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Introduction

Energy Disaggregation In a Nutshell

Energy disaggregation is a set of computational tools for estimating the individual power consumption of each appliance from aggregate current and voltage measurements of a single meter. Figure 1.1 illustrates a typical residential configuration with a NILM smart meter installed at one point (ideally the main).

Figure 1.1: Typical residential NILM configuration

George Hart started researching this topic in the 1980s [START_REF] Hart | Nonintrusive Appliance Load Data Acquisition Method: Progress Report[END_REF], [START_REF] Hart | Prototype nonintrusive appliance load monitor[END_REF], when he invented the term "NILM", which stands for: Non-Intrusive Load Monitoring. Nowadays, NILM is the most used term in the scientific research community of energy disaggregation field. An exemplary use-case for NILM is providing the layman with a detailed electricity bill, which can assist him in taking informed decisions about his power consumption. High hopes [START_REF] Parker | How much energy are we using? Potential of residential energy demand feedback devices[END_REF]- [START_REF] Armel | Is disaggregation the holy grail of energy efficiency? The case of electricity[END_REF] pinned on such feedback mechanism for reducing energy consumption, more NILM use-cases in section 1.2.

NILM has drawn a lot of attention in the last decade; the most cited NILM article [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF] by Hart himself has 2035 citations in total, 1920 of which are since 2010 (according to google scholar engine, accessed 5 November 2019). This attention was accompanied with the new regulations that impose installing smart meters in many countries. More than 20 companies in Europe alone [START_REF]Companies offering NILM products and services[END_REF] are already offering NILM products and services. Several NILM workshops were held recently (6 in Europe, 4 in north America), and many conferences haave a dedicated track for NILM or smart energy in general.

Potential applications of NILM

NILM has a broad range of use-cases, this section mentions some of them with a brief context:  Generating an itemized electricity bill with individual energy-use of each electrical device can lead to saving energy/money Context: A handful of studies (e.g. [START_REF] Socolow | The Twin Rivers program on energy conservation in housing: Highlights and conclusions[END_REF], [START_REF] Seryak | Occupancy and behavioral affects on residential energy use[END_REF]) showed that providing people with detailed appliance-by-appliance list of consumed power/cost can give them incentive to reduce their power consumption, possibly by changing their behavioural patterns or by replacing inefficient appliances with better energy efficient ones (e.g. newer fridges or LED lights consume/cost considerably less power/money). Furthermore, the effects of those replacements can be tracked with NILM logs.

 Quantifying power consumption is beneficial for Grid operators Context: Grid operators and electrical-power providers need end-user data for different goals; with NILM meters, a wealth of data is available and statistical analysis can be automatically generated with high sample size, such data can also enhance demand response greatly.

 Enabling new services for smart buildings

Context: IoT sensors and NILM meters can be well integrated to advance smart building/home technologies and create new possibilities, to name a few examples: sending alarm notification for "on" devices in case no body was home, or for possible water leakage (as the water sensor has no activity while the washing machine is active all the time), another example would be ocupancy detection in active assisted living environments.

 Diagnostics and preventive maintenance of electrical appliances

Context: One of the ambitions for NILM is to identify problems and malfunctions in electrical appliances before they totally break, or detect a mistake in their settings.

For example a stand-by appliance consuming a high portion of power in the night can be reported; a dish-washer with an unusual power profile should prompt the NILM meter to generate a message to the user. more thoughts on this application in chapter 5.

 Raising energy-consumption awareness among the general public can lead to better climate policies Context: The adverse effects of human activities on climate changes are still debated despite the general agreement of scientific society on the urgent need for preventive actions on a global scale. While some researchers are skeptical about the NILM usefulness for convincing people to save power [START_REF] Pereira | Understanding the limitations of eco-feedback: a one-year long-term study[END_REF], [START_REF] Kelly | Does disaggregated electricity feedback reduce domestic electricity consumption? A systematic review of the literature[END_REF] and hence contribute to mitigating the climate change; still NILM can enhance the perception of energy consumption and increase energy literacy [12] among people, which can bring them closer to understanding the energy-climate dilemma and eventually mobilize them towards better political choices.

Aims and Objectives

The growth of renewable energy generation can be the solution to achieve the desired reductions in 𝐶𝑂 emissions by 2050 [START_REF] Gielen | The role of renewable energy in the global energy transformation[END_REF], one of the critical factors for this transition to clean energy is the flexibility of the power grid as the sources of renewable energy cannot be controlled due to their weather dependency. A flexible grid requires a constant flow of data about the network and its demand, on the other hand, clients who produce electrical power can be an active part of the demand response if they are informed about the power needs of their appliances.

My aim throughout this work is to contribute to the efforts of developing NILM technologies so that it can be an efficient tool for a flexible grid, leading to a cleaner environment for our children.

The concrete objectives of this work are:

1-To explore the advantages and possibilities of time-frequency representation of NILM signals for increasing the accuracy of "On/Off" events detection and extracting effective features for better disaggregation results.

2-

To develop a novel algorithm for features selection suitable for low-cost NILM meters, enabling them to adapt automatically for defined changes in a certain building/facility.

3-

To design a data aggregation scheme as a response to the problem of incomplete publicly available datasets.

4-

To propose a method for tracking classified devices and detect unusual consumptions.

Thesis Contributions

The main contributions of this thesis to the field of NILM systems are the following 

Thesis Outlines

The remaining chapters of this thesis are organized as follows:

In Chapter 2, we define the basic terms and concepts of NILM systems, then provide a block-oriented literature review and an overview of the publicly available datasets for NILM research, with detailed description of HELD1 [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF] and BLUED [15] datasets.

Following that, the main body of this thesis will divided in three chapters:

In chapter 3 we explore empirical mode decomposition (EMD) and Huang-Hilbert Lastly, in chapter 6 we summarize the presented work in this thesis and discuss the possible directions for future work.

Publications

The following list of publications have emerged from the work in this thesis in collaboration with my colleagues in UHA and HFU universities, most recent ones are mentioned first: 

Background & Related Work

In this chapter, we present an overview of the basic terms and subtasks of a NILM system through a historical example from Hart's pioneer work, then a review of the NILM state-of-the-art is provided, where we explore the on-going research efforts in the field and how they are related to the proposed developments in this Thesis.

NILM Terminology

The earliest NILM prototype was published by Hart in 1985 [START_REF] Hart | Prototype nonintrusive appliance load monitor[END_REF] then improved in a newer article in 1992 [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF], where he defined some of the basic terms of the field. In Figure 2.1 he showed the aggreate power signal of a household, where each power change is linked to a switching event of an appliance (arrows mark the detected events in the figure). An Event is defined as a power change that exceeds a predefined threshold and lasts for a predefined period of time. Event detection is the first task in a typical event-based NILM system: In Figure 2.1 examples of detected ON events are marked with green ovals, detected OFF events are marked with red ovals, missed (undetected) events are marked with blue ovals.

In the given example of Hart, he ignored the fast transients in the power signal by segmenting the power signal to steady states and "changing" states, as illustrated in 

NILM Workflow & Literature Review

Since we have already introduced the basic sub-processes of NILM systems in the last section, let us explore the classic processing chain of event-based NILM systems in Figure 2.3. We will discuss those tasks one by one with an overview of the related research work in the following. 

Data Acquisition

The first task of any NILM smart meter is acquiring and sampling the current and voltage signals. In [START_REF] Zeifman | Nonintrusive appliance load monitoring: Review and outlook[END_REF], the authors differentiated between low-frequency solutions and high-frequency-solutions, listing the additional possible features if the sampling rate is increased till 1 KHz or more. Higher sampling rates reduce the number of simultaneous events [START_REF] Makonin | Investigating the switch continuity principle assumed in Non-Intrusive Load Monitoring (NILM)[END_REF]. The authors of [START_REF] Armel | Is disaggregation the holy grail of energy efficiency? The case of electricity[END_REF] argued that distinguishing 20-40 appliances require a sampling frequency of 10 -40 KHz, while going beyond 1

MHz can raise the uniquely identified appliances to 100, yet the memory needs for such configuration should be addressed with care, Ul Haq proposed using audio compression algorithms to mitigate this problem [START_REF] Haq | Appliance Event Detection for Non-Intrusive Load Monitoring in Complex Environments[END_REF]. The ADC (Analog to Digital Converter) should be also selected carefully, i.e. a 10 bits ADC can make the smart meter blind for all small consumers under 11.23 W [START_REF] Haq | Prospects of appliance-level load monitoring in off-the-shelf energy monitors: A technical review[END_REF].

Event Detection

An accurate event detector is critical for the success of the whole NILM task. This fact motivated many researchers to develop their own detectors: heuristic methods were used in [START_REF] Meehan | An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm[END_REF], [START_REF] Weiss | Leveraging smart meter data to recognize home appliances[END_REF] to scan the current signal for noticeable changes (above predefined threshold). Other methods based on probabilistic models were reported in [START_REF] Trung | Event detection and disaggregation algorithms for nialm system[END_REF]- [START_REF] Baets | On the Bayesian optimization and robustness of event detection methods in NILM[END_REF], where statistical tests are applied on each sample of the power signal to calculate the chance of an event, the resulting probabilities will be compared to a predefined threshold for the final decision. Other approaches used time-frequency analysis tools like STFT and wavelet transform [START_REF] Su | Feature selection of non-intrusive load monitoring system using STFT and wavelet transform[END_REF], with better results for wavelet transform in detecting transient states (only 3 appliances were tested).

An event-detector based on a novel representation of NILM signals is presented in [START_REF] Held | Frequency invariant transformation of periodic signals (FIT-PS) for signal representation in NILM[END_REF]. Chapter 3 will present my proposed algorithm for event detection in low-cost NILM systems with evaluation tests.

Lastly, we point out to the existence of event-less NILM approaches, in which each sample is processed and compared to the consumption of various combinations of aggregate loads. Such approaches rely on probabilistic method like Hidden Markov models (see [START_REF] Bergés | Non-intrusive load monitoring: A review of the state of the art[END_REF] and references within) or they formulate NILM as a blind source separation problem [START_REF] Gonçalves | Unsupervised disaggregation of appliances using aggregated consumption data[END_REF], [START_REF] Kolter | Energy disaggregation via discriminative sparse coding[END_REF], These methods are generally computationallydemanding compared to the event-based ones and less accurate as well.

Feature extraction

Many efforts were made towards extracting effective features for improving the classification accuracy of loads, most of them relied on previous experiences in electrical engineering [START_REF] Teshome | Distinctive load feature extraction based on fryze's time-domain power theory[END_REF]- [START_REF] Gupta | ElectriSense: single-point sensing using EMI for electrical event detection and classification in the home[END_REF], or were transferred from other domains like audio signal processing [START_REF] Peeters | A large set of audio features for sound description (similarity and classification) in the CUIDADO project[END_REF]. Various ways to categorize NILM features were proposed in the literature: high frequency vs low frequency features [START_REF] Zeifman | Nonintrusive appliance load monitoring: Review and outlook[END_REF], manually engineered vs data driven [START_REF] Kelly | Disaggregation of domestic smart meter energy data[END_REF], steady-state vs transient state features [START_REF] Zoha | Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey[END_REF].

Data-driven features are getting more attention as deep learning algorithms are getting more effective in all fields; yet still we believe that manual extraction can be very useful for specific cases, an interesting example can be seen in [START_REF] Bernard | Non-Intrusive Load Monitoring (NILM): combining multiple distinct electrical features and unsupervised machine learning techniques[END_REF] (page 63),

where EMI (electromagnetic interference) signals were used to discriminate 4 identical PC power-supplies.

To the best of our knowledge, there is still no "one size fits all" in terms of an optimal set of features for all appliances. The best attainable solution is to exploit the available features and have a fast features-selection algorithm for different scenarios. In this thesis a bank of 84 NILM features were gathered in Table 4.2 and Table 4.3 for the sake of developing entropy-based feature selection algorithm.

Classification

The features from the last stage are to be used for identifying the working appliances, researchers formulated this in either of two ways: a classification problem, or an optimization problem.

Starting with classification methods: nearly all classical supervised classifiers were applied, like Support Vector Machines (SVM) in [START_REF] Figueiredo | An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems[END_REF]- [START_REF] Saleh | A Novel Procedure for Virtual Measurements Generation suitable for Training and Testing in the context of Non Intrusive Load Monitoring[END_REF] , decision trees [START_REF] Gao | A feasibility study of automated plug-load identification from high-frequency measurements[END_REF],

[41], K-Nearest Neighbor (K-NN) [START_REF] Figueiredo | An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems[END_REF], [START_REF] Gao | A feasibility study of automated plug-load identification from high-frequency measurements[END_REF], [START_REF] Giri | Towards automated appliance recognition using an EMF sensor in NILM platforms[END_REF], Linear Discriminant Analysis (LDA) [START_REF] Gao | A feasibility study of automated plug-load identification from high-frequency measurements[END_REF], [START_REF] Yu | Non-Intrusive Load Disaggregation by Linear Classifier Group Considering Multi-Feature Integration[END_REF]. Deep Neural Networks were also employed [START_REF] Kelly | Neural nilm: Deep neural networks applied to energy disaggregation[END_REF]- [START_REF] Held | Frequency Invariant Transformation of Periodic Signals (FIT-PS) for Classification in NILM[END_REF], and Convolutional Neural Networks (CNN) [START_REF] Wu | Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background[END_REF], [START_REF] Chen | Convolutional sequence to sequence non-intrusive load monitoring[END_REF]. Unsupervised methods were also applied, [START_REF] Wild | A new unsupervised event detector for non-intrusive load monitoring[END_REF], [START_REF] Gonçalves | Unsupervised disaggregation of appliances using aggregated consumption data[END_REF], [START_REF] Bernard | Non-Intrusive Load Monitoring (NILM): combining multiple distinct electrical features and unsupervised machine learning techniques[END_REF], [START_REF] Bonfigli | Unsupervised algorithms for non-intrusive load monitoring: An up-to-date overview[END_REF], with the added advantage of not requiring a training phase. An interesting approach of Semi-supervised learning was followed in [START_REF] Barsim | Toward a semi-supervised non-intrusive load monitoring system for event-based energy disaggregation[END_REF],

where the authors make use of the often incomplete labelled data points to infer the label of the other unknown (clustered) data points.

