the devices’ reliance on significant material structural changes
and defects which can cause reliability and endurance issues [210, 211]. Stable resistance
states need to be guaranteed in order for memristors to properly emulate synaptic plasticity
mechanisms, towards unsupervised learning in hardware SNNs.

Top layer nanowire Memristor Bottom layer nanowire

Substrate
YAlO3

Bottom electrode
CaCeMnO3

Ferroelectric layer
BiFeO3

Top electrode
Pt/Co

ba

Ferroelectric tunnel
junction (FTJ) Crossbar array

Fig. 3.2 FTJ based memristor design. (a) Cross-section of a FTJ consisting
of a nanoscale ferroelectric thin film surrounded by two metal electrodes. The
polarisation of the ferroelectric material can be flipped with the application
of a voltage pulse, leading to resistance switching behaviour [212]. Here, a
YAlO3//CaCeMnO3//BiFeO3 FTJ stack is shown, however, other substrates and
electrode materials have also been used in the literature [213]. (b) Diagram of a
memristive crossbar array which can be integrated into CMOS to realise a SoC
device such as the ULPEC visual data processing system.

Purely electronic memristors: The two main types of memristors in this category are
spintronic memristors [214] and ferroelectric memristors based on ferroelectric tunnel junc-
tions (FTJ) [204, 212]. Resistance switching is mediated entirely through electronic effects
and does not rely on structural changes, potentially resolving the reliability, endurance
and speed of switching issues seen in molecular and ionic thin film memristors. Spintronic
memristors use magnetisation to change the spin direction of electrons. While interesting,
the technology needs more time to mature before being used in realistic scenarios [214].
FTJs on the other hand, consist of a bottom and a top metal electrode separated by a
nanoscale ferroelectric crystalline thin film grown on a substrate (Fig. 3.2a). The thin
film is made of nanoscale ferroelectric domains, each with its own polarisation state. An
up domain corresponds to a low resistance ON state, and a down domain indicates a
high resistance OFF state. In a ferroelectric memristor, in addition to the typical ON
or OFF configuration, intermediate resistance states can be stabilised by reversing the
polarisation of an increasing number of ferroelectric domains depending on the amplitude
of the voltage pulses [204]. This process can be seen in Fig. 3.3 through piezoresponse
force microscopy (PFM) images which show the percentage of down domains with respect
to the resistance state.

3.3 System and network architecture 35

OFF

ON

Write voltage (V) Percentage of down domains

a b

0 25 50 75 100-4 -2 0 2

105

106

107

108

105

106

107

108

4

R
es

is
ta

nc
e

(Ω
)

R
es

is
ta

nc
e

(Ω
)

Fig. 3.3 Resistance switching in ferroelectric memristors. (a) Multiple interme-
diate resistance states can be reached between the ON and OFF configurations by
applying voltage pulses of different amplitudes. (b) PFM phase images showing
the polarisation state of the nanoscale ferroelectric domains under the different re-
sistance states. Dark ferroelectric domains are in a low resistance state. Adapted
from [204].

Ferroelectric memristors have several advantages, including large ON/OFF ratios of
up to 104, switching between resistance states in under 10ns, low operation energy as
well as high endurance and reliability [212, 201, 204, 215]. Furthermore, ferroelectric
memristors have proven capable of evolving according the Hebbian STDP unsupervised
learning mechanism [201], making them suitable for developing self-evolving neuromorphic
architectures such as the ULPEC visual data processing system. Moving beyond a single
device, ferroelectric memristors can be integrated into a large scale crossbar (Fig. 3.2b),
allowing them to regulate the electrical conductivity between two layers of nanowire which
can be connected to CMOS technology through various wafer bonding strategies (e.g.
flip-chip bonding). From a scalability perspective, epitaxial growth on silicon instead of
other single crystal substrates combined with a direct wafer bonding approach, paves
the way for industrial scale back-of-the-line integration with microelectronics owing to
compatibility benefits. This challenging task is under active development by the scientific
community [216, 217] and our collaborators within the ULPEC consortium.

3.3 System and network architecture

3.3.1 General system on chip design

To come up with a suitable architecture for the visual data processing system and to
easily assess learning performance, system-level simulations are done using Hummus, an

36 Chapter 3. Bio-inspired learning

Visual
Sensor

28 x 28 pixels

Analog Part

FTJ Crossbar Array

DCB
event handling

External
FPGA

ASIC

x100x784

LIF Neurons
In

pu
t N

eu
ro

ns

Output Layer

Input Layer

1

1
2

783

784

100

STDP WTA

Fig. 3.4 General architecture of the ULPEC visual data processing system.
(Top) The SoC includes an event-based vision sensor, the FTJ crossbar array
which connects two layers of analog CMOS neurons, namely input and leaky
integrate and fire (LIF) neurons, the digital control block (DCB) in charge of
handling event and spike to and from the LIF neurons, and finally, an external
FPGA that supplements the analog part with digital functions to further com-
plexify the behaviour of the CMOS neurons. (Bottom) Single-layer all-to-all
neural network architecture of the FTJ crossbar array.

3.3 System and network architecture 37

Y
+

_
Vmid

M1

M2

Vm

Cm

Vth
trig post

pre 1

pre 2
idischarge

Vmid - 𝜖

Vmid

iz = K.ix

ix i1

i2
icancel

X
CCII Z

Fig. 3.5 Circuit-level design of a postsynaptic LIF neuron. Active pixels on the
event-based vision sensor drive their corresponding memristor, denoted as M ,
by applying a voltage pulse. The total contribution of active memristors, ix is
passed through the CCII [218], a current conveyor which scales down and forwards
positive currents (ix > 0) in order to charge the LIF neuron’s capacitor Cmem.
icancel represents the current offset which takes into account the non-negligible
impact of inactive memristors. Inside the neuron, a constant leakage current
idischarge is used to get the expected LIF behaviour. Taken from [117]

.

event-based spiking neural network simulator developed in C++ throughout this thesis
(see appendix A). The explored architectures follow a general design for the system which
is outlined in Fig. 3.4.

The ULPEC system is an application-specific integrated circuit (ASIC) that includes
several fixed-function blocks, each of which is designed to efficiently perform specific tasks.
The chip includes a 28 × 28-pixel resolution event-based vision sensor [29] connected
to a digital control block (DCB) in charge of implementing a winner-takes-all (WTA)
mechanism and handling events and spikes to and from an analog neural network circuit.
The network consists of an input layer of 784 pulse generators, one for each pixel, fully-
connected to an output layer of 100 leaky integrate and fire (LIF) neurons via a crossbar
array of FTJ memristors that adjust their conductance (synaptic weight) according to
the Hebbian-based STDP learning rule (Fig. 3.4). The ASIC is coupled with an external
FPGA for a more versatile solution, e.g. initialising the synaptic weights (memristor
resistance states), using different input data types, using external classifiers and detecting
misbehaving output neurons. The workflow of the ULPEC visual data processing system
is the following:

1. The event-based vision sensor captures visual information in an asynchronous man-
ner [29]. Each individual pixel is mapped to an input neuron on the FTJ crossbar
array.

38 Chapter 3. Bio-inspired learning

2. Events emitted by the sensors are sent to the DCB, generating a signal that causes
the relevant input neurons to emit a voltage pulse used to drive the memristors.
The sum of the currents in active memristors ix is forwarded to the output LIF
neurons via a second-generation current conveyor (CCII) in the case where ix is
positive. Forwarding a unipolar current avoids unnecessary discharge at the output
iz of the current conveyor. The capacitors Cm of the output neurons get charged in
the process, leading to an increase in membrane potential on the output neurons
(Fig. 3.5).

3. Whenever an output neuron fires, a feedback voltage pulse triggered by the DCB is
applied to the relevant memristors which enter a writing phase that adjusts their
conductance. This behaviour reproduces a simplified multiplicative STDP learning
mechanism that depends on the previous state of the memristor.

4. A winner-take-all (WTA) mechanism implemented on the DCB is used to inhibit the
other output neurons by resetting their potential, and its own, to zero. This lateral
inhibition process promotes competition and prevents the postsynaptic neurons from
learning similar patterns. This is further accentuated by the use of an event-based
refractory period that deactivates a recently active output neuron until a set number
of other output neurons have fired. The counters necessary to keep track of each
output neuron’s refractory period are implemented on the FPGA.

3.3.2 FTJ memristor model

a) The STDP learning rule

Pending availability of the exact memristor prototype that will be integrated into the chip,
it was necessary to work with a qualitative model for FTJ memristors. To simplify this
theoretical study, voltage fluctuations due to noise and cycle-to-cycle and device-to-device
variations are ignored. We based the model on a YAlO3//CaCeMnO3//BiFeO3 FTJ
stack (Fig. 3.2). For this particular type of ferroelectric memristor, the threshold voltage
beyond which resistance switching occurs, is roughly around 1V [201]. The conductance
change of the memristors when submitted to a rectangular voltage pulse is reflected by
the equation:

∆G =

A+ · (Gmax −G0) for Vsyn ≤ −1.2V (LTP)
A− · (G0 −Gmin) for Vsyn ≥ +1.2V (LTD)
0 otherwise

(3.2)

where G0 is the initial conductance before the writing phase, Gmax and Gmin are the upper
and lower values bounding the conductance, Vsyn is the voltage applied on the memristors,
and A+ and A− are experimentally set learning rates. This time-independent variant of the
STDP learning rule introduced in the literature [219, 96, 117], is simple to implement on
hardware. Whenever Vsyn ≤ −1.2V , the memristor enters a long-term potentiation (LTP)
phase where the conductance is increased. Conversely, when Vsyn ≥ +1.2V , the memristor
enters a long-term depression (LTD) phase where the conductance is decreased.

STDP is implemented using waveform superposition as shown in Fig. 3.6. After passing
the membrane voltage threshold Vth, when an output neuron fires, it emits a feedback

3.3 System and network architecture 39

Vrest = 1.1 V

Vhigh = 2.1 V

Inference
Pulse (LTP)

10μs

0.5μs 0.5μs

1.5μs

Feedback

Vpost

Vsyn

Vpre

STDP with waveform superposition

Programming
Pulse (LTD)

Feedback
Pulse

Vlow = 0.1 V

Vpre Vpost

Fig. 3.6 Overview of the demonstrator mechanism used to implement STDP.
When a postsynaptic neuron fires it emits a feedback pulse towards the presynaptic
neurons. An inference pulse is emitted by the presynaptic neuron when the
corresponding pixel was recently active. A programming pulse is emitted otherwise.
By overlapping the pulses originating from the presynaptic and postsynaptic
neurons, the voltage applied on the memristors becomes enough to pass the
potentiation and the depression threshold in the case of the active and inactive
memristors respectively.

pulse towards the presynaptic neurons. The input neurons themselves can generate two
different pulses depending on the conditions:

• a 10µs inference pulse is emitted towards a memristor in response to an active pixel.

• a 0.5µs programming pulse is emitted towards inactive memristors once an output
neuron fires

The size of the capacitor that can be realistically included in the system only allows for
about 10µs of integration time. Taking that into consideration, the superposition of the
inference pulse with the feedback pulse allows the voltage Vsyn applied on the memristor
to cross the LTP threshold, increasing the conductance of the active memristors. On the
other hand, the LTD threshold can be crossed by generating a programming pulse and
superposing it with the feedback pulse, leading to a decrease in conductance. This can be
described by the following equation:

Vsyn = Vpre − Vx (3.3)

where Vpre represents the inference/programming pulse originating from the input neuron,

40 Chapter 3. Bio-inspired learning

and Vx represents the feedback pulse emitted by the output neuron.

b) Validation

When looking at the evolution of the resistance with respect to the input voltage, memristive
properties are usually verified by the presence of a hysteresis loop [199]. Looking at the
conductance-voltage characteristic in Fig. 3.7 allows us to confirm the voltage-dependent
resistance switching properties of our model as well as the parallel with STDP-based
synaptic weight modulation. As a reminder, the conductance is inversely proportional
to the resistance. By varying the amplitude of the voltage pulses, the memristor can
reach different intermediate states. The number of resistance states a memristor can reach
between the ON and OFF configurations determines the synaptic weight precision.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Voltage (V)

LTD LTP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

du
ct

an
ce

 (S
)

10-6

0.05 V
0.1 V

0.01 V

 Vsyn amplitude

 Vth depression Vth potentiation

Fig. 3.7 Voltage versus conductance curve of an FTJ memristor modeled with
an in-house SNN simulator. The model shows a clear hysteresis loop, indicating
memristive behaviour and a capacity for resistance switching. Driving memristors
with 10µs long write voltage pulses of increasingly large amplitudes Vsyn leads to
multiple intermediate resistance states that can reproduce the STDP learning
mechanism.

3.3.3 CMOS leaky integrate and fire neuron model

The learning performance of the ULPEC system is greatly affected by the dynamics of
the LIF neuron. It is then essential to accurately reproduce the CMOS neuron behaviour.

3.3 System and network architecture 41

0 100 200 300 400 500
0.0

0.75

1.5

0 100 200 300 400 500
0.0

0.75

1.5

0 100 200 300 400 500
0.0

0.4

0.8

Time (μs)

V po
st

 (V
)

V pr
e

2 (
V)

V pr
e

1 (
V)

Cadence
Simulation

Fig. 3.8 CMOS LIF neuron electrical simulations in Cadence, compared to
a model developed with an in-house SNN simulator. Our model manages to
accurately reproduce the hardware neuron. The voltage threshold was set to
Vth = 1.2V, The memristors had a resistance R = 100kΩ, the leakage current
idischarge = 12nA and current scaling factor K = 1

725 . Cadence simulation data
provided by Charly Meyer from IMS Bordeaux.

Accordingly, we compare our model to electrical simulations done in Cadence, a software
suite aimed at prototyping ASIC designs and simulating circuits (Fig. 3.8).

The current flowing from active memristors is sent through the current conveyor (CCII) to
the neuron when ix > 0 and the conveyor charges the post neuron membrane capacitor Cm
by copying ix, increasing the membrane potential Vm in the process. A constant leakage
current idischarge is used to get the potential decay associated with LIF neurons. Due to
the analog nature of the circuit, parasitic currents originating from inactive memristors are
taken into account using a counterbalancing current icancel. With respect to the notations
shown in Fig 3.5, the membrane potential can be modeled by the following differential
equation:

42 Chapter 3. Bio-inspired learning

∆Vm = K · ix ·∆t
Cm

− idischarge ·∆t
Cm

(3.4)

ix =
∑

j:active
Gj ∗ Vj − icancel (3.5)

icancel = ε

Rnetwork
(3.6)

where Rnetwork is the resistance of all inactive synapses and ε represents the voltage offset
due to inactive synapses. For simplicity, we can assume ε = 0 in our simulations without
significantly altering the results of our model.

3.3.4 Choice of classifier
After training the neural network with STDP we explore two classifiers for inference. The
first is a really simple heuristics-based classifier that is fully compatible with the design
and low power budget of the ULPEC system [117]. The second is a stronger logistic
regression classifier that requires training on FPGA, without compromising the low latency
and energy-efficiency of the ULPEC system [220].

a) Heuristics-based classifier

After passing through one epoch of the training set, we label the output neurons using
experimentally set parameters. If 50% of a neuron’s last 10 spikes respond to the same
class, then we label that neuron accordingly. Any neurons that do not specialise to a
particular class are discarded.

b) Logistic regression classifier

With a logistic regression classifier, the workflow of the ULPEC visual data processing
system is the following:

1. Train the network with one epoch of the training dataset via STDP

2. Start training the logistic regression as soon as the STDP starts to converge by
counting the number spikes output by each LIF neuron for a particular data point
(visual data presentation)

3. Use the fitted logistic regression model for real-time inference

Implementation To preserve the low latency in our simulations, we implement an
online logistic regression capable of directly classifying spikes from the output layer while
the STDP-based SNN is still running. In that regard, the C++ front-end of PyTorch, a
popular machine learning framework, is tightly integrated into our own SNN simulator.
The logistic regression classifier used in our simulations is basically a two-layer spiking
network: (i) neurons in the first layers count the spikes output by each LIF neuron,
resulting in a feature vector that is used to fit the classifier and for inference. (ii) the

3.3 System and network architecture 43

second layer has one neuron per class and is simply used to represent the prediction
outcome as a spike.

Mathematical description We train the logistic regression model using stochastic
gradient descent on the data points [221, 222]. By adding the activity of neurons over
time, we create features Sm that we can use to train a predictive model on labels for the
input. The labels Y take values in {1, . . . ,K}, where K is the number of classes, denoting
the class to which an input belongs. We model the probability of an input belonging to
class k using the distribution P̂ (Y) defined as:

P̂ (Y = k|W, b, S) = exp (
∑
mWk,mSm) + bk∑

k exp (
∑
mWk,mSm) + bk

(3.7)

to find the optimal values for the weight matrix W and bias b we minimise the negative
log-likelihood:

L (W, b) = −
∑

log
(
P̂ (Y = k|W, b, S)

)
(3.8)

we can also use a regularisation term for W :

L (W, b) = −
∑

log
(
P̂ (Y = k|W, b, S)

)
+ λ

2
∑
k,m

W 2
k,m (3.9)

where λ is a regularisation parameter. In order to minimize Eq. 3.9, we use stochastic
gradient descent. Stochastic gradient descent iteratively optimises the data using the
following update rules:

Wnew
k,m = W old

k,m − η∇WL (W, b) (3.10)

bnewk = boldk − η∇bL (W, b) (3.11)
where η is the learning rate and the gradients ∇WL (W, b), and ∇bL (W, b) are given
by:

gW = ∇WL (W, b) =
[
Sm

(∑
m

W old
k,mSm − δ (Y = k)

)
+ λW old

k,m

]
(3.12)

gb = ∇bL (W, b) =
[∑
m

W old
k,mSm − δ (Y = k)

]
(3.13)

such that δ (Y = k) = 1 when the labels Y = k and is 0 otherwise. Stochastic gradient
descent often leads to instabilities that can be ameliorated by averaging the updates over
multiple data points S and Y . The update rules with averaging over mini-batches of size
N then become:

ḡW = 1
N

∑
n

[
S(n)
m

(∑
m

W old
k,mS

(n)
m − δ

(
Y (n) = k

))
+ λW old

k,m

]
(3.14)

ḡb = 1
N

∑
n

[∑
m

W old
k,mS

(n)
m − δ

(
Y (n) = k

)]
(3.15)

Using the stochastic gradient descent update rules (Eq. 3.14, and 3.15) guarantees conver-
gence to the global optimum, assuming a reasonable learning rate η is selected.

44 Chapter 3. Bio-inspired learning

3.4 Numerical experiments
The following parameters were used across all simulations unless otherwise stated.

• the leakage current idischarge is 100pA

• the membrane capacitor Cm is 1pF

• the voltage offset was chosen to be 0 for simplicity

• the initial conductance values were uniformly drawn between Gmin = 10−9S and
Gmax = 10−7S

• the scaling factor K is 1/12.5

• the membrane voltage threshold Vth = 1V

• the refractory period on presynaptic neurons is equivalent to 25µs

• the refractory period on postsynaptic neurons is equivalent to 10 successive spikes
from other postsynaptic neurons

• the recordings are spatially cropped to fit the 28× 28 vision sensor

• the logistic regression was trained over 70 epochs with a learning rate η = 0.1

3.4.1 Handwritten digit classification: the N-MNIST dataset

a) 3-class N-MNIST

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

is
ed

 c
on

du
ct

an
ce

 G

5 6 9
Predicted class

5

6

9

Tr
ue

 c
la

ss

585

20

57

17

15

49

1741

884

10.1%

2.8%

7.5%

89.9%

97.2%

92.5%

Fig. 3.9 Simulation results for a 3-class N-MNIST learning task with the
heuristics-based classifier. (Left) Normalised conductance maps towards the end
of the training phase. (Right) Confusion matrix with an overall accuracy of
93.08%.

The learning performance of the single-layer SNN is evaluated on N-MNIST, a handwritten
digit recognition dataset, when using both the internal heuristics-based classifier and the
external logistic regression. N-MNIST is an event-based version of the popular MNIST
dataset, consisting of 60000 training and 10000 testing samples of 28×28-pixel handwritten

3.4 Numerical experiments 45

digits with values ranging from 0 to 9. To generate events from images, each digit is moved
in front of an event-based camera following a sequence of three 100ms saccades [223].
The all-to-all connected network being quite expensive to simulate, only the ON polarity
events occurring during the first 100ms saccade are used. For all simulations involving the
logistic regression classifier the STDP learning rate is decreased to A+/− = 0.01 compared
to a learning rate A+/− = 0.1 for the heuristics-based classifier, as the logistic regression
typically needs to be trained on a stable dataset.

In order to be comparable with the relevant literature, only three classes, the 5, 6 and
9 digits, are used to begin with [96, 117]. With 100 neurons, the network can achieve
an accuracy of 93.08% (Fig. 3.9), a result in accordance with the current state of the
art which is at 92.1% with the same number of neurons [117], and 93.68% with 400
neurons [96].

5 6 9
Predicted class

5

6

9

Tr
ue

 c
la

ss

608

21

38

13

7

32

6737

913

6.9%

3.5%

4.7%

93.1%

96.5%

95.3%

Fig. 3.10 Confusion matrix for the 3-class N-MNIST task with the logistic
regression classifier. An accuracy of 95.07% is achieved.

As expected, the logistic regression classifier performs better on the same subset of N-
MNIST handwritten digits. An accuracy of 95.07% is reached when the classifier is trained
with the number of spikes output by each LIF neuron over the last 1000 data points, a
term referring to a presentation of an event-based recording, or a digit in the case of
N-MNIST (Fig. 3.10). To confirm the increase in accuracy is due to the logistic regression
itself, simulations with the internal heuristics-based classifier are repeated. This time
around, neuron labelling is done based on the last 1000 spikes, up from 10. Using a
higher number of spikes for labelling does not improve the classification accuracy. The
heuristics-based classifier is therefore quite limited and would not scale well on more
complicated datasets.

b) 10-class N-MNIST

The 3-class N-MNIST learning task is too simple to properly explore the benefits of using
a logistic regression classifier instead of a heuristics-based classifier. This particular subset
of the N-MNIST dataset is used in the literature when simulation speed is unreasonably

46 Chapter 3. Bio-inspired learning

0 1 2 3 4 5 6 7 8 9
Predicted class

0

1

2

3

4

5

6

7

8

9

Tr
ue

 c
la

ss

160

1

12

34

3

35

9

1

13

5

3

15

7

22

8

27

22

19

13

13

2

507

30

24

17

9

43

61

29

21

2

21

439

1

60

5

79

8

11

11

12

1

791

16

200

6

16

27

51

1

11

59

1

403

3

51

77

36

55

17

17

4

73

16

692

5

11

5

7

2

20

20

1

31

1

818

20

46

13

1

57

32

6

44

2

17

270

38

5

1

14

28

23

23

1

48

73

751

1097

47.2%

73.9%

67.1%

61.7%

42.3%

52.8%

3.3%

26.1%

32.9%

16.3%

38.3%

9.4%

19.5%

57.7%

21.6%

96.7%

83.7%

90.6%

80.5%

78.4%

Fig. 3.11 Simulation results for a 10-class N-MNIST learning task with the
logistic regression classifier. (Left) Examples of conductance maps for each class
in the full N-MNIST dataset. (Right) Confusion map for the full N-MNIST
dataset with a 76.2% accuracy.

long due to an unoptimised simulator [96, 117]. As this is not an issue with our in-house
simulator, the full 10-class N-MNIST dataset can be tested. An accuracy of 61% is
reached with the heuristics-based classifier. The same experiment is repeated with the
logistic regression classifier. With all ten classes of the N-MNIST dataset, the STDP-based
network yields a classification accuracy of 76.2% (Fig. 3.11), a 15% increase over the
heuristics-based classifier with an equivalent network.

3.4.2 Critical parameters

a) Logistic regression training set size

The single-layer network with a logistic regression classifier is now trained over two epochs
on the 10-class N-MNIST task in order to find the best possible accuracy when the
STDP learning rule and the classifier are not clashing with each other. Indeed, the first
epoch is used to extract features from the stream of events using the STDP. The logistic
regression is then trained in a second epoch, after the synaptic weights have completely
stabilised. A classification accuracy of 79.2% is reached, which is a 3% increase over the
one-epoch method where the synaptic weights and the classifier are trained at the same
time (Fig. 3.12). From an energy efficiency perspective, having two full passes over the
data is simply too costly, especially considering the small payoff in classification accuracy.
The one-epoch strategy which starts training the classifier once synaptic weights start

3.4 Numerical experiments 47

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Data points 104

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fig. 3.12 Plot of the accuracy according to the number of data points with the
STDP and the logistic regression trained on separate epochs of the full N-MNIST
training dataset.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

1 epoch
5 epochs

45 epochs
15 epochs

70 epochs
140 epochs

Cl
as

sifi
ca

tio
n

ac
cu

ra
cy

 (%
)

Data points

Fig. 3.13 Classification accuracy with a logistic regression trained over a different
number of epochs.

48 Chapter 3. Bio-inspired learning

stabilising, seems to be the best choice for a single-layer SNN with 100 fully connected
neurons.

b) Optimal number of epochs for training the logistic regression

A logistic regression fitted with the stochastic gradient descend (SGD) algorithm usually
goes through multiple epochs of the dataset, which in our case, is the number of spikes
output by every LIF neuron for each of the last 1000 N-MNIST digit recordings. The
optimal number of epochs is explored, starting with one epoch, the closest scenario to a
fully online architecture, and gradually increasing the number of epochs until a maximum
of 140 epochs (Fig. 3.13). Using 45 to 70 epochs yields the best classification accuracy.
Considering the small size of the dataset used to train the classifier, training with more
than 70 epochs cause overfitting, and anything less than 5 epochs causes a significant drop
in classification accuracy.

