
HAL Id: tel-03576841
https://theses.hal.science/tel-03576841

Submitted on 16 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latency verification in execution traces of HW/SW
partitioning model

Maysam Zoor

To cite this version:
Maysam Zoor. Latency verification in execution traces of HW/SW partitioning model. Embedded
Systems. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT037�. �tel-03576841�

https://theses.hal.science/tel-03576841
https://hal.archives-ouvertes.fr

626626

N
N
T

:2
02
1I
P
PA

T
03
7

Latency Verification in Execution
Traces of HW/SW Partitioning Model

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Sophia Antipolis, le 8-12-2021, par

Maysam Zoor

Composition du Jury :

Camille Salinesi
Professeur des universités, Université Paris 1 Panthéon
Sorbonne Président

Jean-Philippe Babau
Professeur, Université de Bretagne Occidentale Rapporteur
Iulian Ober
Enseignant-chercheur,Université de Toulouse Rapporteur
Emmanuelle Encrenaz
Associate Professor, Université Pierre et Marie Curie Examinateur
Ludovic Apvrille
Professeur,Télécom Paris Directeur de thèse
Renaud Pacalet
Directeur d’étude, Télécom Paris Co-directeur de thèse

To my parents who chose to give me the best education they could.

Acknowledgements

The research presented in this thesis was sponsored by AQUAS project. The AQUAS project is funded

by ECSEL JU under grant agreement No 737475.

This thesis would not have been possible without the support of many people. First of all, I would

like to thank my supervisors Ludovic Apvrille and Renaud Pacalet for welcoming me in the lab and

for their guidance throughout this work. Next, I would like to thank my committee members, Camille

Salinesi, Jean-Philippe Babau, Emmanuelle Encrenaz and Iulian Ober for their time to read my thesis

and participate in my defense. Their feedback and suggestions toward my thesis have been important to

enhence my manuscript.

I would also like to thank all members of LabSoc. I gratefully recognize the help of Rabéa Ameur-

Boulifa and Sophie Coudert to formally define my contributions. I’m proud of, and grateful for, my time

working with Emna, Matteo, Benjamin, Minh and Le Van. Our breaks together were always enjoyable

and refreshing. You have made this journey so much better.

And because no distance can lessen true friendships, I want to thank Lama, Rola, Ghada and Mira

for standing by me through thick and thin. And to my friends who were beside me, immense gratitude

for your support all through the years. My life is richer because of your presence in it. I especially want

to thank Gaetan, Mohammad, Ahmad and Rima for their endless support and listening to me talk things

out.

Lastly, my family deserves endless gratitude. I could not have done this without them. My mom,

Najwa, inspired me to do my best and showed me that a person can achieve anything they put in mind.

My dad, Refaat, supported me in every decision I have made and my brother, Majed, who I can always

count on him when life gets hard. Thank you for always offering support and love.

1

Contents

Acronyms 11

Glossary of Mathematical Notations 13

1 Introduction 17

1.1 Embedded Systems . 19

1.2 Problem Statement . 20

1.3 Contributions . 23

1.3.1 Precise Latency Analysis Approach . 26

1.3.2 Integration into a Model-Driven Engineering Framework 27

1.4 Organization of This Thesis . 27

2 Context 29

2.1 Structure of Embedded Systems . 30

2.2 Model-Driven Engineering . 31

2.3 Timing Constraints . 34

2.4 SysML-Sec . 35

2.4.1 HW/SW partitioning . 37

2.4.2 Simulation . 38

3 Related Work 41

3.1 Software Development Methodologies . 42

3.1.1 Functional and Nonfunctional Requirements 43

2

3.1.2 Using UML design tools and techniques . 46

3.2 Verification Techniques . 47

3.2.1 Formal Verification Approaches . 47

3.2.2 Runtime Verification Approaches . 51

3.2.3 Performance Evaluation . 52

3.2.3.1 Simulation-Based Approaches . 54

3.3 Information Flow Analysis . 58

3.3.1 Taint Analysis . 59

3.4 Conclusion . 61

4 Precise Latency Analysis Approach: Overview and Problem Formalization 64

4.1 Motivation . 64

4.2 Precise Latency Analysis Approach . 66

4.3 System Model Formal Definition . 67

4.3.1 Application . 67

4.3.2 Platform . 80

4.3.3 Allocation . 82

4.3.4 Example 1 . 82

4.4 Model Executional Semantics . 84

4.5 Requirement on Model Execution . 88

4.6 Conclusion . 89

5 Primitive Precise Latency Analysis Approach 90

5.1 Execution Trace Analysis . 91

5.1.1 Causality between operators: an Example . 91

5.1.2 Valid Execution Trace . 93

5.1.3 Read Write Dependencies Accuracy . 101

5.1.4 Classification of Execution Transactions . 106

5.1.4.1 Impact Sets . 106

3

5.1.4.1.1 On Path Sets . 106

5.1.4.1.2 In Functions Sets . 109

5.1.4.1.3 Contention Set . 112

5.1.4.1.4 No Contention Set . 119

5.1.4.1.5 Other Hardware Set (OH) 121

5.1.4.1.6 Indirect Impact Set . 121

5.1.4.1.7 No Impact Set . 123

5.2 Conclusion . 123

6 Advanced Precise Latency Analysis Approach Using Graph Tainting (PLAN-GT) 124

6.1 Motivation . 124

6.2 Example 2 . 125

6.3 Tainting . 128

6.3.1 Static attributes . 130

6.3.2 Dynamic attributes . 133

6.3.3 Tainting Algorithm . 136

6.3.4 Operator Transactions Granularity . 136

6.3.5 Calculating latency based on tainting . 139

6.3.5.1 Tainting Choice operators inside loops 146

6.4 Collect transactions and compute latencies . 149

6.5 Conclusion . 150

7 Integration into Model-Driven Engineering Framework 151

7.1 Application to UML/SysML . 152

7.1.1 Model simulation . 156

7.2 PLAN integration into TTool . 157

7.3 Industrial Drive System Use Case . 162

7.3.1 Description of the use case . 164

7.3.2 Model simulation and trace analysis . 165

4

7.4 Rail Carriage Mechanisms Use Case . 167

7.4.1 Description of the use case . 167

7.4.1.1 HW/SW partitioning models . 168

7.4.2 Model simulation and trace analysis . 170

7.5 Conclusion . 172

8 Conclusion 174

8.1 Resume of Contributions . 175

8.2 Perspectives . 177

8.2.1 Model enhancements at current abstraction level 178

8.2.2 Model enhancement to support different abstraction levels 179

8.2.3 Verification aspects . 179

8.2.4 Tooling aspects . 180

9 Résumé 184

A List of System Model Formal Definitions 189

B Execution Trace in XML format 193

5

List of Figures

1.1 Motor drive system . 21

1.2 Motor controller behavior . 24

1.3 Motor controller behavior allocated to a candidate architecture 25

1.4 Examples of simulation traces for: (a) Figure 1.3 (b) Figure 1.5 25

1.5 Motor controller behavior allocated to another candidate architecture 26

2.1 Mars 2020 Rover . 31

2.2 Y-Chart approach . 33

2.3 SysML-Sec modeling profile used in TTool . 36

2.4 SysML-Sec methodology diagram in TTool . 37

2.5 The design area for an application model . 38

2.6 The design area for an activity diagram . 38

2.7 The design area for an architecture model . 39

2.8 The mapping of a task on a computational node . 39

2.9 The interactive simulation window . 40

4.1 Modeling stages required to apply the precise latency analysis approach 68

4.2 Graphical representation of a loop . 76

4.3 Graphical representation of a loop that iterates 2 times 77

4.4 Application model where classification of dependencies is not a partitioning of Dm . . . 79

4.5 Graphical representation of the Application model of Example 1 83

4.6 Graphical representation of a possible allocation for the application model given in Figure 4.5 84

6

5.1 Graphical representation of a function behavior to illustrate causality between operator . 92

5.2 An Application model where oB execution does not necessary depend on oA execution . 95

5.3 A possible allocation of the application model given in Figure 5.2 95

5.4 An Application model to illustrate interleaving between transactions of operators 99

5.5 A possible allocation of the application model given in Figure 5.4 99

5.6 An Application model containing a ReadData and a WriteData operator with different

size attributes . 103

5.7 The remodeling of the Application model of Figure 5.6 104

5.8 An Application model containing several operators with different size attributes 104

5.9 The first round of remodeling the Application model of Figure 5.8 105

5.10 The second round of remodeling the Application model of Figure 5.8 105

5.11 Cross Function . 108

5.12 An Application model used to explain the in Functions Sets 110

5.13 Dependency Paths to o31 in the Application model shown in Figure 4.5 114

5.14 First case where a transaction t′ is delayed due to contention 118

5.15 Second case where a transaction t′ is delayed due to contention 118

5.16 A graphical representation showing no contention . 120

6.1 Graphical representation of an Application model with loops 126

6.2 Graphical representation for the Allocation model of Figure 6.1 127

6.3 Dependency Graph of Figure 6.1 . 128

6.4 Graphical representation of state change . 130

6.5 Dependency Graph Showing fixedNumber of Figure 6.1 131

6.6 Dependency graph showing taintMaxNumber of Figure 6.1 132

6.7 Graphical representation of a function with two nested loops 132

6.8 Dependency graph showing taintMaxNumber of Figure 6.7 133

6.9 Flow chart of latency calculation based on Tainting . 137

6.10 A transaction corresponding to oA is encountered (o = oA) 140

6.11 Transaction corresponding to o8 is encountered . 144

7

6.12 Transaction corresponding to o9 is encountered . 144

6.13 Transactions corresponding to o10 then o11 are encountered 145

6.14 Transactions corresponding to o12 then o13 are encountered 145

6.15 Transactions corresponding to o10 then o11 are encountered 145

6.16 Graphical representation of a function in an Application model where getTMN(o3) = 3 . 146

6.17 Changes occurring to the dynamic attribute taintConsideredNumber of Figure 6.16 oper-

ators while browsing the execution trace . 147

6.18 Changes occurring to the dynamic attribute taintChoiceExecNumber of Figure 6.16 op-

erators while browsing the execution trace . 148

7.1 Functions of the example in Figure 4.5 . 152

7.2 Behaviors of the functions of Figure 4.5 . 153

7.3 Behaviors of the functions of Figure 4.5 in TTool . 154

7.4 A possible allocation of the application model given in the example in Figure 4.6 155

7.5 Save simulation trace in XML format . 157

7.6 Precise Latency ANalysis approach (PLAN) window 158

7.7 Tagging an operator as latency checkpoint . 159

7.8 PLAN-Save Graph . 159

7.9 PLAN-Show All Operators . 160

7.10 PLAN-Compute Latency . 160

7.11 PLAN classification output for a latency value . 161

7.12 Specification of industrial drive . 164

7.13 An excerpt of the application model of the industrial drive 165

7.14 An excerpt of the allocation model of the industrial drive 165

7.15 PLAN output showing contention . 166

7.16 PLAN output showing no contention . 166

7.17 Functional view of Rail Carriage Mechanisms Use Case 169

8.1 Compute Latency in Two Simulation Traces . 181

8

8.2 Compare PLAN Output Window for Two Rows . 182

9

List of Tables

3.1 Simulation Trace Analysis Methods and Tools . 62

4.1 Execution trace in tabular format . 87

6.1 A possible execution trace shown in tabular format of a HW/SW partitioning model whose

allocation model is shown in Figure 6.2 . 127

6.2 Another possible execution trace shown in tabular format of a HW/SW partitioning model

whose allocation model is shown in Figure 6.2 . 127

6.3 Part of an execution trace in tabular format . 135

7.1 Operators in TTool . 153

7.2 OrderedSequence and StaticForLoop operators in TTool 155

7.3 Requirement Satisfaction Summary Table . 172

10

Acronyms

AEBS Advanced Emergency Braking System 17

BCET Best-Case Execution Time 34, 35, 63

BEED Best End Execution Date 114, 115, 116, 121, 180

BSED Best Start Execution Date 114, 115, 116, 121, 180

CABA cycle-accurate, bit accurate 157

CPS Cyber-Physical System 19

ETA Execution Trace Analysis 65, 66, 89, 90, 91, 160, 161

EU European Union 17

MDE Model-Driven Engineering 27, 31, 32, 33

OMG Object Management Group 46

PC Personal Computer 19

PLAN Precise Latency ANalysis approach 8, 26, 27, 28, 65, 66, 85, 124, 150, 151, 157, 158, 159, 160,

161, 162, 166, 167, 170, 171, 172, 175, 176, 177, 178, 179, 180, 181, 184, 185, 186, 187

PWM Pulse Width Modulation 20, 21, 22, 23

RTL Register Transfer Level 33, 50

11

Acronyms Acronyms

SoC System-on-Chip 19, 58

SoS System of Systems 19

SysML Systems Modeling Language 46, 47, 151, 152, 157, 177

TEPE TEmporal Property Expression language 35

TLM Transaction Level Modeling 33

UML Unified Modeling Language 46, 47

VCD Value Change Dump 40, 56, 157

WCET Worst-Case Execution Time 34, 63

XML Extensible Markup Language 54, 85, 115, 120, 127, 157, 159, 162, 170, 193

12

Glossary of Mathematical Notations

s a system model sort 67

m HW/SW partitioning model sort 67, 82, 84, 92, 93, 124

F set of functions 67

P platform model 67, 80

A allocation model 67

F application model 67

CC set of communication channels 67

ccf,f ′ communication channel between two functions f and f ′ 69

DC set of all data channels of a model 69

SC set of all synchronization channels of a model 69

DCf,f ′ set of data channels between two functions f and f ′ 69

SCf,f ′ set of synchronization channels between two functions f and f ′ 69

scf,f ′ synchronization channel between two functions f and f ′ 69

SCType synchronization channel semantic 70

dcf,f ′ data channel between two functions f and f ′ 70

13

Glossary of Mathematical Notations Glossary of Mathematical Notations

DCType data channel semantic 71

f function in F 71

Bf behavior of function f 71

Of set of operators of function f 71, 73

Lf set of loops of function f 71

Cf set of control flow connections of function f 71

o an operator 73

Of,n set of all operators in Of whose category is n 73

ef an execution flow of a function f 78

H a set of hardware components 80

L a set of links 80

cP a communication path in a platform model P 81

πw a write path 81

πr a read path 81

CP a set of communication paths 81

τ execution time 84

M the set of all system models 84

EM the set of all possible execution traces of models in M 84

x execution trace 85

t an execution transaction 85

14

Glossary of Mathematical Notations Glossary of Mathematical Notations

to,i the transaction of the ith occurrence of operator o in an execution trace 87

r a maximum latency requirement 88

15

Chapter 1

Introduction

“There was a language in the world that everyone understood, a language the boy had used

throughout the time that he was trying to improve things at the shop. It was the language

of enthusiasm, of things accomplished with love and purpose, and as part of a search for

something believed in and desired.”

-Paulo Coelho, The Alchemist

Engineered systems that integrate hardware and software components and not intended to be a general

purpose computer have been referred to as Embedded systems [120, 236]. To have a safe and efficient

embedded system, its timing constraints should be respected. Delaying a critical event like an emergency

brake in a vehicle or motion stop command in a motion control system may result in safety problems. By

2050, the European Union (EU) goal is to reach zero traffic fatalities and serious injuries [19], an aim set by

the “Vision Zero” road traffic safety approach [8]. To achieve this long-term goal, European Parliament,

Council and Commission agreed that new safety technologies, including Advanced Emergency Braking

Systems (AEBSs), will become mandatory in European vehicles to protect passengers, pedestrians and

cyclists as of 2022 [18]. These measures are expecting to save over 25,000 lives and avoid at least 140,000

serious injuries by 2038 [18]. Safety systems such as AEBS should satisfy non-functional requirements like

deadlines, latencies or throughput to avoid human risks and damages leading to catastrophic results [27].

For example, automated braking of vehicles should react within a deadline after detecting an object in

17

CHAPTER 1. INTRODUCTION

which it might collide [15]. So, safety requirements must hold. However, by implementing these measures,

vehicles will be more automated and connected as these measures use a combination of hardware,

software and digital connections to help vehicles identify risks [47]. Since connected systems have more

interfaces, their attack surface is greater. Security requirements or safety requirements that might be

violated because of attacks can be handled with safety and security countermeasures. However, adding a

safety or security mechanism may have a direct impact on performance. Indeed, these mechanisms might

increase the delay between a stimulus and a corresponding response. In some cases, this increase may

be directly linked to extra computation power needs e.g., for encryption or decryption functions. Longer

exchanged messages may induce contentions on communication hardware and/or memory overflow. The

performance requirements should hold even after safety and security mechanism are added. In particular,

these performance requirements may concern the latency between two events. In that case, each time

the system model is updated, e.g., by adding or removing safety and security measures, proposing a

way to understand consequences on performance is expected to speed up the design process. System

engineering is there to design, develop and build a system that respects all its requirements.

Systems engineering is a multidisciplinary approach to develop a balanced system solution in response

to stakeholder needs. To achieve a system solution that meets those needs, in addition to planning

and controlling the management processes like system development cost, several steps must be followed

from specifying the system requirements to exploring different system designs and evaluating each one

compared to others, to verify that the system requirements are satisfied [92]. System Engineering can be

performed by using either a document-based or model-based approach. The difference between the two

approaches is in the primary artifact each one produces [80]. While document-based system engineering

produces a disjoint set of documents, spreadsheets, diagrams and presentations which is time-consuming

and prone to errors, model-based system engineering produces an integrated, coherent and consistent

system model resulting in a greater return on investment and more user-friendly output especially if a

graphical modeling language was used [80].

18

1.1. EMBEDDED SYSTEMS CHAPTER 1. INTRODUCTION

1.1 Embedded Systems

An embedded system is any system, other than an identified computer (Personal Computer (PC), laptop,

etc.) [227] [11], composed of hardware and software components that has a computer/microprocessor

encapsulated into it. Embedded systems are special-purpose systems designed to perform one allocated

function [152] [200]. Systems-on-Chip (SoCs) is used to describe a single chip that integrates complex

embedded systems [135]. As technology advances, hardware and sensors cost drop while their quality

improves, energy depends on alternative resources and communication becomes wireless thus enabling

computing and networking capabilities to be integrated into all types of physical world objects, creating

large-scale wide-area Systems of Systems (SoSs) [190]. This integration enabled the monitor and control

of the physical processes of these objects [150] thus bridging the gap between the cyber world and the

physical world, leading to an emerging technology called Cyber-Physical System (CPS) [124] [151]. A

CPS consists of three major components: communication, control and computation [124].

CPS are the core of the new industrial revolution [56]. These systems are deployed in a vast range

of applications including automotive and aerospace, transportation vehicles, robotic systems, factory au-

tomation, chemical processes, smart energy and water grids, health care, smart spaces. . . [55] [190] [150].

When consequences of the failure of these systems may result in loss of life, significant property damage,

financial loss or damage to the environment, they are considered as safety-critical systems [134] [142].

Systems that must react within a time constraint for an external event are known as real-time systems [54].

There exist many different methodologies to design an embedded system [192] [48] [89] [195]. These

methodologies start by taking at the very beginning the system specifications in order to produce the

software code and the electronic of the system, i.e., the platform.

Methods using model-based approaches first define abstract models of the system. These first models

are called high level models. Systems can be studied at a high level of abstraction as irrelevant aspects

of a system can be abstracted [79]. Then, a model can be iteratively refined until it includes all the

important details. It is most costly to find errors late in the methodology path. System engineers can

minimize the costly rework after production by analyzing and verifying that the system satisfies the

needed requirements through all phases of the system life-cycle and by detecting design flows in the early

design phase [152].

19

CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMENT

Verification and evaluation techniques have been already proposed to be able to investigate whether

high level models conform to the requirements extracted from the system specifications. Among these

techniques, simulation have been widely explored but yet there are not so many contributions when a

requirement is not satisfied to help the designer to identify the cause of this non satisfaction. My Ph.D.

is focused on the determination of the causes of non satisfaction of time related requirement.

1.2 Problem Statement

Real-time and safety-critical embedded systems have to satisfy timing requirements [161] [74], e.g., a

maximum end-to-end delay between an input and its corresponding output [222] [139]. Other typical

temporal constraints concern periodic tasks that have to terminate their periodic execution before a

deadline [216] [226] [231]. To better handle the critical aspects of embedded systems, several methods

and approaches suggest using high-level system models, e.g., the Y-Chart approach [132]. Yet, even

when working at a high-level of abstraction, it may be difficult for a designer to understand the impact of

the different platform components (SW or HW) on application timings and performance. For instance,

let’s consider a motor drive system. The system consists of 3 main components: a motor, a motor

controller and a client application (Figure 1.1). The motor controller receives a stop command from

the client application and accordingly generates the right Pulse Width Modulation (PWM) signals and

sends them to the motor. This system can be considered as a critical system since the time difference

between the receiving of the stop command and the correct update on PWM signals should not exceed

a maximum value. The time difference between an input event and an output event is called latency.

Generally speaking, designers have to ensure that their systems fulfill all requirements, including temporal-

related requirements. In particular, the latency between two events, e.g., between an input event and

its corresponding output event, is a typical critical property in safety-critical systems. Respecting such a

latency often requires to care about several system aspects: the implementation of algorithms, the correct

selection of scheduling algorithms, the selection of a hardware platform with regards to its execution

performance, communication and storage capabilities.

When designing the system from a high-level of abstraction the concrete platform is not available and

20

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

Client Application MotorMotor Controller

Stop command

Actual speed PWM signals

Position/Current

Stop Motor

Figure 1.1: Motor drive system

thus tests cannot be conducted over the concrete platform. Yet, to get functional and non-functional

guarantees on the system under design before the concrete platform is available, simulations and/or

formal analysis can be executed from high-level models. Indeed, since late decisions are more costly

than early decisions [220], designers expect to get a high level of confidence at early design stages.

Performing intensive simulations is one way to achieve this [64] [176]. Intensive simulations produce

many simulation traces. Inspecting manually these traces can be a tiresome job as these traces might

be large and it might require taking the model semantics into account to understand what happened

during a simulation. Ideally, to speed up the design process, this is surely better if the analysis of these

traces can be automatically checked against requirements. Yet, when a requirement is not satisfied, e.g.,

a latency is not respected, it is difficult to figure out which parts of the system played a role

in this non-satisfaction. In other words, it is sometimes hard for designers to understand what is the

latency between an input and its corresponding output and what really impact this latency by reading

a simulation trace. In this case, understanding the relationships and dependencies in a system model

becomes inevitable. Moreover, taking these semantics into consideration manually during the analysis can

be complicated especially when several designers are contributing to building the system model and/or

the system model represents complex behavior at a high abstraction level.

Figure 1.2 shows the different operators of four simplified functions of the motor controller introduced

in Figure 1.1: Receive Stop Command, Send PWM Signals, Compute Actual Speed, Send Actual Speed.

We refer to sending events and receiving events as operators. Receive Stop Command waits for a stop

21

CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMENT

command sent by the client application. Once a stop command is received it sets the required speed

to zero. Send PWM Signals reads the required speed and accordingly computes the PWM values and

sends them to the motor. The actual speed of the motor is computed in Compute Actual Speed function

after reading the current and position of the motor. The actual speed is read in the Send Actual Speed

function and forwarded to the client application so the client can keep track of the motor speed. The

Compute actual speed function could directly send the actual speed to the client, however, we kept

Send Actual Speed function to separate functions that communicate with the client application from

those that communicate with the motor. The decision be keep this separation along with the chosen

architecture discussed next serve the illustrative purpose behind this system.

Figure 1.3 shows a candidate architecture of the Motor Controller with 2 CPUs, a bus and a memory.

The functions Receive Stop Command and Send Actual Speed are allocated to CPU 1 while Send PWM

Signals and Compute Actual Speed are allocated to CPU 2. A possible simulation trace of this system is

shown in Figure 1.4 (a). The start time represents when the corresponding operator started executing, the

end is the time when the corresponding operator ended execution, followed by the hardware on which the

operator was executed and the operator’s name. In the simulation trace, the names of the operators are

colored: green for the Compute Actual Speed function, purple for Send Actual Speed, orange for Receive

Stop Command and blue for Send PWM Signals. To compute the latency between receiving a stop

command and writing the corresponding PWM values, these two operators along their simulation data

should be identified in the simulation trace. In Figure 1.4 (a), the operator corresponding to receiving a

stop command starts at time 11 and writing the corresponding PWM values starts at time 40 and ends

at time 41. So, the latency between these two operators is 41− 11 = 30 time units. While knowing only

the latency value might be satisfactory in some cases especially when the time constraint identified in

the timing requirement is met, a designer needs to know more details on the latency in case the timing

constraint is not met or to enhance the performance of the model. These details may include which

hardware or software component might delay a critical operator or what is really impacting the latency

between operators or what is the cause of a real-time constraint non-satisfaction. A way to investigate a

latency from a simulation trace is to consider both the information present in the simulation trace and the

dependencies between operators in the system model e.g., whether operators are executed on the same

22

1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

hardware, belong to the same function. . . In our previous example, studying the simulation trace shows

that the three operators executed at time 13, 14, and 15 induce a delay between setting the required

speed to zero and writing the value of the required speed, thus increasing the latency between receiving

a stop command and writing the corresponding PWM values. Taking the model semantics into account

shows that these 3 operators correspond to the function Send Actual Speed and are independent on the

Receive Stop Command function where the required speed is set. Knowing this, a designer might decide

to enhance performance by allocating Send Actual Speed to another hardware, changing the scheduling

policy of CPU, etc. For example, a designer might update the model of Figure 1.3 to the model in

Figure 1.5. Figure 1.4 (b) shows an example of a simulation trace of the model in Figure 1.5. Going

over the simulation trace reveals that the latency computed before changed from 30 to 22 − 11 = 11

time units.

When designing embedded systems using the model-based approach, it is a very common practice

to iterate over the system models. Thus, a designer might be interested to understand the reason

for the difference in latency between a first model and a modified version of this first model. While

in the provided example the change consists in adding hardware components and modifying functions

allocations, other model modifications can be the addition or removal of, for instance, a safety-related or

security-related mechanism. For example, in the motor drive system introduced earlier, encryption and

decryption mechanisms on the stop command might be added to ensure a security requirement. Or a

backup component can be added to the motor controller to improve the reliability of the system. These

enhancements might impact the timings of the system. A designer may want to better understand why

there is an extra latency or reduced latency or latency indifference between the two models and what

platform elements —software and/or hardware— may be involved in a latency.

1.3 Contributions

My thesis, part of a European project named AQUAS [12] [184], introduces a new latency analysis

approach that can be used to study the timing between operators in a high-level SysML model. This

approach can analyze an execution trace or a simulation trace obtained after injecting the model into a

23

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

Start

End

Read
actual Speed

Write actual
Speed to client

Start

End

Compute
PWM values

Start

End

Compute
actual Speed

Start

Required Speed = 0
Stop

command
received?

End

Receive Stop Command
Send PWM Signals

Compute Actual Speed
Send Actual Speed

Yes

No

write PWM values

Read
required Speed

Read Position

Write required
speed

Write actual
speed

Read Current

Start

End

Read

Write

Initial operator

Final operator

Legend

Receive operator

Send operator

Action operator

Control Flow

Function

Figure 1.2: Motor controller behavior

24

1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

BUS

MEMORY

CPU 2CPU 1

Receive Stop
Command

Send PWM
signals

Send Actual
Speed

Compute Actual
Speed

Figure 1.3: Motor controller behavior allocated to a candidate architecture

Start time: 1 End: 2 CPU 2: read Current
Start time: 2 End: 3 CPU 2: read Position
Start time: 3 End: 8 CPU 2: compute actual speed
Start time: 8 End: 9 CPU 2: write actual speed
Start time: 8 End: 9 BUS: write actual speed
Start time: 9 End: 10 CPU 1: read actual speed
Start time: 9 End: 10 BUS: read actual speed
Start time: 10 End: 11 CPU 1: write actual speed to client
Start time: 11 End: 12 CPU 1: receive stop command
Start time: 12 End: 13 CPU 1: set required speed to zero
Start time: 13 End: 14 CPU 1: read actual speed
Start time: 14 End: 15 BUS : read actual speed
Start time: 15 End: 16 CPU 1: write actual speed to client
Start time: 16 End: 17 CPU 1: write required speed
Start time: 16 End: 17 BUS: write required speed
Start time: 17 End: 18 CPU 2: read Current
Start time: 18 End: 19 CPU 2: read Position
Start time: 19 End: 24 CPU 2: compute actual speed
Start time: 24 End: 25 CPU 2: write actual speed
Start time: 24 End: 25 BUS: write actual speed
Start time: 25 End: 26 CPU 2: read Current
Start time: 26 End: 27 CPU 2: read Position
Start time: 27 End: 32 CPU 2: compute actual speed
Start time: 32 End: 33 CPU 2: write actual speed
Start time: 32 End: 33 BUS: write actual speed
Start time: 33 End: 34 CPU 2: read required Speed
Start time: 33 End: 34 BUS : read required Speed
Start time: 34 End: 42 CPU 2: compute PWM values
Start time: 40 End: 41 CPU 2: write PWM values

(a)

Start End: 1 End: 2 CPU 4: read current
Start End: 2 End: 3 CPU 4: read Position
Start End: 3 End: 8 CPU 4: calculate actual speed
Start End: 8 End: 9 CPU 4: write actual speed
Start End: 8 End: 9 BUS: write actual speed
Start End: 9 End: 10 CPU 3: read actual speed
Start End: 9 End: 10 BUS: read actual speed
Start End: 10 End: 11 CPU 3: write actual speed to client
Start End: 11 End: 12 CPU 1: receive stop command
Start End: 11 End: 12 CPU 4: read current
Start End: 11 End: 12 CPU 3: read actual speed
Start End: 11 End: 12 BUS : read actual speed
Start End: 12 End: 13 CPU 3: write actual speed to client
Start End: 12 End: 13 CPU 1: set required speed to zero
Start End: 12 End: 13 CPU 4: read Position
Start End: 13 End: 18 CPU 4: calculate actual speed
Start End: 13 End: 14 CPU 1: write required speed
Start End: 13 End: 14 BUS: write required speed
Start End: 14 End: 15 CPU 2: read required speed
Start End: 14 End: 15 BUS: read required speed
Start End: 15 End: 21 CPU 2: compute PWM values
Start End: 18 End: 19 CPU 4: write actual speed
Start End: 18 End: 19 BUS : write actual speed
Start End: 19 End: 20 CPU 4: read current
Start End: 19 End: 20 CPU 4: read Position
Start End: 20 End: 25 CPU 4: calculate actual speed
Start End: 21 End: 22 CPU 2: write PWM values
Start End: 25 End: 26 CPU 4: write actual speed
Start End: 25 End: 26 BUS: write actual speed

(b)

Figure 1.4: Examples of simulation traces for: (a) Figure 1.3 (b) Figure 1.5

25

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

BUS

MEMORY
CPU 4CPU 3

CPU 2CPU 1

Receive Stop
Command

Send PWM
signals

Compute Actual
Speed

Send Actual
Speed

Figure 1.5: Motor controller behavior allocated to another candidate architecture

simulator. More specifically, the contributions are:

1.3.1 Precise Latency Analysis Approach

Several time analysis approaches have already been proposed. These approaches can be classified into

different categories including runtime [180], emulation [223], implementation [223], simulation-based,

formal (analysis) [218] [223] or hybrid which combine formal and simulation approaches [218]. Simulation

and formal approaches are the most used ones in the domain of performance estimation of embedded

systems [223] [230] [78].

This thesis introduces a PLAN. The PLAN approach is used to study the latency between two par-

ticular operators in the system. Our approach can automatically indicate to the designer which elements

in the model are involved in this delay thus helping the designer in verifying the model requirements or

taking decisions to enhance the system model. The PLAN approach is intended to be used at a high

level of abstraction, thus giving early design guarantees. The system is first modeled at a high level of

abstraction and then executed. PLAN takes as input an instance of a HW/SW partitioning model, an

execution trace, and a time constraint expressed in the following form: the latency between operator A

26

1.4. ORGANIZATION OF THIS THESIS CHAPTER 1. INTRODUCTION

and operator B should be less than L, where L is a maximum latency value. First PLAN checks if the

latency requirement is satisfied. If not, the main interest of PLAN is to provide the root cause of the

non satisfaction by classifying execution transactions according to their impact on latency: obligatory

transaction, transaction inducing a contention, transaction having no impact, etc. To do so, we extract a

dependency graph from the system model that preserves the causality between operators in the HW/SW

partitioning model. A first version of PLAN assumes an execution for which there is a unique execution

of operator A and a unique execution of operator B. A second version of PLAN can compute, for each

executed operator A, the corresponding operator B. For this, our approach relies on tainting techniques.

The thesis formalizes the two versions of PLAN and illustrates them with toy examples.

1.3.2 Integration into a Model-Driven Engineering Framework

In the scope of this thesis, PLAN was integrated into a Model-Driven Engineering Framework capable

of supporting the design and verification —by simulation— of embedded systems at a high level of

abstraction. We chose the free and open-source TTool toolkit [14] for this integration. PLAN was

integrated in SysML-Sec, one of the design and development environments supported by TTool. The

SysML-Sec method includes a HW/SW partitioning stage. Moreover, simulation is one of the verification

techniques available in TTool. TTool can indeed generate a transaction-based simulation trace using its

simulator [135]. Thus, PLAN can be directly applied to the simulation trace output. The two versions

of PLAN are illustrated with two case studies taken from the H2020 AQUAS project. In particular, we

show how tainting can efficiently handle the multiple and concurrent occurrences of the same operator.

1.4 Organization of This Thesis

The rest of this manuscript proceeds as follows. Chapter 2 gives an overview of embedded systems,

Model-Driven Engineering (MDE) and timing constraints. Moreover, in Chapter 2, we explain the

SysML-Sec profile within which our contribution is integrated. Chapter 3 presents the related work,

where performance verification approaches and simulation trace analysis methods are studied. Chapter 4

formally defines a HW/SW partitioning model, an execution trace and a maximum latency requirement.

27

CHAPTER 1. INTRODUCTION 1.4. ORGANIZATION OF THIS THESIS

Chapter 5 presents the formal definition of the first version of PLAN. The second version of PLAN that

relies on tainting techniques is presented in Chapter 6. The implementation of the contributions along

with two use cases are presented in Chapter 7. Finally, Chapter 8 concludes this thesis and discusses

potential future work.

28

Chapter 2

Context

“A text without a context is a pretext for a proof text.”

-Tom Carson

Embedded systems are becoming increasingly present all around us and impact our daily lives. They

are present in many domains like transportation, communication, health, home applications. In our

everyday life, we use devices with several embedded systems. Embedded systems complexity is increasing

as technology advances. Moreover, embedded systems are more and more integrated into safety-critical

equipment where their failure results in a catastrophic impact. Thus, it becomes inevitable to design and

verify that an embedded system meets its requirements before implementation.

Common embedded systems design flows enable designers to iteratively refine their design till the

requirements are met. Updating a design to meet the requirements can cost less than detecting these

errors after the embedded system is implemented [220]. For example, verifying that requirements are met

in the design of an embedded system can avoid dangerous software/hardware situations, decrease the

probability of system failure while in use and/or avoid the recall of the product from the market [10] [20].

29

CHAPTER 2. CONTEXT 2.1. STRUCTURE OF EMBEDDED SYSTEMS

2.1 Structure of Embedded Systems

Several definitions can be found in the literature for embedded systems [236, 170, 121, 108, 120, 235]. An

embedded system is built from software and hardware components. The software is a set of instructions

that determine part of the system functionalities. The hardware components form the platform on which

the software runs. An embedded system typical task is to process input from the system environment

and produce an output corresponding to this input. For example, a carbon monoxide detector regularly

monitors its environment with the help of a sensor for the presence of this colorless, odorless and

tasteless toxic gas. In case detected, an alarm goes on. The Apollo Guidance System built in 1960 by

MIT Instrumentation Laboratory is considered one of the first embedded systems [120]. From this time

till the 70’s embedded systems were non-commercial, heavy, expensive and used for a specific application

[120]. The development of Intel 4004 microprocessor in 1971 was a change point in the history of

embedded systems. Having this integrated, small, light and cheap chip paved the way for embedded

systems to develop. Since that date, embedded systems are more and more integrated into our daily

lives.

These systems, although deployed in diverse domains and having different functions, share several

common characteristics [162]. For instance, they must comply with a lot of tight constraints such as

performance measures, low power consumptions, short time-to-market, etc.

An embedded system underlies the Sampling and Caching Subsystem functionality of the Mars 2020

Rover Mission (Figure 2.1) [81]. The objective of this subsystem is to collect and store rocks and soil

samples that could be returned to earth [3].

The Mars 2020 Rover “brain” is made of a processor and a memory [2]. The processor executes

commands send by the flight team e.g., taking pictures. It is responsible for the control and computation

operations in the system. Also, it monitors the status of the rover e.g., rover temperature and stores

the values in reports in the memory. Power sources, cameras, robotic hands, wheels, sensors, antennas,

microphones, etc. are connected to the rover to ensure that it fulfill its functionalities by moving, using

its science instruments and communicating with Earth.

In an embedded system some of the main categories of hardware components include: micro-

controller/microprocessor, memory, memory management units, communication port, bus, bridge, power

30

2.2. MODEL-DRIVEN ENGINEERING CHAPTER 2. CONTEXT

Legend

brains: processors + memories

Figure 2.1: Mars 2020 Rover

supply, actuator, multiplexer/de-multiplexer, analog-to-digital/digital-to-analog converter, oscillator, sys-

tem timer clock, real-time clock, watchdog timer, interrupt controllers, etc.

2.2 Model-Driven Engineering

Designing embedded systems with complex functionalities requires the collaboration of several teams

from various domains and the integration of their work. These teams are working sometimes on differ-

ent tools, approaches and processes. Traditionally, these teams used files and documents to exchange

information about the system through the design process [80]. MDE techniques involve creating mod-

els [203]. In a top-down approach, a model is an abstraction blueprint of the system derived from system

requirements. Abstracting a system means ignoring some of its details. Ignoring only inessential details

is referred to as good abstraction [203]. A model can be generated for software [174] [169] [91] [203] or

hardware [228] [168].

To construct a model a designer uses modeling languages, methods and tools. A modeling language

31

CHAPTER 2. CONTEXT 2.2. MODEL-DRIVEN ENGINEERING

is used to define the elements in the model and the relationship between them. The modeling language

can be textual or graphical. The modeling method is a guide that defines a set of documented steps a

designer needs to follow to develop a model. A modeling tool supports one or more modeling languages

to enable a designer to create a model based on the components and relations defined in those languages

[80].

The Y-chart approach [132] is a MDE approach. It is a principal methodology to design a model-based

embedded system [147]. In the first step of the Y-chart approach, the application and the architecture of

the system are modeled separately as two independent views. The application represents the functionality

of the system while the architecture represents the platform of the system. The application and architec-

ture views are then linked in the mapping stage of the Y-chart approach where different functions along

their connections in the applications are allocated to components in the architecture creating a mapped

model of the system. The mapped model can be analyzed to see if it satisfies the system requirements.

In case the requirements are not satisfied and the design needs further modifications, the designer can

change the allocation of different functions in the mapped model, update the platform components in

the architecture view or apply changes to the functions in the application view. As changes are applied to

the application, architecture or mapped models, the analysis stage of the model can be performed again.

This iteration process of the Y-chart is of great importance as it allows designers to loop on different

views of the model until a mapping model satisfies all system requirements. This iteration process of the

Y-chart approach along with the clear identification of different steps along the approach enabled it to

be integrated into several design methodologies [147] [83].

The Y-chart approach and design methodologies can be applied to different levels of abstractions of

an embedded system [97]. In other words, a model can abstract a system on different levels. These levels

range from high abstraction levels to low abstraction levels depending on the amount of details present

in the model. The highest level of abstraction contains the least amount of detailed information about

the system. Standard languages such as C, C++, SystemC, UML, etc. can be used to model a system.