Optimization methods generally employ combinatorial search (matching aggregate consumption by finding the set of appliances that best approach the measured values) with different tools: genetic algorithms [START_REF] Baranski | Genetic algorithm for pattern detection in NIALM systems[END_REF], Integer programming [START_REF] Suzuki | Nonintrusive appliance load monitoring based on integer programming[END_REF], [START_REF] Wittmann | Nonintrusive load monitoring algorithm using mixed-integer linear programming[END_REF]. in addition to the high complexity issue (especially with higher number of appliances), it is hard to discriminate between similar signatures using such methods [START_REF] Zoha | Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey[END_REF].

NILM Datasets

A NILM Dataset is defined as a collection of electrical energy measurements that may include current and voltage measurements and/or power measurements; those measurement can be aggregate measurements (overlapping group of appliances measured at the main level) and/or individual measurements (stand-alone measurements measured at the plug level).

One of the main reasons for growing research efforts in the NILM field since 2010 is the availability of public datasets. In Table 2.1, we listed all public datasets that include current and voltage measurements from the most recent to the oldest. EB stands for event-based (i.e. the dataset has records for all or most of the switching events). For more information on other datasets with power measurements alone we refer to [START_REF] Pereira | Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools-A review[END_REF] (and references within). Event-less datasets are more convenient to collect, which may explain why they were dominant till 2018 . The only dataset prior to that with whole-house measurements fully labeled (identified power changes were listed with the corresponding appliaces) is BLUED dataset [15].

While PLAID, COOLL and WHITED [START_REF] Gao | PLAID: a public dataset of highresoultion electrical appliance measurements for load identification research: demo abstract[END_REF]- [START_REF] Picon | COOLL: Controlled on/off loads library, a public dataset of high-sampled electrical signals for appliance identification[END_REF] are event-based datasets, yet they are limited to short transients (2 -6 seconds) from various individual measurements, they can be used for evaluating feature extraction and classification algorithms using cross-validation [START_REF] Barsim | Neural network ensembles to real-time identification of plug-level appliance measurements[END_REF], [START_REF] Pereira | Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools-A review[END_REF]. To solve the problem of scarce labelled data in the NILM field, we proposed two approaches in our lab: the first one is a data generation scheme for constructing "virtual" aggregate measurements from real individual measurements, which is the subject of the fifth chapter. The other approach is to collect a new dataset in our lab, namely HELD1 dataset [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF]. In the following sections we describe HELD1 in detail as it was used in different parts of this thesis along with BLUED dataset [15].

HELD1: Home Equipment Laboratory Dataset [14]

The HELD1 dataset was collected in a controlled environment (lab) with the ability to determine the exact scenario of measurements. The measurement system (designed by Thomas Bier [START_REF] Bier | Disaggregation of Electrical Appliances using Non-Intrusive Load Monitoring[END_REF], extended to 4 kHz by Pirmin Held [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF]) is equipped with a switching box that generates switching events for the connected appliances, thus selecting a predefined sequence of events is possible and the reference data can be recorded with high precision. A block diagram of the measurement system is depicted in Figure 2.4.

As listed in, 18 appliances were considered in the measurement campaign (23 internally, unreliable measurements were eventually discarded). All of them were used to collect 4 groups of measurements according to the following scenarios: G0: individual measurements for the same appliance ,100 pairs of ON/OFF events.

G1: up to one active appliance at a time, randomly picked.

G2: up to 4 appliances can be active at the same time (random switching).

G3: up to 6 appliances can be active at the same time (random switching).

HELD1 provides fully labelled aggregate and individual measurements at relatively high sampling rate (4 kHz). which makes it the first suitable dataset for evaluating event-based and event-less approaches (BLOND shares the same advantage). 3 NILM Signal Analysis With Time-Frequency Tools

Introduction

Analysing discrete and digital sampled signals grew rapidly from a mere application of mathematical "numerical" techniques to be a huge independent field of engineering science in the last 7 decades, simply known now as signal processing.

Digital signal processing (DSP) algorithms "like filtering, estimation, detection, recognition, transmission, analysis, synthesis ...etc" are cornerstones in almost all scientific fields: communications, control, economics, biology, computer science...etc.

In this chapter, we will discuss the application of a special branch of digital signal processing: utilizing signal analysis techniques to gain deeper insights into the underlying processes of NILM signals. Traditionally, time domain analysis and frequency domain analysis were used, we will take a glance upon those methods, briefly discuss the need of better tools and introduce the concept of time-frequency distributions, in particular, Huang Hilbert Transform "HHT"; then we proceed to NILM feature extraction with EEMD and HHT, after that we present our approach "Filter based EMD" with its application in event detection and feature extraction.

Background and problem Statement

Early approaches of NILM signal analysis [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF], [START_REF] Marchiori | Circuit-Level Load Monitoring for Household Energy Management[END_REF], [START_REF] Farinaccio | Using a pattern recognition approach to disaggregate the total electricity consumption in a house into the major end-uses[END_REF] were in time domain,

where different tools were used to harness the information content of power signals (real, active, reactive). Those methods are simple and suitable for low sampling rates as well [START_REF] Froehlich | Disaggregated End-Use Energy Sensing for the Smart Grid[END_REF]. However, they are sensitive to noise and power disturbances, which can yield substantially sub-optimal forecasts (i.e. high misclassification rate) [START_REF] Chang | Feature extraction based hellinger distance algorithm for non-intrusive aging load identification in residential buildings[END_REF]. Additionally, the low sampling rate (usually paired with such methods)

decreases the temporal accuracy of load-detection. On the other hand, frequency domain signal analysis approaches looked for measurable changes in the spectral domain (harmonic components in particular) [START_REF] Jung | Tracking appliance usage information using harmonic signature sensing[END_REF], which can be very useful for loads that draw the same active power and have unique harmonic signature [START_REF] Hoyo-Montaño | Overview of Non-Intrusive Load Monitoring: A way to energy wise consumption[END_REF]; but they are not sufficient for loads with poor harmonic profile (resistive loads).

Applications of standard spectral analysis (e.g. Fourier decomposition) provide us with spectral signal components (frequencies) along with their relative intensities, yet it does not tell us anything about the specific time where those frequencies were dominant [START_REF] Rojo-Alvarez | Digital Signal Processing with Kernel Methods[END_REF]. Those drawbacks led to a trade-off consideration between temporal and spectral resolutions for any signal representation (a form of Heisenberg-principle [START_REF] Rojo-Alvarez | Digital Signal Processing with Kernel Methods[END_REF]).

Several TFDs were developed over the last century; the most recent one is Huang-Hilbert transform (HHT) is an adaptive data-driven approach which does not suffer the shortcomings (i.e. limits) caused by STFT window functions, the various kernels of GTFD (generalized TFDs in the Cohen class) or the choice of mother functions of wavelet transform [START_REF] Yan | Hilbert-huang transform based time-frequency distribution and comparisons with other three[END_REF]. In our work we focused on studying the feasibility of such tool for better NILM solutions. A comparison is shown in Table 3.1

For NILM signal analysis, a desired TFD should be able to extract the raw information in current and voltage waveforms, including the non-stationary (and nonlinear) transient part of the current signal. Features from this part can have a considerable positive effect on the load-discrimination rate (classification rate) [81].

Since the computational cost of this TFA in general (and for HHT in particular) is high; we developed a "customized" signal analysis method for NILM signals suitable for low cost NILM systems, in parallel we explored the capabilities of HHT as a tool with NILM signals if cloud-based NILM solutions is considered in the near future. Huang-Hilbert Transform is a two-steps procedure. The first step is an empirical mode decomposition (EMD) of the given input signal, the second step is Hilbert spectral analysis (HSA), as in Figure 3.1.

Empirical mode decomposition

Direct application of Hilbert transform to the input signal may yield negative (nonphysical) frequencies [START_REF] Huang | The Hilbert-Huang transform in engineering[END_REF], to avoid such outcome we apply EMD at first, which will decompose the data (i.e. signal) into Intrinsic Mode Functions (IMFs), from which the Hilbert transform will give us positive instantaneous frequencies (that hopefully correspond to physically meaningful oscillatory behaviour).

Figure 3.1: Two steps of HHT

The necessary conditions to define an IMF is to have [START_REF] Huang | The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear Non stationary Time Series Analysis[END_REF]:

i. Symmetry with respect to the local zero mean;

ii. The number of local extrema and zero crossings differs at most by one.

Putting that in mind now we can describe the "sifting" procedure for extracting IMFs [START_REF] Huang | The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear Non stationary Time Series Analysis[END_REF], [START_REF] Agana | EMD-based predictive deep belief network for time series prediction: an application to drought forecasting[END_REF]:

1. Identify all local extrema (maxima and minima) in the given signal.

2. Interpolate all the local maxima with a cubic spline line as the upper envelope.

3. Interpolate all the local minima with a cubic spline line as the lower envelope, the upper and lower envelopes should cover the entire signal between them.

4. Compute the mean of both envelopes as 𝑚 𝑡 , calculate the difference between the signal 𝑥 𝑡 and 𝑚 𝑡 as the first component ℎ 𝑥 𝑡 𝑚 𝑡 .

This process can face pre-existing overshoots and undershoots in the original signal, which could be classified as new extrema [START_REF] Dong | Sifting process of EMD and its application in rolling element bearing fault diagnosis[END_REF], Therefore we repeat the sifting process as many times as required to eliminate all possible riding waves and make the wave profiles more symmetric.

5. Check the resulted ℎ 𝑡 , a. if the requirements of an IMF (stopping criteria) are met, then it is denoted as the first IMF, and 𝑥 𝑡 is replaced with 𝑥 𝑡 ℎ 𝑡 b. if ℎ 𝑡 does not comprise an IMF, then assign ℎ 𝑡 to 𝑥 𝑡 6. repeat steps 1-5 till the residual signal becomes a monotonic function or the number of extrema does not exceed one, from which no further IMF can be extracted.

The sifting process is an iterative procedure that extracts the oscillations in a given signal, starting with highest frequency. Combining IMFs and the remaining residue should give us the inspected signal back (comprising an orthogonal representation):

𝑥 𝑡 ∑ 𝐼𝑀𝐹 𝑟 (3.2)

Stopping criteria

The most critical aspect of EMD is how to choose practical criterion for stopping the sifting process. In the best-case scenario, the process stops when the resulting signal satisfies the IMF conditions; However, reaching zero mean value for the upper and lower envelopes is hardly fulfilled in practice, which leads to a high amplitude fluctuations [START_REF] Huang | The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear Non stationary Time Series Analysis[END_REF]. Since the sifting process is an converging process (changes made on the signal should decrease in total in the next new iteration),

Huang [START_REF] Huang | The Hilbert-Huang transform in engineering[END_REF] proposed to limit the size of the standard deviation, denoted as SD, between the results of two consecutive sifting steps:

𝑆𝐷 ∑ (3.
3)

The choice of the limit (threshold) can be defined according to application and length of the input data N, a value of 0.2-0.3 is a common starting point in most applications and it also was a reasonable initial value in our simulations, yet it should be tuned afterwards according to the application.

The sifting process can also be stopped by any of the following predetermined criteria (among others): absolute amplitude of the remaining signal, mean value of the envelope, cross correlation coefficients between the remaining signal and the original signal.

Ensemble Empirical Mode decomposition

A frequently encountered problem with the resulting intrinsic modes is the so-called phenomenon "mode mixing"; where a signal of a similar oscillation (time scale) appears in two or more IMFs, or getting a mode with widely separated scales. Mode mixing has been a major challenge and was first diagnosed by Rilling and Flandrin in [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], Geldhill [START_REF] Gledhill | Methods for investigating conformational change in biomolecular simulations[END_REF] and Flandrin [START_REF] Flandrin | EMD equivalent filter banks, from interpretation to applications[END_REF] experimented with adding noise to the original signal, then Wu and Huang [START_REF] Wu | Ensemble empirical mode decomposition: a noiseassisted data analysis method[END_REF] proposed an improved version of EMD that depends on an "Ensemble" strategy, in which several realizations of white noise are introduced to the signal before applying EMD, then averaging over all trials will ensure that the uncorrelated whit noise will cancel out. This method showed great potential in reducing mode mixing (in some cases to 0). To get a better sense of EEMD let us take a glance on its steps:

1) build a group of signals 𝑥 𝑡 , where each one is composed of the original signal 𝑥 𝑡 and added white noise (𝑁 independent realizations)

𝑥 𝑡 𝑥 𝑡 𝜀 𝑡 , 𝑤ℎ𝑒𝑟𝑒 1 𝑖 𝑁 (3.4)
2) apply the EMD sifting process on each 𝑥 𝑡 to get its IMFs: 𝑚 and residue 𝑟 :

𝑥 𝑡 ∑ 𝑚 𝑡 𝑟 𝑡 (3.5) 
3) get mean IMFs and mean residue by averaging over the ensemble of extracted modes:

𝑚 𝑡 ∑ 𝑚 𝑟 𝑡 ∑ 𝑟 𝑡 (3.6)
to reconstruct the original signal :

𝑥 𝑡 ∑ 𝑚 𝑡 𝑟 𝑡 (3.7)
The standard deviation of the aggregate introduced error by EEMD (added noise)

was shown [START_REF] Wu | Ensemble empirical mode decomposition: a noiseassisted data analysis method[END_REF] to be 𝛼 √𝑁 , where 𝛼 is the amplitude of the original added white noise (higher numbers of ensembles reduce this error substantially).

Hilbert spectrum Analysis (HSA)

The second step in HHT is to apply Hilbert transform on the desired mode (or modes depending on the application) and get the instantaneous frequency and instantaneous amplitude (time-frequency-energy plane).

