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Glossary of Mathematical Notations

Introduction

"There was a language in the world that everyone understood, a language the boy had used throughout the time that he was trying to improve things at the shop. It was the language of enthusiasm, of things accomplished with love and purpose, and as part of a search for something believed in and desired." -Paulo Coelho, The Alchemist Engineered systems that integrate hardware and software components and not intended to be a general purpose computer have been referred to as Embedded systems [START_REF] Jiménez | Introduction to embedded systems[END_REF][START_REF] Wolf | Computers as components: principles of embedded computing system design[END_REF]. To have a safe and efficient embedded system, its timing constraints should be respected. Delaying a critical event like an emergency brake in a vehicle or motion stop command in a motion control system may result in safety problems. By 2050, the European Union (EU) goal is to reach zero traffic fatalities and serious injuries [START_REF]Mobility and transport road safety[END_REF], an aim set by the "Vision Zero" road traffic safety approach [START_REF]Vision zero initiative[END_REF]. To achieve this long-term goal, European Parliament, Council and Commission agreed that new safety technologies, including Advanced Emergency Braking Systems (AEBSs), will become mandatory in European vehicles to protect passengers, pedestrians and cyclists as of 2022 [START_REF]Road safety: Commission welcomes agreement on new eu rules to help save lives[END_REF]. These measures are expecting to save over 25,000 lives and avoid at least 140,000 serious injuries by 2038 [START_REF]Road safety: Commission welcomes agreement on new eu rules to help save lives[END_REF]. Safety systems such as AEBS should satisfy non-functional requirements like deadlines, latencies or throughput to avoid human risks and damages leading to catastrophic results [START_REF] Axer | Building timing predictable embedded systems[END_REF].

For example, automated braking of vehicles should react within a deadline after detecting an object in which it might collide [START_REF]Automatic braking system issues[END_REF]. So, safety requirements must hold. However, by implementing these measures, vehicles will be more automated and connected as these measures use a combination of hardware, software and digital connections to help vehicles identify risks [START_REF] Board | Who is in control? road safety and automation in road traffic[END_REF]. Since connected systems have more interfaces, their attack surface is greater. Security requirements or safety requirements that might be violated because of attacks can be handled with safety and security countermeasures. However, adding a safety or security mechanism may have a direct impact on performance. Indeed, these mechanisms might increase the delay between a stimulus and a corresponding response. In some cases, this increase may be directly linked to extra computation power needs e.g., for encryption or decryption functions. Longer exchanged messages may induce contentions on communication hardware and/or memory overflow. The performance requirements should hold even after safety and security mechanism are added. In particular, these performance requirements may concern the latency between two events. In that case, each time the system model is updated, e.g., by adding or removing safety and security measures, proposing a way to understand consequences on performance is expected to speed up the design process. System engineering is there to design, develop and build a system that respects all its requirements. Systems engineering is a multidisciplinary approach to develop a balanced system solution in response to stakeholder needs. To achieve a system solution that meets those needs, in addition to planning and controlling the management processes like system development cost, several steps must be followed from specifying the system requirements to exploring different system designs and evaluating each one compared to others, to verify that the system requirements are satisfied [START_REF] Friedenthal | A practical guide to SysML: the systems modeling language[END_REF]. System Engineering can be performed by using either a document-based or model-based approach. The difference between the two approaches is in the primary artifact each one produces [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF]. While document-based system engineering produces a disjoint set of documents, spreadsheets, diagrams and presentations which is time-consuming and prone to errors, model-based system engineering produces an integrated, coherent and consistent system model resulting in a greater return on investment and more user-friendly output especially if a graphical modeling language was used [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF].

Embedded Systems

An embedded system is any system, other than an identified computer (Personal Computer (PC), laptop, etc.) [START_REF] Vasseur | Interconnecting smart objects with ip: The next internet[END_REF] [START_REF].1. Object Management Group[END_REF], composed of hardware and software components that has a computer/microprocessor encapsulated into it. Embedded systems are special-purpose systems designed to perform one allocated function [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF] [START_REF] Sangiovanni-Vincentelli | Quo vadis, sld? reasoning about the trends and challenges of system level design[END_REF]. Systems-on-Chip (SoCs) is used to describe a single chip that integrates complex embedded systems [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF]. As technology advances, hardware and sensors cost drop while their quality improves, energy depends on alternative resources and communication becomes wireless thus enabling computing and networking capabilities to be integrated into all types of physical world objects, creating large-scale wide-area Systems of Systems (SoSs) [START_REF] Rajkumar | Cyber-physical systems: the next computing revolution[END_REF]. This integration enabled the monitor and control of the physical processes of these objects [START_REF] Lee | Cyber physical systems: Design challenges[END_REF] thus bridging the gap between the cyber world and the physical world, leading to an emerging technology called Cyber-Physical System (CPS) [START_REF] Keerthi | Cyber physical systems (cps): Security issues, challenges and solutions[END_REF] [START_REF] Lee | Invited talk: Challenges in medical cyber-physical systems[END_REF]. A CPS consists of three major components: communication, control and computation [START_REF] Keerthi | Cyber physical systems (cps): Security issues, challenges and solutions[END_REF].

CPS are the core of the new industrial revolution [START_REF] Carruthers | Internet of things and beyond: Cyber-physical systems[END_REF]. These systems are deployed in a vast range of applications including automotive and aerospace, transportation vehicles, robotic systems, factory automation, chemical processes, smart energy and water grids, health care, smart spaces. . . [START_REF] Carelli | Performance monitor counters: interplay between safety and security in complex cyber-physical systems[END_REF] [START_REF] Rajkumar | Cyber-physical systems: the next computing revolution[END_REF] [START_REF] Lee | Cyber physical systems: Design challenges[END_REF].

When consequences of the failure of these systems may result in loss of life, significant property damage, financial loss or damage to the environment, they are considered as safety-critical systems [START_REF] Knight | Safety critical systems: challenges and directions[END_REF] [START_REF] Kumar | Reliability analysis of safety-critical and control systems: a state-of-the-art review[END_REF].

Systems that must react within a time constraint for an external event are known as real-time systems [START_REF] Buttazzo | Hard real-time computing systems: predictable scheduling algorithms and applications[END_REF].

There exist many different methodologies to design an embedded system [START_REF] Royce | Managing the development of large software systems: concepts and techniques[END_REF] [START_REF] Boehm | A spiral model of software development and enhancement[END_REF] [89] [START_REF] Ruparelia | Software development lifecycle models[END_REF]. These methodologies start by taking at the very beginning the system specifications in order to produce the software code and the electronic of the system, i.e., the platform. Methods using model-based approaches first define abstract models of the system. These first models are called high level models. Systems can be studied at a high level of abstraction as irrelevant aspects of a system can be abstracted [START_REF] Deantoni | Rt-simex: retro-analysis of execution traces[END_REF]. Then, a model can be iteratively refined until it includes all the important details. It is most costly to find errors late in the methodology path. System engineers can minimize the costly rework after production by analyzing and verifying that the system satisfies the needed requirements through all phases of the system life-cycle and by detecting design flows in the early design phase [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF].

Verification and evaluation techniques have been already proposed to be able to investigate whether high level models conform to the requirements extracted from the system specifications. Among these techniques, simulation have been widely explored but yet there are not so many contributions when a requirement is not satisfied to help the designer to identify the cause of this non satisfaction. My Ph.D. is focused on the determination of the causes of non satisfaction of time related requirement.

Problem Statement

Real-time and safety-critical embedded systems have to satisfy timing requirements [START_REF] Marwedel | Embedded system design[END_REF] [START_REF] Dasarathy | Timing constraints of real-time systems: Constructs for expressing them, methods of validating them[END_REF], e.g., a maximum end-to-end delay between an input and its corresponding output [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] [START_REF] Kopetz | The time-triggered model of computation[END_REF]. Other typical temporal constraints concern periodic tasks that have to terminate their periodic execution before a deadline [START_REF] Stankovic | Real-time and embedded systems[END_REF] [START_REF] Vahid | Embedded system design: a unified hardware/software introduction[END_REF] [START_REF] Vilardell | Cleanet: enabling timing validation for complex automotive systems[END_REF]. To better handle the critical aspects of embedded systems, several methods and approaches suggest using high-level system models, e.g., the Y-Chart approach [START_REF] Kienhuis | The y-chart approach[END_REF]. Yet, even when working at a high-level of abstraction, it may be difficult for a designer to understand the impact of the different platform components (SW or HW) on application timings and performance. For instance, let's consider a motor drive system. The system consists of 3 main components: a motor, a motor controller and a client application (Figure 1.1). The motor controller receives a stop command from the client application and accordingly generates the right Pulse Width Modulation (PWM) signals and sends them to the motor. This system can be considered as a critical system since the time difference between the receiving of the stop command and the correct update on PWM signals should not exceed a maximum value. The time difference between an input event and an output event is called latency.

Generally speaking, designers have to ensure that their systems fulfill all requirements, including temporalrelated requirements. In particular, the latency between two events, e.g., between an input event and its corresponding output event, is a typical critical property in safety-critical systems. Respecting such a latency often requires to care about several system aspects: the implementation of algorithms, the correct selection of scheduling algorithms, the selection of a hardware platform with regards to its execution performance, communication and storage capabilities. When designing the system from a high-level of abstraction the concrete platform is not available and thus tests cannot be conducted over the concrete platform. Yet, to get functional and non-functional guarantees on the system under design before the concrete platform is available, simulations and/or formal analysis can be executed from high-level models. Indeed, since late decisions are more costly than early decisions [START_REF] Tan | Relative impact of early versus late design decisions in systems development[END_REF], designers expect to get a high level of confidence at early design stages.

Performing intensive simulations is one way to achieve this [START_REF] Chhaya | Simulation-based and formal verification of domain-specific language model[END_REF] [START_REF] Pagano | SoC-trace infrastructure[END_REF]. Intensive simulations produce many simulation traces. Inspecting manually these traces can be a tiresome job as these traces might be large and it might require taking the model semantics into account to understand what happened during a simulation. Ideally, to speed up the design process, this is surely better if the analysis of these traces can be automatically checked against requirements. Yet, when a requirement is not satisfied, e.g., a latency is not respected, it is difficult to figure out which parts of the system played a role in this non-satisfaction. In other words, it is sometimes hard for designers to understand what is the latency between an input and its corresponding output and what really impact this latency by reading a simulation trace. In this case, understanding the relationships and dependencies in a system model becomes inevitable. Moreover, taking these semantics into consideration manually during the analysis can be complicated especially when several designers are contributing to building the system model and/or the system model represents complex behavior at a high abstraction level. We refer to sending events and receiving events as operators. Receive Stop Command waits for a stop command sent by the client application. Once a stop command is received it sets the required speed to zero. Send PWM Signals reads the required speed and accordingly computes the PWM values and sends them to the motor. The actual speed of the motor is computed in Compute Actual Speed function after reading the current and position of the motor. The actual speed is read in the Send Actual Speed function and forwarded to the client application so the client can keep track of the motor speed. The Compute actual speed function could directly send the actual speed to the client, however, we kept

Send Actual Speed function to separate functions that communicate with the client application from those that communicate with the motor. The decision be keep this separation along with the chosen architecture discussed next serve the illustrative purpose behind this system.

Figure 1.3 shows a candidate architecture of the Motor Controller with 2 CPUs, a bus and a memory.

The functions Receive Stop Command and Send Actual Speed are allocated to CPU 1 while Send PWM Signals and Compute Actual Speed are allocated to CPU 2. A possible simulation trace of this system is shown in Figure 1.4 (a). The start time represents when the corresponding operator started executing, the end is the time when the corresponding operator ended execution, followed by the hardware on which the operator was executed and the operator's name. In the simulation trace, the names of the operators are colored: green for the Compute Actual Speed function, purple for Send Actual Speed, orange for Receive Stop Command and blue for Send PWM Signals. To compute the latency between receiving a stop command and writing the corresponding PWM values, these two operators along their simulation data should be identified in the simulation trace. In Figure 1.4 (a), the operator corresponding to receiving a stop command starts at time 11 and writing the corresponding PWM values starts at time 40 and ends at time 41. So, the latency between these two operators is 41 -11 = 30 time units. While knowing only the latency value might be satisfactory in some cases especially when the time constraint identified in the timing requirement is met, a designer needs to know more details on the latency in case the timing constraint is not met or to enhance the performance of the model. These details may include which hardware or software component might delay a critical operator or what is really impacting the latency between operators or what is the cause of a real-time constraint non-satisfaction. A way to investigate a latency from a simulation trace is to consider both the information present in the simulation trace and the dependencies between operators in the system model e.g., whether operators are executed on the same hardware, belong to the same function. . . In our previous example, studying the simulation trace shows that the three operators executed at time 13, 14, and 15 induce a delay between setting the required speed to zero and writing the value of the required speed, thus increasing the latency between receiving a stop command and writing the corresponding PWM values. Taking the model semantics into account

shows that these 3 operators correspond to the function Send Actual Speed and are independent on the Receive Stop Command function where the required speed is set. Knowing this, a designer might decide to enhance performance by allocating Send Actual Speed to another hardware, changing the scheduling policy of CPU, etc. For example, a designer might update the model of Figure 1.3 to the model in When designing embedded systems using the model-based approach, it is a very common practice to iterate over the system models. Thus, a designer might be interested to understand the reason for the difference in latency between a first model and a modified version of this first model. While in the provided example the change consists in adding hardware components and modifying functions allocations, other model modifications can be the addition or removal of, for instance, a safety-related or security-related mechanism. For example, in the motor drive system introduced earlier, encryption and decryption mechanisms on the stop command might be added to ensure a security requirement. Or a backup component can be added to the motor controller to improve the reliability of the system. These enhancements might impact the timings of the system. A designer may want to better understand why there is an extra latency or reduced latency or latency indifference between the two models and what platform elements -software and/or hardware-may be involved in a latency.

Contributions

My thesis, part of a European project named AQUAS [START_REF]Aggregated quality assurance for systems (aquas)[END_REF] [184], introduces a new latency analysis approach that can be used to study the timing between operators in a high-level SysML model. This approach can analyze an execution trace or a simulation trace obtained after injecting the model into a 

Precise Latency Analysis Approach

Several time analysis approaches have already been proposed. These approaches can be classified into different categories including runtime [START_REF] Perez | Copilot 3[END_REF], emulation [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF], implementation [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF], simulation-based, formal (analysis) [218] [223] or hybrid which combine formal and simulation approaches [START_REF] Stemmer | Feasibility Study of Probabilistic Timing Analysis Methods for SDF Applications on Multi-Core Processors[END_REF]. Simulation and formal approaches are the most used ones in the domain of performance estimation of embedded systems [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] [230] [START_REF] Deantoni | Timesquare: Treat your models with logical time[END_REF].

This thesis introduces a PLAN. The PLAN approach is used to study the latency between two particular operators in the system. Our approach can automatically indicate to the designer which elements in the model are involved in this delay thus helping the designer in verifying the model requirements or taking decisions to enhance the system model. The PLAN approach is intended to be used at a high level of abstraction, thus giving early design guarantees. The system is first modeled at a high level of abstraction and then executed. PLAN takes as input an instance of a HW/SW partitioning model, an execution trace, and a time constraint expressed in the following form: the latency between operator A and operator B should be less than L, where L is a maximum latency value. First PLAN checks if the latency requirement is satisfied. If not, the main interest of PLAN is to provide the root cause of the non satisfaction by classifying execution transactions according to their impact on latency: obligatory transaction, transaction inducing a contention, transaction having no impact, etc. To do so, we extract a dependency graph from the system model that preserves the causality between operators in the HW/SW partitioning model. A first version of PLAN assumes an execution for which there is a unique execution of operator A and a unique execution of operator B. A second version of PLAN can compute, for each executed operator A, the corresponding operator B. For this, our approach relies on tainting techniques.

The thesis formalizes the two versions of PLAN and illustrates them with toy examples.

Integration into a Model-Driven Engineering Framework

In the scope of this thesis, PLAN was integrated into a Model-Driven Engineering Framework capable of supporting the design and verification -by simulation-of embedded systems at a high level of abstraction. We chose the free and open-source TTool toolkit [START_REF] Ttool | [END_REF] for this integration. PLAN was integrated in SysML-Sec, one of the design and development environments supported by TTool. The SysML-Sec method includes a HW/SW partitioning stage. Moreover, simulation is one of the verification techniques available in TTool. TTool can indeed generate a transaction-based simulation trace using its simulator [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF]. Thus, PLAN can be directly applied to the simulation trace output. The two versions of PLAN are illustrated with two case studies taken from the H2020 AQUAS project. In particular, we show how tainting can efficiently handle the multiple and concurrent occurrences of the same operator.

Organization of This Thesis

The rest of this manuscript proceeds as follows. Chapter 2 gives an overview of embedded systems, 

Chapter 2

Context

"A text without a context is a pretext for a proof text."

-Tom Carson

Embedded systems are becoming increasingly present all around us and impact our daily lives. They are present in many domains like transportation, communication, health, home applications. In our everyday life, we use devices with several embedded systems. Embedded systems complexity is increasing as technology advances. Moreover, embedded systems are more and more integrated into safety-critical equipment where their failure results in a catastrophic impact. Thus, it becomes inevitable to design and verify that an embedded system meets its requirements before implementation.

Common embedded systems design flows enable designers to iteratively refine their design till the requirements are met. Updating a design to meet the requirements can cost less than detecting these errors after the embedded system is implemented [START_REF] Tan | Relative impact of early versus late design decisions in systems development[END_REF]. For example, verifying that requirements are met in the design of an embedded system can avoid dangerous software/hardware situations, decrease the probability of system failure while in use and/or avoid the recall of the product from the market [10] [20].

Structure of Embedded Systems

Several definitions can be found in the literature for embedded systems [START_REF] Wolf | Computers as components: principles of embedded computing system design[END_REF][START_REF] Morton | Embedded microcontrollers[END_REF][START_REF] Kamal | Embedded systems: architecture, programming and design[END_REF][START_REF] Heath | Embedded systems design[END_REF][START_REF] Jiménez | Introduction to embedded systems[END_REF][START_REF] Wilmshurst | An introduction to the design of small-scale embedded systems[END_REF]]. An embedded system is built from software and hardware components. The software is a set of instructions that determine part of the system functionalities. The hardware components form the platform on which the software runs. An embedded system typical task is to process input from the system environment and produce an output corresponding to this input. For example, a carbon monoxide detector regularly monitors its environment with the help of a sensor for the presence of this colorless, odorless and tasteless toxic gas. In case detected, an alarm goes on. The Apollo Guidance System built in 1960 by MIT Instrumentation Laboratory is considered one of the first embedded systems [START_REF] Jiménez | Introduction to embedded systems[END_REF]. From this time till the 70's embedded systems were non-commercial, heavy, expensive and used for a specific application [START_REF] Jiménez | Introduction to embedded systems[END_REF]. The development of Intel 4004 microprocessor in 1971 was a change point in the history of embedded systems. Having this integrated, small, light and cheap chip paved the way for embedded systems to develop. Since that date, embedded systems are more and more integrated into our daily lives.

These systems, although deployed in diverse domains and having different functions, share several common characteristics [START_REF] Marwedel | Evaluation and Validation[END_REF]. For instance, they must comply with a lot of tight constraints such as performance measures, low power consumptions, short time-to-market, etc.

An embedded system underlies the Sampling and Caching Subsystem functionality of the Mars 2020 Rover Mission (Figure 2.1) [START_REF] Edelberg | Software system for the mars 2020 mission sampling and caching testbeds[END_REF]. The objective of this subsystem is to collect and store rocks and soil samples that could be returned to earth [3].

The Mars 2020 Rover "brain" is made of a processor and a memory [START_REF]The mars 2020 rover's brains[END_REF]. The processor executes commands send by the flight team e.g., taking pictures. It is responsible for the control and computation operations in the system. Also, it monitors the status of the rover e.g., rover temperature and stores the values in reports in the memory. Power sources, cameras, robotic hands, wheels, sensors, antennas, microphones, etc. are connected to the rover to ensure that it fulfill its functionalities by moving, using its science instruments and communicating with Earth.

In an embedded system some of the main categories of hardware components include: microcontroller/microprocessor, memory, memory management units, communication port, bus, bridge, power 

Model-Driven Engineering

Designing embedded systems with complex functionalities requires the collaboration of several teams from various domains and the integration of their work. These teams are working sometimes on different tools, approaches and processes. Traditionally, these teams used files and documents to exchange information about the system through the design process [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF]. MDE techniques involve creating models [START_REF] Schmidt | Model-driven engineering[END_REF]. In a top-down approach, a model is an abstraction blueprint of the system derived from system requirements. Abstracting a system means ignoring some of its details. Ignoring only inessential details is referred to as good abstraction [START_REF] Schmidt | Model-driven engineering[END_REF]. A model can be generated for software [START_REF] Mussbacher | The relevance of model-driven engineering thirty years from now[END_REF] [169] [91] [203] or hardware [228] [168].

To construct a model a designer uses modeling languages, methods and tools. A modeling language is used to define the elements in the model and the relationship between them. The modeling language can be textual or graphical. The modeling method is a guide that defines a set of documented steps a designer needs to follow to develop a model. A modeling tool supports one or more modeling languages to enable a designer to create a model based on the components and relations defined in those languages [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF].

The Y-chart approach [START_REF] Kienhuis | The y-chart approach[END_REF] is a MDE approach. It is a principal methodology to design a model-based embedded system [START_REF] Lapalme | Y-chart based system design: a discussion on approaches[END_REF]. In the first step of the Y-chart approach, the application and the architecture of the system are modeled separately as two independent views. The application represents the functionality of the system while the architecture represents the platform of the system. The application and architecture views are then linked in the mapping stage of the Y-chart approach where different functions along their connections in the applications are allocated to components in the architecture creating a mapped model of the system. The mapped model can be analyzed to see if it satisfies the system requirements.

In case the requirements are not satisfied and the design needs further modifications, the designer can change the allocation of different functions in the mapped model, update the platform components in the architecture view or apply changes to the functions in the application view. As changes are applied to the application, architecture or mapped models, the analysis stage of the model can be performed again.

This iteration process of the Y-chart is of great importance as it allows designers to loop on different views of the model until a mapping model satisfies all system requirements. This iteration process of the Y-chart approach along with the clear identification of different steps along the approach enabled it to be integrated into several design methodologies [147] [83].

The Y-chart approach and design methodologies can be applied to different levels of abstractions of an embedded system [START_REF] Gajski | Embedded system design: modeling, synthesis and verification[END_REF]. In other words, a model can abstract a system on different levels. These levels range from high abstraction levels to low abstraction levels depending on the amount of details present in the model. The highest level of abstraction contains the least amount of detailed information about the system. Standard languages such as C, C++, SystemC, UML, etc. can be used to model a system.

In literature, different modeling approaches consider different abstraction levels depending on the criteria they abstract [START_REF] Ben Ayed | System-level co-simulation for embedded systems[END_REF]. In [START_REF] Gajski | Embedded system design: modeling, synthesis and verification[END_REF], Gajski et al. defined four levels of abstraction depending on the abstraction level of the components in the hardware view of the system. These levels are system, processor, logic to write RTL code [START_REF] Sanguinetti | Abstraction levels and hardware design[END_REF]. Abstraction levels above RTL are sometimes referred to as System Level design [START_REF] Sangiovanni-Vincentelli | Quo vadis, sld? reasoning about the trends and challenges of system level design[END_REF]. When computation and communication semantics are modeled separately in the system application, Transaction Level Modeling (TLM) can be considered. In TLM, transactions are used to exchange data between functions in the system application. In [START_REF] Gajski | Embedded system design: modeling, synthesis and verification[END_REF], TLM was divided into six levels of modeling depending on the computation and communication model granularities. The communication and computation models can be timed, untimed or cycle-accurate models. TLM is a level of abstraction above RTL. In [START_REF] Martin | ESL design and verification: a prescription for electronic system level methodology[END_REF], system level is defined as "the utilization of appropriate abstractions in order to increase comprehension about a system, and to enhance the probability of a successful implementation of functionality in a cost-effective manner using generic architecture and abstract application models".

In system Level design, the entire system is represented as a set of cooperating subsystems [START_REF] Fernandes | Can uml be a system-level language for embedded software[END_REF].

As embedded systems tend to be complex systems with more complex architectures and complicated functionalities, MDE has been successfully used to design, develop and analyze them [START_REF] La Fosse | Model-driven engineering of monitoring application for sensors and actuators networks[END_REF]. As models at low level of abstraction are more costly in development time, higher levels of abstraction are required.

According to [START_REF] Committee | The international technology roadmap for semiconductors[END_REF], using system level designs to model systems at a high level of abstraction has a lot of advantages including simplifying the specification, verification and implementation of the systems, enabling more efficient design space exploration, reducing time to market, improving problems discovery and allowing verification of the model at early design stages.

Timing Constraints

Embedded systems are designed to perform specific functions. Timing constraints are used to define some safety and performance measures in embedded systems. In [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF], the timing behavior of an embedded system is defined as the time interval between a pair of events: the starting event and the finishing event.

These events can be the start and end of task execution or receiving sensor data and executing the system response. The maximum and minimum time intervals between these two events are referred to as the worst and the best execution time respectively. An embedded system can run in different environments thus facing different conditions resulting in different values for the Worst-Case Execution Time (WCET) and a Best-Case Execution Time (BCET). This non-determinism can be due to input non-determinism from the embedded system environment, communication semantics, hardware components like cache memories, etc.

In some embedded systems, when the time constraint is not met, it may result in high financial costs on the party or the business using this system. For example, the manufacture or selling company may have to recall the products resulting in revenue loss or loss of interest of the customer to continue using the product [140] [111]. These systems are business-critical systems.

A Real-Time embedded system is an embedded system in which the correctness of the outputs depends also on the time at which these results are produced [START_REF] Stankovic | Misconceptions about real-time computing: A serious problem for next-generation systems[END_REF]. In other words, in real-time embedded systems meeting time constraints is critical. The time constraints in real-time embedded systems are strictly specified. Computation and response to input events must be executed before their deadline. Timing constraints in real-time systems are classified into 3 types of restrictions [START_REF] Dasarathy | Timing constraints of real-time systems: Constructs for expressing them, methods of validating them[END_REF]: maximum, minimum and durational. Maximum restrictions specify that the latency between two events should be no more than time t. This time constraint can be seen as the bound of the WCET or the worst-case response time. An example of this time constrain can state that the response time between input from the sensor and output of the system shall not exceeds 15 ms. When an embedded system exceeds the specified maximum limit, which means that it does not meet the deadline, then the system is considered as failed. The minimum restriction specifies the minimum acceptable latency between two events. This time constraint can be seen as the lower bound of the BCET. An example of the minimum time constrain can state that no less than 10 ms may elapse between no input signal and the output of the system like an alarm signal. In duration time constraints, the amount of time during which a condition holds is specified. An example of a durational time constraint in the carbon monoxide detector can state that an alarm will sound after three and a half hours of continuous exposure of carbon monoxide at a level of 50 PPM [START_REF]What are the carbon monoxide levels that will sound the alarm?[END_REF]. It is important to point here that although real-time systems have to comply with strict time constraints, the time specified in these constraints is not always a short time. In our last example, the time duration was three and a half hours.

SysML-Sec

TTool [START_REF] Ttool | [END_REF] is a free and open-source framework for the design and verification of embedded systems.

SysML-Sec is one of the modeling profiles supported by TTool. SysML-Sec is used to design safe and secure embedded systems while taking performance into account. In the first stage of SysML-Sec (Figure 2.3), requirements are identified and explicitly tagged as safety, security or performance.

Requirements are textual specifications regarding important properties of the system, defined informally with an identifier and a text. The formal semantics of time-related and safety properties is defined within TEmporal Property Expression language (TEPE) Parametric Diagrams [START_REF] Knorreck | Tepe: a sysml language for time-constrained property modeling and formal verification[END_REF]. Formally defining properties with TEPE is usually possible only when part of the system has been designed. For instance, TEPE properties can be used to relate block attributes together; such a property can be expressed only once blocks have been expressed. Also, in this step, attacks that could target the system and faults that could occur in the system are modeled in attack and fault trees respectively. SysML-Sec contains the Y-Chart approach [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF] so next, in the HW/SW partitioning step, the architecture and the application (high-level tasks/functional behavior) are modeled before being linked in the mapping phase. communications between tasks are realized using physical elements. Second, the design of the software elements can be performed in the software design stage: tasks mapped to processors are expected to be refined as software components. Verification can be performed with a press-button approach from most views so as to check that all requirements are satisfied. TTool can perform verifications using formal techniques (e.g., model-checking) and simulations. Safety verification relies on the TTool model checker or on UPPAAL. Security verification relies on the ProVerif [START_REF] Blanchet | Proverif 2.00: Automatic cryptographic protocol verifier, user manual and tutorial[END_REF] external toolkit. Performance verification relies on a System-C like simulator provided by TTool. Once a model has been verified, C code generation can be performed from partitioning models or from software design.

[84] is a tutorial for TTool that guides the reader through the complete design from modeling to automatic code generation. 

Simulation

Simulation using a transaction-based simulator is one of the verification techniques available in SysML-Sec [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF]. A transaction refers to a computation operator in a task or a communication between tasks.

