In this thesis the parametric estimation problem is developed in stochastic models, on the one hand continuous, which are then discretized and the observations are taken equally spaced; and on the other hand, discrete stochastic models, but with a new approach in which the observations are taken under two different sampling schemes. An interesting characteristic in some stochastic models is the long memory or long range dependence is represented, for example, through the fractional Brownian motion and the fractional Poisson process, while to compare with models without long memory, the standard Brownian motion is considered. This combination of models with random times and long memory is a non-traditional approach to the one commonly studied, but nevertheless, very realistic since the observations usually do not occur evenly or continuously. Another process that has the property of long memory is the Rosenblatt process, of which a representation of the non-symmetric (generalized) Rosenblatt process over a compact and the parametric estimation problem in a simple model driven by it is studied.The different problems are addressed throughout the chapters of this thesis, divided as follows:

In Chapter 2, a continuous Ornstein-Uhlenbeck model is studied, but discretized in time by a Euler scheme, and driven by a fractional Poisson process, approximated by a compensated random walk, the consistency of the weighted least squares estimators is studied and maximum likelihood of the model. Since both estimators are established from the discretized model, the relationship between the continuous model and the two models generated by the discretizations is reviewed.The consistency of both estimators is ensured by the existence of an additional parameter, α, representing that m α observations are necessary for both estimators to be consistent.

Chapters 3, 4 and 5 are based on the generalization of a simple linear regression model with noise driven by a process with long memory and stationary increments. Time is considered to be within the interval [0, 1] Chapter 3 addresses a particular random time, called " Jittered Sampling (JS) ", which is represented by the sum of a deterministic and a random component, the random part can be described by a continuous distribution with bounded support . Under the sampling scheme produced by this random time, the consistency of the least squares estimator of the regression model, is studied. Through a simulation study, the behavior of the estimator is presented, both for different sample sizes and for different realizations of the process.

Resumen

En esta tesis se desarrolla el problema de estimación paramétrica en modelos estocásticos, por una parte continuos que luego son discretizados, y las observaciones son tomadas de manera equiespaciada; y por otra parte modelos estocásticos discretos, pero con un nuevo enfoque en el que las observaciones son tomadas bajo dos diferentes esquemas de muestreo.Una característica interesante en algunos modelos estocástico es la larga memoria o long range dependence es estudiada a través de, por ejemplo, movimiento Browniano fraccionario y el proceso Poisson fraccionario, mientras que para comparar con modelos sin larga memoria, se considera el movimiento Browniano estándar. Esta combinación entre modelos con tiempos aleatorios y larga memoria, es un enfoque poco tradicional al estudiado comúnmente, pero sin embargo, muy realista ya que usualmente las observaciones no ocurren de manera equiespaciada ni de manera continua. Otro proceso que tiene la propiedad de larga memoria es el proceso de Rosenblatt, del cual se estudia una representación del proceso de Rosenblatt no simétrico (generalizado) en un intervalo compacto y el problema de estimación paramétrica en un modelo simple dirigido por éste. Las diferentes problemáticas son abordadas a lo largo los capítulos de esta tesis, divididos como sigue: En el capítulo 2 se estudia un modelo de Ornstein-Uhlenbeck continuo, pero discretizado en el tiempo por un esquema de Euler, y dirigido por un proceso de Poisson fraccionario aproximado por un paseo aleatorio compensado, se estudia la consistencia de los estimadores de mínimos cuadrados ponderados y máximo verosímil del modelo. Dado que ambos estimadores son establecidos desde el modelo discretizado, se revisa la relación entre el modelo continuo y los dos modelos generados por las discretizaciones La consistencia de ambos estimadores es asegurada por la existencia de un parámetro adiconal, α, representando que m α observaciones son necesarias para que ambos estimadores sean consistentes.

Los capítulos 3, 4 y 5 están basados en la generalización de un modelo de regresión lineal simple con ruido dirigido por un proceso con larga memoria e incrementos estacionarios. Se considera además que el tiempo se encuentra en el intervalo [0, 1] El Capítulo 3: aborda un tiempo aleatorio particular, denominado "Jittered Sampling (JS)", el cual está representado por la suma de una componente determinista y una aleatoria, la parte aleatoria puede ser descrita por una distribución continua con soporte acotado. Bajo el esquema de muestreo producido por este tiempo aleatorio, se estudia la consistencia del estimador de mínimos cuadrados de un modelo de regresión lineal. A través de un estudio de simulación, se presenta comportamiento del estimador, tanto como para diferentes tamaños muestrales como para diferentes realizaciones del proceso.

iii Por otra parte, en el Capítulo 4, se presenta otro tiempo aleatorio, "Renewal Sampling (RS)", a diferencia del tiempo aleatorio estudiado en el anterior trabajo, éste no tiene componente determinista, si no que es la suma de variables aleatorias independientes que tienen una distribución continua con soporte no acotado superiormente. Esta definición provoca que las herramientas desarrolladas en el capítulo anterior, no sean completamente aplicables cuando se estudia la consistencia del estimador de mínimos cuadrados producido bajo este esquema de muestreo. Dado que los tiempos aleatorios provienen de una distribución con un soporte no acotado, la cantidad de observaciones contenidas en el intervalo [0, 1], también es una variable aleatoria. La consistencia del estimador de mínimos cuadrados del modelo de regresión, es estudiada en dos partes: considerando una cantidad fija de observaciones, N , y la diferencia absoluta entre estimador con una cantidad fija de observaciones y el estimador con una cantidad aleatoria de observaciones, N (1). Se presenta además un estudio donde se reflejan las propiedades estudiadas del estimador, tanto como para diferentes cantidades de observaciones como para múltiples realizaciones del proceso.

Teniendo en cuenta las propiedades asintóticas del estimador de mínimos cuadrados estudiado en los capítulos anteriores, pero considerando esta vez un incremento del movimiento Browniano estándar, en el Capítulo 5, se estudia la distribución límite, mediante el uso de la función característica, teóricamente y mediante la simulación del proceso correspondiente, de una secuencia debidamente normalizada. Uno de los objetivos, en genética de poblaciones, es la construcción de test de hipótesis para la detección de huellas de selección (si existe o no aleatoriedad en la formación de la siguiente población), por lo que encontrar la distribución correcta es un tema muy relevante; este problema es estudiado en el Capítulo 6. El modelo de Fisher -Wright ha sido ampliamente usado, en el contexto de genética de poblaciones, para representar las variaciones genéticas producidas por las diferencias entre las frecuencias alélicas. En lo que sigue nos dedicaremos en dar una buena aproximación de la densidad para luego poder construir un test de hipótesis para detectar selección en la población.

Finalmente, en el Capítulo 7, de la extensión de los resultados de Maejima y Tudor (2012), se estudia la representación del procesos de Rosenblatt no simétrico, como una integral múltilple de Wiener-Itô con respecto al movimiento Browniano en un intervalo compacto. En base a esta represetación, se obtiene un estimador del tipo de mínimos cuadrados para un parámetro de drift desconocido para un modelo simple y dirigido por el proceso de Rosenblatt no simétrico.

In the other hand, in Chapter 4 another random time is presented, " Renewal Sampling (RS) ", unlike the random time studied in the previous work, it does not have a deterministic component, but is the sum of independent random variables that belongs from a continuous distribution with support not bounded. This definition means that the tools developed in the previous chapter, v are not fully applicable when studying the consistency of the least squares estimator produced under this sampling scheme. Since the random times come from a distribution with an unbounded support, the number of observations contained in the interval [0, 1] is also a random variable. The consistency of the least squares estimator of the regression model, is studied in two parts: first by considering a fixed number of observations, N , and second by the absolute difference between the estimator with a fixed number of observations and the estimator with a random number of observations, N (1). A simulation study is also presented where the properties of the estimator are reflected, both for different number of observations and for multiple realizations of the process.

Taking into account the asymptotic properties of the least squares estimator studied in the previous chapter, but now considering an increment of the standard Brownian motion, in Chapter 5,the limit distribution, theoretically and by simulating the corresponding process, of a properly standardized sequence is studied by using of the characteristic function.

One of the aims, in population genetic, is the construction of hipothesis test to detect selection (if there exists or not randomness in the formation of the next generation), therefore, to find the right distribution is an important issue; this problem is studied in Chapter 6. Fisher -Wright model has been widely used, in population genetic context, to represent the genetic variation, produced by the difference between allelic frequencies. In what follows we will focus on giving a good approximation to the density, for then be able to build a hypothesis test to detect selection in population.

Finally, in Chapter 7, given the extension of the results from [START_REF] Maejima | Selfsimilar processes with stationary increments in the second wiener chaos[END_REF], the representation of the non-symmetric Rosenblatt process as a Wiener-Itô multiple integral with respect to the Brownian motion on a finite interval, is shown. Based on this representation, we obtain a least squares-type estimator for an unknown parameter of the drift coefficient of a simple model driven by the non-symmetric Rosenblatt process. vi vii viii
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Motivación

Cuando hablamos del concepto de "memoria", estamos aludiendo a que existe algo de información que viene de un evento pasado, ha perdurado (en menor o mayor grado) a través del tiempo y se ha mantenido, de una u otra manera, en el presente. En el contexto de los procesos estocásticos, el sentido es el mismo, pero existen variadas formas de definir esta presencia (o ausencia) de "memoria", de hecho [START_REF] Guégan | How can we define the concept of long memory? an econometric survey[END_REF] menciona alrededor de once diferentes formas de definir este concepto. Es más, también se le conoce como persistencia y long range dependence. Es un fenómeno que podemos pensar que, de manera intuitiva, se encuentra presente en gran parte de los sucesos que tratamos de explicar mediante modelos matemáticos. Algunas de las áreas donde podemos encontrar estudios relacionados con procesos estocásticos con larga memoria son tales como finanzas [START_REF] Lo | Fat tails, long memory, and the stock market since the 1960's[END_REF]), econometría [START_REF] Robinson | Time series with long memory[END_REF]), tráfico de redes [START_REF] Balamash | On long-range dependence synthetic data generation through heavy-tailed distributions[END_REF]), hidrología [START_REF] Barbosa | Long-range dependence in north atlantic sea level[END_REF]), climatología [START_REF] Chattopadhyay | Study on statistical aspects of monthly sunspot number time series and its long-range correlation through detrended fluctuation analysis[END_REF]), lingüística [START_REF] Altmann | On the origin of long-range correlations in texts[END_REF]) y secuenciación de ADN [START_REF] Voss | Evolution of long-range fractal correlations and 1/f noise in dna base sequences[END_REF]) entre otras áreas.

A pesar de que en matemáticas, se ha estudiado ampliamente el concepto y la presencia del fenómeno de larga memoria, uno de los primeros estudios son propios de Harold Edwin Hurst, un hidrólogo británico que estudiaba las fluctuaciones en el canal del río Nilo con datos recolectados durante casi 100 años, como se puede apreciar en la siguiente gráfica Mientras estudiaba estas fluctuaciones, él desarrolló el estadístico de rango re-escaldo empírico 1 (R/S -statistic) para poder medir la "memoria" del río Nilo y así poder determinar su capacidad de almacenaje a largo plazo.

De igual manera, en diversas áreas de investigación se ha notado que muchas veces, ciertos fenómenos de interés, no ocurren de manera equi-espaciada, si no más bien, de manera aleatoria. Este enfoque es diferente a considerar procesos con datos faltantes, ya que se asume el tiempo de ocurrencia tiene alguna distribución de fondo. Algunos trabajos, de diferentes áreas de investigación, donde se consideran observaciones muestreadas en tiempos no equi-distantes y/o aleatorios, son:

• (Astronomía) Estimación de la significaciones de las cross-correlations en series de tiempo astronómicas, desarrollado por [START_REF] Max-Moerbeck | A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series[END_REF].

• (Geología) Análisis cross-spectral en series temporales del paleoclima, desarrollado por Ólafsdóttir et al. (2016).

• (Informática) Políticas de inspección aleatoria y de tiempo óptimo para sistemas informáticos, desarrollado por [START_REF] Zhao | Optimal time and random inspection policies for computer systems[END_REF].

• (Ingeniería) Mantenimiento óptimo de sistemas policiales, desarrollado por [START_REF] Chang | Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair[END_REF].

Éstas y otras situaciones, pudiesen ser modeladas en "tiempos aleatorios". Usualmente, al momento de estudiar un determinado proceso, establecemos que este ocurre de manera igualmente espaciada, por ejemplo, medimos la temperatura todos los días a la misma hora en alguna estación meteorológica, observamos el precio de apertura y clausura de algún índice bursátil a la misma hora, observamos el caudal de algún río cada 30 días, etc. Los instantes en los que han sido registradas las observaciones de las situaciones descritas anteriormente, muchas veces son planteados de acuerdo a la disponibilidad de recursos (tanto humanos como de herramientas de medición), es cierto que la mayoría de estos fenómenos siguen variando en otros instantes de tiempo, aunque no seamos capaces de registrar esa observación. [START_REF] Parzen | Time Series Analysis of Irregularly Observed Data[END_REF], fue de los primeros autores en considerar el análisis de procesos estocásticos, específicamente series temporales, "irregularmente espaciados", es decir, la realización del evento ocurría de manera no equi-espaciada. Poco tiempo después, [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF] propone la estimación no paramétrica de un modelo de regresión con observaciones tomadas bajo dos tipos de tiempos aleatorios, es decir, ahora en el tiempo de ocurrencia podríamos ser capaces de distinguir una distribución de fondo.

El estudio de modelos estadísticos con observaciones tomadas en tiempos aleatorios es bastante prometedor y presenta problemas abiertos, tales como la inferencia estadística y el comportamiento asintótico de los estimadores.

A lo largo de este trabajo se presentan avances en la inferencia estadística en procesos con larga memoria (estudiados a través del proceso Poisson fraccionario ó el movimiento Browniano fraccionario) y observaciones muestreadas en tiempos aleatorios. A continuación se dará una descripción más detallada de los procesos con los que se trabajará, los diferentes tiempos aleatorios considerados y de los resultados más importantes obtenidos en los diferentes trabajos que componen este manuscrito.

Proceso Poisson fraccionario

El proceso de Poisson fraccionario (fractional Poisson process (fPp)) fue definido por [START_REF] Wang | Poisson fractional processes[END_REF] como un proceso no Gaussiano con incrementos estacionarios, en el sentido amplio, al utilizar la integral con el mismo kernel que el movimiento Browniano fraccionario, pero reemplazando el movimiento Browniano por un proceso de Poisson compensado de intensidad λ > 0

N H t = t 0 K H (t, s)dq(s), t ∈ [0, T ],
donde [START_REF] Wang | Poisson fractional processes[END_REF] entregan las siguientes propiedades del proceso Poisson fraccionario

K H (t, s) = 1 Γ(H -1/2) s 1/2-H t s τ H-1/2 (τ -s) H-3/2 dτ y q(s) = Ns √ λ - √ λs.
• (Función de covarianza): definida de la siguiente manera

E(N H t N H s ) = V 2 H 2 t 2H + s 2H -|t -s| 2H , donde V 2 H = -Γ(2-2H)cos(πH) (2H-1)πH
. Salvo por la constante V 2 H , el proceso Poisson fraccionario y el movimiento Browniano fraccionario, comparten la misma función de covarianza. A pesar de que también es un proceso centrado, la ley de este proceso no puede ser determinada por los dos primeros momentos y por lo tanto la Gaussianidad no es una propiedad compartida por el proceso Poisson fraccionario y el movimiento Browniano fraccionario.

• (Autosimilaridad en sentido amplio): es decir

E N H at N H as = a 2H E N H t N H s .
• (Incrementos estacionarios en sentido amplio): es decir, la media y la varianza son invariantes en el tiempo,

E |N H t -N H s | 2 = V 2 H |t -s| 2H . • (Larga memoria): Si H > 1/2, se cumple que n≥1 E N H 1 N H n+1 -N H n = ∞.
Es importante mencionar que [START_REF] Laskin | Fractional poisson process[END_REF] caracteriza el proceso de Poisson fraccionario como un proceso de conteo, no Gaussiano y que también presenta larga memoria a través del parámetro de Hurst, H. A diferencia de lo que ocurre con el movimiento Browniano fraccionario, el proceso de Poisson es discreto y sus colas son más pesadas, por lo que permite modelar de mejor manera todas aquellas situaciones que presenten estas características, además de poder incorporar el fenómeno de larga memoria.

Movimiento Browniano estándar, movimiento Browniano fraccionario y proceso de Rosenblatt

El movimieno Browniano estándar fue descrito por primera vez por el biólogo escocés Robert Brown en 1827, mientras observaba el movimiento de las partículas en un líquido, este movimiento aleatorio se produce por el choque contra las moléculas de dicho fluído, con el tiempo se estableció que la osmosis y la difusión se basan en el movimiento Browniano, entre otros fenómenos.

Definición 1.0.1. Un proceso estocástico X = {X t } t∈R + es un movimiento Browniano si es contínuo y tiene incrementos independientes y estacionarios. Un proceso W = {W t } t∈R + es un proceso de Wiener si es un movimiento Browniano con

W 0 = 0; E [W t ] = 0; V ar(W t ) = t; t ∈ R + .
Pasado el tiempo, [START_REF] Kolmogorov | Wienersche spiralen und einige andere interessante kurven in hilbertscen raum, cr (doklady)[END_REF] introduce el movimiento Browniano fraccionario pero [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF] son los encargados de darle el nombre con el que es conocido actualmente. El éxito que tuvo el movimiento Browniano fraccionario para modelar diferentes situaciones fue, y sigue siendo, sorprendente, es uno de los procesos estocásticos más usados sobre todo cuando se quiere representar la larga memoria. Se distingue por un parámetro adicional, H, también conocido como parámetro de Hurst (en honor al hidrólogo que se menciona anteriormente). Particularmente, cuando H = 1/2, nos encontramos nuevamente con el movimiento Browniano estándar. A continuación revisaremos la definición de este proceso Definición 1.0.2. Sea H ∈ (0, 1]. Un movimiento Browniano fraccionario B H = B H t t∈R + , con parámetro de Hurst H es un procesos Gaussiano centrado y con función de covarianza

E B H t B H s = 1 2 t 2H + s 2H -|t -s| 2H
Las propiedades básicas de este proceso son

• (Autosimilaridad): Para todo a > 0, B H at d = a H B H t 1 .
• (Incrementos estacionarios):

Para h > 0, B H t+h -B H h d = B H t .
• (Inversión de tiempo):

t 2H B H 1/t d = B H t .
• (Larga memoria): también conocido como "long range dependence". Si H > 1/2, se cumple que

n≥1 E B H 1 B H n+1 -B H n = ∞
Además el movimiento Browniano fraccionario tiene una representación integral con respecto a un proceso de Wiener en un intervalo compacto,

B H t = t 0 K H (t, s)dW s , t ∈ [0, T ], 1 " d =" significa igualdad en distribución donde K H (t, s) = 1 Γ(H -1/2) s 1/2-H t s τ H-1/2 (τ -s) H-3/2 dτ .
El principal desafío que se enfrenta al trabajar con el movimiento Browniano fraccionario es que al no ser ni una semimartingala, ni un proceso de Markov, las herramientas con las que se cuenta para resolver los problemas en los que se involucra este proceso, son a menudo, no triviales y limitadas, lo cual resulta un desafío interesante para las personas que trabajan con cálculo estocástico. Un desarrollo más completo y reciente del movimiento Browniano fraccionario puede ser encontrado en [START_REF] Nourdin | Normal approximations with Malliavin calculus: from Stein's method to universality[END_REF].

Como una extensión del movimiento Browniano fraccionario, emerge el proceso de Rosenblatt, el que aparece como el límite de series de tiempo con larga memoria; es un proceso autosimilar y que vive en el segundo caos de Wiener (por lo que no es un proceso Gaussiano). Por las propiedades que tiene este proceso, es atractivo al momento de modelar fenómenos en los que la autosimilaridad se encuentra presente pero el supuesto de Gaussianidad no es realista.

Tiempos aleatorios

A lo largo de gran parte de este trabajo se presentarán los tiempos aleatorios, los cuales rigen su comportamiento de acuerdo a alguna variable aleatoria con condiciones sobre sus momentos ó la distribución de ésta. Particularmente, se trabajará con los tiempos aleatorios definidos en [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF], 1. Jittered sampling, "JS" abreviado. Primero, se asumirá que observamos cierto proceso a tiempos irregulares τ con peri do δ = 1/N > 0, pero contaminado por un ruido aditivo ν que representa una posible medida de error. Entonces, la secuencia de tiempos aleatorios τ i , 0 ≤ i ≤ N -1 satisface

τ i = i N + ν i,N , i = 0, . . . , N -1, (1.1)
donde la siguiente restricción establece la definición de la variable aleatoria ν (HJ) ν = {ν i,N ; 0 ≤ i ≤ N -1} es un arreglo triangular de variables aleatorias independientes e idénticamente distribuídas con función de densidad común g N (•), dependiendo de N con soporte en 0, 1 N .

2. Renewal process, "RP" abreviado. En este caso la secuencia τ satisfce la propiedad de renovación, es decir

τ i = i j=0 t j i ≥ 0, (1.2)
donde {t j , 1 ≤ j} es una secuencia de variables aleatorias independientes e idénticamente distribuídas, con función de distribución G(•), en común, con soporte en [0, ∞), la cual satisface las siguientes hipótesis

H1 E [t j ] = 1 N , H2 E t 2 j = κ 1 N α donde 0 < α ≤ 2, H3 E t 4 j = κ 2 N β donde 0 < β ≤ 2α.
Estos conceptos son aplicados a lo largo de este manuscrito en 5 diferentes trabajos. A continuación se revisan los resultados más importantes de cada trabajo.

Capítulo 2: "Estimación paramétrica para un modelo discreto en el tiempo dirigido por un proceso Poisson fraccionario."

En este capítulo abordamos el problema de estimación paramétrica en un modelo continuo, con un ruido representado por un proceso Poisson fraccionario (fractional Poisson process, fPp)

X t = θ t 0 X s ds + N H t , t ∈ [0, 1], (1.3) donde X 0 = 0, N H = N H t , t ∈ [0, 1
] is un proceso Poisson fraccionario con parámetro de Hurst H ∈ (1/2, 1) y parámetro de drift desconocido θ > 0.

Sin embargo, existen algunas dificultades que hacen que la estimación del parámetro de drift en este tipo de modelo sea compleja; por ejemplo, el hecho de que las distribuciones finito dimensionales del proceso fPp no son ni Gaussianas ni conocidas; los teoremas de convergencia débil asociados a este tipo de proceso difieren mucho de los Gaussianos; manipular integrales de Wiener-Itô es un desafíaomayor en el contexto de estos procesos. Con esta motivación, definimos una versión discretizada, en el tiempo y el ruido, mediante un esquema tipo Euler y el paseo aleatorio, respectivamente. Notando que estas observaciones, satisfacen la ecuación diferencial

X π m t i+1 = X π m t i + θX π m t i ∆t i+1 + ∆N H t i+1 , 0 ≤ i ≤ m -1, (1.4) donde X π m 0 = 0, ∆t i+1 = t i+1 -t i = 1 m and ∆N H t i+1 = N H t i+1 -N H t i .
Este modelo es una versión discreta en el tiempo del proceso Ornstein-Uhlenbeck Poisson fraccionario. Luego, al aproximar el ruido, mediante un paseo aleatorio, el modelo con el que trabajaremos es el que sigue

X π m ,m α τ i+1 = X π m ,m α τ i + θ m X π m ,m α τ i + ∆N m α ,H τ i+1 , 0 ≤ i ≤ m α -1, (1.5) donde α > 2, X π m ,m α t 0 = X 0 , θ > 0 y {N m α ,H τ j , 0 ≤ j ≤ m α } es la aproximación a través del paseo aleatorio del fPp. π m es la partición del intervalo [0, 1] de tamaño 1 m tal que 0 = t 0 < t 1 < • • • < t m = 1. Dentro del subintervalo [t k , t k+1 ], 0 ≤ k ≤ m -1 consideramos una nueva partición τ m(α) de tamaño 1/m α-2 tal que t k = τ k m ≤ τ k m + 1 m α-2 ≤ τ k m + 2 m α-2 ≤ . . . ≤ τ k m + m α-1 m α-2 = t k+1 .
Dado que el tamaño del paso en el esquema de Euler es 1 m , para poder asegurar la consistencia fuerte de ambos estimadores es necesario definir un parámetro extra, α > 2, que controla la cantidad de observaciones necesarias para obtener la convergencia. Para explicar esto, consideremos el siguiente ejemplo, como en [START_REF] Bertin | Drift parameter estimation in fractional diffusions driven by perturbed random walks[END_REF],

Y t = at + W t , t ∈ [0, 1],
(1.6) donde a ∈ R. Luego de usar una discretización de tipo Euler para (1.6), se tiene

Y (n) t j+1 := Y t j+1 = Y t j + a∆t + W t j+1 -W t j , j = 0, . . . , m -1,
con Y t 0 = Y 0 = 0 and ∆t = t j+1 -t j el tamaño de la partición. Es sabido, que por ejemplo , el estimador de máxima verosimilitud para a, tomando observaciones discretas del modelo (1.6), está dado por

â = 1 m∆t m-1 j=0 (Y t j+1 -Y t j ), and â -a = 1 m∆t m-1 j=0 (W t j+1 -W t j ),
entonces, es fácil notar que

E(â -a) 2 = 1 m∆t ,
y esto converge a cero, es decir, el estimador es consistente en L 2 si y solo si

∆t → 0, y m α ∆t → ∞ cuando m → ∞. (1.7)
Notemos que la partición t j = j/m with j = 0, . . . , m, no satisface (1.7). Por lo tanto, es necesario considerar m α muestras, con α > 2 y un intervalo de discretización del orden de 1/m para satisfacer la condición (1.7). Esto es conocido como "datos de alta frecuencia" (high frequency data), representa que, a medida que la cantidad de observaciones tiende a infinito, el intervalo de observaciones entre ellas tiende a cero.

Adicionalmente, probamos que el modelo discreto es una buena aproximacón del modelo continuo, en sentido débil, ya que ambos modelos comparten las mismas propiedades distribucionales. Esto nos permite concentrarnos en estimar el parámetro θ, asumiendo H y λ conocidos, en el proceso Ornstein-Uhlenbeck Poisson fraccionario discreto.

Las siguientes proposiciones son planteadas en orden de establecer las relaciones entre las aproximaciones entre los modelos (1.3), (1.4) y (1.5).

Proposición: Sea

X = {X t , t ∈ [0, 1]} la solución de (1.3) y Y π m t = θ t 0 Y π m cm(u) du + N H t , t ∈ [0, 1]. (1.8) la interpolación lineal del esquema de Euler dado en(1.4), donde c m (u) = ⌊mu⌋ m . Entonces E|X t -Y π m t | 2 → 0, as m → ∞. Proposición: Sean α > 2, X = {X t , t ∈ [0, 1]} la solución de (1.3) y {X π m ,m α i , 0 ≤ i ≤ m α -1} el proceso discreto definido en (1.5) como X π m ,m α i+1 = 1 + θ m X π m ,m α i + 1 √ λ ∆N m α ,H i+1 , 0 ≤ i ≤ m α -1. Entonces X π m ,m α (d) ----→ m→∞ X,
donde "(d)" significa convergencia en distribución.

Del trabajo de Bertin et al. (2011), podemos notar que el incremento del paseo aleatorio fraccionario, puede ser expresado como

∆N m α ,H j+1 = j i=1 f ij η m α i + F j η m α j+1 , (1.9) con F j := m α j+1 m α j m α K j + 1 m α , s ds (1.10) y f ij := m α i m α i-1 m α K j + 1 m α , s -K j m α , s ds . (1.11)
Por simplicidad en la notación, en lo que sigue, es necesario tener en cuenta que Z := X m,m α y Z j = Z t m j . Teniendo en cuenta (1.5), (1.10) y (1.11), podemos escribir

Z j+1 = 1 + θ m Z j + j i=1 f ij η m α i + F j η m α j+1 , 0 ≤ j ≤ m α -1.
(1.12) Para todo j ≥ 1, las observaciones Z j son variables aleatorias no Gaussianas, correlacionadas con estructura de dependencia un tanto complicada, involucrando los elementos f i,j y F j . Como en el trabajo de Rifo et al. (2013), escribiremos nuestro modelo como

Z j+1 = 1 + θ m Z j + T j (Z 1 , . . . , Z j ) - θ m S j-1 (Z 1 , . . . , Z j-1 ) + F j η m α j+1 , (1.13) donde T j (Z 1 , . . . , Z j ) = j i=1 f ij i k=1 b -1 i,k • Z k y (1.14) S j-1 (Z 1 , . . . , Z j-1 ) = j i=1 f ij i k=1 b -1 i,k • (Z 1 + ... + Z k-1 ).
(1.15) Donde b -1 i,k son los elementos de la matriz B -1 , que es la inversa de la matriz B definida como

B = (b k,l ) 1≤k,l≤j con b k,l =      0 if k < l F l-1 if k = l F l-1 + k-1
r=l f lr if k > l, Dado que el proceso X tiene una estructura autorregresiva, podemos probar la consistencia, en media cuadrática del estimador de mínimos cuadrados ponderados (Weighted Least Squares, WLS); mientras que para obtener el estimador de máxima verosimilitud (Maximum Likelihood, ML), mediante sucesivas trasformaciones del ruido, usamos una distribución Bernoulli, que viene de la aproximación mediante el paseo aleatorio. Así, el estimador de mínimos cuadrados ponderados

θ m,m α W LS = m m α -1 j=0 F -2 j • (∆Z j+1 -T j (Z 1 , . . . , Z j )) (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 . (1.16) y el estimador de máxima verosimilitud θm,m α ML = m m α -1 j=0 F -2 j • (∆Z j+1 -T j (Z 1 , . . . , Z j )) (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 + m 1 -e -1/m α m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 .
(1.17) para el modelo (1.12). Lo siguientes teoremas establecen la consistencia para ambos estimadores estudiados Teorema: Sea θm,m α W LS el estimador de mínimos cuadrados ponderados (Weighted Least Squares, WLS) de θ en el modelo (1.12) dado por (1.16). Si α > 2 entonces

E θm,m α W LS -θ = 0, y V ar θm,m α W LS -θ → 0, cuando m → ∞. Teorema: Sea θ m,m α M L
el estimador máximo verosímil de θ en el modelol (1.12) dado por (1.17

). Si α > 2 entonces E θm,m α M L -θ → 0, y V ar θm,m α M L -θ → 0, cuando m → ∞.

Las resultados desarrollados en este trabajo son parte del artículo

• Héctor Araya, Natalia Bahamonde, Tania Roa and Soledad Torres. "Parameter estimation for discretely observed Fractional Poisson Ornstein-Uhlenbeck Process".

Capítulo 3: "Consistencia del estimador de mínimos cuadrados en modelos muestreados en tiempos aleatorios dirigidos por un ruido con larga memoria: Caso Jitterd."

En este capítulo estudiamos el comportamiento asintótico del estimador de mínimos cuadrados para el siguiente modelo

Y τ i = aτ i + ∆B H τ i , i = 0, . . . , N -1, (1.18)
donde τ i sigue un comportamiento aleatorio como el definido en (1.1). Es importante notar que en (1.1), al igual que en (1.18), se ha establecido que i = 0, . . . , N -1, esto se debe a que el tiempo aleatorio τ N tiene una probabilidad igual a 1/2 de caer fuera del intervalo [0, 1]; es por esto que para asegurar la convergencia del estimador, los tiempos considerados son τ 0 , . . . , τ N -1 los cuales están contenidos en el intervalo [0, 1]. De todas maneras, dada la hipótesis establecida en un principio es posible asegurar que |1 -τ N | → 0 cuando N tiende a infinito.

Algunas hipótesis adicionales que se establecen son:

(HN1) La estructura de la covarianza está dada por

R H (t, s) := E B H t B H s = σ 2 2 t 2H + s 2H -|t -s| 2H .
(HN2) Consideramos un proceso de varianza finita que es autosimilar (con índice H) y con incrementos débilmente estacionarios.

(HJN) La secuencia aleatoria τ y el ruido con larga memoria B H son independientes.

El estimador obtenido mediante el procedimiento de mínimos cuadrados es

âN = N -1 i=0 τ i+1 Y τ i+1 N -1 i=0 τ 2 i+1 , (1.19)
mediante una normalización adecuada, estudiaremos la convergencia casi segura de âN a a. El teorema establecido fue el siguiente Teorema: Sea τ dado por (1.1). Asumiendo el modelo (1.18) y satisfaciendo las hipótesis establecidas. Entonces el estimador de mínimos cuadrados del parámetro de drift, âN , dado por (1.19), en el modelo (1.18) es fuertemente consistente, es decir âN a.s.

----→ N →∞ a.