Let us start by forming the analytical form 𝑍 𝑡 of each IMF 𝑚 𝑡 and its Hilbert

Transform 𝑚 𝑡 𝐻𝑇 𝑚 𝑡 𝑑𝜏 :𝑃 is Cauchy principle value:

𝑍 𝑡 𝑚 𝑡 𝑖 𝑚 𝑡 (3.8)
From this equation we can rewrite the analytical signal as:

𝑍 𝑡 𝑎 𝑡 𝑒 , 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑡 𝐶 𝑡 𝐶 𝑡 𝜃 𝑡 arctan (3.9)
The instantaneous frequency is given by 𝜔 𝑡 , and Hilbert spectrum of each IMF can be written as:

𝐻 ω, t 𝑎 𝑡 𝑒 (3.10)

Marginal Hilbert spectrum

now we can define marginal Hilbert spectrum of any mode as:

ℎ 𝑤 𝐻 𝑤, 𝑡 𝑑𝑡 : T is the mode duration (3.11) at a first glance, one can find the marginal spectrum analogous to Fourier decomposition, but the spectral components are different; as Fourier frequencies are constant over the sinusoidal harmonics in the data window [START_REF] Haq | Prospects of appliance-level load monitoring in off-the-shelf energy monitors: A technical review[END_REF] [20], thus providing an energy distribution to trigonometric component with associated amplitude and frequency through the whole data window. On the other side, the ones that appear in (4.11) are time-dependant, thus providing an energy distribution in a probabilistic sense to local appearances of associated frequencies.

On the feasibility of HHT for better NILM

The quest for the perfect "signatures" to identify each device has been always the hottest debate topic in NILM community. Whether to invest more effort in engineering a few physical features that are extremely useful for all or most categories of devices or to better direct those efforts to enhance "learning" algorithms that look for learned features for every case on its own.

One of our goals in this work is to explore how to exploit empirical mode decomposition and Hung-Hilbert transform to get  Better NILM event detection: more temporal accuracy and less false alarms  Better features and thus better signatures. Analysing the transient part of the current signal at "ON" events can be very helpful to build a hybrid signature (combining steady and transient features) for various appliances.

Methodology

We followed two parallel tracks to approach the concepts of EMD and HHT for NILM signals: In the first track (green coded in Figure 3. In the second track (blue coded in Figure 3.3): the goal is to apply the classical HHT and use the physical quantities after the Hilbert spectrum analysis (marginal spectrum, instantaneous frequency curves ..) to get a group of useful features and evaluate them. In the next paragraphs both tracks are discussed in detail.

Filter-Based EMD inspired algorithm

A novel algorithm for NILM signal analysis is proposed, suitable for low-cost smart meters solution. We call it filter-based EMD inspired algorithm (FBE) as its 

Detailed description of FBE algorithm

The FBE algorithm [START_REF] Saleh | EMD inspired filtering algorithm for signal analysis in the context of non intrusive load monitoring[END_REF] has two stages: initial isolation and refinement. A flow chart of the first stage is shown in Figure 3.4. The total current signal is divided into blocks of 𝑀 points, and the algorithm is applied on each block separately.

Mode extraction follows these steps:

Step 1) Detect indices of the local maxima 𝑖 , 𝑖 , … , 𝑖 in the current signal block, then estimate the highest frequency 𝑓 of the signal using the mean distance between those indices, if 𝐷 𝑖 𝑖 , 𝑖 𝑖 , … , 𝑖 𝑖 is the difference vector of the local indices then this frequency is calculated as:

𝑓 (3.12)
where 𝐹 is the sampling frequency and 𝐷 is the mean value of the difference vector 𝐷 .

Step 2) The estimation of 𝑓 allows us to separate the input signal into 2 parts in the spectral domain; the first one contains the frequencies above 𝑓 , while the second one is composed of the frequencies below 𝑓 . The separation is implemented using a low pass filter LPF with a cut-off frequency 𝑓 ∆ , where

∆ is a small margin to ensure that 𝑓 is included in the higher frequency part after separation.

Step 3) The output of the LPF is the residual signal 𝑟. if the total signal is 𝑥 then the first mode is: 𝑚 𝑥 𝑟 , contains the frequency 𝑓 along with all spectral components below it, we set 𝑓 𝑓 as the frequency of this mode.

Step 4) Extract other modes using the same procedure in steps 1-3 from the residual signal. Extraction stops when the power of the residual signal is below a certain threshold, which is relative to the power of the input signal, or when the number of The desired output of FBE algorithm is the initial modes 𝑚 , 𝑚 , … , 𝑚 and their estimated frequencies 𝑓 , 𝑓 , … , 𝑓 where N is the number of the extracted modes, so the current signal can be written as:

𝐼 𝑛 ∑ 𝑚 𝑛 𝑟 𝑛 (3.13)
Our goal here is to isolate mono-component signals. However, the peaks of the input signal are close to each other and different in amplitude, so each resulted initial mode till now may contain a substantial part of the signal spectrum with multiple frequencies, and the estimated frequency for this mode can be any of those in this interval, so in the next stage we re-apply the first phase on each resulted mode, this step allows us to refine the separation as illustrated in Figure 3.5 .

A better estimation of the frequencies can be calculated using the indices of the local extrema in the modes rather than the original current signal. For each mode, let 𝑓 be the estimated frequency. The algorithm continues as follows:

Step 5) Check if there is a peak at the 𝑓 , by passing the mode through a (narrow) band pass filter BPF 𝑓 ∆ , 𝑓 ∆ , where ∆ is a small margin, the original mode can be written as:

𝑚 𝑚 𝑚 (3.14)
𝑚 is the BPF output while 𝑚 is the part that does not pass through the filter.

Step 6) If the power of 𝑚 is larger than a defined threshold, then there is a monocomponent mode at 𝑓 , and the rest signal 𝑚 , whose spectrum lies outside the interval [𝑓 ∆ , 𝑓 ∆ ], is passed again to stage1 to check if there is any possible modes left.

Step 7) If the power of 𝑚 does not exceed the threshold, then there is no peak at 𝑓 , and the whole mode is passed back to stage 1. The previous steps allow us to decompose the input current signal into a set of mono-component modes, in addition to a residual signal. This residual signal contains the low frequency part of the current signal and possibly some low power high frequencies resulted from the step 7 in case their power is less than the threshold. Now let us look at an example application of FBE on real NILM current signal.

FBE outputs in steady state and Transient state

A subset of current signal from BLUED dataset is addressed here, where FBE is applied on the steady state area before a "switch on" event of a fridge, see Figure In the next section, an event-detection method will be developed depending on the information extracted from the modes and their spectral content.

FBE-based event detector

The event detection FBE based procedure works in two steps: decomposition and examination. The decomposition stage starts with applying FBE algorithm to break down the overall multi-component current signal into several mono-component During the examination stage: a few criteria are applied on the modes in order to detect possible events in the current signal and ensure their correctness. An event is defined as a change in the signal power above a specific power threshold, and the change duration exceeds a defined time threshold as well.

Current signal consists of steady state intervals and transient short intervals in time domain. The transient state starts when an event occurs, and continues for a short time (in the order of 1 second) while steady state prevails for the other ~98% of the time and its spectrum composed primarily of a fundamental frequency (usually 50

Hz or 60 Hz) and its harmonics.

In the transient state the signal behaves differently. Experiments show that some harmonics may disappear from the signal spectrum, while new spectral components may emerge between harmonics or below the fundamental frequency; accordingly, we can define the best rules to apply on the extracted modes and use the them to solve our problem (detect events, extract features, track special frequency and so on). In the following we will show the criteria we chose to construct an event detector for NILM signals.

Criteria for FBE-Event-detector

The choice of the desired criteria depends on the observations made by visual and numerical inspections of a variety of events. To clarify the intuition behind this process let us start by examining a practical example shown in Figure 3.9: this signal is taken from the aggregate current measurements of BLUED Dataset , where an event "switch ON" took place at 𝑡 94.3 𝑠𝑒𝑐 in time domain (top), this event caused a local turbulence around 𝑡 as can be seen from the spectrogram in the middle (where the turbulence is also magnified), the bottom plot shows how did the cardinality of the modes change from 3 to 10 then back to 3 again in a very short duration (less than 1 𝑠).

The following criteria are chosen building on these observations (higher number of modes at an event, new spectral content) among others from various events:

1st Criterion) Cardinality of the modes

The number of modes in steady state is equal to the number of harmonics in the current signal, while in the transient state, the number of modes may increase or decrease, as in Figure 3.9, depending on the emerging spectral components/modes and disappearance of the harmonics peaks. Existence of added frequencies between harmonics 3rd Criterion) Mean power fluctuations of the modes Most of the signal power is concentrated around the fundamental frequency component, so calculating the instantaneous power of this mode is approximately equivalent to calculating its power, and events can therefore be detected by observing the changes in the power level of this mode.

The power of other modes at the harmonics may also change at the event. This change depends also on other factors like the event type (ON or OFF), which appliance caused the event...etc, so we can use these changes for event detection.

4th Criterion) Power fluctuations of residual signal

The power of the residual signal can also be used to detect events. As the results

show, residual signal power may increase in the transient state compared to the steady state (as the harmonics will probably join it in the first transient blocks, see 

Numerical evaluation of the FBE-based event detector

A pre-processing operation for the real data (BLUED Dataset [15]) was done at first, then the event-detector was tested. We will describe the data preparation at first so that the interested reader can fully reproduce the results.

Data preparation

Before applying FBE algorithm on the measured current signal, an initial preparation process is conducted on current and voltage signals to efficiently reduce algorithm complexity as shown in Figure 3.11, this process can be adapted according to the target application. In event detection for example: it is known that the time duration of the event is much smaller than that of steady state, so the mode extraction is only applied when necessary. This process is as follows:

Firstly, we start by calculating and down-sampling the power signal, such power signal can be provided in the ground truth data, as in BLUED Dataset, where the current signal sampling rate was 12 𝐾𝐻𝑧 , whereas the power signal is downsampled to 60 Hz only.

Next, we check the fluctuations in the power signal If the changes in the power signal were negligible (under a defined threshold), then the observed time interval does not contain any events, and the algorithm skips the corresponding current block, the threshold should be chosen carefully here as events of small consumers under it will be lost. On the other hand, if a noticeable change in the power level is detected, then an event or more can be the reason for it, but it can be also a false alarm since large changes in the power level can occur even in the steady state of the signal depending on the devices working at this particular moment.

𝑃 𝑘 ∑ 𝑉 𝑛 𝐼 𝑛 (3.17)
Secondly, we apply a low pass filter on the current signal, which allows us to reduce the number of spectral components and results in a smaller number of modes after extraction. Small values of the cut-off frequency will reduce complexity greatly, yet there is a possibility of information loss, while larger values of the cut-off frequency increase the complexity. For the event detector, we chose 400 Hz as a cut-off frequency of this initial LPF whose output is passed to the FBE algorithm.

Event-detection performance

FBE algorithm was applied on the signal blocks that may have events (after the two steps of data preparation in Figure 3.11). We utilize the previously chosen criteria in the next step to reduce false alarms and detect any possible missed events, a final test on the events is conducted, in which the duration of the event as well as the power levels around it are quickly checked by means of a median filter, such tests can be done on the fly in real time applications. The final results are presented in Table 3.2 and Table 3.3 for both phases A and B of BLUED dataset; we used the following performance metrics:

𝑷 𝒓𝒆𝒄𝒂𝒍𝒍 𝑻𝑷 𝑭𝑵 𝑻𝑷 (3.18) 𝑷 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑻𝑷 𝑭𝑷 𝑻𝑷 (3.19)
Where 𝑇𝑃 is the number of true detected events, 𝐹𝑁 is the number of missed events, 𝐹𝑃 is the number of false alarms (detecting events while they are not present). The measurements in phase A have relatively small variations compared to those of phase B due to the number and nature of the appliances connected to each phase [15], as a result, most of event detectors have excellent results when applied to phase A, while the benefit of the FBE based event detector is clear in Table 3.3 when looking at its results on phase B in comparison with the event detector of [START_REF] Anderson | Event detection for Non Intrusive load monitoring[END_REF] (by the team that collected BLUED dataset). 

NILM Feature extraction with classical HHT

Huang proposed the concept of intra-wave frequency modulation as a better physical approach to represent nonlinearly deformed waves [START_REF] Huang | A new view of nonlinear water waves: the Hilbert spectrum[END_REF] instead of resorting to higher harmonics per Fourier decomposition. In this section we use this perspective and consider the effect of each "ON" event as a nonlinearity introduced to the aggregate current signal. Our goal is to "mine" the transient part for effective features. Initially, the scheme of research process was set as in Figure 3.12:

However, the application faced some practical issues:

 the EEMD is empirical by definition and has several parameters left to the user to choose (mostly in an ad-hoc manner according to the application at hand).

 The temporal length of transient state varies greatly among devices.

So as can be seen in Figure 3.3, another in-between step for parameter tuning was added, each step will be discussed in the following paragraphs.

Parameter tuning

Looking for the most "suitable" intrinsic modes depends greatly on the purpose of the analysis. EMD has a lot of room for customization as it is an algorithm with two linked loops by definition (i.e. HHT is not a transform in the wide accepted sense as it lacks a solid mathematical basis), and many recent papers [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]- [START_REF] Hou | A variant of the EMD method for multi-scale data[END_REF] presented insights for how to choose the parameters of sifting process in particular. In [START_REF] Wu | On the filtering properties of the empirical mode decomposition[END_REF], Wu and Huang demonstrated that for a low number of sifting iterations (ca. 10), the EMD procedure can be still considered equivalent to a bank of dyadic filters with a minimum mean frequency ratio of 2 between the neighbouring components; on the other hand, a high number of sifting iterations leads the IMFs to approach constant amplitude, thus losing the desired physical sense of the resulting modes.

In our study, we aimed for the mode that contains the fundamental grid frequency (50 𝐻𝑧 in Europe). One of the issues for an "out of the box" application (per [START_REF] Rilling | implementation of EEMD in Matlab[END_REF] implementation) is the appearing of the same spectral content in more than one mode (as in Figure 3.13: modes 4 & 5 in 2 events of a Fan Device), which indicates a "mode mixing problem", even though EEMD is said to significantly reduce the mixing percentage in most cases. 

