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Résumé

Mots-clés : Gaz dense, Turbulence compressible, Couche de mélange, Simulation Numérique
Directe (SND), Simulation des Grandes Echelles (SGE) a priori et a posteriori, Apprentissage
Automatique.

Ce travail porte sur l’analyse et la modélisation de la turbulence dans les écoulements
de gaz denses (GD). L’intérêt pour ces gaz provient de l’industrie des machines à cycle or-
ganique de Rankine (COR), utilisant le cycle de William Rankine largement répandu dans le
monde industriel. Le fluide de travail organique utilisé de préférence à l’eau est détendu après
évaporation afin de produire de l’énergie mécanique puis de l’électricité.

Au cours des 40 dernières années, les GD ont été largement utilisés par l’industrie des
COR en raison de la flexibilité qu’ils apportent. Leur principal avantage est leur capacité à
échanger des quantités importantes d’énergie à des températures modérées voire faibles pour la
source chaude. Les GD sont des vapeurs monophasiques caractérisées par de longues chaînes
d’atomes et par une masse molaire moyenne voire élevée. Leur comportement proche du point
critique est très différent des gaz classiques. Nous étudierons ici une sous-famille des GD,
également très répandue dans l’industrie, nommée gaz Bethe-Zel’dovich-Thompson (BZT). Ces
gaz présentent une zone thermodynamique dite d’inversion où la dérivée fondamentale Γ de la
dynamique des gaz est négative, autorisant les ondes de choc de détente.

L’utilisation de ces gaz pose des problèmes de modélisation lors de la conception des tur-
bines dans les COR du fait de la nature très compressible des écoulements turbulents produits
et de leur différence avec les gaz parfaits (GP). Jusqu’à présent, bien que les propriétés ther-
modynamiques des GD soient très différentes de celles des GP, les modèles de fermeture de
la turbulence développés pour les GP ont été utilisés pour les simulations RANS et les simu-
lations des grandes échelles (SGE) d’écoulements de GD faute de modèles dédiés disponibles.
Le comportement singulier de ces gaz, en particulier les gaz BZT, remet en question ce choix
qui suppose implicitement que les structures turbulentes ne sont pas modifiées par les effets GD.

Cette thèse s’intéresse au problème de la modélisation SGE pour ces gaz et comprend 3
étapes principales :

• l’analyse détaillée de simulations numériques directes (SND) de couches de mélange ;

• l’évaluation a priori des termes de sous-maille en utilisant des SND filtrées (une SND de
turbulence homogène isotrope est également utilisée);

• la construction et la validation a posteriori d’une nouvelle modélisation de sous-maille en
utilisant l’apprentissage automatique supervisé.
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Dans le chapitre 3, les SND de couche de mélange pour l’air considéré comme un gaz parfait
sont validées par comparaison avec les résultats de la littérature pour trois valeurs du nombre
de Mach convectif (Mc = 0.1− 1.1− 2.2). Le chapitre 4 est consacré à l’étude des SND de GD.
La comparaison avec les résultats GP montre des différences majeures pour le taux de crois-
sance de l’épaisseur de quantité de mouvement à Mc = 2.2 (deux fois plus grand pour GD).
Cependant, ces différences ne sont pas dues aux régions thermodynamiques BZT et GD mais
plutôt aux effets gaz réels transcritiques. Plusieurs facteurs sont responsables de la réduction
des effets de compressibilité dans les couches de mélange GD : le découplage entre l’énergie
cinétique et l’énergie interne ; les pertes par frottement sont réduites, modifiant la distribution
de la masse volumique, ce qui favorise le taux de croissance de la couche de mélange.

L’évaluation a priori met en évidence deux nouveaux termes de sous-maille qui doivent
être modélisés pour les GD en plus des termes de sous-maille habituellement modélisés en GP
: le terme associé au gradient de pression et celui associé au travail des forces de pression.

Le chapitre 6 propose donc une méthodologie afin de modéliser le terme de sous-maille
de pression en utilisant des réseaux de neurones. Les résultats montrent le succès de la vali-
dation a priori. La validation a posteriori est ensuite réalisée pour des couches de mélange à
Mc = 1.1 et Mc = 2.2 pour plusieurs tailles de filtrage.
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Summary

Keywords : Dense Gas, Compressible Turbulence, Mixing Layer, Direct Numerical Simulation
(DNS), a priori and a posteriori Large Eddy Simulation (LES), Machine Learning.

The present work is devoted to the analysis and modeling of turbulence in flows of dense
gases (DG). The interest for these gases mainly comes from the Organic Rankine Cycles (ORC)
turbine industry. ORCs rely on the so-called and widely used William Rankine’s cycle. The
organic working fluid (instead of water) is expanded after being evaporated so as to produce
mechanical energy and then electricity.

Among organic fluids, DG have been widely used in the ORC industry over the past 40
years. Indeed, their use enables a great adaptability for ORCs. The main advantage of DG is
their capacity to exchange large amount of energy at low to moderate temperatures for the heat
source. DG are single-phase vapors characterized by long chains of atoms and medium to large
molecular weights. In the vicinity of the critical point, DG exhibit an unusual behavior when
compared with classical gases. In this study, specific DG called Bethe-Zel’dovich-Thompson
(BZT) gases, also widely used in the industry, are considered. BZT gases display an "inversion
zone", that is a thermodynamic region where the fundamental derivative of gas dynamics Γ
becomes negative, allowing the existence of expansion shock-waves.

The use of DG in ORCs raises modeling issues when numerically designing ORC turbines
since the turbulent flows at stake include both significant compressibility effects and differences
with respect to perfect gases (PG). Up to now, although DG thermodynamic features strongly
differ from those of PG, turbulence closure models developed for PG have been applied for
RANS simulations and Large Eddy Simulation (LES) of DG flows, for lack of a better option.
The peculiar thermodynamic behavior of DG, in particular BZT gases, questions the relevance
of this choice, which implicitly assumes that turbulent structures are not affected by DG effects.

The present thesis tackles the DG LES modeling issue by considering 3 main steps:

• the detailed analysis of DG mixing layers direct numerical simulation (DNS);

• an a priori assessment of LES subgrid-scale (SGS) terms using filtered DNS (DNS of
homogeneous isotropic turbulence is also used);

• the construction and a posteriori validation of a new LES SGS model using supervised
machine learning algorithms.

DNS of mixing layers are first computed for air considered as a PG in Chapter 3 for three
values of the convective Mach numbers (Mc = 0.1− 1.1− 2.2). Their comparison to reference
results from the literature validates the present DNS strategy. Chapter 4 is dedicated to the
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computation of DG DNS of mixing layers and the comparison with PG DNS. Results show
major differences for the momentum thickness growth rates at Mc = 2.2, which is twice as
large for DG when compared to PG. Yet, BZT effects have only a small influence on the mixing
layer growth. Discrepancies between DG and PG flows are more likely related to transcritical
real gas effects rather than linked to the BZT and the DG thermodynamic regions. Shocklets
produce indeed only a limited effect on the mixing layer growth. Several factors tend to reduce
compressibility effects in DG mixing layers: the decoupling of kinetic and internal energies
reduces the effect of increasing Mc; reduced friction losses in DG flows modify the averaged
density distribution, which favors the momentum thickness growth rate.

The a priori evaluation of SGS terms is performed from filtered DNS for the 2 above-
mentioned configurations. The SGS pressure term and SGS pressure work appearing respec-
tively in the filtered momentum and total energy equation need to be modeled in addition to
the SGS terms usually modeled in PG flows.

To answer the need for a specific SGS modeling, Chapter 6 proposes a modeling method-
ology using artificial neural networks (ANN). The method is then applied to the SGS pressure
term showing a proper a priori prediction of the term. The a posteriori assessment is carried
out for mixing layers at Mc = 1.1 and Mc = 2.2 with several filtering sizes.
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Chapter 1
Introduction

1.1 Context and motivation

Figure 1.1: Examples of ORC units: (left) 2 MW Turboden ORC unit using heat recovery in a cement
plant and solar thermal energy (Source: Colonna et al. (2015)); (right) Solar ORC unit installed in
Lesotho (Africa) to help local people becoming electrically self-sufficient (Source: STG international).

Organic Rankine Cycles (ORCs) rely on the so-called William Rankine’s cycle dating back
to the 19th century (Rankine, 1873). This thermodynamic cycle is widely used in industry:
refrigerator, air-conditioner, heat pump, steam engine,... It comprises two isentropic and two
isobaric transformations. The working fluid (commonly water) is warmed up and evaporated
through an heat source. The steam is then expanded (usually through a turbine) to produce
mechanical energy. The conversion into electrical energy can be made using an alternator. An
Organic Rankine Cycle makes use of an organic fluid (instead of water), that is a fluid belonging
to the class of chemical compounds formed from carbon. Among organic fluids, dense gases
(DG) have been widely used in the ORC industry over the past forty years.

The use of such gases enables a great adaptability of ORCs and constitutes their major
asset. The first main advantage of DG is their capacity to exchange large amount of energy at
low to moderate temperatures because of both their large heat capacity and their low boiling
point temperature. As a result, ORCs using dense gases as working fluids cover a wide range
of power (from few kW to several MW) and are well suited to enhance a wide range of heat
sources whose temperature do not exceed the fluid stability limit (around 300◦C to 400◦C (Gaia,
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Figure 1.2: Cumulative installed capacity of commercial ORC power plants since 1995 adapted from
Tartière & Astolfi (2017).

2011)). Among the most tapped heat sources, one can mention geothermal energy, biomass,
heat recovery in primary engines or industrial processes, concentrated solar radiations, ocean
thermal gradients, urban solid waste and landfill gas combustion, ... (see Figure 1.1 for an
illustration of some different types of ORCs). Note that the most powerful ORCs use generally
the geothermal energy. The previous list is far from exhaustive and the ORC potential is
promising: future applications include heat recovery for automotive engines, domestic combined
heat and power (CHP) or even next generation nuclear power plants. The interested reader
should refer to Colonna et al. (2015) for a thorough review of ORCs history and applications.

Another main benefit from using DG lies in the large choice of fluids. DG can be classified
into three fluid classes: hydrocarbons, fluorocarbons and siloxanes (well adapted for high-
temperature ORCs). The working fluid can be selected in accordance with the operating point
of the cycle, that is in particular such that the fluid thermodynamic properties match the
temperature profile of heat sources (Invernizzi, 2013). ORCs are therefore very often the most
appropriate technology capable to convert energy at low power with a rather good efficiency
(around 15% to 20%). As a result, ORCs are usually designed for each situation so that it is
rather difficult to standardize the production of their components.

Other main advantages of ORCs coming from DG properties include (Colonna et al., 2015):

• A lower operating pressure inside the turbine which enables an easier design and reduces
wear issues;

• A reduction of the blade corrosion;

• A lower rotational speed (around 2 to 10 times lower than a steam turbine) which dis-
penses from using a gearbox;

• A much lower slope of the saturation curve for some fluids which prevents condensation
at the turbine exit and avoids using a regenerator to reheat the fluid;

• DG can act as lubricant unlike water for which the mixing with lubricant decreases the
thermodynamic efficiency.

Because of their specific thermodynamic properties, DG are also used in other applications like
Stirling engines (Invernizzi, 2010), hypersonic and supersonic wind tunnels (Wagner & Schmidt,
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Figure 1.3: Evolution of the number of documents including "ORC" and "energy" (left), and "ORC",
"energy", and "turbine" (right) in their title, abstract or keywords (Source: Scopus).

1978; Anders et al., 1999) or chemical transport and processing (Kirillov, 2004).
The aforementioned advantages of the ORC technology aroused a growing interest in indus-

try: the cumulative installed capacity of commercial ORC power plants has been multiplied
by three between 2010 and 2017 (see Figure 1.2), reaching 3GW. Since the early 2000s, the
market has known a significant growth correlated with the increase of oil prices. The inter-
ested reader is referred to Tartière & Astolfi (2017) for a complete overview of the ORC market.

This significant growth of the industrial market was coupled with an increasing research
effort in academia, with a focus on ways to improve the overall ORC efficiency. Since the most
technically advanced element of ORC is the turbine, its proper design is highly influential on
ORC efficiency. Figure 1.3 illustrates the growing research interest about ORC and specifically
about the turbine over the last ten years. Companies developing this technology face numerous
challenges among which some come from a lack of basic knowledge regarding the turbulent
flows of DG in expanders. Moreover, rotating elements are a main source of losses in turbines.
Their use in transonic and supersonic regimes generates shocks associated with entropy pro-
duction. However, for DG, entropy jumps through shocks are significantly reduced in specific
thermodynamic regions in the vicinity of the critical point (Cinnella & Congedo, 2007). Im-
proving knowledge about DG behavior in these specific regions could encourage ORC designers
to consider turbine operating in these regions as a way to improve efficiency. Before explaining
why and how the present work aims to contribute to the DG knowledge improvement, let us
briefly review the current state of knowledge on DG flow physics.

1.2 Dense gas flows

DG are single-phase vapors characterized by long chains of atoms and by medium to large
molecular weights. In the vicinity of the critical point, DG exhibit an unusual behavior com-
pared with classical gases. In this study, specific DG called Bethe-Zel’dovich-Thompson (BZT)
gases, also widely used in industry, are considered. The name BZT was given by Cramer (1991)
to acknowledge the pioneering works of Bethe (1942), Zel’dovich (1946) and Thompson (1971)
on this type of gases. BZT gases display an "inversion zone", that is a thermodynamic region
where the fundamental derivative of gas dynamics becomes negative (Γ < 0).

The fundamental derivative of gas dynamics was introduced by Hayes (1958), and then
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Figure 1.4: The dense gas zone (Γ < 1) and the inversion zone (Γ < 0) are plotted for our working
fluid (FC-70) using the Martin-Hou equation of state. pc and vc are respectively the critical pressure
and the critical specific volume.

rewritten by Thompson (1971) as:

Γ =
v3

2c2

∂2p
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c4
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(1.1)

where v is the specific volume, ρ the density, c =
√
∂p/∂ρ|s the speed of sound, p the pressure

and s the entropy. The term "fundamental" emphasizes the importance of Γ in the determina-
tion of the non-linear behavior of dense gases. This physical quantity is a measure of the speed
of sound rate of change in an isentropic transformation. It is directly related to the curvature
of isentropic curves in the p− v diagram

(
∂2p/∂v2

∣∣∣
s

)
.

There are three main regimes depending on the value of the fundamental derivative:
• Γ > 1 corresponds to the classical ideal gas behavior. For thermally and calorically perfect

gases, the fundamental derivative is constant and given by: Γ = (γ + 1)/2.
• 0 < Γ < 1 corresponds to the classical non-ideal gas behavior. In this regime, the speed of

sound decreases in isentropic compression
(
∂c/∂ρ

∣∣∣
s
< 0
)
. It is referred as the dense gas region

in Figure 1.4.
• Γ < 0 corresponds to the non-classical behavior referred to as BZT effect. It is a narrow

region in the p − v diagram as shown in Figure 1.4. In the inversion zone, because of the
negative sign of the fundamental derivative, expansion shock-waves can occur.

For BZT DG, in the vicinity of the critical point, the isothermal curves (for example the
critical one) display a negative curvature (concave), so that ∂2p/∂v2

∣∣∣
T
< 0 and thus Γ < 0.
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Bethe (1942) and Zel’dovich (1946) were the first to justify this possible occurrence of expan-
sion shock-waves in BZT flows. Bethe (1942) expressed the entropy jump expression across
shock-waves as a function of the fundamental derivative.

∆s = s2 − s1 = −
(
∂2p

∂v2

)
s

∆v3

12T
+O

(
∆v4

)
= −c

2Γ

v3

∆v3

6T
+O

(
∆v4

)
(1.2)

with T the temperature. In the case of compression shock-waves, the specific volume variation
is negative (∆v < 0), so that the fundamental derivative must be positive (Γ > 0) to ensure that
the entropy jump remains positive (∆s > 0), thus satisfying the Second law of thermodynamics.
Only compression shock-waves are physically admissible for classical ideal gases since Γ > 1.
For BZT gases, the fundamental derivative being negative (Γ < 0), physically admissible shock-
waves in the inversion region are expansion shock-waves such that the specific volume variation
is positive (∆v > 0) to ensure the entropy jump remains positive. Moreover, since entropy
jumps are proportional to the fundamental derivative Γ, which is of small amplitude in DG
flows, intensity of shocks is significantly reduced (Cramer & Kluwick, 1984). In addition to a
peculiar thermodynamic behavior, the sound speed is much lower in dense gases (up to 10 times)
when compared with a usual gas such as air, which makes compressible flow regimes much more
easily accessible. Another significant effect can be highlighted using one of Maxwell’s relations:
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If the heat capacity is large (cv >> 1), which is the case for DG, the isentropic curves will
follow the isothermal ones

(
∂T/∂v

∣∣∣
s
<< 1

)
. In such fluids, because of the large heat capac-

ity, isentropic transformations are almost isothermal. Colonna & Guardone (2006) provided
further explanations using an advanced molecular study of forces at stake, depending on the
molecular complexity. They showed that there exists a minimum molecular complexity that
must be reached in a gas in order to fulfill DG and BZT conditions: N > NDG ≈ 7.57 and
N > NBZT ≈ 33.33, with N , the molecular complexity corresponding to the number of active
degrees of freedom of the molecule. The larger the complexity, the more vibrational modes
absorb energy, therefore reducing the propagating energy in translational modes and thus low-
ering the sound speed.

Such unusual features can only be modeled when using a sufficiently complex equation of
state (EoS). The simplest equation of state enabling the prediction of expansion shock-waves
is the Van der Waals EoS. More complex EoS can be chosen to provide a more accurate rep-
resentation of BZT DG thermodynamic behavior: Redlich-Kwong (RK) (Redlich & Kwong,
1949), Soave-Redlich-Kwong (SRK) (Soave, 1972), Peng-Robinson (PR) (Peng & Robinson,
1976) and Martin-Hou (MH) (Martin & Hou, 1955; Martin et al., 1959). A comparison of these
models is given in Guardone et al. (2004). Another popular method is based on look-up tables
using NIST Refprop (Lemmon et al., 2007) and CoolProp (Bell et al., 2014). In the present
study, because we are using FC-70 as working fluid, the first method using the MH EoS will
be retained since it is considered as the reference thermodynamic model for fluorinated BZT
fluids.

Many researchers have studied the non-classical phenomena occurring in (BZT) dense gases,
such as rarefaction shock-waves, by considering at first the fluid as inviscid (Cramer & Kluwick,
1984; Menikoff & Plohr, 1989; Rusak & Wang, 1997; Wang & Rusak, 1999; Congedo et al., 2007,
2011). Adding viscosity effects enabled the study of boundary layers and shock/boundary layers
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interaction (Cramer & Crickenberger, 1991; Cramer & Park, 1999; Fergason & Argrow, 2001;
Kluwick, 2004). These studies concluded on the benefits of using dense gases in ORC turbines
since, when operating in the dense gas region (0 < Γ < 1) at transonic regime, dense gas effects
reduce friction drag and boundary layer separation (Cinnella & Congedo, 2007). Also, when the
expansion operates within the inversion region (Γ < 0), shock intensity decreases and entropy
losses are reduced.

From the experimental viewpoint, it is very difficult to observe rarefaction shock-waves
because of the vicinity of the critical point where physical quantities are experiencing strong
variations. Borisov et al. (1983) and Kutateladze et al. (1987) claimed to have experimen-
tally observed rarefaction shock-waves. However, their results were questioned by Cramer
& Sen (1986) and Fergason et al. (2001) who showed that the fluid used in the experiment
(F − 13, CClF3) does not satisfy the Thompson & Lambrakis (1973) requirements and con-
cluded that the observed shock-wave was not a single-phase rarefaction shock-wave.

Since then, works by Fergason et al. (2001), Colonna et al. (2008), Spinelli et al. (2010) and
Spinelli et al. (2013) enabled the design of shock tubes and test rigs, such as the Test Rig for
Organic VApors (TROVA) at Politecnico di Milano or the Flexible Asymmetric Shock Tube
(FAST) built at Delft University of Technology (Mathijssen et al., 2015). The experimental
proof of rarefaction shock-waves remains an active research area. A recent review of current
experimental and numerical studies on ORCs is given in Nematollahi & Kim (2020) and men-
tions a new test facility (ORCviP) installed in Pusan National University that consists in an
ORC adapted to use visualization methods such as PIV and Schlieren methods.

1.3 The need for turbulence modeling in dense gas flows
The use of dense gases in ORCs raises modeling issues when numerically designing ORC turbines
since the turbulent flows at stake include both significant compressibility effects and potential
differences with respect to perfect gases (PG). Argrow (1996) was the first to perform the nu-
merical simulation of a single-phase DG inviscid flow in a shock tube. This pioneering work was
followed by contributions of Monaco et al. (1997), Brown & Argrow (1998), Colonna & Rebay
(2004) and Cinnella & Congedo (2005) with the simulation of inviscid DG flows over airfoils
or turbine cascades. Cinnella & Congedo (2007) performed for the first time DG simulations
for laminar and turbulent external flows over airfoils and flat plates using Reynolds-averaged
Navier-Stokes (RANS) equations with the simple algebraic model of Baldwin & Lomax in the
latter case. Harinck et al. (2010b), Wheeler & Ong (2013) and From et al. (2017) subsequently
achieved simulations of turbulent DG flows using respectively k−ε and k−ω two-equation mod-
els, Spalart-Allamaras one-equation model and an Explicit Algebraic Reynolds Stress model.
Recently Razaaly et al. (2019); Romei et al. (2020) performed supersonic turbine cascade RANS
simulations using the k − ω Shear Stress Transport (SST).

In addition, Dura Galiana et al. (2016, 2017) performed Large Eddy Simulations (LES)
of a turbulent dense gas flow over a turbine vane trailing-edge using the Smagorinsky-Lilly
model and a wall model even though it had not been developed nor calibrated for DG flows.
They noticed a strong reduction of the wake as the fundamental derivative of gas dynamics Γ
decreases. A brief comparison is also made by the authors with experimental results showing
much lower predicted total pressures as Γ decreases. Lately, Hoarau et al. (2021) achieved a
coarse wall-resolved implicit LES at low supersonic conditions, using a numerical viscosity to
ensure subgrid-scale dissipation.

Up to now, although the DG thermodynamic features strongly differ from those of perfect
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gases, turbulence closure models developed and calibrated for perfect gases have been coupled
with real-gas EoS and applied for RANS simulations and LES of dense gas flows, for lack of a
better option. The peculiar thermodynamic behavior of dense gases, in particular BZT gases,
questions the validity of this choice, which implicitly assumes that turbulent structures are
not affected by dense gas effects. Such an assumption is not yet verified and constitutes an
open-research field. Yet, the lack of reference experimental data makes the verification of the
presently used turbulence models a complex task. Note the influence of the thermodynamic
models (Equations of State and transport coefficient description) on the numerical prediction
of dense gas flows is also an issue which has been investigated by several authors, see for in-
stance Harinck et al. (2010a); Merle & Cinnella (2014), and also suffers from the same lack of
reference experimental data. Yet, recent progress has been made on this latter topic thanks
to measurements made in the TROVA facility at Politecnico di Milano. In Gori et al. (2020),
the RANS computation of the flow in a converging-diverging nozzle was performed using a
Span-Wagner EoS optimized for MDM and compared with the reference experimental results
to validate the developed EoS.

The tool of choice to be used in order to assess the potential specificities of turbulence in
a dense gas flow is Direct Numerical Simulation (DNS) since it enables the resolution of every
turbulent scale, from the largest swirls (limited by the size of the domain) to the smallest ones
(limited by the Kolmogorov scale), and thus gives access to the flow physics without resorting
to any turbulent closure model. Because the number of cells needed to reach DNS resolution
grows as O(Re9/4) (Bailly & Comte-Bellot, 2003), DNS remains naturally confined to simple
flow configurations. For larger and more complex systems, LES is a tool of choice since it
resolves large turbulent scales and models the small ones. However, as already mentioned, it
relies on subgrid models which have been tailored for turbulent flows of ideal gases so that their
validity for dense gases is also questionable.

At the present time, few authors have achieved DNS of dense gas flows. Giauque et al.
(2017) have performed a DNS of decaying homogeneous isotropic turbulence (HIT) and con-
cluded that the standard Smagorinsky sub-grid scale model does not capture correctly the
temporal evolution of the turbulent kinetic energy by comparing the LES prediction with the
DNS reference results. The DNS also evidenced localized flow regions with strongly positive
values for the velocity divergence that could correspond to expansion shocklets†. They ex-
tended their analysis by performing a forced HIT highlighting significant differences in the SGS
baropycnal work and the resolved pressure-dilatation, which is reduced by a factor of 2 in the
dense gas (DG) when compared to the perfect gas (PG) (Giauque et al., 2020).

Sciacovelli et al. (2016) have also studied the large scales dynamics in decaying HIT, as-
suming at first an inviscid dense gas. They evidenced strong differences of the fluctuation
levels for thermodynamic quantities (density, pressure, sound speed) between the perfect gas
and the dense gas. They pointed out the more symmetric probability density function of the
velocity divergence in the dense gas flow. Their DNS results display flow regions with strong
expansions and tubular structures unlike the compression regions which are characterized by
sheet-like structures. The more symmetric distribution could be explained by the presence of
expansion shocklets.

Sciacovelli et al. (2017b) extended their previous decaying HIT study by considering viscous
effects and focused then on the small scale dynamics. Two different initial states were selected
for the dense gas : one inside the inversion region and one outside. They noticed reduced levels
of thermodynamic fluctuations in dense gas flows due to the decoupling of thermal and dynamic
phenomena caused by the large heat capacity. The Eckert number, which quantifies the ratio

†Eddy shocklets are small shocks induced by strong local fluctuating velocity events.
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between the kinetic energy and the internal energy, is indeed much smaller in dense gas flows.
It was also observed that the global flow dynamics is almost not influenced by local events
such as expansion shock-waves. The nature of turbulent structures was also discussed based on
DNS results. The formation of convergent compressed structures like compression shock-waves
is strongly reduced in the BZT zone. The occurrence of non-focal convergent structures in the
dense gas diminishes the vorticity and counterbalances enstrophy destruction.

Sciacovelli et al. (2017a) analyzed DG flow behavior in a supersonic turbulent channel flow.
The initial thermodynamic state was chosen this time in a non-BZT DG region. Significant
differences with a supersonic ideal gas channel flow were observed for some thermodynamic
variables. For instance, the temperature is lower at the center line for the dense gas and the
dense gas flow can actually be considered quasi-isothermal contrary to the perfect gas flow.
The viscosity decreases from the wall towards the center line unlike in PG flows. They also
noticed significant differences in the shape and rates of the fluctuating density and temperature
distributions. Characteristics of the dense gas flow have been found to be close to those of
variable-property liquid flows. Regarding the development of turbulence, the authors did not
notice significant differences between the perfect gas and the dense gas for the flow configu-
ration under study. The Reynolds stresses and the non-dimensional streamwise and spanwise
lengths of the structures were found to be nearly the same. An extension of this study to the
BZT DG region and to a larger Mach number would be needed to better conclude on BZT DG
effects on turbulence development in a channel flow.

Gloerfelt et al. (2020) performed the DNS of a dense gas compressible boundary layer at
Mach numbers ranging from 0.5 to 6. They confirm in particular the decoupling between
dynamical and thermal effects, which leads to the suppression of friction heating. The most
remarkable consequence is that the boundary layer thickness remains equal to its value in the
incompressible regime as the Mach number increases.

Despite the aforementioned research effort in characterizing turbulence in DG flows, it has
not yet been proven that perfect gas turbulent closure models are suitable for DG flows. This
issue remains an open-research field. The present study is expected to shed some light on
the specific features displayed by turbulent DG flows and which could motivate a dedicated
modeling task. The method followed to address these two key questions:

• do turbulent DG flows display specific turbulent characteristics with respect to perfect
gas flows ?

• if so, how should a subgrid model account for these specific characteristics ?

is described in the next section and defines the structure of the present thesis report.

1.4 Outline of the thesis

This thesis falls within the EDGES (turbulEnt Dense Gas flow modeling using large Eddy
Simulation) research project funded by the National Research Agency (ANR) in France. The
project is devoted to the analysis and modeling of turbulence in DG flows, with a subsequent
transfer of this fundamental knowledge to the application field of ORC turbine modeling where
dense gases are commonly used as working fluids. The key steps of the EDGES project are:

1. the production of a DNS database of turbulent DG flows over three classical configurations
which are representative of the flow inside an ORC turbine: the Homogeneous Isotropic
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Turbulence (HIT) may be seen as reflecting the turbulent behavior in a turbine inter-
blade region, the mixing layer provides insight into the turbulence characteristics in the
blade’s wake and the channel flow provides information specific to wall bounded flows;

2. an a priori evaluation of LES subgrid-scale (SGS) terms and an assessment of current
LES turbulent closure models using DG DNS results;

3. the construction of new LES SGS models for DG flows using supervised machine learning
algorithms;

4. an a posteriori assessment of the relevance of these new closure models for a full ORC
turbine stage.

The present thesis is organized following the key steps of the EDGES project and contributes
to all these steps: the computation of a DG mixing layer is achieved (the HIT and the channel
flow have been computed by other contributors of LMFA research team); the a priori SGS
evaluation and the construction of a new SGS model are done using the HIT and the mixing
layer DNS data; and the a posteriori validation is performed for the mixing layer configuration
(the application to a full ORC turbine stage is planned in 2022, the final year of the EDGES
project).

Chapter 2 references the governing equations and constitutive laws used to perform both
real gas DNS and LES: instantaneous Navier-Stokes equations, thermodynamic models and
LES equations. Some specific features of DG flows are also highlighted in this chapter. In
addition, the numerical solver AVBP used for all the numerical simulations analyzed in the
report is briefly presented.

The next two chapters are dedicated to the production of mixing layer DNS results. At
first, in order to assess the quality of the present DNS, Chapter 3 is devoted to the assessment
and the analysis of mixing layer DNS simulations for air (considered as a perfect gas) at three
convective Mach numbers (Mc = 0.1−1.1−2.2). Results obtained using AVBP are in particular
compared to available reference results in the literature.

Then, several DG mixing layer DNS are performed. A comparative analysis of dense gas and
perfect gas mixing layers is proposed in Chapter 4 for three increasing values of the convective
Mach numbers (Mc = 0.1 − 1.1 − 2.2). This analysis highlights and explains the differences
occurring between DG and PG flows at large convective Mach numbers.

Once DG DNS results have been gathered, they can be filtered in order to study the impor-
tance of SGS terms appearing in LES equations. This task is performed in Chapter 5 for HIT
and mixing layer DNS and establishes the importance of some new SGS terms, among which
the SGS pressure.

To answer the need for a specific SGS modeling when dealing with DG flows, Chapter 6
proposes a modeling methodology using Artificial Neural Network (ANN). The method is then
applied to the new SGS pressure term.

The closing Chapter 7 is dedicated to the a posteriori validation of the novel ANN-based
SGS model for compressible DG mixing layers at several filtering sizes.
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Chapter 2
Governing equations and numerical tools

This chapter is devoted to the description of the governing equations and the numerical solver
(AVBP) ensuring their discrete solution, that will be employed in the next chapters. The

(instantaneous) Navier-Stokes equations given in Section 2.1 are used for DNS computations
in chapters 3 and 4. Their filtered version given in Section 2.4 is used for both a priori and
a posteriori LES respectively in chapters 5 and 7. These governing equations are completed
in Section 2.2 with the description of the specific thermodynamic modeling dedicated to dense
gases, comprising the equations of state (EoS) (both thermal and caloric) and the transport
coefficients models. DG peculiarities and their influence on the mathematical framework are
underlined. In particular, Section 2.3 emphasizes the differences between PG and DG flows
regarding the non-dimensional numbers involved in the set of governing equations. Finally,
Section 2.5 introduces the numerical setup used in the AVBP solver and justifies its relevance
for the DNS and LES performed in this work.
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2.1. NAVIER-STOKES EQUATIONS

2.1 Navier-Stokes equations
Only few experimental results being available for compressible DG flows (Dura Galiana et al.,
2016, 2017), one needs to use DNS to accurately describe their turbulent behavior. The un-
steady, three-dimensional, compressible Navier-Stokes equations are thus solved in the single-
phase context for DNS. They represent the conservation of mass, momentum and total energy.

∂ρ

∂t
+
∂(ρui)

∂xi
= 0

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

∂(ρE)

∂t
+
∂[(ρE + p)uj]

∂xj
=
∂(τijui − qj)

∂xj

(2.1)

with ρ the density, p the pressure, ui the ith component of the flow speed (i ∈ 1, 2, 3) and
E = Eint + 1

2
uiui the specific total energy (Eint the specific internal energy). The heat flux qj

is given by Fourier’s law:

qj = −κ ∂T
∂xj

(2.2)

with κ the thermal conductivity and T the temperature. τij represents the viscous stress tensor.
In the following, since only Newtonian fluids will be considered, the viscous stress tensor is
aligned with the strain-rate tensor

(
Sij = 1

2

[
∂ui
∂xj

+
∂uj
∂xi

])
. In the compressible formulation, the

strain-rate tensor can be decomposed into a traceless symmetric part (the deviatoric part: SDij ),
which is associated to a constant volume deformation, and a purely diagonal component (the
isotropic part: SIij), which is related to the volumetric distortion.

Sij =
1

3
Skkδij︸ ︷︷ ︸
SIij

+

[
Sij −

1

3
Skkδij

]
︸ ︷︷ ︸

SDij

(2.3)

with δij =

{
1, if i = j.

0, otherwise.
, the Kronecker delta. In the most general formulation, the viscous

stress tensor is expressed as a combination of both deviatoric and isotropic parts of the strain-
rate tensor.

τij = 2µSDij + 2µbS
I
ij (2.4)

where µ and µb denote respectively the dynamic viscosity and the bulk viscosity. Following
Stokes’ hypothesis, the bulk viscosity can be usually neglected with respect to the dynamic
viscosity. Very few experimental data containing the bulk viscosity are actually available for
dense gases and none for FC-70, the BZT DG fluid used in this analysis. Yet, Sciacovelli et al.
(2017a) roughly estimate its value for another BZT DG fluid (PP-11) and show that its effect
is negligible on their results. As done in Gloerfelt et al. (2020), the bulk viscosity is neglected
in this analysis. The viscous stress tensor becomes therefore:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(2.5)
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2.2 Thermodynamic models

The above-mentioned equations (2.1) need to be completed with a thermodynamic modeling,
which is composed of both the equations of state (EoS) and the transport coefficients models.

2.2.1 Equations of state

In their general form, EoS are composed of the thermal EoS, which expresses the pressure as a
function of the density (or the specific volume v = 1/ρ) and the temperature, and the caloric
EoS, which expresses the internal energy as a function of the density (or the specific volume)
and the temperature:

p = Ft(ρ, T ) (2.6)

Eint = Fc(ρ, T ) (2.7)

where Ft and Fc denote respectively the thermal and the caloric EoS. In this study, DNS
are both performed for air considered as a perfect gas and for FC-70, which is a BZT dense
gas. Since these two different types of gases do not have the same level of complexity, their
thermodynamic description requires two different EoS formulations: the perfect gas EoS for air
and the Martin-Hou EoS for FC-70.

Perfect Gas EoS

Air is thermodynamically described with the perfect gas EoS:
p = ρRT

Eint = Eint,ref +

∫ T

Tref

cv(T
′)dT ′

(2.8)

where (.)ref denotes a reference state, R = R/M is the specific gas constant (M , the molar
mass and R = 8.314 J.mol−1.K−1, the universal gas constant) and cv, the specific heat capacity
at constant-volume conditions. The specific heat capacity (cv) is defined as the slope of the sen-
sible energy

(
cv = ∂Es

∂T

∣∣
v

)
. The sensible energy (Es) is computed using the JANAF tables (Stull

& Prophet, 1971). Specific heats are thus not constant. The relation Γ = (γ+1)/2 expressed in
Section 1.2 is no longer suitable, since it is only valid for a thermally and calorically perfect gas.

Martin-Hou EoS

For DG simulations, perfluorotripentylamine (FC-70, C15F33N) is chosen similarly as Fergason
et al. (2001) in their shock tube simulations, where they evidence rarefaction shock-waves.
This almost non-toxic gas is particularly used as heat transfer fluid but has also been evaluated
as synthetic blood (Costello et al., 2000). Physical parameters useful for the thermodynamic
description of FC-70 are given in Table 2.1, as taken from Cramer (1989).

In order to provide an accurate representation of FC-70 thermodynamic behavior, the
Martin-Hou (MH) EoS is retained since it is considered as the reference thermodynamic model
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Tc (K) pc (atm) Zc Tb (K) m (= cv∞(Tc)/R) n
FC-70 608.2 10.2 0.270 488.2 118.7 0.493

Table 2.1: Physical parameters of FC-70 (Cramer, 1989). The critical pressure pc, the critical temper-
ature Tc, the boiling temperature Tb and the compressibility factor Zc = pcvc/(RTc) are the input data
for the Martin-Hou EoS. The critical specific volume vc is deduced from the aforementioned parame-
ters. The exponent n and the cv∞(Tc)/R ratio are used to compute the ideal isochoric heat capacity
cv∞(T ).

for fluorinated BZT fluids (Guardone et al., 2004). The MH EoS are given by the following
fifth-order equations:

p =
RT

v − b
+

5∑
i=2

Ai +BiT + Cie
−kT/Tc

(v − b)i

Eint = Eint,ref +

∫ T

Tref

cv∞(T ′)dT ′ +
5∑
i=2

Ai + Ci(1 + kT/Tc)e
−kT/Tc

(i− 1)(v − b)i−1

(2.9)

where cv∞ denotes here the isochoric specific heat capacity in the ideal gas limit (i.e. cv∞(T ) =
lim
v→∞

cv(T, v), namely the ideal isochoric specific heat capacity), b = vc(1 − (−31, 883Zc +

20.533)/15), k = 5.475 and the coefficients Ai, Bi and Ci are numerical constants determined
by Martin & Hou (1955) and Martin et al. (1959) from the physical parameters summarized in
Table 2.1.

The caloric EoS is transformed by approximating the form of the ideal heat capacity with
a power law (see Guardone & Argrow (2005)):

Eint = Eint,ref +
cv∞(Tc)Tc
n+ 1

(
T

Tc

)n+1

+
5∑
i=2

Ai + Ci(1 + kT/Tc)e
−kT/Tc

(i− 1)(v − b)i−1
(2.10)

where the exponent n is given in Table 2.1.

2.2.2 Transport coefficients models

The thermodynamic description needs to be completed with models of transport coefficients
(dynamic viscosity and thermal conductivity) for both air and FC-70.

Perfect gas

For air, the dynamic viscosity follows Sutherland’s law (Sutherland, 1893):

µ(T ) = µ(Tref )

(
T

Tref

)3/2
Tref + S

T + S
(2.11)

where S is the Sutherland temperature and µref is the dynamic viscosity at Tref . The selected
constants for Sutherland’s law are the ones given in White (1998), which are valid for the range
of temperature met in the present study (Grieser & Goldthwaite, 1963). In addition, a constant
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Prandtl number is set equal to 0.71. The Prandtl number is defined as the ratio between the
kinematic viscosity and the thermal diffusivity:

Pr =
ν

α
(2.12)

with α = κ/(ρcp), the thermal diffusivity (cp is the heat capacity at constant-pressure condi-
tions). A large Prandtl number indicates that the viscous diffusivity is faster than the thermal
diffusivity. Setting this parameter enables the computation of thermal diffusivity and thus of
thermal conductivity.

Dense gas

For FC-70, Chung’s model is used to compute dynamic viscosity and thermal conductivity
from density and temperature (Chung et al., 1988). This modeling yields satisfactory results
for dense gases. In our case, FC-70 is assumed to behave as a nonpolar gas, its dipole moment
is neglected.

2.3 Non-dimensional formulation
This section seeks to give a non-dimensional formulation of the governing equations for both
PG and DG flows. This non-dimensional framework will be used in Chapter 4 to explain some
of the differences observed between PG and DG mixing layers. The governing equations are
first normalized in their most general form before focusing on each type of flow.

2.3.1 General formulation

A general normalization of the Navier-Stokes equations is provided in the following paragraphs.
Thermal and caloric EoS are investigated in the next two sections (Sections 2.3.2 and 2.3.3).
To that end, φ̆ = φ/φR denotes the non-dimensional variable associated to the flow variable φ
where φR corresponds to a reference (dimensional) value for φ. It is assumed that tR = xR/uR,
choosing t̆ = t/tR, x̆ = x/xR and ŭ = u/uR. For the sake of clarity, the same reference values
are chosen for each direction of the flow. Introducing these non-dimensional quantities into the
Navier-Stokes equations (2.1) yields:

∂ρ̆

∂t̆
+
∂(ρ̆ŭi)

∂x̆i
= 0

∂(ρ̆ŭi)

∂t̆
+
∂(ρ̆ŭiŭj)

∂x̆j
= − pR

ρRu2
R

∂p̆

∂x̆i
+

µR
ρRuRxR

∂

∂x̆j

(
µ̆S̆Dij

)
[
∂(ρ̆Ĕint)

∂t̆
+
∂(ρ̆Ĕintŭj)

∂x̆j

]
+

u2
R

(Eint)R

[
∂(ρ̆ŭiŭi)

∂t̆
+

1

2

∂(ρ̆ŭiŭiŭj)

∂x̆j

]
= − pR

ρR(Eint)R

∂p̆ŭj
∂x̆j

+
µRuR

ρR(Eint)RxR

∂

∂x̆j

(
µ̆ŭiS̆

D
ij

)
+

κRTR
ρR(Eint)RuRxR

∂

∂x̆j

(
κ̆
∂T̆

∂x̆j

)
(2.13)

where S̆Dij =
(
∂ŭi
∂x̆j

+
∂ŭj
∂x̆i
− 2

3
∂ŭk
∂x̆k

δij

)
denotes the non-dimensional deviatoric strain-rate tensor.

Equations (2.13) can be further simplified introducing non-dimensional numbers. To that
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end, some logical choices are made for the reference quantities. Initial values are retained
for length (L0, for instance the initial characteristic length of a developing shear layer), density
(ρ0), pressure (p0), temperature (T0), viscosity (µ0) and conductivity (κ0). Because of the
compressible context, the reference velocity is chosen equal to the initial sound speed c0. The
reference value of the internal energy is different between DG and PG flows. At this stage, its
expression is kept fixed to (Eint)R.

Let us define the three non-dimensional numbers appearing in the aforementioned equations.
The initial Reynolds number is defined as the ratio between the inertial forces and the viscous
forces at initial conditions:

Re0 =
ρ0u0L0

µ0

(2.14)

where u0 denotes the initial velocity. The initial Mach number represents the ratio between the
initial flow velocity and the initial speed of sound:

M0 =
u0

c0

(2.15)

The initial Prandtl number is such that:

Pr0 =
µ0 (cp)0

κ0

(2.16)

The non-dimensional Navier-Stokes equations (2.13) can be expressed as:

∂ρ̆

∂t̆
+
∂(ρ̆ŭi)

∂x̆i
= 0

∂(ρ̆ŭi)

∂t̆
+
∂(ρ̆ŭiŭj)

∂x̆j
= −

p0

ρ0c2
0

∂p̆

∂x̆i
+
M0

Re0

∂

∂x̆j

(
µ̆S̆Dij

)
[
∂(ρ̆Ĕint)

∂t̆
+
∂(ρ̆Ĕintŭj)

∂x̆j

]
+

c2
0

(Eint)R

[
∂(ρ̆ŭiŭi)

∂t̆
+

1

2

∂(ρ̆ŭiŭiŭj)

∂x̆j

]
= −

p0

ρ0(Eint)R

∂p̆ŭj
∂x̆j

+
M0

Re0

[
c2

0

(Eint)R

∂

∂x̆j

(
µ̆ŭiS̆

D
ij

)
+

1

Pr0

(cp)0 T0

(Eint)R

∂

∂x̆j

(
κ̆
∂T̆

∂x̆j

)]
(2.17)

Bold expressions are further specified depending on the thermodynamic modeling in the
following sections.