Del teorema anterior, definimos

âN -a = 1 N N -1 i=0 τ i ∆B H τ i 1 N N -1 i=0 τ 2 i := A N D N .
También fue necesario establecer un lema relacionado con el denominador (D N ), para comprobar el teorema anterior. El lema propuesto fue el siguiente Lema: Sea τ = {τ i ; 0 ≤ i ≤ N -1} el tiempo de muestreo aleatorio definido por (1.1). Si τ satisface la hipótesis (HJ), entonces

D N a.s. ----→ N →∞ 1 3 .
Adicionalmente, se lleva a cabo un estudio de simulación donde se ve comportamiento del estimador propuesto, tanto como para diferentes valores de N como para varias realizaciones del proceso Y τ i .

Las resultados desarrollados en este trabajo son parte del artículo Capítulo 4: "Consistencia del estimador de mínimos cuadrados en modelos muestreados en tiempos aleatorios dirigidos por un ruido con larga memoria: Caso Renewal."

En este capítulo, como en el anterior, se estudia la consistencia del estimador de mínimos cuadrados en un modelo en el que las observaciones fueron tomadas también de manera aleatoria, pero bajo un esquema completamente diferente del presentado anteriormente. El modelo bajo estudio es

Y τ i+1 = aτ i + ∆B H τ i+1 , i = 0, . . . , N (1), (1.20)
donde τ es una secuencia estrictamente creciente de tiempos aleatorios bajo el esquema definido por (1.2).

En (1.20) aparece una nueva variable aleatoria, denotada por N (1) y que representa la cantidad de puntos (tiempos aleatorios) tal que τ N (1) < 1, es decir, hay N (1) observaciones en el intervalo [0, 1]. Esta nueva variable nace de la definición de τ , ya que representa una suma parcial de variables aleatorias positivas que no se encuentran acotadas superiormente.

De igual manera que en el trabajo del capítulo anterior, se establecen hipótesis relacionadas con el primer, segundo y cuarto momento de las variables aleatorias que componen τ . Uno de los problemas que se enfrentan a lo largo de este trabajo es la aleatoriedad de la cantidad de observaciones que se disponen, a diferencia de los tiempos aleatorios estudiados en el capítulo anterior, no es posible asegurar que el penúltimo término τ N -1 se encuentra dentro del intervalo [0, 1]; si bien es cierto que dadas las hipótesis planteadas, es esperado que la cantidad de observaciones que se tienen es, en promedio, N sin embargo, esto significa que existen ocasiones en las que es posible que se tenga una cantidad de observaciones bastante inferior (N (1) << N ), esto puede generar la siguiente pregunta, ¿es posible asegurar la consistencia del estimador con una menor cantidad de observaciones?. Esta interrogante es resuelta a través del siguiente esquema |â N (1) -a| = |â N (1) -âN + âN -a| = cantidad aleatoria versus cantidad fija + cantidad fija versus el parámetro. esto significa que para estudiar la consistencia asintótica del estimador del parámetro con una cantidad aleatoria de observaciones, es posible proceder en dos partes: estudiando la diferencia entre el parámetro con una cantidad fija de observaciones y luego analizando la diferencia entre el parámetro estimado con una aleatoria de observaciones y el parámetro estimado con una cantidad fija de observaciones.

El estimador de mínimos cuadrados para el parámetro de drift, considerando una cantidad aleatoria de observaciones es

âN(1) = N (1) i=0 τ i Y τ i+1 N (1) i=0 τ 2 i .
(1.21) y la diferencia estudiada es

âN(1) -a = N (1) i=0 τ i ∆B H τ i+1 N (1) i=0 τ 2 i (1.22)
El teorema que estable la consistencia del estimador de mínimos cuadrados con una cantidad aleatoria de observaciones es el siguiente: Teorema: Sea τ el tiempo aleatorio definido por (1.2), satisfaciendo desde la hipótesis H1 a H3 para α > max{3/2, 1/H} y β > 2. Entonces el estimador de mínimos cuadrado âN(1) del parámetro de drift del modelo (1.20) es fuertemente consistente âN(1)

a.s. ----→ N →∞ a.
La prueba de este Teorema es estudiada en dos partes como se propone en el esquema antes descrito, a través de las siguientes proposiciones:

Proposición: Sea τ el tiempo aleatorio definido por (1.2), satisfaciendo desde la hipótesis H1 a H3 para α > max{3/2, 1/H} y β > 2. Entonces, el estimador de mínimos cuadrados âN (estimador con una cantidad fija de observaciones) es fuertemente consistente âN a.s.

----→ N →∞ a.

Proposición: Sea τ el tiempo aleatorio definido por (1.2), satisfaciendo desde la hipótesis H1 a H3 para α > max{3/2, 1/H} y β > 2. Considerando los estimadores de mínimos cuadrados âN y âN(1) , entonces

|â N (1) -âN | a.s. ----→ N →∞ 0 
El denominador (1.22) es estudiado a través del siguiente lema: Lema: Sea D N el denominador de (1.22), τ definido por (1.2), satisfaciendo desde la hipótesis H1 a H3 para α > 3/2 y β > 2, entonces

D N a.s. ----→ N →∞ 1 3 .
Este lema permite poner énfasis en el estudio del numerador de (1.22). Para la prueba de este lema, se transforma el denominador de manera tal que queda escrito como una forma cuadrática, luego mediante una descomposición ortogonal de los términos que la componen, se estudia la convergencia casi segura de cada uno de éstos.

De manera similar, se presenta un estudio de simulación en el que se compara el comportamiento del estimador bajo tiempos no aleatorios y aleatorios. También se simula para diferentes cantidades de observaciones y para múltiples realizaciones.

Las resultados desarrollados en este trabajo son parte del artículo

• Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa and Soledad Torres. "On consistency of least squares estimator in models sampled at random times driven by long memory noise: the Renewal case.".

Capítulo 5: "Distribución límite del estimador de mínimos cuadrados con observaciones muestreadas en tiempos aleatorios y dirigidos por el movimiento Browniano estándar"

En el trabajo presentado en este capítulo, se estudia la distribución límite del estimador de mínimos cuadrados para un caso particular del modelo (1.18),

Y τ i+1 = aτ i+1 + W τ i+1 -W τ i , i = 0, ..., N -1 (1.23)
donde τ i , i = 0, .., N son tiempos aleatorios, independiendientes de W con τ 0 := 0 y W τ es el movimiento Browniano estándar, es decir, en este modelo no consideraremos la larga memoria. Además para la sequencia {τ i ; 1 ≤ i ≤ N }, tomaremos, para ambos tipos de tiempos aleatorios, una de las distribuciones que cumplen con las condicones de momentos impuestas en el trabajo anterior. En particular, cuando τ i tiene un comportamiento como "jittered sampling" usaremos la distribución uniforme en el intervalo -1 2N , 1 2N , mientras que si sigue un comportamiento como "renewall process" consideraremos la distribución exponencial.

En cuanto a la cantidad de observaciones muestreadas dentro del intervalo [0, 1], se consideró que τ = {τ i ; i = 0, . . . , N }, donde N es el último entero tal que τ N -1 ≤ 1. Es destacable que el tema de cuántas observaciones son muestreadas en el intervalo definido, cuando τ i tiene un comportamiento como (1.2), sigue siendo una incertidumbre al igual que en el trabajo anterior; sin embargo, para el desarrollo de este problema decidimos abordarlo desde otra perspectiva, la cuál se basa en considerar una cantidad de observaciones ligeramente menor, es decir,

τ ⌊N α⌋ ≤ τ N ≤ 1,
donde el valor de α es escogido de manera arbitraria, pero tal α ≈ 1. La mayoría de los autores que han lidiado con el problema de los tiempos aleatorios definidos como (1.2) y, por consiguiente, la cantidad de observaciones muestreadas en un intervalo fijo, han considerado simplemente que τ N es la última observación contenida en el intervalo, mientras que el enfoque en este trabajo ha sido considerar un espacio de probabilidad un poco más pequeño pero que nos asegura que todo el periodo de observación en el intervalo [0, 1], este resultado es inspirado desde [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], Theorem 3.4.1.

Considerando que 0 < α ≤ 1 y N α = [αN ] como el número de observaciones. Y τ i+1 = aτ i+1 + ∆W τ i+1 , i = 0, . . . N α -1,
(1.24) para el caso "jittered sampling" consideraremos que α = 1, mientras que para el caso "renewal process" consideraremos que α ≈ 1.

Mediante el procedimiento de mínimos cuadrados, el estimador del parámetro a en el modelo (1.24), es

âN = Nα-1 i=0 τ i+1 Y τ i+1 Nα-1 i=0 τ 2 i+1 ,
(1.25) para ambos tiempos aleatorios. De (1.24) y (1.25), es inmediato que

âN -a = 1 N Nα-1 i=0 τ i+1 ∆W τ i+1 1 N Nα-1 i=0 τ 2 i+1 := A N D N . (1.26)
Analizaremos la normalidad asintótica de (1.25) mediante los siguientes resultados Proposición: D N converge casi seguramente a α 3 3 cuando N tiende a infinito.

Lema: Si τ es definido como (1.1) ó (1.2), se cumple que

E |N A N | 2 ----→ N →∞ 1 3 α 3 .
Proposición: Sea A N , la siguiente convergencia en distribución se cumple

N A N L -----→ N →∞ + N 0, α 3 3 , ya sea si τ es definido como (1.1) ó (1.2).
Finalmente, como resultado de las proposiciones anteriores es factible establecer el siguiente teorema. Teorema: Considerando el estimador de mínimos cuadrados, entonces

N (â N -a) L -----→ N →∞ + N 0, 3 α 3 .
Las resultados desarrollados en este trabajo son parte del artículo

• Tania Roa, Soledad Torres and Ciprian Tudor. "Limit distribution of the least squares estimator with observations sampled at random times driven by standard Brownian motion".

Capítulo 6: "Aproximación en tiempo pequeño en la difusion de Fisher -Wright"

En este trabajo la motivación principal viene de la necesidad de crear un test estadístico para detectar huellas de selección, es decir, si hay o no aleatoriedad en la frecuencia alélica para la siguiente generación. La variación en la frecuencia alélica a través de las generaciones es uno de los factores determinantes al momento tener diferencias entre los diferentes organismos.

En cada célula de nuestro organismo hay un "núcleo" y dentro de éste, se encuentra el ADN (Ácido Desoxiribonucléico), organizado en unidades estructurales llamadas cromosomas. Los humanos somos organismos diploides, por lo que tenemos 46 cromosomas organizados en pares, desde el 1 al 22 son autosomas y el par restante son cromosomas sexuales X e Y el cuál contiene información sobre el sexo biológico de la persona. Cuando los individuos diploides se reproducen, hay dos padres, cada uno de los cuales contribuye con uno de cada uno de sus pares de cromosomas, en este punto se produce un intercambio de material genético. Es precisamente durante este intercambio que se producen las diferentes variaciones debido a las posibles combinaciones que ocurren cuando se combina el material genético de dos personas y se traspasan a la siguiente generación.

En este punto, es posible establecer una relación con el concepto de "larga memoria" que, si bien no es exactamente lo mismo que solemos estudiar en procesos estocásticos, representa en qué medida las observaciones pasadas continúan afectando en las observaciones presentes.

En genética de poblaciones, un modelo usual para representar la variación en las frecuencias alélicas es el modelo de Fisher -Wright. Si bien es tentador, al tener gran cantidad de observaciones, considerar una distribución Gaussiana con los parámetros correspondientes, esto no siempre es adecuado. Varios test estadísticos, en genética de poblaciones, usan una aproximación poco precisa de una distribución normal, es por esto que un primer paso muy importante fue definir una distribución adecuada para estudiar correctamente un test estadístico para las variaciones en las frecuencias alélicas.

En el siguiente trabajo consideramos la difusión de Fisher-Wright (F-W) definida para t ∈ R + como la solución de la ecuación diferencial estocástica, definida por

dX(t) = X(t)(1 -X(t))dW (t) (1.27) X(0) = x 0 .
Definiremos una expansión asintótica

p X t ′ N (x|x 0 ) = 1 2π t ′ N (x 0 (1 -x 0 )) 1 4 (x(1 -x) 3 4 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 (1 + O( t ′ N )), y la aproximación Gaussiana p X t ′ N (x|x 0 ) = 1 2π t ′ N 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ (x-x 0 ) 2 (x 0 (1-x 0 )) (1 + O( t ′ N )).
Finalmente, se presenta un estudio de simulación en el que es posible visualizar cómo se comportan estas aproximaciones para la variación en la frecuecia alélica de una población de tamaño fijo y a través de diferentes generaciones.

Las resultados desarrollados en este trabajo se mantienen en desarrollo y constituyen un trabajo en conjunto con María Inés Fariello, Paola Bermolén, José León y Gerardo Martínez.

Capítulo 7: "Proceso de Rosenblatt no simétrico sobre un compacto".

En este capítulo se construye y estudia una representación del proceso de Rosenblatt no simétrico definido en un intervalo compacto. Esta representación es de utilidad al momento realizar simulaciones y trabajar en un contexto de cálculo estocástico. Además, las características de este proceso (autosimilaridad, larga memoria y no Gaussianidad) lo hacen atractivo a la hora de pensar en posibles aplicaciones donde la larga memoria y la no Gaussianidad estén presente en los fenómenos. Después de definir y estudiar algunas de las propiedades del proceso, a modo de aplicación, se estudia la consistencia del estimador de mínimos cuadrados para el parámetro que modela la tendencia en un modelo simple cuyo ruido está dado por los incrementos de un proceso de Rosenblatt no simétrico.

Maejima y Tudor (2012) generalizan el trabajo de [START_REF] Taqqu | Weak convergence to fractional brownian motion and to the rosenblatt process[END_REF] y definen el proceso de Rosenblatt no simétrico como

Y H 1 ,H 2 (t) = A(H 1 , H 2 ) R 2 t 0 (s -y 1 ) H 1 2 -1 + (s -y 2 ) H 2 2 -1 + ds dB(y 1 )dB(y 2 ),
donde B = {B(y), y ∈ R} es un movimiento Browniano estándar yA(H 1 , H 2 ) es una constante de normalización positiva dada por

A -2 (H 1 , H 2 ) = 1 H(2H -1) β 1 -H 1 , H 1 2 β 1 -H 2 , H 2 2 + β 1 -H, H 1 2 β 1 -H, H 2 2 con H = H1+H2 2 .
Dada la representación de la integral estocástica en un intervalo compacto del proceso de Rosenblatt, establecida por Maejima y Tudor (2012), es natural extender sobre un intervalo compacto, el siguiente proceso

Z H1,H2 (t) := C(H 1 , H 2 ) t 0 t 0 t y1∨y2 ∂K H ′ 1 ∂u (u, y 1 ) ∂K H ′ 2 ∂u (u, y 2 )du dB(y 1 )dB(y 2 ), t ∈ [0, T ]. (1.28)
Del proceso (1.28), es posible definir su kernel f como

f t (y 1 , y 2 ) = C(H 1 , H 2 ) t y 1 ∨y 2 ∂K H ′ 1 ∂u (u, y 1 ) ∂K H ′ 2 ∂u (u, y 2 )du1 [0,t] 2 (y 1 , y 2 ), (1.29) para todo y 1 , y 2 ∈ [0, T ],
es claro que f es un kernel no simétrico, entonces se puede definir su simetrización como ft (y 1 , y 2 ) = 1 2 (f t (y 1 , y 2 ) + f t (y 2 , y 1 )) .

La autosimilaridad del proceso (1.28) es estudiada a través de la siguiente proposición Proposición: Sea Z H 1 ,H 2 dado por (1.28), entoncesZ H 1 ,H 2 es un proceso 1 2 (H 1 + H 2 )-autosimilar y tiene incrementos estacionarios.

Utizando una técnica de regularización, los autores Pipiras y Taqqu (2010), muestran diversas representaciones del proceso de Hermite. Esta técnica permite establecer el resultado más importante de este capítulo, expresado en el siguiente teorema

Teorema: Considerando H 1 = H * 1 y H 2 = H * 2
, entonces el proceso Y H 1 ,H 2 tiene la siguiente representación, en sentido de igualdad de entre las distribuciones finito dimensionales

Y H1,H2 (t) = C(H * 1 , H * 2 ) t 0 t 0 t y1∨y2 ∂K H ′ 1 ∂u (u, y 1 ) ∂K H ′ 2 ∂u (u, y 2 )du dB(y 1 )dB(y 2 ), t ∈ [0, T ].
A modo de aplicación se estudia la consistencia fuerte del estimador de mínimos cuadrados, en un modelo lineal simple pero con un ruido dirigido por un proceso de Rosenblat no simétrico sobre un compacto,

X t = at + Z H 1 ,H 2 t , t ∈ [0, 1].
Las resultados desarrollados en este trabajo son parte del artículo 

Introduction

The fractional Poisson process (fPp) introduced by Wang, Wen and Zhang (2006). is defined as a class of non-Gaussian processes with stationary increments in the wide sense, by utilizing the integral with the same kernel as the fractional Brownian motion, but replacing Brownian motion by a compensated Poisson process with intensity λ > 0

N H t := 1 Γ H -1 2 t 0 u 1 2 -H t u τ H-1 2 (τ -u) H-3 2 dτ dq(u), t ∈ [0, 1], (2.1) with H ∈ 1 2 , 1 , is the Hurst parameter, q(u) = Nu √ λ - √
λu and N is an homogeneous Poisson process with intensity λ > 0. This formula yield, almost surely, that all paths of the fPp are continuous and of Hölder index strictly less than H -1/2, for H > 1/2, and it also holds common properties with the classical fractional Brownian motion (fBm). Among these properties, we can highlight long-range dependence, the same covariance structure and stationary increments, in the wide sense. It is worth mentioning, that at the same time, [START_REF] Laskin | Fractional poisson process[END_REF] defines a fractional Poisson process as a counting, non-Gaussian long-memory process, based on a generalization of the Kolmogorov-Feller equation. The author computes the probability of n arrivals at time t, evidence the long-memory effect, and also computes the waiting time distribution as a non-exponential density related to the Mittag-Leffler function.

In this work, we consider the problem of estimating the parameter θ, assuming that H and λ are known, when high-frequency observations are given for a discrete time model and a random walk approximation of the fractional Poisson process

X π m ,m α τ i+1 = X π m ,m α τ i + θ m X π m ,m α τ i + ∆N m α ,H τ i , 0 ≤ i ≤ m α -1, (2.2) where α > 2, X π m ,m α t 0 = X 0 , θ > 0 and {N m α ,H τ j
, 0 ≤ j ≤ m α } is the random walk approximation of the fractional Poisson process (2.1). π m is the partition of the interval [0, 1] with step size α) with step size 1/m α such that t k = τ k•m α-1 with k = 0, . . . , m and τ j = j m α , j = 0, . . . , m α . To justify our procedure, we follow Kubilius, Mishura and Ralchenko (2017), where the authors prove strong consistency by considering the so-called "high frequency data" assumption, i.e. the amount of observations tend to infinity as the interval of observations between them goes to zero. Aditionally to Kubilius, Mishura and Ralchenko (2017), where the high frequency data method is used, we can mention (Bertin, Torres and Tudor 2011b;Mai 2014;Saussereau 2014) and Ruttor, Batz and Opper (2013) (Section 2), where it is possible to find the same argument when dealing with the discretization and number of observations needed to reach convergence results. To understand better, we illustrate the method for m = 4, α = 3 and the step size of the partition π m = {0, 1/4, 1/2, 3/4, 1} in the following scheme

1 m such that 0 = t 0 < t 1 < • • • < t m = 1. Within the sub-interval [t k , t k+1 ], 0 ≤ k ≤ m -1 we consider a new partition τ m(
0 1 4 2 4 3 4 1 π m m 2 observations
This discrete time model (2.2) is inspired in the well known Ornstein-Uhlenbeck process as a discretization by means of a Euler -Maruyama scheme. Unlike the parameter inference problem in the Ornstein-Uhlenbeck process driven by Brownian motion, which has been extensively studied (see for example Kutoyants (2013) and Liptser and Shiryaev (2001)), the cases of fBm or non-Gaussian process are relatively new. In the case of fBm, the most well known methods for estimate the parameter θ in the Orsntein-Uhlenbeck model, are either the maximum likelihood or the least squares method. The reader can consult (Hu and Nualart 2010;Hu, Nualart and Zhou 2019;Es-Sebaiy, Belfadli and Ouknine 2011;Tudor and Viens 2007) to gain a well rounded understandment of this topic. The case of inference in the Orsntein-Uhlenbeck model, driven by non-Gaussian processes is studied by (Clément and Gloter 2015;Clément, Gloter and Nguyen 2019;Masuda 2019), for pure jump Lévy process, Bertin, Torres and Tudor (2011b), for the Rosenblatt process, which is non Gaussian with long memory, and Nourdin and Tran (2019), for the Vasicek-type model driven by Hermite process, for example. We work under the context of Bertin, Torres and Tudor (2011a), Bertin, Torres and Tudor (2011b) and [START_REF] Rifo | Comparative estimation for discrete fractional ornstein-uhlenbeck process[END_REF] which allow us to use martingale's arguments in order to obtain the asymptotic behavior of the estimator. Although this approach solves the problem of parametric estimation of θ in a discrete time model, this is an important step forward in the statistical development of inference for the continuous time Ornstein-Uhlenbeck model driven by a fractional Poisson process given by

X t = X 0 + t 0 θX s ds + N H t , t ∈ [0, 1], θ > 0. (2.3)
We prove on Section 3.3, that the discrete model (2.2) can be seen, in the weak convergence sense, as a good approximation of the continuous one. This allows us to take advantage of widely used inferential and other methods in time series modelling for this well-established process class.

At this point, it is important to mention some of the main difficulties to consider in the parametric problem of estimating the drift coefficient in a continuous Ornstein-Uhlenbeck model driven by a fractional Poisson noise (2.3). Some of them are:

• Finite dimensional distributions of the fPp are not known and of course are not Gaussian.

• Weak convergence theorems (Fourth Moment Theorem) related to Poisson integrals greatly differs from the Gaussian context Döbler and Peccati (2018).

• Hölder regularity of the fPp is less than the regularity of the fBm.

• Manipulating Wiener-Itô integrals is a bigger task in the Poisson framework than in the Gaussian.

Then, our methodology is similar to a method to construct continuous time processes from discrete ones that consist in using a diffusion approximation, see for example Kubilius, Mishura and Ralchenko (2017). Here, one takes a sequence of discrete time series defined on a grid, extends the processes between grid points in a suitable way (such as interpolation, or piecewise consistency), and shows that this sequence of processes defined on [0, ∞) converges weakly to some limit process. This corresponds to the Euler approximation

{X π m t i , 0 ≤ i ≤ m}, 0 = t 0 ≤ t 1 ≤ . . . ≤ t m = 1, associated to the process {X t , t ∈ [0, 1]} defined in (2.3). The approximation to the continuous time process X is in the L 2 sense (see Proposition 2.3.1). Notice that the discrete time processes, {X π m ,m α τ i , 0 ≤ i ≤ m α }, defined by equation (2.2) has the same distributional properties as the continuous process X defined in equation (2.3). Since the process {X π m ,m α τ i , 0 ≤ i ≤ m α } given in (2.
2) has an autoregressive structure, we can prove the mean square consistency for the Weighted Least Squares Estimator (WLSE). In the case of the Maximum Likelihood Estimator (MLE), we are able to establish the estimator by means of a transformation of the noise which includes a Bernoulli random variable. This is an extra task in this matter. To perform a simulation study of the rate of convergence and the asymptotic distribution, we use Monte Carlo method and some techniques of approximation for integrals. This allows us to show the shape of the limit distributions for different values of H.

Therein, we mention that the main problem to obtain the asymptotic distribution is related to the autoregressive structure of the model and the non-Gaussian structure of the noise. To ensure convergence results for WLSE and MLE, we need an extra hypothesis on the parameter α > 2, as they do in Kubilius, Mishura and Ralchenko (2017), that controls the number of samples m α . We also assume that the step size of the Euler scheme is 1 m . This condition extends the usual hypothesis in the case of standard Wiener case (see Prakasa Rao (2010), Section 3.4). To illustrate the previous fact, we recall some known results on MLE in simple standard cases, which are given in Bertin, Torres and Tudor (2011a), Bertin, Torres and Tudor (2011b) and Prakasa Rao (2010). Let W be a Wiener process on a classical Wiener space (Ω, F, P) and let us consider the following simple regression model

Y t = θt + W t , t ∈ [0, 1].
(2.4)

Here θ > 0. Using the Euler-type discretization of equation ( 7.10) we have

Y π m t j+1 := Y t j+1 = Y t j + θ∆t + W t j+1 -W t j , j = 0, . . . , m -1,
where π m is the partition of the interval [0, 1] with ∆t = t j+1 -t j = 1 m the step size of the partition and

Y t 0 = Y 0 = 0.
It is known that the MLE for θ, based on discrete observations from (7.10), is given by

θ = 1 m∆t m-1 j=0 (Y t j+1 -Y t j ), and θ -θ = 1 m∆t m-1 j=0 (W t j+1 -W t j ),
therefore it is easy to note that

E( θ -θ) 2 = 1 m∆t ,
and this converges to zero (i.e., the estimator is L 2 -consistent) if and only if m∆t → ∞.

(2.5)

Let us note that the step size 1/m, of the partition π m does not satisfy condition (7.11). In conclusion, here and in our situation (see Theorems 2.3.7 and 2.3.8), we need to dispose m α samples with α > 2 and an interval of discretization of the order 1/m to satisfy condition (7.11).

The following list of propositions and main results summarizes the progress achieved in this paper:

1. Proposition 2.3.1 gives the L 2 -convergence of the Euler scheme to the continuous model (2.3).

2. Proposition 2.3.2 gives the weak convergence of the discrete model (2.2) to the continuous model (2.3).

3. Theorem 2.3.7 states the L 2 -convergence and by Chebyshev inequality, convergence in probability of the Weighted Least Squares estimator of θ.

This paper is organized as follows: In Section 2.2 we present the framework and basic tools that we utilize in this paper. We then state in Section 3.3, Propositions 2.3.1 and 2.3.2 concerning to the convergence analysis of the discretization schemes, before providing the main results of this article, the behavior analysis of the Weighted Least Squares and the Maximum Likelihood Estimator (Theorems 2.3.7 and 2.3.8, respectively). Section 2.4 contains the proofs of the main results. Section 3.4 gives a simulation analysis. Finally, the proofs of Propositions 2.3.1 and 2.3.2 are gathered in Appendix (Section 2.6).

Preliminaries

This section introduces the basic notions needed throughout the paper. First, the fractional Poisson process and some elements related to its approximation is included. Then, the Ornstein-Uhlenbeck process is presented.

Fractional Poisson process.

Let {N H t , t ∈ [0, 1]} be the fractional Poisson process with H ∈ 1 2 , 1 defined in (2.1) as

N H t = 1 Γ H -1 2 t 0 u 1 2 -H t u τ H-1 2 (τ -u) H-3 2 dτ dq(u), t ∈ [0, 1],
where q(u) = Nu √ λ -√ λu and N is a homogeneous Poisson process with intensity λ > 0. Following Wang, Wen and Zhang (2006), the process N H has the following properties:

(i) The covariance function of N H is given by

E(N H t N H s ) = V 2 H 2 t 2H + s 2H -|t -s| 2H where V 2 H = - Γ(2 -2H)cos(πH) (2H -1)πH . (ii) N H is wide sense self-similar process, i.e E(N H t ) = 0, E(N H at N H as ) = a 2H E(N H t N H s ) and E(N H t -N H s ) 2 = V 2 H |t -s| 2H .
(iii) The fractional Poisson process N H has wide sense stationary increments.

(iv) The fractional Poisson process N H exhibits the long range dependence.

(v) For H > 1 2 the fractional Poisson process N H on [0, 1] has a.s. Hölder continuous paths of any order strictly less than H -1 2 (see [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF]) for details). It is important to mention that the process {N H t , t ∈ [0, 1]} cannot be self-similar in a strict sense. (See Theorem 3.12 in Tikanmäki and Mishura (2011)). More properties of this process can be found in (Mishura and Zubchenko 2014;Tikanmäki and Mishura 2011;Wang, Wen and Zhang 2006). Let us consider now the integral representation of the fractional Poisson process. For t > s the kernel K H is defined as

K H (t, s) = 1 Γ(H -1/2) s 1 2 -H t s τ H-1 2 (τ -s) H-3 2 dτ . (2.6) Then the process {N H t , t ∈ [0, 1]} defined as the compensated Poisson integral of the kernel K H N H t = t 0 K H (t, s) dq(s),
is a fractional Poisson process with Hurst index H.

Disturbed random walk.

Let N t = N t -λt = √ λq(t); 0 ≤ t ≤ 1 be the compensated Poisson process with intensity λ. We define for n ∈ N, { N n k : k = 0, . . . , n}, the non symmetric random walk approximating the compensated Poisson process as

N n 0 = 0; N n k = k i=1 η n i (k = 1, . . . , n),
where η n 1 , . . . , η n n are Bernoulli, independent and identically distributed random variables with probabilities, for each 1 ≤ i ≤ n, given by

P(η n i = κ n -1) = 1 -P(η n i = κ n ) = κ n , where κ n = e -λ n .
(2.7)

The following Proposition gives the convergence in probability of the Poisson random walk to a centered Poisson process.

Proposition 2.2.1. Let { N n t , t ∈ [0, 1]} be defined as

N n t = ⌊nt⌋ i=1 η n i .
Here η n is given by (2.7). Then N n is a F n -martingale (where F n is the σ -algebra generated by the random variables η n 1 , . . . , η n n ) and there exists a family

(φ n ) n∈N of one-to-one random time changes from [0, 1] to [0, 1] such that sup t∈[0,1] |φ n (t) -t| -→ 0 almost surely as n → ∞ and sup t∈[0,1] | N t -N n φ n (t) | -→ 0 in probability.
In other words N n converges in probability to N in the J 1 de Skorokhod topology.

The proof of Proposition 2.2.1 can be found in Lejay, Mordecki and Torres (2014). We are ready to define the random walk approximation for fractional Poisson process. Let us define, for all n ∈ N, the approximation K n H of the Kernel K H given in Sottinen ( 2001) by

K n H (t, s) := n s s-1 n K H ⌊nt⌋ n , u du , n ≥ 1,
where ⌊x⌋ denotes the greatest integer not exceeding x. Following the ideas given in Sottinen ( 2001) and Torres and Tudor (2009) we define a discretization of the fractional Poisson Process as

N n,H t = 1 √ λ t 0 K n H (t, s)d N n s = 1 √ λ ⌊nt⌋ i=1 n i n i-1 n K H ⌊nt⌋ n , s ds × η n i , (2.8)
where the family of random variables η n are defined in (2.7).

Remark 2.2.2. In [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF], the authors proved that N n,H converges weakly in the Skorohod topology to N H as n → ∞.

The Model

Let us consider the Ornstein-Uhlenbeck process driven by fractional Poisson process (fPp) given by equation (2.3) by

X t = θ t 0 X s ds + N H t , t ∈ [0, 1],
where

X 0 = 0, N H = N H t , t ∈ [0, 1
] is a fractional Poisson process with Hurst parameter H ∈ (1/2, 1) and unknown drift parameter θ > 0. We call the process X a continuos fractional Poisson Ornstein-Uhlenbeck process. Assume that we have observations X t 0 , X t 1 , . . . , X tm with X t 0 = 0, taken at evenly spaced times

0 = t 0 < t 1 < • • • < t m = 1 in the grid π m of [0, 1]
by means of an Euler-type discretization of equation ( 2.3). Those observations satisfy the difference equation

X π m t i+1 = X π m t i + θX π m t i ∆t i+1 + ∆N H t i+1 , 0 ≤ i ≤ m -1, (2.9)
where

X π m 0 = 0, ∆t i+1 = t i+1 -t i = 1 m and ∆N H t i+1 = N H t i+1 -N H t i . We call the process X π m a discrete

in time version of fractional Poisson Ornstein-Uhlenbeck process.

We proceed now replacing N H by N m α ,H , (N m α ,H is the discrete version of fPp given in (2.8) with n = m α ) to get the following discrete in time and by a random walk approximation of the noise version of fractional Poisson Ornstein-Uhlenbeck process

X π m ,m α τ i+1 = X π m ,m α τ i + θ m X π m ,m α τ i + ∆N m α ,H τ i+1 , 0 ≤ i ≤ m α -1, (2.10) 
where α) with step size 1/m α such that t k = τ k•m α-1 with k = 0, . . . , m and τ j = j m α , j = 0, . . . , m α . Let us recall that (2.10) is our discrete time model driven by a random walk approximation of the fractional Poisson process Remark 2.2.3. For the sake of simplicity we denote

X π m ,m α τ 0 = 0, α > 2 and π m is the partition of the interval [0, 1] with step size 1 m , such that 0 = t 0 < t 1 < • • • < t m = 1. Within the sub-interval [t k , t k+1 ], 0 ≤ k ≤ m -1 we consider a new partition τ m(
X π m ,m α i := X π m ,m α τ i and N m α ,H i := N m α ,H τ i , 0 ≤ i ≤ m α .
In summary we have:

1. X • in (2.3) corresponds to the continuos fractional Poisson Ornstein-Uhlenbeck process.

X π m

• in (2.9) corresponds to the discrete in time version of fractional Poisson Ornstein-Uhlenbeck process.