In literature, different modeling approaches consider different abstraction levels depending on the criteria

they abstract [35]. In [97], Gajski et al. defined four levels of abstraction depending on the abstraction

level of the components in the hardware view of the system. These levels are system, processor, logic

32

2.2. MODEL-DRIVEN ENGINEERING CHAPTER 2. CONTEXT

Application Architecture

Mapping

Analysis

Figure 2.2: Y-Chart approach

and circuit levels. “System level” is the highest level of abstraction where a hardware view is represented

as components i.e., processors, memories, buses, etc. “Circuit level” is the lowest level of abstraction

where components are represented as transistors. Register Transfer Level (RTL) is usually used to

refer to the abstraction level where the system architecture is modeled as registers and combinatorial

parts that exchange data through signals. SystemVerilog and VHDL are examples of languages used

to write RTL code [201]. Abstraction levels above RTL are sometimes referred to as System Level

design [200]. When computation and communication semantics are modeled separately in the system

application, Transaction Level Modeling (TLM) can be considered. In TLM, transactions are used to

exchange data between functions in the system application. In [97], TLM was divided into six levels of

modeling depending on the computation and communication model granularities. The communication

and computation models can be timed, untimed or cycle-accurate models. TLM is a level of abstraction

above RTL. In [160], system level is defined as “the utilization of appropriate abstractions in order to

increase comprehension about a system, and to enhance the probability of a successful implementation

of functionality in a cost-effective manner using generic architecture and abstract application models”.

In system Level design, the entire system is represented as a set of cooperating subsystems [87].

As embedded systems tend to be complex systems with more complex architectures and complicated

functionalities, MDE has been successfully used to design, develop and analyze them [143]. As models

at low level of abstraction are more costly in development time, higher levels of abstraction are required.

According to [68], using system level designs to model systems at a high level of abstraction has a lot

33

CHAPTER 2. CONTEXT 2.3. TIMING CONSTRAINTS

of advantages including simplifying the specification, verification and implementation of the systems,

enabling more efficient design space exploration, reducing time to market, improving problems discovery

and allowing verification of the model at early design stages.

2.3 Timing Constraints

Embedded systems are designed to perform specific functions. Timing constraints are used to define some

safety and performance measures in embedded systems. In [222], the timing behavior of an embedded

system is defined as the time interval between a pair of events: the starting event and the finishing event.

These events can be the start and end of task execution or receiving sensor data and executing the system

response. The maximum and minimum time intervals between these two events are referred to as the

worst and the best execution time respectively. An embedded system can run in different environments

thus facing different conditions resulting in different values for the Worst-Case Execution Time (WCET)

and a Best-Case Execution Time (BCET). This non-determinism can be due to input non-determinism

from the embedded system environment, communication semantics, hardware components like cache

memories, etc.

In some embedded systems, when the time constraint is not met, it may result in high financial costs

on the party or the business using this system. For example, the manufacture or selling company may

have to recall the products resulting in revenue loss or loss of interest of the customer to continue using

the product [140] [111]. These systems are business-critical systems.

A Real-Time embedded system is an embedded system in which the correctness of the outputs depends

also on the time at which these results are produced [215]. In other words, in real-time embedded systems

meeting time constraints is critical. The time constraints in real-time embedded systems are strictly

specified. Computation and response to input events must be executed before their deadline. Timing

constraints in real-time systems are classified into 3 types of restrictions [74]: maximum, minimum and

durational. Maximum restrictions specify that the latency between two events should be no more than

time t. This time constraint can be seen as the bound of the WCET or the worst-case response time. An

example of this time constrain can state that the response time between input from the sensor and output

34

2.4. SYSML-SEC CHAPTER 2. CONTEXT

of the system shall not exceeds 15 ms. When an embedded system exceeds the specified maximum limit,

which means that it does not meet the deadline, then the system is considered as failed. The minimum

restriction specifies the minimum acceptable latency between two events. This time constraint can be

seen as the lower bound of the BCET. An example of the minimum time constrain can state that no less

than 10 ms may elapse between no input signal and the output of the system like an alarm signal. In

duration time constraints, the amount of time during which a condition holds is specified. An example

of a durational time constraint in the carbon monoxide detector can state that an alarm will sound

after three and a half hours of continuous exposure of carbon monoxide at a level of 50 PPM [9]. It is

important to point here that although real-time systems have to comply with strict time constraints, the

time specified in these constraints is not always a short time. In our last example, the time duration was

three and a half hours.

2.4 SysML-Sec

TTool [14] is a free and open-source framework for the design and verification of embedded systems.

SysML-Sec is one of the modeling profiles supported by TTool. SysML-Sec is used to design safe

and secure embedded systems while taking performance into account. In the first stage of SysML-

Sec (Figure 2.3), requirements are identified and explicitly tagged as safety, security or performance.

Requirements are textual specifications regarding important properties of the system, defined informally

with an identifier and a text. The formal semantics of time-related and safety properties is defined

within TEmporal Property Expression language (TEPE) Parametric Diagrams [137]. Formally defining

properties with TEPE is usually possible only when part of the system has been designed. For instance,

TEPE properties can be used to relate block attributes together; such a property can be expressed

only once blocks have been expressed. Also, in this step, attacks that could target the system and

faults that could occur in the system are modeled in attack and fault trees respectively. SysML-Sec

contains the Y-Chart approach [131] so next, in the HW/SW partitioning step, the architecture and the

application (high-level tasks/functional behavior) are modeled before being linked in the mapping phase.

This step helps to decide how tasks should be split between hardware and software mechanisms, and how

35

CHAPTER 2. CONTEXT 2.4. SYSML-SEC

Legend
Modeling
Verification
Method Flow

Analysis

Attack Trees

Fault Trees

HW/SW Partitioning

Application Architecture

Mapping

Requirements

Safety Security Performance

(Formal) Verification

Performance

ProVerifUPPAAL

Safety Security

 SimulatorSimulator

Safety

Software Design

Code
Generation

(Formal) Verification

Figure 2.3: SysML-Sec modeling profile used in TTool

communications between tasks are realized using physical elements. Second, the design of the software

elements can be performed in the software design stage: tasks mapped to processors are expected to

be refined as software components. Verification can be performed with a press-button approach from

most views so as to check that all requirements are satisfied. TTool can perform verifications using

formal techniques (e.g., model-checking) and simulations. Safety verification relies on the TTool model

checker or on UPPAAL. Security verification relies on the ProVerif [45] external toolkit. Performance

verification relies on a System-C like simulator provided by TTool. Once a model has been verified, C

code generation can be performed from partitioning models or from software design.

[84] is a tutorial for TTool that guides the reader through the complete design from modeling to

automatic code generation. Figure 2.4 shows the SysML-Sec methodology diagram in TTool after TTool

36

2.4. SYSML-SEC CHAPTER 2. CONTEXT

Figure 2.4: SysML-Sec methodology diagram in TTool

is installed and lunched as explained in [84]

2.4.1 HW/SW partitioning

SysML-Sec extends SysML to better support the design of embedded systems at high-level of abstraction.

The architecture model is a UML Deployment Diagram built upon a set of connected nodes that represent

resources. These nodes are divided into 3 categories: computation, communication and storage nodes.

The application is built on a set of tasks interconnected by data and control ports and channels. It is

defined by SysML Block Definition and Internal Block Diagrams. Each task is defined by a SysML Block

and its internal behavior is a set of operators (activity diagram) defined in a SysML Activity diagram. In

the mapping model, tasks along with their communication channels are allocated on the Nodes of the

architecture model.

Figure 2.5, Figure 2.6 and Figure 2.7 show the design areas in TTool for application models, task be-

37

CHAPTER 2. CONTEXT 2.4. SYSML-SEC

Figure 2.5: The design area for an application model

Figure 2.6: The design area for an activity diagram

haviors and architecture models respectively. Figure 2.8 shows the mapping of a task on a computational

node in TTool.

2.4.2 Simulation

Simulation using a transaction-based simulator is one of the verification techniques available in SysML-

Sec [135]. A transaction refers to a computation operator in a task or a communication between tasks.

Transactions are determined by the simulation kernel according to: the activity of the task, the type and

parameters of the hardware components, the mapping of tasks, the communication paths, the connection

between hardware components, etc.

To simulate a model, the syntax of the system-level models designed in TTool must be checked. This

check is accomplished by press-button approach. If the model syntax obeys the meta-model semantics,

then it is automatically translated to intermediate specifications. These specifications are expressed

38

2.4. SYSML-SEC CHAPTER 2. CONTEXT

Figure 2.7: The design area for an architecture model

Figure 2.8: The mapping of a task on a computational node

39

CHAPTER 2. CONTEXT 2.4. SYSML-SEC

Figure 2.9: The interactive simulation window

in formal language and form a starting point to derive simulation code [136]. For TTool users, after

performing syntax checking of the model, the simulation code is generated. An interactive simulation

window (Figure 2.9) pops-up in TTool once the simulation source code is compiled. In addition to having

an interactive simulation through a graphical interface in TTool, the simulation progress is also animated

on the model views. The interactive simulation window provides information about the simulation and a

lot of functionalities for the designer. Among these functionalities: advancing the simulation in different

modes, resetting the simulation, saving and storing the simulation state, save simulation traces in Value

Change Dump (VCD), text or HTML format, visualize the simulation result in the form of a reachability

graph, etc.

40

Chapter 3

Related Work

“Those who don’t know history are doomed to repeat it.”

-Edmund Burke

To develop embedded systems, several development methodologies exist. Each has its phases and

way to navigate between these phases. Embedded systems must satisfy functional and nonfunctional

requirements. The requirements must be satisfied along all phases. As mentioned previously, it is more

costly to discover requirements non satisfaction later in the design life-cycle, i.e, in late phases. In this

chapter, we start in Section 3.1 by reviewing different development methodologies and the functional

and nonfunctional requirements that the system must satisfy.

Verification approaches can detect requirement satisfaction or violation (section 3.2). Numerous

works proposed different approaches for the verification and evaluation of model requirements. The

proposed approaches can be classified into different categories.

In this thesis, formal and runtime verification approaches are discussed in Section 3.2.1 and Sec-

tion 3.2.2 respectively. Evaluation is used when quantitative information regarding a system design is

required [163]. Performance evaluation gives information regarding delay or response time [49]. As in this

thesis we are interested in latency violation, Section 3.2.3 gives an overview on performance evaluation

techniques. Information flow analysis is also used for property analysis.

Since we use tainting in the second version of PLAN and since tainting is considered in information

41

CHAPTER 3. RELATED WORK 3.1. SOFTWARE DEVELOPMENT METHODOLOGIES

flow analysis, Section 3.3 gives a general overview information flow analysis and how it is used in terms

of performance evaluation. Then, Section 3.3.1 discuss taint analysis approaches and their main usage.

3.1 Software Development Methodologies

A product life cycle (PLC) is a sequence of stages through which a product goes starting from the

stage when the product was an idea until the product is recycled or destroyed [184] [198]. Broadly

speaking these stages are: (1) Imagine (2) Develop (3) Realize (4) Use/Support (5) Retire/Dispose. In

the imagine stage the product is an idea in someone’s head. In the develop stage the idea is described in

details, requirements are identified for example in technical specifications, and/or prototypes developed.

In the realise stage, the product is ready to be used by a customer. In the use stage the product is in

use by the customer and in the final stage the product is disposed when it is not useful anymore [198].

For software products the development stage is further broken down into phases. These phases start

with development analysis to testing and evaluation [149]. Navigation between these phases depends

on the methodology used by the development team. The software development methodologies can

be generally classified as traditional (e.g, Waterfall method and V-Model) or Agile. The Waterfall,

incremental, spiral, agile, etc, are examples of software development life cycle models. Each model has

its own strengths, weaknesses, features, and usages [22].

In the Waterfall method [192], the designer follows a sequence of non overlapping steps. First the

requirements are identified, then the system is designed, developed and tested [165]. In this method, the

set of all system requirements must be known in the first step.

In the Incremental Model multiple development cycles take place. Each development cycle— also

known as an increment— addresses a standalone feature of the product. Each incremental version is

usually developed using a waterfall model of development [23]. Thus, the incremental model is also

referred to as iterative waterfall model [195]. The first development cycle releases a core product in

which only basic requirements are tackled [187]. Once the core product is approved by the customer,

successive iterations are implemented until the product is released.

The spiral model [48] is a risk driven approach that combines the waterfall model with the iterative

42

3.1. SOFTWARE DEVELOPMENT METHODOLOGIES CHAPTER 3. RELATED WORK

model [187]. It starts with a planing phase in which costs, resources and time are estimated, then risk

analysis, development and evaluation phases [23]. With each spiral new requirements/functionalities can

be added until the product is ready. The spiral model aims to minimize the project risk [23].

The V-model [89] is a variation of the Waterfall method [195]. The stages of a V-model are rep-

resented in a V shape with a focus on the development stages and their respective verification and

validation stages [117]. On the left side of the V, the phases start from requirement analysis to system

design to development. On the right side of the V, validation phases are present [187].

In the Agile model [40], the software is developed in small patches and delivered to customers at

regular short intervals. Thus, the software product is done in an incremental and iterative process where

parts of the software are designed, developed and tested until the software product is complete [165]. This

iterative process makes the ability to respond to the changing requirements easier. According to [152],

Waterfall/V-model methodology is more popular for embedded system design.

3.1.1 Functional and Nonfunctional Requirements

Embedded systems must comply with functional and nonfunctional requirements. These requirements

can be verified using different approaches throughout a product life cycle from design time to runtime.

Functional requirements describe the behavior of the system while nonfunctional requirements spec-

ify constraints and quality attributes (properties) like system safety, security, performance, reliability,

etc. [22] [157].

In [100], a detailed overview, discussion and comparison between functional and nonfunctional require-

ments is provided.

Regardless of the development method used, at the end of each iteration, the product must be

validated against its requirements. In the product design stage, nonfunctional requirements drive the

process of decision-making and implementing the functionality of the product [208]. In other words,

without nonfunctional requirements, the design choices are arbitrary [157]. In general, requirements are

expressed in natural language or in appropriate formalism [157].

Timing constraints must be verified all along the design process to ensure that they are satisfied after

each design stage

43

CHAPTER 3. RELATED WORK 3.1. SOFTWARE DEVELOPMENT METHODOLOGIES

Nonfunctional Requirements

Nonfunctional requirements include, but are not limited to safety, security, performance, reliability, us-

ability, integrity, scalability, traceability, maintainability, energy efficiency, certification, fault-tolerance,

timing predictability, etc.

Safety Safety can be generally defined as making the system accident-free. It is the probability that

the system functions as required over a specified time interval without accidents. Safety requirements

should specify the reaction of the system in case an accident occurs thus avoiding reaching an unsafe

hazardous state [142] [172]. In other words, safety deals with protecting the systems environment from

the systems operation [217], it deals with avoiding losses due to either flaws in software or hardware

leading to malfunctions, or due to (abnormal) environmental conditions [152].

System safety has been taken into account since long time [105]. Since the 1990s, it has been dealt

with it in a systematic manner [229]. In 1998 the first edition of the generic Functional Safety standard

IEC 61508 was issued [229] [105]. IEC 61508 is an international standard for the functional safety of

systems comprised of electrical, electronic, and software components applied in industry [199] [141]. The

standard assure that the system will reach the required safety level by reducing risk [199]. To achieve

this, the standard applies hazard and risk analysis to derive the safety requirements, then the system

is designed such that theses safety requirements are fulfilled [141]. The standard follows a life cycle

model that goes along with the product life-cycle and assists the developer through several phases from

pre-design to the design, installation and operation phase of the system [141].

Based on IEC 61508, different industry-specific standards were derived [141] [229] such as IEC 61513

for the nuclear industry [141], IEC 61511 for industrial processes [141], ISO 26262 for the safety-related

aspects of electrical/electronic systems in automobiles [141] [199] and EN 50128 for railway (CEN-

ELEC) [229].

Security Security is concerned with protecting the systems operation from the environment usually

manifested as intentional attacks [217]. Security can be considered from different perspectives [22].

Historically, CIA triad was used to ensure security in information technology [69]. CIA triad consists of

44

3.1. SOFTWARE DEVELOPMENT METHODOLOGIES CHAPTER 3. RELATED WORK

confidentiality, integrity, and availability. In addition to these three properties, authenticity [138], non-

repudiation [217], secure storage of the code [138], content security [138] and data freshness [199] should

also be considered in some applications. These properties should be maintained along the device lifetime

even if it falls in the hands of a malicious parties, this is referred to as tamper resistance requirement [138].

While data confidentiality ensures that data are accessed and disclosed only by authorized enti-

ties, integrity guarantees that information was not modified or destroyed [69]. Availability ensures that

the system can be accessed and used in a timely and reliable manner without having performance is-

sues [138] [69]. Integrity also assures information non-repudiation and authenticity [69]. Kocher et

al [138] define authenticity as user identification if an authorized users accessed an embedded system or

as secure network access if an authorized device accessed a network or service. Non-repudiation verify

that the users cannot later deny that he performed an action [217]. In addition to these requirements,

embedded systems security requirements shall include secure storage of the code or data in the system

storage devices and content security or Digital Rights Management (DRM) for digital content used in

the system [138]. In some cases, it is also required to ensure the freshness of the data which means it is

not replayed [199].

IT security standards appeared after the safety ones and were the first forms of security standards.

Some IT standards are Common Criteria/IEC 15408 and ISO/IEC 27001 [105] [141].

Common Criteria/IEC 15408 is an international standard that specified the general evaluation model

for information technology including the general concept and principles for this evaluation. It defines the

process for guaranteeing the security of security-critical systems by identifying threats, assessing risks,

implementing countermeasures, and evaluating the effectiveness of countermeasures [152] [141].

ISO/IEC 27001 is the best-known standard in the ISO/IEC 27000 family for Information security

management systems (ISMS) [1]. Its main goal is to keep sensitive information of company secure.

In the field of security standards, in addition to IT related ones, some are concerned with Industrial

Automation and Control Systems such as IEC 62443 [105]. IEC 62443 is a series of standards, norms

and technical reports which define procedures for the implementation in IACS (Industrial Automation

and Control Systems [94] [105]. Specifically, it considers security of safety systems [141] and aim at

enhancing safety, availability, integrity, and confidentiality of IACS [105].

45

CHAPTER 3. RELATED WORK 3.1. SOFTWARE DEVELOPMENT METHODOLOGIES

Performance Embedded systems are involved in some applications where timing is critical thus real-

time constraints are essentials for these systems [223] [55]. Platforms timing requirements are often

application-related end-to-end maximum requirements [158]. In other words, the software controlling the

hardware must operate within timing constraints to guarantee correct functionality of the system [152].

According to [152], the percentage of usage of systems components and the timings characterize the

system performance. In a safety-critical system, failure to meet a timing requirement can have catas-

trophic consequences [171]. Thus, performance evaluation is necessary in order to guarantee timing

requirements [162].

3.1.2 Using UML design tools and techniques

Model-Driven Engineering is a powerful technology to analyze, design, simulate and document embedded

systems [232] [26]. As a reminder, a model is a description of (part of) a system in which functional and

non-functional requirements must be satisfied [93]. A model written in a well-defined language makes

communication between systems engineers working across the development life cycle easier [80].

System modeling is an important aspect of any system engineering methodology [232]. Unified

Modeling Language (UML) is probably the most widely accepted and used of the modeling languages

defined by Object Management Group (OMG) [93]. It is a graphical modeling language for specifying

and capturing system models that can applied to all application domains. Thus, it is referred to as

general purpose modeling language. Designers find UML user friendly and easy to understand [152].

However, for some particular domains, having domain-specific languages may be more efficient. Ac-

cording to OMG, there exist two ways to define a domain-Specific language. Either a language alternative

to UML is defined or UML extension mechanisms are used. In the latter case, UML extension mechanisms

enables it to adapt to a specific domains application by extending its syntax and semantics [93]. For

instance, [224] compared three alternatives to help roboticists apply MDE to robotics application: (1) by

using UML, (2) by using a UML profile for robot operating system and (3) by defining a Domain-Specific

Language (DSL) specifically designed for for robot operating system.

A UML profile is a collection of UML extensions. For instance, Systems Modeling Language (SysML) [80]

is an extension of UML more adapted for Model-Based Systems Engineering. It is one of several graphical

46

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

modeling languages that are UML profiles. However, SysML does not take into account the partition-

ing of embedded systems [26]. SysML-Sec is an extension of the UML Profile UML that supports

partitioning [26]. UML/MARTE [11] is an OMG UML profile to develop real-time and embedded sys-

tems. However, MARTE does not define how to use modeling elements [232] or address requirements

modeling [26].

3.2 Verification Techniques

Functional and nonfunctional requirements can be verified using different approaches throughout a prod-

uct life cycle (PLC) from design time to runtime. Formal verification approaches use mathematical logic

to prove that a property is satisfied [162] [180] [164]. Runtime verification approaches detect property

violations by monitoring the system during execution [180]. Runtime verification can be applied on traces

collected as the system runs (on-line) or afterwards. In the design stage of a product life cycle, simulation

is meant to represent system execution. A comparison between simulation and runtime verification is

presented in [193]. According to [193], simulation takes as input a model and outputs a set of executions

on which statics can be computed or requirements verified while runtime verification takes an execution

trace and a requirement as inputs and outputs a verdict (true or false) based on the evaluation of the

requirement over the trace. Thus, the purpose of simulation is seen as different from that of runtime

verification [193]. While simulation is used to enhance the system in the design stage before deployment,

runtime verification is used to detect faults in the system during operation and take required actions.

Schedulability analysis is the process of verifying that the execution of a series of functions in a system

respect the timing constraints of this system [225]. It uses information from the application and the

architecture of a system in the analysis making it useful to determine if an application can be deployed

on an architecture given a timing constrain on the system [90].

3.2.1 Formal Verification Approaches

To prove that a property is satisfied using mathematical logic, as a first step, a formal model is required

on which system properties can then be proven [162].

47

CHAPTER 3. RELATED WORK 3.2. VERIFICATION TECHNIQUES

Model Checking Model checking is a formal method that takes as input a finite-state model and a

formal property written in a suitable logic such as temporal logic to verify whether the model of the

system satisfies the property or not [37] [210] [210] [44]. To do so, reachable states of the design

are traversed. If the property is disproved for the model, a counter example is provided. The counter

example is in the form of a sequence of states [44]. According to [44], model checkers are considered

as complimentary not alternative to other verification methods as its time consuming to verify all the

desired properties of a system due to the huge state-spaces of such systems. Such exhaustive exploration

of state space can be computationally intensive and time consuming [28] [85]. To compact the state

explosion problem of model checking in which the size of the model grows exponentially, Symbolic Model

checking [53], Bounded Model Checking [41] and abstraction techniques [65] [178] were proposed.

In symbolic model checking, sets of states are represented using boolean functions. This represen-

tation reduces the list of states. In Bounded Model Checking (BMC), the basic idea is to search for a

counterexample in a certain number of transitions. BMC will only prove that the design is correct for

the first N transitions but that does not proof the absence of errors in the system. In abstraction tech-

niques, the concrete design is first simplified and then the analysis run on this smaller and more abstract

model. Counter example-guided abstraction refinement [65] is an example of automatically constructed

abstraction.

Symbolic model checking proposed using SAT solvers and presented the idea of SAT-based bounded

model checking [166] [43][42]. SAT solvers language is Boolean logic [31]. A SAT solver is a procedure

which decides whether an input boolean formula can always be replaced by the values TRUE or FALSE

in such a way that the formula evaluates to TRUE. If this is the case, we say an input Boolean formula

is satisfiable [206].

In [234], model checking is used to improve failure analysis and verification approach for integrated

modular avionics (IMA) systems. Software model checking can be used to automatically detect if

unreachable code is present in safety-critical embedded systems [202]. The absence of unreachable code

is one criteria of high quality software in safety-critical embedded systems specified by ISO 26262 [118]

standard for the automotive domain

UPPAAL [148] is a very popular tool for model checking. UPPAAL is used to develop abstract

48

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

models of a real-time system. UPPAAL consists of three main parts: a description language to describe

system behavior as networks of timed automata, a simulator to execute the model and verify safety and

bounded liveness properties on possible dynamic executions of a system, and a model-checker to verify

for invariant and reachability properties on exhaustive dynamic behavior of the system [148].

Formal Tropos [96] is a language that enables the automatic verification of requirements using model-

checking. Secure Tropos [179], an extension of the Tropos methodology, is for the analysis of security

requirements and functional ones.

Theorem Proving Theorem proving is a verification method that provides mathematical reasoning on

the verification results of the system properties [28]. It consists of two steps [104] (1) the description

of the system along its specification and (1) the proof. In the first step, a system and its specification

can be described in a single logical form [242]. In the second step, the logical form is used as a

verification condition [242]. Some theorem provers are based on variations of Hoare logic [175]. Hoare’s

approach [113] depends on pre and post conditions to reason about program correctness. A formula

known as “Hoare triple”.

According to [175], this formula can be read as “if property φpre holds before program P starts, φpost
holds after the execution of P”. In embedded systems, φpre could for instance describe valid actions of

a system and φpost could define an undesired state for a formally defined system for a formally defined

system P .

Unlike model checking, theorem proving is not based on state space exploration. However, theorem

proving have some drawbacks as it requires a high degree of knowledge of the system and high special-

ization in higher order logic to reasons about the state space using system constraints only [85] [104].

Moreover, as automated generated proofs can be long and complicated to understand, fully automated

techniques are less popular for theorem proving [28].

In [242] a theorem-proving approach to schedulability analysis of Clock Constraint Specification

Language (CCSL) specifications is presented. CCSL is a clock-based formalism for the specification and

analysis of real-time embedded systems. The objective of schedulability analysis of CCSL specifications

is find whether there exists a clock behavior that satisfy a given CCSL specification.

49

CHAPTER 3. RELATED WORK 3.2. VERIFICATION TECHNIQUES

Satisfiability Modulo Theories (SMT) Satisfiability Modulo Theories is “the problem of deciding

the satisfiability of a first-order formula with respect to some decidable first-order theory” [206]. The

first-order formula is a boolean combinations of atomic propositions and atomic expressions. To benefit

from the advantage of fast and automated SAT solvers on higher level than the Boolean level, a SMT

solver is based on first-order logic and it combines a SAT solver with theory solvers [31]. Thus, SMT

solvers are verification engines at higher level of abstractions [31]. SMT has been applied in different

domains including formal verification. In [206] an extensive survey on SMT is presented. Unfortunately,

it is not simple to build an efficient SMT solver [206]

Equivalence Checking Combinational equivalence checking is a verification method that requires

as input two versions of a system design and output a result indicating whether the two inputs are

functionally equivalent [59]. While this method was usually applied on RTL [135] it was recently used

on higher level of abstraction where for instance, the two inputs may represent a design on a high level

of abstraction and its refined form [104]

Symbolic Execution Symbolic execution executes a system using symbols as inputs instead of concrete

inputs (e.g., numbers, integers or strings) and symbolic expressions instead of program variables [133] [67].

Symbolic execution can be used to formally verify system software and hardware [71]. For example,

for a real number input x to a function in a behavior, three symbolic executions for x > 0, x < 0

and x = 0 are conducted instead of executing the system for each value in the range of R [135] or

variables are inserted at the inputs of logic circuits [71]. The output of the system symbolic execution

is expressed in terms of the input symbols [67]. For each symbolic execution (i.e., for each execution

path), the execution engine builds a first-order boolean formula that describes the conditions satisfied

by the branches taken along that execution path. A model checker can be used to verify whether the

first-order Boolean formula satisfy the system property when symbols are replaced by concert values [29].

There are a wide range of usages of symbolic execution including verifying safety-critical systems [67],

test case generation, program optimization, program analysis and finding security vulnerabilities [24].

An advantage of symbolic execution is that one symbolic execution may replace a large number of normal

system executions [133]. However, a disadvantage of symbolic simulation is in exponential blow-up for

50

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

the symbolic expressions [71]. Moreover, when loops with dynamic bounds are present in a system,

special measures have to be taken for symbolic execution to be used [135].

3.2.2 Runtime Verification Approaches

Runtime verification approaches detect property violations by monitoring the system during execu-

tion [180]. In runtime verification system, a decision procedure for the property under study is referred

to as a monitor. Creating a monitor is the first step in the runtime verification process [85]. The monitor

takes as input events from the system under analysis. To generate these events the system is instru-

mented. Thus, the second step in the runtime verification process is system instrumentation. Then, the

system is executed and the monitor perform execution analysis on the generated events to generate a

verdict [85]. An overview of a taxonomy of work in runtime verification is described in [86]. It presents

seven major high-level concepts used to classify runtime verification approaches and classifies 20 runtime

verification tools according to this taxonomy. For instance, a property may be implicit or explicit. Im-

plicit properties describe correct concurrent behavior and aim at avoiding runtime errors e.g., absence of

deadlocks while explicit properties express functional or nonfunctional requirements. An extensive survey

of runtime verification approaches applied to hard real-time distributed avionics is presented in [101].

There is lot of existing work on specification languages for runtime verification [46] [76]. Temporal

Stream-Based Specification Language (TeSSLa) [70] is an example of runtime verification where the

language allows to express timing properties and events along execution traces. Unlike traditional Stream-

Based runtime verification approaches that process events in execution traces without considering timing

information, a timestamp is associated for every event (i.e., elements) of an execution trace [70]. Thus,

enabling access to the global order of events and performing calculations with the timestamps e.g.,

computing the time lapse between two events. Copilot language [180] is a runtime verification framework

for real-time embedded systems used in combination with NASA Core Flight System applications. Copilot

language supports a variety of Temporal Logics that can be used to express re-occurring patterns.

LOLA [73] is a specification language of synchronous systems that allows not only the monitoring of

boolean temporal specifications but also of quantitative/statistical properties of the system. It has been

successfully used to monitor synchronous, discrete time properties of autonomous aircraft [32].

51

CHAPTER 3. RELATED WORK 3.2. VERIFICATION TECHNIQUES

However, detecting the violation of some critical safety properties when the embedded system is in

operation is not acceptable [88]. Thus, runtime analysis must be used firstly for unexpected events while

requirements are expected to be verified in an earlier stage of the product life cycle.

At design-time, simulation-based verification is a commonly used [64]. It is considered a highly-

developed, time-honored verification technique [193]. It is used at design time thus it is applied on

system models before the system is completely built. These models have to be executable and the

simulation verification approach able to trace the execution of these models [114].

Simulation trace analysis is a technique to discover what happens during simulation [102]. It is

a powerful approach not only for verification but also to understand and optimize the behaviors of a

system [176], debug the application [176] [127], perform model checking [114], reverse engineering,

timing analysis, detecting of data races [109], etc. For instance, [21] describes a trace analysis approach

that allows the designer to reason at SysML/UML model level on the model execution. The aim of this

approach is to help the designer to explore and understand the model based analysis results.

Tools using simulation trace analysis technique to analyze and verify time related requirements are

discussed in Section 3.2.3.1.

3.2.3 Performance Evaluation

In [163], evaluation is defined as “the process of computing quantitative information of some key char-

acteristics (or “objectives”) of a certain (possibly partial) design”. Throughput, resource utilization and

response time are among the quantitative information of interest in performance measures [49]. Accord-

ing to [110], performance evaluation includes the analysis and optimization of time-dependent behavior

of systems. Performance evaluation may lead to the refactoring of hardware or software designs to meet

timing requirements. Thus, it has to be considered since the beginning of a design process [110].

Instrumentation [188] [204], emulation [188], symbolic execution, process algebras [238],etc. . . are

examples of techniques that can be used for performance evaluation.

Timing analysis approaches are commonly classified as simulation-based approaches, formal ap-

proaches and hybrid approaches [218]. Simulation tools and industrial frameworks e.g., Koski [123]

can only consider a limited set of execution traces and corner cases are usually unknown [223] however

52

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

they have the advantage of being insensitive to state space size [112]. Formal approaches like timed

automata are check system properties in an exhaustive way and are usually limited on scope to the model

under analysis where sharing of resources leading to complex interactions among components is difficult

to take into consideration. To overcome the limitations encountered when using either method, [223] and

[230] combined simulation and formal approaches to analyze system performance. Hybrid approaches

combine simulation-based and formal approaches [218].

Software Performance Engineering (SPE), pioneered under the name of “performance engineering”

by Connie Smith [212] describes the application of performance evaluation techniques to software sys-

tems [185]. SPE [183] object is to produce performance models early in the development cycle. Solving

such models produces quantitative information that can trigger redesigning the system to meet perfor-

mance requirements. It may also help designers to choose between several architectural choices [131].

The types of models used include queueing networks, layered queues, types of Petri Nets, Stochastic

Process Algebras,etc [237].

Petri Net Theory Petri nets are a graphical and mathematical modeling languages that can describe

and visualize distributed systems [173] [209]. The system behavior can be determined using state equa-

tions, algebraic equations, and other mathematical models.

A Petri net is considered as a kind of directed, weighted, bipartite graph with nodes and arcs are

between nodes. Tokens are used to simulate the dynamic and concurrent system activities [173]. The

basic definition of Petri nets does not contain time concept. However, time delays can be introduced

and associated with places and/or transitions. Thus, Petri nets can be used for time analysis. We refer

to a Petri net as deterministic timed net when time delays are deterministically given and as stochastic

net when the delays are probabilistically specified.

To avoid the difficulty of modeling the system by the formal method directly, [209] proposes a method

that transforms SysML state machine into Petri net.

53

CHAPTER 3. RELATED WORK 3.2. VERIFICATION TECHNIQUES

3.2.3.1 Simulation-Based Approaches

As embedded systems are becoming more and more complex, their behavior analysis is becoming a

challenging task [177]. Simulation is a very common technique for evaluating and validating designs

as simulation traces record the behavior of the embedded system application on the architecture and

thus provide relevant information about the system execution. Simulation consists of executing a design

model on appropriate computing hardware, typically on general purpose digital computers. Obviously,

this requires models, which are approximations of real systems, to be executable [162]. System evaluation

and validation using trace analysis is considered useful when engineers can manage and use the trace

analysis tools to analyze complex requirements [240].

The SoC-Trace Project [176] aims to develop an infrastructure to store and analyze traces regardless

of their different formats and huge sizes. The objective of building this infrastructure is to have tools

build on top of it that can analyze the stored traces.

An automated simulation traces analysis approach that identifies progress from repetitive behaviors

in simulation models was introduced in [127]. This identification helps in detecting errors in simulation

models [125]. These errors are states where the system is unable to recover after something bad happened.

This approach was implemented in Traviando [221].

Traviando (Trace Visualizer and Analyzer from Dortmund university) is an example of a software

tool used for simulation traces analysis. It takes a simulation trace in Extensible Markup Language

(XML) format as input and output a visualization of the trace as message sequence chart (MSC) [128].

In addition to this output, Traviando provides quantitative and qualitative trace analysis [221]. For the

qualitative analysis, Traviando provides a linear time logic (LTL) model checking on traces. Properties

of interest are specified as LTL formulas, trace fragments that satisfy or not satisfy certain properties are

identified and highlighted [129]. In the quantitative analysis, statistical evaluation, bottleneck analysis

and deadlock detection along other performance measures evaluation are implemented [126]. To perform

quantitative analysis, ProC/B models [33] are simulated using a Discrete Event Simulation environment.

Quantitative analysis aims to attract the attention of the designer for section of traces that corresponds

to extremal, crucial or extraordinary model behavior. The traces corresponding to these behaviors are

highlighted in the message sequence chart (MSC) output [129].

54

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

In the scoop of RT-Simex [13] project, a set of tools were used to analyze and verify timing con-

straints and locate faults of parallel embedded code [79]. This work is based on instrumentation of the

simulation code. Real time constraints on UML models were specified using MARTE time model and

CCSL library [77]. Simulation traces in Open Trace Format are studied to check if the specified real time

constraints are met. TimeSquare [78] can be used for system design based on MARTE model where

clock constraints are specified based on Clock Constraint Specification Language (CCSL). TimeSquare

analyzes CCSL constraints and sends direct feedback to the users during the simulation.

In [116], SATM (Streaming Application Trace Miner) is proposed. It is an approach to help de-

bugging real time applications like streaming application and understand the reason of quality of service

(QoS) properties violations. In debugging two types of bugs were identified: functional and temporal

bugs. While functional bugs may lead the system to produce wrong output values, temporal bugs lead

to deliver correct outputs but after a deadline leading to performance issues [116]. SATM takes as input

an execution trace and outputs a description of system activity indicating the origin of the temporal

bug. To identify the origin of the QoS problem, SATM is based on data mining approach. In [116],

the execution trace was based on executing the embedded software on a real hardware —an already

manufactured chip— however, the application of pattern mining algorithms on simulation traces was

highlighted. The data mining algorithm was used to characterize simulation traces of program exe-

cutions that corresponded to temporal properties violations. The simulation traces are obtained from

simulating a SystemC transactional mode in ISIS tool [181] [182].

In [60], an approach that analyzes simulation traces of systems to check if functional and performance

constraints expressed in Logic of Constraints (LOC) [61] are satisfied is introduced. The simulation traces

are inputs to a trace checker that reports any constraint violation. In this approach, the constraints are

specified at abstract system level and hardware/software co-design is considered in the system design

methodology.

One of the verification techniques implemented in Metropolis —a system-level design framework for

embedded systems— is a simulation trace checking based verification methodology [62]. Functional and

performance properties of a design can be specified by the designer using Logic of Constraints (LOC),

mathematical logics and Linear Temporal Logic (LTL). Trace analysis tools integrated into the simulator

55

CHAPTER 3. RELATED WORK 3.2. VERIFICATION TECHNIQUES

of Metropolis automatically check for the specified properties. This verification can be performed off-line

or during the simulation [62].

Co_Simulation Trace Analysis tool (COSITA) analyzes simulation traces in VCD format resulting

from SystemC-Simulink co-simulation and compare them to emulation traces. SystemC is used to model

hardware architecture and Simulink used as functional modeling language [130]. This technique is used

to verify properties of the modeled system. Automotive applications are modeled and properties that

allow the system to take a decision after a fault is encountered falls within the authors interest.

Trace Runtime Analysis Platform (TRAP) tool [240] is a model-based framework that analyzes

simulation traces to verify causal and temporal properties of embedded systems. Simulation traces are

generated by virtual prototype (VP) simulators. An error is raised in case a property is violated [240]. A

trace file generated by a VP simulator often contains a lot of detailed information about the system. To

minimizing the trace size, a Domain Specific Language, STML (Simulation Trace Mapping Language) is

used to abstract trace data into symbolic information (logical clocks) and remove irrelevant information.

This is where the originality of this tool lies. The objective of this framework is to predicts the reliability

and availability of an embedded system before it is integrated with the target hardware [211] .

Hedde and Pétrot [109] used virtual prototypes to produce non intrusive traces. These traces are

used for fine-grain analysis of software running on Multiprocessor Systems-on-Chip (MPSoCs). Complex

analysis such as verification of cache coherency protocol, memory consistency and data races detection

can be performed on traces [109]. The SoCLib framework along its System C Component library are used

for MPSoCs simulation. Moreover, the presented trace system method in [109] uses instrumentation of

component models to trace hardware events.

The traces collected in [109] are reconsidered in [144]. In [144], a framework based on data mining

approach is implemented to detect concurrent accesses to memory. The main aim of the data mining

approach is to automatically identify access patterns whose latency deviate significantly from the average

behavior of the traces and report them in a readable output to the software developers.

In [51], a non-intrusive instrumentation methodology for SystemC platform simulation models was

detailed. Using this methodology several types of analysis can be performed including runtime design

analysis and data analysis. Data analysis is part of an analysis framework that implements different

56

3.2. VERIFICATION TECHNIQUES CHAPTER 3. RELATED WORK

performance and bottleneck analysis functions based on collected simulation traces. The data analysis

runs different analysis filters. These filters take as inputs a sequence of sorted trace events and the

platform description. A basic analysis filter correlate software and hardware events. It maintains a

function call-graph by detecting function calls and function returns. A function group analysis filter

is used to estimate virtual software components execution time. Another filter monitors and counts

all memory accesses thus highlighting memory conflicts. The presented methodology was applied to

HW/SW co-analysis and co-exploration of a multi-core model of a high efficiency video coding (HEVC)

intra encoder. The analysis framework helped in developing and optimizing the model. Time consuming

components were identified and replaced by hardware accelerators and parallel segmentation of algorithms

introduced to encoder software implementation.

Koski [123] provides a complete design flow to model multiprocessor system-on-chips in a UML profile

with automated design space exploration. It uses simulation for functional verification and performance

evaluation. In [123], performance is defined as dynamic factors of the architecture such as timing, latency,

and throughput. These factors are a subset of cost function parameters. DSE is based on orthogonal

application and architecture modeling at system level. The design flow starts with the requirements

capturing, then the system functionality is described and verified. The system functionality is described

with an application model in a UML design environment. In the next step, the architecture is modeled.