Transactions are determined by the simulation kernel according to: the activity of the task, the type and parameters of the hardware components, the mapping of tasks, the communication paths, the connection between hardware components, etc.

To simulate a model, the syntax of the system-level models designed in TTool must be checked. This check is accomplished by press-button approach. If the model syntax obeys the meta-model semantics, then it is automatically translated to intermediate specifications. These specifications are expressed in formal language and form a starting point to derive simulation code [START_REF] Knorreck | Fast simulation techniques for design space exploration[END_REF]. For TTool users, after performing syntax checking of the model, the simulation code is generated. An interactive simulation window (Figure 2.9) pops-up in TTool once the simulation source code is compiled. In addition to having an interactive simulation through a graphical interface in TTool, the simulation progress is also animated on the model views. The interactive simulation window provides information about the simulation and a lot of functionalities for the designer. Among these functionalities: advancing the simulation in different modes, resetting the simulation, saving and storing the simulation state, save simulation traces in Value Change Dump (VCD), text or HTML format, visualize the simulation result in the form of a reachability graph, etc.

Chapter 3

Related Work

"Those who don't know history are doomed to repeat it."

-Edmund Burke

To develop embedded systems, several development methodologies exist. Each has its phases and way to navigate between these phases. Embedded systems must satisfy functional and nonfunctional requirements. The requirements must be satisfied along all phases. As mentioned previously, it is more costly to discover requirements non satisfaction later in the design life-cycle, i.e, in late phases. In this chapter, we start in Section 3.1 by reviewing different development methodologies and the functional and nonfunctional requirements that the system must satisfy.

Verification approaches can detect requirement satisfaction or violation (section 3.2). Numerous works proposed different approaches for the verification and evaluation of model requirements. The proposed approaches can be classified into different categories.

In this thesis, formal and runtime verification approaches are discussed in Section 3.2.1 and Section 3.2.2 respectively. Evaluation is used when quantitative information regarding a system design is required [START_REF] Marwedel | Evaluation and validation[END_REF]. Performance evaluation gives information regarding delay or response time [START_REF] Bolch | Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications[END_REF]. As in this thesis we are interested in latency violation, Section 3.2.3 gives an overview on performance evaluation techniques. Information flow analysis is also used for property analysis.

Since we use tainting in the second version of PLAN and since tainting is considered in information flow analysis, Section 3.3 gives a general overview information flow analysis and how it is used in terms of performance evaluation. Then, Section 3.3.1 discuss taint analysis approaches and their main usage.

Software Development Methodologies

A product life cycle (PLC) is a sequence of stages through which a product goes starting from the stage when the product was an idea until the product is recycled or destroyed [START_REF] Pomante | The aquas ecsel project aggregated quality assurance for systems: Co-engineering inside and across the product life cycle[END_REF] [START_REF] Saaksvuori | Product lifecycle management[END_REF]. Broadly speaking these stages are: (1) Imagine ( 2) Develop (3) Realize (4) Use/Support (5) Retire/Dispose. In the imagine stage the product is an idea in someone's head. In the develop stage the idea is described in details, requirements are identified for example in technical specifications, and/or prototypes developed.

In the realise stage, the product is ready to be used by a customer. In the use stage the product is in use by the customer and in the final stage the product is disposed when it is not useful anymore [START_REF] Saaksvuori | Product lifecycle management[END_REF].

For software products the development stage is further broken down into phases. These phases start with development analysis to testing and evaluation [START_REF] Leau | Software development life cycle agile vs traditional approaches[END_REF]. Navigation between these phases depends on the methodology used by the development team. The software development methodologies can be generally classified as traditional (e.g, Waterfall method and V-Model) or Agile. The Waterfall, incremental, spiral, agile, etc, are examples of software development life cycle models. Each model has its own strengths, weaknesses, features, and usages [START_REF] Alhirabi | Security and privacy requirements for the internet of things: A survey[END_REF].

In the Waterfall method [START_REF] Royce | Managing the development of large software systems: concepts and techniques[END_REF], the designer follows a sequence of non overlapping steps. First the requirements are identified, then the system is designed, developed and tested [START_REF] Mccormick | Waterfall vs. agile methodology[END_REF]. In this method, the set of all system requirements must be known in the first step.

In the Incremental Model multiple development cycles take place. Each development cycle-also known as an increment-addresses a standalone feature of the product. Each incremental version is usually developed using a waterfall model of development [START_REF] Alshamrani | A comparison between three sdlc models waterfall model, spiral model, and incremental/iterative model[END_REF]. Thus, the incremental model is also referred to as iterative waterfall model [START_REF] Ruparelia | Software development lifecycle models[END_REF]. The first development cycle releases a core product in which only basic requirements are tackled [START_REF] Pressman | Software engineering: a practitioner's approach[END_REF]. Once the core product is approved by the customer, successive iterations are implemented until the product is released.

The spiral model [START_REF] Boehm | A spiral model of software development and enhancement[END_REF] is a risk driven approach that combines the waterfall model with the iterative model [START_REF] Pressman | Software engineering: a practitioner's approach[END_REF]. It starts with a planing phase in which costs, resources and time are estimated, then risk analysis, development and evaluation phases [START_REF] Alshamrani | A comparison between three sdlc models waterfall model, spiral model, and incremental/iterative model[END_REF]. With each spiral new requirements/functionalities can be added until the product is ready. The spiral model aims to minimize the project risk [START_REF] Alshamrani | A comparison between three sdlc models waterfall model, spiral model, and incremental/iterative model[END_REF].

The V-model [START_REF] Forsberg | The relationship of system engineering to the project cycle[END_REF] is a variation of the Waterfall method [START_REF] Ruparelia | Software development lifecycle models[END_REF]. The stages of a V-model are represented in a V shape with a focus on the development stages and their respective verification and validation stages [START_REF] Isaias | Information system development life cycle models[END_REF]. On the left side of the V, the phases start from requirement analysis to system design to development. On the right side of the V, validation phases are present [START_REF] Pressman | Software engineering: a practitioner's approach[END_REF].

In the Agile model [START_REF] Bhalerao | Generalizing agile software development life cycle[END_REF], the software is developed in small patches and delivered to customers at regular short intervals. Thus, the software product is done in an incremental and iterative process where parts of the software are designed, developed and tested until the software product is complete [START_REF] Mccormick | Waterfall vs. agile methodology[END_REF]. This iterative process makes the ability to respond to the changing requirements easier. According to [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF],

Waterfall/V-model methodology is more popular for embedded system design.

Functional and Nonfunctional Requirements

Embedded systems must comply with functional and nonfunctional requirements. These requirements can be verified using different approaches throughout a product life cycle from design time to runtime.

Functional requirements describe the behavior of the system while nonfunctional requirements specify constraints and quality attributes (properties) like system safety, security, performance, reliability, etc. [22] [157].

In [START_REF] Glinz | On non-functional requirements[END_REF], a detailed overview, discussion and comparison between functional and nonfunctional requirements is provided.

Regardless of the development method used, at the end of each iteration, the product must be validated against its requirements. In the product design stage, nonfunctional requirements drive the process of decision-making and implementing the functionality of the product [START_REF] Shankar | Towards the formalization of non-functional requirements in conceptual design[END_REF]. In other words, without nonfunctional requirements, the design choices are arbitrary [START_REF] Malan | Defining non-functional requirements[END_REF]. In general, requirements are expressed in natural language or in appropriate formalism [START_REF] Malan | Defining non-functional requirements[END_REF]. Timing constraints must be verified all along the design process to ensure that they are satisfied after each design stage

Nonfunctional Requirements

Nonfunctional requirements include, but are not limited to safety, security, performance, reliability, usability, integrity, scalability, traceability, maintainability, energy efficiency, certification, fault-tolerance, timing predictability, etc. Safety Safety can be generally defined as making the system accident-free. It is the probability that the system functions as required over a specified time interval without accidents. Safety requirements should specify the reaction of the system in case an accident occurs thus avoiding reaching an unsafe hazardous state [START_REF] Kumar | Reliability analysis of safety-critical and control systems: a state-of-the-art review[END_REF] [START_REF] Mulazzani | Reliability versus safety[END_REF]. In other words, safety deals with protecting the systems environment from the systems operation [START_REF] Steiner | Integrating security concerns into safety analysis of embedded systems using component fault trees[END_REF], it deals with avoiding losses due to either flaws in software or hardware leading to malfunctions, or due to (abnormal) environmental conditions [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF].

System safety has been taken into account since long time [START_REF] Gruber | Co-engineering-in-the-loop[END_REF]. Since the 1990s, it has been dealt with it in a systematic manner [START_REF] Verma | A quantitative approach for the likelihood of exploits of system vulnerabilities[END_REF]. In 1998 the first edition of the generic Functional Safety standard IEC 61508 was issued [START_REF] Verma | A quantitative approach for the likelihood of exploits of system vulnerabilities[END_REF] [START_REF] Gruber | Co-engineering-in-the-loop[END_REF]. IEC 61508 is an international standard for the functional safety of systems comprised of electrical, electronic, and software components applied in industry [199] [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF]. The standard assure that the system will reach the required safety level by reducing risk [199]. To achieve this, the standard applies hazard and risk analysis to derive the safety requirements, then the system is designed such that theses safety requirements are fulfilled [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF]. The standard follows a life cycle model that goes along with the product life-cycle and assists the developer through several phases from pre-design to the design, installation and operation phase of the system [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF].

Based on IEC 61508, different industry-specific standards were derived [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF] [229] such as IEC 61513 for the nuclear industry [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF], IEC 61511 for industrial processes [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF], ISO 26262 for the safety-related aspects of electrical/electronic systems in automobiles [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF] [199] and EN 50128 for railway (CEN-ELEC) [START_REF] Verma | A quantitative approach for the likelihood of exploits of system vulnerabilities[END_REF].

Security Security is concerned with protecting the systems operation from the environment usually manifested as intentional attacks [START_REF] Steiner | Integrating security concerns into safety analysis of embedded systems using component fault trees[END_REF]. Security can be considered from different perspectives [START_REF] Alhirabi | Security and privacy requirements for the internet of things: A survey[END_REF].

Historically, CIA triad was used to ensure security in information technology [START_REF] Conklin | It vs. ot security: A time to consider a change in cia to include resilienc[END_REF]. CIA triad consists of confidentiality, integrity, and availability. In addition to these three properties, authenticity [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF], nonrepudiation [START_REF] Steiner | Integrating security concerns into safety analysis of embedded systems using component fault trees[END_REF], secure storage of the code [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF], content security [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF] and data freshness [199] should also be considered in some applications. These properties should be maintained along the device lifetime even if it falls in the hands of a malicious parties, this is referred to as tamper resistance requirement [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF].

While data confidentiality ensures that data are accessed and disclosed only by authorized entities, integrity guarantees that information was not modified or destroyed [START_REF] Conklin | It vs. ot security: A time to consider a change in cia to include resilienc[END_REF]. Availability ensures that the system can be accessed and used in a timely and reliable manner without having performance issues [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF] [START_REF] Conklin | It vs. ot security: A time to consider a change in cia to include resilienc[END_REF]. Integrity also assures information non-repudiation and authenticity [START_REF] Conklin | It vs. ot security: A time to consider a change in cia to include resilienc[END_REF]. Kocher et al [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF] define authenticity as user identification if an authorized users accessed an embedded system or as secure network access if an authorized device accessed a network or service. Non-repudiation verify that the users cannot later deny that he performed an action [START_REF] Steiner | Integrating security concerns into safety analysis of embedded systems using component fault trees[END_REF]. In addition to these requirements, embedded systems security requirements shall include secure storage of the code or data in the system storage devices and content security or Digital Rights Management (DRM) for digital content used in the system [START_REF] Kocher | Security as a new dimension in embedded system design[END_REF]. In some cases, it is also required to ensure the freshness of the data which means it is not replayed [199].

IT security standards appeared after the safety ones and were the first forms of security standards. Some IT standards are Common Criteria/IEC 15408 and ISO/IEC 27001 [START_REF] Gruber | Co-engineering-in-the-loop[END_REF] [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF].

Common Criteria/IEC 15408 is an international standard that specified the general evaluation model for information technology including the general concept and principles for this evaluation. It defines the process for guaranteeing the security of security-critical systems by identifying threats, assessing risks, implementing countermeasures, and evaluating the effectiveness of countermeasures [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF] [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF].

ISO/IEC 27001 is the best-known standard in the ISO/IEC 27000 family for Information security management systems (ISMS) [START_REF]family -Information security management systems[END_REF]. Its main goal is to keep sensitive information of company secure.

In the field of security standards, in addition to IT related ones, some are concerned with Industrial Automation and Control Systems such as IEC 62443 [START_REF] Gruber | Co-engineering-in-the-loop[END_REF]. IEC 62443 is a series of standards, norms and technical reports which define procedures for the implementation in IACS (Industrial Automation and Control Systems [START_REF] Fujdiak | Seeking the relation between performance and security in modern systems: Metrics and measures[END_REF] [START_REF] Gruber | Co-engineering-in-the-loop[END_REF]. Specifically, it considers security of safety systems [START_REF] Kriaa | A survey of approaches combining safety and security for industrial control systems[END_REF] and aim at enhancing safety, availability, integrity, and confidentiality of IACS [START_REF] Gruber | Co-engineering-in-the-loop[END_REF].

Performance Embedded systems are involved in some applications where timing is critical thus realtime constraints are essentials for these systems [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] [START_REF] Carelli | Performance monitor counters: interplay between safety and security in complex cyber-physical systems[END_REF]. Platforms timing requirements are often application-related end-to-end maximum requirements [START_REF] Margaria | Leveraging Applications of Formal Methods, Verification, and Validation[END_REF]. In other words, the software controlling the hardware must operate within timing constraints to guarantee correct functionality of the system [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF].

According to [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF], the percentage of usage of systems components and the timings characterize the system performance. In a safety-critical system, failure to meet a timing requirement can have catastrophic consequences [START_REF] Mubeen | Timing predictability and security in safety-critical industrial cyber-physical systems: A position paper[END_REF]. Thus, performance evaluation is necessary in order to guarantee timing requirements [START_REF] Marwedel | Evaluation and Validation[END_REF].

Using UML design tools and techniques

Model-Driven Engineering is a powerful technology to analyze, design, simulate and document embedded systems [START_REF] Villar | Mega-modeling of complex, distributed, heterogeneous cps systems[END_REF] [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF]. As a reminder, a model is a description of (part of) a system in which functional and non-functional requirements must be satisfied [START_REF] Fuentes-Fernández | An introduction to uml profiles[END_REF]. A model written in a well-defined language makes communication between systems engineers working across the development life cycle easier [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF].

System modeling is an important aspect of any system engineering methodology [START_REF] Villar | Mega-modeling of complex, distributed, heterogeneous cps systems[END_REF]. Unified Modeling Language (UML) is probably the most widely accepted and used of the modeling languages defined by Object Management Group (OMG) [START_REF] Fuentes-Fernández | An introduction to uml profiles[END_REF]. It is a graphical modeling language for specifying and capturing system models that can applied to all application domains. Thus, it is referred to as general purpose modeling language. Designers find UML user friendly and easy to understand [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF].

However, for some particular domains, having domain-specific languages may be more efficient. According to OMG, there exist two ways to define a domain-Specific language. Either a language alternative to UML is defined or UML extension mechanisms are used. In the latter case, UML extension mechanisms enables it to adapt to a specific domains application by extending its syntax and semantics [START_REF] Fuentes-Fernández | An introduction to uml profiles[END_REF]. For instance, [START_REF] Trezzy | Applying mde to ros systems: A comparative analysis[END_REF] compared three alternatives to help roboticists apply MDE to robotics application: (1) by using UML, (2) by using a UML profile for robot operating system and (3) by defining a Domain-Specific Language (DSL) specifically designed for for robot operating system.

A UML profile is a collection of UML extensions. For instance, Systems Modeling Language (SysML) [START_REF] Delligatti | SysML distilled: A brief guide to the systems modeling language[END_REF] is an extension of UML more adapted for Model-Based Systems Engineering. It is one of several graphical modeling languages that are UML profiles. However, SysML does not take into account the partitioning of embedded systems [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF]. SysML-Sec is an extension of the UML Profile UML that supports partitioning [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF]. UML/MARTE [START_REF].1. Object Management Group[END_REF] is an OMG UML profile to develop real-time and embedded systems. However, MARTE does not define how to use modeling elements [START_REF] Villar | Mega-modeling of complex, distributed, heterogeneous cps systems[END_REF] or address requirements modeling [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF].

Verification Techniques

Functional and nonfunctional requirements can be verified using different approaches throughout a product life cycle (PLC) from design time to runtime. Formal verification approaches use mathematical logic to prove that a property is satisfied [START_REF] Marwedel | Evaluation and Validation[END_REF] [180] [START_REF] Matović | Case studies on modeling security implications on safety[END_REF]. Runtime verification approaches detect property violations by monitoring the system during execution [START_REF] Perez | Copilot 3[END_REF]. Runtime verification can be applied on traces collected as the system runs (on-line) or afterwards. In the design stage of a product life cycle, simulation is meant to represent system execution. A comparison between simulation and runtime verification is presented in [START_REF] Rozier | From simulation to runtime verification and back: Connecting single-run verification techniques[END_REF]. According to [START_REF] Rozier | From simulation to runtime verification and back: Connecting single-run verification techniques[END_REF], simulation takes as input a model and outputs a set of executions on which statics can be computed or requirements verified while runtime verification takes an execution trace and a requirement as inputs and outputs a verdict (true or false) based on the evaluation of the requirement over the trace. Thus, the purpose of simulation is seen as different from that of runtime verification [START_REF] Rozier | From simulation to runtime verification and back: Connecting single-run verification techniques[END_REF]. While simulation is used to enhance the system in the design stage before deployment, runtime verification is used to detect faults in the system during operation and take required actions. Schedulability analysis is the process of verifying that the execution of a series of functions in a system respect the timing constraints of this system [START_REF] Tsai | Timing constraint petri nets and their application to schedulability analysis of real-time system specifications[END_REF]. It uses information from the application and the architecture of a system in the analysis making it useful to determine if an application can be deployed on an architecture given a timing constrain on the system [START_REF] Foughali | Bridging the gap between formal verification and schedulability analysis: The case of robotics[END_REF].

Formal Verification Approaches

To prove that a property is satisfied using mathematical logic, as a first step, a formal model is required on which system properties can then be proven [START_REF] Marwedel | Evaluation and Validation[END_REF].

Model Checking Model checking is a formal method that takes as input a finite-state model and a formal property written in a suitable logic such as temporal logic to verify whether the model of the system satisfies the property or not [START_REF] Bernardi | Security modelling and formal verification of survivability properties: Application to cyber-physical systems[END_REF] [210] [START_REF] Shrestha | Model checking of security properties in industrial control systems (ics)[END_REF] [START_REF] Biere | Bounded model checking[END_REF]. To do so, reachable states of the design are traversed. If the property is disproved for the model, a counter example is provided. The counter example is in the form of a sequence of states [START_REF] Biere | Bounded model checking[END_REF]. According to [START_REF] Biere | Bounded model checking[END_REF], model checkers are considered as complimentary not alternative to other verification methods as its time consuming to verify all the desired properties of a system due to the huge state-spaces of such systems. Such exhaustive exploration of state space can be computationally intensive and time consuming [START_REF] Bagade | Validation, verification, and formal methods for cyberphysical systems[END_REF] [START_REF] Falcone | A tutorial on runtime verification[END_REF]. To compact the state explosion problem of model checking in which the size of the model grows exponentially, Symbolic Model checking [START_REF] Burch | Symbolic model checking: 1020 states and beyond[END_REF], Bounded Model Checking [START_REF] Biere | Symbolic model checking without bdds[END_REF] and abstraction techniques [65] [178] were proposed.

In symbolic model checking, sets of states are represented using boolean functions. This representation reduces the list of states. In Bounded Model Checking (BMC), the basic idea is to search for a counterexample in a certain number of transitions. BMC will only prove that the design is correct for the first N transitions but that does not proof the absence of errors in the system. In abstraction techniques, the concrete design is first simplified and then the analysis run on this smaller and more abstract model. Counter example-guided abstraction refinement [START_REF] Clarke | Counterexample-guided abstraction refinement[END_REF] is an example of automatically constructed abstraction.

Symbolic model checking proposed using SAT solvers and presented the idea of SAT-based bounded model checking [START_REF] Mendoza | Efficient SMT-based Verification of Software Programs[END_REF] [43] [START_REF] Biere | Symbolic model checking without bdds[END_REF]. SAT solvers language is Boolean logic [START_REF] Barrett | Sat solvers: Theory and practice[END_REF]. A SAT solver is a procedure which decides whether an input boolean formula can always be replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, we say an input Boolean formula is satisfiable [START_REF] Sebastiani | Lazy satisfiability modulo theories[END_REF].

In [START_REF] Wang | Avionics system failure analysis and verification based on model checking[END_REF], model checking is used to improve failure analysis and verification approach for integrated modular avionics (IMA) systems. Software model checking can be used to automatically detect if unreachable code is present in safety-critical embedded systems [START_REF] Scheibler | Icp and ic3[END_REF]. The absence of unreachable code is one criteria of high quality software in safety-critical embedded systems specified by ISO 26262 [118] standard for the automotive domain UPPAAL [START_REF] Larsen | Uppaal in a nutshell[END_REF] is a very popular tool for model checking. UPPAAL is used to develop abstract models of a real-time system. UPPAAL consists of three main parts: a description language to describe system behavior as networks of timed automata, a simulator to execute the model and verify safety and bounded liveness properties on possible dynamic executions of a system, and a model-checker to verify for invariant and reachability properties on exhaustive dynamic behavior of the system [START_REF] Larsen | Uppaal in a nutshell[END_REF].

Formal Tropos [START_REF] Fuxman | Model checking early requirements specifications in tropos[END_REF] is a language that enables the automatic verification of requirements using modelchecking. Secure Tropos [START_REF] Pavlidis | A case tool to support automated modelling and analysis of security requirements, based on secure tropos[END_REF], an extension of the Tropos methodology, is for the analysis of security requirements and functional ones.

Theorem Proving Theorem proving is a verification method that provides mathematical reasoning on the verification results of the system properties [START_REF] Bagade | Validation, verification, and formal methods for cyberphysical systems[END_REF]. It consists of two steps [START_REF] Grimm | A survey on formal verification techniques for safety-critical systems-on-chip[END_REF] (1) the description of the system along its specification and (1) the proof. In the first step, a system and its specification can be described in a single logical form [START_REF] Zhang | A clock-based dynamic logic for schedulability analysis of ccsl specifications[END_REF]. In the second step, the logical form is used as a verification condition [START_REF] Zhang | A clock-based dynamic logic for schedulability analysis of ccsl specifications[END_REF]. Some theorem provers are based on variations of Hoare logic [START_REF] Ouimet | Formal software verification: Model checking and theorem proving[END_REF]. Hoare's approach [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] depends on pre and post conditions to reason about program correctness. A formula known as "Hoare triple".

According to [START_REF] Ouimet | Formal software verification: Model checking and theorem proving[END_REF], this formula can be read as "if property φ pre holds before program P starts, φ post holds after the execution of P". In embedded systems, φ pre could for instance describe valid actions of a system and φ post could define an undesired state for a formally defined system for a formally defined system P .

Unlike model checking, theorem proving is not based on state space exploration. However, theorem proving have some drawbacks as it requires a high degree of knowledge of the system and high specialization in higher order logic to reasons about the state space using system constraints only [START_REF] Falcone | A tutorial on runtime verification[END_REF] [START_REF] Grimm | A survey on formal verification techniques for safety-critical systems-on-chip[END_REF].

Moreover, as automated generated proofs can be long and complicated to understand, fully automated techniques are less popular for theorem proving [START_REF] Bagade | Validation, verification, and formal methods for cyberphysical systems[END_REF].

In [START_REF] Zhang | A clock-based dynamic logic for schedulability analysis of ccsl specifications[END_REF] a theorem-proving approach to schedulability analysis of Clock Constraint Specification Language (CCSL) specifications is presented. CCSL is a clock-based formalism for the specification and analysis of real-time embedded systems. The objective of schedulability analysis of CCSL specifications is find whether there exists a clock behavior that satisfy a given CCSL specification.

Satisfiability Modulo Theories (SMT) Satisfiability Modulo Theories is "the problem of deciding the satisfiability of a first-order formula with respect to some decidable first-order theory" [START_REF] Sebastiani | Lazy satisfiability modulo theories[END_REF]. The first-order formula is a boolean combinations of atomic propositions and atomic expressions. To benefit from the advantage of fast and automated SAT solvers on higher level than the Boolean level, a SMT solver is based on first-order logic and it combines a SAT solver with theory solvers [START_REF] Barrett | Sat solvers: Theory and practice[END_REF]. Thus, SMT solvers are verification engines at higher level of abstractions [START_REF] Barrett | Sat solvers: Theory and practice[END_REF]. SMT has been applied in different domains including formal verification. In [START_REF] Sebastiani | Lazy satisfiability modulo theories[END_REF] an extensive survey on SMT is presented. Unfortunately, it is not simple to build an efficient SMT solver [START_REF] Sebastiani | Lazy satisfiability modulo theories[END_REF] Equivalence Checking Combinational equivalence checking is a verification method that requires as input two versions of a system design and output a result indicating whether the two inputs are functionally equivalent [START_REF] Chatterjee | Equipe: Parallel equivalence checking with gp-gpus[END_REF]. While this method was usually applied on RTL [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF] it was recently used on higher level of abstraction where for instance, the two inputs may represent a design on a high level of abstraction and its refined form [START_REF] Grimm | A survey on formal verification techniques for safety-critical systems-on-chip[END_REF] Symbolic Execution Symbolic execution executes a system using symbols as inputs instead of concrete inputs (e.g., numbers, integers or strings) and symbolic expressions instead of program variables [START_REF] King | Symbolic execution and program testing[END_REF] [START_REF] Coen-Porisini | Using symbolic execution for verifying safety-critical systems[END_REF].

Symbolic execution can be used to formally verify system software and hardware [START_REF] Currie | Embedded software verification using symbolic execution and uninterpreted functions[END_REF]. For example, for a real number input x to a function in a behavior, three symbolic executions for x > 0, x < 0 and x = 0 are conducted instead of executing the system for each value in the range of R [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF] or variables are inserted at the inputs of logic circuits [START_REF] Currie | Embedded software verification using symbolic execution and uninterpreted functions[END_REF]. The output of the system symbolic execution is expressed in terms of the input symbols [START_REF] Coen-Porisini | Using symbolic execution for verifying safety-critical systems[END_REF]. For each symbolic execution (i.e., for each execution path), the execution engine builds a first-order boolean formula that describes the conditions satisfied by the branches taken along that execution path. A model checker can be used to verify whether the first-order Boolean formula satisfy the system property when symbols are replaced by concert values [START_REF] Baldoni | A survey of symbolic execution techniques[END_REF].

There are a wide range of usages of symbolic execution including verifying safety-critical systems [START_REF] Coen-Porisini | Using symbolic execution for verifying safety-critical systems[END_REF], test case generation, program optimization, program analysis and finding security vulnerabilities [START_REF] Alshmrany | Fusebmc: An energy-efficient test generator for finding security vulnerabilities in c programs[END_REF].

An advantage of symbolic execution is that one symbolic execution may replace a large number of normal system executions [START_REF] King | Symbolic execution and program testing[END_REF]. However, a disadvantage of symbolic simulation is in exponential blow-up for the symbolic expressions [START_REF] Currie | Embedded software verification using symbolic execution and uninterpreted functions[END_REF]. Moreover, when loops with dynamic bounds are present in a system, special measures have to be taken for symbolic execution to be used [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF].

Runtime Verification Approaches

Runtime verification approaches detect property violations by monitoring the system during execution [START_REF] Perez | Copilot 3[END_REF]. In runtime verification system, a decision procedure for the property under study is referred to as a monitor. Creating a monitor is the first step in the runtime verification process [START_REF] Falcone | A tutorial on runtime verification[END_REF]. The monitor takes as input events from the system under analysis. To generate these events the system is instrumented. Thus, the second step in the runtime verification process is system instrumentation. Then, the system is executed and the monitor perform execution analysis on the generated events to generate a verdict [START_REF] Falcone | A tutorial on runtime verification[END_REF]. An overview of a taxonomy of work in runtime verification is described in [START_REF] Falcone | A taxonomy for classifying runtime verification tools[END_REF]. It presents seven major high-level concepts used to classify runtime verification approaches and classifies 20 runtime verification tools according to this taxonomy. For instance, a property may be implicit or explicit. Implicit properties describe correct concurrent behavior and aim at avoiding runtime errors e.g., absence of deadlocks while explicit properties express functional or nonfunctional requirements. An extensive survey of runtime verification approaches applied to hard real-time distributed avionics is presented in [START_REF] Goodloe | Monitoring distributed real-time systems: A survey and future directions[END_REF].