3.4.3 Results with alternative event-based datasets

Table 3.1: Classification accuracy compared to other event-based algorithms

POKER-DVS N-CARS N-MNIST

ULPEC SNN + logistic regression 100% 53.2% 79.2%
H-FIRST [224] 91.6% 56.1% 71.2%
HOTS [100] 95− 100% 62.4% 80.8%
Gabor-SNN 78.9% 83.7%
HATS [1] 90.2% 99.1%

POKER-DVS A deck of 99 cards belonging to one of four suits, diamonds, clubs, spades
and hearts, is manually flipped in front of an event-based camera [225]. The POKER-DVS
dataset is particularly interesting, as the time domain is more relevant than the N-MNIST
digits which move at a constant speed within each saccade. The POKER-DVS dataset
is however, heavily unbalanced. To solve this issue, the single-layer network is trained
with only 15 data points from each of the four classes, and the rest is used in the testing
set. Moreover, the logistic regression is only trained over 20 epochs, mainly due to the
fact that this event-based dataset is simpler than the 10-class N-MNIST. The network
reaches an accuracy of 100%, an improvement over other event-based feature extraction
algorithms such as H-FIRST [224] or HOTS [100].

N-CARS The visual data processing system is mainly targeted towards autonomous
driving applications. To this end, the single-layer network with a logistic regression classifier
is tested on N-CARS, a binary classification problem that involves differentiating between
cars and background samples recorded using a 304 × 240-pixel resolution event-based
camera and downsampled to a 64× 56-pixel resolution [1]. Compared to POKER-DVS
and N-MNIST, this dataset is significantly more complex due to variability in the scale,

3.4 Numerical experiments 49

speed and direction of incoming cars, especially considering the restrictions imposed by the
general hardware design. The presence of a random background class is also potentially
problematic in a fully connected single-layer network, as each LIF neuron learns global
features instead of picking up local features in the visual scene. In order to avoid further
downsampling, each recording is cropped to a 28 × 28-pixel window, discarding in the
process any events falling outside of the region of interest. Furthermore, similarly to the
N-MNIST dataset, only the ON polarity events are taken into consideration, to avoid
driving the memristors with too many events. Simulations on the N-CARS dataset yield
an accuracy of 53.6± 0.39%. Scaling it up to the full 64× 56 dataset yields an accuracy
up to 60.25%. As expected, a fully connected network that learns global features does
not fare well under realistic conditions. A different network architecture that is able to
extract local features is likely more suitable for automotive applications.

3.4.4 Hardware design trade-offs

Considering the low number of neurons in the output layer, taking a step towards a hybrid
architecture implementing a logistic regression classifier on the external FPGA can signifi-
cantly improve the performance of the single-layer spiking network without significantly
impacting the energy-efficiency [220]. In fact, high performance implementations are
readily available.

As for the optimal training strategy, learning the synaptic weights using STDP and fitting
the regression model during the same data pass offers the best power-performance trade-off.
Fig. 3.14 suggests using at least 200 data points as part of the logistic regression training
set, the performance is otherwise significantly impacted.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Data points

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fig. 3.14 Plot of the classification accuracy on N-MNIST according to the
number of data points used in the logistic regression training set. In this ex-
periment, the synaptic weights and the classifier are trained during the same
epochs. Training with 200 data points is the bare minimum to start getting a
decent classification accuracy considering the low number of neurons used.

https://github.com/InAccel/logisticregression

50 Chapter 3. Bio-inspired learning

3.5 Scalability analysis: towards a full-scale neuromorphic vision
system

The architecture of the ULPEC system as seen in the previous section was chosen with
the early motivation of providing a versatile learning capacity, so the network can handle
a broad spectrum of learning tasks. The achieved performance, obtained via simulations
based on qualitative models of the memristor and LIF neuron, is on par with equivalent
Hebbian-based architectures [96]. However, the visual data processing system has so far
not been extensively tested on automotive tasks such as car detection on the N-CARS
dataset [1]. Specialising and adapting the current architecture for these complex scenarios
is necessary in order to push the performance limits of the network without significantly
compromising the target power budget.

This scalability study is driven by two objectives: (i) improving the performance of the
single-layer SNN architecture by measuring the impact of varying a number of parameters
such as the number of neurons, the memristor conductivity range, and the number of data
points used to train the logistic regression classifier. A data point refers to the number
of spikes output by every LIF neuron for a particular pattern presentation. (ii) Refining
the network by re-routing neuron connections and pruning synapses in an optimal way,
towards a more task-specific learning. In that regard, we propose a new architecture based
on local connectivity that improves both the performance and energy efficiency of the
ULPEC system, making it easier to scale up the network with the same resources available
to the fully-connected architecture.

3.5.1 Improved architecture with local sparse connectivity

Local
receptive field

Output

LIF neurons Logistic regressionVision Sensor

Fig. 3.15 The ULPEC visual data processing system with sparse connectivity
instead of a fully-connected layer. Each LIF neuron is connected to a small region
of the input space called a local receptive field.

The scalability problem is directly related to the dimensions of the current network which
is defined by the number of neurons and the number of connections. The physical size
of the chip is ultimately bounding the two parameters and limiting the complexity of

3.5 Scalability analysis 51

the network. As previous stated, in its current form, the demonstrator is built with a
maximum of 28× 28 = 784 input neurons, mapped one-to-one to the pixels of the vision
sensor, defining the input layer. Each of these neurons are connected to all of the 100
output neurons, setting the number of memristive synapses to 784×100 = 78400 (Fig. 3.4).
From this starting point, we are measuring the impact of these two and other parameters
on the learning performances.

Pioneering works found in literature [96, 113] are all trained to classify the N-MNIST
dataset as it is used in the field to set the baseline of the learning performance of an SNN.
As previously mentioned, to convert the original MNIST dataset into events, the digits are
moved at a constant speed in front of an event-based camera following a sequence of three
100ms saccades [223]. This controlled environment greatly simplifies the dataset, allowing
the fully-connected network to achieve a good performance considering the limitations
imposed by the hardware. In fact, the constant speed in each saccade renders the time
domain mostly irrelevant as only the spatial features differ between classes. Furthermore,
N-MNIST lacks any sort of translation, mirroring or scaling problems which is regularly
encountered on more complex datasets.

The goal of the ULPEC visual data processing system is to explore more realistic automotive
tasks through the use of N-CARS, a car classification dataset [1]. A fully connected
architecture poses two major problems in that regard:

• it is designed for global features learning by feeding all input pixel to each LIF
neuron. This is not ideal considering cars can come into the camera’s field of view
from different directions, and the scale is not necessarily the same.

• the high number of synapses can also significantly slow down learning and increase
the energy budget.

These problems are mitigated in convolutional neural networks (CNN) [7] and deep
SNNs [97, 120, 129] by using low-level local features that are passed through a hierarchical
model to increase abstraction and learn higher-level features. The use of local features in
CNNs has largely been supported by observations in the mammalian visual cortex [4, 5, 226]
but also from natural image statistics [227, 228], which imply that the behaviour of a
vision sensor (pixel) is significantly more correlated with the vision sensors that are near
than those further away. The increased significance of local structure in an image allows
for a neural network design where neurons in one layer are only sparsely connected with
neurons in the previous layer.

The new architecture proposed here, introduces a similar strategy to create a sparser,
and thus more efficient, architecture. In this new architecture, the LIF neurons are not
connected to all pixels of the event-based vision sensor. Instead, a square window of size
k × k is scanned across the input pixel space with a stride s, linking each spatial region to
a different LIF neuron (Fig. 3.15). Depending on the stride, these spatial regions, or local
receptive fields, can have a certain overlap which reduces the downsampling inherent to
this method. Furthermore, multiple sublayers of LIF neurons can be defined by connecting
each receptive field to more than one neuron. Unlike their CNN counterparts, sublayers do
not introduce a parameter sharing scheme as it would significantly burden the hardware
and increase the number of memristors that simultaneously need to be in a programmable

52 Chapter 3. Bio-inspired learning

state. They are simply meant to enable learning more than one feature per receptive
field. Setting different weights to each neuron means that we no longer treat images as
stationary.

Defining iw × ih as the dimensions of the vision sensor, the dimensions of the output layer
of LIF neurons are given by:

ow × oh =
(
iw − k
s

+ 1
)
×
(
ih − k
s

+ 1
)
. (3.16)

This particular equation corresponds to an architecture with no zero padding and non-unit
stride; some pixels on the edge of the vision sensor can therefore be ignored depending on the
selected parameters. The proposed architecture brings about significant improvements in
cutting down the simulation time of our qualitative models by a large margin, contributing
towards a more comprehensive scalability analysis. Considering common receptive field
sizes such as 3×3, 5×5, or 7×7, each neuron is connected to a maximum of 49 memristive
synapses, instead of 784 with the fully-connected architecture.

3.5.2 Scalability and performance analysis on N-MNIST

Simulation parameters are the same as in section 3.4 across both the fully-connected and
the sparse architecture. The STDP is symmetrical with learning rates A+ = 0.01 and
A− = 0.01. As for the logistic regression classifier, we use a stochastic gradient descent
optimiser that fits the model over 70 epochs, with a batch size of 128 data points, a learning
rate of 0.01 and a weight decay of 0.01. Experiments on the local sparse architecture are
averaged over 5 trials. The fully-connected network is significantly slower to simulate and
is therefore only tested over 2 trials.

The topology of the sparse network is arbitrarily chosen to get exactly 100 neurons
according to Eq. 3.16. The output layer consists of four sublayers with a k × k = 7× 7
receptive field window size and a stride s = 5, in other words, 25 LIF neurons per sublayer,
each with only 49 synapses. The impact of the receptive field window size is discussed in
a second step. With these parameters, the network only considers a 27× 27 region of the
input pixel space, losing in the process one row and one column of pixels which does not
have an impact on the classification performance. As in previous reports, we only consider
ON polarity events occurring during the first 100ms of each digit recording.

a) Differences in learning across architectures

Before analysing the impact of varying critical parameters, it is important to understand
the differences in learning between both network architectures. The local features learned
in the sparse network represent oriented edges and other low-level characteristics of the
digits, whereas the fully-connected network learns global features from the full input
space. This difference can be visualised through the conductance maps of LIF neurons
(Fig. 3.16).

Learning with local features helps more easily discriminate between the 10 N-MNIST
classes more easily, and provides a more balanced solution. This is apparent in Fig. 3.17

3.5 Scalability analysis 53

Fig. 3.16 Examples of conductance maps for LIF neurons with N-MNIST.
(Left) Local features with the sparse network. (Right) Global features with the
fully-connected network.

0 1 2 3 4 5 6 7 8 9
Predicted Class

0

1

2

3

4

5

6

7

8

9

Tr
ue

 C
la

ss

797

11

56

10

15

1

10

1

44

2

12

97

45

44

2

19

3

6

27

57

67

733

32

28

3

8

8

6

16

5

12

13

381

52

34

1

6

23

65

4

23

24

42

405

1

40

23

14

51

6

8

10

25

4

287

9

18

10

17

30

4

4

15

520

11

19

17

7

19

6

14

12

1

24

10

16

32

2

4

26

15

10

28

3

617

13

8

9

11

74

49

27

9

7

437

835

1071

58.3%

63.4%

66.8%

15.7%

17.8%

23.5%

41.7%

36.6%

15.3%

24.2%

5.6%

19.2%

33.2%

84.3%

82.2%

76.5%

84.7%

75.8%

94.4%

80.8%

Fig. 3.17 Confusion map for a 10-class N-MNIST learning task with the sparse
architecture. An average accuracy of 76.59 ± 2.17% is reached with 1000 data
points.

54 Chapter 3. Bio-inspired learning

Memristor conductance range (S)

0

20

40

60

80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fully-connectedSparse

[10-10,10-8] [10-9,10-7] [10-8,10-6] [10-7,10-5]

Fig. 3.18 Classification accuracy depending on the memristor conductance range
for the local sparse and fully-connected architectures. The logistic regression is
trained with 1000 data points.

where every class has a non-random classification accuracy, in contrast to the fully-
connected architecture that frequently misclassifies closely related classes such as the 0
and 8 digits (Fig. 3.11). When training the logistic regression with 1000 data points, in
other words the final 1000 digit presentations, the local sparse network yields an overall
classification accuracy of 76.59± 2.17% which is in line with previously obtained results
on the fully-connected architecture.

The scalability analysis involves changing parameters that directly impact the hardware
design, including the number of neurons, memristor conductance range, and the dataset
size used to train the classifier, towards achieving better performances on automotive
datasets. While the fully-connected architecture is explored in that context, the local
sparse architecture significantly speeds up simulation time, allowing us to more easily
scale up the network and assess its stability over multiple trials. We ensure consistency
of the results across network architectures by comparing the two architectures for some
parameter configurations, while we further explore the parameter space using the more
efficient sparse network.

b) Memristor conductance

The memristor conductance has a significant impact on the performances of the network. As
we introduce the local sparse architecture to substitute the original fully-connected network,
it is important to examine the sparse network behaviour under various conductance
ranges that are taken from the literature [204, 212, 201]. To measure the impact of the
conductance we fix the scaling factor K which regulates the current going through the
current conveyor into the analog neuron [218], to K = 1/12.5. This particular value is
selected for comparability with the literature [117].

3.5 Scalability analysis 55

Considering an ON/OFF ratio of 100, we run simulations on the full N-MNIST task under
four different ranges of conductance G (Fig. 3.18). When G ∈ [10−10S, 10−8S] the LIF
neurons are underactive in both architectures, resulting in a network that is unable to
learn any features. The drop in performance can be compensated by a higher scaling
factor K which increases the current injected into the LIF neurons, resulting in more
spikes that can be used to train the logistic regression classifier.

When we the increase the scaling factor to K = 1 the sparse network yields an accuracy
of 63.36± 0.95%. On hardware, the possible values of K are bounded by the size of the
capacitor Cm which can be estimated according to the following equation derived from
the LIF model (Eq. 3.4):

Cm = ∆t(K · ix − idischarge)
∆Vm

(3.17)

Considering the sparse architecture has around two simultaneously active memristors,
each with a 10kΩ resistance and driven by a 1V pulse over ∆t = 10µs, the 1pF capacitor
present in the first ULPEC demonstrator is sufficient to handle a value of K = 1 for a
target Vm = 1V.

Moving on to higher conductance ranges, the fully connected network performs better than
the sparse network when G ∈ [10−9S, 10−7S], reaching an average accuracy of 75.44±0.29%.
The local sparse architecture on the other hand, is optimal when G ∈ [10−8S, 10−6S]
with an accuracy of 76.2357 ± 0.87%. In general, the sparsely-connected architecture
receives less input than the fully-connected one, degrading its learning performance on
lower conductance ranges. On the other hand, when the neuronal activity is too high, the
logistic regression can more easily start overfitting. As before, the scaling factor can be
adjusted so that each network architecture behaves similarly across various memristor
conductance ranges, but the 1pF capacitor chosen in the ULPEC demonstrator might be
a limiting factor in regards to the possible values of K.

c) Number of neurons

We proceed to explore the evolution of the classification performance with an increasing
number of neurons (Fig. 3.19). We vary the number of neurons by keeping the stride fixed
and adjusting the number of LIF neuron sublayers. With a logistic regression trained
on 1000 data points, the fully-connected architecture peaks at 500 neurons with average
accuracy of 79.34± 0.36% and subsequently starts decreasing with larger networks. This
is likely due to the fact that the fully-connected network is more prone to overfitting the
training data with a high number of neurons. More data points could therefore be needed
for the model to converge. The accuracy of the sparse network on the other hand continues
to increase until 1000 neurons and reaches an accuracy of 82.01 ± 1.07%, presumably
because of the inherent constraint for local statistics that is verified as optimal by the
wider literature in computer vision.

In order to find whether a higher number of neurons requires a larger logistic regression
training dataset, we evaluate the accuracy of the sparsely-connected network with 100
and 1000, according to the number of data points used to train the classifier (Fig. 3.20).

56 Chapter 3. Bio-inspired learning

Fully-connectedSparse

0 100 200 300 400 500 600 700 800 900 1000
Number of neurons

30

40

50

60

70

80

90

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fig. 3.19 Classification accuracy with an increasing number of neurons for the
sparse and the fully-connected architecture. The logistic regression is trained
with 1000 data points.

0 1000 2000 3000 4000 5000
Data points

55

60

65

70

75

80

85

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

100 neurons 1000 neurons

Fig. 3.20 Accuracy of the sparse architecture with 100 and 1000 neurons ac-
cording to the number of data points used to train the logistic regression.

3.5 Scalability analysis 57

In both cases, training the logistic regression with more than 1000 data points leads to
diminishing returns, and the cost of increasing the size of the training dataset might
therefore be too steep to pay.

With 5000 data points, a local sparse network with 100 neurons yields an average accuracy
of 78.88± 0.65%, a 2% increase over using 1000 data points. Increasing the number of
neurons to 1000 improves the accuracy to 86.54± 0.27%, matching the performance of
event-based algorithms such as HOTS [100].

3.5.3 Scalability and performance analysis on N-CARS

0 1000 2000 3000 4000 5000
Number of neurons

60

61

62

63

64

65

66

67

Cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

1000 data points 5000 data points

Fig. 3.21 N-CARS classification accuracy with an increasing number of neurons
for the sparsely-connected architecture with 5 × 5 windows and no overlaps
between receptive fields. The N-CARS dataset is cropped to fit the 28 × 28
vision sensor on the demonstrator. The classification accuracy is evaluated with
a logistic regression trained on 1000 and 5000 data points.

On a 28× 28 cropped N-CARS dataset, a sparsely-connected network with 7× 7 windows,
a stride s = 5 and 4 sublayers (100 neurons) yields an accuracy of 58.99± 0.75%, a 5%
improvement over the fully-connected architecture. In order to work with the full 64× 56
input space while preserving the same number of neurons, we increase receptive fields to
13× 13 windows. This does not seem to offer any advantages, and it increases the number
of synapses connected to each neuron. Moving forward, we decide to work exclusively
with the cropped dataset.

We decrease the receptive field size to 5× 5 windows and remove any overlap by keeping
the stride at s = 5. In Fig. 3.21, we explore the impact of increasing the number of neurons
on the classification accuracy, starting from 100 neurons up to 5000 neurons. With 100
neurons, the network reaches an accuracy of 61.48± 1.4% for a logistic regression trained
on 1000 data points, and 63.23± 1.0% for 5000 data points. The accuracy consistently

58 Chapter 3. Bio-inspired learning

stays below 70% even when we significantly increase the number of neurons. Extracting
features with an unsupervised STDP does not allow us to reach satisfactory performances
on complex datasets. With a single layer network, a supervised variant of STDP can be
expected to slightly improve the performance, but exploring a multi-layer network by
stacking FTJ crossbar arrays seems like a more sensible solution for automotive tasks.

3.5.4 Energy consumption analysis

The sparse architecture is based on the same FTJ crossbar design shown in Fig. 3.4, with
each of the output neurons connected only to a local subset of the input neurons defined
by the size of the receptive field. The sparse connectivity can be cast into the hardware
by removing specific junctions on the crossbar.

We give here, a comparative estimation of the write energy per training pattern consumed
by the memristors for the fully-connected network and the sparse network, within a
conductance range of [10−9S, 10−7S]. The write energy is a measure for the energy
consumption per weight update. It can be directly affected by varying:

• the number of synapses per neuron (by setting the size of the receptive field window)

• the number of spikes produced per training pattern.

In that range of conductances, neurons are underactive in the sparse architecture, which
leads to an accuracy of 62.04±1.52% on the N-MNIST learning task, corresponding to a 15%
drop compared to the fully-connected network (Fig. 3.18). To reach the same comparable
accuracy within this conductance range, we have to act on three parameters:

• we increase the factor K which raises the output neurons activity

• we decrease the output neurons refractory period from 10 to 5. This does not pose a
problem as not all neurons are in competition with each other

• we initialize the synaptic conductances according to a uniform distribution within
the interval [Gmax/2, Gmax], with Gmax = 10−7S

With a window size of 7×7 for the receptive field, a stride s = 5, and increasing the scaling
factor to K = 1 the model yields approximately 145 spikes per training pattern, similar to
the spike count at the higher conductance range (Fig. 3.18). Using a logistic regression
classifier trained with only 1000 data points, we obtain an accuracy of 75.79± 1.52%. This
particular value of K could require a slightly larger capacitor than 1pF. For integration
concerns, a smaller value of K = 1/2, leading to a trade-off of 2% drop in performance,
might be considered.

With all the parameters kept unchanged but the size of the receptive field reduced to a 5×5
window, we achieve an accuracy of 74.20± 1.04% for an average of 123 spikes per training
pattern. Compared to the 7× 7 window, the number of connections per output neuron is
divided by 2 with a loss on accuracy of 1%. Networks with larger receptive fields do not
show significant improvement in performance, and the 5× 5 window appears to provide
the best trade-off between number of connections and classification performance.

Given an equivalent classification performance, the write energy consumed by memristors

3.6 Discussion 59

per training pattern can be roughly estimated by accounting for the average number of
post-synaptic spikes since:

Write energy = #spikes×#synapses× pulse voltage× pulse current× pulse duration

With the assumption that a spike from an output neuron applies a pulse voltage of 1V
over 10nS to a memristor with the conductance set to Gmax = 10−7S, we can now estimate
the write energy consumed for both network architectures:

• the fully-connected network produces on average 13 spikes per training pattern with
the N-MNIST dataset, for 784 synapses. This leads to an overall write energy of
∼ 10pJ.

• the sparsely-connected network produces on average 123 spikes per training pattern,
for a total of 25 synapses, hence the write energy consumed by the memristors
amounts to ∼ 3pJ.

As shown by these first estimates, the sparse connectivity reduces the energy consumed
by the synapses for weight updates, by a factor of 3 during the training phase. This
perspective is important as it suggests that we improve the energy efficiency of the physical
network with minimal modification and little loss in accuracy. The saved resources can
then be redirected to other use such as increasing the size of the vision sensor and/or the
number of neurons for a fixed energy budget or allocating more energy for computation
purposes. Furthermore, the analog circuit design can be simplified by not having to control
for the case where all synapses are simultaneously active.

3.6 Discussion
Through a tight collaboration with academic and industrial partners working in the fields of
microelectronics and material sciences, we develop a neuromorphic vision system capable of
learning with ultra-low power requirements and ultra-low latency. The system in question
implements a fully-connected single-layer STDP-based SNN with memristive synapses for
real-time unsupervised feature extraction. After identifying a suitable architecture, we
provide a study on the scalability of the visual data processing system aimed at improving
the learning performance by re-sizing the network in a broad sense. In that regard, we
measure the impact of the number of output neurons, and we explore an alternative
sparsely-connected network that improves the accuracy and makes the system even more
energy-efficient. Providing a clear insight to these two parameters allows us to propose
a clear recommendation in scaling up the system: is the increase in computing resource
necessary, is it feasible for an actual physical implementation and what can we expect for
an automotive learning task?

With the current unsupervised STDP algorithm, scaling up the system by increasing
the number of neurons only leads to moderate improvements in performance. This is
particularly true for more complicated learning tasks. Nevertheless, the sparsely-connected
network appears to have a decreased sample complexity, i.e. it requires fewer data points
for training, and typically outperforms the former model in classification accuracy while
being three times more efficient in terms of the energy required to update the synaptic

60 Chapter 3. Bio-inspired learning

weights. Each neuron accounts only for local structure, and it is therefore necessary to
obtain more spikes in order to identify an image. However, the energy required for a write
operation decreases overall, despite the increased number of spikes.

Our study suggests that a sensible compromise between energy and performance would be
a sparsely-connected network with around 300 neurons. Increasing the number of neurons
however, cannot be easily achieved in the demonstrator as the size of the chip will be
significantly affected. A 3D crossbar architecture providing multi-layer support, along
with a supervised STDP [141, 93, 132], instead of continuing to rely on purely-analog
STDP-mediated feature extraction techniques.

From a manufacturing perspective, growing ferroelectric memristors on silicon, the end goal
of the ULPEC project, makes the technology directly compatible with CMOS and enables
industrial-scale integration with microelectronics. Memristor technology is commonly
associated with in-memory computing [200], spiking neural networks [201] and deep learning
accelerators [229]. Memristors are also being explored in the context of probabilistic
computing [230, 231]. This alternative computing paradigm relies on probability bits (p-
bit) that can fluctuate between 0 and 1, paving the way for energy-efficient implementations
of probabilistic models and inference methods.

Chapter 4

Probabilistic models for event-based
data

4.1 Introduction
Neuromorphic vision sensors generate millions of events per second depending on the
dynamics of a visual scene, by separately tracking changes in each pixel in an asynchronous
manner and with microsecond temporal precision. With the advent of high definition
neuromorphic cameras [72, 26, 27], event-by-event algorithms struggle to stay competitive,
and more often than not, binning events into frames is a more feasible approach.

The focus of this doctoral thesis has so far been on leveraging temporal learning algorithms
for spiking neural networks, towards a more energy-efficient feature extraction on event-
based data. These neural networks can be quite expensive to simulate, and usually require
dedicated neuromorphic architectures to be competitive (see chapter 3).