3. X π m ,m α • in (2.10) corresponds to the discrete in time and by a random walk approximation of the noise version of fractional Poisson Ornstein-Uhlenbeck process.

Remark 2.2.4. Throughout the article, we assume θ > 0 and without loss of generality, we take

X 0 = X π m 0 = X π m ,m α 0 = 0 and λ = 1.
In Figure 2.1, we present three sample paths of the random walk approximation for the Ornstein -Uhlenbeck process driven by fractional Poisson process (fPp) defined in equation (2.10). We can see the effect of the different values of the parameter λ. A particular case of interest is given when λ = m α ln(2) which corresponds to the random walk approximation of Ornstein-Uhlenbeck process driven by fractional Brownian motion already studied in [START_REF] Rifo | Comparative estimation for discrete fractional ornstein-uhlenbeck process[END_REF]. We also use the values λ = 2 (small intensity of jumps) and λ = 20 (large intensity of jumps). with initial condition X m 0 = 1, m=100, α ≈ 2 and θ = 0.9.

Main Results

We state, the main results of this article concerning to the behavior analysis of the Weighted Least Squares and the Maximum Likelihood Estimator (Theorems 2.3.7 and 2.3.8 respectively). Section 2.4 is devoted to prove these theorems.

Before that, we present the next two propositions concerning the convergence analysis of the discretes schemes. The first proposition gives the L 2 -convergence of the Euler scheme defined in (2.9) to the continuous model in (2.3).

Proposition 2.3.1. Let X = {X t , t ∈ [0, 1]} be the solution of ( 2.3) and

Y π m t = θ t 0 Y π m cm(u) du + N H t , t ∈ [0, 1]. (2.11)
the linear interpolation of the Euler scheme given in (2.9), where c m (u) = ⌊mu⌋ m . Then

E|X t -Y π m t | 2 → 0, as m → ∞. Proposition 2.3.2. Let α > 2 and X = {X t , t ∈ [0, 1]} be the solution of (2.3) and {X π m ,m α i , 0 ≤ i ≤ m α -1} be the discrete process defined in (2.10) as X π m ,m α i+1 = 1 + θ m X π m ,m α i + 1 √ λ ∆N m α ,H i+1 , 0 ≤ i ≤ m α -1. Then X π m ,m α (d) ----→ m→∞ X,
where "(d)" means convergence in distribution.

The proof of Propositions 2.3.1 and 2.3.2 are left to the Appendix (Section 2.6).

Remark 2.3.3. From the previous result, the discrete and continuous models share the same distributional properties. Therefore, it will be natural to base our estimates on the discrete model as in Hu, Nualart and Zhou (2019).

Let us return to the main problem of estimation in model (2.3). For every 0 ≤ j ≤ m α -1, the increment of the fractional Poisson random walk N m α ,H defined in (2.8) can be expressed as

∆N m α ,H 1 = N m α ,H 1 = F 0 η m α 1 , ∆N m α ,H j+1 = j i=1 f ij η m α i + F j η m α j+1 , 1 ≤ j ≤ m α -1, (2.12)
with

F j := m α j+1 m α j m α K j + 1 m α , s ds (2.13)
and

f ij := m α i m α i-1 m α K j + 1 m α , s -K j m α , s ds . (2.14)
The reader can consult Bertin, Torres and Tudor (2011a) for a complete explanation of these equations.

In what follows and for the sake of simplicity, we adopt the notation

Z := X π m ,m α , also Z j = Z τ j , 0 ≤ j ≤ m α and Z 0 = 0.
Taking into account equations (2.10) to (7.7), we write

Z j+1 = 1 + θ m Z j + j i=1 f ij η m α i + F j η m α j+1 , 0 ≤ j ≤ m α -1. (2.15)
Let us recall that we assume to have at our disposal m α observations where α > 2, to obtain the convergence results. For every 0 ≤ j ≤ m α -1, the observations Z j are non-Gaussian random variables. They are correlated and the dependence structure between them is rather complicated, involving the elements f i,j and F j previously defined. As in Rifo, Torres and Tudor ( 2013) we write our model in (2.15) as

Z j+1 = 1 + θ m Z j + T j (Z 1 , . . . , Z j ) - θ m S j-1 (Z 1 , . . . , Z j-1 ) + F j η m α j+1 , 0 ≤ j ≤ m α -1, (2.16)
where

T j (Z 1 , . . . , Z j ) = j i=1 f ij i k=1 b -1 i,k • Z k and
(2.17)

S j-1 (Z 1 , . . . , Z j-1 ) = j i=1 f ij i k=1 b -1 i,k • (Z 1 + ... + Z k-1 ), (2.18)
with the convention that S -1 = 0. We denote by b -1 i,k the components of the matrix B -1 , the inverse of B, where

B = (b i,k ) 1≤i,k≤j with b i,k = √ m α i m α i-1 m α K k m α , s ds.
The details of this formula can be found in [START_REF] Rifo | Comparative estimation for discrete fractional ornstein-uhlenbeck process[END_REF]. For example, for j = 2 and (2.16), we can obtain

Z 3 = 1 + θ m Z 2 + f 12 η m α 1 + f 22 η m α 2 + F 2 η m α 3 , (2.19)
using (2.16) with j = 0 and j = 1, we can get

η m α 1 = F -1 0 Z 1 and η m α 2 = F -1 1 Z 2 - θ m Z 1 -f 11 F -1 0 Z 1 -Z 1 . (2.20)
Then, by replacing (2.20) in (2.19)

Z 3 = 1 + θ m Z 2 + f 12 F -1 0 Z 1 + f 22 F -1 1 Z 2 - θ m Z 1 -f 11 F -1 0 Z 1 -Z 1 + F 2 η m α 3 = 1 + θ m Z 2 + f 22 F -1 1 Z 2 + f 12 F -1 0 -f 11 f 22 F -1 0 F -1 1 -f 22 F -1 1 Z 1 - θ m f 22 F -1 1 Z 1 + F 2 η m α 3 .
Then,

T 2 (Z 1 , Z 2 ) = f 22 F -1 1 Z 2 + f 12 F -1 0 -f 11 f 22 F -1 0 F -1 1 -f 22 F -1 1 Z 1 and S 1 (Z 1 ) = f 22 F -1 1 Z 1 .

Weighted Least Squares Estimator (WLSE)

In this section, we define the WLSE for the parameter θ in model (2.15) (we use the name WLSE since we rely on properties of the conditional moments of X to write the functional to minimize). This is achieved using the equivalent form (2.16) and by formally minimizing

m α -1 j=0   Z j+1 -1 + θ m Z j -T j (Z 1 , . . . , Z j ) + θ m S j-1 (Z 1 , . . . , Z j-1 ) F j   2 ,
with respect to θ. We use the equivalent form (2.16) because this allows us to simplify the dependence of the model with respect to the error terms η. With this in hand, we obtain the WLSE as By (2.16) and (2.21) we get that:

θ m,m α W LS = m m α -1 j=0 F -2 j • (∆Z j+1 -T j (Z 1 , . . . , Z j )) (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 . (2.21) Remark 2.3.4. It is easy to see from equation (2.15) and (2.16) that the σ-algebra F Z j generated by Z 1 , ..., Z j coincides with the σ -algebra F η j generated by η m α 1 , ..., η m α j , 1 ≤ j ≤ m α .
θ m,m α W LS -θ = m m α -1 j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 . (2.22)

Maximum Likelihood Estimator (MLE).

We develop the expression of the MLE by means of a transformation of the noise by using (2.16)

Z j+1 = 1 + θ m Z j + T j (Z 1 , . . . , Z j ) - θ m S j-1 (Z 1 , . . . , Z j-1 ) + F j η m α j+1 , 0 ≤ j ≤ m α -1,
where η is a sequence of a Bernoulli random variables given in (2.7). Now, defining

B m α j+1 = η m α j+1 -(e -1/m α -1), (2.23) we obtain that B m α is a sequence of 0 -1 Bernoulli i.i.d random variables with parameter p := p m = 1 -e -1/m α that is, P(B m α j+1 = 0) = 1 -P(B m α j+1 = 1) = e -1/m α , 0 ≤ j ≤ m α -1.
Remark 2.3.5. Let us remark that, from (2.23) and Remark 2.3.4, the σ-algebra F Z j generated by Z 1 , . . . , Z j coincides with the σ-algebra

F B m α j generated by B m α 1 , . . . , B m α j , 1 ≤ j ≤ m α . From (2.23), we can rewrite, for 0 ≤ j ≤ m α -1, the discrete model in (2.16) as Z j+1 = Z j + θ Z j m - S j-1 (Z 1 , . . . , Z j-1 ) m + T j (Z 1 , . . . , Z j ) + F j • B m α j+1 + (e -1/m α -1) = R j (θ) + F j • B m α j+1 + (e -1/m α -1) . (2.24) Here R j (θ) = Z j + θ Z j m - S j-1 (Z 1 , . . . , Z j-1 ) m + T j (Z 1 , . . . , Z j ).
(2.25) Thus,

B m α j+1 = Z j+1 -R j (θ) -F j • (e -1/m α -1) F j .
Remark 2.3.6. Note that the MLE is based on the conditional law of Z j+1 given Z 1 , . . . , Z j , for 0 ≤ j ≤ m α -1. We also mention here that we have used (B m α j ) 2 instead B m α j , because both random variables have the same Bernoulli distribution with parameter p := p m = 1 -e -1/m α . Also R j (θ) defined in (2.25) is a linear function of θ, then the derivative of the log-likelihood does not depend on θ.

Taking into account that F Z = F B (see Remark 2.3.5), Equation (2.24) and the properties below, the likelihood is given by

L(Z 1 , . . . , Z m α ) = m α -1 j=0 f (Z j+1 |Z 0 , Z 1 , . . . , Z j ) = m α -1 j=0 (1 -p) 1- Z j+1 -R j (θ)-F j (e -1/m α -1) F j 2 p Z j+1 -R j (θ)-F j (e -1/m α -1) F j 2 ,
where R j (θ) is defined in (2.25). By maximizing L(Z 1 , . . . , Z m α ) with respect to the parameter θ, we obtain the following expression of the MLE

θm,m α M L = m m α -1 j=0 F -2 j • (∆Z j+1 -T j (Z 1 , . . . , Z j )) (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 + m 1 -e -1/m α m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 .
(2.26) with T j , S j-1 given in (2.17) and (6.2) respectively. By (2.16) and (2.26) we have 

θm,m α M L -θ = m m α -1 j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 1 -e -1/m α + η m α j+1 m α -1 j=0 F -2 j (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 . ( 2 
E θm,m α M L -θ → 0, and V ar θm,m α M L -θ → 0, as m → ∞.

Proofs

In order to prove our main results we will need the followings lemmas to control the denominator appearing in the definition of both estimators LSE (2.21) and MLE (2.26).

Lemma 2.4.1. Let M ≥ 1 and A M given by

A M +1 = M j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 , then A M +1 is a (F Z j = F η j )-martingale. Proof. It is clear that A M +1 ∈ L 2 (Ω). Now, let us compute E A M +1 |F Z M , E A M +1 |F Z M = E   M j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 |F Z M   = E   M -1 j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 |F Z M   + E F -1 M • (Z M -S M -1 (Z 1 , . . . , Z M -1 )) η m α M +1 |F Z M = A M . Since M -1 j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 is measurable with respect to the σ-algebra F Z M , then E M -1 j=0 F -1 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) η m α j+1 |F Z M = A M . From Remark 2.3.4, the σ-algebra F Z j generated by Z 1 , ..., Z j coincides with the σ-algebra F η j generated by η m α 1 , ..., η m α j . Furthermore F -1 M • (Z M -S M -1 (Z 1 , . . . , Z M -1 )) is measurable with respect to the filtration F Z M and η m α M +1 are independent of F Z M . Then, E F -1 M • (Z M -S M -1 (Z 1 , . . . , Z M -1 )) η m α M +1 |F Z M = 0. Moreover, A M = M -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 κ m α (1 -κ m α )
, where A M is the bracket of the discrete martingale {A M } M ≥1 and κ m α = e -1 m α .

Lemma 2.4.2. For 0 ≤ j ≤ m α -1, let F j be defined as in (2.13). Then,

F 2 j ≤ Cm (1-2H)α and C H m (1-2H)α ≤ F 2 j .
Here, C and C H are constants. C H depends on H and may change from line to line.

Proof. First, we get the following inequality for the square of the increments of the fractional Poisson random walk noise. Since the sequence of random variables η m α j , 1 ≤ j ≤ m α are i.i.d. random variables, we get

E N m α ,H j+1 -N m α ,H j 2 = E   j+1 i=1 m α i m α i-1 m α K j + 1 m α , u -K j m α , u duη m α i   2 = j+1 i=1 m 2α i m α i-1 m α K j + 1 m α , u -K j m α , u du 2 E (η m α i ) 2 .
Second, applying Cauchy-Schwarz inequality, and the same arguments as in Sottinen ( 2001) page 6, it yields

E N m α ,H j+1 -N m α ,H j 2 ≤ κ m α (1 -κ m α )m α j+1 i=1 i m α i-1 m α K j + 1 m α , u -K j m α , u 2 du ≤ κ m α (1 -κ m α )m α 1 0 K j + 1 m α , u -K j m α , u 2 du = Cκ m α (1 -κ m α )m α j + 1 m α - j m α 2H = Cκ m α (1 -κ m α )m (1-2H)α .
(2.28)

From equation (2.12)

E N m α ,H j+1 -N m α ,H j 2 = E   j i=1 f ij η m α i + F j η m α j+1   2 .
(2.29)

If we analyze the right side term of the equality (2.29), we get

E   j i=1 f ij η m α i + F j η m α j+1   2 = j i=1 f 2 ij E η m α i 2 + F 2 j E η m α j+1 2 = κ m α (1 -κ m α )   j i=1 f 2 ij + F 2 j   .
(2.30)

Combining equations (2.29), (2.30) and the inequality given in (2.28), we obtain

  j i=1 f 2 ij + F 2 j   ≤ Cm (1-2H)α .
From the last inequality we have F 2 j ≤ Cm (1-2H)α , which completes the first part of the lemma. For a lower bound, we use the expression of the kernel K given by (2.6), therefore

F j = C H m α j+1 m α j m α s 1 2 -H j+1 m α s τ H-1 2 (τ -s) H-3 2 dτ ds ≥ C H m α j+1 m α j m α j+1 m α s (τ -s) H-3 2 dτ ds = C H m α j+1 m α j m α j + 1 m α -s H-1 2 ds = C H m (1/2-H)α .
Lemma 2.4.3. For any α > 2 and

A m α = m α -1 j=0 F -2 j • (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 κ m α (1 -κ m α ), then E ( A m α ) ≥ C H m α .
Proof. Using the recurrence relation (2.10) and (2.12), we have for

1 ≤ j ≤ m α Z j -S j-1 (Z 1 , . . . , Z j-1 ) = g j (Z 1 , ..., Z j-1 ) + F j-1 η m α j , (2.31)
where g j is a linear function of (Z 1 , ..., Z j-1 ) (see Proposition 2 in Rifo, Torres and Tudor ( 2013)).

This implies

E (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 = E (g j (Z 1 , ..., Z j-1 )) 2 + 2E F j-1 g j (Z 1 , ..., Z j-1 ) η m j + F j-1 2 κ m α (1 -κ m α ) = E (g j (Z 1 , ..., Z j-1 )) 2 + F j-1 2 κ m α (1 -κ m α ), (2.32)
where the last equality is due to the fact that

E F j-1 g j (Z 1 , ..., Z j-1 ) η m α j = E E F j-1 g j (Z 1 , ..., Z j-1 ) η m α j |F η j-1 = E F j-1 g j (Z 1 , ..., Z j-1 ) E η m α j |F η j-1 = 0.
Therefore, by (2.32) and for any 1 ≤ j ≤ m α we obtain

E (Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 ≥ F 2 j-1 κ m α (1 -κ m α ).
(2.33)

Using (2.33), we have that E [ A m α ] ≥ (κ m α (1 -κ m α )) 2 m α -1 j=1 F 2 j-1 F 2 j
. Finally, by Lemma 2.4.2, we have

E [ A m α ] ≥ κ 2 m α (1 -κ m α ) 2 m α -1 j=1 F 2 j-1 F 2 j ≥ C H • κ 2 m α (1 -κ m α ) 2 m α ∼ C H m α .
Here, the symbol "∼" means that both sides have the same limit as m → ∞.

Remark 2.4.4. Inequality in Lemma 2.4.3 also holds almost surely. In fact, from (2.31) we have

(Z j -S j-1 (Z 1 , . . . , Z j-1 )) 2 = g j (Z 1 , . . . , Z j-1 ) + F j-1 η m α j 2 = g 2 j (Z 1 , . . . , Z j-1 ) + 2g j (Z 1 , . . . , Z j-1 )F j-1 η m α j + F 2 j-1 (η m α j ) 2 .
Then,

A m α = m α -1 j=1 F -2 j g 2 j (Z 1 , . . . , Z j-1 )κ m α (1 -κ m α ) + m α -1 j=1 F -2 j 2g j (Z 1 , . . . , Z j-1 )F j-1 η m α j κ m α (1 -κ m α ) + m α -1 j=1 F -2 j F 2 j-1 (η m α j ) 2 κ m α (1 -κ m α ) = A 1 + A 2 + A 3 ≥ A 2 + A 3 . Let us define Ãm α = m α -1 j=1 g j (Z 1 , . . . , Z j-1 )η m α j . Clearly Ãm α is a martingale and E( Ã2 m α ) ≤ C H m α . Then Ãm α m α tends to 0 almost surely, which implies that A 2 tends to 0 as m → ∞ almost surely. Furthermore A 3 is of order 1 m α almost surely. Finally, A m α ≥ C H m α almost surely.

Proof of Theorem 2.3.7

We point out here again that the main task here appears from the correlation structure of the sequence of random variables {Z j , 0 ≤ j ≤ m α }. Then, we prove as a first step a conditional result as follows Proof. The first part of the proof is rather simple since

E θm,m α W LS -θ|Z 0 = 0, Z 1 = z 1 , ..., Z m α z m α = m m α -1 j=0 F -1 j • (z j -S j-1 (z 1 , . . . , z j-1 )) E η m α j+1 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 = 0
As, a direct consequence we have E θm,m α W LS -θ = 0. Now, for the conditional variance, we have

V ar θm,m α W LS -θ|Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α = E θm,m α W LS -θ 2 |Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α = m 2 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 E (η m α j+1 ) 2 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 2 = m 2 κ m α (1 -κ m α ) m α j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 ≤ C H m 2 κ 2 m α (1 -κ m α ) 2 ≤ C H m 2-α .
The first equality is due to (2.22). Then, we use independence on the η ′ s random variables. Finally, by Lemma 2.4.3 and Remark 2.4.4 the last inequality is obtained. Therefore,

V ar θm,m α W LS -θ|Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α , converges to 0 as m → ∞ for α > 2.
Finally, the sequence of positive random variables

V ar( θm,m α W LS -θ|Z 1 = z 1 , . . . , Z m α = z m α ) m≥1 ,
is uniformly bounded in m by a constant C H . Hence, by the law of total variance V ar( θm,m α W LS -θ) converges to zero as m → ∞.

Proof of Theorem 2.3.8

In this section we prove our second result.

Proof. From equality (2.27) we get

E θm,m α M L -θ|Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α = m m α -1 j=0 F -1 j • (z j -S j-1 (z 1 , . . . , z j-1 )) E η m α j+1 + 1 -e -1/m α m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 .
Then,

E θm,m α M L -θ|Z 0 = 0, Z 1 = z 1 , . . . , Z m α = z m α ≤ m m α -1 j=0 F -1 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 1 -e -1/m α m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 ≤ m 1+ α 2 1 -e -1/m α κ m α (1 -κ m α ) m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 κ m α (1 -κ m α ) ≤ C H m 1+ α 2 1 -e -1/m α κ m α (1 -κ m α ) ∼ C H m 2-α ,
and the last expression converges to 0 as m → ∞ for α > 2. Besides, for the unconditional result we have

lim m→∞ E θm,m α M L -θ = 0. Regarding the conditional variance, we have V ar θm,m α M L -θ|Z 0 = 0, Z 1 = z 1 , . . . , Z m α = z m α = E ( θm,m α M L -θ) 2 |Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α + E θm,m α M L -θ|Z 0 = 0, Z 1 = z 1 , ..., Z m α = z m α 2 ≤ I + m 2(2-α) .
From, equation (2.27) we obtain

I ≤ 2m 2 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 E (η m α j+1 ) 2 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 2 + 2m 2   m α -1 j=0 F -1 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 1 -e -1/m α m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2   2 ≤ 2m 2 κ m α (1 -κ m α ) m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 + 2m 2+α 1 -e -1/m α 2 m α -1 j=0 F -2 j • (z j -S j-1 (z 1 , . . . , z j-1 )) 2 ≤ 2m 2 κ m α (1 -κ m α ) 2 A m α + 2m 2-α κ m α (1 -κ m α ) A m α ≤ 2m 2 m -2α m α + 2m 2-α m -α m α . Therefore V ar θm,m α M L -θ|Z 1 = z 1 , . . . , Z m α = z m α ∼ C H m 2-α
, and the last expression goes to 0 as m → ∞ for α > 2. Given that, for a positive sequence of random variables its variance to θ for α > 3.

V ar( θm,m α M L -θ|Z 1 = z 1 , . . . , Z m α = z m α ) is uniformly bounded in m, by a constant C H , therefore, by law of total variance V ar( θm,m α M L -θ) converges to zero as m → ∞.

Simulation Study

After describing the WLSE and MLE for the discrete time model and a random walk approximation of the fractional Poisson process (2.2), we proceed to evaluate the performance of those estimators and show the shape of the limit distributions. We simulate the discrete process N m α ,H for m = 10 and m = 100. For each case, we calculate 100 estimations. In both cases, we use α ≈ 2, where "≈" means approximately equal, and different values of H. Then, we compute the estimators given in (2.21) and (2.26), recalling that we have explicit forms of our estimators. Simulation shows that the behavior of the limit distribution is close to a Gaussian one when H ≤ 3/4. Also, in the case of H > 3/4, the behavior of the limit distribution is close to a non-symmetric one. for different values of H, with m = 100, α ≈ 2 and θ = 0.4. We use the same normalization constants studied in [START_REF] Tudor | Analysis of variations for self-similar processes: A stochastic calculus approach[END_REF], which corresponds to those of the fBm, since both processes has the same covariance structure, except for a constant depending only on H and not on the observation times. These constants are defined by c In Figure 2.4, comparisons of empirical rates versus theoretical ones are shown. We compare the empirical variance versus the theoretical variance by means of the Monte Carlo method.

1 (m) = √ m α if 1/2 < H < 3/4, c 1 (m) = m α log(m α ) if H = 3/4 and c 1 (m, H) = m 2α(1-H) if H > 3/4. θ θm,m α M L V ar( θm,m α M L ) θm,m α M L V ar( θm,m α M L ) θm,m α M L V ar( θm,m α M L ) 0.
θ θm,m α M L V ar( θm,m α M L ) θm,m α M L V ar( θm,m α M L ) θm,m α M L V ar( θm,m α M L ) 0.
c 1 (m)( θm,m α M L -θ); H < 3/4; Center: c 2 (m)( θm,m α M L -θ); H = 3/4; Right: c 3 (m, H)( θm,m α M L -θ); H > 3/4
From the simulation results presented in Tables 2.1, 2.2 , 2.3 and 2.4, and for the shape of the asymptotic distribution for the parameter θ (Figure 2.2), the following conclusions may be summarized as follows 1. The bias and the variance of the proposed WLSE and MLE decrease when sample sizes increase. Thus, we show that the proposed WLSE and MLE provides consistent estimators.

According to the MSE (mean square error) criterion, the proposed MLE apparently shows better performance than the WLSE for all considered values of H when sample sizes are m = 10 and 100. Note that, from Table 1, the variance of the estimator via maximum likelihood procedure is less than the estimator via the method of weighted least squares when H is close to 0.5, as expected.

approaches 1.

3. Based on the results presented in Figure 2, the shape of the asymptotic distribution seems to be a Gaussian one for H ≤ 3/4 and a non-symmetric one for H > 3/4.

To sum up, the proposed WLSE and MLE for the parameter θ in the Ornstein -Uhlenbeck process driven by fractional Poisson process (fPp) provides good estimations for θ in most of the considered samples and H values.

Appendix

Throughout this Appendix, C denotes a generic constant that may change from line to line.

The next two propositions given the relation between X, X π m and X π m ,m α . Proposition 2.3.1 states the L 2 -convergence of the Euler scheme defined in (2.9) to the continuous model in (2.3). Proposition 2.3.1: Let X = {X t ; t ∈ [0, 1]} be a solution of (2.3) and

Y π m t = θ t 0 Y π m cm(u) du + N H t , t ∈ [0, 1],
(2.34) the linear interpolation of the Euler scheme given in (2.9), where

c m (u) = ⌊mu⌋ m . Then E|X t -Y π m t | 2 → 0, as m → ∞.
Proof. The proof will be done in 3 steps.

Step 1: Let X π m be given by (2.9), then by successive recursions and taking into account that

X π m 0 = 0, we have for all m ∈ N X π m j = j-1 k=0 1 + θ m k ∆N H j-k . Therefore E X π m j 2 = j-1 k=0 1 + θ m 2k E ∆N H j-k 2 + 2 j-1 k 1 >k 2 1 + θ m k 1 1 + θ m k 2 E ∆N H j-k 1 ∆N H j-k 2 = C H m 2H j-1 k=0 1 + θ m 2k + 2C H m 2H j-1 k 1 >k 2 1 + θ m k 1 1 + θ m k 2 ρ(k 1 -k 2 ), where ρ(k 1 -k 2 ) = 1 2 (k 1 -k 2 + 1) 2H + (k 1 -k 2 -1) 2H -2(k 1 -k 2 ) 2H . Then E X π m j 2 ≤ C H m 1-2H 1 + θ m 2m + 2C H m -2H 1 + θ m 2m j j-1 k=1 1 - k j ρ(k). (2.35)
Now we need to study the behavior of the sum in the second term in (2.35). Since γ(k) ∼ C H k 2H-2 and H > 1/2, recalling that the symbol "∼" means that both sides have the same limit as k → ∞

j j-1 k=1 1 - k j ρ(k) ∼ C H j   j-1 k=1 k 2H-2 -j -1 j-1 k=1 k 2H-1   = C H j 2H   j-1 k=1 k j 2H-2 j -1 - j-1 k=1 k j 2H-1 j -1   ∼ C H j 2H 1 0 x 2H-2 dx - 1 0 x 2H-1 dx = C H j 2H 1 2H -1 - 1 2H = C H j 2H .
Therefore, for m large enough

E X π m j 2 ≤ C H m 1-2H 1 + θ m 2m + C H 1 + θ m 2m ≤ C H .
Step 2: Let Y π m be given by (2.34), then by Step 1 and for every s

∈ [t i , t i+1 ], i = 0, . . . , m -1 E Y π m s -Y π m cm(s) 2 ≤ 2θ 2 1 m t i+1 t i E Y π m cm(u) 2 du + 2E N H t i+1 -N H t i 2 ≤ 2θ 2 C 1 m 2 + 2C H 1 m 2H ≤ C 1 m 2H ,
where c m (s) = ⌊ms⌋ m .

Step 3: Let X and Y π m be given by (2.3) and (2.9), respectively. Then

E|X t -Y π m t | 2 ≤ 2θ 2 t 0 E|X s -Y π m cm(s) | 2 ds ≤ 4θ 2 t 0 E|X s -Y π m s | 2 ds + 4θ 2 t 0 E|Y π m s -Y π m cm(s) | 2 ds ≤ 4θ 2 t 0 E|X s -Y π m s | 2 ds + 4θ 2 C 1 m 2H ≤ 4θ 2 C 1 m 2H exp 4θ 2 .
By Gronwall's Lemma we obtain the last inequality and the last expression tends to 0 as m → ∞, therefore the result is achieved.

Proposition 2.3.2: Let Y π m be given by (2.34) and

Y π m ,m α t = θ t 0 Y π m ,m α cm(u) du + N m α ,H t , (2.36) then Y π m ,m α (d) ----→ m→∞ Y π m ,
where "(d)" means convergence in distribution.

Proof. The proof will be done in 2 steps.

Step 1 (finite dimensional distributions): By (2.34) and (2.36), we have for fixed

u 1 , . . . , u l ∈ [0, 1]; l ∈ N Y π m ,m α u 1 , . . . , Y π m ,m α u l
converges in law to the vector

Y π m u 1 , . . . , Y π m u l
as m → ∞. This follows from the convergence of the law of the vector

(N m α ,H u 1 , . . . , N m α ,H u l
) to the law of the vector (N H u 1 , . . . , N H u l ) and the continuous mapping theorem (see Billingsley (1999), Theorem 13.5).

Step 2 (tightness):

Following the notation of Step 1, if t > s E (Y π m ,m α t -Y π m ,m α s ) 2 = E θ t s Y π m ,m α cm(u) du + N n,H t -N n,H s 2 ≤ 2θ 2 E t s Y π m ,m α cm(u) du 2 + 2E N n,H t -N n,H s 2 = K 1 + K 2 .
By Cauchy-Schwarz inequality, we obtain

K 1 = 2θ 2 (t -s) t s E Y π m ,m α cm(u) 2 du,
Additionally, by (2.36) and inequality (2.28)

K 1 = Cθ 2 (t -s) 2 .
Again by inequality (2.28) (see Theorem 1 in Sottinen ( 2001)), we get

K 2 ≤ C H ⌊mt⌋ m - ⌊ms⌋ m 2H . Hence E (Y π m ,m α t -Y π m ,m α s ) 2 ≤ C H ⌊mt⌋ m - ⌊ms⌋ m 2H + C(t -s) 2 , (2.37)
Therefore, the conclusion follows by taking s < t < u arbitrary points in [0, 1], such that u -s ≥ 1/m. From (2.37) and Cauchy-Schwarz inequality

E|Y π m ,m α t -Y π m ,m α s | |Y π m ,m α u -Y π m ,m α t | ≤ C H (u -s) 2H ,
if u and s lie in the same interval, then

E|Y π m ,m α t -Y π m ,m α s | |Y π m ,m α u -Y π m ,m α t | ≤ C H (u -s) 2 .
The tightness is obtained by using the criteria (p.128) in Billingsley (1999).

3

On the consistency of least square estimator in models sampled at random times driven by long memory noise: the Jittered case. 

Introduction

In different research areas, such as finance, network traffic, meteorology and astronomy among others, it has been noticed that the observations can be carried out sampling with random disturbances. Some examples of this sampling method are the data behavior until it is necessary to increase the sampling frequency, measurements obtained at random times, or defining stopping time when a particular event occurs, etc. In particular, in Nieto-Barajas and Sinha (2015) the authors discuss a Bayesian interpolation of unequally spaced time series. The case of paleoclimate time series was considered by Max-Moerbeck et al. ( 2014) and Ólafsdóttir et al. (2016), where they estimate the significance of cross-correlations in unevenly sampled astronomical time series. Finally, in the area of computer science, we can mention the works given by Chang (2014) and [START_REF] Zhao | Optimal time and random inspection policies for computer systems[END_REF].

The study of statistical models in those situations is quite promising and has some open problems such as statistical inference and the limit behavior of the estimators.

In this article, we propose taking a first step in this direction; to study Least Squares (LS) estimator in a simple regression model with long memory noise and observation measurements at random time.

Some previous works in this direction has been developed by [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF], the author studied the nonparametric kernel estimator of the regression function, m(x) = E(Y |X = x), under mixing dependence conditions, and the Ornstein-Uhlenbeck process driven by Brownian motion was studied by [START_REF] Vilar | Finite sample performance of density estimators from unequally spaced data[END_REF]. Also, [START_REF] Masry | Probability density estimation from sampled data[END_REF] studied the problem of estimating an unknown probability density function on the based on n independent observations sampled at random times.

