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Summary

We observe Accretion disks around several astrophysical objects across different length scales
and at very different wavelengths. Accretion disks are detected around several objects: newborn
stars, compact objects in binary systems, white dwarfs in binary systems, supermassive black
holes, etc. In all cases, the accretion disk has a considerable impact on the emission properties
of the object. Signatures of outflows, be it jets or winds, are often observed around accretion
disks. Outflow ejection from accretion disks seems to be a ubiquitous process. Moreover, it
is possible to measure a correlation between the outflow emission and the accretion signatures,
showing that both processes are interrelated.

Disks around compact objects, like X-ray binaries and dwarf novae, are subject outbursts,
powerful events where the luminosity of the system increases by several orders of magnitude.
Outbursts are incredibly useful as they allow us to constrain the secular evolution of the accretion
disk system. Hence, we can measure the long-term effects of accretion on the system.

Accretion is the consequence of angular momentum transport in the accretion disk system.
When angular momentum is removed from the system, the matter, prived from its rotational
support, falls into the central object. Angular momentum can be transported radially through
turbulent torques or evacuated from the system by an outflow. Historically both processes have
been studied separately: (1) effective 2D models have been used to study the vertical laminar
torque imposed by an outflow, (2) while 3D shearing box simulations have been used to model
turbulent torques. Nonetheless, both processes appear naturally in the presence of a large-scale
vertical magnetic field.

Shearing box models excel at modeling the turbulence but can not accurately compute the
dynamics of the outflow. In contrast, effective 2D models accurately compute the dynamics of
the outflow, but they cannot resolve the 3D turbulence. Thanks to numerical improvements, it
is now possible to accurately compute both torques. Indeed, 3D global simulations can accu-
rately compute the dynamics of the outflow while resolving the turbulence. These 3D global
simulations show a very different structure to the 2D effective models and point towards not
understood physics. Moreover, these recent simulations show that it is possible to compute
outflows with a weak magnetic field. In contrast, with self-similar solutions where no weakly
magnetized solutions have been computed.

However, 3D global simulations prove difficult to compare with observations due to how
numerically expensive they are. Hence, 2D effective models are still useful for comparison with
observations and thus need to be educated by 3D global simulations.

In this manuscript, we attempt to bridge the gap between 2D effective models and global
simulations. We focus on self-similar models, which are a kind of 2D effective model. First, we
compute new weakly magnetized self-similar models. We analyze their properties and compare
themwith state-of-the-art numerical simulations of weakly magnetized accretion disks. Second,
we compute global simulations of accretion disk emitting magnetized outflows. We analyze the
global simulations and understandwhy their vertical structure is different from the one computed
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in 2D effective models. We then constraint the secular evolution in the system and examine how
it evolves as a function of the magnetic field strength. Finally, using the insight from our 3D
global simulations, we construct a new turbulence model that will lead to more accurate 2D
effective models.



Résumé

Les disques d’accrétion sont observés à différentes échelles spatiales et à différentes longueurs
d’onde au voisinage d’une grande variété d’objets astrophysiques : étoiles en formation, binaires
comprenant un objet compact ou une naine blanche, trous noirs supermassifs,... Ces disques ont
un impact considérable sur les propriétés radiatives de l’objet. Par ailleurs, plusieurs observa-
tions suggèrent la présence d’écoulements, jets ou vents, émanant du disque. Ces écoulements
sont extrêmement répandus et semblent être intrinsèquement liés aux disques d’accrétion. De
plus, il est maintenant possible de mesurer une corrélation entre les propriétés de l’écoulement et
de l’accrétion, illustrant l’interdépendance de ces deux phénomènes. Les disques autour d’objets
compacts (binaires X ou novae naines), en particulier, sont extrêmement variables : la luminosité
du système peut augmenter de plusieurs ordres de grandeur lors de ”sursauts”. Ces sursauts sont
extrêmement utiles pour contraindre l’évolution séculaire du disque d’accrétion, et peuvent per-
mettre de mesurer sur le long terme l’impact de l’accrétion sur le système.

L’accrétion résulte d’un transport de moment cinétique dans le disque. Lorsque la matière
accrétante perd du moment cinétique, elle perd son inertie centrifuge et tombe vers l’objet cen-
tral. Le transport radial de moment cinétique peut avoir lieu par l’intermédiaire d’un couple
turbulent, ou peut être dû à un écoulement emportant au loin le moment cinétique du système.
Historiquement, ces deux processus ont été étudiés séparément. Desmodèles 2D effectifs ont été
utilisés afin d’étudier le couple laminaire dû à la présence de l’écoulement , tandis que des sim-
ulations 3D locales, avec cisaillement, ont permis de modéliser le couple turbulent. Cependant,
ces deux processus résultent de la présence d’un champ magnétique vertical ordonné, à grande
échelle. Les simulations locales 3D capturent parfaitement la turbulence, mais sont incapables
de modéliser précisément la dynamique de l’écoulement. A l’inverse, les modèles 2D effec-
tifs capturent cette dynamique, mais ne peuvent résoudre la turbulence (qui est intrinsèquement
tridimensionnelle).

Dans cette thèse, nous étudions des modèles auto-similaires, qui sont un cas particulier
de modèle effectif 2D. De plus, l’amélioration des performances des supercalculateurs permet
maintenant d’étudier à la fois les couples laminaire et turbulent dans une même simulation glob-
ale 3D. De telles simulations montrent des différences importantes par rapport aux modèles 2D
effectifs, indiquant que la physique de ces disques reste mal comprise. De plus, ces simulations
ont montré qu’il était possible de produire des écoulements à faible champ magnétique, ce qui
entre en contradiction avec les prédictions des modèles auto-similaires. Malgré tout, les simu-
lations 3D globales sont numériquement coûteuses, rendant leur comparaison avec les modèles
2D difficile. Ceux-ci restent un outil utile pour l’interprétation des observations, à condition
qu’ils soient éduqués par des simulations 3D.

Dans cette thèse, nous cherchons à combler le fossé entre modèles 2D effectifs et simulations
globales 3D. Tout d’abord, nous découvrons de nouvelles solutions auto-similaires faiblement
magnétisées. Nous analysons leurs propriétés, et les comparons avec les simulations de disques
faiblement magnétisés les plus récentes. Ensuite, nous réalisons des simulations globales de
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disques d’accrétion avec écoulements. Nous analysons en particulier leur structure verticale,
et expliquons les raisons derrière la différence avec les modèles effectifs 2D. Nous étudions
également l’évolution séculaire du système, et détaillons la dépendance de cette évolution avec
l’intensité du champmagnétique. Enfin, à partir de la compréhension acquise de ces simulations
3D, nous construisons un nouveau modèle de turbulence, qui conduira à la mise en place de
modèles effectifs 2D plus précis.
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CHAPTER 1
Introduction

Accretion disk emitting outflows are observed across many different scales and in many dif-
ferent astrophysical objects. It seems clear that accretion-ejection is a universal mechanism
tightly linked to the transport of angular momentum. In this introduction, we first describe the
observational properties of 3 distinct accretion disks: (1) Protoplanetary disks, (2) X-ray bina-
ries, and (3) Dwarf novae. Our objective is not to give a complete picture of each observational
field and the different modeling methods for each astrophysical object but to detail, the different
constraints those objects impose on accretion and ejection. We then describe the evolution of
accretion theory and the different modeling methods to study angular momentum transport. We
follow that by describing the models that try to account for the secular evolution of accretion
disks. Finally, we describe the aims of this manuscript and how we approach addressing those
questions.

1.1 Observational properties of accretion and ejection in pro-
toplanetary disks

In this section, we describe the accretion and ejection properties of protoplanetary disks. We
mainly discuss the accretion and ejection properties of class 2 protostars also called T Tauri
stars.

The first observations of jet-like outflows were performed in the 50’s by Herbig 1951 and
Haro 1952. We show in Fig. (1.1,top) the nebulous patches they discovered, in Orion. These
objects were later named after them. The detection of velocities within Herbig-Haro objects
had to wait the invention of the CCD. Snell et al. 1980 were able to detect, using the emission
from the CO molecule, diametrically opposite red-shifted and blue-shifted lobes seen moving
at velocities of a few tens of km s−1. It was latter confirmed that the emission from the optical
lines, seen in Herbig-Haro objects, was along the same axis as the molecular emission, the
optical emission was being enclosed within the molecular emission (Snell and Schloerb 1985).
The atomic andmolecular outflows were both found to be emitted by young stellar objects (Snell
et al. 1980; Snell and Schloerb 1985). We may call the atomic outflows jet-like outflows and
the molecular outflows wind-like outflows.

T Tauri stars were classified as a separate class because of their peculiar spectral properties
(Herbig 1962). To explain the presence of Hα and Ca II H emission in the spectrum of a cool
star several models were proposed: spherical accretion, spherical winds, strong chromosphere
and hot envelopes. There was rapid convergence around the accretion disk paradigm proposed
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1.1. OBSERVATIONAL PROPERTIES OF ACCRETION AND EJECTION IN

PROTOPLANETARY DISKS

Figure 1.1: (top) This image from the Kitt Peak National Observatory shows the constella-
tion of Orion. We can recognize multiple Herbig-Haro objects labelled here in white. Copy-
right: Z. Levay (STScI), T.A. Rector (University of Alaska Anchorage), and H. Schweiker
(NOAO/AURA/NSF). (bottom) These images taken by the NASA/ESA Hubble Space Tele-
scope show Herbig-Haro 34 (or HH 34). We can see the knot structures propagating with time.
Copyright: NASA, ESA, and P. Hartigan (Rice University).
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Figure 1.2: The spectral energy distribution of the Herbig Ae star AB Aurigae. Red is the
measured emission. Blue is the steller spectrum predicted with a Kurucz stellar atmosphere
model. The excess of flux above the atmosphere (the “IR excess”) is the thermal emission from
dust in the disk. The emission in the near-IR (NIR) clearly has a bump-like structure and is
often called the NIR bump. In green, a Planck curve at a temperature of 1,600 K is overplotted.
The golden curve is the sum of the Planck curve and the stellar atmosphere. Adapted from
Dullemond and Monnier 2010.

by Lynden-Bell and Pringle 1974, inspired by the success of Shakura and Sunyaev 1973 in
X-ray binaries (see next section). In this paradigm, the star is surrounded by a disk that is
constantly feeding it with matter. The transport of angular momentum becomes important, as it
is transported outwards by turbulent viscous stresses and controls the accretion.

This picture was latter confirmed by observations of the near infrared excess. Cohen and
Kuhi 1979 showed that the measured infrared excess was inconsistent with a spherical dust
geometry. Moreover, the shape of the near infrared excess in T Tauri stars was shown to be
consistent with models of irradiated dusty disks with a flat (Adams and Shu 1986) or flared
(Kenyon and Hartmann 1987) geometry. In Fig.(1.2) we show the spectrum of AB Aurigae, we
can recognize how the NIR excess is a consequence of the disk emission, modeled in this case as
a Planck spectrum. Finally, Terebey et al. 1984 confirmed, using hydrodynamical simulations
of gravitational collapse, that excess angular momentum from the parent cloud accumulates on
an accretion disk that forms around the central star.

Let me comeback to the electromagnetic emissions from jet-like outflows. The electromag-
netic emission (in optical and near infrared wavelengths) is due to a combination of permitted
and forbidden lines. The presence of forbidden lines implies that electron densities are low (
∼ 104cm−3) within the emitting regions of the jet (Hartigan et al. 1995). The line emission
in Herbig-Haro objects is a consequence of the cooling shock zones within the jet, rather than
photoionization, as first recognized by Schwartz 1977. Indeed, the velocity variation within
the ejecta implies that faster material catches up slower material ahead of it (Raga and Kofman
1992). This leads to the formation of ”working surfaces” or internal shocks that can be observed
as knots within the jet emission (Fig. 1.1,bottom). The existence of knot structures is thus ev-
idence for secular variability in the ejection or the presence of a instability that disrupts the jet
structure.

YSO jets are highly supersonic with Mach numbers, Mj ∼ 30, (Ray and Ferreira 2020)
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1.1. OBSERVATIONAL PROPERTIES OF ACCRETION AND EJECTION IN

PROTOPLANETARY DISKS

Figure 1.3: Observation of a disc and an atomic jet seen by theHubble Space Telescope (Burrows
et al. 1996) and a molecular wind observed in CO(2-1) by ALMA (Louvet et al. 2018) in HH30,
a protoplanetary disc seen edge-on. Courtesy of F. Louvet. Adapted from Lesur 2020.

whereMj is the jet velocity divided by the sound speed. The opening angle of jet-like outflows,
θj, is consistent with an unconfined supersonic flow, for which θj ∼ 1

Mj
. We can conclude that

jets, for the most part, are not necessarily confined laterally. However, this is only relevant at a
distance of several hundreds of AU from the source. Closer to the source, the jet-like outflows
still need to be launched and collimated. Snell et al. 1980 proposed that an external pressure
gradient (created by the envelope) could collimate a stellar wind forming thus a jet. However,
such a configuration would be unstable and could not explain jets from old protostars, that lack
an envelope. The only possible mechanism that can focus the jet close to the star is a magnetic
field (Cabrit 2007).

Thanks to the development of adaptive optics and to the launch of the HST, a multitude of
compact optic jets have been detected being launched from T Tauri stars (Burrows et al. 1996;
Bacciotti et al. 2000; Dougados et al. 2000; Agra-Amboage et al. 2011, 2014). These observation
measure velocities of 100− 400km s−1 and are able to resolve the transverse structure of the jet
at small scales. They also reveal an onion-like structure in which the outer regions have lower
velocities, < 100km s−1. In Fig. (1.3) we show the atomic jet, the molecular outflow and the
disk of HH 30. The high velocity jets from T Tauri stars appear extremely poor in molecules.
Molecules are only visible at the base of the outflow (Louvet et al. 2018).

Outflow are now observed being emitted frommany young stellar object of different masses
and evolutionary phases. However, the presence of an outflow is always accompanied by the
presence of an accretion disk around the young stellar object (Ray and Ferreira 2020). It may
seem that an accretion disk is needed for a jet to be launched. Moreover, a correlation between
the forbidden line luminosity of [OI] and the infrared excess (Cabrit et al. 1990) links the mass
loss rate of the jet with the mass accretion rate of the disk. These correlations were calculated
explicitly by Hartigan et al. 1995. They use the veiling flux to compute the mass accretion rate.
In T Tauri stars the absorption lines are partially filled in, this is known as veiling and is believed
to represent the continuum flux emitted by the accretion shock on the surface of the star. It is



CHAPTER 1. INTRODUCTION 15

Figure 1.4: Mass ejection rate, Ṁj as a function of the mass accretion rate, Ṁa, for 131 T Tauri
stars. The different colors indicate sources from different clouds. Adapted from Nisini et al.
2018.

therefore a robust method to measure the accretion rate, Ṁa, on the T Tauri star (Venuti et al.
2014). They then compare the value obtained with this method to the value obtained using the
infrared excess. Hartigan et al. 1995 then measured the velocity of the jet and estimated the
density of the jet using the forbidden line emission, from this they computed the mass loss rate
Ṁj. The mass loss rate was shown to be highly correlated with the mass accretion rate.

We show this correlation in Fig. (1.4) adapted from Nisini et al. 2018, they measure Ṁj ∼
0.1Ṁa. This correlation shows that the processes of accretion and ejection must be dynamically
linked. This could be easily explained if the jet-like outflows are magnetically driven winds
(Blandford and Payne 1982). The dynamical engine of jets in T Tauri is still highly disputed
(Ray and Ferreira 2020). However, the three main contenders are of magnetic origin (Ferreira
et al. 2006a):

– A disk wind, driven by magnetic field lines threading the disk. It can come in two forms:
(1) an extendedmagneto-centrifugal disk wind being ejected from thewhole disk (Ferreira
1997), (2) or a localized X-wind that is ejected from one annulus close to the central object
(Shu et al. 1994).

– The magnetic field lines of the stellar dipole can open at the pole and lead to the ejection
of stellar winds that remove angular momentum from the star (Sauty et al. 2002; Matt and
Pudritz 2005).

– The star-disk interaction can drive magnetospheric ejections. These ejections depend on
the configuration of the magnetic field (parallel or anti-parallel) but always lead to non-
steady ejection (Ferreira et al. 2006a). In the parallel configuration a non-steady wind,
called Re-X-Wind, appears (Ferreira et al. 2000). In the anti-parallel configuration, the
ejection takes the form of CME-like ejecta that are episodic (Hayashi et al. 1996; Zanni
and Ferreira 2013).

Bacciotti et al. 2002 were able to measure the rotation velocity of a jet-like outflow. Hence,
jets have an azimuthal component and thus a 3D velocity structure. As we discuss below the
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1.1. OBSERVATIONAL PROPERTIES OF ACCRETION AND EJECTION IN

PROTOPLANETARY DISKS

Figure 1.5: Comparison of predicted specific angular momentum vs. poloidal velocities with
observations of T Tauri microjets. Full and dashed curves show expected theoretical relations
for MHD disc and stellar winds. Adapted from Ferreira et al. 2006a.

rotational signatures are crucial for constraining the ejection processes. However, it must be
noted that the measurements of jet rotation are very imprecise due to the low spectral resolution
of HST. Anderson et al. 2003 and Ferreira et al. 2006a showed that the asymptotic properties
of an outflow could be used to constrain the theoretical models of the launching engine behind
the outflow. Indeed, by measuring the terminal velocity and angular momentum of the outflow
it is possible to constrain the launching radii, R0, and the magnetic lever arm, λ of the outflow.
The magnetic lever arm is an MHD invariant (see more details section 2.5.1), it is a measure of
the angular momentum of the outflow and can be linked to its terminal velocity. Therefore, λ
is deeply linked to the acceleration efficiency of the outflow by the disk, λ can thus be used to
differentiate outflow solutions from one another. In Fig. (1.5) we show the asymptotic angular
momentum as a function of the terminal velocity for different jet-like outflows. Ferreira et al.
2006a use those values to constrain the ejection radii as well as the magnetic lever arm. We can
conclude that the values of λ are constrained between 4 and 12 which is consistent with anMHD
driven disk-wind (Casse and Ferreira 2000b). Figure (1.5) shows that the X-winds and stellar
models do not agree with observations as they lack angular momentum.

The engine behind the launching of molecular outflows is still not clear. Snell et al. 1980
were the first to observe a molecular outflow and they attributed the structure to a wind driven
shell (Shu et al. 1991). In this paradigm the molecular outflow is a consequence of an interaction
between a stellar or Xwind and the infalling envelope remaining from the star formation process.
The second paradigm was first proposed by Pudritz and Norman 1983, where they interpreted
the molecular outflows as MHD winds being emitted from the outer regions of the accretion
disk.

Thanks to the dramatic improvements in resolution achieved by ALMA we are starting to
constrain the engine behind the launch of molecular outflows. In Fig.(1.6) we show the outflow
of DG tau b observed by ALMA in exquisite detail, we recognize the onion like structure and
the red/blue shifted emission from the disk. It may seem objects that are consistent with one or
the other object are readily available:

– Wind driven shells models have successfully reproduced the molecular outflows of HH
46/47 (Zhang et al. 2016, 2019).
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Figure 1.6: Summary of the various kinematical components in DG Tau B: The inner conical
the 12CO flow is shown in purple to yellow shades. The individual low-velocity 12CO channel
maps at are shown in red and blue shades. Inside the white contours, the 13CO channel maps are
shown in blue and red highlighting the upper and lower disk surfaces Adapted from de-Valon
et al. 2020.

– MHD driven winds have been found to reproduce the structure of a considerable amount
of molecular outflows (Launhardt et al. 2009; Bjerkeli et al. 2016; Hirota et al. 2017;
Louvet et al. 2018; de-Valon et al. 2020).

We can apply the methods developed by Ferreira et al. 2006a to constrain the kinematics
on various outflows: (1) In HH30, Louvet et al. 2018 estimate λ ≃ 1.6 and a launching radius
R0 ≃ 1.5 au. (2) While de-Valon et al. 2020 measure λ ≃ 1.6 and R0 ≃ 2 au for DG Tau B.
(3) Hirota et al. 2017 measure a launching radii R0 ≃ 10 au, using their observations we can
compute λ ≃ 1.6 in Orion Source 1. (4) From the data reduction of Bjerkeli et al. 2016 we can
compute R0 ≃ 4 au and λ ≃ 4. We conclude that if molecular outflows are MHD-driven winds
then they must have very small values of λ. Indeed, the magnetic lever arm is in the range 1.5−4
for all outflows.

Thanks to ALMA we are now able to probe the radial structures of protoplanetary disk with
exquisite detail (cf Andrews et al. 2018). Even though these observation probe the dust distribu-
tion within the disk, they are very useful for constraining the formation of exotic structures, like
rings and vortices, within the disk. For example Teague et al. 2019 have been able to constrain
the kinematics of the gas and were able to compare them to the kinematics of the dust using
simultaneous observations in continuum and line emissions. They were able to measure merid-
ional motions within the disk. Najita et al. 2021 used high-resolution infrared spectroscopy to
probe the surface of the disk. They discovered a supersonic accretion flow at the surface of the
disk. This measurement may provide an observational test for accretion theories.
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Figure 1.7: An artist’s impression of the Scorpius X-1 LMXB system. (Courtesy of Ralf
Schoofs)

1.2 Observational properties of accretion and ejection in X-
ray binaries

Giacconi et al. 1962 where the first to observe an extrasolar source of X-ray radiation, it was
discovered in the constellation of scorpio and is named ScoX1. Morton 1964 suggested that the
X-ray emission of the object could be related to a compact object, a neutron star. Bowyer et al.
1965 discovered a second Xray source in the sky, Cygnus X1.

In 1972, Cygnus X1 is found to be composed of a spectrum that varies with a period of 5/6
days (Webster andMurdin 1972). The spectral variation is strong evidence of Cygnus X1 being a
binary system with an orbit period of 5/6 days. That same year, Tananbaum et al. 1972 observed
for the first time an X-ray transition for Cygnus X1. They report a remarkable change on the
average X-ray intensity, with a decrease of about a factor of 2 on the 2 − 6 keV energy range
and an increase of a factor of 2 in the 10 − 20 keV range. They also describe that a weak radio
source suddenly appeared after the transition, this radio signal was also described by Hjellming
and Wade 1971.

Pringle and Rees 1972 and Shakura and Sunyaev 1973 propose that such systems could be a
binary system composed of a star and a compact object: A black hole or a neutron star. In such
a system, the mass would flow from the star to the compact object through Roche overflow. The
accumulation of matter around the compact object forms an accretion disk around it (Fig. 1.7).

Angular momentum transport becomes now essential as the gas needs to lose angular mo-
mentum for it to fall towards the compact object. Even though Shakura and Sunyaev 1973 did
not propose a physical process, they already understood that the magnetic field and turbulence
would have an important role in driving the turbulent torque. The accretion process feeds on
the gravitational energy: the closer we are to the compact object the more energy will be avail-
able. Compact objects like black holes or neutron stars have very small inner radii which lead
to enormous amounts of gravitational energy (Pringle and Rees 1972). The gravitational energy
ends up feeding the turbulence which dissipates into heat, the heat is then irradiated as X-rays.

It is now clear that X-ray binaries transition between very different spectral (hard and soft)
and luminosity (outburst or quiescence) states (Done et al. 2007). We do not discuss the precise
properties of each state or the transition between them as it is outside the scope of this introduc-
tion. Nonetheless, we show in Fig. (1.8) a typical outburst of an LMXRB. Figure (1.8) shows
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Figure 1.8: Typical outburst of an X-ray binary showing its X-ray luminosity as a function of
the Hardness of the spectrum. The sketch on the left shows that wind-like outflows are present
when the system is in the soft state, while the sketch on the right shows that jet-like outflows
are present when the system is in the hard state. The system will evolve by following the arrow.
Figure from G. Marcel’s thesis, adapted from Zhang 2013

the X-ray luminosity as a function of the spectrum hardness ratio. The hardness ratio is a mea-
sure of whether the flux of the hard photons, with energies of 10 − 20 keV, dominates the flux
of the soft photons, with energies of 2 − 10 keV. In Fig.(1.9) we show two different spectra of
an LMXRB that underwent an outburst. We see that the flux from the high-energy photons is
more important during the hard state.

The radio component of the spectrum, likely the signature of a jet-like outflow (see below), is
only visible on the hard state (Corbel et al. 2003; Fender et al. 2009). In addition, the absorption
lines, a signature of a wind-like outflow (see below), are only visible in the soft state (Ponti et al.
2012, 2016). See also Fig. (1.8).

The radio component detected on X-ray binaries has some properties that can be associated
with a jet-like outflow: the flat spectrum, the relative steadiness, and the lack of polarization
suggests that the emission originates from a continuously replenished partially self-absorbed
outflow (Corbel et al. 2000). This emission is reminiscent of what was observed in AGN jets
(Blandford and Königl 1979). Furthermore, some sources were confirmed to be situ of super-
luminal motions (Mirabel and Rodríguez 1994). The presence of superluminal motion is strong
evidence of the radio emission being a consequence of a jet-like outflow.

It’s hard to derive stringent theoretical constraints fromX-ray binaries as we only have access
to the SED and the variability. Indeed, the only way to determine the accretion rate is by using
a model where Ṁa is used as a fitting parameter. All estimations of the accretion rate are thus
model dependent (Ghosh et al. 2010; Nagarkoti and Chakrabarti 2016; Marcel et al. 2018a,
2019). This is evenmore true for estimates of the jet properties, like velocity or power. However,
the change of luminosity during the higher luminosity can be easily linkedwith a higher accretion
rate. Indeed, the outburst state has a higher accretion rate than the quiescent state.
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Figure 1.9: Spectra of GRO J1655-40 during its outburs in 2005. We show the hard state (blue)
and the soft state (red). Figure from G. Marcel’s thesis, adapted from Zhang 2013.

Figure 1.10: Correlation between X-ray (3-9keV) and radio (8.6GHz) for 14 years of observa-
tion of GX 339-4. The solid line show the correlation FR ∝ F0.62

X . Adapted from Corbel et al.
2013.
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Figure 1.11: XMM-Newton X-ray spectra of AX J1745.6-2901 during the soft (red) and hard
(black) states. We observe absorption features in the soft state that are not visible in the hard
state. Adapted from Ponti et al. 2016

It is possible to measure a correlation of the X-Ray luminosity, which is expected to be
coming from the disk, and the radio luminosity that should be emitted from the jet. Hjellming
and Wade 1971 had already observed that the radio luminosity seem to increase when the X-ray
luminosity increased. However, it was not until the work of Corbel et al. 2003 that the correlation
was properly constrained. We show in Fig.(1.10) the results of Corbel et al. 2013. They show the
correlation extracted from the hard states of multiple Outburst of GX 339 - 4 measured between
1997 and 2011. They show, in the same manner as Corbel et al. 2003, the radio (8.6GHz)
luminosity as a function of the X-ray (3-9keV) luminosity. We see an impressive correlation,
FR ∝ F0.62

X , on 5 orders of magnitude in Fig.(1.10). The exact reasons for this correlation are
still unclear. However, such a correlation indicates that the dynamic processes of accretion and
ejection must be linked.

The latest generation X-ray telescopes lead to the discovery of narrow absorptions lines
(Brandt and Schulz 2000; Lee et al. 2002; Parmar et al. 2002; Tetarenko et al. 2018), a new
component in the spectrum of X-ray binaries. The absorption lines are observed to be variable
and produced by a highly ionized plasma. These characteristics indicate that they originate
locally in the X-ray binary. We show an example of the absorption lines in Fig. (1.11) at ∼ 7keV,
we appreciate that they are absent in the hard state. In several cases, these lines are found to
show a significant blue shift or a P-Cygni profile, indicating an outflow. The typical outflow
velocities measured are vout ∼ 100 − 2000km s−1 (Ponti et al. 2016). The absorption lines are
only present in high inclination systems (Ponti et al. 2012). This is strong evidence towards a
wind with equatorial geometry and a limited covering factor (Higginbottom and Proga 2015).
Recent optical observations have also measured the absorption profiles of wind-like outflows
(Charles et al. 2019; Jiménez-Ibarra et al. 2019). It is unclear whether the optical absorption
lines are a signature of the same outflows that are observed in the X-ray or an entirely new
component.

As mentioned before the winds are only observed in soft states (Ponti et al. 2012), this is
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still not understood. One possibility could be that jet-like outflows become wind-like outflows
when the X-ray binary changes spectral state. Another possibility could be that the wind is over
ionized in the hard state due to a thermal instability, if the gas is over ionized the iron lines could
be undetectable (Chakravorty et al. 2016; Petrucci et al. 2021).

Begelman et al. 2015 showed that illumination from the inner regions of the accretion disk
could lead to the launching of Compton-winds from the outer regions in X-ray binaries. Whether
these winds are magnetically driven or thermally driven is a topical subject (Díaz Trigo and
Boirin 2016; Ponti et al. 2016). The radiative signatures of Compton winds have been exten-
sively compared to the absorption lines observed in X-ray binaries (Higginbottom and Proga
2015; Tomaru et al. 2019), they can reproduce the absorption lines. The radiative signatures
of self-similar solutions of MHD-driven outflows have been compared to observations with
mostly positive results (Chakravorty et al. 2016; Fukumura et al. 2021). They found that the
MHD-driven outflows can also reproduce the absorption lines.

1.3 Observational properties of accretion and ejection in dwarf
novae

Dwarf novae (DN) are very similar to X-ray Binaries, they are both binary systems composed
of a solar mass star and a compact object, in DNs the compact object is a white dwarf. The
white dwarf accretes through Roche lobe overflow and ends up surrounded by an accretion disk.
Like LMXRBs, DNs also undergo outburst where their luminosity increases dramatically and
their spectral properties are modified. The average increase in magnitude for DNs during the
outburst phase is 2 to 6 orders of magnitude. In Fig.(1.12) we show the light curves of V1504
observed by Kepler (Cannizzo et al. 2012). We observe that the eruptions can be incredibly
regular with an average duration of 2 days and an interval between eruptions of approximately
10 days. However, some eruptions, called super-outbursts, can last 5 times more and lead to a
more irregular duration for the interval between outbursts. The scenarios invoked to explain the
outburst in the white draft will be described in section 1.5. We note that the higher luminosity
of the accretion disk is often related, in the models, to an enhanced accretion rate.

Using a technique known as eclipse mapping Horne and Cook 1985 was able to reconstruct
the radial structure of the disk of Z Cha. They measure the brightness temperature in the optical
(around 441nm) as a function of radius. They were able to show that the emission from the
disk during an outburst is consistent with a viscous disk (Shakura and Sunyaev 1973), where
the angular momentum is transported through turbulent torques. In Fig. (1.13,left) we show that
the brightness temperature is consistent with an accretion rate of Ṁa ≃ 10−9M⊙ yr−1.

Wood et al. 1986 performed the same analysis of Z Cha but during the quiescent state
(Fig. 1.13,right). They confirm that it is also roughly consistent with a viscous disk model.
However, they measure a smaller accretion rate, Ṁa ≃ 10−10M⊙ yr−1, required by the lower lu-
minosity. They also find that the brightness temperature scales differently as a function of radii
in the inner regions during quiescence.

When the accretion flow falls into the central white dwarf it connects with the surface of
the star creating a boundary layer, within this boundary layer the plasma is torqued down until
it reaches the angular velocity of the star (Pringle and Savonije 1979; Patterson and Raymond
1985). The violent torques involved lead to energy deposition within this region, which leads
to an efficient emission of X-rays. Using the cooling model of the boundary layer, Pandel et al.
2005 where able to measure the accretion rate in 9 DN during quiescent state, they measure
Ṁa = 10−12 − 10−13M⊙ yr−1.
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Figure 1.12: Kepler light curve for V1504 Cyg at one-minute cadence, spanning ∼ 736 days.
The light curve covers 6 super-outbursts and 59 normal outbursts. The vertical red lines indicate
the local maxima for the normal outbursts in which coverage permits a reliable determination,
and with well-sampled decays down to 2 mag below maximum. Adapted from Cannizzo et al.
2012
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Figure 1.13: Brightness temperature in the disk for a disk an outburst state (left) and a disk in
quiescence (right). Models of steady state optically thick discs for several mass transfer rates
are also shown. Adapted from Horne and Cook 1985 and Wood et al. 1986.

An interesting property of the X-ray emission attributed to the boundary layer is that it is not
detectable during the outburst (Wheatley et al. 1996; Wheatley et al. 2003). A possible expla-
nation is that the enhanced accretion rate during the outburst leads to an optical thick boundary
layer that emits in the extreme ultraviolet (Pringle and Savonije 1979; Patterson and Raymond
1985).

Wind-like outflows are also observed in DNs as in LMXRB and protoplanetary disks. The
winds are emitted from the accretion disks (Cordova and Mason 1982; Mauche and Raymond
1987) and are recognized by their P Cygni profiles in the UV. The velocities of the wind-like
outflows are measured to be around 3000− 5000km s−1 (Drew 1990). Furthermore, as in X-ray
binaries, the emission lines are consistent with a bi-conical geometry, they are not consistent with
spherical geometry (Drew 1990; Knigge and Drew 1997). Wind-like outflows have only been
observed during the outburst state, they appear to be absent in the quiescent state, opposite to
what is observed in LMXRB. It is possible that this a consequence of the disk being less luminous
during the quiescent state, complicating the observation of the P Cygni profiles. However, it has
been proposed recently by Hernández Santisteban et al. 2019 that an observed choc front with
the interstellar medium could be the signature of a wind-like outflow emitted during quiescence.

Coppejans et al. 2016 showed that radio emissions are ubiquitous in dwarf novae DNs. How-
ever, the origin of radio emissions in DNs remains unclear. The possibility that the origin of the
radio emissions are jet-like outflows has not yet been discarded.

1.4 Accretion theory

Two main different mechanisms have been proposed to explain the angular momentum transfer
within an accretion disk. Historically, theoretical work in accretion followed two distinct but
related paths: One focussing on the outflow torque due to an MHD outflow and the other on the
turbulent torque due to (magneto)-hydrodynamic instabilities.
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1.4.1 Jets as carriers of angular momentum

In their seminal work Blandford and Payne 1982 were the first to compute magnetically driven
stationary self-similar1 outflows. They find that, if a large scale vertical magnetic is present
outflows are ejected from a surface above the disk. They also found, like other before them
(Lovelace 1976), that when a magnetized outflow is launched a magnetic torque emerges. In-
deed, the outflow feeds on the angular momentum of the disk leading to accretion within the
disk. Blandford and Payne 1982 then computed the accretion rate, Ṁacc, resulting from the
laminar torque of the outflow. However, in their work the outflow launching surface was not
connected to an accretion disk of any kind.

In a strictly stationary solution2 the accretion flow can not cross the large scale vertical mag-
netic field lines, a consequence of Alfvén ’s theorem. Hence, connecting the outflow to an
accreting disk requires a supplementary ingredient: a magnetic diffusivity. A magnetic diffu-
sivity can be the consequence of molecular non-ideal MHD effects within the disk. For instance
Konigl 1989 and Wardle and Koenigl 1993 studied such a case in the self-similar framework.
Ferreira and Pelletier 1993 postulated that such a diffusivity could be of turbulent origin and
thus be another consequence of the magnetized turbulence, like the Shakura and Sunyaev 1973
viscosity described above. Moreover, Ferreira and Pelletier 1993 realized that a magnetic diffu-
sivity is an essential ingredient of the launchingmechanism and is needed to deviate the accretion
flow into and outflow.

Ferreira and Pelletier 1995 and Li 1995 then computed consistent self-similar solutions of
magnetized outflow that connected to a turbulent accretion disk. The former assumed a fully
self-similarmagnetized accretion diskwhere themagnetic equilibrium of the diskwas fully com-
puted. However, they calculated only super slow magneto-sonic outflows. The latter simplified
the vertical equilibrium of the accretion disk, considering only a vertically thin disk, and used a
patching method to couple the disk to the super Alfvénic solutions. In both cases the turbulent
resistivity is only present within the accretion disk and vanishes within the laminar outflow. This
lead to outflows solutions that have similar properties to the ones computed by Blandford and
Payne 1982 but are also geometrically constrained by the presence of the accretion disk. Ferreira
and Pelletier 1995 found that the presence of a disk constrained the parameter space, due to the
compression effect of the magnetic field on the disk vertical structure. A similar computation
was performed by Ogilvie and Livio 1998 and Ogilvie and Livio 2001. Ogilvie and Livio 1998
solved the local vertical structure and connected such a structure with a centrifugally driven out-
flow. They showed that heating could be an important ingredient in the launching of outflows
from accretion disks. But, they did not consider the toroidal magnetic field in their computation,
which has an important effect on the acceleration of the outflow. Ogilvie and Livio 2001 com-
puted the effect of the toroidal magnetic field on the disk vertical structure. However, in their
modeling, the value of the toroidal magnetic field at the disk surface is a free parameter and is
not fixed by the magnetic structure of the outflow.

The work of Ferreira and Pelletier 1995 was later extended to super-Alfvénic outflows by
Ferreira 1997 where they showed that the Alfvén point introduces strong constraints on the
properties of the outflow. In the end, the parameter space of super Alfvénic self-similar solutions
is quite small. The parameter space is restrained to highly magnetized solutions and jet-like
diluted outflows. Casse and Ferreira 2000a later include the effects of the turbulent torque.
Finally, Casse and Ferreira 2000b included the effects of heating due to the irradiation from the

1Self-similarity is a procedure that removes the radial dimension of the system, simplifying the equations (more
details chapter 3).

2and in ideal MHD
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central object. These solutions where compared with observations of class 2 YSO jets and were
found to be in good agreement (Dougados et al. 2004).

The inclusion of heating lead to more massive outflows that have been compared with ob-
servations of proto-protoplanetary molecular outflows (Tabone et al. 2017) and X-ray binaries
winds (Chakravorty et al. 2016). However, in both cases the authors have found that the existing
self-similar solutions still produce diluted winds that struggle to fit the data. There is a need to
compute denser self-similar solutions that better reproduce the data. Furthermore, the small val-
ues of λ ∼ 2− 4 found in molecular outflows (Launhardt et al. 2009; Bjerkeli et al. 2016; Hirota
et al. 2017; Louvet et al. 2018; de-Valon et al. 2020) are hard to reproduce with the self-similar
solutions of Casse and Ferreira 2000b. The inclusion of heating and a turbulent torque dit not
extend the parameter space with respect to the magnetization 3, it is still constrained to highly
magnetized solutions. As we will see later this is an important problem that requires further
investigation. We note that the main drawback of effective self-similar models is that they do
not compute the turbulent structure. Therefore, the turbulent structure needs to be imposed.

The self-similar models were followed by 2.5D simulations of accretions disk launching jet-
like outflows (Casse and Keppens 2002, 2004; Zanni et al. 2007; Tzeferacos et al. 2009; Murphy
et al. 2010). They computed similar outflows to the ones observed in self-similar solutions.
However, they could probe the variability of said outflows and the temporal evolution on longer
time scales. They suffer from the same drawback as self-similar solutions, they also depend on
the model of turbulence.

We conclude that a large scale vertical magnetic field crossing a Keplerian disk sponta-
neously leads to the launching of an outflow (Ferreira and Pelletier 1995; Konigl and Pudritz
2000; Pudritz et al. 2007), which carries away angular momentum. However, it is not the only
way to transport angular momentum.

1.4.2 Turbulence as the main agent for anomalous viscosity
As said before, the seminal work of Shakura and Sunyaev 1973 paved the way for effective vis-
cosity models of accretion disks. In such models, the accretion is a consequence of turbulence
within the disk that drives angular momentum transport radially towards the outer regions. An
instability capable of producing such a turbulent transport was discovered by Balbus and Haw-
ley 1991 and is now a corner stone of the field. The Magneto-Rotational instability (MRI) can
drive a powerful magnetized turbulence from a vertical or toroidal magnetic field. This pow-
erful turbulence will then drive the angular momentum transport through turbulent torques. To
quantify the strength of this turbulent torque a parameter known as the Shakura-Sunyaev α pa-
rameter was defined (see more details section 2.4.2). This parameter controls the strength of the
turbulent resistivity, νv ∝ α, and hence the strength of the turbulent torque.

Properly assessing the non-linear saturation of this instability required some improvements
in the numerical end. A new numerical model called the shearing box model was developed to
study the non-linear saturation of the MRI. It allowed to isolate the essential ingredients of the
MRI, mainly the shear and the magnetic field. Using this newly developed method Hawley et al.
1995 were able to explore the growth and saturation of the MRI in non-stratified simulations.
They measured a growth rate for the MRI that agreed quite well with the theoretical work on the
instability (Balbus and Hawley 1991) and also confirmed the work of Goodman and Xu 1994.
Balbus and Hawley 1991 had already shown that the MRI develops channel mode solutions4.

3The magnetization is defined as B2z0
4πP0 , where Bz0 is the vertical magnetic field at the disk midplane and P0 is

the thermal pressure at the disk midplane (see chapter 2).
4that are exact solutions of the MHD equations
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The channel mode solutions are vertical oscillatory structures that grow in amplitude with time.
Goodman and Xu 1994, following the work of Balbus and Hawley 1991, worked on the

parasitic instabilities of MRI. They showed that the channel mode structures are eaten away by
secondary instability which are essentially Kelvin-Helmhotz types modes. This breakup of the
channel mode solutions eventually ends up in fully-developed turbulence. Hawley et al. 1995
also showed that the MRI-driven turbulent torque scales with mean magnetic field strength.
To be more precise, the turbulent torque scales with the magnetization, as the magnetization
increases, the strength of the turbulent torque also increases. Finally, they found that the MRI is
the strongest with a vertical magnetic field instead of a toroidal magnetic field. For this reason,
in the rest of this manuscript, we will focus on the configuration with a mean vertical magnetic
field. Moreover, if we want to launch a magnetized outflow a vertical magnetic field is required.

For this same reason, we will not discuss the zero-net flux configuration.
Gammie 1996 put forward the dead-zonemodel of protoplanetary disks, he proposed that the

outer (R > 1 AU) cold regions of protoplanetary disks could be weakly ionized. This would lead
to the presence of Ohmic resistivity which could quench the MRI within the disk. He proposed
that the accretion would happen at the surface of the disk, where the illumination from the star is
strong enough to ionize the gas. Instability analysis of the MRI in presence of non-ideal effects
showed that the MRI is stabilized (Jin 1996; Wardle 1999; Kunz and Balbus 2004; Kunz 2008).
Numerical experiments using the shearing box model confirmed that the MRI is stabilized in the
presence of non-ideal MHD effects (Fleming et al. 2000; Bai and Stone 2011). It is now clear
that non-ideal effect stabilize the MRI in the outer regions of protoplanetary disks. MRI-driven
turbulence is restricted to the inner regions of protoplanetary disks (R < 1A.U.). Therefore, the
analysis performed in this manuscript is only accurate within those regions.

A very similar effect occurs in DNs. During the quiescent state, the disk is too cold and
becomes weakly ionized. This weakly ionized state leads to Ohmic resistivity becoming dy-
namically important (Gammie and Menou 1998). The appearance of non-ideal effects leads
to the disappearance of MRI-driven turbulence and its associated turbulent torque (Scepi et al.
2018a).