Algorithms such as HOTS [100] have previously explored various clustering techniques
for feature extraction, none of which are particularly well suited for dealing with an
increasingly large quantity of data due to memory and time constraints. Probabilistic event
generation models that take into account sensor noise can be represented by a Gaussian
distribution [232, 65]. With that in mind, we introduce two efficient learning algorithms
for Gaussian Mixture Models (GMM) with sublinear computational complexity:

• The first approach is based on the Expectation Maximisation (EM) algorithm and
relies on a stochastic approximation of the E-step over a truncated space in order
to maximise the variational lower bound, reducing the computational burden and
speeding up the learning process.

• For even better efficiency, the second approach identifies non-zero areas of the
posterior before computation for efficient inference. In each EM iteration, the
posterior is estimated over a truncated space that is iteratively improved based on a
similarity matrix.

The resulting approaches have state-of-the-art efficiency without compromising stability,

61

62 Chapter 4. Probabilistic models

making them attractive candidates for extracting features from massive streams of events.
We start by comparing our algorithms to popular clustering techniques on a variety of
datasets, to highlight their applicability as a general-purpose learning strategy. Further-
more, we evaluate model performance in feature extraction for a classification task on very
large vision datasets from event-based cameras.

4.2 Sub-linear stochastic learning in a Gaussian mixture model
for event-based data

A Gaussian mixture model (GMM) is a probabilistic machine learning model with a
wide variety of applications in speech recognition [233], computer vision [234, 235], astro-
physics [236] and precision medicine for instance [237]. For computer vision in particular,
using GMMs to identify patterns of local image features is arguably one of the simplest
popular approaches [238]. Parameters of the model are typically optimised using Ex-
pectation Maximisation (EM) which is a powerful algorithm for maximum likelihood
estimation.

The complexity of learning a GMM was until recently bound to be a function of the
number of data points and the number of mixture components. As datasets grow larger,
it is increasingly difficult to apply traditional clustering methods, and improvements
in computational complexity become all the more necessary. Recent developments in
convergence analysis of Gaussian mixture models trained with EM are generating renewed
interest in the field [239, 240]. Novel algorithms for training mixture models with increased
stability [241, 242] and efficiency through truncation and data summarisation methods [243,
244] pave the way for working with large event-based datasets recorded using neuromorphic
cameras.

Neuromorphic vision sensors create spatially sparse representations of an image and bear
several advantages over conventional cameras such as a very high dynamic range and a
very low latency, making them suitable for fast motion tracking. Each pixel is separately
updated in an asynchronous manner with microsecond temporal resolution, generating
an event depending on luminance changes in a visual scene. This strategy leads to an
enormous number of events. To illustrate this, N-MNIST, an event-based version of the
popular MNIST handwritten digit classification dataset, comprises more than 250 million
events over 60000 examples of 28× 28 digits [223]. The latest generation of high definition
neuromorphic sensors [72, 245] makes it even harder to find suitable feature extraction
algorithms that work without being overwhelmed by the rate of data acquisition.

In this section, we present a method for efficient and stable EM-based learning of Gaussian
mixtures suitable for large event-based datasets. The proposed algorithm is sub-linear in
computational complexity with respect to the number of mixed Gaussian distributions.
As GMMs are highly sensitive to initialisation [246], latest advances in seeding algorithms
allow us to produce probably good initial clusters without compromising scalability to
very large datasets [247, 248]. We apply our algorithm on lightweight coresets (lwcs) a
data summarisation method, to further reduce algorithmic complexity [249, 250].

Our approach introduces a stochastic method for identifying a truncated approximation

4.2 Sub-linear stochastic learning in a GMM 63

of the posterior during learning. Truncated approximations [251] have been previously
employed on latent variable models to identify subspaces of the posterior that contain
most of the posterior mass [252, 253, 254, 255]. Empirical evidence has shown an improved
performance in avoiding local optima during learning [256], however truncation is typically
carried out using deterministic methods which are inherently more sensitive to the local
optimum problem. To our knowledge, no work explores stochastic variants for truncation.
Sampling from a random distribution is expected to allow the algorithm to get closer to
the global optimum [257].

We first evaluate the efficiency, stability and performance of the algorithm on a variety
of datasets that have been extensively used in the relevant literature for comparability
purposes and to emphasize the versatility of the technique in handling different types
of data. Datasets include CIFAR-10, an image dataset [258], SONG, a collection of
audio features compiled from the Million Song dataset [259] and SUSY, a high energy
physics dataset [260]. We extend the proposed algorithm to event-based data which has
recently garnered interest in the computer vision and machine learning community. Our
objective is to conciliate the asynchronous event-based representation with the classical
frame representation by providing a common ground of processing. An in-depth analysis
is done on POKER-DVS [225] in order to get a sense of the expected speedups with
event-based datasets. After having validated the clustering performance of our algorithm,
we run a classification task on popular datasets such as N-MNIST, N-Caltech101 [223],
N-CARS, a car classification dataset [1], and GESTURE-DVS, a dataset tailored for
gesture recognition systems [87]. We compare ourselves to popular event-based feature
extraction methods which will be reviewed in the following section.

The proposed algorithm is more efficient in operations and time complexity compared
to popular methods [261] and can be applied to a wide variety of tasks without compro-
mising cluster quality and stability which is important for reproducibility and consistent
predictions. Our approach is actually better at recovering the same clusters with different
initialisations. Classifying large event-based datasets with our algorithm leads to near
state-of-the-art accuracy and is competitive against most current event-based learning
methods, considering particularly the significant speedups in feature extraction.

4.2.1 Event-based vision processing

a) Feature Extraction Methods

In very high frequency video, feature extraction techniques remain the dominant method
of computer vision tasks. While efforts of adapting deep learning methods to event-based
processing exist [94], naively running a neural network on the full size of the sensor at every
event is too computationally intensive. Neuromorphic engineering has therefore focused
on event-to-frame conversion strategies to ease the computational burden of working on an
event-by-event basis, discarding the temporal dimension in the process [262, 73, 86, 263].
Spiking neural networks are a natural choice for dealing with event-based data. However,
Hebbian-based methods cannot currently reach state-of-the-art performances in image
classification tasks unless resorting to deep architectures and specialised hardware to
leverage their full potentials [95, 97]. Event-by-event strategies specifically designed for
neuromorphic systems such as HOTS [100, 264, 99] and HATS [1] work particularly

64 Chapter 4. Probabilistic models

well on a smaller scale, but they can benefit immensely from a sub-linear complexity
clustering algorithm on larger datasets. These methods rely on time surfaces which are
descriptors reminiscent of local image patches that provide a spatio-temporal context in a
neighbourhood centred around an event. This representation allows us to apply well-known
machine learning algorithms on streams of events while preserving time information.

b) Clustering with time surfaces

As previously mentioned in section 1.3.2.a, time surfaces are built by applying an expo-
nential decay on the most recently active pixels in a Moore spatial neighbourhood centred
on each event [100]. The exponential kernel can be approximated by a piece-wise linear
kernel to reduce computational complexity.

Working with time surfaces is fairly similar to working with image patches, where the
usual luminance values are replaced by an explicit function of event times, and therefore
we can use it in a typical patch-based pipeline. In this work, we derive visual features
by clustering Time Surfaces and use them for classification. The clustering technique
presented in this study is a simple and efficient method based on Gaussian Mixture
Models, which is developed in detail in the next section. Providing a machine learning
algorithm that bridges the gap between frame and event-based representations allows for
a receptive-field based architecture from a purely event-based architecture while providing
statistically optimal and robust features.

Fig. 4.1 Examples of time surfaces (left) and cluster centres from the proposed
GMM algorithm (right) on N-MNIST, an event-based handwritten digits dataset.
The chosen time surfaces and cluster centres are unrelated to each other; however,
we can see the smoothing effect of clustering with GMMs.

4.2.2 Stochastic approximation of expectation maximisation on a Gaussian
mixture model

A Gaussian mixture model assumes that each data point is distributed according to a
random variable Y that follows one of a finite set of M multivariate Gaussian probability
densities. More specifically, for a dataset Y =

{
y(1), . . . ,y(N)

}
:

p
(
Y = y(n)|C = c; θ

)
= N

(
Y = y(n);µc; Σc

)
(4.1)

4.2 Sub-linear stochastic learning in a GMM 65

p (C = c; θ) = αc (4.2)

where αc ∈ [0, 1], with
∑M
c=1 αc = 1, parametrises a distribution over the Gaussian densities

and θ = {µ1:M ,Σ1:M , α1:M} denotes the model parameters. With the probabilistic model
described in Eq. 4.1 and 4.2 and an assumption of independent identically distributed
datapoints in Y, the model log-likelihood becomes:

L (θ) =
∑
n log

∑
c αcN

(
Y = y(n);µc,Σc

)
(4.3)

this is a very expressive model for data with a widely varying structure. However,
identifying Σ1:M sets several challenges that are out of the scope for this study. Instead
we will constrain the GMM by setting Σc = σ1, ∀c ∈ {1, . . . ,M} and rewriting the
log-likelihood as:

L (θ) =
N∑
n=1

log
M∑
c=1

αc
(
2πσ2

)−D2 exp
(
−d

(n)
c

2σ2

)
(4.4)

Under the assumed model constraints each Gaussian distribution is defined as

p
(
Y = y(n)|C = c; θ

)
=
(
2πσ2

)−D2 exp
(
−d

(n)
c

2σ2

)
(4.5)

where d(n)
c =

∥∥∥y(n) − µc
∥∥∥2

is the squared euclidean distance between the data point y(n)

and the mean of Gaussian indexed by c, and D is the number of observed variables. The
Expectation Maximisation algorithm optimises a lower bound to the log-likelihood:

F (Y, θ) ,
∑
n

∑
c

p(n)
c log

exp
(
−‖y

(n)−µc‖2
2σ2
c

)
(2πσ2

c)
D
2

αc

+
∑
n

H
(
p(n)
c

)
(4.6)

where p(n)
c is a shorthand for the posterior distribution

p
(
C = c|Y = y(n); θ̂

)
=

exp
(
−d(n)

c /2σ2
)
αc∑M

c′=1 exp
(
−d(n)

c′ /2σ2
)
αc′

(4.7)

and H
(
p

(n)
c

)
denotes the entropy of the posterior distribution.

Exact EM is an iterative algorithm that optimises the likelihood by alternating two steps.
The first step is to identify the distribution p

(n)
c and is referred to as the E-step. The

second step is called the M-step and amounts to maximising Eq. 4.6 with respect to θ
using a gradient update as:

µc =
∑N
n=1 p

(n)
c y(n)∑N

n=1 p
(n)
c

(4.8)

66 Chapter 4. Probabilistic models

σ2 = 1
DN

N∑
n=1

M∑
c=1

p(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.9)

αc =
∑N
n=1 p

(n)
c∑N

n=1
∑M
c′=1 p

(n)
c′

(4.10)

Iterating the E-step and M-step of the EM algorithm until θ converges is the most popular
method for fitting a GMM. The complexity of the EM algorithm on GMMs is O (DNM)
making it already a very efficient algorithm.

In this work, we propose an approximation technique which avoids the dependency of the
complexity on M by estimating the posterior, p(n)

c , over a subset K(n) ⊂ {1, . . . ,M}, with
|K(n)| = H as:

q(n)
c =

exp
(
−d(n)

c /2σ2
)
αc∑

c′∈K(n) exp
(
−d(n)

c′ /2σ2
)
αc′

δ
(
c ∈ K(n)

)
(4.11)

The posterior for clusters c /∈ K(n), is never estimated and therefore q(n)
c allows for a

much faster implementation than p
(n)
c . In terms of total variation, dTV

(
q

(n)
c , p

(n)
c

)
=∑

c/∈K(n) p
(n)
c = 1−

∑
c∈K(n) p

(n)
c , the approximation is optimal when K(n) holds the clusters

that account for most of the posterior mass. In order to identify such a set K(n), we
start by initialising it with H clusters drawn without replacement as samples of the prior
distribution p (C; θ). At each iteration, we update the set K(n) by comparing its clusters
with R new samples, also from the prior distribution without replacement, and maintaining
the H best clusters.

K(n) =

{c1:H |ci :∼ p (C)} K(n) = ∅[
K(n) ∪

{
c1:R|ci :∼ p (C) & ci /∈ K(n)

}]H
<
d
(n)
c

K(n) 6= ∅ (4.12)

where [·]H<
d
(n)
c

is an operator that keeps the H smallest elements of the set ordered by the

distance d(n)
c . The hyperparameters {H,R} fully specify the approximation and enable

control of the complexity of the algorithm directly as opposed to a precision estimate in
typical approximations.

As in the EM algorithm, we can estimate the parameter updates by taking the gradient of
the free-energy (Eq. 4.6) and setting it to 0.

µc =
∑N
n=1 q

(n)
c y(n)∑N

n=1 q
(n)
c

(4.13)

σ2 = 1
DN

N∑
n=1

∑
c

q(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.14)

4.2 Sub-linear stochastic learning in a GMM 67

αc =
∑N
n=1 q

(n)
c∑N

n=1
∑M
c′=1 q

(n)
c′

(4.15)

Iterating between estimating the approximate posterior (Eq. 4.11) and the parameter
updates (Eq. 4.13–4.15) defines an algorithm we refer to as stochastic GMM, S-GMM.
The complete procedure is detailed in Algorithm 1.

The complexity of the S-GMM algorithm compared to the exact EM algorithm for GMMs
reduces from O (NMD) to O (N (R+H)D) in the E-step and O (NHD +NH) in the
M-step. In section 4.2.3, we investigate applications of the algorithm where R + H is
orders of magnitude smaller than M and the model is successfully fitted to the data.

S-GMM starts with a randomly initialised K(n) that is intended to store the centres more
likely to represent that data point. The set K(n) is updated randomly, using samples
from the prior, at the beginning of each M-step with R new centres. After estimating the
distances between the centres in K(n) and the newly sampled centres, we only maintain the
H centres in K(n) nearest to the data point. The approximate posterior q(n)

c is estimated
over the set K(n) and used to update the centres in the M-step. Since q(n)

c is inversely
proportional to the centres’ distance from the data point y(n), far away centres would
have a very low - exponentially decreasing - value for q(n)

c .

Algorithm 1 Stochastic Gaussian Mixture Model (S-GMM)
Require: Data set Y, # of centres M , H, R
1: initialise µ1:M , σ, K(n) = ∅ for all n;
2: repeat
3: µ̃1:M ← 0, q̃1:M ← 0, σ̃2 ← 0
4: for n ∈ {1, . . . , N} do
5: K(n) = K(n) ∪

{
c1,...,R|ci :∼ p (C) and ci /∈ K(n)

}
6: for c ∈ K(n) do
7: d

(n)
c =

∥∥∥y(n) − µc
∥∥∥2

8: end for
9: K(n) =

{
c|c : with the H smallest d(n)

c

}
10: for c = K(n)

c do

11: q
(n)
c =

exp
(
−d(n)

c /2σ2
)
αc∑

c′∈K(n) exp
(
−d(n)

c′ /2σ
2
)
αc′

12: end for
13: end for
14: Calculate µ1:M , α1:M and σ2 (Eq. 4.13, 4.15, 4.14)
15: until θ =

{
µ1:M , α1:M , σ

2} and has converged

In order to compare algorithm 1 with popular typical clustering techniques, e.g. k-means
and approximations [247, 249], we may optionally constraint the algorithm to accept

68 Chapter 4. Probabilistic models

a uniform prior over the clusters, i.e. p (C = c) = 1
M ,∀c ∈ {1, . . . ,M}, throughout the

learning process. The GMM data model for a uniform prior and the same isotropic variance
for all centres is effectively identical to the k-means clustering algorithm and allows for
a fairer comparison between our approximation and the broader literature. The fixed
uniform prior variant of S-GMM will be referred to as u-S-GMM.

a) Implementation details

Initialisation During the first epoch of the proposed algorithm, K(n) is initialised using
prior samples and Gaussian centres µ1:C are initialised with the AFK-MC2 [248] method.
This algorithm samples an initial centre µ1 ∈ Y uniformly at random and then uses it to
derive the proposal distribution g(y|µ1). A Markov chain of length m is used to iteratively
sample sufficiently distinct new centres µ2:M from the data. AFK-MC2 requires one pass
of complexity O (ND) through the data to define the proposal distribution g (y), and
the centres are sampled with a complexity of O

(
m(M − 1)2D

)
. The complete process is

described in Algo. 2

Lightweight coresets To further improve computational efficiency we can optionally
use lightweight coresets (lwcs) [250, 265, 266]. Coresets are smaller representative datasets,
Y ′ = {(y1, w1) , . . . , (yN ′ , wN ′)}, of a full dataset, Y , in which each data point is individually
weighted depending on its significance in describing the original data. The objective on a
coreset is adjusted to account for the weights on each data point:

F (Y, θ) ,
∑
n

wn
∑

c∈K(n)

q(n)
c log

exp
(
−‖y

(n)−µc‖2
2σ2
c

)
(2πσ2

c)
D
2

αc

+
∑
n

wnH
(
q(n)
c

)
(4.16)

Since the parameter updates are gradient-based updates of Eq. 4.16, the weights w1:N ′
are a multiplicative constant on the parameters and therefore the parameter updates
become:

µc =
∑N ′
n=1wnq

(n)
c y(n)∑N ′

n=1wnq
(n)
c

(4.17)

σ2 = 1
D
∑N ′
i=1wi

N ′∑
n=1

∑
c

wnq
(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.18)

αc =
∑N ′
n=1wnq

(n)
c∑N ′

n=1
∑M
c′=1wnq

(n)
c′

(4.19)

These updates can replace Eq. 4.13, 4.15, and 4.14 in algorithm 1 to allow applications
on a coreset Y ′. Working on coresets introduces an error in the approximation that has
been analysed rigorously in earlier work [250]. Constructing the coreset requires two
iterations of complexity O (ND) over the data but reduces the complexity of S-GMM to
O (N ′ (R+H)D) in the E-step and O (N ′HD +N ′H) in the M-step. The complexity of
AFK-MC2 is also reduced since the proposal distribution is defined on the coreset with
complexity O (N ′D).

4.2 Sub-linear stochastic learning in a GMM 69

Algorithm 2 ASSUMPTION-FREE K-MC2 (AFK-MC2)
Require: Data set Y, # of centres M , chain length m
1: µ1 ← Point uniformly sampled from Y for all n;
2: for all y ∈ Y do
3: g (y)← 1

2 ‖y− µ1‖2 /
∑

y′∈Y ‖y′ − µ1‖2 + 1
2n

4: end for
5: for c = 2, 3, . . . ,M do
6: y← Point sampled from Y using g (y)
7: dy ← min ‖y− {µ1:c−1}‖2
8: for l = 2, 3, . . . ,m do
9: x← Point sampled from Y using g (x)

10: dx ← min ‖x− {µ1:c−1}‖2

11: if dxg(x)
dyg(y) > Unif (0, 1) then

12: y← x, dy ← dx
13: end if
14: end for
15: µc ← y
16: end for

4.2.3 Experiments and results

In this section, we evaluate the performance of S-GMM (algorithm 1) and its uniform
variant (u-S-GMM) on three tasks in comparison to standard k-means initialised with
the k-means++ method [246]. The k-means baseline was programmed to have an equal
structure as the proposed algorithms. We first assess convergence on an artificial dataset
with known ground truth [267]. We then move on to a clustering analysis on a variety
of datasets originating from different fields such as computer vision [225, 258], high
energy physics [260], and music metadata [259] to demonstrate general machine learning
applicability of our contribution. We extend the analysis to POKER-DVS, a 4-class event-
based dataset that is small enough to be able to run the k-means baseline without any
memory and runtime issues. Finally, we test our algorithm on a real-world classification
task using very large vision datasets collected from neuromorphic cameras and compare
to feature extraction methods specifically designed for dealing with events.

We initialise the cluster centres using the AFK-MC2 algorithm with a Markov chain length
m = 5. As a stopping criterion we terminate the iterative EM process when the increase
in free energy, according to Eq. 4.16, is less than ε = 10−4. All experiments were run on a
C++ implementation that relies on the Blaze vectorisation library [268], and numerical
results are reported as an average over 5 trials unless otherwise stated.

As a reminder, M denotes the number of cluster centres, N ′ denotes the coreset size, H
denotes the size of the truncated subspace and R is the number of new samples in each
iteration.

70 Chapter 4. Probabilistic models

a) Artificial data

2 3 4 5 6 7 8

X
1e5

2

3

4

5

6

7

8

Y

1e5 Ground truth S-GMM centres

K-means u-S-GMM S-GMM
0.0

0.5

1.0

1.5

2.0

R
o

o
t
M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r

1e6

No lwcs

N'=1000

Fig. 4.2 Validation on a two-dimensional artificial dataset. (Left) S-GMM
successfully recovers all 15 Gaussian centres from a standard clustering dataset
with N = 5000 samples, H = 3, R = 6 and N ′ = 1000. (Right) Using coresets
both S-GMM and u-S-GMM outperform k-means across 100 trials when comparing
the learned centres to the ground truth.

In this section, we explore the convergence properties of our truncated stochastic approach
on an artificial dataset with N = 5000 datapoints and 15 Gaussian centres [267].

In Fig. 4.2 we measure the root mean squared error (RMSE) between learned centres
and the ground truth. S-GMM and u-S-GMM are able to recover the cluster centres
better than k-means across 100 trials. Results suggest the stochastic approach is better at
avoiding locally optimal solutions. Additionally, working with a truncated set can improve
numeric stability by ignoring low probability clusters.

As the number of data points increases, S-GMM becomes more prone to local optima, as
seen in Fig. 4.2 (Right). This behaviour is difficult to rigorously analyse. Our intuition
from the experiments suggest that in early iterations poorly initialised clusters might never
be assigned a data point. This would lead to zero values in the prior and the cluster will
never be used by the algorithm again, even if it is necessary elsewhere. When fewer data
points are available, the parameter estimates are noisier and that make it easier to avoid
this behaviour. It is important to note this was not reproducible on any other datasets
explored in this study. This is perhaps due to the increased variability of real data.

Choosing the optimal number of cluster centres M typically involves running an algorithm
multiple times for different values ofM and examining the clustering results. Learning prior
distributions with the S-GMM algorithm simplifies this problem: we select a maximum
number of centres M and the algorithm prunes unnecessary ones by reducing their
probability. Fig. 4.3 demonstrates this process on the artificial dataset. We compare the
final prior distributions for M = 15, the exact number of Gaussian centres in the dataset,
and M = 20. The observed sharp decay on priors α beyond the 15th cluster suggests
S-GMM was able to determine the optimal number of centres in this case. As a drawback,
if M is too low, the probability of important clusters might be reduced, affecting the

4.2 Sub-linear stochastic learning in a GMM 71

P
ri
o

r

1 3 5 7 9 11 13 15 17 19

Cluster number

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Final prior distribution (M=20)

Final prior distribution (M=15)

Initial prior distribution (M=20)

Initial prior distribution (M=15)

Fig. 4.3 Prior distributions with S-GMM on an artificial dataset with 15 Gaussian
centres. By choosing a maximum number of clusters such that M > 15, the
algorithm is able to determine the optimal number of clusters by decaying priors
α for unnecessary cluster centres (blue curve). However, if the number of clusters
is too low, the probability of important clusters might be reduced (orange curve).

clustering performance. The initial prior distributions shown as dotted lines illustrate the
behaviour of an unweighted clustering algorithm such as u-S-GMM and K-means.

b) Clustering analysis

For a more descriptive analysis, we run our algorithms on a series of well-known clustering
datasets. The accuracy of the algorithms is measured using the relative quantisation error
with K-means as our baseline according to:

η = (Qalgorithm −Qk-means)
Qk-means

(4.20)

where Qalgorithm =
∑N
n=1 minc

∥∥∥µc − y(n)
∥∥∥2

is the quantisation error of the Gaussian
Mixture Model trained with the respective algorithm. K-means initialisation is done with
K-means++ [246]. With this in mind, we performed clustering analysis for the following
algorithms:

• k-means as a baseline

• k-means on coresets (k-means + lwcs)

• S-GMM on coresets

• u-S-GMM on coresets

Results are summarised in Table 4.1. The S-GMM and u-S-GMM algorithms are param-
eterised with H = 5 and R = 10 and they are allowed to execute a different number of
iterations until they satisfy the stopping criterion. Since the truncated algorithms are
going through fewer clusters in each iteration, convergence requires more iterations than
K-means. Nevertheless, iterations are significantly cheaper in terms of distance evaluations

72 Chapter 4. Probabilistic models

Table 4.1: Relative quantisation error and distance evaluation speedup

Dataset Algorithm Relative Quantisation
Error η

Distance Evaluation
Speedup Iterations

name N ′

CIFAR-10
Ntrain = 50, 000
Ntest = 10, 000
D = 3072
M = 500

k-means - 0.0± 0.03% ×1.01± 0.07 18.2± 1.47
k-means + lwcs 215 2.0± 0.02% ×6.13± 0.43 13.4± 1.02

u-S-GMM 215 1.0± 0.03% ×26.55± 1.12 110.4± 4.59
S-GMM 215 1.0± 0.01% ×35.54± 1.13 82.4± 2.58

POKER-DVS
Ntrain = 143, 569
Ntest = 63, 847

D = 121
M = 500

k-means - 0.0± 0.12% ×1.02± 0.16 57.6± 9.39
k-means + lwcs 212 17.0± 0.19% ×160.7± 29.93 12.2± 2.71

u-S-GMM 212 14.0± 0.35% ×406.89± 46.5 170.6± 21.6
S-GMM 212 17.0± 0.59% ×863.1± 150.46 81.6± 13.92

SONG
N = 515, 345
D = 90
M = 4000

k-means - 0.0± 0.07% ×1.0± 0.0 11.0± 0.0
k-means + lwcs 213 29.0± 0.24% ×121.91± 7.15 5.2± 0.4

u-S-GMM 213 28.0± 0.22% ×3076.15± 496.31 66.8± 9.3
S-GMM 213 29.0± 0.26% ×3468.57± 318.85 58.4± 5.39

SUSY
N = 5, 000, 000

D = 18
M = 2000

k-means - 0.0± 0.02% ×1.0± 0.01 46.6± 0.49
k-means + lwcs 216 7.0± 0.6% ×18.43± 0.74 35.8± 1.17

u-S-GMM 216 6.0± 0.6% ×135.98± 2.84 494.8± 11.02
S-GMM 216 10.0± 0.24% ×332.67± 6.42 199.33± 12.36

Note: preferred algorithm for each metric in bold.

d
(n)
c leading to the observed increase in efficiency. u-S-GMM consistently has the lowest

relative quantisation error η across all datasets, whereas S-GMM reaches increased average
speedups in terms of distance evaluations. Learning priors leads to a faster convergence at
the cost of some accuracy.