To find a good application-to-architecture mapping, architecture exploration is executed. The design flow

ends with automatic code generation step [99]. In this section we will focus on the system functionality

implementation and verification that is carried out in four steps: automatic code generation, application

build, functional verification, and application profiling. In the code generation step, Telelogic Tau G2 is

used to generate a platform-independent C code. The generated code is complemented with supporting

libraries and profiling functions in the application build step. It is in this stage that an executable

application is produced. The functional verification is performed by simulations. Tau G2 Model Verifier

is used for simulation. Textual tracing is one of the methods to observe the simulations. In the forth

step, execution trace are used for functional verification. The application profiling is based on the

execution trace gathered during simulations. The execution traces give information on the amount of

communication and transferred data between state machines and about the execution activity of state

57

CHAPTER 3. RELATED WORK 3.3. INFORMATION FLOW ANALYSIS

machines [123]. The performance is determined by the simulation statistics of process execution timing

and communication latencies.

3.3 Information Flow Analysis

Dataflow graph is a model of computation that can be used to analyze properties of a system [36].

Examples of these properties include absence of deadlock, throughput bounds, performance requirements,

security requirements, etc [34] [36] [106] [153].

A dataflow graph is a directed graph consisting of nodes connected by edges. Nodes are called

actors [34]. Edges are arcs representing dependencies. Actors produce and consume tokens. A token

stores a fixed amount of data. An actor is enabled to fire a token when tokens are available on all

its input edges [115]. Synchronous data flow graph, cyclo-static dataflow graph, and dynamic dataflow

graph are examples of dataflow graphs.

In [219], synchronous time-constrained multimedia applications are modeled using dataflow graphs.

These graphs are then allocated to an embedded multiprocessor system using the proposed resource

allocation strategy that guarantees that the throughput bounds are respected.

The actors of synchronous dataflow models defined in [34], have a well-defined input/output behavior

and a worst-case response time. These models were used to derive the worst-case end-to-end temporal

behavior of real-time applications

[106] proposes to use cyclostatic dataflow graph to capture the behavior, allocate resources and

compute buffer sizes in larger SoC applications whose performance needs to be guaranteed.

The approach in [186] uses data flow analysis from UML/MARTE models and trace analysis to

improve design flexibility and evaluation capabilities of the models. To understand and analyze the

required timing behavior of the model, the user must define, in the UML model, the most important

paths followed by the data internally through the system. These internal data paths are monitored and

form the bases for timing analysis. The analysis output information about the correct path iterations,

and their timing characteristics (maximum, mean and minimum time), number of correct data paths

accomplishing the constraints sets, etc.

58

3.3. INFORMATION FLOW ANALYSIS CHAPTER 3. RELATED WORK

Taint analysis is a form of information flow analysis [153]. It includes tainting an object/data in a

system then tracking it using a data-flow analysis technique [103] [38]. To taint an object/data means

to mark it with a tag or label. The data flow analysis tracks the tainted object from the taint source,

where the taint object comes from, to the taint sink where the taint object leaves the system.

Taint analysis is mainly used in compiler optimization and security analysis [50] [156]. In [156], an

automated analysis and repair approach for existing software for autonomous robot systems was proposed.

The latter approach used a taint analysis method.

3.3.1 Taint Analysis

Taint analysis can run in two modes static and dynamic. In dynamic taint analysis the system is executed

to be analyzed while in static taint analysis the source code is parsed without execution [38] [153].

Dynamic taint analysis is used by several security algorithms to track information flow in soft-

ware [103]. It is mainly used to detect vulnerabilities and protect sensitive data [103]. Information

disclosure attacks [39] and confidentiality violations [107] can be detected using dynamic taint tracking.

In [145], a dynamic taint tracking technique was used to prevent buffer overflow. The main advantage

of dynamic analysis is that it is possible to detect attacks that need certain prerequisites like system

configuration while the main disadvantage of dynamic analysis is that only part of the program that was

executed is analyzed [38].

Techniques based on dynamic tainting have been successfully used in the context of application

security, and now their use is also being explored in different areas, such as program understanding,

software testing, and debugging [66].

Static taint analysis approaches can be used for different tasks including security and privacy issues

detection [153] [103]. At the time of development of C programs, static taint analysis can be used

to detect bugs [103]. For android apps, in addition to assessing their security, detecting app clones,

automating test cases generation and discovering performance or energy related issues can be achieved

through static analysis approaches [153]. However, static taint analysis approaches cannot analyze

encrypted or obfuscated code [38] and some of the code paths identified in static analysis could never

execute in real systems [239].

59

CHAPTER 3. RELATED WORK 3.3. INFORMATION FLOW ANALYSIS

While both static and dynamic techniques can be used for information disclosure attacks detection,

dynamic analysis according to [38] appears to be more promising. Moreover, hybrid approaches which

combines static and dynamic analysis improve the quality of security analysis.

DTaint [63] is a static analysis approach used to detect taint-style vulnerabilities in the firmware. The

firmware is a software embedded in devices to determine their functionality. The taint-style vulnerability

can be defined as a flaw where the input data reaches a sensitive sink through an unsafe path. DTaint

was applied to six firmware images from four manufacturers and 21 vulnerabilities were discovered among

them 13 previously-unknown and zero-day vulnerabilities.

Celik et al. [57] propose Saint, a tool used to detect privacy violations in IoT apps using static taint

analysis. Saint identifies potential flows of sensitive data by automatically tracking information flow from

taint sources (e.g., device state and user info) to taint sinks (e.g., Internet connections). SAINT operates

in three phases. First the taint sources and sinks are identified. Then the IoT source code is translated

into an intermediate representation (IR). After that static analysis is performed.

ContexIoT [119] is a context-based permission system for IoT apps. It gathers context information

(e.g., data source, and runtime data of a device) before a sensitive action is executed, and then asks for

user approval to execute this action through run-time prompts. ContexIoT provides contextual integrity

to permission granting and aims to detect the misuse of IoT devices by comparing the context information

of a normal behavior to a behavior set up by an attacker. ContexIoT defines context as execution paths of

an app functionality (inter-procedure control and data flow) including for example how the functionality

is triggered and what data is flowing along the execution path. To help users make informed decisions,

tainting is used in ContexIoT to labels the data source and track data on the execution path of an app

code. Thus, when presenting the context information to the user, taint analysis will allow the user to

distinguish for example if the data to be sent out is the user password or just the battery level and a user

can make a more informed decision on permission granting.

Tainting analysis is mainly used in mobile-phone platform [57]. Taintdroid [82], “the best known

taint-tracking system for Android” [38], uses dynamic taint analysis to allow users to track the flow of

information through third-party applications in real-time. In particular it monitors privacy-sensitive data

and address challenges specific to mobile phones [103]. Several Android security systems are based on

60

3.4. CONCLUSION CHAPTER 3. RELATED WORK

Taintdroid including MOSES [197], TreeDroid [72], VetDroid [241], YAASE [196], AppsPlayground [191],

DroidBox [146], ANDRUBIS [154], QuantDroid [159] and NDroid [189]. Mobile-Sandbox [214] is also

based on Taintdroid however, it is hybrid security analysis approach which combines and benefits of static

and dynamic analyses. In this approach, the dynamic taint analysis is guided by a static analysis phase.

Two successors of Taintdroid are TaintART and TaintMan [38].

The Blare project and the Blare tools aim to provide a set of tools to monitor information flows at

different level of granularity [98]. At the level of operating system, Blare [98] is used to monitor the

information flow. It tags files as files are information container at the OS level. The tag of the file is

propagated to the program when a program accesses a file. Conversely, each time the program writes to

a file, the tag of program is propagated to the file. Security policy are used to verify if the information

flow is authorized or not [233]. The tag propagation and security policy checks are performed by the

Linux kernel [233]. AndroBlare [25] modifies Blare to trace information flows on an Android operating

system.

DTA++ [122] enhance standard dynamic taint analysis approaches by propagating taint along control

dependencies. It targets the under-tainting problem of standard approaches where sensitive information

should be marked as tainted are not. This problem occurs when tainted data values affect control flow

in a program and then the control flow affects other data but the latter remain untainted. DTA++ is

implemented using the BitBlaze platform for binary analysis [213]. It is applied on off-the-shelf benign

Windows/x86 applications

3.4 Conclusion

Table 3.1 shows a summary of the methods and tools presented in Section 3.2.3.1 showing the type of

models they design, the purpose of their trace analysis approach and the technique they use in their

analysis.

Nevertheless, to the best of our knowledge, the aforementioned works do not address an approach

in which the execution trace of a high-level allocation model can be used to advice a designer on how

to enhance a model to satisfy a latency requirement by indicating which software/hardware component

61

CHAPTER 3. RELATED WORK 3.4. CONCLUSION

Table 3.1: Simulation Trace Analysis Methods and Tools

Me
tho
d \
To
ol Models Type Purpose Phase Technique

UM
L

Ot
he
rs

Pe
rf.

An
aly

sis

Ot
he
rs

Pa
rti
tio

ni
ng

So
ftw

ar
e

In
str

um
en
ta
tio

n

Ex
te
rn
al

to
ol

Da
ta

M
in
in
g

Tr
ac
e
ch
ec
ke
rs

Pr
ofi

lin
g
Fu

nc
tio

ns

Tr
an
sa
ct
ion

Cl
as
sifi

ca
tio

n

Mobius-Traviando [127] X X X
ProC/B-Traviando [126] X X X X X

RT-Simex [79] X X X X X X
SATM [116] X X X X

[60] X X X X X
Metropolis [62] X X X X X
COSITA [130] X X X X
TRAP [240] X X X X X
TIMA [109] X X X X

[51] X X X X X
Koski [123] X X X X X

SysML-Sec [26] X X X X X XThis Thesis

62

3.4. CONCLUSION CHAPTER 3. RELATED WORK

contributed to a latency between events. In other words, to our knowledge, other performance evaluation

methods do not identify which component leads to extra processing time or hardware contention. Most

of the analysis tools calculate the WCET or BCET or latency and throughput values. While in some

simple cases having the minimum and maximum latency can be beneficial for the designer, in other

complex cases, especially when new safety and security measures are added to the model, having these

values does not help much the designer on the precise cause of the latencies. Not understanding the

cause of the latency and what elements are contributing to its value will limit the designer’s knowledge

on how to enhance the model to further improve performance.

The introduced approach in the scope of this thesis does not require the use of instrumentation, data

mining or any external tool. It is based on the extraction from the model semantics a causality graph

and studying the execution trace along the generated graph as detailed in the next chapters.

Moreover, tainting which is mostly used to detect security flows as shown in section 3.3.1 is used in

the second version of our approach to calculate latency.

63

Chapter 4

Precise Latency Analysis Approach:

Overview and Problem Formalization

“Around here, however, we don’t look backwards for very long. We keep moving forward,

opening up new doors and doing new things, because we’re curious...and curiosity keeps

leading us down new paths.”

-Walt Disney Company

4.1 Motivation

Handling time is often a critical aspect for safety critical systems [223] [55]. These systems are known as

real-time systems. Real-time systems are characterized by their ability to accomplish a specific task and

respond to events within a specified time [58] [152]. In order for real-time systems to behave correctly,

they must not only execute the correct computations but also do so within predefined time constraints.

These time constraints are typically expressed in terms of end-to-end deadlines on the elapsed time

between a stimulus and the corresponding response [75] [223], the percentage of usage of system’s

components [152] and throughput [223] where throughput is defined as the number of events that can

be processed per time unit.

Real-time systems can be classified as hard real-time or soft real-time systems. In hard real-time

64

4.1. MOTIVATION CHAPTER 4. PROBLEM FORMALIZATION

systems failure to meet a deadline leads to a failure of the application resulting in catastrophic situations.

In soft real-time systems missing a deadline leads only to degraded quality of service of the application.

Designers must ensure that hard real-time systems respect their deadlines before systems are put in

operation [75]. In general, estimating the timing properties for a system as early as possible in the

design process is considered a valuable approach as it results in updating the model in a cost-efficient

manner [207] [230].

Real-time constraints expressed with respect to end-to-end deadlines can specify the maximum time

delay that the system can tolerate between two events. This maximum acceptable time delay is referred

to as deadline or maximum latency. Latency is the time delay between the execution of two events.

Latency is important when there is an expected feedback from the system corresponding to an input

event [205]. For example, a motor controller is expected to stop within 500 ms after it receives a stop

command from the user. Section 4.5 defines precisely and formally what a maximum latency requirement

is in the scope of our work.

In this chapter, a new latency analysis approach PLAN based on Execution Trace Analysis (ETA)

is introduced. This approach is meant to precisely indicate the cause of latency between two events in

a system. For this, PLAN can analyze the execution trace between the two events of interest. PLAN

answers whether the latency requirement is satisfied. If not, then the analysis produces a classification

of the transactions of the execution trace. To perform this analysis, PLAN has to use system semantics,

including the logical and physical dependencies between software and hardware components. In the

scope of this thesis, dependencies are specific to high level languages. For example, as shown later in

the chapter, the dependencies between writing and reading data are approximations that do not take

into account the value but the amount of data. So, dependencies are heuristic defined at high level of

abstraction. Applying PLAN to system models defined at lower level of abstraction i.e., assembly level

is discussed in Chapter 8 for future work.

65

CHAPTER 4. PROBLEM FORMALIZATION 4.2. PRECISE LATENCY ANALYSIS APPROACH

4.2 Precise Latency Analysis Approach

Precise Latency Analysis (PLAN) shown in Figure 4.1 is a new approach to determine the latency between

events in a system modeled at a high level of abstraction. PLAN is used not only to study the latency

between two events of interest, but also to study the reason behind the latency value. In the scope of this

thesis, we assume that the modeling process follows the Y-Chart approach where the system application

and platform are modeled independently of each other, and are then followed by the allocation of the

application model to the platform model. We refer to these models as the HW/SW partitioning model.

PLAN automatically analyzes an execution trace obtained after executing the HW/SW partitioning model

to identify which hardware components or software functions provoke an extra latency between the two

selected events. By "extra latency", we mean all the delays that could have been avoided with a better

scheduling, better allocation, the absence of contentions, etc. In addition, it reports how much hardware

components or software functions contributed to this latency. These identifications assist a designer in

taking several decisions that can enhance the timing between events in a system. These decisions may

include replacing a component with a more efficient one, executing a function on different processors or

running a message exchange on different buses.

To achieve this, PLAN takes as input an instance of a HW/SW partitioning model, an execution

trace, and a time constraint expressed in the following format: the latency between operator A and

operator B should be less than a maximum latency value. An operator is an element of a behavior

of the application. PLAN then builds a dependency graph from the HW/SW partitioning model to

simplify model analysis, as explained in the next section. The dependency graph reflects sub-part of

the dependencies and semantics of the system (e.g., data channels, function behavior sequences). From

the requirement, PLAN extracts the value of the maximum latency and the two events. Afterwards,

PLAN analyzes the execution trace —generated when the HW/SW partitioning model is simulated or

executed— according to the dependencies given in the dependency graph using ETA sub-algorithm. More

precisely, the dependency graph is an input to the analysis process. In ETA, each execution of event

1 leads to identify the corresponding event 2 so as to compute the latency between the two. If the

latency is greater than the maximum latency, the ETA sub-algorithm groups the transactions found in

the execution trace in different categories and outputs them. Among these categories, the contention

66

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

category is the most interesting one for the designer as it contains refers to the functions and hardware

components that have played a role in the latency: removing these contentions would lead to reduce the

latency under study. Otherwise, if all the latencies between events 1 and its corresponding events 2 are

below the maximum latency, the designer is notified that the system model respects the requirement.

In the following sections, the different stages shown in Figure 4.1 are presented. First, the HW/SW

partitioning model is formally defined in section 4.3. Section 4.4 gives an overview of the model execution

Semantics. Section 4.5 defines a maximum latency requirement.

4.3 System Model Formal Definition

The formal definition proposed in this subsection assumes that the Y-Chart scheme [132] is used to

capture the application, the platform and the allocation of the considered system.

Definition 1. System model

A system model s is a 2-uple denoted as s = 〈m,R〉 where m is a HW/SW partitioning model and

R a set of requirements.

Definition 2. HW/SW partitioning model

A HW/SW partitioning model m is a 3-uple denoted as m = 〈F ,P ,A〉 where F is an application

model, P a platform model and A an allocation model.

The elements within the HW/SW partitioning model are grouped into families called categories. We

use function cat(c) to return the category to which a component c belongs to. Elements of the model

have identifiers. In this thesis, they are conventionally denoted as ei where i is the identifier. Moreover,

when a tuple t is defined, the notation t[i] is used to retrieve the ith item of this tuple and |t| is used to

return the size of t.

4.3.1 Application

Definition 3. Application Model

An application model F consists of a set of functions F and a set of communication channels CC.

67

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

Execution Trace

 HW/SW Partitioning Model

Application Platform

Allocation

Requirement

The latency between operator o
A
 and

operator o
B
 should be less than

maximum Latency (𝜆
max

)

OptionalFunc

NoContentionMandatoryFunc

Contention MandatoryOpNoImpact

OptionalOp

OtherHardware

Requirement
not satisfied

Dependency Graph

 P
re

c
is

e
L

at
en

cy
 A

n
al

ys
is

 A
p

p
ro

ac
h

Model
Execution

Model
Transfo
mation

Execution
Trace

Analysis
(ETA)

Function Input

Legend

Function Output
This thesis

User defined Functions

IndirectImpact

Model

Figure 4.1: Modeling stages required to apply the precise latency analysis approach

68

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

We denote the application model as

F = 〈F, CC〉

Definition 4. Communication Channel

A communication channel connects together two functions with one function that can write in this

channel and one function that can read from this channel. A communication channel between two

functions f and f ′ where f can write and f ′ can read, is denoted as ccf,f ′∈ CC.

Our model supports two kinds of communication channels: data channels and synchronization chan-

nels. The set of all data channels of an application model is denoted as DC and the set of all synchro-

nization channels of a system is denoted as SC.

The set of data channels for writer f and reader f ′ is denoted as DCf,f ′ and for synchronization

channels SCf,f ′ . Finally, the set CCf,f ′ is a 2-uple defined as follows:

CCf,f ′ = 〈DCf,f ′ ,SCf,f ′〉

And DC, SC and CC are defined as:

DC =
⋃{
DCf,f ′ | (f, f

′) ∈ F2}
SC =

⋃{
SCf,f ′ | (f, f

′) ∈ F2}
CC = DC ∪ SC

Definition 5. Synchronization Channel

A synchronization channel scf,f ′ ∈ SCf,f ′ is given one semantic among the three following ones:

Non-Blocking Notify - Blocking Wait Infinite FIFO (NBN-BW-INF), Non-Blocking Notify - Blocking

Wait Finite FIFO (NBN-BW-F) or Blocking Notify - Blocking Wait Finite FIFO (BN-BW-F).

SCType = {NBN-BW-INF,NBN-BW-F,BN-BW-F}

Synchronization messages sent from function f to function f ′ are managed using a FIFO buffer, which

69

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

can be finite or infinite. So, the receiver function is always blocked when the buffer is empty while the

sender function can be non blocking or blocking when the buffer is full. When the synchronization channel

has finite buffer semantics, of course, a buffer size attribute is specified and in case the buffer is full, no

synchronization messages can be added to it, so a sender function is blocked until the buffer is not full. So,

for a synchronization channel having Non-Blocking Notify - Blocking Wait Infinite FIFO type the sender

function f can always send synchronization messages without any constraint and the receiver function

f ′ is blocked when the buffer is empty. In case the synchronization channel has Non-Blocking Notify -

Blocking Wait Finite FIFO type, the sender function f can send synchronization messages without any

constraint and the receiver function f ′ is blocked when the buffer is empty. However, in the later type,

when the buffer is full, the oldest message in the buffer is removed to leave space for the new one that

is added. In case the synchronization channel has Blocking Notify - Blocking Wait Finite FIFO type,

the sender function f can send synchronization messages only until the buffer is full while the receiver

function f ′ can read synchronization messages if the buffer is not empty. The functions getSCType and

getSyncBufferSize take as argument a synchronization channel and return the synchronization channel

semantic (SCType) and the FIFO buffer size respectively.

getSCType : SCf,f ′ → SCType

getSyncBufferSize(scf,f ′)


=∞ if getSCType(scf,f ′) = NBN-BW-INF

∈ Z+ if getSCType(scf,f ′) ∈ {NBN-BW-F,BN-BW-F}

Definition 6. Data Channel

Data channels can have different semantics. A data channel dcf,f ′ ∈ DCf,f ′ has either a Non-

Blocking Write - Non-Blocking Read (NBW-NBR), Non-Blocking Write - Blocking Read (NBW-BR), or

Blocking Write - Blocking Read (BW-BR) type and a buffer size (which can be infinite).

DCType = {NBW-NBR,NBW-BR,BW-BR}

70

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

Sender function f of NBW-NBR channels can always write without any constraint and the receiver

function f ′ can always read without any constraint. The buffer size in this case is infinite. In case of

NBW-BR channels, the sender function f can always write (the buffer size is infinite) but the receiver

function f ′ can read only if the buffer contains enough data.

Last, for BW-BR data channels, the sender function f can write only until the buffer is full (buffer of

finite size) while the receiver function f ′ can read only if the buffer contains enough data. The functions

getDCType and getDataBufferSize take as argument a data channel and return the corresponding data

channel semantic (DCType) and buffer size respectively.

getDCType : DCf,f ′ → DCType

getDataBufferSize(dcf,f ′)


=∞ if getDCType(dcf,f ′) ∈ { NBW-NBR,NBW-BR}

∈ Z+ if getDCType(dcf,f ′) = BW-BR

Definition 7. Function

A function f ∈ F is defined by a finite set of variables and a behavior.

f = 〈{v1,f , v2,f , . . . , vn,f}, Bf 〉

Definition 8. Function Behavior

A behavior Bf is defined by a finite set of operators Of , a set of loops Lf and a set of control flow

connections Cf between operators.

Bf = 〈Of = {o1, o2, . . . , on}, Lf , Cf ⊂ {(oi, oj) ∈ O
2
f | i 6= j}〉

71

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

Definition 9. Set of All Operators

We denote by Om the set of all operators that are used by all functions in an application model.

Om =
⋃
f∈F

Of

Definition 10. Dependencies Between Operators

For any model operators o1 and o2, o1o2 denotes that o2 depends on o1. The set of dependencies

in a model m is denoted as Dm. {synChDep, dataChDep, controlFlowDep} is a classification but not

necessarily a partitioning of Dm as in some case a dependency can belong to several sets.

synChDep (Definition 18) and dataChDep (Definition 19) subsets relate to communication depen-

dencies and controlFlowDep (Definition 14) subset relates to control flow dependencies.

Definition 11. Model Dependency Path

A dependency path is a sequence of dependencies such that for each two consecutive dependencies

on a dependency path the last operator of the first dependency is the same operator as the first element

of the second dependency. A dependency path between two operators o1 and o2 in a model is denoted

as −−→o1o2. The first operator of the first dependency on −−→o1o2 is o1 and the second operator of the last

dependency is o2. The set of all dependency paths between o1 and o2 are denoted as DP−−→o1o2 .

Definition 12. Operators in a Dependency Path

We say an operator o is in a dependency path −−→o1o2 if and only if there exists at least one dependency

in the path that contains o. We define the function inPath that takes as an argument an operator o and

a dependency path and returns true if and only if there exists at least one dependency in the dependency

path such that one of its components is o. Formally,

inPath(o,−−→o1o2) =


true if ∃oioj ∈

−−→
o1o2 | oi = o ∨ oj = o

false otherwise

Definition 13. Control Flow Connections

A control flow connection c = (oi, oj) ∈ Cf specifies a mono directional from oi to oj

72

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

Function getNext(o) returns a set containing all the operators to which operator o is connected by

a control flow connection. For instance, if we have only the following control flow connection (o, oi) in

Cf then getNext(o)= {oi}. Formally,

getNext(o) = {oi | (o, oi) ∈ Cf}

A control flow connection c ∈ Cf has a guard which is a boolean expression.

Definition 14. Control Flow Dependency (controlFlowDep)

In the application model, we say a control flow dependency o1o2 exists between two operators o1
and o2 if there exists a control flow connection between these two operators. Formally,

∀f ∈ F, ∀o1, o2 ∈ O2
f ,

(o1, o2) ∈ Cf ⇐⇒ o1o2 ∈ controlFlowDep

Definition 15. Operator

An operator o∈ Of has a category.

cat(o) ∈
{
Start, Stop,Choice,Merge, IntOp, Set,WriteData,ReadData,Notify,Wait

}
.

A function getF takes as an input a model m and an operator o and returns the unique function f

to which operator o belongs. Formally,

getF (m, o) = f | o ∈ Of

We use the notation Of,n to denote the set of all operators in Of whose category is n. When the

category of an operator is n we say "n operator". For example, an operator with the Start category is

referred to as "Start operator".

• Start: represents the initial operator of a function. A Start operator must have exactly one next

operator.

73

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

• Stop: represents the end of the execution of a function. A Stop operator has no next operator.

• Choice: has at least one next operator. Only one control flow among the ones with a guard equal

to true can be selected by an execution engine. If no guard of the output control flow connections

evaluate to true, then the choice operator blocks. The choice operator is the only category that

can have more than one next operator.

• Merge: the merge operator makes it possible for several operators o1 to on to have the same next.

So the merge operator is the only one that can have several previous operators. It has exactly one

next.

• IntOp: specifies the complexity of an algorithm. An IntOp operator has exactly one next. An

important attribute of an IntOp operator is its complexity. A complexity attribute specifies the

number of low level operations, e.g., operations on integers, of an algorithm. If an algorithm has

several execution branches, the IntOp operator can be combined with a Choice operator to model

the duration of the different branches. The function getComplexity takes as an argument an IntOp

operator and returns the complexity attribute. So,

getComplexity : Of,IntOp → Z+

• Set: sets a new value to a variable. A Set operator has exactly one next.

• WriteData: specifies an amount of data to be written into a data channel. A WriteData operator

has exactly one next. The quantity of data to write is specified in a size attribute. Functions

getDataCh and getDataSize take as an argument a WriteData operator and return the data channel

and size attributes respectively.

• ReadData: specifies an amount of data to be read from a data channel. A ReadData operator has

exactly one next. Functions getDataCh and getDataSize defined for WriteData operators are also

defined in the same way for ReadData operators. Formally,

getDataCh : Of,WriteData ∪Of,ReadData → DC

74

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

getDataSize : Of,WriteData ∪Of,ReadData → Z+

• Notify: specifies the sending of a synchronization message through a synchronization channel. A

Notify operator has exactly one next. The function getSyncCh takes as and argument a Notify

operator and returns the synchronization channel.

• Wait: specifies the receiving of a synchronization message through a synchronization channel. A

Wait operator has exactly one next. The function getSyncCh defined before can be applied to

Wait operators to retrieve the synchronization channel.

getSyncCh : Of,Notify ∪Of,Wait → SC

Definition 16. Fixed size Loop

We call a loop a 5-tuple 〈om, oc, os, v, nbr〉 where om, oc and os are a Merge operator, a Choice

operator and a Set operator respectively all belonging to the same function, v is the variable used in the

loop and nbr is the number of loop iterations (Figure 4.2).

Properties on a loop 〈om, oc, os, v, nbr〉 :

• The function getNext(om)={oc} i.e., there is a control flow connection between the Merge operator

and the Choice operator.

• The Choice operator has at least one dependency path to the Merge operator.

• The function getNext(os)={om} i.e., there is a control flow connection between the Set operator

and the Merge operator.

• The Choice operator must have at least 1 next which is the body of the loop and at most 2 next:

one the body of the loop and one the loop exit.

• All operators of the body of the loop must have dependency paths to the Merge operator

• All the dependency paths starting from operators in the body of the loop must lead to os

• All paths from the Choice operator to the Merge operator represent the inner body of a loop.

75

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

oc

om

ooutsideloop

v<nbrv⩾nbr

v=v+1
o10,Set

L1

L1

L1

oinside loop

Figure 4.2: Graphical representation of a loop

• All paths from the Choice operator that do not lead to the Merge operator are considered as the

behavior that should be executed after the loop.

• om, oc and os can belong to only one loop.

• The Merge operator can not be used inside a loop iteration to exit a loop.

• Loop iteration: The loop must iterate for a given number of iterations nbr that is given by one

variable v. The variable is used in the Choice operator guard to determine the number of the

loop iterations and in the Set operator to count the possible number of iterations of a loop. This

variable can not be modified outside of the loop. This variable is only modified in the Set operator

where it is incremented by one.

Outside a loop a Choice, Merge and Set operators can be used as desired. To make it easier to identify

the Choice, Merge and Set operators used to create a loop, we tag them with identifiers. Figure 4.3

shows an example of a loop that iterates 2 times.

To know if an operator o belongs to the iteration of loop 〈om, oc, os, v, nbr〉, function insideLoop is

used. Formally,

insideLoop(o, 〈om, oc, os, v, nbr〉) =


true if inPath(o,−−−→ocom)

false otherwise

76

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

f1

o6,IntOP

o16,Stop

o8,Choice

o7,Merge

o15,IntOP o9,IntOP

 3

v2<2v2⩾2

Legend

oid,cat

fid
Function Behavior

Control flow

Operator

Function

oid Complexity

Variable

 Set

Function

Variable

 2

 1

v2=0

v2=v2+1

o5,Start

o10,Set

L1

L1

L1

L Loop Identifier

Figure 4.3: Graphical representation of a loop that iterates 2 times

To retrieve the first operator inside the loop iteration and the first operator of the loop exit, functions

getInsideLoopand getOutsideLoop are used respectively. Formally,

getInsideLoop(〈om, oc, os, v, nbr〉) = o | o ∈ getNext(oc) ∧ insideLoop(o, 〈om, oc, os, v, nbr〉)

getOutsideLoop(〈om, oc, os, v, nbr〉) = o | o ∈ getNext(oc) ∧ ¬insideLoop(o, 〈om, oc, os, v, nbr〉)

To know if a Choice operator oc is used to create a loop, we use function loopChoice(oc). Formally,

isLoopChoice(oc) =


true if cat(oc) = Choice ∧ 〈om, oc, os, v, nbr〉 ∈ Lf

false otherwise

Property 1. Control Flow Connection Constraint. There can be no loop without a Choice, a Merge

and a Set operator. So, there should be no loop for a Merge operator which is not part of a loop. In

other words, there can be no dependency path from a Merge operator to itself if the Merge is not a part

of a loop. Thus, when there is a control flow connection between two operators (oi, oj) ∈ Cf then,

(oj , oi) /∈ Cf .

77

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

Property 2. Restriction on Of . The set of operators Of must contain one and only one operator whose

category is Start. This operator represents the first operator to be executed by function f and is denoted

by Stf . So,

Of,Start = {Stf}

Definition 17. Execution Flow

An execution flow of a function f is denoted as ef . ef is a sequence of operators o in Of starting

with a Start operator such that there is a control flow connection in Cf between any pair of adjacent

operators in ef from the first operator of the pair to the second.

Property 3. Well-Formed Function. For each o ∈ Of , there must exist at least one execution flow

containing o.

Definition 18. Synchronization Channel Dependency (synChDep)

In an application model, if there exists a synchronization channel sc between function f1 and function

f2, for all operators oi of f1 such that oi sends synchronization messages on sc and for all operators

oj of f2 such that oj receives synchronization messages from sc, then oioj is a synchronization channel

dependency. Formally,

∀f1, f2 ∈ F 2,∀oi ∈ Of1 ,∀oj ∈ Of2 ,

cat(oi) = Notify ∧ cat(oj) = Wait ∧ getSyncCh(oi) = getSyncCh(oj) ⇐⇒

o1o2 ∈ synChDep

Definition 19. Data Channel Dependency (dataChDep)

In an application model, if there exists a data channel dc between two functions f1 and f2, for all

operators oi of f1 such that oi writes on dc and for all operators oj of f2 such that oj reads data from

78

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

f2

o11,Wait

f1

o8,WriteData

o7,Notify

sc5

o6,Start o10,Start

o13,WriteData

o9,Stop

dc4

o15,Stop

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Synchronization
channel

Data channel

oid corresponding
data ch.

oid corresponding
Synchronization ch.

oid Complexity

oid Data Amount

dc41

dc31

sc5sc5

dc3

o12,ReadData

dc41

o14,ReadData

dc31

Figure 4.4: Application model where classification of dependencies is not a partitioning of Dm

dc, then oioj is a data channel dependency.

∀f1, f2 ∈ F 2,∀oi ∈ Of1 ,∀oj ∈ Of2 ,

cat(oi) = WriteData ∧ cat(oj) = ReadData ∧ getDataCh(oi) = getDataCh(oj) ⇐⇒

o1o2 ∈ dataChDep

Figure 4.4 shows a graphical representation of an Application model. Figure 4.4 represents two

functions f1 and f2 along with two data channels dc3 and dc4 and a synchronization channel sc5.

In addition, Figure 4.4 shows the behavior of each function beneath its name where an operator is

represented together with its id and category, and a control flow connection is represented by a directed

arrow between two operators.

In Figure 4.4, operator o7 sends synchronization messages on sc5 and operator o11 receives synchro-

nization messages from sc. Thus, o7o11 is a synchronization channel dependency.

In the same application model, operator o8 writes data on dc4 and operator o12 reads data from dc4.

Thus, o8o12 is a data channel dependency.

Moreover in this application model, there exists several control flow dependencies between operators.

For example, o6o7, o7o8 and o8o9 are control flow dependencies in f1.

79

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

As mentioned previously, a dependency can belong to several sets as the case for the dependency

o13o14 in Figure 4.4. As a control flow connection exists between these two operators, o13o14 belongs

to control flow dependencies subset. However, operator o13 writes data on dc3 and operator o14 reads

data from dc3. Thus, o13o14 also belongs to the data channel dependencies subset.

4.3.2 Platform

Definition 20. Platform Model

A platform model P is defined with a set of hardware components H and a set of links L.

P = 〈H,L〉

Definition 21. Hardware Component

A hardware component represents the physical electronic component plus its support software, e.g.,

an operating system for a processor. We consider three categories of hardware components: execution,

communication and storage. A hardware component having execution, communication or storage cate-

gory belongs to HE , HC or HS sub sets respectively. More Formally, {HE ,HC ,HS} is a partitioning

of H. For a hardware component in HE , a function getIntCyc takes as argument an execution category

hardware component and returns the number of clock cycles corresponding to one integer operation.

getIntCyc : HE → Z+

For a hardware component h, a function getByteNbr takes as argument a hardware component and

returns the size of data (in bytes) that can be handled in one clock cycle.

getByteNbr : H → Z

Definition 22. Links

A Link can be seen as an interface between two hardware components, with at least one of them

80

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

being a communication hardware component. The set of all Links is a set of couples defined as,

L ⊆ HC ×H ∪H×HC

Definition 23. Communication Path

A communication path cP in a platform model P is a couple:

cP = 〈πw, πr〉

where πw is a write path and πr is a read path. Additionally, CP denotes the set of all communication

paths.

Definition 24. Write Path

A write path πw is a sequence of hardware components linked together starting with an execution

category hardware component and ending with a storage category hardware component.

πw = 〈h1, . . . , hm〉s.t.∀1 ≤ i ≤ m− 1, (hi, hi+1) ∈ L, h1 ∈ HE , hm ∈ HS , h2≤j≤m−1 ∈ HC

Definition 25. Read Path

A read path πr is a sequence of hardware components linked together starting with a storage category

hardware component and ending with an execution category hardware component.

πr = 〈h1, . . . , hn〉s.t.∀1 ≤ i ≤ n− 1, (hi, hi+1) ∈ L, h1 ∈ HS , hn ∈ HE , h2≤j≤n−1 ∈ HC

Property 4. Restriction on Communication Path.

A communication path cP = 〈πw, πr〉 is valid if and only if its write and read paths πw and πr have

the same storage category hardware component.

81

CHAPTER 4. PROBLEM FORMALIZATION 4.3. SYSTEM MODEL FORMAL DEFINITION

4.3.3 Allocation

Definition 26. Allocation

Functions are meant to be allocated to hardware components to be executed and to communicate.

We call "allocation" the function that maps functions and data channels in F to hardware resources in

P . Functions are allocated to hardware components in HE while each data channel dc must be allocated

to a cP ∈ CP . Synchronization channels are not allocated since we assume that their traffic on buses

and memories can be neglected with regards to the one of data channels.

Formally, allocation A is a 2-uple with two functions −→Af and −−→Adc.

A = 〈−→Af ,
−−→
Adc〉

The first function −→Af associates to each function f ∈ F a hardware component h ∈ HE .

−→
Af : F → HE

The second function −→Adc associates to each data channel dc ∈ DC a communication path cP ∈ CP .

−−→
Adc : DC → CP

Property 5. Allocation Restriction.

Let us consider two functions f1 and f2 belonging to F . Let us assume that −→Af (f1) = h1 and
−→
Af (f2) = h2. Let us also assume a data channel dcf1,f2 ∈ DC between f1 and f2. dcf1,f2 can be

allocated to a communication path cP = 〈πw, πr〉 if and only if the execution hardware component of

πw is h1 and the execution hardware component of πr is h2.

4.3.4 Example 1

Let us consider a HW/SW Partitioning Model m. Figure 4.5 shows a graphical representation of the

application model. Figure 4.5 represents five functions f1, f2, f3, f4 and f5 along with two data

channels dc6 and dc7 and a synchronization channel sc8. In addition, Figure 4.5 shows the behavior of

82

4.3. SYSTEM MODEL FORMAL DEFINITION CHAPTER 4. PROBLEM FORMALIZATION

f1

o10,Start

o12,IntOP

o11,WriteData

o13,Stop

o39,IntOP

o22,WriteData

f4

o35,Notify

o17,Choice

f3

o31,ReadData

o26,Choice

o28,IntOP

o29,Merge

o30,IntOP

o27,IntOP

f5

o38,Wait

o40,Stop

dc6 dc7 sc8

f2

o14,Start o25,Start o33,Start o37,Start

o36,Stop

o32,Stop

o24,Stop

o16,ReadData

o15,IntOP

o18,IntOP o19,IntOP

o20,Merge

o21,IntOP

o23,IntOP

o34,IntOP

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Synchronization
channel

Data channel

4 dc6

4

10

4 dc6

15 13

14

4

17 12

2

2

5

50

2 dc7

dc7

sc8

sc8

oid corresponding
data ch.

oid
 corresponding

Synchronization ch.

oid Complexity

oid Data Amount

Figure 4.5: Graphical representation of the Application model of Example 1

each function beneath its name. In Figure 4.5, assuming that o11 writes and o16 reads from dc6 and

o22 writes and o32 reads from to dc7, there are two dependency paths between o11 and o31,
−−−−→
o11o31

1

and
−−−−→
o11o31

2
.

−−−−→
o11o31

1
=o11o16, o16o17, o17o18, o18o20, o20o21, o21o22, o22o31

−−−−→
o11o31

2
=o11o16, o16o17, o17o19, o19o20, o20o21, o21o22, o22o31

Figure 4.6 displays three execution hardware components h41, h42 and h43, a communication hard-

ware components h44 and a storage hardware components h45. Figure 4.6 shows a possible allocation

of the application model given in Figure 4.5. In this allocation, functions f1 and f2 are allocated to

h41, function f3 to h42 and functions f4 and f5 to h41. Instead of allocating as in our mathematical

definitions data channels to cP , in this graphical representation, to simplify, we have simply allocated

the data channels to all the hardware components that are part of the read and write path of the cP
apart from the execution category components. So, data channels dc6 and dc7 are allocated to h44 and

83

CHAPTER 4. PROBLEM FORMALIZATION 4.4. MODEL EXECUTIONAL SEMANTICS

h41 h42 h43

h44 h45

f1 f3f2 f4 f5

dc6 dc7 dc6 dc7

Legend

hid Hardware
component
Allocation

l46

l47 l48

l49

SlaveLinkid
Master

Figure 4.6: Graphical representation of a possible allocation for the application model given in Figure 4.5

h45 of a cP .

4.4 Model Executional Semantics

An execution engine can provide HW/SW partitioning models with an operational semantics so as to

make them executable either directly from the model or by generating an intermediate code from the

model.

Definition 27. System Execution

System executions are characterized by a function EXEC that takes as an input a HW/SW parti-

tioning model m and a time τ and returns a set of execution traces. Let M be the set of all system

models and EM be the set of all possible execution traces of models in M , formally,

EXEC : M × Z+ →P(EM)

Property 6. System execution Constraints.