Empirical NILM signal segmentation

One of the challenges in NILM research field is determining the limits of transient and steady states precisely. While this method was designed for tuning the parameter TranL at first, yet it was applied more than once later for different purposes in our research work (Pseudo code can be also found in appendix 1).

similar "expert heuristics" approaches in the literature can be found in [START_REF] Meehan | An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm[END_REF], [START_REF] Weiss | Leveraging smart meter data to recognize home appliances[END_REF], yet they were used as event detectors, while in here this method is applied after event detection and takes events indices as input and outputs the limits of transient state, along with event type (as a sanity check). The segmentation procedure can be divided into six steps as follows.

For each event in the signal do the following:

[step 1] Take a window from the steady state before the event. This window is defined by its start index and its length. The default value of the start index is 1 second before the event, if a close event exists (less than 1 seconds), then set start index as the middle point between the two events (same process for the index of the window end as well). The window length is set to 200 milliseconds by default and can be smaller for close events; let us call the resulted window "left window". The minimum required length of the left window is 𝑁: the number of samples per period.

[step 2] Take another window around the event, let us call it the "total window".

It starts at the end of the left window and extends to the steady state after the event, as illustrated in Figure 3 [step 4] Subtract a repeated version of the left window from the total window, the type of event is irrelevant here because when the event is 'ON' we get the appliance signal 𝐼 , and when it is 'OFF' we get a reversed version of the appliance signal 𝐼 . In this step we applied FIT-PS representation [START_REF] Held | Frequency invariant transformation of periodic signals (FIT-PS) for signal representation in NILM[END_REF], [START_REF] Held | Frequency Invariant Transformation of Periodic Signals (FIT-PS) for Classification in NILM[END_REF],

[100] to preserve the phase during subtraction Two examples of transient state limits are illustrated in Figure 3.16, start index (red marker) and end index (black marker) along with the "old" index of event from ground truth information (HELD1 dataset [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF]). This method will be used for correcting the indices of the events (replacing by the index of the transient state start index).

Temporal accuracy

One way to estimate the maximum error in detecting the start index of the transient state is to draw several events from single appliance measurements together and observe the span of the signals at the start of the event (in analogy to eye diagram concept). An example is shown in Figure 3.17, where the time axis starts 2 periods 

numerical simulations

A group of simulations with several parameters configurations were oriented towards exploring the best properties of the resulting mode as well as the limits and desired values of parameters, Getting one mode around grid frequency was unattainable for all devices with the same parameters so we relaxed the requirements to accepting a second mode with that frequency as long as its amplitude is less than 10% of the amplitude of main mode.

Example Insights: Figure 3.19 shows that increasing Nstd (0.55) intensifies the mode mixing problem (a value of 0.2 is chosen); another example in Figure 3.20 illustrates an interesting point about the maximum number of iterations: the shape of main 50 Hz mode is the same for any number above 10, while this was not the case for other types of signals reported in literature, as in [START_REF] Wu | On the filtering properties of the empirical mode decomposition[END_REF], yet for NILM signals going beyond 10 is counter-productive. 

Exploring HSA outputs and candidate Features

Engineering features the "manual" way is losing popularity against the "relatively new" deep learning algorithms for the general NILM applications [START_REF] Kelly | Disaggregation of domestic smart meter energy data[END_REF], yet it is still the way to go when the NILM problem target special devices or certain environments (commercial buildings. factories ...); in such cases domain knowledge and specifically-designed features can be of great value.

To motivate the process of feature extraction we start by looking at two main quantities that Hilbert spectum analysis provides us with:

1) "IF" -Time plane; its accuracy is in the order of a sampling period (IF stands for instantaneous frequency).

2) The marginal spectrum of the main mode (the instantaneous amplitude of main mode as function of IF). One approach to make use of this noticeable difference is to fit the IF curves with a second order polynom and consider the coefficients as candidate features as well.

IF-Time plane

marginal Hilbert spectrum

Marginal 

Intial evaluation

An assesment of a certain feature is to be done with respect to other features, which is the subject of the next chapter; yet to test the feasability of example feature extracted in this study, we make a simple calssification experiment with 2 different classifiers: Linear Discriminant Analysis classifier LDA and SVM (linear kernel) on G1 & G3 of measurements from HELD1 dataset (G1 is a collection of measurements with 1 active device at most, randomly selected from the list in , while G3 allows up to 6 active random appliances at the same time). The input features are (pairs of them and all 3 are tested):

-BW: the bandwidth span of the marginal spectrum of main mode, -AA: the average amplitude of the spectral components, -MA: the maximum amplitude in the marginal spectrum, while those features alone can not be used as an "optimal" set of load signatures for classification, yet the pair (BW & MA) has potential and can be added to other features for better classification rate, the systematic way to do that is discussed in the next chapter.

conclusions and closing notes

One of the limitations of HHT transform for our application is its high computational cost due to the EMD nature, for example: processing a 40 minutes measurements file (with 100 "ON" events) from HELD1 dataset for extracting the modes takes around 40 minutes (parallel processing on a computer with 6 core i7

GHz processor). The other calculations of Hilbert spectrum analysis and

proposed feature extraction methods take negligible time compared to EMD execution time (less than 1 %), in spite of our efforts to shorten the calculations:

iterations were limited to 10 as discussed previously, and the extraction procedure is stopped at the fifth mode (𝐼𝑀𝐹 ) as the required mode around grid frequency is always in the first five modes (depending on the noise level and perturbations in the input signal), yet higher modes (lower number of extrema) needs less time of processing per sifting step.

In this chapter, we investigated the possible advantages of applying HHT on NILM signals. As a solution for high-computational EEMD modes extraction, we proposed another approach for NILM signal analysis and presented a novel event detector based on this approach, the numerical results showed a state-of-the-art performance on BLUED dataset. In parallel, we applied the classical HHT and analysed the resulted IF curves and marginal Hilbert spectrums, then proposed a set of interesting features and made an initial evaluation for three of them.

The usability of HHT features is limited by the high computational cost of their extraction, A "NILM on the cloud" solutions may benefit from such features, yet they are impractical for any offline real-time NILM smart meter in the time being.

An extensive test of extracted features from IF curves and marginal spectrum for discrimintation of identical devices is one of the near future tasks as well as addresseing their "importance" against other features with respect to classification rate, processing power and sampling frequency.

Feature Selection For NILM Systems

Choosing the best set of features can be essential for the success of any machine learning algorithm. The hard quest for such features in the NILM field started more than two decades ago and still comprises a hot research topic nowadays. Active and reactive powers were sufficient features for Hart [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF] in the early nineties, since then several approaches were developed [START_REF] Teshome | Distinctive load feature extraction based on fryze's time-domain power theory[END_REF], [81], [START_REF] Hassan | An Empirical Investigationof V-I Trajectory Based Load Signatures for Non-Intrusive Load[END_REF], [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF] to extract a lot more features towards finding the "optimal" load signature; which motivated the use of various ad-hoc combinations of features from different categories in the recent works of [START_REF] Gao | A feasibility study of automated plug-load identification from high-frequency measurements[END_REF], [START_REF] Liang | Load Signature Study-Part I: Basic Concept, Structure, and Methodology[END_REF], [START_REF] Lin | A nonintrusive load identification method for residential applications based on quadratic programming[END_REF]. However, employing all those available features in designing the decision rule can add an avoidable complexity, e.g., classification performance reached its maximum after a small subset of features in Figure 4.1 with negligible improvement after that, going further might even lead to worse classification results as [START_REF] Adac | System Design and its Application to Mine Hunting Using SAS Imagery[END_REF] pointed out.

A recursive feature elimination process was proposed in [START_REF] Sadeghianpourhamami | Comprehensive feature selection for appliance classification in NILM[END_REF] and tested on single measurements Dataset (PLAID [START_REF] Gao | PLAID: a public dataset of highresoultion electrical appliance measurements for load identification research: demo abstract[END_REF]), while [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF] deployed the sequential Forward Selection algorithm "SFS", which assumes a certain classifier, to choose the best set of features for different types of Datasets.

In this chapter, A modified entropy-based feature selection algorithm is proposed and tested on single and aggregate measurements from Held01 Dataset [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF], where the same set of appliances are present on both types and the number of ON/OFF events is the same for every appliance, then the tests are extended to BLUED Dataset [15]. Several classifiers are used after ranking to validate the approach on both datasets.

The remainder of this chapter is organized as follows. First section will present the mathematical background, then continues to explain the novel modifications to 

mathematical Background and proposed algorithm

An effective set of features helps groups 'similar' objects together, this concept of similarity will be discussed further with a mathematical interpretation and proper tools to measure and exploit it.

Euclidean Distance, Similarity, and Entropy

An unsupervised feature selection algorithm for clustering is proposed in [START_REF] Dash | Feature Selection for Clustering[END_REF],

where similarity 𝑆 , between two data points 𝑃 and 𝑃 in the feature space depends simply on the normalized Euclidean distance 𝐷 , between them, and is defined as:

S , e , (4.1) 
where α is a damping parameter.

For numeric multi-dimensional data points, the Euclidean distance 𝐷 , is defined as:

𝐷 , ∑ , , (4.2) 
where 𝑁 is the number of features, 𝑥 , is the 𝑚 feature of the 𝑖 data point, and 𝐿 is the length of the space of the 𝑚 feature among all data points. 𝐿 𝑚𝑎𝑥 𝑥 , 𝑚𝑖𝑛 𝑥 , (

Similarity𝑆 , is high (≈1) for points close to each other, i.e. same cluster, and low (≈0) if they are far from each other. Entropy is then given as:

𝐸 ∑ ∑ 𝐸 𝑆 , (4.4) 
where N is the number of data points, and the function E is defined as [START_REF] Shannon | A mathematical theory of communication[END_REF]:

𝐸 𝑥 𝑥 𝑙𝑜𝑔 𝑥 1 𝑥 𝑙𝑜𝑔 1 𝑥 (4.5)
Entropy is low for both low and high values of 𝑆 , , but will be maximized for moderate values (around 0.5) which would result if the points are uniformly distributed in the feature space, yielding poor clustering possibilities.

According to [START_REF] Dash | Feature Selection for Clustering[END_REF], ranking of a feature is based on the calculated entropy after eliminating this feature; then the feature is important if the entropy has a much higher value without it, i.e. the feature reduces the ambiguity of the clustering result.

In the second case, if the entropy remains unchanged after removing the feature, then it is not so important. Finally, if the entropy is smaller after removing the feature, then this feature is not important at all and should be ignored because it has a negative effect on the clustering performance. let us tweak this concept for NILM case.

NEFSA Design Rules

we call our proposed algorithm NEFSA (stands for NILM Entropy based Feature Selection Algorithm), where the key difference to the clustering problem is:

 A class may be composed of one or more clusters.

 A cluster may contain points from one or more classes.

So, by design, NEFSA should adhere to the following "rules" for calculating the similarity 𝑆 , :

1. If the distance 𝐷 , between two points 𝑃 , 𝑃 is small and the points belong to the same class, then the similarity 𝑆 , is high (𝑆 , ≈1, Entropy → 0).

If 𝐷

, is large and the points belong to the same class, then 𝑆 , is moderate (𝑆 , ≈ 0.5, Entropy ↑).

3. If 𝐷 , is small and the points belong to different classes, then 𝑆 , is moderate (𝑆 , ≈ 0.5, Entropy ↑). 

NEFSA principle

The importance of each feature is inversely proportional to the value of its entropy;

NEFSA measures this importance by evaluating the distances among data points for each separate feature at a time and calculating the similarities according to the design rules, then measuring its entropy. A feature is considered more important if that entropy is smaller. This approach has the advantage of reducing complexity compared to the one in [START_REF] Dash | Feature Selection for Clustering[END_REF]. Features are ordered according to their entropy values in an ascending manner, where the first feature in the ordered list is the most important one. In the last step, we choose a subset of the best features from the head of the ordered list. The number of chosen features is preferable to be as small as possible to reduce complexity, but large enough to give the best achievable classification performance.

The algorithm calculates the entropy of features one-by-one, separately, as shown in We omit subscripts m and n for simplicity. In the second step, clusters of each class are processed separately, where for the 𝒌 𝒕𝒉 cluster, we distinguish between two types of distances 𝑑 , and 𝑑 , as follows (Figure 4.3 for visualisation):

 𝑑 , is calculated between the points of the addressed cluster (i.e. same class and same cluster) and the centroid of this cluster; distances of this kind are preferred to be as small as possible, so that the cluster points are concentrated (coded green in the Figure 4.3).

 𝑑 , is calculated between the centroid of the cluster and the points of other classes. (i.e. points of that class that lay in other clusters are not considered here). 𝑑 , distances are preferred to be as large as possible, so that we can distinguish points of different classes from the cluster under process (coded red in the Figure 4.3).

The next step is to calculate similarity values using distances 𝑑 , and 𝑑 , . for distances 𝑑 , we define the similarity as:

𝑆 , 1 𝑒 𝛼 𝑘,1 𝑑 𝑖 𝑘,1 2 (4.6)
where 𝛼 , is a damping parameter. 𝑖 1,2, … , 𝑁 : 𝑁 is the number of points of the 𝑘 cluster.