The absence of MRI turbulence leads to the absence of a mechanism that can transport an-
gular momentum. A new mechanism was needed to explain accretion in the outer regions of
protoplanetary disk. The theoretical community looked back to Blandford and Payne 1982 and
tried to implement the disk wind component into shearing box simulations. Most shearing box
simulations with a vertical magnetic field where done in the non-stratified regime. The unstrati-
fied nature of those simulations forbids the existence of a wind. Indeed, a stratified configuration
with a vertical magnetic field leads to ”high magnetic pressures that disrupt the vertical structure
of the disk before the flow makes the transition to MHD turbulence” (Stone et al. 1996).

It was until 2009 that the first stable ideal-MHD shearing box simulations of a vertically
stratified disc with a mean vertical magnetic field was performed by Suzuki and Inutsuka 2009
and Suzuki et al. 2010. This achievement was possible thanks to more robust numerical tech-
niques as well as carefully designed vertical boundary conditions.

The computation of outflows ejected from MRI active accretion disks was now possible
using the shearing box model. The work of Suzuki and Inutsuka 2009 was followed by com-
putations of highly (Ogilvie 2012; Lesur et al. 2013) and weakly (Moll 2012; Bai and Stone
2013a; Fromang et al. 2013) magnetized accretion disks launching magnetized outflows. They
show a similar structure to the solutions of Ferreira 1997 where a laminar magneto-centrifugal
wind is launched from a turbulent accretion disk (Fromang et al. 2013; Lesur et al. 2013), see
Fig. (1.14). In contrast to self-similar solutions, weakly magnetized outflows are possible in
shearing-box simulations. This inconsistency is one of the main motivations behind the work
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Figure 1.14: Growth and saturation of the MRI in presence of strong mean vertical magnetic
field. Tubes are magnetic field lines while gas density is represented with volume rendering.
The structure is similar to the one obtained by Ferreira and Pelletier 1995 with a turbulent disk
and a laminar outflow. Adapted from Lesur et al. 2013

presented in this manuscript.
Despite their other successes shearing-box simulations struggle simulating realistic out-

flows:

– Fromang et al. 2013 found that the mass ejection rate depends on the box size, taller boxes
leading to smaller mass loss rates, a consequence of the shape of the gravitational potential
in shearing box simulations.

– Lesur et al. 2013 found that unless symmetry was artificially forced the magnetic config-
uration reached an unphysical top/down symmetry. In this unphysical configuration the
wind is ejected towards the central object. This is probably a consequence of the shear-
ing box having too many symmetries (Lesur 2020). This implies that global curvature
effects, absent from the shearing box model, are mandatory to obtain physically valid
outflow solutions.

Magnetized outflow were then obtained for shearing box simulations with non-ideal effects
(Ambipolar and Ohm) by Bai and Stone 2013b. They found that in such a configuration the disk
was laminar, MRI was suppressed by the non-ideal effects, and a magneto-centrifugal laminar
outflow was launched from the surface of the disk. This laminar outflow exerted a laminar
torque on the disk leading to accretion without the need of any turbulence. However, these
non-ideal models suffer from the same drawbacks as the ideal ones.

It was necessary to go beyond two dimensional effective models, like the self-similar so-
lutions, and the shearing box models. To this end, global numerical simulations combining
MRI-driven turbulence and magnetically-driven outflows were computed (Suzuki and Inutsuka
2014). However, the work of Suzuki and Inutsuka 2014 had to deal with a limited radial and
latitudinal extent, making the simulations difficult to interpret.

It was until 2018 that more robust algorithms and more numerical resources lead to the first
consistent computation of 3D global numerical simulations combining MRI-driven turbulence
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Figure 1.15: Snap shot of a the simulation computed by Zhu and Stone 2018, we recognize
the outflow and the turbulent disk. Static mesh refinement is necessary to capture the MRI
turbulence at the disk midplane and to extend the calculations to the pole. Adapted from Zhu
and Stone 2018.

and magnetically-driven outflows (Zhu and Stone 2018). We show in Fig. (1.15) a snapshot of
the numerical simulation performed by Zhu and Stone 2018, in it we appreciate the enormous
numerical scale of a 3D global simulation that can compute the outflow and resolve MRI turbu-
lence. These weakly magnetized simulations show that it is possible to launch an outflow with
a weak magnetic field and are thus in tension with self-similar models (Ferreira 1997). Further-
more, these weakly magnetized simulations are known to exhibit an exotic global configuration.
For instance, the stationary state found by Zhu and Stone 2018 and Mishra et al. 2020 possess
3 distinct features: a turbulent disk, a supersonically accreting atmosphere, mostly driven by a
laminar Maxwell torque, and a tenuous wind that does not transport a considerable amount of
angular momentum and mass.

These numerical results are in flagrant contradiction with usual two dimensional ’effec-
tive’ models of outflow-emitting disks. In these models, accretion typically occurs in the disk
bulk and angular momentum escapes through a magnetized outflow launched from the disk
surface (Murphy et al. 2010; Stepanovs and Fendt 2016). Even though some effective models
predict accretion preferentially located within the disk surface (≃ 3h:Guilet and Ogilvie 2013;
Jacquemin-Ide et al. 2019), where h is the disk pressure scale-height, none of these models pro-
duce accretion in the disk atmosphere at z ∼ 10h, as is observed in the numerical simulations of
Zhu and Stone 2018 andMishra et al. 2020. Furthermore, Zhu and Stone 2018 (see their Fig. 10)
and Mishra et al. 2020 (see their Fig. 7) show that this accreting atmosphere features turbulent
torques at high magnetization, high above the disk. The dynamical role and the origin of this
’second’ turbulence it not known as of today. For the sake of clarity, we show in Fig. (1.16) the
vertical structure of the simulations of Zhu and Stone 2018 (left) and of a typical 2.5D effective
model (right).

Global numerical simulations combining non-ideal MHD effects (Ambipolar and Ohm) and
magnetically-driven outflows do not have this problem (Béthune et al. 2017). Indeed, it may
seem that when non-ideal effects are included the 2 dimensional approximation is accurate.
Hence, the inconsistency in ideal MHD simulations must be related to the MRI-driven turbu-
lence.
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Figure 1.16: Schema showing the the magnetic topology (Bp) and velocity field lines (up) of
self-similar solution (right) and the simulation of Zhu and Stone 2018 (left)

1.5 Secular evolution in accretion disk
As was discussed above, the outbursts in DNs and LMXRBs are expected to have a higher
accretion rate during the outburst state when compared to the quiescent state. The disk instability
model (DIM) can model the temporal behavior of those objects during an outburst (see Lasota
2001 for a review). The DIM only includes the MRI-driven turbulent torque. The DIM uses
two different values of the Shakura-Sunyaev α parameter to model the different magnitudes of
the luminosity, during outburst and quiescence, of DNs and LMXRBs (Lasota 2001).

To be more precise, in DNs it was shown that during the eruption α ≃ 0.1 (Kotko and Lasota
2012) while in quiescence α ≃ 0.03 (Cannizzo et al. 2012). However, shearing box simulations
clearly showed that MRI-driven turbulence fails to reproduce the dramatic changes of the α
parameter, and thus the lights curves of DNs (Latter and Papaloizou 2012). Furthermore, as was
mentioned before the low ionization during the quiescent state in DNs leads to the disappearance
of MRI-driven turbulence during the quiescent state (Scepi et al. 2018b).

The DIM could also explain the spectral transitions and the outburst in X-ray binaries (Mi-
neshige and Wheeler 1989). If that were the case, the DIM could unify the behavior observed in
DNs with the one observed in X-ray binaries (Dubus et al. 2001; Coriat et al. 2012). The DIM
can be a useful model to understand the luminosity evolution in X-ray binaries. However, the
DIM struggles to model the spectral variations of X-ray binaries during the outburst (Coriat et
al. 2012; Hameury et al. 2017). The thermal instability of the DIM happens at low temperature
and are therefore confined to the outer radii of Xray binaries. Therefore, the DIM could be part
of the mechanism behind the outburst of LMXRBs but it can not be the main driver behind the
spectral transition.

An alternative mechanism to explain the outburst of LMXRBs was proposed by Ferreira
et al. 2006b. We show in Fig (1.17) a simplified picture of this hybrid disk model. In this model
the system is composed of two distinct disks:

– An inner highly magnetized accretion disk where the laminar torque dominates. This
inner disk is called the Jet Emitting Disk (JED) (Ferreira 1997).

– An outer weakly magnetized accretion disk where the turbulent torque dominates. This
outer disk is called the standard accretion disk (SAD) (Shakura and Sunyaev 1973).
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Figure 1.17: Schema of the JED-SADmodel, showing the important parameters rj and ṁ. Figure
courtesy of G. Marcel.

The accretion velocity is supersonic in the inner regions and subsonic in the outer regions. The
JED-SAD model has two main parameters the forcing accretion rate arriving from the donor
star, ṁ and the transition radii between the disks, rj.

However, as was discussed above once an outflow is included a large-scale vertical magnetic
field is required. In the absence of a large-scale vertical magnetic field, no outflow could be
launched. Moreover, if a large-scale vertical magnetic field is present, its transport becomes a
critical issue. Indeed, the vertical magnetic field is going to react to turbulence and accretion.
The vertical magnetic field will be advected by the accretion flow or diffused by the turbulence.

While most of the literature has focused on mass and angular momentum transport, the ques-
tion of magnetic field transport is also a key element if one is to predict the secular evolution
of a disk subject to a magnetized outflow. It is this secular evolution that then leads to interest-
ing observational evidence, like for example eruptions in X-ray binaries (Ferreira et al. 2006b;
Marcel et al. 2018a, 2019) or dwarf novae (Scepi et al. 2019; Scepi et al. 2020). The question
of magnetic field transport was tackled in the seminal work of Lubow et al. 1994 who showed
how the magnetic field could be advected towards the inner regions of the disk by the accretion
flow. They also show that when the accretion is driven by turbulent torques the field advection
is inefficient. The turbulent diffusion of the magnetic field dominates the transport of magnetic
flux. Rothstein and Lovelace 2008 later showed that taking into account the laminar torque due
to an MHD wind could lead to magnetic field transport towards the inner regions. Guilet and
Ogilvie 2014 and Li and Cao 2021 showed that even without the presence of a laminar torque,
inward transport of the magnetic field could be possible if the computation took into account the
vertical structure of the disk. General relativistic MHD (GRMHD) simulations have shown that
it is possible to transport the magnetic flux towards the central object (McKinney et al. 2012;
Liska et al. 2020). However, those results seem to be in contradiction with the analysis of MHD
numerical simulations (Mishra et al. 2020) that do not measure the advection of the magnetic
field.

The picture of Ferreira et al. 2006b was tested observationally by Marcel et al. 2019. They
were able to observationally reproduce an outburst by only varying the main parameters (ṁ and
rj). However, the question remains if such a hybrid configuration could naturally occur from a
simpler initial condition. Such a configuration is supposed to be reached naturally, thanks to the
magnetic field advection (Ferreira et al. 2006b).

In the context of DNs Scepi et al. 2019 included the effect of the laminar torque acting
on the accretion into the DIM model. When they introduced the laminar torque a hybrid disk
configuration, like the JED-SADmodel, naturally appeared. They then computed outbursts that
resemble the data without the need for an unphysical double α model. However, they realized
that in the presence of a vertical magnetic field, the transport of magnetic flux needed to be taken
into account. Scepi et al. 2020 included a prescribed model for the magnetic field transport into
their DIM model and were able to also reproduce the behavior of DN outbursts. Moreover, they
also recovered a hybrid disk configuration similar to the JED-SAD model and consistent with
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Scepi et al. 2019.

1.6 Aims and contents
As was discussed during the introduction there is no perfect way to simulate the dynamical prop-
erties of outflow launching accretion disks. Indeed, all modeling methods have their advantages
and drawbacks:

– 2D effective models, like self-similar models or 2.5D simulations, are numerically cheap,
they can capture the properties of the outflow and its constraint on the disk structure.
However, their accuracy depends on the ad-hoc turbulent closure that is imposed.

– 3D shearing box simulations are numerically mildly expensive and can accurately model
the MRI-driven turbulence and its structure. However, they are unable to model the
asymptotic properties of the outflow. Furthermore, the outflows launched by shearing-
box simulations are subjected to several numerical biases.

– 3D global simulations are highly expensive. However, they are the only numerical model
that can capture the MRI-driven turbulence and the asymptotic properties of the outflow.

Due to the unconstrained nature of the magnetic field, thoroughly exploring a parameter
space with 3D global simulations is impossible. Hence, 3D global MHD simulations are hard
to compare with observations of outflows while radiative transfer simulations are not (Tomaru
et al. 2019). This is not true for self-similar solutions as the parameter space is considerably
easier to explore.

However, self-similar models face several challenges that need to be addressed:

1. Self-similar models can not produce weakly magnetized solutions (Casse and Ferreira
2000b) in contrast with 3D global simulations and shearing box simulations.

2. Self-similar models struggle to produce dense solutions that fit the observations of molec-
ular outflows or X-ray binary winds.

3. Self-similar models produce a very different vertical structure than 3D global simulations
(Zhu and Stone 2018). We illustrate this in Fig.(1.16).

As said before, the secular evolution of the magnetic flux in accretion disks could be es-
sential to reproduce the outburst of DNs (Scepi et al. 2020) or LMXRBs (Marcel et al. 2019).
Self-similar solutions by themselves cannot compute the secular evolution of accretion disks.
Only 3D global numerical simulations can constrain the global evolution of the magnetic flux.
Hence, our final objective is to address the transport of magnetic flux in 3D global numerical
simulations. (4) We need to address if magnetic flux transport exists and if it can modify the
radial structure of the accretion disk.

The manuscript is organized as follows:

– In chapter 2we present themagnetohydrodynamical foundations of accretion and ejection.
We derive a set of Reynolds average equations, the dispersion relation of compressible
MRI, the main properties of outflow acceleration.

– In chapter 3 we compute new self-similar solutions that address questions (1) and (2).
We then describe their properties, detail the constraints imposed by the different critical
points, and explore the consequences of our turbulent closure.
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– In chapter 4 we compute a set of 3D global MHD simulations to address the question (3).
We then compute the secular evolution of the angular momentum and the magnetic field
to address the question (4). We use the set of Reynolds averaged equations to understand
the role of turbulence on the dynamics of the system. We then elucidate the properties
of the outflow. Finally, we explore the effect of different magnetizations and geometrical
thickness on the properties of the system.

– In chapter 5 we derive a set of turbulent closures using our set of 3D global simulations
to educate future self-similar models to fully address question (3). The turbulent model
educated from the global simulations will allow us to produce more accurate effective
models that will be compared to observations in future work.
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In this chapter, we describe the theoretical background needed to model the dynamics of
magnetized accretion disks. We start by introducing how we hydrodynamically model an accre-
tion disk, next we compute the hydrostatic equilibrium of such an object. Then we introduce the
magnetohydrodynamical model of an accretion disk and we discuss their regimes of validity.
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Afterward, we perform a linear analysis on the ideal MHD equations to discuss the ideal MHD
waves as well as the instability that arises in a disk with a Keplerian shear. Next, we Reynolds
average the ideal MHD equations to distinguish the turbulent from the average components. We
show how the turbulent components have an important impact on the dynamics of the accretion
disk. Finally, we describe the phenomenology of outflow launching and propagation with the
help of the MHD invariants.

2.1 Magnetohydrodynamic preliminaries

2.1.1 Disk hydrodynamics

We define an astrophysical disk as an ensemble of gas particles orbiting at an angular velocity
Ω around a central object of mass M. This gas or plasma has fluid properties and thus has a
density ρ and a pressure P. The gravitational potential from the central object has the form

ΦG = −
GM
r
, (2.1)

where r is the spherical radius and G is the universal gravitational constant. In this manuscript
we will use both spherical coordinates (r,θ,φ) as well as cylindrical coordinates (R,φ,z), where
we define the cylindrical radius R = r sin θ and the cylindrical height z = r cos θ.

We model the dynamics of astrophysical disks using the (magneto)hydrodynamic approxi-
mation. This fluid approximation is accurate if collisions between ions and elections are frequent
enough, this is equivalent to

Ωscale ≪ νei, (2.2)

λscale ≫ λei =
vTe
νei
, (2.3)

where Ωscale and λscale are the frequency and spatial scales of the astrophysical disk system.
We also define νei the frequency of ion-electron collision and vTe the thermal velocity of the
electrons. More precisely

νei =
2πe4

m1/2
e k3/2B

ne ln Λ
T3/2

, (2.4)

vTe =

√
kBTe

me
, (2.5)

where e is the electron charge, ne is the electron density, Te is the electron temperature and
ln Λ ∼ 20 is the coulomb potential. This fluid approximation is accurate for most regions of
the accretion disks considered in this manuscript (X-ray binaries, YSO, Novae-like variables).
However, it is important to note that in regions close to the central object (in the coronal or
magnetosphere) where ne is much smaller and T is much larger the fluid approximation breaks
and kinetic effects need to be taken into account. In those conditions, a particle in cell (PIC)
methods or even a brute force resolution of the Vlasov equation could be the only method to
accurately model the plasma.
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We consider an astrophysical disk in hydrostatic equilibrium around the central object. In
this configuration the radial and vertical components of the Euler equations can be written as

0 = − 1
ρ
∂P
∂R
− ∂ΦG

∂R
+ Ω2R, (2.6)

0 = − 1
ρ
∂P
∂z
− ∂ΦG

∂z
, (2.7)

where Ω = vφ/R is the angular velocity of the flow. Close to the disk mid-plane it is a good
approximation to assume that

Ω(z ≪ R,R) ≃ ΩK ≡
√

GM
R3 , (2.8)

where we have defined the Keplerian frequency ΩK which corresponds to the orbital frequency
of a point particle around the central object. We further assume that the disk is locally isothermal,
T(R), which imposes a isothermal sound speed that is only a function of R, cs(R) =

√
P/ρ. Since

we assume that the disk is thin (z ≪ R), we can simplify the vertical acceleration due to the
gravitational potential,

− ∂ΦG

∂z
= −z GM[

R2 + z2
] 3
2
≃ −zΩK + O(z3). (2.9)

Putting this all together into Eq. (2.6) we find

ρ = ρmid(R) exp
[
− z2

2h2

]
, (2.10)

where we define the disk scale height as

h =
cs
ΩK
. (2.11)

For the thin disk approximation to remain valid we require cs ≪ VK, where VK = RΩK is the
Keplerian velocity. We define the disk geometrical thickness as

ε =
h
R
=

cs
VK
. (2.12)

We notice that ε ≪ 1 in all cases considered since the Keplerian rotation is highly supersonic.
In the radial direction (Eq. 2.7) we obtain

∂ΦG

∂R
≃ Ω2

KR = Ω
2R, (2.13)

wherewe have neglected the pressure gradient since it is (h/R)2 times smaller. This result implies
that the disk is in Keplerian rotation, Ω ≃ ΩK. The Keplerian rotation profile is an essential piece
of the accretion puzzle as we will see in section 2.2.2.
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2.1.2 MHD equations and their validity
Within this manuscript, we model astrophysical plasmas within the (ideal) MHD approximation.
Hence, we start by discussing the validity of the ideal MHD approximation in the context of X-
ray binaries and the inner regions of protoplanetary disks. For the sake of simplicity, we assume
quasi neutrality as it is a good approximation for most astrophysical plasmas. To bemore precise
we assume

ni = Zne, (2.14)

where ni and ne are the particle densities of ions and electrons and Z is the average of charges
of the ions. We note that for electro-neutrality to be respected, the Debye sphere of the plasma
needs to be much smaller than the length scales of the accretion disk. Furthermore, the plasma
frequency needs to be larger than the characteristic frequencies of the accretion disk. Both
conditions are easily satisfied in most astrophysical plasmas.

Once electro-neutrality is assumed, three conditions need to be satisfied for a plasma to be
properly modeled by the ideal MHD approximation:

– The plasma should be ionized enough for the ideal MHD approximation to be adequate.

– As described above, there must be frequent collisions between electron and ions to estab-
lish fluid behavior.

– The macroscopic length and frequency scales, defined as λscale and Ωscale respectively,
should be much larger than the Larmor radius and cyclotron frequency so that the latter
can be averaged out.

Approximating the ionization fraction is straightforward for X-ray binaries, assuming ther-
mal equilibrium, their ionization fraction can be computed with the Saha equation

ni
nn
=

[
2πmekB

h2p

] 3
2 T3/2

ni
e−Ui/(kT), (2.15)

where nn is the particle density of neutrals,me is the electron mass, kB is the Boltzmann constant,
hp is the Plank constant, T is the temperature, Ui is the ionization energy. Since X-ray binaries
are very hot T ∼ 107 − 109K (Done et al. 2007) we get ni

nn
≫ 1.

Computing the ionization fraction is not as straightforward for protoplanetary disks. The
ionized state of the inner regions of protoplanetary disks is a consequence of the thermal ion-
ization of alkali metals (Armitage 2011). Therefore, we would need to consider the metallicity
of the gas. Moreover, as was discussed in chapter 1 in the outer regions of protoplanetary disks
the degree of ionization is a consequence of non-thermal processes like X-ray illumination from
the star, cosmic-ray ionization, and turbulent heating (Armitage 2011; Lesur 2020). Because of
the low degree of ionization within those regions non-ideal effects like ambipolar diffusion or
Ohmic resistivity become important (Gammie 1996; Perez-Becker and Chiang 2011). Within
this manuscript, we will ignore those non-ideal effects.

For the microscopic behavior to be averaged out in our macroscopic description, the cy-
clotron length and frequency scales must be constrained as

Ωscale ≪ ωci (2.16)

λscale ≫ Rci =
v⊥
ωci

(2.17)
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where Ωscale and λscale are the frequency and spatial scales of the astrophysical disk system and
ωci is the cyclotron frequency of the ions defined as

ωci =
eB
me

(2.18)

where B is the magnetic field and Rci is the Larmor radius of the for the ions, the ions length
and times scales as they provide the most stringent constraints. In all cases considered in this
manuscript the astrophysical scales involved are larger than the inherent cyclotron scales we
can conclude that the microscopic behavior is averaged out and that the accretion disk is well
modeled by MHD. If we modeled the accretion disk with a PIC method resolving the cyclotron
scales as well as the Debye length scale would be critical. The PIC approach is better suited for
highly magnetized small scale phenomena.

Since the magnitude of the magnetic field in accretion disks is badly constrained, it is useful
to define the plasma beta

β =
B2

8πP
, (2.19)

the strength of the magnetic field pressure compared to the plasma pressure. This quantity is
one the main parameters of the system.

We can nowwrite the equations of ideal MHD for an accretion disk around an object of mass
M

∂ρ
∂t
+ ∇ · [ρu] = 0, (2.20)

ρ
(
∂u
∂t
+ (u · ∇)u

)
= −∇P + ρ∇ΦG +

1
c
J × B, (2.21)

∂P
∂t
+ u · ∇P + γP∇ · u = (γ − 1)Λcool (2.22)

∂B
∂t
= ∇ × [u × B] , (2.23)

where ρ, u, P, and B are respectively the plasma density, velocity, thermal pressure, and
magnetic field, ΦG = −GM/r is the gravitational potential, γ is the heat capacity ratio and
J = c∇ × B/4π is the current. We note that Eq.(2.22) assumes and ideal equation of state

P =
ρ

μmolmp
kBT, (2.24)

where μmol is the mean molecular weight, we note that μmol ∼ 1. The precise value of μmol
depends on the astrophysical object considered. In a realistic treatment, the cooling function
Λcool would represent the effect of cooling radiation emitted by the accretion disk. However, in
this manuscript the effect of radiative transfer is ignored, the cooling function will be prescribed
depending on the modeling method. It is important to note, that to rederive Eq. (2.23) from
the Maxwell equations we have assumed that the displacements of the fluid are non-relativistic.
This is accurate for the inner regions of protoplanetary disks, however not so much for X-ray
binaries where even general relativistic effects could become important.

Finally, we define the poloidal velocity and magnetic field as

up = urer + uθeθ = uReR + uzez
Bp = Brer + Bθeθ = BReR + Bzez.
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2.2 Linear analysis of the MHD equations
In this section, we perform a linear perturbation analysis on the MHD equations: (1) We start by
describing the role of the magnetic field on wave propagation in a uniform medium. We use this
example to define the different waves propagating in a homogeneous ideal MHD plasma. This
example also allows us to build some insight into the dynamical role of the magnetic field. (2)
We then address the dynamical impact of the magnetic field on a disk with a Keplerian profile
but with a compressible plasma. We see that in this case, an MHD instability appears. We
then quickly describe the impact of magnetic field strength on this instability. (3) Finally, we
consider a compressible plasma with a Keplerian velocity profile and recognize how the role of
the magnetic field strength changes in this configuration.

2.2.1 MHD waves
We need to start from the ideal MHD equations (2.20-2.23), as well as the adiabatic gas law

dPρ−γ

dt
= 0, (2.25)

which can be derived from Eq. (2.22) by taking Λcool = 0.
We decompose our quantities using linear perturbation theory: B = B0 + b, u = u′, P =

P0 + P′ and ρ = ρ0 + ρ′, where the |B0| ≫ |b|, P0 ≫ P′ and ρ0 ≫ ρ′. We look for wave like
solutions of Eq. (2.20,2.23) where the perturbed quantities vary ∝ eik·r−iωt, where ω is the wave
frequency and k the wave vector. It follows that

ωρ′ + ρ0k · u′ =0, (2.26)

−ωρ0u′ + kρ′ −
1
4π

[k × b] × B0 =0, (2.27)

ωb + k × [
u′ × B0

]
=0, (2.28)

−ω
[
P′

ρ0
− γ ρ

′

ρ0

]
=0. (2.29)

We combine the equations into the linearized equation of motion to find[
ω2 − (k · B0)2

4πρ0

]
u =

([
γP0

ρ0
+

B2
0

4πρ0

]
k − (k · B0)

4πρ0
B0

) (
k · u′) − (k · B0) (u · B0)

4πρ0
k. (2.30)

Without loss of generality, we can assume that B0 = B0ez and k = kxex + kzez. We define θ the
angle between B0 and k. Thanks to this consideration we write Eq. (2.30) as

←→Mu = 0 with
←→M

a matrix function of ω. Non trivial solutions for u satisfy det(
←→M) = 0, this computation leads

to the dispersion relation(
ω2 − k2V2

Acos
2(θ)

) [
ω4 − ω2k2

(
V2
A + c

2
s

)
+ k4V2

Ac
2
scos2(θ)

]
= 0, (2.31)

with VA =

√
B20
4πρ0

and cs =
√

γP0
ρ0
the Alfvén speed and sound speed respectively. The 3 solutions

to this polynomial define the dispersion relations for the different ideal MHD waves.
Shear Alfvén waves: Their dispersion relation is:

ω = ±kVAcosθ, (2.32)



CHAPTER 2. MAGNETOHYDRODYNAMICAL THEORY OF ACCRETION AND
EJECTION 41

with VA =

√
B20
4πρ0

being the phase speed of the wave.
Magneto-sonic waves: Their dispersion relation is:

ω = kV±, (2.33)

V± =
12

V2
A + c

2
s ±

√(
V2
A + c2s

)2
− 4V2

Ac2scos2θ


1
2

. (2.34)

We define Vfm ≡ V+ the wave velocity associated with the fast wave and Vsm ≡ V− the wave
velocity associated with the slow wave.

The magnetic field modifies wave propagation through both components of the Lorentz
force: (1) The magnetic tension leads to Alfvén wave that propagates only through the magnetic
field lines and disappears in the absence of a magnetic field. (2) The magnetic pressure modifies
the dynamics of acoustic waves by adding a compression effect.

We note that the fast waves are a magneto-acoustic perturbation that propagates in a quasi-
isotropic manner. The slow waves also transport magneto-acoustic information, however, they
propagate in a highly anisotropic manner, they follow the magnetic field. The Alfvén wave is
a purely magnetic perturbation, they bend the magnetic field lines without compressing them
and, they do not perturb the plasma density.

2.2.2 Lagrangian analysis of the MRI
The Magneto-Rotational instability (MRI) was discovered by Hawley and Balbus 1991, who
showed that it could create strong turbulence in Keplerian disks. Once a mean magnetic field is
coupled with a disk in Keplerian rotation the MRI appears. In this manuscript, we only address
the MRI in the presence of a mean vertical magnetic field B0 = B0ez. We start our study of the
MRI by constraining its growth rate with Lagrangian analysis. The equation of motion of a fluid
particle in a gravitational well with an ambient vertical magnetic field are

d2R
dt2
− R

(
dφ
dt

)2
= −∂ΦG

∂R
+ FR, (2.35)

R
d2φ
dt2
+ 2

dR
dt

dφ
dt
= Fφ, (2.36)

where F is the magnetic Lorentz force. We use local coordinates as they simplify the analy-
sis. We consider an infinitesimal displacement around a radius R0 that is rotating at an angular
velocity Ω0. We define the cartesian local coordinates (x, y) as

R = R0 + x, (2.37)

φ = Ω0t +
y
R0
, (2.38)

where Ω0 = ΩK(R0). If we consider horizontal perturbations of the form ξ = (x, y) ∝ ei(ωt−kz),
we can linearize the induction equation (Eq. 2.23)

∂δB
∂t
= B0
∂δu
∂z
=⇒ δB = −ikB0ξ, (2.39)

where δu is the velocity of the fluid particle. We now write the linearize Lorentz force as
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F
ρ
=

1
4πρ

B · ∇B − 1
2
∇B2︸︷︷︸
=0

 = B0 · ∇δB
4πρ

= −
k2B2

0ξ
4πρ

= −V2
Ak

2ξ,

the only term that does not vanish is the horizontal component of the magnetic tension.
We can rewrite the equation of motion as

d2x
dt2
= 3Ω2

0x + 2Ω0
d2y
dt2
− V2

Ak
2x, (2.40)

d2y
dt2
= −2Ω0

d2x
dt2
− V2

Ak
2y, (2.41)

which can be rewritten as [
−ω2 + k2V2

a − 3Ω2
0

]
x − 2iωΩ0y = 0 (2.42)

2iωΩ0x +
[
−ω2 + k2V2

A

]
y = 0. (2.43)

In the same way as before this can be recast as
←→Mξ = 0, with

←→M a matrix function of ω. The
dispersion relation can be derived by computing det

←→M = 0, it can be written as

ω4 − ω2
[
2k2V2

A − 3Ω2
0 + 4Ω

2
0

]
+ k2V2

A

[
k2V2

A − 3Ω2
0

]
= 0. (2.44)

For this dispersion relation to describes a linear instability ω2 needs to be negative, this is equiv-
alent to

k2V2
A − 3Ω2

0 < 0, (2.45)

for kVA values above this limit the MRI is suppressed. The maximum growth rate of the linear
instability are obtained for VAk =

√
3Ω0/2 with ωmax =

3
4Ω0. One can interpret the MRI as the

consequence of 2 parcels of fluid attached by a vertical field line. When we slightly move the
fluid parcels radially they will start to drift azimuthally as they arrive at a region with a different
local angular momentum. As they drift apart, the magnetic tension will act as restoring force to
bring the fluid parcels back together, slowing down the inner parcel and accelerating the outer
fluid parcel. Indeed, the inner parcel of fluid will lose angular momentum while the outer one
will gain angular momentum. This causes the inner parcel to fall towards the central object and
reversely for the outer fluid parcel. For the mechanism to be effective the magnetic restoring
force needs to be sufficiently weak or else it will completely stabilize the system and restore the
fluid parcels to their original position.

The mechanism detailed above leads to the development of oscillatory channel mode struc-
tures that grow exponentially (Balbus and Hawley 1991). Eventually the channel mode struc-
tures break down due to the development of parasitic instabilities of Kelvin-Helmhotz type
(Goodman and Xu 1994). The break down of the channel mode structures leads to the de-
velopment of MRI-driven turbulence.

We define the magnetization parameter μ as

μ =
V2
a0

c2s0
, (2.46)
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where both velocities are evaluated at the disk mid-plane. This quantify is only defined at the
disk mid-plane and is related to the plasma beta, μ = 2/β. In contrast, in this manuscript the
plasma beta will be defined on the entire domain.

Equation (2.45) shows that when the disk is highly magnetized, the only way for MRI to
remain active is if the MRI wavelength (2πk ) is large. Indeed, the MRI can exist at an arbitrarily
strongmagnetic field, provided large enough wavelengths are possible. Moreover, for a constant
MRI wavelength, the MRI cannot exists at an arbitrarily high magnetic field. We can consider
that the MRI wavelength is dictated by the accretion disk scale height (k ∼ 1/H). Indeed, we
expect the MRI wavelength to be constrained by the stratification of the system. Then by using
V2
A = c2s μ we rewrite Eq. (2.45) as

μ < 3 (2.47)

we derive a critical value for μ for which the accretion disk is stable to MRI. Latter et al. 2010
performed a linear analysis of the stratified MRI and found a critical value of the magnetization
of 0.7. This is, within a factor of two, consistent with our value. However, in their analysis, they
consider a Gaussian density profile for the stratification of the disk. If the disk density profile
is modified by the presence of a mean magnetic field this analysis could be no longer valid (see
chapter 4).

2.2.3 MRI at strong magnetic field
We now rederive the dispersion relation for the compressible magneto rotational instability in
the limit of a strong magnetic field (or cold plasma), then we rederive in a simplified manner
some of the results shown by Kim and Ostriker 2000. We consider an ideal, isothermal plasma
in rotation around a central object, we perform this analysis in the local rotating coordinates
defined by Eq. (2.37). Indeed, we take a fiducial radius R0 and attach a cartesian frame (x, y, z)
centered on R0 and rotating at Ω = Ω(R0) so that x corresponds to the local radial direction R−R0
and y the local azimuthal direction φ. We assume that the plasma is initially at equilibrium, with
angular velocity ΩK(R), constant density ρ0, pressure c2s ρ0 and magnetic field B0. As in section
2.2.1, we add a small perturbation to this plasma so that ρ = ρ0 + δρ, u = RΩKeφ + δu and
B = B0 + δb, where ρ0 ≫ δρ, B ≫ δb and RΩKez ≫ δu. In order to characterize the evolution
of this perturbation, we use the displacement vector field ξ, defined by its relation to the velocity
perturbation

δu =
Dξ
Dt
− (ξ · ∇)RΩKeφ. (2.48)

The equation of perturbed motion for the displacement vector in the rotating frame (x, y, z) reads

ρ0
D2ξ
Dt2
= −c2s∇δρ −

1
4π
∇(B0 · δb) +

1
4π

B0 · ∇δb

− 2ρ0ΩKez ×
Dξ
Dt
− 2ρ0ΩK

dΩK

d logR
ξxex. (2.49)

One recognizes in the last two terms the Coriolis force and the radial effective potential. We
chose to neglect the vertical effect of gravity since it is not relevant for the behavior of instability.
We can then rewrite Eq. (2.20) and Eq. (2.23) by using the displacement vector (Ogilvie 2016),
the density and magnetic perturbations are easily deduced by integration

δρ = −ρ0∇ · ξ,
δb = B0 · ∇ξ − B0(∇ · ξ),
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which can be combined to the equation of motion on ξ to get

D2ξ
Dt2
= (c2s + V2

A)∇(∇ · ξ) − ∇
[
VA · ∇(VA · ξ)

]
+ VA · ∇

[
(VA · ∇)ξ

]
− VA

[
VA · ∇(∇ · ξ)

]
− 2ΩK×

Dξ
Dt
+ 2qΩ2

Kξxex,

where we define the Alfvén velocity vector VA ≡ B0/
√
4πρ0 and q ≡ −d logΩ/d logR. This

equation is reminiscent of the traditional stability analysis of ideal plasmas (e.g. Frieman and
Rotenberg 1960), with the addition of inertial and gravitational forces.

Figure 2.1: Maximum growth rate as a function of the field shear Bφ/Bz and the local plasma β
for the Keplerian shear case q = 3/2

We assume a background field with only toroidal and vertical components B0 = B0,ϕey +
B0,zez, and perturbations with only a vertical spatial dependency. We then seek for growing
(unstable) solutions of the form ξ(z, t) = ξ̂ exp(γt + ikz). Injecting this solution functional into
the equation for the displacement vector one gets

[
γ2 + V2

Azk
2
z

]
ξ = −(c2s + V2

A)k2z ξxez + k2zVAz
(
VA · ξ

)
ex + VAzk2z ξzVA − 2γΩKez × ξ + 2qΩ2

Kξxex,
(2.50)

which can be rewritten in matrix form,
←→Mξ = 0, where

←→M =


2qΩ2

K −
[
γ2 + V2

Azk
2
z

]
2γΩK 0

−2γΩK −
[
γ2 + V2

Azk
2
z

]
VAφVAzk2z

0 VAφVAzk2z −
[
γ2 + V2

Azk
2
z

]
 . (2.51)
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non trivial solutions are defined by det
←→M = 0, one eventually gets the dispersion relation

c2sk2
[
γ4 +

(
2V2

Azk
2 + κ2

)
γ2 + V2

Azk
2(V2

Azk
2 − 2qΩ2

K)
]

+γ6 + γ4
[
(V2

A + V
2
Az)k

2 + κ2
]

+γ2V2
Ak

2

V2
Azk

2 + 4Ω2
K

V2
Aφ

V2
A
− 2qΩ2

K

 = 0. (2.52)

where we introduce the epicyclic frequency κ2 ≡ 2Ω2(2 − q). Although general solutions can
be derived for this dispersion relation, they are not enlightening. It is more instructive to look
at the weakly magnetized and strongly magnetized limits.

In the weakly magnetized case (VA/cs → 0) the first line of Eq. (2.52) dominates, and
we recover1 the usual dispersion relation for the MRI in the incompressible limit (Balbus and
Hawley 1991). The stability condition is then the same as in our previous calculation and is
given by Eq. (2.45) when q = 3/2. As discussed before, the stability of the MRI in this regime
depends completely on the size of the perturbation k.

If we now take the strong field limit VA/cs → ∞, things become more interesting. The first
line of the dispersion relation is now negligible. We can write the stability condition now as
V2
Azk

2 + 4Ω2V2
Aφ/V

2
A − 2qΩ

2 < 0→ instability. A weak enough VAφ is necessary for the MRI to
exist independently of k, in contrast to the weak field case. More precisely, a necessary condition
for the instability to exist is

V2
Aφ/V

2
A < q/2. (2.53)

In this limit Eq. (2.52) reduces to equation (46) in Kim and Ostriker 2000.
In the strongly magnetized regime, VA ≫ cs, the existence of the MRI is constrained by the

strength of the toroidal magnetic field, a strong enough Bφ can stabilize the plasma. We can
confirm this by computing the growth rate, γ, in the general case from Eq. (2.52). We show this
in Fig. 2.1, which shows the growth rate (maximized on k) as a function of the field strength
VAφ/VAz = Bφ/Bz and the plasma beta β for the Keplerian case q = 3/2.

2.3 Magnetized and turbulent disks

2.3.1 Reynolds averaged MHD equations
The MRI discussed in the previous section will lead to the development of MHD turbulence
within the accretion disk system. Once the MRI-driven turbulence appears the characteristics
of the system become harder to quantify. It is hard to diagnostic the properties of the flow (u,
ρ, B) due to its unsteadiness and variability. It is useful to separate the non-steady length and
time scales from the average ones. To do this we introduce a coarse-graining procedure known
as Reynolds decomposition

X = ⟨X⟩ + δX, (2.54)

where ⟨⟩ is an ensemble average. The Reynolds decomposition allows us to distinguish the low
frequency or quasi-stationary component (⟨X⟩), that we refer to as mean, average or laminar,
from the variable or intermittent component (δX). The intermittent component (δX) has the
important property

⟨δX⟩ = 0. (2.55)
1We note that we also get sound waves propagating vertically from the γ6 and γ4c2sk2 terms. These however

have no importance on the stability criterion.
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Correlations between different turbulent fluctuations do not vanish under averaging, indeed,
terms of the form ⟨δXδY⟩ , 0. These emergent terms represent the average feedback of tur-
bulence on the mean outflow. In this manuscript they will be computed using 3D numerical
simulations (chapter 4) or approximated with a turbulent closure (chapter 3 and 5).

An ensemble average is computed by repeating the same numerical experiments multiple
times and averaging over the multiple realizations. It is therefore a quantity that is very numeri-
cally expensive to compute. We can assume ergodicity so that the ensemble average is computed
as a simple integral on t and φ, see Eq. (4.14) in chapter 4. This simplifies the dependencies of
the average components to ⟨X⟩ (R, z), while δX(R, φ, z, t). However, one must be careful when
reducing averaging out the temporal dependence of the equations. One must consider the tem-
poral time scale separation of the problem during the averaging procedure.

In this section we compute a set of ensemble averaged MHD equations without assum-
ing ergodicity, our average quantities still depend on time. However, to simplify the resulting
Reynolds average set of equations we also average with respect to the toroidal coordinate2, φ.
Hence, our average has the following useful property due to the toroidal symmetry of the system〈

∂X
∂φ

〉
= 0. (2.56)

For the sake of simplicity, we also define the following useful average

⟨X⟩ρ =
1
⟨ρ⟩ ⟨Xρ⟩ , (2.57)

noting that ⟨X⟩ , ⟨X⟩ρ, since we define our turbulent fluctuation with respect to the ⟨.⟩ average.
Indeed, Eq.(2.54) also implies that ⟨δX⟩ρ , 0, which leads to additional complications when
dealing with high order correlations.

Before averaging the MHD equations we project the momentum equation with respect to
the spherical coordinates

∂urρ
∂t
+ ∇ ·

[
ρuru −

1
4π

BrB
]
=
1
r

[
ρ
(
u2φ + u2θ

)
− 1
4π

(
B2
φ + B2

θ

)]
− ∂
∂r

(
B2

8π
+ P

)
− ρg, (2.58)

∂ruθρ
∂t
+ ∇ · r

[
ρuθu −

1
4π

BθB
]
= cot θ

[
ρu2φ −

1
4π

B2
φ

]
− ∂
∂θ

(
B2

8π
+ P

)
, (2.59)

∂Ruφρ
∂t

+ ∇ · R
[
ρuφu −

BφB
4π

]
= − ∂
∂φ

(
B2

8π
+ P

)
. (2.60)

Equation 2.60 is the angular momentum conservation equation and is obtained from the toroidal
component of Eq. (2.21),

We now proceed to Reynolds average Eq. (2.20-2.23), we decompose the toroidal velocity
into fluctuating and average components

Rρ
∂
〈
uφ

〉
∂t
+
∂Rδuφρ
∂t

+R
〈
uφ

〉 (
∂ρ
∂t
+ ∇ · ρu

)
︸           ︷︷           ︸

=0

+ρu·∇
[
R

〈
uφ

〉]
+∇·R

[
ρδuφu −

BφB
4π

]
= − ∂
∂φ

(
B2

8π
+ P

)
.

2This is consistent with our computations of chapter 4
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we then decompose the rest of the quantities and average this expression to find

Rρ
∂
〈
uφ

〉
∂t
+
∂R

〈
ρδuφ

〉
∂t

+⟨ρ⟩
〈
up

〉
ρ
·∇R

〈
uφ

〉
+∇·R

[
⟨ρ⟩

〈
δuφup

〉
ρ
− 1
4π

〈
δBφδBp

〉
− 1
4π

〈
Bφ

〉 〈
Bp

〉]
= 0,

(2.61)
where

〈
up

〉
ρ
=

〈
up

〉
+

〈
δup

〉
ρ
and〈
δuiup

〉
ρ
=

〈
δuiδup

〉
ρ
+

〈
up

〉
⟨δui⟩ρ .