2.3.2 Perfect gas analysis

For a calorically perfect gas, additional relations come into play:

(cp)0 = cp = γcv (2.18)

c2
0 =

γp0

ρ0

= γRT0 (2.19)

(Eint)R = (Eint)0 = η0cvT0 (2.20)

where γ denotes the heat capacity ratio and η0 = 1 +
Eint,ref
cvT0

. For a given perfect gas, for
instance air, γ = 1.4 is fixed and the initial thermodynamic state only appears through the
initial temperature T0 and the parameter η0. Essentially, the problem is fully defined through
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the choice of the Mach number and the Reynolds number (the Prandtl number is set to 0.71).
It can be also noticed the non-dimensional EoS do not introduce new parameters. Thermal
and caloric EoS become:

p̆ = ρ̆T̆ (2.21)

Ĕint =
T̆

η0

+

(
1− 1

η0

)
(2.22)

Assuming η0 ≈ 1, the caloric equation becomes ĕ = T̆ . Finally, using this assumption yields
to the following non-dimensional equations for a calorically perfect gas flow:

∂ρ̆

∂t̆
+
∂(ρ̆ŭi)

∂x̆i
= 0

∂(ρ̆ŭi)

∂t̆
+
∂(ρ̆ŭiŭj)

∂x̆j
= −1

γ

∂p̆

∂x̆i
+
M0

Re0

∂

∂x̆j

(
µ̆S̆Dij

)
[
∂(ρ̆Ĕint)

∂t̆
+
∂(ρ̆Ĕintŭj)

∂x̆j

]
+ γ(γ − 1)

[
∂(ρ̆ŭiŭi)

∂t̆
+

1

2

∂(ρ̆ŭiŭiŭj)

∂x̆j

]
= −(γ − 1)

∂p̆ŭj
∂x̆j

+
M0

Re0

[
γ(γ − 1)

∂

∂x̆j

(
µ̆ŭiS̆

D
ij

)
+

γ

Pr0

∂

∂x̆j

(
κ̆
∂T̆

∂x̆j

)]
(2.23)

Blue and red colors enable to distinguish respectively between similarities and differences
when comparing PG and DG flows. To obtain the full non-dimensional problem for PG flow,
one needs to complete the Navier-Stokes equations (2.23) with the non-dimensional thermal
and caloric EoS, the non-dimensional transport coefficients models and non-dimensional initial
conditions.

2.3.3 Dense gas analysis

There are several ways to normalize the Martin-Hou thermal and caloric EoS. In this study, we
introduce the compressibility factor based on the initial thermodynamic state:

Z0 =
p0

ρ0RT0

(2.24)

The MH thermal EoS chosen for dense gas flows (Equation (2.9)) can be transformed as:

p̆ =
1

Z0

[
T̆

v̆ − b̆
+

5∑
i=2

Ăi + B̆iT̆ + Cie
−kT̆ (T0/Tc)

(v̆ − b̆)i

]
(2.25)

where Ăi = Ai/(RT0v
i−1
0 ), B̆i = Bi/(Rv

i−1
0 ) and C̆i = Ci/(RT0v

i−1
0 ). Moreover, b̆ = b/v0 =

(b/vc) × (vc/v0), where the non-dimensional coefficient b/vc depends on the critical compress-
ibility factor, which is itself dependent on the gas. It can thus be considered that:

p̆ =
1

Z0

f

(
v̆, T̆ ,

vc
v0

,
T0

Tc

)
(2.26)

Equation (2.26) evidences the role played by the initial compressibility factor and the initial
thermodynamic state. For the caloric EoS (initially written in Equation (2.10)), instead of
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choosing the reference value for the internal energy as (Eint)R = (Eint)0 = Eint(v0, T0), one can

define (Eint)R = cv∞ (Tc)Tc
n+1

(
T0
Tc

)n+1
†:

Ĕint = T̆ n+1 +
RT0

(Eint)R

[
5∑
i=2

Ăi + C̆i(1 + kT̆ (T0/Tc))e
−kT̆ (T0/Tc)

(i− 1)(v̆ − b̆)i−1

]
(2.27)

It can thus be considered that:

Ĕint = T̆ n+1 + f

(
T̆ , v̆,

vc
v0

,
T0

Tc

)
(2.28)

Since both thermal and caloric EoS are non-dimensional, bold expressions appearing in
Equations (2.17) can now be expressed for the DG flow. We will proceed one term at a time.

With the definition introduced for the reference internal energy, the ratio (cp)0 T0/ (Eint)R
becomes:

(cp)0 T0

(Eint)R
=

(n+ 1)

cv∞(Tc)/R︸ ︷︷ ︸
fluid dependent

×
(
Tc
T0

)n (cp)0

R︸ ︷︷ ︸
initial state and fluid dependent

= K0

(cp)0

R
(2.29)

where K0 = (n+1)
cv∞ (Tc)/R

×
(
Tc
T0

)n
depends on the fluid properties and on the initial thermodynamic

state.
In a real gas context, the ratio p0/(ρ0c

2
0) can no longer be simplified into 1/γ. It is possible

to rewrite the ratio as follows:
p0

(ρ0c2
0)

= Z0M0
RT0

u0

(2.30)

The non-dimensional number rT0/u0 can be thoroughly transformed. The initial Eckert
number is defined as the ratio between the kinetic energy and the enthalpy:

Ec0 =
u2

0

(cp)0 T0

(2.31)

Using the Eckert number enables the transformation of the ratio p0/(ρ0c
2
0):

p0

(ρ0c2
0)

=
Z0M

2
0

Ec0

r

(cp)0

(2.32)

Finally, the ratio c2
0/ (Eint)0 takes the form:

c2
0

(Eint)0

= K0

(cp)0

R

Ec0

M2
0

(2.33)

The new non-dimensional quantities defining the problem in the dense gas context are
therefore the initial compressibility factor Z0, the initial Eckert number Ec0, the parameter K0

computed from fluid properties and from the ratios T0/Tc and r/ (cp)0 and the initial Mach
and Reynolds numbers. The ratios T0/Tc and vc/v0 (or ρ0/ρc) also appear in the thermal and

†The reference value Eint,ref which appears in Equation (2.10) can be set to zero.
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caloric EoS. The non-dimensional Navier-Stokes equations for compressible DG flows read:

∂ρ̆

∂t̆
+
∂(ρ̆ŭi)

∂x̆i
= 0

∂(ρ̆ŭi)

∂t̆
+
∂(ρ̆ŭiŭj)

∂x̆j
= −Z0M

2
0

Ec0

R

(cp)0

∂p̆

∂x̆i
+
M0

Re0

∂

∂x̆j

(
µ̆S̆Dij

)
[
∂(ρ̆Ĕint)

∂t̆
+
∂(ρ̆Ĕintŭj)

∂x̆j

]
+
K0Ec0

M2
0

(cp)0

R

[
∂(ρ̆ŭiŭi)

∂t̆
+

1

2

∂(ρ̆ŭiŭiŭj)

∂x̆j

]
= −Z0K0

∂p̆ŭj
∂x̆j

+
M0

Re0

[
K0Ec0

M2
0

(cp)0

R

∂

∂x̆j

(
µ̆ŭiS̆

D
ij

)
+
K0

Pr0

(cp)0

R

∂

∂x̆j

(
κ̆
∂T̆

∂x̆j

)]
(2.34)

To complete the full definition of the non-dimensional problem (2.34) for DG flows, one needs
to add the non-dimensional thermal and caloric EoS given in Equations (2.25) and (2.27), the
non-dimensional transport coefficients models and initial conditions. Non-dimensional numbers
at stake in both DG and PG formulations are summarized and compared in Table 2.2. They
will be further used in Chapter 4 to contribute to explain the physical differences observed
between DG and PG mixing layers.
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Momentum equations PG DG

∂p

∂xi

1

γ
≈ 0.71

Z0M
2
0

Ec0

R

cp0

∂

∂xj

(
µSDij

) M0

Re0

M0

Re0

Energy equation PG DG

[
∂(ρuiui)

∂t
+

1

2

∂(ρuiuiuj)

∂xj

]
γ(γ − 1) = 0.56

K0Ec0

M2
0

(cp)0

R

∂(puj)

∂xj
(γ − 1) = 0.4 Z0K0

∂

∂xj

(
µuiS

D
ij

)
γ(γ − 1)

M0

Re0

= 0.56
M0

Re0

K0Ec0

M2
0

(cp)0

R

M0

Re0

∂

∂xj

(
κ
∂T

∂xj

)
γ

Pr0

M0

Re0

≈ 1.97
M0

Re0

K0

Pr0

(cp)0

R

M0

Re0

Table 2.2: Comparison of the PG and DG non-dimensional terms appearing in the non-dimensional
Navier-Stokes equations (2.23) and (2.34). The numerical values are given for air considered as a
calorically perfect gas with γ = 1.4 and Pr0 = 0.71.

19



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL TOOLS

2.4 LES governing equations

This section is devoted to the presentation of the LES mathematical framework. LES fundamen-
tals are briefly introduced, followed by a presentation of the filtering process. The emphasis is
then put on specificities induced by the thermodynamic modeling. A summary helps to identify
and classify the different subgrid scale terms. Finally, standard models later used in Chapter 7
are introduced.

2.4.1 Preliminary discussion

Figure 2.1: Schematic view of the turbulence spectrum. The cut-off wavenumber kc = π/∆ is
associated to the filtering size ∆. It defines the limit above which turbulent scales are modeled in LES.

Large Eddy Simulation (LES) finds its origins in the turbulence cascade. In 1922, Richard-
son writes "Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls and so on to viscosity" (Richardson, 1922). He was the first to describe interactions
between large and small scales. In tribute to its work, the turbulent cascade is often named
the Richardson cascade. The concept of a viscous limit preventing the propagation of energy
over swirls was thoroughly developed by Kolmogorov in 1941. He made significant advances
introducing the existence of a scale from which "the effect of viscosity on the pulsations of the
order n finally prevents the formation of pulsations of the order n+1" (Kolmogorov, 1941).
Yet, Kolmogorov major contribution is certainly the universal form for the energy spectrum
arising from the hypothesized existence of an isotropic intermediate range of length scales: the
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Figure 2.2: Summary of fundamental principles for the two LES approaches: the a priori LES and
the a posteriori LES.

so-called inertial range in which the turbulent kinetic energy spectrum E(k) associated to the
wavenumber k satisfies

E(k) = CKε
2/3k−5/3 (2.35)

where CK ≈ 1.5 is the Kolmogorov constant and ε = 2ν
∫∞

0
k2E(k)dk is the dissipation rate

(ν = µ/ρ denotes the kinematic viscosity). Note that this result is not verified for compressible
flows in which case the energy decreases slightly faster (Kritsuk et al., 2007; Wang et al., 2013).

A schematic view of the turbulent spectrum is represented in figure 2.1. Energy, which can
either be a forcing term (for example in forced homogeneous isotropic turbulence) or comes
from flow conditions, is injected at the largest scales generating a turbulent production. The
turbulent energy is then transferred to the smallest ones through an inertial zone in which
the turbulent kinetic energy spectrum decreases following the Kolmogorov law (E(k) ∝ k−5/3).
Finally, the turbulent kinetic energy is dissipated at the smallest scales down to the Kolmogorov
scale. Note that there exists an opposite energy transfer mechanism named backscatter from
the small scales to the large ones. Its intensity is much weaker and occurs in specific flow
conditions like compressible, rotating flows (Garnier et al., 2009) or 2D turbulence (Grooms
et al., 2015).

In LES, the turbulent spectrum is decomposed in two parts: resolved scales and subgrid
scales, which are modeled. The smallest scales are assumed to be isotropic and independent of
the largest ones. These two hypothesis are at the origin of the universal feature of the smallest
scales and at the core of subgrid-scales (SGS) models. The separation between resolved and
unresolved scales is called the cut-off wavenumber (kc). It is located in the inertial range
implying scale similarity of energy flux. It defines the limit above which turbulent structures
need to be modeled.

In Sections 2.4.4 and 2.4.3, filtered Navier-Stokes equations are derived. These equations
are used in Chapter 5 and Chapter 7 in two contexts: the a priori LES and the a posteriori
LES. In a priori LES, one starts from DNS results. A filtering operator is then applied to flow
variables giving the filtered variables. In a posteriori LES, Navier-Stokes equations are filtered
before being solved. The SGS terms, which are not computable in this approach, are modeled.
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The a posteriori LES is the default approach when applying LES in general. The whole process
for both approaches is described in figure 2.2.

For both approaches, one could expect to obtain the same filtered variables. Yet, there are
four main sources of difference between filtered variables provided by a priori and a posteriori
LES: the SGS models that do not perfectly describe SGS terms, the commutativity errors
occurring between filtering and differentiation operators, some numerical artifacts like artificial
viscosity used to stabilize the computation, and the filtering characteristics like the type of
filter or the choice of selectivity parameters. This last point is discussed in the next section.

2.4.2 Filter

The filtering operation is mainly applied in a priori LES in order to obtain filtered flow variables.
Yet, it can also be used in a posteriori LES to compute SGS models using dynamic procedures.
In both approaches, a flow variable (denoted for instance φ) is decomposed into a resolved
large-scale component (φ̄) and a small-scale component (φ′) such that:

φ = φ̄+ φ
′

(2.36)

The large-scale component (φ̄) is formally defined from the flow variable (φ) using a low-pass
filter:

φ̄(x, t) =

∫
Ω

G∆(x− ξ, t)φ(ξ, t)dξ (2.37)

where x and ξ are vectors in the flow domain Ω, and G∆ is the convolution kernel associated
to the filter size ∆ (Note that ∆ is not necessarily identical in each direction, that is why it is
defined as a vector). It satisfies the following normalization condition:∫

Ω

G∆(x− ξ)dξ = 1 (2.38)

Following the formulation of the Favre filtering (Favre et al., 1971) dedicated to compressible
flows, large-scale and small-scale components can be weighted by density:

φ̃ =
ρφ

ρ
(2.39)

The flow variable can thus be split instead as:

φ = φ̃+ φ
′′

(2.40)

The following relations can be obtained:

ρφ′′ = 0 (2.41)

φ′′ = −ρ
′φ′

ρ
6= 0 (2.42)

There are three main filters used in LES: the box (or top-hat) filter, the Gaussian filter
and the sharp cut-off (or spectral cut-off) filter. Table 2.3 gives filter functions in spectral and
physical spaces for each filter in 3D. Since the filtering operation can have a significant effect
on the LES results (see Appendix C), it has to be chosen carefully. In order to choose the filter,
one needs to find an acceptable compromise between physical and spectral selectivity, keeping
in mind the more selective a filter is in physical space, the less selective it is in spectral space.
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Filter
Filter function

in the physical space
G∆(x− ξ)

Filter function
in the spectral space

Ĝ∆(k)

Box or top-hat


1∏3

i=1 ∆i

, if |xi − ξi| ≤ ∆i

2
.

0, otherwise.

3∏
i=1

sinc
(
ki∆i

2

)

Gaussian
3∏
i=1

[(
ζ

π∆2
i

) 1
2

exp
(
−ζ(xi − ξi)2

∆2
i

)] 3∏
i=1

[
exp

(
−∆2

i k
2
i

4ζ

)]

Sharp or spectral
cut-off

3∏
i=1

[
1

∆i

sinc(kci(xi − ξi)
]

with kci = π
∆i

{
1, if |ki| ≤ kci .

0, otherwise.

Table 2.3: Filter functions are given in physical and spectral spaces for the three classical filters used
in LES. φi denotes the component of φ in the ith direction. The parameter ζ controls the selectivity
of the Gaussian filter. An analysis of its influence on the a priori LES results is given in Appendix C.
It is recommended to set this parameter to ζ = 6 (Garnier et al., 2009).

23



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL TOOLS

Figure 2.3: Filter functions are plotted in physical (left) and spectral (right) spaces for each filter given
in Table 2.3. Functions in the physical space are computed using an inverse fast Fourier transform
(FFT).

To illustrate this statement, each filter function is plotted in both spaces (see Figure 2.3).
The sharp cut-off filter is very selective in the frequency domain but it is not selective at

all in the physical one. The sinc function introduces secondary lobes, which makes this filter
non-local in space. It is thus not representative of the mesh filtering in a posteriori LES. On
the contrary, the box (or top-hat) filter is very selective in space but it is not in the spectral
domain. These two filters display strong discontinuities either in spectral or spatial domains.
These discontinuities are a source of oscillations, when using direct or inverse fast Fourier
transform (FFT) algorithm. One can notice here that the inverse FFT of the box filter shows
some oscillations close to the discontinuities. This can artificially increase local spatial values.
The Gaussian filter offers a good compromise between spatial and spectral selectivity as long
as the parameter ζ is well set. For these reasons, preference will be given to the Gaussian filter
in Chapter 5 to filter DNS results. An analysis of the influence of ζ on the result is provided
in Appendix C.

2.4.3 Real gas formulation

Since the PG formulation is a particular case of the real gas one, the filtered Navier-Stokes
equations and EoS are first expressed for the general real gas case. This formulation is then
used for the DG a priori LES in Chapter 5. The specific PG case is formulated in Section
2.4.3. In order to obtain the filtered Navier-Stokes equations, it is assumed that the filtering
operator commutes with temporal and spatial differentiations. This assumption is valid if the
domain is not bounded and if the filtering size ∆i is constant and homogeneous. Filtering the
Navier-Stokes equations (2.1) yields the following set of equations:

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0

∂ρ̄ũi
∂t

+
∂ρ̄ũiuj
∂xj

= − ∂p̄

∂xi
+
∂τ̄ij
∂xj

∂ρ̄Ẽ

∂t
+
∂ρ̄Ẽuj
∂xj

= −∂puj
∂xj

+
∂τijui
∂xj

− ∂q̄j
∂xj

(2.43)

Regardless of the type of flow of interest, filtered temperature and pressure are unknown
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quantities. Without assumptions on the form of the EoS, one can not use the commutativity
between the filtering operator and the thermal and caloric EoS. In a posteriori LES, the only
available pressure and temperature are the ones computed from the filtered variables. From
now on, the computable quantities will be denoted φ̂. Let Ft and Fc denote respectively the
thermal and caloric EoS. The differences between filtered pressure p̄ and temperature T̄ and
computable pressure p̂ and temperature T̂ can be summarized as:

T̄ = Fc(ρ, ρui, ρE) (2.44)
p̄ = Ft(T, ρ) (2.45)
T̂ = Fc(ρ̄, ρ̄ũi, ρ̄Ẽ) 6= T̄ (2.46)
p̂ = Ft(ρ̄, T̂ ) 6= p̄ (2.47)

The transport coefficients are also influenced by these differences. κ̂ and µ̂ denote respec-
tively the thermal conductivity and the viscosity computed from the filtered density ρ̄ and the
available temperature T̂ . These observations lead to the following set of equations where all
subgrid-scale terms are in bold type and labeled while resolved terms are in light type:



∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̂

∂xi
+
∂τ̂ij
∂xj

−
∂ [p̄− p̂]

∂xi︸ ︷︷ ︸
Pressure

+
∂ [τ̄ij − τ̂ij]

∂xj︸ ︷︷ ︸
Viscous

−
∂ρ̄
[
ũiuj − ũiũj

]
∂xj︸ ︷︷ ︸

Turbulent stress

∂ρ̄Ẽ

∂t
+
∂ρ̄Êintũj
∂xj

+
∂ρ̄K̂ũj
∂xj

= −∂p̂ũj
∂xj

+
∂τ̂ijũi
∂xj

− ∂q̂j
∂xj

−
∂ [puj − p̂ũj]

∂xj︸ ︷︷ ︸
Pressure work

+
∂ [τijui − τ̂ijũi]

∂xj︸ ︷︷ ︸
Viscous work

−
∂ [q̄j − q̂j]

∂xj︸ ︷︷ ︸
Heat Flux

−
∂ρ̄
[
Eintuj
: − Êintũj

]
∂xj︸ ︷︷ ︸

Internal energy flux

−
∂ρ̄
[
K̃uj − K̂ũj

]
∂xj︸ ︷︷ ︸

Kinetic energy flux

(2.48)

where K stands for the specific kinetic energy (K = E − Eint). Note that K̂ = 1
2
ũiũi, Êint =

Ẽ − K̂, τ̂ij = µ̂
(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
∂ũk
∂xk

δij

)
and q̂i = −κ̂ ∂T̂

∂xi
. All bold terms in brackets are unknown

and potentially need modeling.

2.4.4 Perfect gas formulation

Now that the general real gas formulation has been established, the particular PG case can be
formulated for the filtered Navier-Stokes equations and the EoS. This set of equations is used
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as a comparison with the DG formulation in the next section and in Appendix D where an a
priori analysis of mixing layer DNS results obtained in Chapter 3 is conducted. The calorically
perfect gas assumption leads to the following set of filtered EoS:

p̄ = (γ − 1)ρ̄Ẽint

T̄ =
(γ − 1)

R
Ēint

(2.49)

For PG flows, at every time step, temperature and pressure are determined using the filtered
internal energy (Ẽint). However, the filtered internal energy is computed from the filtered total
energy (Ẽ) and the unfiltered kinetic energy as:

ρ̄Ẽint = ρ̄Ẽ − 1

2
ρ̄ũiui = ρ̄Ẽ − 1

2
ρ̄ũiũi −

tii
2

(2.50)

where tij = ρ̄(ũiuj−ũiũj) denotes the SGS turbulent stress tensor. It is unknown in a posteriori
LES. Yet, at this step already, most solvers describe the filtered internal energy by means of
filtered quantities only, assuming that the contribution of tii/2 is negligible. The relevance of
this assumption is thoroughly investigated in Appendix D. Without using this hypothesis, the
filtered internal energy and therefore the filtered pressure and the filtered temperature remain
unknown quantities. For PG flows, SGS terms associated to the filtered pressure and the filtered
internal energy can be simplified using the following equations.

ρ̄Êint = ρ̄Ẽ − 1

2
ρ̄ũiũi (2.51)

p̂ = (γ − 1)ρ̄Êint = (γ − 1)ρ̄Ẽint︸ ︷︷ ︸
p̄

+
(γ − 1)

2
tii (2.52)

T̂ =
(γ − 1)

R
Êint =

(γ − 1)

R
Ẽint︸ ︷︷ ︸

T̄

+
(γ − 1)

2Rρ̄
tii (2.53)

Finally, the filtered Navier-Stokes equations for a calorically perfect gas read:



∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̂

∂xi
+
∂τ̂ij
∂xj

+
(γ − 1)

2

∂tii
∂xi

+
∂ [τ̄ij − τ̂ij]

∂xj
− ∂tij
∂xj

∂ρ̄Ẽ

∂t
+
∂ρ̄Êintũj
∂xj

+
∂ρ̄K̂ũj
∂xj

= −∂p̂ũj
∂xj

+
∂τ̂ijũi
∂xj

− ∂q̂j
∂xj
− γ

(γ − 1)

∂ [puj − p̄ũj]
∂xj

+
(γ − 1)

2

∂tiiũj
∂xj

+
∂ [τijui − τ̂ijũi]

∂xj
− ∂ [q̄j − q̂j]

∂xj
−
∂ρ̄
[
K̃uj − K̂ũj

]
∂xj

(2.54)

SGS terms are colored in blue if their expression is similar between PG and real gas for-
mulation (used for DG flows) and in red if their expression is different. All these SGS terms
potentially request modeling. The SGS turbulent stress tensor has been the center of attention
in the LES community. A summary of usually modeled and neglected terms is given in Table
2.4. Note that formulation (2.54) is equivalent to the system II in Vreman et al. (1995).

26



2.4. LES GOVERNING EQUATIONS

2.4.5 A summary of SGS terms

SGS terms are often associated to the SGS turbulent stress tensor only. However, in the for-
mulation of the filtered compressible Navier-Stokes equations, several SGS terms are present
both in the filtered momentum equation and in the filtered energy equation, even for the PG
formulation. A comparison of real gas (used for DG flows) and PG formulations is summarized
in Table 2.4. These SGS terms are all extracted either from Equations (2.48) or from Equations
(2.54). SGS terms are colored in blue if their expression is similar between real gas and PG
formulations and in red if their expression is different. Differences appear for the SGS pressure
term and the SGS internal energy term because of the complexity of thermal and caloric EoS
used for DG. Note that the SGS heat flux and the SGS internal energy are distinguished in
Table 2.4. The SGS heat flux term refers here to the Fourier heat flux. The SGS internal
energy is often named SGS heat flux because of its link with the temperature, which is valid
in the PG case only.

For PG flows, most of the SGS terms are neglected following Vreman et al. (1995)’s and
Martin et al. (2000)’s analysis. An evaluation and a discussion of these terms is conducted in
Appendix D for the compressible PG mixing layers introduced in Chapter 3. Note that SGS
terms neglected for PG flows (for instance SGS pressure terms) might be of importance for real
gas flows. Besides the important work of Bellan’s group (see for example (Selle et al., 2007)),
which addresses the case of the mixing layer in a real gas flow, no such evaluation of SGS terms
for real gases has been undertaken yet. This will be the purpose and original contribution of
Chapter 5. Moreover, even for modeled terms, available models for PG flows might not be
relevant for real gas flows. The assessment of available SGS models is not carried out in this
study. SGS models commonly used for PG flows are used in the a posteriori LES (Chapter 7)
conducted to assess a new model designed for SGS pressure (Chapter 6) for which no accurate
model exists†. To that end, the next section 2.4.6 introduces the SGS models that will be used
in Chapter 7: for SGS convective terms, the Smagorinsky model and its dynamic counterpart;
for SGS internal energy, a model based on a SGS Prandtl number.

2.4.6 Basic LES models

Functional and structural modeling

The filtered compressible Navier-Stokes equations (2.48) show the entanglement of SGS terms
in both the momentum and energy conservation equations. Two main strategies are followed
to model these terms: functional modeling or structural modeling.

Functional modeling seeks to faithfully reproduce the turbulent energy transfer mechanism
from the large scales to the small ones. It is based on the assumption that subgrid scales have
mainly an energetic effect on the resolved scales. This approach does not try to describe the
topology of coherent vortices, which contains in particular the structural information related to
the turbulence anisotropy. Among functional models, the most popular one is the Smagorinsky
model (Smagorinsky, 1963). Its dynamic counterpart was first developed by Germano et al.
(1991). These models are introduced in the following paragraphs. Energy transfer can also be
partly reproduced using the numerical scheme if its truncation error mimics the SGS dissipation.

†With the exception of the model proposed by Selle et al. (2007), which is based on a Taylor series but the
use of which is not advised by the authors when the filter size becomes too large.

†tDij = tij − 1
3 tkkδij and tIij = 1

3 tkkδij are respectively the deviatoric and the isotropic parts of the turbulent
SGS stress tensor.
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Momentum equations Real gas PG PG modeling

Pressure −∂ [p̄− p̂]
∂xi

(γ − 1)

2

∂tii
∂xi

neglected

Viscous +
∂ [τ̄ij − τ̂ij]

∂xj
+
∂ [τ̄ij − τ̂ij]

∂xj
neglected

Convective −∂tij
∂xj

−∂tij
∂xj

= −
∂
(
tDij + tIij

)
∂xj

†
tDij : modeled
tIij: generally
neglected

Energy equation Real gas PG PG modeling

Pressure work −∂ [puj − p̂ũj]
∂xj

−∂ [puj − p̄ũj]
∂xj

+
(γ − 1)

2

∂tiiũj
∂xj

neglected

Viscous work +
∂ [τijui − τ̂ijũi]

∂xj
+
∂ [τijui − τ̂ijũi]

∂xj
neglected

Heat Flux −∂ [q̄j − q̂j]
∂xj

−∂ [q̄j − q̂j]
∂xj

neglected

Internal energy flux −
∂ρ̄
[
Eintuj
: − Êintũj

]
∂xj

− 1

(γ − 1)

∂ [puj − p̄ũj]
∂xj

modeled

Kinetic energy flux −
∂ρ̄
[
K̃uj − K̂ũj

]
∂xj

−
∂ρ̄
[
K̃uj − K̂ũj

]
∂xj

partially modeled

Table 2.4: Comparison of SGS terms appearing in LES formulation, respectively for real gas (filtered
system (2.48)) and perfect gas (filtered system (2.54)). In blue: terms with identical expressions in
real gas and PG flows; in red: terms with different expressions in real gas and PG flows.
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This approach is called implicit LES (ILES).
On the contrary, structural modeling seeks to reproduce the unfiltered field from the filtered

field. Since structural models do not focus on SGS dissipation, they can raise stability issues.
An additional functional modeling term is generally added to a structural model, which is then
called a mixed model. Structural (or mixed) models are known to give better correlations
between real and predicted terms than purely functional models. Among the most popular
structural models, one can mention the scale-similarity model (Bardina et al., 1980) and the
gradient model (Clark et al., 1979). Readers should refer to Garnier et al. (2009) for more
details about functional and structural approaches applied to LES modeling.

Smagorinsky model

The Smagorinsky model developed in 1963 (Smagorinsky, 1963) is without any doubt the most
popular turbulent closure in LES because of its simplicity. It is based on the Boussinesq
hypothesis (Boussinesq, 1897)† which assumes that the SGS energy transfer is analogous to a
molecular dissipation. The molecular viscosity is replaced by a subgrid viscosity denoted νsgs.
The deviatoric part of the turbulent SGS stress tensor is aligned with the deviatoric part of
the strain-rate tensor as:

tDij = tij −
1

3
tkkδij︸ ︷︷ ︸
tIij

= −2ρ̄νsgs

(
S̃ij −

1

3
S̃kkδij

)
︸ ︷︷ ︸

S̃Dij

(2.55)

where S̃ij = 1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
is the strain-rate tensor associated to the resolved velocity. The

isotropic part of the turbulent SGS stress tensor represents the SGS turbulent kinetic energy.
It is generally neglected for PG flows following Erlebacher et al. (1992)’s recommendation even
though Yoshizawa (1986) proposes a model based on an analogy with the Smagorinsky model.
This assumption is investigated in Appendix D.

The Smagorinsky model is based upon a dimensional analysis which gives the following
expression for the subgrid viscosity:

νsgs = C2
s∆2

√
2S̃ijS̃ij (2.56)

where ∆ denotes the filtering size and Cs is the Smagorinsky constant, the value of which
depends on flow conditions. Assuming that the filtering frequency is located inside the inertial
part of the spectrum leads to Cs ≈ 0.18. This model is generally too dissipative in strong
strain-rate regions like near walls regions. Some damping can be added to limit this effect.
The Smagorinsky model effect is also entirely dissipative: the model is not able to predict local
backward energy transfer events (from the small scales to the resolved ones).

Dynamic eddy-viscosity model

Although the Smagorinsky model is simple, its predictions are not always satisfactory. In
order to improve it, Germano et al. (1991) and Lilly (1992) developed a dynamic approach
to transform the Smagorinsky constant into a time and space dependent field; the dynamic
constant will be denoted Cd. Its use allows some local backward energy transfers (Germano
et al., 1991). Yet, its implementation is costly. Negative values of the subgrid viscosity can

†Prandtl was the first to express it as the Boussinesq’s hypothesis in 1904 (Prandtl, 1904).
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deteriorate the numerical stability of the computation. The subgrid viscosity field is often
averaged over space in order to avoid abrupt changes.

This dynamic procedure implies a double filtering operation. In a posteriori LES, the first
filtering operator corresponds to the inherent filtering of the mesh associated to the filter size
∆. In a priori LES, the filtering has been already introduced in Equation (2.39). The same
notation φ̃ is used to denote the filtered field for both a priori and a posteriori LES. The second
filtering operator is applied at a larger filtering size ∆̂ > ∆†. The associated filtered field is
denoted φ̂. The double filtering of the turbulent SGS stress tensor t̂ij takes the form:

t̂ij = ̂̄ρũiuj − ̂̄ρũiũj = ̂̄ρũiuj −
(̂

1

ρ̄

)̂̄ρũi ̂̄ρũj︸ ︷︷ ︸
Tij

+

(̂
1

ρ̄

)̂̄ρũi ̂̄ρũj − ̂̄ρũiũj︸ ︷︷ ︸
−Lij

(2.57)

where Tij is the turbulent SGS tensor at the combination of the two filtering levels and Lij
is the Leonard tensor. Since it is only expressed from resolved quantities, the Leonard tensor
can be directly computed. The two deviatoric parts of the turbulent SGS stress tensor Tij and
tij are modeled with the Smagorinsky model. The same dynamic constant Cd is used for both
SGS tensors assuming that the slope of turbulent kinetic energy spectrum is constant:

tDij = tij −
1

3
tkkδij = −2ρ̄Cd∆

2s̃S̃ij (2.58)

T Dij = Tij −
1

3
Tkkδij = −2ρ̄Cd

(
∆̂
)2 ̂̃ŝ̃Sij (2.59)

where s̃ =

√
2S̃ijS̃ij and ̂̃s =

√
2
̂̃
Sij
̂̃
Sij. Combining Equations (2.57), (2.58) and (2.59) yields

the following relationship:

LDij = Lij −
1

3
Lkkδij = T Dij − t̂Dij = −2Cd

[(
∆̂
)2 ̂̃ŝ̃Sij −∆2̂̃sS̃ij]︸ ︷︷ ︸
Mij

(2.60)

From Equation (2.60), the dynamic constant can be computed in several ways. Germano
et al. (1991) express Cd as:

Cd = −
LDij S̃ij

2MijS̃ij
(2.61)

The following modified expression developed by Lilly (1992) avoids problems arising when
the denominator of (2.61) cancels:

Cd = −
MijLDij

2MklMkl

(2.62)

This relation is obtained using the least squares method by minimizing LDij + 2CdMij as:

∂

∂Cd

[
LDij + 2CdMij

]2
= 0 (2.63)

†∆̂ = 2∆ is a good compromise.
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SGS internal energy model

The most common way to model the SGS internal energy term is to follow the assumption of
Eidson (1985) who considers that the internal energy transfer from resolved scales to subgrid
scales is proportional to the gradient of the resolved temperature. The SGS conductivity is
linked to the SGS viscosity as follows:

κsgs =
ρ̄νsgscp
Prsgs

(2.64)

where Prsgs is the SGS Prandtl number. It is set to 0.6 in the present work (Lesieur, 2012).
The SGS internal energy is thus expressed as:

∂ρ̄
[
Ẽintuj − Êintũj

]
∂xj

= − ∂

∂xj

(
κsgs

∂T̂

∂xj

)
(2.65)

2.5 Numerical solver
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Figure 2.4: Performance of AVBP on different supercomputers (Source: CERFACS internal commu-
nication).

General features of AVBP This section is devoted to a brief presentation of the numerical
solver AVBP and the setup used in the present work. The AVBP project started in 1993 at
CERFACS upon an initiative of Michael Rudgyard and Thilo Schönfeld. AVBP is now co-
owned by CERFACS and IFP Energies Nouvelles. It is widely used in industry (Safran Group,
Airbus, Air Liquide, Total, GRTgaz, Renault, Alstom, Siemens Power Generation,...) and in
laboratories (LMFA, EM2C, IMFT, IRPHE, CORIA, UPPA,...). It is considered as a reference
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code in fluid mechanics. AVBP is designed for massively parallel computation. Its very high
scalability has been proven over some of the most powerful supercomputers (Marenostrum,
Ter@10, IBM eServer BlueGene, Cray XT3/XT4 Oakridge) (see Figure 2.4). This key feature
is essential in order to perform simulations on complex configurations within a reasonable time.
Most of the code is coded in Fortran and some parts (like allocation, deallocation) are coded
in C.

Numerical methods AVBP solves reactive multi-species 3D unsteady compressible Navier-
Stokes equations using an explicit formulation. The code can work with unstructured and
hybrid grids composed of triangles and quadrilaterals in 2D and tetrahedra, prims, pyramids
and hexahedra in 3D. In order to handle this type of grids, AVBP is based on a cell vertex
formulation.

The code uses two types of numerical methods associated to specific numerical schemes for
the hyperbolic terms (convection) of the governing equations:

• For the finite volume method, the Lax Wendroff scheme (Ni, 1982) ensures a second-order
accuracy in space and in time. Because of its low order of accuracy combined with its low
computational cost, it is generally used to obtain a preliminary solution.

• For the finite element method, the two-steps Taylor Galerkin schemes (TTGC † or TTG4A)
ensure a third order accuracy in space and respectively third or fourth order in time.

The computational cost of the aforementioned Taylor-Galerkin schemes is about 1.9 times
larger than the one of the Lax-Wendroff scheme (Lamarque, 2007). The cost remains very rea-
sonable for these higher order accurate schemes. In AVBP, diffusive terms can be discretized
using FV4∆ (Finite Volume with a 4∆ stencil) or FE2∆ (Finite Element with a 2∆ stencil)
operators. Readers should refer to Lamarque (2007) for further details. The scheme is com-
pleted with a shock capturing method. In regions where strong gradients exist, an additional
dissipation term is added following the approach of Cook & Cabot (2004). Its impact on the
resolution of the smallest scales has been analyzed in Giauque et al. (2020).

Application to DNS and LES AVBP can be used to perform LES as well as DNS simu-
lations (Desoutter et al., 2009; Cadieux et al., 2012). Its adaptability and its performance are
fundamental assets for the present work where both DNS and LES are performed over large
computational grids. It is essential to keep the same code for DNS and LES in order to reduce
the sources of differences between a priori and a posteriori LES. Table 2.5 summarizes the
parameters used in AVBP to perform DNS (Chapters 3 and 4) and LES (Chapter 7). The im-
plementation of the Martin-Hou EoS is validated using the shock tube simulation of Fergason
et al. (2001).

In the next chapter, the AVBP numerical setup is assessed on the DNS of a PG compressible
mixing layer using the results of Pantano & Sarkar (2002) as reference. The validation for this
PG case paves the way for the computation of new results in Chapter 4 with the DNS of a DG
compressible mixing layer.

†The TTGC was built to answer LES and DNS requirements. It combines the benefits of the Taylor-Galerkin
schemes but it is much less dissipative on small wave lengths (Colin & Rudgyard, 2000).

†The Courant-Friedrichs-Lewy (CFL) number controls the numerical stability of the convection scheme.
†The Fourier number controls the numerical stability of the diffusion scheme.
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Convection scheme TTGC

Diffusive scheme FV4∆

CFL number† 0.8

Fourier number† 0.8

Table 2.5: Numerical setup used in the solver AVBP.
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Chapter 3
DNS of perfect gas compressible mixing layers:
verification and validation

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dense gas flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The need for turbulence modeling in dense gas flows . . . . . . . . 6

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Stating that AVBP is a tool of choice to perform DNS (and LES) of compressible flows
is not sufficient to demonstrate the relevance of the choice made in the present thesis to

apply this solver to the comparison of dense gas and perfect gas compressible mixing layers
using DNS. While dense gas mixing layers were still terra incognita at the start of the present
thesis, perfect gas mixing layers and in particular air mixing layers have been already studied
both experimentally and numerically by previous authors. Therefore this chapter is devoted
to the assessment of AVBP for the DNS of an air (considered as a perfect gas) compressible
mixing layer. A review of the literature is proposed in the first section in order to select a
reference ideal gas compressible mixing layer and also to identify some key results regarding
the compressible mixing layer of an ideal gas, to which the dense gas DNS results will be
next confronted in Chapter 4. The next section describes the flow configuration and the main
physical and numerical parameters of the study. Finally, the DNS results produced in the
present work are analyzed and compared to available results from the literature. Note this
chapter gathers PG results which have been published in Vadrot et al. (2020) and Vadrot et al.
(2021).
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3.1 Perfect gas compressible shear layer
Mixing layer studies belong to a long-term research program on the characterization of turbu-
lence. Turbulent mixing layers appear in many physical domains and industry problems. The
very first investigation of turbulent mixing layers was performed by Liepmann & Laufer (1947)
who demonstrated the self-preserving property of such flows. Subsequently, many experimental
investigations were led on turbulent mixing layers, especially for aeronautic purposes, such as
scram-jet engines and abatement of supersonic jet noise.

Convective Mach number Mc and other parameters Quickly, compressibility effects
proved to be a key point in high-speed mixing layer flows. Bogdanoff (1983) introduced the
concept of convective Mach number, taking into account not only the velocity and sound speed
of each stream of the mixing layer but a combination of them. Denoting Ui, ci respectively the
flow speed and the sound speed of stream i (upper or lower stream) of the mixing layer, the
convective Mach number is defined as :

Mc =
U1 − U2

c1 + c2

=
∆u

c1 + c2

(3.1)

The convective Mach number provided the community with a similar comparative scale
when discussing different configurations. A consensus appeared on the reduction of the mixing
layer growth rate when increasing the convective Mach number (Bradshaw, 1977; Papamoschou
& Roshko, 1988).

Further studies were conducted in order to capture the key parameters allowing to better
understand the fundamental mechanisms at stake, such as for instance the initial density ratio
between the upper and lower streams. Brown & Roshko (1974) investigated density effects us-
ing two different gases and thoroughly analyzed turbulent structures to conclude that density
effects are far less prominent than compressibility effects. Although the mixing layer flow con-
figuration appears rather simple, Bradshaw (1966) showed that initial conditions and technical
difficulties with the experimental realization of the flow are a main source of the discrepancies
observed between published results.

Direct Numerical Simulations The first DNS of a compressible mixing layer was per-
formed by Sandham & Reynolds (1990), followed by Luo & Sandham (1994), Vreman et al.
(1996a), Freund et al. (2000), Pantano & Sarkar (2002), Fu & Li (2006), Zhou et al. (2012),
Martínez Ferrer et al. (2017), Dai et al. (2018) and recently Matsuno & Lele (2020). These
DNS of compressible mixing layers assume the fluid behaves like an ideal gas. They all con-
firm that the spreading rate decay is due to a lower turbulent production (Sarkar, 1995). The
compressible turbulent kinetic energy equation includes additional terms with respect to its
incompressible formulation, namely compressible dissipation (εd) and pressure-dilatation (Πii)
terms. Key questions, seemingly related, are why is the turbulent production decreasing and
how do these additional terms evolve with an increasing convective Mach number.

Zeman (1990) and Sarkar et al. (1991) predicted that the dilatational part of the dissi-

pation increases with the turbulent Mach number (Mt =

√
u

′
iu

′
i/c, where ui

′ represents the
fluctuating velocity in direction i) because of the occurrence of eddy shocklets. They proposed
a modeling of this term that captures the growth rate reduction as the Mach number increases.
However, Vreman et al. (1996a) and Freund et al. (2000) suggested that the proposed model
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is not realistic since eddy shocklets at that time had not yet been observed in 3D DNS with a
convective Mach number below one. Since then, Zhou et al. (2012) observed shocklets in their
3D simulation for a convective Mach number of 0.7. Although eddy shocklets may occur in
the compressible mixing layer for a convective Mach number as low as 0.7, the compressible
dissipation term remains small as shown by Pantano & Sarkar (2002) for a convective Mach
number of 1.1 and below. This observation is confirmed by the present simulations (see Chapter
4). Considering a dense gas instead of an ideal gas should even further lessen this dissipation
term since entropy jumps across shocklets are reduced within the inversion region (Giauque
et al., 2020).

Pressure strain correlations and mixing layer growth rate The pressure-dilatation
term (Πii) is formed from the sum of the pressure-strain rate correlations (Πij). It is negligible
if compared with the most important terms of the turbulent kinetic energy equation (Vreman
et al., 1996a; Freund et al., 2000; Pantano & Sarkar, 2002). However, each pressure-strain
correlation is far from being negligible and the decrease of these correlations with an increasing
Mach number is likely to explain the decay of the growth rate (Vreman et al., 1996a) and
Freund et al. (2000). Vreman et al. (1996a) noticed thanks to DNS that this reduction of the
growth rate was mainly due to the decrease of pressure fluctuations normalized by the dy-
namic pressure (prms/(1

2
ρ0(∆u)2)). Freund et al. (2000) confirm this observation and propose a

model to predict this abatement based on the concept of sonic-eddy developed by Breidenthal
(1992). Pantano & Sarkar (2002) later demonstrated analytically the aforementioned observa-
tion. Hamba (1999) performed the DNS of an homogeneous shear flow varying the turbulent
Mach number Mt from 0.1 to 0.3. The author identifies a dissipative term, responsible for the
normalized pressure fluctuations diminution, in the transport equation for p′2 called pressure-
variance dissipation and which depends on the thermal conductivity. Several turbulence models
were next proposed, based on the normalized pressure fluctuations reduction (Fujiwara et al.,
2000; Park & Park, 2005; Huang & Fu, 2008).

Since pressure-strain correlations are composed of pressure fluctuations and strain-rate fluc-
tuations, Martínez Ferrer et al. (2017) suggested that the reduction of pressure fluctuations
may not be the only reason for the pressure-strain rate decay. Their 3D DNS simulations at
convective Mach numbers between 0.35 and 1.1 suggest that the strain-rate fluctuations also
decrease with an increasing Mach number.