𝑆 , 1 for 𝑑 , 0 𝐸 ↓ , and 𝑆 , 0.5 for 𝑑 , → ∞ 𝐸 ↑

The damping parameter 𝛼 , is determined by the allowed values for similarity after the maximum limits of feature span of the addressed cluster 𝐿 𝑚𝑎𝑥 𝑑 , min 𝑑 , , i.e. 𝑑 , distance does not exceed : The similarity 𝑆 , for the distance 𝑑 , is defined as:

𝑆 , 𝑑 , 0.5 𝜀 (4.
𝑆 , 0.5 𝑑 , 𝑅 , , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4.9) 
where 𝑅 is the radius of the 𝑘 cluster (mean of 𝑑 , values), 𝑖 1,2, … , 𝑀 , and 𝑀 is the number of points that are not from the 𝑛 class. The case 𝑑 , 𝑅 indicates that the 𝑖 point is located close to the cluster centroid, although this point belongs to another class, so in this case, similarity must be 0.5 and entropy should be enlarged. The parameter 𝛼 , is chosen so that: 

𝑆 , 𝑑 , 𝑙 * 𝑅 𝜀 ∶ 𝑙 ∈ ℕ ∖ 0,1 (4 
where 𝐸 , is the entropy calculated from the 𝑘 cluster of the 𝑛 class as:

𝐸 , ∑ 𝐸 𝑆 , ∑ 𝐸 𝑆 , (4.13) 
Next paragraphs are dedicated to our preferred choices for determining the clusters.

Calculating Number of Clusters

Using K-means Algorithm

Based on the intuitive choice K-means algorithm, to determine the number of clusters 𝐶 , of the 𝑛 class in the 𝑚 feature space (as in the flow chart in Figure 4.6 below) :

1) Set 𝐶 , 2 . 
2) Perform clustering on the points of the 𝑛 class using the K-means algorithm.

3) Calculate distances between the resulted clusters, and compare them with a predefined distance threshold.

a) If the smallest distance is less than the threshold, then the value of 𝐶 , is not suitable; the algorithm stops and outputs the previous value (𝐶 , 1).

b) If the smallest distance between clusters is larger than the threshold, then the class has at least 𝐶 , clusters; increase the number of clusters (𝐶 , 𝐶 , 1) and move back to step 2.

After calculating the number of clusters, we can use the K-means algorithm to group the class points into clusters.

The random selection of initial centroids can lead to slightly different ordering of features if we repeat the algorithm, so another novel approach for our specific application is proposed in the next paragraph.

Using Histogram Peaks Detection (CHIPD)

To reduce complexity and get a more robust procedure than K-means for our purpose, we propose a 1-D Clustering Algorithm based on HIstogram Peaks Detection (CHIPD). The proposed algorithm calculates the histogram of the feature values, then try to detect its peaks. We assume that each peak is a cluster. The steps of the CHIPD algorithm are as follows:

1) Calculate the histogram of a vector (1-D) of feature values. In 

NEFSA Assessment and Numerical Simulations

Experimental setup

NEFSA was evaluated on a chosen group of measurements from HELD1 Dataset [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF], then was tested on BLUED Dataset [15], along with other feature selection algorithms.

The evaluation on HELD1 [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF] considered three groups of measurements:

1. G1: where only one appliance is active at a time.

2. G2: where up to 4 appliances can be active at a time.

3. G3 :where up to 6 appliances can be active at a time.

The goal is to evaluate the feature ordering performance in various scenarios of overlapping while keeping the same set of appliances, which is listed in Table 4.1. A bank of 84 features is gathered at each event in this partial dataset. The addressed features are a group of frequently reported features in NILM research, along with some features under development in our lab (FBE and Marginal HHT features from chapter 3, entropy of band energies and statistical properties of the Hilbert envelope of the current signal, based on the work of [START_REF] Kulkarni | Empirical Mode Decomposition based Feature Extraction Method for the Classification of EEG Signal[END_REF], [START_REF] Bouhouras | Development of distinct load signatures for higher efficiency of NILM algorithms[END_REF] ).

Table 4.2 and Table 4.3 list all NILM features included in the experimental study, we will refer to these features by their given indices in the next figures and tables of this chapter so the reader can track any relevant feature by its index.

Table 4.2: Bank of NILM features, First part

Features Indices References

Active, Reactive and Apparent Powers (P,Q,S) 1-3 [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF], [START_REF] Hassan | An Empirical Investigationof V-I Trajectory Based Load Signatures for Non-Intrusive Load[END_REF], [START_REF] Teshome | Distinctive load feature extraction based on fryze's time-domain power theory[END_REF], [81] Resistance, Admittance (mean and median) 4-7 [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF] Phase Shift 8 [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF], [START_REF] Hassan | An Empirical Investigationof V-I Trajectory Based Load Signatures for Non-Intrusive Load[END_REF], [START_REF] Teshome | Distinctive load feature extraction based on fryze's time-domain power theory[END_REF] OER 1 , Tristimulus 2 (T1, T2, and T3), THD 3 9-13 [START_REF] Peeters | A large set of audio features for sound description (similarity and classification) in the CUIDADO project[END_REF], [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF], [START_REF] Shmilovitz | On the Definition of Total Harmonic Distortion and Its Effect on Measurement Interpretation[END_REF] Crest Factor 4 , Form Factor, ICR 5 , LogTimeAttack 6

,Temporal Centroid 7 14 -18 [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF], [START_REF] Peeters | A large set of audio features for sound description (similarity and classification) in the CUIDADO project[END_REF], [START_REF] Rouphael | RF and digital signal processing for software-defined radio: a multi-standard multi-mode approach[END_REF] 1 Mean of odd harmonics over mean of even ones. 2 Three features for lower, medium and higher harmonics (normalized by the sum of all harmonics). 3 Total harmonic distortion. 4 The ratio of peak values of a waveform to the effective value. 5 Ratio of RMS values of first period over the last period for an addressed region of current signal. 6 Measure of the needed time to reach maximum intensity (of the envelope). 7 Weighted sum to identify the point in time where most of the energy of the signal is located (in average). 

NEFSA Efficiency Assessment

The desired properties of NEFSA are:

 To rank features according to its importance (entropy values), regardless of the classification mechanism that follows.

 To determine the lowest possible number of features needed to obtain the best possible performance (as compared to well-known algorithms).

 To be feasible for NILM embedded-systems, i.e. low computational load. so in our assessment we will compare NEFSA performance with the performance of sequential forward selection method (SFS) [START_REF] Whitney | A direct method of nonparametric measurement selection[END_REF] and its improved version: the sequential forward floating selection (SFFS) [START_REF] Pudil | Floating search methods in feature selection[END_REF] (more information in appendix 3). SFFS is generally accepted to deliver the best performance in several applications. we start the discussion by presenting each value). one can notice that after a size of 7 features, the classification rate improvements are only marginal, to get a better understanding, we built on this observation and tested the goodness of NEFSA by the following experiment:

 The size of selected subset is fixed to 7 features for all algorithms (NEFSA in both versions, SFS and SFFS) .

 A 10000 subsets of 7 are randomly selected features and fed to 4 different classifiers: SVM with linear and gaussian kernels, linear discriminant analysis classifier (LDA) and k nearest neighbor (k-NN).

In Figure 4.9 the performance of a linear-kernel SVM classifiers is shown with chosen subsets of NEFSA-Kmeans (red), NEFSA-CHIPD (pink), SFS (black), SFFS (green) and all randomly-drawn subsets (blue), the left plot shows how many subsets can deliver a certain classification rate, for example in 493 subsets (ca. 5% of all subsets) delivered an 80% accuracy, the result using the same fixed size of features subset for other classifiers is shown in Figure 4.10.

Cross-validated classification accuracy (%) Fixing the size of feature subset to 7 in Figure 4.10 was based on the observation of SVM results in Figure 4.8, the results for each classifier can be improved if the subset size was based on the performance of that particular classifier.

In general, the pre-selection of the subset size (number of features) is a common practice for most feature selection algorithms (including SFS and SFFS), several methods were developed over the past decades to estimate the optimal dimensionality of the feature set (see [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]- [START_REF] Fandos | Optimal feature set for automatic detection and classification of underwater objects in SAS images[END_REF] and references within), but since the computational cost is an important factor for our specific NILM application, it will suffice to do a simple (binary) search operation for the smallest subset with the best possible performance, taking into account that our case is far from the boundaries of which the "curse of dimensionality" appears, as we stick to feature sets 10 times smaller (or less) than the number of observations (see [START_REF] Kim | Prediction of optimal number of features[END_REF] for more information). We will not emphasise the importance of the features given in this table, as they are suitable for the experimental setup (V-I trajectory features were ranked among the best here, yet they are known to perform poorly on loads with similar front end power supply [START_REF] Du | Advanced classification and identification of plugged-in electric loads[END_REF]). let us move to numerical tests of NEFSA on real house measurements (BLUED), then discuss the advantage of NEFSA in reducing the computational cost, the overlapping effect on entropy values and on the resulting features subset in general.

Testing NEFSA on real home measurements

Both versions of NEFSA along with SFFS algorithm were applied on BLUED [15] dataset (BLUED measurements are divided to two phases A and B with a total of 43 appliances). The same bank of features (in Table 4.2 and Table 4.3) was calculated and the features sets were always fixed after training on 50% of the data while testing on the other 50%, the imbalance in the number of events per appliance is high like most of real datasets, so the classification rate is always bounded, solutions for such cases are proposed in the next chapter. In Figure 4.11 the classification rates of an SVM classifier (linear kernel) fed with increasing size of features subsets from all three lists of ordered features are illustrated: first one is the result of applying SFFS (blue) and the other two are the results of NEFSA (both versions).

Although the SFFS algorithm performed better on smaller sets of features (less than 15), yet the evaluations on both phases show an equivalent performance when considering the best possible classification rate (89% for phase A, 80% for phase B).

Computational cost

The second aspect for comparison is the computational cost of NEFSA compared to the other algorithms: SFFS, SFS. A computer equipped with an Intel i7 6 core 2.2

GHz processor is employed for all tests, and all programs were written in Matlab NEFSA on the other hand calculates the entropies once, clustering can take tens of seconds if done with K-means, or a lot less if CHIPD is employed. The execution times on all 3 groups of measurements from HELD1 are measured and bar-plotted against a logarithmic time scale in Figure 4.12 as the difference is enormous (numbers of seconds are printed over each bar for convenience).

For the third group of measurements, NEFSA (with CHIPD clustering) is 10 faster than SFFS algorithm. The ranked list of features is available to classifiers within 1.4 seconds.

Computational cost for all feature selection algorithms 

Discussion and closing notes

Most of the features in the collected bank were developed and extracted in the hope of enabling the best disaggregation possible, we argue that feature selection is essential as changing the configuration of appliances (adding or omitting appliances) will change the order of the best features and considerably affect the classification accuracy.

Both versions of NEFSA were applied on a subset of the first group G1 of appliances (Table 4.1); where measurements contain single measurements (i.e. no overlapping) with equal number of events (80 ON/80 OFF per appliance) for all devices. Ideally, the best feature is the one with the lowest Entropy value, so we are more interested in the lower part of the plot, both versions of NEFSA (with K-means and with CHIPD) gave approximately the same set of 20 best features, yet there are differences in the general order, this can be partially attributed the initial assigning of centroids with K-means version; one should also keep in mind that both versions delivered identical performance in our tests with 3 classifiers. The Insight here is that all tested feature selection algorithms (SFS, SFFS, NEFSA-CHIPD, NEFSA-Kmeans) are ranking with different methodologies but they result in reliable ordering.

Also, to study the effect of overlapping on Features-ordering we add G2 to G1, then we take all 3 groups together in Figure 4.14.

while adding G2 to G1 will double the number of events (data points), yet the entropy differences are not uniformly the same and it is not only doubled after adding G2 (or tripled with G3), which indicates the effects of overlapping, it is also noted that some of the features keep their importance as Feature 23 (shown with a data tip in Figure 4.14, the feature is SSMR: highest spectral peak over spectral mean [START_REF] Kahl | A Comprehensive Feature Study for Appliance Recognition on High Frequency Energy Data[END_REF]) while others are affected greatly with increased overlapping as Feature 19 (PMR: highest temporal peak over temporal mean).

An important insight can be drawn from this result: one "best" set of features is not enough if the environment will be drastically changing its composition, i.e. factories with shifts for different production lines); such environments will be better monitored with a smart meter that can adapt its set of features or equipped with ready-to-use list of features for the targeted configurations.

On the other hand, for residential environments, best attainable load disaggregation depends on adequate training on the typical routines of power usage and calibrating the smart meter on regular basis is also important to account for new appliances. As can be seen from, the features that stayed in the best 25 features are color-coded in three cases: NEFSA with both versions and SFFS/SVM-linear, We observe an advantage for NEFSA (both versions) as its features-subset will not change greatly with overlapping compared to SFFS for example (19/25 for NEFSA-CHIPD,20/20

for NEFSA-K-means compared to only 7/25 for SFFS/SVM-linear). 

5 Scenario-Based NILM Signals Construction

The majority of NILM Datasets, which were made publicly available in the last two decades, had been collected with a specific application in mind; they were still not optimal for extracting important features, such as harmonic properties in transient states of the current signal [START_REF] Du | A review of identification and monitoring methods for electric loads in commercial and residential buildings[END_REF]. They were either limited to aggregate measurements only or single measurements only, or lacking enough sampling rate in one of them, as provided in Table 5.1.

Nowadays, Machine learning algorithms along with advanced signal processing techniques are ready to exploit such features to deliver the best possible identification of electrical appliances, so all we need is other "extensive" data sources or a smart way to construct "quasi-equivalent" sources out of limited measurements at hand. The first question we raised: if only single-device measurements are available, could we use them for 'synthesizing' whole measurements without measuring again? it will be sufficient for the producers to provide interested customers with a list of stand-alone measurements of their device, a sort of "extended digital datasheet"; enabling them to test many scenarios of consumption before putting any constellation of devices together, which is of a high importance for big factories and sensitive facilities. A more preferable second solution would be to rely on few non-intrusive aggregate measurements to synthesis these desired NILM scenarios.

In this chapter, we will start by presenting a procedure to generate an approximately identical version of the aggregate real measurements using single-device measurements alone as an answer to the first question. Then we develop a generalized version of it to be able to use any aggregate measurements to construct any desired NILM signal. 

NILM Signal synthesis out of single-device measurements

Intuition and phase preservation

The intuition to construct aggregate measurements out of single-device measurements was always encountered with the problem of phase difference among different measurements for different devices. In the following we present a simple example to clarify this problem:

The general model for the reconstructed current signal 𝐼 can be written as:

𝐼 ∑ 𝛿 𝐼 𝑣 (5.1) 
Where N is the number of the appliances.