Fig. 4.4 further investigates the performance of the algorithms with respect to different
coreset sizes. Columns on the left relate the relative quantisation error to the number
of distance evaluations on a logarithmic scale compared to the k-means baseline. The
size of each marker indicates the size of the coresets N ′. Columns on the right highlight
the increase in performance associated with larger coresets. Marker sizes on these plots
represent distance evaluations. In all cases the proposed algorithms cluster data with a
low relative quantisation error to the baseline for the least amount of distance evaluations.
S-GMM appears to be less accurate on some datasets possibly due to M being the same
across both stochastic algorithms for better comparability, instead of selecting a maximum
number of clustersMmax such thatMmax > M which results in unimportant clusters being
pruned. With the S-GMM algorithm, if the chosen number of clusters is too low, relevant
cluster centres can be lost. Interestingly enough, on the SONG dataset with M = 4000
clusters, k-means on coresets (black line in Fig. 4.4) has a lower relative quantisation
error. This issue is completely mitigated by increasing the number of new samples at
every iteration to R = 40, which implies that S-GMM and u-S-GMM converge to a local
minimum if the truncated space is sufficiently small (Fig.4.5). Estimating the posterior
with a slightly larger R at each EM step is therefore beneficial on complicated datasets
with a lot of clusters.

4.2 Sub-linear stochastic learning in a GMM 73

20000 40000 60000 80000 100000 120000

Coreset size (N’)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

Log10 # distance evaluations

0.00

0.05

0.10

0.15

0.20

R
e

la
ti
v
e

 q
u

a
n

ti
s
a

ti
o

n
 e

rr
o

r

SUSY (M=2000)

20000 40000 60000 80000 100000 120000

Coreset size (N’)

0.05

0.10

0.15

0.20

0.25

0.30

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Log10 # distance evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e

la
ti
v
e

 q
u

a
n

ti
s
a

ti
o

n
 e

rr
o

r

SONG (M=4000)

5000 10000 15000 20000 25000 30000

Coreset size (N’)

0.02

0.04

0.06

0.08

0.10

K-means + lwcs

u-S-GMM
S-GMM

distance evaluations

9.0 9.5 10.0 10.5 11.0 11.5 12.0

Log10 # distance evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12
R

e
la

ti
v
e

 q
u

a
n

ti
s
a

ti
o

n
 e

rr
o

r K-means + lwcs

u-S-GMM

S-GMM
K-means baseline

N’

CIFAR-10 (M=500)

8.5 9.0 9.5 10.0 10.5 11.0 11.5

Log10 # distance evaluations

0.00

0.05

0.10

0.15

0.20

R
e

la
ti
v
e

 q
u

a
n

ti
s
a

ti
o

n
 e

rr
o

r

5000 10000 15000 20000 25000 30000

Coreset size (N’)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

POKER-DVS (M=500)

Fig. 4.4 Number of distance evaluations vs relative quantisation error on in-
creasingly large coreset sizes N ′ for CIFAR-10, POKER-DVS, SONG and SUSY.
(Left) Relative quantisation error according to the amount of distance evaluations
on a logarithmic scale. (Right) Relative quantisation error for different coreset
sizes.

74 Chapter 4. Probabilistic models

20 40 60 80 100

Search space R

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
e

la
ti
v
e

 q
u

a
n

it
s
a

ti
o

n
 e

rr
o

r K-means baseline

u-S-GMM relative error

S-GMM relative error

Fig. 4.5 Relative quantisation error evolution on SONG (M = 4000, H = 5,
N ′ = 217) with increasingly large R. On datasets with a large number of clusters,
sampling from a larger truncated search space can reduce the relative error. For
this particular dataset, R = 40 offers a good compromise and the error is reduced
by more than 8% compared to R = 10.

Complexity Fig. 4.6 shows the scaling behaviour of our algorithms with an increasing
number of clusters M on CIFAR-10 (top) and POKER-DVS (bottom), with M ranging
from 200 to 1400 clusters and hyperparameters set to H = 5 and R = 10. On the left, we
show the operations complexity, measured according to the amount of distance evaluations
d

(n)
c , and on the right, the time complexity in seconds. For a fair comparison with K-means,

we wanted to use an equal number of datapoints by avoiding coresets altogether in this
experiment. Results suggest K-means is linear in both time and operations complexity
while the proposed algorithms scale sub-linearly, with S-GMM being the most efficient.
POKER-DVS is a relatively small dataset both in terms of the number of datapoints,
and dimensionality, so the significance of a discrete distribution (S-GMM) over uniform
sampling (u-S-GMM) appears in the runtime. For larger datasets with higher dimensions
such as CIFAR-10, this difference is negligible.

Stability We assess the proposed algorithms’ ability to recover the same clusters using
different initialisations. We cluster the CIFAR-10 dataset 5 times with hyperparameters
set to M = 500, H = 5, and R = 10, and compare the learned centres of each pair of runs
using a normalised RMSE. Fig. 4.7 shows the mean and standard deviation between errors.
Both S-GMM and the uniform variant show improvements in stability over K-means
which is important for reproducibility. Repeating this experiment on POKER-DVS with
M = 500 yielded a similar trend as with CIFAR-10.

Hyperparameter selection When selecting optimal values for the hyperparameters,
we set H = 5 under the assumption that clusters with lower probabilities have a negligible
effect as the probability values for the exact posterior decay exponentially. For both

4.2 Sub-linear stochastic learning in a GMM 75

200 400 600 800 1000 1200 1400

Clusters

0

1000

2000

3000

4000

R
u

n
ti
m

e
 (

s
)

S-GMM

K-means

u-S-GMM

200 400 600 800 1000 1200 1400

Clusters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#
 D

is
ta

n
c
e

 E
v
a

lu
a

ti
o

n
s

1e12

S-GMM

K-means

u-S-GMM

CIFAR-10

200 400 600 800 1000 1200 1400

Clusters

0

2

4

6

8

#
 D

is
ta

n
c
e

 E
v
a

lu
a

ti
o

n
s

1e11

200 400 600 800 1000 1200 1400

Clusters

50

100

150

200

250

R
u

n
ti
m

e
 (

s
)

POKER-DVS

Fig. 4.6 Operations and Time Complexity analysis on CIFAR-10 and POKER-
DVS for an increasing number of clusters. For a fair comparison with K-means,
all algorithms were measured without any coresets on the full datasets. (Left)
Operations complexity measure according to the number of distance evaluations.
(Right) Time complexity in seconds.

K-means S-GMM
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

oo
t M

ea
n

Sq
ua

re
d

Er
ro

r

No lwcs — CIFAR-10
N’ = 215 — CIFAR-10

No lwcs — POKER-DVS
N’ = 212 — POKER-DVS

u-S-GMM

Fig. 4.7 Stability on CIFAR-10 (solid bars) and POKER-DVS (dashed bars)
over 5 trials with H = 5 and R = 10. S-GMM and u-S-GMM appear to be more
stable than K-means in recovering the same clusters with different initialisation.

76 Chapter 4. Probabilistic models

20

10-1

100

40 60 80 100

Search space R

S
p

e
e

d
u

p
 a

n
d

 r
e

la
ti
v
e

 e
rr

o
r

K-means baseline
S-GMM distance evaluation speedup
S-GMM runtime speedup
S-GMM relative error

20 40 60 80 100

Search space R

10-1

100

K-means baseline
u-S-GMM distance evaluation speedup
u-S-GMM runtime speedup
u-S-GMM relative error

CIFAR-10

20 40 60 80 100

Search space R

10-2

10-1

100

20

10-2

10-1

100

40 60 80 100

Search space R

S
p

e
e

d
u

p
 a

n
d

 r
e

la
ti
v
e

 e
rr

o
r

POKER-DVS

Fig. 4.8 R hyperparameter search on CIFAR-10 (M = 500, H = 5, N ′ = 215)
and POKER-DVS (M = 500, H = 5, N ′ = 212). (Left) hyperparameter search
for S-GMM. (Right) hyperparameter search for u-S-GMM. (Both) Relative
error, distance speedup and runtime speedup are presented on a logarithmic scale
relative to the K-means baseline shown as a dotted line. For datasets with a low
number of clusters, increasing R has a negligible effect on the error, however,
values of R ranging from 10 and 40 seem to be optimal in terms of runtime and
distance evaluations.

algorithms, selecting values of R in the range [10, 40] brings about speedups in terms of
runtime and distance evaluations without affecting the relative error compared to the
K-means baseline as seen on CIFAR-10 and POKER-DVS in Fig.4.8, with M = 500
and N ′ = 215. As previously mentioned however, for datasets with a larger number of
clusters such as SONG, the error of the model increases when R is too low (Fig. 4.5). On
CIFAR-10, despite a faster convergence, S-GMM becomes less efficient than u-S-GMM on
larger values of R due to the added complexity of prior updates. POKER-DVS behaves
similarly across the search space R. To be in the same scale as the distance evaluation
speedup and runtime speed, the relative error is different from the relative quantisation
error η used in previous numerical experiments, and is calculated as such:

relative error = Qalgorithm
Qk-means

(4.21)

4.2 Sub-linear stochastic learning in a GMM 77

4.2.4 Event-based classification

Table 4.2: Classification accuracy on very large event-based datasets

POKER-DVS N-CARS N-MNIST GESTURE-DVS N-CALTECH101

Unsupervised Feature Extraction
S-GMM 100% 85.69% 98.43% 86.67% 55.42%
u-S-GMM 100% 85.92% 98.42% 87.42% 55.93%

web-scale K-means 100% 84.76% 98.18% N.A. N.A.
H-FIRST [224] 91.6% 56.1% 71.2% N.A. 5.4%
HOTS [100] 95− 100% 62.4% 80.8% N.A. 21%
Gabor-SNN N.A. 78.9% 83.7% N.A. 19.6%
HATS [1] N.A. 90.2% 99.1% N.A. 64.2%

Supervised Feature Extraction
SLAYER [94] N.A. N.A. 99.2% 93.64% N.A.
BLS [269] N.A. 92.9% 98.3% N.A. 72.2%

ResNet-34 [8] N.A. 90.9% 98.4% N.A. 69.1%

We benchmark the S-GMM and u-S-GMM algorithms on a series of classification tasks
using very large-scale event-based datasets from neuromorphic vision sensors [29]. Datasets
include N-MNIST, a handwriting recognition dataset [223], N-CARS, a realistic car classifi-
cation dataset [1], GESTURE-DVS [87] a dataset tailored for low-power gesture recognition
systems, and finally, N-Caltech101 [223], an event-based version of Caltech101 [270].

In the case of handwriting recognition for example, a single image of MNIST will produce
an average of 4176 events in one recording of N-MNIST, for a total of more than 250
million events in the training set alone. In a first step, we create time surfaces for all data
points according to Eq. 1.1. We experimentally set time surface side length r = 5, decay
factor τ = 80000µs and p = 1 ∀ p ∈ {−1, 1}. This results in an image patch of dimension
D = r × r = 25 used as an input to our clustering algorithm.

After clustering the time surfaces, we create spatial histograms [271] of assigned clusters
describing the local statistics of a visual scene, and we concatenate them into a histogram
used to train a logistic regression classifier. The histogram is standardised so that each
dimension has zero mean and unit variance. This pre-processing step is important to
get a faster convergence. In Table 4.2 we provide an overview of the classification
results on popular event-based datasets using S-GMM and u-S-GMM, in comparison to
supervised and unsupervised state-of-the-art methods specifically designed to deal with
event-based datasets such as HOTS [100], HATS [1] and H-First [224] among others.
We also run N-CARS and N-MNIST on web-scale K-means [261] which is a popular
approximation for the the k-means algorithm, as the standard k-means cannot be applied
on this dataset in a reasonable time. As in previous sections, classification results on
our algorithms are reported as an average over 5 trials; the rest is taken from the
literature [94, 1, 100, 224, 269].

We set the hyperparameters to M = 1000, N ′ = 216, H = 5 and R = 40, effectively

78 Chapter 4. Probabilistic models

avoiding any data-specific parameter tuning to showcase the low parameterisation required
to get close to the state of the art in event-based classification. Results are compiled
in table 4.2. Both proposed algorithms have a similar accuracy on most datasets, and
show improvements over web-scale k-means. These results are in agreement with the
clustering analysis which showed better local optima avoidance when working with a
stochastic approximation to the EM algorithm over a truncated subspace. The proposed
general machine learning algorithm is better at classifying event-based datasets than most
task-specific unsupervised feature extraction methods with the exception of HATS which
needs to have access to all past events to build each average time surface as evidenced
by the use of a very large decay constant. This process is costly and not scalable to very
large streams of events. Furthermore, HATS requires significant parametrisation efforts
moving between datasets, compared to our method.

We repeated the classification task on N-MNIST, this time with a linear kernel on the time
surfaces. S-GMM achieves an accuracy of 98.24% compared to 98.43% with an exponential
kernel. Working with a linear kernel eliminates costly exponential calculations at every
event, leading to further speedups in the overall classification pipeline with a negligible
impact on the final results.

4.3 A sampling-based approach for efficient learning in a Gaus-
sian Mixture Model

In this section, we propose another method for EM-based learning that uses a stochastic
truncated approximation [251] of the posterior in the E-step. This method is more involved
but it pushes the efficiency even further than the S-GMM algorithm, making it competitive
against the state-of-the art in deterministic truncated approaches [254, 243]. Instead of
sampling from a uniform distribution to identify the truncated space, we draw samples
from a proposal distribution that is based on the truncated subspace of the previous
iteration and favours clusters near the optimal cluster of the previous truncated posterior.
Our algorithm integrates recent developments in initialisation methods [247, 248] and can
be applied on coresets [249, 250] to maintain comparable performance to state-of-the-art
approaches.

Truncated approximations have been used in the past for multiple-cause models [252,
253, 254, 256] to achieve efficient training in discrete latent variable models. Stochastic
approximations on a truncated space [255, 272] focusing on deep learning models have
also been proposed. Compared to deterministic approaches, we expect a stochastic model
to avoid well-known local optima issues [257] related to EM-based learning for GMMs,
thereby improving clustering performance.

The approach we take in this work utilises a similarity matrix over the clusters in order to
identify clusters with a higher probability of being near a datapoint without having to
evaluate its distance to all clusters. Estimating the similarity matrix relies on posterior
approximations from earlier iterations and does not require excessive computation.

In the numerical experiments section, we evaluate the performance of the algorithm
and compare it to the current state of the art [243] in terms of efficiency, stability and

4.3 A sampling-based approach for efficient learning in a GMM 79

accurate cluster recovery. We focus on three types of tasks: (i) clustering on an artificial
data, (ii) clustering on popular datasets, (iii) and feature extraction for classification
on event-based data. In the artificial data section, we evaluate our algorithm in terms
of extracting the ground truth and we compare it to k-means to observe an improved
performance. We then apply the algorithm on four different datasets that are widely used
by the clustering community, namely, KDD, a protein homology dataset [273], CIFAR-10,
an image dataset [258], SONG, a dataset of music metadata [259] and SUSY, a high energy
physics dataset [260]. Finally, we present an unsupervised feature extraction application
on event-based vision data [1, 274, 264, 100]. Event-based vision sensors produce a high
amount of datapoints to represent visual information in a manner that resembles the
retina. Classical classification pipelines for computer vision are not applicable at that
scale. Results show that our algorithm sets the state of the art in terms of efficiency
without compromising stability. Our method can be applied on a wide variety of tasks
while maintaining a competitive clustering performance.

4.3.1 EM with sparsely sampled clusters for GMMs
In the interest of clarity and completeness, and to understand the differences with the
previously proposed S-GMM algorithm, some of the concepts seen in section 4.2.2 are
reiterated and explained differently.

Consider a dataset of N data points, Y =
{

y(1), . . . ,y(N)
}
. Each datapoint y(n) is treated

as an instance of a random variable Y that follows one ofM possible Gaussian distributions
p (Y |C = c; θ) = N (Y ;µc, σ1) with a prior probability distribution p (C) = 1

M , where
C takes values in {1 . . . ,M} and θ = {µ1:M , σ} denotes the set of model parameters.
We can learn the optimal parameters, θ = {µ1,...,M , σ}, by maximising the data log-
likelihood L (θ) , log p (Y = Y|θ) using the EM algorithm. The EM algorithm optimises
the free-energy which is a lower bound to the log-likelihood:

F (Y, θ) ,
∑
n

∑
c

p(n)
c log p

(
C = c, Y = y(n)|θ

)
+
∑
n

H
(
p(n)
c

)
(4.22)

=
∑
n

∑
c

p(n)
c log

p
(
C = c|Y = y(n), θ

)
p

(n)
c

+
∑
n

log p
(
Y = y(n)|θ

)
(4.23)

where H
(
p

(n)
c

)
denotes the Shannon entropy of the distribution p(n)

c . The distribution

p
(n)
c is typically set to be the posterior distribution p

(
C = c|Y = y(n); θ̂

)
, as it sets the

first term of Eq. 4.23 to 0 and the free-energy to be equal to the log-likelihood∗. Under
the assumed model constraints each Gaussian distribution is defined as

p
(
Y = y(n)|C = c; θ

)
=
(
2πσ2

)−D2 exp(−d
(n)
c

2σ2)

where d(n)
c =

∥∥∥y(n) − µc
∥∥∥2

is the squared euclidean distance between the datapoint y(n)

and the mean of Gaussian indexed by c, and D is the number of observed variables.
∗The first term of Eq. 2 is the negative KL-divergence between the distribution p(n)

c and the exact
posterior, p

(
C = c|Y = y(n), θ

)
.

80 Chapter 4. Probabilistic models

Exact EM is an iterative algorithm that optimises the likelihood by alternating between
two steps. The first step is to identify the distribution p(n)

c that sets the lower bound in
Eq. 4.23 to be equal to the log-likelihood. That is p(n)

c has to be equal to the posterior in
order to set the KL-divergence in Eq. 4.23 to be equal to 0. For the Gaussian Mixture
Model in this work that would be:

p(n)
c =

exp
(
−d(n)

c /2σ2
)

∑M
c′=1 exp

(
−d(n)

c′ /2σ2
) (4.24)

The second step is called the M-step and amounts to maximising Eq. 4.22 with respect to
θ using a gradient update as:

µc =
∑N
n=1 p

(n)
c y(n)∑N

n=1 p
(n)
c

(4.25)

σ2 = 1
DN

N∑
n=1

M∑
c=1

p(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.26)

Iterating the E-step and M-step of the EM algorithm until θ converges is the most popular
method for fitting a GMM.

The E-step requires estimating the differences between the mean of all gaussians and all
the datapoints. Thus, the complexity of the E-step is O (DNM) making it a very efficient
algorithm. However, one can notice that the E-step, Eq. 4.24, is a softmax function which
produces mostly 0 values. Here, we focus on a method to avoid estimating the softmax
over all dimensions since it leads to redundant computation.

In order to avoid the dependency of the complexity on M we use an approximation q(n)
c of

the posterior, p(n)
c , over a subset K(n) ⊂ {1, . . . ,M}, with |K(n)| = H as:

q(n)
c =

exp
(
−d(n)

c /2σ2
)

∑
c′∈K(n) exp

(
−d(n)

c′ /2σ2
)δ (c ∈ K(n)

)
(4.27)

where δ
(
c ∈ K(n)

)
is the Kronecker delta. In other words, we assume that clusters outside

K(n) have a probability of 0 for datapoint y(n), and therefore are not estimated. Using
q

(n)
c instead of p(n)

c , modifies the exact EM algorithm by not setting the KL-divergence to
0 at the E-step. However, we can derive an algorithm that monotonically increases the
free-energy by identifying a q(n)

c that decreases the KL-divergence at each E-step.

Proposition 1. Let K(n) be a set of cluster indices, and K′(n) = K(n) \ {i} ∪ {j}, where
i ∈ K(n), j /∈ K(n). Then KL[q(n)‖p(n)] < KL[q′(n)‖p(n)] if and only if d(n)

i < d
(n)
j .

Proof. Since all the Gaussians are equiprobable d(n)
i < d

(n)
j ⇒ p

(n)
i > p

(n)
j . Note that

4.3 A sampling-based approach for efficient learning in a GMM 81

limx→0 x log x = 0. It follows that:

KL[q(n)‖p(n)] < KL[q′(n)‖p(n)]

⇔
∑

c∈K(n)

q(n)
c log q

(n)
c

p
(n)
c

<
∑

c∈K′(n)

q′
(n)
c log q

′(n)
c

p
(n)
c

⇔
∑

c∈K(n)

q(n)
c log

p
(n)
c /

∑
c′∈K(n) p

(n)
c′

p
(n)
c

<
∑

c∈K′(n)

q′
(n)
c log

p
(n)
c /

∑
c′∈K′(n) p

(n)
c′

p
(n)
c

⇔
∑

c∈K(n)

q(n)
c log

∑
c′∈K(n)

p
(n)
c′ >

∑
c∈K′(n)

q′
(n)
c log

∑
c′∈K′(n)

p
(n)
c′

⇔ log
∑

c′∈K(n)

p
(n)
c′ > log

∑
c′∈K′(n)

p
(n)
c′

⇔ p
(n)
i > p

(n)
j

Proposition 1 shows that in order to decrease the KL-divergence at each E-step we only
need to iteratively renew the clusters in K(n) with clusters that are closer to the data-point,
y(n). The M-step can be modified to utilise expectation values over q(n)

c instead of p(n)
c

and maintain monotonic convergence [275].

To identify the Gaussians in K(n), we start by selecting H clusters uniformly at ran-
dom. At each iteration, we update K(n) by using R randomly sampled Gaussians in
the vicinity of the one that is nearest to the datapoint y(n). To efficiently identify the
Gaussians centred near a datapoint, we define a distribution p (Ct|Ct−1 = c̄n;S), where
c̄n = arg minc

{
d

(n)
c |c ∈ K(n)

}
. The parameter S ∈ RM×M denotes a similarity matrix

among the clusters that assigns higher values, Si,j , to cluster pairs, {i, j}, that are likely
to be close to the same datapoints, as in Eq. 4.33. The iterative update of K(n) is defined
as:

K̄(n)
t = K(n)

t−1 ∪
{
c1:R|ci ∼ p (Ct|Ct−1 = c̄n) ∧ ci /∈ K(n)

t−1

}
(4.28)

K(n)
t =

{
c|c ∈ K̄(n)

t with the H smallest d(n)
c

}
(4.29)

where t denotes the EM iteration. p (Ct|Ct−1 = c̄n;S) is the distribution that is given
by the normalised row of a cluster similarity matrix S after setting the probabilities
corresponding to K(n) to 0:

p (Ct = c|Ct−1 = c̄n;S) = Sc̄n,c∑
c′∈K(n) Sc̄n,c′

δ
(
c /∈ K(n)

)
(4.30)

i.e. the distribution at time t is given by the row defined by the cluster c̄n that had the
minimal distance with the datapoint y(n) at time t− 1.

82 Chapter 4. Probabilistic models

Algorithm 3 Data Similarity Gaussian Mixture Model (D-GMM)
Require: Dataset X , # of centres M
1: initialise µ1:M , σ, K(n) and S = 0 for all n;
2: repeat
3: J = {1, . . . , N}
4: for n ∈ J do
5: c̄n = arg minc

{
‖y(n) − µc‖2|c ∈ K(n)

}
6: p (Ct = c|Ct−1 = c̄n;S) :=

Sc̄n,c∑
c′ Sc̄n,c′

K(n) 6= ∅
1
M K(n) = ∅

7: K(n) = K(n) ∪
{
c1:R|ci ∼ p (Ct|Ct−1 = c̄n;S) and ci /∈ K(n)

}
8: for c ∈ K(n) do
9: d

(n)
c =

∥∥∥y(n) − µc
∥∥∥2

10: end for
11: K(n) =

{
c|c : with the H smallest d(n)

c

}
12: end for
13: Calculate µ1:M ,σ2, and S using Eqs. 4.31–4.33
14: until µ1:M and σ2 have converged

The parameter updates, from Eq. 4.26, are adapted to the approximate posterior.