Function EXEC must fulfill with the following constraints so we can analyze the execution trace:

• it must respect the operators dependencies including synChDep, dataChDep, and controlFlowDep.

• it must respect the number of iterations in loops

• it must comply with the communication channel semantics. In the scope of this thesis, we can

analyze execution traces that have used Non-Blocking Notify - Blocking Wait Infinite FIFO (NBN-

BW-INF) and Blocking Notify - Blocking Wait Finite FIFO (BN-BW-F) synchronization channels.

84

4.4. MODEL EXECUTIONAL SEMANTICS CHAPTER 4. PROBLEM FORMALIZATION

Data channel semantics are handled. Supporting other synchronization channels semantics is part

of the future work.

• it must respect that only one operator at a time can be executed on one given hardware component.

So, only one operator can be executed at a time on any execution category hardware component

and only one transfer of a function can be done at a time on any communication or storage category

hardware component.

• if a read or write path of a communication path has hardware components with different data sizes,

the throughput is constrained by the hardware component having the minimum of the data size

along the path.

As soon as the execution trace conforms with these constraints it can be analyzed in the PLAN

approach.

Definition 28. Execution Trace

An execution of a HW/SW partitioning model for a time interval [0, τ] returns an execution trace

x = {t1, . . . , tk} where each ti is an execution transaction. Transactions in an execution trace are

ordered. The ordering is based on a unique sequence number assigned to each transaction. Listing 4.1

gives the XML description of one possible execution trace for the model of Figure 4.6 and for the time

interval [0, 50]. The id field corresponds to the operator identifier in the model of Figure 4.5.

In our examples, in addition to the system execution constraints, we assume that the execution time

of Start, Stop, Choice, Merge and Set operators is negligible with respect to ReadData, WriteData and

IntOp operators. Thus,they take no time to execute.

Definition 29. Execution Transaction

An execution transaction t represents the execution of an operator ot on a hardware component ht.

A transaction has a sequence number seqt, a start time τ ts and an end time τ te ≥ τ ts. Formally,

t = 〈seqt, τ ts, τ te, ht, ot〉

All transactions in an execution trace are assumed to be ordered according to their sequence number.

85

CHAPTER 4. PROBLEM FORMALIZATION 4.4. MODEL EXECUTIONAL SEMANTICS

Listing 4.1: Execution Trace Shown in XML format of a HW/SW Partitioning Model
<tran seq= "1" starttime="0" endtime="0" hc="43" id="33" />
<tran seq= "2" starttime="0" endtime="0" hc="41" id="14" />
<tran seq= "3" starttime="0" endtime="0" hc="42" id="25" />
<tran seq= "4" starttime="0" endtime="0" hc="42" id="26" />
<tran seq= "5" starttime="0" endtime="5" hc="43" id="34" />
<tran seq= "6" starttime="0" endtime="10" hc="41" id="15" />
<tran seq= "7" starttime="0" endtime="17" hc="42" id="27" />
<tran seq= "8" starttime="5" endtime="6" hc="43" id="35" />
<tran seq= "9" starttime="6" endtime="6" hc="43" id="36" />
<tran seq= "10" starttime="6" endtime="6" hc="43" id="37" />
<tran seq= "11" starttime="6" endtime="7" hc="43" id="38" />
<tran seq= "12" starttime="7" endtime="57" hc="43" id="39" />
<tran seq= "13" starttime="10" endtime="10" hc="41" id="10" />
<tran seq= "14" starttime="10" endtime="11" hc="41" id="11" />
<tran seq= "15" starttime="10" endtime="11" hc="44" id="11" />
<tran seq= "16" starttime="10" endtime="11" hc="45" id="11" />
<tran seq= "17" starttime="11" endtime="15" hc="41" id="12" />
<tran seq= "18" starttime="15" endtime="15" hc="41" id="13" />
<tran seq= "19" starttime="15" endtime="16" hc="45" id="16" />
<tran seq= "20" starttime="15" endtime="16" hc="44" id="16" />
<tran seq= "21" starttime="15" endtime="16" hc="41" id="16" />
<tran seq= "22" starttime="16" endtime="16" hc="41" id="17" />
<tran seq= "23" starttime="16" endtime="31" hc="41" id="18" />
<tran seq= "24" starttime="17" endtime="17" hc="42" id="29" />
<tran seq= "25" starttime="17" endtime="19" hc="42" id="30" />
<tran seq= "26" starttime="31" endtime="31" hc="41" id="20" />
<tran seq= "27" starttime="31" endtime="45" hc="41" id="21" />
<tran seq= "28" starttime="45" endtime="46" hc="41" id="22" />
<tran seq= "29" starttime="45" endtime="46" hc="44" id="22" />
<tran seq= "30" starttime="45" endtime="46" hc="45" id="22" />
<tran seq= "31" starttime="46" endtime="47" hc="45" id="31" />
<tran seq= "32" starttime="46" endtime="47" hc="44" id="31" />
<tran seq= "33" starttime="46" endtime="47" hc="42" id="31" />
<tran seq= "34" starttime="46" endtime="50" hc="41" id="23" />
<tran seq= "35" starttime="47" endtime="47" hc="42" id="32" />
<tran seq= "36" starttime="50" endtime="50" hc="41" id="24" />
<tran seq= "37" starttime="57" endtime="57" hc="43" id="40" />

86

4.4. MODEL EXECUTIONAL SEMANTICS CHAPTER 4. PROBLEM FORMALIZATION

The order defined by seq is strict and total on x. Yet, the execution engine must ensure that this ordering

respects the following properties.

• A transaction t1 must always be before any transaction with a higher start time

• Two transactions having the same start time must be ordered according to their end time

A transaction can have the same start time τ ts and end time τ te.

Definition 30. ith Occurrence of an Operator o in x

To retrieve all the transactions corresponding to a specific operator in an execution trace, a function

AllTransWithOp takes as an input an execution trace and an operator and returns a set of transactions.

The latter set of transactions contains all the transactions of operator o. Formally,

AllTransWithOp(x, o) = {t ∈ x | ot = o}

As we have provided the transactions with an order in the execution trace, it is clear to speak about this

occurrence of the operator in the execution trace. So, the meaning of the first occurrence of o in x is

well defined. We denote by txo,i the transaction of the ith occurrence of operator o in an execution trace

x. For simplicity txo,i is abbreviated as to,i.

Table 4.1 represents the transactions of Listing 4.1 for the model of Figure 4.6. They are classified

by hardware component and ordered by ids. The transactions executed on h45 and the transactions of

Start, Stop, Choice, Merge and Set operators are not shown in Table 4.1.

Table 4.1: Execution trace in tabular format

hc 41 43 42 44
seq 6 14 17 21 23 27 28 34 5 8 11 12 7 25 33 15 20 29 32
id 15 11 12 16 18 21 22 23 34 35 38 39 27 30 31 11 16 22 31

starttime 0 10 11 15 16 31 45 46 0 5 6 7 0 17 46 10 15 45 46
endtime 10 11 15 16 31 45 46 50 5 6 7 57 17 19 47 11 16 46 47

Operators have transactions related to the execution hardware on which they are allocated. Yet, in

the case of WriteData and ReadData operators, they additionally have transactions on the elements on

the communication path on which their data channel is allocated to. Thus, in Table 4.1, the WriteData

87

CHAPTER 4. PROBLEM FORMALIZATION 4.5. REQUIREMENT ON MODEL EXECUTION

operator o11 has two transactions. One transaction on the execution hardware component h41 and one

transaction on the communication hardware component h44. The latter transaction on h44 corresponds

to writing data on data channel dc6.

Moreover, since the data size of the elements of the communication path might not be equal to the

size to be written/read by the operator, a write/read operation may result in different transactions. For

example, let us assume a WriteData operator ow having size attribute equal to 10 writing data to a

data channel dc that is allocated to a communication path cP . Let hc be a communication hardware

component on the write path of cP . Let hc be the component with the lowest data size along cP

where the function getByteNbr(hc) returns 7. So, instead of one transaction for this operator e.g.,

〈0, 10, hc, ow〉 on the communication hardware component, several transactions are represented in an

execution trace e.g., 〈0, 7, hc, ow〉 and 〈7, 10, hc, ow〉.

4.5 Requirement on Model Execution

Generally, a requirement expresses a property on the system. Usually, it is a goal or an anti-goal that the

system must satisfy. Requirements are expected to be true for all possible execution traces.

Definition 31. Maximum Latency Requirement

Latency requirements specify timing constraints on the execution of a system. A maximum latency

requirement r specifies a maximum delay between elements of execution traces. Often, a maximum

latency requirement is expressed as "The maximum latency between oA and oB should be less than

maximum Latency λmax". Formally, a maximum latency requirement is denoted as:

r = 〈oA, oB , λmax〉

Obviously, since r refers to model elements, operators oA and oB must belong to the behaviors of

functions in the application model. In other word, there must exist functions in the application model in

which oA and oB are defined.

The set of all requirements of a HW/SW partitioning model (Definition 2) is denoted as R.

88

4.6. CONCLUSION CHAPTER 4. PROBLEM FORMALIZATION

4.6 Conclusion

This chapter described a HW/SW partitioning model, an execution trace and a maximum latency re-

quirement.

The next chapter defines a more precise requirement and presents the relevant ETA technique that

is used to classify transactions in case the requirement is not valid. The categories we use to classify

transactions in an execution trace are defined in Chapter 5

89

Chapter 5

Primitive Precise Latency Analysis Approach

“If we want to solve problems effectively...we must keep in mind not only many features but

also the influences among them.”

- Dietrich Dorner, The Logic of Failure: Recognizing and Avoiding Error in Complex Situa-

tions

PLAN approach runs the ETA algorithm when a maximum latency requirement (Definition 31) is not

satisfied. The ETA algorithm classifies all transactions of an execution trace based on the impact they

have on the latency between the two operators of a requirement as to be discussed in Section 5.1.4.

Definition 31 gives the requirement definition as it is usually defined by designers for periodic or

pseudo periodic applications.

More precisely, we assume in this chapter that in the execution trace we have a unique execution of

oA and a unique execution of oB such that the occurrence of oB corresponds to the occurrence of oA.

So, in this chapter, a maximum latency requirement can be explicitly defined as "The latency between

the first occurrence of operator oA and the first occurrence of operator oB should be less than maximum

Latency λmax".

Definition 32. Maximum Latency Requirement Validation

To check if a requirement is satisfied or not in a given trace, function RV takes as inputs a system

model, an execution trace and a maximum latency requirement and returns true or false. A maximum

90

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

latency requirement is validated if and only if the difference between τ
toB,1
e and τ

toA,1
s is less than

λmax.1 Formally,

RV
(
m,x, 〈oA, oB , λmax〉

)
=


true if τ

toB,1
e − τ

toA,1
s ≤ λmax

false otherwise

Let us assume a maximum latency requirement r = 〈o11, o31, 35〉 on the execution trace of Listing 4.1.

According to Listing 4.1,

τ
t
o31,1
e − τ

t
o11,1
s = 47− 10 = 37

As 37 > 35 then RV (m,x, 〈o11, o31, 35〉
)

= false.

The ETA technique that follows intends to determine the reasons of a maximum latency requirement

violation. The maximum latency requirement is an implicit parameter for the next definitions in this

chapter.

5.1 Execution Trace Analysis

In this section we assume that it has been established whether or not a requirement is satisfied for a

given execution trace. When a requirement is not satisfied, ETA classifies transactions in order to help

understanding the root causes of the nonsatisfaction.

In this section, m = 〈F ,P ,A〉 denotes a model, r = 〈oA, oB , λmax〉 denotes a requirement on m

and x is an execution trace of m computed by an execution engine.

5.1.1 Causality between operators: an Example

Section 4.3.1 has defined dependencies between operators. These dependencies enforce the causality

that the execution engine must satisfy. In an execution trace, the hardware is already referenced in

a transaction but not the dependencies between operators. The execution engine cares with hardware

aspects as it executes operators where they have been allocated. To understand the extra delays that could
1It could have been different. If it was to be changed we have to reconsider further definitions.

91

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

o3,Choice

o1,Start

o2,Merge

Legend

oid,cat

Control flow

Operator

o6,ReadData o4,IntOP

o5,Stopo7,IntOP

o8,WriteData

o9,Set

L Loop Identifier

L1

L1

L1

Figure 5.1: Graphical representation of a function behavior to illustrate causality between operator

have been in the execution trace we need to come back to the HW/SW partitioning model for analyzing

these transactions. However, a HW/SW partitioning model could be much complex than the examples

we have shown before. So, we have decided to consider an abstract view of the HW/SW partitioning

model considering only the necessary aspects for the analysis which are the operators dependencies.

Our analysis considers only dependencies between operators assuming all other dependencies have

been taken in charge by the execution engine.

Now we are going to use an example to illustrate how this causality constraints contribute to the

execution order in case of a loop.

A graphical representation in Figure 5.1 shows a function behavior. In Figure 5.1, the behavior starts

with a Start operator connected by a control flow connection to a Merge operator. This Merge operator

is connected to a Choice operator forming a loop along the Set operator. On the loop exit there is an

IntOp operator o4. It is then connected to a Stop operator. Inside the loop iteration there is a ReadData

operator, an IntOp operator o7, a WriteData operator and a Set operator.

The execution of a HW/SW partitioning model has to respect the control flow constraints given by

the behavior of the different functions. If we assume that we have a HW/SW partitioning model m in

which function f whose behavior model is depicted in Figure 5.1 has been allocated to an execution

92

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

hardware component in m, then, a possible execution trace of m may contain the following transactions

to6,1, to7,1, to8,1 , to9,1, to2,1, to3,1 and to6,2. The transactions correspond to the ReadData, IntOp

o7, WriteData, Set, Merge ,Choice and ReadData operator respectively. So, in this execution trace,

ReadData operator was executed both before and after the WriteData operator. So, causality constraints

are one aspect to understand the relation between transactions.

5.1.2 Valid Execution Trace

Definition 33. Valid Execution Traces

We denote by EV the set of all valid execution traces that can be analyzed only if they satisfy

Hypothesis 1 and Hypothesis 2 given below. This means that EV is the set of execution traces on which

the analysis technique can be applied. Formally, EV ⊂ Em where Em is the set of all possible execution

traces of a model m.

An execution trace is said to be valid for the analysis techniques if it respects Hypothesis 1 and

Hypothesis 2. The reasons of these assumptions will be progressively explained. Chapter 6 enhances this

first analysis to address these hypotheses.

Hypothesis 1. Occurrence of Operators.

In the scope of this thesis, we care with operators which depend on each other. In other words,

we assume that the two operators of a specified maximum latency requirement are dependent since the

latency between 2 independent operators has no meaning. So, there must exist at least one dependency

path between operator oA and operator oB .

For an execution trace to be valid in the analysis technique introduced in this section, it must have

the following properties:

1. the execution trace must contain one transaction corresponding to operator oA and one transaction

corresponding to operator oB

2. a dependency path between oA and oB must have been selected by the execution engine and

executed. So, operator oB execution must be encountered in the execution trace after all the

operators in the selected the dependency path are executed. An execution trace having a transaction

93

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

toB ,1 without having transactions corresponding to all operators of at least one dependency path

between operator oA and operator oB is considered invalid. The execution trace is considered

as invalid in this case since the execution of operator oB does not depend on the execution of

operator oA. Thus, the notation of latency is not relevant as the executed operators that are in

the dependency path between operator oA and operator oB are one of the main parameters to

classify transactions.

To have a clearly defined dependency path between oA and oB whose operators are executed before the

execution of oB , we add a hypothesis.

Let us consider a HW/SW Partitioning Model m whose application and allocation models are shown

in Figure 5.2 and Figure 5.3 respectively. In Figure 5.2, two functions f1 and f2 communicate through

2 data channels dc3 and dc4. Operator o13 writes data to data channel dc3 and operator o22 reads data

from data channel dc3. Operator o14 writes data to data channel dc4 and operator o23 reads data from

data channel dc4. In Figure 5.2, functions f1 and f2 are allocated to an execution hardware component

h40 and the data channels dc3 and dc4 are allocated to a communication hardware component h41 and

a storage hardware component h42.

Let a maximum latency requirement r = 〈o11, o27, 15〉 be a requirement on m. In this requirement,

we are interested in the timing delay between f1 sending data and f2 finishing to process data in operator

o27 after receiving them from f1. The dependency paths between the two operators of interest in r are:

−−−−→
o11o27

1
=o11o12, o12o13, o13o22, o22o24, o24o26, o26o27

−−−−→
o11o27

2
=o11o12, o12o14, o14o23, o23o25, o25o26, o26o27

A possible execution trace x of m is shown in Listing 5.1.

94

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

f1

o10,Start

o11,IntOP

o14,WriteData

o16,Stop

o27,IntOP

o19,Choice

dc3

f2

o17,Start

o28,Stop

o22,ReadData

o21,IntOP

o24,IntOP

o12,Choice

o13,WriteData

o15,Merge

o18,IntOP

o20,Choice

o23,ReadData

o25,IntOP

o26,Merge

dc4

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Synchronization
channel

Data channel

oid corresponding
data ch.

oid
 corresponding

Synchronization ch.

oid Complexity

oid Data Amount

 5

1 dc3 dc4

 4

10

10 10

 3

dc3 dc4

1

1 1

Figure 5.2: An Application model where oB execution does not necessary depend on oA execution

h40 h41 h42

f1 f2 dc3 dc4 dc3 dc4

Legend

hid
Hardware
component
Allocation

l45 l46

SlaveLinkid
Master

Figure 5.3: A possible allocation of the application model given in Figure 5.2

95

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

Listing 5.1: A possible execution trace shown in XML format of a HW/SW partitioning model whose

allocation model is shown in Figure 5.3

<tran seq= "1" starttime="0" endtime="0" hc="40" id="10" />

<tran seq= "2" starttime="0" endtime="5" hc="40" id="11" />

<tran seq= "3" starttime="5" endtime="5" hc="40" id="12" />

<tran seq= "4" starttime="5" endtime="6" hc="40" id="13" />

<tran seq= "5" starttime="5" endtime="6" hc="41" id="13" />

<tran seq= "6" starttime="5" endtime="6" hc="42" id="13" />

<tran seq= "7" starttime="6" endtime="6" hc="40" id="17" />

<tran seq= "8" starttime="6" endtime="10" hc="40" id="18" />

<tran seq= "9" starttime="10" endtime="10" hc="40" id="19" />

<tran seq= "10" starttime="10" endtime="20" hc="40" id="21" />

<tran seq= "11" starttime="20" endtime="20" hc="40" id="26" />

<tran seq= "12" starttime="20" endtime="23" hc="40" id="27" />

<tran seq= "13" starttime="23" endtime="23" hc="40" id="28" />

In Listing 5.1, operators o11, o12 and o13 of f1 are first executed and then are followed by operators

o18, o19, o21, o26 and o27 of function f2. So, there is no dependency path for which all operators were

executed. This implies that operator o27 was executed regardless of the execution of operator o11. So,

this trace is invalid.

Another possible execution trace x of m is shown in Listing 5.2.

96

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

Listing 5.2: Another possible execution trace shown in XML format of a HW/SW partitioning model

whose allocation model is shown in Figure 5.3

<tran seq= "1" starttime="0" endtime="0" hc="40" id="10" />

<tran seq= "2" starttime="0" endtime="5" hc="40" id="11" />

<tran seq= "3" starttime="5" endtime="5" hc="40" id="12" />

<tran seq= "4" starttime="5" endtime="6" hc="40" id="13" />

<tran seq= "5" starttime="5" endtime="6" hc="41" id="13" />

<tran seq= "6" starttime="5" endtime="6" hc="42" id="13" />

<tran seq= "7" starttime="5" endtime="6" hc="40" id="15" />

<tran seq= "8" starttime="5" endtime="6" hc="40" id="16" />

<tran seq= "9" starttime="6" endtime="6" hc="40" id="17" />

<tran seq= "10" starttime="6" endtime="10" hc="40" id="18" />

<tran seq= "11" starttime="10" endtime="10" hc="40" id="19" />

<tran seq= "12" starttime="10" endtime="10" hc="40" id="20" />

<tran seq= "13" starttime="10" endtime="11" hc="41" id="22" />

<tran seq= "14" starttime="10" endtime="11" hc="42" id="22" />

<tran seq= "15" starttime="10" endtime="11" hc="40" id="22" />

<tran seq= "16" starttime="11" endtime="21" hc="40" id="24" />

<tran seq= "17" starttime="21" endtime="21" hc="40" id="26" />

<tran seq= "18" starttime="21" endtime="24" hc="40" id="27" />

<tran seq= "19" starttime="24" endtime="24" hc="40" id="28" />

In Listing 5.2, operators o10, o11, o12, o13, o15 and o16 of f1 are first executed and then operators

o17, o18, o19, o20, o22, o24, o26 and o27 of function f2 are executed. So, the dependency path
−−−−→
o11o27

1

was executed. So, this trace is valid. In this case, RV (m,x, 〈o11, o27, 15〉
)

= false.

Let us define a sequence of operators included in an execution trace x, where opSeq(x) denotes

operator sequences “included” in x, i.e.

{〈o1, · · · , on〉 ∈ Onm | n ∈ N ∧ ∃{t1, · · · tn} ⊆ x such that

97

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

(∀i ∈ [1, n], oti = oi ∧ ∀i ∈ [1, n[seqti < seqti+1)}

In our example, opSeq(x) = 〈o11, o13, o18, o21, o27〉.

Moreover, for any dependency path p = o1o2, · · · , on−1on let us define 〈p〉 that denotes the se-

quence of operators of a dependency path 〈o1, · · · , on〉

An execution trace is considered valid if there is at least one sequence of operators of a dependency

path from oA to oB that belongs to the sequence of operators included in an execution trace x.

In our example, there exists two dependency paths
−−−−→
o11o27

1
and
−−−−→
o11o27

2
whose sequence of operators

are:

〈
−−−−→
o11o27

1
〉 = 〈o11, o12, o13, o22, o24, o26, o27〉

〈
−−−−→
o11o27

2
〉 = 〈o11, o12, o14, o23, o25, o26, o27〉

In Listing 5.1, neither 〈
−−−−→
o11o27

1
〉 /∈ opSeq(x) nor 〈

−−−−→
o11o27

2
〉 /∈ opSeq(x). So, the execution trace is

invalid. However in Listing 5.2,〈
−−−−→
o11o27

1
〉 ∈ opSeq(x). So, the execution trace is valid.

Formally, Hypothesis 1 is defined as:

x ∈ EV ⇒ ∃
−−−→oAoB ∈ DP−−−→oAoB

, 〈−−−→oAoB〉 ∈ opSeq(x)

Hypothesis 2. No interleaving between transactions of operators in the same dependency path.

To enforce a dependency path, two transactions corresponding to two consecutive operators in the

same dependency path must not overlap. That is the end time of the first transaction must be smaller

than the start time of the second one.

Thus, we assume that an execution trace is valid implies that transactions corresponding to operators

in the same dependency path are not interleaved.

Hypothesis 2 ensures that τ
toB,1
e − τ

toA,1
s is not negative. Hypothesis 2 enforce the Non-Blocking

98

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

f1

o10,Start

o12,IntOP

o11,WriteData

o13,Stop

o16,WriteData

f3

o19,ReadData

dc6 dc7

f2

o14,Start o18,Start

o20,Stop

o17,Stop

o15,ReadData

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.

oid Data Amount

32 dc6 4 dc6 4 dc7

16 dc7

oid
 corresponding

Synchronization ch.

 1

Figure 5.4: An Application model to illustrate interleaving between transactions of operators

h40 h41 h42

f1 dc6 dc6

Legend

hid Hardware
component
Allocation

Linklid

l46 l47

h43 h44

dc7 dc7
l48 l49h45

f2 f3

l50

Figure 5.5: A possible allocation of the application model given in Figure 5.4

Write - Non-Blocking Read (NBW-NBR) data channel semantics that we support in the analysis if the

read execute after the write.

Let us consider a HW/SW Partitioning model whose application and allocation models are shown in

Figure 5.4 and Figure 5.5 respectively. In Figure 5.4, two functions f1 and f2 communicate through a

data channel dc6. Operator o11 writes 32 bytes of data to data channel dc6. Operator o15 reads 4 bytes

of data from data channel dc6. Functions f2 and f3 communicate through a data channel dc7. Operator

o16 writes 16 bytes data to data channel dc7. Operator o19 reads 4 bytes of data from data channel

dc7. In Figure 5.5, function f1 is allocated to an execution hardware component h40 while functions f2

and f3 are allocated to an execution hardware component h45. The data channel dc6 is allocated to a

communication hardware component h41 whose data size is 32 bytes and a storage hardware component

h42. The data channel dc7 is allocated to a communication hardware component h43 whose data size

is 4 bytes and a storage hardware component h44. The data size of h40 is 32 bytes and that of h45 is

4 bytes.

Let us also assume a maximum latency requirement r = 〈o11, o19, 20〉. Operators o11 and o19 are

99

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

connected by one dependency path
−−−−→
o11o19. A possible execution trace is shown in Listing 5.3.

Listing 5.3: A possible execution trace shown in XML format of a HW/SW partitioning model whose

allocation model is shown in Figure 5.5

<tran seq= "1" starttime="0" endtime="0" hc="40" id="10" />

<tran seq= "2" starttime="0" endtime="0" hc="45" id="14" />

<tran seq= "3" starttime="0" endtime="1" hc="40" id="11" />

<tran seq= "4" starttime="0" endtime="1" hc="41" id="11" />

<tran seq= "5" starttime="0" endtime="1" hc="42" id="11" />

<tran seq= "6" starttime="1" endtime="2" hc="42" id="15" />

<tran seq= "7" starttime="1" endtime="2" hc="41" id="15" />

<tran seq= "8" starttime="1" endtime="2" hc="45" id="15" />

<tran seq= "9" starttime="1" endtime="2" hc="40" id="11" />

<tran seq= "10" starttime="2" endtime="3" hc="41" id="11" />

<tran seq= "11" starttime="2" endtime="3" hc="42" id="11" />

<tran seq= "12" starttime="2" endtime="3" hc="45" id="16" />

<tran seq= "13" starttime="2" endtime="3" hc="43" id="16" />

<tran seq= "14" starttime="2" endtime="3" hc="44" id="16" />

<tran seq= "15" starttime="3" endtime="3" hc="43" id="18" />

<tran seq= "16" starttime="3" endtime="4" hc="41" id="12" />

<tran seq= "17" starttime="3" endtime="4" hc="44" id="19" />

<tran seq= "18" starttime="3" endtime="4" hc="43" id="19" />

<tran seq= "19" starttime="3" endtime="4" hc="45" id="19" />

<tran seq= "20" starttime="4" endtime="4" hc="41" id="13" />

<tran seq= "21" starttime="4" endtime="4" hc="45" id="20" />

<tran seq= "22" starttime="4" endtime="5" hc="45" id="16" />

<tran seq= "23" starttime="4" endtime="5" hc="43" id="16" />

<tran seq= "24" starttime="4" endtime="5" hc="44" id="16" />

<tran seq= "25" starttime="5" endtime="6" hc="45" id="16" />

100

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

<tran seq= "26" starttime="5" endtime="6" hc="43" id="16" />

<tran seq= "27" starttime="5" endtime="6" hc="44" id="16" />

<tran seq= "28" starttime="6" endtime="7" hc="45" id="16" />

<tran seq= "29" starttime="6" endtime="7" hc="43" id="16" />

<tran seq= "30" starttime="6" endtime="7" hc="44" id="16" />

<tran seq= "31" starttime="7" endtime="7" hc="45" id="17" />

To validate the requirement, τ
t
o19,1
s and τ

t
o11,1
e are required. From the execution trace, the trans-

action corresponding to the first occurrence of o11 ended at cycle 1 and the transaction corresponding

to the first occurrence of o19 started at cycle 4. The transactions to16,2, to16,3 and to16,4 correspond

to an operator on the dependency path between o11 and o19 but these transactions started after to19,1
started.

Formally, Hypothesis 2 is defined as:

x ∈ EV ⇒

∀e ∈ DP−−−→oAoB
,∀oo′ ∈ e, cat(o) = WriteData, cat(o′) = ReadData, getDataCh(o) = getDataCh(o′),

getDCType(getDataCh(o)) = NBW-NBR, to, to′ ∈ x
2 ⇒ τ

to′
s > τ toe ∨ τ tos > τ

to′
e

Until the end of this chapter we always assume that Hypothesis 1 and Hypothesis 2 are fulfilled and

thus an execution trace x of a model m is always valid.

5.1.3 Read Write Dependencies Accuracy

To lesson the cases of transaction interleaving in an execution trace and in order to give data dependency

a more accurate representation, we introduce in this section a remodeling to a model m that contains

a read operator or reading data from a data channel where operator ow writes data to the same data

channel and operators or and ow have the different size attributes. Let us assume two functions f1 and

f2 as shown in Figure 5.6. These two functions communicate through a Blocking Write - Blocking

Read data channel d3. Operator o12 writes data to d3 and operator o15 reads data from d3. Let the

size attribute of o12 be 10 and that of o15 be 5. Among the dependencies in this application model

101

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

let us consider the dependency o12o15. So, operator o15 depends on operator o12. This dependency is

valid but not accurate when taking into account the size attribute of o12 and o15. In our example, o15

reads 5 size of data thus it only depends on o12 writing 5 size of data and not 10.

To have accurate dependencies in our model, for any read operator or reading data from a data

channel where operator ow writes data to the same data channel, operators or and ow must have the

same size. In other words, the read operator reading x data size must depend on a write operator writing

the same data size. To achieve this, we replicate in the model the operator with the greater size, assign

to its size attribute the difference between or and ow sizes and set the sizes of or and ow to the same

value (the minimum size among them). In our example, getDataSize(ow) > getDataSize(or). So, we

replicate operator ow. Let us refer to this new operator as o′w. The size of ow is updated to 5 to be

equal to or and the size of o′w is set to 5 since 10 − 5 = 5. Functions f1 and f2 in Figure 5.6 are

updated as shown in Figure 5.7.

While this replication is straight forward when there is one write operator and one read operator for

a data channel, extra computation is required when there is more than one ReadData operator and/or

more than one WriteData operator.

Let us consider the example in Figure 5.8. In this example, the data size of each read/write operator

is shown in Coral color beside it. Operators o13 and o15 write to data channel d3 and operators o19, o22

and o25 read from data channel d3. In this case, we order the operators in a list according to their data

size attribute starting with the smallest one. In our example: o25,o22,o15,o13,o19. We start by choosing

the operator with the smallest data size, o25 in this case. Since o25 is a read data operator and there

is no write data operator of the same size, we replicate all ReadData and WriteData operators of the

corresponding data channel to represent reading and writing this amount of data. Thus, the application

model in Figure 5.8 can be represented as shown in Figure 5.9. Repeating the same procedure for the

second operator in our list o22. Operator o22 had a data size equal to 4 at the start of our example and

now it has a data size of 3 followed by an operator o31 having a data size equals to 1. Operator o31 has

now the smallest data size and there is no write operator with the same data size. So, the application

model can be remodeled as in Figure 5.10. At this step, operator o15 has been remodeled with two

operators where the last perator o29 has a data size of 1 so it can not be further remodeled. Operators

102

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

f1

o10,Start

o11,IntOP

o12,WriteData

o13,Stop

d3

f2

o14,Start

o17,Stop

o15,ReadData

o16,IntOP

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.
oid Complexity

oid Data Amount

 5

10 d3

5 d3

 5

Figure 5.6: An Application model containing a ReadData and a WriteData operator with different size
attributes

103

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

f1

o10,Start

o11,IntOP

o12,WriteData

o18,WriteData

d3
f2

o14,Start

o17,Stop

o15,ReadData

o16,IntOP

o13,Stop

Legend

oid,cat
fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.
oid Complexity

oid Data Amount

 5

 5
5 d3

5 d3

5 d3

Figure 5.7: The remodeling of the Application model of Figure 5.6

f1

o10,Start

o11,IntOP

o14,Stop

o18,Choice

d3

f2

o17,Start

o21,Stop

o19,ReadData o22,ReadData

o24,Stop

o12,Choice

o13,WriteData o15,WriteData

o16,Stop

o25,ReadData

o27,Stop

o20,IntOP o23,IntOP o26,IntOP

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.
oid Complexity

oid Data Amount

 5

 5 5 57 d3 4 d3

7 d3 4 d3
3 d3

Figure 5.8: An Application model containing several operators with different size attributes

104

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

f1

o10,Start

o11,IntOP

o14,Stop

o18,Choice

d3

f2

o17,Start

o21,Stop

o19,ReadData o22,ReadData

o24,Stop

o12,Choice

o13,WriteData o15,WriteData

o16,Stop

o25,ReadData

o27,Stopo20,IntOP o23,IntOPo28,WriteData o29,WriteData

o26,IntOPo30,ReadData o31,ReadData

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.
oid Complexity

oid Data Amount

 5 5

 5

 5

3 d3

4 d3 1 d3

3 d3

3 d3

4 d3

3 d3

1 d3

3 d3

Figure 5.9: The first round of remodeling the Application model of Figure 5.8

f1

o10,Start

o11,IntOP

o14,Stop

o18,Choice

d3

f2

o17,Start

o21,Stop

o19,ReadData o22,ReadData

o12,Choice

o13,WriteData o15,WriteData

o16,Stop

o25,ReadData

o27,Stop

o20,IntOP

o28,WriteData o29,WriteData

o26,IntOPo30,ReadData o31,ReadData

o32,WriteData

o34,ReadData

 5

 5

 5
o24,Stop

o23,IntOP

 5

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Data channel

oid corresponding
data ch.
oid Complexity

oid Data Amount

3 d3

3 d3

1 d3

3 d3

1 d3

1 d3 1 d3

3 d3

3 d3 3 d3 3 d3

Figure 5.10: The second round of remodeling the Application model of Figure 5.8

105

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

o13 and o19 has been remodeled and o32 data size equals to operator o34 data size. So, the remodeling

of Figure 5.8 can be stopped at this step.

5.1.4 Classification of Execution Transactions

Problem 1. Execution Trace Analysis. In an execution trace we classify all transactions according to

their impact on the latency between the two operators of the considered maximum latency requirement.

Definition 34. Execution Trace Partition

To solve Problem 1, we classify transactions of an execution trace x into the following subsets:

MandatoryOP (MOPx), OptionalOP (OOPx), MandatoryFunc (MFx), OptionalFunc (OFx),

Contention (Cx), NoContention (NCx), OtherHardware (OHx), IndirectImpact (IIx), and

NoImpact (NIx).
{
MOPx, OOPx,MFx, OFx, Cx, NCx, Ox, IIx, NIx

}
is a partition of the exe-

cution trace x. For short we will denote MOPx, OOPx, . . . as MOP, OOP,

5.1.4.1 Impact Sets

5.1.4.1.1 On Path Sets MandatoryOP (MOP) and OptionalOP (OOP) are considered as On

Path Sets since the main factor to identify transactions in these sets is the dependency path between

oA and oB . When there exists at least one dependency path between operators oA and oB then, we

put transactions corresponding to operators in any dependency path −−−−→oA, oB that are executed between

toA,1 and toB ,1 in one of the on path sets. Let r = 〈o11, o31, 35〉 be a maximum latency requirement

of the model m presented in Section 4.3.4. In this requirement, we are interested in the timing delay

between sending data in f1 and receiving data in f3 from f2. In Figure 4.5, operator o11 writes and

operator o16 reads from dc6 while operator o22 writes and operator o32 reads from to dc7, so there are

two dependency paths between operators o11 and o31 denoted as
−−−−→
o11o31

1
and
−−−−→
o11o31

2
.

−−−−−→
o11, o31

1
=o11o16, o16o17, o17o18, o18o20, o20o21, o21o22, o22o31

−−−−−→
o11, o31

2
=o11o16, o16o17, o17o19, o19o20, o20o21, o21o22, o22o31

So, for operator o31 to execute, operators o11, o16, o17 ,o18, o20, o21 and o22 or operators o11,

106

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

o16, o17, o19, o20, o21 and o22 need to execute.

We consider an operator that belongs to all dependency paths between oA and oB as a mandatory

operator to execute for operator oB execution and in the classifications of transactions, a transaction

corresponding to a mandatory operator between oA and oB is added to MandatoryOP set. While an

operator that belongs to at least one but not all dependency paths between oA and oB is considered as

an optional operator for operator oB execution and in the classifications of transactions, a transaction

corresponding to an optional operator between oA and oB is added to OptionalOP set.

Thus, in the example in Figure 4.5, according to
−−−−→
o11o31

1
and −−−−→o11o31

2
, operators o11, o16, o17, o20

and o21 must execute for operator o31 to execute while operators o18 and o19 may execute as they do

not belong to all dependency paths between o11 and o31. So, transactions executed between toA,1 and

toB ,1 corresponding to o11, o16, o17, o20 and o21 are added to MandatoryOP set while transactions

corresponding to o18 and o19 are added to OptionalOP set.

Definition 35. Transaction Executes Between Two Transactions

A transaction t is said to execute at least partially between two transactions t1 and t2 if t ends after

the start time of t1 and t starts before the end time of t2.

Figure 5.11 shows two transactions t1 and t2. Transactions that start in the pink range and end in

the green range are said to execute at least partially between t1 and t2.

Formally, function cross takes as argument t, t1 and t2 and returns true if and only if t ends after

the start time of t1 and t starts before the end time of t2.

cross(t, t1, t2) =


true τ te > τ

t1
s ∧ τ ts < τ

t2
e

false Otherwise

Definition 36. Mandatory Operator Between Two Operators

An operator o is a mandatory operator between two operators oi and oj in model m if and only if

operator o occurs in all the dependency paths between oi and oj . Function Mop takes model m and

two operators oi and oj as arguments and returns the set of mandatory operator between oi and oj in

model m.

107

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

h_1

h_2

t
1

t
2

τ
s
t1 τ

e
t2

Start time range End time rangeLegend

Hardware
components

Execution time

Figure 5.11: Cross Function

Definition 37. Optional Operator Between Two Operators

An operator o is an optional operator between two operators oi and oj in model m if operator o

occurs in at least one dependency path but not all dependency paths between operators oi and oj .

Definition 38. MandatoryOP Set (MOP)

A transaction to ∈ x belongs to MOP set if and only if operator o is a mandatory operator between

operators oA and oB in m. Formally,

∀to ∈ x,(
∀−−−→oAoB ∈ DP−−−→oAoB

, inPath(o,−−−→oAoB)
)
∧ cross(to, toA,1, toB ,1) ⇐⇒

to ∈MOP

Definition 39. OptionalOP Set (OOP)

A transaction to ∈ x belongs to OOP if and only if operator o is an optional operator between

108

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

operators oA and oB in m.

∀to ∈ x, ∀−−−→oAoB ∈ DP−−−→oAoB
,

inPath(o,−−−→oAoB) ∧ to /∈MOP ∧ cross(to, toA,1, toB ,1)⇔ to ∈ OOP

5.1.4.1.2 In Functions Sets The set of all operators which have corresponding transactions in

an execution trace x and are in a dependency path between oA and oB can not execute before their

previous operators in their functions are executed. Each operator in this set belongs to a function. So,

the execution trace must contain transactions corresponding to operators that are in the dependency

path between the St operator of the function to which an operator from the set belongs and the operator.

Let us assume o3 is in Of and in the dependency path between oA and oB . Moreover, o3 is executed

and have a corresponding transaction in the execution trace. Operator Stf have a dependency path to

o3. Thus, the execution trace contains transactions corresponding to operators in the dependency path

from Stf to o3.

For instance, in function f2 in Fig. 4.5, if operator o16 was to be executed between o11 and o31 which

is an operator in a dependency path between operator o11 and o31, then since operator o15 belongs to

the only dependency path betweenStf2 and o16, so in this case, operator o15 has to be executed.

Let us assume we have two functions f and f ′. Moreover, we assume operator o in function f

belongs to a dependency path −−−→oAoB . If Wait operator in function f belongs to a dependency path
−−→
Stfo, then the Notify operator in function f ′ that have dependency to the Wait operator in function

f must have completed its execution before operator o can start executing. Thus, there must exist in

the execution trace transactions corresponding to operators in the dependency path between Stf ′ and

the Notify operator in function f ′. Same condition applies if Notify and Wait operators are replaced

by ReadData and WriteData operators. For instance, let the requirement of interest in Fig. 5.12 be

r = 〈o7, i, o14, j, λmax〉. In function f2 , if o13 was to be executed between o7 and o14 which is an

operator in a dependency path between operator o7 and o14, then since operator o12 is on the only

dependency path between Stf2 and o13, so in this case, operator o12 has to execute. For o12 to

execute, o18 in function f3 must also execute since there is a dependency between o18 and o12. Thus,

all operators of one dependency path between Stf3 (o16) and operator o18 must execute.