There is lot of existing work on specification languages for runtime verification [START_REF] Blein | ParTraP: A Language for the Specification and Runtime Verification of Parametric Properties[END_REF] [START_REF] Dawes | Towards Automated Performance Analysis of Programs by Runtime Verification[END_REF]. Temporal Stream-Based Specification Language (TeSSLa) [START_REF] Convent | Tessla: temporal stream-based specification language[END_REF] is an example of runtime verification where the language allows to express timing properties and events along execution traces. Unlike traditional Stream-Based runtime verification approaches that process events in execution traces without considering timing information, a timestamp is associated for every event (i.e., elements) of an execution trace [START_REF] Convent | Tessla: temporal stream-based specification language[END_REF]. Thus, enabling access to the global order of events and performing calculations with the timestamps e.g., computing the time lapse between two events. Copilot language [START_REF] Perez | Copilot 3[END_REF] is a runtime verification framework for real-time embedded systems used in combination with NASA Core Flight System applications. Copilot language supports a variety of Temporal Logics that can be used to express re-occurring patterns.

LOLA [START_REF] Angelo | Lola: runtime monitoring of synchronous systems[END_REF] is a specification language of synchronous systems that allows not only the monitoring of boolean temporal specifications but also of quantitative/statistical properties of the system. It has been successfully used to monitor synchronous, discrete time properties of autonomous aircraft [START_REF] Baumeister | Rtlola cleared for takeoff: monitoring autonomous aircraft[END_REF].

However, detecting the violation of some critical safety properties when the embedded system is in operation is not acceptable [START_REF] Fisher | Towards a framework for certification of reliable autonomous systems[END_REF]. Thus, runtime analysis must be used firstly for unexpected events while requirements are expected to be verified in an earlier stage of the product life cycle. At design-time, simulation-based verification is a commonly used [START_REF] Chhaya | Simulation-based and formal verification of domain-specific language model[END_REF]. It is considered a highlydeveloped, time-honored verification technique [START_REF] Rozier | From simulation to runtime verification and back: Connecting single-run verification techniques[END_REF]. It is used at design time thus it is applied on system models before the system is completely built. These models have to be executable and the simulation verification approach able to trace the execution of these models [START_REF] Hojaji | Model execution tracing: a systematic mapping study[END_REF].

Simulation trace analysis is a technique to discover what happens during simulation [START_REF] Gordon | On clustering simulation traces[END_REF]. It is a powerful approach not only for verification but also to understand and optimize the behaviors of a system [START_REF] Pagano | SoC-trace infrastructure[END_REF], debug the application [START_REF] Pagano | SoC-trace infrastructure[END_REF] [127], perform model checking [START_REF] Hojaji | Model execution tracing: a systematic mapping study[END_REF], reverse engineering, timing analysis, detecting of data races [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF], etc. For instance, [START_REF] Aboussoror | Significantly increasing the usability of model analysis tools through visual feedback[END_REF] describes a trace analysis approach that allows the designer to reason at SysML/UML model level on the model execution. The aim of this approach is to help the designer to explore and understand the model based analysis results.

Tools using simulation trace analysis technique to analyze and verify time related requirements are discussed in Section 3.2.3.1.

Performance Evaluation

In [START_REF] Marwedel | Evaluation and validation[END_REF], evaluation is defined as "the process of computing quantitative information of some key characteristics (or "objectives") of a certain (possibly partial) design". Throughput, resource utilization and response time are among the quantitative information of interest in performance measures [START_REF] Bolch | Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications[END_REF]. According to [START_REF] Hermanns | Process algebra for performance evaluation[END_REF], performance evaluation includes the analysis and optimization of time-dependent behavior of systems. Performance evaluation may lead to the refactoring of hardware or software designs to meet timing requirements. Thus, it has to be considered since the beginning of a design process [START_REF] Hermanns | Process algebra for performance evaluation[END_REF].

Instrumentation [188] [204], emulation [START_REF] Qasem | Automatic vulnerability detection in embedded devices and firmware: Survey and layered taxonomies[END_REF], symbolic execution, process algebras [START_REF] Wu | Process algebra approach to verifying safety specification of hybrid embedded systems[END_REF],etc. . . are examples of techniques that can be used for performance evaluation. Timing analysis approaches are commonly classified as simulation-based approaches, formal approaches and hybrid approaches [START_REF] Stemmer | Feasibility Study of Probabilistic Timing Analysis Methods for SDF Applications on Multi-Core Processors[END_REF]. Simulation tools and industrial frameworks e.g., Koski [123] can only consider a limited set of execution traces and corner cases are usually unknown [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] however they have the advantage of being insensitive to state space size [START_REF] Hillston | Process algebras for quantitative analysis[END_REF]. Formal approaches like timed automata are check system properties in an exhaustive way and are usually limited on scope to the model under analysis where sharing of resources leading to complex interactions among components is difficult to take into consideration. To overcome the limitations encountered when using either method, [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] and [START_REF] Viehl | Formal performance analysis and simulation of uml/sysml models for esl design[END_REF] combined simulation and formal approaches to analyze system performance. Hybrid approaches combine simulation-based and formal approaches [START_REF] Stemmer | Feasibility Study of Probabilistic Timing Analysis Methods for SDF Applications on Multi-Core Processors[END_REF].

Software Performance Engineering (SPE), pioneered under the name of "performance engineering" by Connie Smith [START_REF] Smith | Performance engineering of software systems[END_REF] describes the application of performance evaluation techniques to software systems [START_REF] Pooley | The unified modelling language and performance engineering[END_REF]. SPE [START_REF] Pinciroli | Qn-based modeling and analysis of software performance antipatterns for cyber-physical systems[END_REF] object is to produce performance models early in the development cycle. Solving such models produces quantitative information that can trigger redesigning the system to meet performance requirements. It may also help designers to choose between several architectural choices [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF].

The types of models used include queueing networks, layered queues, types of Petri Nets, Stochastic Process Algebras,etc [START_REF] Woodside | The future of software performance engineering[END_REF].

Petri Net Theory Petri nets are a graphical and mathematical modeling languages that can describe and visualize distributed systems [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] [START_REF] Shen | Evaluate concurrent state machine of sysml model with petri net[END_REF]. The system behavior can be determined using state equations, algebraic equations, and other mathematical models.

A Petri net is considered as a kind of directed, weighted, bipartite graph with nodes and arcs are between nodes. Tokens are used to simulate the dynamic and concurrent system activities [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. The basic definition of Petri nets does not contain time concept. However, time delays can be introduced and associated with places and/or transitions. Thus, Petri nets can be used for time analysis. We refer to a Petri net as deterministic timed net when time delays are deterministically given and as stochastic net when the delays are probabilistically specified.

To avoid the difficulty of modeling the system by the formal method directly, [START_REF] Shen | Evaluate concurrent state machine of sysml model with petri net[END_REF] proposes a method that transforms SysML state machine into Petri net.

Simulation-Based Approaches

As embedded systems are becoming more and more complex, their behavior analysis is becoming a challenging task [START_REF] Pagano | Trace management and analysis for embedded systems[END_REF]. Simulation is a very common technique for evaluating and validating designs as simulation traces record the behavior of the embedded system application on the architecture and thus provide relevant information about the system execution. Simulation consists of executing a design model on appropriate computing hardware, typically on general purpose digital computers. Obviously, this requires models, which are approximations of real systems, to be executable [START_REF] Marwedel | Evaluation and Validation[END_REF]. System evaluation and validation using trace analysis is considered useful when engineers can manage and use the trace analysis tools to analyze complex requirements [START_REF] Yue | Trap: trace runtime analysis of properties[END_REF].

The SoC-Trace Project [START_REF] Pagano | SoC-trace infrastructure[END_REF] aims to develop an infrastructure to store and analyze traces regardless of their different formats and huge sizes. The objective of building this infrastructure is to have tools build on top of it that can analyze the stored traces.

An automated simulation traces analysis approach that identifies progress from repetitive behaviors in simulation models was introduced in [START_REF] Kemper | Automated analysis of simulation traces-separating progress from repetitive behavior[END_REF]. This identification helps in detecting errors in simulation models [START_REF] Kemper | A trace-based visual inspection technique to detect errors in simulation models[END_REF]. These errors are states where the system is unable to recover after something bad happened. This approach was implemented in Traviando [START_REF] Tepper | Traviando-debugging simulation traces with message sequence charts[END_REF].

Traviando (Trace Visualizer and Analyzer from Dortmund university) is an example of a software tool used for simulation traces analysis. It takes a simulation trace in Extensible Markup Language (XML) format as input and output a visualization of the trace as message sequence chart (MSC) [START_REF] Kemper | Visualizing the dynamic behavior of proc/b models[END_REF].

In addition to this output, Traviando provides quantitative and qualitative trace analysis [START_REF] Tepper | Traviando-debugging simulation traces with message sequence charts[END_REF]. For the qualitative analysis, Traviando provides a linear time logic (LTL) model checking on traces. Properties of interest are specified as LTL formulas, trace fragments that satisfy or not satisfy certain properties are identified and highlighted [START_REF] Kemper | Trace analysis-gain insight through modelchecking and cycle reduction[END_REF]. In the quantitative analysis, statistical evaluation, bottleneck analysis and deadlock detection along other performance measures evaluation are implemented [START_REF] Kemper | Trace based analysis of process interaction models[END_REF]. To perform quantitative analysis, ProC/B models [START_REF] Bause | The proc/btoolset for the modelling and analysis of process chains[END_REF] are simulated using a Discrete Event Simulation environment.

Quantitative analysis aims to attract the attention of the designer for section of traces that corresponds to extremal, crucial or extraordinary model behavior. The traces corresponding to these behaviors are highlighted in the message sequence chart (MSC) output [START_REF] Kemper | Trace analysis-gain insight through modelchecking and cycle reduction[END_REF].

In the scoop of RT-Simex [START_REF]Retro-ingénerie de traces d'analyse de simulation et d'exécution de systèmes temps-réel -rt-simex[END_REF] project, a set of tools were used to analyze and verify timing constraints and locate faults of parallel embedded code [START_REF] Deantoni | Rt-simex: retro-analysis of execution traces[END_REF]. This work is based on instrumentation of the simulation code. Real time constraints on UML models were specified using MARTE time model and CCSL library [START_REF] Deantoni | Towards Formal System Modeling: Making Explicit and Formal the Concurrent and Timed Operational Semantics to Better Understand Heterogeneous Models[END_REF]. Simulation traces in Open Trace Format are studied to check if the specified real time constraints are met. TimeSquare [START_REF] Deantoni | Timesquare: Treat your models with logical time[END_REF] can be used for system design based on MARTE model where clock constraints are specified based on Clock Constraint Specification Language (CCSL). TimeSquare analyzes CCSL constraints and sends direct feedback to the users during the simulation.

In [START_REF] Iegorov | Data mining approach to temporal debugging of embedded streaming applications[END_REF], SATM (Streaming Application Trace Miner) is proposed. It is an approach to help debugging real time applications like streaming application and understand the reason of quality of service (QoS) properties violations. In debugging two types of bugs were identified: functional and temporal bugs. While functional bugs may lead the system to produce wrong output values, temporal bugs lead to deliver correct outputs but after a deadline leading to performance issues [START_REF] Iegorov | Data mining approach to temporal debugging of embedded streaming applications[END_REF]. SATM takes as input an execution trace and outputs a description of system activity indicating the origin of the temporal bug. To identify the origin of the QoS problem, SATM is based on data mining approach. In [START_REF] Iegorov | Data mining approach to temporal debugging of embedded streaming applications[END_REF], the execution trace was based on executing the embedded software on a real hardware -an already manufactured chip-however, the application of pattern mining algorithms on simulation traces was highlighted. The data mining algorithm was used to characterize simulation traces of program executions that corresponded to temporal properties violations. The simulation traces are obtained from simulating a SystemC transactional mode in ISIS tool [181] [182].

In [START_REF] Chen | Automatic trace analysis for logic of constraints[END_REF], an approach that analyzes simulation traces of systems to check if functional and performance constraints expressed in Logic of Constraints (LOC) [START_REF] Chen | Logic of constraints: A quantitative performance and functional constraint formalism[END_REF] are satisfied is introduced. The simulation traces are inputs to a trace checker that reports any constraint violation. In this approach, the constraints are specified at abstract system level and hardware/software co-design is considered in the system design methodology.

One of the verification techniques implemented in Metropolis -a system-level design framework for embedded systems-is a simulation trace checking based verification methodology [START_REF] Chen | Verification approach of metropolis design framework for embedded systems[END_REF]. Functional and performance properties of a design can be specified by the designer using Logic of Constraints (LOC), mathematical logics and Linear Temporal Logic (LTL). Trace analysis tools integrated into the simulator of Metropolis automatically check for the specified properties. This verification can be performed off-line or during the simulation [START_REF] Chen | Verification approach of metropolis design framework for embedded systems[END_REF].

Co_Simulation Trace Analysis tool (COSITA) analyzes simulation traces in VCD format resulting from SystemC-Simulink co-simulation and compare them to emulation traces. SystemC is used to model hardware architecture and Simulink used as functional modeling language [START_REF] Khlif | Co-simulation trace analysis (cosita) tool for vehicle electronic architecture diagnosability analysis[END_REF]. This technique is used to verify properties of the modeled system. Automotive applications are modeled and properties that allow the system to take a decision after a fault is encountered falls within the authors interest.

Trace Runtime Analysis Platform (TRAP) tool [START_REF] Yue | Trap: trace runtime analysis of properties[END_REF] is a model-based framework that analyzes simulation traces to verify causal and temporal properties of embedded systems. Simulation traces are generated by virtual prototype (VP) simulators. An error is raised in case a property is violated [START_REF] Yue | Trap: trace runtime analysis of properties[END_REF]. A trace file generated by a VP simulator often contains a lot of detailed information about the system. To minimizing the trace size, a Domain Specific Language, STML (Simulation Trace Mapping Language) is used to abstract trace data into symbolic information (logical clocks) and remove irrelevant information. This is where the originality of this tool lies. The objective of this framework is to predicts the reliability and availability of an embedded system before it is integrated with the target hardware [START_REF] Sinha | Reliability and availability prediction of embedded systems based on environment modeling and simulation[END_REF] .

Hedde and Pétrot [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF] used virtual prototypes to produce non intrusive traces. These traces are used for fine-grain analysis of software running on Multiprocessor Systems-on-Chip (MPSoCs). Complex analysis such as verification of cache coherency protocol, memory consistency and data races detection can be performed on traces [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF]. The SoCLib framework along its System C Component library are used for MPSoCs simulation. Moreover, the presented trace system method in [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF] uses instrumentation of component models to trace hardware events.

The traces collected in [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF] are reconsidered in [START_REF] Lagraa | Data mining mpsoc simulation traces to identify concurrent memory access patterns[END_REF]. In [START_REF] Lagraa | Data mining mpsoc simulation traces to identify concurrent memory access patterns[END_REF], a framework based on data mining approach is implemented to detect concurrent accesses to memory. The main aim of the data mining approach is to automatically identify access patterns whose latency deviate significantly from the average behavior of the traces and report them in a readable output to the software developers.

In [START_REF] Brandenburg | Simulation-based hw/sw co-exploration of the concurrent execution of hevc intra encoding algorithms for heterogeneous multi-core architectures[END_REF], a non-intrusive instrumentation methodology for SystemC platform simulation models was detailed. Using this methodology several types of analysis can be performed including runtime design analysis and data analysis. Data analysis is part of an analysis framework that implements different performance and bottleneck analysis functions based on collected simulation traces. The data analysis runs different analysis filters. These filters take as inputs a sequence of sorted trace events and the platform description. A basic analysis filter correlate software and hardware events. It maintains a function call-graph by detecting function calls and function returns. A function group analysis filter is used to estimate virtual software components execution time. Another filter monitors and counts all memory accesses thus highlighting memory conflicts. The presented methodology was applied to HW/SW co-analysis and co-exploration of a multi-core model of a high efficiency video coding (HEVC) intra encoder. The analysis framework helped in developing and optimizing the model. Time consuming components were identified and replaced by hardware accelerators and parallel segmentation of algorithms introduced to encoder software implementation.

Koski [123] provides a complete design flow to model multiprocessor system-on-chips in a UML profile with automated design space exploration. It uses simulation for functional verification and performance evaluation. In [123], performance is defined as dynamic factors of the architecture such as timing, latency, and throughput. These factors are a subset of cost function parameters. DSE is based on orthogonal application and architecture modeling at system level. The design flow starts with the requirements capturing, then the system functionality is described and verified. The system functionality is described with an application model in a UML design environment. In the next step, the architecture is modeled.

To find a good application-to-architecture mapping, architecture exploration is executed. The design flow ends with automatic code generation step [START_REF] Gerstlauer | Electronic system-level synthesis methodologies[END_REF]. In this section we will focus on the system functionality implementation and verification that is carried out in four steps: automatic code generation, application build, functional verification, and application profiling. In the code generation step, Telelogic Tau G2 is used to generate a platform-independent C code. The generated code is complemented with supporting libraries and profiling functions in the application build step. It is in this stage that an executable application is produced. The functional verification is performed by simulations. Tau G2 Model Verifier is used for simulation. Textual tracing is one of the methods to observe the simulations. In the forth step, execution trace are used for functional verification. The application profiling is based on the execution trace gathered during simulations. The execution traces give information on the amount of communication and transferred data between state machines and about the execution activity of state machines [123]. The performance is determined by the simulation statistics of process execution timing and communication latencies.

Information Flow Analysis

Dataflow graph is a model of computation that can be used to analyze properties of a system [START_REF] Bennour | Formal verification of timed synchronous dataflow graphs using lustre[END_REF].

Examples of these properties include absence of deadlock, throughput bounds, performance requirements, security requirements, etc [34] [36] [106] [START_REF] Li | Static analysis of android apps: A systematic literature review[END_REF].

A dataflow graph is a directed graph consisting of nodes connected by edges. Nodes are called actors [START_REF] Bekooij | Dataflow analysis for real-time embedded multiprocessor system design[END_REF]. Edges are arcs representing dependencies. Actors produce and consume tokens. A token stores a fixed amount of data. An actor is enabled to fire a token when tokens are available on all its input edges [START_REF] Hou | Performability analysis of networks-on-chips[END_REF]. Synchronous data flow graph, cyclo-static dataflow graph, and dynamic dataflow graph are examples of dataflow graphs.

In [START_REF] Stuijk | Multiprocessor resource allocation for throughput-constrained synchronous dataflow graphs[END_REF], synchronous time-constrained multimedia applications are modeled using dataflow graphs.

These graphs are then allocated to an embedded multiprocessor system using the proposed resource allocation strategy that guarantees that the throughput bounds are respected.

The actors of synchronous dataflow models defined in [START_REF] Bekooij | Dataflow analysis for real-time embedded multiprocessor system design[END_REF], have a well-defined input/output behavior and a worst-case response time. These models were used to derive the worst-case end-to-end temporal behavior of real-time applications [START_REF] Hansson | Applying dataflow analysis to dimension buffers for guaranteed performance in networks on chip[END_REF] proposes to use cyclostatic dataflow graph to capture the behavior, allocate resources and compute buffer sizes in larger SoC applications whose performance needs to be guaranteed.

The approach in [START_REF] Posadas | Data flow analysis from uml/marte models based on binary traces[END_REF] uses data flow analysis from UML/MARTE models and trace analysis to improve design flexibility and evaluation capabilities of the models. To understand and analyze the required timing behavior of the model, the user must define, in the UML model, the most important paths followed by the data internally through the system. These internal data paths are monitored and form the bases for timing analysis. The analysis output information about the correct path iterations, and their timing characteristics (maximum, mean and minimum time), number of correct data paths accomplishing the constraints sets, etc.

Taint analysis is a form of information flow analysis [START_REF] Li | Static analysis of android apps: A systematic literature review[END_REF]. It includes tainting an object/data in a system then tracking it using a data-flow analysis technique [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF] [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF]. To taint an object/data means to mark it with a tag or label. The data flow analysis tracks the tainted object from the taint source, where the taint object comes from, to the taint sink where the taint object leaves the system.

Taint analysis is mainly used in compiler optimization and security analysis [50] [156]. In [START_REF] Lyons | Using taint analysis and reinforcement learning (tarl) to repair autonomous robot software[END_REF], an automated analysis and repair approach for existing software for autonomous robot systems was proposed.

The latter approach used a taint analysis method.

Taint Analysis

Taint analysis can run in two modes static and dynamic. In dynamic taint analysis the system is executed to be analyzed while in static taint analysis the source code is parsed without execution [38] [153].

Dynamic taint analysis is used by several security algorithms to track information flow in software [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF]. It is mainly used to detect vulnerabilities and protect sensitive data [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF]. Information disclosure attacks [START_REF] Berner | Dynamic taint tracking simulation[END_REF] and confidentiality violations [START_REF] Hauser | A taint marking approach to confidentiality violation detection[END_REF] can be detected using dynamic taint tracking.

In [START_REF] Lai | Embedded tainttracker: Lightweight run-time tracking of taint data against buffer overflow attacks[END_REF], a dynamic taint tracking technique was used to prevent buffer overflow. The main advantage of dynamic analysis is that it is possible to detect attacks that need certain prerequisites like system configuration while the main disadvantage of dynamic analysis is that only part of the program that was executed is analyzed [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF].

Techniques based on dynamic tainting have been successfully used in the context of application security, and now their use is also being explored in different areas, such as program understanding, software testing, and debugging [START_REF] Clause | Dytan: A generic dynamic taint analysis framework[END_REF].

Static taint analysis approaches can be used for different tasks including security and privacy issues detection [START_REF] Li | Static analysis of android apps: A systematic literature review[END_REF] [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF]. At the time of development of C programs, static taint analysis can be used to detect bugs [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF]. For android apps, in addition to assessing their security, detecting app clones, automating test cases generation and discovering performance or energy related issues can be achieved through static analysis approaches [START_REF] Li | Static analysis of android apps: A systematic literature review[END_REF]. However, static taint analysis approaches cannot analyze encrypted or obfuscated code [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF] and some of the code paths identified in static analysis could never execute in real systems [START_REF] Xia | Effective real-time android application auditing[END_REF].

While both static and dynamic techniques can be used for information disclosure attacks detection, dynamic analysis according to [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF] appears to be more promising. Moreover, hybrid approaches which combines static and dynamic analysis improve the quality of security analysis.

DTaint [START_REF] Cheng | Dtaint: detecting the taintstyle vulnerability in embedded device firmware[END_REF] is a static analysis approach used to detect taint-style vulnerabilities in the firmware. The firmware is a software embedded in devices to determine their functionality. The taint-style vulnerability can be defined as a flaw where the input data reaches a sensitive sink through an unsafe path. DTaint was applied to six firmware images from four manufacturers and 21 vulnerabilities were discovered among them 13 previously-unknown and zero-day vulnerabilities.

Celik et al. [START_REF] Celik | Sensitive information tracking in commodity iot[END_REF] propose Saint, a tool used to detect privacy violations in IoT apps using static taint analysis. Saint identifies potential flows of sensitive data by automatically tracking information flow from taint sources (e.g., device state and user info) to taint sinks (e.g., Internet connections). SAINT operates in three phases. First the taint sources and sinks are identified. Then the IoT source code is translated into an intermediate representation (IR). After that static analysis is performed.

ContexIoT [START_REF] Jia | Contexlot: Towards providing contextual integrity to appified iot platforms[END_REF] is a context-based permission system for IoT apps. It gathers context information (e.g., data source, and runtime data of a device) before a sensitive action is executed, and then asks for user approval to execute this action through run-time prompts. ContexIoT provides contextual integrity to permission granting and aims to detect the misuse of IoT devices by comparing the context information of a normal behavior to a behavior set up by an attacker. ContexIoT defines context as execution paths of an app functionality (inter-procedure control and data flow) including for example how the functionality is triggered and what data is flowing along the execution path. To help users make informed decisions, tainting is used in ContexIoT to labels the data source and track data on the execution path of an app code. Thus, when presenting the context information to the user, taint analysis will allow the user to distinguish for example if the data to be sent out is the user password or just the battery level and a user can make a more informed decision on permission granting.

Tainting analysis is mainly used in mobile-phone platform [START_REF] Celik | Sensitive information tracking in commodity iot[END_REF]. Taintdroid [START_REF] Enck | Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones[END_REF], "the best known taint-tracking system for Android" [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF], uses dynamic taint analysis to allow users to track the flow of information through third-party applications in real-time. In particular it monitors privacy-sensitive data and address challenges specific to mobile phones [START_REF] Graa | Detecting control flow in smarphones: Combining static and dynamic analyses[END_REF]. Several Android security systems are based on Taintdroid including MOSES [START_REF] Russello | Moses: supporting operation modes on smartphones[END_REF], TreeDroid [START_REF] Dam | Treedroid: a tree automaton based approach to enforcing data processing policies[END_REF], VetDroid [START_REF] Zhang | Vetting undesirable behaviors in android apps with permission use analysis[END_REF], YAASE [START_REF] Russello | Yaase: Yet another android security extension[END_REF], AppsPlayground [START_REF] Rastogi | Appsplayground: automatic security analysis of smartphone applications[END_REF],

DroidBox [START_REF] Lantz | Droidbox: Android application sandbox[END_REF], ANDRUBIS [START_REF] Lindorfer | Andrubis-1,000,000[END_REF], QuantDroid [START_REF] Markmann | Quantdroid: Quantitative approach towards mitigating privilege escalation on android[END_REF] and NDroid [START_REF] Qian | On tracking information flows through jni in android applications[END_REF]. Mobile-Sandbox [START_REF] Spreitzenbarth | Mobile-sandbox: combining static and dynamic analysis with machine-learning techniques[END_REF] is also based on Taintdroid however, it is hybrid security analysis approach which combines and benefits of static and dynamic analyses. In this approach, the dynamic taint analysis is guided by a static analysis phase.

Two successors of Taintdroid are TaintART and TaintMan [START_REF] Berner | Dynamic taint-tracking: Directions for future research[END_REF].

The Blare project and the Blare tools aim to provide a set of tools to monitor information flows at different level of granularity [START_REF] George | Blare tools: A policy-based intrusion detection system automatically set by the security policy[END_REF]. At the level of operating system, Blare [START_REF] George | Blare tools: A policy-based intrusion detection system automatically set by the security policy[END_REF] is used to monitor the information flow. It tags files as files are information container at the OS level. The tag of the file is propagated to the program when a program accesses a file. Conversely, each time the program writes to a file, the tag of program is propagated to the file. Security policy are used to verify if the information flow is authorized or not [START_REF] Wahab | Hardware support for the security analysis of embedded softwares: applications on information flow control and malware analysis[END_REF]. The tag propagation and security policy checks are performed by the Linux kernel [START_REF] Wahab | Hardware support for the security analysis of embedded softwares: applications on information flow control and malware analysis[END_REF]. AndroBlare [START_REF] Andriatsimandefitra | Capturing android malware behaviour using system flow graph[END_REF] modifies Blare to trace information flows on an Android operating system.

DTA++ [START_REF] Kang | Dta++: dynamic taint analysis with targeted control-flow propagation[END_REF] enhance standard dynamic taint analysis approaches by propagating taint along control dependencies. It targets the under-tainting problem of standard approaches where sensitive information should be marked as tainted are not. This problem occurs when tainted data values affect control flow in a program and then the control flow affects other data but the latter remain untainted. DTA++ is implemented using the BitBlaze platform for binary analysis [START_REF] Song | Bitblaze: A new approach to computer security via binary analysis[END_REF]. It is applied on off-the-shelf benign Windows/x86 applications

Conclusion

Table 3.1 shows a summary of the methods and tools presented in Section 3.2.3.1 showing the type of models they design, the purpose of their trace analysis approach and the technique they use in their analysis.

Nevertheless, to the best of our knowledge, the aforementioned works do not address an approach in which the execution trace of a high-level allocation model can be used to advice a designer on how to enhance a model to satisfy a latency requirement by indicating which software/hardware component SATM [START_REF] Iegorov | Data mining approach to temporal debugging of embedded streaming applications[END_REF] [60] Metropolis [START_REF] Chen | Verification approach of metropolis design framework for embedded systems[END_REF] COSITA [START_REF] Khlif | Co-simulation trace analysis (cosita) tool for vehicle electronic architecture diagnosability analysis[END_REF] TRAP [START_REF] Yue | Trap: trace runtime analysis of properties[END_REF] TIMA [START_REF] Hedde | A non intrusive simulation-based trace system to analyse multiprocessor systems-on-chip software[END_REF] [51] Koski [123] SysML-Sec [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF] This Thesis contributed to a latency between events. In other words, to our knowledge, other performance evaluation methods do not identify which component leads to extra processing time or hardware contention. Most of the analysis tools calculate the WCET or BCET or latency and throughput values. While in some simple cases having the minimum and maximum latency can be beneficial for the designer, in other complex cases, especially when new safety and security measures are added to the model, having these values does not help much the designer on the precise cause of the latencies. Not understanding the cause of the latency and what elements are contributing to its value will limit the designer's knowledge on how to enhance the model to further improve performance.

The introduced approach in the scope of this thesis does not require the use of instrumentation, data mining or any external tool. It is based on the extraction from the model semantics a causality graph and studying the execution trace along the generated graph as detailed in the next chapters.

Moreover, tainting which is mostly used to detect security flows as shown in section 3.3.1 is used in the second version of our approach to calculate latency.

Chapter 4

Precise Latency Analysis Approach:

Overview and Problem Formalization 

Motivation

Handling time is often a critical aspect for safety critical systems [223] [55]. These systems are known as real-time systems. Real-time systems are characterized by their ability to accomplish a specific task and respond to events within a specified time [58] [152]. In order for real-time systems to behave correctly, they must not only execute the correct computations but also do so within predefined time constraints.