𝐼 , 𝑖 1, … , 𝑁: are the current signals of the individual appliances.

𝒗 is a noise term. 𝛿 , i 1, ⋯ , 𝑁 indicates the state of the corresponding appliance as:

𝛿 1, 𝑖𝑓 𝑡ℎ𝑒 𝑖 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 ′𝑂𝑁 0, 𝑖𝑓 𝑡ℎ𝑒 𝑖 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 ′𝑂𝐹𝐹′ (5.2) 
Now let us look at the case of two appliances (N=2) where they are represented as complex loads resulting in a phase shift between the voltage and the current signals;

their currents can be written as:

𝐼 𝐴 𝑒 , 𝐼 𝐴 𝑒 (5.3) 
The total current signal can be then obtained as (𝐴 𝐴 𝐴 for simplicity):

𝐼 2𝐴 𝑒 𝑐𝑜𝑠 (5.4) ⇒ |𝐼 | 2𝐴 𝑐𝑜𝑠 (5.5)
The amplitude of the total signal |𝑰 𝒕 | depends on the phase difference 𝜃 𝜃 , so a simple addition as in relation (5.1) will not be correct unless all current signals are added with emphasis on their relative phase.

Fortunately, the voltage signal stays intact and can be considered a reliable phase reference, so current signals of the individual appliances are converted to FIT-PS [START_REF] Held | Frequency Invariant Transformation of Periodic Signals (FIT-PS) for high frequency Signal Representation in NILM[END_REF], [128] representation, which takes the zero-crossing point (rising edge: from negative to positive) in the voltage signal as a phase reference. In the following, we build on this observation, firstly let us present a flow chart for the proposed procedure in Figure 5.1 below: Five distinctive steps are followed in this procedure, let us list them then explain new ones: [step 3] Extract operational modes for each appliance.

[step 4] Generate the targeted current signals according to the desired scenario, adding steady-state periods to meet the desired length, as detailed in Figure 5.2.

[step 5] Sum the generated current signals according to the desired scenario.

We will clarify the concept of operational modes and their extraction in the next sections.

Input1: operation modes of appliances Input2: vector of events i = i + 1 

I t = I t + I i t I Virtual aggregate signal Generate individual signal I i of the i th appliance Init: i = 1 Init: I t = noise

Operational modes

Some appliances have more than one operational mode in general, where we define an operational mode as a distinctive subset of the current signal of a certain device; that can comprise both transient state and part of a steady state. An example is depicted in Figure 5.3 for a fridge.

As can be seen, these operational modes differ from each other and must be considered when constructing the virtual aggregate signal. Each operational mode has a different power level in its transient or steady state or both, which can be used to choose the most appropriate one in the construction procedure. Simple structure appliances have only one operational mode in general, e.g., a lamp.

Extraction of operational modes from single-device measurements can be done as follows:

o For each event, take a window starting at the event index and containing both transient state and a part of the steady state. o a new sequence number is assigned to the new mode and will be checked again in other occurrences (as the current signal drawn by some appliances will change its operational modes in a sequential manner).

Numerical comparisons

Numerical experiments were conducted to test the hypothesis of "suitability of the constructed aggregate signal for training and testing NILM algorithms".

To do that, the performance of standard NILM algorithms on such generated data will be compared against their performance on an original aggregate signal that has the same scenario of events and appliances. Figure 5.4 shows a classical chain of processes for typical NILM system. The comparison will be conducted between the results of standard event detection, feature extraction and classification algorithms on the original aggregate measurements as well as the constructed aggregate measurements. For that purpose, the set of single measurements in HELD1 dataset are employed along with aggregate measurements for the same set of appliances in Table 5.2.

Figure 5.4: Typical sequence of processes in a NILM system

The real measurements were conducted as follows:

-Single measurements for each appliance were taken with 100 pairs of On-Off events, each active cycle was kept running for 15-25 seconds to get the transient state and part of the steady state.

-Aggregate measurements, where each appliance was switched On and Off randomly, but only 4 appliances can be active on the same time at most.

-A minimum temporal distance of 3 seconds was kept between events. The virtual aggregate measurements were generated according to the same scenarios of events followed in real ones, an example of those measurements is depicted in 

Event Detection

Two different event detectors were used, the first one is based on the work of Hart [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF] , while the second is our FBE Event detector, as designed in third chapter. Both were applied on the original measurements as well as the constructed ones, and the results are given in Table 5.3 and Table 5.4 respectively. The threshold for Hart

Event detector was set to 15 W, as going below that will result in detecting too many false events due to the high variations of the noise (1 W is also presented in the Table 5.3 for demonstration), appliances below the chosen threshold were treated as noise in all event-detection tests since the comparison is the main goal here. For FBE detector also, several thresholds were chosen, and the results are presented in Looking at the tables, both event detectors show a slightly better performance on the constructed measurements (less than 5%), a more realistic solution with modelling the steady state variations will be presented in the generalised construction model.

Comparing extracted features

A full comparison of all extracted features is a tedious task and more meaningful conclusions can be drawn from the performance of a certain classifier fed with all or an identical subset of NILM features extracted from both sides, nonetheless, let us take a glance at some of the steady state features for high and low consumers.

Active and reactive powers 𝑃 and 𝑄 were chosen, along with the mean power of the harmonics. If multiple appliances are active at the same time, a subtraction procedure is done at each event to extract a steady state window suitable for calculating those features of interest (while taking the phase and the transient state length into account, assuming that events are well separated which is the case for these measurements). A band-pass filter is applied on the current signal for each harmonic component 𝑓 , 𝑛 * 𝑓 , where 𝑛 is the harmonic order, 𝑓 is the fundamental frequency, then the mean harmonic power is given by: In Figure 5.6, we compare the selected steady-state features: Apparent power 𝑃 , active power 𝑃 and reactive powers 𝑄 for two different appliances, along with 𝑃 , 𝑃 , 𝑃 as in equation (5.6). The kettle which consumes high power (ca. 2 kW), and a Radio that consumes 6 W only, where in each sub-plot, the horizontal axis is for event indices (took 40 events) while the vertical is for the power.

P V * I , (5.6) 
This "visual" comparison is to get a feeling for the values, while constructed signals mostly show a homogenous behaviour, original real signal has few outliers for some events, which can be attributed to the sensitive Sine function for reactive power Q calculation (small deviation in phase difference has a big impact). Let us see how these "close results" can be reflected in classification results in the next section.

Comparing classification results

Two standard classifiers [START_REF] Basu | Classifcation techniques for non-intrusive load monitoring and prediction of residential loads[END_REF] were implemented to compare their performance on both types of measurements, the first one is based on a feed-forward neural network (FFNN), while the other one is a support vector machine (SVM) classifier (various kernels). Both classifiers were trained using extracted features from individual measurements (active and reactive powers in addition to the harmonics), then tested on the original and constructed virtual measurements respectively. To simplify the classification process, a power threshold of 25W was applied to divide the appliances into two groups: high power appliances and low power appliances; the features are then fed to the corresponding FFNN subnet (or SVM sub-classifier respectively), comparisons between the performance of those classifiers are listed in Starting with the FFNN in Table 5.5: while performance on both sides is comparatively similar, the classifier delivered slightly better results when applied on constructed measurements; one reason for that is the mismatch between the possible variations in steady state and the few periods being constantly repeated, this will addressed in the general model. also, the the added noise to the constructed signal is a simple additive white noise which is rarely the case for real ones. Another reason is that steady-state features from real measurements are more prone to variations and outliers. For a deeper analysis per appliance one can check the confusion matrices, as in Table 5.6.

FFNN correctly classified nearly all the samples in the test set on both types of measurements in the high-power category. Although the overall accuracy rate is close in low power category, yet a closer look yields differences in misclassification rate among the individual appliances, for example: The Radio (ID=1) was misclassified as Router only once in the original measurements table, while it was misclassified 8 times as Router in the constructed measurements table. This can be attributed to the higher noise level in real measurement which can be of great impact for low-power consumers (as both appliances have a less than 10 W nominal power).

same approach is valid for the results of SVM performance in Table 5.7, the differences in classification rates are relatively small (worst case encountered is a difference of 8.4%) and can be attributed for the most part to misclassifications of small-power consumers due to unrealistic noise model, other improvements can be introduced to operational modes extraction and selection, next section will discuss the possibility of generalizing the construction concept to aggregate-to-aggregate In analogy to the followed approach in the previous section. This section will present a novel method to isolate those operational modes and evaluate them before discussing the possible applications of the method. Figure 5.7 illustrates the general scheme for this approach.

Steady-state subtraction

The highlighted box in Figure 5.7 (steady-state subtraction) will be clarified first as other steps prior to it are similar to the ones previously discussed in the preceding section.

The objective of this step is to extract, for each event, the individual current signal of the appliance, we eliminate the effect of the other 'on' appliances (if exists) on the total current signal as much as possible, thus keeping only the signal of the appliance under interest. In principle: the other 'on' appliances are in their steady states before the event, and it is assumed that they're still in the same state after it, so we can compose a new signal by taking an integer number of periods from the steady state before the event and then subtracting them from the total signal.

The resulted signal is supposed to be an individual current signal of the appliance that caused the event. This process will be referred to as "SSS" in the following, a flow-chart is presented in Figure 5.8 along with an example of a subtracted signal of 

Extraction of Operational Modes

The A comparison between the operational modes extracted from both individual and aggregate measurements for two different appliances is given in Figure 5.9, where we note that the number of operational modes extracted from aggregate measurements can be larger than that of individual measurements, depends on the length of the measurement and how much "distortion" did the transient state of that particular appliance suffer due to the presence of other devices, in the steady state they have the same amplitude and waveform.

Construction Procedure

The construction algorithm is detailed in Figure 5.10, it has three inputs:

The first two inputs are similar to those of last section (Figure 5.2): the set of extracted operational modes for each appliance and the desired events scenario. The third input is the calculated parameters of steady-state variations that describes the ripples in signals envelop.

Figure 5.9: comparisons of operational modes (out of individual measurement vs aggregate measurement) for two appliances

The construction procedure has two stages:

 Initialization: the constructed current signal 𝐼 is initialized with randomly selected samples of a noise signal, preferably taken from the available measurements where all appliances are 'off', assuming that these samples are IID (independent and identically distributed), otherwise an additive white noise is generated.

 Loop over appliances: create an individual signal for each appliance based on its events and operational modes. The outputted aggregate signal 𝐼 is the accumulation of all individual signals for all appliances.

In the following, we describe the steady-state variations model then walk through the steps of individual-appliance signal generation. We propose the following method for modelling those variations:

Let 𝐼 be a segment of the current signal starting at the end of the transient state. The second fitting operation is applied on the signal 𝐷𝑖𝑓𝑓 using 𝑠𝑖𝑛 function defined as : sin 𝑚 ∑ 𝑎 sin 𝑏 𝑚 𝑐 (5.9)

The result of second fitting step is shown in Figure 5.13.

Figure 5.12: steady-state modelling, first fitting process

The difference between the signal 𝐷𝑖𝑓𝑓 and its fitted curve is the signal Nsig, which is desired to be random with Gaussian distribution. In  15 coefficients of sin 𝑚 , for the second fitting curve.

 2 coefficients for the Gaussian fitting (mean and variance).

Each appliance may have several sets of parameters calculated at different events, and these can be used to generate realizations when needed. In our construction algorithm we selected the parameters-set randomly at each event. In Figure 5.15 and Figure 5.16 we show some realizations of the model for two more appliances.

next paragraph will provide a plan for constructing the signals for each appliance. 

Signal-Generation of individual appliance

The algorithm used to construct the individual signal 𝐼 of the 𝑖 appliance is shown in Figure 5.17:

1) The signal 𝐼 is initialized with zero values.

2) First event of the appliance is assumed 'on', otherwise a dummy one is added at the beginning of the events list. we also assume that each 'on' event is followed by an 'off' event, and vice versa. For the 𝑘 'on' event, we create the signal 𝐼 , which starts at the index of this event and ends at the index of the next 'off' event. Values of 𝐼 , are created using the operational mode of the 𝑘 event. 

4) The signal 𝐼 is the sum of all 𝐼 , 𝑚 signals.

Numerical comparisons

Once again, the performance of NILM algorithms will be compared at all stages of a typical NILM system between the original aggregate measurements and constructed aggregate measurements (out of aggregate real measurements). The interesting comparison is between the resulted entropy values of all features on original and constructed signals, as to assess if the construction procedure affected the "ability of separation" of these features. We list the NEFSA order of first 20 features also in Table 5.10, where only 1 feature was different (Bold) while all the other 19 are identical in both phases. This result is of special importance as it allows us to run NEFSA feature selector on the constructed signal to predict the suitable features subset for the original one. 

Possible Applications of the Construction scheme

In the last sections, the feasibility of constructing NILM scenarios from a limited of group of measurements, the size and variability of this training group will affect the accuracy of the constructed scenarios as some operational modes may not appear in short measurements.

This scheme of construction has many potential applications, in this section we discuss some of those possibilities

providing more Data for Training/Testing NILM algorithms

One of the long-standing problems in the NILM research field is "useful" data scarcity.

In chapter 2 we already mentioned that most public datasets were event-less (no groundtruth as in REDD [START_REF] Kolter | REDD: A public data set for energy disaggregation research[END_REF]) and/or measured with a very low sampling rate (RAE [START_REF] Makonin | RAE: The rainforest automation energy dataset for smart grid meter data analysis[END_REF])

and/or measured for a very short period (PLAID, COOLL, WHITED [START_REF] Gao | PLAID: a public dataset of highresoultion electrical appliance measurements for load identification research: demo abstract[END_REF]- [START_REF] Picon | COOLL: Controlled on/off loads library, a public dataset of high-sampled electrical signals for appliance identification[END_REF]).