Case of high convective Mach number Few experiments and DNS have been achieved at
high Mc. Rossmann et al. (2001) have experimentally studied higher compressibility regimes
until Mc = 2.25 and Matsuno & Lele (2020) recently performed DNS of temporal mixing layers
up to Mc = 2.0. In the following, several 3D DNS of compressible perfect gas mixing layers are
performed up to Mc = 2.2. These DNS are thoroughly compared to the available results from
the literature in particular to the results of Pantano & Sarkar (2002) used as reference. The
comparison with their dense gas counterparts will be performed in the next chapter.
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Mc ρ1/ρ2 Reδθ,0 Lx × Ly × Lz Nx ×Ny ×Nz ∆u (m.s−1) δθ,0 (nm) L0

0.1 1.0 160 344× 344× 86 1024× 1024× 256 34.11 135.8 Lx/48
1.1 1.0 160 344× 172× 86 512× 256× 128† 375.18 12.348 Lx/48
1.1 1.0 160 344× 172× 86 1024× 512× 256†† 375.18 12.348 Lx/48
2.2 1.0 160 688× 688× 172 1024× 1024× 256 753.0 6.153 Lx/8

Table 3.1: Simulation parameters for Air PG DNS. Lx, Ly and Lz denote computational domain
lengths measured in terms of initial momentum thickness. Nx, Ny and Nz denote the number of grid
points. L0 denotes the size of initial turbulent structures (k0 = 2π/L0) measured in terms of initial
momentum thickness. All grids are uniform.

3.2 Problem formulation

3.2.1 Initialization

Several DNS up to Mc = 2.2 are performed for air considered as a perfect gas. The initial
conditions of the mixing layer require the choice of an initial operating thermodynamic point in
the p−v diagram. Since the key objective of this DNS analysis is to compare perfect and dense
gases in identical initial conditions, the same values of reduced specific volume and reduced
pressure are selected for the initial thermodynamic state for both types of gases. This choice
is thoroughly explained in the next chapter (see Section 4.1.1). Critical values used for air are
the critical pressure pc = 3.7663 × 106 Pa and the specific volume vc = 3.13 × 10−3 m3.kg -1

(Stephan & Laesecke, 1985).
Key non-dimensional parameters are the convective Mach number (Equation (3.1)) and the

Reynolds number based on the initial momentum thickness δθ,0:

Reδθ,0 =
∆uδθ,0
ν

(3.2)

where ν denotes the kinematic viscosity and the momentum thickness at time t is defined as:

δθ(t) =
1

ρ0(∆u)2

∫ +∞

−∞
ρ̄

(
(∆u)2

4
− ũ2

x

)
dy (3.3)

with ρ0 = (ρ1 + ρ2)/2 the averaged density and ũx the Favre averaged streamwise velocity
defined in Eq. 3.9.

This study aims at validating the present DNS results first at Mc = 1.1 using the results of
Pantano & Sarkar (2002) as reference. DNS at other convective Mach numbers are then vali-
dated using in particular the recent results of Matsuno & Lele (2020). Following the reference
work of Pantano & Sarkar (2002), the Reynolds number based on the initial momentum thick-
ness is set equal to 160 for all simulations and the initial density ratio ρ1/ρ2 between the upper
and lower streams is equal to unity. Table 3.1 summarizes the computational parameters for
PG simulations performed for different Mc (domain size, number of grid elements, dimensional
values of velocity, initial momentum thickness and initial turbulent structures sizes).

†Referred to as the 16.8M simulation. 16.8M corresponds to the number of grid cells.
††Referred to as the 134M simulation. 134M corresponds to the number of grid cells.

37



CHAPTER 3. DNS OF PERFECT GAS COMPRESSIBLE MIXING LAYERS:
VERIFICATION AND VALIDATION

Figure 3.1: Configuration of the temporal mixing layer. The velocity magnitude is plotted for the DG
DNS at Mc = 2.2 at τ = 4000.

The ratio r between the Kolmogorov scale and the grid cell size (Lη/∆x) is about 0.52 for
the least refined mesh (16.8M simulation) at the centerline during the selected self-similar range
(see Section 3.3.1). To check grid convergence and because the value r = 0.52 corresponding to
the baseline mesh is not very large for a DNS, a second DNS is performed with a refined mesh
obtained by doubling the number of grid cells in each direction (134M simulation) yielding a
ratio r equal to 1.03 (see figure 3.8). Details about the numerical setup (choice of numerical
methods and associated tuning parameters) have been previously provided in Section 2.5.

In the present study, the temporal mixing layer is chosen instead of the spatially developing
mixing layer because it is less computationally expensive and will ease the exploration of various
configurations (different values of the convective Mach number but also, for DG flows, different
choices for the initial thermodynamic state). There are slight differences between these two
configurations. For the temporal mixing layer, the two streams flow in opposite directions,
which enables to increase the differential speed with a smaller absolute speed for each stream.
A representation of the computational domain is provided in Figure 3.1. For the spatial mixing
layer, both streams flow in the same direction and a speed gap which corresponds to the
differential speed is imposed. The transition from one configuration to the other is a change of
Galilean reference frame given by (de Bruin, 2001):

t∆utemporal =
x∆uspatial

uc
(3.4)

where t denotes the time scale of the temporal configuration, ∆utemporal, the differential speed
of the temporal evolution, ∆uspatial, the differential speed of the spatial evolution, uc = (U1 +
U2)/2, the convective speed and x, the streamwise position scale of the spatial configuration.
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The temporal mixing layer requires periodic boundary conditions in the x and z directions.
A non-reflective boundary condition (the NSCBC model proposed by Poinsot & Lele (1992)) is
imposed in the y direction to prevent the reflection of acoustic waves inside the computational
domain.

The streamwise velocity field is initialized using an hyperbolic tangent profile:

ūx(y) =
∆u

2
tanh

(
− y

2δθ,0

)
(3.5)

The complete streamwise velocity field is obtained by adding fluctuations to the average
velocity. For the y and z components, the average velocity is set equal to zero. A Passot-
Pouquet spectrum is imposed for the initial velocity fluctuations:

E(k) = (k/k0)4exp(−2(k/k0)2) (3.6)

where k denotes the wavenumber. The peak wavenumber k0 controls the size of the initial tur-
bulent structures. It corresponds to the integral scale for which the turbulent kinetic energy is
maximum inside the initial mixing layer. Its influence on the mixing layer growth is investigated
in Appendix B for the DG mixing layer. It is observed that a larger value of k0 accelerates the
transition to the unstable growth. Its value for each DNS is given in Table 3.1. The velocity
field is then filtered to initialize turbulence only inside the initial momentum thickness. This is
done by multiplying the velocity field by an exponential decay over the y-direction in the same
way as Pantano & Sarkar (2002) :

f(y) =
1

σ
√

2π
exp

(
−(y − Ly/2)2

2σ2

)
(3.7)

where the full width at half maximum of the peak is set equal to the initial momentum thickness
δθ,0 = 2σ

√
2ln(2). Also, the Gaussian distribution is normalized to reach a maximum value of

1 at the center y = Ly/2.

3.2.2 Turbulent Kinetic Energy equation

The unsteady, three-dimensional, compressible Navier-Stokes equations (Equations (2.1)) are
solved to describe the temporally evolving mixing layer. In addition, the thermal perfect gas
and the caloric EoS (Equations (2.8)) are used for air. To complete the thermodynamic de-
scription of the PG, the Sutherland’s model is used associated to a constant Prandtl number
set equal to 0.71 to compute transport coefficients (see Section 2.2.2).

For the sake of the physical analysis of the mixing layer, the turbulent kinetic energy equa-
tion (TKE equation) can be derived from the Navier-Stokes equations (Equations (2.1)). Den-
sity, pressure and velocity are decomposed into a mean and fluctuating component as follows :

ρ = ρ̄+ ρ
′

p = p̄+ p
′

ui = ũi + u
′′
i

(3.8)

where φ̄ denotes the Reynolds average for a flow variable φ while the Favre average φ̃ is defined
as :

φ̃ =
ρφ

ρ
(3.9)
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Reynolds fluctuations are denoted φ′ while Favre fluctuations are denoted φ′′. For the tem-
poral mixing layer, Reynolds averaging is equivalent to plane averaging along x and z directions
because of the use of periodic boundary conditions. Reynolds and Favre averages must not be
confused with their LES filtering counterparts presented in Section 2.4.2. In the first case,
the fluctuating field is separated from the Reynolds-averaged one and in the second case, the
resolved field is separated from the subgrid-scale field.

Introducing the relationships (3.8) into the instantaneous Navier-Stokes equations, applying
the Reynolds averaging and combining the resulting equations (see details for instance in Bailly
& Comte-Bellot (2003)) allow to obtain the turbulent kinetic energy equation (TKE equation) :

∂ρ̄k̃

∂t
+
∂ρ̄k̃ũj
∂xj

=−ρu′′
i u

′′
j

∂ũi
∂xj︸ ︷︷ ︸

Production

−τ ′
ij

∂u
′′
i

∂xj︸ ︷︷ ︸
Dissipation

−1

2

∂ρu
′′
i u

′′
i u

′′
j

∂xj︸ ︷︷ ︸
Turbulent transport

−∂p
′u

′′
i

∂xi︸ ︷︷ ︸
Pressure transport

+
∂u

′′
i τ

′
ij

∂xj︸ ︷︷ ︸
Viscous transport

+p′ ∂u
′′
i

∂xi︸ ︷︷ ︸
Pressure dilatation

−u′′
i

(
∂p̄

∂xi
− ∂τ̄ij
∂xj

)
︸ ︷︷ ︸

Mass-flux term

(3.10)

where k̃ = 1
2
ũ

′′
i u

′′
i denotes the specific turbulent kinetic energy. The TKE equation allows to

assess the contribution of the significant turbulent terms. The main terms of (3.10) are the
production, dissipation and transport terms. Pressure dilatation and mass-flux term (the later
includes the baropycnal work) are equal to zero in the incompressible case. The dissipation
term can be decomposed into a solenoidal (or incompressible), a low-Reynolds number and a
dilatational component. The latter is associated to losses occurring in eddy shocklets. Lee et al.
(1991) express the dilatational dissipation also called the compressible dissipation as:

εd = −4

3
ν

(
∂u

′′
k

∂xk

)2

− 2u
′′
k

∂ν ′

∂xk

∂u
′′
k

∂xk
(3.11)

This expression takes into account the effect of viscosity variations unlike Sarkar & Lak-

shmanan (1991) and Zeman (1990) who express it as εd = −4

3
ν̄

(
∂u

′′
k

∂xk

)2

, neglecting viscosity

variations. For decaying compressible turbulence, Lee et al. (1991) found that Sarkar & Lak-
shmanan (1991) and Zeman (1990)’s expression overestimates by about 15% the compressible
dissipation.

3.3 DNS verification and validation

This section is devoted to the assessment of the quality of the perfect gas DNS performed for
air at three different convective Mach numbers (Mc = 0.1 − 1.1 − 2.2). The validation starts
with the study of the temporal evolution of the momentum thickness and with the selection of
the self-similar period. Once this period is selected, the present work is first compared with the
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Figure 3.2: Temporal evolution of the mixing layer momentum thickness. Comparison is made between
the two different grid precisions (16.8M and 134M of grid elements) to check the grid convergence and
with the available literature (Pantano & Sarkar, 2002; Fu & Li, 2006; Martínez Ferrer et al., 2017).

results of Pantano & Sarkar (2002) at Mc = 1.1 and then to other available results in literature
at Mc = 0.1 and Mc = 2.2.

3.3.1 Temporal evolution and selection of the self-similar period

Temporal evolution

Results for the caseMc = 1.1 are analyzed first. Figure 3.2 shows the temporal evolution of the
mixing layer momentum thickness computed for the two levels of grid refinement, along with
results from the available literature (Martínez Ferrer et al., 2017; Fu & Li, 2006; Pantano &
Sarkar, 2002). The time is non-dimensional (τ = t∆u/δθ,0) and the momentum thickness (δθ)
is normalized by its initial value (δθ,0). Grid convergence seems well achieved since the mixing
layer growth rates are very close between both simulations (16.8M and 134M). Additional proofs
of grid convergence are provided in the next Section 3.3.2 during the self-similar period. The
momentum thickness temporal evolution is composed of three main sequences:

• The first one is a kind of delay, observed in the present work and also in the results of
Martínez Ferrer et al. (2017), Fu & Li (2006), but which appears rather short for Pantano
& Sarkar (2002). This delay is likely to be a transition of modes. The energy is initially
injected inside the mixing layer through a Passot-Pouquet spectrum. Afterwards, the
energy is distributed over the whole spectrum and some unstable modes are amplified
leading to the unstable growth.

• The second step of the development of the mixing layer consists in an unstable growth
which eventually turns into an over-linear growth rate.
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Figure 3.3: Temporal evolution of the mixing layer momentum thickness forMc = 0.1−1.1−2.2 using
air with PG EoS. Slopes are non-dimensional and standard deviations computed over the self-similar
period are indicated on the plot.

• Finally, the system reaches a saturation point. At this time, a self-similar state is de-
veloping until the turbulent structures exit the computational domain above and below
the mixing layer. Self-similarity is characterized by a linear evolution of the momentum
thickness over time.

The computed time evolution of the momentum thickness shows a rather good match with
the available literature even though the mixing layer momentum thickness growth rate com-
puted for the current 134M simulation is smaller (a difference of about 20% is observed) than
the one of Pantano & Sarkar (2002). Since the computation of the growth rate depends on the
chosen self-similar period and since the self-similar period of the current simulation is chosen
late enough to achieve a complete convergence, the computed growth rate is smaller.

The study is extended to two other convective Mach numbers (Mc = 0.1 andMc = 2.2). The
first one (Mc = 0.1) is considered as the reference incompressible case. The second one (Mc =
2.2) enables the study of highly compressible regimes. Figure 3.3 gathers the temporal evolu-
tion of the momentum thickness for the three convective Mach numbers (Mc = 0.1− 1.1− 2.2).
One can identify the three main aforementioned phases.

At Mc = 2.2, one notices that the mixing layer takes a much longer time to develop. This
is consistent with observations of Pantano & Sarkar (2002) who noticed that the time required
to reach a self-similar regime increases with compressibility. Self-similarity is reached around
τ ≈ 11500 after a long unstable growth phase. As a comparison, at Mc = 0.1 and Mc = 1.1,
self-similarity is reached respectively at τ = 700 and τ = 1700.

A long time delay is observed at the beginning of the simulation, associated to the transition
of modes. Turbulent kinetic energy is initially injected at a given integral length set equal to
Lx/8. Afterwards, energy is distributed over the whole spectrum and some unstable modes
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a) b)

c)

Figure 3.4: Temporal evolution of the non-dimensional streamwise turbulent production term in-
tegrated over the whole domain P ∗int = (1/(ρ0(∆u)3))

∫
Ly
ρ̄Pxxdy (with ρ̄Pxx(y) = −ρu′′

xu
′′
y
∂ũx
∂y ) at

Mc = 0.1 (a), Mc = 1.1 (b) and Mc = 2.2 (c). Results are shown for the air using PG EoS. Selections
of self-similar period are indicated on each plot.

are amplified leading to the unstable growth phase. In order to reduce this time delay, initial
turbulent structures have been chosen larger in proportion to the initial momentum thickness
at Mc = 2.2 (Table 3.1). This modification of initial turbulent structures size does not impact
the growth rate over the self-similar regime. This is verified for DG flows in Appendix B.

In addition, for this Mc = 2.2 calculation, domain lengths are doubled in x and z directions
and multiplied by four in the y direction when compared to DNS at Mc = 1.1. Note that all
lengths are normalized by the initial momentum thickness. This extension of the computational
domain for Mc = 2.2 enables the mixing layer to develop until larger values of δθ(t)/δθ,0 and to
obtain a long enough self-similar period without reaching the domain boundaries. Note that
other simulations performed without this extension of the computational domain did not allow
the flow to reach self-similarity.

Slopes and standard deviations reported in Figure 3.3 are computed over the self-similar
period. One can observe that the growth rate is divided by a factor of about two between
DNS at Mc = 2.2 and at Mc = 1.1. Indeed, compressibility effects tend to reduce mixing layer
development as the convective Mach number increases.

The DNS performed at Mc = 0.1 provides the reference incompressible case used to plot
δ̇θ/δ̇θ,inc = f(Mc). The computed "incompressible" growth rate is about 0.0131 which is rela-
tively close to the empirical value of 0.016 given by Pantano & Sarkar (2002). One can notice for
this case a short unstable growth phase when compared to larger convective Mach number cases.
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How to select the self-similar period ?

Self-similarity is a major characteristic of mixing layers: during the self-similar period, flow
development can be described using single length and velocity scales. The momentum thickness
evolves linearly with time over this period. This particular state in the development of mixing
layers is widely used to extract key features of mixing layers. The well known chart giving
the evolution of the mixing layer growth rate as a function of the convective Mach number
(Papamoschou & Roshko, 1988) is plotted during the self-similar regime (see Section 3.3.2).
This period is also used to investigate the balance of the TKE equation, because temporal
solutions can be averaged during self-similarity since the flow is in a statistically stable state.
The objective of the present paragraph is to determine an appropriate self-similar range, which
is actually not a trivial task since several criteria to characterize the self-similar period are
proposed in the literature, not all of them precisely defined.

Barre & Bonnet (2015) define their flow as self-similar when they obtain superposition of
the mean velocity profiles. Rogers & Moser (1994) conclude that they reach self-similarity
because of the linear evolution of the momentum thickness, the collapse on a single curve of
the mean velocity profiles and the collapse on a single curve of the Reynolds stress profiles.
However, the determination of the proper superposition of several curves is sometimes difficult
and may be subjective. The same remarks apply to the determination of the linear evolution
of the momentum thickness. Analysis of data obtained by Pantano & Sarkar (2002), Rogers &
Moser (1994) and Zhou et al. (2012) show that the growth rate is probably sub-linear, as also
stated by Pirozzoli et al. (2015). Many authors confirmed the difficulty encountered to reach
a perfect self-similar state (Pantano & Sarkar, 2002; Pirozzoli et al., 2015). The diversity of
results found in the literature for the well-known growth rate vs convective Mach number graph
(see Section 3.3.2) comes in part from this difficulty to accurately define the growth rate.

Another method to determine self-similarity is used in this study. It consists in computing
the streamwise production term integrated over the whole domain. Vreman et al. (1996a)
indeed demonstrate the following relation between the volumetric streamwise production power
(ρ̄Pxx = −ρu′′

xu
′′
y
∂ũx
∂y

) and the momentum thickness growth rate:

δ
′

θ =
dδθ
dt

=
2

ρ0∆u2

∫
ρ̄Pxxdy (3.12)

Figure 3.4 shows the temporal evolution of the non-dimensional streamwise production in-
tegrated over the whole domain for the three DNS at Mc ranging from 0.1 to 2.2 performed for
air using the PG EoS. The selected self-similar periods are given on each graph and correspond
to a converged state of the mixing layer. At Mc = 1.1, a long period has been chosen (about
900τ) in comparison with the available literature. Pantano & Sarkar (2002) and Rogers &
Moser (1994) respectively selected in their study a period of 257 and 45 non-dimensional times.

The temporal evolution of the production is consistent with the temporal evolution of the
momentum thickness. The three steps mentioned earlier can be identified. During the unstable
growth, the production quickly increases, until it reaches a maximum. Afterwards, the mixing
layer converges to a self-similar state. A constant integrated production is directly related to a
self-similar regime according to Eq. (3.12). As the convective Mach number increases, the max-
imum peak of integrated turbulent production decreases, which is consistent with the decrease
of the momentum thickness growth rate. Time required to achieve self-similarity lengthens.

Difficulties can be encountered to get a fully stable plateau with an almost constant inte-
grated turbulent production. Domain lengths have a major influence on self-similarity. Influ-
ence of the domain size on self-similarity is thoroughly investigated in Appendix B for dense

44



3.3. DNS VERIFICATION AND VALIDATION

Figure 3.5: Distributions of the normalized specific power quantities over the y direction at Mc = 1.1
is represented for air: P: Production, D: Dissipation and T: Transport are normalized by ∆u3/δθ(t)
and compared to Pantano & Sarkar (2002). Additional terms (R: Residuals and TD: Time Derivative)
are given. The sampling space step of the averaging process is 2Ly/δθ(τ=1700)

Npoints
, with Npoints = 24.

Distributions have been averaged between the upper and the lower stream to get perfectly symmetrical
distributions. A further explanation about the averaging process applied is given in Appendix A.

gas flows and correlations with integral length scales are analyzed.

3.3.2 Validation over the self-similar period

Validation at Mc = 1.1

Once a relevant time interval selected to consider the mixing layer to be self-similar, one can
focus on the study of the turbulent kinetic power balance. This equation evaluates terms at
stake in the development of turbulence. It also helps to validate our simulation by compar-
ing present DNS results with those of Pantano & Sarkar (2002) at Mc = 1.1. In Figure 3.5,
quantities are integrated over the two periodic directions (x and z), normalized by ∆u3/δθ(t)
and drawn versus the non-dimensional cross-stream direction y/δθ(t). Solutions are averaged
over time during the self-similar period (τ ∈ [1700; 2550]). A further explanation about the
averaging process applied to generate the plot of Figure 3.5 is given in Appendix A.

The present DNS results agree reasonably well with Pantano & Sarkar (P&S) results, es-
pecially the production and the transport terms : shapes as well as intensities are close. The
discrepancies between the dissipation terms could be explained by the difference in the choice
or definition for the self-similar period.

Two additional quantities are also analyzed in Figure 3.5: the residuals and the time deriva-
tive of the turbulent kinetic energy. Residuals are almost zero, thus demonstrating the proper
closure of the balance. The time derivative is far from being negligible and has almost the same
intensity as the transport term. This term is rarely reported in the literature maybe because of
the difficulties encountered when extracting it, especially for the temporal mixing layer. Also,
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Figure 3.6: Streamwise specific TKE spectra computed over the centerline at Mc = 1.1. Comparison
is made with the available literature and between the 16.8M and the 134M simulations.

the convective derivative is negligible, in contrast with Zhou et al. (2012) who study a spatial
mixing layer. In fact, the time derivative of the kinetic energy in a temporal mixing layer and
the convective derivative of the kinetic energy in a spatial mixing layer play a symmetric role
since the two configurations are linked by a change of Galilean reference frame (see (3.4)). It
is thus expected that the time derivative in the temporal mixing layer is non negligible in the
same way that the convective derivative in the spatial mixing layer is significant.
Finally, it is noticed that the compressible dissipation, the pressure-dilatation, the mass-flux
coupling term including the velocity pressure gradient, and the convective derivative are negli-
gible in the present study and are thus not shown. Similar observations have been consistently
made by several authors as previously mentioned in Section 3.1.

The turbulent kinetic energy balance computed over the whole range of turbulent scales is
not the only tool available to highlight the influence of the main terms of the TKE equation.
Spectra are very useful to compare turbulent kinetic energy scale by scale. At this stage, we
wish to validate the spectrum computed for air. To this end, the present DNS results are
compared in Figure 3.6 with results from the literature (Tanahashi et al., 2001; Freund et al.,
2000; Pantano & Sarkar, 2002; Okong’o & Bellan, 2002). The current spectrum is computed
over the centerline and averaged over the self-similar period (τ ∈ [1700; 2550]). Because the
spectra from the literature display different large scale values, they are normalized by their
value at 10k0. This value is indeed a good threshold to compare spectra at small scales without
being subjected to geometrical differences. The present results are found to compare favorably
with the current literature and the expected reference slopes. The −7 slope in the logarithmic
scale has been established by Batchelor (1953) to describe the evolution of kinetic energy at
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Figure 3.7: Distribution of the xy-component of the turbulent stress tensor (Rxy = ρu′′
xu

′′
y/ρ̄) averaged

over the self-similar period. Comparison is made between the 16.8M and the 134M simulations at
Mc = 1.1. Distributions have been averaged between the upper and the lower stream to get perfectly
symmetrical distributions.

small scales and is consistent with the present spectrum at high wavenumbers. This indicates
a proper resolution of the small scales. The −5/3 and −2 slopes are the slopes of isothermal
homogeneous isotropic turbulence inertial ranges respectively for incompressible and compress-
ible flows (Kritsuk et al., 2007). Moreover, the 16.8M and the 134M simulations spectra are
very close. Discrepancies occur at very small scales only, where energy is very low. This shows
that the energy decrease for the 16.8M simulations starts at kx/k0 ≈ 150, corresponding to
about 1/2 to 1/3 of the Nyquist–Shannon sampling frequency. This observation appears very
reasonable, given the third-order spatial accuracy of the numerical scheme.

Figures 3.7 and 3.8 additionally confirm the quality of the present DNS. The xy− com-
ponents of the turbulent stress tensor computed for the 134M and for the 16.8M simulations
during the self-similar period are found very close, demonstrating a proper grid convergence
of the results. Figure 3.8 displays the vertical distribution of r = Lη/∆x at different non-
dimensional times within the self-similar range. The ratio r characterizes the resolution of
simulations. The larger the ratio, the better the resolution. At the center of the mixing layer,
the Kolmogorov length scale is at its minimum value since the turbulent activity is maximum.
Values of r stay above unity, which is enough for DNS resolution. As a comparison Pantano &
Sarkar (2002)’s ratio is close to 0.38.
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Figure 3.8: Distributions of r = Lη/∆x the ratio between the Kolmogorov scale and the grid
cell size at Mc = 1.1 for several non-dimensional times inside the self-similar period (τ ∈
{1700; 1800; 2000; 2200; 2400}). Results are computed from the 134M simulation.
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Mc Reδθ Reλx r = Lη/∆x lx/Lx lz/Lz
Air (τ = 700) 0.1 1879 209 0.63 0.10 0.04
Air (τ = 1450) 0.1 3444 194 0.81 0.11 0.13

Air (τ = 1700) 1.1 1874 143 0.97 0.07 0.06
Air (τ = 2550) 1.1 2413 156 1.09 0.12 0.08

Air (τ = 11500) 2.2 3487 146 1.44 0.12 0.07
Air (τ = 14100) 2.2 3700 191 1.64 0.11 0.10

Table 3.2: Non-dimensional parameters computed at the beginning and at the end of the self-
similar period. Reλx denotes the Reynolds number based on the longitudinal Taylor microscale

λx =

√
2u′2

x/(∂u
′
x/∂x)

2 computed at the centerline. Lη denotes the Kolmogorov length scale computed
at the centerline.

Validation at other convective Mach numbers

Results obtained in the present work using AVBP are validated thanks to available results from
the literature at Mc = 1.1. At highly compressible regimes, the lack of numerical results makes
the validation process more complex. Yet, numerical parameters given in Table 3.2 allow to
assess the quality of the present DNS. The integral lengths lx and lz are computed using the
streamwise velocity field:

lx =
1

2u′
x

2

∫ Lx/2

−Lx/2
u′
x(x)u′

x(x+ rex)dr (3.13)

lz =
1

2u′
x

2

∫ Lz/2

−Lz/2
u′
x(x)u′

x(x+ rez)dr (3.14)

Integral length scales show that the domain is chosen sufficiently large. Values do not exceed
0.12 in the streamwise direction and 0.13 in the z direction. As a comparison, Pantano & Sarkar
(2002)’s integral length scale reaches 0.178 in the streamwise direction for a configuration with
Mc = 0.7 and a density ratio of 4.

The ratio r = Lη/∆x characterizes the resolution of the simulations. The larger the ratio,
the better the resolution. Minimum value is about 0.63, computed for the DNS at Mc = 0.1.
For other simulations, values are larger than 0.97 and the maximum value is 1.64 at Mc = 2.2
because of the smaller dissipation found in high compressible regimes. As a comparison, Mat-
suno & Lele (2020) recently performed a DNS at Mc = 2.0 with a Lη/dx ratio equal to 0.41.
One can thus consider that turbulent scales are adequately resolved for all simulations presented
in this paper since in addition the turbulent kinetic energy is very low close to the Kolmogorov
scale (Moin & Mahesh, 1998a).

Since self-similar periods are well defined for each DNS, it is possible to plot the evolution
of the mixing layer growth rate with respect to the convective Mach number. Figure 3.9 shows
a comparison between current PG results and available numerical (Freund et al., 2000; Pantano
& Sarkar, 2002; Kourta & Sauvage, 2002; Fu & Li, 2006; Zhou et al., 2012; Martínez Ferrer
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Figure 3.9: Evolution of the mixing layer growth rate with respect to the convective Mach number
for air using PG EoS. Comparison is made with available DNS results in literature and experimental
results by Rossmann et al. (2001). Standard deviations are indicated on the plot.

et al., 2017; Matsuno & Lele, 2020)] and experimental results (Rossmann et al., 2001) from
the literature. The current DNS follow the tendency observed and described in the literature,
namely the well-known compressibility-related reduction of the momentum thickness growth
rate as Mc increases. From the incompressible case to Mc = 2.2, the mixing layer growth rate
is divided by a factor of about five. Standard deviations are computed and reported on the
plot. It represents about 5% of the computed growth rates. It is rather difficult to reduce this
uncertainty because of difficulties encountered in reaching perfect self-similarity. This is also
illustrated by the scattering of the results from the literature, which might be a consequence
of this phenomenon.

3.3.3 Concluding remarks

DNS of compressible mixing layers at convective Mach numbers Mc = 0.1−1.1−2.2 have been
achieved for air described as a perfect gas. Results are compared with available results from
the literature in order to demonstrate the quality of the present DNS before moving to the
perfect versus dense gas comparison and the identification of dense gas turbulence specificities
(see Chapter 4).

The selection of the self-similar period is a key point in the study of mixing layers: this choice
remains complex and the diversity of the criteria used for the selection process contributes to
the diversity of the results obtained in the literature (also translating into the scattering of
δ̇θ = f(Mc) results). Care has been taken in the present study to reach a well-justified selection
of this self-similar period, based on the analysis of the integrated streamwise production over

50



3.3. DNS VERIFICATION AND VALIDATION

time, which is proportional to the momentum thickness growth rate under certain conditions
(Vreman et al., 1996a).

The sensitivity of the results to mesh refinement is also investigated. The comparison of
the present results obtained for air with the previous DNS of Pantano & Sarkar (2002) shows a
good agreement and validates the present DNS of a compressible mixing layer in air described
with the perfect gas EoS at Mc = 0.1− 1.1− 2.2. In addition to the validation of the present
DNS using PG EoS, an analysis of the influence of the domain size, the resolution and the size
of initial turbulent structures is provided for the DG mixing layer in Appendix B.
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The present chapter investigates the effects of a BZT dense gas (FC-70) on the development of
turbulent compressible mixing layers at three different convective Mach numbersMc = 0.1,

1.1 and 2.2. The first section completes the problem formulation presented in the previous
chapter for PG: the choice of initial conditions for DG is explained and non-dimensional numbers
introduced in Section 2.3 are computed for PG and DG and compared between both types of
gases. The next two sections are dedicated to the comparison between PG and DG mixing
layers: first, at Mc = 1.1 and then extended to a larger compressibility regime at Mc = 2.2.
Finally, discrepancies between both types of gases are thoroughly analyzed in Section 4.4. The
DG results presented in this chapter have been published in (Vadrot et al., 2020) and (Vadrot
et al., 2021).
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4.1 Problem formulation

4.1.1 Initialization

Figure 4.1: The initial thermodynamic state and its evolution over time are represented in the non-
dimensional p− v diagram for FC-70 at Mc = 1.1. The dense gas zone (Γ < 1) and the inversion zone
(Γ < 0) are plotted for the Martin-Hou equation of state. pc and vc are respectively the critical pressure
and the critical specific volume. The initial value of the fundamental derivative of gas dynamics is equal
to Γinitial = −0.284. The normalized distribution of thermodynamic states at τ = 1700 (beginning of
the self-similar period) is colored along the corresponding adiabatic curve.

The initial conditions of the mixing layer require the choice of the initial operating thermo-
dynamic point in the p−v diagram. In order to compare DG and PG mixing layers in identical
initial conditions, the same values of reduced specific volume and reduced pressure defining the
initial thermodynamic state are selected for both gases. As described in Figure 4.1, this initial
state is chosen within the inversion zone of FC-70 in order to favor the occurrence of expansion
shocklets and to maximize dense gas effects on turbulence. This is also in that region that
compressibility effects are the largest since the sound speed is reduced (Colonna & Guardone,
2006), which maximizes the Mach number. Figure 4.1 also shows the adiabatic curve on which
the initial operating point is lying in the non-dimensional p − v diagram. The corresponding
initial value of the fundamental derivative of gas dynamics is equal to Γinitial = −0.284. During
the development of the mixing layer, the thermodynamic conditions stay within a close range
around the adiabatic curve as shown in Figure 4.1, because shocklet entropy losses and mechan-
ical dissipation are weak at Mc = 1.1. Also, almost all the thermodynamic states stay within
the inversion zone throughout the dense gas simulation. The evolution of thermodynamic states
is investigated during the unstable growth phase in Section 4.2.2.
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Like for PG flow, the Reynolds number based on the initial momentum thickness is set
equal to 160 for all the DNS. Table 3.1 summarizes the computational parameters of simula-
tions performed for different Mc (domain size, number of grid elements, dimensional values of
velocity, initial momentum thickness and initial turbulent structures sizes). Domains lengths
are identical between air and FC-70 atMc = 0.1 andMc = 1.1. AtMc = 2.2, the domain length
is doubled in the y direction for air compared with FC-70 in order to let the flow evolve long
enough to reach self-similarity without interference effects of the lower and upper boundaries.
For both types of gas, the size of initial turbulent structures is increased at Mc = 2.2 in order
to shorten the simulation time. At Mc = 1.1, two simulations have been computed for both
gases in order to study grid convergence. Additional DG simulations given in Appendix B have
been performed for other domain sizes and resolutions to validate the current DNS. The impact
of these numerical parameters on the self-similar period selection is also analyzed in Appendix B.

Mc Lx × Ly × Lz Nx ×Ny ×Nz ∆u (m.s−1) δθ,0 (nm) L0

Air 0.1 344× 344× 86 1024× 1024× 256 34.11 135.8 Lx/48
FC-70 0.1 344× 344× 86 1024× 1024× 256 5.665 2070 Lx/48

Air 1.1 344× 172× 86 512× 256× 128 375.2 12.35 Lx/48
Air 1.1 344× 172× 86 1024× 512× 256 375.2 12.35 Lx/48

FC-70 1.1 344× 172× 86 512× 256× 128† 62.32 188.2 Lx/48
FC-70 1.1 344× 172× 86 1024× 512× 256†† 62.32 188.2 Lx/48

Air 2.2 688× 688× 172 1024× 1024× 256 753.0 6.153 Lx/8
FC-70 2.2 688× 344× 172 1024× 512× 256 125.1 93.77 Lx/8

Table 4.1: Simulation parameters. Lx, Ly and Lz denote computational domain lengths measured in
terms of initial momentum thickness. Nx, Ny and Nz denote the number of grid points. L0 denotes
the size of initial turbulent structures (k0 = 2π/L0) measured in terms of initial momentum thickness.
All grids are uniform.

4.1.2 Non-dimensional numbers in the DG context

The non-dimensional formulations of the governing equations have been presented in Section
2.3 for both PG and DG flows. The reference values used in these formulations are now adapted
to the mixing layer problem: the reference length is the initial momentum thickness, L0 = δθ,0;
the reference density, pressure, temperature, viscosity and sound speed correspond to the initial
values ρ0, p0, T0, µ0 and c0; the reference velocity is also the initial velocity u0 = ∆u/2†. The

†Referred to as the 16.8M simulation. 16.8M corresponds to the number of grid cells.
††Referred to as the 134M simulation. 134M corresponds to the number of grid cells.
†The subscript φ0 for a given variable φ denotes the initial value.
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non-dimensional numbers appearing in the governing equations are therefore such that:

M0 =
u0

c0

=
∆u

2c0

= Mc (4.1)

Re0 =
ρ0u0L0

µ0

=
ρ0∆uδθ,0

2µ0

=
Reδθ,0

2
(4.2)

Table 4.2 compares non-dimensional coefficients appearing in Equations (2.23) and (2.34)
modified using the relationships (4.1) and (4.2). These coefficients are computed for each
mixing layer, with varying convective Mach number but constant Reynolds number. Note that
non-dimensional momentum equations are written in such a way that the coefficients related to
the temporal variation and the transport of the momentum are equal to unity (see Equations
(2.23)). For the energy equation, the coefficients related to the temporal variation and the
transport of the internal energy are equal to unity (see Equations (2.23)) and are not provided
in Table 4.2.

For momentum equations, ratios between non-dimensional terms are very close between
DG and PG flows unlike the energy equation. Differences between both types of gases are
indeed expected to appear in compressible flows where the energy equation gains in influence.
In the energy equation, all terms except the heat flux are reduced for DG with respect to PG.
Since DG are characterized by long chains of atoms and by medium to large molecular weights,
their internal energy is much larger than the kinetic energy when compared to PG flows. This
difference is responsible for the strong reduction of the transport and temporal variation of
the kinetic energy, the pressure work and the viscous work with respect to the temporal and
convective derivatives of the internal energy. This phenomenon and its consequences on the
mixing layer turbulence characteristics are further analyzed in Section 4.4. Note that for some
terms (especially the ones depending on the ratio M2

c /Ec0), because the initial thermodynamic
operating points are identical, no difference is observed between the three DNS computed at
Mc = 0.1 − 1.1 − 2.2. That will not remain true when modifying the initial thermodynamic
operating point like in Section 4.4.3.
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Momentum equations PG
(Mc = 0.1− 1.1− 2.2)

DG
(Mc = 0.1− 1.1− 2.2)

∂p

∂xi

1

γ

(0.71)

Z0M
2
c

Ec0

R

cp0

(0.89)

∂

∂xj

(
µSDij

) 2Mc

Reδθ

(0.125− 1.38− 2.75)× 10−2

2Mc

Reδθ

(0.125− 1.38− 2.75)× 10−2

Energy equation PG
(Mc = 0.1− 1.1− 2.2)

DG
(Mc = 0.1− 1.1− 2.2)

[
∂(ρuiui)

∂t
+

1

2

∂(ρuiuiuj)

∂xj

] γ(γ − 1)

(0.56)

K0Ec0

M2
c

(cp)0

R

(0.0066)

∂(puj)

∂xj

(γ − 1)

(0.4)

Z0K0

(0.0059)

∂

∂xj

(
µuiS

D
ij

) γ(γ − 1)
2Mc

Reδθ

(0.07− 0.77− 1.54)× 10−2

K0Ec0

M2
c

(cp)0

R

2Mc

Reδθ

(0.08− 0.91− 1.82)× 10−4

∂

∂xj

(
κ
∂T

∂xj

) γ

Pr0

2Mc

Reδθ

(0.25− 2.71− 5.42)× 10−2

K0

Pr0

(cp)0

R

2Mc

Reδθ

(0.16− 1.81− 3.65)× 10−2

Table 4.2: Comparison of the PG and DG non-dimensional terms appearing in Equations (2.23) and
(2.34). 56
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4.2 Dense gas effect at Mc = 1.1

4.2.1 Temporal evolution and selection of the self-similar period

Figure 4.2: Temporal evolution of the mixing layer momentum thickness at Mc = 1.1.

As done for the perfect gas validation process, the computation of the turbulent kinetic
energy balance requires first the selection of the self-similar range. This is achieved through the
combined investigation of the momentum thickness evolution and the integrated production
evolution over time. Figure 4.2 displays the momentum thickness temporal evolution: per-
fect gas (PG) and dense gas (DG) results show a similar evolution. The curves are initially
(τ ≤ 200) very close, with a different evolution for PG and DG mixing layers taking place in
the second phase of the mixing layer development (approximately 200 ≤ τ ≤ 1500), when the
unstable growth is governed by instability modes. The DG unstable growth is faster than the
PG one, likely because instability modes and their amplification factor evolve differently for
PG and DG mixing layers (Gloerfelt et al., 2020). Figure 4.2 also displays the evolution of the
DG momentum thickness for the 16.8M simulation, which is very close to the 134M simulation,
showing a proper resolution.

Figure 4.3 displays the integrated production. The DG turbulent production is found to be
larger than the PG production, consistently with the larger DG momentum thickness growth
rate. Although the unstable evolution is faster for the dense gas mixing layer, both mixing
layers reach a self-similar stage almost at the same time as confirmed in Figure 4.3. It seems
that the DG mixing layer displays an extended converged self-similar state compared with the
PG mixing layer. The choice has however been made in the current study to select a common
self-similar range, namely τ ∈ [1700; 2550]. The growth rate slopes calculated during the self-
similar stage are reported in Figure 4.2: the slope is slightly larger for the DG than for the PG
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Figure 4.3: Temporal evolution of the non-dimensional streamwise production integrated over the
whole domain, respectively P ∗int = (1/(ρ0∆u3))

∫
Ly
ρ̄Pxxdy (with ρ̄Pxx = −ρu′′

xu
′′
y
∂ũx
∂y ). Results are

computed from the 134M simulations at Mc = 1.1.

with a typical 5% difference between DG and PG mixing layers.
From the above analysis, the comparison between the DG and the PG mixing layers atMc =

1.1 can be divided into two main parts: the initial unstable growth during which differences
between the two mixing layers are significant and the self-similar range, where the mixing layers
dynamic seems rather close.

4.2.2 DG effect over the unstable growth phase at Mc = 1.1

During the unstable growth, the momentum thickness evolution is governed by instability
modes and their amplification mechanism. A larger growth is directly related to a larger
production term according to Vreman et al. (1996a). The streamwise production term is com-
posed of the Favre averaged velocity gradient and the turbulent stress tensor. The comparison
of the first term does not show significant differences between DG and PG, unlike the second
term. Figure 4.4 displays the distributions of the xy− component of the turbulent stress tensor
Rxy = ρu′′

xu
′′
y/ρ̄ normalized by ∆u2 along the normalized cross-stream direction y/δθ(t) during

the initial growth. The DG xy− component of the turbulent stress tensor increases much faster
than the PG one until τ ≈ 500. Afterwards, both tensors reach the same level at τ ≈ 1000. This
observation is consistent with the temporal evolution of the integrated streamwise production
term.

In order to better understand the difference of dynamics between PG and DG, the com-
parison of PG and DG mixing layers during the unstable growth is investigated thanks to the
specific TKE spectra. Spectra reported in Figure 4.5 are computed along the centerline in
the streamwise direction. One can notice the sudden increase of the specific turbulent kinetic
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Figure 4.4: Distribution of the xy-component of the turbulent stress tensor (Rxy = ρu′′
xu

′′
y/ρ̄) over the

non-dimensional direction y/δθ(t). Results are computed from the 134M simulation at Mc = 1.1. The
curves for FC-70 and Air at τ = 50 collapse.

energy at the smallest scales for the dense gas. Consistently with observations made for DNS
of forced homogeneous isotropic turbulence (Giauque et al., 2020) in a dense gas, the dynamic
at the smallest scales is different between PG and DG.

This increase is not likely to explain the different unstable growth phase between dense and
perfect gases because this region of the spectrum corresponds to low-energy modes. However,
in the approximate range kx/k0 ∈ [10; 22], energy is much larger for the DG when compared
to the PG (a factor between 2 and 3 is found). These modes are high-energy modes and are
responsible for the difference between the DG and the PG during the unstable growth phase.

Moreover, since it is known that shocklets generation is different between DG and PG flows
(see Section 1.2), another explanation can be found using the evolution of the turbulent Mach
number Mt

†, displayed in Figure 4.6 for FC-70 and air. Turbulent Mach numbers increase
during the unstable growth phase until Mt ≈ 0.53. Evolutions for DG and PG are very close
during this first phase, with a slightly larger value for the dense gas, which is consistent with
the evolutions of the turbulent production (see Figure 4.3). Turbulent Mach numbers then
decrease and reach an approximately constant value during the self-similar period. Average
values are almost equal for dense gas and perfect gas (Mtav,DG ≈ 0.38 < Mtav,PG ≈ 0.39).