These time constraints are typically expressed in terms of end-to-end deadlines on the elapsed time between a stimulus and the corresponding response [75] [223], the percentage of usage of system's components [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF] and throughput [START_REF] Thiele | Performance analysis of distributed embedded systems[END_REF] where throughput is defined as the number of events that can be processed per time unit.

Real-time systems can be classified as hard real-time or soft real-time systems. In hard real-time systems failure to meet a deadline leads to a failure of the application resulting in catastrophic situations.

In soft real-time systems missing a deadline leads only to degraded quality of service of the application.

Designers must ensure that hard real-time systems respect their deadlines before systems are put in operation [START_REF] Davis | A review of fixed priority and edf scheduling for hard real-time uniprocessor systems[END_REF]. In general, estimating the timing properties for a system as early as possible in the design process is considered a valuable approach as it results in updating the model in a cost-efficient manner [207] [230].

Real-time constraints expressed with respect to end-to-end deadlines can specify the maximum time delay that the system can tolerate between two events. This maximum acceptable time delay is referred to as deadline or maximum latency. Latency is the time delay between the execution of two events.

Latency is important when there is an expected feedback from the system corresponding to an input event [START_REF] Sean | Latency in embedded systems[END_REF]. For example, a motor controller is expected to stop within 500 ms after it receives a stop command from the user. Section 4.5 defines precisely and formally what a maximum latency requirement is in the scope of our work.

In this chapter, a new latency analysis approach PLAN based on Execution Trace Analysis (ETA) is introduced. This approach is meant to precisely indicate the cause of latency between two events in a system. For this, PLAN can analyze the execution trace between the two events of interest. PLAN answers whether the latency requirement is satisfied. If not, then the analysis produces a classification of the transactions of the execution trace. To perform this analysis, PLAN has to use system semantics, including the logical and physical dependencies between software and hardware components. In the scope of this thesis, dependencies are specific to high level languages. For example, as shown later in the chapter, the dependencies between writing and reading data are approximations that do not take into account the value but the amount of data. So, dependencies are heuristic defined at high level of abstraction. Applying PLAN to system models defined at lower level of abstraction i.e., assembly level is discussed in Chapter 8 for future work.

Precise Latency Analysis Approach

Precise Latency Analysis (PLAN) shown in Figure 4.1 is a new approach to determine the latency between events in a system modeled at a high level of abstraction. PLAN is used not only to study the latency between two events of interest, but also to study the reason behind the latency value. In the scope of this thesis, we assume that the modeling process follows the Y-Chart approach where the system application and platform are modeled independently of each other, and are then followed by the allocation of the application model to the platform model. We refer to these models as the HW/SW partitioning model.

PLAN automatically analyzes an execution trace obtained after executing the HW/SW partitioning model to identify which hardware components or software functions provoke an extra latency between the two selected events. By "extra latency", we mean all the delays that could have been avoided with a better scheduling, better allocation, the absence of contentions, etc. In addition, it reports how much hardware components or software functions contributed to this latency. These identifications assist a designer in taking several decisions that can enhance the timing between events in a system. These decisions may include replacing a component with a more efficient one, executing a function on different processors or running a message exchange on different buses.

To achieve this, PLAN takes as input an instance of a HW/SW partitioning model, an execution trace, and a time constraint expressed in the following format: the latency between operator A and operator B should be less than a maximum latency value. An operator is an element of a behavior of the application. PLAN then builds a dependency graph from the HW/SW partitioning model to simplify model analysis, as explained in the next section. The dependency graph reflects sub-part of the dependencies and semantics of the system (e.g., data channels, function behavior sequences). From the requirement, PLAN extracts the value of the maximum latency and the two events. Afterwards, PLAN analyzes the execution trace -generated when the HW/SW partitioning model is simulated or executed-according to the dependencies given in the dependency graph using ETA sub-algorithm. More precisely, the dependency graph is an input to the analysis process. In ETA, each execution of event 1 leads to identify the corresponding event 2 so as to compute the latency between the two. If the latency is greater than the maximum latency, the ETA sub-algorithm groups the transactions found in the execution trace in different categories and outputs them. Among these categories, the contention category is the most interesting one for the designer as it contains refers to the functions and hardware components that have played a role in the latency: removing these contentions would lead to reduce the latency under study. Otherwise, if all the latencies between events 1 and its corresponding events 2 are below the maximum latency, the designer is notified that the system model respects the requirement.

In the following sections, the different stages shown in 

System Model Formal Definition

The formal definition proposed in this subsection assumes that the Y-Chart scheme [START_REF] Kienhuis | The y-chart approach[END_REF] is used to capture the application, the platform and the allocation of the considered system. Our model supports two kinds of communication channels: data channels and synchronization channels. The set of all data channels of an application model is denoted as DC and the set of all synchronization channels of a system is denoted as SC.

The set of data channels for writer f and reader f is denoted as DC f,f and for synchronization channels SC f,f . Finally, the set CC f,f is a 2-uple defined as follows:

CC f,f = DC f,f , SC f,f
And DC, SC and CC are defined as: Synchronization messages sent from function f to function f are managed using a FIFO buffer, which can be finite or infinite. So, the receiver function is always blocked when the buffer is empty while the sender function can be non blocking or blocking when the buffer is full. When the synchronization channel has finite buffer semantics, of course, a buffer size attribute is specified and in case the buffer is full, no synchronization messages can be added to it, so a sender function is blocked until the buffer is not full. So, for a synchronization channel having Non-Blocking Notify -Blocking Wait Infinite FIFO type the sender function f can always send synchronization messages without any constraint and the receiver function f is blocked when the buffer is empty. In case the synchronization channel has Non-Blocking Notify -Blocking Wait Finite FIFO type, the sender function f can send synchronization messages without any constraint and the receiver function f is blocked when the buffer is empty. However, in the later type, when the buffer is full, the oldest message in the buffer is removed to leave space for the new one that is added. In case the synchronization channel has Blocking Notify -Blocking Wait Finite FIFO type, the sender function f can send synchronization messages only until the buffer is full while the receiver function f can read synchronization messages if the buffer is not empty. The functions getSCType and getSyncBufferSize take as argument a synchronization channel and return the synchronization channel semantic (SCType) and the FIFO buffer size respectively.

DC = DC f,f | (f, f ) ∈ F 2 SC = SC f,f | (f, f ) ∈ F 2 CC = DC ∪ SC Definition 5. Synchronization Channel A synchronization channel sc f,f ∈ SC f,
getSCType 

: SC f,f → SCType getSyncBufferSize(sc f,f )          = ∞ if getSCType(sc f,f ) = NBN-BW-INF ∈ Z + if getSCType(sc f,f ) ∈ {NBN-BW-F,
)          = ∞ if getDCType(dc f,f ) ∈ { NBW-NBR, NBW-BR} ∈ Z + if getDCType(dc f,f ) = BW-BR Definition 7. Function
A function f ∈ F is defined by a finite set of variables and a behavior.

f = {v 1,f , v 2,f , . . . , v n,f }, B f

Definition 8. Function Behavior

A behavior B f is defined by a finite set of operators O f , a set of loops L f and a set of control flow connections C f between operators. and o 2 if there exists a control flow connection between these two operators. Formally, • Set: sets a new value to a variable. A Set operator has exactly one next.

B f = O f = {o 1 , o 2 , . . . , o n }, L f , C f ⊂ {(o i , o j ) ∈ O 2 f | i = j}
--→ o 1 o 2 ) =          true if ∃o i o j ∈ --→ o 1 o 2 | o i = o ∨ o j =
C f then getNext(o)= {o i }. Formally, getNext(o) = {o i | (o, o i ) ∈ C f } A control flow connection c ∈ C f has a
∀f ∈ F, ∀o 1 , o 2 ∈ O 2 f , (o 1 , o 2 ) ∈ C f ⇐⇒ o 1 o 2 ∈ controlFlowDep
• WriteData: specifies an amount of data to be written into a data channel. A WriteData operator has exactly one next. The quantity of data to write is specified in a size attribute. Functions getDataCh and getDataSize take as an argument a WriteData operator and return the data channel and size attributes respectively.

• ReadData: specifies an amount of data to be read from a data channel. A ReadData operator has exactly one next. Functions getDataCh and getDataSize defined for WriteData operators are also defined in the same way for ReadData operators. Formally,

getDataCh : O f,W riteData ∪ O f,ReadData → DC getDataSize : O f,W riteData ∪ O f,ReadData → Z +
• Notify: specifies the sending of a synchronization message through a synchronization channel. A

Notify operator has exactly one next. The function getSyncCh takes as and argument a Notify operator and returns the synchronization channel.

• Wait: specifies the receiving of a synchronization message through a synchronization channel. A

Wait operator has exactly one next. The function getSyncCh defined before can be applied to Wait operators to retrieve the synchronization channel. • The Merge operator can not be used inside a loop iteration to exit a loop.

• Loop iteration: The loop must iterate for a given number of iterations nbr that is given by one variable v. The variable is used in the Choice operator guard to determine the number of the loop iterations and in the Set operator to count the possible number of iterations of a loop. This variable can not be modified outside of the loop. This variable is only modified in the Set operator where it is incremented by one.

Outside a loop a Choice, Merge and Set operators can be used as desired. To make it easier to identify the Choice, Merge and Set operators used to create a loop, we tag them with identifiers. 

insideLoop(o, o m , o c , o s , v, nbr ) =          true if inPath(o, ---→ o c o m )
f alse otherwise To retrieve the first operator inside the loop iteration and the first operator of the loop exit, functions getInsideLoopand getOutsideLoop are used respectively. Formally,

getInsideLoop( o m , o c , o s , v, nbr ) = o | o ∈ getNext(o c ) ∧ insideLoop(o, o m , o c , o s , v, nbr ) getOutsideLoop( o m , o c , o s , v, nbr ) = o | o ∈ getNext(o c ) ∧ ¬insideLoop(o, o m , o c , o s , v, nbr )
To know if a Choice operator o c is used to create a loop, we use function loopChoice(o c ). Formally, In the same application model, operator o 8 writes data on dc 4 

isLoopChoice(o c ) =          true if cat(o c ) = Choice ∧ o m , o c , o s , v,
∀f 1 , f 2 ∈ F 2 , ∀o i ∈ O f 1 , ∀o j ∈ O f 2 , cat(o i ) = Notify ∧ cat(o j ) = Wait ∧ getSyncCh(o i ) = getSyncCh(o j ) ⇐⇒ o 1 o 2 ∈
∀f 1 , f 2 ∈ F 2 , ∀o i ∈ O f 1 , ∀o j ∈ O f 2 , cat(o i ) = WriteData ∧ cat(o j ) = ReadData ∧ getDataCh(o i ) = getDataCh(o j ) ⇐⇒ o 1 o 2 ∈ dataChDep
c P = π w , π r
where π w is a write path and π r is a read path. Additionally, C P denotes the set of all communication paths.

Definition 24. Write Path

A write path π w is a sequence of hardware components linked together starting with an execution category hardware component and ending with a storage category hardware component.

π w = h 1 , . . . , h m s.t.∀1 ≤ i ≤ m -1, (h i , h i+1 ) ∈ L, h 1 ∈ H E , h m ∈ H S , h 2≤j≤m-1 ∈ H C Definition 25. Read Path
A read path π r is a sequence of hardware components linked together starting with a storage category hardware component and ending with an execution category hardware component.

π r = h 1 , . . . , h n s.t.∀1 ≤ i ≤ n -1, (h i , h i+1 ) ∈ L, h 1 ∈ H S , h n ∈ H E , h 2≤j≤n-1 ∈ H C Property 4.
Restriction on Communication Path.

A communication path c P = π w , π r is valid if and only if its write and read paths π w and π r have the same storage category hardware component.

Allocation Definition 26. Allocation

Functions are meant to be allocated to hardware components to be executed and to communicate.

We call "allocation" the function that maps functions and data channels in F to hardware resources in P. Functions are allocated to hardware components in H E while each data channel dc must be allocated to a c P ∈ C P . Synchronization channels are not allocated since we assume that their traffic on buses and memories can be neglected with regards to the one of data channels.

Formally, allocation A is a 2-uple with two functions

-→ A f and --→ A dc . A = -→ A f , --→ A dc
The first function

-→ A f associates to each function f ∈ F a hardware component h ∈ H E . -→ A f : F → H E
The second function -→ A dc associates to each data channel dc ∈ DC a communication path c P ∈ C P .

--→ A dc : DC → C P Property 5. Allocation Restriction.

Let us consider two functions f 1 and f 2 belonging to F. Let us assume that 

-→ A f (f 1 ) = h 1 and -→ A f (f 2 ) = h 2 . Let us also assume a data channel dc f 1 ,f 2 ∈ DC between f 1 and f 2 . dc f 1 ,

Example 1

Let us consider a HW/SW Partitioning Model m. 

Model Executional Semantics

An execution engine can provide HW/SW partitioning models with an operational semantics so as to make them executable either directly from the model or by generating an intermediate code from the model. In our examples, in addition to the system execution constraints, we assume that the execution time of Start, Stop, Choice, Merge and Set operators is negligible with respect to ReadData, WriteData and IntOp operators. Thus,they take no time to execute.

Definition 27. System Execution

Definition 29. Execution Transaction

An execution transaction t represents the execution of an operator o t on a hardware component h t .

A transaction has a sequence number seq t , a start time τ t s and an end time τ t e ≥ τ t s . Formally,

t = seq t , τ t s , τ t e , h t , o t
All transactions in an execution trace are assumed to be ordered according to their sequence number.

The order defined by seq is strict and total on x. Yet, the execution engine must ensure that this ordering respects the following properties.

• A transaction t 1 must always be before any transaction with a higher start time

• Two transactions having the same start time must be ordered according to their end time A transaction can have the same start time τ t s and end time τ t e .

Definition 30. i th Occurrence of an Operator o in x

To retrieve all the transactions corresponding to a specific operator in an execution trace, a function AllTransWithOp takes as an input an execution trace and an operator and returns a set of transactions.

The latter set of transactions contains all the transactions of operator o. Formally,

AllTransWithOp(x, o) = {t ∈ x | o t = o}
As we have provided the transactions with an order in the execution trace, it is clear to speak about this occurrence of the operator in the execution trace. So, the meaning of the first occurrence of o in x is well defined. We denote by t x o,i the transaction of the i th occurrence of operator o in an execution trace

x. For simplicity t x o,i is abbreviated as t o,i . 

Requirement on Model Execution

Generally, a requirement expresses a property on the system. Usually, it is a goal or an anti-goal that the system must satisfy. Requirements are expected to be true for all possible execution traces.

Definition 31. Maximum Latency Requirement

Latency requirements specify timing constraints on the execution of a system. A maximum latency requirement r specifies a maximum delay between elements of execution traces. Often, a maximum latency requirement is expressed as "The maximum latency between o A and o B should be less than maximum Latency λ max ". Formally, a maximum latency requirement is denoted as: The set of all requirements of a HW/SW partitioning model (Definition 2) is denoted as R.

r = o A , o B , λ max

Conclusion

This chapter described a HW/SW partitioning model, an execution trace and a maximum latency requirement.

The next chapter defines a more precise requirement and presents the relevant ETA technique that is used to classify transactions in case the requirement is not valid. The categories we use to classify transactions in an execution trace are defined in Chapter 5

Chapter 5 So, in this chapter, a maximum latency requirement can be explicitly defined as "The latency between the first occurrence of operator o A and the first occurrence of operator o B should be less than maximum Latency λ max ".

Primitive Precise Latency Analysis Approach

Definition 32. Maximum Latency Requirement Validation

To check if a requirement is satisfied or not in a given trace, function RV takes as inputs a system The ETA technique that follows intends to determine the reasons of a maximum latency requirement violation. The maximum latency requirement is an implicit parameter for the next definitions in this chapter.

Execution Trace Analysis

In this section we assume that it has been established whether or not a requirement is satisfied for a given execution trace. When a requirement is not satisfied, ETA classifies transactions in order to help understanding the root causes of the nonsatisfaction.

In this section, m = F, P, A denotes a model, r = o A , o B , λ max denotes a requirement on m and x is an execution trace of m computed by an execution engine. 

Causality between operators: an Example

Valid Execution Trace Definition 33. Valid Execution Traces

We denote by E V the set of all valid execution traces that can be analyzed only if they satisfy Hypothesis 1 and Hypothesis 2 given below. This means that E V is the set of execution traces on which the analysis technique can be applied. Formally, E V ⊂ E m where E m is the set of all possible execution traces of a model m.

An execution trace is said to be valid for the analysis techniques if it respects Hypothesis 1 and Hypothesis 2. The reasons of these assumptions will be progressively explained. Chapter 6 enhances this first analysis to address these hypotheses.

Hypothesis 1. Occurrence of Operators.

In the scope of this thesis, we care with operators which depend on each other. In other words, we assume that the two operators of a specified maximum latency requirement are dependent since the latency between 2 independent operators has no meaning. So, there must exist at least one dependency path between operator o A and operator o B .

For an execution trace to be valid in the analysis technique introduced in this section, it must have the following properties: <tran seq= "1" starttime="0" endtime="0" hc="40" id="10" /> <tran seq= "2" starttime="0" endtime="5" hc="40" id="11" /> <tran seq= "3" starttime="5" endtime="5" hc="40" id="12" /> <tran seq= "4" starttime="5" endtime="6" hc="40" id="13" /> <tran seq= "5" starttime="5" endtime="6" hc="41" id="13" /> <tran seq= "6" starttime="5" endtime="6" hc="42" id="13" /> <tran seq= "7" starttime="6" endtime="6" hc="40" id="17" /> <tran seq= "8" starttime="6" endtime="10" hc="40" id="18" /> <tran seq= "9" starttime="10" endtime="10" hc="40" id="19" /> <tran seq= "10" starttime="10" endtime="20" hc="40" id="21" /> <tran seq= "11" starttime="20" endtime="20" hc="40" id="26" /> <tran seq= "12" starttime="20" endtime="23" hc="40" id="27" /> <tran seq= "13" starttime="23" endtime="23" hc="40" id="28" /> In Listing 5.1, operators o 11 , o 12 and o 13 of f 1 are first executed and then are followed by operators o 18 , o 19 , o 21 , o 26 and o 27 of function f 2 . So, there is no dependency path for which all operators were executed. This implies that operator o 27 was executed regardless of the execution of operator o 11 . So, this trace is invalid.

Another possible execution trace x of m is shown in Listing 5.2. Listing 5.2: Another possible execution trace shown in XML format of a HW/SW partitioning model whose allocation model is shown in Figure 5.3 <tran seq= "1" starttime="0" endtime="0" hc="40" id="10" /> <tran seq= "2" starttime="0" endtime="5" hc="40" id="11" /> <tran seq= "3" starttime="5" endtime="5" hc="40" id="12" /> <tran seq= "4" starttime="5" endtime="6" hc="40" id="13" /> <tran seq= "5" starttime="5" endtime="6" hc="41" id="13" /> <tran seq= "6" starttime="5" endtime="6" hc="42" id="13" /> <tran seq= "7" starttime="5" endtime="6" hc="40" id="15" /> <tran seq= "8" starttime="5" endtime="6" hc="40" id="16" /> <tran seq= "9" starttime="6" endtime="6" hc="40" id="17" /> <tran seq= "10" starttime="6" endtime="10" hc="40" id="18" /> <tran seq= "11" starttime="10" endtime="10" hc="40" id="19" /> <tran seq= "12" starttime="10" endtime="10" hc="40" id="20" /> <tran seq= "13" starttime="10" endtime="11" hc="41" id="22" /> <tran seq= "14" starttime="10" endtime="11" hc="42" id="22" /> <tran seq= "15" starttime="10" endtime="11" hc="40" id="22" /> <tran seq= "16" starttime="11" endtime="21" hc="40" id="24" /> <tran seq= "17" starttime="21" endtime="21" hc="40" id="26" /> <tran seq= "18" starttime="21" endtime="24" hc="40" id="27" /> <tran seq= "19" starttime="24" endtime="24" hc="40" id="28" /> In Listing Let us define a sequence of operators included in an execution trace x, where opSeq(x) denotes operator sequences "included" in x, i.e. ∈ opSeq(x). So, the execution trace is valid.

{ o 1 , • • • , o n ∈ O n m | n ∈ N ∧ ∃{t 1 , • • • t n } ⊆ x such that (∀i ∈ [1, n], o t i = o i ∧ ∀i ∈ [1,
Formally, Hypothesis 1 is defined as:

x ∈ E V ⇒ ∃ ---→ o A o B ∈ DP---→ o A o B , ---→ o A o B ∈ opSeq(x)
Hypothesis 2. No interleaving between transactions of operators in the same dependency path.

To enforce a dependency path, two transactions corresponding to two consecutive operators in the same dependency path must not overlap. That is the end time of the first transaction must be smaller than the start time of the second one.

Thus, we assume that an execution trace is valid implies that transactions corresponding to operators in the same dependency path are not interleaved. <tran seq= "1" starttime="0" endtime="0" hc="40" id="10" /> <tran seq= "2" starttime="0" endtime="0" hc="45" id="14" /> <tran seq= "3" starttime="0" endtime="1" hc="40" id="11" /> <tran seq= "4" starttime="0" endtime="1" hc="41" id="11" /> <tran seq= "5" starttime="0" endtime="1" hc="42" id="11" /> <tran seq= "6" starttime="1" endtime="2" hc="42" id="15" /> <tran seq= "7" starttime="1" endtime="2" hc="41" id="15" /> <tran seq= "8" starttime="1" endtime="2" hc="45" id="15" /> <tran seq= "9" starttime="1" endtime="2" hc="40" id="11" /> <tran seq= "10" starttime="2" endtime="3" hc="41" id="11" /> <tran seq= "11" starttime="2" endtime="3" hc="42" id="11" /> <tran seq= "12" starttime="2" endtime="3" hc="45" id="16" /> <tran seq= "13" starttime="2" endtime="3" hc="43" id="16" /> <tran seq= "14" starttime="2" endtime="3" hc="44" id="16" /> <tran seq= "15" starttime="3" endtime="3" hc="43" id="18" /> <tran seq= "16" starttime="3" endtime="4" hc="41" id="12" /> <tran seq= "17" starttime="3" endtime="4" hc="44" id="19" /> <tran seq= "18" starttime="3" endtime="4" hc="43" id="19" /> <tran seq= "19" starttime="3" endtime="4" hc="45" id="19" /> <tran seq= "20" starttime="4" endtime="4" hc="41" id="13" /> <tran seq= "21" starttime="4" endtime="4" hc="45" id="20" /> <tran seq= "22" starttime="4" endtime="5" hc="45" id="16" /> <tran seq= "23" starttime="4" endtime="5" hc="43" id="16" /> <tran seq= "24" starttime="4" endtime="5" hc="44" id="16" /> <tran seq= "25" starttime="5" endtime="6" hc="45" id="16" /> <tran seq= "26" starttime="5" endtime="6" hc="43" id="16" /> <tran seq= "27" starttime="5" endtime="6" hc="44" id="16" /> <tran seq= "28" starttime="6" endtime="7" hc="45" id="16" /> <tran seq= "29" starttime="6" endtime="7" hc="43" id="16" /> <tran seq= "30" starttime="6" endtime="7" hc="44" id="16" /> <tran seq= "31" starttime="7" endtime="7" hc="45" id="17" /> started.

Formally, Hypothesis 2 is defined as:

x ∈ E V ⇒ ∀e ∈ DP---→ o A o B , ∀oo ∈ e, cat(o) = WriteData, cat(o ) = ReadData, getDataCh(o) = getDataCh(o ), getDCType(getDataCh(o)) = NBW-NBR, t o , t o ∈ x 2 ⇒ τ t o s > τ t o e ∨ τ t o s > τ t o e
Until the end of this chapter we always assume that Hypothesis 1 and Hypothesis 2 are fulfilled and thus an execution trace x of a model m is always valid.

Read Write Dependencies Accuracy

To lesson the cases of transaction interleaving in an execution trace and in order to give data dependency a more accurate representation, we introduce in this section a remodeling to a model m that contains and o 25 read from data channel d 3 . In this case, we order the operators in a list according to their data size attribute starting with the smallest one. In our example: o 25 

Classification of Execution Transactions

Problem 1. Execution Trace Analysis. In an execution trace we classify all transactions according to their impact on the latency between the two operators of the considered maximum latency requirement.

Definition 34. Execution Trace Partition

To solve Problem 1, we classify transactions of an execution trace x into the following subsets:

M andatoryOP (M OP x ), OptionalOP (OOP x ), M andatoryF unc (M F x ), OptionalF unc (OF x ), by ReadData and WriteData operators. For instance, let the requirement of interest in Fig. 5.12 be r = o 7 , i, o 14 , j, λ max . In function f 2 , if o 13 was to be executed between o 7 and o 14 which is an operator in a dependency path between operator o 7 and o 14 , then since operator o 12 is on the only dependency path between St f 2 and o 13 , so in this case, operator o 12 has to execute. For o 12 to execute, o 18 in function f 3 must also execute since there is a dependency between o 18 and o 12 . Thus, all operators of one dependency path between St f 3 (o 16 ) and operator o 18 must execute. 

Contention (C x ), N oContention (N C x ),
∀t o ∈ x, ∀ ---→ o A o B ∈ DP---→ o A o B , inPath(o, ---→ o A o B ) ∧ cross(t o , t o A ,
∀t o ∈ x, ∀ ---→ o A o B ∈ DP---→ o A o B , inPath(o, ---→ o A o B ) ∧ t o / ∈ M OP ∧ cross(t o , t o A ,1 , t o B ,1 ) ⇔ t o ∈ OOP
∃o 3 ∈ M op(o A , o B )∀p ∈ DP----------→ St getF (m,o)o 3 , inPath(o, p) ∧ t o / ∈ M OP ∪ OOP ∧ cross(t o , t o A ,
∀t o ∈ x, ∀o 3 ∈ O m , ∀ ---→ o A o B ∈ DP---→ o A o B , ∀ ----------→ St getF (m,o) o 3 ∈ DP----------→ St getF (m,o) o 3 , inPath(o 3 , ---→ o A o B ) ∧ inPath(o, ----------→ St getF (m,o) o 3 ) ∧ t o / ∈ M OP ∪ OOP ∪ M F ∧ cross(t o , t o A ,1 , t o B ,1 ) ⇔ t o ∈ OF
∀h ∈ H, ∀o ∈ O m , ∀ --→ oo B ∈ DP--→ oo B , ∀o ∈ O m , inPath(o , --→ oo B ) ⇒ (h = -→ A f (getF (m, o )) ∨ cat(o ) ∈ {WriteData, ReadData} ∧ h occurs in --→ A dc (getDataCh(o )) ⇒ h ∈ H Dep )
In our example in Figure 4 <tran seq= "1" BSED="0" BEED="0" starttime="0" endtime="0" hc="43" id="33" /> <tran seq= "2" BSED="0" BEED="0" starttime="0" endtime="0" hc="41" id="14"/> <tran seq= "3" BSED="0" BEED="0" starttime="0" endtime="0" hc="42" id="25"/> <tran seq= "4" BSED="0" BEED="0" starttime="0" endtime="0" hc="42" id="26" /> <tran seq= "5" BSED="0" BEED="5" starttime="0" endtime="5" hc="43" id="34" /> <tran seq= "6" BSED="0" BEED="10" starttime="0" endtime="10" hc="41" id="15" /> <tran seq= "7" BSED="0" BEED="17" starttime="0" endtime="17" hc="42" id="27" /> <tran seq= "8" BSED="5" BEED="6" starttime="5" endtime="6" hc="43" id="35"/> <tran seq= "9" BSED="6" BEED="6" starttime="6" endtime="6" hc="43" id="36" /> <tran seq= "10" BSED="6" BEED="6" starttime="6" endtime="6" hc="43" id="37" /> <tran seq= "11" BSED="6" BEED="7" starttime="6" endtime="7" hc="43" id="38" /> <tran seq= "12" BSED="7" BEED="57" starttime="7" endtime="57" hc="43" id="39" /> <tran seq= "13" BSED="0" BEED="0" starttime="10" endtime="10" hc="41" id="10" /> <tran seq= "14" BSED="0" BEED="1" starttime="10" endtime="11" hc="41" id="11" /> <tran seq= "15" BSED="0" BEED="1" starttime="10" endtime="11" hc="44" id="11" /> <tran seq= "16" BSED="0" BEED="1" starttime="10" endtime="11" hc="45" id="11" />

Let us now come back to regular execution and communication hardware components. We say that a transaction is delayed if its start and/or end execution date with regular execution and communication hardware components (starttime and endtime) is higher than the one with ideal model execution and communication hardware components (BSED and BEED).