Another issue with the rest of real-world datasets (UKDALE [START_REF] Kelly | The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes[END_REF], BLUED [15]) is the vast imbalance in the events among different appliances (e.g. the TV has 20 ON events per day while the dish washer has one event per day and the vacuum cleaner has one 

Tracking principle

As can be seen in Figure 5.22, the tracking block has the following inputs:

-The aggregate current signal 𝐼 𝑡 at the input of the smart meter.

-Operation modes of all appliances (should be stored in a dynamic list after a training phase).

-Labelled sequence of events (as outputs from event detector and classifier).

The constructed signal 𝐼 can be written as:

𝐼 𝑡 ∑ 𝑓 𝑡 (5.11) where 𝑓 is the operational mode of the 𝑖 ℎ appliance, and 𝑀 is the number of active appliances at time 𝑡. Each operational mode can be written as:

𝑓 𝑡 𝑔 𝑡 𝑣 𝑡 (5.12)

where 𝑔 𝑡 is the noise-free operational mode, and 𝑣 𝑡 is the remaining noise after extracting this operational mode; the constructed signal can be rewritten as: The difference term is only related to the noise (noise is broadly defined here to include all contributions from different sources: electrical network and appliances and measurement system). Practical tests show an increase in the amplitude of the difference signal when a high-power appliance is turned on, so we "loosely" assume that the difference signal can divided among the active appliances with ratios proportional to their nominal powers. In this case, a high-power appliance will be given a high portion of the difference signal. According to this proposed model, the estimated individual signals can be written as 𝐼 𝑡 𝑓 𝑡 𝑎 𝑑 𝑡 , 𝑖 1,2, … , 𝑀 (5.17

𝐼
)
where 𝑎 is a coefficient that is calculated as follows 𝑎 ∑ :𝑃 is the power of the 𝑗 ℎ appliance (5.18)

Evaluation

Since HELD1 dataset has labelled individual measurements as well as labelled aggregate measurements for the same group of devices, we can test the proposed concept of dividing the difference signal among active devices for tracking as in the illustrated methodology in Figure 5. 

Use-cases for Tracking scheme

Most use-case for tracker are generally use-cases for the smart meter.

1. Providing the smart meter with pattern information (typical usage of appliances in the day and at night) and the number of residents enable the tracker to compare this profile against the real time consumption pattern and report any excessive consumption in an unusual time.

2. Tracker can point out power wastage through comparing with general consumption average per appliance, e.g. alarm the parents of long active TV hours can help them plan their children activities better.

3. Directed maintenance: If a specific defect is defined, the tracker can compare the resulted signal shape of this device in the normal consumption circumstances 4. predicting condition deteriorations: Aging appliances like an old fridge can exhibit unusual power profile. Tracker can compare it to its history records to detect differences, yet it is not straightforward as the signal difference will be distributed to other appliances as well.

Graphical tool for NILM signals analysis and construction

Several tools were developed recently to establish a cumulative research effort in the NILM field, Batra et al [START_REF] Batra | NILMTK: an open source toolkit for non-intrusive load monitoring[END_REF] developed NILMTK as a tool-kit for benchmarking NILM algorithms, Kelly [START_REF] Kelly | Metadata for energy disaggregation[END_REF] and Pereira [START_REF] Pereira | EMD-DF: A data model and file format for energy disaggregation datasets[END_REF] proposed separately two interesting metadata schemes for unifying public datasets. nonetheless, one of the hardest problems that we have encountered was replicating other algorithms described in NILM research papers (mostly due to lack of implementation details). As a contribution to NILM research community we provide a Graphical tool (GUI) for NILM signal construction (some of its interfaces are illustrated in Figure 5.25), all employed algorithms (signal construction, feature selection, event detection, modelling of steady-state variations) were fully explained in chapters (3-4-5) of this Thesis, we only refer here to its existence and objectives while appendix 4 provides more details for all capabilities of the tool and how to use it properly.

objectives of the tool

the main objectives are to  give interested NILM researcher/enthusiast the ability to generate any desired scenario of NILM signals and explore its abilities, provided that he has a very limited set of measurements of the target appliances, those measurements can be  from digital datasets of specific devices provided by the producers.

 A combination of measurements from several public datasets (Ukdale [START_REF] Kelly | The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes[END_REF], HELD1 [START_REF] Held | HELD1: Home Equipment Laboratory Dataset for Non-Intrusive Load Monitoring[END_REF], COOLL [START_REF] Picon | COOLL: Controlled On/Off Loads Library, a Public Dataset of High-Sampled Electrical Signals for Appliance Identification[END_REF], Plaid [START_REF] Gao | PLAID: a public dataset of highresoultion electrical appliance measurements for load identification research: demo abstract[END_REF], among others).

 self-gathered with a data logger/smart meter.

 provide graphical user interfaces to compare all the steps of NILM process on both sides: the original provided signals, and the constructed ones.

 Supply the user with a rich bank of NILM features, with the ability for him to add/edit the features as he sees fit. 

Conclusions & Future Work

To extend the research topics addressed in this thesis, we provide some thoughts for "near and far" future steps:

(1) Extending FBE event detector for simultaneous events detection Almost all event detection approaches assume the switch continuity principle [START_REF] Makonin | Investigating the switch continuity principle assumed in Non-Intrusive Load Monitoring (NILM)[END_REF].

In non-residential environments, simultaneous events can be a serious challenge for smart meters. as a future step, we intend to test (and further develop) the FBE event detector presented in chapter 3 on such events in different sampling rates scenarios.

(2) Implementing the proposed feature selection algorithm NEFSA on a lowcost embedded system.

(3) Exploiting the latest advances in machine learning to identify the most effective set of features Recently, black-box machine learning models are examined by new methods [START_REF] Gilpin | Explaining explanations: An overview of interpretability of machine learning[END_REF], [START_REF] Molnar | Interpretable machine learning: A guide for making black box models explainable[END_REF] with the intention of making those models "explainable". The reported success with deep learning models in NILM experiments can be extended by examining the important features used by such models to focus our data analysis.

Tools like SHAP values [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] are already in use in other machine learning applications and can help us to gather optimized features that can be later provided to smart meters. Those features along with quick feature selection algorithms as the one we proposed would guarantee the best attainable energy disaggregation possible. (5) Incorporating other data formats used in publicly available datasets (FLAC, csv, txt) for scenario based NILM construction graphical tool, the input files are expected in NetCDF format for now. [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF] Testing the derived HHT features in this thesis for discriminating among identical devices if "Cloud NILM" is adopted As we saw in chapter 3, interesting instantaneous frequency curves can be calculated by applying HHT, yet the computational cost is high and not feasible for low-cost NILM solutions. If a "Cloud NILM" model is adopted to ignore the complexity drawback and more accurate methods are employed for determining the limits of the transient state, then an automatic extraction will be possible for such curves. Experimenting with those features for identical devices identification can yield good results in my opinion.

-Events indices idx Ev _ , sampling frequency s f , and grid frequency 0 f are assumed to be available in the .nc file. 
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  3): the goal is to customize EMD for low cost NILM solution while taking the nature of NILM signals into consideration; an algorithm (FBE: Filter Based EMD) was designed for NILM signal analysis with applications in Event detection and feature extraction.

  first phase was motivated by Empirical Mode Decomposition and its modes extraction procedure, yet FBE is not equivalent to EMD and FBE-modes are different from the EMD intrinsic mode functions. FBE algorithm aims to break down the overall multi-component current signal into several mono-component signals using adaptive filters, whose cut-off frequencies are calculated from the detected extrema (no cubic curve interpolation as in EMD) and depend on the power of the signal.
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  spectrum of the main mode bears important information about the probabilities of local appearances of a specific frequency (as discussed earlier), In Figure 3.24 we show that the bandwidth of the main mode spectrum as well as the amplitude (can be averaged for more accuracy) are consistent among all instances.
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  event per week); such usage patterns may result in biasing the classifiers towards majority classes during training phase. The straightforward application of the construction scheme is to provide more suitable data for training and testing NILM algorithms out of the present problematic or incomplete ones. In Figure 5.20, a new NILM dataset can be created by extracting the operational modes from several datasets and then design a new one according to desired scenarios or randomly as proposed in Figure 5.21.
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 4 scheme

/

  * Mainline */ READ v, i, idx, fs len = 0.2 * fs // default length of left window (samples) maxTrLen = 4 * fs // max expected transient length of all appliances (samples) count = 1 // loop counter WHILE count <= numOfEvents // Step 1) cut a window of length "len" from steady state before the event DO [vL, iL] = CutLeftWindow(v, i, len) // Step 2) cut a total window around the event DO [vT, iT] = CutTotalWindow(v, i, maxTrLen) // Step 3) // find power change around the event DO [pBefore, pAfter] = CalculatePowerChange // determine event type using power levels before and after it IF pBefore < pAfter
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 534 Same as step 3 in SFS. Event detection Interface: Feature extraction Interface: Features 1 to 10 of the appliance ID = 9, but with features 1, 2, and 3 deactivated 4-Feature Selection Interface 5-Classification Interface

  

Table 2 .1: Public NILM Datasets with V, I measurements

 2 

	Dataset	Resolution EB	Year	country	Duration
	HELD1 [14]	4 KHz	Yes 2018	Germany	Scenarios
	BLOND [60]	50/250 KHz Yes 2018	Germany	213/50 days
	RAE [61]	1 Hz	NO 2018	Canada	10 weeks
	WHITED [57]	44.1 KHz	Yes 2016	Germany, Austria, Indonesia	Transients
	SustDataED [62]	12.8 KHz	Yes 2016	Portugal	10 days
	COOLL [63]	100 KHz	Yes 2016	France	Transients
	ECO [64]	1 Hz	NO 2014	Switzerland	8 months
	UK Dale [65]	16 KHz	NO 2014	UK	655 days
	PLAID I&II [56]	30 KHz	Yes 2014	US	Transients
	COMBED [66]	1/30 Hz	NO 2014	India	1 month
	AMPds [67]	1 Hz	NO 2013	Canada	2 years
	IHEPCDS [68]	1/60 Hz	NO 2013	France	4 years
	iAWE [69]	1 Hz	NO 2013	India	74 days
	ACS-F2 [70]	1/10 Hz	NO 2013	Switzerland	2 hours
	BLUED [15]	12 KHz	Yes 2012	US	1 week
	REDD [71]	15 KHz	NO 2011	US	2 -4 weeks

Table 2 .2: List of all appliances in HELD1
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	ID	Name	P(W)
	1	Toaster	998
	2	Black hairdryer (setting 2)	1155
	3	Radio	6.2
	5	Vacuum cleaner	424
	7	Hairstraightener	56
	9	Heat gun (setting 1)	820
	10	Router	9.2
	11	Black desk lamp	20
	13	Refrigerator (white)	170
	14	Refrigerator (blue)	190
	15	Fluorescent Lamp	40
	16	Light bulb box	20
	17	Kettle	2100
	19	Black hairdryer (setting 1)	500
	20	Heat gun (setting 2)	1603
	21	Fan	22
	22	Dremel (Multifunction tool)	30
	23	LED lamp	1

Table 3 .1: Short comparison among TFA tools Fourier Transform Wavelet Transform S Transform Huang-Hilbrt
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	Transfrom

3 Huang-Hilbert Transform

  

	While most natural processes are nonlinear and nonstationary, yet the available
	methods to handle such data are quite limited and either valid for linear but
	nonstationary signals (as Wavelet transform), or vice versa. This fact motivated the
	development of HHT, as introduced recently by Huang [82], as a new tool suitable
	for filling this gap. HHT can inform us also about the inner dynamics in the
	processes (Huang presented the concept of intra-wave frequency modulation as the
	change of the instantaneous frequency within one oscillation cycle).

Figure 3.5: FBE algorithm

  

			Blocks of M points
				from input signal
	Yes			Stage 1	
	Above a power			initial modes
	threshold?	Recalculate frequencies
	No	BPF centered at 𝑓 𝑓 ∆ , 𝑓 ∆
				𝑓 component
	𝑓 component	No		Above a power threshold?	
				Yes	
		Re	-	estimation of	𝑓	for
				more accuracy
	Residual	final modes and	Residual
				residual	

Table 3 .2: Results of the FBE-based Event detector on BLUED Dataset
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	Phase	Total Events	TP	FN	FP	Precall %	Pprecision %
	A	904	897	7	17	99.23	98.14
	B	1578	1390	188	197	88.09	87.59

Table 3 .3: Performance comparison with [93]
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	BLUED Dataset	Phase A	Phase B
	%	FBE	[93]	FBE	[93]
	Precall	99.23	98.16	88.09	70.40
	Pprecision	98.14	97.94	87.59	87.29
	3.4.2.5 FBE for NILM feature extraction		

Several features were extracted from the classical EMD modes in other fields of research, which makes it tempting to experiment with those features on FBE modes as well. However, the critical point is how to evaluate such features. That is the next step in our research in chapter 4, where we look closely at feature selection for NILM application. For now let us just define exemplary features that we had actually experimented with later on: 𝐹 are a group of binary values represent the existence of a mode with a new emerging frequency other than the usual harmonics as a result of FBE decomposition of the transient part of an event, in mathematical terms:

Table 3 .4: Classification rates with extracted marginal features only
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	Classifier/Group		Kernel	Correct classifications (%)
			BW & AA	BW & MA	MA & AA	AA & MA & AA
	LDA/G1	pseudolinear	43.5	78.3	68.8	77.8
	SVM/G1	Linear	44.5	81	70.3	78
	LDA/G3	pseudolinear	37.5	60.3	51.3	66.2
	SVM/G3	Linear	38.4	67.2	60.1	71.2

Table 4 .1: List of Appliances under Test
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	ID	Name	Power (W)
	1	Radio	6.2
	2	Heat gun (setting 1)	820
	3	Router	9.2
	4	Black desk lamp	20
	5	Light bulb box	20
	6	Kettle	2100
	7 Black hairdryer (setting 1)	500
	8	Fan	22
	9	Rotary tool (Dremel)	30
	10	LED lamp	1

Table 4 .3: Bank of NILM features, second part Features Indices

 4 

Table 4

 4 .4, yet there is no contradiction; firstly, the best subset of features is not unique, i.e. there can be other subset that deliver the same performance as we

	saw in Figure 4.10, secondly, both SFFS and SFS suffer the problem of
	nesting[105], i.e. the best subset of size n (features) is not necessarily included in the
	best subset of n+1 (for example the best 8 features subset for SFFS/ G1/SVM-linear:
	6,5,73,70,74,30,27,33).