Shocklets might be observed for a short period of time during the unstable growth phase
(τ ∈ [500; 750]), which corresponds to the period of time during which discrepancies appear
between DG and PG (see Figure 4.2). During this short period of time, even though the values
of the turbulent Mach number are almost the same for DG and PG, their effect on the mixing
layer growth is different. Since the majority of the thermodynamic states lie inside the inver-
sion region (see Figures 4.1 and 4.7), expansion shocklets could be one reason for discrepancy

†The expression of the turbulent Mach number is given in Section 3.1.
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Figure 4.5: Specific turbulent kinetic energy spectra in the streamwise direction computed over the
centerline during the unstable growth phase. Results are computed from the 134M simulation at
Mc = 1.1.

Figure 4.6: Temporal evolution of turbulent Mach number. Results are computed from the 134M
simulation at Mc = 1.1.
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between DG and PG. However, since it represents a very short period of time after which Mt

decreases well below the range of values for which shocklets are expected, it is not likely to
influence the self-similar period. In order to study the shocklet effect over the mixing layer
growth, additional DNS are performed at larger Mc and for other operating thermodynamic
point in Section 4.4.1.

4.2.3 DG effect over the self-similar period at Mc = 1.1

Distribution of thermodynamic states

Figure 4.7: Distribution of thermodynamic states along the initial adiabatic curve. Amplitude is
normalized with the maximum value at τ = 1000. Results are computed from the 134M simulation at
Mc = 1.1.

Before analyzing the TKE equation, it can be checked, in order to maximize the differences
between dense and perfect gases, that the dense gas mixing layer thermodynamic states stay
inside the inversion region in the p − v diagram. Figure 4.7 represents the thermodynamic
states distributions on the adiabatic curve normalized by the maximum value at τ = 1000.
One can note that almost all the thermodynamic states stay indeed inside the inversion re-
gion all along the development of the mixing layer. Also, the distributions seem to become
asymmetric towards larger reduced molar volumes (vr) which corresponds to a decrease of the
reduced pressures (pr) in Figure 4.1.

Turbulent kinetic energy balance computed over the self-similar period

During the self-similar period (τ ∈ [1700; 2550]), both DG and PG mixing layers are in a statis-
tically stable state and the terms of the TKE equation can be averaged. Consistently with the
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evolution of the integrated production shown in Figure 4.3 and with the formulation of Vreman
et al. (1996a), powers reported in Figure 4.8 are volumetric unlike in Figure 3.5 which shows
the comparison with Pantano & Sarkar (2002). Using the volumetric or the specific power
formulation influences the comparison between DG and PG. The difference between the two
formulations can be more easily expressed by a normalization with either ρ0 or ρ̄, respectively
for the volumetric and for the specific powers. For the DG, the difference between both for-
mulations is reduced compared with the PG. The decrease of the Reynolds averaged density
over the y direction is indeed lower for the DG than for the PG. It is likely that the large heat
capacity of the DG reduces the temperature increase related to the viscous dissipation, which
also reduces the density decrease and thus the difference between the volumetric and specific
power formulations (see the thermodynamic distributions in Figure 4.13).

Figure 4.8 displays the comparison of the main volumetric turbulent kinetic energy budget

Figure 4.8: Distribution of the volumetric normalized powers over the non-dimensional cross-stream
direction y/δθ(t) at Mc = 1.1. P: Production, D: Dissipation and T: Transport are normalized by
ρ0∆u3/δθ(t). Results are gathered from the 134M simulation. The sampling space step for the averag-
ing process is 2Ly/δθ(τ=1700)

Npoints
, with Npoints = 24. Distributions have been averaged between the upper

and the lower streams to get perfectly symmetrical distributions.

terms between the perfect gas and the dense gas mixing layers. Production, dissipation and
transport terms are averaged during corresponding self-similar ranges. The production term
(denoted P ) is always positive and is responsible for the growth of the mixing layer. Viscous
dissipation (denoted D) is always negative and counterbalances the production term. The
transport term (denoted T ) enables the propagation of TKE from the center to the edges of
the mixing layer. It is thus negative at the center and positive close to the edges. Results are
close between the two types of gases. The production term is slightly larger for the DG when
compared to the PG, which is consistent with Figure 4.3 and with the 5% larger momentum
growth rate. The dissipation is also greater for the DG in order to counterbalance the turbu-
lent production. The transport term is almost identical between DG and PG. The pressure
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transport and turbulent transport terms (not shown) are close between both types of gases (the
viscous transport is negligible). The dense gas seems to have a limited effect on these turbulent
quantities at Mc = 1.1. However, one can highlight a slower propagation of the TKE terms at
the boundaries of the mixing layer as a visible effect induced by the dense gas: the curves are
slightly wider for the PG with respect to the DG. The observation of this effect is confirmed
by the distributions of the mean axial velocity in Figure 4.10.

Figure 4.9: Distribution of the main non-dimensional volumetric power terms of the x- (top) and
y− (bottom) turbulent stress tensor (Rxx and Ryy) equation over the non-dimensional cross-stream
direction y/δθ(t) at Mc = 1.1. Pxx: Streamwise production, Πxx: Streamwise pressure-strain and
Dxx: Streamwise dissipation terms are normalized by ρ0∆u3/δθ(t). Results are computed from the
134M simulation. The sampling space step of the averaging process is 2Ly/δθ(τ=1700)

Npoints
, with Npoints = 24.

Distributions have been averaged between the upper and the lower stream to get perfectly symmetrical
distributions.
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Concerning the other terms of the TKE equation, it is found that the compressible dissipa-
tion, the pressure-dilatation, the mass-flux coupling term and the convective derivative of the
turbulent kinetic energy are negligible in both PG and DG. Residuals and time derivative agree
well between both gases.

As mentioned in the introduction, Pantano & Sarkar (2002) demonstrate that the compress-
ibility related reduction of the momentum thickness growth rate is induced by the reduction
of pressure-strain terms Πij, which causes a reduction of turbulent production. In the TKE
equation, which is obtained from the sum Rii, the pressure-strain terms per se do not appear.
Their sum Πii, which constitutes the pressure-dilatation term, appears in the TKE equation but
is negligible. In order to study pressure-strain terms, one needs to plot turbulent stress tensor
equations terms. Figure 4.9 gives the turbulent stress tensor budget terms over respectively the
x and y directions. In the streamwise direction, the pressure-strain term counterbalances the
streamwise production, whereas in the cross-stream directions, pressure-strain term is positive
and is balanced by viscous dissipation. In the cross-stream direction, turbulent production term
can be neglected unlike in the streamwise direction for which it is maximal. In the same way as
for the perfect gas, the pressure-strain terms are not negligible for the DG, but no significant
difference is observed between DG and PG. The dense gas mixing layer experiences the same
reduction of the pressure-strain terms at Mc = 1.1, which is due to both (i) the reduction of
the pressure fluctuations and (ii) the reduction of the gradient of velocity fluctuations.

At y/δθ(t) = 0, a non-monotonic behavior is observed for DG, which is due to the difference
in the thermodynamic behavior illustrated in Figure 4.13. Density fluctuations are larger at
the center of the mixing layer for DG, unlike PG for which peaks of rms density are located at
the borders of the layer. This larger density fluctuations rate at the center is likely to disturb
the distributions of production since this term is calculated using Favre-averaging.

In the vertical direction, production terms are even more non-monotonic both for DG and
PG because they involve the vertical gradient of the mean vertical velocity. Since this gradient
is calculated in the vertical direction, which corresponds to the direction of the mixing layer
growth, it induces more disturbed distributions.

Figure 4.10 displays the distribution of the mean streamwise velocity for the DG and the
PG shear layers. These profiles confirm the effect highlighted when looking at the TKE dis-
tributions (Figures 4.8 and 4.9) and at the thermodynamic profiles (Figure 4.13), namely a
slower propagation at the boundaries of the mixing layer for DG compared with PG. At first
sight, that seems contradictory with the larger momentum thickness growth rate for DG with
respect to PG (see Figure 4.2). Yet, the momentum thickness is proportional to the integral
of volumetric streamwise production power which reflects the turbulent mixing inside the layer
(see Equation (3.12)). It is therefore possible for the momentum thickness growth rate to be
smaller with a wider distribution as long as the turbulent mixing inside the mixing layer is less
intense. That is the case for the PG mixing layer when compared to the DG one. Note that
the density distribution comes also into play since the production power is computed using the
Favre average.

Specific turbulent kinetic energy (TKE) spectra computed during the self-similar
period

The aforementioned results do not exhibit significant differences between DG and PG, but that
does not imply there is no difference at all: a turbulent quantity may appear to be the same
for PG and DG when looked at as a global quantity over the whole wavenumbers range but
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Figure 4.10: Distribution of the non-dimensional mean streamwise velocity averaged over the self-
similar period. Comparison is made between FC-70 and Air. Results are computed from the 134M
simulation at Mc = 1.1.

may actually behave differently for some specific turbulent scales. Since our final objective is
to assess the need for new LES sub-grid models in the case of turbulent dense gas flows, it
is important to take a closer look at each quantity in the spectral domain. The streamwise
specific turbulent kinetic energy spectra computed on the centerline are thus drawn in Figure
4.11 for DG and PG. Spectra are normalized by ∆u2δθ(t) following Pirozzoli et al. (2015). The
longitudinal Taylor microscale λx is also reported in Figure 4.11, computed as (see Bailly &
Comte-Bellot (2003)):

λx =

√√√√√ 2u′2
x(

∂u′x
∂x

)2
(4.3)

Note the following simplified equation, often used in the literature :

λx =

√
30νu′2

ε
(4.4)

does not apply here since it is only valid for an incompressible and homogeneous turbulence
(Kolmogorov, 1941).

The evolution of turbulent kinetic energy is similar for both PG and DG flows at the largest
scales. However, at small scales, the perfect gas TKE is decreasing faster than the dense gas
TKE, an observation reminiscent of the one made for the unstable growth phase. The dense gas
effect therefore increases small scales energy. The dissipation term, which is the main term at
these scales, is reduced. Figure 4.12 displays the ratio of the DG over PG spectra and enables
to precisely focus on the quantities at stake. At scales smaller than the Taylor microscale, the
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Figure 4.11: Streamwise specific TKE spectra computed on the centerline at Mc = 1.1.

Figure 4.12: Dense gas / Perfect gas streamwise specific TKE spectra ratio. (PG: Perfect Gas, DG:
Dense Gas). Results are computed from the 134M simulation at Mc = 1.1.

dense gas to perfect gas energy ratio increases up to a factor of six.
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Note that, the Lx/λx ratio is slightly smaller for the DG. The turbulent structures for which
dissipation plays an important role are smaller for the DG than for the PG.

Mean and fluctuating thermodynamic quantities in the self-similar stage

Figure 4.13 provides a comparison of pressure, temperature and density between DG and PG
flows over the self-similar period. For PG, when looking at the Reynolds averaged values, one
can notice an increase of about 16% of the temperature at the center of the mixing layer, due
to viscous dissipation. Density decreases in similar proportions unlike pressure which is less
influenced (4.5% decrease). For DG, the temperature is almost not affected by the viscous
dissipation. Due to the large heat capacity of dense gas flows, the thermodynamic evolution
is almost isothermal as already observed by Sciacovelli et al. (2017b) and therefore averaged
density and pressure are much less influenced by the development of the mixing layer when
compared to the PG flow.

When looking at the root mean square values of the fluctuations for PG (Figure 4.13 right),
significant temperature fluctuations occur at the edges of the mixing layer due to turbulent
mixing, leading to significant density variations. Pressure fluctuations are maximum at the
center of the mixing layer. For DG, temperature fluctuations are almost suppressed. Pressure
fluctuations in the dense gas mixing layer are very close to fluctuations observed in the per-
fect gas mixing layer, which is consistent with the same pressure-strain levels found in Figure
4.9. Thermodynamic distributions are thoroughly discussed at a larger compressibility regime
(Mc = 2.2) in Section 4.4.5 in order to analyze discrepancies between DG and PG flows.

Additional comparison during the self-similar period

Figure 4.14 provides a comparison between FC-70 and air for the Reynolds numbers based on the
momentum thickness (Reδθ). These Reynolds numbers are computed using the domain averaged
viscosity. Results show a much larger increase of the Reynolds number during the whole
evolution for DG compared to PG. During the unstable growth phase, this seems consistent
with Section 4.2.2 showing for instance a stronger increase of the xy-component of the turbulent
stress tensor for DG with respect to PG. However, during the self-similar period, the gap
between DG and PG becomes larger and tends to increase. This behavior is explained by an
increase of the viscosity for PG due to the increase of the temperature absent in the DG flow,
for which the thermodynamic evolution is almost isothermal (see Figure 4.13). Since the flows
are significantly turbulent, this difference in the Reynolds number evolution between DG and
PG does not influence the mixing layers growth rates.

Figure 4.15 shows the profiles of xx−, yy−, zz− and xy− rms velocities for PG and DG.
The self-similar period selected (τ ∈ [1700; 2550]) is well confirmed by these distributions which
collapse relatively well in this time interval. At τ = 1000, the profiles are clearly not self-similar.
At τ = 1400, it is less obvious to decide whether self-similarity is already achieved or not. In
order to define the self-similar period from the rms velocities distributions, one can follow the
method given in Almagro et al. (2017) computing the temporal mean and standard deviation
of the Reynolds stresses for several time intervals. In this paper, another methodology is re-
tained to define the self-similar period (see Section 4.2.1). The comparison between DG and
PG in Figure 4.15 shows a similar evolution for the four computed components. The peak value
averaged over the self-similar period is about 0.14 and 0.09 respectively for the xx− and yy−
components, which is in good agreement with (Pantano & Sarkar, 2002) where these values are
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Figure 4.13: The non-dimensional Reynolds averaged (left) and root mean square (right) values of
temperature (top), density (middle) and pressure (bottom) are averaged over the self-similar period
(τ ∈ [1700; 2550]), plotted along the y direction and compared between FC-70 and Air. Results are
computed from the 134M simulation at Mc = 1.1.
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Figure 4.14: Temporal evolution of Reynolds number based on the momentum thickness. Results are
computed from the 134M simulation at Mc = 1.1.

reported as 0.14 and 0.10.

Concluding remarks

The comparison between perfect and dense gases at Mc = 1.1 does not show major differences
for the momentum thickness growth rates. The dense gas seems to face the same well-known
compressibility-related reduction of the momentum thickness growth rate, caused by the re-
duction of both pressure fluctuations and the gradient of the velocity fluctuations leading to
the reduction of the pressure-strain terms. However, when these quantities are analyzed across
turbulent scales, distributions over the wavenumbers slightly differ between PG and DG. Re-
sults suggest that the dense gas effect yields an increase of the turbulent kinetic energy at small
scales.

Because of a significant decrease in the speed of sound, very large turbulent Mach numbers
are expected to be observed experimentally when using dense gases for thermodynamic states
located in the vicinity of the critical point. At Mc = 1.1, the turbulent Mach number is limited
to approximately 0.4 on the centerline during the self-similar period and only briefly increases
beyond 0.5 during the unstable growth phase. In order to expand the present conclusion to
highly supersonic flows, the next section is dedicated to the analysis of the DG shear layer at
Mc = 2.2.
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Figure 4.15: Distributions of the non-dimensional rms velocities (from top to bottom xx−, yy−, zz−
and xy− components) for the dense gas (left) and the perfect gas (right) at several non-dimensional
time outside (τ ∈ {1000; 1400}) and inside (τ ∈ {1800; 2200; 2500}) the self-similar period. Results are
computed from the 134M simulation at Mc = 1.1.
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4.3 Dense gas effect: influence of the convective Mach
number

4.3.1 Temporal evolution and selection of the self-similar period

As previously done at Mc = 1.1, it is required to precisely define the self-similar range at other
convective Mach numbers (Mc = 0.1 − 2.2). This is done through both the analysis of the
momentum thickness (Figure 4.16) and the turbulent production (Figure 4.17). Figure 4.16
compares the normalized DG momentum thickness over time at three different convective Mach
numbers : Mc = 0.1 − 1.1 − 2.2. Details about the simulation parameters are given in Table
4.1. At Mc = 0.1, similarly to PG mixing layer, the domain length is doubled in the y direction
to get a long enough self-similar period. At Mc = 2.2, the domain length is divided by two in
the y direction when compared to PG flow. The domain is therefore large enough to reach a
self-similar period which lasts 4000τ . Initial turbulent structures are chosen six times larger at
Mc = 2.2 when compared to other Mc to be consistent with PG simulation. It is nevertheless
shown that the size of these initial turbulent structures does not influence the growth rate
during self-similarity (see Appendix B). This choice was motivated by the will to shorten the
simulation time. Enlarging the size of initial turbulent structures reduces the unstable growth
phase. As a consequence, in Figure 4.16, Mc = 1.1 and Mc = 2.2 curves overlap after τ ≈ 2500.

Slopes and standard deviations computed over the self-similar range are given in Figure
4.16. AtMc = 0.1, because of the absence of compressibility effects, growth rate is very close to
that of PG flow: the difference is about 1.5% and is below the standard deviation range. Like
for PG, the DNS at Mc = 0.1 is considered as the reference incompressible case and is used to
plot the dependence of the normalized momentum thickness growth rate with respect to Mc.

Figure 4.16 shows that the momentum thickness growth rates are very close between
Mc = 2.2 and Mc = 1.1 unlike in the perfect gas case (Figure 3.3). The well-known de-
crease of the growth rate with the convective Mach number is modified by dense gas effects.
Despite FC−70 being a highly compressible fluid, compressibility effects decrease in this dense
gas. Tentative explanations for this effect are given in Section 4.4.

Slopes provided in Figure 4.16 are determined using the temporal evolution of the non-
dimensional integrated turbulent production term P ∗int, as done for PG mixing layers. One can
notice that, at Mc = 2.2, the initial phase corresponding to an energy transfer to the most
unstable modes, is much shorter for DG flow with respect to PG flow (Figures 4.16 and 3.3),
likely because unstable modes are different between the two types of gas (Gloerfelt et al., 2020).
After this phase, turbulent production reaches a maximum which decreases as Mc increases.
Finally, self-similar periods are defined selecting the range during which turbulent production
is almost constant. One notices that integrated production terms in DG flows are consistent
with momentum thickness growth rates: the values of P ∗int are very close between Mc = 2.2
and Mc = 1.1 and the value of P ∗int at Mc = 0.1 is twice as large as the one at Mc = 1.1. This
observation confirms the relevance of Vreman et al. (1996a) relationship between the growth
rate (δ̇θ) and the integrated production

(∫
ρ̄PxxdV

)
(Equation (3.12)). Beginning and ending

times for each DNS self-similar periods are provided in Table B.1.

4.3.2 DG effect over the self-similar period

Now that self-similar temporal spans have been selected for both types of gas and all convective
Mach numbers, it is possible to plot the evolution of self-similar growth rates as a function of
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Figure 4.16: Temporal evolution of the mixing layer momentum thickness for DG atMc = 0.1/1.1/2.2.

a) b)

c)

Figure 4.17: Temporal evolution of the non-dimensional streamwise turbulent production term in-
tegrated over the whole domain P ∗int = (1/(ρ0(∆u)3))

∫
Ly
ρ̄PxxdV (with ρ̄Pxx(y) = −ρu′′

xu
′′
y
∂ũx
∂y ) at

Mc = 0.1 (a), Mc = 1.1 (b) and Mc = 2.2 (c). Results are shown for the FC-70. Self-similar periods
are indicated on each plot.
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Figure 4.18: Evolution of the mixing layer growth rate over the convective Mach number for air and
for FC-70. Comparison is made with available DNS results in literature and experimental results in
Rossmann et al. (2001).

the convective Mach number. Slopes are normalized using an incompressible reference case at
very low convective Mach number for which compressibility effects can be neglected. DNS at
Mc = 0.1 is considered here as the reference incompressible case. For example, Pantano &
Sarkar (2002) use a simulation at Mc = 0.3 as a reference case. There is no consensus on this
choice, which can partly explain the spreading of PG results observed in Figure 4.18 - where the
same literature results previously used in Figure 3.9 are reported. DG mixing layer results are
plotted with error bars colored in black. They represent the standard deviation of the normal-
ized growth rate over the self-similar range. Unlike the PG mixing layer which shows a fairly
abrupt decrease of its growth rate as Mc increases, the DG mixing layer seems to be much less
influenced by compressibility effects as Mc increases beyond 1.1. Differences between DG and
PG mixing layers are large enough when compared to standard deviations to reveal that turbu-
lence development is actually modified by dense gas effects in mixing layer flows aboveMc = 1.1.

In order to analyze the impact of compressibility effects, Pantano & Sarkar (2002) study
the TKE equation and particularly the importance of the turbulent production term. They
find that this term is decreasing in consistent proportion with the growth rate as the convective
Mach number increases. The computation of TKE equation terms requires to statistically av-
erage the terms. This can only be done during the self-similar period during which both mixing
layers are in a statistically stable state. Figure 4.19 shows the comparison between DG and
PG mixing layers of the normalized main terms of the TKE equation over the non-dimensional
cross-stream direction y/δθ(t). Consistently with the comparison of slopes between DG and
PG flows, all main terms and particularly the production term are two to three times larger
for DG.

Another noticeable feature which was highlighted in the analysis at Mc = 1.1 (see Figure
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Figure 4.19: Distribution of the volumetric normalized powers over the non-dimensional cross-stream
direction y/δθ(t) at Mc = 2.2. P: Production, D: Dissipation and T: Transport are normalized by
ρ0(∆u)3/δθ(t). Distributions have been averaged between the upper and the lower stream to get
perfectly symmetrical distributions.
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Figure 4.20: Distribution of the main non-dimensional volumetric power terms of the x- (left) and
y- (right) turbulent stress tensor (Rxx and Ryy) equations over the non-dimensional cross-stream
direction y/δθ(t). Pxx and Pyy: Streamwise and cross-stream production, Πxx and Πyy: Streamwise
and cross-stream pressure-strain and Dxx and Dyy: Streamwise and cross-stream dissipation terms are
normalized by ρ0(∆u)3/δθ(t). Results are computed at Mc = 2.2. Distributions have been averaged
between the upper and the lower stream to get perfectly symmetrical distributions.

4.10) is confirmed here: distributions are wider for the PG mixing layer, when compared to the
DG mixing layer. For the DG mixing layer, the TKE is more localized at the center. This is
directly linked to the thermodynamic profiles, which are wider for PG mixing layer (see Figure
4.38).

Other terms of the TKE equation, namely the compressible dissipation, the mass-flux cou-
pling term, the convective derivative of the TKE and even the pressure dilatation are negligible
for both types of gas.

As mentioned in Section 3.1, the well-known compressibility-related reduction of the mo-
mentum thickness growth rate is explained by a reduction of the pressure-strain terms (Πij).
Figure 4.20 confirms this effect showing the main terms of the x− and y− components of the
turbulent stress tensor equations at Mc = 2.2. Pressure-strain terms are significantly reduced
for PG flows when compared to DG flows: the streamwise pressure strain term is twice as large
for DG when compared to PG. PG pressure-strain terms strongly decrease at Mc = 2.2 with
respect to Mc = 1.1 (see Figure 4.9) unlike DG pressure-strain terms which are of the same
magnitude. It is consistent with the comparison of momentum thickness growth rates. For
both types of gas, growth rates are closely linked to their pressure-strain terms. Compressibil-
ity effects influence the same terms for both DG and PG.

It remains to verify the last step in Pantano & Sarkar (2002)’s explanation, which is that
the reduction of pressure-strain terms is caused by a reduction of normalized pressure fluctua-
tions. Figure 4.21 shows the cross-stream distribution of the root-mean square value of pressure
normalized by the dynamic pressure 1

2
ρ0(∆u)2. Comparison is made between DG and PG flows

at Mc = 1.1 and Mc = 2.2.
AtMc = 1.1, DG and PG distributions are very close as are their corresponding momentum

thickness growth rates. As the convective Mach number increases, DG non-dimensional pres-
sure fluctuations experience a 20% decrease also consistent with the observed decrease in the
growth rate. This decrease is yet much smaller than that of the PG mixing layer, in which nor-
malized pressure fluctuations are approximately divided by a factor of two. One can conclude
that although the same mechanism is responsible for the growth rate decrease in both types

75



CHAPTER 4. DNS OF DENSE GAS COMPRESSIBLE MIXING LAYERS: ANALYSIS
AND COMPARISON WITH PERFECT GAS

Figure 4.21: Distributions of the root mean square value of pressure averaged over the self-similar
period, plotted along the y direction and compared between FC-70 and air at Mc = 1.1 and Mc = 2.2.
Distributions have been averaged between the upper and the lower stream to get perfectly symmetrical
distributions.
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Figure 4.22: Streamwise specific TKE spectra computed along the centerline at Mc = 2.2.

of gas (i.e. the reduction of non-dimensional pressure fluctuations), its effect is significantly
different between the two types of gas. For DG flows, the well-known compressibility-related
reduction of the momentum thickness growth rate is almost suppressed by dense gas effects at
convective Mach numbers above Mc = 1.1.

Figure 4.22 shows the comparison between PG and DG streamwise specific turbulent kinetic
energy spectra computed over the centerline. Spectra are normalized by (∆u)2δθ(t) in the same
way as Pirozzoli et al. (2015) and averaged over the self-similar period. The longitudinal Taylor
microscale λx is also indicated for each gas in Figure 4.22. Its value is much larger for DG flow
consistently with Reynolds numbers computed from Taylor microscales given in Table B.1.
The inertial region is thus significantly reduced for the PG flow. Dissipation occurs at much
larger scales making the comparison between the two inertial region slopes difficult. Spectra yet
confirm previous results observed at Mc = 1.1: dense gas effects tend to increase small scales
energy. The dissipation term, which is the main term at these scales, is significantly reduced.

4.4 Analysis of discrepancies between DG and PG flows

There is a significant effect of dense gas on the well-known compressibility-related reduction
of the momentum thickness growth rate. Dense gas effects modify the decrease at convective
Mach numbers larger than Mc = 1.1. Between Mc = 1.1 and Mc = 2.2, the growth rate slope
does not vary much for DG when compared with PG. Several factors can be identified, which
contribute to explain the observed discrepancies between DG and PG mixing layers.
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Figure 4.23: Temporal evolution of the turbulent Mach number Mt for the PG and DG mixing layers
at Mc = 2.2.

4.4.1 Shocklets influence

The analysis conducted at Mc = 1.1 shows that the growth rate is not influenced by the dense
gas effect during the self-similar period (see Section 4.2). However, significant differences are
observed during the unstable growth phase. At Mc = 1.1, the evolution of the turbulent Mach
number shows that shocklets might be detected during the unstable growth phase but not
during the self-similar range, during which Mt decreases below the range of values for which
shocklets are expected ((Samtaney et al., 2001)). It is known that the generation of shocklets
is different between BZT DG flow and PG flow (Giauque et al., 2020), yet can shocklets alone
explain discrepancies between DG and PG flows ?

In the current analysis, we increase the convective Mach number to Mc = 2.2 in order
to reach larger turbulent Mach numbers during the self-similar period and to analyze the
influence of shocklets. Figure 4.23 shows the temporal evolution of the turbulent Mach number
Mt. Turbulent Mach numbers increase during the initial phase up to 1.1 and 0.9 respectively
for DG and PG flows. Then Mt decreases and reaches a rather stable plateau corresponding
to the self-similar period. During this phase, average values of turbulent Mach numbers are
respectively equal to 0.67 and 0.49 for DG and PG flows. Shocklets can thus be observed during
both DG and PG self-similar periods.

In order to analyze both PG and DG compression shocklets and possibly DG expansion
shocklets, the marching cube algorithm proposed by Samtaney et al. (2001) is used. It consists
in detecting iso-surfaces of zero density Laplacian (∆ρ = 0). In order to keep iso-surfaces
corresponding only to actual shocklets, the following generalized Rankine-Hugoniot condition

78



4.4. ANALYSIS OF DISCREPANCIES BETWEEN DG AND PG FLOWS

is verified between left and right states on each side of the presumed shocklet.

h2 − h1 =
1

2
(p2 − p1)

(
1

ρ1

+
1

ρ2

)
(4.5)

where h denotes the specific enthalpy. Jumps satisfying the relationship (4.5) within 1%
of the mean enthalpy are kept because Equation (4.5) is only valid in the inviscid context.
In order to ensure the detected region corresponds to an actual shocklet, it is requested the
selected candidate iso-surface is associated to a local value of the velocity divergence large
enough when compared to the rms value of the velocity divergence. For compressible shocklets,
this threshold value is set to -5 and for expansion ones to 5.

Using the PG EoS gives:
h =

γ

γ − 1

p

ρ
(4.6)

Using Equation (4.6) allows to simplify Equation (4.5) into :

ρ2

ρ1

=
(γ + 1)p2 + (γ − 1)p1

(γ − 1)p2 + (γ + 1)p1

(4.7)

Note that if γ is equal to unity, the density ratio is equal to the pressure ratio. The entropy
difference between left and right states on each side of the shocklet can be expressed as:

s2 − s1 = cv

(
ln

(
p2

p1

)
− γ ln

(
ρ2

ρ1

))
(4.8)

Combining Equation (4.8) with Equation (4.7) yields:

s2 − s1 = cv

(
ln

(
p2

p1

)
− γ ln

(
(γ + 1)p2 + (γ − 1)p1

(γ − 1)p2 + (γ + 1)p1

))
(4.9)

Figure 4.24 (a) shows the density and entropy jumps as a function of the pressure jump
across shocklets for the PG flow atMc = 2.2. Density jumps follow very well the evolution given
in Equation (4.7). Since γ = 1.4, the density ratio is lower than the pressure ratio. Entropy
jumps also follow the tendency given by Equation (4.8) even though they are more scattered
than density jumps.

Figures 4.24 (b) and (c) show the density and entropy jumps for the compression and
expansion shocklets for the DG mixing layer at Mc = 2.2. For compression shocklets, entropy
jumps are reduced by about 60% in the DG flow when compared to the PG flow essentially
because of Equation (1.2) showing that the entropy jump across a shock is linearly linked to
the fundamental derivative. The number of shocklets is also strongly reduced even though the
turbulent Mach number during the self-similar period is larger for the DG mixing layer.

Expansion shocklets are also detected in the present work as shown in Figure 4.24 (c). They
are physically admissible because of the existence of thermodynamic states located inside the
inversion region where the fundamental derivative of gas dynamics becomes negative: Figure
4.25 confirms that thermodynamic states for the DG mixing layer at Mc = 2.2 and τ = 4000
are mainly located inside the inversion region. Figure 4.24 shows that the entropy jumps of
expansion shocklets are slightly reduced compared to the jumps of compression shocklets and
that the number of occurrences of expansion shocklets is larger.

Figure 4.26 displays the visualization of iso-surfaces of zero density Laplacian (∆ρ = 0)
colored by the velocity divergence: (a) for the PG flow, (b) for the DG flow with negative
values of the velocity divergence, and (c) for the DG flow with negative values of the velocity
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(a)

(b)

(c)

Figure 4.24: Evolution of the density jump and the entropy increase (a) in compression shocklets for
the PG flow, (b) in compression and (c) in expansion shocklets for the DG flow at the beginning of
the self-similar period. 80
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Figure 4.25: Thermodynamic states are represented in the non-dimensional p − v diagram for BZT
dense gas FC-70 at Mc = 2.2. The dense gas zone (Γ < 1) and the inversion zone (Γ < 0) are
plotted for the Martin-Hou equation of state. pc and vc are respectively the critical pressure and the
critical specific volume. The initial value of the fundamental derivative of gas dynamics is equal to
Γinitial = −0.284. The normalized distribution of the thermodynamic states is plotted at the beginning
of the self-similar period (τ = 4000) along the curve where the distribution of thermodynamic states
is the largest.
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a)

b)

c)

Figure 4.26: Iso-surfaces of zero density laplacian (∆ρ = 0) colored by the velocity divergence at the
beginning of the self-similar period: (a) for the PG flow, (b) for the DG flow with negative values of
the velocity divergence, and (c) for the DG flow with negative values of the velocity divergence.
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Figure 4.27: (Top) Iso-surfaces of zero density laplacian (∆ρ = 0) with positive values of the velocity
divergence in blue and negative values of the velocity divergence in red together with the fundamental
derivative Γ represented on the centerplane and (bottom) a closer view.
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Figure 4.28: Distributions of the ratio between the compressible dissipation (εd) and the total dissipa-
tion (ε) (see details in Equations (3.10) and (3.11)). Results are averaged over the self-similar period.
Comparison is made between FC-70 and Air at Mc = 1.1 and Mc = 2.2. Distributions have been
averaged between the upper and the lower stream to get perfectly symmetrical distributions.

divergence. The location and the form of compression shocklets are very different between the
DG and PG flows. For the PG flow, shocklets are mainly located outside the mixing layer and
form sheet-like structures. Their shape and location are reminiscent of Mach wave radiation
evidenced in Buchta & Freund (2017); Pineau & Bogey (2019). For DG flow, compression and
expansion shocklets are mainly located inside the mixing layer. The range of velocity divergence
is of the same order of magnitude and can reach up to ten times the rms velocity divergence.

Figure 4.27 displays the visualization of iso-surfaces of zero density Laplacian (∆ρ = 0) with
positive values of the velocity divergence in blue and negative values of the velocity divergence
in red. In addition, the centerplane is colored with the fundamental derivative which varies
from negative to positive values as expected from Figure 4.25. Regions which exhibit negative
values of velocity divergence are most of the time associated also with positive values.

In order to quantify the effect of shocklets over the TKE equation (Equation (3.10)) and
therefore over the mixing layer growth rate, one can analyze the compressible component of
the dissipation given in Equation (3.11). Zeman (1990) and Sarkar et al. (1991) show that
the dilatational part of the dissipation increases with the turbulent Mach number because of
the occurrence of eddy shocklets in the compressible regime. Wang et al. (2020) perform com-
pressible isotropic turbulence simulations and observe that shocklets act as kinetic energy sinks
which absorb large-scale kinetic energy. Shocklets are thus an additional source of dissipation.
The dilatational dissipation is computed over the self-similar period. Figure 4.28 shows the
ratio between the compressible and the total dissipation rate over the cross-stream direction.
Around y/δθ(t) ≈ 3.5, one can note an increase of the ratio. It corresponds to the borders of
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a) b)

c)

Figure 4.29: The streamwise two-point correlations of the (a) x−, (b) y− and (c) z− velocity component
at the beginning of the self-similar period. Comparison is made between FC-70 and Air at Mc = 1.1
and Mc = 2.2.

the mixing layer, outside of which the dissipation ε drops to zero (see Figure 4.8). Except for
these regions, at Mc = 1.1, the compressible dissipation represents less than 0.5% of the total
dissipation for both DG and PG flows. At Mc = 2.2, the ratio increases consistently with the
increase of turbulent Mach numbers. The ratio is thus larger for DG flow compared to PG flow.
However, the ratio of dilatational dissipation with respect to the total dissipation remains below
4% for DG and below 1% for PG. Compressible dissipation can therefore be neglected when
compared to the total dissipation. Shocklets have a limited influence on the TKE equation.
Since the TKE equation governs the mixing layer dynamics, one cannot explain discrepancies
observed between DG and PG flows through shocklets effects.

4.4.2 Spatial correlations

This section is devoted to the analysis of two-point spatial correlations of the velocity compo-
nents. Both PG and DG flows are analyzed and compared.

In the streamwise direction, this correlation factor writes:

Rii(rx) =
ui

′(x)ui
′(x+ rxex)

ui
′(x)ui

′(x)
(4.10)

where i denotes the direction of the velocity.

Figure 4.29 shows the evolution of the two-point correlation over the streamwise direction
for the three velocity components. In the PG case, the correlation increases significantly for
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a) b)

c) d)

Figure 4.30: Snapshot of the velocity magnitude normalized with ∆u at the beginning of the self-
similar period. Comparison is made between Air at (a) Mc = 1.1 and (c) Mc = 2.2 and FC-70 at (b)
Mc = 1.1 and (d) Mc = 2.2.

the x− and y− velocity components as Mc increases. As noticed in Freund et al. (2000) and
Matsuno & Lele (2020), at high compressible regimes, eddies are stretched in the streamwise
direction. In the DG case, the correlation stays approximately the same between Mc = 1.1 and
Mc = 2.2 for the three components, except for the x− component which is slightly larger for
Mc = 2.2 when compared withMc = 1.1. The structure of eddies stays therefore approximately
the same in the streamwise direction unlike for PG flows. One can also notice that for all cases,
the correlation drops to a low value at rx/Lx = 0.5 which confirms that the streamwise domain
length is sufficiently large.

Figure 4.30 shows snapshots of the velocity magnitude. As noticed in Figure 4.29, the size
of turbulent structures increase from Mc = 1.1 to Mc = 2.2 in PG flow unlike in DG flow,
where the size of turbulent structures remains stable between Mc = 1.1 to Mc = 2.2. At
Mc = 1.1, there is no difference between DG and PG flow field visualization. Consistently
with the evolution of the normalized momentum thickness growth rate as a function of the
convective Mach number (Figure 4.18), differences between DG and PG appear at Mc = 2.2 in
the highly compressible regime.
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Figure 4.31: Four different initial thermodynamic states used to perform additional DNS are repre-
sented in the non-dimensional p − v diagram for BZT dense gas FC-70 at Mc = 2.2. The dense gas
zone (Γ < 1) and the inversion zone (Γ < 0) are plotted for the Martin-Hou equation of state. pc and
vc are respectively the critical pressure and the critical specific volume.
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Γ0 γ0 (Lx, Ly, Lz) (Nx, Ny, Nz) r = Lη/∆x lx/Lx lz/Lz
DGA −0.28 1.31 (688, 344, 172) (1024, 512, 256) 0.52− 0.57 0.10− 0.16 0.06− 0.05
DGB 0.10 1.21 (688, 344, 172) (1024, 512, 256) 0.51− 0.55 0.11− 0.12 0.06− 0.04
DGC 2.10 1.61 (688, 688, 172) (1024, 1024, 256) 0.50− 0.55 0.11− 0.166 0.06− 0.04
DGD 2.21 1.75 (688, 688, 172) (1024, 1024, 256) 0.50− 0.54 0.09− 0.14 0.07− 0.07

Table 4.3: Simulation parameters for additional FC-70 simulations at Mc = 2.2 varying the initial
operating point. r, lx/Lx and lz/Lz are given at beginning and ending times of self-similar periods.
L0 = Lx/8 for all the simulations.

4.4.3 Influence of the initial thermodynamic operating point

In order to explain discrepancies observed between DG and PG flows, additional DNS are per-
formed at Mc = 2.2 varying the initial thermodynamic operating point. Figure 4.31 shows the
four selected operating points. DGA corresponds to the reference simulation previously ana-
lyzed and compared to PG DNS. DGA’s initial operating point is located inside the inversion
zone also called BZT region. The operating point of the second simulation DGB is chosen
outside the inversion region and inside the dense gas zone. This enables us to investigate BZT
effects on the mixing layer growth. Finally, for DGC and DGD, the initial operating points are
chosen on the same adiabatic curves as respectively DGB and DGA but outside the dense gas
zone. The diversity of initial thermodynamic regions thus explored aims at providing a proper
understanding of the effects of dense gas on the shear layer growth rate.

One needs first to validate the DNS named DGB, DGC and DGD. Table 4.3 provides the
simulations parameters including r, lx, and lz for the four different simulations. Values are very
close to DGA and since DGA is validated in Appendix B, one can consider DGB, DGC and
DGD as adequately resolved. The size of computational domains have been enlarged for DGC
and DGD in the y direction in order to provide the mixing layer with more space to properly
reach self-similarity (without interfering with the lower and upper boundaries).

Self-similar periods are defined for each DNS using the same methodology previously pre-
sented in Section 3.3.1. Plateaus showing constant integrated turbulent production correspond
to self-similar periods. They are identified with vertical lines in Figure 4.32. In addition, be-
ginning and ending times are given in the caption for each case. Although all the DNS are
performed at the same convective Mach number Mc = 2.2, results are quite different. The ini-
tial evolution is similar, but after τ ≈ 1100, discrepancies appear especially for DGD. Maximum
values and self-similar regimes are influenced by the initial thermodynamic operating point.

The comparison of mixing layer momentum thickness evolutions is shown in Figure 4.33.
Slopes with standard deviations computed during self-similar regimes are indicated on the plot.
From these results, one can deduce that BZT effects do not have a major influence on the
mixing layer growth. DGC’s growth rate is indeed very close to DGA’s although the initial
thermodynamic operating points are located respectively outside and inside DG and BZT re-
gions. The relation between the mixing layer growth and the initial thermodynamic operating
point is not obvious: operating points located on the same adiabatic curve (respectively DGA,
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Figure 4.32: Temporal evolution of the non-dimensional streamwise turbulent production terms in-
tegrated over the whole domain P ∗int = (1/(ρ0(∆u)3))

∫
Ly
ρ̄PxxdV (with ρ̄Pxx(y) = −ρu′′

xu
′′
y
∂ũx
∂y ) at

Mc = 2.2. Results are shown for the FC-70 for four different DNS: DGA, DGB, DGC and DGD.
Self-similar periods are indicated on each plot: DGA (τ ∈ [4000/6000]); DGB (τ ∈ [4000/6400]); DGC
(τ ∈ [3800/6000]) and DGD (τ ∈ [3800/6000]).
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Figure 4.33: Temporal evolution of the mixing layer momentum thickness for DG atMc = 2.2. Results
are shown for the FC-70 for four different DNS: DGA, DGB, DGC and DGD.

DGD and DGB, DGC) are different in terms of growth rate. Looking at the growth rate, simu-
lations can be organized by pairs: DGA and DGC display similar values while DGB and DGD
also display similar values but below those of DGA and DGC. One can observe that slopes are
all below that of the Mc = 1.1 case. Yet all DG mixing layers have a larger growth rate when
compared to the PG ones meaning that the observed effect is not specific to the BZT or DG
regions. This confirms the dismissed hypothesis of a shocklets influence over the mixing layer
growth analyzed in Section 4.4.1. It might be more of a transcritical effect and the distance to
the critical point seems to influence the mixing layer growth rate.

At the end of Section 4.3.2, the physical explanation provided by Pantano & Sarkar (2002)
was verified on DGA: the reduction of the momentum thickness is due to a reduction of nor-
malized pressure fluctuations. It remains to be checked whether this reduction of normalized
pressure fluctuations is also observed for DGB, DGC and DGD. Figure 4.34 shows the normal-
ized growth rate as a function of the normalized pressure fluctuations computed at the center
of the mixing layer. For the PG flow, the reduction is significant. Between Mc = 1.1 and
Mc = 2.2, growth rate and normalized pressure fluctuations are divided by a factor of two. For
DG, the decrease of the normalized growth rate is also correlated with a decrease of pressure
fluctuations. Among cases at Mc = 2.2, the ranking purely based on the level of pressure fluc-
tuations is not entirely satisfactory but this could be explained by standard deviations caused
by variations of the plateaus of integrated turbulent production. Moreover, other effects are
investigated in the next sections to give further explanations.
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Figure 4.34: Evolution of the non-dimensional mixing layer growth rate over the center root-mean
square value of pressure normalized by 1

2ρ0(∆u)2. Results are given for DG and PG at Mc = 1.1 and
Mc = 2.2.

4.4.4 Evolution of non-dimensional terms

To complete the evaluation of the order of magnitude for the terms appearing in the compress-
ible Navier-Stokes equations previously made in Section 4.1.2, the non-dimensional factors given
in Table 4.2 are computed for the other DG DNS corresponding to the four initial thermody-
namic operating points (DGA / DGB / DGC / DGD) and the normalized mixing layer growth
rate is plotted as the function of these factors.

Figure 4.35 shows the non-dimensional terms related to the momentum equations: the pres-
sure gradient and the viscous terms. For both terms, the orders of magnitude are the same for
DG and PG flows. For the pressure gradient term, no clear correlation is found. Its magni-
tude remains approximately the same for the three convective Mach numbers and is quite close
between DG and PG mixing layers even though the growth rate strongly varies. Differences
appear when the initial thermodynamic operating point is modified but this only translates
into a small influence on the growth rate. The viscous term is much more correlated with the
growth rate reduction. As the non-dimensional factor related to the viscous term increases,
the growth rate significantly decreases. In fact, since the ratio is equal to 2Mc/Reδθ , the plot
is very close to the δ̇θ/δ̇θ,inc = f(Mc) plot. Note that the viscous term is about two orders of
magnitude smaller than other terms (the pressure gradient and the temporal and convective
derivatives of the momentum) because of the turbulent regime.