Using a wavelet analysis [START_REF] Bardet | A non-parametric estimator of the spectral density of a continuous-time gaussian process observed at random times[END_REF] studied the case of a nonparametric estimator of the spectral density of a Gaussian process with stationary increments, including the case of fractional Brownian motion, from the observation of one path at some particular class of random discrete times. They prove a central limit theorem providing an application to biological data. [START_REF] Philippe | Random discretization of stationary continuous time processes[END_REF] give the latest works on this topic, the authors consider the study of the preservation of memory in a statistical model. With respect to the problem of parameter estimation in time series that may be represent as trend plus long memory noise, we can mention the works of [START_REF] Baillie | Modeling and forecasting from trend-stationary long memory models with applications to climatology[END_REF], [START_REF] Brockwell | Likelihood-based analysis of a class of generalized long-memory time series models[END_REF], [START_REF] Lobato | Long memory in stock-market trading volume[END_REF] among others.

We consider the Jittered sampling scheme that we define properly in Section 4.2. The term jitter is related to the temporal variability during the sending of digital signals or as the small variation in the accuracy of the clock signal, (we refer to [START_REF] Bellhouse | Area estimation by point-counting techniques[END_REF] and the references therein). It has also recently appeared in works related to the analysis of computational images, such as Khan (2017), [START_REF] Krune | Comparison of the jitter performance of different photonic sampling techniques[END_REF] and [START_REF] Subr | Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination[END_REF] Our main purpose, in studying a model with long memory noise, is the study of the characterization of the strong correlations between observations or persistence, by a slow decay of the correlations. To explain this phenomenon in a model, it is common to represent it through the Hurst exponent H, which takes values in [0, 1]. In particular, the long-range dependence can be seen when H ∈ (1/2, 1). Since the work of [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF] the effect of long-range dependence has been studied over years. One of the most popular Gaussian stochastic processes with long memory is the fractional Brownian motion. Some extensions to fBm with the same covariance structure are Rosenblatt [START_REF] Tudor | Analysis of the rosenblatt process[END_REF] and Hermite [START_REF] Tudor | Analysis of variations for self-similar processes: A stochastic calculus approach[END_REF], that we can consider here too. With those motivations in mind, let us proceed to the mathematical description of the model we are dealing with. Namely, we consider the following simple regression model

Y τ i = aτ i + ∆B H τ i , i = 0, . . . , N -1, (3.1)
where a ∈ R is the drift parameter of the model,

∆B H τ i = B H τ i+1 -B H τ i , and τ := {τ i , 0 ≤ i ≤ N -1}
is the random time given by Jittered sampling. The main interest in this work is to give a proof of the strong consistency for the least squares estimator in a random sampled linear regression model with long memory noise and an independent set of random times given by Jittered sampling. It is important to recall that the process Y := {Y τ i , 0 ≤ i ≤ N -1} defined by equation (3.1) has long-range dependence and is non-stationary in the weak sense. The plan of our paper is as follows. In Section 4.2 we present the definitions of the random times we are working within the random sampled regression model with long memory noise and we describe our notation. Section 3.3 is devoted to main results, we use least square procedure to get the parameter estimation and we analyse the almost sure convergence using Jittered sampling random time defined in the above section. In Section 3.4, a simulation study is presented to illustrate the performance of the estimator, considering different values of H and Jittered sampling random time. Finally in Section 4.5, we present the proof of Lemma 1, established in Section 3.3 and necessary to prove the almost sure convergence of the estimator.

Preliminaries

In this section, we introduce the main tools from the stochastic calculus needed in the sequel. We present the random noise evaluated at the Jittered sampling random time that we considered throughout this work. The long memory process, B H , with Hurst parameter H ∈ (1/2, 1), is a centered process with the following properties:

(HN1) The covariance structure is given by: The random time sequence τ = {τ i ; i = 0, . . . , N -1} is strictly increasing; here N represents the sample size and also the sampling frequency or sampling rate, that is the average number of samples obtained in [0, 1]. In the sequel we will focus on the case where τ exhibits the following feature.

R H (t, s) := E B H t B H s = σ 2 2 t 2H + s 2H -|t -s| 2H . ( 3 
Jittered sampling (JS): we assume that we observed a certain process at irregular times τ , with period δ = 1/N > 0 but contaminated by an additive noise ν, which represents possible measurement errors, satisfying the following hypothesis:

(HJ) ν = {ν i,N ; 0 ≤ i ≤ N -1} is a sequence of independent and identically distributed random variables with common density function g N (•), depending on N , with support on 0, 1 N . Thus, the sequence of random times τ i , 0 ≤ i ≤ N -1, is given by

τ i = i N + ν i,N , i = 0, . . . , N -1. (3.2) Remark 3.2.2
. Some examples of distributions that satisfy (HJ) are:

1. Uniform distribution on 0, 1 N , 2. Triangular distribution with parameters 0, 1 2N , 1 N . he probability density function is given by

f X (x) =          0 x < 0 4N 2 x 0 ≤ x < 1 2N 2N x = 1 2N 4N 2 1 N -x 1 2N < x ≤ 1 N .
3. Raised Cosine distribution with parameters µ = 1 2N and s = 1 2N . The probability density function is given by

f X (x) = N 1 + cos x -1/2N 1/2N π , 0 ≤ x ≤ 1 N .
Remark 3.2.3. It is important to notice that the hypothesis (HJ) implies E(ν i,N )

1 N and V ar(ν i,N ) 1 N 2 , where we write b N c N to mean that lim N →∞ b N /c N ≤ 1.
Finally, we also assume the following hypothesis:

(HJN) The random time sequence τ and the long memory noise B H are independents.

Remark 3.2.4. In the deterministic case, i.e. τ i = i N , 0 ≤ i ≤ N , for the Brownian motion case, H = 1/2, the rate of the L 2 -convergence for the least square estimator is obtained due to the property of independent increments. In fact, we have

âN -a = N -1 i=0 τ i ∆B τ i N -1 i=0 τ 2 i = 6 (N + 1)(2N + 1) N -1 i=0 i∆B τ i and E (â N -a) 2 = E   6 (N + 1)(2N + 1) N -1 i=0 i∆B τ i 2   = 6 (N + 1)(2N + 1) ≤ 6 N 2 .
A direct application of Borel Cantelli lemma allow us to obtain the almost sure convergence of âN to a.

In the fractional Brownian motion case, increments are not longer independents. However for H > 1/2, a simple modification in the procedure given in the main result (Theorem ??) of this article (Section 3.3) allow to obtain L 2 and almost sure convergence of âN to a.

Particularly, in the work of [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF], consistency of the drift estimated parameter is studied, when ν i,N has an uniform distribution.

Main results

In this section, we provide our main results. We study the least squares estimation (LSE) for the random sampled linear regression model (3.1), with random times given by Jittered sampling and long memory noise. We prove that the LSE is an unbiased estimator for a and that âN converges, almost surely to a (strongly consistent). It is worth mentioning that all the results in this article can be extended to a noise with the same covariance structure as the fractional Brownian motion, such as Rosenblatt and Hermite process.

For the estimation of the drift parameter a in the model (3.1), the least squares estimator is determined by

âN = N -1 i=0 τ i Y τ i N -1 i=0 τ 2 i . (3.3)
Recall that, from (3.1) and (3.3) we have,

âN -a = 1 N N -1 i=0 τ i ∆B H τ i 1 N N -1 i=0 τ 2 i := A N D N . (3.4)
To study the asymptotic behavior of (3.4), we will analyse separately the numerator and the denominator. ----→

Remark 3.3.1. Since 1 -τ N -1 ≤ 1/N → 0 as N → ∞.
N →∞ a.
Proof. To prove our main theorem we need an auxiliary lemma related to the almost sure convergence of the denominator D N given in (3.4). The proof of this lemma is indexed in Appendix 4.5. It is quite easy to see by the definition of A N and conditioning on τ , that

E [A N ] = 0. Let us compute E A 2 N . E A 2 N = E 1 N 2 N -1 i=0 τ 2 i B H τ i+1 -B H τ i 2 + E   1 N 2 0≤i,j≤N -1;|i-j|=1 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   + E   1 N 2 0≤i,j≤N -1;|i-j|≥2 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   := E A (1) N + E A (2) N + E A (3) N , (3.5)
where we split the sum into three terms associated to the distance of the indexes. Firstly, we study the first term in (3.5).

E A

(1)

N = 1 N 2 N -1 i=0 E E i N + ν i,N 2 B H i+1 N +ν i+1,N -B H i N +ν i,N 2 ν i,N = s i , ν i+1,N = s i+1 = 1 N 2 N -1 i=0 1 N 0 1 N 0 i N + s i 2 E B H i+1 N +s i+1 -B H i N +s i 2 g N (s i )g N (s i+1 )ds i ds i+1 = 1 N 2 N -1 i=0 1 N 0 1 N 0 i N + s i 2 i + 1 N + s i+1 - i N -s i 2H g N (s i )g N (s i+1 )ds i ds i+1 = 1 N 2 N -1 i=0 1 N 0 1 N 0 i N + s i 2 1 N + s i+1 -s i 2H g N (s i )g N (s i+1 )ds i ds i+1 .
From the properties of the long memory noise, due to hypothesis (HN1), (HN2) and (HJN), and since the domain of the random variables ν i,N is [0, 1/N ], we obtain

E A (1) N ≤ 1 N 2 N -1 i=0 1 N 0 1 N 0 i N + 1 N 2 1 N + 1 N 2H g N (s i )g N (s i+1 )ds i ds i+1 = 1 N 2 N -1 i=0 i N + 1 N 2 1 N + 1 N 2H 1 N 0 1 N 0 g N (s i )g N (s i+1 )ds i ds i+1 ≤ 2 2H N 4+2H N (N + 1)(2N + 1) 6 ≤ C 1 (H) N 1+2H . (3.6) with C 1 (H) = 2 2H .
Secondly, we consider the case of |i -j| = 1 in (3.5). For simplicity we take j < i, i.e. j = i -1, the other case can be treated in the same way. Therefore

E A (2) N = 2 N 2 N -2 i=0 E τ i+1 τ i B H τ i+2 -B H τ i+1 B H τ i+1 -B H τ i (3.7) = 2 N 2 N -2 i=0 1 N 0 1 N 0 1 N 0 i + 1 N + s i+1 i N + s i × E B H i+2 N +s i+2 -B H i+1 N +s i+1 B H i+1 N +s i+1 -B H i N +s i g N (s i )g N (s i+1 )g N (s i+2 )ds i ds i+1 ds i+2 ,
where in the last term we apply conditional expectation with respect to

ν i,N = s i , ν i+1,N = s i+1 and ν i+2,N = s i+2 . Since E B H i+2 N +s i+2 -B H i+1 N +s i+1 B H i+1 N +s i+1 -B H i N +s i = 1 2 s i+2 -s i + 2 N 2H -s i+2 -s i+1 + 1 N 2H -s i+1 -s i + 1 N 2H . Then E B H i+2 N +s i+2 -B H i+1 N +s i+1 B H i+1 N +s i+1 -B H i N +s i ≤ C 2 (H) 2N 2H , (3.8) being C 2 (H) = 3 2H . Plugging inequality (3.8) into the equation (3.7) yields E A (2) N ≤ 2 N 2 N -2 i=0 1 N 0 1 N 0 1 N 0 i + 1 N + s i+1 i N + s i C 2 (H) 2N 2H ×g N (s i )g N (s i+1 )g N (s i+2 )ds i ds i+1 ds i+2 ≤ C 2 (H) N 2+2H N -2 i=0 1 N 0 1 N 0 1 N 0 i + 1 N + 1 N i N + 1 N ×g N (s i )g N (s i+1 )g N (s i+2 )ds i ds i+1 ds i+2 = C 2 (H) N 4+2H N -2 i=0 (i + 2)(i + 1) ≤ C 2 (H) 3N 4+2H (N -1)N (N + 1) ≤ C 2 (H) N 1+2H .
(3.9)

Finally we consider the case |i -j| ≥ 2 in (3.5). Conditioning on ν i,N = s i , ν i+1;N = s i+1 , ν j,N = s j and ν j+1,N = s j+1 , we get

E A (3) N = 1 N 2 E   0≤i,j≤N -1;|i-j|≥2 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   = 1 N 2 0≤i,j≤N -1;|i-j|≥2 1 N 0 1 N 0 1 N 0 1 N 0 i N + s i j N + s j ×E B H i+1 N +s i+1 -B H i N +s i B H j+1 N +s j+1 -B H j N +s j ×g N (s i )g N (s i+1 )g N (s j )g N (s j+1 )ds i ds i+1 ds j ds j+1 = 1 N 2 0≤i,j≤N -1;|i-j|≥2 1 N 0 1 N 0 1 N 0 1 N 0 i N + s i j N + s j × I i,j g N (s i )g N (s i+1 )g N (s j )g N (s j+1 )ds i ds i+1 ds j ds j+1 , (3.10)
where

I i,j := E B H i+1 N +s i+1 -B H i N +s i ) B H j+1 N +s j+1 -B H j N +s j = 1 2 i -j + 1 N + s i+1 -s j 2H + i -j -1 N + s i -s j+1 2H - i -j N + s i+1 -s j+1 2H - i -j N + s i -s j 2H .
For i -j = 2 (equivalently for i -j = -2) we directly get:

I i,j := 1 2 3 N + s i+1 -s j 2H + 1 N + s i -s j+1 2H - 2 N + s i+1 -s j+1 2H -N + s i -s j 2H ≤ 1 2 3 N + s i+1 -s j 2H + 1 N + s i -s j+1 2H ≤ 1 2 4 N 2H + 2 N 2H = 2 2H-1 (2 2H + 1) N 2H . (3.11)
For |i -j| > 2, applying Taylor expansion to the function x 2H allows to get

i -j + 1 N + s i+1 -s j 2H - i -j N + s i -s j 2H = 2H i -j N + s i -s j 2H-1 s i+1 -s i + 1 N + R 1 N and i -j N + s i+1 -s j+1 2H - i -j -1 N + s i -s j+1 2H = 2H i -j -1 N + s i -s j+1 2H-1 s i+1 -s i + 1 N + R 2 N .
Therefore

I i,j = 2H s i+1 -s i + 1 N i -j N + s i -s j 2H-1 - i -j -1 N + s i -s j+1 2H-1 + R 1 N -R 2 N .
Again, applying Taylor theorem to the function x 2H-1 , we obtain

I i,j = 2H(2H -1) s i+1 -s i + 1 N s j+1 -s j + 1 N × i -j -1 N + s i -s j+1 2H-2 + R 3 N + R 1 N -R 2 N ,
which implies by the fact that 2H -2 < 0, for |i -j| > 2

I i,j ≤ C 3 (H) N 2 i -j -1 N + s i -s j+1 2H-2 ≤ C 3 (H) N 2H .
(3.12)

Notice here that the remainder terms R 1 N , R 2 N and R 3 N are of order N -2H and uniformly independent on i and j. Plugging (3.11) and (3.12) into the expression (3.10) and considering 50

C 4 (H) = C 3 (H) + 2 2H-1 (2 2H + 1) we obtain E A (3) N ≤ C 4 (H) N 2H+2 0≤i,j≤N -1;|i-j|≥2 1/N 0 1/N 0 1/N 0 1/N 0 i N + s i j N + s j ×g N (s i )g N (s i+1 )g N (s j )g N (s j+1 )ds i ds i+1 ds j ds j+1 ≤ C 4 (H) N 2H+2 0≤i,j≤N -1;|i-j|≥2 i + 1 N j + 1 N . (3.13)
Moreover, we can interpret the expression in (3.13) given by

1 N 2 0≤i,j≤N -1;|i-j|≥2 i + 1 N j + 1 N ,
as a Riemann sum of the double integral 1 0 1 0 xydxdy which is finite. Then

E A (3) N ≤ C 5 (H) N 2H . (3.14)
Substituting (3.6), (3.9) and (3.14) into the equation in (3.5) we obtain

E (A N ) 2 ≤ C 1 (H) + C 2 (H) N 1+2H + C 5 (H) N 2H .
Since H > 1/2, then the L 2 rate of A N is faster than 1/N . A direct application of Borell-Cantelli lemma allow us to obtain A N a.s.

----→ N →∞ 0. Remark 3.3.5. Under random sampling scheme, the L 2 -convergence is of order 1 N 2H . Borel Cantelli lemma allows us to get the a.s. convergence of order 1 N 2H-1 . When τ i = i/N , from remark 3.3.4 and with a small modification, we can ensure the same L 2 and a.s. convergence given in Theorem 3.3.2.

For H < 1/2 (anti persistent case), the same arguments as before allow us to obtain that A N converges to zero in L 2 , and then in probability. Also D N converges almost surely to 1/3, and therefore in probability. Using Slutsky's Theorem we obtain the convergence in probability of âN to a. However our method not allowed to obtain the almost sure convergence in this case.

Simulation Study

In this section, we present a Monte Carlo simulation study to assess the finite sample properties for the least squares estimator in the linear regression model with long memory noise driven by a fractional Brownian motion evaluated at deterministic times and two different random times defined by equation ( 3 the true value of the parameter is reached, even when the noise, driven by an anti persistent process (H = 0.25), is considered. We can see that for the case of a = 0.2 and a = 2, the uniform scheme converges faster to the real parameter. This confirms the discussion on convergence speed of the different values of H and shows that the explicit scheme can perform better for some selections of the long memory parameter in this model. Overall, for all H's values it is possible to notice that SD decreases as the value of H increases, which is expected since, in the context of long-range dependence processes, it is quite common for the process to be less noisy. This is a reflection of the consistency of the estimator. On the other hand, when H increasing towards 1, the empirical estimation has a better behavior which is reflected in a more accurate solution. Figure 3.4 show the frequency histograms (sampling distribution) of 1000 values of the variable N (â N -a) generated for different values of H. We take the values a = 0.2 and a = 2 and the random times follow uniform and triangular distributions, respectively. The empirical (red line) and theoretical (green line) distributions are overlapped. The theoretical distribution considered is a normal distribution with parameters µ = 0 and σ 2 = 3. The value of σ 2 comes from [START_REF] Roa | Limit distribution of the least square estimator with observations sampled at random times driven by standard brownian motion[END_REF], where the authors consider the case H = 1/2, the Brownian motion, and they prove that in this case N (â N -a) converges in distribution to a N (0, 3).

We emphasize here that computing the asymptotic distributions in a general case is a challenge in itself and could represent another task. In conclusion, we showed that the empirical estimation of the least squares estimator in models driven by long memory noise, under random scheme described by (3.2) guarantees stability and convergence, is very accurate for any value H ∈ (0, 1) and different values of a. Furthermore, when H increases towards 1 the estimator presents less variability. Therefore, the estimation procedure studied is a good alternative to estimate parameters in a linear regression model with random times, long and anti persistent noise.

Appendix: Proof of Lemma 4.3.4

Proof. By definition of D N given in equation (3.4), we have

D N = 1 N N -1 i=0 i N + ν i,N 2 = 1 N N -1 i=0 i 2 N 2 + 2 N N -1 i=0 iν i,N N + 1 N N -1 i=0 ν 2 i,N = I (1) N + I (2) N + I (3) N .
First, I

(1)

N = 1 N 3 N -1 i=0 i 2 = 2N 3 -3N 2 + N 6N 3 . Then, lim N →∞ I (1) N = 1 3 . (3.15)
Now for I

(2)

N , let γ > 0 we use the fact that 0 ≤ ν i,N ≤ 1 N for all i = 0, . . . , N -1. Now, we will apply Chebyshev inequality as follows:

P 2 N 2 N -1 i=0 iν i,N > 1 N γ ≤ 1 N -2γ E   2 N 2 N -1 i=0 iν i,N 2   = 4 N 4-2γ E   N -1 i=0 iν i,N 2   ≤ 4 N 4-2γ N -1 i=0 i N 2 = 4 N 4-2γ N -1 2 2 ≤ 1 N 2-2γ .
Given that ν i,N is a sequence of events in a probability space we are in position to use Borel Cantelli Lemma; we need to find a strictly positive γ, so that

N ≥1 P 2 N 2 N -1 i=0 iν i,N > 1 N γ ≤ N ≥1 1 N 2-2γ < ∞,
to ensure the convergence of the previous sum, it is necessary to find a value for γ such that 2 -2γ > 1, for 0 < γ < 1/2, then

I (2) N = 2 N N -1 i=0 iν i,N N a.s. ----→ N →∞ 0.
(3.16)

For the third term I

(3) N , we take into account that ν i,N ∈ [0, 1/N ] for all i = 0, . . . , N -1. Consequently

1 N N -1 i=0 ν 2 i,N ≤ 1 N N -1 i=0 1 N 2 = 1 N 2 a.s.
----→ N →∞ 0.

(3.17) Finally, by (3.15), (3.16) and (3.17) the result is achieved.
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This paper is an alternative approach to constructing trend regression models taking into account long memory behavior in the noise term. The interest in the long memory noise model lies in the behavior of its covariance structure which can cover a general class of noises. Trend analysis is an important aspect in many time series applications. The parameter estimation problems in time series, that are represented as trend plus long memory noise, are well studied, in the works of [START_REF] Baillie | Modeling and forecasting from trend-stationary long memory models with applications to climatology[END_REF], [START_REF] Brockwell | Likelihood-based analysis of a class of generalized long-memory time series models[END_REF], [START_REF] Lobato | Long memory in stock-market trading volume[END_REF], among others. Whereas, in time series models with long memory, parameter estimation in models sampled at random times is much rarer. The concept of long memory is very well characterized in terms of the spectral density function, however, the existence of this function is limited to stationary processes. When jointly considering a model with trend and long memory properties, there is no stationarity property essential to defining the spectral density function in which the spectral estimate rests. Unlike the spectral estimation, when wavelet methods are typically proposed for irregularly sampled real-valued data including regression problems and long memory estimation; see [START_REF] Bardet | A non-parametric estimator of the spectral density of a continuous-time gaussian process observed at random times[END_REF], [START_REF] Efromovich | Efficient non-parametric estimation of the spectral density in the presence of missing observations[END_REF] or [START_REF] Knight | Spectral estimation for locally stationary time series with missing observations[END_REF]. Different applications have been considered in the financial domain where we can detect trends by the existence of random, low or high volatility periods. As mentioned in Duffie and Glynn ( 2004), certain financial data particularly intra-day, are sampled at random times and trading frequency (or volume) is higher during periods of faster information arrival. The authors modeled the prices by a time-homogeneous continuous-time Markov process and proposed estimating the parameters of the model by using the method of moments. Additionally, much evidence exists that financial and economic data exhibit long memory, for example: in stock markets, further investments are often made on the basis of technical analysis of past prices and volume information. Aït-Sahalia and Mykland (2003) proposed an example, where time distribution between trades for the Nokia shares traded on the New York Stock Exchange are fitted by an exponential distribution.

In this article, we study the least squares estimator (LSE) in a simple regression model, non stationary in trend, with long memory noise and observation measurements at random times. We also show how to deal with the number of observations needed to reach a fixed time T assuming, without loss of generality, T = 1. To explain long memory or long-range dependence phenomenon in a model, it is common to represent it through the Hurst exponent H, which takes values in (0, 1). Particularly, long-range dependence can be seen when H ∈ (1/2, 1). [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF] have studied the effect of long-range dependence over the years. One of the most popular Gaussian stochastic processes with long memory is the fractional Brownian motion. We consider the regression model

Y τ i+1 = aτ i + ∆B H τ i+1 , i = 0, . . . , N (1), (4.1)
where a ∈ R is the unknown drift parameter of the model. Long memory is represented through the noise defined as

∆B H τ i+1 = B H τ i+1 -B H τ i . τ := {τ i , 0
≤ i} is a random increasing sequence of positive random times depending on N , although this dependence is expressed through the distribution function, and whose initial value, τ 0 , is a positive random variable as well and is defined in detail in the next section. N (1) = j≥1 1 {τ j ≤1} determines the number of events in [0, 1]. From the definition of τ , N (1) is a discrete random variable and N represents the expected number of observations within [0, 1]. The process Y := {Y τ i+1 , 0 ≤ i}, defined in equation (4.1), is nonstationary. The long memory or long range dependence is referred to the type of noise used. However, it is important to note that the long memory property does not necessarily hold when working with random times, as has been studied in [START_REF] Philippe | Random discretization of stationary continuous time processes[END_REF].

The LSE estimator for a, the drift parameter of the random sampled regression model with long memory noise in (4.1), is determined by âN(1) =

N (1) i=0 τ i Y τ i+1 / N (1) i=0 τ 2 i .
Working with random times that are not upper bounded is a challenge, since both, the observation times and the number of observations within the interval, are random. Our way of dealing with this task is dividing the problem in three stages. Firstly, to study the almost sure convergence of N (1)/N to 1; secondly, defining an auxiliary least squares type estimator, âN =

N -1 i=0 τ i Y τ i+1 / N -1 i=0 τ 2 i
considering a fixed number N ∈ N corresponding to the sampling frequency or sampling rate and studying the convergence of âN → a. Finally, ensuring the convergence of |â N -âN(1) | to zero. This approach is used by [START_REF] Deo | Long memory in nonlinear processes[END_REF] answering the question of whether N (1) is close to N allows us to ensure that both, âN(1) and âN , are strongly consistent. In practice, our estimator is based on N (1) observations, since if N (1) < N , âN cannot be computed from the data.

It is important to note that there is another type of random time known as "jittered" or "irregular observations" in which, unlike the random time reviewed in this work, the random variables defining the jittered times are bounded. Model (4.1), with jittered random times, has been already studied by [START_REF] Araya | On consistency of least squares estimator in models sampled at random times driven by long memory noise: the jittered case[END_REF]. The plan of our paper is as follows. In Section 2, we give the definition of the random time used in the random sampled regression model with long memory noise, we then describe our notation and present results of the almost sure convergence of τ N → 1 and N (1)/N → 1. Section 3 is devoted to the main results; we use the least squares procedure to estimate the parameter and we analyse the almost sure convergence of âN and âN(1) to a. In Section 4, a simulation study is presented to illustrate the performance of the estimator, considering different values of H and the random time under two different sampling schemes. Finally, in Section 5, we present the proof of a technical Lemma, established in Section 3.

Preliminaries

In this section we introduce the basic tools and the framework used in this article. Particularly, we present the random noise evaluated at random times that is considered throughout this work.

Random time

Let τ = {τ i ; i ≥ 0} be a strictly increasing sequence of random points over time, whose distribution function depends on N (to avoid superscript, the dependence on N is through the distribution function), where N represents the sampling frequency or sampling rate, that is the average number of samples obtained in [0, 1].

The sequence τ , defined by the Renewal Process (RP), is the following

τ i = i j=0 t j i ≥ 0, (4.2)
where {t j , j ≥ 0} is a sequence of independent and identically distributed random variables, with a common distribution function G N (•), depending on N with support in [0, ∞), absolutely continuous with density g N such that G N (0) = 0, that satisfies the following hypothesis:

H1 E [t i ] = 1 N for all i ≥ 0. H2 E t 2 i = κ 1 N α , 0 < α ≤ 2. H3 E t 4 i = κ 2 N β , 0 < β ≤ 2α.
where κ 1 , κ 2 are constants not depending on N . Let us remark that the condition α ≤ 2 and β ≤ 2α comes from Cauchy inequality. From now on, G N,i denote the probability distribution function associated to τ i and its density functions g N,i . We state N (1), the number of observations needed to sample up 1. Examples of distributions satisfying H1 to H3 are:

1. The beta prime distribution, with parameters (1, N + 1).

2. The exponential distribution with parameter λ = N . This distribution can be mentioned as a limit case α = 2. Araya et al. ( 2019) provides a study of this model.

Remark 4.2.1. From now on, we write E(t m i ) = E(t m 0 ) for m ∈ N and i ≥ 0 since it is not longer depending on i. From hypothesis H1 and H2 we have

E [τ i ] = i + 1 N , E τ 2 i = (i + 1)E t 2 0 + (i + 1) 2 -(i + 1) N 2 , i ≥ 0. (4.3)
Applying Jensen inequality to any positive random variable X with all its finite moments, we have for

0 < b < 1, E X b ≤ (E [X]) b . (4.4)
Remark 4.2.2. From now on, C denote a generic constant that does not depend on N ,which may vary from line to line.

The noise

In this subsection we give the main properties of the process B H = {B H t , t ≥ 0} with 0 mean, whose increments are considered as the noise in model (4.1).

N1 Covariance structure: R H (t, s) = E(B H t B H s ) = 1 2 t 2H + s 2H -|t -s| 2H . N2
We consider a finite-variance process which is self-similar with stationary increments. For example, B H can represent the well known fractional Brownian motion (fBm). In the fBm framework, when H = 1/2, B H is the standard Brownian motion. Other types of long memory processes, with the same covariance structure as B H , are the Hermite and Rosenblatt processes. For more references on these processes the reader can consult [START_REF] Tudor | Analysis of variations for self-similar processes: A stochastic calculus approach[END_REF]. N3 The random time sequence τ , which depends on N , and the long memory noise B H are independent. This latter condition is essential for the theoretical results presented in Section 4.3.

Almost sure convergence of τ N → 1 and N(1)/N → 1

In this section, we show how to quantify the ratio N (1)/N ; the number of observations sampled up to time 1, and the sampling frequency or sampling rate. We will see later on, in Section 4.3 and Proposition 4.3.3 that, to prove there is strong consistency, studying the behavior of N (1)/N is an important task.

Remark 4.2.3. Throughout the paper, especially in Section 4.3, we will use the following argument to ensure the convergence in probability and almost sure convergence of a given sequence of random variables.

Let (θ N ) N ≥0 be a sequence of random variables. From Tshebyshev's inequality we have,

P (|θ N | > ǫ) ≤ E(θ m N ) ǫ m , m > 0. (4.5) If E(θ m N ) ≤ C/N γ with γ > 0 then |θ N | → 0 in probability. Notice that if N ≥1 E(θ m N
) converges to a finite value, using Borel-Cantelli lemma we get

P(|θ N | > ǫ , infinitely often) = 0.
This yields that |θ N | → 0 a.s.

Let us consider τ

N -1 = N -1 i=0 t i = 1 N N -1 i=0 N t i . Now, E(τ N -1 ) = 1, and V ar(τ N -1 ) = N V ar(t 0 ) = κ 1 N α-1 -1
N , due to hypothesis H1 and H2, which tends to 0 as N → ∞ for α > 1. Also, by Remark 4.2.3 and considering the fourth central moment and hypothesis H1 to H3, we have

E (τ N -1 -1) 4 = E      N -1 j=0 (t j -E [t j ])   4    = E   N -1 j=0 (t j -E [t j ]) 4   + 6E   N -1 i =j (t i -E [t i ]) 2 (t j -E [t j ]) 2   = N -1 j=0 E t 4 0 -4 N -1 j=0 E t 3 0 E [t 0 ] + 6 N -1 j=0 E t 2 0 E [t 0 ] 2 -4 N -1 j=0 E [t 0 ] E [t 0 ] 3 + N (E [t 0 ]) 4 + 6 0≤i =j≤N -1 E (t 0 -E [t 0 ]) 2 2 ≤ κ 2 N β-1 + 6κ 1 N α+1 + 1 N 3 + 6κ 2 1 N 2α-2 ≤ C N (β-1∧α+1∧3∧2α-2) = C N (β-1∧2α-2) .
Then by Tshebyshev inequality τ N -1 converges to 1 in probability if α > 1 and β > 1. Additionally, from Borel-Cantelli lemma τ N -1 converges to 1, almost surely, if α > 3/2 and β > 2. Since we proved the a.s. convergence of τ N to 1, we can similarly get the a.s. convergence of τ N +N ǫ -τ N to ǫ, for α > 3/2 and β > 2 as we show in the following picture. Using this fact and recalling that the random variables τ N and τ N +N ǫ -τ N are independent, we have

τ N +N ǫ τ N (1) τ N 1 ǫ a.s. P N (1) N -1 > ǫ = P (N (1) > N + N ǫ) = P (τ N +N ǫ < 1) = P (1 -τ N > τ N +N ǫ -τ N ) = P (1 -τ N > τ N +N ǫ -τ N ) ∧ (τ N +N ǫ -τ N < ǫ 2 ) + P (1 -τ N > τ N +N ǫ -τ N ) ∧ (τ N +N ǫ -τ N > ǫ 2 ) ≤ P τ N +N ǫ -τ N < ǫ 2 + P 1 -τ N > ǫ 2 ≤ P τ N +N ǫ -τ N -ǫ < - ǫ 2 + P 1 -τ N > ǫ 2 ≤ 1 ǫ 2 4 ǫ N β-1 + ǫ 2 N 2α-2 ≤ C N (β-1-3δ∧2α-2-2δ) , (4.6) with ǫ = 1 N δ , δ > 0.
Analogously, using the a.s. convergence of τ N -N ǫ -τ N to ǫ we have

P N (1) N -1 < -ǫ = P (N (1) < N -N ǫ) = P (τ N -N ǫ > 1) ≤ C N (β-1-3δ∧2α-2-2δ) .
(4.7)

Then, the convergence in probability is ensured if δ < β-1 3 ∧ α -1 ; this condition is true if α > 1 and β > 1. On the other hand, the a.s. convergence is ensured, by an application of Borel-Cantelli Lemma, if δ < β-2 3 ∧ α -3/2 ; i.e. if α > 3/2 and β > 2. We can notice here the restrictions that appear in the parameters α and β, which will be used in the main theorem of this article.