We note that the toroidal component of the divergence vanishes thanks to Eq. (2.56), the aver-
aged quantities are only functions of r and θ. We repeat the same procedure for the latitudinal
projection of Eq. (2.21) equation to rewrite it as

rρ
∂ ⟨uθ⟩
∂t
+
∂rδuθρ
∂t

+ ρup ·∇r ⟨uθ⟩+∇·r
[
ρδuθu −

1
4π

BθB
]
= cot θ

[
ρu2φ −

1
4π

B2
φ

]
− ∂
∂θ

(
B2

8π
+ P

)
,

(2.62)
we then average it with respect to time and the azimuthal coordinate to find

rρ
∂ ⟨uθ⟩
∂t
+
∂r ⟨ρδuθ⟩
∂t

+ ⟨ρ⟩
〈
up

〉
ρ
· ∇r ⟨uθ⟩ + ∇ · r

[
⟨ρ⟩

〈
δuθup

〉
ρ
− 1
4π

〈
δBθδBp

〉]
=

1
4π

〈
Bp

〉
· ∇r ⟨Bθ⟩ −

∂

∂θ

[
⟨P⟩ + 1

8π
(
⟨B⟩2 +

〈
δB2

〉)]
+ cot θ

[
⟨ρ⟩

(〈
uφ

〉2
+

〈
δu2φ

〉)
− 1
4π

(〈
Bφ

〉2
+

〈
δB2φ

〉)]
,

(2.63)

where we have used
⟨∇ · BBi⟩ =

〈
Bp

〉
· ∇⟨Bi⟩ + ∇ ·

〈
δBpδBi

〉
.

We repeat the same procedure for the radial projection of Eq. (2.21) equation to rewrite it as

ρ
∂ ⟨ur⟩
∂t
+
∂δurρ
∂t
+ρup·∇⟨ur⟩+∇·

[
ρδuru −

1
4π

BrB
]
=
1
r

[
ρ
(
u2φ + u2θ

)
− 1
4π

(
B2
φ + B2

θ

)]
− ∂
∂r

(
B2

8π
+ P

)
−ρg,

(2.64)
we then average it in the same way as before to find

ρ
∂ ⟨ur⟩
∂t
+
∂ ⟨ρδur⟩
∂t

+ ⟨ρ⟩
〈
up

〉
ρ
· ∇⟨ur⟩ + ∇ ·

[
⟨ρ⟩

〈
δurup

〉
ρ
− 1
4π

〈
δBrδBp

〉]
=

− ∂
∂r

[
⟨P⟩ + 1

8π
(
⟨B⟩2 +

〈
δB2

〉)]
+

1
4π

〈
Bp

〉
· ∇ ⟨Br⟩

+
⟨ρ⟩
r

[〈
uφ

〉2
+

〈
δu2φ

〉
+ ⟨uθ⟩2 +

〈
δu2θ

〉]
− ⟨ρ⟩ g − 1

4πr

[〈
Bφ

〉2
+

〈
δB2φ

〉
+ ⟨Bθ⟩2 +

〈
δB2θ

〉]
(2.65)

We now average Eq. (2.20), thanks to its simple form this is straight forward〈
∂ρ
∂t

〉
+ ∇ · ⟨ρ⟩

[
⟨u⟩ + ⟨δu⟩ρ

]
= 0. (2.66)

The induction equation is also straight forward to average〈
∂B
∂t

〉
= ∇ × [⟨u⟩ × ⟨B⟩ + E] , (2.67)

where the turbulent emf is defined as

E = ⟨δu × δB⟩ . (2.68)
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We can then project with respect to the toroidal direction to find〈
∂Bφ

∂t

〉
= ∇ × [⟨u⟩ × ⟨B⟩ + E]|φ . (2.69)

While we could treat the latitudinal and radial components of the induction equation sep-
arately it is less cumbersome to average the toroidal component of the equation for the vector
potential. Indeed, the average poloidal magnetic field can be written as〈

Bp
〉
=
1
R
∇

[
R

〈
Aφ

〉]
× eφ, (2.70)

hence the average poloidal magnetic field is fully described by the toroidal component of the
vector potential equation, which is written as

∂A
∂t
= u × B + ∇G, (2.71)

where A is the vector potential for the magnetic field and G emerges to satisfy the gauge condi-
tion. To simplify the equations we assume that G is φ symmetric and thus

〈
∂G
∂φ

〉
= 0. Averaging

the toroidal projection of Eq. (2.71) leads to〈
∂Aφ

∂t

〉
=

〈
up

〉
×

〈
Bp

〉∣∣∣∣
φ
+ Eφ, (2.72)

the term ∇G|φ is averaged out. Finally, we also define the flux function a = R
〈
Aφ

〉
, a(R, z) = Cte

defines surfaces where the magnetic flux, ΦB is constant,

ΦB =

∫
S

B · dS = 2πa(R, z). (2.73)

We can appreciate that a considerable amount of new terms, in the form of turbulent correlations
appear thanks to the averaging procedure, luckily the majority of these turbulent correlations do
not have a considerable impact on the dynamics. However, some of them have been the subject
of countless studies: like the turbulent emf, E, that influences the behavior of the large scale
magnetic or the turbulent Reynolds and Maxwell stresses that have an essential impact on the
accretion, we will concentrate our analysis on those terms as well as on the newly revealed
turbulent magnetic pressure.

Using this notation we rewrite the magnetization parameter as

μ =
⟨Bz⟩2 (R, z = 0)
4π ⟨P⟩ (R, z = 0)

, (2.74)

the magnetization is a function of the mean field variables and does not include turbulent corre-
lations.

2.3.2 Two torques
As discussed in chapter 1, accretion is the consequence of angular momentum transport, for
accretion to exist angular momentum needs to be removed from the system. We also discussed,
that two processes can drive angular momentum transport laminar and turbulent processes. The



CHAPTER 2. MAGNETOHYDRODYNAMICAL THEORY OF ACCRETION AND
EJECTION 49

Reynolds decomposition allows us to differentiate both terms. We return to Eq.(2.61), the con-
servation of angular momentum

⟨ρ⟩
〈
up

〉
ρ
· ∇R

〈
uφ

〉
+ ∇ · R

[
⟨ρ⟩

〈
δuφup

〉
ρ
− 1
4π

〈
δBφδBp

〉
− 1
4π

〈
Bφ

〉 〈
Bp

〉]
= 0, (2.75)

where we assume stationarity and we neglect the terms that have no dynamical importance.
The terms

〈
up

〉 〈
δuφ

〉
ρ
do not play an important role in the dynamics computed in numerical

simulations.
We can then define two fundamental stresses acting on the system

T = Ttu + Tla, (2.76)

where we define
Tla = −

1
4π

〈
Bϕ

〉 〈
Bp

〉
, (2.77)

the laminar stress tensor, and

Ttu = ⟨ρ⟩
〈
δuϕδup

〉
ρ
− 1
4π

〈
δBϕδBp

〉
, (2.78)

the turbulent stress tensor. These two stresses are the main agents driving the accretion of the
system. The laminar torque depends on the magnetic topology and is often, but not exclusively,
the consequence of a magnetized wind. The turbulent torque is often associated with hydrody-
namic or magnetohydrodynamic turbulence but can also be driven by spiral waves. By assuming〈
uφ

〉
≃ RΩK, where ΩK is the Keplerian angular frequency we find

⟨ρ⟩ ⟨uR⟩ρ
∂R2ΩK

∂R
= −∇ · R [Ttu + Tla] . (2.79)

The bulk velocity ⟨ρ⟩ ⟨uR⟩ is entirely determined by the laminar and turbulent torques. We com-
pute the accretion rate defined as

Ṁa = −
zh∫

−zh

2πR ⟨ρ⟩ ⟨uR⟩ρ dz =
4π
ΩK

[
MRφ +Mzφ

]
, (2.80)

where zh is an arbitrary height where the accretion stops, its exact definition will depend on the
system considered. We also define the accretion torques as

Mzφ = −
R
4π

[
⟨Bz⟩

〈
Bϕ

〉]zh
−zh
+ R

[Ttu,z
]zh
−zh , (2.81)

MRφ = −
1

4πR

zh∫
−zh

∂

∂R
[
R2 ⟨BR⟩

〈
Bϕ

〉]
dz +

1
R

zh∫
−zh

∂R2Ttu,R

∂R
dz. (2.82)

We can conclude that accretion is entirely driven by the turbulent andmeanmagnetic torques, the
radial torque transports angular momentum outward radially while the vertical torque evacuates
the angular momentum by a torque applied at the disk surface. We note that both the latitudinal
and radial torques are composed of mean and turbulent components. Finally, we define their
ratio as

Λ =
Mzφ

MRφ
. (2.83)

This quantity is useful for characterizing the transport properties as it indicates the dominant
torque. Furthermore, it can be related to the properties of the outflow as we show in section
2.5.5. We compute this quantity in chapter 3 and measure its correlation to other parameters
like the magnetization.
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2.3.3 Alfvén theorem and its average
The induction equation has an insightful geometrical interpretation called the flux freezing or
Alfvén theorem. We define the magnetic flux circulating though a surface S of differential
surface element dS enclosed by the curve C with the differential line element dl as

ΦB =

∫
S

B · dS. (2.84)

We can use Leibniz integral rule to compute its Lagrangian derivative with respect to time

dΦB

dt
=

∫
S

∂B∂t + u (∇ · B)︸ ︷︷ ︸
=0

 · dS − ∫
C

u × B · dl, (2.85)

where u is the velocity of the surface, using Stokes theorem we rewrite this as
dΦB

dt
=

∫
S

[
∂B
∂t
− ∇ × (u × B)

]
· dS, (2.86)

by recognizing Eq. (2.23) we deduce

ΦB =

∫
S

B · dS = Cst. (2.87)

The magnetic flux traversing a surface advected by the fluid is constant. Indeed, the fluid is
free to travel along the magnetic field but perpendicular motions will cause the magnetic field
to push the flow or to be advected with the fluid.

The simplicity of this picture can be modified for the mean magnetic field in the presence
of turbulence. We define the average magnetic and turbulent flux circulating through the same
surface

⟨ΦB⟩ =
∫
S

⟨B⟩ · dS

we also define the average Lagrangian derivative with respect to time
d̄
dt
=
∂

∂t
+ ⟨u⟩ · ∇,

we again use Leibniz integral rule to compute it
d̄ ⟨ΦB⟩
dt

=

∫
S

[
∂ ⟨B⟩
∂t
− ∇ × (⟨u⟩ × ⟨B⟩)

]
· dS, (2.88)

by using Eq. (2.67) we deduce
d̄ ⟨ΦB⟩
dt

=

∫
S

[∇ × E] · dS, (2.89)

we see that the Alfvén theorem does not hold for the averagemagnetic flux. The mean magnetic
field is not frozen in with the mean movements of the fluid, the mean flow is free to cross
the magnetic field lines. The flow needs to cross the mean vertical magnetic field lines for
accretion to take place. Indeed, turbulence allows accretion to take place. However, even in
fully developed turbulence, the Alfvén theorem always holds for the instantaneous magnetic
field, as long as we are in ideal MHD. In reality, the average magnetic field is not a physical
quantity but a mathematical tool that quantifies the large scale behavior of the instantaneous
magnetic field in the presence of strong turbulence.
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2.4 Turbulent transport

2.4.1 Turbulent viscosity
Mixing length theories have achieved great success in numerous areas to model the effect of
turbulence on the mean flow. Shakura and Sunyaev 1973 developed a mean field closure to
model the radial turbulent torque, Ttu,R, akin to a mixing length theory. Using dimensional
analysis, Shakura and Sunyaev 1973 postulated that the turbulence within the disk should have
two specific properties: First, the fluid perturbation should have a size of the order of the disk
geometrical thickness, h = cs/ΩK, and then, since the source of energy is gravity, the forcing
frequency of the turbulence should be of the order of the Keplerian frequency, ΩK. If we put
this together we have

δu ∼ lHΩK,

where l is a dimensionless constant of order unity. We can then use the definition of the turbulent
torque to find

Ttu,R ∼ l2H2Ω2
Kρ ∼ l2c2s ρ = ανP (2.90)

where αν = l2 is the alpha Shakura and Sunyaev 1973 constant. The turbulent torque can be
rewritten as a purely viscous torque3,

Ttu,R = −
2
3
νtρR
∂Ω
∂R
, (2.91)

where we define the turbulent viscosity as νt = ανcsh. This coefficient has been measured
successfully in local non-stratified (Hawley et al. 1995) and stratified (Salvesen et al. 2016)
shearing box simulations. In the case of stratified shearing box simulations with mean vertical
magnetic field it has been computed to depend on the strength of the magnetic field, or more
precisely

αν ≃ 7μ1/2, (2.92)

for μ ∈ [10−5, 10]. We use a similar prescription for the turbulent torque in chapter 3 in the
context of self-similar solutions. In chapter 5 we measure the dependence of αv as a function of
the magnetization (or plasma beta) to see if our 3D simulations are consistent with the results of
Salvesen et al. 2016.

Finally, we estimate the accretion time scale as

tacc =
R2

νt
=

1
ανΩk

(
R
h

)2
≫ 2π

ΩK
, (2.93)

where we used νt = ανcsh. Accretion in the Shakura and Sunyaev 1973 prescription occurs on
very long time scale when compared to the orbital period.

2.4.2 Turbulent resistivity
The turbulent term responsible for matter diffusing through the field lines is the turbulent emf,
E . This term has garnered less attention than the turbulent viscosity, due to it not being a direct
contributor to accretion. Moreover, the dynamics of ejection are highly influenced by the profile
and magnitude of the turbulent emf and this turbulent term allows accretion through the field
lines (as explained in section 2.3.3). In dynamo theories (Moffatt 1978; Rincon 2019) it is

3This an accurate closure if αν becomes a function of z (Fromang et al. 2011)
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common to close E , to a first approximation, as a turbulent resistivity acting on the magnetic
field,

E = −4π
c
ηt ⟨J⟩ = −ηt∇ × ⟨B⟩ . (2.94)

The diffusivity could be taken as being proportional to the turbulent viscosity as they are both a
consequences of the same processes, ηt ∼ αηcsh. While this is correct, it leads in the same way
as for the viscosity, to a αη that is a function of the magnetic field strength. In this work, we
prefer to first define the effective magnetic Prandtl number that measures the ratio between the
two transport coefficients

Pm =
νt
ηt
, (2.95)

this dimensionless number has been measured in local shearing box simulations (Fromang and
Stone 2009; Guan and Gammie 2009; Lesur and Longaretti 2009), they measure

Pm ∼ 2, (2.96)

for μ ∈ [10−4, 10−2].
In contrast to Shakura and Sunyaev 1973, Ferreira and Pelletier 1993 assume that the resis-

tivity is proportional to the Alfvén velocity defined at the disk mid-plane.

ηt = αmVa0h, (2.97)

this leads, when combined with the measurements of the magnetic Prandtl number to

αν = Pmαmμ
1
2 , (2.98)

which is pretty close to the scaling measured in shearing box numerical simulations (Salvesen
et al. 2016) as long as αm ∼ 3. It should be noted that αm does not depend on μ. In Eq. (2.94)
we have assumed that the resistivity is isotropic, however, shearing box simulations show that
this is not the case for MRI turbulence (Lesur and Longaretti 2009). In such a case, the closure
is no longer valid and the resistivity needs to be defined as a tensor

E = −4π
c
←→η ⟨J⟩ , (2.99)

and most approaches consider a diagonal tensor

←→η =

ηRR 0 0
0 ηφφ 0
0 0 ηzz

 . (2.100)

Even a diagonal tensor can vastly complicate the modeling as well as the measurement of the
transport coefficients in simulations. Ferreira and Pelletier 1995 consider a diagonal tensor for
the resistivity with the coefficients of the form

ηRR = ηzz = η′m (2.101)
ηφφ = ηm. (2.102)

They argue that the toroidal resistivity linked to the toroidal magnetic field and the poloidal
current, could be different from the poloidal resistivity linked to the poloidal magnetic field
and the toroidal current. A possible source of anisotropy could be the reconnection processes
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occurring at the disk mid-plane linked to the poloidal current. The parameter measuring the
degree of anisotropy is defined as

χm =
ηm
η′m
, (2.103)

and a typical value was found to be χm ∼ 1
3 (Eq.(19) in Ferreira and Pelletier 1995). This quantify

has been measured in shearing box simulations to be χm ∼ 0.3 (Lesur and Longaretti 2009).
In chapter 3 we explore the effect of the turbulent parameters defined here (αm, Pm, χm) in

the properties of the outflow and the disk using self-similar solutions. In chapter 5 we measure
those parameters directly in our 3D numerical simulations and compare them with the results
from shearing box simulations.

2.4.3 Magnetic flux transport

As discussed in chapter 1, it has been proposed that the secular evolution of accretion disk
in Xray binaries and CV is related to the transport of the vertical magnetic flux (Marcel et al.
2019; Scepi et al. 2020). Therefore, it is important to understand the mechanisms involved in the
advection of large scale the magnetic field. The transport of magnetic flux is the consequence of
the competition between the turbulent diffusion driven by E and the advection due to the inward
transport of matter. It is possible to differentiate both mechanisms involved by recasting the
vector potential equation 〈

∂A
∂t

〉
= ⟨u⟩ × ⟨B⟩ + E(t), (2.104)

as
∂ ⟨Ψ⟩
∂t
= R ⟨Bz⟩

[
⟨uz⟩
⟨BR⟩
⟨Bz⟩

− ⟨uR⟩ +
Eφ(t)
⟨Bz⟩

]
, (2.105)

where ⟨∂tΨ⟩ = R
〈
∂tAφ

〉
, we then use the fact that R ⟨Bz⟩ = ∂R ⟨Ψ⟩ to rewrite this equation as

∂Ψ
∂t
+ vΨ
∂Ψ
∂R
= 0, (2.106)

where vΨ is the transport velocity that commands the evolution of the magnetic field and is
defined as

vΨ = ⟨uR⟩ − ⟨uz⟩
⟨BR⟩
⟨Bz⟩

−
Eφ(t)
⟨Bz⟩
. (2.107)

We can see that vΨ is a consequence of the competition between the accretion and the turbulent
emf, the difficulty of the problem will arise from the way we model this term. Equation 2.107
may look like a simple advection problem. However, the diffusion term is hidden within the
turbulent emf and depends strongly on the prescribed closure. Furthermore, another important
difficulty, hidden by our notation, is that the average velocity, ⟨ur⟩, intervenes in the advection
of the magnetic field and not the density averaged velocity, ⟨ur⟩ρ. Indeed, both quantities are not
necessarily equal to each other, ⟨ur⟩ , ⟨ur⟩ρ. Hence, the existence of accretion does not imply
the existence of field advection towards the inner regions.

In chapter 4 we use Eq. (2.106) to characterize the secular evolution of the magnetic field.
We then measure vΨ and study how it changes as a function of the magnetization and the disk
geometrical thickness.
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2.5 Outflow dynamics
In this section, we will discuss the dynamics of the outflow, including the outflow launching
and the phenomenology of its propagation.

Once the outflow is launched it will be accelerated through three critical surfaces, the slow
point , where

〈
up

〉
= Vsm, the Alfvén point, where

〈
up

〉
= VAp, and, finally the fast point, where〈

up
〉
= Vfm. We will define the field line anchoring radius ( the radii where the wind is launched)

as RSM, this corresponds to the slow magneto-sonic critical surface.

2.5.1 MHD invariants
In the regions where the outflow is propagating the flow is approximately laminar. In this re-
gion, MRI-driven turbulence is quenched by the strong magnetic field and the perturbations
are quickly advected by the fluid motions. If the outflow is also quasi-stationary it is possible
to define a set of MHD invariants that characterize the properties of the outflow. Under these
conditions, Eq. (2.72) reduces to 〈

up
〉
×

〈
Bp

〉
= 0, (2.108)

we deduce that the poloidal magnetic field and velocity are parallel, e.g.〈
up

〉
= l

〈
Bp

〉
, (2.109)

this condition is just the Alfvén theorem in explicit form. If the flow is laminar and stationary
the conservation of mass, Eq. (2.66), can be simply written as

∇ ·
[〈
up

〉
⟨ρ⟩

]
= 0, (2.110)

which we recast by using Eq. (2.109) 〈
Bp

〉
· ∇⟨ρ⟩ l = 0, (2.111)

this result implies that η̃ ≡ 4π ⟨ρ⟩ l is constant along the magnetic field lines. We rewrite
Eq. (2.109) as 〈

up
〉
=

η̃
4π ⟨ρ⟩

〈
Bp

〉
, (2.112)

where we have introduced the constant 4π to keep our definitions consistent with Blandford and
Payne 1982. The invariant η̃ is called the mass loading invariant because it can be linked to the
density at the Alfvén point, ρA, by remembering

〈
upA

〉
= VAp = Bp/

√
4πρA. We show

η̃ =
√
ρA4π. (2.113)

The toroidal component of the induction equation simplifies to

∂

∂z
[〈
uφ

〉
⟨Bz⟩ − ⟨uz⟩

〈
Bφ

〉]
+
∂

∂R
[〈
uφ

〉
⟨BR⟩ − ⟨uR⟩

〈
Bφ

〉]
= ∇ · 1

R
[〈
uφ

〉 〈
Bp

〉
−

〈
Bφ

〉 〈
up

〉]
= 0,

(2.114)
it can be rewritten using Eq. (2.112) as

〈
Bp

〉
· ∇


〈
uφ

〉
R
−

η̃
〈
Bφ

〉
4π ⟨ρ⟩R

, (2.115)
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we define the invariant as

Ω⋆ =

〈
uφ

〉
R
−

η̃
〈
Bφ

〉
4π ⟨ρ⟩R =

〈
uφ,A

〉
RA

−
VA,φ(RA)

RA
, (2.116)

where Ω⋆ is a measure of the angular velocity of the magnetic field lines.
The conservation of angular momentum can be recast using the conservation of mass as

∇ · R
⟨ρ⟩ 〈up〉 〈

uφ
〉
−

〈
Bφ

〉 〈
Bp

〉
4π

 = 0, (2.117)

it can then be rewritten by using Eq. (2.112) as

〈
Bp

〉
· ∇

〈uφ〉R − R
〈
Bφ

〉
η̃

, (2.118)

which allows us to define the angular momentum invariant

L =
〈
uφ

〉
R −

R
〈
Bφ

〉
η̃
= RA

〈
uφ,A

〉
− RAVA,φ(RA) (2.119)

L = Ω⋆R2
A, (2.120)

the angular momentum transported by the outflow can be stored in two forms: a classical kinetic
part or a magnetic contribution in the form of the toroidal magnetic field. To derive the energy
invariant we need to project the equation of conservation of momentum in its stationary and
laminar form

⟨u⟩ · ∇ ⟨u⟩ = − 1
⟨ρ⟩∇ ⟨P⟩ + ∇ΦG +

1
c ⟨ρ⟩ ⟨J⟩ × ⟨B⟩ , (2.121)

with respect to the average velocity ⟨u⟩. Remembering that

⟨u⟩ · ∇ ⟨u⟩ = [∇ × ⟨u⟩] × ⟨u⟩ + 1
2
∇⟨u⟩2 (2.122)

we derive

⟨u⟩ · ∇
[
w − ΦG +

⟨u⟩2
2

]
= ⟨u⟩ · 1

c ⟨ρ⟩ ⟨J⟩ × ⟨B⟩ , (2.123)

where w is the thermal energy term which can be written as

w =
∫ ∇⟨P⟩
⟨ρ⟩ · ds, (2.124)

here s is the coordinate along the field line. It is straightforward to show that

⟨u⟩ · 1
c ⟨ρ⟩ ⟨J⟩ × ⟨B⟩ =

〈
up

〉
· ∇

[
1
η̃
RΩ⋆

〈
Bφ

〉]
, (2.125)

combining this with Eq. (2.123) we finally obtain the Bernoulli invariant for an MHD outflow〈
Bp

〉
· ∇B = 0, (2.126)
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where

B =

〈
up

〉2
+

〈
uφ

〉2
2

+ ΦG − Ω⋆
R

〈
Bϕ

〉
η̃
+ w. (2.127)

The Bernoulli invariant can also be recast by using Eq.(2.119) into

B =

〈
up

〉2
2
+ ΦG + Ω2

⋆R2
A + w −

⟨Ω⟩R2

2
[2Ω⋆ − ⟨Ω⟩] . (2.128)

It is important to note that, when heating is applied, w is a function of the full stream line because
of its integral form, here it cannot be computed from a single point within the field line as the
other terms. Depending on the form of the applied heating w can be rewritten as

w = H +
∫

Q · ds, (2.129)

whereH is the enthalpy and Q is the radiative heating/cooling and s is again a coordinate along
the magnetic field line.

We combine Eq. (2.119,2.116) to derive the angular velocity as a function of the Mach num-
ber and the MHD invariants

⟨Ω⟩ = Ω⋆
(
1 − g) , (2.130)

where

g =
m2

m2 − 1

[
1 −

R2
A

R2

]
, (2.131)

wherewe define theAlfvénicMach number as a function of themass loading invariant (Eq.2.112)

m =

〈
up

〉
VAp
= η̃

√
1
4πρ
=

√
ρA
⟨ρ⟩ . (2.132)

The function gmeasures the discrepancy between the two angular velocities and is related to the
poloidal current flowing in the jet, or the toroidal magnetic field. It may seem that this function
is singular when m = 1, however, at this particular point R = RA smooths out the function. The
Bernoulli invariant can be rewritten using the Eq. (2.130)

B =

〈
up

〉2
2
+ ΦG + Ω2

⋆R2
A + w −

Ω⋆R2

2
[
1 − g2

]
. (2.133)

To compare the values of the MHD invariants with respect to quantities defined within the
disk it is useful to normalize them to their values at the SM radii

κ ≡ η̃RSMΩK(RSM)
Bz,SM

, (2.134)

ω ≡ Ω⋆
ΩK(RSM)

, (2.135)

λ ≡ L[
R2ΩK

]∣∣∣
SM

, (2.136)

e ≡ 2B
Ω2

K(RSM)R2
SM

, (2.137)
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our normalizations are the equivalent to the ones used by Blandford and Payne 1982. With this
normalization λ becomes the magnetic lever arm

λ = ω
R2
A

R2
SM
, (2.138)

it is precisely the lever arm of the torque exerted on the disk by the outflow and by counter-
reaction, it is a good measure of the acceleration the disk exerts on the outflow. In section 2.5.2
we will derive a relation linking the magnetic lever and the terminal velocity of the outflow.

2.5.2 Energetic requirements
For the outflow to be launched some energetic requirements need to be fulfilled:

First of all, the outflow needs to remove energy from the system. Hence, the poloidal com-
ponent of the laminar MHD pointing flux

Sp =
c
4π
⟨E⟩ ×

〈
Bφ

〉
eφ =

−
〈
Bφ

〉
4π

[〈
Bp

〉 〈
uφ

〉
−

〈
up

〉 〈
Bφ

〉]
, (2.139)

Sp = −RΩ⋆

〈
Bφ

〉 〈
Bp

〉
4π

, (2.140)

needs to be pointing away from the disk and the central object. Indeed, Sz needs to be positive
above the disk and negative below. The radial component, SR needs to be always positive. We
derive Eq. (2.140) by using the definition of Ω⋆. The sign of the pointing flux imposes a certain
topology to the magnetic field on the outflow region.

If we assume ⟨Bz⟩ > 0 then the toroidal magnetic field needs to be negative in the upper
hemisphere and positive in the lower hemisphere, on the contrary, ⟨BR⟩ > 0 in the upper hemi-
sphere and ⟨BR⟩ < 0 in the lower hemisphere.

For the outflow to escape the gravitational potential the Bernoulli invariant must be positive,
e > 0. We can estimate the value of e at the base of the outflow, where

〈
up

〉
≪ VK(RSM), R = RSM

and Ω ≃ ΩK(RSM) as
e ≃ 2ω (λ − 1) + Θ − 1, (2.141)

where Θ = 2w/(Ω2
K(RSM)R2

SM). From Eq. (2.141) we see that λ, the magnetic lever arm, has a
strong impact on the energetics of an MHD outflow. Indeed, as will be more clear in section
2.5.4 the magnetic angular momentum plays a quintessential role in the acceleration mechanism.
For an MHD outflow to exists e > 0, this leads to a constraint on the value of the magnetic lever
arm

λ >
1
2ω

(1 − Θ) + 1. (2.142)

In most MHD driven outflows ω ≃ 1 is a very good approximation. Furthermore, if we assume
that the thermal driving is negligible we can derive the simple constraint

λ >
3
2
. (2.143)

We can also use Eq. (2.141) to approximate the terminal velocity of the outflow, if we assume
that when R → ∞ all magnetic energy is consumed, and that ⟨Ω⟩ → 0 (which is appropriate as
we will see in section 2.5.4) we show〈

up,∞
〉
= VK(RSM)

√
2λ − 3. (2.144)
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2.5.3 Escaping the accretion disk

Figure 2.2: Sketch of an accretion disk ejection, we mark the Alfvénic point (m = 1).

For the outflow to take flight above the disk it needs first to escape the accretion disk. For that
to happen there are a couple of conditions that need to be fulfilled. Analyzing those conditions
can lead to useful constraints on the structure of the flow and the accretion disk. First of all, the
accretion flow needs to change direction, ⟨uR⟩ (zR,RR) = 0, for it to become an ejection flow.
We evaluate Eq. (2.72) at this point to find

⟨uz⟩|zR = −
Eφ
⟨BR⟩

=
4π
c
η
〈
Jφ

〉
⟨BR⟩

≃ η
∂⟨BR⟩
∂z

⟨BR⟩
∼ η

h
, (2.145)

where we use a resistive closure for the turbulent emf. We find, that the vertical velocity at the
inflection point is related to the turbulent resistivity. The matter is diffusing through the field
lines to be loaded into the outflow. From Eq.(2.145) it is not clear which force is deflecting the
matter vertically to be loaded onto the field lines.

To understand this we need to write the poloidal components of the momentum conservation
equation. 〈

up
〉
· ∇ ⟨uR⟩ =

(
⟨Ω⟩2 − Ω2

K

)
R +

FR

⟨ρ⟩ −
1
⟨ρ⟩
∂ ⟨P⟩
∂R
, (2.146)

〈
up

〉
· ∇ ⟨uz⟩ ≃ −Ω2

Kz +
1
⟨ρ⟩
∂

∂z
⟨BR⟩2 +

〈
Bφ

〉2
8π

− 1
⟨ρ⟩
∂ ⟨P⟩
∂z
, (2.147)

where for the sake of brevity we ignore the turbulent terms. We remark that as we exit the disk the
radial and toroidal magnetic field increases, the disk is being compressed by the magnetic field.
This magnetic compression can be understood for ⟨BR⟩ by looking at Fig. (2.2), the curvature
of the poloidal field lines induces a positive gradient in ⟨BR⟩. The only force that can always
counteract both gravity andmagnetic compression is the pressure gradient (Ferreira and Pelletier
1995). The hydrostatic or magneto-static equilibrium within the disk plays an important role in
the acceleration mechanism.

Once the matter has been deflected upwards the magnetic acceleration needs to activate so
that it can continue on its journey. The toroidal magnetic field in the same ways as ⟨BR⟩ also
exerts compression on the disk, it is also one of the main contributors to the acceleration of the
outflow. We can write the toroidal component of the Lorentz force as

Fφ = ⟨Jz⟩ ⟨BR⟩ − ⟨JR⟩ ⟨BZ⟩ ≃ − ⟨JR⟩ ⟨Bz⟩ =
∂
〈
Bφ

〉
∂z

⟨Bz⟩ , (2.148)



CHAPTER 2. MAGNETOHYDRODYNAMICAL THEORY OF ACCRETION AND
EJECTION 59

as argued by Ferreira and Pelletier 1995 for the outflow to accelerate toroidally ⟨JR⟩must change
sign around the disk surface. To understand the constraints imposed by this sign change we
analyze Eq. (2.69)

− ∇ × E |φ = ∇ ·
1
R

[〈
uφ

〉 〈
Bp

〉
−

〈
Bφ

〉 〈
up

〉]
, (2.149)

4π
c
∇ × [

ηt ⟨J⟩
]∣∣∣
φ = ∇ ·

[ ηt
R2∇R

〈
Bφ

〉]
, (2.150)

where we have assumed a resistive closure for the turbulent emf. We can neglect ⟨Jz⟩ and
〈
Bφ

〉
advection, and then integrate this equation with respect to z to find

ηt(z) ⟨JR⟩ (z) ≃ ηt(z = 0) ⟨JR⟩ (z = 0) + R
z∫

0

dz
〈
Bp

〉
· ∇⟨Ω⟩, (2.151)

⟨JR⟩ (z) ≃ ⟨JR⟩ (z = 0)
ηt(z = 0)
ηt(z)

1 − 3
2

ΩK

ηt(z = 0) ⟨JR⟩ (z = 0)

z∫
0

dz ⟨BR⟩

 . (2.152)

From Eq. (2.152), we can understand that the altitude where the radial current changes sign
emerges as a competition between the differential rotation effect and the induced current, ⟨JR⟩ (z =
0). We can also understand that the vertical profile of resistive, ηt(z), could have an important
impact on the acceleration mechanism.

The radial electric current, ⟨JR⟩, is the vertical derivative of
〈
Bφ

〉
the altitudewhere ⟨JR⟩ (zJ) =

0 defines the maximal amplitude of
∣∣∣∣〈Bφ

〉∣∣∣∣. Hence, zJ defines the start of the toroidal acceleration
and the start of the vertical acceleration. The vertical acceleration is driven by the gradient of the
toroidal field (Eq. 2.147). Once the toroidal acceleration is activated the outflow will also start
to accelerate radially thanks to the magneto-centrifugal force (Eq. 2.146). We show in Fig. (2.3)
a sketch resuming this mechanism. We show the extremum of the toroidal magnetic field as
well as the poloidal current lines

〈
Jp

〉
.

2.5.4 Ejection phenomenology
Weuse the definition of g, the discrepancy between the two angular velocities, ⟨Ω⟩ = Ω⋆

[
1 − g],

to understand the acceleration mechanism of magnetized outflows. To that end, we compute the
toroidal magnetic field as a function of g and the MHD invariants

−
R

〈
Bφ

〉
η̃
= Ω⋆R2

[R2
A

R2 + g − 1
]
. (2.153)

We can expand the g function in two different limits before and after the Alfvén point

g ≃ m2
(R2

A

R2 − 1
)
≪ 1 for m2 ≪ 1, (2.154)

g ≃ 1 −
R2
A

R2 for m2 ≫ 1. (2.155)

(2.156)

By injecting these expression into Eq. (2.130) we see that before the Alfvén point the angular
velocity is constant

⟨Ω⟩ ≃ Ω⋆ for m2 ≪ 1, (2.157)
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Figure 2.3: a) Sketch of an accretion disk ejection viewed from a different angle, we mark the
point where the toroidal and vertical acceleration start as zJ. We also mark the Alfvénic point
(m = 1). b) Same as Fig. (2.2) but instead of showing the poloidal magnetic field lines we show
the poloidal electric current lines. c) Typical vertical profile of the toroidal magnetic field in
highly magnetized self-similar models (Ferreira 1997).



CHAPTER 2. MAGNETOHYDRODYNAMICAL THEORY OF ACCRETION AND
EJECTION 61

the flow spins at the velocity of the field lines. In this configuration most of the angular mo-
mentum is stored in the toroidal magnetic field, the magnetic field is progressively accelerating
the flow via Fφ, leading to a constant velocity profile.

After the Alfvén point the toroidal magnetic field tends to 0, indeed, injecting Eq. (2.155)
into Eq. (2.153) leads to R

〈
Bφ

〉
= 0. The magnetic angular momentum has been consumed, by

injecting Eq. (2.155) into Eq. (2.130) we get

⟨Ω⟩ ≃ Ω⋆
R2
A

R2 , (2.158)

a constant angular momentum profile.
The acceleration of the outflowwill be due to a combination of the radialmagneto-centrifugal

(Eq. 2.146) acceleration and the vertical gradient of the magnetic pressure due to the toroidal
and radial magnetic fields (Eq. 2.147). We note, that the magneto-centrifugal acceleration is the
consequence of the azimuthal acceleration generated by the magnetic field„ Fφ. Following this
observation, the magnetic force can be divided into a component perpendicular to the magnetic
field line and a component parallel to the magnetic field line (Ferreira 1997)

Fφ =

〈
Bp

〉
4π
∇∥R

〈
Bφ

〉
, (2.159)

F∥ = −

〈
Bφ

〉
4π
∇∥R

〈
Bφ

〉
, (2.160)

where

∇∥ =

〈
Bp

〉〈
Bp

〉 · ∇. (2.161)

This splitting of the magnetic force allows us to define two distinct types of outflows depending
on the dominant acceleration mechanism. If Fφ > F∥ we can say that the outflow is magneto-
centrifugally driven, in the opposite case, we say that the outflow is a magnetic tower. In the
second case, the main driver of the acceleration is the laminar magnetic pressure associated to〈
Bφ

〉2
. In both cases, both forces accelerate the outflow, they are both needed as they push in

different directions.

2.5.5 Linking accretion and ejection
Accretion and ejection physics are intrinsically linked in MHD winds, in what follows we will
develop a simple relation linking the ejection efficiency with the angular momentum transport
and the magnetic lever arm.

We define the outflow ejection rate from the two sides as

Ṁo = 2 × 2π
R∫

Rin

[
⟨ρ⟩ ⟨uz⟩ρ

]
SM

R dR, (2.162)

it can be linked to the accretion rate by integrating Eq. (2.66)

1
R
∂

∂R
[
Ṁo − Ṁa

]
= 0 (2.163)
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We can define the ejection efficiency as

ξ =
d log Ṁa

d logR
, (2.164)

assuming a steady state we can show from the continuity equation that

ξ =
1
Ṁa

dṀo

d logR
. (2.165)

The ejection efficiency defines what fraction of mass is being lost to the outflow, it is linked to
the power law exponent of the accretion rate, the steeper the power law, the more mass will be
lost to the outflow. However, this is only the case if the system reaches a steady state where the
accretion can be described by a power law.

We start by rewriting Eq. (2.80) by using the definition of Λ = Mzφ/Mrφ

Ṁa =
4π
ΩK

Mzφ
1 + Λ
Λ
, (2.166)

if we ignore the vertical turbulent component of the magnetic stress4, Ttu,z, we recast Mzφ by
using the definition of the angular momentum invariant

Mzφ = −2 Bz|SM
RBφ

4π

∣∣∣∣∣
SM
= 2η̃

Bz

4π

∣∣∣∣∣
SM

[
Ω⋆R2

A − ΩR2
]
SM
, (2.167)

where we have also assumed that the outflow is top/dow symmetric. We then use the definition
of the mass loading invariant to show

Mzφ = 2
[
Ω⋆R2

A − ΩR2
]
SM

[
⟨ρ⟩ ⟨uz⟩ρ

]
SM
, (2.168)

we reformulate5 the definition of the outflow ejection rate to find
1
R2

dṀo

d logR
= 4π

[
⟨ρ⟩ ⟨uz⟩ρ

]
SM
≃ 4π [⟨ρ⟩ ⟨uz⟩]SM , (2.169)

and then combine this expression with Eq. (2.166) to derive

Ṁa =
2

R2ΩK

1 + Λ
Λ

dṀo

d logR
[
Ω⋆R2

A − ΩR2
]
SM
≃ 2 [λ − 1]

1 + Λ
Λ

dṀo

d logR
(2.170)

we finally have

λ ≃ 1 + Λ
Λ + 1

1
2ξ
. (2.171)

This expression was first derived by Casse and Ferreira 2000b without considering the vertical
evolution of the turbulent and laminar torques. This expression reveals several properties of
MHD outflows. It reveals that the magnetic lever and a quantity directly related to the outflow
acceleration, depends on two main quantities the ejection efficiency, ξ, of the outflow and the
angular momentum transport within the disk. We can intuitively understand those dependencies:
First, the more massive the outflow is ( the bigger the ξ) the harder it will be to accelerate it
(the smaller the λ). Second, if the angular momentum transport is dominated by the vertical
component, Λ ≫ 1, the value of the magnetic lever arm will only depend on ξ, λ ∼ 1 + 1/(2ξ).
However, if the angular momentum transport is dominated by the radial component, Λ ≪ 1,
the value of the magnetic lever will also depend on Λ, λ ∼ 1 + Λ/(2ξ). Indeed, if the angular
momentum is lost radially before reaching the outflow, the maximal acceleration achievable by
the outflow will be affected, decreasing the effective value of the magnetic lever arm.

4in practice this is an good approximation for MRI turbulence, as MRI turbulence mostly transports angular
momentum radially

5Were we neglect ⟨δuz⟩ρ
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3.1 Self-similar framework

3.1.1 General framework
We assume that the system is stationary, axisymmetric and, that the turbulent correlations present
can be modeled as a turbulent resistivity and a turbulent viscosity. For the sake of brevity within
this section we drop the ⟨.⟩ around average quantities, as we will never mention the turbulent
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fluctuating terms, δX. Under these conditions we can simplify the Reynolds averaged MHD
equations. The equation of conservation of poloidal momentum is more complicated to rewrite
from Eq. (2.65,2.63) instead we recast it from the poloidal projection of Eq. (2.21). We rewrite
the poloidal projection of the Lorentz force term to find

Fp =
1
c
Jφ

 Bz
0
−BR

 + 1
c
Bφ

−Jz0JR
 = 1

c
Jφ∇a −

1
8πR2∇

[
R2B2

φ

]
, (3.1)

where the magnetic flux function a = RAφ is consistent with section 2.3.1. The magnetic topol-
ogy is assumed bipolar, with an even symmetry with respect to the disk equatorial plane (a is
even, while Bφ is odd). We can rewrite the complete set of MHD equations as

∇ · (ρu) = 0, (3.2)

ρ(up · ∇)up = Ω2ReR − ∇P + ρ∇ΦG +
1
c
Jφ∇a −

1
8πR2∇

[
R2B2

φ

]
, (3.3)

∇ ·
[
ρΩR2up −

RBφ

4π
Bp + RTtu

]
= 0, (3.4)

4π
c
ηmJφeφ = up × Bp, (3.5)

∇ ·
(
η′m
R2∇RBφ

)
= ∇ · 1

R
(
Bφup − BpΩR

)
, (3.6)

where Ttu is the turbulent stress and is related to the turbulent viscosity defined in section 2.4.1.
We follow Ferreira and Pelletier 1995, by defining two different turbulent resistivities to account
for anisotropies due to the reconnection events in the disk mid-plane. We close Eq. (3.2-3.6) by
using an ideal equation of state. Finally, for simplicity we assume that the temperature structure
is isothermal along the magnetic field lines. The complete form of the energy equation is given
in Appendix A.

The turbulent resistivities and viscosity, defined in section 2.4.2 and section 2.4.1 respec-
tively, are assumed to vanish outside of the disk, the outflow region is described by ideal MHD.
Our description allows for a smooth transition from a resistive and viscous MHD regime (the
disk) to an ideal MHD regime (the outflow) on a few pressure scale heights. For the sake of
simplicity and lack of precise knowledge, the vertical behavior of the transport coefficients is
modeled by a simple gaussian profile of the self-similar variables, see Appendix A. The am-
plitude of the turbulent transport coefficients are modeled as in Ferreira and Pelletier 1995, as
explained in section 2.4.1 and section 2.4.2, we have

– The poloidal turbulent diffusivity is modeled using the Alfvén velocity, ηm = αmVA0h,
where αm is a constant independent of μ that represents the strength of the magnetized
turbulence and VA0 is the Alfvén velocity at the disk mid-plane.