109

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

o17,IntOP

f2

o12,Wait

f1

o8,WriteData

o7,IntOP

f3

o18,Notify

o19,Stop

sc5

o6,Start o10,Start o16,Start

o13,ReadData

o9,Stop

o11,IntOP

o14,IntOP

dc4

o15,Stop

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Synchronization
channel

Data channel

oid corresponding
data ch.

oid corresponding
Synchronization ch.

oid Complexity

oid Data Amount

 1 3

 5

 1

dc41

dc41

sc5 sc5

Figure 5.12: An Application model used to explain the in Functions Sets

110

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

In general, given a requirement r = 〈oA, oB , λmax〉, a function f having a start operator Stf ,

operators o and o3 in Of where there exists at least one dependency path between o and o3 and

operator o3 belongs to at least one dependency path between oA and oB .

Operator o is considered as mandatory to execute in function f before operator o3 starts executing

if operator o3 is a mandatory operator between oA and oB and operator o is a mandatory operator

between the Stf and o3.

Operator o is considered as optional to execute in function f before operator o3 starts executing if

either o3 is an optional operator between oA and oB or operator o3 is a mandatory operator between

oA and oB but operator o is an optional operator between Stf and o3.

In the classifications of transactions, a transaction executed between toA,1 and toB ,1 corresponding to

a mandatory operator o in function f is added toMandatoryFunc set while a transaction corresponding

to an optional operator in function f is added to OptionalFunc set.

For instance, in Fig. 4.5, operator o31 is an operator on all dependency paths between o11 and o31

and the dependency paths between o25 and o31 are:

−−−−→
o25o31

1
=o25o26, o26o27, o27o29, o29o30, o30o31

−−−−→
o25o31

2
=o25o26, o26o28, o28o29, o29o30, o30o31

Thus, according to
−−−−→
o25o31

1
and
−−−−→
o25o31

2
, operators o25, o26, o29 and o30 are mandatory in function

f3 while o27 and o28 are optional for the execution of o31. So, in Listing 4.1, to30,1 belongs to

MandatoryFunc set and to27,1 belongs to OptionalFunc set.

Definition 40. MandatoryFunc Set (MF)

For a requirement r = 〈oA, oB , λmax〉 between oA and oB , a transaction to ∈ x belongs to MF

set if and only if it does not belong to MOP or OOP sets and there exists an operator o3 that is a

mandatory operator between oA and oB and operator o a mandatory operator between StgetF (m,o) and

111

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

o3. Formally,

∀to ∈ x,(
∃o3 ∈Mop(oA, oB)∀p ∈ DP−−−−−−−−−−→

StgetF (m,o)o3
, inPath(o, p)

)
∧ to /∈MOP ∪OOP ∧ cross(to, toA,1, toB ,1) ⇐⇒

to ∈MF

Definition 41. OptionalFunc Set (OF)

For a requirement r = 〈oA, oB , λmax〉 between oA and oB , a transaction to ∈ x belongs to OF set

if and only if it does not belong to MOP , OOP or MF sets and if there exists an operator o3 that is an

optional operator between oA and oB and there exists a dependency path between o and o3 or operator

o3 is a mandatory operator between oA and oB but operator o is an optional operator between Stf and

o3. Formally,

∀to ∈ x,

∀o3 ∈ Om, ∀−−−→oAoB ∈ DP−−−→oAoB
, ∀
−−−−−−−−−−→
StgetF (m,o)o3 ∈ DP−−−−−−−−−−→StgetF (m,o)o3

,

inPath(o3,−−−→oAoB) ∧ inPath(o,−−−−−−−−−−→StgetF (m,o)o3) ∧ to /∈MOP ∪OOP ∪MF ∧ cross(to, toA,1, toB ,1)

⇔ to ∈ OF

5.1.4.1.3 Contention Set Let us now deal with the contention set. Contention occurs when two

concurrent functions using the same execution hardware want to execute a transaction at the same

time. Contentions may also occur when two functions want to use the same communication hardware

component at the same time. When a contention occurs, one of the two functions is delayed until the

resource it has requested is available. This delay is called a contention delay. A transaction belongs to

the contention set if its execution causes a contention delay in the execution for at least one transac-

tion belonging to either OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set. To

identify transactions that belong to the contention set, we need first to identify the set of hardware com-

112

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

ponents denoted as HDep that execute transactions belonging to OptionalFunc, MandatoryFunc,

OptionalOP or MandatoryOP set. A transaction may belong to the contention set only if it runs on

a hardware component belonging to HDep. So, for a requirement r = 〈oA, oB , λmax〉 we consider all

the operators that have dependency path(s) to oB .HDep contains all execution hardware components,

communication hardware components and storage hardware components involved in these operators exe-

cution and communications. In our example in Figure 4.6, we are interested to get the HDep set between

o11 and o31. Referring to the dependency paths
−−−−→
o10o31

1
,
−−−−→
o10o31

2
,
−−−−→
o14o31

1
,
−−−−→
o14o31

2
,
−−−−→
o15o31

1
and

−−−−→
o15o31

2
, the functions f1, f2 and f3 are the functions to which the operators that have dependency

path(s) to oB belong (Figure 5.13). Thus, the hardware components h41, h42, h44 and h45 belong to

HDep.

Definition 42. Dependency Path Hardware Components

Let us consider all dependency paths to oB . Function getDPHC takes as argument a model m

and operator oB and returns a subset HDep of hardware components in a platform model. This subset

HDep contains execution hardware components on which functions containing operators on dependency

paths to oB are allocated. In case of ReadData or WriteData operator on dependency paths to oB ,

then the communication and storage hardware components on which there corresponding data channel

is allocated are added to HDep. Formally,

getDPHC : (M, oB) 7→ HDep

where,

∀h ∈ H, ∀o ∈ Om, ∀−−→ooB ∈ DP−−→ooB , ∀o
′ ∈ Om, inPath(o′,−−→ooB)⇒

(h = −→Af (getF (m, o′)) ∨ cat(o′) ∈ {WriteData,ReadData} ∧ h occurs in −−→Adc(getDataCh(o′))

⇒ h ∈ HDep)

In our example in Figure 4.6, getDPHC(m, o31) = {h41, h42, h44, h45}

113

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

f1

o10,Start

o12,IntOP

o11,WriteData

o13,Stop

o39,IntOP

o22,WriteData

f4

o35,Notify

o17,Choice

f3

o31,ReadData

o26,Choice

o28,IntOP

o29,Merge

o30,IntOP

o27,IntOP

f5

o38,Wait

o40,Stop

dc6 dc7 sc8

f2

o14,Start o25,Start o33,Start o37,Start

o36,Stop

o32,Stop

o24,Stop

o16,ReadData

o15,IntOP

o18,IntOP o19,IntOP

o20,Merge

o21,IntOP

o23,IntOP

o34,IntOP

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

Function

Synchronization
channel

Data channel

Dependency Path to
OB

Figure 5.13: Dependency Paths to o31 in the Application model shown in Figure 4.5

After identifying the dependency path hardware components, we need to identify if the execution

of a transaction t caused a contention delay in the execution of any transaction belonging to either

OptionalFunc, MandatoryFunc, OptionalOP orMandatoryOP set. To do so, we define Best Start

Execution Date (BSED) and Best End Execution Date (BEED) of transactions in the ideal model.

In this ideal model, we assume that we have unlimited execution power for execution hardware compo-

nents and unlimited bandwidth and unlimited number of serve request per clock cycle on communication

hardware components. In other words, the number of cores per execution hardware component is infinite

(several functions can execute whenever they want) and a communication hardware component can serve

all communication requests (functions can transfer whenever they want). In an ideal model, a transaction

is not delayed because another transaction is executed. Thus, in an ideal model, we have a platform

with no contention.

Definition 43. BSED

BSED is the earliest possible time that would have been obtained by executing exactly the same

114

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

operators on the same dependency path but considering execution hardware components with an in-

finite number of cores and communication hardware components with unlimited bandwidth. Function

getBSED(t) returns the BSED of a transaction t.

Definition 44. BEED

BEED is the earliest possible end time that would have been obtained by executing exactly the

same operators on the same dependency path but considering execution hardware components with an

infinite number of cores and communication hardware components with unlimited bandwidth. Function

getBEED(t) returns the BEED of a transaction t.

Listing 5.4 gives the XML description of one possible execution trace for the model of Figure 4.6, for

the time interval [0, 50] showing the BSED and the BEED for each transaction.

Listing 5.4: One possible execution trace for the model of Figure 4.6

<tran seq= "1" BSED="0" BEED="0" starttime="0" endtime="0" hc="43" id="33" />

<tran seq= "2" BSED="0" BEED="0" starttime="0" endtime="0" hc="41" id="14"/>

<tran seq= "3" BSED="0" BEED="0" starttime="0" endtime="0" hc="42" id="25"/>

<tran seq= "4" BSED="0" BEED="0" starttime="0" endtime="0" hc="42" id="26" />

<tran seq= "5" BSED="0" BEED="5" starttime="0" endtime="5" hc="43" id="34" />

<tran seq= "6" BSED="0" BEED="10" starttime="0" endtime="10" hc="41" id="15" />

<tran seq= "7" BSED="0" BEED="17" starttime="0" endtime="17" hc="42" id="27" />

<tran seq= "8" BSED="5" BEED="6" starttime="5" endtime="6" hc="43" id="35"/>

<tran seq= "9" BSED="6" BEED="6" starttime="6" endtime="6" hc="43" id="36" />

<tran seq= "10" BSED="6" BEED="6" starttime="6" endtime="6" hc="43" id="37" />

<tran seq= "11" BSED="6" BEED="7" starttime="6" endtime="7" hc="43" id="38" />

<tran seq= "12" BSED="7" BEED="57" starttime="7" endtime="57" hc="43" id="39" />

<tran seq= "13" BSED="0" BEED="0" starttime="10" endtime="10" hc="41" id="10" />

<tran seq= "14" BSED="0" BEED="1" starttime="10" endtime="11" hc="41" id="11" />

<tran seq= "15" BSED="0" BEED="1" starttime="10" endtime="11" hc="44" id="11" />

<tran seq= "16" BSED="0" BEED="1" starttime="10" endtime="11" hc="45" id="11" />

115

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

<tran seq= "17" BSED="1" BEED="5" starttime="11" endtime="15" hc="41" id="12" />

<tran seq= "18" BSED="5" BEED="5" starttime="15" endtime="15" hc="41" id="13" />

<tran seq= "19" BSED="10" BEED="11" starttime="15" endtime="16" hc="45" id="16" />

<tran seq= "20" BSED="10" BEED="11" starttime="15" endtime="16" hc="44" id="16" />

<tran seq= "21" BSED="10" BEED="11" starttime="15" endtime="16" hc="41" id="16" />

<tran seq= "22" BSED="11" BEED="11" starttime="16" endtime="16" hc="41" id="17" />

<tran seq= "23" BSED="11" BEED="26" starttime="16" endtime="31" hc="41" id="18" />

<tran seq= "24" BSED="17" BEED="17" starttime="17" endtime="17" hc="42" id="29" />

<tran seq= "25" BSED="17" BEED="19" starttime="17" endtime="19" hc="42" id="30" />

<tran seq= "26" BSED="26" BEED="26" starttime="31" endtime="31" hc="41" id="20" />

<tran seq= "27" BSED="26" BEED="40" starttime="31" endtime="45" hc="41" id="21" />

<tran seq= "28" BSED="40" BEED="41" starttime="45" endtime="46" hc="41" id="22" />

<tran seq= "29" BSED="40" BEED="41" starttime="45" endtime="46" hc="44" id="22" />

<tran seq= "30" BSED="40" BEED="41" starttime="45" endtime="46" hc="45" id="22" />

<tran seq= "31" BSED="41" BEED="42" starttime="46" endtime="47" hc="45" id="31" />

<tran seq= "32" BSED="41" BEED="42" starttime="46" endtime="47" hc="44" id="31" />

<tran seq= "33" BSED="41" BEED="42" starttime="46" endtime="47" hc="42" id="31" />

<tran seq= "34" BSED="41" BEED="45" starttime="46" endtime="50" hc="41" id="23" />

<tran seq= "35" BSED="42" BEED="42" starttime="47" endtime="47" hc="42" id="32" />

<tran seq= "36" BSED="45" BEED="45" starttime="50" endtime="50" hc="41" id="24" />

<tran seq= "37" BSED="57" BEED="57" starttime="57" endtime="57" hc="43" id="40" />

Let us now come back to regular execution and communication hardware components. We say that

a transaction is delayed if its start and/or end execution date with regular execution and communication

hardware components (starttime and endtime) is higher than the one with ideal model execution and

communication hardware components (BSED and BEED).

To know if a transaction t executed on hardware component h delayed any transaction on h, we

need to retrieve the lists of transactions of all delayed transactions that were executed on a hardware

component h. In the contention set we are interested in the delay of transactions that belong to

116

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set. So, we define two functions

getStartDList and getEndDList that take as arguments a model m, an execution trace of this model

x and a hardware component h in the platform model of m and return a list of transactions that had

their start time and end time delayed respectively. Since we are interested in transactions that belong

to OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set, the hardware component of

these two functions must be a dependency path hardware component. Formally,

getStartDList : (m,x, h) 7→ {t ∈ x |ht = h ∧BSED(t) 6= τ ts∧

t ∈MOPS ∪OOPS ∪MFS ∪OFS}

getEndDList : (m,x, h) 7→ {t ∈ x |h(t) = h ∧BEED(t) 6= τe(t)∧

t ∈MOPS ∪OOPS ∪MFS ∪OFS}

In our example in Listing 5.4:

getStartDList(m,x, h41) ={to11,1, to16,2, to18,1, to21,1, to22,1}

getStartDList(m,x, h42) ={to31,1}

getStartDList(m,x, h44) ={to11,2, to16,2, to22,2, to31,2}

getEndDList(m,x, h41) ={to11,1, to16,2, to18,1, to21,1, to22,1}

getEndDList(m,x, h42) ={to31,1}

getEndDList(m,x, h44) ={to11,2, to16,2, to22,2, to31,2}

So, for a transaction t executing on hardware component h to delay transactions that belong to

117

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

h_1 t’

BSED(t’)

BEED(t’)

t’

τ
e
t’τ

s
t’

t

τ
e
t Execution time

Hardware
components

Figure 5.14: First case where a transaction t′ is delayed due to contention

h_1 t’

BSED(t’)

BEED(t’)

t’

τ
e

t’τ
s
t’

t

τ
e
t

τ
s
t Execution time

Hardware
components

Figure 5.15: Second case where a transaction t′ is delayed due to contention

OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set, t must not correspond to an

operator whose execution may be required for the execution of oB . Thus, transaction t must not belong

to OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set. Moreover, for a transaction

t to cause delay, either (1) for some transaction t′ returned by getStartDList(m,x, h), the end time of

t (τ te) must be greater than or equal to BSEDt′ and less than or equal to τ t′s , or (2) for a transaction

t′ returned by getEndDList(m,x, h) the end time of t is greater than or equal to BEED(t′) and less

than or equal to τ t′e .

Figure 5.14 and Figure 5.15 show two cases where a transaction t′ is delayed. In these figures, if

transaction t′ belongs to OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set and t

does not belong to the latter sets, then, transaction t belongs to the contention set.

In Listing 5.4, to12,1 does not belong toOptionalFunc,MandatoryFunc, OptionalOP orMandatoryOP

118

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

set. The hardware component on which to12,1 executes is h41. The end time of to12,1 equals to 15. Since

a transaction to16,2 is returned by getStartDList(m,x, h41), then to12,1 belongs to the contention set

as τ
t
o12,1
e > BSED(to16,1) and τ

t
o12,1
e = τ

t
o16,1
s .

Definition 45. Contention Set (C)

A transaction t ∈ x belongs to C set if and only if it satisfies four conditions. First, t should execute

between toA,1 and toB ,1 Second, t should not belong toMOP , OOP ,MF or OF . Third, the hardware

ht should belong to the set of hardware returned by getDPHC(m, oB). Fourth, either

• for some transaction t′ returned by getStartDList(m,x, ht), τ te is greater than or equal to

BSED(t′) and less than or equal to τ t′s , or,

• for some transaction t′ returned by getEndDList(m,x, ht), τ te must be greater than or equal to

BEED(t′) and less than or equal to τ t′e .

Formally,

∀t ∈ x,(
∃t′ ∈ getStartDList(m,x, ht) | (τ te >= BSED(t′) ∧ τ te <= τ t

′
s)

∨ ∃t′ ∈ getEndDList(m,x, ht) | τ te >= BEED(t′) ∧ τ te <= τ t
′
e)
)

∧ ht ∈ getDPHC(m, oB) ∧ t /∈MOP ∪OOP ∪MF ∪OF ∧ cross(t, toA,1, toB ,1) ⇐⇒

t ∈ C

5.1.4.1.4 No Contention Set Transactions in the contention set delay at least one transaction in

either OptionalFunc,MandatoryFunc, OptionalOP orMandatoryOP . There is also the case where

a transaction can run in a dependency path hardware component (Definition 42) without delaying any

transaction in OptionalFunc, MandatoryFunc, OptionalOP and MandatoryOP sets.

In this case, a transaction is said to cause no contention.

Figure 5.16 shows a case where a transaction t′ is delayed. However, t′ was not delayed due to

the execution of t. Assuming that t′ belongs to OptionalFunc, MandatoryFunc, OptionalOP or

119

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

h_1 t’

BSED(t’)
 BEED(t’)

t’

τ
e

t’τ
s
t’

t

τ
e
t

Hardware
components

Execution time

Figure 5.16: A graphical representation showing no contention

MandatoryOP , t does not belong to the latter sets and t did not delay any other transaction in these

sets, then, transaction t belongs to the no contention set.

In Listing 5.4, which is the XML description of one possible execution trace for the model of Fig-

ure 4.6, to23,1 does not belong to OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP .

The hardware component on which to23,1 executes is h41. The start time of to23,1 equals to 46

and the end time of to23,1 equals to 50. For all transactions returned by getStartDList(m,x, h41) and

getEndDList(m,x, h41), the fourth condition of the contention set conditions is not satisfied. So, to23,1
did not delay any transaction in OptionalFunc, MandatoryFunc, OptionalOP and MandatoryOP

sets on h41 and thus, it belongs to the no contention set.

Definition 46. NoContention Set

A transaction t ∈ x belongs to NC set if and only if it satisfies three conditions. First, it must be

executed between toA,1 and toB ,1. Second, t should not belong toNI,MOP , OOP ,MF , OF or C set.

Third, the hardware ht must belong to the set of hardware components returned by getDPHC(m, oB).

∀t ∈ x,

t /∈MOP ∪OOP ∪MF ∪OF ∪ C ∧ ht ∈ getDPHC(m, oB) ∧ cross(t, toA,1, toB ,1) ⇐⇒

t ∈ NC

120

5.1. EXECUTION TRACE ANALYSIS CHAPTER 5. PRIMITIVE PLAN

5.1.4.1.5 Other Hardware Set (OH) Transactions executed between toA,1 and toB ,1 belong to

Other Hardware set if they execute between toA,1 and toB ,1 and do not belong to any set defined

previously (MOP , OOP , MF , OF , NC and C).

In the example of Section 4.3.4, to39,1 is executed between time 7 and 57 on h43 and does not

belong to MOP , OOP , MF , OF , NC or C set. Thus, to39,1 belongs to OH set.

Definition 47. OtherHardware Set

A transaction t ∈ x belongs to OH if and only if it execute between toA,1 and toB ,1 but it does not

belong to any previous classification sets. Formally,

∀t ∈ x,

t /∈MOP ∪OOP ∪MF ∪OF ∪NC ∪ C ∧ cross(t, toA,1, toB ,1) ⇐⇒

t ∈ OH

5.1.4.1.6 Indirect Impact Set When a maximum latency requirement is not satisfied, in addition

to the impact of transactions that were executed between toA,1 and toB ,1 we are interested to know if a

transaction executed before toA,1 led to a delay in transactions executed between toA,1 and toB ,1. We

define function SDL that takes a model, an execution trace and hardware component from the HDep
set as input and return a set of transaction that were executed between the beginning of execution (τ0)

and τ
toA,1
s and have their BSED different than their start time.

SDL : (m,x, h) 7→{t ∈ x | ht = h ∧BSED(t) 6= τ ts ∧ τ ts ≤ τ
toA,1
s }

Similarly for end time we define function EDL that takes a model, an execution trace and hardware

component as input and return a set of transaction that were executed between the beginning of execution

(τ0) and τ
toA,1
e and have their BEED different than their end time. Formally,

EDL : (m,x, h) 7→{t ∈ x | ht = h ∧BEED(t) 6= τ te ∧ τ te ≤ τ
toA,1
e }

121

CHAPTER 5. PRIMITIVE PLAN 5.1. EXECUTION TRACE ANALYSIS

In our example in Listing 5.4:

SDL(m,x, h41) ={to11,1}

SDL(m,x, h44) ={to11,2}

EDL(m,x, h41) ={to11,1}

EDL(m,x, h44) ={to11,2}

So, for a transaction t executing on hardware component h to have indirect impact on transactions

that belong to OptionalFunc, MandatoryFunc, OptionalOP or MandatoryOP set, transaction t

must be executed before toA,1. Moreover, either (1) for some transaction t′ returned by SDL(m,x, h),

the end time of t (τ te) must be greater than or equal to BSEDt′ and less than or equal to τ t′s , or (2) for

some transaction t′ returned by EDL(m,x, h) the end time of t is greater than or equal to BEED(t′)

and less than or equal to τ t′e .

In Listing 5.4, transaction to15,1 execute on h41 before toA,1. Transaction to15,1 have an end

time equal to 10. Thus its end time is between the BEED(to11,1) and τ
t
o11,1
e where to11,1 ∈

EDL(m,x, h41). Thus, to15,1 has indirect impact on the maximum latency requirement in the pre-

sented example.

Definition 48. IndirectImpact Set (II)

In the classifications of transactions, a transactions t ∈ x is added to IndirectImpact set if and only

if it was executed before toA,1 on a hardware component in the HDep set and either

• for any transaction t′ returned by function SDL, the end time of t is greater than or equal to

BSED(t′) and less than or equal to τ t′s , or.

• for any transaction t′ returned by function EDL, the end time t is greater than or equal to

BEED(t′) and less than or equal to τ t′e

Formally,

122

5.2. CONCLUSION CHAPTER 5. PRIMITIVE PLAN

∀t ∈ x,(
∃t′ ∈ SDL(m,x, ht) | (τ te >= BSED(t′) ∧ τ te <= τ t

′
s)

∨ ∃t′ ∈ EDL(m,x, ht) | τ te >= BEED(t′) ∧ τ te <= τ t
′
e

)
∧ ht ∈ getDPHC(m, oB) ∧ τ ts < τ

toA,1
e ⇐⇒

t ∈ II

5.1.4.1.7 No Impact Set All transactions that do not belong to any classification set defined before

are added to NoImpact set.

Definition 49. NoImpact Set (NI)

A transaction t ∈ x executed on hardware component h belongs to the no impact set if and only if

it does not belong to any classification set defined before. Formally,

∀t ∈ x,

t /∈MOP ∪OOP ∪MF ∪OF ∪NC ∪ C ∪ II ⇐⇒

to ∈ NI

5.2 Conclusion

In this chapter, the formal representation of a new latency analysis approach was introduced. However

several Hypothesis were taken to ensure that the two operators of a maximum latency requirement are

executed such that the first occurrence of the first operator corresponds to the first occurrence of the

second operator. In this chapter, the latency analysis approach assumes an 1-to-1 relation between the

two operators of the requirement. In the next chapter, we target these hypothesis. Targeting these

hypothesis enables us to specify more transaction traces as valid. To overcome this assumption, an

approach based on graph tainting is introduced in the next chapter.

123

Chapter 6

Advanced Precise Latency Analysis

Approach Using Graph Tainting (PLAN-GT)

“Without continual growth and progress, such words as improvement, achievement, and

success have no meaning.”

-Benjamin Franklin

6.1 Motivation

The primitive PLAN approach already discussed helps the designer to investigate the cause of a latency re-

quirement violation in modelm between two operators oA and oB for a requirement r = 〈oA, oB , λmax〉

when the two transactions corresponding to oA and oB appear once in the execution trace.

In Chapter 5, we proposed several hypotheses to make it easier to identify these occurrences in an

execution trace. These hypotheses led to defining a one-to-one relation between oA and oB . Execution

traces that do not satisfy these assumptions are identified as invalid in our previous analysis.

In this chapter, we would like to be able to analyze execution traces that we could not analyze before.

We would like to analyze traces that have several occurrences of oA and oB . Said differently, we would

like to analyze traces even when Hypothesis 1 does not hold.

The identification of an occurrence of operator oB that corresponds to an occurrence of operator oA

124

6.2. EXAMPLE 2 CHAPTER 6. ADVANCED PLAN

may not be trivial when removing this assumption since, in this case, operator oB can execute regardless

of operator oA execution. In other words, if there is no defined relation like the 1-to-1 relation between

the two operators, identifying the transactions to calculate the latency is not straight forward.

In this chapter, we would like to relate several occurrences of oA and oB . By relating we mean

identifying the occurrence of operator oB that corresponds to the occurrence of operator oA. For

example, if operator oA is a WriteData operator and operator oB is a ReadData operator that write and

read data respectively from a Non Blocking Write Non Blocking Read data communication channel, then

operator oA can infinitely write and operator oB never blocks when attempting to read data through

the data channel. In this case, the execution trace may have several transactions corresponding to data

writing and several transactions corresponding to data reading. Thus, it is difficult to identify which

transaction(s) having operator oB corresponds to an occurrence of operator oA.

Identifying these transactions is the topic of the chapter. Removing the 1-to-1 relation assumption

opens new avenues. So, we need to know which occurrence of oB corresponds to an occurrence of

oA. To know what is the corresponding occurrence of oB we need to trace the execution to find this

occurrence. Tainting is the way we do this tracing.

In this chapter, we introduce how PLAN is applied after finding the occurrence of oA and its corre-

sponding occurrence of oB using tainting. Tainting enables us to handle long traces and verify several

latencies between oA and oB . In particular, we use taint to characterize the correspondence between oA
and oB . The taint value will indeed allow us to identify the occurrence of oA and oB that corresponds

to each other by considering occurrence of the same taint value.

6.2 Example 2

Let us consider a HW/SW Partitioning model whose application and allocation models are shown in

Figure 6.1 and Figure 6.2 respectively. In Figure 6.2, two functions f1 and f2 communicate through a

Blocking Write - Blocking Read data channel dc4. Functions f2 and f3 communicate through a Non-

Blocking Write - Non-Blocking Read data channel dc5. Operators o7 and o15 write 1 byte of data to

data channels dc4 and dc5 respectively. Operators o9 and o21 read 1 byte of data from data channels

125

CHAPTER 6. ADVANCED PLAN 6.2. EXAMPLE 2

f1

o6,Start

o7,WriteData

o8,Stop

o15,WriteData

f3
dc4 dc5

v1=0f2

o9,ReadData

o17,Start

o16,Stop

o11,Choice

o10,Merge

o14,IntOP o12,IntOP

o19,Choice

o18,Merge

o23,Stop o20,IntOP

o21,ReadData

o13,Set

o22,Set

1 dc4

1 dc5

1 dc4

1 dc5

 20 50

Legend

oid,cat

fid

Function Behavior

Control flow

Operator

FunctionData channel

oid corresponding
data ch.

oid Complexity

oid Data Amount

 100

v2=0

v1<3

v1=v1+1

v1⩾3

v2<3v2⩾3

v2=v2+1

Variable

New Value

Function

Variable

o24,Start

o24,Choice

o25,IntOP

 80

o26,Merge

Figure 6.1: Graphical representation of an Application model with loops

dc4 and dc5 respectively. Functions f2 and f3 have variables v1 and v2 respectively. These variables

are initiated to zero and used to control the loop iterations inside the functions.

In Figure 6.2, function f1 is allocated to an execution hardware component h40, function f2 is

allocated to an execution hardware component h41 and functions f3 is allocated to an execution hardware

component h42. The data channels dc4 and dc5 are allocated to a communication hardware component

h43 and a storage hardware component h44.

Let a maximum latency requirement r = 〈o7, o21, 150〉 be a requirement of this HW/SW Partitioning

model. Operators o7 and o21 are connected by one dependency path −−−→o7o21. Two possible execution

126

6.2. EXAMPLE 2 CHAPTER 6. ADVANCED PLAN

h40 h41 h42

f1 Legend

hid Hardware
component
Allocation

l45
l46

h43 h44

dc4

l48

f2 f3

dc5 dc4 dc5

l47

SlaveLinkid
Master

Figure 6.2: Graphical representation for the Allocation model of Figure 6.1

traces are shown in Table 6.1 and Table 6.2. The transactions executed on h44 and the transactions

of Start, Stop, Choice, Merge and Set operators are not shown in Table 6.1 and Table 6.2. The

corresponding execution trace of Table 6.2 is shown in XML format in Listing B.1.

Table 6.1: A possible execution trace shown in tabular format of a HW/SW partitioning model whose
allocation model is shown in Figure 6.2

hc 40 41 42 43
id 7 9 12 14 15 25 20 21 7 9 15 21
seq 4 12 15 23 27 31 32 9 22 38 6 11 33 37
τ ts 0 1 2 52 102 152 172 0 80 180 0 1 172 180
τ te 1 2 52 102 152 172 173 80 180 181 1 2 173 181

Table 6.2: Another possible execution trace shown in tabular format of a HW/SW partitioning model
whose allocation model is shown in Figure 6.2

hc 40 41 42 43
id 7 9 12 14 15 20 21 7 9 15 21
seq 2 9 12 16 20 24 25 34 41 48 37 44 51 3 8 36 36 43 50
τ ts 0 1 2 52 102 152 172 0 101 202 100 201 302 0 1 172 100 201 302
τ te 1 2 52 102 152 172 173 100 201 302 101 202 303 1 2 173 101 202 303

In Table 6.1, the first occurrence of o21 corresponds to the first occurrence of o7. However, in

Table 6.2, the hypotheses of Chapter 5 do not hold. The first occurrence of o7 does not correspond to

the first occurrence of o21 because the WriteData operator o15 executes after the ReadData operator o21.

Thus, to correctly calculate the latency, we must track the execution transactions along the HW/SW

Partitioning model to determine the corresponding occurrence of o21. For the HW/SW Partitioning

model presented in this section, manually tracking transactions in the second execution trace reveals

that the second occurrence of o21 corresponds to the first occurrence of o7. Thus, the latency between

o7 and o21 for r = 〈o7, o21, 150〉 equals to 202. So, the maximum latency requirement is not valid.

127

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Figure 6.3: Dependency Graph of Figure 6.1

6.3 Tainting

In this chapter, the one-to-one relation between oA and oB does not hold. So, the occurrence of

operator oB corresponding to an occurrence of operator oA is not explicit in the requirement when the

assumptions are removed. So, to validate a maximum latency requirement r for every occurrence of

oA, its corresponding occurrence of oB must be identified in an execution trace. To solve this issue, we

introduce tainting.

The correspondence between oA and oB is based on the dependency relation. Thus, our algorithm

strongly relies on the dependency graph characterized by the HW/SW Partitioning model and defined as

following.

Definition 50. Dependency Graph

Gm = (Om, Dm) is the dependency graph associated to model m, with Om and Dm the vertices

and directed edges of Gm defined with respect to Definition 10 and Definition 9 of Chapter 5.

In the next definitions, we consider Gm = (Om, Dm) is given. Figure 6.3 shows the dependency

graph associated to the model of Figure 6.1.

Definition 51. Successor Operator in the Dependency Graph

A successor operator os of an operator o is an operator connected by one incoming edge from o.

Function Succ(o) returns the list of successors of operator o. Formally,

Succ : Om →P(Om)

Succ(o) = {os ∈ Om | oos ∈ Dm}

128

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

As a reminder, transactions in the trace are ordered with respect to their sequence number. Intu-

itively, the algorithm handles these transactions sequentially with respect to this order. Each time an

oA-transaction tA is encountered in the trace, its operator is tainted with a new fresh taint value and the

transaction is added to a list. Then, while handling the following transactions, the algorithm progressively

propagates this taint value to the encountered operators respecting the dependency relation (i.e., tainted

operators have a dependency path from oA included in the trace). Finally, when an oB-transaction is

encountered and tainted, it is associated with the oA-transaction that have the same taint value. At

this moment, the algorithm calculates the latency between these two transactions to identify when the

latency is greater than λmax.

More technically, the algorithm can be seen as a main loop on transactions that updates an internal

state by handling a transaction at each iteration and outputs a result when the transaction operator is

oB . The tainting algorithm is based on the definition of two kinds of attributes. Attributes which are

static that are applied to all the trace analysis and attributes which depend upon the transaction which is

under analysis in the main loop. These attributes are called dynamic attributes and they are grouped into

a set which is called state. Thus, an execution of the algorithm for a trace t1, · · · , tn can be represented

by s0
t1−→ s1

t2−→ · · · tn−−→ sn, where each si is a state in Sx, Sx being the set of all possible internal

states of an execution trace. Sx = {si} denotes the set of all possible internal states of an execution

trace. So, there is one state per transaction analyzed in our algorithm. A state is build upon tainting

attributes associated to each operator. Function TaintG takes as inputs a transaction, a state and an

execution trace and outputs a new state. Function TaintG updates the attributes of s according to the

execution of the operator corresponding to t.

TaintG(x, t, s) 7→ s′

In Figure 6.4, considering transaction tn+1 evolves state sn to sn+1.

More formally, a static attribute is a function stat_att : Om → V alues and a dynamic attribute

is a function dyn_att : S × Om → V alues. The type of value depends on attributes. Some attribute

values are complex ones, thus some attribute functions have more parameters, which allow to access

components of structured values.

129

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

State: s
n

State: s
n+1

Transaction 1

Transaction 2

Transaction 3

Transaction n

Transaction n+1

Attribute 1,n

Attribute 2,n

Attribute 1,n+1

Attribute 2,n+1

State: s
1

State: s
2

State: s
3

State: s
n

Transaction n+1 State: s
n+1

Figure 6.4: Graphical representation of state change

Dynamic attributes can be seen as state variable and we may use usual affectation notation to describe

their updating in imperative descriptions. For example, we may write "dyn_att(o) := v", which only

modifies the value of attribute dyn_att of o in a state and sets it to v.

The next two subsections will define more precisely and formally static and dynamic attributes re-

spectively.

6.3.1 Static attributes

These attributes are static that is they do not depend on the current iteration of the main loop of the

algorithm.

Definition 52. fixedNumber

getFN takes as argument an operator o and returns the fixedNumber attribute of this operator.

getFN : Om → Z+

fixedNumber is an integer that if the operator is a Choice of a loop indicates the number of iterations of

this loop otherwise it is set to 1.

130

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

Figure 6.5: Dependency Graph Showing fixedNumber of Figure 6.1

For example, in Figure 6.1, operators o11 and o19 correspond to Choice operators of loops so their

fixedNumber attribute is set to 3. The fixedNumber is used to determine the taintMaxNumber introduced

next.

Definition 53. taintMaxNumber

getTMN takes as argument an operator o and returns the taintMaxNumber attribute of this operator.

getTMN : Om → Z+

The taintMaxNumber is an integer representing the maximum number of times a transaction of an

operator could be encountered in an execution trace.

The fixedNumber has a role to compute the taintMaxNumber. The taintMaxNumber differs from

the fixedNumber when the operator is inside a loop. getTMN(o) = 4 means that at most 4 transactions

on operator o could be encountered in the execution trace when executing the system.

For example, in Figure 6.1, the fixedNumber of the Choice operator o11 is 3. Operator o12 is inside

the loop defined by o10, o11 and o13. So, the taintMaxNumber of o12 is getFN(o12) * getFN(o11) =

3 ∗ 1 = 3 (Figure 6.6).

Let us take example of nested loops as shown in Figure 6.7.

In this example, the fixedNumber of operator o7 is 2 and the one of operator o10 is 3. Operator o10

is inside the loop created by operators o6 and o7. Its taintMaxNumber is getFN(o10) * getFN(o7) =

3∗2 = 6. Operator o11 is inside the loop created by operators o9 and o10. As operator o10 is also inside

131

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Figure 6.6: Dependency graph showing taintMaxNumber of Figure 6.1

v3=0
f1

o5,IntOP

o16,Stop

o7,Choice

o6,Merge

o15,IntOP o8,IntOP

o12,Set

 3

v2<2

v3=v3+1

v2⩾2

Legend

oid,cat

fid
Function Behavior

Control flow

Operator

Function

Data channel

oid Complexity

Variable

New Value

Function

Variable

 2

 1

o10,Choice

o9,Merge

o11,IntOP

 4 1

v3<3

v2=0

v3⩾3

o13,IntOP

o14,Set
v2=v2+1

o4,Start

Figure 6.7: Graphical representation of a function with two nested loops

132

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

Figure 6.8: Dependency graph showing taintMaxNumber of Figure 6.7

the loop created by operators o6 and o7, then the taintMaxNumber of o11 equals the multiplication

of all the fixedNumber of the Choice operators of these two loops. Thus, taintMaxNumber of o11 is

getFN(o11) * getFN(o10)* getFN(o7) = 1 ∗ 3 ∗ 2 = 6 (Figure 6.8).

In general, an operator that belongs to the iterations of nested loops, its taintMaxNumber equals to

the multiplication of all the fixedNumber of the Choice operators of these loops.

This taintMaxNumber represent only the worst case scenario of how many times each operator will

be executed when executing the model. For instance, if there is a Choice operator inside a loop and

this Choice operators is not part of any loop, the number of times each branch will be executed can not

be decided statically in the general case. This taintMaxNumber might not be always reachable in some

cases. In other words, when executing a loop, taintMaxNumber represents the maximum number each

operator could be executed in this loop.

6.3.2 Dynamic attributes

The values of dynamic attributes depend on the state. For all functions to come, the state is an implicit

parameter.

Definition 54. Taint Values oA
Taint values correspond to the occurrences of oA in the execution trace. A fresh taint value denoted

as Γ is created each time a transaction of oA of the requirement under study is encountered when

iterating over the execution trace. AllΓ is the set of all taint values generated by all algorithm iterations

133

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

of one execution trace.

Each operator has an ordered set of taint values. These taint values correspond to the occurrences

of oA. Taint value Γ is associated to an operator each time it is executed and there is a dependency

relation between this operator execution and the execution of operator oA that is tainted with Γ. Taint

values in this set are linked to transactions of the execution trace that have already been handled by the

algorithm.

The order of the taint values in the sequence is based on when they are added. Taint_size represents

the size of the sequence of taint values. Formally,

Taint_size : Om → N

Then, for all o in Om,

• Taint takes as argument an operator o and returns the sequence of the taint values of this operator.

So, Taint(o) : [1,Taint_size(o)]→ AllΓ

As taint values are “fresh” when generated, Taint(o) is injective.

• oΓ is the ordered set of taint values of o.

oΓ = {Γ ∈ AllΓ | ∃i ∈ [1,Taint_size(o)], Taint(o)(i) = Γ}

• Taint_trans provides each taint value in oΓ with the encountered o-transaction while propagating

it during the execution of algorithm (Section 6.3.3).

Taint_trans(o) : oΓ → P(x) (where x is the execution trace)

∀Γ ∈ oΓTaint_trans(o)(Γ) ∈ P(x)

Definition 55. taintConsideredNumber

for all o in Om and all Γ in oΓ, getCN takes as an argument an operator o and a taint value Γ and

returns the taintConsideredNumber attribute of this operator for the taint value.

getCN(o,Γ) ∈ N

The taintConsideredNumber represents, at the current state of an execution trace browsing, the

134

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

number of times a transaction corresponding to an operator has been encountered with a taint value.

Initially, when a taint value is assigned to an operator, its corresponding taintConsideredNumber is set

to zero.

Let us assume an operator o6 in a function f allocated to a hardware component h40. Let Γ be a

taint value for o6. Initially, getCN(o6,Γ) = 0. Table 6.3 shows 3 transactions for this operator and the

value of the taintConsideredNumber for this operator when a transaction is encountered in the trace.