Main results

In this section, we provide our main result. We prove that the LSE is an unbiased and strongly consistent estimator for a, the drift parameter of the random sampled regression model with long memory noise. To estimate the parameter of interest in the model (4.1), the LSE is computed and is determined by

âN(1) = N (1) i=0 τ i Y τ i+1 N (1) i=0 τ 2 i .
(4.8)
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Recall that, from (4.1) and (4.8) we have

âN(1) -a = N (1) i=0 τ i ∆B H τ i+1 N (1) i=0 τ 2 i .
(4.9)

Theorem 4.3.1. Let τ be the random time defined in (4.2) and the process B H = {B H t , t ≥ 0} with 0 mean, whose increments are considered as the noise, satisfying hypothesis H1 to H3 and N1 to N3 respectively. Then, for α > max{3/2, 1/H} and β > 2, the LS estimator âN(1) given in (4.8) of the drift parameter a, in the model (4.1) is strongly consistent

âN(1) a.s. ----→ N →∞ a.
For α > 1 and β > 1 the convergence in probability is ensured.

Proof. Let τ be given by (4.2), and N be the sampling frequency or sampling rate. Let âN , be the LS estimator obtained by replacing N (1) by N -1 in (4.8) i.e.

âN = N -1 i=0 τ i Y τ i+1 N -1 i=0 τ 2 i .
(4.10)

We consider the following decomposition according to (4.8) and (4.10) and roughly have âN(1) -a = âN(1) -âN + âN -a.

Then, the proof of the main Theorem 4.3.1 will be given in two steps

• First, we prove in Proposition 4.3.2, that âN converges a.s. to a.

• Second, we control the difference âN(1) -âN a.s. in Proposition 4.3.3.

Proposition 4.3.2. Let τ be the random time defined in (4.2) and the process B H = {B H t , t ≥ 0} with 0 mean, whose increments are considered as the noise, satisfying hypothesis H1 to H3 and N1 to N3 respectively, for α > max{3/2, 1/H} and β > 2. Then, the LS estimator âN given in (4.10) of the drift parameter a, in the model (4.1) is strongly consistent

âN a.s. ----→ N →∞ a.
For α > 1 and β > 1 the convergence in probability is ensured.

Proposition 4.3.3. Let τ be the random time defined in (4.2) and the process B H = {B H t , t ≥ 0} with 0 mean, whose increments are considered as the noise, satisfying hypothesis H1 to H3 and N1 to N3 respectively, for α > max{3/2, 1/H} and β > 2. Considering the LS estimators âN and âN(1) of the drift parameter a, given in (4.10) and (4.8) respectively, for the model (4.1). Then,

|â N (1) -âN | a.s. ----→ N →∞ 0 (4.11)
For α > 1 and β > 1 the convergence in probability is ensured.

Proof of Proposition 4.3.2

Recall that, from (4.1) and (4.10) we have

|â N -a| = 1 N N -1 i=0 τ i ∆B H τ i+1 1 N N -1 i=0 τ 2 i := A N D N . (4.12)
To prove Proposition 4.3.2, we need an auxiliary lemma related to the convergence of the denominator D N given in (4.12).

Lemma 4.3.4. Let D N be defined in (4.12). If τ = {τ i ; 0 ≤ i ≤ N -1} are the sampling random times defined in (4.2), satisfying the hypothesis H1 to H3, then for 3/2 < α < 2 and β > 2

D N a.s. ----→ N →∞ 1 3 .
For α > 1 and β > 1 the convergence in probability is ensured.

The proof of this lemma is given in Appendix 4. Since

P (|A N | > ǫ) ≤ E(A 2 N )
ǫ 2 , following Remark 4.2.3 it is enough to control the expression E A 2 N in (4.12). Then

E A 2 N = E 1 N 2 N -1 i=0 τ 2 i B H τ i+1 -B H τ i 2 + E   1 N 2 0≤i,j≤N -2;|i-j|=1 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   + E   1 N 2 0≤i,j≤N -1;|i-j|≥2 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   := E A (1) N + E A (2) N + E A (3) N , (4.13)
where we split the sum into three terms associated to the distance of the indexes. Firstly, we will study the first term in (4.13). From hypothesis N1 to N3

Step 1:

E A (1) N = 1 N 2 E N -1 i=0 τ 2 i B H τ i+1 -B H τ i 2 = 1 N 2 N -1 i=0 ∞ 0 ∞ 0 E z 2 i B H z i +a -B H z i 2 |τ i = z i , t i+1 = a g N,i (z i )g N (a)dz i da = 1 N 2 N -1 i=0 ∞ 0 ∞ 0 z 2 i a 2H g N,i (z i )g N (a)dz i da = 1 N 2 N -1 i=0 E τ 2 i E t 2H i+1 .
By (4.4), hypothesis H2 and the independence of the r.v.'s τ i and

t i+1 E A (1) N ≤ C N 2 N -1 i=0 (i + 1)E t 2 0 + i(i + 1) N 2 E t 2 0 H ≤ C N α(H+1)∧(αH+1) = C N αH+1 (4.14)
Step 2: By symmetry w.l.o.g we consider

j = i + 1. From hypothesis N3 E A (2) N = 2 N 2 N -2 i=1 E E (τ i-1 + t i ) (τ i-1 + t i + t i+1 ) B H τ i-1 +t i -B H τ i-1 • B H τ i-1 +t i +t i+1 -B H τ i-1 +t i τ i-1 = z i-1 , t i = a, t i+1 = b = 2 N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 (z i-1 + a) (z i-1 + a + b) (4.15) • E B H z i-1 +a+b -B H z i-1 +a B H z i-1 +a -B H z i-1 g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb. Hypothesis N1 implies E B H z i-1 +a+b -B H z i-1 +a B H z i-1 +a -B H z i-1 = 1 2 (a + b) 2H -a 2H -b 2H , then E A (2) N = 1 N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 (z i-1 + a + b) (z i-1 + a) (a + b) 2H -a 2H -b 2H • g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb. (4.16)
We consider σ(y) = y 2H . Using a Taylor type expansion, we will linearise the increment of σ between the two points a + b and a as follows:

σ(a + b) -σ(a) = 1 0 σ ′ [(1 -λ)a + λ(a + b)] bdλ = 1 0 σ ′ [a + λb] bdλ = 2H 1 0 [a + λb] 2H-1 bdλ (4.17)
Equality (4.17), the fact σ ′ is increasing and λ ∈ (0, 1) allow us to obtain,

1 2 (a + b) 2H -(a) 2H ≤ H [a + b] 2H-1 b. (4.18)
Then, by (4.16) and ( 4.18) we get

E A (2) N ≤ C N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 (z i-1 + a + b) (z i-1 + a) [a + b] 2H-1 b • g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb. ≤ C N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 z i-1 (z i-1 + a) [a + b] 2H-1 b + (z i-1 + a) [a + b] 2H b • g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb. Now, using that for 1 ≤ 2H ≤ 2, f (x) = x 2H is a convex function and for 2H -1 < 1, g(x) = x 2H-1 is a subadditive function, E A (2) N ≤ C N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 z i-1 (z i-1 + a) a 2H-1 + b 2H-1 b + (z i-1 + a) a 2H + b 2H b • g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb. ≤ C N 2 N -2 i=1 ∞ 0 ∞ 0 ∞ 0 (z 2 i-1 a 2H-1 b + z 2 i-1 b 2H + z i-1 a 2H b + z i-1 ab 2H + z i-1 a 2H b + z i-1 b 2H+1 + a 2H+1 b + ab 2H+1 ) • g N,i-1 (z i-1 )g N (a)g N (b)dz i-1 dadb.
From the independence of the r.v's t i and after some algebraic manipulations,

E A (2) N ≤ C N 2 N -2 i=1 E(τ 2 i-1 )E(t 2H-1 i )E(t i+1 ) + E(τ 2 i-1 )E(t 2H i+1 ) + E(τ i-1 )E(t 2H i )E(t i+1 ) + E(τ i-1 )E(t i )E(t 2H i+1 ) + E(τ i-1 )E(t 2H i )E(t i+1 ) + E(τ i-1 )E(t 2H+1 i+1 ) + E(t 2H+1 i )E(t i+1 ) + E(t i )E(t 2H+1 i+1 )
. By equalities (4.3), (4.4) and hypothesis H1 to H3 we can derive the following inequality for

E A (2) N . E A (2) N ≤ C N 2 N -2 i=1 i N α + i 2 N 2 1 N 2H-1 1 N + i N α + i 2 N 2 1 N αH + i N 1 N αH 1 N + i N 1 N 1 N αH + i N 1 N 1 N αH + i N 1 N β( 2H+1 4 ) + 1 N 1 N β( 2H+1 4 ) + 1 N 1 N β( 2H+1 4 ) ≤ C 1 N α+2H + 1 N 1+2H + 1 N α+αH + 1 N 1+αH + 3 N 2+αH + 1 N β( 2H+1 4 )+1 + 2 N β( 2H+1 4 )+2 .
Finally,

E A (2) N ≤ C N (1+αH)∧(β( 2H+1 4 )+1) . (4.19)
Step 3: W.l.o.g. we assume that i < j. By symmetry we have

E A (3) N = 2 N 2 E   0≤i,j≤N -1;j-i≥2 τ i τ j B H τ i+1 -B H τ i B H τ j+1 -B H τ j   .
We denote by

X j-i-1 = X j-(i+1) = τ j -τ i+1 = j l=i+2
t l , which is independent of τ i+1 and t j+1 . By the independence of t i 's the r.v.'s X j-i-1 are distributed as G N,j-i-1 . Then by hypothesis N3

E A (3) N = 2 N 2 0≤i,j≤N -1;j-i≥2 E [E [τ i (τ i + t i+1 + X j-i-1 ) • B H τ i +t i+1 -B H τ i B H τ i +t i+1 +X j-i-1 +t j+1 -B H τ i +t i+1 +X j-i-1 τ i = z i , t i+1 = a, X j-i-1 = x, t j+1 = b]] = 2 N 2 0≤i,j≤N -1;j-i≥2 ∞ 0 ∞ 0 ∞ 0 ∞ 0 z i (z i + a + x) E B H z i +a -B H z i B H z i +a+x+b -B H z i +a+x g N,i (z i )g N,j-i-1 (x)g N (a)g N (b) dz i dx da db.
From hypothesis N1,

E B H z i +a -B H z i B H z i +a+x+b -B H z i +a+x = 1 2 (a + x + b) 2H + x 2H -(x + b) 2H -(a + x) 2H ≤ 1 2 (a + x + b) 2H -(a + x) 2H . (4.20)
Again, consider σ(y) = y 2H . Thanks to a Taylor type expansion, one can linearise the increment of σ between the two points a + x + b and a + x as follows

σ(a + x + b) -σ(a + x) = 1 0 σ ′ [(1 -λ)(a + x) + λ(a + x + b)] bdλ = 1 0 σ ′ [a + x + λb] bdλ = 2H 1 0 [a + x + λb] 2H-1 bdλ. (4.21)
Now, since f (x) = x 2H-1 is an increasing function in x and λ ∈ (0, 1). Equality (4.21) allows us to get, σ(a

+ x + b) -σ(a + x) ≤ 2H [a + x + b] 2H-1 b.
Then, due to the definiton of σ, we have

1 2 (a + x + b) 2H -(a + x) 2H ≤ H [a + x + b] 2H-1 b. (4.22)
Using the fact that 2H -1 < 1 we can use the subadditive property of the function f

(x) = x 2H-1 E A (3) N ≤ C N 2 0≤i,j≤N -1;j-i≥2 ∞ 0 ∞ 0 ∞ 0 ∞ 0 z i (z i + a + x) (a + x + b) 2H-1 b g N,i (z i ) g N,j-i-1 (x) g N (a) g N (b) dz i dx da db ≤ C N 2 0≤i,j≤N -1;j-i≥2 ∞ 0 ∞ 0 ∞ 0 ∞ 0 z i (z i + a + x) (a + x) 2H-1 b + b 2H g N,i (z i ) g N,j-i-1 (x) g N (a) g N (b) dz i dx da db = C N 2 0≤i,j≤N -1;j-i≥2 ∞ 0 ∞ 0 ∞ 0 ∞ 0 [z 2 i (a + x) 2H-1 b + z 2 i b 2H + z i (a + x) 2H b + z i (a + x)b 2H ]g N,i (z i ) g N,j-i-1 (x) g N (a) g N (b) dz i dx da db.
By the independence of the r.v.'s t i and after some algebraic manipulations, we can obtain the following inequality

E A (3) N ≤ C N 2    0≤i,j≤N -1;j-i≥2 E τ 2 i E [t 0 ] E X 2H-1 j-i-1 + E τ 2 i E t 2H 0 + E [τ i ] E [t 0 ] E X 2H j-i-1 + E [τ i ] E [X j-i-1 ] E t 2H 0 . Also E X 2H j-i-1 = E (t i+2 + • • • + t j ) 2H ≤ (j -i -1) 2H-1 E t 2H i+2 + • • • + t 2H j = (j -i -1) 2H E t 2H 0
, and

E X 2H-1 j-i-1 ≤ (j -i -1) 2H-1 E t 2H-1 0 .
From (4.3), (4.4) and hypothesis H1 and H2 we obtain,

E A (3) N ≤ C N 2    0≤i,j≤N -1;j-i≥2 i + 1 N α + i(i + 1) N 2 1 N (j -i -1) 2H-1 N 2H-1 + i + 1 N α + i(i + 1) N 2 1 N αH + (i + 1) N 1 N (j -i -1) 2H N αH + (i + 1) N 1 N αH (j -i -1) N .
By collecting the pieces, one finally arrives at the following expression

E A (3) N ≤ C 1 N 1+α + 1 N αH + 1 N α+αH-1 + 1 N αH+2-2H + 1 N 1+αH + 1 N α+2H-1 + 1 N 2H + 2 N 1+αH ≤ C N (αH∧α+2H-1) = C N αH . (4.23)
Finally, for (4.13), considering the above constraints and by putting together the equations (4.14), (4.19) and (4.23), we get The exponential distribution is a particular limiting case which arises when alpha=2 y beta=4. The behavior of A N and D N , in this particular case, can be seen in [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF].

E A 2 N ≤ C N αH+1 + C N (1+αH)∧(β( 2H+1 4 )+1) + C N αH ≤ C N αH∧(β( 2H+1 4 )+1) , ( 4 

Proof of Proposition 4.3.3

Proof. Let us consider âN(1) defined by (4.8) with N (1) the number of observations up to time T = 1. We can ensure that D N -D N (1) and A N -A N (1) defined in (4.9) and (4.12) converges to zero a.s. when N → ∞. In fact, note that if N (1) < N -1 then τ N (1) < 1 < τ N -1 , and if

N -1 < N (1) then τ N -1 < τ N (1) < 1. Thus, |D N -D N (1) | ≤ |N (1) -N + 1| N τ 2 N (1)∨(N -1) ≤ |N (1) -N + 1| N (τ 2 N -1 ∨ 1).
From the a.s convergence of τ N → 1 and the convergence of N (1)/N → 1, obtained in Section 4.2.3, equation (4.7), using the same arguments presented in Remark 4.2.3, we have that

|D N -D N (1)
| converge in probability to zero if α > 1 and β > 1, the almost sure convergence is achieved when α > 3/2 and β > 2.

We can recall now the work of Garsia, Rodemich and Rumsey lemma in [START_REF] Garsia | A real variable lemma and the continuity of paths of some gaussian processes[END_REF], as well as [START_REF] Barlow | Semi-martingale inequalities via the garsia-rodemich-rumsey lemma, and applications to local times[END_REF], which are very powerful works in the study of the sample path Hölder continuity of a stochastic process adapted to random times, see [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF], [START_REF] Nualart | Differential equations driven by fractional brownian motion[END_REF].

Lemma 4.3.6. Let p ≥ 1, and a > p -1. Then there exists a constant C a,p > 0 such that for any continuous function f on [0, T ], and for all t, s ∈ [0, T ] one has:

|f (t) -f (s)| p ≤ C a,p |t -s| ap-1 ≤ T 0 T 0 |f (x) -f (y)| p |x -y| ap+1 dxdy
(with the convention 0/0 = 0).

The following lemma provide basic inequalities for the fractional Brownian motion.

Lemma 4.3.7. Let {B H t : t ≥ 0} be a fractional Brownian motion of Hurst parameter H ∈ (0, 1). Then for every 0 < ǫ < H and T > 0 there exists a positive random variable η ǫ,T such that

E(|η ǫ,T | p ) < ∞, for all p ∈ [1, ∞) and for all s, t ∈ [0, T ] |B H t -B H s | ≤ η ǫ,T |t -s| H-ǫ a.
s. The reader can consult [START_REF] Nualart | Differential equations driven by fractional brownian motion[END_REF] for details. From (4.6), (4.7) and Tshebyshev inequality we obtain

P N (1) N -1 > N -δ ≤ C N (β-1-3δ∧2α-2-2δ) . (4.25) If δ < { β-2 3 ∧ α -3/2}
applying Borel-Cantellli lemma, the a.s. convergence is ensured. We define

Ω 1 N the set of ω ∈ Ω such that N (1) N -1 ≤ N -δ . Then P(Ω 1 N ) ≥ 1 -C N µ , with 0 < µ = {2α -2 -2δ ∧ β -1 -3δ}. And P(|τ N -1| > N -4γ ) ≤ E[(τ N -1) 4 ] N -4γ ≤ C N -4γ+{2α-2∧β-1} . (4.26) If α > 3/2, β > 2 and 0 < γ < { 2α-3 4 ∧ β-2 4 } Borel-Cantelli Lemma implies the almost sure convergence of |τ N -1| to 0. Defining Ω 2 N , the set of ω ∈ Ω such that, |τ N (ω) -1| ≤ N -γ . Then, P(Ω 2 N ) ≥ 1 -C N ν , with 0 < ν = -4γ + {2α -2 ∧ β -1} and τ N ≤ 1 + N -γ almost surely. In the set Ω 1 N ∩ Ω 2 N , with P(Ω 1 N ∩ Ω 2 N ) ≥ 1 -C/N ν -C/N µ ,
and applying Garsia, Rodemich and Rumsey Lemma to the random interval [0, τ N (ω)] we have, for any ε > 0

sup 0≤s≤t≤τ N |B H t -B H s | ≤ C ν,H (1 + N -γ ) H-ε τ H-ε N ξ N , (4.27)
where ξ N is a random variable such that, for q ≥ 2/ε, and on

Ω 1 N ∩ Ω 2 N E(ξ q N ) ≤ C q,ε (1 + N -γ ) εq . (4.28)
Then, from the previous analysis of(4.27) and (4.28) we obtain on

Ω 1 N ∩ Ω 2 N |A N -A N (1) | = 1 N N (1)∨(N -1) i=N (1)∧(N -1) τ i ∆B H τ i ≤ ξ N C ν,H (1 + N -γ ) 1+2H-2ε 1 N δ (4.29)
Let us now consider the random variable ξ N on Ω 1 N where, in that case, τ N ≤ 1 + N -γ a.s. By (4.28), with q = 2/ε we get E(ξ

2/ε N ) ≤ C 2,ε (1 + N -γ ) 2 . For ρ > 0, P(ξ N > N ρ ) < E(ξ 2/ε N ) N 2ρ/ε ≤ C 2,ε (1+N -γ ) 2 N 2ρ/ε
, where the last quantity goes to 0 as N goes to infinity for any ρ > 0. We can ensure the almost sure convergence for ρ > ε/2. Thus, considering Ω 3 N the set of ω ∈ Ω, such that ξ N (ω) ≤ N ρ , we have

P(Ω 3 N ) ≥ 1 -C N 2ρ/ε , with ρ > ε/2. Let us name Ω N = Ω 1 N ∩ Ω 2 N ∩ Ω 3 N . Then P(Ω N ) ≥ 1 -C/N ν -C/N µ -C/N 2ρ/ε and, on Ω N |A N -A N (1) | ≤ C ν,H C 2,ε (1 + N -γ ) 1+2H-2ε N ρ-δ . (4.30)
For ε small enough we can choose (β -2)/3 > ε/2 and α -3/2 > ε/2, implying that ρ -δ < 0. This implies the a.s. convergence on Ω N of |A N -A N (1) | to zero as N goes to infinity. Also P(Ω N ) → 1.

Simulation Study

Throughout this section, we develop a Monte Carlo simulation study to assess the finite sample properties for the least squares estimator in the linear regression model with long memory noise driven by a fractional Brownian motion evaluated at deterministic times and two different random times defined by Equation (4.2).

The deterministic case:

We consider the model defined by equation (4.1) observed at equally spaced times, i.e. τ i = i/N , i = 1, . . . , N . Since the number of observations, in this case, is not random for all simulations shown we have considered N = 300.

The exponential and beta prime case: The most studied renewal process is the Poisson process (for example [START_REF] Last | Lectures on the Poisson process[END_REF]), which appears when t i has an exponential distribution. We consider λ = 300. On the other hand, the beta prime distribution is involved with the odds ratio, most commonly used in case-control studies, when a random variable follows a beta distribution. We consider a beta prime distribution with parameters (1, 301) For all the simulations shown, we consider M = 1000 replicates of the model with the parameters a = 0.2 and a = 2. For the exponential and beta prime cases, the number of observations is a random variable N (1), representing how many observations are within the interval [0, 1]. We also consider different values of the Hurst parameter: H = 0.05, H = 0.25 and H = 0.45 (anti-persistent cases); H = 0.55, H = 0.75 and 0.95 (long memory cases). The values of the mean shows that the estimator is unbiased. We can notice the SD decreases as the value of H approaches 1, which is expected, because the conditional variance of the noise decreases as H approaches 1. In fact, for 0

≤ τ i < τ j ≤ 1 with 0 ≤ i < j < N (1) V ar(B H τ i -B H τ j )/τ i , τ j ) = 1 0 1 0 |t -s| 2H g N,i (t)g N,j (s)dtds.
Then, for 0 

≤ τ i < τ j ≤ 1, V ar(B H ′ τ i -B H ′ τ j )/τ i , τ j ) ≤ V ar(B H τ i -B H τ j )/τ i , τ j ) when H ′ > H. Exponential H =

Proof of Lemma 1

Proof. Let us consider D N with the sampling random times as in (4.2). However, as we show below, D N can be written as a quadratic form depending on the increments t ′ i s, which are independent and identically distributed rv's. We have

D N = 1 N N -1 k=0 τ 2 k = 1 N N -1 k=0 k i=0 t i 2 = 1 N N -1 k=0 k i=0 k j=0 t i t j = 1 N N -1 i=0 N -1 j=0 (N -(i ∨ j)) t i t j D N = 1 N N -1 i=0 (N -i) t 2 i + 2 N 0≤i<j≤N -1 (N -(i ∨ j)) t i t j .
Inspired in [START_REF] Dacunha-Castelle | Aggregation of doubly stochastic interactive gaussian processes and toeplitz forms of u-statistics[END_REF], we centered the sequence and add terms to decompose D N as follows:

D N = R N + T N + Q N + U N ,
where

R N = E [D N ] = 1 N N -1 i=0 (N -i) E t 2 i + 2 N 0≤i<j≤N -1 (N -j) E [t i t j ] , (4.31) T N = 1 N N -1 i=0 (N -i) t 2 i -E t 2 i , (4.32) Q N = 2 N 0≤i<j≤N -1 (t i E [t j ]+E [t i ] t j -2E [t i ] E [t j ]) (N -j) , (4.33) U N = 2 N 0≤i<j≤N -1 (t i t j -t i E [t j ]-t j E [t i ]+E [t i ] E [t j ]) (N -j) . (4.34)
Now, we show that R N converges to 1/3, and the remaining terms T N , Q N and U N converge to 0 as N goes to infinity. As in the proof of Proposition 4.3.2, to prove convergence results we use Remark 4.2.3).

From H1 to H3,

R N = 1 N   N -1 i=0 (N -i) E t 2 i + 2 0≤i<j≤N -1 (N -j) E [t i ] E [t j ]   = 1 N   N -1 i=0 i E t 2 0 + 2 N -1 j=1 j-1 i=0 (N -j) 1 N 1 N   = 1 N   N (N + 1) 2 E t 2 0 + 2 N 2 N -1 j=1 (N -j) j   = E t 2 0 N N (N + 1) 2 + 2 N 3 N (N -1)(N + 1) 6 = κ 1 2N 1+α [N (N + 1)] + 1 3N 3 [(N -1)N (N + 1)] . (4.35)
Then R N converges pointwise, so in probability and almost sure, to 1/3 as N goes to infinity for α > 1.

Second, we study the a.s. convergence of T N to 0. Let us recall that from (4.32), E [T N ] = 0. Also, computing

E T 2 N = 1 N 2   N -1 i=0 N -1 j=0 (N -i)(N -j)E t 2 i -E t 2 i t 2 j -E t 2 j   = 1 N 2 N -1 i=0 (N -i) 2 V ar t 2 0 = V ar t 2 0 N 2 N i=1 i 2 = V ar t 2 0 6N 2 N (N + 1)(2N + 1) ≤ C N (β-1)∧(2α-1) (4.36)
In (4.36), we can see that for α > 1/2 and β > 1, T N converges in probability to 0; and for α > 1 and β > 2, converges a.s. to 0.

From (4.33), Q N = 2 N 0≤i<j≤N -1 t i 1 N + t j 1 N -2 1 N 1 N (N -j), then E [Q N ] = 0. To simplify the calculation of E(Q 2 N ) we rewrite Q N as Q N = 2 N 0≤i<j≤N -1 t i N - 1 N 2 (N -j) + 2 N 0≤i<j≤N -1 t j N - 1 N 2 (N -j) = 2 N N -2 i=0 t i N - 1 N 2   N -i-1 j=1 j   + 2 N N -1 i=1 t i N - 1 N 2 (N -i)i = 2 N N -1 i=0 t i N - 1 N 2 (N -i)(N -i -1) 2 + 2 N N -1 i=0 t i N - 1 N 2 (N -i)i = 2 N N -1 i=0 t i N - 1 N 2 (N -i)(N -i -1) 2 + (N -i)i = 1 N N -1 i=0 (N t i -1) (N -i)(N + i -1) N 2 := 1 N N -1 i=0 X i,N a i,N . (4.37)
At this point, it is important to highlight that X i,N = N t i -1 is a triangular array of i.i.d. centered random variables and

a i,N = (N -i)(N +i-1) N 2
is a triangular array of constants. We study the a.s. convergence, by analysing the summability of the fourth moment of Q N . By the independence of the random variables t i 's we have -2) . Now, if α > 3/2 and β > 2 the almost sure convergence of Q N to 0 is achieved. The convergence in probability is obtained for α > 1 and β > 1. Finally, studying the a.s. convergence of U N to 0, we can see from (4.34) that

E Q 4 N = E   1 N N -1 i=0 X i,N a i,N 4   = 1 N 4 N -1 i=0 a 4 i,N E X 4 i,N + 6 N 4 0≤i<j≤N -1 a 2 i,N a 2 j,N E X 2 i,N E X 2 j,N + 4 N 4 0≤i<j≤N -1 a i,N a 3 j,N E [X i,N ] E X 3 j,N + 4 N 4 0≤i<j<k≤N -1 a i,N a j,N a 2 k,N E [X i,N ] E [X j,N ] E X 2 k,N + 1 N 4 i<j<k<l a i,N a j,N a k,N a l,N E [X i,N ] E [X j,N ] E [X k,N ] E [X l,N ] . (4.38) Noticing that 0 < max i a i,N ≤ 1, and E [X j,N ] = 0, ∀j ∈ N, (4.38) yields E Q 4 N = 1 N 4 N -1 i=0 E X 4 i,N + 6 N 4 0≤i<j≤N -1 E X 2 i,N E X 2 j,N ≤ C N (β-1)∧(2α
U N = 2 N 0≤i<j≤N -1 (t i -E [t i ]) (t j -E [t j ]) (N -j), then E [U N ] = 0.
Studying the second moment, from the independence of the t i 's

E U 2 N = 4 N 2 0≤i<j≤N -1 E (t i -E [t i ]) 2 (t j -E [t j ]) 2 (N -j) 2 = 4 N 2 0≤i<j≤N -1 E t i - 1 N 2 t j - 1 N 2 (N -j) 2 = 4V ar 2 (t 0 ) N 2 N -1 j=1 j-1 i=0 (N -j) 2 = 4V ar 2 (t 0 ) N 2   N -1 j=1 (N -j) 2 j   ≤ 4V ar 2 (t 0 ) N 2   N -1 j=1 (N -j) 2 j   ≤ CN 2 V ar 2 (t 0 ) = CN 2 κ 1 N α - 1 N 2 2 ≤ C N 2α-2 .
(4.39)

In (4.39), we can see that for α > 1 the convergence in probability is ensured, while for α > 3/2 the almost sure convergence is ensured. Finally in Table 4.4 we summarize the results obtained for R N , T N , Q N and U N , so we will be able to identify the restrictions on α and β to ensure the convergence in probability and almost sure convergence, recalling the methodologies seen in Remark 4.2.3.

convergence in P a.s. convergence

R N - 1 3 ≤ C N α-1 α > 1 α > 1 E T 2 N ≤ C N (β-1)∧(2α-1) α > 1/2, β > 1 α > 1, β > 2 E Q 4 N ≤ C N (β-1)∧(2α-2) α > 1, β > 1 α > 3/2, β > 2 E U 2 N ≤ C N 2α-2 α > 1 α > 3/2
Table 4.4: Values for α and β to ensure convergence in P and a.s. convergence.

So, D N converge in probability to 1/3 as N goes to infinity if α > 1 and β > 1. Considering α > 3/2 and β > 2 we will ensure the a.s. convergence of D N .

Ólafsdóttir et al. ( 2016)) or computer science. Although quite natural, the hypothesis of random sampling for stochastic models leads to more complex estimators and, in general, some particular choices for the random observation times are considered in the literature. For instance, [START_REF] Dalalyan | Second-order asymptotic expansion for a non-synchronous covariation estimator[END_REF], the authors studied a diffusion process observed at independent Poisson times, [START_REF] Jacod | Random sampling in estimation problems for continuous gaussian processes with independent increments[END_REF] the situation when the ith observation depends on the previous i -1 observations is considered, while [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF], [START_REF] Vilar | Finite sample performance of density estimators from unequally spaced data[END_REF] the authors used the so-called jittered and renewal sampling.

Our purpose is to analyse the asymptotic properties of the least squares estimator (LSE in the sequel) for a simple regression model driven by a standard Wiener process, i.e.

Y τ i+1 = aτ i+1 + W τ i+1 -W τ i , i = 0, ..., N -1 (5.1)
where τ i , i = 0, .., N are random times, independent of W , with τ 0 := 0. We choose to work with the random sampling proposed by [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF], [START_REF] Vilar | Finite sample performance of density estimators from unequally spaced data[END_REF] which includes two types of randomness: the jittered sampling (the observation times are i N , i = 1, ..., N perturbed by a "small" uniform random variable) or the renewal sampling (the ith observation times is a sum of i independent positive random variables, so the randomness is somehow progressive). We construct a least squares estimator (LSE) for the drift parameter a of the model (5.1) and then we analyse its asymptotic properties. Our proofs are based on a sharp calculation of the mean square of the estimator and of its conditional distribution given the random times, which is Gaussian. We also use some results given by [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF] where the asymptotic behavior of the denominator of the LSE estimator is obtained. We organized our paper as follows. In Section 5.2 we describe the model and we include a discussion about the number of random observations used to define to estimator. In Section 5.3 we calculate exactly the mean square norm of the estimator when the number of observations is large enough while in Section 5.4 we give the asymptotic distribution for the LSE. Many of our theoretical results are illustrated by numerical simulations in Section 5.5.

Preliminaries

Let us now introduced the random times considered in our model (5.1). Our examples are inspired from [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF] and [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF].

Random times

Let T = 1 and τ = {τ i ; i = 0, . . . , N } a strictly increasing sequence of random points over time, where N is the last integer such that τ N -1 ≤ 1, which exhibits one of the following two features.