Figure 4.36 displays non-dimensional ratios appearing in the energy equation. Unlike the
momentum equations, strong differences appear for the DG flow. As noticed in Section 4.1.2, for
the DG flow, the temporal and convective derivatives of kinetic energy, the pressure gradient,
the viscous work and the heat-flux can be neglected with respect to the temporal and convec-
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Figure 4.35: The mixing layer growth rate is plotted as a function of the non-dimensional terms
appearing in the momentum equations (Equations (2.23) and (2.34)): the pressure gradient term (top)
and the viscous term (bottom).
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Figure 4.36: The mixing layer growth rate is plotted as a function of the non-dimensional terms
appearing in the energy equation (Equations (2.23) and (2.34)): the temporal and convective derivative
of the kinetic energy; the pressure work; the viscous work and the heat-flux (from top to bottom).
Comparison is made between DG and PG DNS (left) and only DG DNS (right).
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tive derivatives of the internal energy since they are at least two orders of magnitude smaller.
Some interesting features can be noticed: as the temporal and the convective derivatives of the
kinetic energy grow in the DG mixing layer, the growth rate decreases and becomes closer to
the PG mixing layer growth rate; the same effect is observed for the viscous work. Even when
the location of the initial thermodynamic operating point is varied for the DG flow, the order of
magnitude of the energy equation terms (except for the heat-flux) remains significantly smaller
when compared with the PG flow.

The main conclusion that can be drawn is that DG flows are characterized by a strong
influence of the internal energy which dominates all other terms. Yet, some terms, in particular
the ones associated to the kinetic energy, are correlated with the growth rate.

4.4.5 Other influencing factors

Several factors can be identified, which contribute to explain the observed discrepancies between
DG and PG mixing layers. The first main difference between DG and PG flows is the ratio
between the enthalpy and the kinetic energy. It is associated to the Eckert number. As
evidenced in the aforementioned paragraph, the temporal and the convective derivatives of the
internal energy dominate all other terms in the energy equation. Since internal energy and
enthalpy are of the same order of magnitude†, it is expected that enthalpy will dominate the
kinetic energy. The Eckert number is defined for the mixing layer as:

Ec =
(∆u)2

cp0T0

(4.11)

where cp0 denotes the initial specific heat capacity at constant pressure and T0, the initial
temperature. Initial Eckert numbers are computed for each DNS and results are gathered in
Table 4.4. For DG flows, values are about two orders of magnitude lower than PG flows. Two
features of DG mixing layers are responsible for these significant differences: the large heat
capacity of FC-70 and the small differential speed ∆u. The differential speed is defined in order
to get the same initial convective Mach number between DG and PG mixing layers. Since the
sound speed is much lower in dense gases, a much lower differential speed is obtained for a
given value of the convective Mach number, which mechanically reduces the Eckert number.
With small Eckert numbers, kinetic energy becomes negligible when compared to the enthalpy.
It is the case for all DG flows in this study even though the convective Mach number is large.
As shown by the present results, kinetic energy also decouples from thermodynamics com-
pressibility effects and the growth rate of the momentum thickness is allowed to reach larger
values. It can be observed that the close values of the momentum thickness growth rates for
DGA / DGC on one hand and DGB / DGD on the other hand are well correlated with the
values of the initial Eckert number reported in Table 4.4. The lower Eckert numbers for DGA
/ DGC correspond to higher growth rates for these shear layer configurations, induced by an
even stronger decoupling between internal and kinetic energy for DGA/DGC with respect to
DGB/DGD. However, the Eckert number can not be the only factor explaining dense gas effect
on the growth rate since DGC displays a slightly lower growth rate with respect to DGA, with
a slightly lower value of the initial Eckert number.

Since the Eckert number quantifies friction heating, it is significantly reduced in DG flows as
previously shown by Gloerfelt et al. (2020). Figure 4.38 shows the distribution of the Reynolds

†At the initial conditions γ is about 1.3 so that internal energy and enthalpy are of the same order of
magnitude.
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Mc Ec δ̇θ/δ̇θ,inc
DG 1.1 0.0040 0.484
DGA 2.2 0.0162 0.395
DGB 2.2 0.0226 0.352
DGC 2.2 0.0147 0.389
DGD 2.2 0.0203 0.342
PG 1.1 1.94 0.450
PG 2.2 7.74 0.188

Table 4.4: Eckert numbers and normalized momentum thickness growth rates are given for each
simulation.

averaged temperature, density and the root mean square value of density fluctuations along
the cross-stream direction of the shear layer. Results are averaged over the self-similar period.
It can be observed in Figure 4.38 that temperature variations are almost suppressed for DG.
Sciacovelli et al. (2017a) confirm this remark in supersonic turbulent channel flows and state
that dense gas flow are less subject to friction losses associated with Mach number effects.
For the mixing layer, above Mc = 1.1, compressibility effects associated with the increase of
convective Mach number have less influence on DG flows in part because of the reduction of
friction heating.

The evolution of the average density confirms this reduction. The PG air density experiences
a 40% decrease at the mixing layer center between Mc = 1.1 and Mc = 2.2. In the PG, friction
heating is important and leads to an increase of the temperature, which induces a decrease of the
density. The mechanism is significantly reduced in dense gas flows. For DG, the temperature is
almost constant and average density displays very limited variations. AtMc = 2.2, the averaged
density decrease at the center of the mixing layer represents about 8% of the initial density
compared to 40% for air. Equation (3.12) shows that this effect influences the mixing layer
growth rate which depends on the density. As the mixing layer develops in PG, strong friction
occurs at the center, which decreases the density. The momentum thickness growth rate is thus
significantly reduced for PG when compared to DG. Yet, the decrease of the Reynolds-averaged
density is not the only factor. Figure 4.37 displays the growth rate of a modified momentum
thickness without the influence of the average density, namely a velocity thickness:

δ∗θ(t) =
1

(∆u)2

∫ +∞

−∞

(
(∆u)2

4
− ũ2

x

)
dy (4.12)

The velocity thickness growth remains larger than the momentum thickness but yet still
decreases with the convective Mach number. There are still differences between DG and PG
mixing layers, but they are significantly reduced. They now represent about 25% against 50%
previously. The decrease of the average density has a significant influence over the momentum
thickness growth rate. Yet, it can only partly explain discrepancies between DG and PG flows.

Figure 4.38c displays the root mean square value of density fluctuations. Between PG and
DG flows, the distribution across the mixing layer changes shape. For PG, it consists in two
symmetric peaks with respect to the center of the mixing layer. Peaks are located at the
borders of the mixing layer, where the cross-stream gradient of averaged density is maximal. In
this region, the mixing layer flow experiences strong dynamic and thermal variations with an
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Figure 4.37: Evolution of the growth rates of the momentum thickness (δθ) and the velocity thickness
(δ∗θ) (see Equation (4.12)) over the convective Mach number for air and for FC-70.

a) b)

c)

Figure 4.38: The non-dimensional Reynolds averaged temperature (a) and density (b); and root mean
squared value of the density (c) are averaged over the self-similar regime and plotted along the y
direction. Comparison is made between FC-70 and Air at Mc = 1.1 and Mc = 2.2.
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important coupling between internal and kinetic energy. For DG, the distribution is composed
of a single peak located at the center of the mixing layer. The distribution is much less affected
by the variation of the averaged density. For DG, thermal quantities are less influenced by
flow dynamics because of the decoupling of internal energy and kinetic energy. The root mean
square value of density fluctuations therefore diffuses from the center of the mixing layer.

The amplitudes of the distributions are also quite different between DG and PG flows. For
DG, the maximum root mean square value of density fluctuations is multiplied by a factor
of three from Mc = 1.1 to Mc = 2.2. In the PG case, it is multiplied by a factor of about
two. Compressible flows are more subject to root mean square density fluctuations which
increase with the Mach number. An explanation can be found in the definition of the isentropic
compressibility coefficient, which is large for DG flows:

χs =
1

ρ

∂ρ

∂p

∣∣∣∣
s

(4.13)

For flows with large values of χs, small variations of pressure lead to large variations of
density. The sound speed is directly linked to the isothermal compressibility since:

c =
1
√
ρχs

(4.14)

For DG flows, the large isentropic compressibility factor strongly diminishes the sound
speed. As a result, the initial sound speed in the computed DG flows is about six times smaller
when compared to its initial value for the PG shear layers. Figure 4.39 shows the normalized
momentum growth rate at Mc = 2.2 as a function of the normalized sound speed. A rather
clear correlation appears between the momentum thickness growth rate and the initial sound
speed: the growth rate decreases with increasing sound speed.

The main conclusion that can be drawn from these observations is that the smaller Eckert
number in DG flows causes a decoupling between internal and kinetic energies and induces
less friction heating. Both phenomena influence the mean and fluctuating thermal physical
quantities, which consequently limits the compressibility-related reduction of the momentum
thickness growth rate.
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Figure 4.39: Evolution of the non-dimensional mixing layer growth rate as a function of the sound
speed normalized with

√
pc/ρc. Results are given for DG and PG at Mc = 2.2.

4.5 Concluding remarks

DNS of the compressible mixing layer have been achieved for air described as a perfect gas
and FC-70 (BZT gas) described using Martin Hou EoS at three convective Mach numbers
Mc = 0.1− 1.1− 2.2. The choice of the domain size is paramount in this study. The domain is
enlarged at Mc = 2.2 for both DG and PG DNS when compared to DNS at Mc = 1.1 in order
to ensure mixing layers reach self-similarity. An analysis presented in Appendix B is performed
to thoroughly investigate the sensitivity of the DG mixing layer to the domain extent and to
the size of the initial turbulent structures. Results establish the relevance of the choices made
in the present study.

The selection of the self-similar period is a key point in the study of mixing layers: this
choice is complex and the diversity of criteria used for the selection process contributes to the
scattering of δ̇θ/δ̇θ,inc = f(Mc) plots reported in the literature. In the present work, self-similar
periods are selected using the integrated streamwise production over time, which is proportional
to the momentum thickness growth rate under certain conditions (Vreman et al., 1996a).

The comparison between perfect and dense gases shows major differences for the momentum
thickness growth rates at Mc = 2.2. At Mc = 2.2, the growth rate is twice as large for dense
gas when compared to perfect gas. Pantano & Sarkar (2002) demonstrate that for perfect gas
flows the growth rate reduction is due to the reduction of pressure fluctuations leading to the
reduction of pressure-strain terms. We show that growth rate is also correlated with pressure
fluctuations in dense gas flows. Yet, the small scales dynamics is very different. A much larger
dissipation is also observed for perfect gas mixing layer. These results call for a specific sub-
grid scale modeling for dense gas flows when simulated using Large Eddy Simulation. The next
chapter is therefore dedicated to the a priori assessment of subgrid-scale terms for DG flow.
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Additional dense gas DNS have been performed for three other initial thermodynamic op-
erating points. Results show that BZT effects have only a small impact on the mixing layer
growth. Discrepancies between DG and PG flows are more likely related to transcritical real
gas effects than to the BZT and the DG thermodynamic regions. Shocklets indeed produce
only a limited effect on the mixing layer growth. The compressible dissipation is negligible
when compared with the total dissipation. For dense gas mixing layers, several physical factors
tend to reduce compressibility effects: the decoupling of kinetic and internal energies reduces
the effect of increasing Mc; reduced friction losses in dense gas flows modify the distribution
of the averaged density, which therefore favors the momentum thickness growth rate. Finally,
it is found that increasing the initial isothermal compressibility also increases the momentum
thickness growth rate in dense gas flows. Initial sound speeds could therefore be an appropriate
indicator when forecasting the mixing layer growth rate in real gas flows. Note that the perfect
gas results are restricted to air, with heat capacity ratio equal to γ = 1.4. Further exploration
could investigate the effect of γ close to unity over the perfect gas results and provide a com-
parison with the dense gas results in order to separate possible γ−effects from dense gas effects.
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In order to evaluate the need for specific LES modeling of DG compressible flows, this chapter
is devoted to the a priori assessment of subgrid-scale (SGS) terms with respect to resolved

terms present in the real gas LES formulation presented in Section 2.4.3. A review of com-
pressible a priori results from the literature is proposed in the first section. The importance of
subgrid-scale terms is assessed in the second section for the DG mixing layer thoroughly analzed
in the present work and for the DG homogeneous isotropic turbulence (with results taken from
the published work Giauque et al. (2020)). New terms which are not modeled for PG flows
are shown to be significant for DG flows: the SGS pressure term in the filtered momentum
equation and the SGS pressure work in the filtered total energy equation. The present chapter
draws from Giauque et al. (2021).
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5.1 State of the art

LES and SGS models Since its origin in the 1960’s and the seminal articles of Smagorin-
sky (1963), Deardorff et al. (1970) and Leonard (1975), LES has brought invaluable under-
standing to the influence of unsteady features in numerous types of turbulent flows, from the
most academic ones such as channel or mixing layer flows (Moin & Mahesh, 1998b; Piomelli
et al., 1988; Meneveau & Katz, 2000), to industrial combustion chambers or turbomachinery
flows (Di Mare et al., 2004; Giauque et al., 2005; Wolf et al., 2012). LES tends to be currently
used with highly refined grids which enables the accurate description of small scales dynamics
and reduces the dependence on the accuracy of the subgrid-scale turbulence modeling but also
significantly increases the computational cost which limits its use in the industrial community.
Since LES simulations give access to a more complete description of turbulent flows when com-
pared to RANS simulations, the industry would strongly benefit from an increase of LES use
for optimization and iterative design procedures. In order to foster its use, coarse LES must
demonstrate it provides accurate statistics for the computed turbulent flows and this requires
an accurate subgrid-scales description. To that end, one needs both a proper assessment of
significant SGS terms and the design of accurate models for these important terms.

LES relies on the filtered Navier-Stokes equations composed of resolved and SGS terms (see
Section 2.4). These SGS terms can either be modeled or neglected. Table 2.4 gathers SGS
terms for the compressible LES formulation and also indicates if they are usually modeled or
neglected in the PG literature. The SGS internal energy flux and the SGS turbulent stress
tensor are considered to be the most important terms (Garnier et al., 2009). Consequently,
those two terms (and especially the SGS turbulent stress tensor) have been the focus of the
subgrid-scale modeling efforts in the literature.

In order to assess the importance of SGS terms, DNS results are filtered: this procedure
corresponds to an a priori analysis. For compressible flows, since the energy equation is in-
volved, numerous SGS terms exist. Very few a priori analysis have been performed to evaluate
both SGS momentum and energy terms in that context. Moreover, most of the analysis have
been conducted for PG flows except for the work of Bellan’s group (Selle et al., 2007; Borghesi
& Bellan, 2015) which will be discussed hereafter.

SGS terms for PG flows: state of the art A configuration of choice to investigate com-
pressibility effects is the mixing layer. The pioneering compressible a priori analysis of Vreman
et al. (1995) is done for a 2D mixing layer at Mc = 0.2 and 0.6 for ∆̄/∆ = 8 †. They give a
classification of SGS terms for momentum and energy equations using two systems of equations:
system I implies the computable total energy whose evolution equation cannot be written in a
conservative form; system II, which is based on the filtered total energy, is the reference system
for the present work as noted in Section 2.4.3. It implies to make a distinction between the
filtered temperature (T̄ ) / pressure (p̄) and the temperature (T̂ ) / pressure (p̂) computed from
the filtered variables. This distinction is essential since at every time step, temperature and
pressure are determined using the filtered conservative variables (i.e. ρ̄, ρ̄ũi and ρ̄Ẽ).

Vreman et al. (1995) show that the SGS viscous term in the momentum equation is negligi-
ble (2 orders of magnitude smaller) when compared to the resolved terms. The SGS turbulent
stress is evaluated to be an order of magnitude lower than the resolved terms. The SGS pressure
term present in the momentum equation is not evaluated alone so that no information about
its importance is provided. For the energy equation, the SGS heat flux, the SGS viscous work

†∆ denotes the grid size of the DNS and ∆̄, the filtering size.
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and the SGS pressure work are two orders of magnitude smaller than the resolved total energy
flux and one order of magnitude smaller than the SGS kinetic flux and the SGS internal energy
flux. An additional a priori analysis is performed in Martin et al. (2000) for an homogeneous
isotropic turbulence (HIT) at Mt = 0.52 for ∆̄/∆ = 4, 8, 16 and 32. They evaluate several
SGS terms in the internal energy, the enthalpy and the total energy equations. In the latter
equation, they find that the SGS internal energy flux is the dominant term. The SGS kinetic
energy flux is second with an amplitude close to the SGS internal energy flux. The SGS viscous
work ranks as the last term with an amplitude one order of magnitude smaller than the SGS
internal energy flux. The authors do not evaluate terms coming from the difference between
the filtered temperature (T̄ ) / pressure (p̄) and the computable temperature (T̂ ) / pressure (p̂).

Later, Okong’o & Bellan (2004) perform an a priori analysis of single and two phases mixing
layers using the perfect gas EoS atMc = 0.35. Their assessment of SGS terms in the momentum
and energy equations at ∆̄/∆ = 4 and 8 shows the importance of some subgrid-scale terms (the
SGS pressure terms in momentum equations and the SGS pressure work in the energy equa-
tion) in two phases flows but also in single phase flows. In the momentum equations, the SGS
pressure terms are always neglected in PG LES literature results even though their magnitude
is shown in Okong’o & Bellan (2004)’s analysis to be of the same order as the turbulent stress,
which is modeled, and larger than the resolved viscous term. As a reminder, SGS pressure
terms are proportional to the isotropic part of the turbulent stress tensor in PG flows (see
Section 2.4.4). In regard to this analysis conducted at a low compressibility regime, one can
question the validity of the PG assumption neglecting the isotropic part of the turbulent stress
tensor (Erlebacher et al., 1992). Appendix D investigates this assumption by filtering the PG
DNS results presented in Chapter 3.

SGS terms for real gas flows: state of the art and present contribution Since the
present work investigates the need for specific SGS modeling in the case of DG flows, the a
priori analysis is conducted using the real gas LES formulation (Equation (2.48)). Using
higher order EoS involves more complex and non-linear correlations in the SGS pressure, SGS
heat flux and SGS pressure work terms coming from the respective difference between T̂ , P̂
and T̄ , P̄ . The literature devoted to real gas a priori analysis is scarce. Selle et al. (2007)
achieve several transcritical binary-species DNS of transitional mixing layers at Mc = 0.4 using
the Peng-Robinson EoS (Peng & Robinson, 1976). Their evaluation of SGS terms shows the
importance of SGS pressure, SGS pressure work and SGS heat flux terms at ∆̄/∆ = 4 and
8 especially for non-ideal gases which experience strong departures from perfect gases. They
design a model for these terms based on a Taylor series expansion. Since their model is not
effective as the filter size increases, they do not recommend it for practical use.

Borghesi & Bellan (2015) extend the previous work of Selle et al. (2007) confirming the
importance of the SGS pressure, the SGS heat flux and the SGS pressure work. They develop
dynamic models based on the Germano identity which perform well at ∆̄/∆ = 3 but which are
far less effective at ∆̄/∆ = 6. They also show that the models only have a small effect over
integrated quantities like the temporal evolution of the momentum thickness in an a posteriori
LES at ∆LES/∆ = 3. Yet, the influence of the models is significant on the distribution of the
product between fluctuating velocities and temperature.

Selle et al. (2007) and Borghesi & Bellan (2015) both show (i) the importance of these terms
which become more complex for real gases because of the use of higher order EoS and (ii) the
difficulty to model these terms especially when the filter size increases. The objective of the
following analysis performed in this chapter is to demonstrate and to quantify the importance
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of SGS terms in the inertial zone of the TKE spectrum using the DG mixing layers results
previously analyzed in Chapter 4 and HIT results taken from Giauque et al. (2020). The next
step will be dedicated to the development of a model for the SGS pressure and will be the topic
of Chapter 6.

5.2 Analysis of the subgrid-scale terms
In order to assess the importance of all SGS terms present in the filtered momentum and energy
equations (Equation (2.48)), the mixing layer DNS and the forced HIT (Giauque et al., 2020)
are filtered using the Gaussian filter (see Section 2.4.2) with a selectivity parameter ζ set to
6. An analysis of the effect of ζ is given in Appendix C. The explicit filtering size is varied
from the size of the domain down to the Kolmogorov lengthscale. When the explicit filtering
size decreases to the DNS cell size, the subgrid-scale terms tend by definition to zero. For the
momentum equations, all terms are normalized by the amplitude of the largest term which
is the root-mean-squared (RMS) amplitude of the resolved turbulent stress

(
∂ρ̄ũiũj
∂xj

)
at the

Kolmogorov lengthscale. For the total energy equation, all terms are normalized by the RMS
amplitude of the pressure work

(
−∂p̂ũi

∂xi

)
at the Kolmogorov scale.

5.2.1 Filtered momentum equations

The comparative analysis of the SGS terms appearing in the filtered momentum equations is
performed for the two configurations under study (HIT and mixing layer). In the filtered mo-
mentum equations, six terms appear in each direction: the resolved and SGS pressure, viscous
and turbulent stress terms. Let us recall that the SGS turbulent stress terms are the main
focus of modeling efforts in the LES community, as other SGS terms do not even appear in the
incompressible formulation. Yet, even for compressible LES, SGS terms other than the SGS
turbulent stresses are usually not taken into account in the modeling process. The following
analysis aims therefore at providing a well-grounded assessment of the SGS terms relative im-
portance for DG flows, which will guide further modeling efforts.

Analysis of the Homogeneous Isotropic Turbulence configuration Results are first
presented for the HIT configuration because of its isotropic nature which simplifies the analysis.
Figure 5.1 displays the RMS amplitude of resolved and SGS quantities in the HIT configuration
over the whole filtering sizes range. All three vector components x, y and z of the momentum
equation contributions are almost superimposed thereby confirming the isotropic nature of the
forced HIT flow. Note that all these terms are averaged during steady turbulence for which av-
eraged enstrophy† and turbulent kinetic energy are almost constant (see Giauque et al. (2020)).

As expected, the resolved turbulent stress and pressure terms are the most important quan-
tities over the whole wavenumber range and these terms increase when the filtering size tends to
the DNS resolution to the right of the plot. However, the SGS turbulent stress terms, which are
generally the only one modeled, are clearly not the only important terms: the three components
of the SGS pressure are indeed of the same order of magnitude. In order to better assess their
importance in LES, one needs to explicit the cutoff wavenumber, which is usually located in
the turbulence inertial zone. The previous analysis provided in Giauque et al. (2020) indicates

†The enstrophy E is defined as the vorticity variance: E = 1
2wiwi, where wi is the fluctuating part of the

vorticity.
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Figure 5.1: RMS amplitude of resolved and SGS terms in the filtered momentum equations (Equations
2.48) for the dense gas HIT case. The turbulent Mach number is equal to 0.8.

that the inertial zone for the HIT is located in the range k/kmin ∈ [4; 20]. At these scales,
SGS turbulent stress and pressure terms are larger than the resolved viscous terms. Following
Vreman’s recommendations (Vreman et al., 1995), since they are larger than a resolved term,
SGS turbulent stress and pressure terms should be modeled for this configuration. The SGS
viscous term is about one order of magnitude smaller than the resolved viscous one and two
orders of magnitude smaller than the resolved turbulent stress and pressure terms. It can thus
be neglected.

Analysis of the mixing layer configurations Figure 5.2 shows the same plot for the
mixing layer at three convective Mach numbers (Mc = 0.1 − 1.1 − 2.2). For the three cases,
consistently with the forced HIT configuration, the resolved turbulent stress and pressure terms
are the most important whereas the SGS viscous terms remain negligible. Since the mixing
layer is not isotropic, the three vector components are different at the largest scales but they
tend to superimpose as the filter size diminishes leading to isotropic small scales dynamics.
Results are averaged over each self-similar period and steadiness is well achieved.

The main difference between the three mixing layer cases is the normalized amplitude of
SGS pressure terms, which increases as the convective Mach number increases. For ideal per-
fect gas flows, Erlebacher et al. (1992) suggest that SGS pressure terms, which are related in
that case to the trace of the SGS turbulent stress tensor, can be neglected with respect to the
resolved pressure terms for flows satisfying Mt < 0.6 †. The present dense gas results show
the importance of SGS pressure terms even at Mt ≈ 0.4 (corresponding to Mc = 1.1) where
their amplitudes are similar to resolved viscous terms at the end of the inertial zone around
k/kmin ≈ 20 (see Figure 4.11). At Mc = 2.2, the turbulent Mach number is larger (Mt ≈ 0.67)
and the normalized amplitude of SGS pressure terms increases, reaching the same order of
magnitude as SGS turbulent stress terms. Their amplitude is also closer to the one of the

†This assumption is discussed for perfect gas results in Appendix D
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Mc = 0.1

Mc = 1.1

Mc = 2.2

Figure 5.2: RMS amplitude of terms in the filtered momentum equations (Equations (2.48)) for the
dense gas mixing layer at Mc = 0.1 − 1.1 − 2.2 (top-middle-bottom). Results are averaged over the
domain and over the self-similar period growth phase of the mixing layer. The turbulent Mach numbers
averaged over the centerplane are respectively equal to 0.05 − 0.38 − 0.67. The SGS viscous terms is
very small and does not appear on the plot for Mc = 1.1 and Mc = 2.2.
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HIT configuration where the turbulent Mach number is equal to Mt = 0.8. These consistent
observations made on two different configurations strongly suggest taking into account SGS
pressure terms in LES of DG flows. Since these terms are neglected in PG flows, it justifies a
specific dense gas modeling effort.

5.2.2 Energy equation

Figure 5.3: RMS amplitude of terms in the filtered total energy equation (Equation (2.48)) in the
dense gas HIT configuration. The turbulent Mach is equal to 0.8.

Resolved terms Resolved source terms in the filtered total energy equation (Equation (2.48))
are the resolved net rate of work done by pressure and viscous shear stress together with the
resolved heat flux, and kinetic and internal energy fluxes. Each resolved term is accompanied
by its SGS counterpart. Figures 5.3 and 5.4 present the normalized RMS amplitudes for each
of these terms and for both configurations (HIT and mixing layer). For all simulations, the
resolved internal energy flux represents the predominant term, which is consistent with results
(Non-dimensional terms and Eckert numbers) previously discussed in Sections 4.4.4 and 4.4.5.
This term is followed, by order of importance, by the resolved pressure work, the resolved ki-
netic energy and the heat fluxes, with the resolved viscous shear stress work having the smallest
contribution.

Analysis of the HIT configuration For the HIT configuration (Figure 5.3) the magnitudes
of the SGS internal and kinetic energy fluxes as well as the SGS pressure work are larger than
the resolved heat flux up to k/kmin ≈ 15. Beyond this limit these SGS terms remain larger
than the resolved viscous shear stress work up to k/kmin ≈ 100, with the exception of the SGS
turbulent kinetic energy, which decays below the resolved shear stress term around k/kmin = 80.
These three SGS terms (SGS internal and kinetic energy fluxes and SGS pressure work) are
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thus above at least one resolved term in the inertial region and thus require modeling. Note
that the SGS viscous work and the SGS heat flux are smaller but close to the resolved viscous
term in the inertial region. However, since they are one order of magnitude smaller than the
resolved heat flux and two orders of magnitude smaller than the resolved pressure work, it is
reasonable to neglect both terms, at least in these non-reactive configurations.

Analysis of the mixing layer configurations Figure 5.4 shows the RMS amplitude of
resolved and SGS quantities for the mixing layer at three convective Mach numbers (Mc =
0.1− 1.1− 2.2). Observations for these cases are similar to the ones made for the HIT configu-
ration: the previously mentioned SGS terms are greater or comparable to the resolved heat-flux
for normalized wavenumbers smaller than 40, and always superior to the resolved viscous shear
stress term up to very small scales beyond k/kmin ≈ 100. Note that this observation is also ver-
ified at Mc = 0.1. One may also observe a slight increase of the SGS terms with the convective
Mach number especially for the SGS heat flux. In both configurations, the SGS viscous shear
stress work and SGS heat flux remain negligible in the inertial region. Yet, the SGS pressure
work, which is neglected for PG flows, is of importance for DG flows justifying the need for a
specific modeling.
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Mc = 0.1

Mc = 1.1

Mc = 2.2

Figure 5.4: RMS amplitude of terms in the filtered total energy equation (Equation (2.48)) for the
dense gas mixing layer at Mc = 0.1 − 1.1 − 2.2 (top-middle-bottom). Results are averaged over the
domain and over the self-similar period growth phase of the mixing layer. The turbulent Mach numbers
averaged over the center plane are respectively equal to 0.05− 0.38− 0.67.
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5.3 Concluding remarks

5.3.1 LES equations to be solved

The center of the turbulence inertial range has been identified as located around the wavenum-
ber k/kmin = 15 for the HIT and mixing layer cases (see (Giauque et al., 2020) and Figures
4.11 and 4.22). Note that this wavenumber corresponds to a filtering of about ∆̄/∆ ≈ 16− 32.
Because it is anticipated that modeling strategies to come will take advantage of scale similarity
and constant inter-scale flux of fluctuating energies (kinetic or thermodynamic) at these inertial
scales, these specific wavelengths are considered hereafter.

To select the terms which require specific modeling, the two following principles first pro-
posed by Vreman et al. (1995) are followed:

• The smallest term which is not a SGS term should be kept in the LES equations as it
accounts for a specific physical mechanism that cannot be ignored (transport, diffusion,
dissipation,...).

• All subgrid-scale terms larger than this term should be kept in the LES description of the
flow.

Following these principles, the analysis of the dense gas DNS database performed in Section
5.2 consistently shows that the system of equations to be solved by LES for compressible
transcritical dense gas flows should write:



∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̂

∂xi
+
∂τ̂ij
∂xj

−
∂ [p̄− p̂]

∂xi︸ ︷︷ ︸
Pressure

−
∂ρ̄
[
ũiuj − ũiũj

]
∂xj︸ ︷︷ ︸

Turbulent stress

∂ρ̄Ẽ

∂t
+
∂ρ̄Êintũj
∂xj

+
∂ρ̄K̂ũj
∂xj

= −∂p̂ũj
∂xj

+
∂τ̂ijũi
∂xj

− ∂q̂j
∂xj

−
∂ [puj − p̂ũj]

∂xj︸ ︷︷ ︸
Pressure work

−
∂ρ̄
[
Eintuj
: − Êintũj

]
∂xj︸ ︷︷ ︸

Internal energy flux

−
∂ρ̄
[
K̃uj − K̂ũj

]
∂xj︸ ︷︷ ︸

Kinetic energy flux

(5.1)

5.3.2 Towards SGS modeling

One can conclude that the SGS pressure term appearing in the filtered momentum energy
equations and the SGS pressure work appearing in the filtered total energy equation need to be
modeled in addition to the SGS terms (SGS turbulent stress, SGS internal energy and kinetic
energy fluxes) usually modeled for PG flows†. This result confirms the earlier findings of Selle
et al. (2007) derived from a real gas mixing layer at Mc = 0.4 analysis and extends them to

†As referenced in Table 2.4, the SGS kinetic energy flux is usually partially modeled using the SGS turbulent
stress.
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HIT and to mixing layers with larger convective Mach numbers. The magnitudes of other SGS
terms, for which models exist for PG flows, are also found significant. Existing models for these
terms would need to be assessed in the context of transcritical dense gas flows. However, such
an assessment is not done in the present work.

The next chapter concentrates instead on the derivation of a novel model for the SGS
pressure (p̄− p̂). Since its analysis presented in Section 6.2.1 shows the complexity of this term
comprising intricate SGS thermodynamic correlations, supervised machine learning algorithms
appear as tools of choice to model (p̄− p̂). In the next Chapter 6, Artificial Neural Networks are
applied to build a model for the SGS pressure in the case of DG flows, harvesting information
contained in the filtered DNS database comprising the HIT and the mixing layers. The model
will then be validated in Chapter 7 thanks to a posteriori LES of the mixing layer configuration
at several filtering sizes.
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SGS modeling using Artificial Neural Networks
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The present chapter proposes a methodology using artificial neural networks (ANN) to model
the SGS pressure term which must be taken into account in the LES of DG turbulent flows

as shown in the a priori analysis presented in Chapter 5. A review of the literature, limited to
ANN models designed for LES, is proposed in Section 6.1.1. The concept of ANN is introduced
and the method applied to model the SGS pressure term is outlined. Next, the database used to
train the ANN is analyzed using the correlations and the contours of thermodynamic variables
in Section 6.2. The ANN is thereafter improved using a data parallelism method and an
optimization of its hyperparameters (see Section 6.3). The ANN a priori performance is finally
assessed in Section 6.4. The closing section focuses on the analysis of the ANN structure using
small size networks in order to better understand how the ANN is functioning and possibly
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to draw a link with a physical understanding of the model (instead of using it as a black box
only).
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6.1 ANN modeling for LES

6.1.1 State of the art

General context Among machine learning methods, artificial neural networks (ANN) are
definitely one of the most popular. Their great adaptability favors their use in a wide range of
application domains, from image recognition† to market analysis, for weather forecast or the
resolution of the protein folding problem. Since ANN need a large amount of data during the
initial training step, they took advantage of the tremendous growth of computational power
and storing capacities during the last decades. In computational fluid dynamics and particu-
larly for the development of LES turbulent closure models, these improved capacities make it
possible to use very large DNS databases in the ANN building process. Once filtered, DNS can
be used to evidence SGS terms that must be taken into account thanks to an a priori analysis
(as done in the previous Chapter 5) but also to evaluate or to develop models required for these
significant terms, as proposed in the present chapter.

ANN-based SGS modeling The first attempt to use ANN to model SGS terms was per-
formed by Sarghini et al. (2003). Their ANN is trained to reproduce the turbulent viscosity
coefficient of the Bardina’s scale similarity model (Bardina et al., 1980) using an LES of a chan-
nel flow. The purposes of this work is not to improve the modeling but to save computational
time. Their ANN enables a computational time saving of about 20% achieving close results
when compared to the Bardina’s scale similarity model. The first LES models using ANN were
truly developed almost fifteen years later for diverse modeling purposes:

• the SGS turbulent stress tensor (Gamahara & Hattori, 2017; Wang et al., 2018; Zhou
et al., 2019; Xie et al., 2019; Pawar et al., 2020; Prat et al., 2020),

• its derivative (Xie et al., 2020),

• the total SGS flux (Beck et al., 2019),

• other SGS terms (Vollant et al., 2017; Maulik et al., 2018; Lapeyre et al., 2019; Maulik
et al., 2019; Xie et al., 2019; Frezat et al., 2021; Rosofsky & Huerta, 2020),

• or even wall models (Yang et al., 2019).

A priori vs a posteriori predictions Literature results definitely show improved a priori
predictions when using ANN as SGS models instead of classical LES models. Yet, this approach
raises several problems. The most complex one is the translation of the a priori performance
of the developed model in the realm of a posteriori performance. Indeed, correct a priori
predictions do not necessarily lead to reliable a posteriori predictions. Several reasons are
responsible for that:

• the filtering of the DNS which does not exactly reproduce the spatial filtering induced by
the LES grid;

• the a priori filtering size which can be small compared to that of the a posteriori LES
often located in the inertial domain of the TKE spectrum;

†For image recognition, a special type of ANN named convolutional neural networks (CNN) are used.
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• spatial operators such as the one used to compute derivatives which can differ between
the filtered DNS and a posteriori LES.

Moreover, during a posteriori tests SGS models are applied in real flow conditions which can
be very different from the configurations of the a priori database learned during the training
phase. Another issue raised by the use of ANN when applied as a black-box tool is the strong
opposition it triggers in the modeling community, whose goal is rather to understand the deep
relationships that exist between filtered and SGS variables. The interested reader should refer
to Duraisamy et al. (2019) for a thorough review of turbulence modeling using data-driven
approaches.

Improvement strategies for ANN-based SGS modeling To answer some of the issues
previously raised, several methods are employed by authors. Vollant et al. (2017) developed a
model for the SGS scalar flux term trained from filtered DNS of a passive scalar forced HIT.
They apply the concept of optimal estimator along with conditional expectation† to select the
most predictive ANN inputs in order to improve the a priori performance. Two methods were
employed: the first one consists in using directly an ANN as a surrogate model; the second
one consists in conserving a functional form, the coefficients of which are computed using an
ANN. The first procedure leads to an unphysical behavior of the scalar field when testing ini-
tial mixing conditions different from the ones used during the training and therefore questions
the ability of the ANN to generalize outside of the training set. The second procedure is the
most effective showing a significant improvement when compared to the dynamic eddy model
proposed by Moin et al. (1991). Using a functional form for the ANN is also shown to be more
robust. This idea is used by Xie et al. (2019) to built a model based on the dynamic Clark
model (Vreman et al., 1996b), by Pawar et al. (2020) to predict the eddy viscosity and by Prat
et al. (2020) to predict the Smagorinsky constant. This method can however deteriorate the a
priori performance (Prat et al., 2020) and also requires a functional form which is not obvious
to derive for some specific SGS terms.

Another method to improve the a posteriori performance is to train the ANN on a diverse
database. This process strongly helps the ANN to generalize its prediction over flow config-
urations which have not been encountered during the training phase. To enrich the training
database, one can use filtered DNS with several filtering sizes like Vollant et al. (2017) who use
four different filtering sizes (∆̄/∆DNS ∈ [4, 8, 16, 32]). It is also possible to use several instants,
several values of characteristic non-dimensional numbers or even several grid resolutions. For
example, Zhou et al. (2019) train an ANN over two different Taylor microscale numbers Reλ
and for five different time instants and Rosofsky & Huerta (2020) train their ANN over three
different grid resolutions (5122, 10242, 20482).

The most efficient way to enrich the database remains to use different flow configurations.
Most of the SGS models are developed using HIT flows (Vollant et al., 2017; Wang et al., 2018),
some of them using channel flows (Sarghini et al., 2003; Gamahara & Hattori, 2017), few of
them are trained over one configuration and a posteriori tested over a different one†, but to
the author’s knowledge, none of them is trained on several configurations at the same time.
The capacity of an ANN to predict consistent results over configurations different from the
ones used for the training phase is a key validation test to ensure its a posteriori effectiveness.
The choice of hyperparameters is also very important for the ANN design. Hyperparameters

†Note that ANN can themselves act as optimal estimators (Moreau et al., 2006).
†See for example Vollant et al. (2017) who tested their ANN over a temporal turbulent plane jet flow.
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can improve both the a priori and the a posteriori performance. Their definition is given in
Section 6.1.2 and a detailed comparison of choices made in the literature to select their values
is presented in Section 6.3.2.

Finally, one should also take care of physically explaining ANN predictions in order to
answer concerns related to their use as black-box tools. There are two main paths to better
understand predictions and to relate them to a physical understanding: the analysis of data,
using for instance the computation of correlations or the principal component analysis (PCA),
and the analysis of the network itself. For the last option, it is recommended to use an ANN
comprising a reduced number of layers and neurons (see Section 6.5). This topic is actually
part of the larger explainable artificial intelligence (XAI) domain. The interested reader should
refer to Adadi & Berrada (2018) for a thorough review of XAI.

The present work is devoted to the modeling of the SGS pressure term in compressible DG
LES using ANN trained over two different configurations: the HIT extracted from Giauque
et al. (2020) and the mixing layers previously presented in Chapter 4. The innovative character
of this work lies in the training over two different configurations especially comprising mixing
layers† for the same ANN, which requires the setting up of parallel computing tools hereafter
introduced (Section 6.3).

6.1.2 ANN description

ANN draw from biological neural networks. Artificial neurons are elementary units, organized in
successive layers which are connected to one another and with the transfer functions between
the neurons input(s) and output(s) described by simple mathematical functions. Neurons
are illustrated in Figure 6.1 as interconnected ellipses. Two categories of objects characterize
ANN: the parameters and the hyperparameters. The parameters are corrected during the
supervised training phase of the ANN thanks to an error back-propagation mechanism which
relies on the computation of the difference between predicted and true output values. The
hyperparameters of a network are prescribed a priori and play a key role on the performance
of the network. The parameters of the network are composed of the weights (w), which can
increase or decrease the strength of connections between neurons, and the bias (b), which are
added to the activation computed as:

Y1 = φ
(
W1X +B1︸ ︷︷ ︸

Activation

)
(6.1)

where Y1 denotes the output vector of the first hidden layer as referenced in Figure 6.1;

W1 =

(
w1,1,1 w1,2,1 w1,3,1

w1,1,2 w1,2,2 w1,3,2

)
represents the matrix of the weights of the first layer; B1 =

(
b1,1

b1,2

)
is the bias vector of the first layer and X =

x1

x2

x3

 denotes the input vector of the ANN.

The function φ is called the activation function. It can be different from one layer to another
but in our case, it is the same in the whole network except for the output layer which is linear
as commonly done for ANN designed for regression. The activation function is part of the
hyperparameters characterizing the ANN. Others hyperparameters are listed below:

• the number of layers;
†To the author’s knowledge, the mixing layer configuration has never been used to design SGS model with

ANN.
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a)

b)

Figure 6.1: Diagrams presenting the basics of ANN with (a) a simplified version and (b) a fully
connected network.
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• the number of neurons per layer which can be different from one layer to another;

• the activation function (φ) (Sigmoid, Tanh, ReLU, Leaky ReLU, ELU, ...);

• the type of data normalization (minimum / maximum or average / standard deviation);

• the type of initialization of bias and weights (Xavier, He, ...);

• the optimizer (Adam, AdaGrad, RMSProp, Stochastic Gradient Descent (SGD),...) which
retro-propagates the error to correct bias and weights;

• the learning rate planning (piecewise constant, exponential, ...) if it is not automatically
handled by the optimizer;

• the loss function which is a measurement of the error between predicted and true values
(mean square error, root mean square error,...);

• the batch size: data are divided into batches. After each batch, weights and bias are
corrected. A too small value of the batch size can lead to learning instabilities and a too
large value can prevent the ANN from reaching the optimum performance;

• the regularization hyperparameters (L1, L2, elastic net, dropout,...)

These are the main hyperparameters associated with an ANN; a number of additional hyper-
parameters exist† and some of them are related to the choice of specific hyperparameters like
the learning rate planning (linked with the optimizer) or even some coefficients used to tune
optimizers. Hyperparameters have an influence, which can be significant, over the ANN per-
formance. Their optimal choice is therefore a key issue in ANN design. There exists some
empirical rules to select them (see for instance Géron (2017)). Yet, since the proper choice
of hyperparameters strongly depends on the database used by the ANN, several methods are
given in Section 6.3 to guide and justify the choices made in the present work.

6.1.3 Outline of the ANN-based modeling process

The present work aims at developing a model for the SGS pressure term which has been
evidenced to be of significant importance for DG LES (see Chapter 5). The complexity of this
term favors the use of ANN (see Section 6.2.1) to help identify the relationships between the
SGS term and the filtered or computable quantities. ANN are trained using a database made
of filtered DNS of the forced HIT and the mixing layers at Mc = 1.1 and Mc = 2.2. For the
mixing layers, only self-similar temporal solutions are included in the database (Table 6.1). In
order to respect the Galilean invariance of the Navier-Stokes equations (Speziale, 1985) and to
improve the prediction of ANN, the filtered conservative variables are transformed into a new
set of variables verifying the Galilean invariance (Figure 6.2). This imposes a weak constraint
on the ANN to also verify the Galilean invariance. Further explanations about the constraints
are given in the following section.

Once filtered conservative variables are transformed, the inputs are sent into the ANN,
which therefore predicts the SGS pressure term. During the training phase, data extracted
from filtered DNS are inserted inside the ANN. The error between predicted and true values
can be computed and then back-propagated to correct the weights and bias of the ANN.

†For instance, the batch normalization which enables the improvement of error back-propagation on the
lower layers (layers close to the inputs).
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Figure 6.2: Diagrams explaining the process to model the SGS term.

Before starting the training step, data are analyzed to get a better understanding of the
SGS pressure term and to select the most appropriate inputs. PCA are computed to evaluate
the redundancy among inputs and to get an overview of the data.