Thus, getCN(o6,Γ) = 3 means that 3 transactions corresponding to o6 were encountered in an execution

trace for taint value Γ.

Table 6.3: Part of an execution trace in tabular format

hc 40
id 6
τ ts 0 11 21
τ te 1 12 22

getCN(o6,Γ) 1 2 3

Definition 56. sampleNumber

getSN takes as argument an operator o and returns the sampleNumber attribute of this operator.

getSN : Om → Z+

A ReadData, WriteData or IntOp operator may have several transactions corresponding to one exe-

cution of this operator. The sampleNumber is an integer representing, at a specific time of the analysis,

the number of bytes that are written or read in case of a ReadData or WriteData operator or the integer

cycles in case of IntOp operator. The sampleNumber is zero when the execution of an operator begins. It

is incremented when the successive transactions that correspond to this operator are encountered during

analysis. For example, if a ReadData operator o with size 13 has two transactions corresponding to

reading 10 then reading 3 data size respectively in the execution trace, sampleNumber of o starts as

zero, then it is set to 10 when the first transaction is encountered. Then, sampleNumber is set to 13

(10+3) when the second transaction is encountered.

135

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Thus, sampleNumber is used to detect the end of one execution of an operator while handling the

transactions corresponding to this operator execution. When the operator execution terminates, the

sampleNumber is reset.

6.3.3 Tainting Algorithm

Figure 6.9 is a flow chart presenting how latency can be computed using tainting. The flow chart in

Figure 6.9 presents an algorithm that takes as input a HW/SW Partitioning model m which defines a

dependency graph Gm, an execution trace x and a maximum latency requirement r = 〈oA, oB , λmax〉.

The algorithm iterates sequentially over the transactions in the execution trace. At each iteration, it

updates dynamic attributes of the operators of the graph. It then outputs for each occurrences of oA a

corresponding occurrence of oB if it exists. And then computes the latency between each couple (oA,

corresponding oB) in order to figure out whether the latency between these occurrences is greater than

λmax or not. Moreover, it collects transactions associated to taint values in order to classify them later

with respect to their impact on latency. The formal definition of this classification is part of our future

work but we expect it to be similar classification presented in previous chapter.

This simplified view of the algorithm considers operator transactions are atomic, which is not always

the case. However, this simplified view is relevant although it hides some details of the complete

algorithm, as explained in the next section. This atomicity is discussed in the next sub section.

6.3.4 Operator Transactions Granularity

Figure 6.9 considers that the execution of one operator produces exactly one transaction. But actually

this assumption does not hold for two reasons:

1. When an operator is executed on an execution hardware component, its executions may be pre-

empted by the scheduler and so this execution can produce more than one transaction

2. The transactions of ReadData and WriteData operators can be split with respect to the communi-

cation path on which data channels are allocated and with respect to the size of the components

of the communication path.

136

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

Start

End

l=|x|
k=0

K<l?

t=x[k]
ot=o

o=o
A
?

Generate fresh
taint Value

Add taint
value to o

A

o has
successors

Propagate taint
to relevant successors

Propagate(Γ)_o

Update o
 taintConsideredNumber

k=k+1

o
tainted?

o=o
B
?

Γ:=
getLatestTaint(o)

Compute latency
using taint Γ

Latency>
Max Latency

Requirement
 Violated for Γ

Yes

No

Yes

Yes

No

No

No

No

No

No

Yes

Yes

Yes

1
2

3

4

5

6

7

Figure 6.9: Flow chart of latency calculation based on Tainting
137

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Transaction split by scheduling:

In case an operator o is either ReadData, WriteData or IntOp operator, the sampleNumber attribute

introduced in Definition 56 is used to identify the last transaction corresponding to one execution of an

operator o. In case where the execution of an operator is implemented by several transactions, we consider

the last one as the significant transaction. We say an operator o is executed once in the execution trace

x when a transaction corresponding to o is encountered in x and either (1) the sampleNumber equals

to the size of o in case o is a ReadData or WriteData operator or (2) the sampleNumber equals to the

complexity of o in case o is an IntOp operator.

Let us come back to our main algorithm (Figure 6.9). Let us assume that at stage two the considered

transaction corresponds to an IntOp operator o. Let us assume that the sampleNumber returned by

getSN(o) is less than the complexity of o. At the next iterations steps, when a transaction t also

corresponds to the execution of o is encountered, the sample number is incremented and compared to

the complexity of o. If the sample number is lower than complexity of o, other dynamic attributes of o

are not modified. Otherwise, once the sampleNumber returned by getSN(o) is equal to the operators

complexity, the sampleNumber is reset as explained previously and the taint value is propagated to the

successors as stated before and detailed in the next section.

WriteData or ReadData operator are handled similarly, depending on the sampleNumber and the

operator data size.

Execution split with respect to a communication path:

To keep things simple, we assume that all WriteData and ReadData operators must have a data size less

than or equal than the data size of all components of a communication path where they are allocated.

So, for WriteData or ReadData operator there is one transaction for each component in the preceptive

communication path. Communication paths consist of write and read paths. In this chapter, and for

simplicity, we will abstract transactions on hardware components of a read/write path and consider such

transactions as atomic. The transaction executed on the last hardware component of a read or write

path marks the end of a ReadData or WriteData operator execution respectively. Transactions executed

on other hardware components of a read or write path different than the last hardware component is

138

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

referred to as intermediate transactions. Handling such intermediate transactions does not modify the

dynamic attributes of a state. Only the transaction associated to the last hardware component of a read

or write path does this. Thus, in this chapter, the last transaction of a read or write path is seen as

an atomic transaction associated to a ReadData or WriteData operator, handled following the process

described in the next section. According to Definition 24, the atomic transaction of WriteData is on the

storage component of the write path. According to Definition 25, the atomic transaction of ReadData

is on the execution component of the read path.

In the next sections we assume that a transaction is not preempted and the algorithm can select

the latest transaction of any operator execution. Thus, as a consequence we consider a transaction is

atomic. Similar to other operators in the model, for a maximum latency requirement r = 〈oA, oB , λmax〉,

operators oA and oB are also assumed to execute in one transaction. Thus, from now we consider that

operators execute in one transaction.

6.3.5 Calculating latency based on tainting

Figure 6.9 presents the actions performed by the algorithm each time a transaction of the execution trace

is picked up. Since we consider transactions are atomic as explained in previous section, each transaction

corresponds to an execution of an operator.

The execution of an action may lead to modify the general state for each algorithm step. Thus, the

state evolves. The state is modified by the following actions which are executed in the order they are

presented. Let transaction t correspond to the execution of operator o. So, we are here at a moment

where all transactions before transaction t have been handled and we describe the handling of t.

1. if o is oA (otherwise, goto 2):

generate a fresh taint value Γ (Γ /∈ AllΓ). Add it along with the transaction to attributes of o,

and set taintConsideredNumber to zero. More formally:

apply Update_oA = {

Γ = generate_fresh(AllΓ);

AllΓ = AllΓ ∪ {Γ};

Taint_size(o) := Taint_size(o) + 1;

139

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Figure 6.10: A transaction corresponding to oA is encountered (o = oA)

Taint(o)(Taint_size(o)) = Γ;

Taint_trans(o,Γ) := {t};

getCN(o,Γ) := 0; }

then, goto 3.

Figure 6.10 shows the attributes when a transaction corresponding to oA is encountered. Attributes

in green correspond to step 5.

2. if o is not tainted (i.e Taint_size(o) ≤ 0. Otherwise, goto 3):

transaction is skipped as it is not dependent on any transaction representing an occurrence of oA.

More formally: goto 7.

3. At this step we know that o is tainted and we identify the latest taint value(Γ), in order to propagate

it to successors.

We consider an operator as tainted when the size of the taint values sequence is greater than zero

(Taint_size(o) > 0). getLatestTaint takes as an argument an operator o and returns a taint

value.

getLatestTaint : Om → AllΓ

140

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

The value returned by getLatestTaint is important to determine which taint value is the right taint

to propagate to the successors of an operator as described next.

Beware that this function assumes that there is only one possible execution path in all loops.

More Formally: Γ := getLatestTaint(o).

getLatestTaint(o){

∀Γ ∈ oΓ do

if(getCN(o,Γ) < getTMN(o))

return Γ;

}

4. if o is not oB then goto 5. Since o is oB : compute latency. The latency is computed and verified

with respect to the requirement. The latency is computed between the current occurrence of

oB (tainted by the last taint value Γ) and the occurrence of oA tainted by Γ and according to

Section 6.4. If the requirement is not satisfied, a violation alert is raised.

5. Propagate taint to successors. Successors are characterized by Definition 51 and the propagation

of their taint value depends on the operator category and attributes. The next paragraph explain

the propagation of specific operators.

Taint propagation for Choice operator not used for loops For a Choice operator o,

soonest(x, t, o, getNext(o)) returns an operator os that belongs to getNext(o). os is first op-

erator in the branch actually chosen to execute by the Choice if it exists. If os is empty, go to 7.

Otherwise, if os exists it means that os is among getNext(o) and there is a transaction for os in

the remaining of the execution trace such that this transaction has the smallest sequence num-

ber among all the transactions corresponding to operators in getNext(o) and a sequence number

greater than the transaction of o.

When o is a Choice operator not part of a loop, the operator returned by soonest(x, t, o, getNext(o))

is tainted after the latest taint of the Choice operator is identified. We remind that getNext(o) is

defined in Section 4.3.1. Formally,

141

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

soonest(x, t, o, getNext(o)) =



os if os ∈ getNext(o) ∧ ∃ts ∈ x,
(
ots = os ∧ seqts > seqt∧

@(oi, ti) ∈ getNext(o)× x, oi = o ∧ seqt < seqti < seqts
)

∅ otherwise

Taint propagation for Choice operator for loops A Choice operator of a loop lf exists,

the operator corresponding to the exit loop branch (getOutsideLoop(lf)) is tainted when the

taintConsideredNumber of the Choice operator equals its taintMaxNumber as explained next.

Choice operators inside loops but not being a choice of a loop Tainting Choice operators

inside loops is discussed in Section 6.3.5.1.

taint propagation for other operator For other operators than Choice, all their next are

tainted with the current taint value. More formally:

apply Propagate(Γ)_o = {

if(cat(o) = Choice ∧ ¬isLoopChoice(o))

{

os = soonest(x, t, o, getNext(o))

addTaint(os,Γ, t)

}

elseif(cat(o) = Choice ∧ isLoopChoice(o) ∧ getCN(o,Γ) < getTMN(o)))

{

os = getInsideLoop(〈om, o, os, v, nbr〉)

addTaint(os,Γ, t)

}

elseif(cat(o) = Choice ∧ isLoopChoice(o) ∧ getCN(o,Γ) = getTMN(o)))

{

os = getOutsideLoop(〈om, o, os, v, nbr〉)

142

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

addTaint(os,Γ, t)

}

else

{

For Each os ∈ Succ(o)

addTaint(os,Γ, t)

}

}

addTaint(o,Γ, t) = {

if(Γ /∈ oΓ)

{

Taint_size(o) := Taint_size(o) + 1;

Taint(o)(Taint_size(o)) = Γ;

getCN(o,Γ) := 0; }

}

Taint_trans(o,Γ) := Taint_trans(o,Γ) ∪ {t};

}

In Figure 6.10, the update of attributes in green correspond to propagating the taint value to the

successors of operator o7.

6. Update taintConsideredNumber.

When operator o is not a Choice operator, after all successor operators of operator o are tainted,

the taintConsideredNumber of operator o is incremented by one to indicate that the taint value is

already propagated once to its successors.

When operator o is a Choice operator but not used to create loops, the taintConsideredNumber of

operator o is incremented by one when the soonest operator is tainted.

143

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

Figure 6.11: Transaction corresponding to o8 is encountered

Figure 6.12: Transaction corresponding to o9 is encountered

taintConsideredNumber update for Choice when used for loops The

taintConsideredNumber for the Choice operator used in the loop is incremented once all

operators along the loop iteration are tainted and considered once for the taint value. This

is known when the operator having an outgoing edge to the Merge operator is tainted. For

example, in Figure 6.1, the operator o14 is considered 3 times when o13 inside the loop iteration

is considered 3 times.

7. pick up the next transaction if it exists, else exit: end of transaction handling

Figure 6.11, Figure 6.12, Figure 6.13, Figure 6.14 and Figure 6.15 show the state change for 8 encountered

transactions as indicated per each figure.

144

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

Figure 6.13: Transactions corresponding to o10 then o11 are encountered

Figure 6.14: Transactions corresponding to o12 then o13 are encountered

Figure 6.15: Transactions corresponding to o10 then o11 are encountered

145

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

o3,Choice

o1,Start

loop 3 times

oi oj
getTMN(oi)=3 getTMN(oj)=3

getTMN(o3)=3

Figure 6.16: Graphical representation of a function in an Application model where getTMN(o3) = 3

6.3.5.1 Tainting Choice operators inside loops

Definition 57. taintChoiceExecNumber

When a Choice operator o is inside a loop iteration, its taintMaxNumber is calculated based on

Definition 53. Similarly, using Definition 53, we calculate the taintMaxNumber of all operators returned by

getNext(o). For example, in Figure 6.16, getTMN(o3) equals 3. Similarly, getTMN(oi) and getTMN(oj)

return 3.

Let us assume that operator o3 is tainted by taint value Γ and the transactions corresponding to

operators o3, oi and oj appear in the following order in an execution trace x1: to3,1,toi,1, to3,2, toi,2,

to3,3 and toj ,1. The changes occurring to the dynamic attribute taintConsideredNumber while browsing

the execution trace are shown in Figure 6.17. At the end of browsing of these transactions, for taint

value Γ the taintConsideredNumber of operator o3 is 3 while that of oi is 2 and for oj is 1. In case

o3 is tainted by a second taint value Γ′ and a transaction toi,3 is encountered in the execution trace,

before tainting oi with Γ′, the taintConsideredNumber for taint value Γ and taintMaxNumber of oi are

compared. In this case getCN(oi,Γ) < getTMN(oi), thus oi and according to the previous algorithm is

not tainted by Γ′ but with Γ.

So, in this case taintMaxNumber does not represent the exact number of times an operator is

executed. Thus, we need a new attribute which can be computed dynamically. So, we added the

taintChoiceExecNumber attribute.

The taintChoiceExecNumber attribute is useful when a Choice operator is inside a loop iteration and

it is tainted with a taint value. The taintChoiceExecNumber is used to predict for an operator o that

146

6.3. TAINTING CHAPTER 6. ADVANCED PLAN

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

toi,2: toj,1: toi,1:

getCN(oi, Γ)=1 getCN(oi, Γ)=2 getCN(oi, Γ)=1

o3,Choice

o1,Start

loop 3 times

oi oj

getCN(o3, Γ)=1

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

to3,2: to3,3: to3,1:

getCN(o3, Γ)=2 getCN(o3, Γ)=3

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.17: Changes occurring to the dynamic attribute taintConsideredNumber of Figure 6.16 operators
while browsing the execution trace

belongs to getNext(oc) of the Choice operator oc the correct number of times a transaction corresponding

to o is encountered in an execution trace for a taint value.

For all o in Om and all Γ in oΓ, getCEN takes as an argument an operator o and a taint value value

Γ and returns the taintChoiceExecNumber attribute of this operator for the taint value.

getCEN(o,Γ) ∈ N

Initially, when a taint value is assigned to a Choice operator o that is inside a loop iteration, the

taintChoiceExecNumber of all its successors is set to zero. When a transaction corresponding to the

Choice operator o is encountered in the trace, and the taintConsideredNumber of the Choice operator

for the taint value is less than its taintMaxNumber, the soonest operator os to execute among its

successors is identified and tainted according the Section 6.3.5. Once os is identified and tainted, its

taintChoiceExecNumber attribute is incremented by os fixedNumber. All operators in the same function

as operator os and that are in the dependency path between os and the Merge operator of the loop have

147

CHAPTER 6. ADVANCED PLAN 6.3. TAINTING

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

toi,2: toj,1: toi,1:

getCN(oi, Γ)=1 getCN(oi, Γ)=2 getCN(oi, Γ)=1

o3,Choice

o1,Start

loop 3 times

oi oj

getCN(o3, Γ)=1

o3,Choice

o1,Start

loop 3 times

oi oj

o3,Choice

o1,Start

loop 3 times

oi oj

to3,2: to3,3: to3,1:

getCN(o3, Γ)=2 getCN(o3, Γ)=3

getCEN(oi, Γ)=1 getCEN(oj, Γ)=0 getCEN(oi, Γ)=2 getCEN(oj, Γ)=1(a) (c) (e)

(b) (d) (f)

Figure 6.18: Changes occurring to the dynamic attribute taintChoiceExecNumber of Figure 6.16 operators
while browsing the execution trace

their taintChoiceExecNumber attribute incremented by their fixedNumber for the taint value. These

operators must not be successors to another Choice operator. Let use reconsider the previous example

but now with taintChoiceExecNumber. As a reminder, the transactions are in the following order to3,1,

toi,1, to3,2, toi,2, to3,3 and toj ,1 in the execution trace.

Let us assume that operator o3 is tainted with taint value Γ before transaction to3,1.

When transaction to3,1 is encountered, the soonest operator to execute is retrieved using

soonest(x, to3,1, o
3, getNext(o3)).

In our example, soonest(x, to3,1, o
3, getNext(o3)) = oi. Thus, getCEN(oi,Γ) is incremented by 1

(Figure 6.18).

When transaction to3,2 is encountered, soonest(x, to3,2, o
3, getNext(o3)) = oi and getCEN(oi,Γ) is

incremented by 1. When transaction to3,3 is encountered, soonest(x, to3,3, o
3, getNext(o3)) = oj and

getCEN(oj ,Γ) is incremented by 1.

The main objective to introduce taintChoiceExecNumber attribute is to know the exact number of

times a taint value must be propagated to successors. As previously seen, getLatestTaint is used to

148

6.4. COLLECT TRANSACTIONS AND COMPUTE LATENCIES CHAPTER 6. ADVANCED PLAN

return the taint value that must be propagated to the successors of an operator.

After introducing taintChoiceExecNumber, getLatestTaint(o) definition is updated. getLatestTaint(o)

starts by sequentially checking the taint values of the operator o. If the taintChoiceExecNumber of o for

a taint value is greater than zero, this means that taintChoiceExecNumber value should be considered

instead of the taintMaxNumber to retrieve the latest taint value.

More Formally: Γ := getLatestTaint(o).

getLatestTaint(o){

∀Γ ∈ oΓ do

if(getCEN(o,Γ) > 0 ∧ getCN(o,Γ) < getCEN(o,Γ))

return Γ;

elseif(getCN(o,Γ) < getTMN(o))

return Γ;

}

6.4 Collect transactions and compute latencies

The actions presented in Figure 6.9 are repeated with every transaction encountered in the execution

trace. However, when the latest taint of operator o is retrieved and o is oB , then, the transaction

corresponding to operator oB is encountered,. Let the latest taint value be Γ. Then, the encountered

transaction is considered the occurrence of operator oB of a taint value Γ corresponding to the occurrence

of operator oA of the same taint value.

Lets denote by tA,Γ the transaction of Taint_trans(oA)(Γ) and by tB,Γ the transaction returned by

Taint_trans(oB)(Γ).

The latency λΓ between the occurrence of operator oA and its corresponding occurrence of operator

oB for a taint value Γ is computed as:

λΓ = τ
tB,Γ
e − τ

tA,Γ
s

In our example, oA is tainted once with Γ when a transaction corresponding to o7 is encountered.

149

CHAPTER 6. ADVANCED PLAN 6.5. CONCLUSION

This taint value Γ propagates according to the steps defined before and reach operator o15 at time 172

in the execution trace. Thus, with the first occurrence of oB , the operator o21 is not tainted yet. As

o21 is a successor to o15, operator o21 is tainted at 173 and the second occurrence of o21 is considered

the occurrence of operator oB of a taint value Γ. The latency λΓ is calculated as 202− 0 = 202.

6.5 Conclusion

In this chapter, we introduced an advanced version of the latency analysis approach. Advanced PLAN

overcome the assumption of 1-to-1 relation between the two operators of the maximum latency require-

ment. The advanced approach is capable to identify for each executed operator A, the corresponding

execution of operator B based on graph tainting. Thus, latency computation is possible in wider range

of execution traces than primitive PLAN.

In the next chapter, we will see how the designer can automatically retrieve the computed latency by

discussing the integration of the primitive and advance PLAN within TTool.

150

Chapter 7

Integration into Model-Driven Engineering

Framework

“To understand the best is to work on its implementation.”

-Jean-Marie Guyau

One of the objectives of this thesis is to implement PLAN and provide the results to the designer in a

user-friendly way. The analysis results should be presented in a clear and informative way so the designer

can depend on them to make decisions to enhance the system model. TTool and more precisely one of

its modeling profiles named SysML-Sec was chosen for this implementation. In TTool, the designer can

draw a system model that confirms with our formal model thanks to TTool diagramming facilities.

In this chapter, the integration of a prototype of the PLAN approach within TTool is presented.

First, we will discuss how our formal model maps to SysML diagrams. Then, in Section 7.2, we show

how a designer can instantiate PLAN in TTool. PLAN can be started from a graphical window interface

or from command line. In Section 7.3 and Section 7.4, we demonstrate respectively using two real-world

use cases from H2020 AQUAS project how primitive PLAN approach and advanced PLAN approach can

be efficiently applied to verify latency requirements by analyzing simulation traces.

151

CHAPTER 7. INTEGRATION 7.1. APPLICATION TO UML/SYSML

f1 f3 f4f2 f5

dc6 dc7 sc8

Figure 7.1: Functions of the example in Figure 4.5

7.1 Application to UML/SysML

Our formal model easily maps to SysML diagrams. For modeling, we selected TTool [14] and SysML-

Sec [26] developed in our lab. As a reminded SysML-Sec follows the Y-Chart approach [131]. In the

application model, functions defined as SysML blocks are modeled as blocks colored green and variables

of a function are displayed inside the green block. The functions of the example in Figure 4.5 are shown

in Figure 7.1. Figure 7.1 also shows the communications between functions that are captured with

Internal Block Diagrams. Communications are attached to functions via ports. Synchronization ports

are in purple while data ports are in blue.

The behavior of a function captured with SysML activity diagrams is built upon operators and control

flow connections. Operators in a function behavior are modeled as shown in Table 7.1. Operators IntOp

and Set are both mapped to action element in the activity diagram. The Merge operator is not directly

supported by TTool. Figure 7.2 shows the behavior of the functions of Figure 7.1 in case the Merge

operator of SysML activity diagrams was supported by TTool. However, an OrderedSequence operator

that executes each interconnected outgoing branch in sequence is used to represent the Merge operator.

Moreover, StaticForLoop operator is used to represent a fixed size loop. StaticForLoop enables the

iteration on operators in the inside loop branch for a fixed number of times (Table 7.2). Figure 7.3 shows

the behavior of the functions of Figure 7.1 as supported by TTool.

UML Deployment Diagrams or SysML allocations can be used for platform and allocation models. In a

platform and allocation model (Fig.7.14), execution, communication and storage hardware component are

shown in blue, brown and green respectively. Functions are allocated to execution hardware components

and data channels are allocated to communication paths. As a reminder, the graphical view, data

channels are allocated to the communication and storage hardware components of a communication

paths. Figure 7.4 shows the allocation as in Figure 4.6.

152

7.1. APPLICATION TO UML/SYSML CHAPTER 7. INTEGRATION

10

[true] [false]

15 13

14

chl
dc6(4)

chl
dc7(2)

4

chl
dc6(4)

4
17

[true] [false]

2

12

chl
dc7(2)

5

evt
sc8()

evt
sc8()

50

(f1) (f2) (f3)

(f4)

(f5)

Figure 7.2: Behaviors of the functions of Figure 4.5

Table 7.1: Operators in TTool

cat(c) Graphical Representation
Start

Stop

Choice
[guard1] [guard2]

[]

WriteData
chl
data_channel(size)

ReadData
chl
data_channel(size)

Notify sync_ch

Wait sync_ch

IntOp complexity

Set x=x+1

153

CHAPTER 7. INTEGRATION 7.1. APPLICATION TO UML/SYSML

10

[true] [false]

[]

15 13

>>

14

chl
dc6(4)

chl
dc7(2)

4

chl
dc6(4)

4

17

[true] []

[false]

>>

2

12

chl
dc7(2)

5

evt
sc8()

evt
sc8()

50

(f1) (f2)

(f3)

(f4) (f5)

Figure 7.3: Behaviors of the functions of Figure 4.5 in TTool154

7.1. APPLICATION TO UML/SYSML CHAPTER 7. INTEGRATION

Table 7.2: OrderedSequence and StaticForLoop operators in TTool

Operator Graphical Representation
OrderedSequence >>

branch1 branch2 branch3

StaticForLoop Loop 10 times
inside
loop

exit loop

<<MEMORY>>
h45

f::dc7

channel

f::dc6

channel

<<CPURRPB>>
h41

f::f2f::f1

<<CPURR>>
h42

f::f3

<<BUS-RR>>
h44

f::dc6

channel

f::dc7

channel

<<CPU>>
h43

f::f5f::f4

Figure 7.4: A possible allocation of the application model given in the example in Figure 4.6

155

CHAPTER 7. INTEGRATION 7.1. APPLICATION TO UML/SYSML

7.1.1 Model simulation

Simulation is meant to represent in a simplified way the execution of the system. It is one particular

case of execution using an environment that reproduces the behavior of a model to produce an execution

trace that we call simulation trace.

Our HW/SW partitioning models can obviously be used as documentation but thanks to the execution

semantics provided to functions and hardware components as explained in [136], we are able to verify

whether requirements are satisfied or not in our models. Simulation is one of the verification techniques

available in SysML-Sec [135]. One verification way is to first simulate the model in order to obtain one

simulation trace among all the possible ones and second check in this trace whether a given requirement

is satisfied or not.

To generate simulation traces in a fast way, system level models commonly make simplifications. In

the HW/SW partitioning model considered in this thesis several abstraction principles hold. Thanks to

the abstractions both at application and platform models we can generate simulation traces in a quite

efficient way as demonstrated in [136]. All abstractions that are considered in this thesis are listed

in [136] but the most relevant ones for the latency analysis are listed below. They are related to the

functions and to the platform.

First, at the application level, when data is exchanged between functions only the amount of data is

modeled as explained in Definition 15. This is referred to as data abstraction. Algorithms are modeled

using IntOp operators with a complexity attribute used to specify the processing complexity of the

algorithm. This is referred to as algorithm abstraction. Control operators that are Start, Stop, Choice,

Merge and Set categories do not consume any clock cycles.

Second, in the platform model, the hardware components are modeled as parameterized hardware

components. The throughput of a data channel is determined by (1) the slowest hardware resource

along the communication path on which this data channel has been allocated, (2) the quantity of data

to read or write and (3) the contentions on execution, communication and storage hardware components

involved in a communication path.

These abstraction levels in the application and platform models do not allow us to have a simulation

in which we can execute in a precise way just like it can be done for the lowest level of abstraction, e.g.,

156

7.2. PLAN INTEGRATION INTO TTOOL CHAPTER 7. INTEGRATION

Figure 7.5: Save simulation trace in XML format

cycle-accurate, bit accurate (CABA) [52].

From the simulation interface of TTool, the simulation trace can be saved in different formats includ-

ing VCD, HTML, txt and XML format (Figure 7.5). In the scope of this thesis, we are interested in the

XML format. Having the simulation data stored in XML format facilitates its analysis and manipulation.

This XML saved simulation trace forms an input to the PLAN approach.

7.2 PLAN integration into TTool

We chose to integrate PLAN into TTool as it captures our model by SysML diagrams and simulates it.

Moreover, TTool is free and open source and it is developed in our lab. The designer can instantiate

PLAN from TTool graphical interface or from the command line.

When using the graphical interface, PLAN is instantiated on a saved XML simulation trace. Each

simulation trace contains the name of its corresponding model. Thus, the simulation trace and its

corresponding model are taken as inputs for PLAN. The PLAN user interface opens in a separate window

as the corresponding dependency graph is generated in the background (Figure 7.6). To construct the

graph, we used jGraphT [167] a Java library. A progress bar shows the progress of graph generation and

a message is displayed when the graph is successfully generated indicating the number of vertexes and

edges of the graph.

157

CHAPTER 7. INTEGRATION 7.2. PLAN INTEGRATION INTO TTOOL

Figure 7.6: PLAN window

In this version of PLAN implementation, the operators of a maximum latency requirement are identi-

fied by the user manually in the activity diagrams. These operators are tagged as a Latency checkpoint as

shown in Figure 7.7. Latency checkpoints identification already existed in TTool before the start of this

thesis. From the PLAN window, the designer can choose from two drop-down lists two of these latency

checkpoint operators to be as inputs to the PLAN approach. In Figure 7.6, we chose the WriteData op-

erator in f1 and ReadData operator in f2. In the window of Figure 7.6 several buttons and check-boxes

exist. The buttons and check-boxes provide the designer a set of different functions. These functions

guide and help the designer in the analysis approach. For instance, with the Check Path Between Oper-

ators button the designer can check if a dependency path exists in the dependency graph between two

operators selected in the drop-down lists. Moreover, from the PLAN window, the designer can choose to

view the dependecy graph by pressing on Show Directed Graph. Show Directed Graph opens a separate

window showing the generated graph. This graph can also be exported in different formats from the

Save Graph tab (Figure 7.8). Save Graph (png) is the first button in the tool-bar of the Save Graph tab.

158

7.2. PLAN INTEGRATION INTO TTOOL CHAPTER 7. INTEGRATION

Figure 7.7: Tagging an operator as latency checkpoint

Figure 7.8: PLAN-Save Graph

The second button is Save Graph (Graphml) button. Graphml is a common format to exchange graphs

based on XML [17].

Initially when the PLAN window opens, to keep the operators drop-down lists readable and convenient

for the designer, not all the operators in the model are shown, only the operators that are marked as

latency checkpoints in the model are present in these drop-down lists. However, Show All Operators

button enables to add all operators from the model to the drop-downs. These operators are grouped

by functions. Thus, a designer can filter these operators by choosing the corresponding function from

the task drop down that is visible now. The button label also changes to Show Checkpoints Operators.

159

CHAPTER 7. INTEGRATION 7.2. PLAN INTEGRATION INTO TTOOL

Figure 7.9: PLAN-Show All Operators

Figure 7.10: PLAN-Compute Latency

Pressing this button again will show again only operators marked as latency checkpoints (Figure 7.9).

The Taint First Operator check-box enables the designer to compute the latency between two oper-

ators based on graph tainting.

As all the required inputs to compute the latency are identified now, the latency between the two

operators is computed by pressing the Compute Latency button. When the latency value is computed,

a message is returned to the designer and the Latency Values table is filled. If Taint First Operator

check-box is checked, then for each taint value a row is added in the Latency Values table. Figure 7.10

corresponds to calculating the latency in our example in Figure 7.4

When a latency value in any row in the Latency Values table is greater than the maximum latency value

specified in a maximum latency requirement, the designer must run ETA to see what transactions con-

tributed to a specific latency value. To run ETA, the designer selects the row corresponding to this latency

value from the Latency Values tab and then press on the Precise Analysis button. This button is enabled

after the latency computation terminates. A new window opens as shown in Figure 7.11. In the current

160

7.2. PLAN INTEGRATION INTO TTOOL CHAPTER 7. INTEGRATION

Figure 7.11: PLAN classification output for a latency value

implementation of ETA, the transactions in MandatoryOP and OptionalOP sets are referred to as

Mandatory Transactions. The other transactions are referred to as Non-Mandatory Transactions. Among

the Non-Mandatory Transactions, the transactions in MandatoryFunc, OptionalFunc, Contention

and NoContention sets are identified. The transactions in MandatoryFunc and OptionalFunc are

referred to as Functions Transactions. To identify transactions in the Contention set, we referred to an

attribute returned by the simulator named the runnableTime attribute which is the point in time when

the operator is ready to execute as the best case execution time.

In the window in Figure 7.11, the simulation transactions that are considered as mandatory are listed

in the Mandatory Transaction panel and those that are not mandatory are listed in the Non-Mandatory

Transaction panel. For each of these transactions, the hardware on which they are executed, the start

time and end time are also displayed. In the third panel of this window, a table is shown. In this table,

each row corresponds to one hardware component in the system and each column represents a one-

time slot in the simulation. Transactions are placed according to when and where they were executed.

The mandatory transactions are displayed in green, the non-mandatory transactions that contributed to

increasing the latency value due to contentions are colored red, the functions transactions are colored

gray and those that are not mandatory but did not belong to the previous sets (i.e., NoContention) are

colored orange. In our example, as shown previously in the formal definitions, the IntOp operator in f1

161

CHAPTER 7. INTEGRATION 7.3. INDUSTRIAL DRIVE SYSTEM USE CASE

caused contention on the hardware component h41. To close the latency analysis window, Terminate

Latency Analysis dispose the frame and releases all of its resources.

In addition to the functionalities added to perform the PLAN approach from the user interface of

TTool, several methods are added to perform the analysis using the command line and saving the PLAN

results in an XML file. The script shown in listing 7.1 is an example of running the PLAN approach

in the command line. It starts by setting the path of the HW/SW partitioning system model and the

simulation trace. Then, the panel name of the allocation model is identified followed by the file name

where the latency table and the precise row latency analysis output are going to be saved. The Taint

variable indicates if the designer wants to use graph tainting in the analysis or not. The script starts by

starting TTool and opening the model using commands followed by PLAN commands. Command plan

graph $sim $panel generates the dependency graph of the specified panel in the specified model. It also

takes the simulation trace path as an input parameter. To list all operators in the model plan listAllOp

command is used. To run latency analysis between two operators and save results in an XML file plan lat

is used with four parameters, the first two are the operators ids then a boolean variable that indicated if

tainting is used or not. The fourth parameter specifies the destination file where the latency values table

are saved in XML format. To run PLAN for a row plan planR 1 $staXML command is used where the

results are saved in the file specified in the last parameter. The row number is the first parameter.

7.3 Industrial Drive System Use Case

To test the prototype integration of the primitive PLAN approach, we need a system with a maximum

latency requirement such that there is a one-to-one relation between requirement operators. The Indus-

trial Drive system along with a maximum latency requirement that satisfies this condition are described

and modeled in Section 7.3.1. Section 7.3.2 shows, how our primitive PLAN approach can be efficiently

applied to the analysis of simulation traces obtained from SysML models.

162

7.3. INDUSTRIAL DRIVE SYSTEM USE CASE CHAPTER 7. INTEGRATION

Listing 7.1: PLAN Command Line Script
#model
set model ./../ttool/GraphTestModel.xml
#simulation trace
set sim ./../ttool/graphTestSimulationTrace.xml
#model panel
set panel Architecture2
#latency table output destination
set latXML latOutput.xml
#precise row latency analysis output destination
set staXML staOutput.xml
#indicated if the tainting is used or not
set taint true
start ttool
action start
wait 2
#open model
action open $model
wait 4
#generate graph for specific panel in the model
plan graph $sim $panel
list all operators id
plan listAllOp
run latency analysis between two operators and save results in xml
plan lat 44 26 $taint $latXML
run precise analysis for one row an save the results in xml
plan planR 1 $staXML

163

CHAPTER 7. INTEGRATION 7.3. INDUSTRIAL DRIVE SYSTEM USE CASE

MOTOR CONTROL
C
L
I
E
N
T

M
O
T
O
R

SERVER
CONTROL MAIN LOOP MOTOR

CONTROL
POWER

Speed/Direction Voltage Position/CurrentPWM

E
N
C

E
N
C

D
E
C

V
O
T
E
R

ACK

Figure 7.12: Specification of industrial drive

7.3.1 Description of the use case

A high-level view of the industrial drive system—defined in the scope of the H2020 AQUAS

project [12] [184]—is shown in Fig. 7.12. The system consists of 3 main components: Client, Mo-

tor Control, and Motor. The Motor Control is further split into 3 sub components: Server Control, Main

Loop and Motor Control Power. The Motor Control receives speed and direction data signals from the

Client through the Server Control and sends them to the Main Loop. Once the data signals have been

read, the Main Loop notifies the Client through Server Control by sending an acknowledgment and runs

an algorithm to generate PWM (Pulse Width Modulation) signals. The PWM signals are then sent to

the Motor Control Power. The Motor Control Power transforms these signals into supply voltages and

sends them to the Motor. Main Loop runs periodically an algorithm to monitor the speed and direction

of the Motor after reading the position data and current value signals sent from the Motor via Motor

Control Power. In case an adjustment is needed, the Main Loop sends updated PWM signals to the

Motor Control Power.

Also, a Voter ensures safety by receiving redundant position signals from the Motor, then calculating

their average. This average value is sent to Motor Control Power. To ensure confidentiality, position

signals are encrypted. The system must ensure that the latency between starting a new iteration of the

Main Loop and the Motor receiving the supply voltages from the Motor Control Power is always below

55µs.

164

7.3. INDUSTRIAL DRIVE SYSTEM USE CASE CHAPTER 7. INTEGRATION

Interrupt MainLoop
run_Inter()

...

PWMtoPS
MotorF

PhaseSig

PStoM
PhaseSig()

PStoM(1)
x = 0;

...

...

[x>0] [x<0]

... ...
...

PStoM(1)

PhaseSig()

run_Interrun_Inter()

Figure 7.13: An excerpt of the application model of the industrial drive

<<BUS-RR>>
Bus3

A::PStoM
channel

<<CPURR>>
CPU2

A::MotorF

<<MEMORY>>
Memory1
A::PStoM
channel

Figure 7.14: An excerpt of the allocation model of the industrial drive

7.3.2 Model simulation and trace analysis

Our formal model easily maps to SysML diagrams. In Fig.7.13, “x” is a variable in function PWMtoPS

In Fig.7.13, a synchronization channel named run_Inter is shown between Interrupt and MainLoop

functions and a synchronization channel and a data channel are shown between PWMtoPS andMotorF

functions named PhaseSig and PStoM respectively.

Fig.7.14 shows the allocation of the MotorF function and the PStoM data channel. 56µs of the

industrial drive execution have been simulated. 56µs has been chosen since it is the minimum duration

to validate the latency requirement. The simulated hardware components run at 200MHz. The obtained

simulation trace contains 11888 transactions.

We denote by oA the operator corresponding to the first operator of the main loop and by oB
the operator corresponding to the receiving of the voltage in the motor. The two operators and their

two functions are shown in Fig. 7.13. Operator oA is the Wait operator named run_Inter() in violet

in MainLoop and operator oB is reading data operator named PMStoM in blue in MotorF . The

operators oA and oB have one-to-one relation. Thus the first execution of oB corresponds to the first

execution of oA.

165

CHAPTER 7. INTEGRATION 7.3. INDUSTRIAL DRIVE SYSTEM USE CASE

Figure 7.15: PLAN output showing contention

Figure 7.16: PLAN output showing no contention

The start time of toA,1 in the simulation trace is “2” and the end time of the toB ,1 is “11115”.

Thus, the latency in this case is 11113 cycles (i.e., 55.56µs). Thus, the requirement is not satisfied, thus

leading to use PLAN. PLAN is implemented in TTool: the transactions are classified and displayed in a

table. Transactions in the graphical table (e.g., Fig. 7.15) are displayed according to the hardware that

executed them and the time of execution. Since transactions are colored according to their category,

contention transactions are easy to identify. For example, transactions in MandatoryOp set are colored

in green, those in Contention, NoContention and MandatoryFunc sets are colored in red, orange

and gray respectively. In our use case, after generating a dependency graph of 552 vertexes and 965

edges and running the execution trace analysis, contentions were spotted on the execution hardware

component on which the Motor Control functions are allocated (Fig. 7.15). The contention is due to

the Server Control function processing data to write acknowledgment to the Client while the encryption

function was ready to execute but its the resource was busy.

To resolve this execution contention, an execution hardware component is added to the platform and

the Server Control function is now allocated to it. Running PLAN again, the latency is now equal to

10604 cycles (i.e., 53.02µs) since the start time of toA,1 is noted as 2 and the end time of the toB ,1
is 10606. Thus, the latency requirement is satisfied. To see how the transaction classifications changed

between the two models, we used PLAN even though the requirement was satisfied. The output in

Fig. 7.16 reveals that no contention was detected and that the Server Control function could process

data to write acknowledgment to the Client while the decryption function was executing.