1. Jittered sampling (JS). First, we assume that we observed a certain process at regular times τ with period δ = 1/N > 0 but contaminated by an additive noise ν which represents possible measurement errors. Then the sequence of random times τ i , 0 ≤ i ≤ N is defined as

τ i,N =: τ i = i N + ν i,N , i = 1, . . . , N and τ 0 := 0, . . . , (5.2) 
where {ν i,N ; 1 ≤ i ≤ N } constitutes a triangular array of independent and identically distributed set of random variables with common density function depending on N , called g N (t), which is assumed to be symmetric in -1 2N , 1 2N for all i = 1, . . . , N . From now on, we state the following about ν i,N

• E [ν i,N ] = 0, and

• E ν 2 i,N satisfies E ν 2 i,N = c 1 1 N 2 with c 1 > 0.
(5.3) Some distributions that satisfy the latter statement are the uniform distribution in

-1 2N , 1 2N
, triangular distribution with parameters -1 2N , 0, 1 2N and the raised cosine distribution with parameters µ = 0 and s = 1 2N . For instance, c 1 = 1 12 when g N is the uniform distribution over the interval -1 2N , 1 2N and c 1 = 1 24 when g N is the triangular distribution with parameters -1 2N , 0, 1 2N . 2. Renewal sampling (RP). In this case, the sequence τ satisfies the following property

τ i = i j=1 t j i = 1, 2, ... and τ 0 := 0, (5.4) 
where {t j , 1 ≤ j} is a sequence of independent and identically distributed random variables, with a common distribution function G with support in [0, ∞). In this work we consider that G is an exponential distribution with parameter λ = N , i.e. it has density function g(t) = N e -N t 1 (0,∞) (t). The random times τ i given by (5.4) actually depend also on N but we still use the notation τ i,N =: τ i , for simplicity.

The number of observations

Assume that we observe a stochastic process Y at times τ 1 , ..., τ [αN ] with τ i < τ i+1 for every i ≥ 1 and with 0 < α ≤ 1. We want to ensure that our observation period remains, almost surely, inside the interval [0, T ] with T = 1. That is, we would like to have that the last observation τ [αN ] is almost surely less that 1 for N sufficiently large. In the case of jittered sampling, this is always true for α = 1, due to our hypothesis (5.3). Indeed, τ N -1 = N -1 N + ν N -1,N and τ N = 1 + ν N,N and then P (τ N -1 > 1) = 0 while P (τ N > 1) = 1 2 , so τ N -1 is almost surely in the observation interval [0, 1]. In this case we assume α = 1 and Y τ N = 0. On the other hand, in the situation of the renewal sampling, we have τ N ∼ G(N, N ) (by (G(a, λ) we denote the Gamma law with parameters a > 0, λ > 0)) and by a result of [START_REF] Gautschi | An evaluation procedure for incomplete gamma functions[END_REF],

P(τ N > 1) = P(G(N, N ) > 1) ----→ N →∞ 1 2 .
In order to be sure that our observation period remains inside the interval [0, 1], the price to pay is to consider a slightly less number of observations, i. e. to take α ≈ 1 (which means α < 1 is arbitrary close to 1). Then, τ αN ∼ G(αN, N ), which can be written as τ αN ∼ G(M, αM ) , where M = αN and α = 1/α. We have

P (τ αN > 1) = ∞ 1 (αM ) M Γ(M ) x M -1 e -αM x dx,
and by the change of variable y = αM x, the last equation can be written as

P (τ αN > 1) = (αM ) M Γ(M ) ∞ αM y αM M -1 e -y dy = αM Γ(M ) ∞ αM y M -1 e -y dy = αM Γ(M ) Γ(M, αM ).
By the result obtained by [START_REF] Gautschi | An evaluation procedure for incomplete gamma functions[END_REF] on the limit behavior of Γ(N, αN ) for α > 1, the last result can be written as

P (τ αN > 1) ∼ αM Γ(M ) • (αM ) M e -αM (1 + α)M = αM+1 M M +1 e -αM (1 + α)M ! ,
from Stirling approximation we get,

P (τ αN > 1) ∼ αM+1 M M +1 e -αM (1 + α) √ 2πM M e M = αM+1 M 1-1/2 e -αM e M (1 + α) √ 2π = αM+1 M 1/2 e -M (α+1) (1 + α) √ 2π = ααN+1 M 1/2 e -αN (α+1) (1 + α) √ 2π ,
and recalling that M = αN , the last quantity goes to zero as N → ∞ for α < 1.

Then, for every α ≈ 1 and for every ε > 0 there exists a set Ω α,ε ⊂ Ω such that P(Ω α,ε ) > 1 -ε and for every ω ∈ Ω α,ε we have τ [αN ] (ω) ≤ 1 when N is sufficiently large. We then assume that, in the renewal case, α ≈ 1 and we always work on the space Ω α,ε . A similar procedure was considered by [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], Theorem 3.4.1. Notice that several authors (see e.g. [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF]), consider that the model (5.1) is at times τ 1 , ..., τ N (1) where N (1) is the last time contained in the interval [0, 1]. Instead, we prefer to work on a smaller probability space (but still very close to Ω) which guaranties that the entire observation period is contained in the unit interval [0, 1].

Least squares estimator

Let us fix 0 < α ≤ 1 and denote N α = [αN ], the number of observations. Consider the model

Y τ i+1 = aτ i+1 + ∆W τ i+1 , i = 0, . . . N α -1 (5.5)
where

∆W τ i+1 = W τ i+1 -W τ i , with 0 < α ≤ 1.
Actually, throughout this work we assume α = 1 in the jittered sampling case and α ≈ 1 in the renewal sampling case, see the discussion in Section 5.2.2. In Figures 5.1 and 5.2 we illustrate the behavior of the noise in (5.5) at the random times (5.2) and (5.4) (which appears to be similar to the behavior of the Brownian increment itself).

The LSE for the drift parameter a in the model (5.1) is obtained in a standard way, by minimizing the function

f (a) = Nα-1 i=0 Y τ i+1 -aτ i+1 2 giving âN = Nα-1 i=0 τ i+1 Y τ i+1 Nα-1 i=0 τ 2 i+1 (5.6)
for both jittered sampling (JS) and renewal sampling (RS) cases. From (5.5), (5.6) we immediately have,

âN -a = 1 N Nα-1 i=0 τ i+1 ∆W τ i+1 1 N Nα-1 i=0 τ 2 i+1 := A N D N , ( 5.7) 
for every N ≥ 1,

A N = Nα-1 i=0 τ i+1 ∆W τ i+1 and D N = 1 N Nα-1 i=0 τ 2 i+1 .
(5.8)

Our purpose is to analyze the asymptotic properties of the LSE (5.6), in particular its asymptotic normality in distribution. The denominator of the expression (5.7) has been already studied by [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF].

Proposition 5.3.1. Let D N be given by (5.8). Then D N converges almost surely, as N → ∞ to

α 3 3 .
Actually, the result of [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF] has been obtained for α = 1, but after inspecting the proof, it is clear that the same arguments holds for every α ∈ (0, 1). Therefore, in order to obtain the asymptotic behavior of the LSE, we need to analyse the sequence A N in (5.7). A first step in this direction is to evaluate the L 2 (Ω)-norm of A N when N is large.

Lemma 5.3.2. Let A N given by (5.7), for every N ≥ 1, then either if τ is defined as (5.2) or (5.4), it holds

E |N A N | 2 ----→ N →∞ 1 3 α 3 .
Although the above result is the same in the JS and RS cases, the proof is different. While in the JS case, the limit if given by the "deterministic part" of the times (5.2), in the RS case there is no deterministic part and both summands in (5.19) contribute to the limit. The prroofs can be found in the appendix.

Limit distribution of the LSE

Lemma 5.3.2 shows that the sequence (A N ) N ≥1 given by (5.8) converges in L 2 (Ω) to zero as N → ∞. We can also show that A N converges to zero in L p (Ω) for every p ≥ 2 and by a Borel-Cantelli argument, we get its almost sure convergence to zero. Indeed, via conditioning on ν,

E|A N | p = E [E [|A N | p |ν]] = E [g(τ 1 , . . . , τ N )] with, for x 1 < x 2 < . . . x N , g(x 1 , ..., x N ) = E N -1 i=0 x i+1 (W x i+1 -W x i ) p ≤ C p   E N -1 i=0 x i+1 (W x i+1 -W x i ) 2   p 2
.

the JS case and N ′ α = N α in the RP case,

ϕ N A N (t) = E e itN A N = E   e it N ′ α -1 j=0 j+1 N + X j+1 N W j+1 N + X j+1 N -W j N + X j N    = E   E   e it N ′ α -1 j=0 j+1 N + X j+1 N W j+1 N + X j+1 N -W j N + X j N X       = E   e -t 2 2 N ′ α -1 j=0 j+1 N + X j+1 N 2 X j+1 N - X j N + 1 N   = E e -t 2 2 Q N (5.12)
with Q N from (5.9). Now, by Propostion 5.4.1, the sequence Q N converges, in L 2 (Ω), thus in probability, to α 3 3 . By Dominated convergence theorem, for every t ∈ R,

lim N →∞ ϕ N A N (t) = E e -t 2 2 α 3 3
and this gives the conclusion. By Propositions 5.3.1 and 5.4.2, we immediately obtain the asymptotic normality of the LSE. We denote by L -→ the convergence in law.

Theorem 5.4.3. Consider the LSE âN given by (5.6). Then

N (â N -a) L -----→ N →∞ + N (0, 3 α 3 ).
Remark 5.4.4. Let us give some heuristics that explain the convergence in law of the sequence (N A N ) N ≥1 . Consider the JS case and α = 1. Then we can write

N A N = N -2 i=0 τ i+1 (W τ i+1 -W τ i ) = 1 0 H N (s)dW s with H N (s) = N -2 i=0 τ i+1 1 (τ i ,τ i+1 ] (s), for s ∈ [0, 1]. Intuitively, H N (t) converges to t in L 2 ([0, 1] × Ω) since |τ i -i N | ≤ 1 N . Therefore N A N would converge in L 2 (Ω), as N → ∞, to 1 
0 sdW s whose law in N (0, 1 3 ). Let us finish this theoretical part with some comment on the distance between the law of the sequence (N A N ) N ≥1 and its limit. Recall that the distance between the laws of two random variables X and Y is defined as

d(X, Y ) = sup h∈A |Eh(X) -Eh(Y )|
where A is a class of functions (its choice defines specific distances, such as Kolmogorov, total variation or Wasserstein or other distances). Let h be a function such that the all expectations below exist. Consider for simplicity α = 1 as in the JS case. Then, by taking the conditional expectation as in the proof of Lemma 5.3.2, we obtain

Eh(N A N ) = Eh E(N A N ) 2 Z
with Z ∼ N (0, 1). This implies that, for N large (see Proposition 3.6.1 of [START_REF] Nourdin | Normal approximations with Malliavin calculus: from Stein's method to universality[END_REF])

d N A N , 1 3 Z ≤ C E(N A N ) 2 - 1 3 ≤ C 1 N (5.13)
where the last bound can be obtained easily from the proof of Lemma 5.3.2. A similar bound as in (5.13) can be obtained when we replace N A N by âN -a with âN given by (5.6).

Simulation study

In this section we consider the different problems that appear when studying the limit distribution of the least square estimator âN , properly normalized. First, we show the behavior of the increment of the standard Brownian motion, considering both type of random times, for different values of N . Next, we illustrate how the number of times, in which τ αN > 1, changes for different values of α. In addition, we show by simulation the convergence of Q N as we proved in Proposition 5.4.1 and 5.4.2, which are necessary to show Theorem 5.4.3. Finally, we define the error of our estimation and the corresponding simulation result.

We have simulated the observations Y τ 1 , . . . , Y τ Nα , considering N = 5000 and α = 1 for jittered sampling and α = 0.98 for renewal sampling, and we have repeated this procedure 10000 times in order to obtain the corresponding tables and histograms

Increment of standard Brownian motion under observations sampled at random times:

Let us recall that the standard Brownian motion is an adapted process defined in some probability space (Ω, F, P), W 0 = 0, it has independent and stationary increments which follow a normal distribution, i.e. W t -W s ∼ N (0, t -s). In the following figures, it is possible to notice the behavior of the increment of the standard Brownian motion for different values of N and the different types of random times defined above.

Number of times τ αN > 1:

Under renewal sampling observations, for different values of α and N , we have the following experimental results concerning the number of times when the last observations is bigger that 1 (see the discussion in Section 2.2) • When working with renewal observations, we consider an unbounded support so is quite likely that τ N > 1; in order to avoid this, it was necessary to consider α ≈ 1 such that τ αN < 1. The results given in Table 5.1 exhibits that for large values of N and α close to 1, it is possible to ensure that τ αN < 1.

N =
• It is possible to notice that, as the value of N grows, the value of Q N is closer to 1/3.

• In Figure 5.4 and in Table 5.2, it is possible to see the asymptotic normality of the renormalized sequence.

• As we point out in theorem 5.4.3, the normal distribution with its corresponding parameters is shown in Figure 5.4 and Table 5.2, for both type of random times.

• In both Figures 5.6, 5.7 and in Table 5.4, for both type of random times, the behavior of the error is as expected, i.e. is centered and with variance not depending on the value of N and besides following a normal distribution.

Appendix

Proofs

Proof of Lemma 5.3.2: Let us separate the proof upon the two situations (5.2) and (5.4).

Jittered sampling case:

¯In this case, as discussed in Section 5.2.2, we take α = 1 and Y τ N = 0. Firstly, we compute the first moment of A N , i.e.

E [A N ] = E [E [A N | τ ]] = E   E   1 N N -2 j=0 j + 1 N + ν j W j+1 N +ν j+1 -W j N +ν j ν     = E   1 N N -2 j=0 j + 1 N + ν j+1 E W j+1 N +ν j+1 -W j N +ν j | τ   = 0.
The conditioning with respect to τ (above and throughout) means that we conditions with respect to the sigma-field generated by the random variables ν i,N , i = 1, . . . , N . The L 2 (Ω) norm of A N can be calculated as follows

E A 2 N = V ar(A N ) = E [V ar(A N | τ )] + V ar(E [A N | τ ]) = E [V ar(A N | τ )] = E ν   1 N 2 N -2 j=0 j + 1 N + ν j+1 2 ν j+1 -ν j + 1 N   = E   1 N 2 N -2 j=0 (j + 1) 2 ν j+1 N 2 + 2(j + 1)ν 2 j+1 N + ν 3 j+1 - (j + 1) 2 ν j N 2 - 2(j + 1)ν j ν j+1 N -ν j ν 2 j+1 + (j + 1) 2 N 3 + 2(j + 1)ν j+1 N 2 + ν 2 j+1 N =: E (1)
N + E

(2)

N + E (3) N -E (4) N -E (5) N -E (6) N + E (7) N + E (8) N + E (9)
N .

(5.14)

Notices that terms E

(1)

N , E (4) 
N , E

(5)

N , E (6) 
N and E (8)

N are equal to zero due to the assumption that E(ν i,N ) = 0 for every i, N , E

(3) N is also equal to zero do the symmetry of the law of ν i,N . Therefore

E A 2 N = E (2) N + E (7) N + E (9) N .
(5.15)

We evaluate the three summands in the right-hand side above. By (5.3)

E

(2)

N = E   1 N 2 N -2 j=0 2ν 2 j+1 (j + 1) N   = 2 N 3 N -2 j=0 (j + 1)E ν 2 j+1 = 2c 1 N 5 N (N -1) 2 = c 1 N 3 + o 1 N 3 . (5.16) Next E (7) N = E   1 N 2 N -2 j=0 (j + 1) 2 N 3   = 1 N 5 (N -1)(N )(2N -1) 6 = 1 3 1 N 2 + o 1 N 2
(5.17) and, again by (5.3), for N ≥ 2,

E (9) N = E   1 N 2 N -2 j=0 ν 2 j+1 N   = 1 N 3 N -2 j=0 E ν 2 j+1 = 1 N 3 N -2 j=0 c 1 1 N 2 = c 1 1 (N -1) 4 .
(5.18)

From (5.15), (5.16), (5.17) and (5.18), we obtain the conclusion in JS case.

Renewal sampling case:

¯Recall that in this case the number of observations is

N α = [αN ]
with α < 1 close to 1. As before, by conditioning on τ ,

E [A N ] = E [E [A N |τ ]] = E   E   1 N Nα-1 j=0 τ j+1 W τ j+1 -W τ j τ     = E   1 N Nα-1 j=0 τ j+1 E W τ j+1 -W τ j τ     = 0,
and, using that A N has, conditionally on τ , a Gaussian distribution, we obtain

E A 2 N = V ar(A N ) = E [V ar(A N |τ )] + V ar(E [A N |τ ]) = E [V ar(A N |τ )] = E   V ar   1 N Nα-1 j=0 τ j+1 W τ j+1 -W τ j     = E   1 N 2 Nα-1 j=0 τ 2 j+1 (τ j+1 -τ j )   = E   1 N 2 Nα-1 j=0 τ 3 j+1 - 1 N 2 Nα-1 j=0 τ 2 j+1 τ j   = 1 N 2 Nα-1 j=0 E τ 3 j+1 - 1 N 2 Nα-1 j=0 E τ 2 j+1 τ j =: E (1)
N -E

(2)

N .

(5.19)

For the first term of (5.19), we have

E (1) N = 1 N 2 Nα-1 j=0 E τ 3 j+1 = 1 N 2 Nα-1 j=0 ∞ 0 x 3 N j+1 Γ(j + 1) x j e -N x dx = 1 N 2 N -1 j=0 N j+1 N j+4 Γ(j + 4) Γ(j + 1) = 1 N 2
Nα-1 j=0 (j + 3)(j + 2)(j + 1)Γ(j + 1)

N 3 Γ(j + 1) = 1 N 5 Nα-1 j=0 (j 3 + 6j 2 + 11j + 6) = 1 N 5 (N α -1)(N α ) 2 2 + (N α -1)(N α )(2(N α -1) + 1) N 5 + 11 2 (N α -1)(N α ) N 5 + 6N α N 5 ∼ α 4 4N + 3α 3 N 2 + o 1 N 2 .
(5.20)

For the second term of (5.19), we consider the joint density computed by [START_REF] Araya | Parameter estimation for random sampled regression model with long memory noise[END_REF] (see Table (5.5))

E

(2)

N = 1 N 2 Nα-1 j=0 E τ 2 j+1 τ j = 1 N 2 Nα-1 j=0 ∞ 0 τ j+1 0 τ j τ 2 j+1 N j+1 Γ(j) τ j-1 j e -N τ j+1 dτ j dτ j+1 = 1 N 2 Nα-1 j=0 N j+1 Γ(j) ∞ 0 τ 2 j+1 e -N τ j+1 τ j+1 0 τ j j dτ j dτ j+1 = 1 N 2 Nα-1 j=0 N j+1 (j + 1)Γ(j) ∞ 0 τ j+3 j+1 e -N τ j+1 dτ j+1 = 1 N 2 Nα-1 j=0 N j+1 (j + 1)Γ(j) Γ(j + 4) N j+4 = 1 N 5
Nα-1 j=0

(j + 3)(j + 2)(j + 1)jΓ(j) (j + 1)Γ(j) = 1 N 5 Nα-1 j=0 (j 3 + 5j 2 + 6j) = 1 N 5 (N α -1)(N α ) 2 2 + 5 N 5 (N α -1)(N α )(2(N α -1) + 1) 6 + 6 N 5 (N α -1)(N α ) 2 ∼ α 4 4N + 7α 3 6N 2 + o 1 N 2 .
(5.21)

Replacing (5.20) and (5.21) in (5.19)

E A 2 N ∼ α 3 3N 2 + o 1 N 2 .
(5.22)

Proof of Proposition 5.4.1: Again, we separately discuss the two cases of random sampling.

Jittered sampling case:

¯Recall that in this case α = 1. First, we compute the first moment of (5.9), i.e

E [Q N ] = E   N -1 j=0 j + 1 N + X j+1 N 2 X j+1 N - X j N + 1 N   = 1 N 3 N -1 j=0 E (j + 1) 2 X j+1 -(j + 1) 2 X j + (j + 1) 2 + 2(j + 1)X 2 j+1 -2(j + 1)X j X j+1 +2(j + 1)X j+1 + X 3 j+1 -X j X 2 j+1 + X 2 j+1 = 1 N 3 N -1 j=0 Q (1) N -Q (2) N + Q (3) N + Q (4) N -Q (5) N + Q (6) N + Q (7) N -Q (8) N + Q (9) N .
From (5.10) and the hypothesis (5.3) on τ , we have

E(X j ) = 0 and E(X 2 j ) = c 1 . Thus Q (1) N , Q (2) N , Q (5) N , Q (6) N , Q (7) N and Q (8)
N are equal to zero, while the remaining terms can be computed as follows

Q (3) N = E   1 N 3 N -1 j=0 (j + 1) 2   = N (N + 1)(2N + 1) 6 = 2N 3 + 3N 2 + N 6 ----→ N →∞ 1 3 (5.23) Q (4) N = E   1 N 3 N -1 j=0 2(j + 1)X 2 j+1   = 2 N 3 N -1 j=0 (j + 1)V ar X 2 j+1 = 2 N 3 N -1 j=0 (j + 1) 1 12 = 1 6N 3 N (N + 1) 2 ----→ N →∞ 0 (5.24)
and

Q (9) N = E   1 N 3 N -1 j=0 X 2 j+1   = 1 N 3 N -1 j=0 V ar (X j+1 ) = 1 N 3 N -1 j=0 c 1 ----→ N →∞ 0 (5.25)
Taking into account (5.23), (5.24) and (5.25) we conclude

lim N →∞ E [Q N ] ----→ N →∞ 1 3 .
(5.26)

Secondly, we study the second moment of (5.9), i.e.

E Q 2 N = 1 N 6 N -1 j=0 E (j + 1 + X j+1 ) 4 (X j+1 -X j + 1) 2 + 1 N 6 0≤j =k≤N -1 E (j + 1 + X j+1 ) 2 (k + 1 + X k+1 ) 2 (X j+1 -X j + 1)(X k+1 -X k + 1) := Q (I) N + Q (II) N .
Some of the summands that compose

Q (I)
N are zero (those involving odd order moments of X j or X j+1 , which vanish) and the other summands of Q (I) N converge to zero. For example

E   1 N 6 N -1 j=0 (j + 1) 4 X 2 j+1   = 1 N 6 N -1 j=0 (j + 1) 4 V ar(X j+1 ) = c 1 N 6 6N 5 + 15N 4 + 10N 3 -N 30 ----→ N →∞ 0 or E   1 N 6 N -1 j=0 2(j + 1) 4 X j X j+1   = 2 N 6 N -1 j=0 (j + 1)E [X j X j+1 ] = 0
while the remaining terms can be computed in the same way as the last two. The summand Q (II) N

give the limit of Q N . Actually, the only non-vanishing term in Q

(II) N
is the one not depending on X j , i.e.

E   1 N 6 0≤j =k≤N -1 (j + 1) 2 (k + 1) 2   = 1 N 6 0≤j =k≤N -1 (j + 1) 2 (k + 1) 2 .
To compute this term, we use the following identity 1≤i =j≤N

a i a j = N i=1 a i 2 - N i=1 a 2 i (5.27)
Therefore,

1 N 6 0≤j =k≤N -1 (j + 1) 2 (k + 1) 2 = 1 N 6      N -1 j=0 (j + 1) 2   2 N -1 j=0 (j + 1) 4    = 1 N 6 N (N + 1)(2N + 1) 6 2 - 6N 5 + 15N 4 + 10N 3 -N 30 = 1 N 6 (2N 3 + 3N 2 + N ) 2 36 - 6N 5 -15N 4 -10N 3 + N 30 ----→ N →∞ 1 9 .
(5.28)

Taking into account (5.26) and (5.28), we obtain the conclusion.

Renewal sampling case:

¯As before, we start by computing the expectation of Q N . We have

E [Q N ] = E   Nα-1 j=0 τ 2 j+1 (τ j+1 -τ j )   = E   Nα-1 j=0 τ 3 j+1   -E   Nα-1 j=0 τ 2 j+1 τ j   = Q (1) N -Q (2) N
(5.29) with

Q

(1)

N = E   N -1 j=0 τ 3 j+1   = Nα-1 j=0 ∞ 0 τ 3 j+1 N j+1 Γ(j + 1) τ j j+1 e -N τ j+1 dτ j+1 = Nα-1 j=0 N j+1 Γ(j + 1) Γ(j + 4) N j+4 = 1 N 3 Nα-1 j=0 (j + 3)(j + 2)(j + 1) = 1 N 3 Nα-1 j=0 [j 3 + 6j 2 + 11j + 6] (5.30)
and

Q (2) N = E   Nα-1 j=0 τ 2 j+1 τ j   = Nα-1 j=0 ∞ 0 τ j+1 0 τ 2 j+1 τ j N j+1 Γ(j) τ j-1 j e -N τ j+1 dτ j dτ j+1 = Nα-1 j=0 N j+1 Γ(j) ∞ 0 τ 2 j+1 e -N τ j+1 τ j+1 0 τ j j dτ j dτ j+1 = Nα-1 j=0 N j+1 Γ(j)(j + 1) ∞ 0 τ j+4-1 j+1 e -N τ j+1 dτ j+1 = Nα-1 j=0 N j+1 N j+4 Γ(j + 4) Γ(j)(j + 1) = 1 N 3 Nα-1 j=0 (j + 3)(j + 2)j = 1 N 3 Nα-1 j=0 [j 3 -5j 2 + 6j].
(5.31)

Replacing (5.30) and (5.31) in (5.29), it results

E [Q N ] = 1 N 3 Nα-1 j=0 [j 2 -5j + 6] = 1 N 3 2N 3 α -18N 2 α + 52N α 6 ----→ N →∞ α 3 3
For the second moment of Q N we have

E Q 2 N = E      Nα-1 j=0 τ 2 j+1 (τ j+1 -τ j )   2    = E   Nα-1 j=0 τ 4 j+1 (τ j+1 -τ j ) 2   + 2E   Nα-1 j<k τ 2 j+1 τ 2 k+1 (τ j+1 -τ j ) (τ k+1 -τ k )   = E   Nα-1 j=0 τ 6 j+1 -2 Nα-1 j=0 τ 5 j+1 τ j + Nα-1 j=0 τ 4 j+1 τ 2 j   + 2E   Nα-1 j<k τ 3 j+1 τ 3 k+1 - Nα-1 j<k τ 3 j+1 τ k τ 2 k+1 - Nα-1 j<k τ 2 j+1 τ j τ 3 k+1 + Nα-1 j<k τ j τ 2 j+1 τ k τ 2 k+1   := Q (I) N -Q (II) N + Q (III) N + Q (IV ) N -Q (V ) N -Q (V I) N + Q (V II) N
(5.32)

and the above terms can be calculated by using the joint densities from Table 5.5. We calculate first the sum

Q (I) N -Q (II) N + Q (III) N . First Q (I) N = E   Nα-1 j=0 τ 6 j+1   = Nα-1 j=0 ∞ 0 τ 6 j+1 N j+1 Γ(j + 1) τ j j+1 e -N τ j+1 dτ j+1 = Nα-1 j=0 N j+1 Γ(j + 1) ∞ 0 τ j+7-1 j+1 e -N τ j+1 dτ j+1 = Nα-1 j=0 N j+1 N j+7 Γ(j + 7) Γ(j + 1) = 1 N 6
Nα-1 j=0 (j + 6)(j + 5)(j + 4)(j + 3)(j + 2)(j + 1)

= 1 N 6
Nα-1 j=0

[j 6 + 21j 5 + 175j 4 + 735j 3 + 1624j 2 + 1764j + 720].

(5.33)

For Q (II) N , Q (III) N
we use the joint density of the random vector (τ j , τ k )

Q (II) N = 2E   Nα-1 j=0 τ 5 j+1 τ j   = 2 Nα-1 j=0 ∞ 0 τ j+1 0 τ 5 j+1 τ j N j+1 Γ(j) τ j-1 j e -N τ j+1 dτ j dτ j+1 = 2 Nα-1 j=0 N j+1 Γ(j) ∞ 0 τ 5 j+1 e -N τ j+1 τ j+1 0 τ j j dτ j dτ j+1 = 2 Nα-1 j=0 N j+1 Γ(j)(j + 1) ∞ 0 τ j+7-1 j+1 e -N τ j+1 dτ j+1 = 2 Nα-1 j=0 N j+1 N j+7 Γ(j + 7) Γ(j)(j + 1) = 2 N 6
Nα-1 j=0 (j + 6)(j + 5)(j + 4)(j + 3)(j + 2)j = 1 N 6

Nα-1 j=0

[2j 6 + 40j 5 + 310j 4 + 1160j 3 + 2088j 2 + 1440j] (5.34)

and

Q (III) N = E   Nα-1 j=0 τ 4 j+1 τ 2 j   = Nα-1 j=0 ∞ 0 τ j+1 0 τ 4 j+1 τ 2 j N j+1 Γ(j) τ j-1 j e -N τ j+1 dτ j dτ j+1 = Nα-1 j=0 N j+1 Γ(j) ∞ 0 τ 4 j+1 e -N τ j+1 τ j+1 0 τ j+1 j dτ j dτ j+1 = Nα-1 j=0 N j+1 Γ(j)(j + 2) ∞ 0 τ j+7-1 j+1 e -N τ j+1 dτ j+1 = Nα-1 j=0 N j+1 N j+7 Γ(j + 7) Γ(j)(j + 2) = 1 N 6
Nα-1 j=0 (j + 6)(j + 5)(j + 4)(j + 3)(j + 1)j = 1 N 6

Nα-1 j=0

[j 6 + 19j 5 + 137j 4 + 461j 3 + 702j 2 + 360j].

(5.35)

By putting together (5.33), (5.34) and (5.35),

Q (I) N -Q (II) N + Q (III) N = 1 N 6 Nα-1 j=0 [j 4 + 18j 3 + 119j 2 + 342j + 360] ----→ N →∞ 0, (5.36) For terms Q (IV ) N , Q (V ) N , Q (V I) N and Q (V II) N
it is necessary to consider the following joint densities f τ j+1 ,τ k+1 , f τ j ,τ k ,τ l and f τ j ,τ k ,τ l ,τm with all the different indices. We also use the identity (5.37) 100

We have the following calculations

Q (IV ) N = E   Nα-1 j<k τ 3 j+1 τ 3 k+1   = Nα-1 j<k ∞ 0 τ k+1 0 τ 3 j+1 τ 3 k+1 N k+1 Γ(j + 1)Γ(k -j) τ j j+1 (τ k+1 -τ j+1 ) k-j-1 e -N τ k+1 dτ j+1 dτ k+1 = Nα-1 j<k N k+1 Γ(j + 1)Γ(k -j) ∞ 0 τ 3 k+1 e -N τ k+1 τ k+1 0 τ j+3 j+1 (τ k+1 -τ j+1 ) k-j-1 dτ j+1 dτ k+1 = Nα-1 j<k N k+1 Γ(j + 1)Γ(k -j) Γ(j + 4)Γ(k -j) Γ(k + 4) ∞ 0 τ k+7-1 k+1 e -N τ k+1 dτ k+1 = Nα-1 j<k N k+1 N k+7 Γ(j + 4)Γ(k + 7) Γ(j + 1)Γ(k + 4) = 1 N 6
Nα-1 j<k (j + 3)(j + 2)(j + 1)(k + 6)(k + 5)(k + 4),

(5.38) and, via (5.37)

Q (V ) N = E   Nα-1 j<k τ 3 j+1 τ k τ 2 k+1   = Nα-1 j<k ∞ 0 τ k+1 0 τ k 0 τ 3 j+1 τ k τ 2 k+1 N k+1 Γ(j + 1)Γ(k -j -1) τ j j+1 (τ k -τ j+1 ) k-j-2 e -N τ k+1 dτ j+1 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j + 1)Γ(k -j -1) ∞ 0 τ 2 k+1 e -N τ k+1 τ k+1 0 τ k τ k 0 τ j+3 j+1 (τ k -τ j+1 ) k-j-2 dτ j+1 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j + 1)Γ(k -j -1) Γ(j + 4)Γ(k -j -1) Γ(k + 3) ∞ 0 τ 2 k+1 e -N τ k+1 τ k+1 0 τ k+3 k dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j + 4 Γ(j + 1)Γ(k + 3)(k + 4) ∞ 0 τ k+7-1 k+1 e -N τ k+1 dτ k+1 = Nα-1 j<k N k+1 N k+7 Γ(j + 4)Γ(k + 7) Γ(j + 1)Γ(k + 3)(k + 4) = 1 N 6
Nα-1 j<k (j + 3)(j + 2)(j + 1)(k + 6)(k + 5)(k + 3)

(5.39) and

Q (V I) N = E   Nα-1 j<k τ 2 j+1 τ j τ 3 k+1   = Nα-1 j<k ∞ 0 τ k+1 0 τ j+1 0 τ 2 j+1 τ j τ 3 k+1 N k+1 Γ(j)Γ(k -j) τ j-1 j (τ k+1 -τ j+1 ) k-j-1 e -N τ k+1 dτ j dτ j+1 dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j) ∞ 0 τ 3 k+1 e -N τ k+1 τ k+1 0 τ 2 j+1 (τ k+1 -τ j+1 ) k-j-1 τ j+1 0 τ j j dτ j dτ j+1 dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j)(j + 1) ∞ 0 τ 3 k+1 e -N τ k+1 τ k+1 0 τ j+3 j+1 (τ k+1 -τ j+1 ) k-j-1 dτ j+1 dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j)(j + 1) Γ(j + 4)Γ(k -j) Γ(k + 4) ∞ 0 τ k+7-1 k+1 e -N τ k+1 dτ k+1 = Nα-1 j<k N k+1 N k+7 Γ(j + 4)Γ(k + 7) Γ(j)(j + 1)Γ(k + 4) = 1 N 6
Nα-1 j<k (j + 3)(j + 2)j(k + 6)(k + 5)(k + 4) (5.40) and finally

Q (V II) N = E   Nα-1 j<k τ j τ 2 j+1 τ k τ 2 k+1   = Nα-1 j<k ∞ 0 τ k+1 0 τ k 0 τ j+1 0 τ j τ 2 j+1 τ k τ 2 k+1 N k+1 Γ(j)Γ(k -j -1) τ j-1 j (τ k -τ j+1 ) k-j-2 e -N τ k+1 dτ j dτ j+1 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j -1) ∞ 0 τ 2 k+1 e -N τ k+1 τ k+1 0 τ k τ k 0 τ 2 j+1 (τ k -τ j+1 ) k-j-2 τ j+1 0 τ j j dτ j dτ j+1 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j -1)(j + 1) ∞ 0 τ 2 k+1 e -N τ k+1 τ k+1 0 τ k τ k 0 τ j+3 j+1 (τ k -τ j+1 ) k-j-2 dτ j+1 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j)Γ(k -j -1)(j + 1) Γ(j + 4)Γ(k -j -1) Γ(k + 3 ∞ 0 τ 2 k+1 e -N τ k+1 τ k+1 0 τ k+3 dτ k dτ k+1 = Nα-1 j<k N k+1 Γ(j + 4) Γ(j)(j + 1)Γ(k + 3)(k + 4) ∞ 0 τ k-7-1 k+1 e -N τ k+1 dτ k+1 = Nα-1 j<k N k+1 N k+7 Γ(j + 4)Γ(k + 7) Γ(j)(j + 1)Γ(k + 3)(k + 4) = 1 N 6
Nα-1 j<k (j + 3)(j + 2)j(k + 6)(k + 5)(k + 3).