– The viscosity is modeled following Shakura and Sunyaev 1973, it is chosen as νv = αvcsh,
where αv is the usual Shakura-Sunyaev alpha coefficient. As seen in section 2.4.1, the αv
coefficient can be related to the level of turbulence αm by defining the magnetic Prandtl
number, Pm = νv/ηm so that αv = αmPmμ1/2 (assuming Pm independent of μ). Hence, αv
is not a constant and depends on the magnetization at the disk mid-plane.

– The toroidal turbulent resistivity is modeled in the same way as the poloidal resistivity,
η′m = α′mVAh. However, its magnitude is imposed by defining the resistive anisotropy
χm = ηm/η′m.
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To write Eq. (3.5) we have assumed that the transport velocity of the magnetic flux, dis-
cussed in section 2.4.3, is negligible. Indeed, if vψ ≃ 0 Eq. (2.106) yields Eq. (3.5). The validity
of this approximation will be tested in section 4.3 using 3D global simulations. If this approx-
imation is not correct the effect of field advection needs to be included in the resolution of the
equations. Contopoulos et al. 2017 included this effect in the self-similar framework. However,
they only compute the outflow and paid no attention to the accretion disk physics. Ogilvie and
Livio 2001 computed the disk equilibrium and wind launching separately. They included the
effect of magnetic field transport by simultaneously solving the vertically averaged induction
equation (Lubow et al. 1994) and the dynamical equilibrium of the disk. However, they neglect
the dynamical effect of the toroidal magnetic field. As we discussed in chapter 2 the toroidal
magnetic field has an important role in the acceleration mechanism of the outflow.

3.1.2 Self-similar approximation
The set of stationary axisymmetric equations is still cumbersome to solve through conventional
methods. To make progress in this endeavor we assume that the 2.5D plasma follows a self
similar symmetry. This reduces the set of partial differential equations into a set of ordinary
differential equations. Since, gravity is the leading energy reservoir of the accretion disk system
we expect that the other quantities follow a similar scaling. We assume the following self-similar
ansatz:

X = X0

(
R
R0

)ζX
fX(x), (3.7)

where x = z/h = z/(εR) is the self-similar variable and ε is the disk geometrical thickness. In
this radial self-similarity all quantities are power laws of radius and a constant x corresponds to a
cone in the (R,z) plane. Since, self-similarity forces a certain geometry to the system it will also
affect the propagation of the MHD waves. Indeed, waves can only propagate in the direction
defined by the vector

n = −eθ =
ez − xεeR
1 + x2ε2

. (3.8)

The only direction of variation is along the self-similar x = z/h = 1/ tan θ, therefore only waves
propagating along this direction can exists. After injecting the self-similar ansatz into Eq. (3.2-
3.6) we can separate the set of PDEs into a set of ODEs for the quantities fX(x) and a set of
algebraic equations for the exponents, ζX. Solving the algebraic set of equations leads ζX =
ζX(ξ), all exponents are determined by the ejection index defined by Ṁa ∝ Rξ . All quantities
fX(x) are then obtained by solving the system of ODEs (the complete set of equations will be
found in appendix A) which we recast into the form,

←→M


df1
dx
...
dfn
dx

 =←→U (3.9)

where
←→M(fi, x) and

←→U (fi, x) are respectively a matrix function and a vector function of the dif-
ferent quantities, fX(x), and the self-similar variable x. A solution is therefore possible whenever
the matrix

←→M(fX, x) is invertible,
det(
←→M(fX, x)) = 0. (3.10)

This condition defines the different critical points of the system, which can be written as

V2
(
V2 − V2

sm

) (
V2 − V2

fm

) (
V2 − V2

An

)2
= 0, (3.11)



66 3.1. SELF-SIMILAR FRAMEWORK

where VAn = VAp · n is the projected Alfvén speed, V = u · n = up · n is the critical velocity, and
the modified slow and fast waves are now defined as

V2
fm,sm =

1
2

c2s + V2
At ±

√[
c2s + V2

at

]2
− 4c2sV2

An

 , (3.12)

where VAt is the total Alfvén speed. We recognize the fast and slow magneto-sonic wave veloc-
ities defined in section 2.2.1, although in a modified form, affected by the self-similar ansatz.
Due to the projection effect imposed by the self-similarity, at the disk surface we have V ≃ uz,
whereas far from the disk it becomes V ≃ uR. Contrary to the magneto sonic critical points, the
Alfvén point is the usual Alfvénic critical point encountered in jet theory

V = VAn ⇔ VAp · n = u · n ⇔ V2
Apn

2 = u2pn2 ⇔ VAp = up. (3.13)

Using the self-similar framework we define a coordinate, s, along the magnetic field lines.
The magnetic flux function a = RAϕ is used to define a surface along which the magnetic flux
is constant (see section 2.3.1). The shape of a magnetic surface anchored at R0 is defined by
a(r, z) = a0 = Cte and is provided by

R
R0
= fa(x)−

1
ζa . (3.14)

We can inject this expression into the self-similar ansatz to find

X = X0f
− ζX

ζa
a fX(x) = X0FX(s), (3.15)

where s is the coordinate along the magnetic field line.

3.1.3 Parameter space
The self-similar solution of Eq. (3.2-3.6) will be entirely determined by a set of parameter that
we describe below. The first relevant parameter is the disk geometrical thickness, h

R = ε. It is
normally a consequence of the energy equation. But as shown before, we do not compute the
complete energy equation in this work, we will instead fix it to the value ε = 0.1. The second
relevant parameter is the disk magnetization μ, defined in section 2.2.1, this parameter controls
the strength of the magnetic field at the disk mid-plane. The third relevant parameter is the
disk ejection index, ξ, defined in section 2.5.5, it is the power law exponent of the accretion
rate, it will also set the magnetic flux distribution, a ∝ R 3

4+
ξ
2 . The fourth relevant parameter is

p, it controls the toroidal electric current at the disk mid-plane, p = 4π
c

hJφ0
Bz0

. It also provides a
rough estimate of the bending of the field lines at disk surface, BR,SM/Bz0 ∼ p. We complement
the above list of parameters with the turbulent parameters described in the previous section
(αm,Pm,χm). We write the complete set of parameters as

ε = h
r αm = ηm

VAh
μ = B2z0

4πP0
ξ = d ln Ṁa

d lnR Pm =
νv
νm

p = 4π
c

hJφ0
Bz0

χm =
ηm
η′m

(3.16)

Two parameters (p,μ) will be constrained by the crossing of the critical surfaces (see section
3.1.4), this leaves 5 free parameters, we fix ε = 0.1 andPm = 1 and we explore the other three (ξ,
αm, χm). We will explore the values αm = [0.8, 1, 2, 8] and χm = [0.01, 0.1, 1, 2]. Our reference
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Table 3.1: List of all the dimensionless parameters used in this work.
Name Symbol Type
Disk geometrical
thickness ε Fixed to 0.1

Magnetic Prandtl
number Pm Fixed to 1

Level of
turbulence αm Free

Anisotropy of
turbulence χm Free

Disk
ejection index ξ Free

Disk
magnetization μ SM regularity condition

Toroidal current
at the disk
mid-plane

p Alfvén regularity condition

Ratio between
the vertical and
the radial torque

Λ Calculated

Rotation of the
magnetic surfaces ω Calculated

Magnetic
lever-arm λ Calculated

Jet mass
load κ Calculated

Bernoulli
invariant e Calculated

Initial
jet magnetization σ Calculated



68 3.1. SELF-SIMILAR FRAMEWORK

set of parameters will be αm = 1 and χm = 1. Finally, the ejection index ξ will be varied from
5 × 10−3 to 1. Table 3.1 contains the list of the disk parameters evaluated at the disk mid-plane
as well as their type. We also included other useful quantities. While previously published JED
solutions were found for a magnetization μ ∈ [0.1; 0.8], we now wish to reproduce the results
of global simulations and achieve super-A jets with magnetization values as low as 10−4. In
this regime, MRI is active and should be the source of the MHD turbulence. However, around
μ ∼ 10−4 and below, MRI dynamo becomes significant (Scepi et al. 2018a), the value of αv
reaches a minima. Since such an effect is not included in our calculations, we restrict ourselves
to solutions with a magnetization no smaller than μ ∼ 5 × 10−4.

3.1.4 Numerical method

Once the set of ODEs has been written (see Appendix A for their expressions) they can be
numerically solved from the disk mid plane (x = 0) to infinity using a Burlish-stoer method for
stiff equations. We follow the method described by Ferreira 1997. At the disk mid-plane all
magnetic field components except for the vertical field are null, BR(x = 0) = Bφ(x = 0), the rest
of the initial conditions for all fields are explicitly defined in Appendix A. The integration starts
slightly above x = 0 with a guess for the parameters (μ, p). The integration cannot start at x = 0
since this is a critical point of nodal type (Ferreira and Pelletier 1995), we have to perform a
Taylor expansion to compute the equations above this point.

After setting the boundary conditions the integration is propagated upwards using the resis-
tive viscous MHD equations. As we move upward, the magnitude of the turbulent emf (4πc

←→η J)
decreases, the poloidal velocity and magnetic field become parallel to each other. When this
is achieved to a high precision, we stop solving the resistive MHD equations and start solving
the ideal MHD equations. The integration then continues up to the slow magneto-sonic critical
point.

The regularity conditions is not necessarily achieved by our choice of p and μ. We fine tune
the value of μ so that we get close enough to the critical point, to safely perform a leapfrog. This
is done by extrapolating across the critical point (using a leap-frog jump) while conserving the
various MHD invariants (section 2.5.1). As we can see in Fig. (3.1) if μ is too large the flow
will be accelerated too efficiently, which results in a shock. If μ is too small the acceleration
will not be efficient enough and the flow decelerates before terminating in shock higher at a
larger x (see Fig. (3.1). This simple picture is roughly accurate for oscillatory solutions (see
below), those solutions accelerate and decelerate an even number of times before terminating in
a shock. Indeed, each of their maxima of MSM = V/VSM behaves in the same way, leading to a
shock before the critical point or after the critical point depending on the value of μ.

After the flow becomes super SM it needs to also become super Alfvénic , this condition
will constraint the parameter p. If p is too small, the magnetic tension overcomes the centrifugal
acceleration and BR → 0. If p is too large, the centrifugal acceleration is too efficient leading to
Bφ → 0. One can again fine tune the parameter p to approach the Alfvénic point and perform
a leap frog (where once again we conserve the MHD invariants through the jump). After every
change in p the solution is re-computed from the origin, hence a new μ is also found. This can
be computationally expensive when a big enough parameter space is explored.

In the remaining of this chapter we describe newly discovered weakly magnetized solutions
that feature spatial oscillations. There are several reasons why those solution where not found
up till now. The solution finding procedure as it was implemented in Ferreira and Pelletier
1995 explicitly forbid spatial oscillations in the radial magnetic field within the disk. This
choice was purposeful one, oscillating solutions even though stationary in the self-similar sense
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Figure 3.1: MSM = V/VSM as a function of z/h, the slow magneto sonic critical point is defined
by the conditionMSM = 1. We show the fine tuning procedure that takes places in order to cross
the SM point. The critical value lies somewhere in between μ = 0.96 and μ = 0.77.

may not be stable to Kelvin Helmholtz instabilities that can not be calculated within the self-
similar framework. Furthermore, when the solutions where first found the magneto rotational
instability was still recently discovered, it was hard to imagine that such a oscillatory behavior
could physically emerge from the accretion disk structure. Hence, previous self-similar works
decided to ignore oscillatory solutions as they were though to be unphysical. More explicitly
they implemented the condition BR > 0 within the turbulent disk.

A careful look at global simulations (ie Fig.12 in Béthune et al. 2017 or Fig.6 in Zhu and
Stone 2018) shows that this situation is actually realized, with BR first becoming negative in the
disk upper layers before becoming positive at higher altitude. To be consistent with these sim-
ulations, we thus relax this constraint and allow for negative radial fields within the disk. The
fact that all previous JED solutions have been obtained only for μ > 0.1 is a direct consequence
of the explicit requirement (within our code) that the poloidal magnetic field has a monotonous
vertical behavior within the resistive MHD disk zone1. As shown in the next section, relaxing
this constraint (ie, removing any condition on BR), allows for new solutions at much smaller
magnetization levels. Although we still recover the previous ones at near equipartition fields,
we will mainly focus our attention on the new ones.

3.2 Super-slow magneto-sonic outflows

3.2.1 The Super slow magneto sonic parameter space
Figure 3.3 shows the parameter space of the super SM outflows that have αm = 1 and χm =
1. Each point represents an outflow that becomes super SM. We have been able to enlarge
the parameter space of Ferreira and Pelletier 1995 (see Fig. 3.2) by 4 orders of magnitude in
magnetization. We see several distinct features from the parameter space show in figure 3.3 :

– There are distinct and well separated islands, zones in the (μ,p) plane, where solutions
are found. The parameter space studied by Ferreira and Pelletier 1995 (see Fig. 3.2) is
consistent with the one, computed here at strong magnetization (μ > 0.4).

1As will be discussed in section 3.5, the lack of weakly magnetized solution may also be the consequence of an
inadequate profile for the turbulent resistivities and viscosity.
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Figure 3.2: Super SM parameter space for highly magnetized solutions (μ > 0.4) for ε = 0.04,
αm = 1 and χm ∼ 1. Adapted from Ferreira and Pelletier 1995.

Figure 3.3: Parameter space μ(p) for super-SM isothermal solutions in our fiducial case αm = 1,
χm = 1, Pm = 1 and ε = 0.1. Each point in this plane corresponds to a solution characterized by
an ejection index ξ whose value is shown in color. The old near-equipartition solutions found
by Ferreira and Pelletier 1995 correspond to the top island (see for instance their Fig.3, with
Rm = p/ε).
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– The solution space has a monotonous behavior for p(ξ), this is again consistent with Fer-
reira and Pelletier 1995. They show that this monotonous behavior is a consequence of
the disk vertical equilibrium, which leads to smaller mass ejection index (ξ) when p is
increased. We present this argument below.

– For a given ξ, the function μ(p) is bi-valued in some islands, for μ < 0.1. This is a
signature of two distinct vertical equilibria. As we will see in section 3.3 in one branch
the toroidal magnetic field dominates whereas the other has a dominant radial magnetic
field.

– Finally, the range [ξmin, ξmax] of super slow magneto sonic solutions varies with μ. The
maximal and minimal ejection indexes increase when the magnetization decreases. This
will also be further detailed in section 3.3.

The effect of the parameter p on the ejection index can be understood by studying the vertical
equilibrium of the system. We neglect the acceleration term in Eq. (2.147) to rewrite it as

ρΩ2
kz ≃ −

∂

∂z

[
P +

1
8π

(
B2
R + B

2
φ

)]
, (3.17)

which is verified close to the disk mid-plane. We integrate with respect to z up to zj, the height
where the acceleration of the ouflow starts (defined in section 2.5.4). We get

zj∫
0

ρΩ2
kz dz ≃ ρ0Ω

2
Kh2ρ ≃ P0 − P(zj) −

1
8π

(
B2
R + B

2
φ

)∣∣∣∣∣
zj
, (3.18)

where we aproximate the first integral, by defining the density scale height hρ. We neglect P(zj)
and write P0 = ρ0Ω

2
Kh2, Eq. (3.18) can then be written as

h2ρ ≃ h2
1 − μ

2

 B2
R

B2
z0
+

B2
φ

B2
z0


∣∣∣∣∣∣∣
zj

 . (3.19)

The equation above states that the disk density scale height is reduced by the effect of the
magnetic compression. Furthermore, since the density scale is related to the mass loading of
the outflow we can deduce that when the magnetic compression increases ξ must decrease, the
density decreases in the upper layers. Since, p ≃ BR,SM/Bz0 we can deduce that when p increases
the mass ejection index must decrease. We can also use Eq. (3.19) to relate the magnetization
to p, when the magnetization increases if we want to keep ξ constant we will need to decrease
p so that the magnetic compression is unmodified. At constant ξ when p increases μ decreases.
This is true even if the toroidal magnetic field dominates. It can be shown that the magnitude of
JR0 is also determined by p (they are linked by the accretion mach number defined below). An
increases in p also tends to increase the toroidal magnetic field (see section 3.3 for more details).
This behavior combined with the super Alfvénic constraint leads to an increasing ejection index
when the magnetization increases (Ferreira 1997). However, as mentioned above we will be
dealing with two types of vertical equilibria depending on which of the two magnetic compo-
nents (BR or Bφ) dominate, the behavior of ξ(μ) will be modified. We can finally express a final
general constrain from Eq. (3.19)

μ
 B2

R

B2
z0
+

B2
φ

B2
z0


∣∣∣∣∣∣∣
zj

< 2, (3.20)
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this very restrictive condition states that the strength of the magnetic compression must be
bounded or else the disk will be destroyed under the effect of the magnetic field. We will also re-
turn to this constraint in section 3.3. The constraint of the vertical equilibriumwas also recovered
by Ogilvie 1997 and Ogilvie and Livio 1998. They show that when one increases the strength
of the magnetic field, the gas pressure increases and thus the magnetization tends towards a
constant value. The solution adapts as to not disrupt the disk magneto-static equilibrium.

We show the vertical profiles of several quantities as functions of the variable s = z/h along
a magnetic surface for two solutions (Fig 3.4). These two solutions have the same parameters
(αm = 1, χm = 1, ξ ≃ 0.1) except for the magnetization, one was obtained with μ = 6.7 × 10−2
(left) and the other one with μ = 5.7 × 10−3 (right). While the former has one sign inversion of
the radial magnetic field, BR, the second has 3 spatial oscillations. The differential islands seen
in Fig. (3.3) correspond to different spatial oscillation modes in the radial magnetic field. For
example, n = 0 (no oscillation) corresponds to μ > 0.1, the island located at 3 × 10−2 < μ < 0.5
correspond to n = 1 and the solutions within it exhibit 1 spatial oscillation, while the island
located at 3 × 10−3 < μ < 8 × 10−3 corresponds to n = 3 and the solutions within it feature
3 spatial oscillations. We also distinguish that as the magnetization decreases the extent of the
islands, δμ, and the distance between the islands, Δμ get smaller and smaller.

The oscillatory behavior can also be seen in the other physical quantities, mainly, the other
components of the magnetic field, the density and the velocity components. The spatial os-
cillation start above the disk mid-plane and they disappear before the SM point. Putting the
oscillations aside, the behavior of the solutions at high n is very similar to the behavior of the
solutions described in Ferreira 1997, which correspond to n = 0. The mass ejection is controlled
by the parameter ξ. The deflection of the matter is a consequence of the thermal pressure gradi-
ent (section 2.5.4). The cold criterion for ejection index applies, indeed, the field lines are bent
by more than 30 degrees with respect to the vertical axis (Blandford and Payne 1982).

3.2.2 MRI driven outflows

The oscillatory solutions obtained are a manifestation of channel flows, MRI-like modes that
have been described by Latter et al. 2010 in their stratified form and by Goodman and Xu 1994
in their non stratified form. They resemble the ”exotic solutions” computed by Ogilvie 1997.
Note that the equations we solve are stationary, the solutions found in our work are not linear
unstable MRI modes. They are exact non-linear solutions of the stationary MHD equations that
exhibit behavior similar to that of the MRI. Indeed, Lesur et al. 2013 have shown that MRI
modes can spontaneously saturate into wind-like solutions. Nevertheless, The linear behavior
will prove useful in understanding the behavior of the oscillating solutions.

SinceMRI is an ideal instability, thesemode develop onlywhen theAlfvén time scale l/VAz is
smaller than the resistive time scale l2/ηm, where l is the dynamical length scale. The wavelength
of the fastest growing MRI mode needs to fit inside the region where the instability develops.
The wavelength of the fastest growing MRI mode is defined by 2πVA/λMRI ∼ ΩK. We need this
wavelength to be of the order of the dynamical length scale or more precisely λMRI ∼ l/n, where
n is the number of spatial oscilations. For the outflow to exists, the radial oscillation need to
stop when the radial magnetic field is positive, this imposes an integer number of oscillations.
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Figure 3.4: Vertical profiles for several quantities as function of the variable s = z/h along
a magnetic surface (Eq. 3.15) for two solutions obtained with αm = 1, χm = 1,Pm = 1, ε =
0.1, the same ejection index ξ = 0.1 and μ = 6.7 × 10−2 (left), μ = 5.7 × 10−3 (right). The
magnetic field components (left) are normalized to the vertical field at the disk midplane Bo, the
velocity components (middle) to the Keplerian velocity ΩKoRo and the kinetic P and magnetic
Pm pressures (right) to the kinetic pressure at the disk midplane. The blue and orange vertical
lines represent respectively the SM and Alfvén critical points.
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Figure 3.5: Vertical profile of the radial magnetic field as well as the Linquist number and
the dimensionless MRI wavelength defined in Eq.(3.21) as function of the variable z/h for 3
different solutions. The three solutions are obtained with αm = 2, χm = 1,Pm = 1, ε = 0.1,
roughly the same ejection index ξ ∼ 0.1 and μ = 5.2 × 10−1 (top), μ = 2.3 × 10−2 (middle),
μ = 5.4 × 10−3 (bottom). The magnetic field components are normalized to the vertical field at
the disk midplane Bz0.
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Taking l ∼ h we have the following crude conditions

Rmag =
hVAz

η
> 1 (3.21)

λMRI

h
= 2π

Bz

Bz0

√
μ
ρ0
ρ
∼ 1

n
, (3.22)

The validity of these considerations is shown in Fig. (3.5). We see that the disk mid plane is
always too diffusive and no spatial oscillations are present regardless of the magnetization μ.
However, since both the density and diffusivity decrease vertically, Rmag becomes large enough
for spatial oscillations to develop on a length scale of order h. Spatial oscillations develop at
the disk surface (z ≃ h), where the flow reaches the ideal MHD regime. The expression of λMRI
harbors several features:

– The number of spatial oscillations depends on μ: Smaller μ leads to larger n, as can be
seen in Fig. (3.5). However, there is some leeway in the precise value of μ, that permits
to define the thickness of the islands, δμ, around an average value μn. This leeway will
be given by the vertical profile of density and is therefore a consequence of p and ξ.

– As the density decreases, the wavelength increases and eventually becomes larger than
the local dynamical scale. In Fig. (3.5) we show that the oscillations stop whenever the
MRI wavelength becomes larger than a few h, there is no longer any space for the MRI
modes. This leads to the MRI modes being localized below the SM point, xSM.

The above properties help us understand the existence of islands seen in Fig.(3.3) as well as
their separation with μ. The MRI wavelength and the SM point can be approximately related by
nλMRI ∼ hxSM, which leads to μn ∼

f(xSM)
n2α2m

, where f(xSM) is a function that depends on the altitude
xSM and μn = (μmax + μmin)/2 is the average value of μ for a given n and p. Since xSM is weakly
dependent of the magnetization μ, we write

μn
μn+1

∼
(
n + 1
n

)2
. (3.23)

To test this expression we used three different super SM parameters spaces obtained withPm = 1
and ε = 0.1 but with different values for αm and χm. For a constant value of p we measured the
average μn where the island is located for the different parameter spaces. We then computed the
ratio μn/μn+1 as a function of n, as shown in Fig.(3.6). This figure clearly demonstrates that the
analytical estimate can accurately reproduce the behavior of the islands. This expression also
explains why the distance between the island, Δμ = μn − μn+1, decreases as the magnetization
decreases.

The existence of the islands is a consequence of the MRI-driven channel modes as well as
of our boundary conditions at the disk mid plane. The imposed boundary conditions at z = 0,
namely BR = Bφ = 0 and uR < 0 (inward accretion motion), have a selection effect on the MRI
channel modes. This clearly forbids modes leading to an outward motion (uR > 0) at the disk
mid plane and modes with a half-integer number of oscillations (n + 1/2). Allowing for such
a boundary condition would lead to a supplementary half wavelength (n + 1/2)λMRI ∼ hxSM.
Breaking the z-symmetry could also allow other modes with Bφ = 0 located above or below
z = 0. Computing such solutions is beyond the scope of this work. We nevertheless argue that
the parameter space of Fig. (3.3) is actually a subset of the real parameter space of super-SM
accretion ejection structures. Such solutions should only fill in the actual ”forbidden” zones
between the islands.
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Figure 3.6: Ratio μn/μn+1 as function of the number n of spatial oscillations for three different
sets of super-SM solutions obtained with Pm = 1, ε = 0.1 and a constant p. The value μn is
obtained as the regularity condition for a super-SM flow exhibiting n spatial oscillations (see
text). The black solid line is our simple analytical estimate Eq.(3.23) and the colored curves are
for the following parameter sets: αm = 1, χm = 1 (green), αm = 2, χm = 1 (red) and αm = 1, χm =
0.1 (blue).

The channel flow described in this section are essential for the acceleration mechanism.
Blandford and Payne 1982 show that the outflow launching mechanism (in the case of negligi-
ble outflow enthalpy) requires a radial magnetic field component comparable or larger than the
vertical magnetic field. Ferreira and Pelletier 1995 then showed that for near equipartition solu-
tions the creation of a radial component of the magnetic field is a natural outcome of the transfer
of the disk angular momentum to the outflow base. Lesur et al. 2013 then showed that this pro-
cess can also be understood in the framework of the MRI instability. The channel modes are
essential, by driving the spatial oscillations they provide the bending of the poloidal magnetic
surface necessary for ejection. This will be further discussed in section 3.3.

We finally note that, the spatial oscillation exhibited by our solutions are in contradiction
with the prescribed smooth resistivity and viscosity. Parasitic instabilities, such as Kelvin-
Helmholtz, should be triggered and lead to the destruction of these channel modes (Goodman
and Xu 1994; Latter et al. 2010). This would lead to an internal rearrangement and a modifica-
tion of the turbulent transport coefficients. This will be discussed in section 3.5. In practice the
oscillations are a consequence of an inadequate choice of the profiles of the turbulent resistivity
and viscosity.

3.3 Super Alfvénic outflows

3.3.1 The magnetic shear as a function of the disk magnetization

We compute the MHD invariants defined in section 2.5.1 for all our super-SM solutions (see
Fig. 3.3) and then show them as function of the magnetization and the ejection index ξ, see
Fig. (3.7). We see that the mass loading invariant κ shows a linear dependence on the ejection
index ξ, we also see that κ increases with decreasing magnetization. We can understand this
dependence by computing an approximate expression of the mass loading invariant. We start
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from the conservation of mass in its integrated forms (Eq. (2.164))

ξ =
d ln Ṁa

d lnR
=

1
Ṁa

dṀo

d lnR
, (3.24)

we approximate the mass accretion rate as Ṁa ≃ 4πρ0uR0hR and the mass ejection rate as Ṁo ≃
2 × 2πR2 [

ρuz
]∣∣∣
SM, leads to [

ρuz
]∣∣∣
SM ≃ ξρ0uR0ε. (3.25)

We then use the definition of the mass loading invariant to compute

κ = 4π
ρuz
Bz

∣∣∣∣∣
SM

RΩK

Bz

∣∣∣∣∣
SM
≃ ξ

μ
uR0
cs
= ξ

ms

μ
, (3.26)

where we have assumed that Bz|SM ≃ Bz0. Finally, μ can be related to the sonic Mach number of
accretion, ms = uR0/cs, through Eq.(3.5)

4π
c
ηm0Jφ0 = αmVA0hp

Bz0

h
= uR0Bz0 ⇔ ms = pαmμ1/2, (3.27)

where uR0 is evaluated at the disk mid-plane. The Mach number at the disk mid-plane is deter-
mined by the strength of the magnetic field as well as the current flowing thorough the disk.

We use the relation above to rewrite the mass loading invariant as

κ ≃ ξp
αm
μ1/2
, (3.28)

the outflow mass load is thus a function of ξ and μ. This expression was first derived in Casse
and Ferreira 2000b. For a given ejection index ξ, increasing κ can be done by decreasing the
magnetic field strength. Matter dominated super-SM flowswith κ > 1 become thus achievable at
low μ. To convince ourselves that the magnetization dependence observed in Fig. (3.7) is truly
on μ−1/2 we show three dashed lines computed using Eq.(3.28) for different magnetizations,
calculated with p = 1 and αm = 1. We confirm that Eq.(3.28) provides a good approximation
for the dependence of κ on the disk parameters μ and ξ.

We remark from Fig. (3.7) (right) that the magnetic lever arm, λ, does not have a strong
dependence on μ, λ is only a function of the ejection index. Indeed, λ = 1 + K/(2ξ), where
K = Λ/(Λ + 1) where Λ = Mzφ/MRφ (see section 2.5.5) is a rather weak function of μ and ξ.
This is impressive as ξ and μ span respectively 2.5 and 4 decades. The remarkable dependence
of λ as only a function of ξ must be the outcome of some intrinsic physics. We compute the
toroidal magnetic field as a function of λ and κ, by using Eq. (2.153), as

−
∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
≃ κ(λ − 1). (3.29)

Using this expression, the derived dependency for κ, and the fact that λ is only a function of
the ejection index we derive ∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
=

pαm
2μ1/2

K ∝ μ−1/2, (3.30)

since K is a weakly varying function and p has a small range. The magnetic shear is thus a
function of the magnetization. We can construct a rather simple argument to understand this
behavior of the magnetic shear. We start from the previously derived expression (Eq. 2.145) for
the vertical velocity of the outflow at the inflection point (uR = 0),

uz|zR ≃
ηm
h
. (3.31)
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Figure 3.7: (Left) Mass loading parameter κ calculated using Eq.(2.112) as function of ξ for all
super-SM solutions appearing in Fig. 3.3. The dashed lines correspond to curves κ ≃ ξp αm

μ1/2 ,
computed with p = 1 and αm = 1, for different values of the magnetization, μ. The yellow curve
corresponds to μ = 1, the orange one corresponds to μ = 0.1 and the purple one corresponds to
μ = 10−3. (Right)Magnetic lever arm parameter λ calculated using Eq.(2.119) as a function of ξ
for all super-SM solutions appearing in Fig. 3.3. The solid lines correspond to curves λ = 1+ K

2ξ ,
computed using K = 1 (top) and K = 0.6 (bottom).

The outflow needs to become super SM, where we approximate VSM ∼ CS
VAz
VA
, close to the disk

surface. Hence, we compare this diffusive velocity with the super slow magneto sonic velocity,
uz|zR ∼ VSM to find

α2mμ = F2
SM(x)

1

1 +
(BR,SM

BZ0

)2
+

(Bφ,SM
BZ0

)2 , (3.32)

where FSM is a function depending on the vertical profiles of the temperature and the magnetic
resistivity. For this expression to be valid for all μ, the magnetic shear must be∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
∝ μ−1/2. (3.33)

It therefore appears that it is the SM constraint that imposes a scaling on the toroidal magnetic
field. This scaling is a direct consequence of the dependence of ηm on μ. If the scaling of the
magnetic diffusivity is different, as for example if one considers ambipolar diffusion (Lesur
2021), the scaling of the toroidal magnetic field would be different (see section 3.5).

As a consequence, a rather good approximation for the outflow torque exerted on the accre-
tion disk,Mzφ, reads

Mzφ

RP0
≃ 2μ

∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
∝ μ1/2, (3.34)

this scaling is shown in Fig. 3.8. The outflow torques can be modeled as a function of the
magnetization, i.e. the strength of the mean vertical magnetic field and the plasma pressure at
the disk mid-plane. This prescription can be used to include the effect of the magnetic field on
hydrodynamic models. This is the scaling that was used in Scepi et al. 2020.

3.3.2 The super Alfvénic constraint
In this section we compute the constraint imposed by the crossing of the Alfvén point on the out-
flow properties. This constraint will follow from the Grad-Shafranov equation or the transverse
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Figure 3.8: Vertical torque defined by Eq.(2.80) as a function of the magnetization μ and the
mass ejection index ξ. Every point corresponds to a super-Alfvénic solution, section 3.3

outflow equilibrium

∇·
[(
m2 − 1

) ∇a
4πR2

]
= ρ

{
dB
da
− Ω

dΩ∗R2
A

da
+

(
ΩR2 − Ω∗R2

A

) dΩ∗
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}
+
B2
φ + m2B2

p

4π
d ln η̃
da
, (3.35)

where B is the Bernoulli invariant and

d
da
=

1
∇a · ∇a∇a · ∇. (3.36)

The Grad-Shafranov equation (GSE) is a very complicated nonlinear partial differential equa-
tion, it is obtained by projecting the poloidal conservation of momentum across the magnetic
surfaces (∇a), in practice, it is not used to compute the self-similar accretion ejection physics.

Figure 3.9: This schema defines the different angles ϑSM, ϑA and ψA as well as the different
relevant radii R0, RSM and RA.

We compute the regularity condition of Eq. (3.35) at the Alfvén point, where m = up/VAp =

1, in appendix B, we follow the partial derivation of Casse and Ferreira 2000b. This position
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(zA, RA) is labelled by the angle ψA, defined as

cotψA =
zA
RA
= εxA, (3.37)

we also define the local outflow opening angle as

tan ϑ = BR/Bz. (3.38)

At the SM point we have cos ϑSM ≃ BR,SM
Bz0

. For the sake of clarity, we show the different
angles and the different radii in Fig. (3.9). The regularity condition will provide a value of
gA = g(ψA, κ, λ,ω, e), where g is defined by

Ω = Ω⋆(1 − g), (3.39)

as

g =
m2

m2 − 1

1 − (
RA

R

)2 . (3.40)

This function is related to the acceleration efficiency of the outflow. The closer gA is to 1 the
more efficient the acceleration was before the Alfvén surface (section 2.5.4). The function g is
also related to the poloidal current flowing through the disk (Ferreira 1997). The angle ψA is not
known a priori, to solve the GSE the Alfvén surface needs to be imposed. In a time-dependent
problem, the Alfvén surface would naturally emerge as a consequence of all causal connections.
In a self-similar approach this translates into a conical Alfvén surface with a possible choice
of the angle ψA (as done in Vlahakis et al. 2000). In our case the outflow is connected to an
accretion disk, the value of ψA will be a consequence of that constraint. Since our integration
starts from the disk mid-plane and is propagated upwards the trans Alfvénic solution can only
be found if at some point xA, g(xA) = gA is verified, this will then fix ψA. The position of the
Alfvén surface emerges then as a function of the disk parameters. In the following derivation
we will ignore all thermal contributions to the GSE and the Bernoulli equation, we will also
assume that RSM ≃ R0. We start by evaluating the Bernoulli invariant (Eq. 2.132) at the Alfvén
point and normalizing it to 1

2ΩK(RSM)2R2
SM, we find

2BA

ΩK(RSM)2R2
SM
= 32A − 2

√
ω
λ
sinψA + 2ωλ − ωλ(1 − g2A) = e, (3.41)

where 3A is the normalized poloidal velocity at the Alfvén point and e is the Bernoulli invariant
evaluated at the SM point (Eq. 2.141). Using the expression above we compute the velocity at
the Alfvén point as a function of the MHD invariants and ψA

3
2
A = ωλ

(
g2B − g2A

)
, (3.42)

where

g2B = 1 +
1
ωλ

[
−2 − ω2 + sinψA

√
ω
λ

]
. (3.43)

Here gB represents the maximum value for the acceleration efficiency gA as imposed by energy
conservation. A similar constraint was derived by Casse and Ferreira 2000b. Since g2B > 0,
this gives a constraint on the minimum energy reaching the Alfvén point, namely a minimum
magnetic lever arm given by

λ − 3 + 2
λ1/2

sinψA > 0. (3.44)
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Figure 3.10: The terminal jet poloidal velocity (in units of the Keplerian speed at the foot-point)
as function of the magnetic lever arm λ for our super-A solutions found in the fiducial case. The
blue and orange solid curves correspond respectively to upper and lower analytical limits (see
text). The fact that solutions do not reach the maximum speed indicates that the magnetic field
still conserves a fraction of the available energy.
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Figure 3.11: Position of the Alfvén point as function of the disk ejection efficiency ξ for our
fiducial parameter set. The color scale is the disk magnetization μ. The behavior of the Alfvén
position is different at high and low disk magnetizations, large ξ requiring both smaller μ and
an Alfvén surface closer to the disk surface (see text).
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Figure 3.12: Bending BR/Bz of the poloidal magnetic field evaluated at the SM point, as func-
tion of the parameter p (toroidal current density at the mid-plane) and the disk magnetization
μ (colors) for our fiducial parameter set. The jet initial opening angle increases monotonously
with increasing p and decreasing μ.

The closer the Alfvén surface is to the disk, the smaller the magnetic lever arm can be. For
λ > 3, the position of the Alfvén surface plays no role. The velocity at the Alfvén point can be
used to approximate the lower limit of the terminal outflow velocity, up∞, while the upper limit
is VK(R0)

√
2λ − 3. These two limits are shown in Fig.(3.10) for our super Alfvén solutions in

the fiducial case. For the lower curve, we compute 3A with ω = 1, sinψA = 1 and gA = 0. All
our super Alfvén solutions are indeed within those limits.

The GS equation can be analytically solved at the Alfvén point, this is computed in appendix
B, we show that there are always two positive roots

gA
gB

∣∣∣∣∣
±
=

c(k2 − sin2 ΨA) ± cos ΨA

√
(k2 − sin2 ΨA)

(
c2 − k2−1

k2
)

k2c2 + cos2 ΨA
. (3.45)

From this computation we also extract the following useful constraint

κminλ3g2B = ω. (3.46)

this equation provides the absolute lower value for κ in order to find a super-A outflow. Indeed,
for gA = 0 the GS constraint can only be satisfied if κ = κmin. Equation (3.46) is a generalization
of Eq.(3.1) in Blandford and Payne 1982 that reads

κλmin(2λmin − 3)1/2 = 1. (3.47)

Blandford and Payne 1982 deduce this constraint by studying the far-field solutions of the MHD
equations. They find that the far field solutions depend on κ and λ through a parameter defined
as βBP = κ(2λ − 3)3/2. When βBP is large the acceleration is driven by the centrifugal force to
a large radius before the toroidal magnetic field is able to recollimate the flow. When βBP is
small recollimation happens closer to the disk. Hence, there must exist a limit where recollima-
tion happens before the Alfvén surface and the super-A outflow does not exist anymore, they
approximate this limit to be Eq.(3.47).

In Fig. (3.11) we see that the position of the Alfvén surface increases as the ejection index
increases (λ decreases), for highly magnetized solutions this is always the case. However, for
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weakly magnetized solutions there exists a maxima, at a certain value of ξ, where the Alfvén
surface retreats closer to the disk as ξ increases (λ decreases). It is also clear from looking
at Fig. (3.12) that as p increases the outflow opening angle, θSM, also increases. Furthermore,
when p increases the ejection index ξ decreases due to the enhanced compression of the accretion
disk (see section 3.2.1). Therefore, when the ejection index increases (p decreases) the outflow
opening angle decreases (see also Fig. 3.15).

In this picture, the monotonous behavior of Fig. (3.11) can be understood. If the outflow
opening angle is small the magnetic field line will meet the Alfvén surface higher than if the
opening angle were large, since RA is fixed by the magnetic lever arm (see Fig. 3.9).

This picture is consistent with Fig. (3.11). However, once λ is smaller than 3, ξ > 0.25,
the acceleration efficiency goes to 0 unless the Alfvén surfaces moves closer to the disk (ψA
increases). This can be understood from the definition of gB (Eq. 3.43), only if the Alfvén
surface moves closer to the disk can gB stay bigger than 0. Indeed, since gB is a maximal value
of gA when gB goes to 0 gA → 0.

In Fig. (3.11) we also see that when we decrease the magnetization the Alfvén surface moves
closer to the disk. This can also be understood by looking at Fig. (3.12), as the magnetization de-
creases the outflow opening angle increases leading to a magnetic surface that meets the Alfvén
radius closer to the disk.

3.3.3 The super Alfvénic parameter space
In Fig. (3.13) κ − λ plane and where the color represents the magnetization. In the appendix B
we computed a constraint that needs to be satisfied for a solution to cross the Alfvén point. For
a given magnetic lever arm, there must be a minimum mass load κmin for a cold flow such that

κ2minλ
3g2b = 1 (3.48)

with
g2B = 1 −

3
λ
+

2
λ3/2

sinψA, (3.49)

Eq. (3.46) with ω = 1. This constraint expresses that for a magnetic lever arm λ (mostly deter-
mined by ξ), κ must be large enough. This expression is used to compute the two solid curves
shown in Fig. (3.13), computed in two extreme cases for the location of the Alfvén surfaces:

– The first one is close to disk, near the SM surfaces with xSM = 2, namely ψA = π/2 −
arctan(2h/2) for the lower curve.

– The second on is much further out with ψA = π/3 for the upper curve, this value of ψA is
typical for near-equipartition cold outflows.

This constraint rules out all super-SM solutions located at the left-hand side of these curves. We
see that solutions with near equipartition fields (n = 0) will be constrained to large values of the
magnetic lever arm, λ > 7, namely to mass loading values smaller than 0.1 and to ejection index
values smaller than 0.08 (in agreement with Ferreira 1997). On the contrary, solutions with
smaller magnetization can achieve smaller values of λ as well as bigger values of the ejection
index and the mass loading, κ. These isothermal outflows could be interesting for reproducing
dense outflow (ξ > 0.1) with low asymptotic speeds (up∞ ≃ VK0). Weakly magnetized outflows
seem better suited for massive outflows, the MRI-like mechanism providing the bending while
a lower magnetization moves the Alfvén surface closer to the disk (see previous section).
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Figure 3.13: Projection on κ− λ plane of all the super-SM solutions shown in Fig. 3.3. The color
scale is the disk magnetization μ, while the grey areas correspond to zones with approximately
a constant ejection index ξ whose value is indicated. Note that the stripes (best seen in the
yellow high magnetization zone with n = 0) are an effect of our numerical procedure for seeking
solutions.



CHAPTER 3. WEAKLY MAGNETIZED SELF-SIMILAR JETS AND WINDS 85

10−3 10−2 10−1

µ

10−2

10−1

ξ

10−1

100

101

∣∣∣BR/Bϕ
∣∣∣2
S M

Figure 3.14: Parameter space ξ(μ) for isothermal super-A solutions with αm = 1, χm = 1,
Pm = 1 and ε = 0.1. In colors are shown the ratio of the radial to the toroidal magnetic field
at the SM point. A clear trend emerges, with small magnetizations leading to highly wound
magnetic fields, whereas larger magnetizations correspond to more bent structures. This can
be seen as an evolution from a vertical pressure lift at small μ to a magneto-centrifugal push at
large μ. The black dashed line is a sketch of the border of the parameter space.

Not all Super-SM solutions located at the right hand side of the solid curves in Fig. (3.13)
can become super Alfvénic . The constraint written in Eq. (3.46) only takes into account the
energetics of the system and is not a direct consequence of the Grad-Shafranov equation. Indeed,
not all couples (κ,λ) fulfill Eq. (3.45). If a solution is not possible it means that there is no
altitude zA of the Alfvén point that can be found starting from the condition provided at the base
of the outflow (SM point). Modifying the value of p leads to a slight modification of κ, λ and
the outflow opening angle cos ϑSM allowing to possibly meet the Alfvén surface. As explained
above the condition gB > 0 highlights this aspect.