µc =
N∑
n=1

q(n)
c y(n)/

N∑
n=1

q(n)
c (4.31)

σ2 = 1
DN

N∑
n=1

∑
c∈K(n)

q(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.32)

The similarity matrix is defined based on the distances d(n)
c under the assumption that

nearby clusters have small distances to similar datapoints

Si,j = 1
N

N∑
n=1

exp(−
(
d

(n)
i + d

(n)
j

)
)δ
(
{i, j} ⊂ K(n)

)
(4.33)

Eq. 4.33 produces a symmetric positive definite matrix that is used to sample datapoints
near the optimal at each step of the process, with a simple reduction operation over pre-
computed values. Iterating between Eq. 4.27 and the parameter updates, Eqs. 4.31-4.33,
details an algorithm that we call Data Similarity GMM (D-GMM), Algo. 3, due to the
similarity matrix being based on a data voting process. The complexity of an E-step of the
D-GMM algorithm reduces compared to an E-step of the exact EM algorithm for GMMs
from O (NMD) to O (N (R+H)D), where typically R +H << M . For the M-step, the
complexity becomes O

(
NHD +NH2) from O (NMD), however, as we will show in the

experiments’ section, H2 << M to be sufficient for most applications.

4.3 A sampling-based approach for efficient learning in a GMM 83

a) Implementation details

As before, during the first epoch of the proposed algorithm the sets K(n) are initialised
using prior samples. During the first epoch of the proposed algorithm the sets K(n) are
initialised using prior samples. The centres of the gaussians, µ1:C , are initialised using the
AFK-MC2 [248] initialisation method (Algo. 2). After an epoch has passed, the K(n) is
updated as in algorithm 3.

We can also use coresets (lwcs) to further improve computational efficiency [250, 265, 266].
The lower bound to the log-likelihood becomes:

F
(
Y ′, θ

)
,
∑
n

wn
∑

c∈K(n)

q(n)
c log p

(
C = c, Y = y(n)|θ

)
+
∑
n

wnH
(
q(n)
c

)
(4.34)

Since the parameter updates are gradient-based updates of Eq. 4.34, the weights w1:N ′
are a multiplicative constant on the parameters and therefore the parameter updates
become:

µc =
N ′∑
n=1

wnq
(n)
c y(n)/

N ′∑
n=1

wnq
(n)
c (4.35)

σ2 = 1
DN ′

N ′∑
n=1

∑
c

wnq
(n)
c

∥∥∥y(n) − µc
∥∥∥2

(4.36)

Si,j = 1
N ′

N ′∑
n=1

wn exp(−
(
d

(n)
i + d

(n)
j

)
)δ
(
{i, j} ⊂ K(n)

)
(4.37)

These updates can replace Eq. 4.31, 4.32 and 4.33 in algorithm 3 to allow applications
on a coreset Y ′. Working on coresets introduces an error in the approximation that
has been analysed rigorously in earlier work [250]. Working on coreset reduces the
complexity of D-GMM to O (N ′ (R+H)D) for the E-step and O

(
N ′HD +N ′H2) for

the M-step.

4.3.2 Experiments and results
We evaluate the performance of the algorithm experimentally on three classes of tasks.
First, we examine convergence on artificial data where the ground truth is known. We
proceed with a comparison against state-of-the-art algorithms such as vc-GMM [243, 244]
on popular clustering datasets. Lastly, to demonstrate the emerging necessity of Machine
Learning algorithms developed with high efficiency requirements, we present an application
to a dataset extracted from event-driven visions sensors. In this regime standard k-means
becomes extremely slow and we resort to efficient variants of the standard algorithm.
Lastly, we present a real world application of clustering on event-driven vision sensors for
feature extraction [261].

For all tasks, the Gaussian centres are initialised using the AFK-MC2 algorithm with
m = 5. Furthermore, we follow the same convergence protocol as in [243] and terminate
the algorithm when the free-energy increment following Eq. 4.34 is less than ε = 10−3.
Unless stated otherwise, we evaluate the stability of the results on 5 repetitions for all
experiments, unless otherwise stated.

84 Chapter 4. Probabilistic models

For clarity, below is a reminder for the hyperparameter notations:

• M denotes the number of centres

• N ′ denotes the coreset size

• H and C ′ denote the size of the truncated subspace for D-GMM and vc-GMM
respectively

• R and G are the search space hyperparameters for D-GMM and vc-GMM respectively

When choosing the truncation hyperparameters H (C ′), we consider that the probability
values of the exact posterior decays exponentially and accordingly set H = 5 (C ′ = 5)
under the assumption that lower probability values will be negligible. We follow the same
rationale for the truncation updates R (G). We use various configurations for M and N ′
so we can compare with the state of the art.

a) Artificial data

2 3 4 5 6 7 8

X
1e5

2

3

4

5

6

7

8

Y

1e5 D-GMM centresGround truth

D-GMM K-means vc-GMM
0.0

0.5

1.0

1.5

2.0

R
o

o
t
M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r

1e6

No lwcs

N'=1000

Fig. 4.9 Validation on a two-dimensional artificial dataset. (Left) D-GMM
recovers all 15 centres with N = 5000, H = 3, R = 6 and N ′ = 1000. (Right)
D-GMM outperforms other methods across 100 trials and using coresets does not
significantly increase the RMSE compared to the full dataset.

In this section, we present a convergence analysis on artificial data [267] with N = 5000
data points and 15 Gaussian centres. Fig. 4.9 on the right shows the RMSE between the
learned centres of the algorithms and the ground truth centres with and without coresets.
We compare our algorithm, D-GMM, against vc-GMM, and standard k-means, setting
the hyperparameters to M = 15, N ′ = 1000, H = C ′ = 3 and R = G = 6. The results
suggest that both truncated algorithms are able to recover the centres as well as the exact
algorithm. The slight improvement (below a standard deviation) might be attributed to
the fact that a truncated approximation will “hard–code” very low probabilities to 0 which
may enhance numerical stability. With the D-GMM algorithm, the stochastic behaviour
might also have an effect on avoiding locally optimal solutions. In Fig. 4.9 on the left, we
present an example of a run where the centres were successfully recovered.

4.3 A sampling-based approach for efficient learning in a GMM 85

b) Clustering analysis

2 4 6 8 10
Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

F
re

e
 E

n
e

rg
y

exact GMM

D-GMM

Fig. 4.10 Free-energy evolution of D-GMM on CIFAR-10 across iterations
compared to the exact algorithm. We can see that our approximation is slower to
converge, however, each iteration is considerably more efficient.

For a more detailed comparison with the state of the art, we consider a series of well-known
clustering datasets. Tab. 4.3 details a comparison between k-means, vc-GMM [243, 244],
and D-GMM. We use the k-means algorithm on the full dataset to define a baseline for
the centres. The accuracy of the algorithms is measured using the relative quantisation
error according to Eq. 4.20. Since D-GMM and vc-GMM are going through fewer clusters
per datapoint in each iteration, convergence is slower for these two algorithms (Fig. 4.10).
However, the efficiency of the algorithm is determined by the overall number of distance
evaluations. In the last two columns of Tab. 4.3, we present the average number of
iterations to convergence as well as the average speedup in terms of distance evaluations,
d

(n)
c , relative to k-means. The results show a clear speedup for D-GMM in most cases

and comparable relative quantisation error. Fig. 4.11 presents a comparison between the
efficient clustering algorithms with increasing coreset size. K-means on the full dataset
is presented as baseline. The size of each marker in Fig. 4.11 represents the size of the
coreset. We find that in most cases D-GMM clusters data with a low relative quantisation
error to the baseline for the least amount of distance evaluations.

Complexity The approximation method we use is focused on avoiding distance evalu-
ations, d(n)

c with all available clusters. Therefore, it is very efficient in problems where
a high number of clusters is expected to be present in the dataset. Fig. 4.12 (Top)
shows the scaling behaviour of our algorithm with an increasing number of clusters M on
the CIFAR-10 dataset, with M ranging from 100 to 1500 cluster centres. The distance
evaluations for each algorithm are normalised by the minimum value across all M and
presented in a log-log plot which indicates the power of the relationship between operation
complexity and number of clusters. We normalised both axes for an easier visualisation of
the complexity. As expected, the scaling behaviour of k-means is linear to the number of

86 Chapter 4. Probabilistic models

CIFAR-10 (M=500)

Distance evaluations

vc-GMM

k-means + lwcs

D-GMM

N’

vc-GMM

k-means + lwcs

D-GMM

baseline

R
e
la

ti
v
e
 q

u
a
n
ti

z
a
ti

o
n
 e

rr
o
r

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

5000 10000 15000 20000 25000 30000

0.02

0.04

0.06

0.08

0.10

0.12

Log10 # distance evaluations Coreset size (N’)

R
e
la

ti
v
e
 q

u
a
n
ti

z
a
ti

o
n
 e

rr
o
r

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

0.00

0.05

0.10

0.15

0.20

0.25

20000 40000 60000 80000 100000 120000

0.05

0.10

0.15

0.20

0.25

SONG (M=4000)

Log10 # distance evaluations Coreset size (N’)

R
e
la

ti
v
e
 q

u
a
n
ti

z
a
ti

o
n
 e

rr
o
r

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

Log10 # distance evaluations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

20000 40000 60000 80000 100000 120000

Coreset size (N’)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

SUSY (M=2000)

7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.00

0.05

0.10

0.15

0.20

5000 10000 15000 20000 25000 30000
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

KDD (M=500)

Log10 # distance evaluations Coreset size (N’)

R
e
la

ti
v
e
 q

u
a
n
ti

z
a
ti

o
n
 e

rr
o
r

Fig. 4.11 Distance evaluations vs relative quantisation error on increasingly
large datasets.

4.3 A sampling-based approach for efficient learning in a GMM 87

2 4 6 8

2

4

6

8

k-means

vc-GMM

D-GMM

N
o
rm

.
L
o
g

1
0
 #

 D
is

ta
n
c
e
 E

v
a
lu

a
ti

o
n
s

Norm. Log10 Number of Clusters

D-GMM K-means vc-GMM
0.0

0.2

0.4

0.6

0.8

1.0

R
o

o
t
M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r

No lwcs — CIFAR-10

N’ = 212 — CIFAR-10

Fig. 4.12 Operations complexity and stability on CIFAR-10 over 100 trials.
(Top) Normalised log distance evaluations for an increasing M , with 100 trials
for each M . (Bottom) RMSE between the learned centres (M = 500). (Both)
Error bars denote 1 standard deviation.

88 Chapter 4. Probabilistic models

Table 4.3: Relative quantisation error and distance evaluation speedup

Dataset Algorithm Relative Quantisation
Error η

Distance Evaluation
Speedup Iterations

name N ′

KDD
N = 145, 751
D = 74
M = 500

k-means - 0.0± 0.7% ×1.0± 0.0 5.0± 0.0
k-means + lwcs 212 14.0± 0.5% ×35.1± 0.0 5.0± 0.0

vc-GMM 212 12.0± 0.4% ×533.1± 36.5 11.7± 1.0
D-GMM 212 12.0± 1.0% ×622.1± 28.0 17.0± 0.7

CIFAR-10
Ntrain = 50, 000
Ntest = 10, 000
D = 3, 072
M = 500

k-means - 0.0± 0.0% ×1.0± 0.0 7.6± 0.4
k-means + lwcs 212 7.0± 0.1% ×48.9± 3.5 5.4± 0.4

vc-GMM 212 7.0± 0.0% ×674.7± 45.8 11.8± 0.8
D-GMM 212 8.0± 0.0% ×731.5± 41.9 21.4± 1.2

SONG
N = 515, 345
D = 90
M = 4000

k-means - 0.0± 0.0% ×1.0± 0.0 5.0± 0.0
k-means + lwcs 216 8.0± 0.0% ×7.8± 0.0 5.0± 0.0

vc-GMM 216 8.0± 0.1% ×698.2± 0.7 12.0± 0.0
D-GMM 216 8.0± 0.2% ×862.1± 18.3 21.7± 0.4

SUSY
N = 5, 000, 000

D = 18
M = 2000

k-means - 0.0± 0.0% ×1.0± 0.0 14.7± 0.4
k-means + lwcs 216 6.0± 0.1% ×11.1± 0.4 14.1± 0.5

vc-GMM 216 6.0± 0.1% ×663.1± 17.1 25.4± 0.6
D-GMM 216 5.0± 0.1% ×605.7± 11.1 55.6± 1.0

Note: preferred algorithm for each metric in bold.

clusters while the approximations are sub-linear. D-GMM is the most efficient algorithm
in terms of distance evaluations as the number of cluster centres increases.

Stability We test the ability of the algorithm to recover the same clusters using different
initialisation. We first run the clustering algorithm on CIFAR-10 without using coresets,
with hyperparameters set to M = 500, H = 5, and R = 5, and we compare the recovered
centres of every distinct pair of runs using the l2-norm between the centres after reshuffling
them. We then repeat the same experiment with N ′ = 212 to assess the stability of the
algorithm when coresets are used. The average and standard deviation between all errors
are plotted in Fig. 4.12 (Bottom). D-GMM appears to be more stable than both k-means
and vc-GMM, confirming the results obtained on the artificial dataset.

4.3.3 Large scale feature extraction for classification

To test D-GMM in a more challenging setting, we use it for feature extraction on event-
based vision datasets. Neuromorphic vision sensors [29] have independent pixels with a
tendency to generate a lot of events with a high temporal resolution. The resulting datasets
have a significantly higher number of data-points than standard vision datasets.

As features for D-GMM, we build time surfaces from events, following the same protocol
outline in section 4.2.4. After clustering the time surfaces, we train a logistic regression
classifier with a standardised spatial histogram of clusters. Tab. 4.4 summarises classifica-

4.4 Discussion 89

tion results for D-GMM on popular event-based datasets, compared to vc-GMM [243] and
the previously proposed S-GMM and u-S-GMM algorithms (section 4.2).

Setting the hyperparameters to M = 1000, H = C ′ = 5, N ′ = 216 and R = G = 40 for
comparability with results from the previous section, the classification performance of the
D-GMM is roughly equivalent to other approximation methods on most datasets, while
maintaining a clear advantage in terms of computational efficiency as reported in Tab. 4.1.
The best performances however, are reached by the u-S-GMM algorithm. On complicated
datasets such as N-Caltech101, the stochastic approximations proposed in this chapter
consistently perform better than the deterministic vc-GMM algorithm.

Table 4.4: Average classification accuracy on very large event-based datasets over 5 trials.

POKER-DVS N-CARS N-MNIST GESTURE-DVS N-CALTECH101

D-GMM 100% 85.56% 98.42% 86.97% 55.34%
S-GMM 100% 85.69% 98.43% 86.67% 55.42%
u-S-GMM 100% 85.92% 98.42% 87.42% 55.93%
vc-GMM 100% 85.65% 98.41% 87.12% 55.01%

4.4 Discussion
We have presented two novel EM-based training algorithms for the Gaussian Mixture
Model. Our algorithms considerably increase computational efficiency compared to k-
means by calculating the posterior over a data-specific subset of clusters. In the case of
the S-GMM algorithm (and the uniform prior variant), the subset is iteratively refined
in the E-step by sampling from a uniform distribution. That way, we do not add
complicated extraneous computation like other efficient approximations [243] which allows
for simple implementation in a variety of widely used software frameworks. Learning prior
distributions simplifies the parametrisation of our model by reducing the probability of
unnecessary clusters. The method is based on the exact EM for GMMs with no additional
assumptions as to the geometry of the data or the cluster centres and yet, to our knowledge,
this approximation has not been previously addressed in the relevant literature.

As for the D-GMM algorithm, the subset is iteratively refined by sampling in the neighbour-
hood of the best performing cluster at each EM iteration. To identify the neighbourhood
of each cluster we propose a similarity matrix based on earlier computed distances be-
tween the clusters and datapoints, thus avoiding additional complexity. We compare
this algorithm to vc-GMM [243] which is, to our knowledge, the most efficient GMM
algorithm currently available. In terms of computational complexity, D-GMM is more
efficient in most cases, improving both with an increasing number of datapoints and with
an increasing number of clusters compared to vc-GMM. Typical approximations of the
exponential function, and probably some other elementary operations, can still be explored
for further improvements to the implementation.

To maximise the potential of the proposed algorithms we have combined them with
lightweight coresets and the AFK-MC2 initialisation [250, 248], which are state-of-the-art
methods in the literature for GMM centre initialisation and data pre-processing respectively.

90 Chapter 4. Probabilistic models

The resulting algorithms are highly efficient and competitive in a variety of tasks, and
show increased stability in recovering cluster centres compared to other approaches. The
lack of dependency on sequential processing allows for straightforward parallelisation in
both a CPU and GPU environment.

The speedup in operations and time complexity is particularly interesting in the context
of neuromorphic computer vision applications with very large datasets. Working with
neuromorphic cameras poses a unique challenge as algorithms are expected to maintain
the platform’s low power requirements while datasets grow in size. Our computationally
efficient clustering algorithms can exploit the extremely sparse nature of event-based data
by extracting the spatio-temporal neighbourhood around each event [100] and combining
these features in a bag-of-features approach for classification with a simple linear model.
Processing events by mean of time surfaces, rather than frames, allows for finer details in
a machine learning algorithm, such as precise timing of light variation, and more generally,
information about scene dynamics that are typically lost in processing with standard
frame-based sensors. Our algorithms outperform most state-of-the-art unsupervised
methods and are even competitive against some supervised methods on datasets such as
N-MNIST, particularly when taking into consideration the reduced energy demands and
faster computation.

For compatibility with neuromorphic systems, online variants of the proposed algorithms
can be imagined [276]. Previous studies on spike-based EM even shows potential ways to
approximate our algorithms on a spiking neural network via the spike-timing-dependent
learning rule [277]. Accordingly, the ULPECmemristor-based computing system (chapter 3)
could benefit from the findings in this chapter.

Chapter 5

General discussion

This work set out to explore the importance of precise timing for energy-efficient machine
learning. In addition to the increased privacy and security, moving away from cloud
computing and on-device inference towards on-device learning is particularly beneficial for
tasks requiring fast processing and low latency. To that end, various strategies are actively
being developed to reduce the computational burden of machine learning algorithms. The
field of neuromorphic engineering shows great promise in resource-constrained environments
by going beyond the classical Von Neumann architecture [278, 24], towards systems and
computational techniques inspired by biology. Event-based vision sensors are inherently
energy-efficient by eliminating redundancy in the data and generating sparse streams of
events with high temporal resolution instead of dense frames. This paradigm shift opens
the door for novel machine learning applications that were simply not possible before
such as: ultra-low latency object detection [1]; spatio-temporal pattern recognition under
extreme lighting conditions [279]; and on-device real-time gesture recognition [31].

Instead of assessing event-based learning algorithms on the same tasks as artificial neural
networks, it is important to find scenarios where precise timing actually makes sense. We
explore in chapter 2, a simple yet elegant solution to discrete time series classification
compared to methods based on conventional machine learning [280, 281], by directly
leveraging conduction delays in a spiking neural network. To this end, we implement
Hummus, a spiking neural network simulator that allows us to work with both synaptic
weights and conduction delays in an event-based manner (see Appendix A). As an added
benefit, the simulator is interfaced with a popular machine learning framework, allowing
us to build complex neuron models for online classification.

The myelin plasticity model is an unsupervised delay learning rule for spiking neural
networks, that speeds up learning by avoiding the strict dependency on a fully-connected
architecture as seen in the relevant literature [172, 175]. We validate the myelin plasticity
model on a touch localisation task with real data gathered from an array of eight spatially-
separated piezoelectric sensors. In this particular context, delay learning is significantly
more efficient than the alternative unsupervised approach explored in [189] without
compromising the results. The myelin plasticity model can be made to work on more
complicated data by including a bio-inspired weight update rule that assigns importance

91

https://github.com/OOub/hummus

92 Chapter 5. General discussion

to synapses and extracts spatio-temporal patterns from noisy signals.

Spiking neural networks need to be simulated on massively parallel neuromorphic archi-
tectures such as SpiNNaker [107] and the Intel Loihi chip [25] as they are inefficient on
simple CPUs. Implementations of delay learning models on neuromorphic hardware have
been previously tested [282] and were shown to be effective at tasks such as real-time
robot path planning [283]. Neuromorphic computing systems improve speed and power
efficiency by limiting data movement through tightly-coupled memory or in-memory com-
puting architectures. These systems can be improved even further by using memristors
of CMOS technology [284]. Memristors were originally designed for non-volatile memory
applications. That however, has proven challenging and is a field of active research [285].
While looking for alternative use cases, scientists thought of leveraging the resistance
switching properties of memristors for learning applications [201, 229]. In collaboration
with partners on the European ULPEC project, we explore various architectures and
learning strategies for a hardware spiking neural network with memristive synapses that
operate with ultra-low power and latency. An event-based vision sensor is combined with
a memristor crossbar array connected to a layer of analog CMOS neurons. We deliver a
first attempt at using ferroelectric memristors for unsupervised learning in the context of
automated driving.

So far, memristors have been held back by reliability, speed and endurance issues. In
contrast to molecular and ionic thin film memristors, ferroelectric memristors are not
plagued by such issues. Resistance switching is a purely electronic process and does not
rely on deep structural changes such as the formation or breakdown of conductive filaments.
We briefly explore the feasibility of the myelin plasticity model on a memristive crossbar
array before moving on to alternative energy-efficient algorithms. Current waveforms
being injected into analog neurons need to be shifted by an adjustable amount of time
in order to implement learnable delays. The absence of a memory in an analog neuron
architecture makes this task difficult. A mixed-signal approach is therefore required for
memristor-based delay learning.

Instead of adding complexity to our neuromorphic computing system, we turn to synaptic
plasticity mechanisms that are directly compatible with memristors. Studies show that
the resistance switching properties of memristors can be leveraged to emulate spike-timing-
dependent plasticity (STDP) [201, 213], a biological mechanism commonly associated
with learning [219]. More specifically, memristor crossbar arrays behave similarly to an
STDP-based spiking neural network as seen in chapter 3. The crossbar design inherently
imposes a full connectivity scheme that is not ideal in data-intensive scenarios. Considering
event-based vision sensors are able to generate millions of events per second, we propose a
sparsely-connected crossbar architecture that:

• improves energy-efficiency by reducing the number of memristive synapses that need
to be simultaneously programmed

• improves classification performance by taking advantage of the local statistics in a
natural scene

When labelled datasets are available [1, 202], the classification performance of the mem-
ristive neural network can be improved by shifting to supervised learning methods. A

93

reward-modulated STDP [119] can be easily implemented on the ULPEC neuromorphic
computing system without affecting its overall design.

Memristor-based computing systems are not without drawbacks. The weight precision,
which heavily affects classification performance, is determined by the number of resistance
states that can be stabilised. We address this issue by implementing a time-invariant
STDP that quantises weights via square waveforms. However, and depending on the
physical properties of the memristive device, the weight precision of the network could
be further limited to one or two bits. We can mitigate this issue through low precision
STDP rules and threshold adaptation mechanisms [286], but these strategies are never
really competitive on realistic classification tasks.

A better solution is to move away from Hebbian learning, towards state-of-the-art multilayer
spiking neural networks trained with backpropagation-based methods [128, 92, 93, 129].
A mixed signal implementation of quantisation-aware training can even be explored
when the weight precision of memristive spiking neural networks is too low [287, 288].
Despite the expected increase in power consumption, a memristive computing system with
backpropagation-based learning would still be more efficient than other hardware solutions
with equivalent classification performance, particularly during inference.

To reduce the energy bottleneck, and for compatibility with neuromorphic systems,
backpropagation-based spiking neural networks address two major concerns with the
classical algorithm. First, the requirement for symmetrical weights between forward and
backward passes, also known as the weight transport problem [289], is avoided by using
fixed random weights in backward connections, as first outlined in [290]. Second, deep
layers are trained using local errors to bypass the update-locking problem where a full
forward pass is required before updating the parameters [93].

Event-based and frame-based methods are not necessarily mutually exclusive and can
actually complement each other. For instance, multi-sensor devices need to be able to
work with data derived from different sources. Versatile solutions that take advantage of
decades of machine learning research to handle both frames and events, are well sought
after. When working with massive streams of events, a typical pipeline involves reducing
the computational burden by building intensity images from events or working at fixed
time intervals [291], and using conventional machine learning afterwards. This is largely
due to the time complexity of event-by-event algorithms [100, 1, 98] which quickly becomes
prohibitive after a certain number of events. This issue is not well addressed in the
literature as the neuromorphic community relies on small datasets and event-based vision
sensors with low spatial resolutions. With the advent of high definition neuromorphic
cameras [26, 72, 27], event-by-event algorithms need to be rethought.

With this in mind, we devise two sublinear complexity clustering algorithms, and a C++

machine learning framework for stochastic learning of Gaussian mixtures. The framework,
Peregrine, is open source and can be used by the community to quickly cluster very
large datasets without requiring much memory. The proposed algorithms set the state
of the art in terms of computational-efficiency and improve stability compared to similar
clustering methods [261, 243]. We demonstrate the effectiveness of these algorithms in
extremely demanding settings by applying them on large event-based datasets to obtain

https://github.com/OOub/peregrine

94 Chapter 5. General discussion

features for classification using a simple linear classifier. Event-based algorithms that
construct descriptors reminiscent of local image patches [100, 1, 98, 99] currently rely on
such bag-of-feature approaches for classification tasks.

The state of the art in image classification and several other processing tasks is given
by deep learning [7, 8]. For autonomous systems such as self-driving cars, it is often
interesting to have a verifiable model. Gaussian mixture models coupled with a convex
logistic regression classifier have been used in the past [292] and are considerably simpler
to interpret than deep learning models. Recent advances in the field [293, 294, 295, 296]
support our approach and suggest that combining well-designed feature extractors with a
single linear layer of classification leads to a rather small difference in accuracy compared
to convolutional neural networks.