†Solutions are taken each characteristic turbulent time (Giauque et al., 2020).
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Training database Filtering size Temporal solutions Number of elements

Forced HIT k/kmin = 18 Solution 1 307M
Mixing layer - Mc = 1.1 k/kmin = 12.5 τ = 1700 134M

Mixing layer - Mc = 2.2 - DGA k/kmin = 12.5 τ = 4000 134M

Additional testing database Filtering size Temporal solutions Number of elements

Forced HIT k/kmin = 18 Solutions 2 and 8† 307M
Mixing layer - Mc = 1.1 k/kmin = 12.5 τ = 1750− 2100 402M

Mixing layer - Mc = 2.2 - DGA k/kmin = 12.5 τ = 4050− 5000 402M
Mixing layer - Mc = 2.2 - DGB k/kmin = 12.5 τ = 4000 134M
Mixing layer - Mc = 2.2 - DGC k/kmin = 12.5 τ = 3800 268M
Mixing layer - Mc = 2.2 - DGD k/kmin = 12.5 τ = 3800 268M

Table 6.1: Composition of the training and testing databases used to design the ANN modeling the
SGS pressure term.

6.2 Data analysis

6.2.1 SGS pressure term

The analysis detailed in the previous chapter strongly supports the need for a specific DG
modeling effort to describe SGS pressure terms in the momentum equations and SGS pressure
work in the energy equation. The present work only focuses on the SGS pressure for which
a model is developed in this chapter. Its complexity is directly related to the EoS describing
the thermodynamic behavior of the gas. In the present analysis, since the fifth-order Martin
& Hou EoS is used to describe the complexity of dense gas flows, the SGS pressure term
comprises intricate SGS thermodynamic correlations and a coupling with the velocity field.
The SGS pressure term depends indeed on T̂ (the computable temperature) and T̄ (the filtered
temperature) which are numerically obtained by reversing the caloric EoS (denoted Fc):

Êint = Eint,ref +

∫ T̂

Tref

cv(T
′)dT ′ +

5∑
i=2

Ai + Ci(1 + kT̂ /Tc)e
−kT̂ /Tc

(i− 1)(1/ρ̄− b)i−1
(6.2)

T̄ = F−1
c (E − 1

2
uiui) (6.3)

In this expression, one can notice the influence of the kinetic energy through Equation (6.3).
Because of the non-linear feature of the caloric EoS, the filtering in Equation (6.3) introduces
a kinetic energy dependence. The SGS pressure can then be expressed as a function of the
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(a)

(b)

(c)

Figure 6.3: z−centerplane contours colored by (p̄ − p̂) (left) and p̂ (right) (Equation (6.4)) for the
mixing layers at Mc = 1.1 − 2.2 ((a) and (b)) and for the forced HIT (c). The filtering length scales
are respectively equal to k/kmin = 18 and k/kmin = 12.5 for the HIT and the mixing layers.
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(a)

(b)

(c)

Figure 6.4: z−centerplane contours colored by (p̄ − p̂) (left) and ‖∇
(
p̂
)
‖ (right) (Equation (6.4)) for

the mixing layers atMc = 1.1−2.2 ((a) and (b)) and for the forced HIT (c). The filtering length scales
are respectively equal to k/kmin = 18 and k/kmin = 12.5 for the HIT and the mixing layers.
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computable temperature T̂ :

p− p̂ =

(
rρT̃

1− bρ

)
− rρT̂

1− bρ̄
+

(
r(ρ′T + ρT ′)

1− bρ

)

+
5∑
i=2

[Aiρi +BiρiT + Ciρie
− kT
Tc

(1− bρ)i


+

(
ρiQ

′
i(T ) + ρi

′
Qi(T )

(1− bρ)i

)

−Aiρ
i +Biρ

iT̂ + Ciρ
ie−

kT̂
Tc

(1− bρ̄)i

]
(6.4)

where Qi(T ) = Ai + BiT + Cie
− kT
Tc . Note that Equation (6.4) is not directly computable

in LES because it implies SGS correlation terms. Equations (6.2) and (6.4) exhibit a strong
dependence on thermodynamic averages and fluctuations and on the trace of the resolved and
SGS turbulent stress tensors, which makes the modeling of the SGS pressure term especially
complex.

Figure 6.3 shows contours of (p̄ − p̂) and p̂ for the forced HIT and the mixing layers at
Mc = 1.1 and Mc = 2.2. For the HIT, the difference between the two pressures may exceed
one bar in some flow regions and can represent up to 10% of the computable pressure p̂. The
magnitude of (p̄− p̂) is reduced for the mixing layers. Consistently with Figure 5.2, the larger
is the value taken by Mc (and therefore Mt), the larger is the maximum level reached by the
SGS pressure. Yet, in some regions, it represents about 4% of the computable pressure. A
strong positive correlation appears for the forced HIT flow between (p̄ − p̂) and p̂. It is much
less the case for the mixing layers which are in contrast more correlated with the norm of the
computable pressure gradient ‖∇

(
p̂
)
‖ (Figure 6.4).

Note that areas of high (p̄ − p̂) intensity are sparse and that highly positive regions and
highly negative regions tend to be coupled. Moreover, the sign of (p̄− p̂) is always negative in
the centerplane for the mixing layer whereas the HIT configuration exhibits positive regions.
For perfect gases, the SGS pressure is related to the trace of the SGS turbulent stress tensor
as:

(p̄− p̂) = −(γ − 1)

2
tii = −(γ − 1)

2
ρ̄ (ũiui − ũiũi) (6.5)

Consequently only negative values of (p̄− p̂) are allowed for PG flows since the SGS kinetic
energy kSGS = 1

2
(ũiui − ũiũi) is always positive. Because of non-linearities in the Martin & Hou

EoS, Equation (6.5) is not valid for real gas let alone for DG. The possibility of having positive
regions of (p̄ − p̂) is a typical real gas effect and is potentially linked to highly compressible
regimes.

In order to further analyze the departure of the SGS pressure term from its perfect gas
behavior, the probability density functions (PDF) of the SGS pressure term are plotted in
Figure 6.5 for the HIT and for the two mixing layers at Mc = 1.1 and Mc = 2.2. As the
turbulent Mach number increases, the distribution spreads out to large negative and positive
values. Maximum absolute values are an order of magnitude larger for the mixing layer at
Mc = 2.2 when compared to the ones at Mc = 1.1. Comparing the HIT with the mixing layer
at Mc = 2.2, the ratio between maximum absolute values is about 2 to 3. Regarding the sign
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Figure 6.5: (Top) Probability density functions (PDF) of the SGS pressure term plotted for the two
different configurations: the HIT at Mt = 0.8 and the mixing layers at Mc = 1.1 (Mt = 0.38) and
Mc = 2.2 (Mt = 0.67); and (bottom) a closer view.
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of (p̄ − p̂), it is always mainly negative for all configurations but only some of them contain
positive values: the HIT and the mixing layer at Mc = 2.2. This typical real gas effect is thus
related to compressibility. A strong discontinuity of the PDF is observed around zero which
tends to disappear as Mt increases.

The analysis of the SGS pressure term shows its complexity. Since it comprises intricate
SGS thermodynamic correlations, supervised machine learning algorithms appear as a tool of
choice to be used in order to model (p̄− p̂).

6.2.2 Choice of inputs

The inputs of the model are chosen among available variables, taking into account the nature
of the SGS pressure term to assess their relevance in a preliminary screening process. Equation
(6.4) shows the link of the SGS pressure term with thermodynamic quantities (the computable
temperature T̂ and the computable density ρ̄). Moreover, Equation (6.4) depends on the filtered
temperature T̄ which is itself computed by reversing the caloric EoS (Equation (6.3)) which
introduces a kinetic energy dependence. The set of inputs should thus contain thermodynamic
and kinetic energy information.

The design of the models must also respect the physical constraints of the problem. The most
simple way to weakly impose physical constraints to ANN models is to apply the constraints
over the inputs. For SGS models, Speziale (1985) demonstrates the necessity to respect Galilean
invariance comprising spatial rotations (which implies isotropy) and translations in space and
time. To this aim, the invariants of the velocity gradient are chosen to provide the necessary
kinetic energy source of information (Vollant, 2015).

I1 = tr (∇(~u)) (6.6)

I2 =
1

2

[
(tr(∇(~u)))2 − tr

(
∇(~u)∇(~u)T

)]
(6.7)

I3 = det(∇(~u)) (6.8)

By taking into account the aforementioned remarks, the following set of variables emerges
as natural inputs:[

ρ̄; T̂ ; p̂; ρ̄Ẽ; ‖∇ (ρ̄) ‖; ‖∇
(
T̂
)
‖; ‖∇

(
p̂
)
‖; ‖∇

(
ρ̄Ẽ
)
‖; ∆

(
ρ̄
)
; ∆
(
T̂
)
; ∆
(
p̂
)
; ∆
(
ρ̄Ẽ
)
; I1; I2; I3

]
(6.9)

Note that in this set, inputs which depends on differentiation (gradients, Laplacians and
invariants) are normalized with the a priori filter size ∆̄ in order to not depend on the differ-
ence of resolution and filtering of each configuration (HIT and mixing layers). This set of 15
inputs satisfies the constraints of the physical problem and contains diverse variables correlated
to the SGS pressure. The values of these correlations are given in Table 6.2, processing the
information contained in the filtered DNS database comprising the HIT and the mixing layers.
Inputs colored in red indicate the largest correlations (with absolute values above 0.40). Both
mixing layers correlations are quite close. One notices a reduction of almost every value when
the convective Mach number increases from 1.1 to 2.2, except for the computable temperature
and pressure and the invariants.

The highest rate of correlations are obtained for the norm of the thermodynamic variables
gradients for the mixing layers and for the thermodynamic variables themselves and their Lapla-
cians in the forced HIT flow. The fundamental difference between the mixing layer and the
forced HIT is the presence of a mean flow. This mean flow modifies the dynamics of the SGS
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Mixing Layer
Mc = 1.1

Mixing Layer
Mc = 2.2

HIT

ρ̄ 0.10 −0.08 0.53

T̂ −0.08 −0.30 0.49
p̂ 0.08 −0.15 0.45

ρ̄Ẽ 0.10 −0.08 0.53
‖∇ (ρ̄) ‖ −0.82 −0.63 0.20

‖∇
(
T̂
)
‖ −0.81 −0.65 0.05

‖∇
(
p̂
)
‖ −0.83 −0.72 0.25

‖∇
(
ρ̄Ẽ
)
‖ −0.82 −0.63 0.20

∆
(
ρ̄
)

−0.04 −0.04 −0.46

∆
(
T̂
)

0.02 0.01 −0.41
∆
(
p̂
)

−0.03 0.09 −0.17

∆
(
ρ̄Ẽ
)

−0.04 −0.04 −0.46
I1 0.03 0.11 0.04
I2 −0.02 0.11 0.06
I3 −0.02 −0.07 −0.10

Table 6.2: Pearson product-moment correlation coefficients (Rij = Cij/
√
CiiCjj), where C is the

covariance matrix) between inputs and the SGS pressure term (p̄ − p̂). Correlations whose absolute
value is above 0.4 are colored in red.

pressure term, which becomes more correlated in that case with the first derivative of the ther-
modynamic variables. Correlation rates strongly differ between cases showing the complexity
of the SGS pressure term and further justifying the training of the ANN on a diverse database
including both HIT and mixing layers.

In order to verify the actual effect of inputs on the ANN performance, several ANN are
trained over 5.6 millions of elements randomly chosen across the database for several degrees
of freedom† up to 10 000. The performance of ANN is measured using the coefficient of de-
termination called r2−score which represents the proportion of variance of a variable y that is
explained by the variable ŷ predicted by the model. It is defined as:

r2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − yavg)2

(6.10)

where yavg =
1

n

n∑
i=1

yi denotes the arithmetic average of y. Note that the best possible

r2−score is 1 and that the score can be negative in case of a bad performing model.
†The degree of freedom of an ANN is equal to the number of weights and bias. For an ANN with one hidden

layer with n neurons, 15 inputs and one output, it is equal to 17n+ 1 (16n weights and n+ 1 biases).
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[
ρ̄; T̂ ; p̂; ρ̄Ẽ

]
[I1;I2;I3]

[
‖∇ (ρ̄) ‖; ‖∇

(
T̂
)
‖;

‖∇ (p̂) ‖; ‖∇
(
ρ̄Ẽ
)
‖
] [

∆
(
ρ̄
)
; ∆
(
T̂
)
; ∆
(
p̂
)
; ∆
(
ρ̄Ẽ
)]

r2−score

X X X X 0.93
X X X 0.92
X X X 0.90
X X 0.76

Table 6.3: Best r2-scores for several ANN trained over 5.6 millions of elements randomly chosen across
the database (Mixing layers Mc = 1.1 and 2.2 and forced HIT) for several degrees of freedom up to 10
000.

If all inputs are first retained to maximize the performance, an r2−score of 0.93 can be
reached (see Table 6.3). If the invariants are discarded from the set of inputs, the best achievable
r2−score is only slightly affected since reduced from 0.93 to 0.92. Similarly when the ANN are
trained without Laplacian inputs, the best r2−score is only reduced from 0.93 to 0.90. Note
however that if the norms of the thermodynamic variables gradients are also discarded from
the set of inputs (along with the Laplacians) the best achievable r2−score collapses from 0.90
to 0.76. These observations, underlining the importance of the thermodynamic variables and
the norm of their gradients as input variables for the SGS pressure model are consistent with
the correlation rates reported in Table 6.2 and previously discussed. If ones takes into account
in the analysis, the computational cost of the model inputs, it will make sense to investigate
ANN trained without Laplacian inputs, as will be done in Section 6.4. For the final model used
in Chapter 7 for the a posteriori validation, Laplacian inputs will be removed but for another
reason, namely because second order derivatives provoke discrepancies between a priori LES
and a posteriori LES. In order to get additional information about the potential redundancy
of inputs, a Principal Component Analysis (PCA) has also been performed; it is included in
Appendix E of this manuscript, along with the key conclusions drawn from this PCA, which
did not lead to a change in the choice of input variables for the SGS pressure term ANN-based
modeling.

6.3 ANN tuning

The SGS pressure term and the database have been previously analyzed and a set of 15 inputs
has therefore been selected to satisfy the physical constraints of the problem and to ensure
a proper performance of the ANN. The present section is now devoted to the design of the
ANN using the Scikit-Learn library (Pedregosa et al., 2011). Since the database contains a
large amount of data (see Table 6.1), a parallel computing method, detailed in Section 6.3.1, is
employed to train the ANN. An optimization of the ANN hyperparameters is then performed,
especially using grid search methods.
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Figure 6.6: Diagrams explaining the process to parallelize the training step.
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6.3.1 Data parallelism

The parallelization of the ANN answers two main issues: large size networks (in deep learning)
and large databases. Thus, two different ways to proceed are possible: model parallelism and
data parallelism (Géron, 2017). The first method consists in distributing the architecture of
ANN over processors. This method is more suitable for deep learning with networks comprising
lots of layers and neurons which is not our case. The second method distributes the data over
processors. In the present work, since the training of the ANN on several configurations using
all the available data raises memory issues, a process using data parallelism is implemented.

To enable the loading of a large amount of data, the Dask library (Dask Development Team,
2016) is used in complement to the Scikit-Learn library (Sklearn). Sklearn and Dask are both
open-source Python libraries. The first one provides machine learning tools (ANN, random
forest, classification, regression and clustering algorithms, ...) and the second one enables to
manage large database by distributing the data over several processors. It is compatible with
NumPy, Pandas and Sklearn. The parallelism of the ANN is described in Figure 6.6. The
database comprising the three filtered DNS is first read with the Dask library. Dask creates a
Python object named a dataframe which is divided into partitions. The three dataframes are
then gathered into a single one. Data are scaled using the most popular average / standard
deviation normalization† (see Section 6.1.2) computed over the entire database and randomly
mixed to prevent any bias in the ANN learning. The transformed database is divided in two:
the training part, which contains 80% of the database, and the testing part, which contains
20% of the database. The testing part is used to evaluate the ANN performance over elements
which were not included in the training set.

At the first epoch†, an identical ANN is replicated over each processor. Each partition
is distributed over one processor and is passed into each ANN. Once all ANN have finished
the first epoch, weights and bias are aggregated. The averaged ANN is replicated over each
processor. The process continues until the end of the training phase. This method is simple
and enables a rapid convergence to the optimal ANN when dealing with large databases (see
the results given in Section 6.4).

6.3.2 Hyperparameters optimization

The choice of hyperparameters is at the heart of ANN optimization. It is mostly empirical and
based on test performed over popular databases (MNIST, Cifar10, ...). Yet, since hyperpa-
rameters leading to the most effective ANN strongly depend on the data, there exists methods
to quickly explore the hyperparameters space in order to make a choice well-adapted to the
database used in the study. It is the point of this section to perform such an exploration, once
given an overview of hyperparameters choices taken from the literature specifically dedicated
to the design of ANN for SGS modeling.

Review of ANN hyperparameters selection in the SGS modeling context

†Note that the same scaling must be used for the training and for the testing including the a posteriori use
of the model.

†An epoch is a measuring unit of the learning step. After each epoch, all data have been read once by the
ANN. Note that an epoch is not an absolute measure of the learning phase. The number of error backpropagation
processes indeed strongly depends on the number of elements in the database and on the batch size.

†Avg-std: Average-standard deviation
†Riedmiller & Braun (1993)
†MBGD: Mini-batch gradient descent
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Initialization He† (He et al., 2015)

Activation function Leaky ReLU or SELU†

Regularization Drop-out

Optimizer Nesterov accelerated gradient (Nesterov, 1983)

Learning rate Exponential planification

Table 6.5: Recommendations to select hyperparameters (extracted from Géron (2017)).

Table 6.4 gathers the hyperparameters selected in the literature dedicated to the design of SGS
models using ANN. It can be observed from this overview that the structure of ANN built
by the various authors is highly variable. The number of hidden layers starts from a single
one up to five. Few analysis are conducted to test the sensitivity of the ANN performance to
its structure (and the choices of hyperparameters). Maulik et al. (2019) are actually the only
authors identified who perform a grid search varying the number of layers and the number of
neurons. For activation functions, the hyperbolic tangent and the ReLU are equally used. The
leaky ReLU function is only used by Prat et al. (2020) whereas it is widely advised (see Table
6.5). The most common normalization is the one using the average and the standard deviation.
Moreover, weights and bias are always (when the information is present) randomly initialized.
The Adam optimizer, briefly presented in the next paragraph, is the most popular optimizer.
The batch size and the information about the use of regularization are rarely given.

L1 or L2 regularization (or penalty) enables to respectively add the L1- or L2-norm of the
weights weighted by a coefficient (usually equal to 0.0001) into the loss function which is used
to compute the error back-propagation. When using the L1 regularization (also called Lasso
regression), the ANN tries to minimize the sum of the absolute values of weights. That way,
the less important weights are shrunk, keeping the most important connections. The L2 regu-
larization (also called Ridge regression) has an opposite effect. The sum of the square values
of weights is added to the loss function. This method therefore forces the ANN to balance the
magnitude of weights over the whole network. It avoids the over-fitting issue improving the
generalization capacity of the ANN.

Table 6.5 lists recommendations given in Géron (2017) to built an effective ANN. It is
especially advised to use some drop-out to regularize the network. The drop-out is a method
which consists in switching off a given percentage of neurons during the training step. The
ANN is thus forced to balance the weights among the network. The effect is very close to the
L2 regularization. Since the drop-out is not implemented in the Sklearn library, we use the L2

†SGD: Stochastic Gradient Descend.
†LM algo: Levenberg-Marquardt algorithm (Levenberg, 1944)
†The He initialization is an improved version of the Gorot initialization (Glorot & Bengio, 2010) dedicated

to ReLU activation functions. It corresponds to a random initialization following a Gaussian distribution.
†SELU: Scaled Exponential Linear Unit. It is a normalized version of the ELU.
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Figure 6.7: ReLU and LeakyReLU activation functions.

regularization. Moreover, the recommended Nesterov optimizer is also not available in Sklearn.
We will thus preferentially use Adam.

Table 6.4 allows to identify some weaknesses regarding the choice of ANN hyperparameters
in the literature focusing on SGS modeling: the number of layers and the number of neurons
are the only hyperparameters subject to analysis and this analysis is rarely done using grid
search methods. The choice of other hyperparameters is also never justified. The present
study tries therefore to go further in the justification of the choice of hyperparameters using
hyperparameters search and Hilbert-Schmidt Independence Criterion (HSIC) coefficients.

Innovative hyperparameters

Before tuning the ANN hyperparameters, let us introduce two innovative hyperparameters
which are not available in Sklearn. They have thus been implemented into the Sklearn library
in the course of this thesis work. The first one is the AdaBelief optimizer (Zhuang et al., 2020).
AdaBelief is derived from the well-known Adaptive Moment Estimation (Adam) optimizer
(Kingma & Ba, 2014) which is widely used in recent ANN (see Table 6.4). AdaBelief accelerates
Adam convergence in regions of small fluctuations and large values of the function loss gradient.
AdaBelief is shown to improve the convergence speed and the generalization. Details about the
algorithm are given in (Zhuang et al., 2020).

The other hyperparameter which has been implemented during the course of this study in
Sklearn is the leaky ReLU activation function. It is derived from the widely used rectified linear
unit (ReLU) activation function which expresses as:

φ(x) = max(0, x) (6.11)

The ReLU function performs better when compared to the sigmoid because it does not
saturate for positive values. Yet, if weights and bias are modified such as the input value of
a neuron is negative, the output of this neuron is zero. Since the gradient of the leaky ReLU
function is zero in the negative part, it is very likely that the output of the neuron will remain
equal to zero. These neurons are called dying ReLU. The leaky ReLU is designed to counter
this phenomenon by enabling some "leak" for negative x values. They are defined as:

φ(x) = max(αx, x) (6.12)
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where the hyperparameter α controls the rate of "leak" by changing the slope of the function
for negative x values. Consequently, leaky ReLU neurons cannot die. These two activation
functions are plotted in Figure 6.7. As mentioned above the positive part of the plot is identical
unlike the negative one.

Hyperparameters Search

The most popular methods used to tune ANN are hyperparameter searches. The principle
consists in browsing the largest part of the hyperparameters space, which is composed of all
hyperparameters combinations, in a minimum amount of computational time. The most ef-
ficient algorithms used to solve this problem are based on the multi-armed bandit problem.
The point is to find the best compromise between exploration and exploitation. That is to say
between pursuing the training of an ANN or testing a new one with a different combination of
hyperparameters. At first, a given number of ANN models are randomly selected among the
hyperparameters space. Each of them represents a different combination of hyperparameters
which is named an "arm". The algorithm establishes a competition between them. The least
effective ANN are progressively eliminated in order to keep a final one which is supposed to
be the most effective. The most simple hyperparameter search is called a grid search where no
ANN are eliminated. All of them are equally trained. This method is yet very costly in case of
large hyperparameters spaces.

Hyperparameters search methods are usually computed with parallel architectures where
several ANN are tested simultaneously. In the case of a large amount of data and a large
number of arms, the parallel Dask library proposes three algorithms: the successive halving
search (Jamieson & Talwalkar, 2016), the hyperband search (Li et al., 2017) and the inverse
decay search. The three methods are based on a pyramidal competition between ANN. The
only difference is the type of the elimination function.

The fundamental problem with these methods is the lack of information they provide about
the sensitivity to the choice of the hyperparameters: they are often seen as black-box tools
which only yield the most effective ANN. No information is provided about the most influential
hyperparameters or the most relevant range for each of them. Yet, this information is stored
in the results but is rarely exploited.

HSIC analysis: principles

The objective of the so-called Hilbert-Schmidt Independence Criterion (HSIC) analysis is to
fully exploit grid search results by computing HSIC coefficients which measure the independence
between two probability distributions. The present work is based on Novello et al. (2021). The
authors first evaluate the probability distribution of hyperparameters among arms randomly
selected by the hyperparameters search method (denoted P (’hyperparameter’)) and then com-
pute the probability distribution for an ANN of being among the best decile networks (the
10% of the best ANN). This last probability is denoted P (’hyperparameter’|Z), where Z is a
random variable which is equal to one if the ANN is among the best decile. By measuring the
dependency between the two probability distributions, HSIC coefficients provide a classification
of the importance of hyperparameters. They also can be used to measure the independence
of joint probability distributions. That way, one can emphasize interactions between hyper-
parameters. A simple example is given in Appendix F to illustrate how hyperparameters can

†GS: Grid Search
†ML: Mixing Layer
†[100:100:1000] denotes an interval extending from 100 to 1000 with a 100 step.
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Database Hyperparameters Nb of tested /
Nb of total

GS† 1 ML† - Mc = 2.2
4M/134M

• Activation function:
Leaky ReLU-ReLU-Tanh
• Solver:
Adam-SGD
• Layer 1 / Layer 2:
25-50-75-100

96 / 96

GS 2 ML - Mc = 2.2
4M/134M

• Batch size:
[100:100:1000]†

• Solver:
Adam-AdaBelief
• ε:
10 log-spaced values
between 10−12 − 10−6

• Layer1/Layer2/Layer3:
25-50-75-100
• L2 regression
10 log-spaced values
between 10−4 − 10−2

(750 / 128 000)

GS 3
ML - Mc = 1.1 -
Mc = 2.2 - HIT

4M/575M
Identical to GS2 (1000 / 128 000)

Table 6.6: List of performed grid searches with their corresponding parameters.
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interact.
The computation of the HSIC coefficients is done in the post-processing step using the hy-

perband search results. However, the three aforementioned algorithms introduce a bias in the
results because ANN are not equally trained. The best ANN are indeed trained longer and
their scores tend therefore to be much improved with respect to the first eliminated ANN. To
avoid this issue, classic grid searches are performed: all ANN are equally trained and HSIC
coefficients are not influenced by the elimination process.

The method is first validated in Appendix F over trivial examples given in Novello et al.
(2021) before being applied to the grid searches relevant for the design of the SGS pressure
model , gathered in Table 6.6. All ANN are trained during 10 epochs which enables to reach a
good compromise between the convergence and the computational time. The number of epochs
can be seen as a low limit to reach convergence but this value has to be analyzed in lights of
the size of data. Knowing that the grid search database contains 4 million elements, this choice
of 10 epochs corresponds to 40 million ANN predictions.

HSIC analysis: results

Three different grid searches are performed. The first two ones are only performed over the
mixing layer at Mc = 2.2. It has been indeed observed that this case is the most demanding
one among the three configurations for the ANN to achieve good performance (see Section 6.4).
The entire database (134M of elements) is not used because, for grid search, data need to fit
into a single processor in order to evaluate ANN in parallel. Four millions of elements are thus
randomly selected among the whole database. The first grid search is performed over a small
hyperparameters space which enables us to test all the possible combinations. The second grid
search browses a large hyperparameters space. Only 750 randomly selected arms are tested
over the 128 000 possibilities. The third grid search evaluates the same hyperparameters space
using this time the three cases: both mixing layers and the forced HIT.

The first grid search evaluates ANN comprising two hidden layers with a number of neurons
varying from 25 to 100 with a step of 25. The other hyperparameters are the activation function
and the optimizer (see Table 6.6) yielding a small total number of explored ANN, equal to 96,
which allows the computation of every single ANN. Figure 6.8 displays the HSIC coefficients
computed for simple (a) and joint (b) PDF. Results show the greater importance of the number
of neurons in the first layer and of the type of solver with respect to the number of neurons in
the second layer and to the choice of the activation function. (which are about 2 to 3 times less
important); In deep learning and especially in Convolutional Neural Network (CNN), the first
hidden layers form the base of the network and are often therefore the most important ones
whereas layers close to the output are more specialized (Géron, 2017). It seems thus consistent
to find a larger HSIC for the first layer.

Once known the importance of each hyperparameter, it is also important to get an indi-
cation about the best range for each hyperparameter - we will come back to the interaction
effects illustrated by Figure 6.8(b). The HSIC analysis also allows to produce Figure 6.9, which
displays two PDF for each hyperparameter. The first one (P (’hyperparameter’)) corresponds
to the initial probability in the hyperparameters space and is therefore uniform. The second one
(P (’hyperparameter’|Z)) is the probability conditioned to the best decile. For instance, looking
at plot a) for the number of neurons in the first layer, it is clear choosing the largest value for
this number significantly improves the quality of the ANN. Performing the same analysis for
the other hyperparameters, it is advised to increase the number of neurons in both layers, to
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a)

b)

Figure 6.8: (a) Classification of HSIC and (b) representation of HSIC interactions for Grid Search 1.
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a) b)

c) d)

Figure 6.9: Probability density functions among hyperparameters choices for a) the number of neurons
in the first layer, b) the number of neurons in the second layer, c) the type of solver and d) the
activation function.
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Figure 6.10: r2−scores for the 8 Layer 1-Solver combinations averaged over each 12 possible combi-
nations encountered during GS1 varying the two other hyperparameters (Layer 2 and the activation
function).

choose the Adam solver and the leaky ReLU activation function. It can be useful to cross-check
these information with Figure 6.8(a) in order to take into account the relative importance of
each hyperparameter: in the present case, for a given computational cost of the ANN (which
will be analyzed in a next paragraph), it is recommended to add more neurons in the first layer
than in the second one.

Figure 6.8(b) represents the joint HSIC. This visualization provides information concerning
interactions between two hyperparameters, with a diagonal equal to the HSIC given in Figure
6.8(a) corresponding to self-interaction. This map shows that significant interactions exist be-
tween "Layer 1", the most influential hyperparameter, and all the other hyperparameters. The
interaction of "Layer 1" with the optimizer seems even slightly larger with the optimizer than
with itself. In order to further investigate how these two hyperparameters interact, Figure 6.10
displays the averaged r2−score. Two effects are observed: the performance increases with the
number of neurons in the first layer and the Adam solver is always better than the SGD. The
effect of both hyperparameters is monotone. The sensibility of the hyperparameters couple
(Layer 1, Solver) is enhanced when compared to the influence of each hyperparameter taking
separately.

Results for GS2 and GS3 are displayed respectively on the left and on the right in Figures
6.11, 6.12, 6.13 and 6.14. The only differences between the two grid searches are the change
of the database and the increase of the number of tested combinations (see Table 6.6). The
classification of variables (Figure 6.11(a)) is identical between the two. The second layer is this
time more important than the first one. The presence of a third layer modifies the classification
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a)

b)

Figure 6.11: (a) Classification of HSIC and (b) representation of HSIC interactions for Grid Search 2
(left) and 3 (right).
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a)

b)

c)

Figure 6.12: Probability density functions among hyperparameters choices for a) the number of neurons
in the first layer, b) the number of neurons in the second layer and c) the number of neurons in the
third layer. 139
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a)

b)

Figure 6.13: Probability density functions among hyperparameters choices for a) the α parameter used
for L2 regression and b) the batch size.
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a)

b)

Figure 6.14: Probability density functions among hyperparameters choices for a) the type of optimizer
and b) the ε parameter used in Adam type solvers.
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previously displayed for GS1. The last layer remains however the least important one. The
α parameter which controls the L2 regression has a significant effect over the performance in
both grid searches. It is therefore required to carefully select this hyperparameter which is used
to equalize the network. Note that this time the optimizer only has a small effect because its
choice is limited to Adam and AdaBelief. HSIC strongly depends of course on the range of
values allowed to the hyperparameters in the grid search.

Figure 6.11(b) does not show any significant interaction which is not related to the "Layer
2" hyperparameter. One can thus focus on Figures 6.12, 6.13 and 6.14 which display the best
ranges for each hyperparameter. Consistently with GS1, increasing the number of neurons al-
ways leads to ANN improvement but it is advised to preferentially increase the first two layers
(and even more the second one). For the α parameter, for the batch size and for the solver,
results differ between GS2 and GS3. For α, a common range, around α = 5.10−4, can be found
between the two grid searches. Yet, for the batch size, no common interval exists. Since the
GS3 data set is more representative of the full database than the GS2 data set, the batch size is
set to 800. For the solver, results are contradictory between the grid searches. The differences
between the probability density are however very small as evidenced by the classification of
HSIC (Figure 6.11(a)). In our case, the AdaBelief solver does not bring a significant improve-
ment. Since the Adam solver is recommended in GS3 considered as more representative of the
full database, it is retained for the following ANN training. The last tested hyperparameter ε
is related to the solver. Following the results of both GS2 and GS3, its effect over the ANN
score can be neglected.

All the choices made for the selected hyperparameters are gathered in Table 6.7. They
include both the choices justified by the previous HSIC analysis and the other choices based
on recommendations taken from reference textbooks (Géron, 2017) and options available in
Sklearn. Note that the number of layers and the number of neurons per layer are not provided
in this table. Since all grid searches results show that the ANN performance increases with
the number of neurons in the tested range ([25 : 100]), the structure of the ANN is determined
thanks to an analysis of the maximum realistic extra cost induced by the ANN model when
performing an LES using the AVBP code.

Computational cost of the ANN

In order to foster the use of the SGS pressure model, the maximum extra cost associated with
the ANN-based model should not exceed 20% to 30%. An a posteriori evaluation is therefore
conducted to evaluate this extra cost as a function of the number of degrees of freedom of the
network. This extra cost is based on a reference LES. This reference LES is computed without
any model for the SGS pressure but it uses two classic LES models (the dynamic Smagorin-
sky and the turbulent Prandtl number models) to take into account the SGS turbulent stress
tensor and the SGS internal energy (see Section 7.2). In order to make possible the use of the
ANN model for the SGS pressure modeling in AVBP, an option has been implemented in the
code. Results are displayed in Figure 6.15 for an ANN which does not use the inputs requiring
Laplacian computation

(
∆
(
ρ̄
)
, ∆
(
T̂
)
, ∆
(
p̂
)
and ∆

(
ρ̄Ẽ
))

. Note that this is only a first approx-
imation of the cost: the results could probably be improved by optimizing the implementation.

Suppressing Laplacians in the ANN design process is motivated by the following obser-
vation. The values taken by space derivatives depend on the precise implementation of the
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Results of the HSIC study

Activation function Leaky ReLU

Regularization L2 with α = 0.0005

Optimizer Adam

ε
(Adam parameter) 10−11

Batch size 800

Other hyperparameters choices

Initialization Glorot (Glorot & Bengio, 2010)
(The He initialization is not available in Sklearn)

Loss function Mean Square Error (MSE)

Data Normalization Avg-std

Test ratio 0.2

(β1,β2)
(Adam parameter) (0.9,0.999)

Table 6.7: Appropriate hyperparameters for the present work.
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Figure 6.15: Evolution of additional computational cost related to the ANN model without using the
inputs requiring Laplacian computation.

discretization formulae in the a posteriori step, when the model is used in its final numerical
environment. In the a priori step, finite difference formulae are used and comparisons using the
same inputs fields between a priori gradients and a posteriori gradients showed rather good
agreement (see Figure 6.16(a)). However, to obtain Laplacians, this differentiation step has
to be repeated which decreases the quality of the comparison. In light of this lack of repre-
sentativity of the Laplacians obtained in the a priori step see Figure 6.16(b), it was decided
to build a model which only uses primitive variables and their derivative. This choice enables
computational time savings but also impacts the ANN performance. The evaluation of this
type of model is provided in Section 6.4.1.

Figure 6.15 shows that the use of the ANN model induces two types of extra cost: a fixed
cost (independent of the ANN size) and a variable cost depending (linearly) on the number
of degrees of freedom. The fixed extra cost arises from the management of ANN model pa-
rameters and from the necessary computation of ANN inputs. It is therefore present even for
very small networks. Its value is about 8% in our case. The variable extra cost evolves linearly
with the number of degrees of freedom, which is directly related to the size of networks. To
not exceed 20% to 30%, which could be considered as a "reasonable" extra cost for the SGS
pressure model, the number of degrees of freedom must be limited to approximately 5500. This
corresponds to a network comprising two hidden layers of 66 neurons each (11;66;66;1).

Since we know that the ANN performance increases with the number of degrees of freedom
and since the maximum size limit of the network has been evaluated, it remains to quantify
the influence of the network size over the r2−score. Figure 6.17 displays grid search results
obtained when varying the number of neurons for single and double hidden layers networks
evaluated using the full database (see Figure 6.6). For single hidden layers, each bar symbolizes
the r2−score of one ANN trained over 10 epochs. For double hidden layers networks, since
several combinations of neurons can correspond to the same number of degrees of freedom,
each bar symbolizes the r2−score of the most effective ANN trained over 10 epochs.
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a)

b)

Figure 6.16: z−centerplane contours colored by (a) ‖∇
(
p̂
)
‖ and (b) ∆p̂ for the mixing layer atMc = 1.1

for (left) the a priori LES (filtered DNS) and for (right) the a posteriori LES at ∆̄/∆DNS = 64. Results
are plotted at τ = 1750. Note that the domain length in the y−direction is twice larger for the a
posteriori LES than the filtered DNS because it has been enlarged in order to obtain long enough LES
simulations without reaching domain boundaries (see Chapter 7).
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Figure 6.17: Distribution of the r2−score as a function of the number of degrees of freedom for (top)
single hidden layers ANN and (bottom) double hidden layers ANN. Networks are trained over 10
epochs. Each bar corresponds to the r2−score of the most effective ANN for a given DoF.

For single hidden layer networks, the r2−score is almost constant and equal to 0.93 from
3000 to 10000 degrees of freedom. Surprisingly, when decreasing the number of degrees, the
performance remains very reasonable for very small networks. A network comprising one hid-
den layer of 6 neurons achieves a r2−score of approximately 0.90. Note that the score for 5000
degrees of freedom (DoF) is slightly larger than for a larger number of DoF. Two reasons could
explain this counter-intuitive result: ANN are trained only over 10 epochs so that the r2−score
analyzed here is not necessarily a converged value; the grid search should be repeated several
times to get rid of stochastic effects and obtain a statistically averaged value.

For double hidden layers networks, given the same number of degrees of freedom, the per-
formance is slightly better than for single hidden layer networks (0.935 against 0.93). Moreover,
the decrease of the performance at small numbers of DoF is even more reduced. Using two
hidden layers instead of a single one leads to more effective ANN. All results show a very lim-
ited effect of the size of network and even for very small networks, the performance remains
reasonable.

Note that the score computed for these experiments is evaluated over the three flow con-
figurations (HIT and mixing layer at Mc = 1.1 and Mc = 2.2). In the following section, other
tests are performed to better assess the influence of the number of degrees of freedom on the
performance of the ANN defined with the choice of hyperparameters properly justified in this
section.
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6.4 ANN training and testing

The present section is devoted to the training and the testing of the ANN characterized by the
choices of hyperparameters reported in Table 6.7. Several tests are performed:

• to evaluate the ANN performance for each flow configuration (HIT and both mixing
layers),

• to quantify the effect of the removal of Laplacian inputs,

• and to complement the previous grid search results by evaluating the evolution of the
ANN performance for each flow configuration when the number of degrees of freedom is
varied.

Some generalization tests are computed next to evaluate the capacity of the model to provide
reliable results for cases (flow configurations) which have not been encountered during the
learning process. The retained model will be eventually a posteriori evaluated in the final
Chapter 7.

6.4.1 Final tests for the tuned ANN

Performance evaluation

In addition to the issue of managing a very large amount of data, the ANN training using a
database which combines several configurations causes learning disparities, which have been
carefully investigated for a two hidden layers network, with 55 neurons in each hidden layer,
yielding a total of 4016 degrees of freedom (weights and bias). Let us remind the reader that
the ANN is trained using a training database (or sub-database or partition) corresponding to
80% of the full database which combines the three flow configurations: HIT, mixing layer at
Mc = 1.1 and Mc = 2.2. The remaining 20% define the testing database (or sub-database or
partition) on which the ANN designed in the training stage can be assessed using informa-
tion not included in the training partition. Figure 6.18 displays the learning curves (r2−score
and mean square error (MSE)) for the (15; 55; 55; 1) network (with hyperparameters defined
in Table 6.7). Note these accuracy indicators are computed after each epoch by applying the
current ANN (with its weights and bias computed from the optimization step) to the testing
database only. The "Full database" plots correspond to r2−score and MSE computed for the
totality of the testing database or partition (which includes 20% of the three flow configura-
tions data). The "HIT" (respectively "Mc = 1.1", "Mc = 2.2") plots correspond to r2−score
and MSE computed only for the subset of the testing database corresponding to the HIT flow
configuration (respectively the mixing layer at Mc = 1.1 and Mc = 2.2). Consequently, Figure
6.18 reports the training behavior of a single ANN but with an enriched information on the
predictive efficiency on the network since given not only for the whole testing partition but also
for the subsets associated with each flow configuration.

The network accuracy indicators converge very quickly, in approximately 10 epochs, to their
asymptotic value. This is due to the very large amount of data: after each epoch, about 575
million elements have passed through the network. Although the overall performance of the
network is about 0.97 at the end of the learning step (see Table 6.8), it is much smaller when
computed for both mixing layers only: 0.92 at Mc = 1.1 and 0.88 at Mc = 2.2. Its performance
when computed for the forced HIT only remains however satisfactory with a r2−score of 0.97.
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Figure 6.18: Evolution of (a) the r2−score and (b) the mean square error (MSE) as a function of the
number of epochs. r2−scores and MSE are evaluated on the testing partition (full partition or subset
corresponding to a given flow configuration). The (15;55;55;1) ANN contains 4016 degrees of freedom
and the training is performed using the Laplacians inputs as indicated by the 15 input data.

Two main reasons can explain this behavior of the ANN.

The first reason that comes to mind is the difference in the size of the data among the
cases (see Table 6.1). However, the ANN analyzed here has been trained over a database where
data sizes have been balanced between each configuration. It has been checked (the results
are not reported here) that the difference between a non-balanced and a balanced database is
not significant anyway. The second reason, more convincing, for this learning inhomogeneity
is related to the distribution of the SGS pressure term (p̄− p̂). The PDF, given in Figure 6.5,
shows indeed a much wider distribution for the forced HIT. The larger magnitude of the SGS
pressure term for this configuration significantly influences the computation of the r2−score.
Note that the correlation coefficients are much less influenced by this effect (see Table 6.8).
The learning inhomogeneity is also visible for the MSE learning curve (Figure 6.18) where the
forced HIT displays the largest amplitude. Since the MSE is used in the loss function to correct
weights and biases, it is likely that a larger amplitude of the MSE over a given configuration
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Testing configuration r2−score Correlation coefficient

Full testing partition 0.97 0.98
Testing partition subset: forced HIT 0.97 0.98
Testing partition subset: Mc = 1.1 0.92 0.96
Testing partition subset: Mc = 2.2 0.88 0.94

Table 6.8: Performance of the (15;55;55;1) ANN model (4016 degrees of freedom) trained using Lapla-
cian inputs and with the full database training partition (80% of the data corresponding to the 3 flow
configurations). r2−scores and MSE are computed using the testing partition (remaining 20%) or
subsets of the testing partition.

is related to a stronger correction and thereby a possibly better learning for this configuration.
Yet, this can only be partially true since the r2−score for the mixing layer at Mc = 2.2 is
smaller than that for the mixing layer at Mc = 1.1 whereas the MSE is larger for Mc = 2.2
than for Mc = 1.1. This contradiction is likely to be due to the strong decrease of correlations
between the 15 inputs and the output when going from Mc = 1.1 to Mc = 2.2, which signifi-
cantly hinders the ANN performance.

Figure 6.19 compares predicted versus true (or observed) output values plotted for the three
configurations and for the overall database. Let us emphasize again the predicted values are
those given by the unique ANN defined at the end of the training stage depicted in Figure
6.18. The various plots of Figure 6.19 actually detail the final values of the global accuracy
indicators (r2−score and MSE) by successively providing an overview of "ANN predictions vs
observations" for the subsets of the testing partition (plots (a) to (c)) and the full testing par-
tition (plot (d)). These plots confirm the comments made on the curves of Figure 6.19 and the
asymptotic values of Table 6.8. The magnitude of the predicted and true values is significantly
larger for the forced HIT. When the r2−score is evaluated over the entire testing partition,
residuals for both mixing layers are flattened by the forced HIT. When evaluated separately
for each flow configuration, the ANN prediction shows much larger discrepancies. As a result,
no visible difference can be detected between the forced HIT (Figure 6.19(c)) and the overall
(testing) database (Figure 6.19(d)).

Finally, although the performance is inhomogeneous over the different configurations, when
looking at the correlation coefficients, the trained ANN remains very effective in comparison
to the literature (Gamahara & Hattori, 2017; Wang et al., 2018; Prat et al., 2020). Note that
very few authors use the r2−score (Pawar et al., 2020) whereas this measure is a much more
discriminant metric when compared to the correlation coefficient. An ANN with an acceptable
(generally a value over 0.7) correlation coefficient between predicted and true values would not
necessarily lead to a good r2−score.