Figure (3.14) shows the super Alfvénic parameter space in the (ξ, μ) plane for our fiducial
case. It is a subset of the SM parameter space shown in Fig. (3.3). The islands become almost
vertical stripes in μ with a range in ejection index ξ. We recover the same behavior as in Ferreira
1997 for high magnetization solutions, near equipartition (n = 0). When the magnetization
decreases the ejection index also increases. Furthermore, we enlarge the parameter space in the
μ direction by almost 4 orders of magnitude (up to n = 8).

The color scale in Fig. (3.14) indicates the ratio of the radial to the toroidal magnetic field
component at the SM point. Solutions with near equipartition magnetic fields are dominated by
the radial component of the magnetic field, the toroidal field becoming gradually dominant as
n increases (μ decreases). This is consistent with the scaling Bφ/Bz0 ∝ μ−1/2 imposed by the
SM regularity condition. However, it highlights a possible complementarity between ”magnetic
tower” outflows where ejection is due to a dominant Bφ field, and ”(magneto)centrifugally-
driven” outflows (Blandford and Payne 1982), where the dominant BR is of utmost importance.
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Figure 3.15: (left) Toroidal, Bφ/Bz, and (right) radial, BR/Bz, magnetic field components evalu-
ated at the SM point, as functions of the parameter ξ and the disk magnetization μ (colors) for
our fiducial parameter set.

Indeed, we have a continuous transition between ”magnetic tower” outflows (at small μ and
large ξ) and ”(magneto)centrifugally-driven” outflows (at large μ and small ξ).

The dependence of ξ(μ) changes for the two cases within each island. It can be seen that for
n = 0 ξ increases when μ increases (although for a very limited range). On the other hand, for
n = 3 (μ < 10−2), it is the other way around: ξ decreases for increasing μ. The functional depen-
dence of ξ(μ) can be seen as a fingerprint of the dominant ejection mode, magneto-centrifugal
or magnetic tower like.

To understand this new behavior at small μ we show in (Right) Fig. (3.15) the toroidal mag-
netic evaluated at the SM point normalized by the vertical magnetic field as a function of the
ejection index and the magnetization μ. We see that, contrary to the radial magnetic field (left)
(Fig. 3.15), the toroidal magnetic field features a more complicated behavior when seen as a
function of the ejection index ξ. We saw before that the radial magnetic field increases as p in-
creases, and that ξ decreases as p increases, therefore BR,SM decreases when ξ increases, which is
clearly shown in (right) Fig. (3.15). We see in Fig. (3.15) that the behavior of the toroidal mag-
netic field at low μ and intermediate values of ξ (3 × 10−2 < ξ < 0.1) is the opposite. Indeed,
the strength of the toroidal magnetic field increases when the ejection index increases. This can
be understood using the constraint of vertical equilibrium

μ
 B2

R

B2
z0
+

B2
φ

B2
z0


∣∣∣∣∣∣∣
zj

< 2. (3.50)

When μ is very small it is easy to satisfy the vertical equilibrium for the radial magnetic field.
However, the toroidal magnetic field scales as μ−1/2 andwill dominate themagnetic compression
of the disk as well as the acceleration of the outflow at low μ. It is the interplay between these
two processes which cause the extremum in the dependence of ξ(μ) at small μ.

We see that at low ejection index (ξ < 2 × 10−2) the radial magnetic field is larger than
or comparable to the toroidal magnetic field. Indeed, when ξ < 2 × 10−2 no matter the μ,
the behavior of ξ(μ) follows the monotonous behavior of increasing μ leading to increasing ξ
(Ferreira 1997). The radial magnetic field has the dominant role in the vertical equilibrium.

At intermediate values of the ejection index (2 × 10−2 < ξ < 0.1) the toroidal compression
is weak and a higher toroidal field is beneficial since it helps the magnetic vertical accelera-
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tion. Hence, increasing ξ or μ leads to an increase in Bφ,SM/Bz,SM. The behavior of ξ(μ) in this
intermediate regime is now inverted, and increasing ξ leads to a decrease in μ.

On the contrary, at high ejection index and low-μ the toroidal magnetic field becomes too
strong and needs to decreases for Eq. (3.50) to be respected. This leads to an extremum in the
behavior of the toroidal magnetic field (Fig. 3.15), clearly seen for n = 2 and n = 3. The
extremum can also be discerned in Fig. (3.14) for n = 3 and ξ ≃ 0.1, ξ(μ) is reaching another
extremum and changing its behavior for the second time. We see that the toroidal magnetic field
is modifying the dependency of the ejection index on the magnetization.

As discussed above, we expect to fill in the islands between the solutions by changing the
boundary values at the disk mid-plane. Nevertheless, the general contour of the parameter space
should not be modified by the discovery of these new solutions, namely the upper and lower
contours ξmin(μ) and ξmax(μ) should not be modified.

It can be seen that, the minimum ejection index increases when the magnetization decreases.
This is a fossil feature of the super SM parameter space (Fig. 3.3). As the magnetization de-
creases the toroidal magnetic field increases and dominates the acceleration, this leads to a
stronger vertical acceleration and ”magnetic tower” like solutions, that live at small μ and have
in general a higher ejection index. The terminal velocity of the outflow is going to be linked
to the value of λ which is a function of ξ. The maximal velocity achievable in our fiducial
parameter space is a function of only the disk magnetization μ.

The maximum ejection index, ξmax is determined by the Alfvénic constraint. It is interesting
that it has a non-monotonous behavior (Fig. 3.14), first increasing with μ until its maximum
value 0.35 for n = 2 and then decreasing down to 0.08 for n = 0. As illustrated in Fig. 3.7,
increasing ξ leads to a decrease in λ. Low values of λ are possible only for large values of κ,
which are accessible only by decreasing μ. As a consequence, the Alfvén surface comes closer
to the disk (zA/RA) decreases as ξ increases, see Fig. (3.11). However, if we keep decreasing
μ, the magnetic energy available in the outflow becomes also smaller and the acceleration less
efficient. The Alfvén surface moves away from the disk (zA/RA) increases as ξ increases), re-
quiring thereby a larger magnetic lever arm λ to get super-A flows so that ξmax decreases. The
behavior of ξmax follow from the Alfvénic constraint discussed in the previous section.

3.4 General properties

Our fiducial parameter achieved a maximal value of ξ = 0.35 obtained with n = 2 for μ ∼
10−2, while the minimum value is 5 × 10−3 and is obtained with n = 0 for μ = 0.5. Our
calculations have been done for cold outflows (isothermal magnetic surfaces) only. Thermal
effects may drastically enhance ξ (Casse and Ferreira 2000a). For cold outflows and for all
turbulent transport parameters explored (αm,χm) we found a minimum ξmin ≃ 5 × 10−3 and a
maximum ξmax ≃ 0.47, with a clear tendency of reaching larger ξ with low-μ solutions. Contrary
to previous near-equipartition solutions, cold massive outflows with ξ ∼ 0.1 are possible, in our
framework, as long as spatial oscillations are allowed. But super-A solutions with ξ > 0.5
remain out of range for cold solutions.

In this section we first explore the effect of the turbulence parameter αm as well as the turbu-
lence anisotropy χm on the borders of the parameter space. We will then explore the accretion
velocity of the system that determines its secular evolution. Finally, we will try to properly
define what we mean by wind or jet and under which category are our solutions placed.
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Figure 3.16: Effect of the MHD turbulence level αm on the parameter space of super-A flows
for ε = 0.1, χm = 1,Pm = 1. Only the contours of the parameter spaces are shown. Note that αm
affects all three coefficients (νv, νm, ν′m).

3.4.1 The influence of the level of turbulence αm
Figure 3.16 shows that αm has a dramatic impact on the structure of the parameter space. We
notice two important trends

– Increasing the turbulence level above unity does not considerably modify the curve of
ξmax. On the contrary the curve ξmin is raised drastically leading to a shrinking of the pa-
rameter space. Furthermore, as αm increases, solutions of same ξ are displaced to smaller
μ. We did not explore values of αm larger than 8 because they were not consistent with
the scaling measured in shearing box simulations (Salvesen et al. 2016).

– When the level of turbulence decreases below 1 the extent of the parameter space is greatly
reduced. For αm = 0.8 we were only able to find two family of solutions, one with n = 0
and the other with n = 3. The fact that the parameter space reduces considerably when
αm < 1 has already being reported in Ferreira and Pelletier 1995 and Ferreira 1997.

The fact that when αm increases solutions are displaced to smaller magnetizations can be under-
stood from the SM constraint (Eq. 3.32), that reads

α2mμ = F2
SM(x)

1

1 +
(BR,SM

BZ0

)2
+

(Bφ,SM
BZ0

)2 . (3.51)

For Eq. (3.32) to stay unmodified when we increase αm the magnetization needs to decrease so
that μα2m stays approximately constant. The drastic diminution of the parameter space when αm
is increased can be related to the change of sign of the electric current at the disk surface.

As we saw in section 2.5.3, for the outflow to escape the accretion disk, the radial current
needs to change sign (the toroidal magnetic field needs to reach a maximum value) close to the
disk surface. The change of sign of the radial current imposes certain constraints on the turbulent
transport coefficients.

To derive those constraints, we start from Eq. (2.152) that we rewrite here in the notation of
Ferreira and Pelletier 1995

JR(z) ≃ JR(z = 0)
η′m(z = 0)
η′m(z)

1 − 3
2

ΩK

η′m(z = 0)JR(z = 0)

z∫
0

dzBR

 , (3.52)
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Figure 3.17: Vertical profiles of the radial electric current density JR (normalized to JRo) for
different values of χm and Γ = 1.3, 0.74, 0.62 . These super-SM solutions were calculated with
μ ∼ 2 × 10−2, ξ = 0.4 and αm = Pm = 1.

if we assume that the radial magnetic field can be written as

BR ≃ pBz0
z
h

(3.53)

close to the disk we simplify Eq. (3.52) into

η′m(x)JR = η′moJR0
(
1 − Γx2

)
with Γ =

3
2
χm
α2m

p
p − Pmε

. (3.54)

In the absence of any shear (rigid rotation), one would have η′mJR = η′moJR0. The vertical profile
of the radial current would only depend on the vertical profile of η′m(x). The differential rotation
is therefore counteracting the radial current flowing at the disk mid-plane, JR0. It is crucial to
change the sign of the current towards the axis. The change of sign of the current is then related
to the acceleration of the outflow as discussed in section 2.5.3. The change of sign of the current
will be challenged by the vertical decrease of the turbulent diffusivity η′m. If Γ > 1, JR is going
to quickly tend to zero, despite the decrease of η′m. On the contrary, if Γ < 1, JR is going to level
off or reach a maximum before decreasing at a higher altitude.

We can clearly see this trend in Fig. (3.17), where different values of Γ have been obtained
by varying χm. Furthermore, we see that for Γ = 0.61 the profile of the current increases before
changing sign. This is due to the vertical profile of η′m, we see in Eq. (3.54) that if η′m(x) ∝ e−x2 ≃
(1 − x2) decreases faster than (1 − Γx2) the radial current is forced to increase before changing
sign. Hence, it is a consequence of Γ < 1. In our approach, Γ is not a free parameter and will
be determined by the turbulent transport coefficients αm, χm, and Pm.

Figure 3.17 shows that the vertical profiles of the radial current are far more complex than
the simple model in Eq. (3.54), in particular, the profiles of JR show channel mode oscillations.
Hence, the purpose of Eq. (3.54) is to provide us intuition on the dynamics of the system and
not to give an accurate fit of JR. Nonetheless, the fact that the profiles shown in Fig. (3.17)
change sign as expected, solutions with larger Γ changing sign at a smaller xj, gives credence to
Eq. (3.54).

As argued above and in section 2.5.3 we need the acceleration to start around the disk surface.
Hence, the position where the radial current changes sign xJ needs to be of the order of 1. This
requires therefore Γ to also be of order unity. Assuming Γ ∼ 1 leads to χm ∼ α2m which provides
η′m ∼ α−1m VAh. This estimate is but an optimal case, solutions can be found for Γ , 1 even a bit
larger than 1.
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Ejection can only be achieved when

Γ =
3
2
χm
α2m

p
p − Pmε

≃ 1, (3.55)

where Γ controls the vertical scale of the turbulent emf η′mJR. We verify that this is true for all
our super Alfvénic solutions, we measure Γ ∈ [0.5, 3] which gives credence to our constraint.
Hence, If p is of order unity, for the toroidal current density (controlled by p) to adapt to the
constraint imposed by Eq. (3.32) implies that p ∼ χm/α2m. Thus when αm increases p needs
to decrease. Since p controls the outflow opening angle (Fig. 3.12), a decrease in p leads to a
decrease of magnetic vertical compression, thus to a larger mass loss rate from the disk. This
feedback on the disk vertical equilibrium explains why ξmin(μ) increases when αm increases.

In order to keep Γ near unity, as αm increases one gets p → pmin = Pmε which could be
very small. This might be an indication that, for larger values of αm, the MHD solution would
eventually try to reverse the sign of the accretion speed, with an outward motion at the disk mid
plane (ur > 0 and Jφ < 0). Such a situation, seen in numerical simulations, is actually forbidden
by our assumed boundary condition. This is a general bias that has been discussed previously.

When αm decreases p increases, this will quickly lead to Γ becoming larger than unity since
p

p−Pmε ≤ 1, tthe ratio p/(p − pmin) is bounded by 1. The magnetic diffusivity is now too strong,
the generation of the toroidal field becomes inefficient and the torque Fφ remains negative, the
magnetic acceleration is suppressed. As a consequence most solutions vanish and the parameter
space is greatly reduced.

In contrast, when αm increases, solutions with Γ of order unity require p→ pmin, with pmin =
Pmε. Rather large values of αm are thus allowed since the ratio p/(p − pmin) can be very large.
The parameter space is not constrained by the Eq.(3.54) in this case.

3.4.2 The influence of the anisotropy of turbulence χm
The effect of turbulent anisotropy, χm on the the super Alfvén parameter space is very similar
to the one of αm. In Figure 3.18 we show that when χm > 1 the extent of the parameter space is
reduced considerably. Indeed, For χm = 2 and for αm = 0.8 we find the same kind of behavior,
namely only two sets of separated solutions, one at n = 0 and the other at n = 3. Above this
value of χm we find no super Alfvénic solutions.

Increasing χm leads to the same behavior as decreasing αm, it leads to the increase of p, this
quickly increases Γ that becomes larger than unity. When Γ is larger than unity the acceleration
becomes inefficient and it is impossible to launch outflows.

Decreasing χm has a less pronounced effect than increasing αm. This is due to the fact that
the latter is controlling all magnetic field components while the former only affects the toroidal
field. Furthermore, we do not see the strong shift to lower magnetizations as we increased αm,
this is to be expected as χm does not play a role in the SM constraint (Eq. 3.32). A value χm < 1
corresponds to a stronger diffusion of the toroidal magnetic field wrt to the poloidal field. The
parameter space for χm = 0.1 is mostly unmodified when compared with the fiducial case.
However, χm = 0.01 leads to a reduced parameter space, the parameter space shifts to lower
μ and has a smaller ξmax. A magnetic shear |Bφ/Bz| too large produces a strong vertical pinch
so that solutions need to exist at low μ and small ejection index. Near equipartition solution
become now impossible.
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Figure 3.18: Effect of the anisotropy χm of the turbulent magnetic diffusivity on the parameter
space of super-A flows for ε = 0.1, αm = 1,Pm = 1.

3.4.3 Accretion velocity
The accretion Mach number is defined as ms = uR0/cs, where uR0 is the radial accretion velocity
due to turbulent and laminar torques. As we saw before the accretion Mach (Eq> 3.27) number
can be related to the disk parameters like so

ms = pαmμ1/2. (3.56)

Since p covers a small range, we deduce that ms ∝ μ1/2 whatever the dominant torque. Hence,
supersonic accretion (ms > 1) can only be achieved for near equipartition solutions. Such a high
accretion speed has profound consequences: it may lead to optically thin accretion disks with
observable features in young stellar objects (Combet and Ferreira 2008; Combet et al. 2010) or
X-ray Binaries (Marcel et al. 2018b). Since our solutions are prone to oscillations (Fig. 3.5) it is
not obvious that all the accretion is concentrated at the disk mid-plane for n , 0. To verify that
the only solutions capable of super-sonic accretion are the ones that have n = 0 we compute the
mass weighted accretion velocity

m̃s =
Ṁa

2πRcsΣ
=
−1
Cs

∫ xSM
0 uRρ dx∫ xSM
0 ρ dx

, (3.57)

from the disk mid plane up to the SM point. We compute m̃s for all solutions found, and find
m̃s is never larger than ms by more than a factor of 3. This may seem surprising, but the spatial
oscillations compensate each other leading to very little differences. We show themass weighted
accretion velocity normalized to the sonic speed for the fiducial parameter as well as for αm = 8
in Fig. (3.19). We can see that the only solutions capable of supersonic accretion are the near
equipartition solutions for the fiducial parameter space. We also see in Fig. (3.19) that for the
same value of n the mass weighted accretion, m̃s, is smaller if αm = 8. Although Eq. (3.27)
seems to imply the opposite, ms ∝ αm, this is a consequence of the radial current constraint.
Indeed, Γ ∼ 1 requires p ∼ 1/α2m which leads to ms ∝ 1/αm. Hence, m̃s decreases when the level
of turbulence, αm, increases.

3.4.4 From winds to jets
Accretion is due to the vertical and radial torques acting on the accretion disk. To understand
which torque (radial or vertical) is the dominant mode of angular momentum transport we com-
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Figure 3.19: Mass weighted accretion mach number m̃s computed using Eq. (3.57) obtained
with ε = 0.1,Pm = χm = 1 and αm = 1 (left), αm = 8 (right). Every point represents a super
Alfvénic solution and the color is the disk magnetization μ.

pute Λ = Mzφ
MRφ

(defined in section 2.3.2) the ratio of the vertical laminar torque to the radial
(laminar and turbulent) torques acting on the disk. The different torques can be analytically
estimated as

4π
RB2

z

∣∣∣∣∣∣
SM

Mzφ ≃ b(ξ)μ−1/2, (3.58)

4π
RB2

z

∣∣∣∣∣∣
SM

MRφ,la ≃ b(ξ)μ−1/2
BR

Bz

∣∣∣∣∣
SM

ε, (3.59)

4π
RB2

z

∣∣∣∣∣∣
SM

MRφ,tu ≃ αv
ε
μ
= εαmPmμ−1/2, (3.60)

where we define

b(ξ) = μ1/2
∣∣∣∣∣Bφ

Bz

∣∣∣∣∣
SM
≃ o(1), (3.61)

to easily take into account the dependence of the toroidal field on the disk ejection index (Fig. 3.15).
Putting everything together we get

Λ ≃ 1
ε

b

b BR
Bz

∣∣∣∣
SM
+ αmPm

, (3.62)

this equation is a generalization of Eq. (52) in Casse and Ferreira 2000b, we distinguish two
limits:

– If the initial outflow opening angle is small (or the level of turbulence is large) BR
Bz

∣∣∣∣
SM
≪

αmPmε, which coincides with large ejection indexes (ξ ∼ 0.3), we get

Λ ∼ b(ξ)
αmPmε

. (3.63)

In this limit Λ(ξ) follows the dependency of the toroidalmagnetic field on ξ, see Fig. (3.15),
when ξ increases Λ decreases. In the cold n = 0 limit Λ ∼ 1/ε.
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Figure 3.20: Ratio Λ = Mzφ/MRφ of the vertical stress Mzφ to the radial stresses MRφ acting on
the disk for solutions obtained with ε = 0.1,Pm = χm = 1 and αm = 1 (left), αm = 8 (right).
Every point represents a super Alfvénic solution and the color is the disk magnetization μ. The
non monotonous behavior with ξ and αm is a consequence of the complex feedback of αm on BR
and Bφ and the associated laminar torques (see text). The blue solid line on the right panel is
the σ = 1 contour, defined in Eq. (3.65). All solutions located above it display σ > 1 (this is the
case for all solutions on the left panel).

– If the initial outflow opening angle is large (or the level of turbulence is small) BR
Bz

∣∣∣∣
SM
≫

αmPmε, which coincides with small ejection indexes (ξ ≪ 1), we get

Λ ∼ 1

ε BR
Bz

∣∣∣∣
SM

. (3.64)

In this limit Λ(ξ) follows the dependency of the radial magnetic field on ξ, see Fig. (3.12),
when ξ increases Λ increases.

Fig. (3.20) shows that Λ is only weakly dependent on the magnetization, consistent with
Eq. (3.62). We also see that Λ decreases strongly when the level of turbulence increases, also
consistent with Eq. (3.62). For αm = 1, (left) Fig. (3.20), we distinguish an extremum in the
dependence of Λ as a function of the ejection index, clearly visible for n = 1. This can be
understood using our estimates above. Indeed, when ξ ≪ 1 we are in the second limit (Eq. 3.64),
the radial laminar torque dominates. This radial laminar torques is the result of strong spatial
oscillation within the resistive disk, the channel modes. The radial laminar torque follows the
same dependency as ( BR

Bz

∣∣∣∣
SM

)−1, this leads to an increasing Λ when ξ increases. However, at a
certain critical ξ the radial laminar torque becomes smaller than the turbulent torque. Since the
turbulent torque is independent of ξ, Λ now follows the dependency of the toroidal magnetic
field, the first limit given by Eq. (3.63) and Λ decreases when ξ increases (Fig. 3.15).

In the case of αm = 8 the radial laminar torque is never stronger than the turbulent torque we
only recover the first limit (Eq. 3.63). Furthermore, in the case of αm = 8 the turbulent torque
is even stronger than the vertical laminar torque, this leads to a disk where most of the angular
momentum is transported radially (contrary to Ferreira 1997).

As Λ decreases the function K = Λ/(Λ + 1) starts deviating considerably from K ∼ Cte,
when this happens the relation λ ≃ 1 + K/(2ξ) stops being a reliable way to estimate ξ from λ.
Indeed, as K will depend on ξ we would need to take into account this dependence to find ξ as
a function of λ. In Fig. (3.21) we show that, for αm = 8, λ(ξ) deviates by about 50% from the
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Figure 3.21: Magnetic lever arm parameter λ calculated using Eq.(2.119) as a function of ξ for
all super-SM solutions appearing in Fig. 3.3. The solid lines correspond to curves λ = 1 + K

2ξ ,
computed using either K = 1 (top) or K = 0.6 (bottom).

curves calculated with K = 0.6 and K = 1.0. It is thus more problematic to derive ξ directly
from the outflow asymptotic speed in the case of high-αm outflows.

We have not yet tried to distinguish which of our outflows are winds and which of them are
jets. A clear distinction between MHD winds and jets, which are both super-A MHD flows can
be made. Defining the initial jet magnetization σ as the ratio of the MHD poloidal Poynting flux
to the kinetic plus thermal (enthalpy) energy flux (measure at the base of the outflow) leads to
the general useful relation for cold outflows

σ =
−Ω∗rBφBp(

u2
2 + H

)
ρupμo

∣∣∣∣∣∣∣∣
SM

≃ 2ω(λ − 1) ≃ ω
ξ

Λ
1 + Λ

. (3.65)

Jets can be characterized by high speeds (high λ), they are also self-confined thanks to the dom-
inant hoop stress, the hoop stress is stronger than the pressure gradient and the centrifugal force.
Jets are therefore Poynting flux dominated flow with σ > 1. On the other hand, winds are low
speed MHD flows with small λ, with almost no collimation besides the one introduced by the
external pressure. Winds are therefore matter dominated outflows with σ < 1.

In Fig. (3.20) we have plotted the contour for σ = 1, computed using ω = 1. All solutions
obtained with αm = 1 (left) are jet like solutions as they are well above this contour (σ > 1). In
Fig. (3.22) we show the magnetic surfaces for the two solutions displayed in Fig. (3.5). Even
though these two solutions have low magnetizations they display very similar behaviors to the
near-equipartition solutions (Ferreira 1997): the magnetic surfaces widen before recollimating
towards the axis.

Figure 3.20 also reveals some solutions that cross the σ = 1 contour, wind-like outflows
at αm = 8 and low magnetization. These solution have a magnetic lever arm very close to the
minimal value of 3/2 and reach σ = 1 because ξ is large and Λ is small. Even though these
solutions cross the Alfvén point, they then encounter pretty soon the modified fast magneto
sonic (FM) surface, and stop. However, according to Ferreira and Casse 2004, for a solution to
become super FM the outflow energy equations needs to be taken into account, this is not done in
this work as we only compute isothermal outflows. Moreover, since the outflow have λ ≃ 3/2,
they are exhausted once they cross the Alfvén surface, and heating could be quintessential in
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Figure 3.22: Shape of the poloidal magnetic surfaces for the two weakly magnetized solutions
presented in Fig. 3.4, both having ξ = 0.1. Left: solution with μ = 6.7 10−2 and n = 1 spatial
oscillation. right: solution with μ = 5.7 10−3 and n = 3. The SM point is marked by a blue
star and the Alfvén point with a red triangle. Both jet solutions open up before recollimating
towards the axis.

energizing these exhausted outflows (Casse and Ferreira 2000a). Our guess is therefore that
warm low μ solutions obtained with αm = 8 will provide proper MHD wind solutions. This is
postponed to future work.

The definition of σ already implies that only outflowswithmagnetic lever arm values close to
the minimum value of 3/2 could be categorized as wind like outflows. This would be consistent
with observations of molecular outflows (Louvet et al. 2018; de-Valon et al. 2020). Nonethe-
less, recent self-similar solutions of non-ideal MHD outflows show that it is possible to obtain
super FM solutions with λ ≃ 3/2 without any heating (Lesur 2021). They also show that those
solutions are very dense and recollimate towards the axis. They exhibit a mix of jet-like and
wind-like behavior. Recollimating outflow are also observed in 3D global simulation (Zhu and
Stone 2018; Riols et al. 2020; Jacquemin-Ide et al. 2021). It remains unclear if recollimation is
an intrinsic property of MHD-driven outflow or if it is the consequence of a bias:

– In the self-similar framework recollimation could be the consequence of a not understood
bias in the self-similar ansatz. However, Contopoulos and Lovelace 1994 have computed
self-similar solution that do not recollimate towards the axis by playing with the radial
distribution of the magnetic field. They find that it is possible to produce conical outflows
by reaching a certain value of the power law exponent. This value is equivalent to ξ > 0.5
in our framework. In our work we are unable to reach such high values.

– In 3D global simulations recollimation could be the consequence of a numerical bias. The
boundary conditions at the vertical axis could be unphysical. Maybe the lack of an internal
outflow launched by the central object is at fault. Furthermore, 3D numerical simulation
need unphysical density floors close to the axis to deal with runaway magnetizations in
those regions.

In short the recollimation of MHD driven outflow is still not understood and deserves further
analysis.
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Figure 3.23: (Left) Logarithm of the averaged mach number at the disk mid plane as a function
of the magnetization (their μD is equivalent to our μ),MR is equivalent to our m̃s. Adapted from
Stepanovs and Fendt 2016. (Right) Normalized angular momentum invariant as a function of
the magnetization (their l is equivalent to our λ).Adapted from Stepanovs and Fendt 2016.

3.5 Comparison with other work

The first paper showing the existence of super-A outflows flows from low magnetized accretion
disks in 2.5D simulations was Murphy et al. 2010. Their work was then extended by a large
numerical survey in μ done by Stepanovs and Fendt 2016, both authors used ε = 0.1. However,
while Murphy et al. 2010 included viscosity with αv = 0.9 (all stress components), Stepanovs
and Fendt 2016 neglected it. They effectively havePm = 0, the disk angular momentum removal
is only done by the laminar torque. In terms of magnetic diffusivity, Murphy et al. 2010 used
χm = 1 and αm starting from 20 and increasing with the radius as μ decreases. While Stepanovs
and Fendt 2016 used χm = 2, αm ≃ 3 and a constant μ across the accretion disk. Nevertheless,
super-A jets were found by both authors with μ as low as 10−4.

In Fig. (3.23) we show the dependences in μ of theMHD invariants λ as well as the accretion
Mach numberms computed in Stepanovs and Fendt 2016 (Left). We recognize that they recover
the same scaling for the accretion Mach number, namely ms ∝ μ1/2 at low magnetizations.
This scaling seems to be independent of viscosity at low magnetization as it is neglected in
their work. Moreover, they also recover the same behavior as us for the magnetic lever arm, λ,
namely as themagnetization decreases themagnetic lever arm tends to decrease (see Fig. (3.13)).
The solutions with small μ tend to have a lower mass ejection index and therefore a higher λ.
Moreover, they find a similar scaling for |Bφ/BR| which has lead them to deduce a dichotomy
between the magnetic tower and magneto-centrifugal solutions, with a critical magnetization
μ ≃ 0.01 separating them. This is also consistent with our work, even though we find that a
proper differentiation between solutions should also include the disk ejection efficiency ξ (our
Fig. 3.14).

However, Stepanovs and Fendt 2016 have a Bernoulli invariant that diverges considerably
from the analytical value of cold outflows ( e2 = λ − 3/2), see Fig. (3.24). This figure shows that
some heating is applied to the outflows leading to an enhanced value of e for the same value of
λ, e

2 = λ − 3/2 + Θ/2. This makes it difficult to compare our values of the ejection index to the
ones derived in their work as their values will be larger due to the presence of heating (Casse
and Ferreira 2000a).

Lesur 2021 explore the parameter space of self-similar protoplanetary disk accretion ejection
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Figure 3.24: Normalized Bernoulli invariant, e, as a function of the angular momentum invariant
l (which corresponds to our λ). Adapted from Stepanovs and Fendt 2016 they define their e as
half our e.

Figure 3.25: Projection on the κ − λ plane of all the super fast magneto sonic solutions. Figure
adapted from Lesur 2021.
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solutions. Even though they also compute self-similar solutions, they do not compute purely
stationary solutions, they solve the time dependent equations until the solution stabilizes into
a steady state. Contrary to our work this allows them to calculate the transport velocity of the
magnetic field, vΨ. They include the effects of ambipolar diffusion and ohmic resistive due to
the low ionization in protoplanetary disks. This leads to different generalized Ohms laws, the
form of Eq. (3.5) changes. Furthermore, they do not include a turbulent resistivity, since MRI
would be quenched by ambipolar diffusion (Bai and Stone 2011).

We see in Fig. (3.25) that as the plasma beta increases (μ decreases) the magnetic lever arm
decreases and κ increases, this trend is consistent with the one found in our models (Fig.3.13).
They find similar lower values for λ for weakly magnetized solutions, they reach the theoretical
limit of 3/2, but larger values of κ of the order of 100. It is unclear if this a consequence of
the different induction equation. It seems that non-ideal effects facilitate the launch of massive
outflows. Note that the non-ideal region extends up to 5h, which could facilitate the launching
of massive outflows (Lesur 2021).

They report that all the solutions computed in their work recollimate towards the axis. We
expect wind-like outflow to follow a conical trajectory that would be coherent with observations.
The absence of a conical trajectory could be a bias of the self-similar framework. There seems
to be no dichotomy in the asymptotic behavior of MHD-driven outflows, no clear distinction
between jets and winds from a theoretical point of view. The reason why wind-like conical
outflows are hard to obtain in an MHD framework remains hard to grasp.

The values of the mass ejection index they compute are also consistent with wind-like out-
flows, ξcomputed > 0.4, not to be confusedwith the radial scaling of self-similar solutions Ṁa ∝ Rξ .
One should be cautious with the definition of ξ in their solutions, as ξ is set to 0 in all their radial
self-similar dependencies. In our solutions, ξ is not only related to the mass ejection but also
dictates the radial scaling of the magnetic field,

Bz ∝ R−
5
4+

ξ
2 . (3.66)

In contrast, their radial scalings follow the same dependency as Blandford and Payne 1982 (ξ =
0). This is not in contradiction with the wind-like outflow they compute, as their solutions are
not strictly stationary. However, varying the parameter ξ to achieve ξ = ξcomputed should be
addressed in those kinds of models.

The scaling for the toroidal magnetic field derived in Lesur 2021 differs from our own,
namely they find

Bφ

Bz

∣∣∣∣∣
SM
≃ 2μ−0.22. (3.67)

This inconsistency is probably the consequence of the different scaling of their magnetic diffu-
sivity as a function of the magnetic field. Indeed, the ambipolar diffusivity scales as

ηA = Λ
−1
A
V2
At

ΩK
, (3.68)

where VAt is the total Alfvén velocity and ΛA is a gaussian function of the self-similar coordi-
nate. We can compute the scaling of the toroidal magnetic, in the case of a dominant ambipolar
diffusivity, by following the argument detailed in section 3.3.1. We have

ηA
h

∣∣∣∣∣
SM
∼ VSM|SM , (3.69)
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the diffusion velocity is of the order of the slow magneto-sonic velocity at the slow point. We
can approximate the slow magneto-sonic velocity in the following ways:

VSM(zSM) ≃ cs
VAz

VAt

∣∣∣∣∣
SM

for cs(zSM) ≪ VAz(zSM), (3.70)

VSM(zSM) ≃ VAz|SM for cs(zSM) ≫ VAz(zSM), (3.71)

where the first approximation is for strongly magnetized outflows (and is the one used in section
3.3.1) and the second approximation is for weaklymagnetized outflows. The outflows computed
in Lesur 2021 are mostly weakly magnetized, the values of κ calculated can be quite large (κ ∼
100). Using both approximations we compute

V4
At

c4s

∣∣∣∣∣∣
SM
∼

V2
Az

c2s
V2
At

∣∣∣∣∣∣
SM

for cs(zSM) ≪ VAz(zSM), (3.72)

V4
At

c4s

∣∣∣∣∣∣
SM
∼

V2
Az

c2s

∣∣∣∣∣∣
SM

for cs(zSM) ≫ VAz(zSM). (3.73)

From the previous equations we deduce1 + (
BR

Bz0

)2
+

(
Bφ

Bz0

)23
∣∣∣∣∣∣∣
SM

∼ 1
μ2

for cs(zSM) ≪ VAz(zSM), (3.74)

1 + (
BR

Bz0

)2
+

(
Bφ

Bz0

)22
∣∣∣∣∣∣∣
SM

∼ 1
μ
for cs(zSM) ≫ VAz(zSM), (3.75)

in the case of a dominant toroidal field this reduces to∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
∝ μ−1/3 for cs(zSM) ≪ VAz(zSM), (3.76)∣∣∣∣∣ Bφ

Bz0

∣∣∣∣∣
SM
∝ μ−1/4 for cs(zSM) ≫ VAz(zSM). (3.77)

Both scaling are similar to the one measured by Lesur 2021. In particular, the scaling derived
using the weakly magnetized outflows approximation is off by only a few percent. This shows
that the scaling of the toroidal magnetic field is indeed controlled by the slow magneto sonic
constraint and the generalized Ohms law.

The work of Zhu and Stone 2018 but also Mishra et al. 2020 show that global 3D simula-
tions that include mean vertical magnetic field reach a steady state where most of the accretion
happens above the disk mid-plane. Indeed, in Fig. (3.26) we show the steady state of the simu-
lations computed in Zhu and Stone 2018 for μ = 2 × 10−4 and ε = 0.1. We see that the vertical
structure of the flow is very different from the one found in self-similar solutions computed here
(Fig. 3.5). Moreover, for accretion to take place so high up in the disk’s atmosphere, turbulent
resistivities must also be maintained up there. In figure 18 of Zhu and Stone 2018 they show
that the resistivity and the viscosity vertical profiles they have computed are very different from
the one we have implemented in our self-similar solutions. Indeed, while our profiles follow
a Gaussian, decreasing as we leave the disk, the profile computed by Zhu and Stone 2018 in-
creases as the height increases. As a consequence, the resistive disk survives at larger altitudes
and ideal MHD ejection occurs only further up, decreasing thereby the disk mass loss ξ.

This new feature can be easily incorporated within the self-similar framework through the
use of different vertical profiles for νv, ηm and η′m. Note that enhanced diffusion at higher al-
titudes (due to parasitic instabilities such as Kelvin-Helmholtz ) could smooth out the spatial
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Figure 3.26: Radial and vertical velocities normalized to the Keplerian velocity at R = 1 as func-
tions of the vertical variable for R = 1, adapted from Zhu and Stone 2018. Note the supersonic
accretion flow at z ∼ R above the disk (since ε = 0.1).

oscillations, building up a magnetic configuration closer to the one obtained in 3D simulations.

As argued before, our choice of αv, αm andPm were consistent with numerical studies ofMRI
turbulence and the way the stress (viscosity) scales with the initial magnetization μ (Salvesen
et al. 2016 and references therein). We would like to stress however that knowledge on the
turbulent diffusion of magnetic fields is scarce. Global simulations (Zhu and Stone 2018)) and
shearing box studies (Fromang and Stone 2009; Guan and Gammie 2009; Lesur and Longaretti
2009) report an effective magnetic Prandtl number Pm of order unity, but this is far from being
fully assessed. Besides, the anisotropy χm of MRI turbulence has been measured only in non
stratified shearing box setups, i.e. a very idealized configuration. In section 5 we will mea-
sure the turbulent transport coefficients in 3D global numerical simulations to check if we are
consistent with shearing box simulations.

Finally several terms from the Reynolds averaged equations have been ignored in this work
(see section 2.3.1). In particular the pressure due to turbulent magnetic fluctuations

〈
δB2

〉
. This

term is known to strongly affect the disc vertical equilibrium (Salvesen et al. 2016) for μ ≳ 10−3,
which could increase dramatically the disc thickness and therefore the quantitative predictions
of our model. Indeed, in the next chapter we will show that the turbulent magnetic pressure has
a considerable impact on the vertical structure of the accretion disk. We will further argue that
it is the main agent behind the appearance of the elevated accretion structure. Then in chapter 5
we will compute a closure for the turbulent magnetic pressure that could be used in self-similar
models.
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4.1 Numerical method

4.1.1 Governing equations

In this chapter we compute and analyze 3D numerical simulations of magnetized accretion disks
in the isothermal case. For the sake of completeness and simplicity we rewrite the ideal MHD
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equations that we solve

∂ρ
∂t
+ ∇ · [ρu] = 0, (4.1)

ρ
(
∂u
∂t
+ (u · ∇)u

)
= −∇P + ρ∇ΦG +

1
c
J × B, (4.2)

∂P
∂t
+ u · ∇P + γP∇ · u = −Λcool (4.3)

∂B
∂t
= ∇ × [u × B] , (4.4)

where γ, the heat capacity ratio, is fixed to 1.001 to facilitate an isothermal structure. To close
Eq. (4.1-4.4), we assume an ideal equation of state.

The MRI feeds on the gravitational energy to create a turbulent state. The energy is then
stored in the magnetic and kinetic turbulent fluctuations, where it can be exchanged between
them. Ultimately, the energy is dissipated into heat. The disk scale height is determined by
comparing the pressure gradient to gravity. It will therefore be affected by turbulent heating. In
the absence of radiative losses, the disk scale height increases under the effect of heating. Since
we focus here only on dynamical processes without specifying a particular astronomical object,
we simplify the radiative (cooling) processes as much as possible.

The simplest choice would be to force a vertically isothermal structure at every time step.
However, in the presence of a strict locally isothermal temperature profile the Vertical Shear
Instability (VSI) will develop (Nelson et al. 2013). This is to be avoided since we do not want
to study the influence of this instability on the accretion disk structure. Therefore, if cooling is
applied instantly ( at every time step) the VSI instability will also develop.

To avoid the development of the vertical shear instability we use a thermal relaxation method
on a fixed time scale. We relax the temperature of our system on a time scale τcool, equal to 0.1
times the local Keplerian time scale. Hence, we prescribe a cooling function Λcool, that allows
us to relax our system to a locally isothermal temperature profile T = T(R) ∝ 1/R. It has the
following form

Λcool =
P − ρc2s (R)

τcool
, (4.5)

where
τcool = 0.1

1
ΩK(R)

(4.6)

is the cooling time scale. Since the cooling time scale is short the cooling function dominates
Eq. (4.3), this leads to an effective equation of state of the form

P = c2s (R)ρ, (4.7)

where cs is the local isothermal sound speed

cs = hΩK, (4.8)

and h is the disk scale heigh.

4.1.2 Numerical method
To solve Eq. (4.1-4.7) on a spherical grid, we use the conservative Godunov-type code PLUTO
(Mignone et al. 2007). AGodunov scheme is a conservative numerical scheme, where the fluxes
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Name μini ε r domain ϕ domain Resolution t1 t2 = Tend
SB4 2 × 10−4 0.1 [1, 200] [−π/4, π/4] [850,176L+64S,62] 923Tin 1114Tin
SB3 2 × 10−3 0.1 [1, 200] [−π/4, π/4] [850,176L+64S,62] 923Tin 1114Tin
SB2 2 × 10−2 0.1 [1, 200] [−π/4, π/4] [850,176L+64S,62] 1719Tin 1910Tin
SEp 2 × 10−4 0.05 [1, 100] [−π/4, π/4] [1475, 96L+70S+2L, 62] 923Tin 1114Tin
S2pi 2 × 10−4 0.1 [1, 200] [0, 2π] [850,176L+64S,256] 923Tin 1034Tin

Table 4.1: Parameters, grid spacing and radial extension of the simulations discussed in the
paper. The latitudinal grid is not homogeneous, with grid spacing varying linearly (L) close
to the disk and geometrically (S=stretched) close to the poles. We define Tin = TK(Rin) where
TK(R) = 2π/ΩK(R).

are computed by solving a Riemann problem at each inter-cell boundary. Constrained transport
(Evans and Hawley 1988) ensures that the solenoidal condition for the magnetic field is satisfied
at machine precision. The staggered magnetic field are defined on cell faces, different magnetic
field components being defined at different locations.

We use a second order Runge-Kutta method for the time step combined with a HLLD solver
with linear reconstruction to handle the Riemann problems. An HLLD type solver has the ad-
vantage of approximating the solution to the Riemann problem by using 5 waves (Miyoshi and
Kusano 2005). This leads to a less diffusive solver, when compared to an HLL type solver that
uses 2 waves.

Figure 4.1: Computational Grid

It is important for the latitudinal domain to extend from 0 to π. If the numerical domain does
not cover the full latitudinal domain the magnetic field lines are able to connect to the latitudinal
boundary condition. If this happens the magnetic field lines could exchange angular momentum
with the boundary condition. Furthermore, magnetic flux could also leak through the latitudinal
boundary and escape through the boundary condition. Hence, our latitudinal extent is always
[0, π]. We implement the same boundary condition regularisation as Zhu and Stone 2018 for the
latitudinal direction.
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The extent of our radial and toroidal domain varies from one simulation to the next. We
summarize the domain properties, as well as the main control parameters for each simulations
in Tab. (4.1). In the following, we use the innermost radius rin as the unit length, so that rin =
Rin = 1 in all simulations, we also define Rout in Tab. (4.1). We use periodic boundary conditions
in the toroidal direction and zero-gradient in the radial direction (mass flow into the numerical
domain is forbidden).

We follow Nelson et al. 2013 for the hydrostatic initial condition. The initial density and
temperature profiles are defined at the disk mid-plane as:

ρi(R, z = 0) = ρi(R = Rin, z = 0)
(
R̃
Rin

)p
Ti(R) = Ti(R = Rin)

(
R̃
Rin

)q
where, for convenience, we use the cylindrical coordinates and we define R̃ = max (R,Rin) to
avoid singularities at the pole. In this initial condition, the temperature is constant on cylinders
and remains so during the entire duration of the simulation, thanks to the ad hoc cooling function
described above.