As part of an online learning system, our efficient clustering methods can be implemented on
field-programmable gate arrays [297], and modified to use incremental parameter updates.
Taking it a step further, we can even use our findings to improve the computational efficiency
of popular event-by-event algorithms. For instance, the iterative online clustering method
introduced in HOTS [100, 31] can be refactored to work on truncated sets (chapter 4)
instead of having to compute all distances at every event, paving the way for online
clustering algorithms suitable for event-based datasets with a very large number of centres
and datapoints.

In closing, co-designing hardware and software seems to be a necessary step for on-device
learning. Neuromorphic systems and more specifically memristor crossbar arrays are
thought to be an ideal solution to the machine learning bottleneck [298], particularly
when coupled with temporal learning rules such as synaptic plasticity. These systems
are still in the research phase and a couple of issues need to addressed before they can
reach maturity: (i) the memristor fabrication (ii) the scalability of the system; and
(iii) the performance of event-based learning rules. Nevertheless, we can already reach
reasonable accuracies on handwritten digit recognition tasks. When a system is tailored
for a very specific task, it is better to bypass on-device learning and train state-of-the-art
artificial neural networks instead, which are then transferred to memristive systems for
very efficient inference [126]. The neuromorphic community tends to greatly focus on
classification tasks where supervised learning is clearly advantageous. However, machine
learning offers opportunities beyond classification. Clustering methods are often used in
unsupervised settings such as spike sorting, image segmentation and even for medical
diagnosis to find common patterns between patients [299]. Unsupervised learning rules for
spiking neural networks are not yet competitive with conventional unsupervised machine
learning methods. Bridging the gap between both approaches, stochastic approximations
of Gaussian mixture models allow us to efficiently handle a wide variety of unlabelled
datasets including massive streams of events. These techniques can be optimised to work
in resource-constrained environments.

Appendix A

Hummus: event-based spiking neural
network simulator

Every experiment described in chapters 2 and 3 were done using Hummus, an open source
spiking neural network simulator coded using the C++17 standard, and built first and
foremost for neuromorphic computer vision and pattern recognition tasks. Hummus
was born out of the inflexibility of other simulators to adapt according the needs of the
neuromorphic engineering field, whether by placing too many constraints for biological
realism, or by limiting compatibility with the event-based paradigm for performance
reasons. We wanted to easily explore precise timing-based learning rules that make use of
conduction delays in addition to synaptic weights, and work with neurons that include
non-linear event-based current dynamics without having to delve into endless lines of
code. In that regard, Hummus was developed with two goals in mind: flexibility and
simplicity.

Through polymorphic classes (Fig. A.1), we made it easy to extend the simulator with new
add-ons, learning rules, neuron models or synapse types in a completely separate header
file without having to make change to the main code. Each polymorphic class has a set of
virtual methods acting as messages that can be used throughout the network for different
purposes such as indicating when a neuron spikes or when a learning rule is ready to be
activated. Furthermore, we interfaced the simulator with the Sepia I/O library which
allows us to directly use the output of event-based cameras in a spiking neural network.
Fig. A.2 demonstrates the simplicity of setting up an SNN for classifying the output of
event-based cameras. Indeed, all the complexity is hidden in the back end of the simulator
and this code snippet only showcases a few of the available methods to set up an SNN but
reservoir computing, recurrent connections and convolutional and pooling layers can all
be easily initialised.

As an added option, the simulator is interfaced with libtorch, the C++ front end of the
PyTorch machine learning framework. We’ve already implemented a logistic regression-
based online classification neuron model in the simulator to improve pattern classification
performance. It is important to note that the simulator is a work in progress and
performance improvements need to be made through parallelisation and vectorisation C++

95

https://github.com/neuromorphic-paris/sepia
https://pytorch.org

96 Appendix A. Hummus: event-based spiking neural network simulator

libraries.

The simulator is able to run in a clock-based mode where neurons are updated at fixed
intervals, and in an event-based mode where neurons are asynchronously updated with
incoming spikes. In that regard, we implemented a fully event-based leaky integrate
and fire neuron with complex current dynamics and synapses that can have adjustable
conduction delays. The clock-based mode is particularly useful for neuron models with a
membrane equation that does not have an analytical solution, such as the model using for
the myelin plasticity delay learning rule presented in chapter 2. In this case, the solution
is approximated with a numerical solution that relies on updating the neurons at fixed
time intervals.

Decision_Making

CUBA_LIF

Parrot

ULPEC_LIF*

ULPEC_Input*

NeuronDataParser

SpikeLogger

PotentialLogger

Connectivity

WeightMaps

MyelinPlasticity
Logger Analysis

Normal

Uniform

Exponential

Square

Memristor*

Network

AddonMainAddonDisplay

MyelinPlasticity

STDP

ULPEC_STDP*

Synapse

Regression

Neuron models

Random distributions Classifiers

Learning rules Data loggers Other addons

Fig. A.1 UML diagram for the Hummus spiking neural network simulator coded
in C++17. Polymorphic classes that can easily be extended are shown in red. The
random distribution classes are used to initialise synaptic weights and delays in
methods of the Network class that connect layers of neurons. The only external
dependencies are Qt5 when the GUI is used (Display class), and PyTorch’s C++

frontend when a logistic regression classifier is needed (Regression class). Classes
marked by an asterisk are specific to the memristor-based visual data processing
system seen in chapter 3.

97

#include <iostream>
#include "../source/core.hpp"
#include "../source/neurons/parrot.hpp"
#include "../source/neurons/cuba_lif.hpp"
#include "../source/neurons/regression.hpp"
#include "../source/learning_rules/stdp.hpp"
#include "../source/addons/analysis.hpp"

int main(int argc, char** argv) {
using namespace hummus;

// load data
DataParser parser;
auto training_dataset = parser.load_data("path/to/dataset/train");
auto test_dataset = parser.load_data("path/to/dataset/test");

// initialise add-ons and STDP learning rule
Network network;
auto& analysis = network.make_addon<Analysis>(test_dataset.labels);
auto& stdp = network.make_addon<STDP>;

// LIF layer parameters
int n = 100 // number of neurons
int tau_ref = 3; // refractory period (ms)
float C = 200; // capacitance (pF)
float Gl = 10; // leak conductanec (nS)
bool WTA = true; // enables winner-takes-all mechanism

// STDP-based 2-layer spiking neural network with all to all connected synapses
auto input = network.make_grid<Parrot>(28, 28); // 2D input layer of 784 neurons
auto output = network.make_layer<CUBA_LIF>(n, {&stdp}, tau_ref, C, Gl, WTA);
network.all_to_all<Square>(input, output, Uniform(0, 1));

// pytorch logistic regression classifier trained on output spikes
auto classifier = network.make_logistic_regression<Regression>(training_dataset,

test_dataset);
// run network and print classification accuracy
network.run_es_database(training_dataset.files, test_dataset.files);
analysis.accuracy();

return 0;
}

Fig. A.2 Code snippet showcasing the simplicity of Hummus in pattern recogni-
tion tasks. In 12 lines we can (i) read training and test datasets originating from
event-based cameras (Event Stream format), (ii) initialise a 2-layer network with
all-to-all connected STDP synapses characterised by square-shaped excitatory
postsynaptic currents (EPSC) and a winner-take-all scheme on the output layer,
(iii) use a PyTorch logistic regression classifier, trained on the output spikes, as an
extra layer of the SNN for online classification purposes, and finally (iv) we can
directly get the classification accuracy once running is complete. For simplicity,
we use default values for all functions but everything can be parametrised.

https://github.com/neuromorphic-paris/event_stream

Appendix B

Solution to the LIF membrane poten-
tial equation

The leaky integrate and fire neuron used by the myelin plasticity delay learning rule
presented in chapter 2, is described by the following differential equation:

τm ·
dV (t)
dt

= EL − V (t) +Rm · I(t) (B.1)

Where EL is the resting membrane potential, Rm indicates the membrane resistance and
I(t) is the input current at time t. In order to get an exponential excitatory post-synaptic
current (EPSC) shape, I(t) takes the form:

I (t) = Iinj ·
∑
i

wi · e
− t−si
τsyn · H (t) (B.2)

where Iinj is the injected current every time a neuron fires, wi indicates the synaptic
weight of synapse i, τsyn is the synaptic time constant, and H(t) is the Heaviside step
function which represents the discontinuous behaviour of a spike. For a single synapse i
and by focusing on the range [si, t] where H(t) = 1:

Ii(t) = Iinj · wi · e
− t−si
τsyn (B.3)

In order to solve the differential equation, we start with the standard form below:

dVi(t)
dt

+ 1
τm
· Vi(t) = EL +Rm · Iinj · wi · e

− t−si
τsyn

τm
(B.4)

We set P (t) = 1
τm

and Q(t) = EL+Rm·Iinj ·wi·e
− t−siτsyn

τm
. We can now determine the integrating

factor λ(t) such that:

99

100 Appendix B. Solution to the LIF membrane potential equation

λ(t) = e

∫ t
si
P (t̄)dt̄

= e
t−si
τm

(B.5)

Assuming initial conditions such that Vi(si) = EL the general solution for the differential
equation takes the form:

Vi(t) = 1
λ(t)

[∫ t

si

λ(t̄) ·Q(t̄)dt̄+ C

]

= e−
t−si
τm

∫ t

si

e
t̄−si
τm · EL +Rm · Iinj · wi · e

− t̄−si
τsyn

τm
dt̄+ C

= e−

t−si
τm

[
EL
τm
· e−

si
τm

∫ t

si

e
t̄
τm dt̄+ Rm · Iinj · wi

τm

∫ t

si

e
t̄−si
τm · e−

t̄−si
τsyn dt̄+ C

]
= e−

t−si
τm

[
EL · e−

si
τm (e

t
τm − e

si
τm)+ Rm · Iinj · wi

τm
· e

si
τsyn · e−

si
τm∫ t

si

e
t̄
τm · e−

t̄
τsyn dt̄+ C

]
= e−

t−si
τm

[
EL · e−

si
τm (e

t
τm − e

si
τm)+ Rm · Iinj · wi · τsyn

τm − τsyn
· e

si
τsyn · e−

si
τm

(e
si
τm · e−

si
τsyn − e

t
τm · e−

t
τsyn) + C

]
= EL − EL · e−

t−si
τm + Rm · Iinj · wi · τsyn

τm − τsyn
· (e−

t−si
τm − e−

t−si
τsyn) + Ce−

t−si
τm

(B.6)

Solving for Vi(si):
C = EL (B.7)

The solution to the membrane differential equation becomes:

Vi(t) = EL + Rm · Iinj · wi · τsyn
τm − τsyn

· (e−
t−si
τm − e−

t−si
τsyn) (B.8)

Appendix C

Deriving GMM parameter updates

In the Gaussian mixture models (GMM) presented in section 4.2, for a dataset
Y =

{
y(1), . . . ,y(N)

}
with M Gaussian distributions, each one is defined as:

p
(
Y = y(n)|C = c; θ

)
= (2πσ2)

D
2 exp

−
∥∥∥y(n) − µc

∥∥∥2

2σ2

 (C.1)

where θ = {µ1:M ,Σ1:M , α1:M} indicates the model parameters. The prior distribution αc
is defined as:

p (C = c; θ) = αc (C.2)
where

∑
c αc = 1. The variational Gaussian mixture models presented in section 4.2 rely

on the Expectation Maximisation algorithm to optimise the free energy which is a lower
bound to the log likelihood:

F (Y, θ) ,
N∑
n=1

∑
c∈K(n)

p(n)
c log p

(
Y = y(n)|C = c; θ

)
p (C = c|θ) +

N∑
n=1
H
(
p(n)
c

)
(C.3)

,
N∑
n=1

∑
c∈K(n)

p(n)
c log

(
1

(2πσ2
c)

D
2

exp
(
−‖y

(n) − µc‖2

2σ2
c

)
αc

)
+

N∑
n=1
H
(
p(n)
c

)
(C.4)

(C.5)

where p(n)
c is the posterior distribution and H

(
p

(n)
c

)
indicates the entropy.

In order to reduce the complexity of our GMM algorithms we use an approximation
technique that avoids calculating the full posterior distribution. Instead, we estimate p(n)

c

over a subset K(n) ⊂ {1, . . . ,M}, with |K(n)| = H. The approximation q
(n)
c to the full

posterior p(n)
c becomes:

q(n)
c =

(
2πσ2

c

)−D/2 exp
(
−d(n)

c /2σ2
c

)
αc∑

c′∈K(n)
(
2πσ2

c′
)−D/2 exp

(
−d(n)

c′ /2σ2
c′

)
αc′

δ
(
c ∈ K(n)

)
(C.6)

101

102 Appendix C. Deriving GMM parameter updates

Reminder on posterior probabilities:

p(x, y) =p(y, x)⇔
p(x|y)p(y) =p(y|x)p(x)⇔

p(x|y) =p(y|x)p(x)
p(y) ⇔

p(x|y) =p(y|x)p(x)∑
x p(x, y) ⇔

p(x|y) = p(y|x)p(x)∑
x p(y|x)p(x)

where x is the cluster centre and y is a datapoint. p(y|x) defines the
Gaussian of a particular cluster and p(x) is the probability of that cluster.

The model parameters are updated according to the following equations:

µc =
∑N
n=1 q

(n)
c y(n)∑N

n=1 q
(n)
c

(C.7)

σ2
c = 1

D
∑
n q

(n)
c

N∑
n=1

q(n)
c

∥∥∥y(n) − µc
∥∥∥2

(C.8)

αc =
∑N
n=1 q

(n)
c∑N

n=1
∑M
c′=1 q

(n)
c′

(C.9)

C.1 Deriving the variance σ2

We differentiate the lower bound to the log likelihood with respect to σc:

∂

∂σc
F (Y, θ) =

N∑
n=1

∂

∂σc

〈
−D2 log(2πσ2

c)−
‖y(n) − µc‖2

2σ2
c

〉
q

(C.10)

=
N∑
n=1

(
−q(n)

c

D

2
2πσc
πσ2

c

+ q(n)
c

‖y(n) − µc‖2

σ3
c

)
(C.11)

= −
N∑
n=1

q(n)
c

D

σc
+

N∑
n=1

q(n)
c

‖y(n) − µc‖2

σ3
c

(C.12)

where <>q denotes expectation with respect to q(n)
c .

C.2 Deriving the mean µ 103

We now compare the gradient of the free energy to 0:

−
N∑
n=1

q(n)
c

D

σc
+

N∑
n=1

q(n)
c

‖y(n) − µc‖2

σ3
c

= 0 (C.13)

⇔
N∑
n=1

q(n)
c

D

σc
=

N∑
n=1

q(n)
c

‖y(n) − µc‖2

σ3
c

(C.14)

⇔ σ3
c

σc

N∑
n=1

q(n)
c D =

N∑
n=1

q(n)
c ‖y(n) − µc‖2 (C.15)

⇔ σ2
c = 1

D
∑N
n=1 q

(n)
c

N∑
n=1

q(n)
c ‖y(n) − µc‖2 (C.16)

(C.17)

C.2 Deriving the mean µ

Similarly, we start by differentiating the free energy with respect to µc:

∂

∂µc
F (Y, θ) = −

N∑
n=1

∂

∂µc

〈
‖y(n) − µc‖2

2σ2
c

〉
q

= (C.18)

= −
N∑
n=1

q(n)
c

2
(
y(n) − µc

)
2σ2

c

(C.19)

= −
N∑
n=1

q(n)
c

y(n)

σ2
c

+
N∑
n=1

q(n)
c

µc
σ2
c

(C.20)

We solve the equation by setting it to 0:

−
N∑
n=1

q(n)
c

y(n)

σ2
c

+
N∑
n=1

q(n)
c

µc
σ2
c

= 0 (C.21)

⇔
N∑
n=1

q(n)
c

µc
σ2
c

=
N∑
n=1

q(n)
c

y(n)

σ2
c

(C.22)

⇔
N∑
n=1

q(n)
c µc =

N∑
n=1

q(n)
c y(n) (C.23)

⇔ µc =
∑N
n=1 q

(n)
c y(n)∑N

n=1 q
(n)
c

(C.24)

104 Appendix C. Deriving GMM parameter updates

C.3 Deriving the prior distribution α

To derive the prior update, we constrain the free energy gradient such that
∑M
c′=1 αc′ = 1

using the method of Lagrange multipliers:

∂

∂αc

(
F (Y, θ) + λ

(
M∑
c′=1

αc′ − 1
))

=
N∑
n=1

∂

∂αc
〈logαc〉q + λ

∂

∂αc

(
M∑
c′=1

αc′ − 1
)

(C.25)

=
N∑
n=1

q
(n)
c

αc
+ λ (C.26)

We now set this equation to 0:

N∑
n=1

q
(n)
c

αc
+ λ = 0 (C.27)

⇔ αc = −
∑N
n=1 q

(n)
c

λ
(C.28)

Knowing that
∑M
c′=1 αc′ = 1, we can solve for λ:

M∑
c′=1

αc′ = 1 (C.29)

⇔
M∑
c′=1
−
∑N
n=1 q

N
c′

λ
= 1 (C.30)

⇔ λ = −
M∑
c′=1

N∑
n=1

qNc′ (C.31)

The prior update equation becomes:

αc =
∑N
n=1 q

(n)
c∑M

c′=1
∑N
n=1 q

N
c′

(C.32)

Mean µ and variance σ2 updates for section 4.3 are derived following the same steps, but
the algorithm uses uniform priors where: p (C = c) = αc = 1

M ,∀c ∈ {1, . . . ,M}.

Bibliography

[1] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “Hats: His-
tograms of averaged time surfaces for robust event-based object classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1731–1740. v, 9, 10, 11, 14, 32, 33, 48, 50, 51, 63, 77, 79, 91, 92, 93, 94

[2] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1963. xi

[3] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010. xi

[4] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, p.
106, 1962. xi, 4, 51

[5] K. Fukushima, “A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position,” Biol. Cybern., vol. 36, pp. 193–202, 1980.
xi, 4, 51

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998. xi, 5, 9

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105. xi, 5, 9, 14, 51, 94

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778. xi, 77, 94

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without human
knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017. xi

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,”
arXiv preprint arXiv:1508.06576, 2015. xi

[11] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint arXiv:1801.00631,
2018. xi

105

106 BIBLIOGRAPHY

[12] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
deep learning in nlp,” arXiv preprint arXiv:1906.02243, 2019. xi

[13] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal
of Big data, vol. 3, no. 1, p. 9, 2016. xi

[14] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” arXiv preprint arXiv:1803.03635, 2018. xi

[15] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, X. Huang,
R. Hurtado, D. Kanter, A. Lokhmotov et al., “Benchmarking tinyml systems:
Challenges and direction,” arXiv preprint arXiv:2003.04821, 2020. xi

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, 2017, pp. 1–12. xi, 14

[17] S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and S. Markidis, “Exploring the
vision processing unit as co-processor for inference,” in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2018,
pp. 589–598. xi

[18] W. Maass, C. H. Papadimitriou, S. Vempala, and R. Legenstein, Brain Computation:
A Computer Science Perspective. Cham: Springer International Publishing, 2019,
pp. 184–199. [Online]. Available: https://doi.org/10.1007/978-3-319-91908-9_11 xi,
1

[19] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike Timing Dependent Plasticity
Finds the Start of Repeating Patterns in Continuous Spike Trains,” PLoS ONE,
vol. 3, no. 1, pp. e1377–9, Jan. 2008. xi, 13, 14

[20] R. Brette, “Computing with neural synchrony,” PLoS Comput Biol, vol. 8, no. 6, p.
e1002561, 2012. xi

[21] C. A. Mead and M. A. Mahowald, “A silicon model of early visual processing,”
Neural networks, vol. 1, no. 1, pp. 91–97, 1988. xii, 7

[22] M. A. Mahowald, “Silicon retina with adaptive photoreceptors,” in Visual information
processing: from neurons to chips, vol. 1473. International Society for Optics and
Photonics, 1991, pp. 52–58. xii, 7

[23] M. Mahowald, “Vlsi analogs of neuronal visual processing: a synthesis of form and
function,” Ph.D. dissertation, California Institute of Technology Pasadena, 1992. xii,
7

[24] T. Delbruck, Y. Hu, and Z. He, “V2e: From video frames to realistic dvs event
camera streams,” arXiv preprint arXiv:2006.07722, 2020. xii, 8, 91

[25] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018. xii, 12, 14, 92

https://doi.org/10.1007/978-3-319-91908-9_11

BIBLIOGRAPHY 107

[26] J. Huang, M. Guo, and S. Chen, “A dynamic vision sensor with direct logarithmic
output and full-frame picture-on-demand,” in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), 2017, pp. 1–4. xii, xiii, 9, 11, 31, 61, 93

[27] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni, E. Reynaud,
P. Mostafalu, F. Brady, L. Chotard, F. LeGoff, H. Takahashi, H. Wakabayashi,
Y. Oike, and C. Posch, “5.10 a 1280×720 back-illuminated stacked temporal contrast
event-based vision sensor with 4.86µm pixels, 1.066geps readout, programmable
event-rate controller and compressive data-formatting pipeline,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020, pp. 112–114. xii,
xiii, 9, 11, 61, 93

[28] S.-C. Liu and A. van Schaik, Neuromorphic Sensors, Cochlea. New
York, NY: Springer New York, 2013, pp. 1–5. [Online]. Available: https:
//doi.org/10.1007/978-1-4614-7320-6_118-1 xii

[29] C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic range frame-
free pwm image sensor with lossless pixel-level video compression and time-domain
cds,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 259–275, 2010. xii, 9,
32, 37, 77, 88

[30] T. Wunderlich, A. F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S. A. Aamir,
A. Grübl, A. Heimbrecht, K. Schreiber, D. Stöckel et al., “Demonstrating advantages
of neuromorphic computation: a pilot study,” Frontiers in neuroscience, vol. 13, p.
260, 2019. xii

[31] J.-M. Maro, S.-H. Ieng, and R. Benosman, “Event-based gesture recognition with
dynamic background suppression using smartphone computational capabilities,”
Frontiers in Neuroscience, vol. 14, p. 275, 2020. xii, 10, 11, 14, 91, 94

[32] R. Hornig, M. Dapper, E. Le Joliff, R. Hill, K. Ishaque, C. Posch, R. Benosman,
Y. LeMer, J.-A. Sahel, and S. Picaud, “Pixium vision: first clinical results and
innovative developments,” in Artificial Vision. Springer, 2017, pp. 99–113. xii, 15,
16

[33] F. Galluppi, D. Pruneau, J. Chavas, X. Lagorce, C. Posch, G. Chenegros, G. Cordurié,
C. Galle, N. Oddo, and R. Benosman, “A stimulation platform for optogenetic and
bionic vision restoration,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2017, pp. 1–4. xii, 16, 17

[34] P.-H. Prévot, K. Gehere, F. Arcizet, H. Akolkar, M. A. Khoei, K. Blaize, O. Oubari,
P. Daye, M. Lanoë, M. Valet, S. Dalouz, P. Langlois, E. Esposito, V. Forster,
E. Dubus, N. Wattiez, E. Brazhnikova, C. Nouvel-Jaillard, Y. LeMer, J. Demilly,
C.-M. Fovet, P. Hantraye, M. Weissenburger, H. Lorach, E. Bouillet, M. Deterre,
R. Hornig, G. Buc, J.-A. Sahel, G. Chenegros, P. Pouget, R. Benosman, and
S. Picaud, “Behavioural responses to a photovoltaic subretinal prosthesis implanted
in non-human primates,” Nature Biomedical Engineering, vol. 4, no. 2, pp. 172–180,
Feb. 2020. [Online]. Available: http://www.nature.com/articles/s41551-019-0484-2
xii, 9, 16, 18

https://doi.org/10.1007/978-1-4614-7320-6_118-1
https://doi.org/10.1007/978-1-4614-7320-6_118-1
http://www.nature.com/articles/s41551-019-0484-2

108 BIBLIOGRAPHY

[35] W. Maass, “Networks of spiking neurons: the third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997. xii, 12, 14

[36] M. P. Mattson, “Superior pattern processing is the essence of the evolved human
brain,” Frontiers in neuroscience, vol. 8, p. 265, 2014. 1

[37] B. Duchaine, L. Cosmides, and J. Tooby, “Evolutionary psychology and the brain,”
Current opinion in neurobiology, vol. 11, no. 2, pp. 225–230, 2001. 1

[38] T. Gollisch and M. Meister, “Eye smarter than scientists believed: neural computa-
tions in circuits of the retina,” Neuron, vol. 65, no. 2, pp. 150–164, 2010. 1, 3, 14,
16

[39] G. Schwartz and M. J. Berry 2nd, “Sophisticated temporal pattern recognition in
retinal ganglion cells,” Journal of neurophysiology, vol. 99, no. 4, pp. 1787–1798,
2008. 1

[40] C. Stangor, J. Walinga et al., Introduction to Psychology-1st Canadian Edition.
BCcampus, 2018. 2, 3, 4

[41] M. D. Binder, N. Hirokawa, and U. Windhorst, Encyclopedia of neuroscience.
Springer Berlin, Germany, 2009, vol. 3166. 2

[42] H. Kolb, E. Fernandez, and R. Nelson, Photoreceptors–Webvision: The Organization
of the Retina and Visual System. University of Utah Health Sciences Center, 1995.
2

[43] D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate
body,” The Journal of Physiology, vol. 155, no. 2, p. 385, 1961. 3, 7

[44] T. Ichinose, B. Fyk-Kolodziej, and J. Cohn, “Roles of on cone bipolar cell subtypes
in temporal coding in the mouse retina,” Journal of Neuroscience, vol. 34, no. 26,
pp. 8761–8771, 2014. 3