Removal of the Laplacian inputs

As previously mentioned when discussing the evaluation of the ANN computational cost (see
Section 6.3.2), the removal of inputs requiring Laplacian computation offers two main benefits:
i) the reduction of discrepancies in ANN inputs between a priori and a posteriori LES, ii) com-
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a) b)

c) d)

Figure 6.19: In red, representation of the values predicted by a (15;55;55;1) ANN model (4016 degrees
of freedom) versus the true values and in black, representation of true values versus true values. Flow
configuration(s) (a) mixing layer only at Mc = 1.1, (b) mixing layer only at Mc = 2.2, (c) forced HIT
only, (d) full testing partition.

Figure 6.20: Comparison of the r2−score evolutions between ANN with and without Laplacian inputs
as a function of the number of epochs. Results are evaluated over the testing partition.
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putational cost savings. The objective here is to evaluate the impact on the ANN performance
(accuracy of the ANN prediction) of the Laplacian inputs removal.

In addition to the preliminary tests summarized in Table 6.3, which indicated a r2−score
reduction from 0.93 to 0.90 when removing the Laplacian inputs, Figure 6.20 compares the
scores during the learning process for two ANN sharing the same two hidden layers structure
with 55 neurons for each layer but one being trained with Laplacian inputs, hence of the form
(15;55;55;1), while the other is trained without these 4 Laplacian inputs, hence of the form
(11;55;55;1). When removing the Laplacian inputs, the overall r2−score is reduced by about
0.03, consistently with Table 6.3. Note the values (after 10 epochs) of the r2−score and the
correlation coefficient for the ANN without Laplacian inputs are reported in Table 6.9 for the
(11;55;55;1) ANN (corresponding to 3796 degrees of freedom). Figure 6.20 allows to detail the
effect of the Laplacian inputs removal on the prediction specific to a given flow configuration
(HIT or mixing layer). This effect is found particularly significant for the mixing layer at
Mc = 2.2 since the difference between the two r2− scores (ANN with and without Laplacian
inputs) is about 0.06. Note this was not really expected as Laplacian inputs were shown to
poorly correlate with the SGS pressure (see Table 6.2). Note that even though the r2−score
without Laplacian inputs goes down to 0.82 for this Mc = 2.2 mixing layer configuration, the
correlation coefficient between predicted and true output values remains satisfactory with a
value of 0.91.

These experiments justify to retain from now on a simplified model without Laplacian
inputs, which is known to be slightly less effective than the one including Laplacian inputs but
which strongly facilitates the a posteriori validation (see Chapter 7).

Variation of the number of degrees of freedom

In Section 6.3.2, it has been shown that the increase of the network size goes along with the
performance improvement, though this improvement remains very small in terms of r2−score
amplitude. This observation would tend to favor the use of a small size ANN, since its compu-
tational cost is smaller and its predictive efficiency appears to remain acceptable. However, the
first tests reported in Section 6.3.2 have been evaluated using the global r2−score computed for
the full testing partition (see Table 6.1), which tends to hide the potentially significant discrep-
ancies that might exist when applying the ANN model to one flow configuration or another. In
order to properly quantify the influence of the network size on the ANN performance, scores
need to be evaluated separately over each case or flow configuration.

Table 6.9 compares four double hidden layers ANN (without Laplacian inputs) with a num-
ber of degrees of freedom increasing from 96 to 3796. For each ANN, the r2−score and cor-
relation coefficient are computed not only for the full testing database but also separately for
the 3 subsets of this testing database, corresponding to the 3 flow configurations. For a very
small size ANN (11;5;5;1) (corresponding to 96 degrees of freedom), the overall performance
(r2−score about 0.90) appears very reasonable but it actually hides the far less satisfactory
scores computed for the mixing layers only, which are respectively equal to 0.47 and 0.67 for
Mc = 1.1 and Mc = 2.2. One can note that the correlation coefficients remain high (superior
to 0.84) in any case, despite the drop in the r2−score: as previously mentioned, this underlines
the importance of selecting a relevant metric for the network efficiency and the choice of the
r2−score should be favored over the usual correlation coefficient.
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Number of degrees of freedom Testing configuration r2−score Correlation coefficient

Full database 0.90 0.95
Forced HIT 0.92 0.95

96 Mc = 1.1 0.47 0.88
Mc = 2.2 0.67 0.84

Full database 0.93 0.97
Forced HIT 0.94 0.97

436 Mc = 1.1 0.81 0.92
Mc = 2.2 0.79 0.89

Full database 0.93 0.97
Forced HIT 0.94 0.97

913 Mc = 1.1 0.86 0.94
Mc = 2.2 0.79 0.89

Full database 0.94 0.97
Forced HIT 0.94 0.97

3796 Mc = 1.1 0.89 0.94
Mc = 2.2 0.82 0.91

Table 6.9: Accuracy assessment for several ANN with a different number of degrees of freedom (96-
436-913-3796). r2−scores and correlation coefficients are computed after 10 epochs using the testing
partition (full or its subsets corresponding to the 3 flow configurations). All ANN are trained without
Laplacian inputs.
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Training configuration Testing configuration r2−score Correlation coefficient

Full database 0.91 0.96
Forced HIT 0.96 0.98

HIT Mc = 1.1 0.40 0.64
Mc = 2.2 0.13 0.84

Full database -1.42 0.10
Forced HIT -1.66 0.16

Mc = 1.1 Mc = 1.1 0.93 0.97
Mc = 2.2 -0.09 0.53

Full database -0.39 0.66
Forced HIT -0.49 0.70

Mc = 2.2 Mc = 1.1 -45.5 0.68
Mc = 2.2 0.86 0.93

Full database 0.96 0.98
Forced HIT 0.97 0.98

Full database Mc = 1.1 0.91 0.96
Mc = 2.2 0.88 0.94

Table 6.10: Results of generalization tests for the (15;55;55;1) ANN (4016 degrees of freedom) trained
with Laplacian inputs. Metrics (r2−score and correlation coefficient) are evaluated over the full solu-
tions after 10 epochs.

The increase of the network size quickly leads to an improvement of the network perfor-
mance, even when selectively applied to the mixing layer cases. For a (11;15;15;1) network
comprising 436 degrees of freedom, all r2−scores are larger than 0.79. Further increasing
the number of degrees of freedom yields a very slight improvement of the global performance
(metrics computed for the full testing database) but enables a significant improvement of the
r2−score for both mixing layers. The network with 3796 degrees of freedom appears eventu-
ally as a good trade-off between the computational cost (about 20% increase with respect to
the baseline LES calculation without SGS pressure model) and the prediction performance for
mixing layers.

6.4.2 Generalization tests

The generalization test focus on the ability of the ANN to generalize its good prediction to
other cases / flow configurations which were not present in the training database. The first test
consists in:

• training an ANN over one of the configurations among the database (Table 6.1)

• and testing it over the other configurations (which were not included in the training
database).
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Tested configuration Temporal solutions r2−score Correlation coefficient

Forced HIT Solutions 2-8 0.94-0.93 0.97-0.97
ML - Mc = 1.1 τ = 1750− 2100 0.86-0.69 0.93-0.91

ML - Mc = 2.2 - DGA τ = 4050− 5000 0.81-0.70 0.90-0.89
ML - Mc = 2.2 - DGB τ = 4000 0.53 0.79
ML - Mc = 2.2 - DGC τ = 3800 0.36 0.71
ML - Mc = 2.2 - DGD τ = 3800 0.35 0.66

Table 6.11: Performance of the (11;55;55;1) ANN model (3796 degrees of freedom) trained (without
Laplacian inputs) over the full training database. r2−scores and correlation coefficients are evaluated
over the full solutions which were not included in the ANN training database (see the additional testing
database in Table 6.1)

Table 6.10 gathers the results obtained for this series of tests. Consistently with the spreading
of the PDF (see Section 6.2), the configuration of choice to train an ANN capable to generalize
its performance is the forced HIT. Yet, the scores are not satisfying. Even though the corre-
lation coefficients are rather good, the r2−score remains low, especially for the mixing layer
at Mc = 2.2. Results are even worse when the ANN is trained over the mixing layer only.
Note that the r2−scores for the mixing layer at Mc = 2.2 are smaller when compared to the
mixing layer at Mc = 1.1, likely because of the increase of the compressibility which causes a
reduction of correlation coefficients between the output and the inputs (see Table 6.2). These
tests demonstrate the necessity to train the ANN over a diverse database in order to strengthen
its generalization capabilities, as illustrated by the scores and correlation coefficients obtained
when training on the full database as done previously. Note the very slight differences between
the values reported for the full database training in Table 6.10 and the values previously re-
ported in Table 6.8 come from the fact values in the later table were computed after 25 epochs
(at the end of the training process) while values in the former table are computed after 10
epochs only.

The second series of generalization test consists in:

• training the ANN over the entire database (Table 6.1)

• and testing it over additional temporal solutions and over additional DNS not included
in the training database. These additional solutions have also been provided in Table 6.1
and are recalled in Table 6.11 along with the corresponding efficiency metrics.

Let us briefly review the content of the additional testing database and comment on the level
of generalization it provides:

• for the forced THI, let us remember the solution index corresponds to the multiple of the
characteristic time at which the solution is saved. Consequently, solution 2 is still close
to solution 1 included in the training database while solution 8 is clearly more distinct
since computed at a very different instant.

• for the mixing layer at Mc = 1.1, the solution included in the training database is taken
at time τ = 1700 (beginning of the self-similar period). Therefore, the solution at time
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Figure 6.21: z−centerplane contours colored by p̄− p̂ for true (left) and ANN predicted (right) values.
Results are plotted for the second stored temporal solution (see Table 6.1) for each configuration:
(top) the mixing layer at Mc = 1.1 (τ = 1750), (middle) the mixing layer at Mc = 2.2 (τ = 4050)
and (bottom) the forced HIT (Solution 2). The (11;55;55;1) ANN model comprises 3796 degrees of
freedom and is trained without Laplacian inputs. None of the flow solutions have been included into
the ANN training.
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Figure 6.22: z−centerplane contours colored by p̄− p̂ for true (left) and ANN predicted (right) values.
Results are plotted for the third stored temporal solution (see Table 6.1) for each configuration: (top)
the mixing layer at Mc = 1.1 (τ = 2100), (middle) the mixing layer at Mc = 2.2 (τ = 5000) and
(bottom) the forced HIT (Solution 8). The (11;55;55;1) ANN model comprises 3796 degrees of freedom
and is trained without Laplacian inputs. None of the flow solutions have been included into the ANN
training.
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Figure 6.23: z−centerplane contours colored by p̄− p̂ for true (left) and ANN predicted (right) values.
Results are plotted for the mixing layers at Mc = 2.2: (top) DGB, (middle) DGC and (bottom) DGD.
The (11;55;55;1) ANN model comprises 3796 degrees of freedom and is trained without Laplacian
inputs. None of the flow solutions have been included into the ANN training.
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τ = 1750 included in the additional testing database is still very close to the training
solution while the solution at time τ = 2100 also included is quite different from the
training solution.

• similarly, for the mixing layer atMc = 2.2, the solution at time τ = 4050 in the additional
testing database is still very close to the training solution extracted at time τ = 4000
(beginning of the self-similar period) while the solution at time τ = 5000 also included is
quite different from this training solution.

• finally, recalling that the Mc = 2.2 training solution corresponds to the DGA initial ther-
modynamic state and the start of the corresponding self-similar period, it can be observed
that the DGB, DGC and DGD solutions in the additional testing database are also ex-
tracted at the start of their respective self-similar period (see Section 4.4.3). Judging the
"distance" between these 3 solutions and the DGA training solution is delicate. From
the flow analysis proposed in Section 4.4.3 one could however assume that DGD could
be considered as closer to DGA than DGB and DGC based for instance on the slope of
momentum thickness time evolution.

The network applied to predict these 9 additional flow configurations is the (11;55;55;1) ANN
(corresponding to 3796 DOF) trained on the full database including the 3 originally selected
flow configurations (with a performance summarized at the bottom of Table 6.9). Table 6.11
gathers the r2−scores and the correlation coefficients for this reference ANN applied to the
additional flow configurations.

It can be observed from the three first lines of Table 6.11 that very good predictions are
provided by the ANN for all the new temporal solutions that are considered. Even for the
mixing layer atMc = 2.2, the r2−score and the correlation coefficient remain respectively equal
to 0.70 and 0.89 after 1000 non-dimensional times (corresponding to half the self-similar period
for this flow) elapsed since the instant of capture for the training solution. Figures 6.21 and
6.22 display SGS pressure contours for true (left) and ANN-predicted (right) values respectively
for the temporal testing solutions close to the training solutions and for the temporal testing
solutions with a large time separation with respect to the training solutions. It can be clearly
observed on these plots that the contours of SGS pressure are very well predicted by the ANN
both in the positive and negative regions.

For other thermodynamic operating points, results deteriorate as can be observed from the
three last lines of Table 6.11. This is especially noticeable for DGC and DGD with r2−score
coefficients decreasing respectively to 0.36 and 0.35 (from 0.88 for the training DGA solution).
The DGB r2−score is slightly better likely because its initial thermodynamic operating point is
located closer to the DGA one (but even though the flow development for DGB is not especially
closer to DGA than DGC and DGD). Despite these average scores, the structure of the SGS
pressure field is still quite correctly captured by the ANN as can be observed in Figure 6.23.
Note that this represents an interesting feature of the model which is entirely local and has not
been designed to reproduce the structure of turbulent features spanning on numerous grid cells.

The values obtained for the correlation coefficients when performing this second series of
generalization tests appear obviously as weak when compared to the one previously obtained
for the testing partition of the initial full database. However, it should be emphasized that
the performance provided by the ANN designed in the present work remains actually in the
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upper limit when compared to usual SGS turbulent tensor models derived in the literature (see
for instance the evaluations reported in Gamahara & Hattori (2017) and Wang et al. (2018)).
The above tested model based on the (11;55;55;1) ANN deserves therefore to be selected for
the next and final step of our study which is the a posteriori evaluation presented in the next
chapter.

6.5 Analysis of small size ANN
Motivation

In this last section, we wish to address a point raised in the introduction of the chapter, namely
the need to go beyond a black-box ANN-based model that is the need to try and explain the
relationships identified by the network between the filtered and SGS variables. In order to
simplify the network analysis and help the identification of significant connections between
neurons, only small size ANN are investigated. Note this choice remains quite sensible as it has
been previously established that ANN with a low number of DOF were still able to provide a
reliable prediction of the SGS pressure terms (see Figure 6.17).

Methodology

The small size networks analyzed in this study are made of two hidden layers comprising
two neurons each, with inputs which do not include the Laplacians, hence 11 inputs. These
(11;2;2;1) ANN count therefore 28 weights and 5 bias yielding a total of 33 DOF. Some tests
(not reported here) have been conducted with these small size ANN trained over the entire
database; it was then found the r2−scores computed over each case separately were not high
enough to justify a thorough analysis of the networks structure. Consequently, these (11;2;2;1)
ANN (with hyperparameters selected according to Table 6.7) are trained over each database
configuration separately and their structure is analyzed for each flow case (HIT and mixing
layers with Mc = 1.1, Mc = 2.2).

In order to evaluate the reproducibility of the results, four different ANN are initialized
with the same Glorot method (Glorot & Bengio, 2010) using different seeds. The performance
of each network is given in Table 6.12 for all ANN. r2−scores are overall correct when ANN are
tested over the same configuration as the training one (using the same 80%− 20% partitioning
between training database and testing database as previously retained). The results obtained
confirm the difficulty for these ANN to generalize to other configurations than the one they
were trained with. Only a partial generalization is achieved for the ANN trained with one of
the mixing layers and tested on the other one. Note also that the generalization results are
not well reproducible. For instance, the r2−score of the ANN trained with the mixing layer at
Mc = 1.1 varies from 0.06 to 0.43 when tested over the mixing layer atMc = 2.2. Note however
that such simple ANN remain quite effective for the configuration they were trained with since
the r2−scores can reach 0.90 (for the mixing layer at Mc = 1.1).

Analysis of the networks

In order to study the very structure of the networks, Figures 6.24, 6.25 and 6.26 display this
structure for the four ANN built for each flow configuration, using the following choices of
visualization:

159



CHAPTER 6. SGS MODELING USING ARTIFICIAL NEURAL NETWORKS

Training configuration Mc = 1.1

Testing
configuration ANN 0 ANN 1 ANN 2 ANN 3

ML - Mc = 1.1 0.90 0.90 0.90 0.88
ML - Mc = 2.2 0.06 0.21 0.38 0.43
Forced HIT -0.03 -0.34 -2.11 -0.97

Training configuration Mc = 2.2

Testing
configuration ANN 0 ANN 1 ANN 2 ANN 3

ML - Mc = 1.1 0.14 -7.71 -1.69 -3.52
ML - Mc = 2.2 0.76 0.73 0.76 0.72
Forced HIT -0.12 -0.66 0.004 -0.77

Training configuration Forced HIT

Testing
configuration ANN 0 ANN 1 ANN 2 ANN 3

ML - Mc = 1.1 -9.17 -0.98 -8.39 -5.67
ML - Mc = 2.2 -0.19 -0.59 -0.30 -0.29
Forced HIT 0.89 0.85 0.86 0.88

Table 6.12: r2−scores of small size ANN (of the form (11;2;2;1) yielding 33 degrees of freedom) trained
over each flow configuration. Scores are evaluated over the testing partition after 10 epochs.
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• each network is plotted with, from bottom to top, the input layer with 11 variables, the
2 hidden layers of 2 neurons each and the single output

• the magnitude of each weight is directly proportional to the width of the lines connecting
neurons from one layer to the next layer: a very thick line indicates a very large weight
(in absolute value) while a very thin line (almost not visible on the plot) corresponds to
an almost zero weight

• the positive weights are colored in orange and the negative ones in blue. When the
absolute value of a weight exceeds unity, its value is reported on the plot.

The analysis of networks makes also use of Tables 6.13, 6.14 and 6.15 where correlation co-
efficients between the intermediate inputs at the entrance of the first hidden layer and other
variables are given.

Mixing layer at Mc = 1.1 Although r2−scores are almost identical for the 4 ANN (except
maybe for ANN 3 which is slightly less effective with a score of 0.88 instead of 0.90 for the
three other networks), their structure is very different, especially for ANN 3. The results do not
appear as well reproducible and because of the strong difference between weights magnitudes
and signs from one network to another, averaging the weights does not seem judicious. Yet, it
is possible to identify some common features for these four ANN. First, the weights associated
to the branches connected to the first four thermodynamic variables

(
ρ̄; T̂ ; p̂; ρ̄Ẽ

)
are always

significant even though the SGS pressure is not strongly correlated with these variables for both
mixing layers (see Table 6.2). Note that these significant weights do not necessarily lead to
high correlations between intermediate variables and the SGS pressure. For instance, the first
intermediate input of ANN 0 is more connected to inputs when compared to the second one
but its correlation with the SGS pressure is about 0.37 only, compared to 0.88 for the second
intermediate output. Note also that ANN 3 displays much larger weights with respect to the
other networks. Its score computed over the same configuration is smaller than the scores of
the other networks but its ability to generalize for the mixing layer at Mc = 2.2 is significantly
better than the other ANN.

Mixing layer at Mc = 2.2 and forced HIT Looking at the other ANN trained over the
mixing layer at Mc = 2.2 and the forced HIT confirms the lower rate of reproducibility of the
results obtained for the structure of the network. Very different structures can lead to almost
identical performance. The weights connected to the physical variables

(
ρ̄; T̂ ; p̂; ρ̄Ẽ

)
are always

larger than other weights, even for mixing layers where these variables are poorly correlated
with the SGS pressure.

Analysis of correlations Tables 6.13, 6.14 and 6.15 seem to evidence two main situations
encountered during the training:

• In the first situation, two intermediate inputs significantly correlated with the SGS pres-
sure are obtained (see for instance Mc = 1.1-ANN 1, Mc = 1.1-ANN 3, HIT-ANN 0,
HIT-ANN 1 and HIT-ANN 3). In that case, their correlation coefficients are very close
to each other but with an opposite sign.
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ANN 0 ANN 1 ANN 2 ANN 3
Intermediate

inputs 1st 2nd 1st 2nd 1st 2nd 1st 2nd

1st input 1 0.59 1 -0.81 1 -0.99 1 -0.99
p̄− p̂ 0.37 0.88 -0.81 0.88 -0.89 0.90 0.89 -0.90
ρ̄ -0.03 0.14 0.01 0.14 -0.13 0.18 0.17 -0.09
T̂ -0.22 -0.08 0.17 -0.08 0.08 -0.03 -0.05 0.12
p̂ -0.07 0.12 -0.01 0.12 -0.11 0.17 0.14 -0.08
ρ̄Ẽ -0.03 0.14 -0.01 0.15 -0.13 0.18 0.17 -0.09

‖∇ (ρ̄) ‖ -0.22 -0.82 0.78 -0.85 0.85 -0.86 -0.83 0.88
‖∇
(
T̂
)
‖ -0.09 -0.80 0.81 -0.82 0.83 -0.86 -0.83 0.85

‖∇
(
p̂
)
‖ -0.16 -0.84 0.82 -0.86 0.87 -0.89 -0.87 0.89

‖∇
(
ρ̄Ẽ
)
‖ -0.22 -0.82 0.78 -0.85 0.85 -0.86 -0.83 0.88

I1 0.13 0.03 0.04 0.02 -0.02 0.003 0.01 -0.02
I2 0.03 -0.02 0.09 -0.01 0.03 -0.04 -0.03 0.02
I3 0.002 -0.01 0.01 -0.02 0.01 -0.01 -0.004 0.02

Table 6.13: Mixing layer at Mc = 1.1 - Correlation coefficients are computed between the two
intermediate ANN inputs (1st and 2nd inputs) at the entrance of the first hidden layer and the ANN
inputs and the true value of the SGS pressure term (p̄ − p̂). Correlations with absolute values above
0.4 are colored in red. Small size ANN are trained during 10 epochs.

• In the second situation, only one variable is significantly correlated with the exit, the
other one being weakly correlated. As a consequence, the weights of branches connected
between the poorly correlated neuron and the second hidden layer are very low. This side
of the network is therefore almost not used by the ANN (see for instance Mc = 1.1-ANN
0, Mc = 2.2-ANN 0, Mc = 2.2-ANN 1 and Mc = 2.2-ANN 3). This kind of ANN could be
used to further simplify the network by progressively removing unnecessarily branches in
order to possibly write an analytical relation between the inputs and the output.

Note that consistently with correlations between inputs and the output (see Table 6.2), inter-
mediate variables tend to be more correlated with gradients for the mixing layer at Mc = 1.1
and with the thermodynamic variables for the forced HIT. The mixing layer at Mc = 2.2 seems
to be an intermediate case between the two other flow configurations which could explain the
lower performance of ANN when trained other this configuration.

Conclusion This attempt to thoroughly investigate small scale networks shows in particular
a low rate of reproducibility of the learning process. Several combinations of weights and bias
can actually lead to approximately the same performance. Note that it is not possible to train
such a simple ANN over the entire database with a good ability to yield consistent scores over
each configuration separately. The modeling problem at stake seems therefore too difficult to
be analytically solved and more complex networks are needed (such as the (11;55;55;1) ANN
previously designed), which escape a simple description.
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ANN 0 ANN 1

r2 = 0.90 r2 = 0.90

ANN 2 ANN 3

r2 = 0.90 r2 = 0.88

Figure 6.24: Mixing layer at Mc = 1.1 - Four small size ANN are identically with four different
Glorot initializations (Glorot & Bengio, 2010). Positive weights are colored in orange and negative
ones in blue. Values of weights are only given when the absolute value is larger than 1.
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ANN 0 ANN 1

r2 = 0.76 r2 = 0.74

ANN 2 ANN 3

r2 = 0.76 r2 = 0.72

Figure 6.25: Mixing layer at Mc = 2.2 - Four small size ANN are identically trained with four
different Glorot initializations (Glorot & Bengio, 2010). Values of weights are only given when the
absolute value is larger than 1.
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ANN 0 ANN 1

r2 = 0.89 r2 = 0.85

ANN 2 ANN 3

r2 = 0.86 r2 = 0.88

Figure 6.26: Forced HIT - Four small size ANN are identically trained with four different Glorot
initializations (Glorot & Bengio, 2010). Values of weights are only given when the absolute value is
larger than 1.
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ANN 0 ANN 1 ANN 2 ANN 3
Intermediate

inputs 1st 2nd 1st 2nd 1st 2nd 1st 2nd

1st input 1 -0.93 1 0.53 1 0.93 1 0.25
p̄− p̂ 0.40 -0.11 -0.17 0.49 0.24 0.49 0.63 -0.26
ρ̄ -0.91 0.99 -0.88 -0.60 -0.94 -0.82 -0.50 -0.80
T̂ -0.93 0.91 -0.76 -0.69 -0.88 -0.87 -0.70 -0.72
p̂ -0.91 0.94 -0.89 -0.74 -0.88 -0.80 -0.64 -0.80
ρ̄Ẽ -0.91 0.99 -0.88 -0.60 -0.94 -0.82 -0.50 -0.80

‖∇ (ρ̄) ‖ -0.77 0.56 -0.07 -0.55 -0.72 -0.86 -0.64 -0.09
‖∇
(
T̂
)
‖ -0.70 0.48 0.00 -0.53 -0.65 -0.81 -0.63 0.16

‖∇
(
p̂
)
‖ -0.43 0.13 0.36 -0.33 -0.33 -0.59 -0.48 0.49

‖∇
(
ρ̄Ẽ
)
‖ -0.77 0.58 -0.07 -0.55 -0.72 -0.86 -0.64 0.09

I1 0.01 0.02 -0.05 -0.002 -0.01 0.01 0.00 -0.06
I2 0.30 -0.26 0.25 0.35 0.25 0.27 0.32 0.20
I3 -0.16 0.14 -0.10 -0.16 -0.14 -0.16 -0.17 -0.08

Table 6.14: Mixing layer at Mc = 2.2 - Correlation coefficients are computed between the two
intermediate ANN inputs (1st and 2nd inputs) at the entrance of the first hidden layer and the ANN
inputs and the true value of the SGS pressure term (p̄ − p̂). Correlations with absolute values above
0.4 are colored in red. Small scale ANN are trained during 10 epochs.
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ANN 0 ANN 1 ANN 2 ANN 3
Intermediate

inputs 1st 2nd 1st 2nd 1st 2nd 1st 2nd

1st input 1 -0.38 1 -0.47 1 -0.06 1 -0.51
p̄− p̂ -0.47 0.48 -0.51 0.51 -0.15 0.58 0.47 -0.55
ρ̄ -0.69 0.89 -0.75 0.89 -0.28 0.92 0.87 -0.80
T̂ -0.64 0.90 -0.69 0.89 -0.24 0.91 0.88 -0.74
p̂ -0.56 0.86 -0.61 0.84 -0.18 0.84 0.84 -0.66
ρ̄Ẽ -0.69 0.89 -0.75 0.89 -0.28 0.92 0.87 -0.80

‖∇ (ρ̄) ‖ 0.23 0.75 0.14 0.74 0.55 0.62 0.77 0.05
‖∇
(
T̂
)
‖ 0.40 0.63 0.32 0.62 0.70 0.47 0.66 0.23

‖∇
(
p̂
)
‖ 0.31 0.54 0.22 0.55 0.78 0.48 0.56 0.13

‖∇
(
ρ̄Ẽ
)
‖ 0.23 0.75 0.14 0.74 0.55 0.62 0.77 0.05

I1 0.21 0.32 0.18 0.34 0.34 0.26 0.36 0.14
I2 -0.17 -0.20 -0.14 -0.19 -0.32 -0.13 -0.22 0.11
I3 0.23 0.19 0.19 0.16 0.33 0.11 0.21 0.17

Table 6.15: Forced HIT - Correlation coefficients are computed between the two intermediate ANN
inputs (1st and 2nd inputs) at the entrance of the first hidden layer and the ANN inputs and the true
value of the SGS pressure term (p̄− p̂). Correlations with absolute values above 0.4 are colored in red.
Small scale ANN are trained during 10 epochs.
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Chapter 7
Preliminary a posteriori test of the ANN-based
SGS pressure model
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This chapter is devoted to the a posteriori testing of the ANN model designed in the previous
chapter for the SGS pressure term, which has been shown to be significant for dense gas

flows thanks to the a priori analysis presented in Chapter 5. The methodology adopted to
perform this preliminary a posteriori test of the model is described in Section 7.1. The effects
of the model for DG mixing layers are analyzed through both structural and functional criteria
using SGS pressure contours in Section 7.2 and momentum thickness temporal evolutions in
Section 7.3. Some explanations for the results of the LES computed with the SGS pressure
term are provided in Section 7.4, using a comparison between the SGS pressure and the SGS
turbulent stress tensor as well as an analysis of the averaged thermodynamic distributions.
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7.1 Methodology

Several a posteriori LES are performed for both compressible mixing layers at Mc = 1.1 and
Mc = 2.2. The present work does not seek to represent DG effects on all SGS terms but
only focuses on the SGS pressure term. Other SGS terms must nonetheless be modeled. The
straightforward choice made at this stage, in the context of the present thesis, is to use existing
models designed for PG flows. Simulations are thus computed using (see Equation (5.1) for the
details of the LES equations to be solved):

• the dynamic Smagorinsky model for the SGS turbulent stress tensor

• the ANN model designed in Chapter 6 to take into account the SGS pressure in the
filtered momentum equation

• a turbulent Prandtl number modeling (with PrSGS = 0.6 (Lesieur, 2012)) to model the
SGS internal energy in the filtered energy equation (see Section 2.4.6)

• the works of the SGS turbulent stress tensor model and of the SGS pressure model are
added in the filtered energy equation to respectively partially model the SGS kinetic
energy flux and the SGS pressure work.

Consistently with Section 5.2, the SGS viscous term is neglected in the filtered momentum
equation; also, the SGS viscous work and the heat flux are neglected in the filtered energy
equation. Note that the use of the (11;55;55;1) ANN model in LES simulations required an
implementation step inside the AVBP code which is not detailed here. The computational
extra cost has been previously evaluated (see Figure 6.15). It is approximately equal to 20%
for the (11;55;55;1) ANN model which corresponds to 3796 degrees of freedom. The 11 input
of the model are the variables ρ̄, T̂ , p̂, ρ̄Ẽ, the norm of their respective gradient and the three
invariants I1, I2 and I3.

Since the ANN model has been trained using temporal solutions extracted during the self-
similar period, the initial LES solution is built from an interpolation† of the first self-similar
DNS solutions occurring respectively at τ = 1700 and τ = 4000 for the mixing layers at
Mc = 1.1 and Mc = 2.2. DNS solutions are interpolated with four different filtering sizes
(∆̄/∆DNS ∈ [4, 8, 16, 32]). The largest filtering size ∆̄/∆DNS = 32 is located in the inertial zone
close to the one of the filtered DNS training database (see Table 6.1). Moreover, the domain
size of these interpolated solutions is doubled in the y−direction in order to obtain long enough
LES simulations without reaching the lower and upper domain boundaries.

7.2 SGS pressure contours

The first results are presented in Figures 7.1 and 7.2 where centerplane contours of the SGS
pressure are plotted for both mixing layers respectively at Mc = 1.1 and τ = 1750, and at
Mc = 2.2 and τ = 4050. Each figure displays (a) (and (a’) for Mc = 2.2) a priori values and
(b,c,d,e) a posteriori ANN predictions of the contours for the four filter sizes. Because of the
differences already mentioned (see Figure 2.2) between a priori and a posteriori methodologies,
it is not expected to find exactly the same structure between the contours of the a priori values

†The interpolation is performed using the inverse distance weighting method proposed in the Antares Python
library (antares Development Team, 2020) compatible with AVBP solutions.
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a)

b) c)

d) e)

Figure 7.1: Mixing layer at Mc = 1.1. z−centerplane contours colored by p̄ − p̂ for (a) predicted
a priori values and computed a posteriori values with (b) ∆̄/∆DNS = 32, (c) ∆̄/∆DNS = 16, (d)
∆̄/∆DNS = 8 and (d) ∆̄/∆DNS = 4. Results are plotted at τ = 1750. Note that the domain length in
the y−direction is identical for the four LES but is twice larger than the one used for the filtered DNS.
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a) a∗)

b) c)

d) e)

Figure 7.2: Mixing layer at Mc = 2.2. z−centerplane contours colored by p̄ − p̂ for the (a) and (a∗)
predicted a priori values and computed a posteriori values with (b) ∆̄/∆DNS = 32, (c) ∆̄/∆DNS = 16,
(d) ∆̄/∆DNS = 8 and (d) ∆̄/∆DNS = 4. Results are plotted at τ = 4050. A priori results are plotted
twice: (a) with the scale found in the a priori analysis and (a’) with the scale computed in the a
posteriori LES. Note that the domain length in the y−direction is identical for the four LES but is
twice larger than the one used for the filtered DNS.
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of p̄− p̂ and the a posteriori values of the LES on increasingly refined grids but similarities are
expected as well as matching order of magnitude.

At Mc = 1.1 (Figure 7.1), the order of magnitude is the same in the two cases (a priori and
a posteriori analyses) but high magnitude regions in a priori LES are only partially reproduced
in a posteriori LES. Yet, the ANN model prediction is consistent between the four filtering sizes.

At Mc = 2.2 (Figure 7.2), SGS pressure structures are very close between a priori and a
posteriori LES but the order of magnitude is smaller for the a posteriori LES. The maximum
amplitude of predicted values is approximately twice larger in the a priori LES when compared
to a posteriori ones, as clarified by the choice of scale used for the a priori plots: (a) full range
and (a’) range of the a posteriori LES.

In both mixing layers, visualizations show a proper implementation of the ANN in the
AVBP code and the ability of the the ANN-based model to predict consistent values over
the four different filtering sizes in a posteriori LES. Yet, because of the stochastic nature of
turbulent flows, the comparison between a priori and a posteriori predictions should be done
with averaged quantities which is the purpose of the next section.

7.3 Temporal evolution of the momentum thickness
The next step in the validation process consists in testing the ability of the LES using the SGS
pressure model to reproduce the temporal evolution of the momentum thickness (integrated
over the whole domain).

Figure 7.3 displays this temporal evolution at Mc = 1.1 and Mc = 2.2 for two types of
LES: one with the SGS pressure model and one without. This comparison is available for each
tested filtering size (from ∆̄/∆DNS = 32 to ∆̄/∆DNS = 4). The DNS result is also provided
for reference.

The effect of the SGS pressure model on the prediction of the momentum thickness time evo-
lution is not visible since curves overlap for LES with and without the model. The SGS pressure
seems actually to have no effect on the mixing layer growth. Possible reasons for this lack of
influence of the SGS pressure on the growth of the mixing layer are proposed in the next section.

With and without the SGS pressure model, the evolution is well captured by the LES at
∆̄/∆DNS = 4 for bothMc = 1.1 andMc = 2.2 mixing layers. As the filter size increases, results
depart from the DNS reference. At ∆̄/∆DNS = 8, the value of δθ/δθ(t) is about 10% larger
when compared to the DNS evolution, but the growth rate slope tends to stabilize and becomes
close to the DNS slope as the non-dimensional time increases. At ∆̄/∆DNS = 16, the growth
is successively under-predicted and over-predicted by SGS models for both convective Mach
numbers. Note that results at this filter size are slightly better at Mc = 1.1. At ∆̄/∆DNS = 32,
the momentum thickness is significantly under-predicted with a growth rate decrease of about
50% for both convective Mach numbers when compared to DNS.

SGS models fail to reproduce the overall behavior of DG compressible mixing layers at
medium to large filtering sizes. The well-known compressibility-related decrease of the momen-
tum thickness growth rate (related to the increase of the Mach number) is thus not reproduced
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Mc = 1.1

Mc = 2.2

Figure 7.3: Temporal evolution of the momentum thickness. Comparison is made between DNS and
a posteriori LES at four filtering sizes (∆̄/∆DNS ∈ [4, 8, 16, 32]) with and without the SGS pressure
model. No difference is visible since curves overlap. Two different non-dimensional time ranges are
represented for each convective Mach number: forMc = 1.1, τ ∈ [1600; 2600] (left) and τ ∈ [1600; 3500]
(right); for Mc = 2.2, τ ∈ [3500; 6500] (left) and τ ∈ [3500; 8000] (right).
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Mc = 1.1

Mc = 2.2

Figure 7.4: Temporal evolution of the momentum thickness for the mixing layers at (top) Mc = 1.1
and (bottom) Mc = 2.2. Comparison is made between DNS and a posteriori LES at four filtering
sizes (∆̄/∆DNS ∈ [4, 8, 16, 32]) with and without the dynamic Smagorinsky model. Two different
non-dimensional time ranges are represented for each convective Mach number: for Mc = 1.1, τ ∈
[1600; 2600] (left) and τ ∈ [1600; 3500] (right); forMc = 2.2, τ ∈ [3500; 6500] (left) and τ ∈ [3500; 8000]
(right).
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by LES using the aforementioned SGS models in DG flows. Accounting for the SGS pressure
does not allow to capture this effect either. The effect of other SGS terms should thus be
investigated, in particular the effect of the SGS turbulent stress tensor.

In order to evaluate the effect of the dynamic Smagorinsky model on the momentum thick-
ness growth, Figure 7.4 displays LES at Mc = 1.1 and Mc = 2.2 performed with and without
the dynamic Smagorinsky model. The removal of the model for the SGS turbulent stress tensor
consistently leads to a larger growth rate of the mixing layer with respect to the case where the
model is active. This could be expected since the model dissipates part of the TKE energy at
the filter scale, which damps the growth of the mixing layer. This effect of the SGS turbulent
stress tensor removal leads therefore to an over-prediction of the growth rate when the LES us-
ing the SGS model yields an already acceptable prediction, which is the case for ∆̄/∆DNS = 16.
For other filtering sizes, removing the dynamic model tends actually to improve the prediction
because of the under-prediction trend of the LES with the SGS turbulent stress model.

Further investigations are needed to determine whether this observed behavior is specific to
the DG LES modeling or is also encountered for the PG LES modeling. If not the case, this
would probably call for a specific modeling task for the SGS turbulent stress tensor in the case
of DG flows.

7.4 Further analysis of the SGS pressure

7.4.1 Comparison between SGS pressure and SGS turbulent stress
tensor

Since no effect of the SGS pressure is observed in the previous section when analyzing the
temporal evolution of the momentum thickness, one could question the assessment made in
Chapter 5 of the SGS pressure magnitude, the flux of which was evaluated to be of a magni-
tude comparable to that of the SGS turbulent stress. To reinforce these conclusions drawn in
Chapter 5, both fluxes are extracted from the a posteriori LES in the three space directions.
Figure 7.5 displays the z−centerplane contours colored by both fluxes (SGS pressure on the left
and SGS turbulent stress tensor on the right) for the mixing layer at Mc = 2.2, ∆̄/∆DNS = 8
and τ = 6000 (which corresponds to the end of the DNS self-similar period): similar orders of
magnitude are observed.

Since Figure 7.4 shows that removing the model for the SGS turbulent stress tensor has a
strong effect on the mixing layer growth rate, one can wonder how and why the SGS pressure
term which has a similar magnitude can have zero effect on the growth of the mixing layer. A
tentative explanation is that the SGS pressure force might not significantly induce or damp tur-
bulence roll-up which is the mechanism at the heart of the mixing layer growth. To substantiate
this assumption, the vorticity equation (Bailly & Comte-Bellot, 2003) can be used:

∂ω

∂t
+∇× (ω × u) =

1

ρ2
∇ρ×∇p+ ν∇× (∇2u) (7.1)
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Figure 7.5: z−centerplane contours colored by (left) SGS pressure
(
∂[p̄−p̂]
∂xi

)
and SGS turbulent stress

tensor
(
∂ρ̄[ũiuj−ũiũj ]

∂xj

)
fluxes for the mixing layer at Mc = 2.2 and ∆̄/∆DNS = 8 in (top) x−, (middle)

y− and (bottom) z− directions. Results are plotted at τ = 6000. The ANN model comprises 3796
degrees of freedom (11;55;55;1) and is trained without Laplacian inputs.
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where ω = ∆× u†. The LES filtering operator is applied to Equation (7.1) to yield:

∂ω̄

∂t
+∇× (ω̄ × ū) =

1

ρ̄2
∇ρ̄×∇p̂+ ν̂∇× (∇2ū)

−
[

1

ρ̄2
∇ρ̄×∇(p̂− p̄)

]
−

[
1

ρ̄2
∇ρ̄×∇p̄−

(
∇ρ×∇p

ρ2

)]
(7.2)

−
[
ν̂∇× (∇2ū)− ν∇× (∇2u)

]
−
[
∇× (ω̄ × ū)−∇× (ω × u)

]
where ω̄ = ∇× ū†.

The SGS pressure term contribution to Equation (7.1) depends therefore on the alignment
of its gradient vector with that of the filtered density. Figure 7.6 compares the contours of both
terms in the three space directions. These contours are found to be very close between the two
quantities, especially in the x− and y− directions taking part in the z−vorticity equation. This
observation shows therefore that it is indeed possible to have a significant SGS pressure term,
of amplitude comparable to that of the SGS turbulent stress tensor, but which has no effect
on the mixing layer growth. An attempt could be made at explaining the observed alignment
between the gradient of the SGS pressure term and the gradient of the filtered density. It is
known that, for dense gases, the large heat capacity leads to almost isothermal flows regardless
of the Mach number. Note that the RMS temperature profiles shown next in Figures 7.7 and 7.8
confirm that it is also the case here. In that context, it is expected that pressure and density
fluctuations are strongly related. However, it remains to explain how quantities at different
scales (resolved density on one hand and SGS pressure on the other hand) can display such a
similar behavior.

7.4.2 Influence on the thermodynamic profiles

Figures 7.7 and 7.8 display the averaged and rms thermodynamic profiles for pressure, temper-
ature and density in the mixing layers at Mc = 1.1 and Mc = 2.2, computed using the LES
with the dynamic Smagorinski model for the SGS turbulent stress tensor but with or without
the ANN model for the SGS pressure.

At both convective Mach numbers, the SGS pressure model is found to have a negligible
effect on the LES results, except for a slight modification of the averaged temperature - the
evolution of which remains quasi-isothermal anyway. A posteriori LES performed with the SGS
pressure model predict a slightly reduced averaged temperature which leads to under-estimated
distributions at Mc = 2.2 and to a slightly improved predictions at Mc = 1.1. The lack of sig-
nificant modification of the averaged thermodynamic variables could be induced by the large
amount of internal energy present in dense gas flows, which mitigates the influence of the SGS
pressure model.

†The expression a× b denotes the vector product of a with b
†It is assumed that the filtering operator commutes with temporal and spatial differentiations. This assump-

tion is satisfied if the domain is not bounded and if the filtering size ∆ is constant and homogeneous.
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Figure 7.6: z−centerplane contours colored by (left) the SGS pressure
(
∂[p̄−p̂]
∂xi

)
gradients and (right)

the density gradients for the mixing layer at Mc = 2.2 and ∆̄/∆ = 8 in (top) x−, (middle) y− and
(bottom) z− directions. Results are plotted at τ = 6000. The ANN model comprises 3796 degrees of
freedom (11;55;55;1) and is trained without Laplacian inputs.
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Figure 7.7: Mixing layer at Mc = 1.1. The non-dimensional Reynolds averaged (left) and root mean
square (right) values of temperature (top), density (middle) and pressure (bottom) are averaged over
the self-similar period (τ ∈ [1700; 2550]), plotted along the y-direction and compared between DNS
and a posteriori LES with and without the SGS pressure model at four different filtering sizes. Note
that the bar symbol refers here to the Reynolds averaged of LES quantities and not to the LES filtering
symbol.
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Figure 7.8: Mixing layer at Mc = 2.2. The non-dimensional Reynolds averaged (left) and root mean
square (right) values of temperature (top), density (middle) and pressure (bottom) are averaged over
the self-similar period (τ ∈ [4000; 6000]), plotted along the y-direction and compared between DNS
and a posteriori LES with and without the SGS pressure model at four different filtering sizes. Note
that the bar symbol refers here to the Reynolds averaged of LES quantities and not to the LES filtering
symbol.