(5.41)

Taking into account the results from (5.38), (5.39), (5.40) and (5.41), we get

Q (IV ) N -Q (V ) N -Q (V I) N + Q (V II) N = 2 N 6 N -1 j<k [(j + 3)(j + 2)(j + 1)(k + 6)(k + 5)(k + 4) -(j + 3)(j + 2)(j + 1)(k + 6)(k + 5)(k + 3) -(j + 3)(j + 2)j(k + 6)(k + 5)(k + 4) + (j + 3)(j + 2)j(k + 6)(k + 5)(k + 3)] = 2 N 6 N -1 j<k [(j + 3)(j + 2)(j + 1)(k + 6)(k + 5) [(k + 4) -(k + 3)] + (j + 3)(j + 2)j(k + 6)(k + 5) [(k + 3) -(k + 4)]] = 2 N 6 N -1 j<k [(j + 3)(j + 2)(k + 6)(k + 5) [(j + 1) -j]] = 2 N 6 N -1 j<k [(j + 3)(j + 2)(k + 6)(k + 5]
and this can be written as

Q (IV ) N -Q (V ) N -Q (V I) N + Q (V II) N = 2 N 6 Nα-1 k=1 (k + 6)(k + 5) k-1 j=0 (j + 3)(j + 2) ∼ 2 N 6 Nα-1 k=1 (k + 6)(k + 5)k 3 + o 1 N ∼ 2 18 (N α ) 6 N 6 + o 1 N ----→ N →∞ α 6 9 .
(5.42)

Finally, considering the results obtained in (5.36) and (5.42), we can conclude.

Joint densities under Renewal Sampling

Joint distribution

Probability Density Function Support

f τ i ,t i+1 (a, b) N i+1 Γ(i) a i-1 e -N (a+b) ≤ a < ∞ ≤ b < ∞ f τ i ,τ i+1 (a, b) N i+1 Γ(i) a i-1 e -N b 0 ≤ a ≤ b ≤ b < ∞ f τ i-1 ,t i ,t i+1 (a, b, c) N i+1 Γ(i -1) a i-2 e -N (a+b+c) ≤ a < ∞ ≤ b < ∞ ≤ c < ∞ f τ i-1 ,τ i ,τ i+1 (a, b, c) N i+1 Γ(i -1) a i-2 e -N c 0 ≤ a ≤ b 0 ≤ b ≤ c ≤ c < ∞ f τ j ,τ j+1 ,τ i ,τ i+1 (a, b, c, d) N i+1 Γ(j)Γ(i -j -1) a j-1 (c -b) i-j-2 e -N d 0 ≤ a ≤ b 0 ≤ b ≤ c 0 ≤ c ≤ d ≤ d < ∞
Table 5.5: Densities under Renewal Process (C), and thymine (T). In particular, adenine pairs with thymine by means of two hydrogen bonds, while cytosine pairs with guanine by means of three hydrogen bonds, this bonds in the future will result in "codes". This structure of DNA ensures that the overall frequencies of adenine with thymine and cytosine with guanine are equal. It is likely to think that the frequencies of nucleotides are near of 1/4, but this is not true. Differences among organism are linked to 1. Genes variation.

2. Environment-genes interaction.

3. How the environment affects the expression of some genes.

We will focus in gene variation, known as "genetic variation". Every animal cell contains a compartment called a "nucleus". Within this is the nuclear DNA, organised in structural units named chromosomes. Humans are diploid organisms, so as we have 46 chromosomes organised in pairs 1-22 are autosomes and the remaining pair are sex chromosomes X and Y. The last contain information of the biological sex of the person (XX female and XY male). When diploid individuals reproduce, there are two parents, each of which contributes one of each of its pairs of chromosomes, at this point an exchange of genetic material occurs (see, for example, Figure 6.1 below). In population genetics, a population is understood as a group of organisms from the same species that live in a specific geographic area and therefore can reproduce. From now on, we will assume the following assumptions

• Individuals produce an infinite quantity of gametes.

• During the reproduction phase, two gametes are randomly and independently chosen from the population to produce a new diploid individual this process is known as random mating assumption.

• Population size (the number of individuals) is infinite, with equal genotype frequencies in both sexes, no differential fertility or viability of the genotypes, no migration and no mutation This particular scenario is called the Hardy-Weinberg Equilibrium (HWE) and ensures that the allele frequencies will remain constant along generations. If one of the above assumptions is not accomplished the allele frequencies will change. When dealing with real populations, it is difficult to see all these assumptions fulfilled, specially the infinite population size. In fact, we work with a finite number of alleles (2N, where N is the population size) at each generation and so, the allele frequencies will not remain constant throughout generations. In the early 1930s, Sewall Wright and Ronald A. Fisher modeled the stochastic fluctuation of allele frequencies through generations. This process is called genetic drift, and their model is known as the Fisher -Wright model.

In the Wright-Fisher model we will consider that the population size is constant and equal to N for all generations. For a particular SNP with alleles A and a, we will define as X(t) the number

In what follows it will be proved that the above density satisfies the Kolmogorov's backward equation. In fact

1 0 f (x)p t (x, x 0 )dx -f (x 0 ) = E x 0 [f (X t ) -f (X 0 )], defining Y t = f (X t ) Itô's formula yields Y t -Y 0 = f (X t ) -f (X 0 ) = t 0 f ′ (Xs) X s (1 -X s )dW s + 1 2 t 0 f ′′ (X s )(X s (1 -X s ))ds.
Taking expectations and dividing by h one has

E x 0 [ f (X t+h ) -f (X t ) h ] = 1 0 E x 0 [ 1 2h t+h t f ′′ (X s )(X s (1 -X s ))ds] = 1 0 E[ 1 2h t+h t f ′′ (X s )(X s (1 -X s ))ds|X t = x]p t (x, x 0 )dx = 1 0 E x [ 1 2h t+h t f ′′ (X s )(X s (1 -X s ))ds]p t (x, x 0 )dx h→0 → 1 0 1 2 (x(1 -x))f ′′ (x)p t (x, x 0 )dx = 1 2 1 0 f (x)∂ xx [(x(1 -x))p t (x, x 0 )]dx.
Using the duality and the definition of the infinitesimal generator one can prove that p t (x, x 0 ) satisfies the de Kolmogorov backward equation.

∂ t p t (x, x 0 ) = 1 2 ∂ xx [(x(1 -x))p t (x, x 0 )] p 0 (x, x 0 ) = δ x 0 (x).
Moreover, to have a well posed PDE it is necessary to assume some boundary conditions. The Feller's classification indicates that it must be

lim x→ 0 1 (x(1 -x))p(x, x 0 ) = 0.

Some Hamilton-Jacobi theory

To simplify the notation let denote a(x) = x(1 -x). Now, introducing the Hamiltonian function H(x, q) = 1 2 a(x)q 2 and considering the equation of dispersion (or Hamilton-Jacobi equation)

∂ t S(x, t) + H(x, -i∂ x S) := S t - 1 2 a(x)S 2 x = 0.
It results that this equation can be solved by the method of the characteristic curves or rays. To solve it the canonical equations must be introduced. This a system of ODE in time for the variables (x, q). These are

dx dt = - ∂H(x, q) ∂q = -a(x)q dq dt = ∂H(x, q) ∂x = 1 2 a x (x)q 2 .
Moreover it holds

dS dt = S t + S x dx dt = H(x, q) + S x dx dt = H(x, q) + S x ∂H(x, q) ∂q = 1 2 a(x)q 2 -a(x)q 2 = - 1 2 a(x)q 2 . (6.2)
Recall that we have set ∂ x S(x(t), t) = q(t). All these relations allow solving the dispersion equation. Letting γ(t) = S t (x(t), q(t)) and γ(0) = γ 2 . We get that γ is a constant on the ray and in this form, as

S t = 1 2 a(x)S 2 x , we have γ 2 = 1 2 a(x)S 2 x implying that q(t) = √ 2γa -1 2 (x(t)).
In this manner from (6.2) we obtain

dS dt = -γ 2 , yielding S = -γ 2 (t -t 0 ) + S * . (6.3)
The quantity S * is the value taking for S when t = t 0 . Now let set x(0) = x 0 and define

t -t 0 = - x x 0 a -1 2 (ξ)dξ √ 2γ .
Replacing the value of γ in (6.3) we get

S(x, x 0 , t) = - ( x x 0 a -1 2 (ξ)dξ) 2 2(t -t 0 ) + S * . Hence defining F (x) = x 0 1 √ u(1-u)
du, then it can be written

S(x, x 0 , t) = - (F (x) -F (x 0 )) 2 2(t -t 0 ) + S * .
(6.4)

Approximation of the density of transition

We looking for an approximation of the transition density for t = t ′ N for large N . This is, we want to get an approximation of the law of X(t) for small t. Our interest is mainly the density of this last random variable. Thus the function of interest is p t defined by

P(X(t) ∈ I |X(0) = x 0 ) = b a p t (x, x 0 )dx,
for all interval I = [a, b] ⊂ (0, 1). An useful transformation for our approximation, as we have seen in the last section, is the strictly increasing and differentiable function:

F (x) = x 0 1 u(1 -u) du = -arcsin(1 -2u)| x 0 = π 2 -arcsin(1 -2x).
Some readily make computations entail

y = F (x), F -1 (y) = x ⇒ π 2 -y = arcsin(1 -2x) ⇒ sin π 2 -y = 1 -2x ⇒ F -1 (y) = x = 1 2 (1 -cos y) = (sin y 2 ) 2 . Thus F ′ (x) = 1 x(1 -x) y F ′′ (x) = - 1 2 1 (x(1 -x))
3 2

(1 -2x).

We need the evaluation of these two functions in F -1 (y). Hence 

F ′ (F -1 (y)) = 1 sin y y F ′′ (F -1 (y)) = -4 cot y sin 2 y . ( 6 
dM (t) = G ′ (a(Z(t)))(a(Z(t))dW (t) + a(Z(t))dt) + 1 2 G ′′ (Z(t))a 2 (Z(t))dt dM (t) = G ′ (a(Z(t)))a(Z(t))dW (t) + (G ′ (a(Z(t)))b(Z(t)) + 1 2 G ′′ (Z(t))a 2 (Z(t)))dt.
Let apply this formula to the process

Y (t) = F (X(t)), in such a case a(X(t)) = X(t)(1 -X(t)) y b = 0. Then it holds dY (t) = dW (t) - 1 2 1 -2X(t) (X(t)(1 -X(t))) 3 dt.
We get by using (6.5)

dY (t) = dW (t) - 1 2 cot(Y (t))dt. Moreover P(X(t) ∈ [a, b] |X(0) = x 0 ) = P(Y (t) ∈ [F (a), F (b)]|Y (0) = y 0 ) = F (b) F (a) p Y t (y|y 0 )dy = b a p Y t (F (x)|F (x 0 ))F ′ (x)dx.
From these equalities it can be deduced that

p X t (x|x 0 ) = p Y t (F (x)|F (x 0 ))F ′ (x).
This last expression tells us that it is enough to have an asymptotical expansion for large N for the conditional density p Y t ′ N (y|y 0 ) for deducing a similar expansion for p X t ′ N (x|x 0 ). In the sequel we will use the method developed in Dacunha-Castell & Florens Dacunha-Castelle and Florens-Zmirou (1986) to obtain such an expansion.

Asymptotical expansion

In what follows b will be a generic drift. Let the following diffusion

Y (t) = dW (t) + b(Y (t))dt (6.6) Y (0) = y 0
Under some hypothesis the semigroup associated to (6.6) can be written by using Girsanov as

P Y t f (x 0 ) = E x 0 [f (Y t )] = E x 0 [e t 0 b(W (s))dW (s)-1 2 t 0 b 2 (W (s))ds f (W (t))].
There exists another representation by means of the integral kernel. In fact we have

P Y t f (x 0 ) = E x 0 [f (Y t )] = f (y)p Y t (x 0 , y)dy. = f (y)E x 0 [e t 0 b(W (s))dW (s)-1 2 t 0 b 2 (W (s))ds |W (t) = y]q t (y -x 0 )dy (6.7)
Using the Girsanov representation we know that if G(x) = x 0 b(u)du the Itô's formula entails

G(W (t)) -G(W (0)) = t 0 b(W (s))dW (s) + 1 2 t 0 b ′ (W (s))ds,
and then, under the condition

W (t) = y, G(y) -G(x 0 ) - 1 2 t 0 b ′ (W (s))ds = t 0 b(W (s))dW (s),
hence (6.7) can be written in the following form

(6.7) = f (y)E x 0 [e G(y)-G(x 0 )-1 2 t 0 (b 2 +b ′ )(W (s))ds |W (t) = y]q t (y -x 0 )dy = f (y)E x 0 [e G(y)-G(x 0 )-1 2 1 0 (b 2 +b ′ )( √ tW ( s t ))ds | √ tW (1) = y]q t (y -x 0 )dy.
The above conditional expectation can be eliminated by introducing the Brownian Bridge α(t) = W (t) -tW (1), where W is the Brownian motion begining at zero for x 0 = 0. To do that we compute the regression and then the conditional law of the BM can be written as

L W (0)=x 0 ( √ tW s t | √ tW (1) = y) = 1 - s t x 0 + s t y + √ tα s t .
Moreover, the process α(

• t ) is independent of √ tW (1). Yielding (6.7) = f (y)E x 0 [e -1 2 t 0 (b 2 +b ′ )((1-s t )x 0 + s t y+ √ tα( s t ))ds ]e G(y)-G(x 0 ) q t (y -x 0 )dy = f (y)E x 0 [e -t 2 1 0 (b 2 +b ′ )((1-u)x 0 +uy+ √ tα(u)
)du ]e G(y)-G(x 0 ) q t (y -x 0 )dy.

By duality and using the continuity of f we get

p Y t (x 0 , y) = E x 0 e -t This implies that lim t→0 p Y t (x 0 , y) q t (y -x 0 ) = e y x 0 b(u)du , or p t (x 0 , y) = q t (y -x 0 )e y x 0 b(u)du (1 + O(t)).
In the sequel we will apply this expansion to F-W diffusion. Recall that in this case b(y) = -1 2 cot y.

Given the singularity at zero of this drift we need to introduce the following modification to the function G

G(y) -G(a) = - 1 2 y a cot(u) du = - 1 2 ln(| sin u|)| y a = ln(| sin u|) -1 2 | y a = 1 4 (ln sin 2 (a) -ln sin 2 (y)) = 1 4 ln 1 4 sin 2 a 2 cos 2 a 2 -ln 1 4 sin 2 y 2 cos 2 y 2 = 1 4 ln sin 2 a 2 cos 2 a 2 -ln sin 2 y 2 cos 2 Then G(F (x)) -G(F (x 0 )) = 1 4 ln(x 0 (1 -x 0 )) -ln(x(1 -x)) = ln x 0 (1 -x 0 ) x(1 -x) 1 4 , In addition b ′ (y) = - 1 2 cos 2 y -sin 2 y sin 2 y = - cos 2y 1 + cos 2y
.

In this fashion we have

p X t (x|x 0 ) = p Y t (F (x)|F (x 0 ))F ′ (x) = p Y t (F (x)|F (x 0 )) 1 x(1 -x) = E F (x 0 ) [e -t 2 1 0 (b 2 +b ′ )((1-u)F (x 0 )+uF (x)+ √ tα(u))du ] ×e ln( x 0 (1-x 0 ) x(1-x) ) 1 4 q t (F (x) -F (x 0 )) 1 x(1 -x) .
And finally

p X t (x|x 0 ) = (x 0 (1 -x 0 )) 1 4 (x(1 -x) 3 4 E F (x 0 ) [e -t 2 1 0 (b 2 +b ′ )((1-u)F (x 0 )+uF (x)+ √ tα(u))du ]q t (F (x) -F (x 0 ))
We need to point out that t = t ′ N hence by using (6.4) with S * = 0, this term can be written

= 1 √ 2πt (x 0 (1 -x 0 )) 1 4 (x(1 -x) 3 4 E F (x 0 ) [e -t ′ N 2 1 0 (b 2 +b ′ )((1-u)F (x 0 )+uF (x)+ √ tα(u))du ]e S(x,x 0 , t ′ N ) .
In the same form as before we can conclude

p X t ′ N (x|x 0 ) = 1 2π t ′ N (x 0 (1 -x 0 )) 1 4 (x(1 -x) 3 4 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 (1 + O( t ′ N )).
This result is completely in accord to the one of [START_REF] Voronka | Asymptotic analysis of stochastic models in population genetics[END_REF].

Gaussian approximation

Next we looking for the range of validity for a Gaussian approximation. Let us define the following function

pX t ′ N (x|x 0 ) = 1 2π t ′ N (x 0 (1 -x 0 )) 1 4 (x(1 -x) 1 4 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2
Writing then

p X t ′ N (x|x 0 ) = pX t ′ N (x|x 0 ) + p X t ′ N (x|x 0 ) -pX t ′ N (x|x 0 )) + O t ′ N .
Let study the second term in the right hand side

|p X t ′ N (x|x 0 ) -pX t ′ N (x|x 0 )| = | 1 2π t ′ N (x 0 (1 -x 0 )) 1 4 (x(1 -x) 1 4 [1 -x 0 + x][(x 0 (1 -x 0 )) 1 2 + (x(1 -x)) 1 2 ] (x 0 (1 -x 0 )) 1 2 (x(1 -x)) 1 2 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 (x -x 0 )| This result entails p X t ′ N (x|x 0 ) = 1 2π t ′ N (x 0 (1 -x 0 )) 1 4 (x(1 -x)) 1 4 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 × 1 + [1 -x 0 + x][(x 0 (1 -x 0 )) 1 2 + (x(1 -x)) 1 2 ] (x(1 -x)) 1 2 (x -x 0 ) + O t ′ N .
Furthermore we have

lim x→x 0 [1 -x 0 + x][(x 0 (1 -x 0 )) 1 2 + (x(1 -x)) 1 2 ] (x(1 -x)) 1 2 = 2.

That allows us writing

p X t ′ N (x|x 0 ) = 1 √ 2π (x 0 (1 -x 0 )) 1 4 (x(1 -x)) 1 4 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 1 + O(|x -x 0 |) + O t ′ N .
The same type of expansion as above permits to obtain

p X t ′ N (x|x 0 ) = 1 √ 2π 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ ( x x 0 a -1 2 (u)du) 2 1 + O(|x -x 0 |) + O t ′ N .
To finish let us to get a Gaussian approximation. First we need the following estimate |e

-N 2t ′ ( x x 0 a -1 2 (u)du) 2 -e -N 2t ′ (x-x 0 ) 2 (x 0 (1-x 0 )) | = e -N 2t ′ (x-x 0 ) 2 (x 0 (1-x 0 )) |e -N 2t ′ [( x x 0 1 √ (u(1-u)) )du) 2 -( x x 0 1 √ (x 0 (1-x 0 )) du) 2 )] -1|
To bound this expression let us assume firstly that x and x 0 are far from zero. For instance we consider that min{min{1 -x 0 , 1 -x}; min{x 0 , x}} > δ and secondly that N t ′ (x -x 0 ) 2 is small. Then we get by using the Taylor expansion for the exponential function |e

-N 2t ′ [( x x 0 1 √ (u(1-u)) )du) 2 -( x x 0 1 √ (x 0 (1-x 0 )) du) 2 )] -1| ≤ Cδ -2 N t ′ (x -x 0 ) 2 .
Thus finally all this yields

p X t ′ N (x|x 0 ) = 1 2π t ′ N 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ (x-x 0 ) 2 (x 0 (1-x 0 )) (1 + O( N t ′ (x -x 0 ) 2 ) + O(|x -x 0 |) + O( t ′ N )).
Therefore, by choosing |x -

x 0 | = O( t ′ N )
we obtain the approximation searched. Indeed

p X t ′ N (x|x 0 ) = 1 2π t ′ N 1 (x 0 (1 -x 0 )) 1 2 e -N 2t ′ (x-x 0 ) 2 (x 0 (1-x 0 )) (1 + O( t ′ N )).
Remark 6.5.1. Although we have worked with the function a(x) = x(1 -x) and with a drift zero in the equation (6.1), the same procedure can be used for considering another more general functions a(•)and b(•). Despite the Gaussianity has been widely considered in other works related to population genetic, it has been possible to notice that this is not correct, not even for all generations considered above. In the latest histograms we overlap a Gaussian distribution (red line) with parameters µ = p 0 and σ 2 = t 2N p 0 (1 -p 0 ), the asymptotical expansion (green line) and the Gaussian approximation (purple line). From this results we can conclude that the asymptotical expansion is well behaved for p 0 = 0.1, p 0 = 0.5 and p 0 = 0.9, also for all generation values considered, even is suitable for bigger values of t. While the Gaussian distribution and the Gaussian approximation simulated are well behaved for generations between t = 100 and t = 300. Nevertheless the approximation able of representing the behavior close to 0 and 1 is the asymptotical expansion. Through this procedure, we have proposed a more realistic approximation for density, which will contribute to develop statistical tests to detect population selection properly. process typically appears as a limiting model in various applications such as unit the root testing problem [START_REF] Wu | Unit root testing for functionals of linear processes[END_REF]) or semi-parametric approach to hypothesis test [START_REF] Hall | Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the hurst coefficient[END_REF]).

Recently, there has been a great interest in the study of some extensions of self-similar processes with stationary increments such as the Rosenblatt or the Hermite process [START_REF] Bell | Noncentral limit theorem for the generalized hermite process[END_REF]; [START_REF] Bai | Generalized hermite processes, discrete chaos and limit theorems[END_REF] [START_REF] Bai | Behavior of the generalized rosenblatt process at extreme critical exponent values[END_REF]; [START_REF] Maejima | Selfsimilar processes with stationary increments in the second wiener chaos[END_REF]. One of these extensions is the so called generalized Hermite process [START_REF] Bell | Noncentral limit theorem for the generalized hermite process[END_REF]; [START_REF] Bai | Generalized hermite processes, discrete chaos and limit theorems[END_REF])

Z γ (t) = R q f γ,t (x 1 , . . . , x q )dB(x 1 ) • • • dB(x q ), t ≥ 0,
where q ≥ 1, γ = (γ 1 , . . . , γ q ) and B = {B x , x ∈ R} is a two-sided Brownian motion on the real line, and

f γ,t (x 1 , . . . , x q ) = A γ t 0 (s -x 1 ) γ 1 + (s -x 2 ) γ 2 + • • • (s -x q ) γq + ds, here A γ is a normalizing constant such that E (Z γ (t)) 2 = t 2γ+2+q , where γ = γ 1 + • • • + γ q .
Proper conditions over γ i for i = 1, . . . , q and γ must be impose in order to have that f γ,t ∈ L 2 (R q ) and the process Z γ is well-defined. In case of q = 1, the process Z γ is a fractional Brownian motion. The case q = 2 and γ 1 = γ 2 corresponds to the generalized Rosenblatt process introduced by Maejima and Tudor (2012) which generalizes the usual Rosenblatt process defined in [START_REF] Taqqu | Weak convergence to fractional brownian motion and to the rosenblatt process[END_REF] (case q = 2 and γ 1 = γ 2 ). The study of this type of processes is interesting since generalize in a natural way the definition of the Hermite type process without losing the property of self-similarity.

The generalized (non-symmetric) Rosenblatt process was defined in [START_REF] Maejima | Selfsimilar processes with stationary increments in the second wiener chaos[END_REF] to obtain an infinity self-similar process with stationary increments in the Wiener chaos of order two in contrast with the first Wiener chaos where the only self similar process with stationary increments is the fractional Brownian motion.

In this paper, we provide a representation of the generalized (non symmetric) Rosenblatt process on a compact interval, this representation is useful because it is better suited for simulation than the time (equality (7.1) below) and spectral domain representations [START_REF] Maejima | On the distribution of the rosenblatt process[END_REF]), it shed light on the structure of the processes and it fits well within a stochastic calculus context [START_REF] Pipiras | Regularization and integral representations of hermite processes[END_REF]. See for example [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], [START_REF] Tudor | Analysis of the rosenblatt process[END_REF] and [START_REF] Tudor | Analysis of variations for self-similar processes: A stochastic calculus approach[END_REF]. The rest of the paper is organized as follows; in section 2 we recall some known facts about multiple stochastic integrals. In section 3, the non-symmetric Rosenblatt process over a compact set is introduced and some of its properties are investigated. In section 4 we will be proved that, under certain conditions we have equality between the two representations of the non symmetric Rosenblatt process. Finally, in Section 5 we applied our results to the study of a least square-type estimator for an unknown parameter in the drift coefficient of a simple model.

Multiple stochastic integrals

Here, we shall only recall some elementary facts about multiple stochastic integration; our main reference is [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]. Consider H a real separable infinite-dimensional Hilbert space with its associated inner product ., . H , and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω, F, P), which is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = ϕ, ψ H , for every ϕ, ψ ∈ H. Denote by I q the qth multiple stochastic integral with respect to B. This I q is actually an isometry between the Hilbert space H ⊙q (symmetric tensor product) equipped with the scaled norm 1 √ q! • H ⊗q and the Wiener chaos of order q, which is defined as the closed linear span of the random variables H q (B(ϕ)) where ϕ ∈ H, ϕ H = 1 and H q as we said before is the Hermite polynomial of degree q ≥ 1. The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H ⊗p and g ∈ H ⊗q , E I p (f )I q (g) = q! f , g H ⊗q if p = q 0 otherwise.

It also holds that: I q (f ) = I q f , where f denotes the canonical symmetrization of f which is defined by: f (x 1 , . . . , x q ) = 1 q! σ∈Sq f (x σ(1) , . . . , x σ(q) ), in which the sum runs over all permutations σ of {1, . . . , q}.

We will need the following formula to compute products of Wiener integrals of any order p, q, so for any symmetric integrands f ∈ H ⊙p and g ∈ H ⊙q , we get I p (f )I q (g) = p∧q r=0 r! p r q r I p+q-2r (f ⊗ r g).

The Non-symmetric Rosenblatt process over a compact

In this section we introduce the representation of the non-symmetric Rosenblatt process on a finite interval. First, let us recall the definition of the non-symmetric Rosenblatt process introduced by [START_REF] Maejima | Selfsimilar processes with stationary increments in the second wiener chaos[END_REF]. For H 1 , H 2 ∈ (0, 1), such that H 1 + H 2 > 1 this process is given by Given the stochastic integral representation on a finite interval of the Rosenblatt process established by [START_REF] Maejima | Selfsimilar processes with stationary increments in the second wiener chaos[END_REF], it is natural to define the following process over a compact interval for every y 1 , y 2 ∈ [0, T ], it is clear that f is a non-symmetric kernel, therefore we define its symmetrization as ft (y 1 , y 2 ) = 1 2 (f t (y 1 , y 2 ) + f t (y 2 , y 1 )) .

Y H 1 ,
Remark 7.3.1. The case H 1 = H 2 in (7.3) corresponds to the Rosenblatt process over a compact, it has been shown in [START_REF] Tudor | Analysis of the rosenblatt process[END_REF] that the laws of the Rosenblatt process on a compact and the real line coincide, here a similar question will be addressed in the case of the non-symmetric Rosenblatt process in the next section. Now we will study some properties of the representation Z H 1 ,H 2 .

Proposition 7.3.2. Let Z H 1 ,H 2 be given by ( 7.3), then Z H 1 ,H 2 is a 1 2 (H 1 + H 2 )-self-similar process and it has stationary increments.

Proof. Let c > 0, then Z H 1 ,H 2 (t).

Z H 1 ,H 2 (ct) = C(H 1 , H 2 ) ct 0 ct 0   ct
In here, we have used the self-similarity of the Brownian motion and

∂K H ′ i ∂u (cu, cy i ) = c H ′ i -3 2 ∂K H ′ i
∂u (u, y i ) for i = 1, 2. = means equivalence of all finite dimensional distributions. The stationarity of the increments is not obvious, then we prove this property using Theorem 7.4.1 in Section 7.4. We know that = Y H 1 ,H 2 (h).

Z H 1 ,H 2 d = Y H 1 ,H
We will need the following lemma throughout the paper.

Lemma 7.3.3. Let H 1 , H 2 ∈ (0, 1). Then

u∧v 0 ∂K H ′ 1 ∂u (u, y) ∂K H ′ 2 ∂v (v, y)dy = C H ′ 1 C H ′ 2 u v H ′ 1 -H ′ 2 β 2 -(H ′ 1 + H ′ 2 ), H ′ 2 - 1 2 (u -v) H ′ 1 +H ′ 2 -2 + + β 2 -(H ′ 1 + H ′ 2 ), H ′ 1 - 1 2 (v -u) H ′ 1 +H ′ 2 -2 + .
Proof. Let us first assume u > v, note that from (7.5)

v 0 ∂K H ′ 1 ∂u (u, y) ∂K H ′ 2 ∂v (v, y)dy = C H ′ 1 C H ′ 2 u H ′ 1 -1 2 v H ′ 2 -1 2 v 0 y 1-(H ′ 1 +H ′ 2 ) (u -y) H ′ 1 -3 2 (v -y) H ′ 2 -3 2 dy,
and by the succesive change of variables z = u-y v-y and x = u vz , we have

v 0 y 1-(H ′ 1 +H ′ 2 ) (u -y) H ′ 1 -3/2 (v -y) H ′ 2 -3/2 dy = (u -v) H ′ 1 +H ′ 2 -2 ∞ u/v (zv -u) 1-(H ′ 1 +H ′ 2 ) z H ′ 1 -3/2 dz = (u -v) H ′ 1 +H ′ 2 -2 u 1/2-H ′ 2 v 1/2-H ′ 1 1 0 (1 -x) 1-(H ′ 1 +H ′ 2 ) x H ′ 2 -3/2 dx = β 2 -(H ′ 1 + H ′ 2 ), H ′ 2 - 1 2 (u -v) H ′ 1 +H ′ 2 -2 u 1 2 -H ′ 2 v 1 2 -H ′ 1 .
In a similar way, we do the same for v > u.

125 Lemma 7.3.4. Let us assume that H 1 , H 2 ∈ (0, 1). Then, the normalizing constant C(H 1 , H 2 ) in the definition of Z H 1 ,H 2 is given by

C -2 (H 1 , H 2 ) = A -2 (H 1 , H 2 )C 2 H ′ 1 C 2 H ′ 2
, where A(H 1 , H 2 ) and C H are given by ( 7.2) and (7.6) respectively.