[45] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system,”
nature, vol. 381, no. 6582, pp. 520–522, 1996. 3

[46] S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies for rapid pro-
cessing,” Neural networks, vol. 14, no. 6-7, pp. 715–725, 2001. 3, 25

[47] G. D. Field and E. Chichilnisky, “Information processing in the primate retina:
circuitry and coding,” Annu. Rev. Neurosci., vol. 30, pp. 1–30, 2007. 3

[48] W. A. MacKay, Neuro 101: Neurophysiology without tears. Sefalotek, 2010. 4

[49] M. A. Goodale, A. D. Milner et al., “Separate visual pathways for perception and
action,” Trends in neurosciences, 1992. 4

[50] L. G. Ungerleider and J. V. Haxby, “‘what’ and ‘where’ in the human brain,” Current
opinion in neurobiology, vol. 4, no. 2, pp. 157–165, 1994. 4

[51] D. Van Essen and E. DeYoe, “Concurrent processing in the primate visual cortex. u
ms gazzaniga (ed.), the cognitive neuroscience,” 1995. 4

BIBLIOGRAPHY 109

[52] C. J. Perry and M. Fallah, “Feature integration and object representations along
the dorsal stream visual hierarchy,” Frontiers in computational neuroscience, vol. 8,
p. 84, 2014. 4

[53] E. Freud, D. C. Plaut, and M. Behrmann, “‘what’ is happening in the dorsal visual
pathway,” Trends in Cognitive Sciences, vol. 20, no. 10, pp. 773–784, 2016. 4

[54] J. Wilson and S. M. Sherman, “Receptive-field characteristics of neurons in cat
striate cortex: changes with visual field eccentricity,” Journal of Neurophysiology,
vol. 39, no. 3, pp. 512–533, 1976. 5

[55] J. P. Van Kleef, S. L. Cloherty, and M. R. Ibbotson, “Complex cell receptive fields:
evidence for a hierarchical mechanism,” The Journal of physiology, vol. 588, no. 18,
pp. 3457–3470, 2010. 5

[56] J. Mantas, “An overview of character recognition methodologies,” Pattern recognition,
vol. 19, no. 6, pp. 425–430, 1986. 5

[57] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning
from simulated and unsupervised images through adversarial training,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2107–
2116. 7

[58] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-driving cars,”
in 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1856–1860. 7

[59] C. R. Pereira, D. R. Pereira, F. A. Silva, J. P. Masieiro, S. A. Weber, C. Hook,
and J. P. Papa, “A new computer vision-based approach to aid the diagnosis of
parkinson’s disease,” Computer Methods and Programs in Biomedicine, vol. 136, pp.
79–88, 2016. 7

[60] E. R. Fossum, “Active pixel sensors: Are ccds dinosaurs?” in Charge-Coupled Devices
and Solid State Optical Sensors III, vol. 1900. International Society for Optics and
Photonics, 1993, pp. 2–14. 7

[61] T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE
Transactions on neural networks, vol. 4, no. 3, pp. 529–541, 1993. 7

[62] R. Etienne-Cummings and J. Van der Spiegel, “Neuromorphic vision sensors,” Sensors
and Actuators A: Physical, vol. 56, no. 1-2, pp. 19–29, 1996. 7

[63] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 db 15µ s latency
asynchronous temporal contrast vision sensor,” IEEE journal of solid-state circuits,
vol. 43, pp. 566–576, 2008. 7, 8

[64] M. A. Sivilotti, “Wiring considerations in analog vlsi systems, with application to
field-programmable networks.” 1991. 7

[65] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. Davison, J. Conradt, K. Daniilidis et al., “Event-based vision: A survey,”
arXiv preprint arXiv:1904.08405, 2019. 8, 61

110 BIBLIOGRAPHY

[66] X. Berthelon, G. Chenegros, T. Finateu, S.-H. Ieng, and R. Benosman, “Effects of
cooling on the snr and contrast detection of a low-light event-based camera,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 12, no. 6, pp. 1467–1474,
2018. 9

[67] S. Mafrica, S. Godiot, M. Menouni, M. Boyron, F. Expert, R. Juston, N. Marchand,
F. Ruffier, and S. Viollet, “A bio-inspired analog silicon retina with michaelis-menten
auto-adaptive pixels sensitive to small and large changes in light,” Optics express,
vol. 23, no. 5, pp. 5614–5635, 2015. 9

[68] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128× 128 1.5contrast sensitiv-
ity 0.9dynamic vision sensor using transimpedance preamplifiers,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 3, pp. 827–838, 2013. 9

[69] M. Yang, S. Liu, and T. Delbruck, “A dynamic vision sensor with 1temporal contrast
sensitivity and in-pixel asynchronous delta modulator for event encoding,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2149–2160, 2015. 9

[70] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck, “A 240 × 180 130 db 3 µs
latency global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 10, pp. 2333–2341, 2014. 9

[71] B. Son, Y. Suh, S. Kim, H. Jung, J. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo,
Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu, “4.1 a 640×480 dynamic
vision sensor with a 9µm pixel and 300meps address-event representation,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 66–67. 9

[72] S. Chen and M. Guo, “Live demonstration: Celex-v: a 1m pixel multi-mode event-
based sensor,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019, pp. 0–0. 9, 31, 61, 62, 93

[73] A. I. Maqueda, A. Loquercio, G. Gallego, N. García, and D. Scaramuzza, “Event-
based vision meets deep learning on steering prediction for self-driving cars,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 5419–5427. 9, 14, 63

[74] M. B. Milde, O. J. Bertrand, R. Benosmanz, M. Egelhaaf, and E. Chicca, “Bioinspired
event-driven collision avoidance algorithm based on optic flow,” in 2015 Interna-
tional Conference on Event-based Control, Communication, and Signal Processing
(EBCCSP). IEEE, 2015, pp. 1–7. 9, 12

[75] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986. 9

[76] R. Ghosh, A. Gupta, A. Nakagawa, A. Soares, and N. Thakor, “Spatiotemporal
filtering for event-based action recognition,” arXiv preprint arXiv:1903.07067, 2019.
9

[77] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-to-end learning
of representations for asynchronous event-based data,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 5633–5643. 9

BIBLIOGRAPHY 111

[78] S. Gao, G. Guo, H. Huang, X. Cheng, and C. P. Chen, “An end-to-end broad learning
system for event-based object classification,” IEEE Access, vol. 8, pp. 45 974–45 984,
2020. 9

[79] Q. Wang, Y. Zhang, J. Yuan, and Y. Lu, “Space-time event clouds for gesture
recognition: from rgb cameras to event cameras,” in 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 2019, pp. 1826–1835. 9

[80] Y. Sekikawa, K. Hara, and H. Saito, “Eventnet: Asynchronous recursive event
processing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3887–3896. 9

[81] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 652–660. 9

[82] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos, “Graph-based
object classification for neuromorphic vision sensing,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 491–501. 9

[83] J. Kogler, C. Sulzbachner, and W. Kubinger, “Bio-inspired stereo vision system with
silicon retina imagers,” in International Conference on Computer Vision Systems.
Springer, 2009, pp. 174–183. 9

[84] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Ev-flownet: Self-supervised
optical flow estimation for event-based cameras,” arXiv preprint arXiv:1802.06898,
2018. 9

[85] A. Chadha, Y. Bi, A. Abbas, and Y. Andreopoulos, “Neuromorphic vision sensing for
cnn-based action recognition,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7968–7972.
9

[86] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-video: Bringing
modern computer vision to event cameras,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 3857–3866. 9, 63

[87] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low power, fully event-based
gesture recognition system,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7243–7252. 9, 63, 77

[88] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asynchronous convolu-
tional networks for object detection in neuromorphic cameras,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019,
pp. 0–0. 9

[89] B. R. Pradhan, Y. Bethi, S. Narayanan, A. Chakraborty, and C. S. Thakur, “N-
har: A neuromorphic event-based human activity recognition system using memory
surfaces,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2019, pp. 1–5. 9

112 BIBLIOGRAPHY

[90] S. Afshar, T. J. Hamilton, J. Tapson, A. van Schaik, and G. Cohen, “Investigation
of event-based surfaces for high-speed detection, unsupervised feature extraction,
and object recognition,” Frontiers in neuroscience, vol. 12, p. 1047, 2019. 10, 11

[91] G. Orchard, X. Lagorce, C. Posch, S. B. Furber, R. Benosman, and F. Galluppi,
“Real-time event-driven spiking neural network object recognition on the spinnaker
platform,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2015, pp. 2413–2416. 10

[92] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and
W. Maass, “A solution to the learning dilemma for recurrent networks of spiking
neurons,” bioRxiv, p. 738385, 2020. 10, 13, 93

[93] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for deep contin-
uous local learning (decolle),” Frontiers in Neuroscience, vol. 14, p. 424, 2020. 10,
13, 60, 93

[94] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in
Advances in Neural Information Processing Systems, 2018, pp. 1412–1421. 10, 13,
20, 63, 77

[95] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016. 10, 13, 63

[96] L. R. Iyer and A. Basu, “Unsupervised learning of event-based image recordings
using spike-timing-dependent plasticity,” International Joint Conference on Neural
Networks (IJCNN), 2017. 10, 13, 38, 45, 46, 50, 51

[97] J. C. Thiele, O. Bichler, and A. Dupret, “A timescale invariant stdp-based spiking
deep network for unsupervised online feature extraction from event-based sensor
data,” in 2018 International Joint Conference on Neural Networks (IJCNN). IEEE,
2018, pp. 1–8. 10, 13, 51, 63

[98] B. Ramesh, H. Yang, G. M. Orchard, N. A. Le Thi, S. Zhang, and C. Xiang, “Dart:
distribution aware retinal transform for event-based cameras,” IEEE transactions
on pattern analysis and machine intelligence, 2019. 10, 11, 93, 94

[99] S. Afshar, N. Ralph, Y. Xu, J. Tapson, A. v. Schaik, and G. Cohen, “Event-based
feature extraction using adaptive selection thresholds,” Sensors, vol. 20, no. 6, p.
1600, 2020. 10, 11, 63, 94

[100] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman, “Hots: a
hierarchy of event-based time-surfaces for pattern recognition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 39, no. 7, pp. 1346–1359, 2016. 10,
11, 48, 57, 61, 63, 64, 77, 79, 90, 93, 94

[101] L. U. Perrinet, “Role of homeostasis in learning sparse representations,” Neural
computation, vol. 22, no. 7, pp. 1812–1836, 2010. 11

[102] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous
system,” Nature reviews neuroscience, vol. 5, no. 2, pp. 97–107, 2004. 11

BIBLIOGRAPHY 113

[103] R. Matungka, “Studies on log-polar transform for image registration and improve-
ments using adaptive sampling and logarithmic spiral,” Ph.D. dissertation, The Ohio
State University, 2009. 11

[104] Prophesee. [Online]. Available: https://www.prophesee.ai 12

[105] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press,
2014. 12

[106] S. Furber and S. Temple, “Neural systems engineering,” in Computational intelligence:
A compendium. Springer, 2008, pp. 763–796. 12

[107] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014. 12, 14, 92

[108] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportunities and
challenges,” Frontiers in neuroscience, vol. 12, p. 774, 2018. 12

[109] L. Vannucci, A. Ambrosano, N. Cauli, U. Albanese, E. Falotico, S. Ulbrich, L. Pfotzer,
G. Hinkel, O. Denninger, D. Peppicelli et al., “A visual tracking model implemented
on the icub robot as a use case for a novel neurorobotic toolkit integrating brain and
physics simulation,” in 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids). IEEE, 2015, pp. 1179–1184. 12

[110] A. Bouganis and M. Shanahan, “Training a spiking neural network to control a 4-dof
robotic arm based on spike timing-dependent plasticity,” in The 2010 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2010, pp. 1–8. 12

[111] L. Miró-Amarante, F. Gómez-Rodríguez, A. Jiménez-Fernández, and G. Jiménez-
Moreno, “A spiking neural network for real-time Spanish vowel phonemes recognition,”
Neurocomputing, vol. 226, no. C, pp. 249–261, Feb. 2017. 12

[112] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower, M. Dies-
mann, A. Morrison, P. H. Goodman, F. C. Harris, M. Zirpe, T. Natschläger,
D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville,
E. Muller, A. P. Davison, S. El Boustani, and A. Destexhe, “Simulation of networks
of spiking neurons: A review of tools and strategies,” Journal of Computational
Neuroscience, vol. 23, no. 3, pp. 349–398, Jul. 2007. 12

[113] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-
timing-dependent plasticity,” Frontiers in Computational Neuroscience, vol. 9, no.
429, 2015. 12, 13, 51

[114] E. M. Izhikevich, “Polychronization: Computation with spikes,” Neural Computation,
vol. 18, no. 2, pp. 245–282, Feb. 2006. 13, 19, 20, 30

[115] A. Tavanaei, T. Masquelier, and A. Maida, “Representation learning using event-
based stdp,” Neural Networks, vol. 105, pp. 294–303, 2018. 13

https://www.prophesee.ai

114 BIBLIOGRAPHY

[116] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-
Barranco, “Stdp and stdp variations with memristors for spiking neuromorphic
learning systems,” Frontiers in neuroscience, vol. 7, p. 2, 2013. 13

[117] P. Lewden, A. F. Vincent, C. Meyer, J. Tomas, S. Siami, and S. Saïghi, “Hardware
spiking neural networks: Slow tasks resilient learning with longer term-memory bits,”
in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2019,
pp. 1–4. 13, 32, 37, 38, 42, 45, 46, 54

[118] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules,” Frontiers in neural circuits, vol. 9, p. 85,
2016. 13

[119] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and M. Gan-
jtabesh, “First-spike-based visual categorization using reward-modulated stdp,”
IEEE transactions on neural networks and learning systems, vol. 29, no. 12, pp.
6178–6190, 2018. 13, 14, 93

[120] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-based
spiking deep convolutional neural networks for object recognition,” Neural Networks,
vol. 99, pp. 56–67, 2018. 13, 51

[121] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for
energy-efficient object recognition,” International Journal of Computer Vision, vol.
113, no. 1, pp. 54–66, 2015. 13

[122] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of
continuous-valued deep networks to efficient event-driven networks for image classifi-
cation,” Frontiers in neuroscience, vol. 11, p. 682, 2017. 13

[123] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural
networks: Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95,
2019. 13

[124] L. Zhang, S. Zhou, T. Zhi, Z. Du, and Y. Chen, “Tdsnn: From deep neural networks
to deep spike neural networks with temporal-coding,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 1319–1326. 13

[125] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling spike-based
backpropagation for training deep neural network architectures,” Frontiers in Neu-
roscience, vol. 14, 2020. 13

[126] A. Kugele, T. Pfeil, M. Pfeiffer, and E. Chicca, “Efficient processing of spatio-
temporal data streams with spiking neural networks,” Frontiers in Neuroscience,
vol. 14, p. 439, 2020. 13, 94

[127] V. Fischer, J. Köhler, and T. Pfeil, “The streaming rollout of deep networks-towards
fully model-parallel execution,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 4039–4050. 13

BIBLIOGRAPHY 115

[128] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural
networks,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019. 13, 93

[129] S. R. Kheradpisheh and T. Masquelier, “S4nn: temporal backpropagation for spiking
neural networks with one spike per neuron,” International Journal of Neural Systems,
vol. 30, no. 6, p. 2050027, 2020. 13, 51, 93

[130] S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier, “Bs4nn: Binarized
spiking neural networks with temporal coding and learning,” arXiv preprint
arXiv:2007.04039, 2020. 13

[131] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised learning using
local errors,” Frontiers in neuroscience, vol. 12, p. 608, 2018. 13

[132] M. Payvand, M. E. Fouda, F. Kurdahi, A. M. Eltawil, and E. O. Neftci, “On-chip
error-triggered learning of multi-layer memristive spiking neural networks,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2020. 13, 60

[133] M. N. Shadlen and W. T. Newsome, “The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding,” Journal of
neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998. 13

[134] S. Thorpe and J. Gautrais, “Rank order coding,” in Computational neuroscience.
Springer, 1998, pp. 113–118. 14

[135] J. Putney, R. Conn, and S. Sponberg, “Precise timing is ubiquitous, consistent, and
coordinated across a comprehensive, spike-resolved flight motor program,” Proceed-
ings of the National Academy of Sciences, vol. 116, no. 52, pp. 26 951–26 960, 2019.
14

[136] J. Luo, S. Macias, T. V. Ness, G. T. Einevoll, K. Zhang, and C. F. Moss, “Neural
timing of stimulus events with microsecond precision,” PLoS biology, vol. 16, no. 10,
p. e2006422, 2018. 14

[137] M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal
spike trains,” Proceedings of the National Academy of Sciences, vol. 94, no. 10, pp.
5411–5416, 1997. 14, 25

[138] P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,”
Journal of Neuroscience, vol. 20, no. 14, pp. 5392–5400, 2000. 14, 25

[139] G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrim-
ination of temporal patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998. 14, 25

[140] Ł. Kuśmierz, T. Isomura, and T. Toyoizumi, “Learning with three factors: modulating
hebbian plasticity with errors,” Current opinion in neurobiology, vol. 46, pp. 170–177,
2017. 14

[141] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer spiking
neural networks,” Neural computation, vol. 30, no. 6, pp. 1514–1541, 2018. 14, 60

116 BIBLIOGRAPHY

[142] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks,” in Proceedings of the 2015
ACM/SIGDA international symposium on field-programmable gate arrays, 2015, pp.
161–170. 14

[143] Edge tpu. [Online]. Available: https://coral.ai/technology/ 14, 31

[144] Movidius vpu. [Online]. Available: https://www.intel.com/content/www/us/en/
products/processors/movidius-vpu.html 14, 31

[145] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, “Low-
power neuromorphic hardware for signal processing applications: A review of ar-
chitectural and system-level design approaches,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 97–110, 2019. 14

[146] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and
G. Indiveri, “A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses,” Frontiers in neuroscience, vol. 9, p.
141, 2015. 14

[147] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014. 14, 31, 32

[148] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm 2 12.7-pj/sop 64k-
synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm
cmos.” IEEE transactions on biomedical circuits and systems, vol. 13, no. 1, pp.
145–158, 2019. 14

[149] Akida neural processor. [Online]. Available: https://brainchipinc.com/technology/
14

[150] K. Meier, “A mixed-signal universal neuromorphic computing system,” in 2015
IEEE International Electron Devices Meeting (IEDM). IEEE, 2015, pp. 4–6. 14

[151] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings
of the IEEE, vol. 102, no. 5, pp. 699–716, 2014. 15

[152] V. Wang and A. E. Kuriyan, “Optoelectronic devices for vision restoration,” Current
Ophthalmology Reports, vol. 8, no. 2, pp. 69–77, 2020. 15

[153] R. P. Danis, J. A. Lavine, and A. Domalpally, “Geographic atrophy in patients
with advanced dry age-related macular degeneration: current challenges and future
prospects,” Clinical Ophthalmology (Auckland, NZ), vol. 9, p. 2159, 2015. 16

[154] P. Degenaar, N. Grossman, M. A. Memon, J. Burrone, M. Dawson, E. Drakakis,
M. Neil, and K. Nikolic, “Optobionic vision—a new genetically enhanced light on
retinal prosthesis,” Journal of neural engineering, vol. 6, no. 3, p. 035007, 2009. 16

https://coral.ai/technology/
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu.html
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu.html
https://brainchipinc.com/technology/

BIBLIOGRAPHY 117

[155] S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysi-
cal assessment of perceptual performance with varying display frame rates,” Journal
of Display Technology, vol. 12, no. 11, pp. 1372–1382, 2016. 16, 17

[156] M. Poujade, “Apport des dispositifs de restauration de la vision et de la résolution
temporelle,” Ph.D. dissertation, Sorbonne Université, 2019. 16, 17

[157] E. Chichilnisky and R. Kalmar, “Temporal resolution of ensemble visual motion
signals in primate retina,” Journal of Neuroscience, vol. 23, no. 17, pp. 6681–6689,
2003. 16

[158] A. Kusnyerik, M. Resch, H. J. Kiss, and J. Nemeth, “Vision restoration with
implants,” in Mobility of Visually Impaired People. Springer, 2018, pp. 617–630. 16

[159] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns spike timing–
based decisions,” Nature Neuroscience, vol. 9, pp. 420–428, 2006. 19, 20

[160] G. M. Wittenberg and S. S. H. Wang, “Malleability of Spike-Timing-Dependent
Plasticity at the CA3-CA1 Synapse,” Journal of Neuroscience, vol. 26, no. 24, pp.
6610–6617, Jun. 2006. 19

[161] H. A. Swadlow and S. G. Waxman, “Axonal conduction delays,” Scholarpedia, vol. 7,
no. 6, p. 1451, 2012. 19

[162] C. E. Carr and M. Konishi, “A Circuit for Detection of Interaural Time Differences
in the Brain-Stem of the Barn Owl,” Journal of Neuroscience, vol. 10, no. 10, pp.
3227–3246, Oct. 1990. 19, 25

[163] J. C. Middlebrooks, A. E. Clock, L. Xu, and D. M. Green, “A panoramic code for
sound location by cortical neurons,” Science, vol. 264, no. 5160, pp. 842–844, May
1994. 19

[164] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic
efficacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275, no. 5297,
pp. 213–215, 1997. 19

[165] R. D. Fields, “A new mechanism of nervous system plasticity: activity-dependent
myelination,” Nature Reviews Neuroscience, vol. 16, no. 12, pp. 756–767, Nov. 2015.
19

[166] S. Koudelka, M. G. Voas, R. G. Almeida, M. Baraban, J. Soetaert, M. P. Meyer,
W. S. Talbot, and D. A. Lyons, “Individual Neuronal Subtypes Exhibit Diversity in
CNS Myelination Mediated by Synaptic Vesicle Release,” Current Biology, vol. 26,
no. 11, pp. 1447–1455, Jun. 2016. 19

[167] G. Bonetto, Y. Kamen, K. A. Evans, and R. T. Káradóttir, “Unraveling myelin
plasticity,” Frontiers in Cellular Neuroscience, vol. 14, p. 156, 2020. 19

[168] P. Baldi and A. F. Atiya, “How Delays Affect Neural Dynamics and Learning,” IEEE
Transactions on Neural Networks, vol. 5, no. 4, pp. 612–621, Jul. 1994. 19

[169] W. Maass, “On the relevance of time in neural computation and learning,”
Theoretical Computer Science, vol. 261, no. 1, pp. 157 – 178, 2001, eighth

118 BIBLIOGRAPHY

International Workshop on Algorithmic Learning Theory. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397500001377 19

[170] C. W. Eurich, K. Pawelzik, U. Ernst, J. D. Cowan, and J. G. Milton, “Dynamics
of self-organized delay adaptation,” Physical Review Letters, vol. 82, no. 7, pp.
1594–1597, 1999. 20

[171] C. W. Eurich, K. Pawelzik, U. Ernst, A. Thiel, J. D. Cowan, and J. G. Milton,
“Delay adaptation in the nervous system,” Neurocomputing, vol. 32, pp. 741–748,
Jun. 2000. 20

[172] S. Hussain, A. Basu, M. Wang, and T. J. Hamilton, “Deltron: Neuromorphic
architectures for delay based learning,” in 2012 IEEE Asia Pacific Conference on
Circuits and Systems. IEEE, 2012, pp. 304–307. 20, 26, 29, 91

[173] H. Paugam-Moisy, R. Martinez, and S. Bengio, “Delay learning and polychronization
for reservoir computing,” Neurocomputing, vol. 71, no. 7-9, pp. 1143–1158, 2008. 20

[174] R. Wang, G. Cohen, K. Stiefel, T. Hamilton, J. Tapson, and A. van Schaik, “An
FPGA implementation of a polychronous spiking neural network with delay adapta-
tion,” Frontiers in Neuroscience, vol. 7, 2013. 20, 29

[175] T. Matsubara, “Spike Timing-Dependent Conduction Delay Learning Model Classi-
fying Spatio-Temporal Spike Patterns,” Front. Comput. Neurosci., vol. 11, no. 104,
pp. 1–16, Jun. 2017. 20, 29, 30, 91

[176] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A neuromorphic
implementation of multiple spike-timing synaptic plasticity rules for large-scale
neural networks,” Frontiers in Neuroscience, vol. 9, p. 180, 2015. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2015.00180 20

[177] E. R. Kandel, J. H. Schwartz, T. M. Jessell, D. of Biochemistry, M. B. T. Jessell,
S. Siegelbaum, and A. Hudspeth, Principles of neural science. McGraw-hill New
York, 2000, vol. 4. 25

[178] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. Cambridge, MA, USA: MIT Press, 2001. 25

[179] A. Dean, “The variability of discharge of simple cells in the cat striate cortex,”
Experimental Brain Research, vol. 44, no. 4, pp. 437–440, 1981. 25

[180] G. Buzsáki, R. Llinas, W. Singer, A. Berthoz, and Y. Christen, Temporal coding in
the brain. Springer Science & Business Media, 2012. 25

[181] W. Gerstner, R. Kempter, J. L. Van Hemmen, and H. Wagner, “A neuronal learning
rule for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595, pp. 76–78,
1996. 25

[182] R. Laje and D. V. Buonomano, “Robust timing and motor patterns by taming chaos
in recurrent neural networks,” Nature neuroscience, vol. 16, no. 7, p. 925, 2013. 25