We can write the solution of Eq. (4.1-4.7) assuming a hydrostatic equilibrium (neglecting all
velocities but the azimuthal one) and no magnetic fields using the initial density and temperature
at the disk mid-plane defined above. We get

ρi(R, z) = ρi(R, z = 0) exp
[
Ω2

K(R̃)R̃3

c2s (R̃)

(
1

√
R̃2 + z2

− 1
R̃

)]
and

uϕ,i(R, z) = VK

(q + 1) − q R̃
√
R̃2 + z2

+
c2s (R̃)
V2
K(R̃)

(p + q)
1/2

where we have defined the Keplerian velocity VK = ΩKR. We then use the Keplerian angular
velocity and the sound speed to define the disk scale height

h = cs/ΩK = εR, (4.9)

where ε is the constant disk geometrical thickness.
Following Zhu and Stone 2018, we assume a large scale vertical magnetic field that is con-

stant with respect to z but follows a power law in R. In order to get a self-similar initial condition,
we choose a radially constant initial magnetization,

μini =
B2
z,i

4πPi
, (4.10)

in the disk midplane, we note that μ = 2/β. We will measure the magnetization only at the
disk mid-plane, it will help us quantify the secular evolution of the magnetic structure. When
analyzing the vertical structure we will compute the local plasma beta.

The magnetic field radial profile is then related to that of temperature and density:

Bz,i(R) = Bi

(
R̃
Rin

) p+q
2

(4.11)

where
Bi =

√
4πμiniPi(R = Rin, z = 0). (4.12)
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To ensure that ∇ · B = 0 at t = 0, we initialize the magnetic field using the magnetic potential
A. We can solve the equation B = ∇ × A to find

Aϕ =


RBi
2 for R ≤ Rin,

Bi
(
R̃
Rin

) p+q
2 2R

(p+q)+4 + Bi
R2in
R

(
1
2 −

2
(p+q)+4

)
for R > Rin.

Finally, we choose p = −3/2 and q = −1 for all our simulations, in the sameway asMishra et
al. 2020. To handle runaway magnetization close to the polar boundary we implement a density
floor in our simulation

ρfl = max
(
ρfl,0

(
R̃
Rin

)p 1
z2 + aflε2R̃2

, 10−9
)

where ρfl,0 = 10−7 and afl ∼ 1. Finally, to minimize integration time, we enforce a maximal
Alfvénic velocity VA,max = VK(Rin), where VA = B/

√
4πρ is computed with the instantaneous

magnetic components. This maximal Alfvénic velocity is imposed by changing the local density
and not the magnetic field, hence it acts as an additional density floor. In our simulations, this
numerical artifice is only noticeable close to the axis as well as near to the inner boundary,
r ∼ rin, which are ignored in our analysis.

To resolve the MRI turbulence within the disk we use a nonuniform grid (Fig. 4.1):

– In the radial direction the grid points are logarithmically spaced.

– In the latitudinal direction the grid is linearly spaced up to |z| = 5.5h and then geometri-
cally stretched up to the axis. The latitudinal grid is identical for all the simulation except
for the simulation at ε = 0.05 where the grid is spread differently. For this simulation the
grid is linearly spaced up to |z| = 3h and then stretched up until |π/2 − θ| > π/2 − 0.35
where the spacing becomes linear again for two grid points close to the polar boundary.
This particular grid maximizes the resolution within the disk and its surface as well as
providing a buffer zone close to the polar boundary where the CFL condition is the small-
est.

– In the toroidal direction the grid is linearly spaced.

The resolutions for the different simulations per region and direction are displayed in Tab. (4.1).
This choice of resolution allow us to resolve the MRI in the disk with approximately 16 grid
points per vertical scale height.

We integrate our simulations up to Tend, see Tab.(4.1). We define our reference time scale
Tin = TK(Rin), corresponding to orbits of the innermost radii, where TK(R) = 2π/ΩK(R).

4.1.3 Averaging procedure and turbulent decomposition

In section 2.3.1 we computed a set of Reynolds average MHD equations that we obtain by
ensemble averaging the MHD equations. We now assume ergodicity and replace our ensemble
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averages with a set of average on ϕ, on (ϕ, t), and on (ϕ, t) density weighted:

⟨X⟩φ =
1
Δϕ

ϕ2∫
ϕ1

X dϕ, (4.13)

⟨X⟩ = 1
Δϕ

ϕ2∫
ϕ1

1
t2 − t1

t2∫
t1

X dϕ dt, (4.14)

⟨X⟩ρ =
1

Δϕ ⟨ρ⟩

ϕ2∫
ϕ1

1
t2 − t1

t2∫
t1

ρX dϕ dt =
1
⟨ρ⟩ ⟨Xρ⟩ . (4.15)

In these definitions, ϕ1 and ϕ2 are taken as the boundaries of the whole computational domain
(Tab. (4.1)). The average is computed on time scales comparable to the dynamical time scale,
TK = 2π/ΩK, the set of equations we derive are stationary, they describe the equilibrium state,
and do not take into account the secular evolution of the system. Hence, The averages are taken
from time t1 to t2, with a temporal resolution of Δt = 1/ΩK(Rin) ≃ 0.16Tin and then azimuthally
averaged over the whole domain (Tab. 4.1). We rewrite the complete set of Reynolds average
equations:

1
Δt

[
⟨δρ⟩φ

]t2
t1
+ ∇ · ⟨ρ⟩

[
⟨u⟩ + ⟨δu⟩ρ

]
= 0. (4.16)

1
Δt

[
⟨ρδur⟩φ

]t2
t1
+ ⟨ρ⟩

〈
up

〉
ρ
· ∇⟨ur⟩ + ∇ ·

[
⟨ρ⟩

〈
δurup

〉
ρ
− 1
4π

〈
δBrδBp

〉]
=

− ∂
∂r

[
⟨P⟩ + 1

8π
(
⟨B⟩2 +

〈
δB2

〉)]
+

1
4π

〈
Bp

〉
· ∇ ⟨Br⟩

+
⟨ρ⟩
r

[〈
uφ

〉2
+

〈
δu2φ

〉
+ ⟨uθ⟩2 +

〈
δu2θ

〉]
− ⟨ρ⟩ g − 1

4πr

[〈
Bφ

〉2
+

〈
δB2φ

〉
+ ⟨Bθ⟩2 +

〈
δB2θ

〉]
(4.17)

1
Δt

[
r ⟨ρδuθ⟩φ

]t2
t1
+ ⟨ρ⟩

〈
up

〉
ρ
· ∇r ⟨uθ⟩ + ∇ · r

[
⟨ρ⟩

〈
δuθup

〉
ρ
− 1
4π

〈
δBθδBp

〉]
=

1
4π

〈
Bp

〉
· ∇r ⟨Bθ⟩ −

∂

∂θ

[
⟨P⟩ + 1

8π
(
⟨B⟩2 +

〈
δB2

〉)]
+ cot θ

[
⟨ρ⟩

(〈
uφ

〉2
+

〈
δu2φ

〉)
− 1
4π

(〈
Bφ

〉2
+

〈
δB2φ

〉)]
,

(4.18)

⟨ρ⟩
〈
up

〉
ρ
· ∇R

〈
uφ

〉
+ ∇ · R

[
⟨ρ⟩

〈
δuφup

〉
ρ
− 1
4π

〈
δBφδBp

〉
− 1
4π

〈
Bφ

〉 〈
Bp

〉]
= 0, (4.19)

1
Δt

[〈
δBφ

〉
φ

]t2
t1
= ∇ × [⟨u⟩ × ⟨B⟩ + E]|φ , (4.20)〈

∂Aφ

∂t

〉
=

1
Δt

[〈
δAφ

〉
φ

]t2
t1
=

〈
up

〉
×

〈
Bp

〉∣∣∣∣φ + Eφ. (4.21)

We define the two torques acting on the system

Tla = −
1
4π

〈
Bϕ

〉 〈
Bp

〉
, (4.22)

the laminar stress tensor, and

Ttu = ⟨ρ⟩
〈
δuϕδup

〉
ρ
− 1
4π

〈
δBϕδBp

〉
, (4.23)
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the turbulent stress tensor. The two α coefficients for the turbulent and laminar stress tensors can be
written as

αef =
Trϕ
⟨P⟩ , (4.24)

αef = αla + αtu (4.25)

where αla is related to the laminar torque and αtu to the turbulent one.

4.2 Fiducial case

4.2.1 Global picture
We show in Fig. (4.2) the mean poloidal stream lines and field lines, the Alfvén surface and the fast
magneto-sonic surface for the fiducial run, with μini = 2 × 10−4. The Alfvén surface is defined with the
poloidal velocity, 〈

up
〉
= Vap =

〈
Bp

〉
√
4π ⟨ρ⟩

, (4.26)

like in axisymmetric jet theory. We define the fast magneto-sonic surface as
〈
up

〉
= Vfm, where

V2fm =
1
2

(
c2s + V2at + |V2at − c2s |

)
, (4.27)

where the total Alfvénic velocity Vat = ⟨B⟩ /
√
4π ⟨ρ⟩. We compute the fast magneto-sonic surface for

waves propagating along the magnetic field lines. In the top panels of Fig.(4.2) we show the complete
numerical domain of the fiducial simulation. The upper and lower hemispheres are approximately sym-
metric. The fast magneto-sonic surface is approximately conical. In contrast, the Alfvénic surface is
conical up to a certain radii where its shape changes, this shows that the outer radii of the numerical
domain has not yet reached a stationary state. This is further confirmed by the lack of toroidal magnetic
field in the outer regions.

In Fig. (4.2) (top, right) we can clearly see some collimation happening for the inner field lines, close
to where they meet the boundary condition. As discussed in, section 3.4.4, this is a general symptom
from MHD outflows, most MHD outflows collimate. In our case it is unclear whether this is a physical
or a numerical effect, like a bias in our boundary conditions or a consequence of the density floor. A
study of outflow collimation is outside the scope of this manuscript.

The FM surface is the point where waves can no longer travel back to the disk through the magnetic
field line. We can use this surface to estimate the last radius that has achieved stationary ejection. We
compute this by calculating the anchoring radii of the last field line that crosses the FM surface, this
corresponds to R ∼ 35. Therefore, we will analyze the stationary inner regions of our numerical domain
constrained beneath that radii (the grey rectangle in the top panel of Fig. (4.2)).

We can identify three distinct regions in the bottom panels of Fig. (4.2):

– A turbulent disk where the density is maximal and the flow is disorganized, indicating a turbulent
flow. The toroidal component of the magnetic field exhibits a similar disorganized structure. The
average poloidal field lines are remarkably straight.

– An accreting atmosphere where the poloidal flow is supersonic. The field lines in this region seem
to be curved by the poloidal flow. In addition, a strong laminar toroidal field emerges.

– A super fast magneto-sonic outflow ejected from the atmosphere. The poloidal field lines are
parallel to the poloidal stream lines in this region.
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Figure 4.2: (top,left) Gas density and mean poloidal stream lines. The red dotted line corre-
sponds to the Alfvénic surface, and the red dashed line corresponds to the fast magneto-sonic
surface. The color of the poloidal stream lines correspond to the logarithm of their magnitude
normalized to the sound speed. (top,right) RBϕ normalized to BiRin; and mean poloidal field
lines. The grey square corresponds to the zoomed in region the bottom figure. (bottom) same
as top but zoomed in the greyed region. The black dashed line indicates the surface where
⟨β⟩ = 8π ⟨P⟩ / ⟨B⟩2 = 1.
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We reiterate that the vertical structure of the accretion disk computed by Zhu and Stone 2018 is very
different from the one of a standard accretion disk (Shakura and Sunyaev 1973). Indeed, in a standard
accretion disk the accretion occurs at a heigh of the order of the disk geometrical thickness and not at a
heigh of the order of R.

The region we have defined as the accreting atmosphere exhibits turbulence, which is not obvious
from Fig. (4.2). To measure the dynamical importance of this turbulence, we measure the ratio αtu/αla,
defined above. We show this ratio in Fig. (4.3,left), the disk is clearly dominated by the turbulent stress
component. As we move towards the accreting atmosphere from the disk surface the stress becomes
dominated by the laminar component before turning back to a turbulent stress dominated regions, as
in the disk. Even higher still, in the outflow region, the torque is laminar as expected. We divide the
accreting atmosphere into two distinct regions:

– A laminar atmosphere (LA) where the dominant stress is the laminar one, αla, it is vertically adja-
cent to the turbulent disk.

– A turbulent atmosphere (TA) where the dominant stress is the turbulent one, αtu, it is above the
laminar atmosphere but below the laminar outflow.

As we saw in section 2.3.1, the Reynolds average equation for the vector potential reads〈
∂Aφ

∂t

〉
=

〈
up

〉
×

〈
Bp

〉∣∣∣∣φ + Eφ, (4.28)

in the case of a laminar and strictly stationary outflow (Mestel 1961), this equation simplifies into〈
up

〉
×

〈
Bp

〉∣∣∣∣φ = 0. (4.29)

Therefore, the angle between the average poloidal velocity stream lines and the average magnetic field
lines

cosψ =

〈
up

〉
·
〈
Bp

〉〈
up

〉 〈
Bp

〉 , (4.30)

identifies the regions where turbulent terms are important. If cosψ = ±1 the average poloidal velocity is
parallel to the average poloidal magnetic field and the system is laminar. On the contrary if cosψ , ±1 the
average poloidal fields are not parallel to each other and turbulent correlations in Eq. (4.28) are important.

We show this angle in (right) Fig. (4.3), the disk can be easily identified as turbulent (cosψ ∼ 0).
Using this Fig. (4.3) we define the disk as |z| < 3.5h (the central shaded area in Fig. 4.3 and Fig. 4.4), this
definition is consistent with Fig. (4.3). The disk surface coincides with the location where the average
radial velocity becomes negative (Fig. 4.4), marking the beginning of the accreting atmosphere. Above
the disk, the average poloidal fields are aligned (cosψ = ±1). This defines the laminar atmosphere, also
identified with the stress, located at an altitude of 3.5h < |z| ≤ 6.5h. As we move higher up still, cosψ
changes sign twice (Fig. 4.3). This suggest that ideal-MHD is broken in this region. We can identify this
region with the turbulent atmosphere located previously using the turbulent stress, located at altitudes
6.5h < |z| ≤ 12.5h. This region ends at the surface delimiting the base of the outflow, where cosψ
changes sign for the last time. The base of the outflow coincides with the slow magneto-sonic surface,
defined by 〈

up
〉
= VSM, (4.31)

where we compute the slow magneto-sonic surface for waves propagating along the magnetic field lines

V2SM =
1
2

(
c2s + V2at − |V2at − c2s |)

)
. (4.32)

Indeed, in Fig. (4.4) we see how the end of the turbulent atmosphere (the shaded area) roughly coincides
with the slow magneto-sonic point,

〈
up

〉
≃ ⟨uR⟩ = VSM. It is important to note that VSM is indeed constant

in units of cs since the magnetic field is dominant inside the atmosphere (laminar and turbulent),

⟨β⟩ < 1, (4.33)
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Figure 4.3: (left) Ratio αla/αtu denoting turbulent (red) and laminar (blue) regions. The dotted
lines delimit these regions and represent |z| = 3.5h, |z| = 6.5h and |z| = 12.5h. The two different
circles denote the radii used for the calculation of the fluxes (r1 = 8, r2 = 14), see text. TA and
LA correspond for turbulent and laminar atmosphere, respectively. (right) Cosine of the angle
ψ between the mean poloidal velocity and the mean poloidal magnetic field as a function of
the latitudinal coordinate. The grey zones correspond to the turbulent regions in the top panel,
delimited by the dotted lines.



CHAPTER 4. 3D SIMULATIONS OF WEAKLY AND HIGHLY MAGNETIZED DISKS111

0 π
4

π
2

3π
4

π

θ

−20

−10

0

10

20

< ur > /cs

< uϕ > /cs

< uθ > /(csε)
VS M/cs

0 π
4

π
2

3π
4

π

θ

−30

−20

−10

0

10

20

< Bϕ >

< Bθ >
< Br >

< Bz >

Figure 4.4: (left): Velocity profiles as functions of the latitudinal coordinate, θ, normalised to
the local sound speed. (right): mean magnetic field profiles normalised to the vertical magnetic
field in the disk mid-plane, ⟨Bz⟩ (r, θ = π/2) as functions of the latitudinal coordinate. The
grey zones correspond to the turbulent regions in figure 4.3. All profiles are radially averaged
between r1 = 8 and r2 = 14 after being normalised.

where
⟨β⟩ = 8π ⟨P⟩

⟨B⟩2
(4.34)

However, the mean poloidal magnetic field stays infra-thermal within the laminar atmosphere,
〈
βp

〉
> 1,

where 〈
βp

〉
=
8π ⟨P⟩〈
Bp

〉2 , (4.35)

but becomes supra-thermal within the turbulent atmosphere,
〈
βp

〉
< 1.

4.2.2 Computation of fluxes
To get a global understanding of mass accretion and ejection, let us define the fluxes through the different
disk surfaces. Using the regions defined above (§4.2.1), we compute the fluxes through the boundaries
of each regions, delimited radially by r1 = 8 and r2 = 14 (see figure 4.3, left). We compute the fluxes in
the mass and angular momentum conservation equations

∂Ruφρ
∂t

+ ∇ · R
[
ρuφu −

BφB
4π

]
= − ∂
∂φ

(
B2

8π
+ P

)
, (4.36)

by integrating them with respect to time and space.
First we define the average

X̄ =
θ2∫

θ1

r sin θXdθ. (4.37)

We integrate Eq. (4.1) with respect φ and θ to find

∂Σ
∂t
+
1
r
∂r⟨ρur⟩φ
∂r

+
[
sin θ ⟨ρuθ⟩φ

]θ2
θ1
= 0, (4.38)
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where Σ = ⟨ρ⟩φ is the column density of the disk. Equation 4.38 can be integrate with respect to t and R
which leads to

ΔM = Fm,r1 − Fm,r2 + Fm,θ1 − Fm,θ2 , (4.39)

where we introduce

Fm,ri = −
tβ∫

tα

ri
[
⟨ρur⟩φ

]∣∣∣∣ri dt, (4.40)

Fm,θi =

tβ∫
tα

r2∫
r1

r sin θ ⟨ρuθ⟩φ
∣∣∣
θi
dr dt (4.41)

ΔM =
r2∫

r1

[
r⟨ρ⟩φ

]tβ
tα
dr. (4.42)

The mass fluxes are time-averaged on a duration tβ − tα that spans several local orbital periods. A strict
steady state translates into ΔM = 0. Computing the angular momentum fluxes is a little bit more engaged,
we start by defining

3φ =
〈
uφ

〉
φ
− RΩs(r, θ), (4.43)

the deviation to the equilibrium velocity, we are free to choose the function Ωs(r, θ). Using the definition
of 3φ and Eq. (4.1) we integrate the angular momentum equation with respect to t and φ to find

⟨ρur⟩
∂R2Ωs
∂r
+
⟨ρuθ⟩
r
∂

∂θ
R2Ωs+

1
r2
∂

∂r
r2R

〈ρur3φ〉 −
〈
BrBφ

〉
4π

+ 1
r sin θ

∂

∂θ
r sin2 θ

〈ρuθ3φ〉 −
〈
BθBφ

〉
4π

 = 0,
(4.44)

where we do not write the term originating from the derivative with respect to time as we find it to be
dynamically negligible. We can simplify the second term by choosing Ωs = ΩK/ sin2 θ. This leads to
a mathematical form similar to the one obtained in the cylindrical coordinates (see section 2.3.2). It is
important to note that the function Ωs(r, θ) is different from the mean angular velocity of the flow ⟨Ω⟩.
We integrate this equation with respect to θ using the operator defined in Eq. (4.37) to find

⟨ρur⟩
∂

∂r
(
R2Ωs

)
+
1
r
∂

∂r
r2

〈ρ3φuθ〉 sin θ −
〈
BϕBr

〉
sin θ

4π

 +
[
r sin2 θ

(〈
ρuθ3ϕ

〉
− 1
4π

〈
BϕBθ

〉)]θ1
θ2
= 0.

(4.45)
Like in section 2.3.2 we define a quantify Λs to indicate the dominant torque

Λs =

[
r sin2 θ

(〈
ρuθ3ϕ

〉
− 1

4π

〈
BϕBθ

〉)]θ1
θ2

1
r
∂
∂rr2

[〈
ρ3φuθ

〉
sin θ − ⟨BϕBr⟩ sin θ

4π

] , (4.46)

this quantity is not exactly equivalent to the Λ defined in section 2.3.2 and computed in chapter 3. This is
a consequence of the different coordinate system as well as the definition of 3φ (Eq. 4.43) that is different
from the one in section 2.3.2. However, if the Maxwell torques (turbulent or laminar) dominate both
quantities should be very similar.

Equation (4.45) above can be integrated with respect to r to find

FL,Mr + FL,Mθ︸︷︷︸
=0

= FL,r2 − FL,r1 + FL,θ1 − FL,θ2 , (4.47)
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the left hand side denotes angular momentum transported inwards and outward by the flow, while the
right-hand side measures the angular momentum flux due to the torques (turbulent and laminar), we
define

FL,ri =

tβ∫
tα

r2i

〈ρ3ϕur〉φ sin θ −
〈
BϕBr

〉
φ
sin θ

4π


∣∣∣∣∣∣∣∣∣∣ri
dt, (4.48)

FL,θi =

tβ∫
tα

r2∫
r1

r2 sin2 θ
[〈
ρuθ3ϕ

〉
φ
− 1
4π

〈
BϕBθ

〉
φ

]∣∣∣∣∣∣θi dr dt, (4.49)

FL,Mr =

tβ∫
tα

r2∫
r1

r⟨ρur⟩φ
∂Ωsr2 sin2 θ
∂r

dr dt, (4.50)

FL,Mθ =

tβ∫
tα

r2∫
r1

⟨ρuθ⟩φ
∂Ωsr2 sin2 θ
∂θ

dr dt = 0. (4.51)

We simplify the term FL,Mθ by choosing Ωs = ΩK/ sin2 θ.

4.2.3 Mass and angular momentum budgets

Mass fluxes

We first average the mass budget (Eq. 4.39) on a sliding window of duration Δt = 200/ΩK(Rin). We show
in Fig. (4.5) the fluxes calculated within the disk region. We see a coherent latitudinal flux removing
mass from the disk and transferring it to the atmosphere, and a quasi periodic radial mass flux with a
period of the order of the local orbital period, ∼ TK(r1). This variability is probably due to the stochastic
excitation of the spiral density waves driven by MRI turbulence (Heinemann and Papaloizou 2009a,b).
The amplitude of the radial flux is scaled down by its distance to the central object.

The strong variability of the radial fluxes on orbital timescales makes their interpretation difficult. We
now display the average of the mass flux over the whole time domain from tα = 923Tin to tβ = 1114Tin
and show them as simple scalars in Fig. (4.6,left).

We recover the mass flux from the disk to the atmosphere. The radial mass flux indicates that mass is
flowing on average outwards and that the disk is decreting. The flux budget indicates that ΔM = −6.19 <
0, implying that the disk portion between r1 and r2 is not strictly stationary. On closer inspection we
see that a form of secular self-organization is happening within the disk and leading to the appearance of
ring-like structures. Our domain is located on two distinct gaps, the formation of ring-like structures will
not be discussed in this manuscript, we refer to Jacquemin-Ide et al. 2021 for further details.

We now examine the regions above the disk, we see that the laminar atmosphere is accreting, but less
efficiently than the turbulent atmosphere, despite the fact that both regions receive approximately the same
amount of mass flux from the outer radial boundary. This is a consequence of the shape of the stream lines
(Fig. 4.2). The mass is transported through the laminar atmosphere and ends up being accreted within
the turbulent atmosphere at a smaller radii. We see in Fig. (4.6,left) that the turbulent atmosphere is fed
in mass by the laminar atmosphere. Most of the mass received by the turbulent atmosphere is radially
accreted, the mass ejected into the outflow being almost negligible. We measure ΔM ≃ 0 within the
laminar and turbulent atmospheres, corresponding to a steady state system. Overall, we find that mass is
being channeled from a decreting turbulent disk, through the laminar atmosphere along the magnetic field
lines, and is accreted once it reaches the turbulent atmosphere. To understand why the disk is decreting
instead of accreting, we need to look at the angular momentum fluxes.
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Figure 4.5: Mass fluxes inside the disk, defined for |z| < 3h as function of the local orbital time
at r1 = 8. Negative fluxes corresponding to mass being removed from the disk.

Angular momentum fluxes

In the same manner as before we illustrate the time variability, by averaging the angular momentum
budget (Eq. 4.47) on a sliding window of duration Δt = 200/ΩK(Rin). We show in Fig. (4.7) the fluxes
calculated within the disk region, a positive flux corresponding to angular momentum being removed
from the disk. We see that angular momentum travels radially outwards within the disk, consistent with
MRI turbulence. Surprisingly, the disk receives angular momentum from the laminar atmosphere (Zhu
and Stone 2018): the disk is therefore azimuthally accelerated by its atmosphere. Contrary to the mass
fluxes within the disk (Fig. 4.5) the angular momentum fluxes do not exhibit significant variability and
appear quasi-stationary.

We now take a look at the angular momentum fluxes on the whole vertical structure by averaging
over the whole time domain (tα = 923Tin to tβ = 1114Tin) and show the fluxes as simple scalars in
Fig. (4.6,right). We can see that angular momentum is always transported radially outwards for all the
different regions. We recover again that the disk is receiving angular momentum from the atmosphere.
Overall, the latitudinal flux from the laminar atmosphere overruns the radial loss of angular momentum
in the disk and thus decretion must occur. In the absence of a latitudinal flux from the atmosphere the
disk would be only losing angular momentum radially and thus accretion would occur.

The laminar atmosphere in turn gets its angular momentum radially, from the inner radius, as well
as latitudinally from the turbulent atmosphere. The radial angular momentum flux within the laminar
atmosphere is dominated by the laminar stress and not the turbulent stress (see section 4.2.1). Below
the base of the outflow, in the turbulent atmosphere, angular momentum is lost from all sides. The
outflow is not the main contributor of angular momentum loss, it carries less than 10% of the angular
momentum extracted from this region. Most of the angular momentum is radially transported outward
or transferred down to the laminar atmosphere. In contrast to the laminar atmosphere however, the radial
angular momentum transport within the TA is due to the turbulent torques (see section 4.2.1).

We compute the ratio of angularmomentum transported by the latitudinal torques to the radial torques.
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Figure 4.6: (left) Mass fluxes inside of the whole domain, the regions shaded blue are turbulent
regions. The arrows represent the direction of the fluxes. Since we are representing the differ-
ent mass fluxes of a region of the disk, their sum (taking into account their direction) should
be equal to the mass difference between tα and tβ. (right) Angular momentum fluxes across the
whole domain, the regions shaded blue are turbulent regions. The different fluxes are integrated
between tα and tβ. The arrows represent the direction of the fluxes. In this figure we are only rep-
resenting the fluxes that emerge from the Reynolds and magnetic stresses FL,r2 ,FL,r1 ,FL,θ1 ,FL,θ2
not the flux of angular momentum though accretion. However, the sum of these fluxes (taking
in to account their direction) leads to the value of the angular momentum being transported by
the accretion.

This ratio is equivalent to the parameter Λs defined above in Eq. (4.46) as

Λs =

[
r sin2 θ

(〈
ρuθ3ϕ

〉
− 1

4π

〈
BϕBθ

〉)]θ1
θ2

1
r
∂
∂rr2

[〈
ρ3φuθ

〉
sin θ − ⟨BϕBr⟩ sin θ

4π

] . (4.52)

If we assume that Λs is constant with radius we can rearrange the equation, multiply both sides by r and
then integrate with respect to r to find

Λs =
FL,θ1 − FL,θ2
FL,r2 − FL,r1

, (4.53)
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Figure 4.7: Angular momentum fluxes inside the disk, defined for |z| < 3h as function of the
local orbital time at r1 = 8. Positive fluxes corresponding to angular momentum being removed
from the disk.

where the fluxes are the ones defined in section 4.2.2. By taking the values of Fig. (4.7) we compute Λs
only considering the fluxes entering or exiting thewhole domain, ignoring the internal angular momentum
fluxes. The latitudinal flux are taken as the outflow torques extracting angular momentum away from
the system. The radial torques FL,r2 and FL,r1 are computed by summing all radial torques entering and
exiting the system. Note that FL,θ2 < 0 and FL,θ1 > 0 while both radial fluxes are positive. We get

Λs ≃ 1. (4.54)

Both torques transport approximately the same amount of angular momentum. It should be noted, that it is
hard to simplify the complexity of the system into a single number (see Fig. 4.7). Hence, the measurement
of Λs should be taken with care.

4.2.4 Secular transport

Accretion velocity

If we want to understand the global behavior of the accretion flow in our simulation, we need to compute
the mass weighted accretion velocity,

vacc =

θSM,2∫
θSM,1

r sin θ ⟨urρ⟩ dθ.

θSM,2∫
θSM,1

r sin θ ⟨ρ⟩ dθ.
, (4.55)

where θSM,1 and θSM,2 are respectively the angles where the flow becomes super SM in the upper and
the lower hemispheres. These surfaces coincide with the end of the turbulent atmosphere. From section
2.3.2 it is clear that the mass weighted accretion velocity is related to the mass accretion rate Ṁacc. The
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mass weighted accretion velocity can be computed from the mass accretion rate

vacc =
1

2πR
Ṁa
¯⟨ρ⟩
. (4.56)

We time average this quantity between ta = 318Tin and tb = 955Tin with a temporal resolution of
0.8Tin and get

vacc(R) ≃ −1.1 × 10−3VK(R), (4.57)

valid for R ∈ [2, 14], which is clearly subsonic. The accretion velocity, vacc, follows a radial dependency
very close to Keplerian. The negative sign shows that accretion in the turbulent atmosphere dominates
over the disk decretion and the self-organization into ring-like structures. We can compute an accretion
time scale using this value of the accretion velocity, we get

tacc =
R
vacc
∼ 9.1 × 102/ΩK(R) = 145TK. (4.58)

The accretion time scale is substantially longer than than the local dynamical timescale ofMRI or ejection
which are of the order of TK. Hence, there is a clear timescale separation between local dynamics and
accretion as expected.

Magnetic flux transport

The evolution of the magnetic field is harder to characterize. First we need introduce the magnetic flux
threading the disk

Ψ(R, t) =
π/2∫
0

r2 sin θ ⟨Br⟩φ (r = Rin, θ, t) dθ +
R∫

Rin

R ⟨Bz⟩φ (r, θ = π/2, t) dR. (4.59)

We compute this flux by integrating along a surface that goes from the axis (z = 1 and R = 0) down to
the inner boundary of the disk (z = 0 and R = Rin) and then to radius R in the disk midplane.

We first confirm that Ψ(R = Rout) is constant during the entire run, indicating that the total flux within
the numerical domain is conserved. To do this we compute the fluxes

ΨB =

π/2∫
0

r2 sin θ ⟨Br⟩φ (r = Rin, θ, t) dθ, (4.60)

Ψd =

Rout∫
Rin

R ⟨Bz⟩φ (r, θ = π/2, t) dR, (4.61)

where Ψd is the magnetic flux crossing the disk mid-plane, while ΨB is the magnetic flux crossing the
boundary condition, we notice that Ψd +ΨB = Ψ(R = Rout). For the magnetic flux to be conserved in our
numerical domain their summust be constant, we clearly see this in Fig. (4.8). Furthermore, the magnetic
flux at the inner radial boundary increases with time, indicating transport of the magnetic field towards
the inner regions. The disk looses its magnetic field which is advected and concentrated on the boundary.

To understand this advection we show Ψ in Fig. (4.9) as a function of the radial coordinate and time.
In this figure, each contour corresponds to the midplane foot-point of a poloidal magnetic field line.
The magnetic field lines are advected inwards. Eventually, as shown in Fig. (4.8), the magnetic flux
accumulates in the inner boundary condition, but is not lost.

It is desirable to compute an effective velocity for the magnetic field transport, vΨ. We compute this
effective velocity by assuming the magnetic flux can be modeled following a simple advection equation,
as proposed by Guilet and Ogilvie 2012

∂Ψ
∂t
+ vΨ

∂Ψ
∂R
= 0. (4.62)
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Figure 4.8: Magnetic flux crossing the inner radial boundary condition r = rin, ΨB, and the total
magnetic flux Ψd crossing the disk as function of t in unites of Tin. For the sake of clarity we
have subtracted the initial values of both fluxes (ΨB(t = 0) and Ψd(t = 0)).
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Figure 4.9: Magnetic flux threading the disk midplane Ψ, computed between the axis and R, as a
function of time in innermost orbital units. Every contour line represents a field line. The dashed
line shows an example of a fit using Eq.(4.66) with Ri = 4.4, ti = 328Tin and vΨ

VK
= −1 × 10−3.

This equation is derived in section 2.4.3, in that derivation we show that vψ is the consequence of the
competition between the turbulent diffusion and the advection of the magnetic field. In this chapter we
use this equation in a purely phenomenological way, we use it to compute the transport velocity without
trying to differentiate the different contributions of vΨ. We now compute vΨ and average it between
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ta = 318Tin and tb = 955Tin with a temporal resolution of 0.8Tin, which provides

vΨ ∼ −1 × 10−3VK, (4.63)

valid for R ∈ [2, 11]. For R > 11 we cannot conclude on magnetic flux advection, since we did not
integrate for long enough to get a measurable deviation from the initial condition. As expected from
Fig. (4.9) the transport velocity is negative within the inner regions of the disk. Moreover, the transport
velocity follows a radial dependency close to Keplerian.

Since the field lines are advected at a fraction of the Keplerian velocity we can model their advection
by computing the characteristic of Eq. (4.62) with a velocity

vΨ(R) = −a0VK(R), (4.64)

where a0 is a positive constant. We compute the characteristic below. Here we use the fact that the
magnetic field lines are going to be advected at the velocity vΨ, we can model their motion with the
following equation

ṘΨ = vΨ(R) = −a0VK(R), (4.65)

where RΨ is the radial foot point of the poloidal magnetic field line. We can solve this equation for RΨ
and find

RΨ(t) = Ri

[
1 − 3ΩK(Ri)

2
a0(t − ti)

] 2
3

, (4.66)

where Ri is its initial position and ti is the time the system needs to stabilize the transient due to the initial
condition, and start advecting magnetic flux, a delay visible in Fig. (4.9). Equation (4.66) can be derived
from the characteristics.

We then cross-checked the numerical value of the magnetic field transport velocity by fitting the
contours of Fig. (4.9) with Eq. (4.66). These fits show a reasonable agreement with the data (Fig. 4.9,
dashed line), which suggests that magnetic field lines are advected in a self-similar manner once the
equilibrium of the magnetic structure is reached (ti ∼ 30TK(R)).

Since vΨ ∝ VK(R), the time scale for the magnetic field transport, namely

tΨ =
R
vΨ
∼ 103/ΩK(R) = 160TK(R), (4.67)

is comparable to the accretion time scale and substantially longer than the dynamical time scale.
Motivated by the agreement of our fits we can try to go a step further and find the explicit function

Ψ(R, t) by solving Eq. (4.62) for

Bz (R, t = ti(R)) = Bi

(
R
Rin

)− 5
4

⇒ Ψ (R, t = ti(R)) =
3
4
R2inBi

( R
Rin

)3/4
− 1

 , (4.68)

where for consistency sake we choose ti ∼ 30TK(R). Since the transport velocity is only a function of
radii, equation (4.62) simplifies to a simple advection equation with variable coefficients. Using the
method of characteristics, we write a general solution of Eq. (4.62) as

Ψ(R, t) =F(Ξ), (4.69)

Ξ =
t∫

ti(R)

dt −
R∫

Rin

−1
a0VK(R)

dR. (4.70)

The explicit form of Ξ is found to be

Ξ = t − ti(R) +
2
3

Rin
a0VK(Rin)

( R
Rin

)3/2
− 1

 . (4.71)
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We deduce that one function F(Ξ) that can fulfill the initial condition is of the form

F(Ξ) = c1(Ξ + c2)1/2 + c3, (4.72)

where c1, c2 and c3 are constants. We solve for the different constants and find

Ψ(R, t) =
3
4
R2inBi

32 a0VK(Rin)
Rin

(t − ti(R)) +
(
R
Rin

)3/21/2 − 3
4
R2inBi. (4.73)

We compute this theoretical approximation of Ψ with ti = 30TK(R), a0 = 1 × 10−3 and Bi fixed to our
initial conditions. We display its space time diagram in Fig. (4.10), the resemblance with Fig. (4.9) is
striking. We can conclude that the field advection for our fiducial simulation is linear, local and, follows
a Keplerian velocity scaling. We will see in section 4.3.2 that this is not the case in strongly magnetized
accretion disks.
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Figure 4.10: Theoretical magnetic flux threading the diskmidplane Ψ, computed fromEq. (4.73)
between the axis andR, as a function of time in innermost orbital units. We compute this function
with ti = 30TK(R) and a0 = 1 × 10−3. Every contour line represents a field line. The numerical
values do not agree with the ones shown in Fig. (4.9), since we do not include the magnetic flux
of the boundary condition in our model.

4.2.5 Dynamic equilibrium
Assuming the total poloidal flow acceleration is negligible we get the following radial and latitudinal
equilibria from Eq. (2.65) 〈

uϕ
〉2
r
−

〈
Bϕ

〉2
+

〈
δB2ϕ

〉
4πr ⟨ρ⟩ − 1

⟨ρ⟩
∂ ⟨P⟩
∂r
− 1
⟨ρ⟩
∂ ⟨PB⟩
∂r

+
1

4π ⟨ρ⟩
〈
Bp

〉
· ∇⟨Br⟩ = g, (4.74)

cot θ

〈uϕ〉2 −
〈
Bϕ

〉2
+

〈
δB2ϕ

〉
4π ⟨ρ⟩

 − 1
⟨ρ⟩
∂ ⟨P⟩
∂θ
− 1
⟨ρ⟩
∂ ⟨PB⟩
∂θ

= 0, (4.75)

where g = GM/r2 and ⟨PB⟩ =
(
⟨B⟩2 +

〈
δB2

〉)
/8π is the magnetic pressure, which contains a laminar,

⟨B⟩2, and a turbulent,
〈
δB2

〉
, contribution. We neglect the tension due to the latitudinal magnetic field in
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Figure 4.11: Left: Radial equilibrium (eq. 4.74). Right: Latitudinal equilibrium (eq. 4.75) as
a function of the latitudinal coordinate θ. The terms are averaged between r1 = 8 and r2 = 14
after being normalized to g (left) or gr (right). If the system is in equilibrium (no acceleration)
the sum of the terms, the black solid line , should be equal to 1 (left) or 0 (right). The shaded
areas denotes the turbulent regions.

Eq. (4.75) due to its small impact in the latitudinal equilibrium. Figure 4.11 shows the latitudinal profile
of the radial and latitudinal equilibria, respectively normalized to g and gr. We find that the disk region
is in radial and latitudinal equilibrium thanks to the balance between the centrifugal force,

〈
uϕ

〉2
/r or

cot θ
〈
uϕ

〉2
, the gravity and the thermal pressure gradient. Hence, the disk is in hydrostatic balance as is

expected from a weakly magnetized disk.
As we enter the accreting atmosphere the thermal pressure gradient becomes close to negligible,

when compared with the magnetic forces. The radial and latitudinal equilibriums are then enforced by
a balance between gravity, the centrifugal force, the magnetic pressure gradient and the hoop stress,〈
B2ϕ

〉
/(4π ⟨ρ⟩ r) or cot θ

〈
B2ϕ

〉
/(4π ⟨ρ⟩). The radial equilibrium is maintained up to the base of the outflow

(θ ≃ π/2±π/4). At this pointMHD acceleration is no longer negligible and Eqs. (4.74,4.75) are no longer
a valid approximation.

The laminar and turbulent atmosphere are described by a magnetostatic equilibrium, contrary to the
disk that is in hydrostatic equilibrium. This magnetostatic equilibrium is a consequence of the laminar
and turbulent magnetic pressure gradients (Fig. 4.12). This situation is similar to what was proposed
by Begelman et al. 2015, a disk in magnetostatic equilibrium where the magnetic pressure emerges as
a consequence of turbulence. Indeed, within this region, there is a powerful average toroidal field, 20
times the vertical field at the disk mid-plane ( Fig. 4.4 bottom), that changes sign within the turbulent
atmosphere.

This powerful average toroidal field (situated within the laminar atmosphere) is a consequence of the
fact that the laminar atmosphere is in ideal MHD. In the LA, the accretion drags the poloidal field lines
inwards. The fluid is plunging into a region a higher angular velocity, which leads to enhanced shear for〈
Bφ

〉
, increasing its magnitude (Zhu and Stone 2018).
This average toroidal field is supporting the turbulent atmosphere agains gravity. The gradient of the

laminar toroidal magnetic pressure allows the levitation of the TA above the disk surface (Mishra et al.
2020). Hence, the levitation of the TA causes the consumption of the toroidal magnetic field. Indeed, as
we move further up in the atmosphere the toroidal magnetic field decreases (Fig. 4.4). Then, within the
TA

〈
Bφ

〉
changes sign, whichmight be surprising at first. Such a sign change can be seen as a consequence



122 4.2. FIDUCIAL CASE

of the argument detailed in section 2.5.4, for the outflow to be launched, the electric current traversing
the disk needs to change sign. Furthermore, the toroidal magnetic field needs to be negative within the
outflow region or else the Poynting flux vector would not be pointing away from the disk (see section
2.5.2)
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Figure 4.12: Comparison of the different pressure terms normalized to the thermal pressure
within the disks mid-plane as functions of the latitudinal coordinate. The shaded areas denote
the turbulent regions.

It may seem from Fig. (4.12) that turbulent magnetic pressure plays no role. However, the turbulent
magnetic pressure plays a very important role on the dynamics of the system. As we discussed before, the
only force capable of loading matter onto the field lines is the thermal pressure gradient, which pushes
material to the surface. It is clear in Fig. (4.12) that the laminar magnetic pressure is compressing the
disk surface. However, this compression is nowhere to be seen in Fig. (4.11). The turbulent magnetic
pressure is counteracting the compression due to the laminar magnetic pressure. This ensures that the
material can flow relatively freely from the disk to the atmosphere and enhances the mass loading in
the LA region. The same process is at play for the transition between the turbulent atmosphere and the
outflow. However, in this case it is the combined effect of thermal pressure and the turbulent magnetic
pressure (Fig. 4.12) that allows the loading of the magnetic field lines at the base of the outflow. The
reason for the reappearance of the turbulent magnetic pressure within the turbulent atmosphere will be
described in section 4.2.7.

4.2.6 Super fast wind structure
In this section we compute the MHD invariants defined in section 2.5.1 for our fiducial simulation. We
follow three average magnetic field lines crossing the mid-plane at R0 = [5, 6, 8] (Fig. 4.13,left). We
the compute the ideal MHD invariants across the 3 different field lines anchored at the radii RSM =

[3.5, 4, 7.5](Fig. 4.13,right). The invariant are approximately constant once the outflow leaves the turbu-
lent atmosphere. This show that the outflow is stationary and laminar. This is consistent with the fact that
cosψ = ±1 in the outflow region. The field lines closest to the central object are the ones that exhibit the
least amount of variability in their invariants. The closer they are to the central object the more time they
have to numerically converge as the dynamical time scale (Ω−1k ) shortens with radii. Several features of
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Figure 4.13: Left: mean poloidal magnetic field lines in the (R,z) plane. The blue lines define
the different critical surfaces (see section 4.2.1) and they are represented as vertical lines in the
lower panel. The grey zones determine the turbulent zones defined in section 4.2.1. The lower
zone corresponds to the disk and the upper zone corresponds to the turbulent atmosphere. right:
MHD invariants calculated along the field lines of the upper panel as functions of the latitudinal
coordinate. The line style of the MHD invariants has a one to one correspondence with the field
line where the invariant was calculated. The grey zone corresponds to the end of the turbulent
atmosphere.

the outflow structure can be deduced from the MHD invariants:

– The rotation invariant ω⋆ ≤ 1, indicates that the field lines rotate close the local Keplerian speed
at their anchoring radii, or slightly slower. This is consistent with the values expected from self-
similar models (Ferreira 1997; Lesur 2021).