To know if a transaction t executed on hardware component h delayed any transaction on h, we need to retrieve the lists of transactions of all delayed transactions that were executed on a hardware component h. In the contention set we are interested in the delay of transactions that belong to

OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set. So, we define two functions getStartDList and getEndDList that take as arguments a model m, an execution trace of this model

x and a hardware component h in the platform model of m and return a list of transactions that had their start time and end time delayed respectively. Since we are interested in transactions that belong to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set, the hardware component of these two functions must be a dependency path hardware component. Formally, and have their BSED different than their start time. and have their BEED different than their end time. Formally, 

getStartDList : (m, x, h) → {t ∈ x |h t = h ∧ BSED(t) = τ t s ∧ t ∈ M OP S ∪ OOP S ∪ M F S ∪ OF S} getEndDList : (m, x, h) → {t ∈ x |h(t) = h ∧ BEED(t) = τ e (t)∧ t ∈ M OP S ∪ OOP S ∪ M F S ∪
SDL : (m, x, h) →{t ∈ x | h t = h ∧ BSED(t) = τ t s ∧ τ t s ≤ τ t o A ,
EDL : (m, x, h) →{t ∈ x | h t = h ∧ BEED(t) = τ t e ∧ τ t
∀t ∈ x, t / ∈ M OP ∪ OOP ∪ M F ∪ OF ∪ N C ∪ C ∪ II ⇐⇒ t o ∈ N I

Conclusion

In this chapter, the formal representation of a new latency analysis approach was introduced. However several Hypothesis were taken to ensure that the two operators of a maximum latency requirement are executed such that the first occurrence of the first operator corresponds to the first occurrence of the second operator. In this chapter, the latency analysis approach assumes an 1-to-1 relation between the two operators of the requirement. In the next chapter, we target these hypothesis. Targeting these hypothesis enables us to specify more transaction traces as valid. To overcome this assumption, an approach based on graph tainting is introduced in the next chapter.

123 Chapter 6

Advanced Precise Latency Analysis Approach Using Graph Tainting (PLAN-GT)

"Without continual growth and progress, such words as improvement, achievement, and success have no meaning."

-Benjamin Franklin

Motivation

The primitive PLAN approach already discussed helps the designer to investigate the cause of a latency requirement violation in model m between two operators o A and o B for a requirement r = o A , o B , λ max when the two transactions corresponding to o A and o B appear once in the execution trace.

In Chapter 5, we proposed several hypotheses to make it easier to identify these occurrences in an execution trace. These hypotheses led to defining a one-to-one relation between o A and o B . Execution traces that do not satisfy these assumptions are identified as invalid in our previous analysis.

In this chapter, we would like to be able to analyze execution traces that we could not analyze before.

We 

Example 2

Let us consider a HW/SW Partitioning model whose application and allocation models are shown in 

Succ : O m → P(O m ) Succ(o) = {o s ∈ O m | oo s ∈ D m }
As a reminder, transactions in the trace are ordered with respect to their sequence number. Intuitively, the algorithm handles these transactions sequentially with respect to this order. Each time an o A -transaction t A is encountered in the trace, its operator is tainted with a new fresh taint value and the transaction is added to a list. Then, while handling the following transactions, the algorithm progressively propagates this taint value to the encountered operators respecting the dependency relation (i.e., tainted operators have a dependency path from o A included in the trace). Finally, when an o B -transaction is encountered and tainted, it is associated with the o A -transaction that have the same taint value. At this moment, the algorithm calculates the latency between these two transactions to identify when the latency is greater than λ max .

More technically, the algorithm can be seen as a main loop on transactions that updates an internal state by handling a transaction at each iteration and outputs a result when the transaction operator is o B . The tainting algorithm is based on the definition of two kinds of attributes. Attributes which are static that are applied to all the trace analysis and attributes which depend upon the transaction which is under analysis in the main loop. These attributes are called dynamic attributes and they are grouped into a set which is called state. Thus, an execution of the algorithm for a trace t 1 , • • • , t n can be represented by s 0

t 1 -→ s 1 t 2 -→ • • • t n --→ s n ,
where each s i is a state in S x , S x being the set of all possible internal states of an execution trace. S x = {s i } denotes the set of all possible internal states of an execution trace. So, there is one state per transaction analyzed in our algorithm. A state is build upon tainting attributes associated to each operator. Function T aintG takes as inputs a transaction, a state and an execution trace and outputs a new state. Function T aintG updates the attributes of s according to the execution of the operator corresponding to t.

T aintG(x, t, s) → s

In Figure 6.4, considering transaction t n+1 evolves state s n to s n+1 .

More formally, a static attribute is a function stat_att : O m → V alues and a dynamic attribute is a function dyn_att : S × O m → V alues. The type of value depends on attributes. Some attribute values are complex ones, thus some attribute functions have more parameters, which allow to access components of structured values.

State: s n

State: s n+1 The next two subsections will define more precisely and formally static and dynamic attributes respectively.

Static attributes

These attributes are static that is they do not depend on the current iteration of the main loop of the algorithm.

Definition 52. fixedNumber getFN takes as argument an operator o and returns the fixedNumber attribute of this operator.

getFN

: O m → Z +
fixedNumber is an integer that if the operator is a Choice of a loop indicates the number of iterations of this loop otherwise it is set to 1. The taintMaxNumber is an integer representing the maximum number of times a transaction of an operator could be encountered in an execution trace.

The fixedNumber has a role to compute the taintMaxNumber. The taintMaxNumber differs from the fixedNumber when the operator is inside a loop. getTMN(o) = 4 means that at most 4 transactions on operator o could be encountered in the execution trace when executing the system.

For example, in Figure 6 Let us take example of nested loops as shown in Figure 6.7.

In this example, the fixedNumber of operator o In general, an operator that belongs to the iterations of nested loops, its taintMaxNumber equals to the multiplication of all the fixedNumber of the Choice operators of these loops. This taintMaxNumber represent only the worst case scenario of how many times each operator will be executed when executing the model. For instance, if there is a Choice operator inside a loop and this Choice operators is not part of any loop, the number of times each branch will be executed can not be decided statically in the general case. This taintMaxNumber might not be always reachable in some cases. In other words, when executing a loop, taintMaxNumber represents the maximum number each operator could be executed in this loop.

Dynamic attributes

The values of dynamic attributes depend on the state. For all functions to come, the state is an implicit parameter. The taintConsideredNumber represents, at the current state of an execution trace browsing, the number of times a transaction corresponding to an operator has been encountered with a taint value.

Definition 54. Taint Values

Initially, when a taint value is assigned to an operator, its corresponding taintConsideredNumber is set to zero.

Let us assume an operator o 6 in a function f allocated to a hardware component h 40 . Let Γ be a taint value for o 6 . Initially, getCN(o 6 , Γ) = 0. Table 6.3 shows 3 transactions for this operator and the value of the taintConsideredNumber for this operator when a transaction is encountered in the trace. Thus, getCN(o 6 , Γ) = 3 means that 3 transactions corresponding to o 6 were encountered in an execution trace for taint value Γ. A ReadData, WriteData or IntOp operator may have several transactions corresponding to one execution of this operator. The sampleNumber is an integer representing, at a specific time of the analysis, the number of bytes that are written or read in case of a ReadData or WriteData operator or the integer cycles in case of IntOp operator. The sampleNumber is zero when the execution of an operator begins. It is incremented when the successive transactions that correspond to this operator are encountered during analysis. For example, if a ReadData operator o with size 13 has two transactions corresponding to reading 10 then reading 3 data size respectively in the execution trace, sampleNumber of o starts as zero, then it is set to 10 when the first transaction is encountered. Then, sampleNumber is set to 13 (10+3) when the second transaction is encountered.

TAINTING

Thus, sampleNumber is used to detect the end of one execution of an operator while handling the transactions corresponding to this operator execution. When the operator execution terminates, the sampleNumber is reset. This simplified view of the algorithm considers operator transactions are atomic, which is not always the case. However, this simplified view is relevant although it hides some details of the complete algorithm, as explained in the next section. This atomicity is discussed in the next sub section.

Tainting Algorithm

Operator Transactions Granularity

Figure 6.9 considers that the execution of one operator produces exactly one transaction. But actually this assumption does not hold for two reasons:

1. When an operator is executed on an execution hardware component, its executions may be preempted by the scheduler and so this execution can produce more than one transaction 2. The transactions of ReadData and WriteData operators can be split with respect to the communication path on which data channels are allocated and with respect to the size of the components of the communication path. WriteData or ReadData operator are handled similarly, depending on the sampleNumber and the operator data size.

Execution split with respect to a communication path:

To keep things simple, we assume that all WriteData and ReadData operators must have a data size less than or equal than the data size of all components of a communication path where they are allocated. In the next sections we assume that a transaction is not preempted and the algorithm can select the latest transaction of any operator execution. Thus, as a consequence we consider a transaction is atomic. Similar to other operators in the model, for a maximum latency requirement r = o A , o B , λ max , operators o A and o B are also assumed to execute in one transaction. Thus, from now we consider that operators execute in one transaction. The execution of an action may lead to modify the general state for each algorithm step. Thus, the state evolves. The state is modified by the following actions which are executed in the order they are presented. Let transaction t correspond to the execution of operator o. So, we are here at a moment where all transactions before transaction t have been handled and we describe the handling of t. 2. if o is not tainted (i.e T aint_size(o) ≤ 0. Otherwise, goto 3):

Calculating latency based on tainting

1. if o is o A (otherwise, goto 2 
transaction is skipped as it is not dependent on any transaction representing an occurrence of o A .

More formally: goto 7.

3. At this step we know that o is tainted and we identify the latest taint value(Γ), in order to propagate it to successors.

We consider an operator as tainted when the size of the taint values sequence is greater than zero (T aint_size(o) > 0). getLatestTaint takes as an argument an operator o and returns a taint value.

getLatestTaint

: O m → All Γ
The value returned by getLatestTaint is important to determine which taint value is the right taint to propagate to the successors of an operator as described next.

Beware that this function assumes that there is only one possible execution path in all loops.

More Formally: Let us assume that operator o 3 is tainted by taint value Γ and the transactions corresponding to operators o 3 , o i and o j appear in the following order in an execution trace x1: t o 3 ,1 ,t o i ,1 , t o 3 ,2 , t o i ,2 , t o 3 ,3 and t o j ,1 . The changes occurring to the dynamic attribute taintConsideredNumber while browsing the execution trace are shown in Figure 6.17. At the end of browsing of these transactions, for taint value Γ the taintConsideredNumber of operator o 3 is 3 while that of o i is 2 and for o j is 1. In case o 3 is tainted by a second taint value Γ and a transaction t o i ,3 is encountered in the execution trace, before tainting o i with Γ , the taintConsideredNumber for taint value Γ and taintMaxNumber of o i are compared. In this case getCN(o i , Γ) < getTMN(o i ), thus o i and according to the previous algorithm is not tainted by Γ but with Γ.

Γ := getLatestTaint(o). getLatestTaint(o){ ∀Γ ∈ o Γ do if (getCN(o, Γ) < getTMN(o)) return Γ; } 4. if o is not o B then
So, in this case taintMaxNumber does not represent the exact number of times an operator is executed. Thus, we need a new attribute which can be computed dynamically. So, we added the taintChoiceExecNumber attribute.

The taintChoiceExecNumber attribute is useful when a Choice operator is inside a loop iteration and it is tainted with a taint value. The taintChoiceExecNumber is used to predict for an operator o that Initially, when a taint value is assigned to a Choice operator o that is inside a loop iteration, the taintChoiceExecNumber of all its successors is set to zero. When a transaction corresponding to the Choice operator o is encountered in the trace, and the taintConsideredNumber of the Choice operator for the taint value is less than its taintMaxNumber, the soonest operator o s to execute among its successors is identified and tainted according the Section 6.3. 

Conclusion

In this chapter, we introduced an advanced version of the latency analysis approach. Advanced PLAN overcome the assumption of 1-to-1 relation between the two operators of the maximum latency requirement. The advanced approach is capable to identify for each executed operator A, the corresponding execution of operator B based on graph tainting. Thus, latency computation is possible in wider range of execution traces than primitive PLAN.

In the next chapter, we will see how the designer can automatically retrieve the computed latency by discussing the integration of the primitive and advance PLAN within TTool.

Chapter 7 Integration into Model-Driven Engineering

Framework "To understand the best is to work on its implementation."

-Jean-Marie Guyau One of the objectives of this thesis is to implement PLAN and provide the results to the designer in a user-friendly way. The analysis results should be presented in a clear and informative way so the designer can depend on them to make decisions to enhance the system model. TTool and more precisely one of its modeling profiles named SysML-Sec was chosen for this implementation. In TTool, the designer can draw a system model that confirms with our formal model thanks to TTool diagramming facilities.

In this chapter, the integration of a prototype of the PLAN approach within TTool is presented.

First, we will discuss how our formal model maps to SysML diagrams. Then, in Section 7.2, we show how a designer can instantiate PLAN in TTool. PLAN can be started from a graphical window interface or from command line. In Section 7.3 and Section 7.4, we demonstrate respectively using two real-world use cases from H2020 AQUAS project how primitive PLAN approach and advanced PLAN approach can be efficiently applied to verify latency requirements by analyzing simulation traces. 

Application to UML/SysML

Our formal model easily maps to SysML diagrams. For modeling, we selected TTool [START_REF] Ttool | [END_REF] and SysML-Sec [START_REF] Apvrille | Sysml-sec: A sysml environment for the design and development of secure embedded systems[END_REF] developed in our lab. As a reminded SysML-Sec follows the Y-Chart approach [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF]. In the application model, functions defined as SysML blocks are modeled as blocks colored green and variables of a function are displayed inside the green block. The functions of the example in Moreover, StaticForLoop operator is used to represent a fixed size loop. StaticForLoop enables the iteration on operators in the inside loop branch for a fixed number of times (Table 7.2). 

Model simulation

Simulation is meant to represent in a simplified way the execution of the system. It is one particular case of execution using an environment that reproduces the behavior of a model to produce an execution trace that we call simulation trace.

Our HW/SW partitioning models can obviously be used as documentation but thanks to the execution semantics provided to functions and hardware components as explained in [START_REF] Knorreck | Fast simulation techniques for design space exploration[END_REF], we are able to verify whether requirements are satisfied or not in our models. Simulation is one of the verification techniques available in SysML-Sec [START_REF] Knorreck | UML-based design space exploration, fast simulation and static analysis[END_REF]. One verification way is to first simulate the model in order to obtain one simulation trace among all the possible ones and second check in this trace whether a given requirement is satisfied or not.

To generate simulation traces in a fast way, system level models commonly make simplifications. In the HW/SW partitioning model considered in this thesis several abstraction principles hold. Thanks to the abstractions both at application and platform models we can generate simulation traces in a quite efficient way as demonstrated in [START_REF] Knorreck | Fast simulation techniques for design space exploration[END_REF]. All abstractions that are considered in this thesis are listed in [START_REF] Knorreck | Fast simulation techniques for design space exploration[END_REF] but the most relevant ones for the latency analysis are listed below. They are related to the functions and to the platform. First, at the application level, when data is exchanged between functions only the amount of data is modeled as explained in Definition 15. This is referred to as data abstraction. Algorithms are modeled using IntOp operators with a complexity attribute used to specify the processing complexity of the algorithm. This is referred to as algorithm abstraction. Control operators that are Start, Stop, Choice, Merge and Set categories do not consume any clock cycles.

Second, in the platform model, the hardware components are modeled as parameterized hardware components. The throughput of a data channel is determined by (1) the slowest hardware resource along the communication path on which this data channel has been allocated, [START_REF]The mars 2020 rover's brains[END_REF] the quantity of data to read or write and (3) the contentions on execution, communication and storage hardware components involved in a communication path. These abstraction levels in the application and platform models do not allow us to have a simulation in which we can execute in a precise way just like it can be done for the lowest level of abstraction, e.g., From the simulation interface of TTool, the simulation trace can be saved in different formats including VCD, HTML, txt and XML format (Figure 7.5). In the scope of this thesis, we are interested in the XML format. Having the simulation data stored in XML format facilitates its analysis and manipulation. This XML saved simulation trace forms an input to the PLAN approach.

PLAN integration into TTool

We chose to integrate PLAN into TTool as it captures our model by SysML diagrams and simulates it. Moreover, TTool is free and open source and it is developed in our lab. The designer can instantiate PLAN from TTool graphical interface or from the command line.

When using the graphical interface, PLAN is instantiated on a saved XML simulation trace. Each simulation trace contains the name of its corresponding model. Thus, the simulation trace and its corresponding model are taken as inputs for PLAN. The PLAN user interface opens in a separate window as the corresponding dependency graph is generated in the background (Figure 7.6). To construct the graph, we used jGraphT [START_REF] Michail | Jgrapht-a java library for graph data structures and algorithms[END_REF] a Java library. A progress bar shows the progress of graph generation and a message is displayed when the graph is successfully generated indicating the number of vertexes and edges of the graph. From the PLAN window, the designer can choose from two drop-down lists two of these latency checkpoint operators to be as inputs to the PLAN approach. In Figure 7.6, we chose the WriteData operator in f 1 and ReadData operator in f 2. In the window of Figure 7.6 several buttons and check-boxes exist. The buttons and check-boxes provide the designer a set of different functions. These functions guide and help the designer in the analysis approach. For instance, with the Check Path Between Operators button the designer can check if a dependency path exists in the dependency graph between two operators selected in the drop-down lists. Moreover, from the PLAN window, the designer can choose to view the dependecy graph by pressing on Show Directed Graph. Show Directed Graph opens a separate window showing the generated graph. This graph can also be exported in different formats from the Save Graph tab (Figure 7.8). Save Graph (png) is the first button in the tool-bar of the Save Graph tab. The second button is Save Graph (Graphml) button. Graphml is a common format to exchange graphs based on XML [START_REF]What is graphml?[END_REF].

Initially when the PLAN window opens, to keep the operators drop-down lists readable and convenient for the designer, not all the operators in the model are shown, only the operators that are marked as latency checkpoints in the model are present in these drop-down lists. However, Show All Operators button enables to add all operators from the model to the drop-downs. These operators are grouped by functions. Thus, a designer can filter these operators by choosing the corresponding function from the task drop down that is visible now. The button label also changes to Show Checkpoints Operators. As all the required inputs to compute the latency are identified now, the latency between the two operators is computed by pressing the Compute Latency button. When the latency value is computed, a message is returned to the designer and the Latency Values table is filled. If Taint First Operator check-box is checked, then for each taint value a row is added in the Latency Values table. Figure 7.10 corresponds to calculating the latency in our example in Figure 7.4 When a latency value in any row in the Latency Values table is greater than the maximum latency value specified in a maximum latency requirement, the designer must run ETA to see what transactions contributed to a specific latency value. To run ETA, the designer selects the row corresponding to this latency value from the Latency Values tab and then press on the Precise Analysis button. This button is enabled after the latency computation terminates. A new window opens as shown in Figure 7.11. In the current In the window in Figure 7.11, the simulation transactions that are considered as mandatory are listed in the Mandatory Transaction panel and those that are not mandatory are listed in the Non-Mandatory Transaction panel. For each of these transactions, the hardware on which they are executed, the start time and end time are also displayed. In the third panel of this window, a table is shown. In this table, each row corresponds to one hardware component in the system and each column represents a onetime slot in the simulation. Transactions are placed according to when and where they were executed.

The mandatory transactions are displayed in green, the non-mandatory transactions that contributed to increasing the latency value due to contentions are colored red, the functions transactions are colored gray and those that are not mandatory but did not belong to the previous sets (i.e., N oContention) are colored orange. In our example, as shown previously in the formal definitions, the IntOp operator in f 1 caused contention on the hardware component h41. To close the latency analysis window, Terminate Latency Analysis dispose the frame and releases all of its resources.

In addition to the functionalities added to perform the PLAN approach from the user interface of TTool, several methods are added to perform the analysis using the command line and saving the PLAN results in an XML file. The script shown in listing 7.1 is an example of running the PLAN approach in the command line. It starts by setting the path of the HW/SW partitioning system model and the simulation trace. Then, the panel name of the allocation model is identified followed by the file name where the latency table and the precise row latency analysis output are going to be saved. The Taint variable indicates if the designer wants to use graph tainting in the analysis or not. The script starts by starting TTool and opening the model using commands followed by PLAN commands. Command plan graph $sim $panel generates the dependency graph of the specified panel in the specified model. It also takes the simulation trace path as an input parameter. To list all operators in the model plan listAllOp command is used. To run latency analysis between two operators and save results in an XML file plan lat is used with four parameters, the first two are the operators ids then a boolean variable that indicated if tainting is used or not. The fourth parameter specifies the destination file where the latency values table are saved in XML format. To run PLAN for a row plan planR 1 $staXML command is used where the results are saved in the file specified in the last parameter. The row number is the first parameter.

Industrial Drive System Use Case

To test the prototype integration of the primitive PLAN approach, we need a system with a maximum latency requirement such that there is a one-to-one relation between requirement operators. The Industrial Drive system along with a maximum latency requirement that satisfies this condition are described and modeled in Section 7.3.1. Section 7.3.2 shows, how our primitive PLAN approach can be efficiently applied to the analysis of simulation traces obtained from SysML models. 

E N C E N C D E C V O T E R ACK Figure 7
.12: Specification of industrial drive

Description of the use case

A high-level view of the industrial drive system-defined in the scope of the H2020 AQUAS project [START_REF]Aggregated quality assurance for systems (aquas)[END_REF] [184]-is shown in Fig. 7.12. The system consists of 3 main components: The start time of t o A ,1 in the simulation trace is "2" and the end time of the t o B ,1 is "11115".

Thus, the latency in this case is 11113 cycles (i.e., 55.56µs). Thus, the requirement is not satisfied, thus leading to use PLAN. PLAN is implemented in TTool: the transactions are classified and displayed in a table. Transactions in the graphical table (e.g., Fig. 7.15) are displayed according to the hardware that executed them and the time of execution. Since transactions are colored according to their category, contention transactions are easy to identify. For example, transactions in M andatoryOp set are colored in green, those in Contention, N oContention and M andatoryF unc sets are colored in red, orange and gray respectively. In our use case, after generating a dependency graph of 552 vertexes and 965 edges and running the execution trace analysis, contentions were spotted on the execution hardware component on which the Motor Control functions are allocated (Fig. 7.15). The contention is due to the Server Control function processing data to write acknowledgment to the Client while the encryption function was ready to execute but its the resource was busy.

To resolve this execution contention, an execution hardware component is added to the platform and the Server Control function is now allocated to it. Running PLAN again, the latency is now equal to 10604 cycles (i.e., 53.02µs) since the start time of t o A ,1 is noted as 2 and the end time of the t o B ,1 is 10606. Thus, the latency requirement is satisfied. To see how the transaction classifications changed between the two models, we used PLAN even though the requirement was satisfied. The output in Fig. 7.16 reveals that no contention was detected and that the Server Control function could process data to write acknowledgment to the Client while the decryption function was executing. The architecture of the system is as follows. Each Lidar is captured by its own set of processors, buses, memories, while the safety platform is built upon a CPU (MainCPU) and 2 memories: MainMemory and RelayMemory. The mapping model associates LIDAR blocks triggerPL1, PL1, F1_1and2_PL1 and 

Model simulation and trace analysis

The System Under Analysis (SUA) is supposed to run at 80 MHz. TTool was used to simulate it on a Intel Core i7-7820HQ CPU running at 2.9 GHz. 150 ms of the SUA execution have been simulated; the simulation trace contains 19575 transactions and is saved in XML format. A duration of 150 ms is chosen since it is the minimum duration that permit us to validate Req_1 using PLAN. PLAN is used to validate Req_1 since the computationResult -ControlData channel in Figure 7.17 is Non Blocking Read -Non Blocking Write (NBR-NBW). This means that it is equivalent to a shared memory between the sender and the receiver. In other words, the receiver function is not blocked if the sender did not send data on the channel. Thus, tainting should be used to trace when the control data is computed based on the position frame input. So, data sent from PL1 should be tainted to calculate the exact time delay The latency between o A and o B can be calculated whenever o B is tainted with the same taint value as o A and the taintConsideredNumber of o B is greater than zero. Based on our main algorithm in Figure 6.9, the latency between o A and o B is 10170380 cycles (127.1 ms). Thus, Req_1 is satisfied.

The latency corresponding to Req_2 is 681372 cycles (8.51 ms) thus, Req_2 is not satisfied.

To validate the authenticity of the data sent from F1_3_PL1 to F3_1_MsgAcquisition and from F3_1_MsgAcquisition to F3_2_MsgAcquisition_SafePart (Req_3), and the confidentiality between PL1 and F1_3_PL1 (Req_4), the formal security verification of TTool/ProVerif is used. The latter proves that Req_3 and Req_4 are not satisfied and shows it to the user by adding a red lock on the concerned data channels. To ensure the authenticity property on these channels, CRC is replaced by HMAC-SHA256 in F1_3_PL1. [START_REF] Li | Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués[END_REF] describes how a security operator can be added in TTool to represent HMAC-SHA256. A security operator is considered as an IntOp operator in advanced PLAN implementation. To determine the computation complexity of HMAC-SHA256 (i.e. 8322 clock cycles), we have used the technique described in [START_REF] Fujdiak | Modeling the trade-off between security and performance to support the product life cycle[END_REF] and relying on SSDLC (Secure Software Development Life Cycle). The overhead of the message is set to 256 bits. 

Conclusion

In this chapter, we presented the integration of the PLAN approach into TTool. First, we showed that the toy example we used in the previous chapters can be modeled and simulated in TTool. Then, we analyzed a simulation trace of this toy example model with the implemented primitive PLAN approach. This analysis revealed the expected results for the latency computation and the classification of transactions.

Thus, the root cause of the latency violation in this example matched the expected results.

Moreover, we test the implemented primitive PLAN approach on Industrial Drive system. Using PLAN output we were able to detect contention on a hardware component. This contention was the main reason for latency requirement violation. Knowing the reason behind the latency value enabled us to enhance the system model. While we chose to add a new hardware component and update the allocation model, a designer can decide to test other alternatives to see how it affect the latency value. However, we expect the alternative solutions a designer might choose to be guided by the PLAN approach output.

As a reminder, PLAN approach outputs classification sets that reveal the root cause of a latency value based on dependencies between the system model elements and the causality between transactions in an execution trace.

In the Industrial Drive system, the primitive PLAN approach could be applied as the one-to-one relation between the requirement operators hold. However, for Rail Carriage Mechanisms use case, the requirement operators do not respect this relation. So, we used the implemented prototype of the advanced PLAN approach. In the latter use case, we took several requirements into account and we saw how the PLAN approach output can assist a designer to satisfy these requirements. In these two use cases, we showed that PLAN approach satisfied its objective by providing the root cause of a maximum latency requirement dissatisfaction.

The complexity of PLAN approach can be directly linked to the size of a system model and the size of an execution trace (the number of transactions in the trace). For instance, to check if there is a dependency path between o A and o B , we choose to check the shortest path between these operators, if the shortest path is non empty then these operators are dependent. The complexity of Dijkstra's Shortest Path algorithm is specified in [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF] Further computations are required to estimate the complexity of the whole algorithm. While the part of the complexity that is linked to the size of the analyzed execution trace is inevitable, the complexity related to checking if an operator is in a dependency path directly depends on the inPath function.

While in our implementation, computing the classification of transactions runs in reasonable time, further enhancement to avoid computing several times the same elements can be applied to the implemented approach. For instance, one direction of the future work is to test whether the complexity of searching all possible dependency paths between o A and o B at the beginning of the algorithm and classifying the operators of these paths as mandatory and optional brings significant gain in the algorithm performance. While this suggested implementation might decrease the complexity of the M andatoryOP and OptionalOP sets since the operators of the dependency paths between o A and o B will be analyzed once instead of dynamically for each transaction, further investigation is required to test the impact of the implementation complexity on the other classification sets such as MandatoryFunc and OptionalFunc sets. Since in the latter sets the number of the dependency paths to study at the beginning of the analysis might be large.

Chapter 8 Conclusion

"The measure of greatness in a scientific idea is the extent to which it stimulates thought and opens up new lines of research."

-Paul Dirac

When designing an embedded system, a common way to do is to make a model of the system, simulate or execute it to obtain traces, then check in these traces whether functional and non functional requirements are satisfied or not. In this thesis, our idea was to provide for the designer more than the satisfaction results of these requirements. We aimed to provide, if a requirement is unsatisfied, what are the root causes of this dissatisfaction. This means to understand why it is unsatisfied. For instance, when there is a latency requirement violation, we intended to help the designer know what are the root causes of this latency violation.

An embedded system model is expected to include software and hardware components. In these components, several factors determine when a software operation is executed. One of these factors is the hardware component and its support software on which this operator is allocated. For instance, the scheduling process of a bus or a processor, the bandwidth mismatch between buses, the bus bandwidth,. . . have a significant contribution on the time of execution of an operation. Another factor is the dependency between operators in the application of an embedded system. For instance, an operator might be waiting another operator to finish execution before it executes.

When the delay between two operators must be less than a maximum value, we refer to this constraint as maximum latency requirement. To understand the reasons of a maximum latency requirement violation, in this thesis, we captured dependencies in the system model and accordingly we classified transactions of an execution trace. The classification of transactions was based on their impact on the latency between the two operators of the requirement. We refer to this advanced approach that analyzes traces as PLAN.

In Chapter 1, we identified that it may be difficult to figure out which parts of the system contributed to a delay between two operations. Thus, when a maximum latency requirement is not satisfied it might be difficult for a designer to enhance an embedded system design to satisfy this requirement as the factors contributing to the delay might be unknown. Thus, this thesis addressed requirement verification of embedded systems by focusing on trace analysis using a new trace analysis technique (PLAN).