166

7.4. RAIL CARRIAGE MECHANISMS USE CASE CHAPTER 7. INTEGRATION

7.4 Rail Carriage Mechanisms Use Case

After analyzing a use case that satisfies the assumptions of primitive PLAN approach, in this section we

would like to test the prototype integration of the advanced PLAN approach. To illustrate the benefits of

graph tainting we use the Rail Carriage Mechanisms use case defined in the scope of the H2020 AQUAS

project [12], with a focus on the control of automatic platform gates. The Rail Carriage Mechanisms

system along with a maximum latency requirement are described and modeled in Section 7.4.1. Sec-

tion 7.4.2 shows how our advanced PLAN approach can be efficiently applied to the analysis of simulation

traces to assist in adjusting the model to satisfy requirements.

7.4.1 Description of the use case

The Rail Carriage Mechanisms system consists of Lidars with their processing units, a main computing

unit, a relay and a PSD (Platform Screen Doors) controller. The Lidars are divided in two categories.

Positioning Lidars scan for a train presence and door Lidars scan the train doors to determine their status.

The processing unit of the positioning Lidars calculates the position and the speed of the train once it is

present while the processing unit of the door Lidars detects the state of doors e.g. opening, open, closing

and closed. The main computing unit gathers data from the Lidars processing units and issues orders to

relays to open or close the platform screening doors. This open/close authorization is sent to the PSD

controller through the relay.

Our design captures four Lidars (2 positioning Lidars and 2 door Lidars). We also consider the four

following requirements:

1. Req_1: The delay between sending the data from the positioning Lidar and the relay receiving

the order from the main computing unit shall be less than 130ms (safety requirement)

2. Req_2: The delay between sending the data from the positioning Lidar and processing it in the

corresponding processing unit shall be less than 85ms. (safety requirement)

3. Req_3: Data sent from the Lidars processing units (speed and direction, or door status) to the

main computing unit should remain authentic (security requirement)

167

CHAPTER 7. INTEGRATION 7.4. RAIL CARRIAGE MECHANISMS USE CASE

4. Req_4: Data sent from the Lidars to their corresponding processing units should remain confi-

dential (security requirement)

7.4.1.1 HW/SW partitioning models

Figure 7.17 shows the functional view of the use case where only one Lidar is presented. The function

PL1 is used to represent sending data by the first positioning Lidar. PL1 sends 1 frame of data once

triggered by triggerPL1 every 67ms. This frame is received by another primitive component named

F1_1and2_PL1 where the frame is copied to the algorithm buffer then checked for validity by checking

its length and CRC calculation. After being checked, a detection algorithm is run that includes rotational

mapping, filters and pattern detection. The computation complexity of this algorithm is modeled in the

activity diagram using complexity operators. F1_3_PL1 reads the output of the detection algorithm,

runs CRC calculation and sends a message to the F3_1_MsgAcquisition component. F1_3_PL1 is

triggered every 50ms. F1_1and2_PL1 and F1_3_PL1 represent the functionality of the positioning

lidar processing unit. All these blocks are duplicated for the 3 remaining Lidars. The door Lidars are

triggered every 20ms.

F3_1_MsgAcquisition is a function in a composite component named SafetyComponent. In TTool,

composite components (colored in yellow) serve as containers for functions. F3_1_MsgAcquisition

reads data from F1_3_PL1. The same applies for the data received from the other 3 Lidars pro-

cessing unit functions. In the composite component SafetyComponent, another primitive component

named F3_2_MsgAcquisition_SafePart is a redundant function added to the model to ensure safety.

F3_2_MsgAcquisition_SafePart is triggered every 50ms. It runs a validity check and a sequence algo-

rithm (represented by computation complexity) to compute the adequate result to be sent to Relay. The

later is triggered every 33 ms.

The architecture of the system is as follows. Each Lidar is captured by its own set of processors, buses,

memories, while the safety platform is built upon a CPU (MainCPU) and 2 memories: MainMemory and

RelayMemory. The mapping model associates LIDAR blocks triggerPL1, PL1, F1_1and2_PL1 and

F1_3_PL1 and their communications to their corresponding hardware while safety blocks are mapped

to MainCPU. A share memory helps exchanging data between a MainCPU and Relay.

168

7.4. RAIL CARRIAGE MECHANISMS USE CASE CHAPTER 7. INTEGRATION

SafetyComponent

F3_1_MsgAcquisition

frameAvailable_PL1framePL1

F3_2_MsgAcquisition_SafePart

computationResult

TriggerSafePart

TriggerF1_3_PL1
triggerF1_3_LP1

F1_1and2_PL1

...

PL1

...

Relay

controlData

triggerLP1

F1_3_PL1

send_train_position1_Frame_R

RelayTrigger

SendPos1

sendPosition1frame
Position1frame

AlgoBuf_L1

train_position1_result

framebuffer

relayPeriod

triggerSP

SW

SW

Figure 7.17: Functional view of Rail Carriage Mechanisms Use Case

169

CHAPTER 7. INTEGRATION 7.4. RAIL CARRIAGE MECHANISMS USE CASE

7.4.2 Model simulation and trace analysis

The System Under Analysis (SUA) is supposed to run at 80 MHz. TTool was used to simulate it on

a Intel Core i7–7820HQ CPU running at 2.9 GHz. 150 ms of the SUA execution have been simulated;

the simulation trace contains 19575 transactions and is saved in XML format. A duration of 150 ms is

chosen since it is the minimum duration that permit us to validate Req_1 using PLAN. PLAN is used to

validate Req_1 since the computationResult− ControlData channel in Figure 7.17 is Non Blocking

Read — Non Blocking Write (NBR-NBW). This means that it is equivalent to a shared memory between

the sender and the receiver. In other words, the receiver function is not blocked if the sender did not send

data on the channel. Thus, tainting should be used to trace when the control data is computed based

on the position frame input. So, data sent from PL1 should be tainted to calculate the exact time delay

between oA and oB . Sending a frame from the Positioning Lidar (request “SendPos1” in triggerPL1)

is oA in Req_1 and the relay receiving a control signal to send to the PSD (channel “controlData” in

Relay) is oB . The dependency graph corresponding to the model is composed of 244 vertexes and 393

edges.

The latency between oA and oB can be calculated whenever oB is tainted with the same taint value

as oA and the taintConsideredNumber of oB is greater than zero. Based on our main algorithm in

Figure 6.9, the latency between oA and oB is 10170380 cycles (127.1 ms). Thus, Req_1 is satisfied.

The latency corresponding to Req_2 is 681372 cycles (8.51 ms) thus, Req_2 is not satisfied.

To validate the authenticity of the data sent from F1_3_PL1 to F3_1_MsgAcquisition and from

F3_1_MsgAcquisition to F3_2_MsgAcquisition_SafePart (Req_3), and the confidentiality between

PL1 and F1_3_PL1 (Req_4), the formal security verification of TTool/ProVerif is used. The latter

proves that Req_3 and Req_4 are not satisfied and shows it to the user by adding a red lock on

the concerned data channels. To ensure the authenticity property on these channels, CRC is replaced

by HMAC-SHA256 in F1_3_PL1. [152] describes how a security operator can be added in TTool to

represent HMAC-SHA256. A security operator is considered as an IntOp operator in advanced PLAN

implementation. To determine the computation complexity of HMAC-SHA256 (i.e. 8322 clock cycles),

we have used the technique described in [95] and relying on SSDLC (Secure Software Development Life

Cycle). The overhead of the message is set to 256 bits.

170

7.4. RAIL CARRIAGE MECHANISMS USE CASE CHAPTER 7. INTEGRATION

To ensure the confidentiality property on the channel between PL1 and F1_3_PL1 (Req_4) encryp-

tion/decryption operators are added. Also encryption/decryption operators are considered as an IntOp

operator in advanced PLAN implementation. We chose the AES algorithm in Cipher Block Chaining

(CBC) mode and set the computational complexity to 3000 as indicated in [95].

By adding authenticity and confidentiality mechanisms, we could formally prove that Req_3 and

Req_4 are now satisfied. The concerned data channels are annotated with green locks in figure 7.17. In

TTool, channels can be either private or public and only attacks on public channels are considered [155].

We run again PLAN along with its new model and new simulation trace. The time delay corresponding

to Req_1 is now 10249025 cycles (128.1 ms) while the time delay corresponding to Req_2 is 683551

cycles (8.54 ms). From the classification sets, we notice that the increase of the time delay of Req_2

is due to the added encryption/decryption operators and the increase of the time delay of Req_1 is due

to the scheduling policy of the mainCPU.

To satisfy Req_2 while keeping the confidentiality property of Req_4 valid, we replace AES CBC

with AES CTR (counter mode). The computational complexity is now set to 428 cycles. This value is

obtained by applying the same interaction as indicated in [95]. The security verification indicates that

the confidentiality property still holds. The latency was recalculated in a similar manner as mentioned

before. The maximum delay corresponding to Req_2 now is 678029 cycles (8.47 ms). The maximum

delay of Req_1 was not effected as the latency for Req_1 depend on the trigger time and scheduling

policy of mainCPU.

Table 7.3 summarizes the result of each requirement along each tested model in this use case. While

replacing AES CBC with AES CTR mode enhanced performance by decreasing the latency proportionally

to the decrease in the computational complexity cycles, several other methods can be tested in case

further performance enhancement is required, e.g. by adding hardware accelerators for cryptographic

functions, by using other security algorithms, by trying a different mapping, by adjusting the scheduling

policy of CPUs or buses, of by using more powerful processing units, After applying the required

enhancements, the designer can simulate the model and run the verification process again to test if the

requirements still hold.

171

CHAPTER 7. INTEGRATION 7.5. CONCLUSION

Table 7.3: Requirement Satisfaction Summary Table

Security Req 1 Req 2 Req 3 Req 4
CRC Yes No No No

HMAC + AES CBC Yes No Yes Yes
HMAC + AES CTR Yes Yes Yes Yes

7.5 Conclusion

In this chapter, we presented the integration of the PLAN approach into TTool. First, we showed that the

toy example we used in the previous chapters can be modeled and simulated in TTool. Then, we analyzed

a simulation trace of this toy example model with the implemented primitive PLAN approach. This

analysis revealed the expected results for the latency computation and the classification of transactions.

Thus, the root cause of the latency violation in this example matched the expected results.

Moreover, we test the implemented primitive PLAN approach on Industrial Drive system. Using

PLAN output we were able to detect contention on a hardware component. This contention was the

main reason for latency requirement violation. Knowing the reason behind the latency value enabled us to

enhance the system model. While we chose to add a new hardware component and update the allocation

model, a designer can decide to test other alternatives to see how it affect the latency value. However,

we expect the alternative solutions a designer might choose to be guided by the PLAN approach output.

As a reminder, PLAN approach outputs classification sets that reveal the root cause of a latency value

based on dependencies between the system model elements and the causality between transactions in an

execution trace.

In the Industrial Drive system, the primitive PLAN approach could be applied as the one-to-one

relation between the requirement operators hold. However, for Rail Carriage Mechanisms use case,

the requirement operators do not respect this relation. So, we used the implemented prototype of the

advanced PLAN approach. In the latter use case, we took several requirements into account and we saw

how the PLAN approach output can assist a designer to satisfy these requirements. In these two use

cases, we showed that PLAN approach satisfied its objective by providing the root cause of a maximum

latency requirement dissatisfaction.

The complexity of PLAN approach can be directly linked to the size of a system model and the size

172

7.5. CONCLUSION CHAPTER 7. INTEGRATION

of an execution trace (the number of transactions in the trace). For instance, to check if there is a

dependency path between oA and oB , we choose to check the shortest path between these operators, if

the shortest path is non empty then these operators are dependent. The complexity of Dijkstra’s Shortest

Path algorithm is specified in [30] as: O(|E|+ |V |log|V |), where |E| is the number of edges and |V | is

the number of vertexes in a graph. Also, to check if an operator o is in the dependency path between

oA and oB , we check the shortest path between oA and o and the shortest path between o and oB .

Knowing that our algorithm iterates over all the transactions in an execution trace x, checking if the

operator of each transaction is in the dependency path between oA and oB results in a complexity of

O
(
(| x |) ∗ (|E|+ |V |log|V |)

)
.

Further computations are required to estimate the complexity of the whole algorithm. While the part

of the complexity that is linked to the size of the analyzed execution trace is inevitable, the complexity

related to checking if an operator is in a dependency path directly depends on the inPath function.

While in our implementation, computing the classification of transactions runs in reasonable time,

further enhancement to avoid computing several times the same elements can be applied to the im-

plemented approach. For instance, one direction of the future work is to test whether the complexity

of searching all possible dependency paths between oA and oB at the beginning of the algorithm and

classifying the operators of these paths as mandatory and optional brings significant gain in the algorithm

performance. While this suggested implementation might decrease the complexity of theMandatoryOP

and OptionalOP sets since the operators of the dependency paths between oA and oB will be analyzed

once instead of dynamically for each transaction, further investigation is required to test the impact of

the implementation complexity on the other classification sets such as MandatoryFunc and OptionalFunc

sets. Since in the latter sets the number of the dependency paths to study at the beginning of the analysis

might be large.

173

Chapter 8

Conclusion

“The measure of greatness in a scientific idea is the extent to which it stimulates thought

and opens up new lines of research.”

-Paul Dirac

When designing an embedded system, a common way to do is to make a model of the system,

simulate or execute it to obtain traces, then check in these traces whether functional and non functional

requirements are satisfied or not. In this thesis, our idea was to provide for the designer more than the

satisfaction results of these requirements. We aimed to provide, if a requirement is unsatisfied, what

are the root causes of this dissatisfaction. This means to understand why it is unsatisfied. For instance,

when there is a latency requirement violation, we intended to help the designer know what are the root

causes of this latency violation.

An embedded system model is expected to include software and hardware components. In these

components, several factors determine when a software operation is executed. One of these factors is

the hardware component and its support software on which this operator is allocated. For instance,

the scheduling process of a bus or a processor, the bandwidth mismatch between buses, the bus band-

width,. . . have a significant contribution on the time of execution of an operation. Another factor is the

dependency between operators in the application of an embedded system. For instance, an operator

might be waiting another operator to finish execution before it executes.

174

8.1. RESUME OF CONTRIBUTIONS Conclusion

When the delay between two operators must be less than a maximum value, we refer to this con-

straint as maximum latency requirement. To understand the reasons of a maximum latency requirement

violation, in this thesis, we captured dependencies in the system model and accordingly we classified

transactions of an execution trace. The classification of transactions was based on their impact on the

latency between the two operators of the requirement. We refer to this advanced approach that analyzes

traces as PLAN.

In Chapter 1, we identified that it may be difficult to figure out which parts of the system contributed

to a delay between two operations. Thus, when a maximum latency requirement is not satisfied it might

be difficult for a designer to enhance an embedded system design to satisfy this requirement as the

factors contributing to the delay might be unknown. Thus, this thesis addressed requirement verification

of embedded systems by focusing on trace analysis using a new trace analysis technique (PLAN).

By identifying dependencies between model elements and classifying transactions in an execution

trace with respect to latency requirement, we identified and highlighted which software functions and/or

hardware components contributed to this delay. In this chapter, we summarize the contributions of this

thesis and provide a list of further research ideas to extend our work.

8.1 Resume of Contributions

Problem Formalization We have formally defined the three inputs to our approach: the system

model, the model execution trace and the maximum latency requirement. The system model follows

the Y-Chart approach to partition the system between hardware and software: application and platform

are modeled independently before the application is allocated to the platform. The execution trace built

upon a set of transactions can be obtained from a model simulation, or from a model-to-code generation

and then code execution. The requirement can be explicitly linked to execution traces of a systems. The

requirement specifies a maximum delay between the start and end times of two operators. Having these

inputs formally defined enables us to easily adapt our approach to different tools and methods concerned

with embedded system design.

175

Conclusion 8.1. RESUME OF CONTRIBUTIONS

Primitive PLAN In Chapter 5, PLAN approach was introduced. PLAN can investigate an execution

trace produced from a system-level model corresponding to an application, an architecture and the

allocation of the application on the architecture. PLAN aims to facilitate the localization of the reason

that caused an embedded system model to violate a user-provided latency requirement. To to so,

the approach takes three inputs: (1) an allocation model that describes how software functions and

communication channels (application model) are allocated to hardware units (platform model), (2) an

execution trace built on execution transactions where each transaction represents the execution of an

operator on a hardware component and (3) a latency requirement that provides an upper bound on the

time delay between the occurrences of two basic software operations. In Chapter 5, we assumed that

for each of the two operators in the latency requirement we have a unique execution transaction in the

execution trace. The classifications of transaction in Chapter 5 are formalized and presented based on

this assumption.

We classified transactions into eight different sets. Among these sets, the contention set is an

important set that the designer should take into consideration to update the model since it contains

transactions that are the root causes that contributed to increasing the delay between latency requirement

operators.

Advanced PLAN In Chapter 5, PLAN could analyze the execution traces that contained only one

transaction per each operator of a maximum latency requirement.

In order to analyze a wider range of execution traces, i.e., the execution traces that contain more

than one transaction per each operator of a maximum latency requirement, we introduced graph tainting

in Chapter 6.

The key of advanced PLAN in Chapter 6 is to “taint” a directed dependency graph derived from

SysML activity diagrams, and by analyzing execution transaction in a trace to propagate these “taint”

along the graph to determine the latency values.

The approach in Chapter 6 is based on a dependency graph that captures all relevant dependencies

between operators in an application model. The transactions in an execution trace are sequentially studied

to update the state of the operators in the dependency graph. A transaction can add a taint value for to

176

8.2. PERSPECTIVES Conclusion

an operator in a graph. The propagation of taint value along the graph helps us identify the transactions

corresponding to the occurrence of the first operator of the requirement and the corresponding occurrence

of second operator mentioned in the requirement.

For that, we store a taint value for every transaction corresponding to the first operation of the latency

requirement and propagate it till the taint value reaches the first operation of the latency requirement.

This enables us to overcome the 1:1 relation between latency requirement operators, and thus we can

handle one-to-many-relations between these operators.

PLAN Integration into TTool In Chapter 7, a prototype implementing PLAN was realized. We

started by explaining how our formal models can be easily captured by SysML diagrams. Then, Section 7.2

gives an overview of the implementation of the prototype. More specifically, it gives an overview on

how the designer can initiate PLAN using the graphical interface or the command line and how the

classification results can be obtained. Moreover, in Chapter 7, we have demonstrated PLAN approach

on two use cases defined in the scope of the H2020 AQUAS project: the industrial drive system and the

rail carriage mechanisms system.

For these two use cases, the PLAN approach identified the root cause behind having a latency value

higher than the maximum latency. Thus, we showed how the PLAN approach can be used to guide a

designer to update the system model to satisfy a maximum latency requirement.

8.2 Perspectives

The goal of this thesis was to guarantee that a timing requirement in a system model is satisfied and in

case of non satisfaction to guide the designer to the reason behind this non satisfaction. By knowing the

reason a requirement is not satisfied, the designer might find it easier to update the model. We have

chosen latency requirement at it is frequently verified to ensure designing safe and efficient embedded

systems.

While this thesis has proposed an advanced trace analysis approach, there still exists significant

future work. One important future research direction is providing designers with automated suggestions

for enhancing the model such that the timing constraints are all met especially when safety and security

177

Conclusion 8.2. PERSPECTIVES

measures are iteratively added to the model.

8.2.1 Model enhancements at current abstraction level

Support of more communication channel semantics The hypothesis taken in Chapter 5 restrict

the communication channels whose operates are along the dependency path of the requirement operator

to behave as Blocking Notify - Blocking Wait synchronization channel or Blocking Write - Blocking Read

data channel. Chapter 5 targets this assumption however it does not take into account the buffer size

of these channels. Knowing how many messages are stored in a buffer before an operator is tainted is

an important aspect to accurately taint a dependency graph and compute latency.

To target this point, we started by modeling the data channel as a vertex in the dependency graph

where its ReadData operator and WriteData operator are connected to it. We assign attributes to

this data channel vertex including the current buffer size attribute per hardware component. The later

attribute returns the amount of data already stored in the buffer on a hardware component before the

WriteData was tainted. In the future, we would like to update the tainting algorithm to check the current

buffer size attribute before propagating the taint. We would also need to test if this solution is accurate

to model the different semantics of the data channel. If it is, we would like to apply the same for the

synchronization channel.

Extend the model to support more operators The categories of operators presented in Chapter 4

enable the designer to model an algorithm having a precise complexity. To model an algorithm having a

complexity either value 1 or value 2, the designer has to use a Choice operator and for each branch of

the Choice operator an IntOp represent the complexity value (value 1 or value 2).

As part of the future work, we want to extend the model to support more operators. For instance, to

support an IntOp with two values: minimum value and maximum value. The complexity can be between

these two values. Primitive PLAN can easily be adapted to the addition of the latter operator. However,

for advanced PLAN additional work is required. To add such operator with indeterministic complexity

value, advanced PLAN requires to have additional information in the transaction corresponding to the

operator that indicates the precise complexity taken in execution. This value is required since we need

178

8.2. PERSPECTIVES Conclusion

to know when to propagate the taint value to the operators successors.

8.2.2 Model enhancement to support different abstraction levels

PLAN application to different abstraction levels As seen in the system model formal definition,

our model does not give a precise abstraction level apart from a few operators for instance the WriteData

and ReadData operators. These operators exchange an amount of data and not data values. So, in the

system model we do not have data values. Thus, our analysis analysis is adapted to data abstraction

which we can consider on high level of abstraction.

For instance, in assembly we get the operators we presented in Section 4.3.1 but we have some

abstractions that might make the latency analysis impossible. For example, we cannot trace exactly

how the data was manipulated and we cannot guarantee that the data we send is the same the one we

received. So, in the current version of PLAN we cannot exchange data or reuse data values.

It is part of the future work to extend the expression capacity of the operators we propose to cover

different levels of abstractions.

8.2.3 Verification aspects

Proof of correctness of the execution trace partitioning In this thesis, we have formally defined

for primitive PLAN the different classification sets of transactions. In future work, we should prove the

correctness of this classification and that a transaction is always correctly added to the set it should

belong to. Moreover, for advanced PLAN, we should define the different classification sets which we

expect to be similar to primitive PLAN classification sets with conditions added with respect to taint

values.

Complexity computation We have tested our approach on two realistic use cases in the scope of

AQUAS [184] project. However, in the future we should compute the complexity of our approach with

respect to the model size (or dependency graph size) and the execution trace size. Computing the

complexity will help us to better compare our approach with the existing simulation/execution trace

analysis approaches.

179

Conclusion 8.2. PERSPECTIVES

8.2.4 Tooling aspects

Enhance the implementation Currently, only a prototype of PLAN is implemented. In this prototype,

only the transactions that are executed along the latency interval of a maximum latency requirement are

shown to the designer in PLAN window in TTool. In future work, we should classify the transactions

that belong to all the formally defined sets. Moreover, for the contention set, we should provide more

accurate values for the BSED and BEED. Ideally, the values of BSED and BEED should be provided by

the executor per transaction in the execution trace.

PLAN application to Security Countermeasures in Safety Critical Systems One of the chal-

lenges when designing embedded systems is to satisfy altogether its safety, security and performance

requirements. The advantages of designing embedded systems while taking the interactions of safety,

security and performance requirements into consideration early in the design cycle is highlighted in several

approaches [105] [94] [184] [22]. Mainly, it results in a decrease in the development time and efforts and

an increase in product quality [92].

To deal with requirements of different kind (safety, security, performance), industrial and academic

partners collaborated on several projects including MERgE [6], Sesamo [7], CRYSTAL [4], etc. While

most of these projects considered the relation between safety and security, some also added performance

to the scope like, for example, SAFURE [16], AMASS [194], EVITA [5] and AQUAS [12].

A model changes by adding or removing software or hardware components, updating hardware re-

sources parameters or changing a functional behavior. These changes may occur when adding safety

or security mechanisms. For example, the addition of encryption/decryption mechanisms can support

more secure message exchanges or a new security algorithm can increase the system security level.

These changes may result in extra computations and communications. In addition, extra contentions on

resources may result from the transfer of longer messages [243].

Several contributions specifically address the impact of security on performance. In [243], a cross-

layer design framework combines control-theoretic methods and cybersecurity techniques. The result of

this framework is a Pareto front between two normalized metrics representing control performance and

security level. The provided region denotes all feasible solutions for the requirements under study, an

180

8.2. PERSPECTIVES Conclusion

Figure 8.1: Compute Latency in Two Simulation Traces

important output for making decision choices. To evaluate the impact of security on performance in

modern systems, Fujdiak et al. [94] rely on experimental measurements. Their results demonstrate a

linear relation between security levels and performance.

An interesting application of PLAN is analyzing the impact on timing when changing a SysML model.

In this thesis, the introduced PLAN approach can be applied to a use case model and an updated version

of this model separately. However, we have implemented a first attempt to show the output of PLAN

approach simultaneously for two models in the same window in TTool. Thus, allowing the designer

to compare the latency and the classification of transactions in these two models directly as shown in

Figure 8.1 and Figure 8.2 respectively.

This first attempt aims to further assist the designer to compare and determine how the changes

applied to a model impacted its timing requirements. However, further work on large sets of security and

safety mechanisms is needed to prove our claim and show that our approach always works. As safety

and security measures in TTool can be easily implemented and verified, future work to apply the PLAN

181

Conclusion 8.2. PERSPECTIVES

Figure 8.2: Compare PLAN Output Window for Two Rows

182

8.2. PERSPECTIVES Conclusion

approach on safety and security-related model changes may be easier.

183

Chapter 9

Résumé

Lors de la conception d’un système embarqué, une façon courante de procéder est de faire un modèle du

système, de le simuler ou de l’exécuter pour obtenir des traces, puis de vérifier si ces traces respectent

les exigences fonctionnelles et non fonctionnelles. Dans cette thèse, notre idée est d’aider le concepteur

au-delà de la simple satisfaction des exigences. Ainsi, notre objectif est de savoir, si une exigence n’est

pas satisfaite, quelles en sont les causes. Nous voulons de plus appliquer cela à des exigences de latence.

Un modèle de système embarqué inclut des composants logiciels et matériels. Dans ces composants,

plusieurs facteurs déterminent le moment où une opération logicielle d’une fonction applicative est exé-

cutée. L’un de ces facteurs est le composant matériel (par exemple, un processeur, un bus) et son

logiciel support (un système d’exploitation) sur lesquels la fonction est allouée. Par exemple, le proces-

sus d’ordonnancement d’un bus ou d’un processeur, l’inadéquation de la bande passante entre les bus,

la largeur de bande du bus,. . . ont une contribution significative sur le temps d’exécution des fonctions

applicatives. Un autre facteur est la dépendance entre les fonctions d’une application. Par exemple, un

opérateur d’une fonction doit attendre la fin de l’exécution d’un autre opérateur avant de s’exécuter.

Lorsque le délai entre deux opérateurs doit être inférieur à une valeur maximale, nous appelons cette

contrainte « exigence de latence maximale ». Pour comprendre les raisons d’une violation d’une telle

exigence, dans cette thèse, nous modélisons les dépendances dans le modèle du système : à partir de ces

dépendances, nous pouvons classer les transactions d’une trace d’exécution en fonction de leur impact

sur la latence. Nous désignons par le terme PLAN cette approche avancée d’analyse des traces.

184

Conclusion

Dans le chapitre 1, nous avons expliqué pourquoi il est difficile de déterminer quelles parties du système

ont contribué à un retard entre deux opérations. Ainsi, lorsqu’une exigence de latence maximale n’est

pas satisfaite, il peut être difficile pour un concepteur d’améliorer la conception d’un système embarqué

pour satisfaire cette exigence, car les facteurs contribuant au retard peuvent être inconnus et multiples.

Ainsi, cette thèse aborde la vérification des exigences des systèmes embarqués en se concentrant sur

l’analyse des traces en utilisant une nouvelle technique d’analyse des traces (PLAN). En identifiant les

dépendances entre les éléments du modèle et en classifiant les transactions dans une trace d’exécution

par rapport à une exigence de latence, nous avons identifié et mis en évidence les fonctions logicielles

et/ou les composants matériels qui ont contribué à ce retard.

Le chapitre 2 a donné un aperçu des systèmes embarqués, l’ingénierie dirigée par les modèles (MDE)

et les contraintes temporelles. De plus, dans le chapitre 2, nous avons expliqué le profil SysML-Sec dans

lequel notre contribution est intégrée. Le chapitre 3 présente les travaux connexes, où les approches de

vérification des performances et les méthodes d’analyse des traces de simulation sont étudiées.

Au chapitre 4, nous avons formellement défini les trois entrées de notre approche: la modélisation

système, la trace d’exécution du modèle et l’exigence de latence maximale. La modélisation système

suit l’approche Y-Chart pour partitionner le système entre matériel et logiciel : l’application et la plate-

forme sont modélisées indépendamment avant que l’application ne soit allouée à la plate-forme. La trace

d’exécution construite sur un ensemble de transactions peut être obtenue à partir d’une simulation de

modèle, ou à partir de la génération de code exécutable depuis le modèle, puis de l’exécution de ce code.

L’exigence peut être explicitement liée aux traces d’exécution d’un système. L’exigence spécifie un délai

maximal entre les temps de début et de fin de deux opérateurs. Le fait d’avoir ces entrées formellement

définies nous permet d’adapter facilement notre approche aux différents outils et méthodes concernés

par la conception de systèmes embarqués.

L’approche PLAN a été présentée au chapitre 5. PLAN peut investiguer une trace d’exécution

produite à partir d’un modèle de niveau système correspondant à une application, une architecture et

l’allocation de l’application sur l’architecture. PLAN a pour but de faciliter la localisation de la raison pour

laquelle un modèle de système embarqué a violé une exigence de latence fournie par l’utilisateur. Pour

ce faire, l’approche prend trois entrées : (1) un modèle d’allocation qui décrit comment les fonctions

185

Conclusion

logicielles et les canaux de communication (modèle d’application) sont alloués aux unités matérielles

(modèle de plateforme), (2) une trace d’exécution construite sur des transactions d’exécution où chaque

transaction représente l’exécution d’un opérateur sur un composant matériel et (3) une exigence de

latence qui fournit une limite supérieure sur le délai entre les occurrences de deux opérations logicielles

de base. Dans le chapitre 5, nous avons supposé que pour chacun des deux opérateurs de l’exigence de

latence, nous avons une transaction d’exécution unique dans la trace d’exécution. Les classifications des

transactions du chapitre 5 sont formalisées et présentées sur la base de cette hypothèse. Nous avons

classé les transactions en neuf ensembles différents. Parmi ces ensembles, l’ensemble « contention » est

un ensemble important que le concepteur doit prendre en compte pour mettre à jour le modèle car il

contient les transactions qui sont les causes premières ayant contribué à augmenter le délai entre les

opérateurs de l’exigence de latence.

Dans le chapitre 5, PLAN a permis d’analyser les traces d’exécution qui ne contenaient qu’une

transaction pour chaque opérateur d’une exigence de latence maximale. Afin d’analyser une gamme plus

large de traces d’exécution, c’est-à-dire les traces d’exécution qui contiennent plus d’une transaction par

opérateur d’une exigence de latence maximale, nous avons introduit une nouvelle technique d’analyse

basée sur le "tainting" de graphes au chapitre 6.

La clé de cette version plus avancée de PLAN du chapitre 6 est de marquer un graphe de dépendance

construit depuis les diagrammes d’activité SysML et en analysant la transaction d’exécution dans une

trace, de propager ce marquage le long du graphe pour déterminer les valeurs de latence. Ce graphe de

dépendance comporte toutes les dépendances pertinentes entre les opérateurs d’un modèle d’application.

Les transactions dans une trace d’exécution sont étudiées séquentiellement pour mettre à jour l’état des

opérateurs dans le graphe de dépendance. Une transaction peut ajouter une valeur pour un marquage

donné pour un opérateur dans un graphe. La propagation de cette valeur le long du graphe nous

aide à identifier les transactions correspondant à l’occurrence du premier opérateur de l’exigence et à

l’occurrence correspondante du second opérateur mentionné dans l’exigence. Pour cela, nous stockons

une valeur de "taint" pour chaque transaction correspondant à la première opération de l’exigence de

latence et la propageons jusqu’à ce que la valeur du marquage atteigne la deuxième opération de l’exigence

de latence. Cela nous permet de lever la restriction de dépendance 1 à 1 des opérateurs.

186

Conclusion

Dans le chapitre 7, un prototype mettant en œuvre PLAN a été réalisé. Nous avons commencé par

expliquer comment nos modèles formels peuvent être facilement capturés par des diagrammes SysML.

Ensuite, la section 7.2 donne un aperçu de l’implémentation du prototype. Plus précisément, elle donne

un aperçu de la façon dont le concepteur peut lancer PLAN à l’aide de l’interface graphique ou d’une

interface en ligne de commandes et de la façon dont les résultats de la classification peuvent être obtenus.

De plus, dans le chapitre 7, nous avons démontré l’approche PLAN sur deux cas d’utilisation définis dans

le cadre du projet H2020 AQUAS : le système d’entraînement industriel et le système de mécanismes de

wagons. Pour ces deux cas d’utilisation, l’approche PLAN a permis d’identifier la raison principale pour

laquelle la latence est supérieure à la latence maximale. Ainsi, nous avons montré comment l’approche

PLAN peut être utilisée pour guider un concepteur dans la mise à jour du modèle du système afin de

satisfaire une exigence de latence maximale.

Le chapitre 8 résume les contributions de cette thèse et fournit une liste de nouvelles idées de

recherche pour étendre notre travail. Notre objectif ultime est de fournir aux concepteurs des sugges-

tions automatisées pour améliorer le modèle de façon à ce que les contraintes de temps soient toutes

respectées.

187

Appendix A

List of System Model Formal Definitions

The list of formal definitions introduced in Chapter 4:

s = 〈m,R〉

m = 〈F ,P ,A〉

F = 〈F, CC〉

CCf,f ′ = 〈DCf,f ′ ,SCf,f ′〉

DC =
⋃{
DCf,f ′ | f, f

′ ∈ F2}

SC =
⋃{
SCf,f ′ | f, f

′ ∈ F2}

CC = DC ∪ SC

SCType = {NBN-BW-INF,NBN-BW-F,BN-BW-F}

getSCType : SCf,f ′ → SCType

getFIFOBufferSize(scf,f ′) =

∞ if getSCType(scf,f ′) = NBN-BW-INF
Z+ if getSCType(scf,f ′) ∈ {NBN-BW-F,BN-BW-F}

DCType = {NBW-NBR,NBW-BR,BW-BR}

getDCType : DCf,f ′ → DCType

189

getBufferSize(dcf,f ′) =

∞ if getDCType(dcf,f ′) ∈ { NBW-NBR,NBW-BR}
Z+ if getDCType(dcf,f ′) = BW-BR

f = 〈{v1,f , v2,f , . . . , vn,f}, Bf 〉

Bf = 〈Of = {o1, o2, . . . , on}, Lf , Cf ⊂ {(oi, oj) ∈ O
2
f | i 6= j}〉

Om =
⋃
f∈F

Of

inPath(o,−−→o1o2) =

true if ∃oioj ∈
−−→
o1o2 | oi = o ∨ oj = o

false otherwise

getNext(o) = {oi | (o, oi) ∈ Cf}

cat(o) ∈
{
Start, Stop, Choice,Merge, IntOp, Set,WriteData,ReadData,Notify,Wait

}
.

getF (m, o) = f | o ∈ Of

getComplexity : Of,IntOp → Z+

getDataChannel : Of,WriteData ∪Of,ReadData → DC

getDataSize : Of,WriteData ∪Of,ReadData → Z+

getSyncChannel : Of,Notify ∪Of,Wait → SC

insideLoop(o, 〈om, oc, os, v, nbr〉) =

true if inPath(o,−−−→ocom)
false otherwise

getInsideLoop(〈om, oc, os, v, nbr〉) = o | o ∈ getNext(oc) ∧ insideLoop(o, 〈om, oc, os, v, nbr〉)

getOutsideLoop(〈om, oc, os, v, nbr〉) = o | o ∈ getNext(oc) ∧ ¬insideLoop(o, 〈om, oc, os, v, nbr〉)

190

isLoopChoice(oc) =

true if cat(oc) = Choice ∧ 〈om, oc, os, v, nbr〉 ∈ Lf
false otherwise

P = 〈H,L〉

cat(h) ∈ {HE ,HC ,HS}

getIntCyc : HE → Z+

getByteNbr : H → Z

L ⊆ HC ×H ∪H×HC

cP = 〈πw, πr〉

πw = 〈h1, . . . , hm〉s.t.∀1 ≤ i ≤ m− 1, (hi, hi+1) ∈ L, h1 ∈ HE , hm ∈ HS , h2≤j≤m−1 ∈ HC

πr = 〈h1, . . . , hn〉s.t.∀1 ≤ i ≤ n− 1, (hi, hi+1) ∈ L, h1 ∈ HS , hn ∈ HE , h2≤j≤n−1 ∈ HC

A = 〈−→Af ,
−−→
Adc〉

−→
Af : F → HE

−−→
Adc : DC → CP

EXEC : M × Z+ →P(EM)

x = {t1, . . . , tk}

t = 〈seqt, τ ts, τ te, ht, ot〉

r = 〈oA, oB , λmax〉

191

Appendix B

Execution Trace in XML format

Listing B.1 shows the execution trace corresponding to Table 6.2 in XML format.

Listing B.1: Execution Trace Shown in XML format of a HW/SW Partitioning Model
<tran seq= "1" starttime="0" endtime="0" hc="40" id="6" />
<tran seq= "2" starttime="0" endtime="1" hc="40" id="7" />
<tran seq= "3" starttime="0" endtime="1" hc="43" id="7" />
<tran seq= "4" starttime="0" endtime="1" hc="44" id="7" />
<tran seq= "5" starttime="1" endtime="1" hc="40" id="8" />
<tran seq= "6" starttime="0" endtime="0" hc="41" id="27" />
<tran seq= "7" starttime="1" endtime="2" hc="44" id="9" />
<tran seq= "8" starttime="1" endtime="2" hc="43" id="9" />
<tran seq= "9" starttime="1" endtime="2" hc="41" id="9" />
<tran seq= "10" starttime="2" endtime="2" hc="41" id="10" />
<tran seq= "11" starttime="2" endtime="2" hc="41" id="11" />
<tran seq= "12" starttime="2" endtime="52" hc="41" id="12" />
<tran seq= "13" starttime="52" endtime="52" hc="41" id="13" />
<tran seq= "14" starttime="52" endtime="52" hc="41" id="10" />
<tran seq= "15" starttime="52" endtime="52" hc="41" id="11" />
<tran seq= "16" starttime="52" endtime="102" hc="41" id="12" />
<tran seq= "17" starttime="102" endtime="102" hc="41" id="13" />
<tran seq= "18" starttime="102" endtime="102" hc="41" id="10" />
<tran seq= "19" starttime="102" endtime="102" hc="41" id="11" />
<tran seq= "20" starttime="102" endtime="152" hc="41" id="12" />
<tran seq= "21" starttime="152" endtime="152" hc="41" id="13" />
<tran seq= "22" starttime="152" endtime="152" hc="41" id="10" />
<tran seq= "23" starttime="152" endtime="152" hc="41" id="11" />
<tran seq= "24" starttime="152" endtime="172" hc="41" id="14" />
<tran seq= "25" starttime="172" endtime="173" hc="41" id="15" />
<tran seq= "26" starttime="172" endtime="173" hc="43" id="15" />
<tran seq= "27" starttime="172" endtime="173" hc="44" id="15" />
<tran seq= "28" starttime="173" endtime="173" hc="41" id="16" />
<tran seq= "29" starttime="0" endtime="0" hc="42" id="17" />
<tran seq= "30" starttime="0" endtime="0" hc="42" id="24" />
<tran seq= "31" starttime="0" endtime="0" hc="42" id="26" />

193

<tran seq= "32" starttime="0" endtime="0" hc="42" id="18" />
<tran seq= "33" starttime="0" endtime="0" hc="42" id="19" />
<tran seq= "34" starttime="0" endtime="100" hc="42" id="20" />
<tran seq= "35" starttime="100" endtime="101" hc="44" id="21" />
<tran seq= "36" starttime="100" endtime="101" hc="43" id="21" />
<tran seq= "37" starttime="100" endtime="101" hc="42" id="21" />
<tran seq= "38" starttime="101" endtime="101" hc="42" id="22" />
<tran seq= "39" starttime="101" endtime="101" hc="42" id="18" />
<tran seq= "40" starttime="101" endtime="101" hc="42" id="19" />
<tran seq= "41" starttime="101" endtime="201" hc="42" id="20" />
<tran seq= "42" starttime="201" endtime="202" hc="44" id="21" />
<tran seq= "43" starttime="202" endtime="202" hc="43" id="21" />
<tran seq= "44" starttime="202" endtime="202" hc="42" id="21" />
<tran seq= "45" starttime="202" endtime="202" hc="42" id="22" />
<tran seq= "46" starttime="202" endtime="202" hc="42" id="18" />
<tran seq= "47" starttime="202" endtime="202" hc="42" id="19" />
<tran seq= "48" starttime="202" endtime="302" hc="42" id="20" />
<tran seq= "49" starttime="302" endtime="303" hc="44" id="21" />
<tran seq= "50" starttime="302" endtime="303" hc="43" id="21" />
<tran seq= "51" starttime="302" endtime="303" hc="42" id="21" />
<tran seq= "52" starttime="303" endtime="303" hc="42" id="22" />
<tran seq= "53" starttime="302" endtime="302" hc="42" id="18" />
<tran seq= "54" starttime="302" endtime="302" hc="42" id="19" />
<tran seq= "55" starttime="302" endtime="302" hc="42" id="23" />

194

Bibliography

[1] ISO/IEC 27000 family - Information security management systems. URL https://www.iso.org/
isoiec-27001-information-security.html.