[183] W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural Computation,
vol. 9, no. 2, pp. 279–304, 1997. 25

http://www.sciencedirect.com/science/article/pii/S0304397500001377
https://www.frontiersin.org/article/10.3389/fnins.2015.00180

BIBLIOGRAPHY 119

[184] N. Iannella and A. D. Back, “A spiking neural network architecture for nonlinear
function approximation,” Neural networks, vol. 14, no. 6-7, pp. 933–939, 2001. 25

[185] Z. Mainen and T. Sejnowski, “Reliability of spike timing in neocortical neurons,”
Science, vol. 268, no. 5216, pp. 1503–1506, 1995. 25

[186] A. Goel and D. V. Buonomano, “Temporal interval learning in cortical cultures is
encoded in intrinsic network dynamics,” Neuron, vol. 91, no. 2, pp. 320–327, 2016.
25

[187] M. Wehr and A. M. Zador, “Balanced inhibition underlies tuning and sharpens spike
timing in auditory cortex,” Nature, vol. 426, no. 6965, p. 442, 2003. 25

[188] P. H. Brownell, “Compressional and surface waves in sand: Used by desert scorpions
to locate prey,” Science, vol. 197, no. 4302, pp. 479–482, 1977. 25

[189] G. Haessig, M. B. Milde, P. V. Aceituno, O. Oubari, J. C. Knight,
A. van Schaik, R. B. Benosman, and G. Indiveri, “Event-Based Computation
for Touch Localization Based on Precise Spike Timing,” Frontiers in
Neuroscience, vol. 14, p. 420, May 2020. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fnins.2020.00420/full 25, 26, 27, 28, 29, 91

[190] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A neuromorphic
implementation of multiple spike-timing synaptic plasticity rules for large-scale
neural networks,” Frontiers in neuroscience, vol. 9, p. 180, 2015. 29

[191] J. F. Hunzinger, V. H. Chan, and R. C. Froemke, “Learning complex temporal
patterns with resource-dependent spike timing-dependent plasticity,” Journal of
Neurophysiology, vol. 108, no. 2, pp. 551–566, 2012. 30

[192] J. Barrios-Avilés, T. Iakymchuk, J. Samaniego, L. D. Medus, and A. Rosado-Muñoz,
“Movement detection with event-based cameras: Comparison with frame-based
cameras in robot object tracking using powerlink communication,” Electronics,
vol. 7, no. 11, p. 304, 2018. 31

[193] A. Marcireau, S. H. Ieng, and R. B. Benosman, “Sepia, tarsier and chameleon: a
modular c++ framework for event-based computer vision.” Frontiers in Neuroscience,
vol. 13, p. 1338, 2019. 31

[194] J. Backus, “Can programming be liberated from the von neumann style? a functional
style and its algebra of programs,” Communications of the ACM, vol. 21, no. 8, pp.
613–641, 1978. 31

[195] J. C. Knight and T. Nowotny, “Gpus outperform current hpc and neuromorphic
solutions in terms of speed and energy when simulating a highly-connected cortical
model,” Frontiers in neuroscience, vol. 12, p. 941, 2018. 31

[196] R. Brette and D. F. Goodman, “Simulating spiking neural networks on gpu,” Network:
Computation in Neural Systems, vol. 23, no. 4, pp. 167–182, 2012. 31

https://www.frontiersin.org/article/10.3389/fnins.2020.00420/full
https://www.frontiersin.org/article/10.3389/fnins.2020.00420/full

120 BIBLIOGRAPHY

[197] M. Stimberg, D. F. Goodman, and T. Nowotny, “Brian2genn: accelerating spiking
neural network simulations with graphics hardware,” Scientific Reports, vol. 10,
no. 1, pp. 1–12, 2020. 31

[198] J. B. Aimone, O. Parekh, and W. Severa, “Neural computing for scientific computing
applications: more than just machine learning,” in Proceedings of the Neuromorphic
Computing Symposium, 2017, pp. 1–6. 32

[199] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit
theory, vol. 18, no. 5, pp. 507–519, 1971. 32, 33, 40

[200] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” nature, vol. 453, no. 7191, pp. 80–83, 2008. 32, 33, 60

[201] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro,
K. Garcia, S. Xavier et al., “Learning through ferroelectric domain dynamics in
solid-state synapses,” Nature communications, vol. 8, no. 1, pp. 1–7, 2017. 32, 33,
35, 38, 54, 60, 92

[202] P. de Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A large scale
event-based detection dataset for automotive,” arXiv, pp. arXiv–2001, 2020. 32, 92

[203] P. Mazumder, S.-M. Kang, and R. Waser, “Memristors: devices, models, and
applications,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1911–1919, 2012. 33

[204] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya,
S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur et al., “A ferroelectric memristor,”
Nature materials, vol. 11, no. 10, pp. 860–864, 2012. 33, 34, 35, 54

[205] L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol.
102, no. 4, pp. 765–783, 2011. 33

[206] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics based on
memristive systems,” Nature Electronics, vol. 1, no. 1, pp. 22–29, 2018. 33

[207] N. Nithya and K. Paramasivam, “A comprehensive study on the characteristics,
complex materials and applications of memristor,” in 2020 6th International Con-
ference on Advanced Computing and Communication Systems (ICACCS). IEEE,
2020, pp. 171–176. 33

[208] L. Wang, C. Yang, J. Wen, S. Gai, and Y. Peng, “Overview of emerging memristor
families from resistive memristor to spintronic memristor,” Journal of Materials
Science: Materials in Electronics, vol. 26, no. 7, pp. 4618–4628, 2015. 33

[209] H. An, K. Bai, and Y. Yi, “The roadmap to realize memristive three-dimensional
neuromorphic computing system,” Advances in Memristor Neural Networks-Modeling
and Applications, pp. 25–44, 2018. 33

[210] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,
G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in tao x
memristive devices,” Applied Physics Letters, vol. 97, no. 23, p. 232102, 2010. 34

BIBLIOGRAPHY 121

[211] W. Banerjee, “Challenges and applications of emerging nonvolatile memory devices,”
Electronics, vol. 9, no. 6, p. 1029, 2020. 34

[212] S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier, C. Deranlot, H. Yamada, C. Car-
rétéro, E. Jacquet, M. Bibes et al., “High-performance ferroelectric memory based
on fully patterned tunnel junctions,” Applied Physics Letters, vol. 104, no. 5, p.
052909, 2014. 34, 35, 54

[213] L. Chen, T.-Y. Wang, Y.-W. Dai, M.-Y. Cha, H. Zhu, Q.-Q. Sun, S.-J. Ding, P. Zhou,
L. Chua, and D. W. Zhang, “Ultra-low power hf 0.5 zr 0.5 o 2 based ferroelectric
tunnel junction synapses for hardware neural network applications,” Nanoscale,
vol. 10, no. 33, pp. 15 826–15 833, 2018. 34, 92

[214] N. Locatelli, V. Cros, and J. Grollier, “Spin-torque building blocks,” Nature materials,
vol. 13, no. 1, pp. 11–20, 2014. 34

[215] H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter, S. Xavier, J. Grol-
lier, E. Jacquet, C. Carrétéro et al., “Giant electroresistance of super-tetragonal
bifeo3-based ferroelectric tunnel junctions,” ACS nano, vol. 7, no. 6, pp. 5385–5390,
2013. 35

[216] R. Guo, Z. Wang, S. Zeng, K. Han, L. Huang, D. G. Schlom, T. Venkatesan, J. Chen
et al., “Functional ferroelectric tunnel junctions on silicon,” Scientific reports, vol. 5,
p. 12576, 2015. 35

[217] M. Abuwasib, C. R. Serrao, L. Stan, S. Salahuddin, and S. R. Bakaul, “Tunneling
electroresistance effects in epitaxial complex oxides on silicon,” Applied Physics
Letters, vol. 116, no. 3, p. 032902, 2020. 35

[218] G. Lecerf, J. Tomas, S. Boyn, S. Girod, A. Mangalore, J. Grollier, and S. Saïghi,
“Silicon neuron dedicated to memristive spiking neural networks,” in 2014 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2014, pp.
1568–1571. 37, 54

[219] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive STDP-Based
Spike Pattern Learning,” Neural Computation, vol. 21, no. 5, pp. 1259–1276, May
2009. [Online]. Available: http://www.mitpressjournals.org/doi/10.1162/neco.2008.
06-08-804 38, 92

[220] A. Page, S. P. T. Oates, and T. Mohsenin, “An ultra low power feature extraction
and classification system for wearable seizure detection,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2015, pp. 7111–7114. 42, 49

[221] D. Cox, “Some procedures connected with the logistic qualitative response curve. in
(fn david, ed.) research papers in statistics: Essays in honour of j. neyman’s 70th
birthday,” 1966. 43

[222] C. M. Bishop, Pattern recognition and machine learning. springer, 2006. 43

http://www.mitpressjournals.org/doi/10.1162/neco.2008.06-08-804
http://www.mitpressjournals.org/doi/10.1162/neco.2008.06-08-804

122 BIBLIOGRAPHY

[223] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image
datasets to spiking neuromorphic datasets using saccades,” Frontiers in neuroscience,
vol. 9, p. 437, 2015. 45, 51, 62, 63, 77

[224] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benos-
man, “Hfirst: a temporal approach to object recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 10, pp. 2028–2040, 2015. 48,
77

[225] T. Serrano-Gotarredona and B. Linares-Barranco, “Poker-dvs and mnist-dvs. their
history, how they were made, and other details,” Frontiers in neuroscience, vol. 9, p.
481, 2015. 48, 63, 69

[226] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual
pattern recognition,” Neural networks, vol. 1, no. 2, pp. 119–130, 1988. 51

[227] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607–609,
1996. 51

[228] E. P. Simoncelli and B. A. Olshausen, “Natural image statistics and neural
representation,” Annual Review of Neuroscience, vol. 24, no. 1, pp. 1193–1216, 2001,
pMID: 11520932. [Online]. Available: https://doi.org/10.1146/annurev.neuro.24.1.
1193 51

[229] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi,
B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural network
inference using computational phase-change memory,” Nature Communications,
vol. 11, no. 1, pp. 1–13, 2020. 60, 92

[230] G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. K. Amiri, and
Z. Zeng, “The promise of spintronics for unconventional computing,” arXiv preprint
arXiv:1910.07176, 2019. 60

[231] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno, and S. Datta,
“Integer factorization using stochastic magnetic tunnel junctions,” Nature, vol. 573,
no. 7774, pp. 390–393, 2019. 60

[232] G. Gallego, J. E. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scaramuzza,
“Event-based, 6-dof camera tracking from photometric depth maps,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 40, no. 10, pp. 2402–2412,
2017. 61

[233] M. Fujimoto and Y. Riki, “Robust speech recognition in additive and channel noise
environments using gmm and em algorithm,” in 2004 IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 1. IEEE, 2004, pp. I–941. 62

[234] T. Kurata, T. Okuma, M. Kourogi, and K. Sakaue, “The hand mouse: Gmm hand-
color classification and mean shift tracking,” in Proceedings IEEE ICCV Workshop
on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems.
IEEE, 2001, pp. 119–124. 62

https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1146/annurev.neuro.24.1.1193

BIBLIOGRAPHY 123

[235] D. Zhou and H. Zhang, “Modified gmm background modeling and optical flow for
detection of moving objects,” in 2005 IEEE international conference on systems,
man and cybernetics, vol. 3. IEEE, 2005, pp. 2224–2229. 62

[236] J. VanderPlas, A. J. Connolly, Ž. Ivezić, and A. Gray, “Introduction to astroml: Ma-
chine learning for astrophysics,” in 2012 conference on intelligent data understanding.
IEEE, 2012, pp. 47–54. 62

[237] F. Lerch, A. Ultsch, and J. Lötsch, “Distribution optimization: An evolutionary
algorithm to separate gaussian mixtures,” Scientific Reports, vol. 10, no. 1, pp. 1–10,
2020. 62

[238] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for
real-time tracking,” in Proceedings. 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 2. IEEE, 1999,
pp. 246–252. 62

[239] J. Xu, D. J. Hsu, and A. Maleki, “Global analysis of expectation maximization for
mixtures of two gaussians,” in Advances in Neural Information Processing Systems,
2016, pp. 2676–2684. 62

[240] A. Moitra and G. Valiant, “Settling the polynomial learnability of mixtures of
gaussians,” in 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science. IEEE, 2010, pp. 93–102. 62

[241] S. Kolouri, G. K. Rohde, and H. Hoffmann, “Sliced wasserstein distance for learning
gaussian mixture models,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 62

[242] R. Hosseini and S. Sra, “An alternative to em for gaussian mixture models: Batch
and stochastic riemannian optimization,” Mathematical Programming, pp. 1–37,
2019. 62

[243] F. Hirschberger, D. Forster, and J. Lücke, “Accelerated training of large-scale
gaussian mixtures by a merger of sublinear approaches,” stat, vol. 1050, p. 12, 2019.
62, 78, 83, 85, 89, 93

[244] D. Forster and J. Lücke, “Can clustering scale sublinearly with its clusters? a
variational em acceleration of gmms and k-means,” arXiv preprint arXiv:1711.03431,
2017. 62, 83, 85

[245] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni, E. Reynaud,
P. Mostafalu, F. Brady, L. Chotard, F. LeGoff et al., “5.10 a 1280× 720 back-
illuminated stacked temporal contrast event-based vision sensor with 4.86 µm
pixels, 1.066 geps readout, programmable event-rate controller and compressive data-
formatting pipeline,” in 2020 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE, 2020, pp. 112–114. 62

[246] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,”
Stanford, Tech. Rep., 2006. 62, 69, 71

124 BIBLIOGRAPHY

[247] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Approximate k-means++ in
sublinear time,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016. 62,
67, 78

[248] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and provably good seedings
for k-means,” in Advances in neural information processing systems, 2016, pp. 55–63.
62, 68, 78, 83, 89

[249] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median clustering,”
in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
2004, pp. 291–300. 62, 67, 78

[250] O. Bachem, M. Lucic, and A. Krause, “Scalable k-means clustering via lightweight
coresets,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1119–1127. 62, 68, 78, 83, 89

[251] J. Lücke and J. Eggert, “Expectation truncation and the benefits of preselection in
training generative models,” Journal of Machine Learning Research, vol. 11, no. Oct,
pp. 2855–2900, 2010. 63, 78

[252] G. Exarchakis and J. Lücke, “Discrete sparse coding,” Neural computation, vol. 29,
no. 11, pp. 2979–3013, 2017. 63, 78

[253] Z. Dai, G. Exarchakis, and J. Lücke, “What are the invariant occlusive components
of image patches? a probabilistic generative approach,” in Advances in neural
information processing systems, 2013, pp. 243–251. 63, 78

[254] D. Forster and J. Lücke, “Truncated variational em for semi-supervised neural
simpletrons,” in 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2017, pp. 3769–3776. 63, 78

[255] J. Lücke, Z. Dai, and G. Exarchakis, “Truncated variational sampling for ‘black
box’optimization of generative models,” in International Conference on Latent
Variable Analysis and Signal Separation. Springer, 2018, pp. 467–478. 63, 78

[256] G. Exarchakis, M. Henniges, J. Eggert, and J. Lücke, “Ternary sparse coding,”
in International Conference on Latent Variable Analysis and Signal Separation.
Springer, 2012, pp. 204–212. 63, 78

[257] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and M. I. Jordan, “Local
maxima in the likelihood of gaussian mixture models: Structural results and algo-
rithmic consequences,” in Advances in neural information processing systems, 2016,
pp. 4116–4124. 63, 78

[258] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University
of Toronto, 05 2012. 63, 69, 79

[259] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song
dataset,” in Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011. 63, 69, 79

BIBLIOGRAPHY 125

[260] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in high-energy
physics with deep learning,” Nature communications, vol. 5, p. 4308, 2014. 63, 69, 79

[261] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 1177–1178. 63, 77, 83, 93

[262] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature detection and
tracking with the dynamic and active-pixel vision sensor (davis),” in 2016 Sec-
ond International Conference on Event-based Control, Communication, and Signal
Processing (EBCCSP). IEEE, 2016, pp. 1–7. 63

[263] C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. Mahony, and D. Scaramuzza,
“Fast image reconstruction with an event camera,” in The IEEE Winter Conference
on Applications of Computer Vision, 2020, pp. 156–163. 63

[264] G. Haessig and R. Benosman, “A sparse coding multi-scale precise-timing machine
learning algorithm for neuromorphic event-based sensors,” in Micro-and Nanotech-
nology Sensors, Systems, and Applications X, vol. 10639. International Society for
Optics and Photonics, 2018, p. 106391U. 63, 79

[265] D. Feldman, M. Faulkner, and A. Krause, “Scalable training of mixture models via
coresets,” in Advances in neural information processing systems, 2011, pp. 2142–2150.
68, 83

[266] M. Lucic, M. Faulkner, A. Krause, and D. Feldman, “Training gaussian mixture
models at scale via coresets,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 5885–5909, 2017. 68, 83

[267] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems,”
Pattern Recognition, vol. 39, no. 5, pp. 761–765, 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.patcog.2005.09.012 69, 70, 84

[268] Blaze library. [Online]. Available: https://bitbucket.org/blaze-lib/blaze/src/master/
69

[269] S. Gao, G. Guo, H. Huang, X. Cheng, and C. L. P. Chen, “An end-to-end broad
learning system for event-based object classification,” IEEE Access, vol. 8, pp.
45 974–45 984, 2020. 77

[270] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories,” in 2004 conference on computer vision and pattern recognition workshop.
IEEE, 2004, pp. 178–178. 77

[271] H. Zhang and D. Zhao, “Spatial histogram features for face detection in color images,”
in Pacific-Rim Conference on Multimedia. Springer, 2004, pp. 377–384. 77

[272] E. Guiraud, J. Drefs, and J. Lücke, “Evolutionary expectation maximization,” in
Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp.
442–449. 78

http://dx.doi.org/10.1016/j.patcog.2005.09.012
https://bitbucket.org/blaze-lib/blaze/src/master/

126 BIBLIOGRAPHY

[273] R. Caruana, T. Joachims, and L. Backstrom, “Kdd-cup 2004: results and analysis,”
ACM SIGKDD Explorations Newsletter, vol. 6, no. 2, pp. 95–108, 2004. 79

[274] X. Clady, J.-M. Maro, S. Barré, and R. B. Benosman, “A motion-based feature for
event-based pattern recognition,” Frontiers in neuroscience, vol. 10, p. 594, 2017. 79

[275] R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies incremental,
sparse, and other variants,” in Learning in graphical models. Springer, 1998, pp.
355–368. 81

[276] P. Liang and D. Klein, “Online em for unsupervised models,” in Proceedings of
human language technologies: The 2009 annual conference of the North American
chapter of the association for computational linguistics, 2009, pp. 611–619. 90

[277] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian computation emerges
in generic cortical microcircuits through spike-timing-dependent plasticity,” PLoS
Comput Biol, vol. 9, no. 4, p. e1003037, 2013. 90

[278] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1629–1636, 1990. 91

[279] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128 120 dB 15 us Latency
Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 2, pp. 566–576, feb 2008. 91

[280] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction and neural networks,”
Journal of intelligent and robotic systems, vol. 31, no. 1-3, pp. 91–103, 2001. 91

[281] R. Adhikari, “A neural network based linear ensemble framework for time series
forecasting,” Neurocomputing, vol. 157, pp. 231–242, 2015. 91

[282] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A mixed-signal
implementation of a polychronous spiking neural network with delay adaptation,”
Frontiers in neuroscience, vol. 8, p. 51, 2014. 92

[283] T. Hwu, A. Y. Wang, N. Oros, and J. L. Krichmar, “Adaptive robot path plan-
ning using a spiking neuron algorithm with axonal delays,” IEEE Transactions on
Cognitive and Developmental Systems, vol. 10, no. 2, pp. 126–137, 2017. 92

[284] C. E. Graves, C. Li, X. Sheng, D. Miller, J. Ignowski, L. Kiyama, and J. P. Strachan,
“In-memory computing with memristor content addressable memories for pattern
matching,” Advanced Materials, vol. 32, no. 37, p. 2003437, 2020. 92

[285] M. A. Lastras-Montaño and K.-T. Cheng, “Resistive random-access memory based
on ratioed memristors,” Nature Electronics, vol. 1, no. 8, pp. 466–472, 2018. 92

[286] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-
Barranco, “On practical issues for stochastic stdp hardware with 1-bit synaptic
weights,” Frontiers in neuroscience, vol. 12, p. 665, 2018. 93

[287] C. Song, B. Liu, W. Wen, H. Li, and Y. Chen, “A quantization-aware regularized
learning method in multilevel memristor-based neuromorphic computing system,”

BIBLIOGRAPHY 127

in 2017 IEEE 6th Non-Volatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 2017, pp. 1–6. 93

[288] Q. Yang, H. Li, and Q. Wu, “A quantized training method to enhance accuracy of
reram-based neuromorphic systems,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5. 93

[289] S. Grossberg, “Competitive learning: From interactive activation to adaptive reso-
nance,” Cognitive science, vol. 11, no. 1, pp. 23–63, 1987. 93

[290] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic
feedback weights support error backpropagation for deep learning,” Nature commu-
nications, vol. 7, no. 1, pp. 1–10, 2016. 93

[291] E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning to detect
objects with a 1 megapixel event camera,” arXiv preprint arXiv:2009.13436, 2020.
93

[292] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsuper-
vised feature learning,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 215–223. 94

[293] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances in neural
information processing systems, 2014, pp. 2654–2662. 94

[294] E. Oyallon, E. Belilovsky, and S. Zagoruyko, “Scaling the scattering transform: Deep
hybrid networks,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 5618–5627. 94

[295] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting the resnet
model for visual recognition,” Pattern Recognition, vol. 90, pp. 119–133, 2019. 94

[296] W. Brendel and M. Bethge, “Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet,” arXiv preprint arXiv:1904.00760, 2019. 94

[297] M. Neggazi, M. Bengherabi, Z. Boulkenafet, and A. Amira, “An efficient fpga
implementation of gaussian mixture models based classifier: Application to face
recognition,” in 2013 8th International Workshop on Systems, Signal Processing and
their Applications (WoSSPA). IEEE, 2013, pp. 367–371. 94

[298] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and
E. Beigne, “Spiking neural networks hardware implementations and challenges: A
survey,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 15, no. 2, pp. 1–35, 2019. 94

[299] H. Alashwal, M. El Halaby, J. J. Crouse, A. Abdalla, and A. A. Moustafa, “The
application of unsupervised clustering methods to alzheimer’s disease,” Frontiers in
computational neuroscience, vol. 13, p. 31, 2019. 94

	Introduction
	1 State of the art
	1.1 The visual system
	1.1.1 Visual processing in the retina
	1.1.2 Visual processing in cortical pathways

	1.2 Event-based vision sensors
	1.3 Pattern recognition on event streams
	1.3.1 Event-to-frame methods
	1.3.2 Event-by-event methods
	a) Time surface based algorithms
	b) Spiking neural networks

	1.4 Efficient hardware for machine learning
	1.5 Visual restoration in non-human primates

	2 A Myelin plasticity model for spiking neural networks
	2.1 Introduction
	2.2 Methodology
	2.3 Validation experiments
	2.4 Touch localisation with precise timing
	2.4.1 Methodology
	2.4.2 Results

	2.5 Discussion

	3 Bio-inspired learning in a low-power visual data processing system
	3.1 Introduction
	3.2 The memristor: fourth fundamental circuit element
	3.3 System and network architecture
	3.3.1 General system on chip design
	3.3.2 FTJ memristor model
	a) The STDP learning rule
	b) Validation

	3.3.3 CMOS leaky integrate and fire neuron model
	3.3.4 Choice of classifier
	a) Heuristics-based classifier
	b) Logistic regression classifier

	3.4 Numerical experiments
	3.4.1 Handwritten digit classification: the N-MNIST dataset
	a) 3-class N-MNIST
	b) 10-class N-MNIST

	3.4.2 Critical parameters
	a) Logistic regression training set size
	b) Optimal number of epochs for training the logistic regression

	3.4.3 Results with alternative event-based datasets
	3.4.4 Hardware design trade-offs

	3.5 Scalability analysis
	3.5.1 Improved architecture with local sparse connectivity
	3.5.2 Scalability and performance analysis on N-MNIST
	a) Differences in learning across architectures
	b) Memristor conductance
	c) Number of neurons

	3.5.3 Scalability and performance analysis on N-CARS
	3.5.4 Energy consumption analysis

	3.6 Discussion

	4 Probabilistic models for event-based data
	4.1 Introduction
	4.2 Sub-linear stochastic learning in a GMM
	4.2.1 Event-based vision processing
	a) Feature Extraction Methods
	b) Clustering with time surfaces

	4.2.2 Stochastic approximation of expectation maximisation on a Gaussian mixture model
	a) Implementation details

	4.2.3 Experiments and results
	a) Artificial data
	b) Clustering analysis

	4.2.4 Event-based classification

	4.3 A sampling-based approach for efficient learning in a GMM
	4.3.1 EM with sparsely sampled clusters for GMMs
	a) Implementation details

	4.3.2 Experiments and results
	a) Artificial data
	b) Clustering analysis

	4.3.3 Large scale feature extraction for classification

	4.4 Discussion

	5 General discussion
	A Hummus: event-based spiking neural network simulator
	B Solution to the LIF membrane potential equation
	C Deriving GMM parameter updates
	C.1 Deriving the variance sigma
	C.2 Deriving the mean mean
	C.3 Deriving the prior distribution alpha

	Bibliography