SFS and SFFS are "wrapper based" which means they calculate the classification rate for a given feature rate in the process of assessment. On the other hand, NEFSA does not depend on the classifier type, such approaches (called "filter based") are always considered inferior towards the wrapper based in terms of performance, yet we argue that NEFSA has comparable results with those of SFS and SFFS, as presented for G1 in

Table 4 .5: Intersections of best subsets with increased overlapping

 4 ,73,76,70,4,78,39,79,11,71,13,74,84,15,82,41,83,14,19,75,24,

	G#	First 25 Features, Ranked
	G1	23,73,74,76,79,70,37,78,71,84,11,75,83,81,82,4,24,19,14,26,15,13,43,6,22
	NEFSA	
	G1 & G2 76,23,73,74,70,11,79,13,82,71,78,83,15,84,75,14,26,81,19,20,24,4,10,6,31
	CHIPD	
	All	73,4,6,23,79,76,71,74,33,32,13,11,70,75,78,84,20,82,21,81,83,26,10,9,14
	G1	23,37,6
	NEFSA	
	K-means	

Table 5 .1: Public Datasets with measurement types
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	Dataset	Type of measurements	References
	REDD	whole-house measurements only	[124]
	BLUED	whole-house measurements only	[125]
	PLAID	individual measurements only	[56]
	UKDALE	whole-house measurements, single measurements with low sampling rate	[126]
	WHITED	individual measurements only	[127]
	COOLL	individual measurements only	[63]

Table 5 .2: List of considered Appliances

 5 

	ID	Name	Nominal Power (W)
	1	Radio	6.2
	2	Heat gun (setting 1)	820
	3	Router	9.2
	4	Black desk lamp	20
	5	Light bulb box	20
	6	Kettle	2100
	7	Black hairdryer (setting 1)	500
	8	Fan	22
	9	Rotary tool (Dremel)	30
	10	LED lamp	1

Table 5 .3: Comparison of Event detection results, Hart
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	Signal Type	Thr (W)	Total Event	TP	FN	FP	Precall %	Pprecision %
	Original	1	1600	1411	189	3417	88.19	29.23
	Constructed	1	1600	1448	152	5542	90.50	20.72
	Original	15	1120	958	162	31	85.54	96.87
	Constructed	15	1120	959	161	0	85.62	100

Table 5 .

 5 4. 

Table 5 .4: Comparisons of Event Detection results, FBE
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	Signal Type	Thr	Total	TP	FN	FP	Precall	Pprecision
		(W)	Event				%	%
	Original	1	1600	1439	161	135	89.94	91.42
	Constructed	1	1600	1480	120	97	92.50	93.85
	Original	5	1440	1285	155	53	89.24	96.04
	Constructed	5	1440	1322	118	7	91.81	99.47
	Original	15	1120	1113	7	37	99.38	96.78
	Constructed	15	1120	1090	26	0	97.32	100

Table 5 .

 5 5 and Table 5.7.

Table 5 .5: FFNN performance comparison

 5 

	%	High power appliances	Low power appliances
	Original	96.9	87.9
	Constructed	100	89.6

Table 5 .6: Side by side comparison of confusion matrices, Original vs NILM

 5 signals with proposed modelling to steady state variations, then some closing insights and notes are presented.

Table 5 .7: SVM performance comparison (3 kernels)

 5 

		High power appliances		Low power appliances	
	%	RBF	Linear	Polynomial	RBF	Linear	Polynomial
	Original	91.3	90.6	96.3	85.4	81.9	86.3
	Constructed	99.4	82.2	100	90.6	78.8	90.6
	5.2						

NILM Signal synthesis out of aggregate measurements

  

	The next milestone in NILM signal synthesis research is: How feasible is it to use
	limited aggregate NILM signals only (instead of single-device measurements) to
	generate any desired NILM scenario. A systematic method to answer this question
	would be to find out if it were possible to harvest the operational modes of
	individual appliances from a real aggregate NILM signal and use them to build any
	NILM signal.

1 Modelling of steady-state variations

  The purpose of NILM signal construction scheme is to be able to generate any desired NILM scenario with realistic characteristics. Careful analysis of the difference signal between the modelled sum of extracted operational modes and the original real aggregate measurement displayed inconsistent properties (spectral peaks at grid frequency and harmonics) of what was assumed white (or at least coloured) noise previously. One way to mitigate this difference is to model the variations of steady-state regions and incorporate this model in the construction procedure. In Figure5.11, the behaviour of steady-state peaks (envelope) of current signal suggests a little "decay" which can be seen in current and in power signals as well.

	5.2.3.		
	Input1: operation modes of appliances
	Input2: vector of events		
	Input3: parameters of steady-state variations
	Generate individual signal I i of the i th appliance	Init: i = 1
	i = i + 1		
	I t = I t + I i			Init: I t = noise
	Virtual aggregate signal	I	t

  1. calculate the signal 𝐼 , where 𝐼 𝑚 is the maximum value in the 𝑚

	period of 𝐼,		
	𝐼 𝑚	max 𝐼 𝑚 1 * 𝑁 1: 𝑚 * 𝑁	(5.7)
	N is the number of points per period. The signal 𝐼 is then fitted with a power
	function of the form 𝑓 𝑚	𝑎 𝑚	𝑐 as shown in Figure 5.12.
	2. calculate the difference between the two signals as
	𝐷𝑖𝑓𝑓 𝑚	𝐼 𝑚	𝑓 𝑚		(5.8)

  The transient state of 𝐼 , is the same as that of the operational mode, and the steady state is a repeated version of the mode's steady state. The number of repetitions is dependent on the

	𝐼 , 𝑚	𝐼 , 𝑚	𝐶 , modulo 𝑚, 𝑁

number of samples between 𝑘 and 𝑘 1 events. Figure 5.16: Modelling steady-state variations of a Dremel 3) Application of a steady-state variations model (SSVM): We randomly choose a set from the available sets of parameters of the 𝑖 appliance, then we generate a realization 𝐶 , of the noise model. The number of samples in 𝐶 , is equal to the number of periods in 𝐼 , . The 𝑛 period of 𝐼 , is then multiplied by the sample 𝑉 , 𝑛 as:

17: Signal-Generation of each individual appliance 5.2.4.1 Event Detection

  Create 𝐼 , in the interval [ev_idx k , ev_idx k+1 ] Table5.8 and Table5.9, where 𝑃 (recall) and 𝑃 (precision) are calculated for different values of detection parameters: 𝑇 : Step-size threshold

	Events scenario, operation modes,
	and -model parameters get transient and steady states from op. mode of the k th event Iindividual appliance signal 𝐼 Create 𝐶 , : a realization of SSVM 𝐼 𝐼 𝐶 , 𝐼 , measurement from HELD1 Dataset [14] against constructed aggregate signals out of Init k = 1, I i = 0 k = k + 1 real individual measurements (denoted Constructed_ind) and constructed aggregate signals out of real aggregate measurements (denoted Constructed_sub). The Figure 5.A comparison of the performance of Hart and FBE event detectors on original results are shown in

(W), 𝑇 : Min-steady length (Periods), 𝑇 : Steady-state tolerance (W).

Results show that the performance of constructed signals out of individual measurements is generally higher than that of original signal, especially in 𝑃 values (less false events), whereas the performance of constructed signal based on aggregate measurements is closer to that of original signal. As a result, events detector's performance on Constructed_sub signals give quite a good idea about its performance on the original measurements.

Table 5 .8: Hart Event Detector performance comparison

 5 

	𝑻 𝟏	Original		Constructed_ind	Constructed_sub
		𝑃	𝑃	𝑃	𝑃	𝑃	𝑃
	3	84.63	58.78	90.00	87.70	89.34	52.69
	10	65.66	90.56	72.13	100	67.44	78.62
	15	57.34	92.96	59.25	100	57.53	93.07

Table 5 .9: FBE Event Detector performance comparison

 5 

	𝑻 𝟐	𝑻 𝟑	Original	Constructed_ind	Constructed_sub
			𝑃	𝑃	𝑃	𝑃	𝑃	𝑃
	5	5	85.28	83.43	87.88	90.01	89.59	80.44
	5	10	77.28	90.22	75.56	100	79.94	84.90
	10	5	85.19	85.62	87.63	90.95	88.25	91.66
	5.2.4.2 Feature selection					

Since the generalised construction approach can depend on real aggregate measurements, we can extend our comparisons to BLUED dataset. The collection of 84 features from chapter 4 (listed in Table

4

.2 and Table

4

.3) are calculated at each event of original and constructed signals. Best set of features are then selected using two algorithms, SFFS and our NEFSA.

Table 5 .10: Best 20 features per NEFSA algorithm: Constructed vs Original BLUED Best ranked 20 Features with NEFSA algorithm

 5 

	Original	84,78,27,16,28,76,81,23,10,13,41,11,45,24,21,73,26,43,83,20
	Phase A	
	Constructed	84,78,27,28,21,16,23,76,81,10,24,13,41,11,45,26,73,83,15,43
	Original	76,78,20,13,83,81,26,41,84,23,15,24,11,73,12,82,10,45,74,22
	Phase B	
	Constructed	76,78,13,20,81,83,23,26,41,84,11,82,12,73,24,10,45,15,74,47

Appendix 3: Sequential Feature selection algorithms and more comparisons

  𝒕 𝑡 , 𝑡 , . . . , 𝑡 be the set of all available features, and 𝑁 is the cardinality of this set, every feature selection algorithm aims to find a subset 𝒕 * 𝑡 * , 𝑡 * , . . . , 𝑡 * , 1 𝑛 𝑁 of features which gives the best performance over any other subset of 𝑛 features. Let 𝑓 be a function that represents the classification error, then Find the best feature 𝑡 * , this feature gives the minimum error rate when the number of selected features is 1, then set 𝒕 * 𝑡 * where 𝑡 * 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓 𝑡 , 1 𝑗 𝑁 2. Iterate for the values of 2 𝑛 𝑁. In each iteration, add one feature 𝑡 * to the selected set 𝒕 * . The added feature 𝑡 * must satisfy the following conditions 𝑡 𝒕 * , 𝑡 * . 3. Find the best number of features 𝑛 * 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓 𝒕 * , 1 𝑛 𝑁 and set 𝒕 * 𝒕 * * SFFS Algorithm Sequential forward floating selection (SFFS) algorithm is similar to SFS algorithm. It only adds an extra step called sequential backward selection (SBS) to SFS to try solve the nesting problem. SFFS finds its best subset of features 𝒕 * using the following steps: 1. Same as steps 1 in SFS. 2. Same as steps 2 in SFS. 3. SBS: after finding 𝒕 * from the previous step, check the performance after removing one feature at a time from this set, and find the feature 𝑡 * * which satisfies 𝑡 * * 𝑎𝑟𝑔 𝑚𝑖𝑛 ∈𝒕 * 𝑓 𝒕 * \𝑡 4. Compare the best value 𝑓 𝒕 * \𝑡 * * with the value 𝑓 𝒕 * , if 𝑓 𝒕 * \𝑡 * * 𝑓 𝒕 * then set 𝒕 * 𝒕 * \𝑡 * * , repeat step 3 for 𝑛 1 Otherwise, move to step 2.

	Let 𝒕 * 𝑎𝑟𝑔 𝑚𝑖𝑛 𝒕 *	𝑓 𝒕 * ,	1 𝑛 𝑁
	where 𝑓 𝒕		

* is the classification error rate using the set 𝒕 * . Sequential forward selection (SFS) algorithm finds the set 𝒕 * using the following steps: SFS Algorithm 1. * ∉ 𝒕 * 𝑡 * 𝑎𝑟𝑔 𝑚𝑖𝑛 ∉𝒕 * 𝑓 𝒕 * , 𝑡 , 1 𝑗 𝑁 Then set 𝒕 *
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Classification

The performance of SVM classifier (linear kernel) is evaluated on (BLUED, both phases) with three cases:

1-The constructed measurements (using ranked features with SFFS and NEFSA).

2-The original measurement (using ranked features with SFFS and NEFSA).

3-The original measurement (using ranked features of constructed measurements).

The third case is to test the suitability of constructed features-order for the original measurements, Figure 5.19 shows the resulted curves with respect to varying featuressubset size (horizontal axis), while the vertical axis represents the true classification percentage.

SVM performed better on constructed measurements on phase A (4-8% more), yet the performance of original measurements had the same trends and values with both features-subsets, which prove the constructed measurement suitability for predicting one of the best features-subset for the original measurements (in other words, simulating the desired scenario before hand can help us to fix the features subset beforehand).

Figure 5.19: Testing classification performance on constructed and original measurements 6 Summary and Perspectives

In this chapter, we summarize the content of this thesis and discuss the possible future steps in the development of NILM systems.

Chapter Summaries

We commenced in chapter 1 by introducing NILM as an important technology for optimizing energy consumption and a hot research field. We then listed the research contributions of this work. Chapter 2 started with defining the basic concepts of NILM through an example from Hart's work, then we reviewed the state-of-the-art of NILM research and looked at the NILM public datasets.

In Chapter 3, we introduced Huang-Hilbert transform (HHT) and presented the two separate research methods we followed: the first one is motivated by the empirical mode decomposition (which comprises the first step of HHT), where we adaptively extracted narrow-banded modes from the NILM current signal. Those modes were used to build an effective event detector that performed well on real house measurements with only that device present), then we generalised the method for constructing any type of measurement out of any set of limited. We presented detailed numerical comparisons and discussed the possible applications of such scheme; then show a use-case for tracking classified devices with its different benefits. -Type : events type on/off.

Assumptions:

-We assume that current and voltage signals are stored in a .nc file.