By identifying dependencies between model elements and classifying transactions in an execution trace with respect to latency requirement, we identified and highlighted which software functions and/or hardware components contributed to this delay. In this chapter, we summarize the contributions of this thesis and provide a list of further research ideas to extend our work.

Resume of Contributions

Problem Formalization We have formally defined the three inputs to our approach: the system model, the model execution trace and the maximum latency requirement. The system model follows the Y-Chart approach to partition the system between hardware and software: application and platform are modeled independently before the application is allocated to the platform. The execution trace built upon a set of transactions can be obtained from a model simulation, or from a model-to-code generation and then code execution. The requirement can be explicitly linked to execution traces of a systems. The requirement specifies a maximum delay between the start and end times of two operators. Having these inputs formally defined enables us to easily adapt our approach to different tools and methods concerned with embedded system design.

Primitive PLAN In Chapter 5, PLAN approach was introduced. PLAN can investigate an execution trace produced from a system-level model corresponding to an application, an architecture and the allocation of the application on the architecture. PLAN aims to facilitate the localization of the reason that caused an embedded system model to violate a user-provided latency requirement. To to so, the approach takes three inputs: We classified transactions into eight different sets. Among these sets, the contention set is an important set that the designer should take into consideration to update the model since it contains transactions that are the root causes that contributed to increasing the delay between latency requirement operators.

Advanced PLAN In Chapter 5, PLAN could analyze the execution traces that contained only one transaction per each operator of a maximum latency requirement.

In order to analyze a wider range of execution traces, i.e., the execution traces that contain more than one transaction per each operator of a maximum latency requirement, we introduced graph tainting in Chapter 6.

The key of advanced PLAN in Chapter 6 is to "taint" a directed dependency graph derived from SysML activity diagrams, and by analyzing execution transaction in a trace to propagate these "taint" along the graph to determine the latency values.

The approach in Chapter 6 is based on a dependency graph that captures all relevant dependencies between operators in an application model. The transactions in an execution trace are sequentially studied to update the state of the operators in the dependency graph. A transaction can add a taint value for to an operator in a graph. The propagation of taint value along the graph helps us identify the transactions corresponding to the occurrence of the first operator of the requirement and the corresponding occurrence of second operator mentioned in the requirement.

For that, we store a taint value for every transaction corresponding to the first operation of the latency requirement and propagate it till the taint value reaches the first operation of the latency requirement.

This enables us to overcome the 1:1 relation between latency requirement operators, and thus we can handle one-to-many-relations between these operators.

PLAN Integration into TTool

In Chapter 7, a prototype implementing PLAN was realized. We started by explaining how our formal models can be easily captured by SysML diagrams. Then, Section 7.2

gives an overview of the implementation of the prototype. More specifically, it gives an overview on how the designer can initiate PLAN using the graphical interface or the command line and how the classification results can be obtained. Moreover, in Chapter 7, we have demonstrated PLAN approach on two use cases defined in the scope of the H2020 AQUAS project: the industrial drive system and the rail carriage mechanisms system.

For these two use cases, the PLAN approach identified the root cause behind having a latency value higher than the maximum latency. Thus, we showed how the PLAN approach can be used to guide a designer to update the system model to satisfy a maximum latency requirement.

Perspectives

The goal of this thesis was to guarantee that a timing requirement in a system model is satisfied and in case of non satisfaction to guide the designer to the reason behind this non satisfaction. By knowing the reason a requirement is not satisfied, the designer might find it easier to update the model. We have chosen latency requirement at it is frequently verified to ensure designing safe and efficient embedded systems.

While this thesis has proposed an advanced trace analysis approach, there still exists significant future work. One important future research direction is providing designers with automated suggestions for enhancing the model such that the timing constraints are all met especially when safety and security measures are iteratively added to the model.

Model enhancements at current abstraction level

Support of more communication channel semantics The hypothesis taken in Chapter 5 restrict the communication channels whose operates are along the dependency path of the requirement operator to behave as Blocking Notify -Blocking Wait synchronization channel or Blocking Write -Blocking Read data channel. Chapter 5 targets this assumption however it does not take into account the buffer size of these channels. Knowing how many messages are stored in a buffer before an operator is tainted is an important aspect to accurately taint a dependency graph and compute latency.

To target this point, we started by modeling the data channel as a vertex in the dependency graph where its ReadData operator and WriteData operator are connected to it. We assign attributes to this data channel vertex including the current buffer size attribute per hardware component. The later attribute returns the amount of data already stored in the buffer on a hardware component before the WriteData was tainted. In the future, we would like to update the tainting algorithm to check the current buffer size attribute before propagating the taint. We would also need to test if this solution is accurate to model the different semantics of the data channel. If it is, we would like to apply the same for the synchronization channel.

Extend the model to support more operators The categories of operators presented in Chapter 4

enable the designer to model an algorithm having a precise complexity. To model an algorithm having a complexity either value 1 or value 2, the designer has to use a Choice operator and for each branch of the Choice operator an IntOp represent the complexity value (value 1 or value 2).

As part of the future work, we want to extend the model to support more operators. For instance, to support an IntOp with two values: minimum value and maximum value. The complexity can be between these two values. Primitive PLAN can easily be adapted to the addition of the latter operator. However, for advanced PLAN additional work is required. To add such operator with indeterministic complexity value, advanced PLAN requires to have additional information in the transaction corresponding to the operator that indicates the precise complexity taken in execution. This value is required since we need to know when to propagate the taint value to the operators successors.

Model enhancement to support different abstraction levels

PLAN application to different abstraction levels As seen in the system model formal definition, our model does not give a precise abstraction level apart from a few operators for instance the WriteData and ReadData operators. These operators exchange an amount of data and not data values. So, in the system model we do not have data values. Thus, our analysis analysis is adapted to data abstraction which we can consider on high level of abstraction.

For instance, in assembly we get the operators we presented in Section 4.3.1 but we have some abstractions that might make the latency analysis impossible. For example, we cannot trace exactly how the data was manipulated and we cannot guarantee that the data we send is the same the one we received. So, in the current version of PLAN we cannot exchange data or reuse data values.

It is part of the future work to extend the expression capacity of the operators we propose to cover different levels of abstractions.

Verification aspects

Proof of correctness of the execution trace partitioning In this thesis, we have formally defined for primitive PLAN the different classification sets of transactions. In future work, we should prove the correctness of this classification and that a transaction is always correctly added to the set it should belong to. Moreover, for advanced PLAN, we should define the different classification sets which we expect to be similar to primitive PLAN classification sets with conditions added with respect to taint values.

Complexity computation

We have tested our approach on two realistic use cases in the scope of AQUAS [START_REF] Pomante | The aquas ecsel project aggregated quality assurance for systems: Co-engineering inside and across the product life cycle[END_REF] project. However, in the future we should compute the complexity of our approach with respect to the model size (or dependency graph size) and the execution trace size. Computing the complexity will help us to better compare our approach with the existing simulation/execution trace analysis approaches.

Tooling aspects

Enhance the implementation Currently, only a prototype of PLAN is implemented. In this prototype, only the transactions that are executed along the latency interval of a maximum latency requirement are shown to the designer in PLAN window in TTool. In future work, we should classify the transactions that belong to all the formally defined sets. Moreover, for the contention set, we should provide more accurate values for the BSED and BEED. Ideally, the values of BSED and BEED should be provided by the executor per transaction in the execution trace.

PLAN application to Security Countermeasures in Safety Critical Systems One of the challenges when designing embedded systems is to satisfy altogether its safety, security and performance requirements. The advantages of designing embedded systems while taking the interactions of safety, security and performance requirements into consideration early in the design cycle is highlighted in several approaches [START_REF] Gruber | Co-engineering-in-the-loop[END_REF] [94] [184] [START_REF] Alhirabi | Security and privacy requirements for the internet of things: A survey[END_REF]. Mainly, it results in a decrease in the development time and efforts and an increase in product quality [START_REF] Friedenthal | A practical guide to SysML: the systems modeling language[END_REF].

To deal with requirements of different kind (safety, security, performance), industrial and academic partners collaborated on several projects including MERgE [START_REF] Merge | [END_REF], Sesamo [START_REF]SESAMO:Security and Safety Modelling[END_REF], CRYSTAL [4], etc. While most of these projects considered the relation between safety and security, some also added performance to the scope like, for example, SAFURE [START_REF]Safure -safety and security by design for interconnected mixed-critical cyber-physical systems[END_REF], AMASS [START_REF] Ruiz | Architecture-driven, multiconcern and seamless assurance and certification of cyber-physical systems[END_REF], EVITA [START_REF]EVITA:E-safety vehicle intrusion protected applications[END_REF] and AQUAS [START_REF]Aggregated quality assurance for systems (aquas)[END_REF].

A model changes by adding or removing software or hardware components, updating hardware resources parameters or changing a functional behavior. These changes may occur when adding safety or security mechanisms. For example, the addition of encryption/decryption mechanisms can support more secure message exchanges or a new security algorithm can increase the system security level.

These changes may result in extra computations and communications. In addition, extra contentions on resources may result from the transfer of longer messages [START_REF] Zheng | Cross-layer codesign for secure cyber-physical systems[END_REF].

Several contributions specifically address the impact of security on performance. In [START_REF] Zheng | Cross-layer codesign for secure cyber-physical systems[END_REF], a crosslayer design framework combines control-theoretic methods and cybersecurity techniques. The result of this framework is a Pareto front between two normalized metrics representing control performance and security level. The provided region denotes all feasible solutions for the requirements under study, an An interesting application of PLAN is analyzing the impact on timing when changing a SysML model.

In this thesis, the introduced PLAN approach can be applied to a use case model and an updated version of this model separately. However, we have implemented a first attempt to show the output of PLAN approach simultaneously for two models in the same window in TTool. Thus, allowing the designer to compare the latency and the classification of transactions in these two models directly as shown in This first attempt aims to further assist the designer to compare and determine how the changes applied to a model impacted its timing requirements. However, further work on large sets of security and safety mechanisms is needed to prove our claim and show that our approach always works. As safety and security measures in TTool can be easily implemented and verified, future work to apply the PLAN Les transactions dans une trace d'exécution sont étudiées séquentiellement pour mettre à jour l'état des opérateurs dans le graphe de dépendance. Une transaction peut ajouter une valeur pour un marquage donné pour un opérateur dans un graphe. La propagation de cette valeur le long du graphe nous aide à identifier les transactions correspondant à l'occurrence du premier opérateur de l'exigence et à l'occurrence correspondante du second opérateur mentionné dans l'exigence. Pour cela, nous stockons une valeur de "taint" pour chaque transaction correspondant à la première opération de l'exigence de latence et la propageons jusqu'à ce que la valeur du marquage atteigne la deuxième opération de l'exigence de latence. Cela nous permet de lever la restriction de dépendance 1 à 1 des opérateurs.

Dans le chapitre 7, un prototype mettant en oeuvre PLAN a été réalisé. Nous avons commencé par expliquer comment nos modèles formels peuvent être facilement capturés par des diagrammes SysML.
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Figure 1 . 1 :

 11 Figure 1.1: Motor drive system

Figure 1 .

 1 Figure 1.2 shows the different operators of four simplified functions of the motor controller introduced in Figure 1.1: Receive Stop Command, Send PWM Signals, Compute Actual Speed, Send Actual Speed.

Figure 1 .

 1 Figure 1.5.Figure 1.4 (b) shows an example of a simulation trace of the model in Figure 1.5. Going

  Figure 1.5.Figure 1.4 (b) shows an example of a simulation trace of the model in Figure 1.5. Going over the simulation trace reveals that the latency computed before changed from 30 to 22 -11 = 11 time units.

Figure 1 . 4 :Figure 1 . 5 :

 1415 Figure 1.4: Examples of simulation traces for: (a) Figure 1.3 (b) Figure 1.5

  Model-Driven Engineering (MDE) and timing constraints. Moreover, in Chapter 2, we explain the SysML-Sec profile within which our contribution is integrated. Chapter 3 presents the related work, where performance verification approaches and simulation trace analysis methods are studied. Chapter 4 formally defines a HW/SW partitioning model, an execution trace and a maximum latency requirement. Chapter 5 presents the formal definition of the first version of PLAN. The second version of PLAN that relies on tainting techniques is presented in Chapter 6. The implementation of the contributions along with two use cases are presented in Chapter 7. Finally, Chapter 8 concludes this thesis and discusses potential future work.
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 21 Figure 2.1: Mars 2020 Rover

Figure 2 .

 2 Figure 2.3: SysML-Sec modeling profile used in TTool

Figure 2 .

 2 4 shows the SysML-Sec methodology diagram in TTool after TTool

Figure 2 . 4 :

 24 Figure 2.4: SysML-Sec methodology diagram in TTool

Figure 2 . 5 ,

 25 Figure 2.5, Figure 2.6 and Figure 2.7 show the design areas in TTool for application models, task be-
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 2526 Figure 2.5: The design area for an application model

Figure 2 . 7 :

 27 Figure 2.7: The design area for an architecture model

Figure 2 . 8 :Figure 2 . 9 :

 2829 Figure 2.8: The mapping of a task on a computational node

Figure 4 .

 4 1 are presented. First, the HW/SW partitioning model is formally defined in section 4.3. Section 4.4 gives an overview of the model execution Semantics. Section 4.5 defines a maximum latency requirement.

Definition 1 .Figure 4 . 1 :

 141 Figure 4.1: Modeling stages required to apply the precise latency analysis approach

  f is given one semantic among the three following ones: Non-Blocking Notify -Blocking Wait Infinite FIFO (NBN-BW-INF), Non-Blocking Notify -Blocking Wait Finite FIFO (NBN-BW-F) or Blocking Notify -Blocking Wait Finite FIFO (BN-BW-F). SCType = {NBN-BW-INF, NBN-BW-F, BN-BW-F}

Definition 15 .

 15 Operator An operator o∈ O f has a category. cat(o) ∈ Start, Stop, Choice, Merge, IntOp, Set, WriteData, ReadData, Notify, Wait . A function getF takes as an input a model m and an operator o and returns the unique function f to which operator o belongs. Formally, getF (m, o) = f | o ∈ O f We use the notation O f,n to denote the set of all operators in O f whose category is n. When the category of an operator is n we say "n operator". For example, an operator with the Start category is referred to as "Start operator". • Start: represents the initial operator of a function. A Start operator must have exactly one next operator. • Stop: represents the end of the execution of a function. A Stop operator has no next operator. • Choice: has at least one next operator. Only one control flow among the ones with a guard equal to true can be selected by an execution engine. If no guard of the output control flow connections evaluate to true, then the choice operator blocks. The choice operator is the only category that can have more than one next operator. • Merge: the merge operator makes it possible for several operators o 1 to o n to have the same next. So the merge operator is the only one that can have several previous operators. It has exactly one next. • IntOp: specifies the complexity of an algorithm. An IntOp operator has exactly one next. An important attribute of an IntOp operator is its complexity. A complexity attribute specifies the number of low level operations, e.g., operations on integers, of an algorithm. If an algorithm has several execution branches, the IntOp operator can be combined with a Choice operator to model the duration of the different branches. The function getComplexity takes as an argument an IntOp operator and returns the complexity attribute. So, getComplexity : O f,IntOp → Z +

  getSyncCh : O f,N otif y ∪ O f,W ait → SC Definition 16. Fixed size Loop We call a loop a 5-tuple o m , o c , o s , v, nbr where o m , o c and o s are a Merge operator, a Choice operator and a Set operator respectively all belonging to the same function, v is the variable used in the loop and nbr is the number of loop iterations (Figure 4.2). Properties on a loop o m , o c , o s , v, nbr : • The function getNext(o m )={o c } i.e., there is a control flow connection between the Merge operator and the Choice operator. • The Choice operator has at least one dependency path to the Merge operator. • The function getNext(o s )={o m } i.e., there is a control flow connection between the Set operator and the Merge operator. • The Choice operator must have at least 1 next which is the body of the loop and at most 2 next: one the body of the loop and one the loop exit. • All operators of the body of the loop must have dependency paths to the Merge operator • All the dependency paths starting from operators in the body of the loop must lead to o s • All paths from the Choice operator to the Merge operator represent the inner body of a loop.

Figure 4 . 2 :

 42 Figure 4.2: Graphical representation of a loop

  Figure 4.3 shows an example of a loop that iterates 2 times. To know if an operator o belongs to the iteration of loop o m , o c , o s , v, nbr , function insideLoop is used. Formally,

Figure 4 .

 4 Figure 4.3: Graphical representation of a loop that iterates 2 times
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 44 Figure 4.4: Application model where classification of dependencies is not a partitioning of D m

Figure 4 .

 4 Figure 4.4 shows a graphical representation of an Application model.Figure 4.4 represents two functions f 1 and f 2 along with two data channels dc 3 and dc 4 and a synchronization channel sc 5 . In addition, Figure 4.4 shows the behavior of each function beneath its name where an operator is represented together with its id and category, and a control flow connection is represented by a directed arrow between two operators. In Figure 4.4, operator o 7 sends synchronization messages on sc 5 and operator o 11 receives synchronization messages from sc. Thus, o 7 o 11 is a synchronization channel dependency.

Figure 4 .

 4 [START_REF]EVITA:E-safety vehicle intrusion protected applications[END_REF] shows a graphical representation of the application model.

Figure 4 .

 4 5 represents five functions f 1 , f 2 , f 3 , f 4 and f 5 along with two data channels dc6 and dc7 and a synchronization channel sc8 . In addition, Figure4.5 shows the behavior of

Figure 4 . 5 :

 45 Figure 4.5: Graphical representation of the Application model of Example 1

Figure 4 . 6 : 5 h

 465 Figure 4.6: Graphical representation of a possible allocation for the application model given in Figure 4.5

Property 6 .

 6 System executions are characterized by a function EXEC that takes as an input a HW/SW partitioning model m and a time τ and returns a set of execution traces. Let M be the set of all system models and E M be the set of all possible execution traces of models in M , formally,EXEC : M × Z + → P(E M ) System execution Constraints.Function EXEC must fulfill with the following constraints so we can analyze the execution trace:• it must respect the operators dependencies including synChDep, dataChDep, and controlFlowDep. • it must respect the number of iterations in loops • it must comply with the communication channel semantics. In the scope of this thesis, we can analyze execution traces that have used Non-Blocking Notify -Blocking Wait Infinite FIFO (NBN-BW-INF) and Blocking Notify -Blocking Wait Finite FIFO (BN-BW-F) synchronization channels. Data channel semantics are handled. Supporting other synchronization channels semantics is part of the future work.• it must respect that only one operator at a time can be executed on one given hardware component.So, only one operator can be executed at a time on any execution category hardware component and only one transfer of a function can be done at a time on any communication or storage category hardware component.• if a read or write path of a communication path has hardware components with different data sizes, the throughput is constrained by the hardware component having the minimum of the data size along the path.As soon as the execution trace conforms with these constraints it can be analyzed in the PLAN approach. Definition 28. Execution Trace An execution of a HW/SW partitioning model for a time interval [0, τ ] returns an execution trace x = {t 1 , . . . , t k } where each t i is an execution transaction. Transactions in an execution trace are ordered. The ordering is based on a unique sequence number assigned to each transaction. Listing 4.1 gives the XML description of one possible execution trace for the model of Figure 4.6 and for the time interval [0, 50]. The id field corresponds to the operator identifier in the model of Figure 4.5.

Obviously, since r refers

  to model elements, operators o A and o B must belong to the behaviors of functions in the application model. In other word, there must exist functions in the application model in which o A and o B are defined.

"

  If we want to solve problems effectively...we must keep in mind not only many features but also the influences among them." -Dietrich Dorner, The Logic of Failure: Recognizing and Avoiding Error in Complex Situations PLAN approach runs the ETA algorithm when a maximum latency requirement (Definition 31) is not satisfied. The ETA algorithm classifies all transactions of an execution trace based on the impact they have on the latency between the two operators of a requirement as to be discussed in Section 5.1.4. Definition 31 gives the requirement definition as it is usually defined by designers for periodic or pseudo periodic applications. More precisely, we assume in this chapter that in the execution trace we have a unique execution of o A and a unique execution of o B such that the occurrence of o B corresponds to the occurrence of o A .

Section 4 .Figure 5 . 1 :

 451 Figure 5.1: Graphical representation of a function behavior to illustrate causality between operator

1 .

 1 the execution trace must contain one transaction corresponding to operator o A and one transaction corresponding to operator o B 2. a dependency path between o A and o B must have been selected by the execution engine and executed. So, operator o B execution must be encountered in the execution trace after all the operators in the selected the dependency path are executed. An execution trace having a transaction t o B ,1 without having transactions corresponding to all operators of at least one dependency path between operator o A and operator o B is considered invalid. The execution trace is considered as invalid in this case since the execution of operator o B does not depend on the execution of operator o A . Thus, the notation of latency is not relevant as the executed operators that are in the dependency path between operator o A and operator o B are one of the main parameters to classify transactions. To have a clearly defined dependency path between o A and o B whose operators are executed before the execution of o B , we add a hypothesis. Let us consider a HW/SW Partitioning Model m whose application and allocation models are shown in Figure 5.2 and Figure 5.3 respectively. In Figure 5.2, two functions f 1 and f 2 communicate through 2 data channels dc 3 and dc 4 . Operator o 13 writes data to data channel dc 3 and operator o 22 reads data from data channel dc 3 . Operator o 14 writes data to data channel dc 4 and operator o 23 reads data from data channel dc 4 . In Figure 5.2, functions f 1 and f 2 are allocated to an execution hardware component h 40 and the data channels dc 3 and dc 4 are allocated to a communication hardware component h 41 and a storage hardware component h 42 . Let a maximum latency requirement r = o 11 , o 27 , 15 be a requirement on m. In this requirement, we are interested in the timing delay between f 1 sending data and f 2 finishing to process data in operator o 27 after receiving them from f 1 . The dependency paths between the two operators of interest in r are: ----→ o 11 o 27 1 =o 11 o 12 , o 12 o 13 , o 13 o 22 , o 22 o 24 , o 24 o 26 , o 26 o 27 ----→ o 11 o 27 2 =o 11 o 12 , o 12 o 14 , o 14 o 23 , o 23 o 25 , o 25 o 26 , o 26 o 27 A possible execution trace x of m is shown in Listing 5.1.
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 525251 Figure 5.2: An Application model where o B execution does not necessary depend on o A execution

Figure 5 . 5 :

 55 Figure 5.5: A possible allocation of the application model given in Figure 5.4

a

  read operator o r reading data from a data channel where operator o w writes data to the same data channel and operators o r and o w have the different size attributes. Let us assume two functions f 1 and f 2 as shown in Figure 5.6. These two functions communicate through a Blocking Write -Blocking Read data channel d 3 . Operator o 12 writes data to d 3 and operator o 15 reads data from d 3 . Let the size attribute of o 12 be 10 and that of o 15 be 5. Among the dependencies in this application model let us consider the dependency o 12 o 15 . So, operator o 15 depends on operator o 12 . This dependency is valid but not accurate when taking into account the size attribute of o 12 and o 15 . In our example, o 15 reads 5 size of data thus it only depends on o 12 writing 5 size of data and not 10. To have accurate dependencies in our model, for any read operator o r reading data from a data channel where operator o w writes data to the same data channel, operators o r and o w must have the same size. In other words, the read operator reading x data size must depend on a write operator writing the same data size. To achieve this, we replicate in the model the operator with the greater size, assign to its size attribute the difference between o r and o w sizes and set the sizes of o r and o w to the same value (the minimum size among them). In our example, getDataSize(o w ) > getDataSize(o r ). So, we replicate operator o w . Let us refer to this new operator as o w . The size of o w is updated to 5 to be equal to o r and the size of o w is set to 5 since 10 -5 = 5. Functions f 1 and f 2 in Figure 5.6 are updated as shown in Figure 5.7.While this replication is straight forward when there is one write operator and one read operator for a data channel, extra computation is required when there is more than one ReadData operator and/or more than one WriteData operator. Let us consider the example in Figure5.8. In this example, the data size of each read/write operator is shown in Coral color beside it. Operators o13 and o 15 write to data channel d 3 and operators o19 , o22 

Figure 5 . 7 : 5

 575 Figure 5.7: The remodeling of the Application model of Figure 5.6

Figure 5 . 9 : 5 Figure 5 . 10 : 8 o

 5955108 Figure 5.9: The first round of remodeling the Application model of Figure 5.8
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 1412 In Functions Sets The set of all operators which have corresponding transactions in an execution trace x and are in a dependency path between o A and o B can not execute before their previous operators in their functions are executed. Each operator in this set belongs to a function. So, the execution trace must contain transactions corresponding to operators that are in the dependency path between the St operator of the function to which an operator from the set belongs and the operator. Let us assume o 3 is in O f and in the dependency path between o A and o B . Moreover, o 3 is executed and have a corresponding transaction in the execution trace. Operator St f have a dependency path to o 3 . Thus, the execution trace contains transactions corresponding to operators in the dependency path from St f to o 3 . For instance, in function f 2 in Fig. 4.5, if operator o 16 was to be executed between o 11 and o 31 which is an operator in a dependency path between operator o 11 and o 31 , then since operator o 15 belongs to the only dependency path betweenSt f 2 and o 16 , so in this case, operator o 15 has to be executed. Let us assume we have two functions f and f . Moreover, we assume operator o in function f belongs to a dependency path ---→ o A o B . If Wait operator in function f belongs to a dependency path --→ St f o, then the Notify operator in function f that have dependency to the Wait operator in function f must have completed its execution before operator o can start executing. Thus, there must exist in the execution trace transactions corresponding to operators in the dependency path between St f and the Notify operator in function f . Same condition applies if Notify and Wait operators are replaced

Figure 5 . 12 :

 512 Figure 5.12: An Application model used to explain the in Functions Sets

5. 1 . 4 . 1 . 3 o 31 1 ,o 15 o 31 2 ,Definition 42 .

 14131242 Contention Set Let us now deal with the contention set. Contention occurs when two concurrent functions using the same execution hardware want to execute a transaction at the same time. Contentions may also occur when two functions want to use the same communication hardware component at the same time. When a contention occurs, one of the two functions is delayed until the resource it has requested is available. This delay is called a contention delay. A transaction belongs to the contention set if its execution causes a contention delay in the execution for at least one transaction belonging to either OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set. To identify transactions that belong to the contention set, we need first to identify the set of hardware com-ponents denoted as H Dep that execute transactions belonging to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set. A transaction may belong to the contention set only if it runs on a hardware component belonging to H Dep . So, for a requirement r = o A , o B , λ max we consider all the operators that have dependency path(s) to o B .H Dep contains all execution hardware components, communication hardware components and storage hardware components involved in these operators execution and communications. In our example in Figure 4.6, we are interested to get the H Dep set between o 11 and o 31 . Referring to the dependency paths ----→ o 10 the functions f 1 , f 2 and f 3 are the functions to which the operators that have dependency path(s) to o B belong (Figure 5.13). Thus, the hardware components h 41 , h 42 , h 44 and h 45 belong to H Dep . Dependency Path Hardware Components Let us consider all dependency paths to o B . Function getDP HC takes as argument a model m and operator o B and returns a subset H Dep of hardware components in a platform model. This subset H Dep contains execution hardware components on which functions containing operators on dependency paths to o B are allocated. In case of ReadData or WriteData operator on dependency paths to o B , then the communication and storage hardware components on which there corresponding data channel is allocated are added to H Dep . Formally, getDP HC : (M, o B ) → H Dep where,

Figure 5 . 13 :Listing 5 . 4 :

 51354 Figure 5.13: Dependency Paths to o 31 in the Application model shown in Figure 4.5

1 s}

  Similarly for end time we define function EDL that takes a model, an execution trace and hardware component as input and return a set of transaction that were executed between the beginning of execution (τ 0 ) and τ t o A ,1 e

Figure 6 . 1 and

 61 Figure 6.1 and Figure 6.2 respectively. In Figure 6.2, two functions f 1 and f 2 communicate through a Blocking Write -Blocking Read data channel dc 4 . Functions f 2 and f 3 communicate through a Non-Blocking Write -Non-Blocking Read data channel dc 5 . Operators o 7 and o 15 write 1 byte of data to data channels dc 4 and dc 5 respectively. Operators o 9 and o 21 read 1 byte of data from data channels

Figure 6 . 1 :Figure 6 . 2 :

 6162 Figure 6.1: Graphical representation of an Application model with loops

  2, the hypotheses of Chapter 5 do not hold. The first occurrence of o 7 does not correspond to the first occurrence of o 21 because the WriteData operator o 15 executes after the ReadData operator o 21 . Thus, to correctly calculate the latency, we must track the execution transactions along the HW/SW Partitioning model to determine the corresponding occurrence of o 21 . For the HW/SW Partitioning model presented in this section, manually tracking transactions in the second execution trace reveals that the second occurrence of o 21 corresponds to the first occurrence of o 7 . Thus, the latency between o 7 and o 21 for r = o 7 , o 21 , 150 equals to 202. So, the maximum latency requirement is not valid.

Figure 6 . 1 6. 3 Definition 51 .