180



7.4. FURTHER ANALYSIS OF THE SGS PRESSURE

7.4.3 Summary

The results obtained in this preliminary a posteriori test of the proposed ANN-based SGS
pressure model raise interesting question on the relevance of this model. Its effect over the
mixing layer growth is found indeed negligible likely because of the alignment of its gradient
with the filtered density gradient which consequently drops its contribution in the vorticity
equation which controls the turbulent structure roll-up. This hypothesis needs however further
investigation to explain in particular how quantities defined at different scales (the gradient of
the filtered density and the gradient of the SGS pressure) can display such a strong correlation.
Also, no clear improvement is observed from the comparison of the thermodynamic variables
computed with and without the SGS pressure model and this behavior remains yet unexplained.
Results have also been obtained regarding the influence of the SGS turbulent stress tensor: by
switching on or off the dynamic Smagorinsky model (with the SGS pressure model switched
on) it was possible to establish the significant influence of the SGS turbulent stress tensor on
the momentum thickness evolution and the poor performance of this same model at medium to
large filtering sizes. Further research effort could therefore focus on the assessment of usual SGS
turbulent stress tensor models for DG flows and in case of poor performance to the development
of a dedicated DG model for the SGS turbulent stress tensor. This model development will
benefit from the ANN design framework detailed in the previous chapter.
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Chapter 8
Conclusion and Perspectives

Conclusion

The present thesis has been devoted to the analysis and the modeling of turbulence in flows
of dense gases (DG). This type of gas presents many benefits when compared to water,

arousing a growing interest from the ORC turbine industry. In particular, the DG capacity
to exchange large amount of energy at low to moderate temperatures for the heat sources
enables a great adaptability of ORCs. In the vicinity of the critical point, DG exhibit an un-
usual behavior when compared with classical perfect gases (PG). In this study, specific DG
called BZT gases, also widely used in the industry, have been considered. In addition to DG,
Bethe-Zel’dovich-Thompson (BZT) gases display a thermodynamic inversion region where the
fundamental derivative of gas dynamics Γ becomes negative, allowing the existence of expansion
shock-waves.

The use of DG in ORCs raises modeling issues when numerically designing ORC turbines
since the turbulent flows at stake include both significant compressibility effects and differences
with respect to PG flows. Up to now, although DG thermodynamic features strongly differ
from those of PG, turbulence closure models developed for PG have been applied for RANS
simulations and LES of DG flows, for the lack of a better option. The peculiar thermodynamic
behavior of DG, in particular BZT gases, questions the relevance of this choice, which implicitly
assumes that turbulent structures are not affected by neither DG nor BZT effects.

This thesis tackles the DG LES modeling issue by considering 3 main steps: 1) the detailed
analysis of DG mixing layers using DNS; 2) an a priori assessment of LES SGS terms using
filtered DNS; 3) the construction and the a posteriori analysis of a new LES SGS model using
supervised machine learning algorithms.

The physical features of DG, their fields of application and the related numerical modeling
issues were introduced in Chapter 1. Chapter 2 detailed the governing equations and constitu-
tive laws used to perform both real gas DNS and LES: instantaneous Navier-Stokes equations,
thermodynamic models and LES filtered equations. DG peculiarities and their influence on the
mathematical framework were also emphasized through the investigation of non-dimensional
numbers involved in the governing equations.

The first DNS were performed and analyzed in Chapter 3 at three different convective Mach
numbers Mc = 0.1− 1.1− 2.2 and for air described as a perfect gas. The simulations computed
using the AVBP code were compared with available results from the literature (in particular
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(Pantano & Sarkar, 2002)) in order to demonstrate the accuracy of the present DNS solver.
The well-known compressibility-related reduction of the momentum thickness growth rate was
well captured up to large convective Mach numbers. A great attention was paid in the present
study (i) to precisely select the self-similar period, based on the analysis of the integrated
streamwise production overtime, which is proportional to the momentum thickness growth rate
under certain conditions (Vreman et al., 1996a) and (ii) to properly select the domain size of
simulations which has an important effect for the achievement of self-similarity.

After this PG validation process, DNS were performed with DG described using the Martin-
Hou EoS at three convective Mach numbers Mc = 0.1 − 1.1 − 2.2. In addition, an analysis
of the influence of the domain size, the size of initial turbulent structures and the resolution
was also performed and reported in Appendix B. The comparison between perfect and dense
gases showed major differences for the momentum thickness growth rates when the convective
Mach numbers is equal to Mc = 2.2: the growth rate is twice as large for DG when compared
to PG. The compressibility-related reduction of the momentum thickness growth rate is thus
dampened in DG flows beyond Mc = 1.1. As shown by (Pantano & Sarkar, 2002) for PG flows,
the growth rate reduction is also related for DG flows to the reduction of normalized pressure
fluctuations. In addition, small scale dynamics of the specific kinetic energy spectra are also
observed to be significantly more intense in DG flows when compared to PG flows.

Additional DNS were performed for three others initial thermodynamic operating points.
Results show that BZT effects have only a small impact on the mixing layer growth. Discrep-
ancies between DG and PG flows are more likely related to transcritical real gas effects than to
the BZT and the DG thermodynamic peculiar properties. Shocklets indeed only have a limited
effect on the mixing layer growth. The compressible dissipation is negligible when compared
with the total dissipation. For dense gas mixing layers, several physical factors tend to reduce
compressibility effects: the decoupling of kinetic and internal energies reduces the effect of in-
creasing Mc; reduced friction losses in dense gas flows modify the distribution of the averaged
density, which therefore favors the momentum thickness growth rate. Finally, it was found that
larger initial isothermal compressibility also leads to an increased momentum thickness growth
rate in dense gas flows.

After having analyzed the DG mixing layers DNS, simulations were filtered in Chapter 5 in
order to a priori assess SGS terms with respect to resolved terms present in the real gas LES
formulation. An additional DNS of a forced HIT flow extracted from Giauque et al. (2020) com-
pletes the filtered DNS database. The system of LES equations to be solved for compressible
transcritical dense gas flows is rewritten taking into account SGS terms which are of signifi-
cant amplitude (at least larger than a resolved term) inside the turbulence inertial zone. The
following additional SGS terms neglected in PG flows should be taken into: the SGS pressure
term appearing in the filtered momentum equations and the SGS pressure work appearing in
the filtered total energy equation.

A new modeling was then developed in Chapter 6 for the SGS pressure term (p̄ − p̂). Be-
cause of the complexity of this term comprising intricate SGS thermodynamic correlations, the
modeling methodology makes use of supervised machine learning algorithms. Several artificial
neural networks (ANN) were trained, harvesting information contained in the filtered DNS
database comprising the forced HIT (Giauque et al., 2020) and the mixing layers at Mc = 1.1
andMc = 2.2. The analysis of the database confirms the complexity of this term whose correla-
tions are significantly different between cases. For the forced HIT, the SGS pressure is strongly
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correlated with the thermodynamic variables whereas for both mixing layers, the correlations
are the strongest with the gradient of those same thermodynamic quantities likely because of
the presence of the mean flow.

The optimization and the training of an ANN using a diverse database enabled to obtain
effective SGS models capable to provide reliable results for cases which were not encountered
during the training phase (different temporal solutions and initial thermodynamic operating
points). Yet, training an ANN on a diverse database also causes learning inhomogeneity is-
sues. It was noticed that the forced HIT is favored by the ANN likely because of its wider
SGS pressure distribution. The additional analysis of small size networks showed the lack
of reproducibility in the ANN architecture. Very different structures of ANN with identical
performance were indeed obtained. Results also showed the ability of such simple networks to
reach very reasonable performance with a very low number of degrees of freedom but only when
trained on separate configurations.

The preliminary a posteriori study of the SGS pressure model using ANN performed in
Chapter 7 was less conclusive. The use of the SGS pressure model did not interfere with the
convergence of the computations and results could be analyzed for a range of filtering sizes.
However, even though the magnitude of the SGS pressure flux was shown to be significant in a
priori and a posteriori LES, its effect on the growth of the mixing layer was found negligible.
The alignment of SGS pressure and density gradients leads to a negligible contribution of the
model to the generation of vorticity, so that it could explain its minor effect on the turbulent
structures roll-up and therefore on the mixing layer growth. The SGS pressure model was
found to have a slight effect on the averaged temperature but which remains negligible anyhow
considering the isothermal nature of the flow. No visible effect was observed on other averaged
and rms thermodynamics distributions.

Future work and perspectives

The final a posteriori results obviously question both the use of the ANN model and the impor-
tance of the effect of the SGS pressure term in LES of DG turbulent flows. It was also shown
however that the dynamic Smagorinsky model, used to take into account the SGS turbulent
stress tensor, had a significant effect on the momentum thickness temporal evolution but failed
to reproduce DG mixing layers growth at moderate to large filtering sizes. Once usual PG SGS
models are evaluated over DG flows, the methodology using ANN developed in the present
thesis could be applied to other SGS terms and especially to the SGS turbulent stress tensor
in order to improve a posteriori LES performance at large filtering sizes in the inertial region.
The design of such models could indeed foster the computation of coarse and yet accurate LES
in industry for iterative design and optimization applications.

Such models could also be developed using an additional channel flow DNS, which has al-
ready been performed (see Giauque et al. (2021)), in order to take into account wall effects on
SGS models. Finally, the a posteriori validation of these models could be achieved through a
comparison with the experimental study of Dura Galiana et al. (2017) involving a flat plate
inserted in a transonic nozzle.

Moreover, to improve the physical understanding of turbulence in real gas close to the su-
percritical point, future work could perform mixing layers DNS using another fluid than FC-70.
One can for example think of supercritical CO2, which has recently seen its use in thermody-
namic cycles increases significantly. If the results regarding the momentum thickness growth
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rate appear to be impacted by this change of fluid, a physical parameter characterizing the
fluid might be emphasized to describe the diminution of the compressibility-related reduction
of the momentum thickness growth rate in DG flows. According to the present results, the
initial isothermal compressibility could be a good candidate to characterize this reduction rate.
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Appendix A
Averaging methodology for plots using δθ(t)

When studying the temporal mixing layer, it is usual to average TKE budget (or thermody-
namic) distributions over time (during the self-similar period) and space (over the periodic x
and z directions) and to plot the averaged quantities in the y direction normalized using δθ(t).
This process can actually induce a significant variability in the plots produced.

For instance, Figures 3.5, 4.8 and 4.9 display the various terms of the TKE budget. One can
notice that these distributions show fairly abrupt changes (especially Figure 4.9 for production
and pressure-strain terms) when compared with Pantano & Sarkar (2002) but show rather fairly
smooth changes when compared to Zhou et al. (2012) (see Figure A.1) or Martínez Ferrer et al.
(2017) (see Figure A.2).

This difference from one publication to another deserves some explanation. We believe it
results from the choice of vertical (along y) space step used to obtain the curves. As illustrated
in the explanatory Figure A.3, distributions plotted over y/δθ(t) (see for instance Figures 3.5,
4.8 and 4.9) all require to average several solutions over the self-similar period which do not
share the same step along the abscissa y/δθ(t) since δθ(t) increases during the self-similar period.
For instance, atMc = 1.1, each solution used in the averaging process contains Ny = 512 points
along y, distributed between −Ly/δθ(t) and Ly/δθ(t).

A constant non-dimensional step dy∗ is defined to discretize the interval corresponding to
the initial time of the self-similar period (τ = 1700 for the mixing layer at Mc = 1.1). Its
value, which is given in the caption of the figures, depends on the number of points we want
to represent these plots with and not on the resolution of the simulation itself. In the current
work, for the TKE budget plots we choose this number of points two times larger than the one
used by Pantano & Sarkar (2002). Figure A.4 shows the evolution of the TKE budget plots as
the number of points (or dy∗) is varied for the PG mixing layer at Mc = 1.1: the choice made
in this thesis (Chapters 3 and 4) seeks to optimize the impact of the post-processing on the
quality of the plots (with changes neither too smooth nor too abrupt).

In the vicinity of y/δθ(t) = 0, DG distributions show non-monotonic behavior, that are
likely to be explained by the difference of density fluctuations distributions (see Figure 4.13).
For DG, the RMS value is large even at the center of the mixing layer unlike PG, where two
peaks values are located at the boundaries of the mixing layer. This higher density fluctuations
rate at the center is likely to disturb the distributions of production since it is calculated using
Favre-averaging. In the vertical direction, production terms are even more non-monotonic both
for DG and PG (Figure 4.9(b)) because they involve the vertical gradient of the mean vertical
velocity. Since this gradient is calculated in the vertical direction, which corresponds to the
direction of the mixing layer growth, it induces noisier distributions.
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APPENDIX A. AVERAGING METHODOLOGY FOR PLOTS USING δθ(T )

Figure A.1: TKE budget in the self-similar turbulent region, where kC, kT , (c), (e), (d) denote re-
spectively the convective, transport, production, pressure dilatation and dissipation terms respectively
at Mc = 0.7. Resi denotes the residual error of TKE transport equation. Taken from Zhou et al.
(2012).

Figure A.2: Figure taken from Martínez Ferrer et al. (2017). (a) and (b) correspond to the TKE
budget terms.

II



Figure A.3: Schematic view of the averaging process applied to generate the TKE budget and thermo-
dynamic distributions (see for instance Figures 3.5, 4.8 and 4.9). Each line corresponds to a discrete
time ti in the selected self-similar period, for which a solution is available. Each solution at t = ti
contains a distribution of Ny = 512 points (only 17 are reported on this schematic view) distributed
on the non-dimensional interval [−Ly/δθ(ti), Ly/δθ(ti)].
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(a)

(b)

(c)

(d)

Figure A.4: TKE budget plots at Mc = 1.1 with different numbers of points: first column: 24 points;
second column: 39 points (used in the thesis); third column: 79 points. (a): Distributions of the
PG normalized specific power quantities (see Figure 3.5); (b): Distribution of the volumetric normal-
ized powers (see Figure 4.8); (c) x−turbulent stress tensor (Rxx) equation (see Figure 4.9(a)); (d):
y−turbulent stress tensor (Ryy) equation (see Figure 4.9(b)).
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Appendix B
DG mixing layer: influence of domain size,
resolution and initial turbulent structures size

This appendix provides verification data confirming the proper computation of mixing layers
DNS. Table B.1 gathers DG and PG simulation parameters at the starting and ending times
of self-similar periods. Integral length scales show that the domain is chosen sufficiently large.
The largest value 0.20 is obtained at the end of the self-similar period for DG flow at Mc = 1.1.
Otherwise, values do not exceed 0.16 in the streamwise direction and 0.13 in the z direction. As
a comparison, Pantano & Sarkar (2002)’s integral length scale reaches 0.178 in the streamwise
direction for a configuration with Mc = 0.7 and a density ratio of 4. The following paragraphs
also confirm that domain lengths have been properly chosen for DG mixing layer at Mc = 2.2.

The ratio r = Lη/∆x characterizes the resolution of the simulations: the larger the ratio,
the better the resolution. The minimum value is about 0.52 computed for the DG DNS at
Mc = 2.2. For other simulations, values are larger than 0.6 and the maximum value is 1.64
for PG at Mc = 2.2 because of the smaller dissipation found in high compressible regimes.
As a comparison, Matsuno & Lele (2020) recently perform a DNS at Mc = 2.0 with a Lη/dx
ratio equal to 0.41. One can thus consider that turbulent scales are adequately resolved for all
simulations presented in this paper since in addition the turbulent kinetic energy is very low
close to the Kolmogorov scale (Moin & Mahesh, 1998a).

Additional simulations have been performed for the DG mixing layer with Reδθ,0 = 160
and Mc = 2.2 in order to confirm the appropriate choice of domain size and to quantify the
influence of initial turbulent structures size. The computational parameters corresponding to
these simulations are summarized in Table B.2 along with the parameters used in the previous
study at Mc = 1.1.

Figure B.1 shows the temporal evolutions of the momentum thickness for the simulations
listed in Table B.2. DG1 is performed with the same domain lengths and size of initial turbulent
structures (relatively to the initial momentum thickness) as in the previous Mc = 1.1 study
DG0. At τ = 4000, self-similarity is not yet achieved but flow field visualizations indicate that
the y boundaries of the domain are reached. DG2 is then conducted with a domain size doubled
in the y direction and with smaller initial turbulent structures corresponding to Lx/4 = 86δθ,0,
in order to speed up the mixing layer development. Simulations show that the modification of
the initial structures size only modifies the time necessary to reach the unstable growth phase
but not the growth rate itself.

V



APPENDIX B. DG MIXING LAYER: INFLUENCE OF DOMAIN SIZE, RESOLUTION
AND INITIAL TURBULENT STRUCTURES SIZE

Mc Reδθ Reλx r = Lη/∆x lx/Lx lz/Lz
Air (τ = 700) 0.1 1879 209 0.63 0.10 0.04
Air (τ = 1450) 0.1 3444 194 0.81 0.11 0.13
FC-70 (τ = 550) 0.1 1448 135 0.58 0.04 0.05
FC-70 (τ = 900) 0.1 2176 201 0.7 0.07 0.06

Air (τ = 1700) 1.1 1874 143 0.97 0.07 0.06
Air (τ = 2550) 1.1 2413 156 1.09 0.12 0.08

FC-70 (τ = 1700) 1.1 2469 176 0.80 0.09 0.05
FC-70 (τ = 2550) 1.1 3304 241 0.87 0.20 0.05

Air (τ = 11500) 2.2 3487 146 1.44 0.12 0.07
Air (τ = 14100) 2.2 3700 191 1.64 0.11 0.10
FC-70 (τ = 4000) 2.2 4663 263 0.52 0.10 0.06
FC-70 (τ = 6000) 2.2 6259 390 0.57 0.16 0.05

Table B.1: Non-dimensional parameters computed at the beginning and at the end of the self-
similar period. Reλx denotes the Reynolds number based on the longitudinal Taylor microscale

λx =

√
2u′2

x/(∂u
′
x/∂x)

2 computed at the centerline. Lη denotes the Kolmogorov length scale computed
at the centerline.

Mc Lx × Ly × Lz Nx ×Ny ×Nz L0

DG0 1.1 344× 172× 86 1024× 512× 256 Lx/48
DG1 2.2 344× 172× 86 1024× 512× 256 Lx/48
DG2 2.2 344× 344× 86 1024× 1024× 256 Lx/4 = 86
DG3 2.2 648× 344× 172 1024× 512× 256 Lx/8 = 86

Table B.2: Simulation parameters for temporal mixing layer DNS (Reδθ,0 = 160) with varying domain
extent, resolution and size of initial structures. Lx, Ly and Lz denote computational domain lengths
measured in terms of initial momentum thickness. Nx, Ny and Nz denote the corresponding numbers
of grid points. L0 denotes the size of initial turbulent structures (k0 = 2π/L0) measured in terms of
initial momentum thickness. All grids are uniform.
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Figure B.1: Temporal evolution of the mixing layer momentum thickness.

Figure B.2: Temporal evolution of the integral length scale lz.
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APPENDIX B. DG MIXING LAYER: INFLUENCE OF DOMAIN SIZE, RESOLUTION
AND INITIAL TURBULENT STRUCTURES SIZE

Figure B.3: Temporal evolution of the non-dimensional streamwise turbulent production term inte-
grated over the whole domain P ∗int = (1/(ρ0(∆u)3))

∫
Ly
ρ̄PxxdV (with ρ̄Pxx(y) = −ρu′′

xu
′′
y
∂ũx
∂y ) for the

DG2 simulation.

Yet, a large decrease of the growth rate is observed for DG2 around τ = 4000: self-similarity
cannot be reached. Figure B.2 displays the time evolution of the integral length scale in the z
direction lz for DG2 and DG3 simulations. Around τ = 4000, the integral length scales lz/Lz
suddenly decreases for DG2 after having reached a value of 0.2. The domain is thus not large
enough to account for spanwise turbulent structures, which causes a growth rate decrease and
prevents the transition to self-similarity.

Figure B.3 displays the temporal evolution of the turbulent production for the DG2 simula-
tion. The evolution follows a piecewise decrease, reaching two distinct plateaus. It is observed
that the transition from the first plateau to the second one is related to integral lengths scales.
When some turbulent structures grow and become too large for the computational domain, the
integrated turbulent production decreases and reaches another plateau lower than the previous
one. The mixing layer therefore adapts its growth to domain lengths when the computational
box is not large enough. Since the integrated turbulent production is related to the mixing
layer growth rate, a lower plateau leads to a smaller mixing layer growth rate.

Because of the aforementioned observations, domain sizes have been doubled in the x and
z directions with respect to DG1. This choice corresponds to the DG3 simulation, which is the
reference DNS used in Chapter 4 to compare results between DG and PG. For DG3, the mo-
mentum thickness evolution reaches a perfectly linear stage and self-similarity is well achieved
as confirmed in Figures B.1 and 4.17.
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Appendix C
Filter influence

The a priori analysis conducted in Chapter 5 requires to filter mixing layers and HIT DNS.
The present appendix is dedicated to the study of the filtering effect on the mixing layer DNS
at Mc = 1.1. Results are first compared between three types of filters given in Table 2.3. Then
the influence of the filtering selectivity for the Gaussian filter is analyzed.

Comparison between the Gaussian, top-hat (or box) and sharp (or
spectral cut-off) filters

This section proposes to compare the results obtained using the top-hat and the sharp filters
with the ones gathered with the Gaussian filter preferred in Chapter 5. Figure C.1 displays a
comparison of resolved and SGS terms in the filtered momentum equation for the three types
of filters in the case of the mixing layer at Mc = 1.1. For the first two plots, the filter type only
significantly influences the activity of resolved and SGS terms for large scales below k/kmin = 8.
However, most of the inertial zone (k/kmin ∈ [6; 20]) is only marginally affected by the filter.
Since in the present work the analysis about the relative importance of the terms in the filtered
equations has been conducted over the inertial zone (see Section 5.2), its conclusions can be
considered as independent from the filter type.

Results for the sharp filter are very different. Since this filter is not local in space, it pro-
duces inconsistent results generating strong anisotropy and over-prediction of SGS terms at
small scales. This filter type is therefore almost never used in the literature unlike the two
others.

Conclusions are the same for resolved and SGS terms in the filtered energy equation (Figure
C.2). Results are identical in the inertial zone for Gaussian and top-hat filters unlike the sharp
filter which yields inconsistencies. The analysis performed in Section 5.2 is thus independent
from the filter type for both filtered momentum and energy equations.

Effect of filtering selectivity

According to the expression given in Table 2.3, the parameter ζ controls the selectivity of the
Gaussian filter. Decreasing ζ diminishes the selectivity in the physical space and increases it in
the spectral space. The smaller the value of ζ, the slower the SGS terms drop to zero. A low
value of ζ will indeed strongly filter the energy at small scales and will thus induce a significant
difference between resolved and SGS terms.

As an illustration, Figure C.3 displays a comparison of resolved and SGS terms in the
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Gaussian filter (ζ = 6)

Top-hat filter

Sharp filter

Figure C.1: RMS amplitude of terms in the real gas filtered momentum equation (Equation (2.48)) for
the DG mixing layer at Mc = 1.1. Results are given at the initial time of each self-similar period for
the three filter types (Gaussian, top-hat and sharp filters).
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Gaussian filter (ζ = 6)

Top-hat filter

Sharp filter

Figure C.2: RMS amplitude of terms in the filtered energy equation (Equation (2.48)) for the DG
mixing layer at Mc = 1.1. Results are given at the initial time of each self-similar period for the three
filter types (Gaussian, top-hat and sharp filters).
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ζ = 2

ζ = 6

ζ = 10

Figure C.3: RMS amplitude of terms in the real gas filtered momentum equation (Equation (2.48)) for
the DG mixing layer at Mc = 1.1. Results are given at the initial time of each self-similar period for
three different filter parameters ζ = 2− 6− 10 (top-middle-bottom).
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filtered momentum equation for three different values of ζ = 2 − 6 − 10 when filtering the
DNS results of the mixing layer at Mc = 1.1. As expected, SGS terms drop to zero much
faster when the parameter ζ increases. Results are very similar for the three values of the filter
selectivity, with differences appearing only at small scales. The inertial zone (k/kmin ∈ [6; 20])
is only marginally affected by the filter. Since the analysis about the relative importance of the
terms in the filtered equations has been conducted over the inertial zone (see Section 5.2), it
can therefore be considered as independent from the filtering selectivity. As recommended in
Garnier et al. (2009), the parameter ζ is set to 6 in the analysis conducted in Chapter 5.
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Appendix D
A priori analysis of PG mixing layers

In compressible flows, since the energy conservation equation is involved, numerous SGS terms
exist. SGS models are often associated to the SGS turbulent stress tensor only. However, in
the formulation of the filtered compressible Navier-Stokes equations, several SGS terms are
present both in the filtered momentum equation and in the filtered energy equation, even for
the PG formulation. As noticed in Section 5.1, very few a priori analyses have been performed
to evaluate both SGS momentum and energy terms in that context. This appendix is therefore
devoted to the assessment of the importance of SGS terms corresponding to the PG filtered
LES formulation given in Equation (2.54).

Filtered momentum equation

The filtered momentum equation comprises three SGS terms related to pressure, viscous and
convective terms. Yet, the SGS turbulent stress tensor has been the center of attention in
the LES community whereas the two other terms are neglected. The SGS turbulent stress
tensor can be decomposed into an isotropic part tIij and a deviatoric part tDij (see Equation
(2.55)). Both parts are modeled together in gradient type models (Clark et al., 1979) whereas
the isotropic part is neglected in all eddy-viscosity models based on the Boussinesq hypothesis
even though Yoshizawa (1986) proposes a model specific for this term†. This assumption is
based on Erlebacher et al. (1992)’s recommendations. They express the isotropic part as:

tIij =
2

3
kSGSδij =

2

3
γM2

SGSp̄δij (D.1)

where MSGS =

√
kSGS/(γRT̃ ) is the SGS Mach number. Note that this Mach number

strongly depends on the filtering size. If MSGS < 0.4, Erlebacher et al. (1992) consider the
isotropic part as being negligible‡. They perform several HIT DNS up to Mt = 0.4 and show
that: (

∇.tIij
)
RMS

(∇p)RMS
< 3.10−3 (D.2)

They compare here a SGS term (the isotropic part of the SGS turbulent stress tensor) with
a resolved term (the pressure gradient). Yet, Vreman et al. (1995) consider that all SGS terms

†Speziale et al. (1988) show that Yoshizawa (1986)’s model poorly correlates (about 15%) with the exact
isotropic part of the SGS turbulent stress tensor.

‡If MSGS < 0.4, for air with γ = 1.4, the isotropic part of the SGS turbulent stress tensor represents less
than 15% of the pressure for air.
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that are larger than the smallest resolved term should be kept in the LES description of the
flow. In that case, since the smallest resolved term is more likely to be the viscous term and not
the pressure gradient, Erlebacher et al. (1992)’s comparison does not allow to conclude about
the inclusion of the isotropic part into the PG LES modeling.

The modeling issue of the isotropic part of SGS turbulent stress tensor is in fact very close
to the one of the SGS pressure since both are linked as:

(p̄− p̂) = −(γ − 1)

2
tii (D.3)

The filtered Navier-Stokes equations (Equation (2.54)) for PG flows can be transformed as:

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̂

∂xi
+
∂τ̂ij
∂xj

+

(
(γ − 1)

2
− 1

3

)
∂tii
∂xi

+
∂ [τ̄ij − τ̂ij]

∂xj
−
∂tDij
∂xj

(D.4)

(D.5)

The effects of the SGS pressure and of the isotropic part of the SGS turbulent stress tensor
compensate. In case of a PG flow, the ratio

(
(γ−1)

2
− 1

3

)
is about -0.13. This rearranged term

loses one order of magnitude when compared to the deviatoric part of the SGS turbulent stress
tensor.

The assessment of the importance of SGS terms appearing in Equation (2.48) is displayed
in Figure D.1 for mixing layers DNS at Mc = 0.1, Mc = 1.1 and Mc = 2.2. Amplitudes are
normalized with the resolved turbulent stress. For the three cases, the SGS pressure term is of
the same order of magnitude as the SGS turbulent stress term and its magnitude is superior
to the SGS viscous term in the inertial zone (k/kmin ∈ [6; 20]) (see Figure 4.22). Results are
consistent with Okong’o & Bellan (2004)’s results which exhibit a ratio of approximately three
in each direction between SGS pressure and SGS turbulent stress tensor terms for their PG
single phase flow mixing layer DNS at Mc = 0.35.

Moreover, Xie et al. (2018) show that for a given filtering size, the ratio between the SGS
kinetic energy and the total kinetic energy is weakly dependent on the turbulent Mach number.
It is therefore consistent to observe that the normalized amplitude of the SGS pressure, which
is related to the SGS kinetic energy, is almost independent from the convective Mach number.
Following Vreman et al. (1995)’s principles, the SGS pressure term should be taken into account
even in PG flows. Note that for an incompressible formulation, this term does not appear in
the filtered LES equations.

Filtered energy equation

Five SGS terms appear in the filtered energy equation related respectively to the pressure work,
the viscous work, the heat flux, the internal energy flux and the kinetic energy flux (see Table
2.4). The last two SGS terms are usually the only ones modeled in the PG LES formulation.
Note that the SGS heat flux and the SGS internal energy are distinguished. The SGS heat flux
term refers here to the Fourier heat flux. The SGS internal energy is often named SGS heat
flux because of its link with the temperature, which is valid in the PG case only.

Figure D.1 displays the results for the three mixing layers (Mc = 0.1−1.1−2.2). Amplitudes
are normalized with the pressure work. For the three convective Mach numbers, the pressure
work, which is usually neglected, is of the same order of magnitude as SGS kinetic energy
and SGS internal energy fluxes and superior to the resolved viscous work in the inertial zone
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Mc = 0.1

Mc = 1.1

Mc = 2.2

Figure D.1: RMS amplitude of terms in the filtered momentum equations (Equations (2.48)) for the
perfect gas mixing layer at Mc = 0.1 − 1.1 − 2.2 (top-middle-bottom). Results are averaged over the
domain and over the self-similar period growth phase of the mixing layer. The turbulent Mach numbers
averaged over the centerplane are respectively equal to 0.05− 0.4− 0.5. The SGS viscous terms is very
small and does not appear on the plot for Mc = 1.1 and Mc = 2.2.
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(k/kmin ∈ [6; 20]). Following Vreman et al. (1995)’s principles, the SGS pressure work should
be taken into account even in PG flows. The amplitudes of other SGS heat work and viscous
work terms are smaller than the smallest resolved term and can therefore be neglected.
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Mc = 0.1

Mc = 1.1

s
Mc = 2.2

Figure D.2: RMS amplitude of terms in the filtered total energy equation (Equation (2.48)) for the
perfect gas mixing layer at Mc = 0.1 − 1.1 − 2.2 (top-middle-bottom). Results are averaged over the
domain and over the self-similar period growth phase of the mixing layer. The turbulent Mach numbers
averaged over the centerplane are respectively equal to 0.05− 0.38− 0.67.
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Appendix E
Principal Component Analysis (PCA)

The principal component analysis (PCA) consists in a transformation of a set of variables into
an uncorrelated set of principal components also named modes (Jolliffe, 2005). The method can
be reduced to a problem of matrix diagonalization. The aim is to find new axes, using linear
combinations of inputs, such that the variance of point clouds around these axes is maximal.
Eigenvalues can be seen as energy coefficients. The PCA aims at evaluating the redundant
information among variables and can therefore be used to reduce the number of inputs before
the ANN training. By reducing this number of variables, the PCA enables to represent data
with a minimum number of directions.

The first PCA are separately performed over the three different cases. Figure E.1 displays
the cumulative variance rates for each PCA mode. It symbolizes the cumulative amount of en-
ergy present in the modes. For the three cases, the first PCA mode contains more than 40% of
the information contained in the 15 inputs. This rate increases to approximately 70% selecting
the first two modes. In order to keep 95% of the information, one needs to select at least the
first five PCA modes for the mixing layers and the first six modes for the HIT. The three PCA
show here the redundancy of the 15 inputs which could be simplified into approximately five
variables. The complexity of the problem, which is related to the number of modes required to
represent the data, tends to increase with the compressibility effects, likely because the variance
of physical variables usually increases which the turbulent Mach number.

Figures E.2 and E.3 respectively investigate the composition of the first two modes repre-
senting more than 70% of the information, that is the contribution of the input variables to
these 2 dominant modes. Since PCA modes are constructed from a linear combination of input
variables, the contribution values given in Figures E.2 and E.3 corresponds to the coefficients
associated to each input variable for respectively the mode 1 and the mode 2. For the first
mode, the three plots corresponding to the forced HIT and the mixing layers are very close.
The contribution of the thermodynamic variables (ρ̄, T , p̂, ρ̄Ẽ) and their Laplacians is identical
between the three cases and between the variables. The contribution of the gradients is not the
same for the 3 configurations. The mixing layer at Mc = 1.1 is very different from the one at
Mc = 2.2 and the forced HIT. It is surprising to notice that the projection of the mixing layer
at Mc = 2.2 is closer to the forced HIT than the mixing layer at Mc = 1.1. It is likely that
the representation of modes is also related to the compressibility of the flow. Turbulent Mach
numbers are indeed closer between the mixing layer at Mc = 2.2 (Mt = 0.67) and the forced
HIT (Mt = 0.8) than with the mixing layer at Mc = 1.1 (Mt = 0.38).

Looking at the second mode shows in particular a contribution of input variables to this
mode which changes significantly from one configuration to another, while this contribution
was quite similar for the 3 configurations when analyzing mode 1. The practical consequence
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Forced HIT

Mc = 1.1

Mc = 2.2

Figure E.1: Cumulative variance rates are plotted for each PCA mode for the forced HIT (top) and
for the mixing layers at Mc = 1.1 (middle) and at Mc = 2.2 (bottom).
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Forced HIT

Mc = 1.1

Mc = 2.2

Figure E.2: Projection of mode 1 in the inputs space for the forced HIT (top) and for the mixing
layers at Mc = 1.1 (middle) and at Mc = 2.2 (bottom). The mode 1 represents more than 40% of the
information.

XXI



APPENDIX E. PRINCIPAL COMPONENT ANALYSIS (PCA)

Forced HIT

Mc = 1.1

Mc = 2.2

Figure E.3: Projection of mode 2 in the inputs space for the forced HIT (top) and for the mixing
layers at Mc = 1.1 (middle) and at Mc = 2.2 (bottom). The mode 2 represents more than 22% of the
information.
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Figure E.4: Cumulative variance rates are plotted for each mode for the PCA performed simultaneously
over the forced HIT and the mixing layers at Mc = 1.1 and at Mc = 2.2.

of this observation is that it would be probably more useful to perform a PCA for the dataset
gathering simultaneously the forced HIT and the mixing layers at Mc = 1.1 and at Mc = 2.2.
Indeed, the expected contribution of the PCA is a unique simplification or reduction of the set
of input variables and not a simplified set which would be specific to a given flow configuration.

The results obtained for this "global" PCA are first displayed in Figure E.4, with the cumu-
lative variance rates for each mode. Similarly to the three previous PCA performed separately
for each flow configuration, the first mode represents more than 40% of the information and
one needs to select at least six modes to represent 95% of the information. The decomposition
of the first two modes of this "global" PCA (see Figure E.5) is found to be very close to the
decomposition of the first two modes for the PCA applied to the forced HIT only (see respec-
tively the top plot of Figure E.2 for the first mode and the top plot of Figure E.3 for the second
mode). This comparison shows the strong influence of the HIT configuration with respect to
the mixing layer configurations, which could be due to the larger number of elements in the
HIT database: about 307M against 134M for each mixing layer (see Table 6.1).

Even though it remains difficult to relate the projection over the mathematical PCA modes
to a precise physical understanding of the flow features, PCA modes can be used to visualize
the data. Figure E.6 shows the projection of the data onto the first two modes space containing
more than 70% of the information. Both mixing layers point clouds are included in the forced
HIT one. As compressiblity effects increase, the point clouds spread in the (Mode 1,Mode 2)
space. PDF are also displayed for both modes along axis. Consistently with the PDF of the
SGS pressure (see Figure 6.5), distributions are wider for the HIT. The overlapping of the
databases could lead to think that using only the forced HIT is enough to train
the ANN. Note however that modes 1 and 2 are actually not the same for each
configuration so this would be a misinterpretation. Generalization tests performed in
Section 6.4.2 actually show the necessity to add the mixing layers to the database exploited by
the ANN training process.

Following the present analysis, and even though it was observed from Figure E.4 that about
6 modes only could be selected to represent significant inputs to the model (instead of the
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Figure E.5: Projection of modes 1 (top) and 2 (bottom) in the inputs space for the PCA performed
simultaneously over the forced HIT and the mixing layers at Mc = 1.1 and at Mc = 2.2. The mode 1
and 2 represents respectively about 44% and 25% of the information.
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Figure E.6: (Top) Projection of the data for the forced HIT and the mixing layers into the first two
PCA modes containing more than 70% of the information. The normalized PDF is also given for each
mode along axis.

initial set of 15 variables), it was eventually decided to stick with the initial set of 15 variables.
The motivation for this choice was to consider that accelerating the training of the ANN with a
reduced set of modes had however to be paid in the a posteriori application of the model since
the mathematical PCA modes must be reconstructed from the available physical variables each
time the model is applied. This might prove expensive and also make the physical interpretation
of the model even more delicate.
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Appendix F
HSIC validation

As mentioned in Section 6.3.2, when applied to hyperparameters grid search results, Hilbert-
Schmidt Independence Criterion (HSIC) coefficients are used to measure the independence
between two probability distributions: the probability distribution of hyperparameters among
arms randomly selected by the hyperparameters search method and the probability distribution
of hyperparameters among the best decile ANN (the 10% of the best ANN) (Novello et al.,
2021).

The problem of hyperparameters optimization consists in finding the best combination of n
hyperparameters among the ns tested combinations to get the most effective ANN f such that:

f(X1, ...,Xn) = Y (F.1)

where Xi =

 xi,1
...
xi,ns

 denotes the ith hyperparameter vector and Y =

 y1

...
yns

 is the output

vector containing the score or the error of the tested ANN. The sub-vector of Y containing the

best decile is denoted Y10%. A new random variable Z =

 z1

...
zns

 = 1yj∈Y10%
, which is equal to

unity when the ANN is among the best decile and zero otherwise, is introduced. S(Xi,Y10%) is
a measure of the distance between the distribution of Xi and the distribution of Xi conditioned
to Z = 1, denoted (Xi|(Z = 1)):

S(Xi,Y10%) = (P (Z = 1))2

[
1

m2

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)δ(zj = 1)δ(zl = 1)

+
1

n2
s

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)−
2

nsm

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)δ(zl = 1)

]
(F.2)

where δ(zl = 1) =

{
1, if zl = 1.

0, otherwise.
is the Kronecker delta, m = ns × P (Z = 1) is the

number of ANN among the best decile, and k(x, y) = exp
(
−‖x−y‖

2

2h2

)
is the Gaussian radial

basis function. The parameter h is selected as to maximize HSIC values. Since we choose the
best decile to select the most effective ANN, P (Z = 1) = 0.10.
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SX1,Y10%
SX2,Y10%

SU1,Y10%
SU2,Y10%

ns = 500 2.6.10−3 2.8.10−3 3.3.10−3 2.9.10−3

ns = 1000 1.9.10−3 2.4.10−3 2.5.10−3 2.4.10−3

ns = 2000 2.0.10−3 2.7.10−3 2.4.10−3 2.8.10−3

ns = 10000 2.0.10−3 2.6.10−3 2.6.10−3 2.7.10−3

ns = 10000
Novello et al. (2021) 3.7.10−3 4.8.10−3 4.8.10−3 4.8.10−3

Table F.1: HSIC coefficients for Example 1 varying the number of test sets ns.

Normalization of the hyperparameters space

Hyperparameters can be defined in very different mathematical spaces. For example, the type of
activation function is a categorical variable, whereas the batch size is a positive integer number
and the α parameter for L2 regression is a real number. Moreover, the type of distribution
(uniform or normal) impacts the HSIC computation. The first following example (extracted
from Novello et al. (2021)) illustrates this effect.

Example 1

Let f : [0, 2]2 → 0, 1 such that:

f(X1, X2) =

{
1, if X1 ∈ [0, 1] and X2 ∈ [0, 1],

0, otherwise
(F.3)

According to the definition of f , X1 and X2 have the same effect over the value of f(X1, X2).
Their HSIC should therefore be identical. Let X1 be a normal distribution of mean 1 and vari-
ance 0.1, truncated between 0 and 2 and X2 be a uniform distribution between 0 and 2. The
values of SX1,Y10%

and SX2,Y10%
are given in Table F.1 for ns varying from 500 to 10000. The

convergence is obtained between ns = 2000 and ns = 10000. Contrary to what is expected
from the definition of f , HSIC are found different between X1 and X2. To tackle this issue,
Novello et al. (2021) propose to transform Xi into Ui as φi(Xi) = Ui where φi is the cumulative
distribution function (CDF) of Xi. As a result, Ui follows a uniform distribution over [0, 1]
according to the property of the CDF. The methodology is thoroughly explained in Novello
et al. (2021) for discrete hyperparameters.

The HSIC related to the transformed variables U1 and U2 are displayed in Table F.1.
SU1,Y10%

and SU2,Y10%
are now found identical as expected from the definition of f . Results

show the relevance of the normalization of hyperparameters space when distributions are dif-
ferent. Note that the numerical results we obtained differ from those given in Novello et al.
(2021). After verification of the code and a thorough discussion with the authors, the present
results can be considered as validated. In the following, Xi is always normalized into Ui to
compute HSIC.
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APPENDIX F. HSIC VALIDATION

SU1,Y10%
SU2,Y10%

SU3,Y10%
S(U2,U3),Y10%

S(U4,U5),Y10%

ns = 500 2.5.10−3 2.1.10−3 2.2.10−4 6.5.10−4 2.0.10−4

ns = 1000 2.8.10−3 6.8.10−5 1.2.10−4 8.6.10−4 9.1.10−5

ns = 2000 2.7.10−3 4.2.10−5 3.2.10−5 7.0.10−4 4.9.10−5

ns = 10000 2.8.10−3 9.7.10−6 9.4.10−6 6.8.10−4 9.7.10−6

ns = 10000
Novello et al. (2021) 5.8.10−3 2.4.10−5 1.8.10−5 1.4.10−3 2.0.10−5

Table F.2: HSIC coefficients for Example 2 varying the number of test sets ns.

Interaction between hyperparameters

Even though the HSIC value of Xi is low, Xi may actually have an impact due to its interactions
with the other hyperparameters. The following example illustrates this effect.

Example 2

Let f : [0, 2]3 → 0, 1 such that:

f(X1, X2, X3) =


1, if X1 ∈ [0, 1], X2 ∈ [1, 2] and X3 ∈ [0, 1]

1, if X1 ∈ [0, 1], X2 ∈ [0, 1] and X3 ∈ [1, 2]

0, otherwise
(F.4)

When evaluated separately, the HSIC values of X2 and X3 do not show an influence over
the value of f(X1, X2, X3). There is indeed no difference between the probability distributions
of X2 and (X2|(Z = 1)). Yet, X2 and X3 have a combined effect over f(X1, X2, X3). Table F.2
gathers the results for X1, X2, X3, (X2, X3) and (X4, X5) where X4 and X5 are two dummy
variables, uniformly distributed, used to have a reference of comparison for (X2, X3). Note that
HSIC are computed using the CDF transformation presented in Example 1.

Results show a good convergence for SU1,Y10%
but much less for other HSIC. For ns = 10000,

HSIC values are yet consistent, SU2,Y10%
and SU3,Y10%

are almost identical consistently with the
definition of Example 2. Both values are very low and close to the one of S(U4,U5),Y10%

which
have no effect on f(X1, X2, X3). Even though the values of SU2,Y10%

and SU3,Y10%
indicate that

there is not effect of these variables on the output, the combined HSIC S(U2,U3),Y10%
is impor-

tant. It is one order of magnitude smaller than SU1,Y10%
but two orders of magnitude larger than

S(U4,U5),Y10%
. Once again, values are different from Novello et al. (2021) but after verification

of the code and discussions with the authors, the present results can be considered as validated.

Figure F.1 displays interaction HSIC between variables. The most influential variable X1

is also the one that interacts the most with other variables. Consistently with Table F.2, even
though X2 and X3 are not very influential, their interaction HSIC is much larger. This kind of
representation enables a visualization of interactions at stake between hyperparameters.

Moreover, one can notice that :

SUi,Y10%
= S(Ui,Ui),Y10%

(F.5)
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Figure F.1: Representation of HSIC interactions for Exemple 2.

This relation can be mathematically demonstrated using Equation (F.2) (not shown here)
and constitutes an additional proof of the proper computation of HSIC.
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