Proof. Let Z H 1 ,H 2 by given by (7.3), then we can write Z H 1 ,H 2 (t) = I 2 (f t ) = I 2 ( ft ) for every t ∈ [0, T ], with f given by (7.7), then isometry property of multiple stochastic integrals, yields 

C -2 (H 1 , H 2 )E Z H 1 ,H 2 (t) 2 = β 1 -H 1 , H 1 2 β 1 -H 2 , H 2 2 + β 1 -H, H 1 2 β 1 -H, H 2 2 × 2C 2 H ′ 1 C 2 H ′ 2 t 0 du u 0 (u -v) 2H-2 dv = A -2 (H 1 , H 2 )C 2 H ′ 1 C 2 H ′ 2 t 2H .
Therefore

C -2 (H 1 , H 2 ) = A -2 (H 1 , H 2 )C 2 H ′ 1 C 2 H ′ 2
.

If H 1 = H 2 = H, we have that

C(H, H) = 1 H + 1 H 2(2H -1) -1/2
, which is the same normalization constant given in the definition of the Rosenblatt process in [START_REF] Tudor | Analysis of the rosenblatt process[END_REF].

Remark 7.3.5. Surprisingly due to Lemma 7.3.3 use cumulants to prove equality in law between Z and Y (equalities (7.1) and (7.3), respectively) such as in [START_REF] Bai | Behavior of the generalized rosenblatt process at extreme critical exponent values[END_REF] or [START_REF] Tudor | Analysis of the rosenblatt process[END_REF] it is considerably difficult. However, the following regularization technique allow us to demonstrate equality between the finite dimensional distribution of the processes without the need to use cumulants.

Equivalence of finite dimensional distributions

In this section, we adapt the results from [START_REF] Pipiras | Regularization and integral representations of hermite processes[END_REF], in here the authors show by means of a regularization technique several representations for the Hermite process, between them the finite-time interval representation. The approach is based on regularization of the Hermite process and the fractional Gaussian noises underlying them.

First, taking into account the property I 2 (f ) = I 2 ( f ) and equality (7.1), we write

Y H 1 ,H 2 (t) = A(H 1 , H 2 ) 2 R 2 t 0
(h 1 (y 1 )g 1 (y 2 ) + h 2 (y 1 )g 2 (y 2 ))ds dB(y 1 )dB(y 2 ), here h i (y) = (s -y)

H i 2 -1 +
and g i (y) = (s -y)

H i c 2 -1 +
, where i = 1, 2, furthermore if i = 1, then i c = 2 and vice versa. We define for ǫ > 0 the regularized counterpart of Y Proof. The proof follows from representation (7.8), the fact that

H ′ 1 = H * 1 + 1 2 , H ′ 2 = H * 2 + 1 2 ,
the continuous mapping theorem and Proposition 3.1 and 4.1 in [START_REF] Pipiras | Regularization and integral representations of hermite processes[END_REF].

Remark 7.4.2. By similar arguments to those of Theorem 7.4.1, one can treat the more general case where Y H 1 ,H 2 is replaced by the generalized Hermite process.

An application

In this section we study the problem of parameter estimation in the simple model driven by the non-symmetrical Rosenblatt process

X t = at + Z H 1 ,H 2 t
, t ∈ [0, 1], (7.9)

to do this, we used an Euler type discretization of model (7.9) and then we used the least square method in order to obtain an estimator for the drift parameter. Let 1 N be the step of the Euler scheme. To ensure convergence results for least square estimator, we need to define an extra parameter α > 1 that control the number of samples, then we assume that the sample size generated by model (7.9) is N α . This condition extends the usual hypothesis in the case of standard Wiener case [START_REF] Rao | Statistical inference for diffusion type processes[END_REF]). To illustrate the previous fact, we recall some known results on least square estimator in simple standard cases, that are given for example in [START_REF] Bertin | Drift parameter estimation in fractional diffusions driven by perturbed random walks[END_REF] or Prakasa [START_REF] Rao | Statistical inference for diffusion type processes[END_REF]. Let W be a Wiener process on a classical Wiener space (Ω, F, P) and let us consider the following simple model

Y t = at + W t , t ∈ [0, 1],
(7.10) with a ∈ R. One can, for example use an Euler-type discretization of equation ( 7.10)

Y (n)
t j+1 := Y t j+1 = Y t j + a∆t + W t j+1 -W t j , j = 0, . . . , N -1, here Y t 0 = Y 0 = 0 and ∆t = t j+1 -t j the step size of the partition.

It is known [START_REF] Rao | Statistical inference for diffusion type processes[END_REF]) that the least square estimator for a based on discrete observations from (7.10) is given by â = 1 m∆t m-1 j=0 (Y t j+1 -Y t j ), and â -a = 1 m∆t m-1 j=0 (W t j+1 -W t j ), therefore it is easy to note that E(â -a) 2 = 1 m∆t , and this converges to zero (i.e., the estimator is L 2 -consistent) if and only if (7.11) Let us note that the partition t j = j/N with j = 0, . . . , N -1 does not satisfy condition (7.11).

N ∆t → ∞, N → ∞.
Hence, here and in our situation, we need to dispose N α samples with α > 1, and an interval of discretization of the order 1/N to satisfy condition (7.11).

Simple model

Let (Z H 1 ,H 2 t ) t ∈ [0,1] , H 1 , H 2 ∈ (0, 1) be a non -symmetrical Rosenbaltt process belonging to (Ω, F, P), now let us consider the next simple model:

X t = at + Z H 1 ,H 2 t , t ∈ [0, 1],
(7.12) 129 where X t 0 = 0, we want to estimate the parameter a ∈ R assuming that H 1 and H 2 are known on the basis that we have discrete observations. For this an Euler type method with t j = j N is used and we write X t j = X j , and ∆Z H 1 ,H 2

t j = Z H 1 ,H 2 t j+1 -Z H 1 ,H 2 t j = Z H 1 ,H 2 j+1 -Z H 1 ,H 2 j = ∆Z H 1 ,H 2 j
. So the model (7.12) can be rewritten based on the observations X j , j = 0, ..., N α -1 as Proof. By (7.15),

X j+1 = X j + a N + ∆Z H 1 ,H 2 j . ( 7 
E(|â -a| 2 ) = N 2(1-α) E   N α -1 j=0 ∆Z H 1 ,H 2 j   2 = N 2(1-α)   N α -1 i=0 N α -1 j=0 E(∆Z H 1 ,H 2 i ∆Z H 1 ,H 2 j )   = N 2(1-α) N α -1 i=0 E[(∆Z H 1 ,H 2 i ) 2 ] + N 2(1-α)   N α -1 i =j E(Z H 1 ,H 2 i+1 Z H 1 ,H 2 j+1 ) -E(Z H 1 ,H 2 i+1 Z H 1 ,H 2 j ) -E(Z H 1 ,H 2 i Z H 1 ,H 2 j+1 ) + E(Z H 1 ,H 2 i Z H 1 ,H 2 j ) = I 1 + I 2 ,
since Z H 1 ,H 2 is a self-similar process with stationary increments and E[(Z H 1 ,H 2 (1)) 2 ] = 1 , we get that

E(Z H 1 ,H 2 (t)Z H 1 ,H 2 (s)) = 1 2 (t H 1 +H 2 + s H 1 +H 2 -|t -s| H 1 +H 2 ).
This implies

I 1 = N 2(1-α) N α -1 i=0 E[(∆Z H 1 ,H 2 i ) 2 ] = N 2(1-α) N α -1 i=0 1 N H 1 +H 2 = N 2-α-(H 1 +H 2 ) .
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Then, for I 2

I 2 = N 2(1-α)   N α -1 i =j E(Z H 1 ,H 2 i+1 Z H 1 ,H 2 j+1 ) -E(Z H 1 ,H 2 i+1 Z H 1 ,H 2 j ) -E(Z H 1 ,H 2 i Z H 1 ,H 2 j+1 ) + E(Z H 1 ,H 2 i Z H 1 ,H 2 j ) = N 2(1-α) N α -1 i =j 1 2 i -j + 1 N H 1 +H 2 + i -j -1 N H 1 +H 2 -2 i -j N H 1 +H 2
Then, Section 5.1.1 in [START_REF] Tudor | Analysis of variations for self-similar processes: A stochastic calculus approach[END_REF], allow us to obtain

I 2 ≤ C H 1 ,H 2 N 2(1-α)-2 N α -1 i =j i -j N H 1 +H 2 -2 ≤ C H 1 ,H 2 N 2(1-α)-(H 1 +H 2 -2)   N α -1 i =j |i -j| H 1 +H 2 -2   , ∼ C H 1 ,H 2 N 2(1-α)-(H 1 +H 2 ) N α(H 1 +H 2 ) = C H 1 ,H 2 N (1-α)(2-(H 1 +H 2 )) .
Here C H 1 ,H 2 may change from line to line and the symbol "∼" means that both sides have the same limit as N → ∞. Consequently, we get

E(|â -a| 2 ) ≤ N 2-α-(H 1 +H 2 ) + C H 1 ,H 2 N (1-α)(2-(H 1 +H 2 )) .
To have the convergence we need that 2 -(H 1 + H 2 ) < α and α > 1. However, since 1 < H 1 + H 2 < 2, we only need that α > 1. Furthermore,

E(|â -a| 2 ) ≤ C H 1 ,H 2 N (1-α)(2-(H 1 +H 2 )) .
Finally, if α > 1, then E(|â -a| 2 ) → 0, as N → ∞.

Proposition 7.5.2. Let (Z H 1 ,H 2 t

) t∈[0,1] , H 1 , H 2 ∈ (0, 1) with H 1 + H 2 > 1 be a non-symmetric Rosenblatt process and let α > 1. Then âN is L p consistent for any p ≥ 1.

Proof. Since for every n the random variable âN -a is a centered random variable, it holds that for some positive constant depending on p, H 1 and H 2 7.16) and this converges to zero, since α > 1.

E|â N -a| p ≤ C p,H 1 ,H 2 E|â N -a| 2 p/2 ≤ C p,H 1 ,H 2 N (1-α)(2-(H 1 +H 2 )) p/2 (
It is also possible to obtain the almost sure convergence of the estimator to the true parameter from the estimate in (7.16).

Proposition 7.5.3. Let (Z H 1 ,H 2 t

) t∈[0,1] , H 1 , H 2 ∈ (0, 1) with H 1 + H 2 > 1 be a non-symmetric Rosenblatt process and let α > 1. Then the estimator (7.14) is strongly consistent, that is, âN → a a.s when N → ∞.
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  Figure 1.1: Fluctuaciones del Río Nilo
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 21 Figure 2.1: Paths of fractional Poisson Ornstein-Uhlenbeck random walk for different values of λ and H = 0.8

  Remark 2.4.5. By Theorem 2.3.7 and 2.3.8, a direct consequence of Borel-Cantelli lemma allow us to obtain the almost sure convergence of θm,m α W LS and θm,m α M L
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 2 Figure 2.2: WLSE -Histograms of normalized estimators for different values of H and θ = 0.4.
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 2 Figure 2.2 show the histograms of normalized estimators, θm,m α W LS and θm,m α M L

  Figure 2.3 shows the histograms of the normalized estimator θm,m α M L when λ = m ln(2) for different values of H, with m = 100, α ≈ 2 and θ = 0.4, the normalization constants are the same as in the fBm case.
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 2 Figure 2.3: MLE-Histograms of normalized estimators for different values of H and θ = 0.4. Left: c 1 (m)( θm,m α M L -θ); H < 3/4; Center: c 2 (m)( θm,m α M L -θ); H = 3/4; Right: c 3 (m, H)( θm,m α M L -θ); H > 3/4
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 2 Figure 2.4: Weak convergence: Empirical rates vs theoretical rates in MLE case.

  Let D N be defined in(3.4). Let τ = {τ i ; 0 ≤ i ≤ N -1} thesampling random times defined by (3.2). If τ satisfies hypothesis (HJ), Remark 3.3.4. A direct computation gives the convergence of D N → 1/3 if we consider deterministic times τ i = i/N . Hence, by Lemma 4.3.4, it remains to study the asymptotic behavior of A N as N → ∞.

  Figure 3.1: Rate of convergence of âN under uniform, triangular and deterministic case, a = 0.2 and different values of H

  Figure 3.4: Histograms for N (â N -0.2) and N (â N -2) under uniform and triangular distributions, respectively, and different values of H

  5.Hence, by Lemma 4.3.4, the asymptotic behavior of A N as N → ∞ remains to be studied. It is straightforward, from the definition of A N and hypothesis N3, by conditioning on τ , that E [A N ] = 0. With this in mind and working with the second and fourth moments, we will have the selected choices of α and β to ensure the convergence in probability and/or the almost sure convergence of the numerator A N . Lemma 4.3.4 gives us almost sure convergence and/or convergence in probability of the denominator D N . Finally, an application of the Slutsky theorem ensures the almost sure convergence of |â N -a| → 0 (respectively, in probability) for the selected choices of α and β.
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 44 Figure 4.2 presents the comparison between the regression model with the estimated parameter μLS (red line) and -log(N ), 3 ≤ N ≤ 300 (blue line). The green line represents
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 41 Figure 4.1: Rate of convergence of âN and âN(1) under deterministic, exponential and beta prime distributions, respectively and different values of H: (left) case a = 0.2, (right) case a = 2.
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 42 Figure 4.2: Rate of convergence bounds of log(|â N (1) -a|) under exponential and deterministic case, for a = 0.2 Exponential H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95 Mean 0.2001 0.1995 0.1997 0.2001 0.1999 0.1998 SD 0.0074 0.0064 0.0062 0.0057 0.0055 0.0051 Kurtosis 0.2879 0.1132 0.0150 -0.04568 0.0721 -0.3278 Beta prime H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95 Mean 0.2003 0.2001 0.2000 0.2001 0.2000 0.2001 SD 0.0073 0.0065 0.0061 0.0059 0.0054 0.0052 Kurtosis 0.0678 -0.1624 0.1858 0.1662 0.0249 -0.0189
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 5 Figure 5.3: Convergence of the sequence Q N under different random times. Left: Jittered Sampling, Right: Renewal Sampling.

b 0 x

 0 a (b -x) c dx = Γ(a + 1)Γ(c + 1) Γ(a + c + 2) b a+c+1 .
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 6 Figure 6.1: Genetic recombination

  Figure 6.6: t = 150
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  .13) To estimate the unknown parameter in model (7.13) we use the least square estimator, therefore â is an unbiased estimator.Proposition 7.5.1. If α > 1 and H 1 + H 2 > 1, then â is L 2 -consistent. i.e. E(|â -a| 2 ) → 0, if N → ∞.
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	.1 and 2.2 show mean and variance of these

Table 2

 2 

	θ	θm,m α W LS	V ar θm,m α W LS	θm,m α M L	V ar θm,m α M L
	0.1 0.06366	0.5859	0.14293	0.1187
	0.5 0.56011	0.2139	0.48084	0.0840
	0.9 0.97218	0.1349	0.89291	0.0889
	θ	θm,m α W LS	V ar θm,m α W LS	θm,m α M L	V ar θm,m α M L
	0.1 0.05084	0.0282	0.10782	0.1009
	0.5 0.49508	0.0126	0.50078	0.0883
	0.9 0.90962	0.0086	0.90968	0.0968
	θ	θm,m α W LS	V ar θm,m α W LS	θm,m α M L	V ar θm,m α M L
	0.1 0.06051	0.00127	0.09009	0.00948
	0.5 0.49703	0.00036	0.49998	0.00917
	0.9 0.90903	0.00033	0.90874	0.00619

.1: WLSE for m = 10, H = 0.55, H = 0.75 and H = 0.90, respectively.

Table 2

 2 

.2: WLSE for m = 100, H = 0.55, H = 0.75 and H = 0.90, respectively.

Table 2

 2 

	1 0.15312	0.18321	0.14213	0.12114	0.13569	0.11324
	0.5 0.46100	0.25578	0.52990	0.14432	0.52878	0.01654
	0.9 0.93476	0.15787	0.91891	0.10345	0.91003	0.00981

.3: MLE for m = 10, H = 0.55 , H = 0.75 and H = 0.90, from left to right, respectively.

  Then, almost sure convergence of τ N -1 → 1 is ensured as N goes to infinity.

	Theorem 3.3.2. Let τ be given by (3.2). Assume that the regression model (3.1) satisfies the

hypothesis (HN1), (HN2), (HJ) and (HJN). Then, the LS estimator âN given in (3.3) of the drift parameter a in the model (3.1) is strongly consistent, that is âN a.s.

Table 3 .

 3 1 and 3.2 summarize the simulation results for estimation according to equation (3.3). Performance statistics presented are the mean, standard deviation (SD) and kurtosis from the 1000 different values of the sequence (â N ). The kurtosis is defined as the difference between kurtosis of a Gaussian distribution and of the simulated process.

	Uniform	H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	0.1996	0.2000	0.1998	0.2003	0.2001	0.1999
	SD	0.0069	0.0061	0.0057	0.0054	0.0053	0.0050
	Kurtosis	0.0058	-0.0309	-0.2094	-0.2633	-0.0163	-0.2246
	Triangular H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	2.0002	1.9996	2.0005	1.9997	2.0002	2.0001
	SD	0.0070	0.0060	0.0058	0.0059	0.0052	0.0051
	Kurtosis	-0.0400	-0.1758	0.0772	0.3426	-0.0475	-0.0785
	Table 3.1: Uniform and triangular case Case: Mean, SD and kurtosis with a = 0.2.
	Uniform	H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	1.9999	2.0004	2.0003	2.0001	2.0002	2.0001
	SD	0.0069	0.0061	0.0060	0.0056	0.0054	0.0049
	Kurtosis	0.0401	-0.1856	-0.2662	0.0499	-0.0646	0.0181
	Triangular H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	2.0002	1.9996	2.0005	1.9997	2.0002	2.0001
	SD	0.0070	0.0060	0.0058	0.0059	0.0052	0.0051
	Kurtosis	-0.0400	-0.1758	0.0772	0.3426	-0.0475	-0.0785

Table 3

 3 

.2: Uniform and triangular Case: Mean, SD and kurtosis with a = 2.

  .24) so the convergence in L 2 , and therefore in probability, of A N in equation (4.12) is ensured. The a.s convergence comes from Tshebyshev inequality, Borel-Cantelli lemma, as in Remark 4.2.3, and setting 1/2 ≤ H ≤ 1, α > 1 H ≥ 1. By Slutsky Theorem, Lemma 4.3.4 and Table4.4 in Apendix 4.5, the convergence of |â N -a| → 0 is• in probability, for α > 1 and β > 1;• a.s., for α > max{3/2, 1/H} and β > 2.Remark 4.3.5. If H = 1/2, the i.i.d. case, by carefully examining the below proofs in Section 4.3, starting in equation (4.13), we obtain that the statement of Theorem 4.3.1 is valid with upper bound rate of convergence controlled by the denominator D N .

Table 4

 4 

	.2 and 4.3 gathers the mean, standard deviation (SD) and kurtosis (defined as the
	difference between kurtosis of a Gaussian distribution of the simulated process) according to
	Equation (4.8), for different values of H and M = 1000 replicates of the process.

Table 4

 4 

		.2001	0.1995	0.1997	0.2001	0.1999	0.1998
	SD	0.0074	0.0064	0.0062	0.0057	0.0055	0.0051
	Kurtosis	0.2879	0.1132	0.0150	-0.04568	0.0721	-0.3278
	Beta prime H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	0.2003	0.2001	0.2000	0.2001	0.2000	0.2001
	SD	0.0073	0.0065	0.0061	0.0059	0.0054	0.0052
	Kurtosis	0.0678	-0.1624	0.1858	0.1662	0.0249	-0.0189

.2: Exponential and beta prime case: Mean, SD and kurtosis with a = 0.2.

  0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

	Mean	1.9997	2.0002	1.9997	2.0002	2.0001	2.0002
	SD	0.0072	0.0066	0.0061	0.0059	0.0057	0.0051
	Kurtosis	0.1402	-0.1039	-0.0092	-0.1116	0.3593	0.0635
	Beta prime H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95
	Mean	1.9998	2.0001	1.9999	2.0001	1.9998	2.0001
	SD	0.0072	0.0067	0.0059	0.0058	0.0055	0.0050
	Kurtosis	0.0670	0.1027	-0.0787	-0.0771	0.3047	0.2196
	Table 4.3: Exponential and beta prime case: Mean, SD and kurtosis with a = 2.

  H 2 (t) = A(H 1 , H 2 ) {B(y), y ∈ R} is a standard Brownian motion and A(H 1 , H 2 ) is a positive normalizing constant given by

				R 2	0	t	(s -y 1 ) + H 1 2 -1	(s -y 2 ) + H 2 2 -1	ds dB(y 1 )dB(y 2 ).	(7.1)
	where B = A -2 (H 1 , H 2 ) =	1 H(2H -1)	β 1 -H 1 ,	H 1 2	β 1 -H 2 ,	H 2 2	+ β 1 -H,	H 1 2	β 1 -H,	H 2 2	(7.2)
	with H = H1+H2 2	.									

  )du dB(y 1 )dB(y 2 ), t ∈ [0, T ], (7.3) where the integral above is a multiple Wiener-Itô stochastic integral of order two, the constantC(H 1 , H 2 ) is chosen in order to have E Z H 1 ,H 2 (1)Let us denote by f the kernel of Z H 1 ,H 2 , that isf t (y 1 , y 2 ) = C(H 1 , H 2 )
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		K H (t, s) = C H s	1 2 -H	s	t	(u -s) H ′ -3 2 (u) H ′ -1 2 du	(7.5)
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										123

  2 , this implies that the increments of Z H 1 ,H 2 are stationary, because the increments of Y H 1 ,H 2 are stationary. In fact, by (7.1), we haveY H 1 ,H 2 (t + h) -Y H 1 ,H 2 (t) = A(H 1 , H 2 )ds dB(y 1 )dB(y 2 ), the change of variable s = s -t and ỹi = y i -t for i = 1, 2 allow us to getY H 1 ,H 2 (t + h) -Y H 1 ,H 2 (t) = A(H 1 , H 2 ) ds dB(y 1 + t)dB(y 2 + t),then, the stationarity of the Brownian motion implies thatY H 1 ,H 2 (t + h) -Y H 1 ,H 2 (t)
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				R 2			0	h	(s -y 1 ) + H 1 2 -1	(s -y 2 ) + H 2 2 -1	ds dB(y 1 )dB(y 2 )

d = A(H 1 , H 2 )

  (f t (y 1 , y 2 ) + f t (y 2 , y 1 )) 2 dy 1 dy 2 changing the order of integration and taking into account that some terms coincide, we haveC -2 (H 1 , H 2 )E Z H1,H2 (t)Since the function inside the integral dudv is symmetric, thenC -2 (H 1 , H 2 )E Z H 1 ,H 2 (t)By Lemma 7.3.3, taking into account (7.4) and H 1 + H 2 = 2H
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																		126

Theorem 7.4.1. Let

  H 1 ,H 2 as (y 1 )g i (y 2 )1 (s-y 1 >ǫ) 1 (s-y 2 >ǫ) ds dB(y 1 )dB(y 2 ), (y 1 )g i (y 2 )1 (s-y 1 >ǫ) 1 (s-y 2 >ǫ) dB(y 1 )dB(y 2 ) ds, the linearity and the product formula for Wiener integrals yieldY H 1 ,H 2 (s-y i >ǫ) dB(y i )is a regularized fractional Gaussian noise. Now the idea[START_REF] Pipiras | Regularization and integral representations of hermite processes[END_REF]) is to replace Ḃǫ,H j ,i by an equivalent integral representation on an interval, repeat the argument above backwards with this new representation to get an integral representation for Y H ǫ on an interval and finally let ǫ → 0. By the representation (7.8), we are in a position to prove the main result of this paper. us take H 1 = H * 1 and H 2 = H * 2 ,then the process Y H 1 ,H 2 has the following representation in the sense of equality between finite dimensional distributions

	Y H 1 ,H 2 ǫ h i by stochastic Fubini theorem, we get (t) = t 2 A(H 1 , H 2 ) 2 R 2 0 i=1	
	Y H 1 ,H 2 ǫ 1 Y H1,H2 (t) = C(H * (t) = t 2 A(H 1 , H 2 ) 2 0 R 2 i=1 h i H j 2 -1 + 1 , H * 2 ) t 0 t 0 t y1∨y2 ∂K H ′ 1 ∂u (u, y 1 ) ∂K H 2 ′ ∂u	(u, y

ǫ (t) = A(H 1 , H 2 ) 2 t 0 2 i=1 Ḃǫ,H 1 ,i (s) Ḃǫ,H 2 ,i (s) -E Ḃǫ,H 1 ,i (s) Ḃǫ,H 2 ,i (s) ds, (7.8) here Ḃǫ,H j ,i (s) = R (s -y i ) 2 )du dB(y 1 )dB(y 2 ), t ∈ [0, T ].

Theorem 2.3.8 states the L 2 -convergence and by Chebyshev inequality in probability of the Maximum Likelihood estimator of θ.

For all situations studied here, the parameter estimators improve as the value of H

1 0 (b 2 +b ′ )((1-u)x 0 +uy+ √ tα(u))du e G(y)-G(x 0 ) q t (y -x 0 ).
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On the consistency of the least squares estimator in models sampled at random times driven by long memory noise: the renewal case. 

Introduction

In many applications, data are observed at random times. This situation arises from a variety of causes such as machinery disorder or the inability to observe data in certain periods. Often, in the financial field, the process cannot be observed continuously (Duffie and Glynn ( 2004)).

High-frequency financial data (a very large amount of data) are not only discretely sampled in time but the time separating successive observations is often random. An interesting possibility regarding the random modeling of observations is the renewal case, that represents progressive randomness and distance from periodic sampling. [START_REF] Masry | Probability density estimation from sampled data[END_REF] has developed a work in this area, where he studies the problem of estimating an unknown probability density function, based on n independent observations sampled at random times. [START_REF] Vilar | Kernel estimation of the regression function with random sampling times[END_REF], [START_REF] Vilar | Finite sample performance of density estimators from unequally spaced data[END_REF], also study the nonparametric kernel estimator of the regression function under mixing dependence conditions, and the Ornstein-Uhlenbeck process driven by Brownian motion, respectively.

5

Limit distribution of the least square estimator with observations sampled at random times driven by standard Brownian motion. 

Introduction

The estimation of the parameters of a stochastic process on the basis of its random sampling (i.e. the process is observed at random times) received a wide attention in the past. Such a problem is well motivated by practical aspects. Indeed, the measuring instruments (classical or modern, such as sattelites) may introduce random disturbances to the data. For examples, transaction data in finance arrive in irregular time intervals (see e.g. [START_REF] Engle | Autoregressive conditional duration: a new model for irregularly spaced transaction data[END_REF]), and the same happens with biological signals in medicine, such as heart rate (see e.g. [START_REF] Bardet | A non-parametric estimator of the spectral density of a continuous-time gaussian process observed at random times[END_REF]. Other examples of appearances of random models observed at unequally, possibly random, times can be found, among many others, in climatology (see [START_REF] Max-Moerbeck | A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series[END_REF],

This implies, together with Lemma 5.3.2

and thus for every γ > 0 and for every p integer such 2p -γ > 1,

Then, via Proposition 5.3.1, we obtain the consistency of the LSE (5.6).

Let us now study the asymptotic limit in distribution of A N . To this end, we need to study the sequence (Q N ) N ≥1 defined, for every N ≥ 1, by

(5.9)

This plays the role of the "bracket" of A N . Before, let us introduce some notation: If τ j is given by (5.2), then we can write them as

where X j , j = 1, .., . are independent random variables and X j follows a symmetric probability distribution with support in -1 2 , 1 2 and with density denoted by g. If τ j is given by (5.4), then (5.11) where X i follows the Gamma law G(1, 1). Moreover, for every

Proposition 5.4.1. Let Q N be given by (5.9). Then

We now give the limit in distribution of the sequence A N .

Proposition 5.4.2. Let A N given in (5.7), then the following convergence in distribution holds

either if τ i are defined either by (5.2) or by (5.4).

Proof:

We analyse the asymptotic distribution of the characteristic function of N A N , denoted ϕ N A N in the sequel. Via conditioning, with X j given by (5.10) or by (5.11), with 

Estimation Error

As we shown previously, the sequence N A N converges, in law for N large enough, to a normal distribution with mean µ = 0 and variance σ 2 = 1/3, so we define the estimation error, for both type of random times, as ε = N A N -N (0, 1/3). First, we present the behavior of the error for different values of N . The corresponding results, for both type of random times, are the followings 

Introduction

It is common to think that, for large population size, Gaussian distribution is a good approximation however, this is not always correct. In particular in [START_REF] Tataru | Statistical inference in the wright-fisher model using allele frequency data[END_REF], several approximated model are considered showing that the normal approximation is not always convenient. We work with Fisher -Wright model, used to represent the stochastic fluctuation of allele frequencies through generations. In what follows we will focus in giving a proper approximation to finally construct a statistical test to detect selection (absence of randomness for the allele frequency in the next generation).

To understand what we will work on, it is necessary to give a brief biological background and then connect it to mathematical models.

Biological background

The genetic information of most living organisms is contained in molecules of deoxyribonucleic acid (DNA). DNA molecules are composed of two complementary chains of concatenated nucleotides, twisted around each other forming a double helix, where each chain is a sequence of four nucleotides that pairs among them. These nucleotides are adenine (A), guanine (G), cytosine of copies of the A allele at generation t, and by p(t) = X(t) 2N the frequency of this allele in the population. It is easy to see that, for generation t + 1 we just need the information from generation t, so X(t) is Markov Chain with initial state X(0) and probability transition matrix defined by

, so the distribution of X(t + 1) conditional on X(t) is a binomial distribution with parameters n = 2N and p = p(t). Moreover, X(t) is a discrete-time Markov chain and it has been widely studied due to its simplicity, from the mathematical point of view, generalizations to more complex situations can be made, for example, adding mutation and selection. Unfortunately, evolution processes are very slow and the number of individuals that make up the populations is large, therefore it is more appropriate modelling population variation by means of a continuous Markov process. [START_REF] Feller | Diffusion processes in genetics[END_REF], worked with the continuous version of the Wright -Fisher model through diffusion process; over the years, more work has been done on this approach, thus being able to solve questions that the discrete model does not allow. To obtain the continuous version we have proceed as follows For all N ∈ N we consider X = X(t) (N ) t∈N Wright -Fisher taking values in

a time and space scaling of the original process; therefore, we have that for each N ∈ N a stochastic process with continuous paths in ẼN = {0, 1/2N, . . . , 1} is obtained. It is worth mention that as N → ∞ the above process converges to Wright -Fisher diffusion.

Mathematical background

Let us consider the Fisher-Wright (F-W) diffusion defined for t ∈ R + as the solution of the SDE

For all f : [0, 1] → R vanishing of the boundary of [0, 1] we define the following semigroup

The dual semigroup acting on the measures of [0, 1] can be defined through the formula

In particular if x 0 ∈ (0, 1) and δ x 0 denotes the Dirac's delta at x 0 , it holds that

Simulation study

In this section, we illustrate the theoretical results proven previously, through simulation of the corresponding process. To simulate our theoretical results we use a fix population size (N = 1000), different values for generations (t = 1, . . . , 500), different initial allele frequency (p 0 = 0.1, 0.5, 0.9) and we repeat this procedure 10 6 times. 

Simulation of trajectories

Introduction

A stochastic process is called self-similar, if there exists a (self-similarity) parameter H ∈ (0, 1) such that for any constant (X(ct), t ≥ 0) and (c H X(t), t ≥ 0) have the same finite dimensional distributions. Such processes are of considerable interest in theory and practice since different aspects of self-similarity appears in natural phenomena like telecommunications, economics, hydrology or turbulence. In this direction, we can mention the work of [START_REF] Taqqu | A bibliographical guide to self-similar processes and long-range dependence[END_REF] in here, the author provides an exposition on the origin of self-similarity in applications, also see [START_REF] Samoradnitsky | Stable non-Gaussian random processes: stochastic models with infinite variance[END_REF], [START_REF] Pipiras | Regularization and integral representations of hermite processes[END_REF] and [START_REF] Embrechts | Selfsimilar processes[END_REF] for a complete exposition on self-similar processes. The most famous self-similar process is of course the fractional Brownian motion (fBm), this Gaussian process has several interesting properties, between them, we can mention self-similarity, stationary increments, ρ-Hölder continuity, for any ρ ∈ (0, H), and the covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals. One of the extensions of fBm is the Rosenblatt process, this process appears as the limit of long-range dependent stationary series. It is a self-similar process with stationary increments and lives in the so-called second Wiener chaos. Consequently, it is not a Gaussian process. By its properties, the Rosenblatt process can be an input in models where self-similarity is observed in empirical data where the Gaussian assumption may be implausible. Hence, the Rosenblatt Proof. Using Chebyshev's inequality

In order to apply the Borel-Cantelli lemma, we need to find a strictly positive β such that N ≥1

N βp N (1-α)(1-[(H 1 +H 2 )/2])p < ∞ One needs pβ + (1 -α)(1 -[(H 1 + H 2 )/2])p < -1 and this is possible if and only if α > 1.