 61351 Figure 6.3: Dependency Graph of Figure 6.1

Figure 6 . 4 :

 64 Figure 6.4: Graphical representation of state change

Figure 6 . 5 :

 65 Figure 6.5: Dependency Graph Showing fixedNumber of Figure 6.1

. 1 ,

 1 the fixedNumber of the Choice operator o 11 is 3. Operator o 12 is inside the loop defined by o 10 , o 11 and o 13 . So, the taintMaxNumber of o 12 is getFN(o 12 ) * getFN(o 11 ) = 3 * 1 = 3 (Figure 6.6).

7 Figure 6 . 6 : 6

 7666 Figure 6.6: Dependency graph showing taintMaxNumber of Figure 6.1

Figure 6 . 7 :Figure 6 . 8 :

 6768 Figure 6.7: Graphical representation of a function with two nested loops

  o A Taint values correspond to the occurrences of o A in the execution trace. A fresh taint value denoted as Γ is created each time a transaction of o A of the requirement under study is encountered when iterating over the execution trace. All Γ is the set of all taint values generated by all algorithm iterations of one execution trace. Each operator has an ordered set of taint values. These taint values correspond to the occurrences of o A . Taint value Γ is associated to an operator each time it is executed and there is a dependency relation between this operator execution and the execution of operator o A that is tainted with Γ. Taint values in this set are linked to transactions of the execution trace that have already been handled by the algorithm. The order of the taint values in the sequence is based on when they are added. Taint_size represents the size of the sequence of taint values. Formally, Taint_size : O m → N Then, for all o in O m , • Taint takes as argument an operator o and returns the sequence of the taint values of this operator. So, Taint(o) : [1, Taint_size(o)] → All Γ As taint values are "fresh" when generated, Taint(o) is injective. • o Γ is the ordered set of taint values of o. o Γ = {Γ ∈ All Γ | ∃i ∈ [1, Taint_size(o)], Taint(o)(i) = Γ} • Taint_trans provides each taint value in o Γ with the encountered o-transaction while propagating it during the execution of algorithm (Section 6.3.3). Taint_trans(o) : o Γ → P(x) (where x is the execution trace) ∀Γ ∈ o Γ Taint_trans(o)(Γ) ∈ P(x) Definition 55. taintConsideredNumber for all o in O m and all Γ in o Γ , getCN takes as an argument an operator o and a taint value Γ and returns the taintConsideredNumber attribute of this operator for the taint value. getCN(o, Γ) ∈ N

Figure 6 .Figure 6 . 9

 669 Figure 6.9 is a flow chart presenting how latency can be computed using tainting. The flow chart in Figure 6.9 presents an algorithm that takes as input a HW/SW Partitioning model m which defines a dependency graph G m , an execution trace x and a maximum latency requirement r = o A , o B , λ max . The algorithm iterates sequentially over the transactions in the execution trace. At each iteration, it updates dynamic attributes of the operators of the graph. It then outputs for each occurrences of o A a corresponding occurrence of o B if it exists. And then computes the latency between each couple (o A ,corresponding o B ) in order to figure out whether the latency between these occurrences is greater than λ max or not. Moreover, it collects transactions associated to taint values in order to classify them later with respect to their impact on latency. The formal definition of this classification is part of our future work but we expect it to be similar classification presented in previous chapter.
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 69 Figure 6.9: Flow chart of latency calculation based on Tainting 137

  So, for WriteData or ReadData operator there is one transaction for each component in the preceptive communication path. Communication paths consist of write and read paths. In this chapter, and for simplicity, we will abstract transactions on hardware components of a read/write path and consider such transactions as atomic. The transaction executed on the last hardware component of a read or write path marks the end of a ReadData or WriteData operator execution respectively. Transactions executed on other hardware components of a read or write path different than the last hardware component is referred to as intermediate transactions. Handling such intermediate transactions does not modify the dynamic attributes of a state. Only the transaction associated to the last hardware component of a read or write path does this. Thus, in this chapter, the last transaction of a read or write path is seen as an atomic transaction associated to a ReadData or WriteData operator, handled following the process described in the next section. According to Definition 24, the atomic transaction of WriteData is on the storage component of the write path. According to Definition 25, the atomic transaction of ReadData is on the execution component of the read path.

Figure 6 .

 6 Figure 6.9 presents the actions performed by the algorithm each time a transaction of the execution trace is picked up. Since we consider transactions are atomic as explained in previous section, each transaction corresponds to an execution of an operator.

Figure 6 .

 6 Figure 6.10: A transaction corresponding to o A is encountered (o = o A )

Figure 6 .

 6 Figure 6.10 shows the attributes when a transaction corresponding to o A is encountered. Attributes in green correspond to step 5.

goto 5 . 5 .

 55 Since o is o B : compute latency. The latency is computed and verified with respect to the requirement. The latency is computed between the current occurrence of o B (tainted by the last taint value Γ ) and the occurrence of o A tainted by Γ and according to Section 6.4. If the requirement is not satisfied, a violation alert is raised. Propagate taint to successors. Successors are characterized by Definition 51 and the propagation of their taint value depends on the operator category and attributes. The next paragraph explain the propagation of specific operators.
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 611612611 Figure 6.11: Transaction corresponding to o 8 is encountered
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 613614615616 Figure 6.13: Transactions corresponding to o 10 then o 11 are encountered
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 617 Figure 6.17: Changes occurring to the dynamic attribute taintConsideredNumber of Figure6.16 operators while browsing the execution trace

Figure 7 . 1 :

 71 Figure 7.1: Functions of the example in Figure 4.5

Figure 4 .

 4 5 are shown in Figure 7.1. Figure 7.1 also shows the communications between functions that are captured with Internal Block Diagrams. Communications are attached to functions via ports. Synchronization ports are in purple while data ports are in blue. The behavior of a function captured with SysML activity diagrams is built upon operators and control flow connections. Operators in a function behavior are modeled as shown in Table 7.1. Operators IntOp and Set are both mapped to action element in the activity diagram. The Merge operator is not directly supported by TTool. Figure 7.2 shows the behavior of the functions of Figure 7.1 in case the Merge operator of SysML activity diagrams was supported by TTool. However, an OrderedSequence operator that executes each interconnected outgoing branch in sequence is used to represent the Merge operator.

Figure 7

 7 .3 shows the behavior of the functions of Figure 7.1 as supported by TTool. UML Deployment Diagrams or SysML allocations can be used for platform and allocation models. In a platform and allocation model (Fig.7.14), execution, communication and storage hardware component are shown in blue, brown and green respectively. Functions are allocated to execution hardware components and data channels are allocated to communication paths. As a reminder, the graphical view, data channels are allocated to the communication and storage hardware components of a communication paths. Figure 7.4 shows the allocation as in Figure 4.6.
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 72573 Figure 7.3: Behaviors of the functions of Figure 4.5 in TTool 154
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 74 Figure 7.4: A possible allocation of the application model given in the example in Figure 4.6
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 75 Figure 7.5: Save simulation trace in XML format
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 76 Figure 7.6: PLAN window
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 77 Figure 7.7: Tagging an operator as latency checkpoint
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 79 Figure 7.9: PLAN-Show All Operators

Figure 7 .

 7 Figure 7.11: PLAN classification output for a latency value
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 713714 Figure 7.13: An excerpt of the application model of the industrial drive

Fig. 7 .

 7 Fig.7.14 shows the allocation of the M otorF function and the P StoM data channel. 56µs of the industrial drive execution have been simulated. 56µs has been chosen since it is the minimum duration to validate the latency requirement. The simulated hardware components run at 200MHz. The obtained simulation trace contains 11888 transactions. We denote by o A the operator corresponding to the first operator of the main loop and by o B the operator corresponding to the receiving of the voltage in the motor. The two operators and their two functions are shown in Fig. 7.13. Operator o A is the Wait operator named run_Inter() in violet in M ainLoop and operator o B is reading data operator named P M StoM in blue in M otorF . The operators o A and o B have one-to-one relation. Thus the first execution of o B corresponds to the first execution of o A .

Figure 7 .

 7 Figure 7.15: PLAN output showing contention

4 .Figure 7 .

 47 Figure 7.17 shows the functional view of the use case where only one Lidar is presented. The function PL1 is used to represent sending data by the first positioning Lidar. PL1 sends 1 frame of data once triggered by triggerPL1 every 67ms. This frame is received by another primitive component named F1_1and2_PL1 where the frame is copied to the algorithm buffer then checked for validity by checking its length and CRC calculation. After being checked, a detection algorithm is run that includes rotational mapping, filters and pattern detection. The computation complexity of this algorithm is modeled in the activity diagram using complexity operators. F1_3_PL1 reads the output of the detection algorithm, runs CRC calculation and sends a message to the F3_1_MsgAcquisition component. F1_3_PL1 is triggered every 50ms. F1_1and2_PL1 and F1_3_PL1 represent the functionality of the positioning lidar processing unit. All these blocks are duplicated for the 3 remaining Lidars. The door Lidars are triggered every 20ms. F3_1_MsgAcquisition is a function in a composite component named SafetyComponent. In TTool, composite components (colored in yellow) serve as containers for functions. F3_1_MsgAcquisition reads data from F1_3_PL1. The same applies for the data received from the other 3 Lidars processing unit functions. In the composite component SafetyComponent, another primitive component named F3_2_MsgAcquisition_SafePart is a redundant function added to the model to ensure safety. F3_2_MsgAcquisition_SafePart is triggered every 50ms. It runs a validity check and a sequence algorithm (represented by computation complexity) to compute the adequate result to be sent to Relay. The later is triggered every 33 ms.

F1_3_PL1Figure 7 . 17 :

 717 Figure 7.17: Functional view of Rail Carriage Mechanisms Use Case

  between o A and o B . Sending a frame from the Positioning Lidar (request "SendPos1" in triggerPL1 ) is o A in Req_1 and the relay receiving a control signal to send to the PSD (channel "controlData" in Relay ) is o B . The dependency graph corresponding to the model is composed of 244 vertexes and 393 edges.

( 1 )

 1 an allocation model that describes how software functions and communication channels (application model) are allocated to hardware units (platform model), (2) an execution trace built on execution transactions where each transaction represents the execution of an operator on a hardware component and (3) a latency requirement that provides an upper bound on the time delay between the occurrences of two basic software operations. In Chapter 5, we assumed that for each of the two operators in the latency requirement we have a unique execution transaction in the execution trace. The classifications of transaction in Chapter 5 are formalized and presented based on this assumption.

Figure 8 . 1 :

 81 Figure 8.1: Compute Latency in Two Simulation Traces

Figure 8 . 1 and

 81 Figure 8.1 and Figure 8.2 respectively.

Figure 8 . 2 : 9 Résumé

 829 Figure 8.2: Compare PLAN Output Window for Two Rows

Titre:

  Vérification de la latence dans les traces d'exécution du modèle de partitionnement HW/SW Mots clés: Systèmes embarqués, Analyse de la trace d'exécution, Analyse temporelle, Simulation, Graphes de dépendance, SysML Résumé: Alors que de nombreux travaux de recherche visent à définir de nouvelles techniques de vérification (formelle) pour vérifier les exigences dans un modèle, la compréhension de la cause profonde de la violation d'une exigence reste un problème ouvert pour les plateformes complexes construites autour de composants logiciels et matériels. Par exemple, la violation d'une exigence de latence est-elle due à un ordonnancement temps réel défavorable, à des conflits sur les bus, aux caractéristiques des algorithmes fonctionnels ou des composants matériels ? Cette thèse introduit une approche d'analyse précise de la latence appelée PLAN. PLAN prend en entrée une instance d'un modèle de partitionnement HW/SW, une trace d'exécution, et une contrainte de temps exprimée sous la forme suivante : la latence entre l'opérateur A et l'opérateur B doit être inférieure à une valeur de latence maximale. PLAN vérifie d'abord si la condition de latence est satisfaite. Si ce n'est pas le cas, l'intérêt principal de PLAN est de fournir la cause première de la non satisfaction en classant les transactions d'exécution en fonction de leur impact sur la latence : transaction obligatoire, transaction induisant une contention, transaction n'ayant aucun impact, etc. Une première version de PLAN suppose une exécution pour laquelle il existe une exécution unique de l'opérateur A et une exécution unique de l'opérateur B. Une seconde version de PLAN peut calculer, pour chaque opérateur A exécuté, l'opérateur B correspondant. Pour cela, notre approche s'appuie sur des techniques de tainting. La thèse formalise les deux versions de PLAN et les illustre par des exemples ludiques. Ensuite, nous montrons comment PLAN a été intégré dans un Framework Dirigé par le Modèle (TTool). Les deux versions de PLAN sont illustrées par deux études de cas tirées du projet H2020 AQUAS. En particulier, nous montrons comment l'altération peut traiter efficacement les multiples et occurrences concurrentes du même opérateur. Title: Latency Verification in Execution Traces of HW/SW Partitioning Model Keywords: Embedded systems, Execution Trace Analysis, Timing analysis, Simulation, Dependency Graph, SysML Abstract: While many research works aim at defining new (formal) verification techniques to check for requirements in a model, understanding the root cause of a requirement violation is still an open issue for complex platforms built around software and hardware components. For instance, is the violation of a latency requirement due to unfavorable real-time scheduling, to contentions on buses, to the characteristics of functional algorithms or hardware components? This thesis introduces a Precise Latency ANalysis approach called PLAN. PLAN takes as input an instance of a HW/SW partitioning model, an execution trace, and a time constraint expressed in the following format: the latency between operator A and operator B should be less than a maximum latency value. First PLAN checks if the latency requirement is satisfied. If not, the main interest of PLAN is to provide the root cause of the non satisfaction by classifying execution transactions according to their impact on latency: obligatory transaction, transaction inducing a contention, transaction having no impact, etc. A first version of PLAN assumes an execution for which there is a unique execution of operator A and a unique execution of operator B. A second version of PLAN can compute, for each executed operator A, the corresponding operator B. For this, our approach relies on tainting techniques. The thesis formalizes the two versions of PLAN and illustrates them with toy examples. Then, we show how PLAN was integrated into a Model-Driven Framework (TTool). The two versions of PLAN are illustrated with two case studies taken from the H2020 AQUAS project. In particular, we show how tainting can efficiently handle the multiple and concurrent occurrences of the same operator. Institut Polytechnique de Paris 91120 Palaiseau, France
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	ProC/B-Traviando [126]						
	RT-Simex [79]						

  BN-BW-F} of NBW-NBR channels can always write without any constraint and the receiver function f can always read without any constraint. The buffer size in this case is infinite. In case of NBW-BR channels, the sender function f can always write (the buffer size is infinite) but the receiver function f can read only if the buffer contains enough data.Last, for BW-BR data channels, the sender function f can write only until the buffer is full (buffer of finite size) while the receiver function f can read only if the buffer contains enough data. The functions getDCType and getDataBufferSize take as argument a data channel and return the corresponding data channel semantic (DCType) and buffer size respectively.

	Definition 6. Data Channel
	Data channels can have different semantics. A data channel dc f,f ∈ DC f,f has either a Non-
	Blocking Write -Non-Blocking Read (NBW-NBR), Non-Blocking Write -Blocking Read (NBW-BR), or
	Blocking Write -Blocking Read (BW-BR) type and a buffer size (which can be infinite).

DCType = {NBW-NBR, NBW-BR, BW-BR} Sender function f getDCType : DC f,f → DCType getDataBufferSize(dc f,f

Definition 9 .

 9 Set of All OperatorsWe denote by O m the set of all operators that are used by all functions in an application model. Definition 10. Dependencies Between Operators For any model operators o 1 and o 2 , o 1 o 2 denotes that o 2 depends on o 1 . The set of dependencies in a model m is denoted as D m . {synChDep, dataChDep, controlFlowDep} is a classification but not necessarily a partitioning of D m as in some case a dependency can belong to several sets.

	O m =	O f
	f ∈F	

synChDep (Definition 18) and dataChDep (Definition 19) subsets relate to communication dependencies and controlFlowDep (Definition 14) subset relates to control flow dependencies. Definition 11. Model Dependency Path A dependency path is a sequence of dependencies such that for each two consecutive dependencies on a dependency path the last operator of the first dependency is the same operator as the first element of the second dependency. A dependency path between two operators o 1 and o 2 in a model is denoted as --→ o 1 o 2 . The first operator of the first dependency on --→ o 1 o 2 is o 1 and the second operator of the last dependency is o 2 . The set of all dependency paths between o 1 and o 2 are denoted as DP--→ o 1 o 2 . Definition 12. Operators in a Dependency Path We say an operator o is in a dependency path --→ o 1 o 2 if and only if there exists at least one dependency in the path that contains o. We define the function inPath that takes as an argument an operator o and a dependency path and returns true if and only if there exists at least one dependency in the dependency path such that one of its components is o. Formally, inPath(o,

  Function getNext(o) returns a set containing all the operators to which operator o is connected by a control flow connection. For instance, if we have only the following control flow connection (o, o i ) in

o f alse otherwise Definition 13. Control Flow Connections A control flow connection c = (o i , o j ) ∈ C f specifies a mono directional from o i to o j

  guard which is a boolean expression.

	Definition 14. Control Flow Dependency (controlFlowDep)

In the application model, we say a control flow dependency o 1 o 2 exists between two operators o 1

  Restriction on O f . The set of operators O f must contain one and only one operator whose category is Start. This operator represents the first operator to be executed by function f and is denoted by St f . So, O f,Start = {St f } Definition 17. Execution Flow An execution flow of a function f is denoted as e f . e f is a sequence of operators o in O f starting with a Start operator such that there is a control flow connection in C f between any pair of adjacent operators in e f from the first operator of the pair to the second.

nbr ∈ L f f alse otherwise Property 1. Control Flow Connection Constraint. There can be no loop without a Choice, a Merge and a Set operator. So, there should be no loop for a Merge operator which is not part of a loop. In other words, there can be no dependency path from a Merge operator to itself if the Merge is not a part of a loop. Thus, when there is a control flow connection between two operators (o i , o j ) ∈ C f then, (o j , o i ) / ∈ C f . Property 2. Property 3. Well-Formed Function. For each o ∈ O f , there must exist at least one execution flow containing o. Definition 18. Synchronization Channel Dependency (synChDep) In an application model, if there exists a synchronization channel sc between function f 1 and function f 2 , for all operators o i of f 1 such that o i sends synchronization messages on sc and for all operators o j of f 2 such that o j receives synchronization messages from sc, then o i o j is a synchronization channel dependency. Formally,

  and operator o 12 reads data from dc4 . Thus, o 8 o 12 is a data channel dependency.As mentioned previously, a dependency can belong to several sets as the case for the dependency o 13 o 14 in Figure4.4. As a control flow connection exists between these two operators, o 13 o 14 belongs to control flow dependencies subset. However, operator o 13 writes data on dc 3 and operator o 14 reads data from dc 3 . Thus, o 13 o 14 also belongs to the data channel dependencies subset.For a hardware component h, a function getByteNbr takes as argument a hardware component and returns the size of data (in bytes) that can be handled in one clock cycle. hardware component. The set of all Links is a set of couples defined as,L ⊆ H C × H ∪ H × H C

	Definition 23. Communication Path
	A communication path c
	4.3.2 Platform
	Definition 20. Platform Model

Moreover in this application model, there exists several control flow dependencies between operators. For example, o 6 o 7 , o 7 o 8 and o 8 o 9 are control flow dependencies in f 1 . A platform model P is defined with a set of hardware components H and a set of links L. P = H, L Definition 21. Hardware Component A hardware component represents the physical electronic component plus its support software, e.g., an operating system for a processor. We consider three categories of hardware components: execution, communication and storage. A hardware component having execution, communication or storage category belongs to H E , H C or H S sub sets respectively. More Formally, {H E , H C , H S } is a partitioning of H. For a hardware component in H E , a function getIntCyc takes as argument an execution category hardware component and returns the number of clock cycles corresponding to one integer operation. getIntCyc : H E → Z + getByteNbr : H → Z Definition 22. Links A Link can be seen as an interface between two hardware components, with at least one of them being a communication P in a platform model P is a couple:

  f 2 can be allocated to a communication path c P = π w , π r if and only if the execution hardware component of π w is h 1 and the execution hardware component of π r is h 2 .

  16 , o16 o 17 , o 17 o 18 , o 18 o 20 , o 20 o 21 , o 21 o 22 , o 22 o 31 16 , o 16 o 17 , o 17 o 19 , o 19 o 20 , o 20 o 21 , o 21 o 22 , o 22 o 31Figure 4.6 displays three execution hardware components h 41 , h 42 and h 43 , a communication hardware components h 44 and a storage hardware components h 45 . Figure 4.6 shows a possible allocation of the application model given in Figure 4.5. In this allocation, functions f 1 and f 2 are allocated to h 41 , function f 3 to h 42 and functions f 4 and f 5 to h 41 . Instead of allocating as in our mathematical definitions data channels to c

					h 41		h 42	h 43
				f 1	f 2 l 46	l 47	h 44 f 3	l 48 l 49	h 45 f 4 f 5	Legend h id Hardware component
						dc 6 dc 7	dc 6 dc 7	Master	Allocation Slave Link id
								1
	and	----→ o 11 o 31	2	.			
					----→ o 11 o 31		
					----→ o 11 o 31		

1 =o 11 o 2 =o

11 

o P , in this graphical representation, to simplify, we have simply allocated the data channels to all the hardware components that are part of the read and write path of the c P apart from the execution category components. So, data channels dc 6 and dc 7 are allocated to h

44 and 

Table 4 .

 4 1 represents the transactions of Listing 4.1 for the model of Figure 4.6. They are classified by hardware component and ordered by ids. The transactions executed on h 45 and the transactions of Start, Stop, Choice, Merge and Set operators are not shown in Table 4.1. 11 has two transactions. One transaction on the execution hardware component h 41 and one transaction on the communication hardware component h 44 . The latter transaction on h 44 corresponds to writing data on data channel dc 6 . Moreover, since the data size of the elements of the communication path might not be equal to the size to be written/read by the operator, a write/read operation may result in different transactions. For example, let us assume a WriteData operator o w having size attribute equal to 10 writing data to a data channel dc that is allocated to a communication path c P . Let h c be a communication hardware component on the write path of c P . Let h c be the component with the lowest data size along c P where the function getByteNbr(h c ) returns 7. So, instead of one transaction for this operator e.g., 0, 10, h c , o w on the communication hardware component, several transactions are represented in an execution trace e.g., 0, 7, h c , o w and 7, 10, h c , o w .

		Table 4.1: Execution trace in tabular format
	hc	41	43			42	44
	seq	6 14 17 21 23 27 28 34 5	8 11 12 7 25 33 15 20 29
	id	15 11 12 16 18 21 22 23 34 35 38 39 27 30 31 11 16 22
	starttime 0 10 11 15 16 31 45 46 0	5	6	7	0 17 46 10 15 45
	endtime 10 11 15 16 31 45 46 50 5	6	7 57 17 19 47 11 16 46

Operators have transactions related to the execution hardware on which they are allocated. Yet, in the case of WriteData and ReadData operators, they additionally have transactions on the elements on the communication path on which their data channel is allocated to. Thus, in Table 4.1, the WriteData operator o

  model, an execution trace and a maximum latency requirement and returns true or false. A maximum latency requirement is validated if and only if the difference between τ Let us assume a maximum latency requirement r = o 11 , o 31 , 35 on the execution trace of Listing 4.1.

								t o B ,1 e	and τ	t o A ,1 s	is less than
	λ max . 1 Formally,						
	RV m, x, o A , o B , λ max =	    	true	if τ e t o B ,1	-τ	t o A ,1 s	≤ λ max
				   	f alse	otherwise
	According to Listing 4.1,						
	τ e t o 31 ,1	-τ	t o 11 ,1 s	= 47 -10 = 37

As 37 > 35 then RV (m, x, o 11 , o 31 , 35 = f alse.

  t o 6 ,1 , t o 7 ,1 , t o 8 ,1 , t o 9 ,1 , t o 2 ,1 , t o 3 ,1 and t o 6 ,2 . The transactions correspond to the ReadData, IntOp o 7 , WriteData, Set, Merge ,Choice and ReadData operator respectively. So, in this execution trace, ReadData operator was executed both before and after the WriteData operator. So, causality constraints are one aspect to understand the relation between transactions.

  5.2, operators o 10 , o 11 , o 12 , o 13 , o 15 and o 16 of f 1 are first executed and then operators o 17 , o 18 , o 19 , o 20 , o 22 , o 24 , o 26 and o 27 of function f 2 are executed. So, the dependency path So, this trace is valid. In this case, RV (m, x, o 11 , o 27 , 15 = f alse.

	----→ o 11 o 27	1
	was executed.	

  n[seq t i < seq t i+1 )} In our example, opSeq(x) = o 11 , o 13 , o 18 , o 21 , o 27 . Moreover, for any dependency path p = o 1 o 2 , • • • , o n-1 o n let us define p that denotes the sequence of operators of a dependency path o 1 , • • • , o n An execution trace is considered valid if there is at least one sequence of operators of a dependency path from o A to o B that belongs to the sequence of operators included in an execution trace x.

	In our example, there exists two dependency paths	----→ o 11 o 27	1	and	----→ o 11 o 27	2	whose sequence of operators
	are:						
		----→ o 11 o 27			
	In Listing 5.1, neither	----→ o 11 o 27	1	/ ∈ opSeq(x) nor	----→ o 11 o 27	2	/ ∈ opSeq(x). So, the execution trace is
	invalid. However in Listing 5.2,	----→ o 11 o 27	1		

1 = o 11 , o 12 , o 13 , o 22 , o 24 , o 26 , o 27 ----→ o 11 o 27 2 = o 11 , o 12 , o 14 , o 23 , o 25 , o 26 , o 27

  the first occurrence of o 11 ended at cycle 1 and the transaction corresponding to the first occurrence of o 19 started at cycle 4. The transactions t o 16 ,2 , t o 16 ,3 and t o 16 ,4 correspond to an operator on the dependency path between o 11 and o 19 but these transactions started after t o 19 ,1

	To validate the requirement, τ	t o 19 ,1 s	and τ	t o 11 ,1 e	are required. From the execution trace, the trans-
	action corresponding to				

  ,o22 ,o15 ,o13 ,o19 . We start by choosing the operator with the smallest data size, o 25 in this case. Since o 25 is a read data operator and there is no write data operator of the same size, we replicate all ReadData and WriteData operators of the corresponding data channel to represent reading and writing this amount of data. Thus, the application model in Figure5.8 can be represented as shown in Figure5.9. Repeating the same procedure for the second operator in our list o22 . Operator o 22 had a data size equal to 4 at the start of our example and now it has a data size of 3 followed by an operator o 31 having a data size equals to 1. Operator o 31 has

		f 1	d 3	f 2
	o 10,Start		o 14,Start
	o 11,IntOP		o 15,ReadData
	o 12,WriteData		o 16,IntOP
	f 1 o 10,Start o 18,WriteData o 13,Stop	d 3	f 2 o 17,Stop o 14,Start
			Legend
	o 11,IntOP o 12,WriteData o 13,Stop Control flow 5 10 d 3 o id,cat Operator f id Function Function Behavior	Data channel o 15,ReadData o 16,IntOP 5 5 o id corresponding d 3 data ch. o id Complexity o id Data Amount
		Legend		o 17,Stop
		Control flow	
	o id,cat	Operator	
		Data channel	
		o id corresponding
		data ch.	
		o id Complexity
		o id Data Amount
	f id	Function	
	Function Behavior	
	Figure 5.6: An Application model containing a ReadData and a WriteData operator with different size
	attributes		

now the smallest data size and there is no write operator with the same data size. So, the application model can be remodeled as in Figure

5

.10. At this step, operator o 15 has been remodeled with two operators where the last perator o 29 has a data size of 1 so it can not be further remodeled. Operators

  In this requirement, we are interested in the timing delay between sending data in f 1 and receiving data in f 3 from f 2 . In Figure4.5, operator o 11 writes and operator o 16 reads from dc 6 while operator o 22 writes and operator o 32 reads from to dc 7 , so there are two dependency paths between operators o 11 and o 31 denoted as 16 , o 16 o 17 , o 17 o 18 , o 18 o 20 , o 20 o 21 , o 21 o 22 , o 22 o 31 16 , o 17 , o 19 , o 20 , o 21 and o 22 need to execute. We consider an operator that belongs to all dependency paths between o A and o B as a mandatory operator to execute for operator o B execution and in the classifications of transactions, a transaction corresponding to a mandatory operator between o A and o B is added to M andatoryOP set. While an operator that belongs to at least one but not all dependency paths between o A and o B is considered as an optional operator for operator o B execution and in the classifications of transactions, a transaction corresponding to an optional operator between o A and o B is added to OptionalOP set. Optional Operator Between Two Operators An operator o is an optional operator between two operators o i and o j in model m if operator o occurs in at least one dependency path but not all dependency paths between operators o i and o j . ∈ x belongs to M OP set if and only if operator o is a mandatory operator between operators o A and o B in m. Formally,

	Hardware	
	components	
	h_2	t 2
	----→ o 11 o 31 ----→ o 11 o 31 s ∧ τ t and e > τ ----→ o 11 o 31 1 τ t t 1 s < τ 1 t 2 and e Otherwise Definition 36. Mandatory Operator Between Two Operators -----→ o 11 , o 31 Thus, in the example in Figure 4.5, according to          true f alse t 1 τ s t 1 τ e t 2 Start time range End time range ----→ o 11 o 31 2 . Legend Execution time Figure 5.11: Cross Function Definition 37. Definition 38. MandatoryOP Set (MOP) An operator o is a mandatory operator between two operators o h_1 A transaction t o
	-----→ o 11 , o 31	

OtherHardware (OH x ), IndirectImpact (II x ), and N oImpact (N I x ). M OP x , OOP x , M F x , OF x , C x , N C x , O x , II x , N I x is a partition of the execution trace x. For short we will denote M OP x , OOP x , . . . as MOP, OOP, . . . .