– The angular momentum invariant λ ≃ 5, so the wind is effectively free (λ > 3/2). This provides
R2A/R

2
SM = λ/ω⋆ ∼ 8 which is comparable to the value found by Zhu and Stone 2018. We can

estimate the terminal velocity of the outflow using the magnetic lever arm (see section 2.5.4).
Using this expression we find up inf ∼ 3 |RΩK|SM.

– The mass loading invariant κ ∼ 0.1 implies that the energetic content at the base of the outflow is
dominated by the magnetic field and not the kinetic energy, consistent with a jet-like outflow. We
also compute the mass loading within the laminar atmosphere, we find κ ∼ 8. The value of κ is
almost 2 orders of magnitude larger within the laminar atmosphere when compared to the outflow.
This seems to indicate that the reason the laminar atmosphere is falling is because it is so heavily
loaded with matter.

The Bernoulli invariant characterizes the energetic of the outflow. Figure (4.14) shows the components
of the Bernoulli invariant. The positive sign indicates again that the flow is free from the potential well.
When the flow reaches the end of our simulation box, its energy content is dominated by the kinetic
component, the magnetic energy has been consumed, the outflow is close to its asymptotic state. We see
from Fig. (4.14) that the outflow is cold, i.e. the thermal pressure term, w, is negligible. Furthermore, at
the wind launching point, the outflow is dominated by the magnetic energy, and even the gravitational
energy is negligible.
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ent critical surfaces. The vertical dashed line is the fast magneto-sonic surface while the vertical
dotted line is the Alfvénic surface, consistent with the notation figure 4.13.

Finally we also compute theMHD invariants in the south hemisphere for field lines crossing the same
radii at the disk mid-plane, R0 = [5, 6, 8]. We compute very similar values, confirming the symmetric
nature of the system.

We distinguish if our outflow is jet-like or wind-like using the criterium defined in section 3.4.4. The
jet magnetization is computed using Fig. (4.14) to find

σ =
−Ω∗r

〈
Bφ

〉 〈
Bp

〉(
⟨u⟩2
2 + ⟨H⟩

)
⟨ρ⟩

〈
up

〉
4π

∣∣∣∣∣∣∣∣∣∣
SM

∼ 8. (4.76)

Since σ > 1 the outflow is jet-like, compatible with the observed collimation and the values of the mass
loading invariant.

4.2.7 Origin of turbulence
The accreting atmosphere is divided into two distinct regions: a laminar atmosphere and above it a tur-
bulent atmosphere (see section 4.2.1). This configuration, where a turbulent layer is localized above the
disk has not been described in detail so far. It suggests that within the laminar atmosphere, the source
of turbulence is quenched. It also suggest that turbulence must be reinvigorated within the turbulent at-
mosphere. Since the turbulent atmosphere is highly magnetized (

〈
βp

〉
≤ 1), several MHD instabilities

could in principle be invoked to explain the source of turbulence ( e.g. interchange or Parker instabili-
ties). However, the main source of energy in this region is still the quasi-Keplerian shear, MRI-driven
turbulence remains a possibility.

As discussed in section 2.2.3 and section 2.2.2, it is widely believed that the MRI is a weak field
instability, quenched when

〈
βp

〉
< 1. However, this condition has been derived assuming that the MRI
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Figure 4.15: Maximum growth rate of the compressible MRI as a function of the poloidal
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r2 = 12 (see Fig.4.4). We find that laminar regions are characterized by reduced MRI growth
rates (≲ 0.25ΩK).
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modes are confined within the vertical thickness of a disk in hydrostatic vertical equilibrium. In our
simulations, the system is puffed up by the turbulent magnetic pressure. It could then be possible that
this thicker system allows the existence of the turbulent MRI modes at high magnetic field.

In section 2.2.3 we derived a stability condition under which the MRI is suppressed in the limit of
strong magnetic field (Eq. (2.53)), it reads〈

Bϕ
〉2

⟨Bz⟩2
>
3
4

with
〈
βp

〉
→ 0 ⇒ stability. (4.77)

This condition is indeed verified in the laminar atmosphere (Fig.4.4,bottom). Since Eq.(4.77) is
verified within the laminar atmosphere, the laminar atmosphere should be stable to the MRI. We super
imposed the maximum growth rate computed in section 2.2.3 with our numerical results. We use the
profiles of the magnetic field components and pressure of our simulations to characterize the value of the
MRI growth rate within each region.

From Fig. (4.15) we find that regions where the MRI growths at a sufficient rate (≥ 0.25ΩK) cor-
respond to the zones described as turbulent in section 4.2.1. On the contrary the MRI has a smaller
growth rate within the laminar regions. We therefore conclude that the MRI is probably the main driver
of turbulence within the turbulent atmosphere.

As discussed in section 4.2.5 the powerful toroidal magnetic field is consistent with the laminar
atmosphere. This laminar atmosphere facilitates the winding of the magnetic field lines. Furthermore,
the decrease of the toroidal magnetic field within the turbulent atmosphere is also consistent with the
magnetostatic equilibrium of the atmosphere. We hypothesize that the re-ignition of turbulence is required
for the establishment of a stationary magnetostatic equilibrium.

Finally, the re-ignition of turbulence will produce anomalous resistivities within the turbulent atmo-
sphere that allow accretion thought the poloidal field lines and a steady state transition between accretion
and ejection (Ferreira and Pelletier 1995). It is therefore an essential ingredient for outflow launching.

4.3 Parameter exploration
We start by validating the wedge approximation, Δφ = π

2 , for global simulations, S2pi harbors no sig-
nificant differences. Indeed, S2pi and SB4 are identical with respect to the properties of their vertical
structure. In the rest of this section we will mostly ignore S2pi when we discuss those properties.

We now explore how the properties described in the section above change as we explore the parameter
space by changing the initial magnetization, μini and the geometrical thickness, ε (see Tab.4.1). In this
section we compute the averages defined in section 2.3.1 for all simulations between t1 and t2 = Tend (see
Tab.4.1) with a Δt = 0.16Tin.

We first confirm that all weak field simulations μini < 10−3 converge to a steady state similar to the
one described in section 4.2: a turbulent disk, an atmosphere with super sonic accretion and a super-fast
wind. Therefore we address the weak field simulations first while the steady state of simulation SB2 will
be described at the end of this section. To compare the initial magnetization, μini, with the one achieved
once the simulation reaches a steady state we define

μmid =
⟨Bz⟩2
4πP

∣∣∣∣∣∣r,θ= π
2

. (4.78)

This magnetization is roughly equal to μini for weakly magnetized simulations but not for SB2.

4.3.1 Low magnetic field simulations
We show in Fig. (4.16) the vertical structure of simulations SB3 and SEp. We see that their vertical
structure is very similar to the one of simulation SB4. Moreover, we see that similarly to SB4, all weak-
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Figure 4.16: Same as bottom Fig. (4.2) but for simulation SB3 (top) and SEp (bottom).
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mid-plane (defined in section 2.3.2) as functions of the latitudinal coordinate for simulations
SB4 (top,left), S2pi (top,right), SB3 (bottom,left) and SEp (bottom,right). The shaded regions
correspond to the turbulent regions defined using cosψ.

field simulations reach a equilibrium within the disk and a magnetostatic equilibrium within the laminar
and turbulent atmospheres given by Eq. (4.74,4.75).

We quantify the evolution of the turbulent stratification as a function of the different parameters
by comparing the extent and heights of the turbulent disk, the laminar atmosphere and the turbulent
atmosphere for the different simulations. We quantify the extent and height of the region by looking at
cosψ the angle between the poloidal velocity and the poloidal magnetic field (section 4.2.1). We compare
the values measured with this method and the ones given by the ratio between the turbulent and laminar
torques, Ttu and Tla. We show the different components of the stress tensors for the different simulations
in Fig. (4.17), the shaded regions corresponding to the turbulent regions defined using cosψ. We see
that the turbulent regions are those where the turbulent stress tensor dominates the angular momentum
transport (consistent with section 4.2.1). Moreover, the strength of the turbulent stress tensor within the
disk increases by a factor of 5 with the magnetization (from SB4 to SB3) and seems to be independent of
the disk geometrical thickness.

We summarize our findings in Fig. (4.18) where we show the turbulent regions (disk and atmosphere)
as shaded regions of different colors for the different simulations. We see that when the magnetic field
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increases (from SB4 to SB3) the disk region decreases in size. This is because the quenching of the MRI
is only possible when

〈
βp

〉
∼ 1 (section 4.2.7). Hence, starting at a higher μmid (lower

〈
βp

〉
at the disk

mid-plane) limits the vertical extent of the disk and pushes the transition to the laminar atmosphere at
lower altitudes.

Figure 4.18: Extent of the turbulent zones (disk and atmosphere) found in the different sim-
ulations, see Tab. (4.1). As the magnetic field increases, the turbulent layer goes down and
eventually merges with the turbulent disk.

In Fig. (4.18) we also see that when μmid increases the turbulent atmosphere plunges towards the disk
lowering the altitude of the base of the outflow. The altitude of the outflow launching surface is tightly
related to the density profile. In Fig. (4.19) we show the density profiles of the different simulations
normalized to their value at the disk mid-plane. We see that the simulations SB4 and S2pi converge to a
similar density configuration validating the wedge approximation. Moreover, we observe in Fig. (4.19)
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Figure 4.19: Mean density of the different simulations normalized to its value at the disk mid-
plane, see Tab. (4.1). The symbols correspond to the height at which the flow reaches the SM
speed. The mean profile are also averaged radially between r = 8 and r = 12.

that as μini increases the density profile becomes shallower and as a consequence, moremass is fed into the
TA and the outflow. This is possibly related to the enhanced mass loading due to the push of the turbulent
magnetic pressure. Indeed, increasing μini leads to a increase of μmid which increases the turbulence
strength (Salvesen et al. 2016; Mishra et al. 2020). This increase in turbulent strength with the increment
of the disk magnetization is also verified in our simulations.

We see that as the disk geometrical thickness decreases, the vertical extent of the turbulent disk de-
creases (Fig. 4.18,4.19), as would be expected. Strikingly the turbulent atmosphere stays at roughly the
same height compared to SB4. The height of the turbulent atmosphere mostly depends on the magneti-
zation at the disk mid-plane and not on the disk geometrical thickness. Nonetheless, the steepness of the
density profile is affected, leading to a less dense turbulent atmosphere for ε = 0.05. It is not clear if an
even smaller ε could lead to the disappearance of the turbulent and laminar atmospheres.

The initial magnetization and the disk geometrical thickness also affects the secular evolution of the
system. To show this, we compute vacc and vΨ defined in section 4.2.4 and we average them between
ta = 318Tin and tb = 955Tin with temporal resolution of Δt = 0.8Tin for all simulations.

First we confirm that vacc scales radially as the Keplerian velocity, we summarize the values of vacc,
normalized to VK(R), in tab. 4.2. We see that as the initial magnetization increases the mass weighted
accretion velocity also increases. However, the value of ⟨uR⟩ within the accreting atmosphere doest not
depend of the initial magnetization or ε, its value is roughly 0.3VK(R) for all weak field simulations.
Therefore, the dependency of vacc must be a consequence of the evolution of the vertical density pro-
file. Indeed, in Fig. (4.19) we see that when μini increases the density profile becomes shallower and the
accreting atmosphere becomes denser. Furthermore, the decrease of vacc as ε decreases is also a conse-
quence of the density profile. We conclude that the magnitude of vacc is tightly related to the vertical
density structure.

In Fig. (4.20) we show the space time diagram of the magnetic flux for simulations SB3 and SEp. We
clearly see that both simulations transport the magnetic field towards the inner boundary. The magnetic
field transport velocity for simulation SB3 seems faster than the one of simulation SB4. In contrast, vΨ
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Name −vacc [VK] tacc [TK] tΨ [TK]
〈
μmid

〉
SB4 1.1 × 10−3 144 160 2 × 10−4
SB3 1 × 10−2 16 31 2 × 10−3
SEp 4 × 10−4 400 1.1 × 103 2 × 10−4
SB2 (R > 8) 4 × 10−2 4 5 8 × 10−2
SB2 (R < 4) 2 × 10−1 1 265 2

Table 4.2: Values of the mass weighted accretion velocity defined in section 4.2.4 in units of
VK for the different simulations. We also show the accretion time scale calculated from the first
column in units of the local TK(R) = 2π/ΩK(R) as well as the magnetic advection time scale in
the same units, calculated from Fig. (4.21) (left). Finally, we include the mean poloidal

〈
βp

〉
at

the disk mid-plane. Quantities are temporally averaged between ta = 318Tin and tb = 955Tin.
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Figure 4.20: Magnetic flux threading the disk midplane Ψ, computed between the axis and R,
as a function of time in innermost orbital units for simulations SB3 (left) and SEp (right). Every
contour line represents a field line.

for simulation SEp seems smaller than the one of SB4. To better quantify the magnetic transport we
compute vψ , defined in Eq. (2.106) for all our simulations. We then average this quantify in the same
manner as vacc. The evolution of the field transport velocity, normalized to the Keplerian velocity, is
shown in Fig. (4.21,left). It is clear that vΨ, in the same manner as vacc, approximately follows the radial
scaling of the Keplerian velocity. Those trends do not apply for the inner regions of simulation SB2, that
we discuss in the following section. We notice that the magnitude and behavior of the transport velocity
for simulation S2pi agrees with the one of simulation SB4.

Figure (4.21) shows that when μini increase vΨ/VK also increases, vΨ/VK seems proportional to〈
μmid

〉
. The transport velocity sharply decreases when we decrease the disk geometrical thickness.

The ratio of the field transport velocity and the mass weighted accretion velocity, vΨ/vacc, as a func-
tion of the radial coordinate is displayed in Fig. (4.21,right). All simulations, except the inner regions of
SB2, follow approximately the same dependency

vΨ ≃ vacc. (4.79)

This is remarkable and must be related to the evolution of the vertical structure since, as explained above,
the evolution of vacc is tightly related to it.

The accretion times scale as well as the magnetic advection time scale are shown in Tab. (4.2) com-
puted from their respective velocities. In all simulation the secular time scales tΨ and tacc remain longer
than the dynamical time scale TK. Nonetheless, a word of caution is appropriate since for simulation SB2
the accretion time scale tacc is of the order of the dynamical time scale, while tΨ is comparable for the
outer regions of SB2. Indeed, as was discussed in section 3.1.1 for the Ohm equation (Eq. 3.5) to be valid
the advection of the magnetic field needs to be negligible with respect to the other terms. Indeed, the
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field transport velocity can be written as (see section 2.4.3)

vΨ = ⟨uR⟩ − ⟨uz⟩
⟨BR⟩
⟨Bz⟩

−
Eφ(t)
⟨Bz⟩
, (4.80)

we see that if vΨ ∼ 0 we obtain following Ohm’s law1

4π
c
η
〈
Jφ

〉
eφ =

〈
up

〉
×

〈
Bp

〉
. (4.81)

Therefore, the Ohm equation is not an accurate approximation for the simulations with a high magnetic
transport velocity, like the outer regions of SB2 or even SB3. In that case the advection of the magnetic
field should be considered when looking for a solution of the ideal MHD equations. See for example the
works of Ogilvie and Livio 2001 and Guilet and Ogilvie 2012 using an asymptotic expansion to calculate
the vertical equilibrium of the disk and also the work of Contopoulos et al. 2017 using the self-similar
framework.

The values of the MHD invariants for the different simulations are summarize in Tab. (4.3) as defined
in section 2.5.1. They are all computed from a field line originating at R0 = 6. The MHD invariants do
not vary considerably from one simulation to another. This may seem surprising. However, it should be
kept in mind that the wind invariants depend on the flow dimensionless properties (⟨ur⟩ /VK,

〈
uϕ

〉
/VK,

⟨Br⟩ / ⟨Bθ⟩, ⟨Br⟩ /
〈
Bϕ

〉
) at the wind launching point, that is the top of the turbulent atmosphere. Since

these dimensionless properties are similar between all weak-field simulations, the invariants should nat-
urally be independent of

〈
μmid

〉
.

4.3.2 Towards strongly magnetized disks
As stressed above, simulation SB2 differs from the other simulations because the whole disk is subject to
a drastic reorganization of the vertical magnetic field, and it takes much longer to converge to a reasonable
steady state. At tend = 1910Tin, only the region below R ≃ 7 has reached a steady state, while the outer

1We also need to assume a resistive closure for the turbulent emf
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Name ω λ κ e
SB4 0.8 5 0.2 6
SB3 0.9 4 0.4 6.5
SB2 0.9 4.5 0.75 6
SEp 0.8 5 0.2 6

Table 4.3: Values of theMHD invariants for all simulations, measured in the upper ’hemisphere’
for a field line originating at R0 = 6.
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Figure 4.22: Magnetic field flux Ψ (top) defined in Eq. (4.59) and ratio Pb,mid/Pmid (bottom) (see
text) as functions of time and the radial coordinate for simulation SB2. We note thatPb,mid/Pmid >
μmid
2 since the former contains also the turbulent magnetic pressure.

regions continue to struggle readjusting the magnetic field distribution. We show Ψ for simulations SB2
in Fig. (4.22,left), we observe that the magnetic field is violently advected in the initial stages. Simulation
SB2 converges to a state where the inner regions are highly magnetized (μmid > 0.3) and quasi-stationary,
while the outer regions stay weakly magnetized (μmid ∼ μini) and where the magnetic distribution is still
evolving. We define Rj as the end of the equipartition field region.

The large vΨ of the outer regions shown in Fig. (4.21) commands the reorganization and leads to the
lack of stationarity for the outer regions. However, in the inner regions (Rj < 7) the transport velocity
goes to 0, turbulent field diffusion balances advection leading to vΨ → 0. When the transport velocity
tends to zero the magnetic flux has no other choice but to accumulate at larger radii. The transition
radius Rj increases with time as more magnetic field is being brought in. This can be clearly seen in
Fig. (4.22,bottom) where we show the ratio Pb,mid/Pmid, where

Pb,mid =
1
8π

 1
2hdisk

θd2∫
θd1

r sin θ ⟨Bz⟩ϕ dθ


2

, (4.82)

Pmid =
1

2hdisk

θd2∫
θd1

r sin θ ⟨P⟩ϕ dθ, (4.83)
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velocity as function of radius. The quantities are averaged between t1 = 1910Tin and t2 =
1719Tin, not between ta = 318Tin and tb = 955Tin.

and θd2,d1 = π/2 ± arctan(hdisk/R). We can see that the inner regions are dominated by the magnetic
pressure. Indeed, the ratio Pb,mid/Pmid is larger than μmid since it contains the turbulent field contribution〈
δB2

〉
(more details below). We measure the radial drift speed of the transition radius Rj to be

Ṙj ∼ 10−3VK(Rin). (4.84)

The transition radius increases in burst and while dramatic changes are happening in the disk, its evolution
is highly variable.

Describing the details of this transition region is beyond the scope of this work (see discussion next
section). However, we show in Fig. (4.23) the radial distribution of the magnetization (μmid), vacc/cs
and

〈
uφ

〉
/Vk (evaluated at the disk mid-plane) averaged between t1 and t2, we can see how they evolve

through the transition. We confirm that the inner disk is highly magnetized while the outer disk stays
close to its initial weakly magnetized state. The saturation value for the magnetization is slightly above
the equipartition (Fig. 4.23), this may seems inconsistent with the constraint of the vertical equilibrium.
However, for simulation SB2 the vertical equilibrium is highly modified by a strong

〈
δB2

〉
at the disk

mid-plane (Fig. 4.24,left). This turbulent magnetic pressure allows for a stronger laminar magnetic field
compression and thus a larger value of μmid.

We notice that at RJ the mass weighted accretion flow becomes supersonic, the inner regions are
strongly decelerated by the turbulent and laminar torques. The components of the stress vectors are
shown in Fig. (4.24,right), we can see that the laminar latitudinal torque becomes dynamically important
for strongly magnetized disks. We see that the highly magnetized inner disk is still rotating close to the
Keplerian speed (Fig. 4.23), it is not arrested. Nonetheless, at the transition, Rj, the toroidal velocity
reaches a minimum value of roughly 0.6VK(R).

As shown in Fig. (4.18) the turbulent atmosphere merges with the disk. This is consistent with the
previous section, when the magnetization increases the turbulent atmosphere plunges towards the disks.
This is true for the inner and outer regions of simulation SB2. The laminar atmosphere disappears and
a thicker disk is formed after absorbing the turbulent atmosphere. The merging of the turbulent disk
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within the inner regions of the simulation (R ∈ [3, 6])

and turbulent atmosphere has direct consequences on the density profile (Fig. 4.19). As described in the
previous section, the turbulent magnetic pressure determines the steepness of the density profile. Thus, as
the disk magnetization increases the amount of mass lifted by the turbulent magnetic pressure increases,
leading to a massive turbulent atmosphere that merges with the disk. To understand the dynamical impact
of the turbulent magnetic pressure in simulation SB2, we show in Fig. (4.24,left) the profiles of the
different pressures, radially averagedwithin the inner regions. We see that the turbulent magnetic pressure
dominates at the disk midplane by almost and order of magnitude. It is thus the main driver behind the
deviation of the accretion into the base of the outflow (section 2.5.4) and is quintessential in counteracting
the compression of the laminar magnetic pressure, ensuring thereby a vertical balance.

We notice that the definition of the turbulent disk given by cosψ agrees quite well with their behavior
(Fig. 4.24,right). Indeed, the turbulent stress vectors only dominate the dynamics within the turbulent
disk. We see that the radial turbulent stress tensor is very powerful within the disk, leading to effective
values of α that are of the order of unity. We have verified that the turbulent disk of simulation SB2
satisfies the criterium of compressible MRI described above. The turbulence is consistent with the strong
field compressible MRI (section 4.2.7) and leads to a turbulent disk region in magnetostatic equilibrium,
much alike the turbulent atmosphere of weak-field simulations, even though the mean magnetic field
is close to equipartition. Since the stratification is modified by the magnetostatic equilibrium the MRI
modes have more space than within an hydrostatic disk. Hence, the maximal magnetization at which
MRI can take place is larger because larger MRI modes can fit within the system.

Figure 4.25 shows the quasi-stationary inner structure of simulation SB2, averaged between t1 =
1719Tin and t2 = 1910Tin. The magnetic topology is clearly distinct from the one observe in weakly
magnetized simulations (Fig. 4.2,4.16). Its structure is remarkably similar to the one originally invoked
in Blandford and Payne 1982 and later computed by Ferreira 1997. A cold and dense outflow is launched
from the disk surface at z ≃ 3.5h, becoming soon a super Alfvénic (red dotted curve) and then super fast
magneto-sonic (red dashed curve) jet.
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Figure 4.25: Same as bottom Fig. (4.2) but for simulation SB2.

4.4 Comparison with other work

Our results on the vertical structure of weakly magnetized accretion disk, have been already observed
in the work of Zhu and Stone 2018 and later confirmed for ε = 0.05 in Mishra et al. 2020. However,
these authors did not study in detail the dynamical role of turbulence on the appearance and stability of the
vertical structure. Mainly, that the turbulent magnetic pressure is a quintessential agent in establishing the
accreting atmosphere. Moreover, both authors failed to distinguish the appearance of a second turbulent
layer above the accretion disk andwithin the accreting atmosphere, making the transitionwith the outflow.

Both authors did measure the field transport velocity. Zhu and Stone 2018 measures the evolution
of the radial magnetic field at the inner radial boundary. They report a small amount of magnetic flux
accumulation through their inner boundary albeit without providing a clear analysis. The strong field
simulations of Mishra et al. 2020 are somewhat different as they do not detect considerable magnetic
flux evolution, in contrast with our results. One possibility is that it may be a bias of their analysis
method. Indeed, they compute the magnetic flux crossing the cylinder between R = 0.1 and R = 1. As
R = 1 is far from their inner boundary it is possible that this region has not started accreting magnetic
flux. We compute in section 4.2.4 that a local region at a distance R starts advecting magnetic flux after
approximately 30TK(R). We see in their Fig. 16 that in the best case scenario only 50 local orbits have
been integrated at R = 1. Another possibility is that it may be a consequence of their disk being two
times thinner than ours (ε = 0.05). Indeed, Fig. (4.21) clearly shows that the geometrical thickness has
a tremendous impact on the magnetic field advection speed (see e.g. Lubow et al. 1994). This is an
interesting aspect with potentially strong astrophysical consequences and deserves further investigations.

Magnetic field dragging has also been measured in General Relativistic MHD simulations of accre-
tion disk around Kerr black hole (e.g. McKinney et al. 2012; White et al. 2019 and references therein,
see also Liska et al. 2020). Inward field advection seems to be a generic property of ideal MHD accretion
disks threaded by a large scale magnetic field (provided that ε ∼ 0.1 or larger). GRMHD simulations also
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find that the magnetic flux ends up concentrated into the inner regions, leading to the build up of what has
been termed a Magnetically Choked Accretion Flow (MCAF) (McKinney et al. 2012). It is more often
termed Magnetically Arrested Disk (MAD) in the literature but, as we saw and also stressed in McKin-
ney et al. 2012, the disk is still rotating. Hence, we prefer the MCAF or JED terminology. This is what
we observe in simulations SB2, once the magnetic field reaches the equipartition value, the magnetic
flux accretion stops, defining a transition radius, RJ with an outer disk at lower magnetization. As more
magnetic flux is being advected, a violent relaxation occurs at this radius. The excess magnetic flux is
expelled out leading to a progressive increase in time of RJ. This happens as long as some magnetic flux
remains available in the simulation (McKinney et al. 2012). It is still unclear if this violent relaxation
involves a magnetic Rayleigh-Taylor instability (RTI).

This situation is quite nicely consistent with the hybrid disk configuration proposed for the inner
regions of YSO disks (Combet and Ferreira 2008; Ferreira and Casse 2013; Wang and Goodman 2017)
and around black holes (Ferreira et al. 2006b). Within this framework, an inner jet emitting disk (JED,
Ferreira 1997) is established until a transition radius RJ, beyond which an outer Standard Accretion Disk
(SAD, Shakura and Sunyaev 1973) is settled. Because of its supersonic accretion speed associated with
the launching of powerful jets, a JED provides the physical conditions allowing to explain most observa-
tional properties of X-ray Binaries (see Marcel et al. 2019 and references therein).

One of our main results is the realization of the utmost importance of the MRI in the strong field
regime (Kim and Ostriker 2000) for accretion-ejection structures. While it is widely believed that the
MRI can only exist in high β plasmas, Kim and Ostriker 2000 have shown that the MRI exist for arbitrary
β provided that arbitrary long wavelength perturbations are allowed. In the β < 1 regime, the MRI can be
quenched when the toroidal field gets too strong. We have shown that the turbulent and laminar regions
of the atmosphere, which is a β < 1 region, is naturally explained by the MRI in this peculiar regime.
In contrast with our simulations, White et al. 2019 find that in GRMHD simulations the MRI instability
is quenched in the highly magnetized regions of the accretion disk system. Their analysis is based on
the fact that the critical MRI wavelength is larger than the disk density scale height. However, they
do not consider the effect of stratification on the MRI wavelength. Marshall et al. 2018 find that the
radial turbulent angular momentum transport in the highly magnetized regime is deeply affected by the
RTI-driven turbulence. Nonetheless, they can not conclude that the MRI is unimportant.

We can compare the parameter space explored in our simulations with the one computed in the pre-
vious chapter using self-similar solutions. The outflow invariants computed in our simulations (Tab. 4.3)
are found consistent with the borders of the parameter space (Fig. 3.13). However, Fig. (3.13) shows val-
ues of λ from 2 to 100, while in our simulations λ ∼ 4 − 5 is roughly constant. We also see in Fig. (3.13)
that we have produced outflows with mass load κ ranging from a few 10−3 to almost unity, while our
3D simulations always provide κ ∼ 0.2 − 0.7. This discrepancy is related to our different vertical strat-
ification. In our simulations, the levitating turbulent atmosphere acts as a buffer between the proper
turbulent disk and the ideal MHD outflow. Hence, the properties of the outflow are only determined by
the turbulent atmosphere, which has pretty uniform properties across the different simulations.

The mass loading parameter, ξ, defined as the power-law exponent of the mass accretion rate, Ṁa ∝
Rξ , is hard to characterize in global simulations. The radial properties of global simulations take a long
time to converge. It is thus hard to measure the effect of the mean vertical magnetic field on the radial
configuration of the system. Furthermore, since the system is not strictly stationary the value of ξ mea-
sured using the wind properties (see section 4.2.6) does not necessarily correspond with the value given
by the radial profiles. Nonetheless, we can compute a value of ξ using the values of λ and Λs computed
in this chapter for SB4 and the equation (see section 2.3.2)

λ ≃ 1 + 1
2ξ

Λs
Λs + 1

. (4.85)

Using λ ≃ 5 and Λs ≃ 1 we find ξ ≃ 0.06 which is consistent with a jet-like outflow.
We observe the opposite behavior for the outflow mass loading as a function of the magnetization in

our simulations compared to our self-similar solutions. Recall that in chapter 3 we observe that weakly
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magnetized simulations launched denser outflows. In this chapter, we found that strongly magnetized
disks produce denser outflows than weakly magnetized disks (Fig. 4.19).

This turbulent accreting atmosphere is actually missing in all works where turbulence is not self-
consistently computed and must therefore be prescribed: self-similar studies (Ferreira 1997; Jacquemin-
Ide et al. 2019), 2.5D MHD simulations done with alpha prescriptions (Casse and Keppens 2002, 2004;
Zanni et al. 2007; Murphy et al. 2010; Stepanovs and Fendt 2016) and other semi-analytical models
(Guilet and Ogilvie 2013). Our guess is that including the complex vertical stratification should allow to
recover with these approaches an outflow mass load consistent with full 3D simulations. This requires
however the use of numerically ’educated’ profiles for all relevant turbulent effects. In the following
chapter we will produce numerically educated profile for the turbulent variables.
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In this chapter, we construct a closure scheme for the turbulent correlations computed in our 3D
global simulations, that we computed in the previous section. Our objective is to educate future simpli-
fied 2D models using this closure scheme. We construct a turbulence model by fitting the profiles of
the different turbulent quantities that are dynamically important: the turbulent radial stress, Ttu,rφ, the
turbulent magnetic pressure,

〈
δB2

〉
, and the turbulent emf, E .

The cheapness of effective models makes them ideal for comparison with observations. Furthermore,
effective models can be used to study the long-term evolution of accretion disks, which is impossible to
constrain with 3D global simulations. Hence, the main objective is to couple this turbulence model with
effective 2.5D simulations or self-similar models, to upgrade the picture presented in section 3.1.1. This
will lead to better effective models that reproduce the vertical structure of 3D global simulations detailed
in section 4.2.1.

For the turbulence model to be able to couple with effective models, it needs to be ”universal”, the
parameters deduced from the fitting procedure need to be independent of the initial conditions (μini,ε).
We will achieve this universality in two steps: (1) fitting the different simulations (tab. 4.1) separately
with our turbulence model, which leads to one set of parameters for each simulation. (2)We then compute
the universal set of parameters by combining the different sets of parameters.

The fitting procedure, as well as the turbulence model, are detailed in the next section.

5.1 Turbulent model and fitting procedure
We attempt to model the turbulent correlations as functions of the local mean field properties of the flow
( e.g. the mean plasma beta or the local average pressure, etc...). This has the advantage of being local,
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namely not depending explicitly on the coordinates. As explained in section 4.3 the vertical extent of the
turbulent atmosphere depends on μini. The locality assumption has the advantage of naturally accounting
for this property.

It is known that the strength of MRI-driven turbulence scales as a power law of the local plasma
beta (Salvesen et al. 2016). We discussed in section 2.4.1 that the magnitude of αv is a power law of the
local plasma beta. Furthermore, when the mean toroidal magnetic field is stronger than the mean vertical
magnetic field, MRI-driven turbulence is quenched in the βp < 1 regime (see section 2.2.3).

A possible choice of functional that takes both properties into account is then

⟨δXiδYi⟩ = fi(βθ, q) ⟨Zi⟩ , (5.1)

fi(βθ, q) = aiβ−niθ
biβθ + 1

biβθ + 1 +
( q
qi

)2 , (5.2)

where ⟨δXiδYi⟩ is the quadratic turbulent correlation term that we want to model, ⟨Zi⟩ is the mean field
closure that we choose for that turbulent correlation, βθ = 8π ⟨P⟩ / ⟨Bθ⟩2 is the latitudinal local plasma
beta, q =

〈
Bφ

〉
/ ⟨Bθ⟩ is the ratio of the toroidal and latitudinal magnetic field and (ni,ai,bi,qi) are the

parameters of the model that we want to fit. The index i distinguishes between the different turbulent
quantities modeled in this work. The functional fi(βθ, q) reduces to a simple power law on βθ when
q = 0. Equation 5.2 is an approximate solution of Eq. (2.52), that gives the maximum MRI growth rate
in the compressible regime. It is an approximation of the compressible MRI growth rate, the derivation
is not very illuminating and thus we skip it.

We define an error function to quantify the accuracy of our mean field turbulence model with respect
to the turbulent correlation:

Δ2
i =

1
Ni

∑
j

(
⟨δXiδYi⟩j − ⟨Zi⟩j fi(βθ,j, qj)

)2(∣∣∣⟨δXiδYi⟩j
∣∣∣ + ∣∣∣⟨Zi⟩j fi(βθ,j, qj)∣∣∣)2 , (5.3)

where ⟨δXiδYi⟩j, ⟨Zi⟩j, (βθ,j, qj) are the different points of the turbulent and mean field profile and Ni is
the total number of points. The index i distinguishes between the different turbulent quantities modeled
in this work. We will minimize the function Δ2i in our fitting procedure and then compute Δi for the
purpose of comparing the accuracy of the different fits. The smaller Δi is the more accurate the fit is, on
the contrary the closer Δi is to 1 the more inaccurate the fit is.

Our fitting procedure can be described as follows:

– All quantities are taken from their respective simulation. We compute ⟨δXiδYi⟩ and calculate
fi(βθ, q) from the mean field quantities from the respective simulation.

– We compute Δ2
i in a range r ∈ [6, 10], |θ − π/2| < |θSM − π/2|. We do not fit turbulent components

in the wind region as the turbulent correlations are not relevant to the dynamics of the system in
that region (section 4.2.1).

– We then minimize Δ2i using a Powell method for optimization, which leads to best fit values for
the different parameters (ni,ai,bi,qi) for each simulation.

– Aswe explained abovewewant to compute a universal set of parameters that can fit all simulations.
Hence, we compute an average set of parameters (ni, ai, bi, qi).

– We then compute an error for the average fit (computed using ni, ai, bi, qi) with respect to the
turbulent profile, Δi. If

Δi − Δi
Δi

< 0.15 (5.4)

for all simulation we conclude that the average fit (ni, ai, bi, qi) is a good enough fit.
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The final product is an average set of parameters able to reproduce the turbulent profiles of all simulations.
We repeat this procedure for the different turbulent profiles that we model.

The definition of Δ2
i is not conventional and requires further discussion. The turbulent correlation,

⟨δXiδYi⟩, can vary by several orders of magnitude. It would be hard to fit the turbulent correlation with
a simple difference between the correlation and our model. We need to define a relative difference to
appropriately fit the data. One possibility would be to divide the difference between the turbulent profile
and the mean field model by the turbulent correlation, leading to a relative difference. However, some of
the turbulent correlation can go to 0 causing the relative difference to diverge andmaking theminimization
inconsistent. Hence, we choose to define a relative difference where we divide by the sum of the absolute
value of the turbulent correlation and the absolute value of the model (Eq.5.3).

5.2 Turbulent pressure and turbulent radial stress

5.2.1 Turbulent pressure
We start by modeling the turbulent magnetic pressure. As shown in chapter 4 the turbulent magnetic
pressure behaves like the average thermal pressure in the sense that it fulfills the same dynamical role.
The turbulent magnetic pressure counteracts the compression of the laminar magnetic pressure and helps
to deviate the accretion flow into ejection. Therefore, we model the magnetic pressure as〈

δB2
〉
= fB(βθ, q) ⟨P⟩ . (5.5)

We show the turbulent magnetic pressure profiles for all simulations in Fig. (5.1). Following the proce-
dure described above we fit the turbulent profile (Eq. 5.5) for the different simulations and compile the
values of the best fit as well as the values of ΔB in Tab. (5.1). This leads to a set of 4 parameters for each
simulation that we average motivated by their low dispersion around the mean. We compute the average
set of parameters and get

aB = 26, qB2 = 51, bB = 0.3 nB = 0.56. (5.6)

We also compute an average error, ΔB, from the average set of parameters for each simulation. We show
its value in Tab. (5.1) and the profiles of the different fits using the average set of parameters (Eq. 5.6)
in Fig. (5.1). The relative difference of ΔB with respect to ΔB is at most 0.12, compatible with our
imposed constraint (Eq. 5.4), we deduce that the average fit is accurate enough. We see in Tab. (5.1) that
ΔB ∼ 0.2 − 0.3, the small values indicate that the fit is accurate. We will see in section 5.3 that our fits
are not always as accurate.

The accuracy of the fit is also shown in Fig. (5.1), the fits using Eq. (5.6) follow the behavior of
the turbulent magnetic pressure and reproduce quite well its magnitude. Interestingly, we reproduce the
triple peaked behavior of the turbulent profile. This behavior is a consequence of q, when q increases
turbulence is quenched and the turbulent magnetic pressure decreases. Then when q→ 0 the turbulence
is enhanced and the turbulent magnetic pressure increases.

We note that in the limit of β ≫ q our prescription reduces to

⟨P⟩〈
δB2

〉 ≃ 0.04β0.56θ , (5.7)

which is, within a factor of 2, consistent with the result of Salvesen et al. 2016 :

⟨P⟩〈
δB2

〉 ≃ 0.015β0.5θ . (5.8)

We conclude that the average fit (Eq. 5.6) captures the behavior of the turbulent magnetic pressure
and is consistent with prior results of MRI-turbulence (Salvesen et al. 2016) in the limit β ≫ q.
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Figure 5.1: Turbulent pressure as a function of the latitudinal coordinate in red, the shaded region
shows the typical deviation in the radial range, R ∈ [6, 10], while the solid line is the radial
average. In blue we show the average fit where the shaded region shows the typical deviation
in the same radial range and the solid line is the radial average, the values of the average fit
parameters are in Eq. (5.6). The different panels correspond to different simulations: top,left:
SB4, top,right: SB3, bottom,left: S2pi, bottom,right: SEp.

aB q2B bB nB ΔB ΔB
SB4 22.517 47.732 0.221 0.532 0.229 0.235
SB3 27.157 41.145 0.339 0.516 0.236 0.268
S2pi 24.764 50.000 0.400 0.561 0.162 0.173
SEp 29.735 65.804 0.252 0.604 0.290 0.299

Table 5.1: Best fit parameters for the turbulent magnetic pressure, the parameters being defined
in Eq.(5.2). We also show the error for the best fit as well as the error with respect to average fit
(Eq.5.6)
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Figure 5.2: Fit example for run SB4. We show the radial stress as a function of the latitudinal
coordinate in red, the shaded region shows the typical deviation in the radial range, R ∈ [6, 10],
while the solid line is the radial average. In blue we show the average fit (Eq.5.11) where again
the shaded region shows the typical deviation in the same radial range and the solid line is the
radial average.

5.2.2 Turbulent radial stress
We fit only the turbulent radial stress with a viscous prescription (see section 2.4.1), the latitudinal stress
is found to be unimportant in the dynamics of the system (Fig. 4.17). We model the radial turbulent stress
as

Ttu,rφ = −ν ⟨ρ⟩ r
∂ ⟨Ω⟩
∂r

(5.9)

ν = cshfT(βθ, q). (5.10)

We follow the same fit procedure as in the previous section. The best fit parameters for all simulations
can be found in Tab. (5.2). The average parameter values are computed to be

aT = 9.0, qT2 = 7.4, bT = 0.32 nT = 0.63, (5.11)

and the average error, ΔT, is shown in Tab. (5.2). The small values of ΔT indicate that the fit is accurate,
this is also visible in Fig. (5.2). We compare the average error to the best fit error and find

ΔT − ΔT
ΔT

= 0.11 (5.12)

in the worst case. Therefore, the average fit is a good enough model of the radial turbulent stress tensor.
We show an example of a fit in Fig. (5.2) using the average parameters (Eq. 5.11). The fits for all simu-
lations, using the average set of parameters, can be found in Appendix C, in Fig. (C.1). The fits recover
the same structure as well as the magnitude of the turbulent stress. We again recover the triple peaked
structure, where the turbulent profile is maximum at the disk and the turbulent atmospheres.

In the limit of β ≫ q our prescription reduces to
ν
csh
≃ 9β−0.63θ , (5.13)



144 5.3. TURBULENT ELECTROMOTIVE FORCES

aT q2T bT nT ΔT ΔT
SB4 10.183 6.643 0.239 0.650 0.241 0.251
SB3 11.986 7.116 0.353 0.638 0.304 0.316
S2pi 7.000 9.000 0.393 0.620 0.223 0.246
SEp 7.000 6.911 0.318 0.620 0.353 0.360

Table 5.2: Best fit parameters for the radial stress, the parameters are defined in Eq.(5.2). We
also show the error for the best fit as well as the error with respect to average fit (Eq.5.11))

this is approximately compatible with the results of Salvesen et al. 2016, they get:
ν
csh
≃ 11β−0.53θ . (5.14)

We conclude that the average fit (Eq. 5.11) reproduces the behavior of the turbulent radial stress and
is consistent with prior results of MRI-turbulence (Salvesen et al. 2016) in the limit of β ≫ q.