5.1.4.1 Impact Sets

5.1.4.1.1 On Path Sets M andatoryOP (MOP) and OptionalOP (OOP) are considered as On Path Sets since the main factor to identify transactions in these sets is the dependency path between o A and o B . When there exists at least one dependency path between operators o A and o B then, we put transactions corresponding to operators in any dependency path ----→ o A , o B that are executed between t o A ,1 and t o B ,1 in one of the on path sets. Let r = o 11 , o 31 , 35 be a maximum latency requirement of the model m presented in Section 4.3.4. 1 =o 11 o 2 =o 11 o 16 , o 16 o 17 , o 17 o 19 , o 19 o 20 , o 20 o 21 , o 21 o 22 , o 22 o 31 So, for operator o 31 to execute, operators o 11 , o 16 , o 17 ,o 18 , o 20 , o 21 and o 22 or operators o 11 , o 2 , operators o 11 , o 16 , o 17 , o 20 and o 21 must execute for operator o 31 to execute while operators o 18 and o 19 may execute as they do not belong to all dependency paths between o 11 and o 31 . So, transactions executed between t o A ,1 and t o B ,1 corresponding to o 11 , o 16 , o 17 , o 20 and o 21 are added to M andatoryOP set while transactions corresponding to o 18 and o 19 are added to OptionalOP set. Definition 35. Transaction Executes Between Two Transactions A transaction t is said to execute at least partially between two transactions t 1 and t 2 if t ends after the start time of t 1 and t starts before the end time of t 2 . Figure 5.11 shows two transactions t 1 and t 2 . Transactions that start in the pink range and end in the green range are said to execute at least partially between t 1 and t 2 . Formally, function cross takes as argument t, t 1 and t 2 and returns true if and only if t ends after the start time of t 1 and t starts before the end time of t 2 . cross(t, t 1 , t 2 ) = i and o j in model m if and only if operator o occurs in all the dependency paths between o i and o j . Function M op takes model m and two operators o i and o j as arguments and returns the set of mandatory operator between o i and o j in model m.

1

  =o25 o 26 , o 26 o 27 , o 27 o 29 , o 29 o 30 , o 30 o 31 26 , o 26 o 28 , o 28 o 29 , o 29 o 30 , o 30 o 31 25 , o 26 , o 29 and o 30 are mandatory in function f 3 while o 27 and o 28 are optional for the execution of o 31 . So, in Listing 4.1, t o 30 ,1 belongs to M andatoryF unc set and t o 27 ,1 belongs to OptionalF unc set.

		----→ o 25 o 31	
	Thus, according to	----→ o 25 o 31	1	and	----→ o 25 o 31
	Definition 40. MandatoryFunc Set (MF)

2 =o 25 o 2 , operators o For a requirement r = o A , o B , λ max between o A and o B , a transaction t o ∈ x belongs to M F set if and only if it does not belong to M OP or OOP sets and there exists an operator o 3 that is a mandatory operator between o A and o B and operator o a mandatory operator between St getF (m,o) and o 3 . Formally, ∀t o ∈ x,

  44 ) ={t o 11 ,2 , t o 16 ,2 , t o 22 ,2 , t o 31 ,2 } getEndDList(m, x, h 41 ) ={t o 11 ,1 , t o 16 ,2 , t o 18 ,1 , t o 21 ,1 , t o 22 ,1 } The hardware component on which t o 12 ,1 executes is h 41 . The end time of t o 12 ,1 equals to 15. Since a transaction t o 16 ,2 is returned by getStartDList(m, x, h 41 ), then t o 12 ,1 belongs to the contention set ∈ x belongs to C set if and only if it satisfies four conditions. First, t should execute between t o A ,1 and t o B ,1 Second, t should not belong to M OP , OOP , M F or OF . Third, the hardware h t should belong to the set of hardware returned by getDP HC(m, o Third, the hardware h t must belong to the set of hardware components returned by getDP HC(m, o B ). Transactions executed between t o A ,1 and t o B ,1 belong to Other Hardware set if they execute between t o A ,1 and t o B ,1 and do not belong to any set defined previously (M OP , OOP , M F , OF , N C and C). In the example of Section 4.3.4, t o 39 ,1 is executed between time 7 and 57 on h 43 and does not belong to M OP , OOP , M F , OF , N C or C set. Thus, t o 39 ,1 belongs to OH set. ∈ x belongs to OH if and only if it execute between t o A ,1 and t o B ,1 but it does not belong to any previous classification sets. Formally,

	h_1 Hardware components BSED(t') BEED(t') t' Figure 5.14: First case where a transaction t is delayed due to contention t' τ e t' τ s t' t τ e t Execution time h_1 t' BSED(t') BEED(t') t' τ e t' τ s t' t τ e t τ s t Execution time Hardware components t o 12 ,1 e > BSED(t o 16 ,1 ) and τ t o 12 ,1 e = τ Hardware t o 16 ,1 s . Definition 45. Contention Set (C) as τ A transaction t Formally, ∀t ∈ x, ∃t ∈ getStartDList(m, x, h t ) | (τ t e >= BSED(t ) ∧ τ t e <= τ t s ) ∨ ∃t ∈ getEndDList(m, x, h t ) | τ t e >= BEED(t ) ∧ τ t e <= τ t e ) components t' BSED(t') BEED(t') t' τ e t' τ s t' t τ e t Execution time Figure 5.16: A graphical representation showing no contention Definition 47. OtherHardware Set ∧ h h_1 A transaction t
	than or equal to τ t e .
	getEndDList(m, x, h 42 ) ={t o 31 ,1 } Figure 5.14 and Figure 5.15 show two cases where a transaction t is delayed. In these figures, if
	∀t ∈ x,

OF S}

In our example in

Listing 5.4: 

getStartDList(m, x, h

41 

) ={t o 11 ,1 , t o 16 ,2 , t o 18 ,1 , t o 21 ,1 , t o 22 ,1 } getStartDList(m, x, h 42 ) ={t o 31 ,1 } getStartDList(m, x, h getEndDList(m, x, h 44 ) ={t o 11 ,2 , t o 16 ,2 , t o 22 ,2 , t o 31 ,2 } So, for a transaction t executing on hardware component h to delay transactions that belong to Figure 5.15: Second case where a transaction t is delayed due to contention OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set, t must not correspond to an operator whose execution may be required for the execution of o B . Thus, transaction t must not belong to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set. Moreover, for a transaction t to cause delay, either (1) for some transaction t returned by getStartDList(m, x, h), the end time of t (τ t e ) must be greater than or equal to BSED t and less than or equal to τ t s , or (2) for a transaction t returned by getEndDList(m, x, h) the end time of t is greater than or equal to BEED(t ) and less transaction t belongs to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set and t does not belong to the latter sets, then, transaction t belongs to the contention set. In Listing 5.4, t o 12 ,1 does not belong to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set. B ). Fourth, either • for some transaction t returned by getStartDList(m, x, h t ), τ t e is greater than or equal to BSED(t ) and less than or equal to τ t s , or, • for some transaction t returned by getEndDList(m, x, h t ), τ t e must be greater than or equal to BEED(t ) and less than or equal to τ t e . t ∈ getDP HC(m, o B

) ∧ t / ∈ M OP ∪ OOP ∪ M F ∪ OF ∧ cross(t, t o A ,1 , t o B ,1 ) ⇐⇒ t ∈ C

5.1.4.1.4 No Contention Set Transactions in the contention set delay at least one transaction in either OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP . There is also the case where a transaction can run in a dependency path hardware component (Definition 42) without delaying any transaction in OptionalF unc, M andatoryF unc, OptionalOP and M andatoryOP sets.

In this case, a transaction is said to cause no contention. Figure

5

.16 shows a case where a transaction t is delayed. However, t was not delayed due to the execution of t. Assuming that t belongs to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP , t does not belong to the latter sets and t did not delay any other transaction in these sets, then, transaction t belongs to the no contention set.

In

Listing 5.4

, which is the XML description of one possible execution trace for the model of Figure 4.6, t o 23 ,1 does not belong to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP . The hardware component on which t o 23 ,1 executes is h 41 . The start time of t o 23 ,1 equals to 46 and the end time of t o 23 ,1 equals to 50. For all transactions returned by getStartDList(m, x, h 41 ) and getEndDList(m, x, h 41 ), the fourth condition of the contention set conditions is not satisfied. So, t o 23 ,1 did not delay any transaction in OptionalF unc, M andatoryF unc, OptionalOP and M andatoryOP sets on h 41 and thus, it belongs to the no contention set. Definition 46. NoContention Set A transaction t ∈ x belongs to N C set if and only if it satisfies three conditions. First, it must be executed between t o A ,1 and t o B ,1 . Second, t should not belong to N I, M OP , OOP , M F , OF or C set.

t / ∈ M OP ∪ OOP ∪ M F ∪ OF ∪ C ∧ h t ∈ getDP HC(m, o B ) ∧ cross(t, t o A ,1 , t o B ,1 ) ⇐⇒ t ∈ N C 5.1.4.1.5 Other Hardware Set (OH) ∀t ∈ x, t / ∈ M OP ∪ OOP ∪ M F ∪ OF ∪ N C ∪ C ∧ cross(t, t o A ,1 , t o B ,1 ) ⇐⇒ t ∈ OH

5.1.4.1.6 Indirect Impact Set When a maximum latency requirement is not satisfied, in addition to the impact of transactions that were executed between t o A ,1 and t o B ,1 we are interested to know if a transaction executed before t o A ,1 led to a delay in transactions executed between t o A ,1 and t o B ,1 . We define function SDL that takes a model, an execution trace and hardware component from the H Dep set as input and return a set of transaction that were executed between the beginning of execution (τ 0 ) and τ t o A ,1 s

  In the classifications of transactions, a transactions t ∈ x is added to IndirectImpact set if and only if it was executed before t o A ,1 on a hardware component in the H Dep set and either • for any transaction t returned by function SDL, the end time of t is greater than or equal to

	In our example in Listing 5.4:		
	∀t ∈ x,		
	SDL(m, x, h 41 ) ={t o 11 ,1 } ∃t ∈ SDL(m, x, h t ) | (τ t e >= BSED(t ) ∧ τ t e <= τ t s )	
	∨ ∃t ∈ EDL(m, x, h t ) | τ t e >= BEED(t ) ∧ τ t e <= τ t e SDL(m, x, h 44 ) ={t o 11 ,2 } EDL(m, x, h 41 ) ={t o 11 ,1 } ∧ h t ∈ getDP HC(m, o B ) ∧ τ t s < τ t o A ,1 e ⇐⇒	
	t ∈ II	EDL(m, x, h 44 ) ={t o 11 ,2 }	
	5.1.4.1.7 No Impact Set All transactions that do not belong to any classification set defined before
	are added to N oImpact set.		
	Definition 48. IndirectImpact Set (II)	
	BSED(t ) and less than or equal to τ t s , or.	
		e	
	Formally,	e ≤ τ e t o A ,1	}

So, for a transaction t executing on hardware component h to have indirect impact on transactions that belong to OptionalF unc, M andatoryF unc, OptionalOP or M andatoryOP set, transaction t must be executed before t o A ,1 . Moreover, either (1) for some transaction t returned by SDL(m, x, h), the end time of t (τ t e ) must be greater than or equal to BSED t and less than or equal to τ t s , or (2) for some transaction t returned by EDL(m, x, h) the end time of t is greater than or equal to BEED(t ) and less than or equal to τ t e . In Listing 5.4, transaction t o 15 ,1 execute on h 41 before t o A ,1 . Transaction t o 15 ,1 have an end time equal to 10. Thus its end time is between the BEED(t o 11 ,1 ) and τ t o 11 ,1 e where t o 11 ,1 ∈ EDL(m, x, h 41 ). Thus, t o 15 ,1 has indirect impact on the maximum latency requirement in the presented example. • for any transaction t returned by function EDL, the end time t is greater than or equal to BEED(t ) and less than or equal to τ t Definition 49. NoImpact Set (NI) A transaction t ∈ x executed on hardware component h belongs to the no impact set if and only if it does not belong to any classification set defined before. Formally,

  may not be trivial when removing this assumption since, in this case, operator o B can execute regardless of operator o A execution. In other words, if there is no defined relation like the 1-to-1 relation between the two operators, identifying the transactions to calculate the latency is not straight forward.In this chapter, we would like to relate several occurrences of o A and o B . By relating we mean identifying the occurrence of operator o B that corresponds to the occurrence of operator o A . For example, if operator o A is a WriteData operator and operator o B is a ReadData operator that write and read data respectively from a Non Blocking Write Non Blocking Read data communication channel, then operator o A can infinitely write and operator o B never blocks when attempting to read data through the data channel. In this case, the execution trace may have several transactions corresponding to data writing and several transactions corresponding to data reading. Thus, it is difficult to identify which transaction(s) having operator o B corresponds to an occurrence of operator o A .

would like to analyze traces that have several occurrences of o A and o B . Said differently, we would like to analyze traces even when Hypothesis 1 does not hold. The identification of an occurrence of operator o B that corresponds to an occurrence of operator o A Identifying these transactions is the topic of the chapter. Removing the 1-to-1 relation assumption opens new avenues. So, we need to know which occurrence of o B corresponds to an occurrence of o A . To know what is the corresponding occurrence of o B we need to trace the execution to find this occurrence. Tainting is the way we do this tracing. In this chapter, we introduce how PLAN is applied after finding the occurrence of o A and its corresponding occurrence of o B using tainting. Tainting enables us to handle long traces and verify several latencies between o A and o B . In particular, we use taint to characterize the correspondence between o A and o B . The taint value will indeed allow us to identify the occurrence of o A and o B that corresponds to each other by considering occurrence of the same taint value.

Table 6

 6 .1 and Table 6.2. The transactions executed on h 44 and the transactions of Start, Stop, Choice, Merge and Set operators are not shown in Table 6.1 and Table 6.2. The corresponding execution trace of Table 6.2 is shown in XML format in Listing B.1.

Table 6 .

 6 1: A possible execution trace shown in tabular format of a HW/SW partitioning model whose allocation model is shown in Figure 6.2

	hc 40			41				42			43	
	id	7	9	12		14	15 25 20	21 7 9	15	21
	seq 4 12 15 23	27	31	32	9	22	38 6 11 33	37
	τ t s τ t e	0 1	1 2 52 102 152 172 173 80 180 181 1 2 173 181 2 52 102 152 172 0 80 180 0 1 172 180
	Table 6.2: Another possible execution trace shown in tabular format of a HW/SW partitioning model
	whose allocation model is shown in Figure 6.2						
	hc 40			41					42				43
	id	7 9	12		14	15		20			21	7 9 15	21
	seq 2 9 12 16	20	24	25	34	41	48	37	44	51 3 8 36	36	43	50
	τ t s τ t e	0 1 2 1 2 52 102 152 172 173 100 201 302 101 202 303 1 2 173 101 202 303 52 102 152 172 0 101 202 100 201 302 0 1 172 100 201 302
	In												

Table 6 .

 6 1, the first occurrence of o 21 corresponds to the first occurrence of o 7 . However, in

Table 6 .

 6 

Table 6 .

 6 3: Part of an execution trace in tabular format

	hc	40
	id	6
	τ t s τ t e getCN(o 6 , Γ) 1 2 0 11 21 1 12 22 3
	Definition 56. sampleNumber	
	getSN takes as argument an operator o and returns the sampleNumber attribute of this operator.

getSN : O m → Z +

Taint propagation for Choice operator not used for loops

  erator in the branch actually chosen to execute by the Choice if it exists. If o s is empty, go to 7. Otherwise, if o s exists it means that o s is among getNext(o) and there is a transaction for o s in the remaining of the execution trace such that this transaction has the smallest sequence num-When o is a Choice operator not part of a loop, the operator returned by soonest(x, t, o, getNext(o)) is tainted after the latest taint of the Choice operator is identified. We remind that getNext(o) is defined in Section 4.3.1. Formally,

	ber among all the transactions corresponding to operators in getNext(o) and a sequence number
	greater than the transaction of o.

For a Choice operator o, soonest(x, t, o, getNext(o)) returns an operator o s that belongs to getNext(o). o s is first op-

Collect transactions and compute latencies

  5. Once o s is identified and tainted, its taintChoiceExecNumber attribute is incremented by o s fixedNumber. All operators in the same function as operator o s and that are in the dependency path between o s and the Merge operator of the loop have Figure6.18: Changes occurring to the dynamic attribute taintChoiceExecNumber of Figure6.16 operators while browsing the execution trace their taintChoiceExecNumber attribute incremented by their fixedNumber for the taint value. These operators must not be successors to another Choice operator. Let use reconsider the previous example but now with taintChoiceExecNumber. As a reminder, the transactions are in the following order t o 3 ,1 ,t o i ,1 , t o 3 ,2 , t o i ,2 , t o 3 ,3 and t o j ,1 in the execution trace.Let us assume that operator o 3 is tainted with taint value Γ before transaction t o 3 ,1 .When transaction t o 3 ,1 is encountered, the soonest operator to execute is retrieved usingsoonest(x, t o 3 ,1 , o 3 , getNext(o 3 )).The main objective to introduce taintChoiceExecNumber attribute is to know the exact number of times a taint value must be propagated to successors. As previously seen, getLatestTaint is used to return the taint value that must be propagated to the successors of an operator.After introducing taintChoiceExecNumber, getLatestTaint(o) definition is updated. getLatestTaint(o) starts by sequentially checking the taint values of the operator o. If the taintChoiceExecNumber of o for a taint value is greater than zero, this means that taintChoiceExecNumber value should be considered instead of the taintMaxNumber to retrieve the latest taint value.The actions presented in Figure6.9 are repeated with every transaction encountered in the execution trace. However, when the latest taint of operator o is retrieved and o is o B , then, the transaction corresponding to operator o B is encountered,. Let the latest taint value be Γ. Then, the encountered transaction is considered the occurrence of operator o B of a taint value Γ corresponding to the occurrence of operator o A of the same taint value.Lets denote by t A,Γ the transaction of Taint_trans(o A )(Γ) and by t B,Γ the transaction returned by Taint_trans(o B )(Γ).In our example, o A is tainted once with Γ when a transaction corresponding to o 7 is encountered. This taint value Γ propagates according to the steps defined before and reach operator o15 at time 172 in the execution trace. Thus, with the first occurrence of o B , the operator o 21 is not tainted yet. As o 21 is a successor to o 15 , operator o 21 is tainted at 173 and the second occurrence of o 21 is considered the occurrence of operator o B of a taint value Γ. The latency λ Γ is calculated as 202 -0 = 202.

	t o 3 ,1 :	o 1,Start	t o 3 ,2 :		o 1,Start	t o 3 ,3 :	o 1,Start
	getCN(o 3 , Γ)=1	getCN(o 3 , Γ)=2		getCN(o 3 , Γ)=3
		loop 3 times		loop 3 times	loop 3 times
		o 3,Choice		o 3,Choice	o 3,Choice
	o i getCEN(o i , Γ)=1 getCEN(o j , Γ)=0 getCEN(o i , Γ)=2 o j o i (a) More Formally: Γ := getLatestTaint(o).	o j	(c)	o i getCEN(o j , Γ)=1 o j	(e)
	o 1,Start getLatestTaint(o){ t oi,1 :	t oi,2 :		o 1,Start	t oj,1 :	o 1,Start
	∀Γ ∈ o Γ do	loop 3 times		loop 3 times	loop 3 times
	if (getCEN(o, Γ) > 0 ∧ getCN(o, Γ) < getCEN(o, Γ))	
	return Γ;	o 3,Choice			o 3,Choice	o 3,Choice
	o i getCN(o i , Γ)=1 elseif (getCN(o, Γ) < getTMN(o)) o j (b) return Γ;	o i getCN(o i , Γ)=2	o j	(d)	o i	o j getCN(o i , Γ)=1 (f)
	}					
	In our example, soonest(x, t o 3 ,1 , o 3 , getNext(o 3 )) = o i . Thus, getCEN(o i , Γ) is incremented by 1 (Figure 6.18). When transaction t o 3 ,2 is encountered, soonest(x, t o 3 ,2 , o 3 , getNext(o 3 )) = o i and getCEN(o i , Γ) is 6.4 The latency λ Γ between the occurrence of operator o A and its corresponding occurrence of operator
	incremented by 1. When transaction t o 3 ,3 is encountered, soonest(x, t o 3 ,3 , o 3 , getNext(o 3 )) = o j and o B for a taint value Γ is computed as:
	getCEN(o j , Γ) is incremented by 1.				
			λ Γ = τ	t B,Γ e	-τ	t A,Γ s

Table 7 .

 7 

	3: Requirement Satisfaction Summary Table
	Security	Req 1 Req 2 Req 3 Req 4
	CRC	Yes	No	No	No
	HMAC + AES CBC	Yes	No	Yes	Yes
	HMAC + AES CTR	Yes	Yes	Yes	Yes

  as: O(|E| + |V |log|V |), where |E| is the number of edges and |V | is the number of vertexes in a graph. Also, to check if an operator o is in the dependency path between o A and o B , we check the shortest path between o A and o and the shortest path between o and o B .Knowing that our algorithm iterates over all the transactions in an execution trace x, checking if the operator of each transaction is in the dependency path between o A and o B results in a complexity of

O (| x |) * (|E| + |V |log|V |) .

  De plus, dans le chapitre 7, nous avons démontré l'approche PLAN sur deux cas d'utilisation définis dans le cadre du projet H2020 AQUAS : le système d'entraînement industriel et le système de mécanismes de wagons. Pour ces deux cas d'utilisation, l'approche PLAN a permis d'identifier la raison principale pour laquelle la latence est supérieure à la latence maximale. Ainsi, nous avons montré comment l'approche PLAN peut être utilisée pour guider un concepteur dans la mise à jour du modèle du système afin de satisfaire une exigence de latence maximale.Le chapitre 8 résume les contributions de cette thèse et fournit une liste de nouvelles idées de recherche pour étendre notre travail. Notre objectif ultime est de fournir aux concepteurs des suggestions automatisées pour améliorer le modèle de façon à ce que les contraintes de temps soient toutes respectées.getBuf f erSize(dc f,f ) = ∞ if getDCT ype(dc f,f ) ∈ { NBW-NBR, NBW-BR} Z + if getDCT ype(dc f,f ) = BW-BR f = {v 1,f , v 2,f , . . . , v n,f }, B f B f = O f = {o 1 , o 2 , . . . , o n }, L f , C f ⊂ {(o i , o j ) ∈ O 2 f | i = j} O f,N otif y ∪ O f,W ait → SC insideLoop(o, o m , o c , o s , v, nbr ) = , o c , o s , v, nbr ) = o | o ∈ getNext(o c ) ∧ insideLoop(o, o m , o c , o s , v, nbr ) true if cat(o c ) = Choice ∧ o m , o c , o s , v, nbr ∈ L f ∈ {H E , H C , H S } getIntCyc : H E → Z + getByteNbr : H → Z L ⊆ H C × H ∪ H × H C c P = π w , π r π w = h 1 , . . . , h m s.t.∀1 ≤ i ≤ m -1, (h i , h i+1 ) ∈ L, h 1 ∈ H E ,h m ∈ H S , h 2≤j≤m-1 ∈ H C π r = h 1 , . . . , h n s.t.∀1 ≤ i ≤ n -1, (h i , h i+1 ) ∈ L, h 1 ∈ H S , h n ∈ H E , h 2≤j≤n-1 ∈ H C

	   o 1 o 2 ) = --→   f alse    true O m = if ∃o i o j ∈ f ∈F O f o 1 o  --→   true f alse otherwise P = H, L cat(h) A = -→ A f , --→ A dc getInsideLoop( o  inPath(o, -→ A t = seq t , τ t s , τ t e , h t , o t	if inPath(o, otherwise	---→ o c o m )
	r = o A , o B , λ max		

2 | o i = o ∨ o j = o f alse otherwise getNext(o) = {o i | (o, o i ) ∈ C f } cat(o) ∈ Start, Stop, Choice, M erge, IntOp, Set, W riteData, ReadData, N otif y, W ait . getF (m, o) = f | o ∈ O f getComplexity : O f,IntOp → Z + getDataChannel : O f,W riteData ∪ O f,ReadData → DC getDataSize : O f,W riteData ∪ O f,ReadData → Z + getSyncChannel : m getOutsideLoop( o m , o c , o s , v, nbr ) = o | o ∈ getNext(o c ) ∧ ¬insideLoop(o, o m , o c , o s , v, nbr ) 190 isLoopChoice(o c ) = f : F → H E --→ A dc : DC → C P EXEC : M × Z + → P(E M )

x = {t 1 , . . . , t k }

It could have been different. If it was to be changed we have to reconsider further definitions.
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Taint propagation for Choice operator for loops A Choice operator of a loop l f exists, the operator corresponding to the exit loop branch (getOutsideLoop(l f )) is tainted when the taintConsideredNumber of the Choice operator equals its taintMaxNumber as explained next.

Choice operators inside loops but not being a choice of a loop Tainting Choice operators inside loops is discussed in Section 6.3.5.1.

taint propagation for other operator For other operators than Choice, all their next are tainted with the current taint value. More formally: 6. Update taintConsideredNumber.

When operator o is not a Choice operator, after all successor operators of operator o are tainted, the taintConsideredNumber of operator o is incremented by one to indicate that the taint value is already propagated once to its successors.

When operator o is a Choice operator but not used to create loops, the taintConsideredNumber of operator o is incremented by one when the soonest operator is tainted.

Rail Carriage Mechanisms Use Case

After analyzing a use case that satisfies the assumptions of primitive PLAN approach, in this section we would like to test the prototype integration of the advanced PLAN approach. To illustrate the benefits of graph tainting we use the Rail Carriage Mechanisms use case defined in the scope of the H2020 AQUAS project [START_REF]Aggregated quality assurance for systems (aquas)[END_REF], with a focus on the control of automatic platform gates. The Rail Carriage Mechanisms system along with a maximum latency requirement are described and modeled in Section 7.4.1. Section 7.4.2 shows how our advanced PLAN approach can be efficiently applied to the analysis of simulation traces to assist in adjusting the model to satisfy requirements.

Description of the use case

The Rail Carriage Mechanisms system consists of Lidars with their processing units, a main computing unit, a relay and a PSD (Platform Screen Doors) controller. The Lidars are divided in two categories.

Positioning Lidars scan for a train presence and door Lidars scan the train doors to determine their status. Our design captures four Lidars (2 positioning Lidars and 2 door Lidars). We also consider the four following requirements:

1. Req_1: The delay between sending the data from the positioning Lidar and the relay receiving the order from the main computing unit shall be less than 130ms (safety requirement)

Req_2:

The delay between sending the data from the positioning Lidar and processing it in the corresponding processing unit shall be less than 85ms. (safety requirement)

3. Req_3: Data sent from the Lidars processing units (speed and direction, or door status) to the main computing unit should remain authentic (security requirement)

To ensure the confidentiality property on the channel between PL1 and F1_3_PL1 (Req_4) encryption/decryption operators are added. Also encryption/decryption operators are considered as an IntOp operator in advanced PLAN implementation. We chose the AES algorithm in Cipher Block Chaining (CBC) mode and set the computational complexity to 3000 as indicated in [START_REF] Fujdiak | Modeling the trade-off between security and performance to support the product life cycle[END_REF].

By adding authenticity and confidentiality mechanisms, we could formally prove that Req_3 and

Req_4 are now satisfied. The concerned data channels are annotated with green locks in figure 7.17. In TTool, channels can be either private or public and only attacks on public channels are considered [START_REF] Lugou | Sysml models and model transformation for security[END_REF].

We run again PLAN along with its new model and new simulation trace. The time delay corresponding to Req_1 is now 10249025 cycles (128.1 ms) while the time delay corresponding to Req_2 is 683551 cycles (8.54 ms). From the classification sets, we notice that the increase of the time delay of Req_2 is due to the added encryption/decryption operators and the increase of the time delay of Req_1 is due to the scheduling policy of the mainCPU.

To satisfy Req_2 while keeping the confidentiality property of Req_4 valid, we replace AES CBC with AES CTR (counter mode). The computational complexity is now set to 428 cycles. This value is obtained by applying the same interaction as indicated in [START_REF] Fujdiak | Modeling the trade-off between security and performance to support the product life cycle[END_REF]. The security verification indicates that the confidentiality property still holds. The latency was recalculated in a similar manner as mentioned before. The maximum delay corresponding to Req_2 now is 678029 cycles (8.47 ms). The maximum delay of Req_1 was not effected as the latency for Req_1 depend on the trigger time and scheduling policy of mainCPU. 

Appendix A

List of System Model Formal Definitions

The list of formal definitions introduced in Chapter 4: 6.2 in XML format.