5.3 Turbulent electromotive forces
The turbulent electromotive force, E = ⟨δu × δB⟩, is usually modeled with an Ohmic resistivity model
(Moffatt 1978; Rincon 2019). However, more precise MHD turbulence closures rely on non-diagonal
terms for the resistivity tensor, ηij. When non diagonal terms are included, it is important not to introduce
artificial turbulent energy sources into the dynamics of the system. To understand this constraint we
project the mean induction equation with respect to ⟨B⟩,

1
8π
∂ ⟨B⟩2
∂t
=
1
c
E · ⟨J⟩ − 1

c
⟨u⟩ · [⟨J⟩ × ⟨B⟩] + 1

4π
∇ · [(⟨u⟩ × ⟨B⟩ + E) × ⟨B⟩] , (5.15)

this equation shows the evolution of the mean magnetic energy with time. Integrating the equation above
within a fixed volume, dV, leads to

d
dt

∫ ⟨B⟩2
8π

dV = −1
c

∫
⟨u⟩·[⟨J⟩ × ⟨B⟩] dV+ 1

4π

∫
[(⟨u⟩ × ⟨B⟩ + E) × ⟨B⟩] ·dS+ 1

c

∫
E ·⟨J⟩ dV, (5.16)

where the surface integral is taken over the boundary of the volume. The first term on the right-hand
side represents the loss of the magnetic energy due to the work done by the Lorentz force on the flow.
The second term is the Poynting flux that crosses the boundaries of the domain. Finally, the last term
corresponds to the energy dissipation due to the turbulent motions. If this term is always positive it could
lead to uncontrolled growth of the magnetic field energy. This imposes a sufficient condition on our
mean-field closure of E , which can be stated as

E · ⟨J⟩ ≤ 0. (5.17)

This equation is trivially respected by a resistive closure, in that case Eq.(5.17) can be simplified into

− η| ⟨J⟩ |2 < 0. (5.18)

However, in our case we were not able to fit the latitudinal emf with a purely diagonal resistive tensor.
This means that we need to consider non-diagonal terms of the resistivity tensor, ηij. We find that the
simplest model that can reproduce the behavior of all components of E is

Ei = −ηij ⟨Ji⟩ + δw,i [⟨w⟩ × ⟨J⟩]i (5.19)

ηij = fijcsh (5.20)

δw,i = fiiδi
csh
⟨Ω⟩ , (5.21)
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where ηij is a diagonal tensor and ⟨w⟩ = ∇ × ⟨u⟩. The first term is a simple turbulent resistivity closure
while the second term is a shear current term (Rogachevskii and Kleeorin 2003). All non diagonal terms
are taken into account by the second term δw,i[⟨w⟩×⟨J⟩]i. This terms has the advantage of easily satisfying
Eq. (5.17). This non diagonal term can lead to a mean field dynamo if certain conditions are respected
(Rogachevskii and Kleeorin 2003). We will discuss if this is the case for our simulations in section 5.4

We follow the same fit procedure for the turbulent emf as the one described in section 5.1. However,
there are a few differences:

– We need one more fitting parameter, δi, for all simulations.

– The turbulent electromotive forces are more difficult to fit as their profiles are more complicated.
To enhance the convergence rate we do not consider the LA in the computation of Δi, in that region
the turbulent terms are in general not dynamically significant.

– We compute a general set of parameters for all the components of the turbulent emf. The param-
eters aθθ, arr and aφφ will be distinct for different components of E . While the parameters (ni, δi,
bi, qi) will be common to all three components of E . This choice is motivated by measurements
of the resistivity tensors in shearing box simulations (Lesur and Longaretti 2009; Gressel and Pes-
sah 2015). They find that the different components of turbulent resistivity tensor have different
magnitudes but similar profiles.

5.3.1 Toroidal component
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Figure 5.3: Example of fit for run SB4. We show the toroidal emf as a function of the latitudinal
coordinate in red, the shaded region shows the typical deviation in the radial range, R ∈ [6, 10],
while the solid line is the radial average. In blue we show the average fit where again the shaded
region shows the typical deviation in the same radial range and the solid line is the radial average.

The shear current effect is found to be negligible for the toroidal component of the turbulent emf. We
do not consider it in our fit, however, we verify a posteriori that it is indeed negligible (using the value
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aφφ q2φφ bφφ nφφ Δφφ Δφφ

SB4 1.373 20.000 3.000 0.591 0.590 0.595
SB3 1.617 25.000 5.000 0.600 0.491 0.497
S2pi 1.521 25.000 5.000 0.600 0.491 0.497
SEp 1.865 20.964 5.000 0.600 0.596 0.615

Table 5.3: Best fit parameters for the toroidal emf, the parameters are defined in Eq.(5.2). We
also show the error for the best fit as well as the error with respect to average fit (Eq.5.25))

deduced in section 5.3.1). The absence of this non-diagonal term is important and will be discussed in
section 5.4. We fit the toroidal emf with the following model

Eφ = −ηφφ
〈
Jφ

〉
, (5.22)

ηij = fijcsh. (5.23)

We show an example of a fit for SB4 in Fig. (5.3). We show the average fits for all simulations in
Appendix C, Fig. (C.2) and the values of the best fit parameters in tab. (5.3.1).

We note that the fit is less consistent on the laminar regions of the simulation, the non shaded areas
in Fig. (5.3). This is not surprising as in those regions ⟨u⟩p × ⟨B⟩p = −Eφ ∼ 0 as they are in laminar ideal
MHD.

As before the average fits agree quite well with the turbulent profiles. However, the values of Δφφ
and Δφφ for the different simulations are larger, by more than a factor of 2, when compared with ΔB and
ΔB. This is consistent with the quality of the fit, it is less accurate than the one for

〈
δB2

〉
. However, even

thought the fit is less accurate we can see in Fig. (5.3) that it still reproduces most of the features of the
turbulent emf.

We compare the average error to the best fit error and find

Δφφ − Δφφ

Δφφ
= 0.03 (5.24)

in the worst case. We see that the deviation between the average error and the best fit error is much smaller
in this case. This small deviation is the consequence of the best fit being less accurate. There is not much
precision to be lost from doing an average fit since the best fit is not very accurate. In contrast, the best
fit for the turbulent magnetic pressure has higher precision and, thus the average fit is considerably less
accurate.

This deviation is small but it is noticeable in the profile of the turbulence model for simulation SEp
(Fig.C.2). Indeed, there seems to be a dependency in ε as aφφ gains a factor of 2 when we decreases
epsilon by 2. This deserves further examination but this would require exploring the parameter space in
ε, which is postponed for future work.

Finally the average fit values for ηφφ are

aφφ = 1.6, qη2 = 15, bη = 4.1 nη = 0.53. (5.25)

Radial and latitudinal components

We fit the radial and latitudinal components by following the same procedure as before. We model both
components as

Er = −frr
(
csh ⟨Jr⟩ −

csh
⟨Ω⟩δr(⟨w⟩ × ⟨J⟩)|r

)
(5.26)

Eθ = −fθθ
(
csh ⟨Jθ⟩ −

csh
⟨Ω⟩δθ(⟨w⟩ × ⟨J⟩)|θ

)
(5.27)
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Figure 5.4: Example of fit for run SB4. We show the radial emf as a function of the latitudinal
coordinate in red, the shaded region shows the typical deviation in the radial range, R ∈ [6, 10],
while the solid line is the radial average. In blue we show the best fit where again the shaded
region shows the typical deviation in the same radial range and the solid line is the radial average.

arr q2rr brr nrr δrr Δrr Δrr
SB4 1.034 7.166 5.000 0.450 0.550 0.532 0.553
SB3 1.396 15.091 8.000 0.484 0.550 0.475 0.506
S2pi 1.302 8.000 2.000 0.500 0.100 0.567 0.570
SEp 2.127 10.000 5.000 0.600 0.534 0.596 0.611

Table 5.4: Best fit parameters for the radial emf, the parameters are defined in Eq.(5.2). We also
show the error for the best fit as well as the error with respect to average fit (Eq.5.28).)

We attempt to fit with roughly the same same values of q, b and n as for Eφ. We show the fit of Er for
SB4 in Fig. (5.4). The average fits for all simulations can be found in Appendix C, Fig. (C.3). The values
of the best fit parameters can be found in tab. (5.4). The average error is bigger than the best fit error by
at most 5% (tab. 5.4) and the average fits agree quite well with the turbulent profiles. The magnitudes of
Δrr and Δrr are roughly equal in magnitude to the ones of Eφ. Again our fits of the turbulent emf are less
accurate compared to the turbulent magnetic pressure and turbulent torque. We recover again the factor 2
of for arr when comparing the best fit of simulation SEp with the rest of the set. We compute the average
fit values to be

arr = 1.5, qη2 = 15, bη = 4.1 nη = 0.53, δ = 0.3. (5.28)

We show the fit of Eθ for SB4 in Fig. (5.5). We show the average fits for all simulations in Appendix
C, Fig. (C.4) and the values of the best fit parameters in tab. (5.5). The average fits agree with the
turbulent profiles, the average error is bigger than the best fit error by at most 8% (tab. 5.5). Simulation
SEp again has a bigger aθθ than the other ones. For Eθ the non-diagonal terms dominate, contrary to the
other components of E . The average fit parameters for the latitudinal component are computed to be
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aθθ q2θθ bθθ nθθ δθθ Δθθ Δθθ
SB4 6.844 8.000 3.193 0.500 0.119 0.534 0.575
SB3 4.000 9.158 3.213 0.500 0.371 0.572 0.572
S2pi 6.148 25.000 5.000 0.535 0.102 0.560 0.606
SEp 12.057 18.000 5.000 0.600 0.108 0.559 0.577

Table 5.5: Best fit parameters for the latitudinal emf, the parameters are defined in Eq.(5.2). We
also show the error for the best fit as well as the error with respect to average fit (Eq.5.29).
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Figure 5.5: Example of fit for run SB4. We show the latitudinal emf as a function of the lat-
itudinal coordinate in red, the shaded region shows the typical deviation in the radial range,
R ∈ [6, 10], while the solid line is the radial average. In blue we show the best fit where again
the shaded region shows the magnitude range for different radii and the solid line corresponds
to the radial average, the values of the best fit parameters are in tab. (5.5).

aθθ = 6, qη2 = 15, bη = 4.1 nη = 0.53, δ = 0.3. (5.29)

5.4 Turbulent profiles and comparison with other work
In this section we analyze the previously computed turbulent profiles and compare them with the ones
derived in other work.

Turbulent pressure

We show fB =
〈
δB2

〉
/ ⟨P⟩ for the different simulations computed with the average parameters (Eq. 5.6)

in Fig. (5.6). Figure (5.6) shows that fB increases monotonously as we exit the disk for all simulations.
We also see that when μmid increases (between SB4 and SB3) the value of fB at the disk mid-plane
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Figure 5.6: Latitudinal profile of the function fB =
〈
δB2

〉
/ ⟨P⟩ for different simulations, this

term models the latitudinal behavior of the turbulent magnetic pressure. We do not show the
regions with |θ − π/2| > |θSM − π/2|, as they correspond to the wind region.

also increases, a higher magnetization leading to stronger turbulence. The profile of fB for simulation
SB4 follows a very similar behavior to the one computed for S2pi, showing again the robustness of the
wedge approximation for the vertical profiles. The slope of the turbulent profiles is consistent between
simulations except for simulation SEp. When the disk geometrical thickness decreases the latitudinal
dependency of fB becomes steeper, which is expected.

We compare the profiles of
〈
δB2

〉
(Fig. 5.1) and fB (Fig. 5.6) to the ones obtained by Salvesen et

al. 2016 (Fig.13). We see that they also find a triple peaked structure for weakly magnetized simula-
tions. They also observe that the turbulent magnetic pressure dominates the magnetic pressure at the
disk surface. However, their shearing box simulations have very different vertical structures and lack the
accreting atmosphere.

Turbulent viscosity

Figure (5.7) shows the latitudinal profiles of the turbulent viscosity, ν, normalized to VA0h. The vertical
profiles of the turbulent viscosity are very similar to the ones of fB and are identical to the one computed by
Zhu and Stone 2018. The normalization to VA0h shows that the turbulent viscosity approximately scales
with VA0h. This is consistent with the self-similar prescription we used in chapter 3, νv = αmPmVA0h.
Even the numerical value is comparable, in chapter 3 we found solutions for αmPm > 1 (αm = [1, 2, 8] and
Pm = 1) and here we compute ν ∼ 6VA0h (see below for more details). However, the vertical behavior
of this profile is very different from the one we used in chapter 3. In chapter 3 we used a Gaussian that
decreases with height while our fit in Fig. (5.7) increases with height.

The vertical dependency we compute for the viscosity is similar to the profile used by Guilet and
Ogilvie 2013. They were inspired by the results of 3D turbulent zero-net flux simulations. In their work
they model the turbulent αv viscosity as

αv = fT = α0
e
( zSM
2h

)2
1 +

[
e
( zSM
2h

)2
− 1

]
e−( z

2h )2
, (5.30)
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Figure 5.7: Turbulent viscosity as a function of the latitudinal coordinate for different simula-
tions, we normalize it to the VA0h. We do not show the regions with |θ − π/2| > |θSM − π/2|, as
they correspond to the wind region.

where zSM is the vertical height where the turbulence stops and the wind is launched. As we explained in
section 4.3 zSM and α0 are functions of the magnetization at the disk mid-plane.

Turbulent resistivity

Since the turbulent resistivities follow roughly the same vertical behavior as the viscosity we do not show
them here. Instead we analyze the behavior of the different transport coefficients, they can be found in
Figure 5.8, where we redefine the turbulent magnetic Prandtl number

Pm =
ν
ηφφ
, (5.31)

and also show the ratios of the different resistivities, ηrr/ηφφ and ηθθ/ηφφ.
First, we see that Pm varies between 3 and 5 in the turbulent regions and always stays above unity.

This is consistent with past results of shearing box simulations (Fromang and Stone 2009; Guan and
Gammie 2009; Lesur and Longaretti 2009) that measured Pm ∼ 2. It is also consistent with the value
measured by Zhu and Stone 2018 in similar global MHD simulations (Pm ∼ 5). Finally, it is to a factor
of 3 consistent with the value we chose (Pm = 1) in chapter 3 even though the profile of the diffusivity
is again very different.

We also compute the turbulence level parameter defined in section 2.4.2 as

αm =
ηφφ
VA0h

. (5.32)

We can evaluate this quantity at the disk mid-plane (where q ≪ βθ) and find αm ≃ 1.6 which is again
consistent with the self-similar parameter exploration of chapter 3.

In Fig. (5.8) we see that
ηφφ ≃ ηrr, (5.33)

this is consistent with the work of Gressel and Pessah 2015 and Lesur and Longaretti 2009. The radial
and toroidal resistivities are comparable. We also see that

ηθθ ≃ 4ηφφ, (5.34)



CHAPTER 5. A TURBULENT CLOSURE FOR MRI DRIVEN TURBULENCE 151

π
4

π
2

3π
4

θ

1

2

3

4

5

6

η
rr
η
ϕ
ϕ
,P

m
,η

θθ

η
ϕ
ϕ

S2Pi

SB4
SB3
S2pi
SEp

Figure 5.8: Turbulent transport coefficients as functions of the latitudinal coordinate for different
simulations. The lower dotted lines correspond to ηrr

ηφφ
≃ 1 (the straight lines at 1), while the solid

lines correspond to Pm and the upper dotted lines correspond to
ηθθ
ηφφ
≃ 4 (the straight lines at 4).

We do not show the regions with |θ − π/2| > |θSM − π/2|, as they correspond to the wind region.

which is consistent with the measurements of Lesur and Longaretti 2009, they also find that the vertical
resistivity is around a factor of 3 more efficient that the toroidal resistivity. These results are however at
odds with our choice of the resistive tensor in chapter 3, where we chose

ηrr = ηθθ = η′m, (5.35)
ηφφ = ηm, (5.36)

and χm = ηm/η′m. This is completely inconsistent with Fig. (5.8) and makes a comparison difficult.
Nonetheless, the values of χm = [0.01, 0.1, 1, 3] we explored in chapter 3 need to be compared with the
values of χm we deduce here. We can compute two values of χm:

ηφφ
ηrr
= 1, (5.37)

ηφφ
ηθθ
= 0.25, (5.38)

and find that both ηφφ
ηrr

and ηφφ
ηθθ

are consistent with the self-similar parameter exploration. However, in
self-similar works, the difference ηrr , ηθθ was not considered. It is unclear if this difference will have
an effect on the physics of accretion and ejection. Finally, the shape of the profiles remains very different.

Shear current effect as a dynamo mechanism

We measure also non-diagonal coefficients that need to be taken into account to properly model the
turbulent emf. This is also completely absent from our modeling in chapter 3. Lesur and Longaretti 2009
and Gressel and Pessah 2015 also measure significant non diagonal coefficients. They both measure

ηrφ ∼ ηφφ, (5.39)
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while we compute
ηrφ ∼ 0.3ηφφ, (5.40)

this is probably a consequences of our overly simplistic fit for the non-diagonal terms, only considering
the shear current effect. We could have also considered other mean-field contributions to the resistivity
tensor, like the Rädler effect (Rädler 1969) or the κ tensor (Rincon 2019). It should be noted, that the
works of Gressel and Pessah 2015 and Lesur and Longaretti 2009 are performed in the shearing box
approximation and thus some differences could be the consequence of the different framework.

We were able to fit Eφ without non diagonal contributions, like ηφr. This is consistent with the
measurements of Gressel and Pessah 2015. They show that ηφr is an order of magnitude smaller than the
other components of the resistivity tensor. It is this term that is responsible of coupling the radial and the
toroidal magnetic field by their vertical gradients (Rincon 2019). In its absence it would be impossible
to construct a dynamo-like mechanism from the shear current effect.

Prospectives and caution

In this chapter we have computed multiple mean field closures to model the different dominant turbulent
correlations of 3D simulations. We recover results that are consistent with shearing box simulations
(Fromang and Stone 2009; Guan andGammie 2009; Lesur and Longaretti 2009; Gressel and Pessah 2015;
Salvesen et al. 2016). This consistency validates our analysis and gives credence to the shearing-box
approximation as a good tool for quantifyingMRI turbulence. Themagnitude at the disk mid-plane is also
consistent with our self-similar parameter exploration. However, the profile of the turbulent quantities
are very different from gaussians. Finally, as detailed in chapter 4 the turbulent magnetic pressure plays
a crucial role and is absent from self-similar models.

It is important to note that the functional form that we chose in section 5.1 is mostly ad-hoc. A
different functional may be able to also model the turbulent structure. Nonetheless, we believe that the
vertical behavior of the profiles discussed in this section is well recovered. The only way to test the
validity of our mean field model is to implement it into a 2D calculation and verify that we are able to
reproduce the features of the fully turbulent 3D models. This is postponed for future work.



CHAPTER 6
Conclusion and perspectives

In this manuscript we wanted to bridge the gap between 2D effective solutions and 3D global simu-
lations of accretion disks. We also wanted to constraint the secular evolution of accretion disks. We
have achieved in this manuscript several steps towards that objective. However, some questions are still
unanswered.

6.1 Summary of main results
In chapter 3 we revisited the self-similar accretion-ejection solutions for cold (isothermal) magnetic sur-
faces. We were motivated by recent global 3D simulations of accretion disks threaded by a weak vertical
magnetic field and showing the launching of jets. By allowing spatial oscillations of all quantities within
the disk, we have been able to extend the previous parameter space by 4 orders in magnitude in the disk
magnetization μ, namely from μ = 10−4 to almost unity.

We recovered the previous solutions and found a new class of MRI-like driven outflows from weakly
magnetized disks. The role of MRI-like spatial oscillations is shown to be essential in order to provide
the required bending of the poloidal field lines at the disk surface. Cold outflows from weakly magne-
tized accretion disks have the tendency to be more massive than their strong field (near equipartition)
counterpart, leading to a critical Alfvén surface closer to the disk surface.

There is a continuity in behavior as μ increases. Low μ isothermal solutions are quite massive with
a typical ejection index ξ ∼ 0.1 (increasing with μ) and are mostly driven by the pressure of the toroidal
field. The previously published high μ solutions are much less massive, with a typical ejection index
ξ ∼ 0.01 (decreasing with μ), thus faster and mostly centrifugally driven. These are however two man-
ifestations of the same magnetic acceleration process, linking accretion to ejection in an interdependent
way.

We also explored the influence of the turbulent parameters (αm, χm) and found that our parameter
space is consistent with the values computed in shearing box simulations.

Our outflows, even though more massive, still exhibit jet-like properties, and still recollimate. They
are to be distinguished from the wind-like outflows that are observed in protoplanetary disks (Louvet
et al. 2018; de-Valon et al. 2020), which are mostly conical. The conditions under which MHD-driven
outflows recollimate and what happens after the recollimation shock is still an important open question.

The solutions that feature properties closer to wind-like outflows (σ < 1) are exhausted and may
need a supplementary energy source. Indeed, some energy input must be added in order to provide a
positive Bernoulli integral. A further development would thus be to include heating at the disk upper
layers, as in Casse and Ferreira 2000a, mimicking the existence of irradiation from a central source. This
is known to dramatically enhance the mass loss ξ as well, further decreasing σ and allowing for magneto-
thermal winds. We note that, the massive solution of Lesur 2021 still recollimate. Moreover, 3D global
simulation of ambipolar winds that include heating also recollimate (Cui and Bai 2021). Hence, it is
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Figure 6.1: Sketch showing the magnetic topology (
〈
Bp

〉
) and velocity field lines (

〈
up

〉
) of

weakly magnetized 3D simulations (left) and the standard disk model (Shakura and Sunyaev
1973) with Lubow et al. 1994 magnetic field configuration (right). We also show the direction
of the field transport velocity, vΨ.

unclear if heating or mass loading has a clear effect on the recollimation of the outflow, at least in the
case of ambipolar winds. The fact that ambipolar winds tend to be more massive than ideal MHD winds
is also an interesting observation.

It is unreasonable to heat the solutions computed in chapter 3 due to the incorrect turbulence model
used ( incorrect profiles and lack of turbulent pressure). Indeed, the main limit of the results detailed in
chapter 3 is that they depend on an incorrect turbulence model (see chapter 5). Hence, the channel mode
structures, observed in our weakly magnetized solution, will probably disappear with a more accurate
turbulence model.

In chapter 4 we computed 3D global simulations of magnetized accretion disks. We found that the
disk vertical structure depends mostly on μ.

When the magnetization is weak (μ < 10−3) the system converges towards an exotic vertical configu-
ration, where most of the accretion happens on the disk atmosphere, located above the disk up to z ∼ 10h.
Above this accreting atmosphere an outflow that becomes super fast magnetosonic is launched. The disk
( z ≤ 3h) is highly turbulent, mostly in hydrostatic equilibrium and the presence of an important magnetic
turbulent pressure allows to lift up a large amount of mass into a laminar ideal MHD atmosphere. This
lifted mass is basically falling in towards the central object, dragging in the magnetic field which, in turn,
provides a torque that transfers its angular momentum back to the underlying disk. When the magnetic
field achieves equipartition in these upper layers, MRI is re-ignited and drives a turbulence. Indeed, the
transsonic accretion is achieved through the turbulent and laminar torques, the disk is accelerated by the
accreting atmosphere. This complicated structure is summarized in Fig. (6.1,left).

We conclude that when a large scale vertical magnetic field is present the vertical structure is com-
pletely different from the one predicted by a Shakura and Sunyaev 1973 type model. As we can see
in Fig. (6.1,right) it is hard to believe that a weakly magnetized disk could be accurately modeled by a
Shakura and Sunyaev 1973 type model. Furthermore, in contrast to our simulations, a standard accretion
disk is expected to diffuse its magnetic flux instead of advecting it (Lubow et al. 1994).

Indeed, in our simulations the ambient magnetic field is found to be always dragged inwards in the
disk, at a velocity which increases with the disk magnetization. The disk vertical structure is also seen to
be deeply affected, with a progressive decrease in height of the disk turbulent atmosphere. However, the
outflow properties, as described by the usual MHD invariants, remain remarkably constant. This shows
that the outflow is determined by the physical conditions at the disk upper layers, which remain mostly
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constant, rather than by the disk mid-plane properties.
In contrast with our results, MHD models including ambipolar diffusion show that the large scale

vertical magnetic field is always diffused outwards (Gressel et al. 2020; Cui and Bai 2021; Lesur 2021).
This could be the consequence of the different vertical structure between our ideal MHD simulations and
ambipolar wind models.

Beyond a threshold on the disk magnetization, located between 10−3 and 10−2, the global accretion-
ejection configuration undergoes a drastic readjustment. The magnetic field is being accumulated into the
central regions until a global equilibrium is achieved involving both the disk and its magnetosphere. The
inner disk reaches a steady-state (balance between field advection and diffusion) when its magnetization
achieves unity. Despite this strong field regime, the disk is turbulent and drives a super fast-magnetosonic
outflow right from its surface z ∼ 3h. The size of this inner region keeps on increasing in time, as more
magnetic flux is being added from the outer regions. The mass-weighted accretion speed is supersonic
in the inner region. This inner region shares a lot of properties with the near equipartition solutions of
Ferreira 1997 that are also computed in chapter 3. They share a supersonic accretion flow and have
identical magnetic topology. However, the self-similar solutions computed here and in Ferreira 1997
lack the turbulent magnetic pressure. This turbulent pressure will probably change the properties of the
vertical structure and the mass loading of the outflow. In the transition region between the weakly and
highly magnetized regions, the mass weighted accretion velocity becomes transsonic. The dynamics of
this region are quite complex and their investigation is postponed for future work.

This hybrid disk configuration is relevant for the JED-SAD model first presented by Ferreira et al.
2006b and tested observationally by Marcel et al. 2019. In this model the disk is radially divided into two
distinct regions: a highly magnetized inner region, called a jet emitting disk (JED, Ferreira 1997) and a
weakly magnetized outer regions, called a standard accretion disk (SAD, Shakura and Sunyaev 1973).
The radius Rj marks the radial transition between both disks.

Marcel et al. 2019 have shown that it is possible to reproduce the behavior of X-ray binary outbursts
by using a the JED-SAD hybrid disk model. We have shown in this manuscript that a hybrid disk structure
naturally emerges thanks to magnetic field transport. However, as discussed above the structure of SAD
is different from the structure of a weakly magnetized accretion disk. We propose a more complex but
perhaps more accurate picture in Fig. (6.2), where we show an inner highly magnetized disk and an outer
weakly magnetized accretion disk. We note that, even though the magnetic and fluid structures of the
JED model are similar to the strongly magnetized simulations computed here, the JED model lacks the
turbulent magnetic pressure.

Finally, in chapter 5, we have constructed a turbulence model that reproduces the behavior of the
turbulent correlations computed in our 3D global simulations: the turbulent pressure, the turbulent torque,
and the turbulent emf. We construct this model by fitting the different turbulent correlations with a local
model that depends only on the mean-field properties of the magnetic field and the gas pressure. We show
that this turbulent closure is consistent with past measurements of MRI-driven turbulence performed in
shearing box models. Moreover, the values of αm, χm, andPm computed in our turbulence model are also
consistent with the parameter exploration performed in chapter 3. However, the profiles of the turbulent
correlations are very different from the ones implemented in chapter 3.

6.2 Perspectives

Our first objective should be to implement our turbulent closures into a 2D effective model. This im-
plementation will allow us to test the validity of our turbulent closures, if the new 2D models recover
the results of the 3D simulations. Furthermore, we will be able to reproduce the behavior of 3D global
simulation with numerically cheaper methods. Once cheaper models are possible, a complete exploration
of the magnetization parameter, like the one we performed in chapter 3, should be possible. A thorough
parameter exploration will allow us to better constraint the evolution of the vertical structure as a function
of the magnetization. Furthermore, we should be able to accurately measure the scalings of the accretion



156 6.2. PERSPECTIVES

Figure 6.2: Sketch showing the magnetic topology (
〈
Bp

〉
) and velocity field lines (

〈
up

〉
) of an

updated JED-SAD model where the SAD is replaced by a weakly magnetized disks.

velocity, the field advection, and the laminar torques as functions of the magnetization.
As was discussed in chapter 5, our turbulent closures have been constructed using only two different

values for the disk geometrical thickness, ε = h
R . Moreover, we showed that the disk geometrical thickness

affected the scaling of the turbulent electromotive forces. Hence, an exploration of the effect of the disk
geometrical thickness is not possible with the turbulence model developed in chapter 5. Including the
effect of the disk geometrical thickness into our turbulencemodel would require expensive high resolution
low ε 3D global simulations.

The presence of radiative heating coming from the inner regions ( star or hotter disk regions) could
disturb the equilibrium of the accreting atmosphere. Indeed, it is not clear how the turbulent atmosphere
will react to the effect of illumination by the inner regions. Furthermore, in this manuscript, to keep the
problem mathematically tractable we have neglected the effects of the energy equation, and prescribed
a locally isothermal temperature structure. More precise modeling of the energy equation will lead to
better treatment of the disk thermodynamics as well as the wind mass-loading mechanism.

The weakly magnetized simulations, computed here, launch jet-like outflows that are fast, light, and
re-collimate toward the axis. Magnetic lever arm values in my simulations, λ ∼ 5, are too large when
compared to the ones measured in CO observations of outflows λ ∼ 1.5 (Louvet et al. 2018; de-Valon
et al. 2020). Including radiative transfer would heat the upper layers of the disk, and which in turn could
affect the mass loading of the outflow by modifying the Bernoulli invariant (Casse and Ferreira 2000a).
This might lead to more massive and slower outflows with magnetic lever arm values closer to the ones
measured in observations of outflows.

The impact of radiative heating could be explored using 2D effectivemodels that accurately reproduce
the accreting atmosphere. This method would be numerically cheap. However, due to the isothermal
nature of our simulations, we have not measured the impact of turbulent heating. Moreover, it has been
shown that convection can enhance the MRI-driven turbulent torque (Scepi et al. 2018b). Hence, the
effect of radiative transfer on the energetics of the system can only be studied using global simulations
of accretion disks.

Zhu et al. 2020 applied the methods of radiative transport developed in Jiang et al. 2014 to the context
of FU Ori’s. With this numerical method, they can solve the energy equation in a self-consistent manner.
They show that the wind evacuates a considerable amount of the system energy, which could lead to
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Figure 6.3: Sketch showing the illumination due to the inner regions of the accretion disk on the
accreting atmosphere.

an overestimation of the observed accretion rate. In the end, the vertical structure is unmodified when
compared to the case where the thermal structure is locally isothermal, the accretion is localized high
above the disk surface. A fraction of the accretion energy must also be dissipated locally in this low-
density region, thus we expect the production of an optically thin emission, usually referred to as a coronal
emission. This ’elevated accretion’ disk configuration could thus provide an explanation for the ’warm
corona’ component often seen in soft X rays in some active galactic nuclei (Done et al. 2012; Petrucci
et al. 2018).

Illumination from the central object or the inner regions of the accretion disks (Begelman et al. 2015)
could modify the vertical structure of the accretion disk, it could blow out the turbulent atmosphere
(Fig. 6.3). This vertical readjustment could lead to a reorganization of the mean magnetic field topology.
This reorganization could, in turn, affect the secular evolution of the disk as most of the accretion happens
in the turbulent atmosphere. Moreover, the advection of the magnetic field could also be affected as it is
linked to the vertical structure. Hence, radiative transport could be a key missing element, since it could
modify the secular evolution of the accretion disk system.

It is now clear that a large scale vertical magnetic field is of utmost importance if we want to produce
jet-like outflows. The strength of this magnetic field, measured by μ, has a dramatic influence on several
properties of the accretion disk: its vertical structure, turbulence, and secular evolution. Our work opens
the question of how the disk’s vertical magnetic field will interact with the central object, star or black
hole, and its magnetosphere.
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APPENDIX A
Self-similar equations

For the sake of completeness, the full set of MHD equations solved are reported in this section. We define
the self-similar functions fi(x) with x = z/h and h = εR

ρ = ρ0
(
R
R0

)ζ4
f4 , P = P0

(
R
R0

)ζ10
f10 ,

T = T0
(
R
R0

)ζ7
f7 , uz = εu0

(
R
R0

)ζ3
f3 ,

ur = −u0
(
R
R0

)ζ2
f2 , Ω = Ω0

(
R
R0

)ζ5
f5 ,

Bφ = qB0
(
R
R0

)ζ1−1
f1 , a(r, z) = a0

(
R
R0

)ζ0
ψ

where the subscript ”o” stand for a quantity evaluated at the disk equatorial plane (x = 0). Here, q =
μ0Jr0h/B0 is the normalized radial current density, a0 = B0R20/ζ0 the magnetic flux with B0 the vertical
field component, Ω0 = δ0ΩK0 the angular velocity, P0 = ρ0Ω2

K0h
2 and u0 = msCs, with Cs = ΩK0h

defining thereby the accretion Mach number ms. The shape of a magnetic surface anchored at R0 is
defined by a(r, z) = a0 and is provided by R = R0ψ−1/ζ0 . The three transport coefficients νv, νm, ν′m
(see Sect. 3.1.1) are written νA = νA0

(
R
R0

)ζ8 f8 where the profile is a simple Gaussian1 f8(x) = exp
(
−x2

)
.

Inserting these self-similar functions into the set of PDE (3.2-3.5) allows to separate them into an algebraic
set on the exponents ζ i and a set of ODEs on the functions fi. This leads to the unique solution for a near-
Keplerian, gas supported, accretion disk

ζ0 =
3
4
+
ξ
2
, ζ1 =

ξ
2
− 1
4
, ζ2 = ζ3 = −

1
2

ζ4 = ξ − 3
2
, ζ5 = −

3
2
, ζ7 = −1

ζ8 =
1
2
, ζ10 = ξ − 5

2

where ξ is the exponent of the disk accretion rate Ṁa ∝ rξ . Defining f̃4 = ln f4 and f′i = dfi/dx, allows to
express mass conservation and the equation of state as the following ODEs

f̃′4(f3 + xf2) = (ξ − 1)f2 − f′3 − xf′2 (A.1)
f10 = f4f7 (A.2)

1Note that Murphy et al. 2010 used f8(x) = exp
(
−2x2

)
, while Stepanovs and Fendt 2016 used f8(x) =

exp
(
−0.5x2

)
, namely ideal MHD starting sooner. This may explain why the latter found more massive jets than

the former.
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Similarly, the radial, vertical and toroidal momentum transport equations become respectively

m2
s ε2f4(−ζ2f22 + f′2(f3 + xf2)) = −f4δ20f25 +

f4
(1 + x2ε2)3/2

+ ε2(ζ10f10 − xf′10)
+ μq2ε2f1(ζ1f1 − xf′1)

+ μ
Δ′ψ
ζ0

(
ψ − xψ

′

ζ0

)
(A.3)

m2
s ε2f4(−ζ3f2f3 + f′3(f3 + xf2)) = −

xf4
(1 + x2ε2)3/2

− f′10

− μq2f1f′1 − μψ′
Δ′ψ
ζ20ε2

(A.4)

2f4(f3 + xf2)f′5 − f2f4f5 =
Λ0

1 + Λ0

(
ψf′1 −

ζ1
ζ0

f1ψ′
)

− 1
1 + Λ0

fturb (A.5)

where the modified laplacian (toroidal current density) is

Δ′ψ = ψ′′(1 + ε2x2) + ε2[(2ζ0 − 3)xψ′ − ζ0(2 − ζ0)ψ] (A.6)

and Λ0 =
p
Pmε − 1 is the ratio of the magnetic to the viscous torque at the disk mid plane. The function

fturb = f4f8 is the prescription used for the turbulent stress. While the above ODEs are valid both in
the disk and in the ideal MHD jet regime, the induction equation requires to deal with each regime in a
separate way.

Within the resistive disk, Ohm’s law (3.5) and the induction equation (3.6) become respectively

f8Δ′ψ = −Rmε2(ζ0f2ψ − ψ′(f3 + xf2)) (A.7)

(f8f′1)
′ = ε2x

(
f8(ζ1f1 − xf′1)

)′ − ε2f8(ζ1f1 − xf′1)(ζ0 −
5
2

)

− χm
Rmδ0
qms

(
3
2ζ0

ψ′f5 + ψf′5

)
+ χmRmε2ζ0f1f2

+ χmRmε2(f3 + xf2)(f′1 − f1 f̃′4) (A.8)

whereRm = ru0
νmo = p/ε is the magnetic Reynolds number. When the ideal MHD regime becomes relevant,

these equations write respectively

(f3 + xf2)ψ′ = ζ0ψf2 (A.9)

(f3 + xf2)(f′1 − f1 f̃′4) =
δ0

qmsε2

(
3
2ζ0

ψ′f5 + ψf′5

)
− ζ0f1f2 (A.10)

We need to complement this set of ODEs with an energy equation providing f7. Isothermal magnetic
surfaces are represented by T/T0 = 1 along each surface anchored at a radius R0, which translates into
f7 = ψ−1/ζ0 . The system of ODEs requires the following boundary values

f1(0) = f3(0) = 0
f2(0) = f4(0) = f5(0) = ψ(0) = f7(0) = f10(0) = 1
f′2(0) = f′4(0) = f′5(0) = ψ′(0) = f′7(0) = f′10(0) = 0
f′1(0) = −1
f′3(0) = ξ − 1
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We thus get a complete set of equations that can be formally written asM.X = P, whereM is a matrix
and P a vector depending only on the variable x and the functions fi, while X is a vector of their derivatives
f′i . Propagating the equations requires to get X = M−1P, where M−1 can only be computed as long as the
determinant of the matrix M does not vanish. This occurs at the disk equatorial plane x = 0 (which is
a fixed point of nodal type) and at each critical point of the outflow (see Ferreira and Pelletier 1995 for
more details). The integration cannot therefore start at x = 0 and a Taylor expansion must be made.
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APPENDIX B
Computing the Grad-Shafranov constraint

In this section we compute the GSE equation at the Alfvén point and discuss the constraint it imposes on
a shooting method like the one we use to compute the self-similar solutions. Computing the GSE at the
Alfvén point leads to

dBr
da
− ∇a · ∇m

2

4πR2AρA

∣∣∣∣∣∣∣A + gAΩ∗
dΩ∗R2A
da

+ (1 − gA)Ω∗R2A
dΩ∗
da
+

B2φ + B2p
4πρA

∣∣∣∣∣∣∣A
d ln η
da
= 0, (B.1)

where Br = B − Ω2
⋆R2A. We can compute the derivatives of the MHD invariants at the Alfvén point as

dX
da

∣∣∣∣∣A = dX
da0

∣∣∣∣∣
A
=

ζX
ζ0

X
a0
= ζX

X
Bz0R20

, (B.2)

for an invariant X of radial exponent ζX, and ζ0 the radial exponent of a. We can then compute the
different terms like so

B2φ + B2p
4πρA

∣∣∣∣∣∣∣A
d ln η
da
=

ζ4
2

B2pA
4πρAB0R20

1 + g2Aωλ
32A

 = Ω2
K0R

2
0

B0R20

ζ4
2
3
2
A

1 + g2Aωλ
32A

 , (B.3)

where we use Eq. (2.153) to compute the toroidal field at the Alfvén point. We also use the fact that
BpA =

√
4πρAupA so that BpA/Bz0 = κ3A. We then obtain

dBr
da
+ gAΩ∗

dΩ∗R2A
da

+ (1 − gA)Ω∗R2A
dΩ∗
da
=
Ω2

K0R
2
0

B0R20

[
1 +

ω2

2
+
ωλ
2

(4gA − 3)
]
, (B.4)

where Br is evaluated at the SM surface. The final term, of the form ∇a · ∇m2 requires some more work.
First we introduce a supplementary constraint. Indeed, self-similarity introduces a geometrical con-

straint by imposing a conical Alfvén surface. Along a magnetic surface, one has necessarily Bz/Bz0 −
z
RBR/Bz0 = (R/R0)−2. Defining the local outflow opening angle as tan ϑ = BR/Bz, allows to write

cos ϑ − z
R
sin ϑ =

B0R20
BpR2

, (B.5)

which is verified everywhere along the magnetic surface. Using, BpA/Bz0 = κ3A allows us to write the
geometrical self-similar constraint at the Alfvén surface as

cos ϑA −
ω

κλ3A
=

zA
RA

sin ϑA. (B.6)
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Since the Alfvénic mach number is only a function of the self-similar variable x, we can write

∇a · ∇m2 =
dm2

dx
∇a · ∇x = dm2

dx

[
−xBz −

BR
ε

]
. (B.7)

We can then use Eq. (2.131) to compute dm2

dx

∣∣∣∣A by Taylor expanding next to the Alfvén point, we find
dm2

dx

∣∣∣∣∣∣A = 2
gA

BRA
Bz0

ε
(
RA
R0

)2
, (B.8)

After projecting and using Eq. (B.6) we find

∇a · ∇m2
∣∣∣A = 2

gA

(
RA
R0

)2 B2pA
B0

(
cos ϑAω
κλ3A

− 1
)
. (B.9)

The GSE can then be simplified into

gA(gGS − gA) = (g2B − g2A)
(
1 − cos ϑAω

κλ3A

)
, (B.10)

where
gGS =

3
4
− 2 + ω2

4ωλ
− ζ4

4
g2B, (B.11)

is another maximal value for gA, imposed by the transverse equilibrium of the magnetic surfaces. To
proceed further we need to square Eq. (B.6) this leads to1 + (

zA
RA

)2 cos2 ϑA − 2ω
κλ3A

cos ϑA +
ω2

κ2λ232A
−

(
zA
RA

)2
= 0, (B.12)

we can solve this quadratic equation to express the local outflow opening angle at the Alfvén point as a
function of the MHD invariants

cos ϑA =
ω

κλ3A +
zA
RA

√
1 +

( zA
RA

)2 − (
ω

κλ3A

)2
1 +

( zA
RA

)2 . (B.13)

Inserting the expression above into Eq. (B.10) allows to finally express the GS constraint as a quadratic
equation on X = gA/gB

(k2c2 + cos2 ΨA)X2 − 2cX(k2 − sin2 ΨA) +
k2 − 1
k2

(k2 − sin2 ΨA) = 0 (B.14)

where c = gGS/gB and k2 = κ2/κ2min with the minimum mass load κmin defined as

κ2minλ
3g2B = ω. (B.15)

This equation provides the absolute lower limit for κ in order to obtain a super-A outflow. Indeed, for
gA = 0 the GS constraint can only be satisfied for a minimum value k2 = 1 (see Eq. B.14).

The GS constraint (B.14) shows that there are always two positive roots

gA
gB

∣∣∣∣∣
±
=

c(k2 − sin2 ΨA) ± cos ΨA

√
(k2 − sin2 ΨA)

(
c2 − k2−1

k2
)

k2c2 + cos2 ΨA
. (B.16)
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Figure C.1: Radial turbulent stress as a function of the latitudinal coordinate in red, the shaded
region shows the typical deviation in the radial range, R ∈ [6, 10], while the solid line is the radial
average. In blue we show the average fit where the shaded region shows the typical deviation
in the same radial range and the solid line is the radial average, the values of the average fit
parameters are in Eq. (5.11). The different panels correspond to different simulations: top,left:
SB4, top,right: SB3, bottom,left: S2pi, bottom,right: SEp.
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Figure C.2: Toroidal turbulent emf as a function of the latitudinal coordinate in red, the shaded
region shows the typical deviation in the radial range, R ∈ [6, 10], while the solid line is the radial
average. In blue we show the average fit where the shaded region shows the typical deviation
in the same radial range and the solid line is the radial average, the values of the average fit
parameters are in Eq. (5.25). The different panels correspond to different simulations: top,left:
SB4, top,right: SB3, bottom,left: S2pi, bottom,right: SEp.
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Figure C.3: Radial turbulent emf as a function of the latitudinal coordinate in red, the shaded
region shows the typical deviation in the radial range, R ∈ [6, 10], while the solid line is the radial
average. In blue we show the average fit where the shaded region shows the typical deviation
in the same radial range and the solid line is the radial average, the values of the average fit
parameters are in Eq. (5.28). The different panels correspond to different simulations: top,left:
SB4, top,right: SB3, bottom,left: S2pi, bottom,right: SEp.
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Figure C.4: Latitudinal turbulent emf as a function of the latitudinal coordinate in red, the shaded
region shows the typical deviation in the radial range, R ∈ [6, 10], while the solid line is the radial
average. In blue we show the average fit where the shaded region shows the typical deviation
in the same radial range and the solid line is the radial average, the values of the average fit
parameters are in Eq. (5.29). The different panels correspond to different simulations: top,left:
SB4, top,right: SB3, bottom,left: S2pi, bottom,right: SEp.
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