[2] The mars 2020 rover’s brains. https://mars.nasa.gov/mars2020/spacecraft/rover/
brains/. Accessed: 2021-09-24.

[3] Sample handling. https://mars.nasa.gov/mars2020/spacecraft/rover/
sample-handling/. Accessed: 2021-09-24.

[4] CRYSTAL: CRitical sYSTem engineering AcceLeration. URL http://www.crystal-artemis.
eu/.

[5] EVITA:E-safety vehicle intrusion protected applications. URL https://www.evita-project.
org/.

[6] MERgE. URL http://www.merge-project.eu/.

[7] SESAMO:Security and Safety Modelling. URL http://www.sesamo-project.eu/.

[8] Vision zero initiative. https://trimis.ec.europa.eu/?q=project/
vision-zero-initiative#tab-outline. Accessed: 2020-07-08.

[9] What are the carbon monoxide levels that will sound the alarm? https://www.kidde.com/
home-safety/en/us/support/help-center/browse-articles/articles/what_are_the_
carbon_monoxide_levels_that_will_sound_the_alarm_.html, 04/10/2019. Accessed:
2021-09-24.

[10] Boston scientific recalls ingenio family of pacemakers and crt-ps due to risk of transi-
tion to safety mode. hhttps://www.fda.gov/medical-devices/medical-device-recalls/
boston-scientific-recalls-ingenio-family-pacemakers-and-crt-ps-due-risk-transition-safety-mode,
08/10/2021. Accessed: 2021-09-24.

[11] UML Profile for MARTE, volume 1.1. Object Management Group, 2011. URL https://www.
omg.org/spec/MARTE/1.1/.

[12] Aggregated quality assurance for systems (aquas). https://aquas-project.eu, 2013. Accessed:
2019-09-24.

[13] Retro-ingénerie de traces d’analyse de simulation et d’exécution de systèmes temps-réel – rt-simex.
https://anr.fr/Projet-ANR-08-SEGI-0015, 2013. Accessed: 2019-09-24.

195

https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://mars.nasa.gov/mars2020/spacecraft/rover/sample-handling/
https://mars.nasa.gov/mars2020/spacecraft/rover/sample-handling/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/
https://www.evita-project.org/
https://www.evita-project.org/
http://www.merge-project.eu/
http://www.sesamo-project.eu/
https://trimis.ec.europa.eu/?q=project/vision-zero-initiative#tab-outline
https://trimis.ec.europa.eu/?q=project/vision-zero-initiative#tab-outline
https://www.kidde.com/home-safety/en/us/support/help-center/browse-articles/articles/what_are_the_carbon_monoxide_levels_that_will_sound_the_alarm_.html
https://www.kidde.com/home-safety/en/us/support/help-center/browse-articles/articles/what_are_the_carbon_monoxide_levels_that_will_sound_the_alarm_.html
https://www.kidde.com/home-safety/en/us/support/help-center/browse-articles/articles/what_are_the_carbon_monoxide_levels_that_will_sound_the_alarm_.html
hhttps://www.fda.gov/medical-devices/medical-device-recalls/boston-scientific-recalls-ingenio-family-pacemakers-and-crt-ps-due-risk-transition-safety-mode
hhttps://www.fda.gov/medical-devices/medical-device-recalls/boston-scientific-recalls-ingenio-family-pacemakers-and-crt-ps-due-risk-transition-safety-mode
https://www.omg.org/spec/MARTE/1.1/
https://www.omg.org/spec/MARTE/1.1/
https://aquas-project.eu
https://anr.fr/Projet-ANR-08-SEGI-0015

BIBLIOGRAPHY

[14] Ttool, 2013. URL https://ttool.telecom-paris.fr.

[15] Automatic braking system issues. https://www.abrahamwatkins.com/blog/2015/07/
automatic-braking-system-issues.shtml, 2015. Accessed: 2020-10-16.

[16] Safure - safety and security by design for interconnected mixed-critical cyber-physical systems,
2015-2018. URL https://safure.eu/.

[17] What is graphml?, 2019. URL http://graphml.graphdrawing.org/.

[18] Road safety: Commission welcomes agreement on new eu rules to help save lives. https://ec.
europa.eu/commission/presscorner/detail/en/IP_19_1793, 2019-04-26. Accessed: 2020-
07-08.

[19] Mobility and transport road safety. https://ec.europa.eu/transport/road_safety/
what-we-do_en, 2020-07-10. Accessed: 2020-07-10.

[20] Nissan’s aeb is suddenly stopping vehicles for no reason. http://www.nissanproblems.com/
aeb/, 21/03/2019. Accessed: 2021-09-24.

[21] E. A. Aboussoror, I. Ober, and I. Ober. Significantly increasing the usability of model analysis
tools through visual feedback. In International SDL Forum, pages 107–123. Springer, 2013.

[22] N. Alhirabi, O. Rana, and C. Perera. Security and privacy requirements for the internet of things:
A survey. ACM Transactions on Internet of Things, 2(1):1–37, 2021.

[23] A. Alshamrani and A. Bahattab. A comparison between three sdlc models waterfall model, spiral
model, and incremental/iterative model. International Journal of Computer Science Issues (IJCSI),
12(1):106, 2015.

[24] K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro. Fusebmc: An energy-efficient
test generator for finding security vulnerabilities in c programs. In International Conference on
Tests and Proofs, pages 85–105. Springer, 2021.

[25] R. Andriatsimandefitra and V. V. T. Tong. Capturing android malware behaviour using system
flow graph. In International Conference on Network and System Security, pages 534–541. Springer,
2015.

[26] L. Apvrille and Y. Roudier. Sysml-sec: A sysml environment for the design and development of
secure embedded systems. APCOSEC, Asia-Pacific Council on Systems Engineering, pages 8–11,
2013.

[27] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel, J. Reineke,
C. Rochange, et al. Building timing predictable embedded systems. ACM Transactions on Em-
bedded Computing Systems (TECS), 13(4):82, 2014.

[28] P. Bagade, A. Banerjee, and S. K. Gupta. Validation, verification, and formal methods for cyber-
physical systems. In Cyber-Physical Systems, pages 175–191. Elsevier, 2017.

[29] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution
techniques. ACM Computing Surveys (CSUR), 51(3):1–39, 2018.

196

https://ttool.telecom-paris.fr
https://www.abrahamwatkins.com/blog/2015/07/automatic-braking-system-issues.shtml
https://www.abrahamwatkins.com/blog/2015/07/automatic-braking-system-issues.shtml
https://safure.eu/
http://graphml.graphdrawing.org/
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793
https://ec.europa.eu/transport/road_safety/what-we-do_en
https://ec.europa.eu/transport/road_safety/what-we-do_en
http://www.nissanproblems.com/aeb/
http://www.nissanproblems.com/aeb/

BIBLIOGRAPHY

[30] M. Barbehenn. A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices.
IEEE transactions on computers, 47(2):263, 1998.

[31] C. Barrett. Sat solvers: Theory and practice. Summer School on Verification Technology, Systems
and Applications, New York, USA, pages 1–98, 2008.

[32] J. Baumeister, B. Finkbeiner, S. Schirmer, M. Schwenger, and C. Torens. Rtlola cleared for take-
off: monitoring autonomous aircraft. In International Conference on Computer Aided Verification,
pages 28–39. Springer, 2020.

[33] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker. The proc/btoolset for the modelling
and analysis of process chains. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 51–70. Springer, 2002.

[34] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman, J. D. Mol, S. Stuijk,
V. Gheorghita, and J. Van Meerbergen. Dataflow analysis for real-time embedded multiprocessor
system design. In Dynamic and robust streaming in and between connected consumer-electronic
devices, pages 81–108. Springer, 2005.

[35] M. Ben Ayed, A. Massaoudi, S. A. Alshaya, and M. Abid. System-level co-simulation for embedded
systems. AIP Advances, 10(3):035113, 2020.

[36] I. E. Bennour. Formal verification of timed synchronous dataflow graphs using lustre. Journal of
Logical and Algebraic Methods in Programming, 121:100678, 2021.

[37] S. Bernardi, U. Gentile, S. Marrone, J. Merseguer, and R. Nardone. Security modelling and formal
verification of survivability properties: Application to cyber–physical systems. Journal of Systems
and Software, 171:110746, 2021.

[38] F. Berner and J. Sametinger. Dynamic taint-tracking: Directions for future research. In ICETE
(2), pages 294–305, 2019.

[39] F. Berner, R. Mayrhofer, and J. Sametinger. Dynamic taint tracking simulation. In International
Conference on E-Business and Telecommunications, pages 203–227. Springer, 2019.

[40] S. Bhalerao, D. Puntambekar, and M. Ingle. Generalizing agile software development life cycle.
International journal on computer science and engineering, 1(3):222–226, 2009.

[41] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. In International
conference on tools and algorithms for the construction and analysis of systems, pages 193–207.
Springer, 1999.

[42] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. In International
conference on tools and algorithms for the construction and analysis of systems, pages 193–207.
Springer, 1999.

[43] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using sat
procedures instead of bdds. In Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, pages 317–320, 1999.

[44] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. 2003.

197

BIBLIOGRAPHY

[45] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. Proverif 2.00: Automatic cryptographic
protocol verifier, user manual and tutorial. Version from, pages 05–16, 2018.

[46] Y. Blein. ParTraP: A Language for the Specification and Runtime Verification of Parametric
Properties. PhD thesis, Université Grenoble Alpes, 2019.

[47] D. S. Board. Who is in control? road safety and automation in road traffic, 2019.

[48] B. W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61–72,
1988.

[49] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications. Wiley, 2006. ISBN
9780471791560. URL https://books.google.fr/books?id=8Mei8w6YUHYC.

[50] D. Boxler and K. R. Walcott. Static taint analysis tools to detect information flows. In Proceedings
of the International Conference on Software Engineering Research and Practice (SERP), pages 46–
52. The Steering Committee of The World Congress in Computer Science, Computer . . . , 2018.

[51] J. Brandenburg and B. Stabernack. Simulation-based hw/sw co-exploration of the concurrent
execution of hevc intra encoding algorithms for heterogeneous multi-core architectures. Journal of
Systems Architecture, 77:26–42, 2017.

[52] R. Buchmann, F. Pétrot, and A. Greiner. Fast cycle accurate simulator to simulate event-driven
behavior. In International Conference on Electrical, Electronic and Computer Engineering, 2004.
ICEEC’04., pages 35–38. IEEE, 2004.

[53] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. Symbolic model checking:
1020 states and beyond. Information and computation, 98(2):142–170, 1992.

[54] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and appli-
cations, volume 24. Springer Science & Business Media, 2011.

[55] A. Carelli, A. Vallero, and S. Di Carlo. Performance monitor counters: interplay between safety and
security in complex cyber-physical systems. IEEE Transactions on Device and Materials Reliability,
2019.

[56] K. Carruthers. Internet of things and beyond: Cyber-physical systems. IEEE Internet of Things
Newsletter, 10, 2014.

[57] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Uluagac. Sensi-
tive information tracking in commodity iot. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 1687–1704, 2018.

[58] H. Chai, G. Zhang, J. Zhou, J. Sun, L. Huang, and T. Wang. A short review of security-aware
techniques in real-time embedded systems. Journal of Circuits, Systems and Computers, 28(02):
1930002, 2019.

[59] D. Chatterjee and V. Bertacco. Equipe: Parallel equivalence checking with gp-gpus. In 2010 IEEE
International Conference on Computer Design, pages 486–493. IEEE, 2010.

198

https://books.google.fr/books?id=8Mei8w6YUHYC

BIBLIOGRAPHY

[60] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Automatic trace analysis for logic of constraints.
In Proceedings of the 40th annual Design Automation Conference, pages 460–465, 2003.

[61] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Logic of constraints: A quantitative performance
and functional constraint formalism. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(8):1243–1255, 2004.

[62] X. Chen, H. Hsieh, and F. Balarin. Verification approach of metropolis design framework for
embedded systems. International Journal of Parallel Programming, 34(1):3–27, 2006.

[63] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang. Dtaint: detecting the taint-
style vulnerability in embedded device firmware. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 430–441. IEEE, 2018.

[64] B. N. Chhaya and S. Jafer. Simulation-based and formal verification of domain-specific language
model. In AIAA Scitech 2020 Forum, page 0897, 2020.

[65] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re-
finement. In International Conference on Computer Aided Verification, pages 154–169. Springer,
2000.

[66] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis framework. In Proceedings
of the 2007 International Symposium on Software Testing and Analysis, ISSTA ’07, page 196–206,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937346. doi:
10.1145/1273463.1273490. URL https://doi.org/10.1145/1273463.1273490.

[67] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé. Using symbolic execution for verifying
safety-critical systems. In Proceedings of the 8th European software engineering conference held
jointly with 9th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 142–151, 2001.

[68] I. R. Committee et al. The international technology roadmap for semiconductors (2005), 2010.

[69] W. A. Conklin. It vs. ot security: A time to consider a change in cia to include resilienc. In 2016
49th Hawaii International Conference on System Sciences (HICSS), pages 2642–2647. IEEE, 2016.

[70] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel, M. Schmitz, and D. Thoma. Tessla: temporal
stream-based specification language. In Brazilian Symposium on Formal Methods, pages 144–162.
Springer, 2018.

[71] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan. Embedded software verification
using symbolic execution and uninterpreted functions. International Journal of Parallel Program-
ming, 34(1):61–91, 2006.

[72] M. Dam, G. Le Guernic, and A. Lundblad. Treedroid: a tree automaton based approach to
enforcing data processing policies. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 894–905, 2012.

[73] B. d’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. Lola: runtime monitoring of synchronous systems. In 12th In-
ternational Symposium on Temporal Representation and Reasoning (TIME’05), pages 166–174.
IEEE, 2005.

199

https://doi.org/10.1145/1273463.1273490

BIBLIOGRAPHY

[74] B. Dasarathy. Timing constraints of real-time systems: Constructs for expressing them, methods
of validating them. IEEE transactions on Software Engineering, (1):80–86, 1985.

[75] R. I. Davis. A review of fixed priority and edf scheduling for hard real-time uniprocessor systems.
ACM SIGBED Review, 11(1):8–19, 2014.

[76] J. H. Dawes. Towards Automated Performance Analysis of Programs by Runtime Verification. PhD
thesis, Manchester U., 2021.

[77] J. Deantoni. Towards Formal System Modeling: Making Explicit and Formal the Concurrent and
Timed Operational Semantics to Better Understand Heterogeneous Models. PhD thesis, Université
Côte d’Azur, CNRS, I3S, France, 2019.

[78] J. DeAntoni and F. Mallet. Timesquare: Treat your models with logical time. In International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation, pages 34–
41. Springer, 2012.

[79] J. DeAntoni, F. Mallet, F. Thomas, G. Reydet, J.-P. Babau, C. Mraidha, L. Gauthier, L. Rioux,
and N. Sordon. Rt-simex: retro-analysis of execution traces. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering, pages 377–378,
2010.

[80] L. Delligatti. SysML distilled: A brief guide to the systems modeling language. Addison-Wesley,
2013.

[81] K. Edelberg, P. Backes, J. Biesiadecki, S. Brooks, D. Helmick, W. Kim, T. Litwin, B. Metz, J. Reid,
A. Sirota, et al. Software system for the mars 2020 mission sampling and caching testbeds. In
2018 IEEE Aerospace Conference, pages 1–11. IEEE, 2018.

[82] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):1–29, 2014.

[83] A. ENRICI, L. APVRILLE, D. CAMARA, and R. PACALET. The ψ-chart design approach in
ttool/diplodocus: Co-design of data-dominated systems-on-chip. Architecture, 3:2.

[84] A. Enrici, L. Li, L. Apvrille, and D. Blouin. A tutorial on ttool. DIPLODOCUS: an Open-source
Toolkit for the Design of Data-flow Embedded Systems, 2018.

[85] Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. Engineering dependable
software systems, pages 141–175, 2013.

[86] Y. Falcone, S. Krstić, G. Reger, and D. Traytel. A taxonomy for classifying runtime verification
tools. International Journal on Software Tools for Technology Transfer, 23(2):255–284, 2021.

[87] J. M. Fernandes and R. J. Machado. Can uml be a system-level language for embedded software?
In IFIP Working Conference on Distributed and Parallel Embedded Systems, pages 1–10. Springer,
2002.

[88] M. Fisher, V. Mascardi, K. Y. Rozier, B.-H. Schlingloff, M. Winikoff, and N. Yorke-Smith. Towards
a framework for certification of reliable autonomous systems. Autonomous Agents and Multi-Agent
Systems, 35(1):1–65, 2021.

200

BIBLIOGRAPHY

[89] K. Forsberg and H. Mooz. The relationship of system engineering to the project cycle. In INCOSE
International Symposium, volume 1, pages 57–65. Wiley Online Library, 1991.

[90] M. Foughali and P.-E. Hladik. Bridging the gap between formal verification and schedulability
analysis: The case of robotics. Journal of Systems Architecture, 111:101817, 2020.

[91] R. France and B. Rumpe. Model-driven development of complex software: A research roadmap.
In Future of Software Engineering (FOSE’07), pages 37–54. IEEE, 2007.

[92] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the systems modeling
language. Morgan Kaufmann, 2014.

[93] L. Fuentes-Fernández and A. Vallecillo-Moreno. An introduction to uml profiles. 2004.

[94] R. Fujdiak, P. Mlynek, P. Blazek, M. Barabas, and P. Mrnustik. Seeking the relation between
performance and security in modern systems: Metrics and measures. In 2018 41st International
Conference on Telecommunications and Signal Processing (TSP), pages 1–5. IEEE, 2018.

[95] R. Fujdiak, P. Blazek, L. Apvrille, Z. Martinasek, P. Mlynek, R. Pacalet, D. Smekal, P. Mrnustik,
M. Barabas, and M. Zoor. Modeling the trade-off between security and performance to support
the product life cycle. In 2019 8th Mediterranean Conference on Embedded Computing (MECO),
pages 1–6. IEEE, 2019.

[96] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early requirements
specifications in tropos. In Proceedings Fifth IEEE International Symposium on Requirements
Engineering, pages 174–181. IEEE, 2001.

[97] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded system design: modeling,
synthesis and verification. Springer Science & Business Media, 2009.

[98] L. George, V. V. T. Tong, and L. Mé. Blare tools: A policy-based intrusion detection system
automatically set by the security policy. In International Workshop on Recent Advances in Intrusion
Detection, pages 355–356. Springer, 2009.

[99] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich. Electronic
system-level synthesis methodologies. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(10):1517–1530, 2009.

[100] M. Glinz. On non-functional requirements. In 15th IEEE International Requirements Engineering
Conference (RE 2007), pages 21–26. IEEE, 2007.

[101] A. E. Goodloe and L. Pike. Monitoring distributed real-time systems: A survey and future direc-
tions. National Aeronautics and Space Administration, Langley Research Center, 2010.

[102] D. M. Gordon and P. Kemper. On clustering simulation traces. In Proceedings Eighth Interna-
tional Workshop on Performability Modelling of Computer and Communication Systems (PMCCS-8
2007). Edinburgh, Scotland, UK, 2007.

[103] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. Cavalli. Detecting control flow in smarphones:
Combining static and dynamic analyses. In Cyberspace Safety and Security, pages 33–47. Springer,
2012.

201

BIBLIOGRAPHY

[104] T. Grimm, D. Lettnin, and M. Hübner. A survey on formal verification techniques for safety-critical
systems-on-chip. Electronics, 7(6):81, 2018.

[105] T. Gruber, C. Schmittner, M. Matschnig, and B. Fischer. Co-engineering-in-the-loop. In Interna-
tional Conference on Computer Safety, Reliability, and Security, pages 151–163. Springer, 2018.

[106] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Applying dataflow analysis
to dimension buffers for guaranteed performance in networks on chip. In Second ACM/IEEE
International Symposium on Networks-on-Chip (nocs 2008), pages 211–212. IEEE, 2008.

[107] C. Hauser, F. Tronel, J. Reid, and C. Fidge. A taint marking approach to confidentiality violation
detection. In Information Security 2012-Proceedings of the Tenth Australasian Information Security
Conference (AISC 2012): Conferences in Research and Practice in Information Technology, Volume
125:, pages 83–90. Australian Computer Society, 2012.

[108] S. Heath. Embedded systems design. Elsevier, 2002.

[109] D. Hedde and F. Pétrot. A non intrusive simulation-based trace system to analyse multipro-
cessor systems-on-chip software. In 2011 22nd IEEE International Symposium on Rapid System
Prototyping, pages 106–112. IEEE, 2011.

[110] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation. Theoret-
ical computer science, 274(1-2):43–87, 2002.

[111] N. Hillary. Measuring performance for real-time systems. Freescale Semiconductor, November,
2005.

[112] J. Hillston. Process algebras for quantitative analysis. In 20th Annual IEEE Symposium on Logic
in Computer Science (LICS’05), pages 239–248. IEEE, 2005.

[113] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12
(10):576–580, 1969.

[114] F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse. Model execution tracing:
a systematic mapping study. Software and Systems Modeling, 18(6):3461–3485, 2019.

[115] J. Hou. Performability analysis of networks-on-chips. 2021.

[116] O. Iegorov, V. Leroy, A. Termier, J.-F. Méhaut, and M. Santana. Data mining approach to temporal
debugging of embedded streaming applications. In 2015 International Conference on Embedded
Software (EMSOFT), pages 167–176. IEEE, 2015.

[117] P. Isaias and T. Issa. Information system development life cycle models. In High Level Models and
Methodologies for Information Systems, pages 21–40. Springer, 2015.

[118] I. ISO. 26262: Road vehicles-functional safety. International Standard ISO/FDIS, 26262, 2011.

[119] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, A. Prakash, and S. Un-
viersity. Contexlot: Towards providing contextual integrity to appified iot platforms. In NDSS,
2017.

[120] M. Jiménez, R. Palomera, and I. Couvertier. Introduction to embedded systems. Springer, 2013.

202

BIBLIOGRAPHY

[121] R. Kamal. Embedded systems: architecture, programming and design. Tata McGraw-Hill Educa-
tion, 2011.

[122] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. Dta++: dynamic taint analysis with
targeted control-flow propagation.

[123] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D. Hämäläinen, J. Riihimäki,
and K. Kuusilinna. Uml-based multiprocessor soc design framework. ACM Transactions on Em-
bedded Computing Systems (TECS), 5(2):281–320, 2006.

[124] C. K. Keerthi, M. Jabbar, and B. Seetharamulu. Cyber physical systems (cps): Security issues,
challenges and solutions. In 2017 IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC), pages 1–4. IEEE, 2017.

[125] P. Kemper. A trace-based visual inspection technique to detect errors in simulation models. In
2007 Winter Simulation Conference, pages 747–755. IEEE, 2007.

[126] P. Kemper and C. Tepper. Trace based analysis of process interaction models. In Proceedings of
the Winter Simulation Conference, 2005., pages 10–pp. IEEE, 2005.

[127] P. Kemper and C. Tepper. Automated analysis of simulation traces-separating progress from
repetitive behavior. In Fourth International Conference on the Quantitative Evaluation of Systems
(QEST 2007), pages 101–110. IEEE, 2007.

[128] P. Kemper, C. Tepper, T. Schulze, G. Horton, B. Preim, and S. Schlechtwego. Visualizing the
dynamic behavior of proc/b models. In SimVis, pages 63–74, 2005.

[129] V. Kemper and C. Tepper. Trace analysis-gain insight through modelchecking and cycle reduction.
Technical report, SFB 559, 2006.

[130] M. Khlif, O. Tahan, and M. Shawky. Co-simulation trace analysis (cosita) tool for vehicle electronic
architecture diagnosability analysis. In 2010 IEEE Intelligent Vehicles Symposium, pages 572–578.
IEEE, 2010.

[131] B. Kienhuis, E. F. Deprettere, P. Van der Wolf, and K. Vissers. A methodology to design pro-
grammable embedded systems. In International Workshop on Embedded Computer Systems, pages
18–37. Springer, 2001.

[132] B. Kienhuis, F. Deprettere, P. van der Wolf, and K. Vissers. The y-chart approach. In Embedded
processor design challenges, page 18. Springer, 2002.

[133] J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–394,
1976.

[134] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings of the 24th
international conference on software engineering, pages 547–550. ACM, 2002.

[135] D. Knorreck. UML-based design space exploration, fast simulation and static analysis. PhD thesis,
Telecom ParisTech, 2011.

203

BIBLIOGRAPHY

[136] D. Knorreck, L. Apvrille, and R. Pacalet. Fast simulation techniques for design space exploration. In
International Conference on Objects, Components, Models and Patterns, pages 308–327. Springer,
2009.

[137] D. Knorreck, L. Apvrille, and P. de Saqui-Sannes. Tepe: a sysml language for time-constrained
property modeling and formal verification. ACM SIGSOFT Software Engineering Notes, 36(1):
1–8, 2011.

[138] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Moderator-Ravi, and S. Moderator-Ravi.
Security as a new dimension in embedded system design. In Proceedings of the 41st annual Design
Automation Conference, pages 753–760. ACM, 2004.

[139] H. Kopetz. The time-triggered model of computation. In Proceedings 19th IEEE Real-Time
Systems Symposium (Cat. No. 98CB36279), pages 168–177. IEEE, 1998.

[140] J. Kraft. Enabling timing analysis of complex embedded software systems. PhD thesis, Mälardalen
University, 2010.

[141] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand. A survey of approaches combining
safety and security for industrial control systems. Reliability engineering & system safety, 139:
156–178, 2015.

[142] V. Kumar, L. Singh, and A. K. Tripathi. Reliability analysis of safety-critical and control systems:
a state-of-the-art review. IET Software, 12(1):1–18, 2017.

[143] T. B. La Fosse, Z. Cheng, J. Rocheteau, and J.-M. Mottu. Model-driven engineering of monitoring
application for sensors and actuators networks. In Software Engineering and Advanced Applications,
2020.

[144] S. Lagraa, A. Termier, and F. Pétrot. Data mining mpsoc simulation traces to identify concurrent
memory access patterns. In 2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 755–760. IEEE, 2013.

[145] Y.-C. Lai, Y.-D. Lin, F.-C. Wu, T.-Y. Huang, and F. C. Lin. Embedded tainttracker: Lightweight
run-time tracking of taint data against buffer overflow attacks. IEICE TRANSACTIONS on Infor-
mation and Systems, 94(11):2129–2138, 2011.

[146] P. Lantz, A. Desnos, and K. Yang. Droidbox: Android application sandbox, 2012.

[147] J. Lapalme, B. Theelen, N. Stoimenov, J. Voeten, L. Thiele, and E. M. Aboulhamid. Y-chart based
system design: a discussion on approaches. In conference; PhD Thesis, pages 23–56. Universite
de Montreal, 2009.

[148] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International journal on software
tools for technology transfer, 1(1):134–152, 1997.

[149] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan. Software development life cycle agile
vs traditional approaches. In International Conference on Information and Network Technology,
volume 37, pages 162–167, 2012.

204

BIBLIOGRAPHY

[150] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages 363–369.
IEEE, 2008.

[151] I. Lee. Invited talk: Challenges in medical cyber-physical systems. In IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN 2012), pages 1–1. IEEE,
2012.

[152] L. Li. Approche orientée modèles pour la sûreté et la sécurité des systèmes embarqués. PhD thesis,
Paris Saclay, 2018.

[153] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein, and L. Traon.
Static analysis of android apps: A systematic literature review. Information and Software Technol-
ogy, 88:67–95, 2017.

[154] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen, and
C. Platzer. Andrubis–1,000,000 apps later: A view on current android malware behaviors. In
2014 third international workshop on building analysis datasets and gathering experience returns
for security (BADGERS), pages 3–17. IEEE, 2014.

[155] F. Lugou, L. W. Li, L. Apvrille, and R. Ameur-Boulifa. Sysml models and model transformation
for security. In 2016 4th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), pages 331–338. IEEE, 2016.

[156] D. Lyons and S. Zahra. Using taint analysis and reinforcement learning (tarl) to repair autonomous
robot software. In 2020 IEEE Security and Privacy Workshops (SPW), pages 181–184. IEEE, 2020.

[157] R. Malan and D. Bredemeyer. Defining non-functional requirements, 2001. URL https://www.
bredemeyer.com/pdf_files/NonFunctReq.PDF.

[158] T. Margaria and B. Steffen. Leveraging Applications of Formal Methods, Verification, and Vali-
dation: 4th International Symposium on Leveraging Applications, ISoLA 2010, Heraklion, Crete,
Greece, October 18-21, 2010, Proceedings, Part I, volume 6415. Springer, 2010.

[159] T. Markmann, D. Gessner, and D. Westhoff. Quantdroid: Quantitative approach towards miti-
gating privilege escalation on android. In 2013 IEEE International Conference on Communications
(ICC), pages 2144–2149. IEEE, 2013.

[160] G. Martin, B. Bailey, and A. Piziali. ESL design and verification: a prescription for electronic
system level methodology. Elsevier, 2010.

[161] P. Marwedel. Embedded system design, volume 1. Springer, 2006.

[162] P. Marwedel. Evaluation and Validation, pages 239–293. Springer International Publishing, Cham,
2021. ISBN 978-3-030-60910-8. doi: 10.1007/978-3-030-60910-8_5. URL https://doi.org/
10.1007/978-3-030-60910-8_5.

[163] P. Marwedel. Evaluation and validation. In Embedded System Design, pages 239–293. Springer,
2021.

[164] A. Matović. Case studies on modeling security implications on safety, 2019.

205

https://www.bredemeyer.com/pdf_files/NonFunctReq.PDF
https://www.bredemeyer.com/pdf_files/NonFunctReq.PDF
https://doi.org/10.1007/978-3-030-60910-8_5
https://doi.org/10.1007/978-3-030-60910-8_5

BIBLIOGRAPHY

[165] M. McCormick. Waterfall vs. agile methodology. MPCS, N/A, 2012.

[166] K. E. Mendoza. Efficient SMT-based Verification of Software Programs. PhD thesis, King’s College
London, 2020.

[167] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi. Jgrapht—a java library for graph data structures
and algorithms. ACM Transactions on Mathematical Software (TOMS), 46(2):1–29, 2020.

[168] K. Möller, M. Kumm, C.-F. Müller, and P. Zipf. Model-based hardware design for fpgas using
folding transformations based on subcircuits. arXiv preprint arXiv:1508.06811, 2015.

[169] G. A. Moreno and P. Merson. Model-driven performance analysis. In International Conference on
the Quality of Software Architectures, pages 135–151. Springer, 2008.

[170] T. D. Morton. Embedded microcontrollers. Prentice Hall PTR, 2000.

[171] S. Mubeen, E. Lisova, and A. Vulgarakis Feljan. Timing predictability and security in safety-critical
industrial cyber-physical systems: A position paper. Applied Sciences, 10(9):3125, 2020.

[172] M. Mulazzani. Reliability versus safety. IFAC Proceedings Volumes, 18(12):141–146, 1985.

[173] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):
541–580, 1989.

[174] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet, B. Combemale, R. B.
France, R. Heldal, J. Hill, et al. The relevance of model-driven engineering thirty years from now.
In International Conference on Model Driven Engineering Languages and Systems, pages 183–200.
Springer, 2014.

[175] M. Ouimet and K. Lundqvist. Formal software verification: Model checking and theorem proving.
Embedded Systems Laboratory Technical Report ESL-TIK-00214, 2007.

[176] G. Pagano and V. Marangozova-Martin. SoC-trace infrastructure. PhD thesis, Inria, 2012.

[177] G. Pagano, D. Dosimont, G. Huard, V. Marangozova-Martin, and J.-M. Vincent. Trace manage-
ment and analysis for embedded systems. In 2013 IEEE 7th International Symposium on Embedded
Multicore Socs, pages 119–122. IEEE, 2013.

[178] A. Pardo. Automatic abstraction techniques for formal verification of digital systems. PhD thesis,
PhD thesis, University of Colorado at Boulder, Dept. of Computer Science . . . , 1997.

[179] M. Pavlidis, S. Islam, and H. Mouratidis. A case tool to support automated modelling and anal-
ysis of security requirements, based on secure tropos. In International Conference on Advanced
Information Systems Engineering, pages 95–109. Springer, 2011.

[180] I. Perez, F. Dedden, and A. Goodloe. Copilot 3. Technical report, Technical Report NASA/TM-
2020-220587, National Aeronautics and Space . . . , 2020.

[181] L. Pierre and L. Ferro. Dynamic verification of systemc transactional models, 2011.

[182] L. Pierre, L. Ferro, Z. B. H. Amor, P. Bourgon, and J. Quévremont. Integrating psl properties
into systemc transactional modeling—application to the verification of a modem soc. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12), pages 220–228. IEEE, 2012.

206

BIBLIOGRAPHY

[183] R. Pinciroli, C. U. Smith, and C. Trubiani. Qn-based modeling and analysis of software performance
antipatterns for cyber-physical systems. In Proceedings of the ACM/SPEC International Conference
on Performance Engineering, pages 93–104, 2021.

[184] L. Pomante, V. Muttillo, B. Křena, T. Vojnar, F. Veljković, P. Magnin, M. Matschnig, B. Fischer,
J. Martinez, and T. Gruber. The aquas ecsel project aggregated quality assurance for systems:
Co-engineering inside and across the product life cycle. Microprocessors and Microsystems, 69:
54–67, 2019.

[185] R. Pooley and P. King. The unified modelling language and performance engineering. IEE
Proceedings-Software, 146(1):2–10, 1999.

[186] H. Posadas, J. Merino, and E. Villar. Data flow analysis from uml/marte models based on binary
traces. In 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS), pages
1–6. IEEE, 2020.

[187] R. S. Pressman. Software engineering: a practitioner’s approach. Palgrave macmillan, 2005.

[188] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba. Automatic vulnerability
detection in embedded devices and firmware: Survey and layered taxonomies. ACM Computing
Surveys (CSUR), 54(2):1–42, 2021.

[189] C. Qian, X. Luo, Y. Shao, and A. T. Chan. On tracking information flows through jni in android
applications. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 180–191. IEEE, 2014.

[190] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: the next computing
revolution. In Design Automation Conference, pages 731–736. IEEE, 2010.

[191] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security analysis of smartphone
applications. In Proceedings of the third ACM conference on Data and application security and
privacy, pages 209–220, 2013.

[192] W. W. Royce. Managing the development of large software systems: concepts and techniques. In
Proceedings of the 9th international conference on Software Engineering, pages 328–338, 1987.

[193] K. Y. Rozier. From simulation to runtime verification and back: Connecting single-run verification
techniques. In 2019 Spring Simulation Conference (SpringSim), pages 1–10. IEEE, 2019.

[194] A. Ruiz, B. Gallina, J. L. de la Vara, S. Mazzini, and H. Espinoza. Architecture-driven, multi-
concern and seamless assurance and certification of cyber-physical systems. In International Con-
ference on Computer Safety, Reliability, and Security, pages 311–321. Springer, 2016.

[195] N. B. Ruparelia. Software development lifecycle models. ACM SIGSOFT Software Engineering
Notes, 35(3):8–13, 2010.

[196] G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich. Yaase: Yet another android security
extension. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social Computing, pages 1033–1040. IEEE, 2011.

207

BIBLIOGRAPHY

[197] G. Russello, M. Conti, B. Crispo, and E. Fernandes. Moses: supporting operation modes on smart-
phones. In Proceedings of the 17th ACM symposium on Access Control Models and Technologies,
pages 3–12, 2012.

[198] A. Saaksvuori and A. Immonen. Product lifecycle management. Springer Science & Business
Media, 2008.

[199] SAFURE. Architecture models and patterns for safety and security, 2017.

[200] A. Sangiovanni-Vincentelli. Quo vadis, sld? reasoning about the trends and challenges of system
level design. Proceedings of the IEEE, 95(3):467–506, 2007.

[201] J. Sanguinetti. Abstraction levels and hardware design. https://www.eetimes.com/
abstraction-levels-and-hardware-design/#, 2007-07-17. Accessed: 2020-11-25.

[202] K. Scheibler, F. Winterer, T. Seufert, T. Teige, C. Scholl, and B. Becker. Icp and ic3. In Design,
Automation & Test in Europe Conference & Exhibition, DATE, volume 2021, 2021.

[203] D. C. Schmidt. Model-driven engineering. Computer-IEEE Computer Society-, 39(2):25, 2006.

[204] R. Scottow, A. Hopkins, and K. McDonald-Maier. Instrumentation of real-time embedded systems
for performance analysis. In 2006 IEEE Instrumentation and Measurement Technology Conference
Proceedings, pages 1307–1310. IEEE, 2006.

[205] S. Sean. Latency in embedded systems, 2019. URL https://cs.uwaterloo.ca/~mkarsten/
cs856-W10/lec06.pdf.

[206] R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and
Computation, 3(3-4):141–224, 2007.

[207] S. A. Seshia, S. Hu, W. Li, and Q. Zhu. Design automation of cyber-physical systems: challenges,
advances, and opportunities. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(9):1421–1434, 2016.

[208] P. Shankar, B. Morkos, D. Yadav, and J. D. Summers. Towards the formalization of non-functional
requirements in conceptual design. Research in Engineering Design, 31(4):449–469, 2020.

[209] J. Shen, L. Liu, X. Hu, G. Zhang, and J. Xiao. Evaluate concurrent state machine of sysml model
with petri net. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA),
pages 2106–2111. IEEE, 2018.

[210] R. Shrestha, H. Mehrpouyan, and D. Xu. Model checking of security properties in industrial control
systems (ics). In Proceedings of the Eighth ACM Conference on Data and Application Security
and Privacy, pages 164–166, 2018.

[211] S. Sinha, N. K. Goyal, and R. Mall. Reliability and availability prediction of embedded systems
based on environment modeling and simulation. Simulation Modelling Practice and Theory, 108:
102246, 2021.

[212] C. U. Smith. Performance engineering of software systems. Addison-Wesley Longman Publishing
Co., Inc., 1990.

208

https://www.eetimes.com/abstraction-levels-and-hardware-design/#
https://www.eetimes.com/abstraction-levels-and-hardware-design/#
https://cs.uwaterloo.ca/~mkarsten/cs856-W10/lec06.pdf
https://cs.uwaterloo.ca/~mkarsten/cs856-W10/lec06.pdf

BIBLIOGRAPHY

[213] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. Bitblaze: A new approach to computer security via binary analysis.
In International Conference on Information Systems Security, pages 1–25. Springer, 2008.

[214] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann. Mobile-sandbox: combining
static and dynamic analysis with machine-learning techniques. International Journal of Information
Security, 14(2):141–153, 2015.

[215] J. A. Stankovic. Misconceptions about real-time computing: A serious problem for next-generation
systems. Computer, 21(10):10–19, 1988.

[216] J. A. Stankovic. Real-time and embedded systems. ACM Computing Surveys (CSUR), 28(1):
205–208, 1996.

[217] M. Steiner. Integrating security concerns into safety analysis of embedded systems using component
fault trees. 2016.

[218] R. Stemmer, H.-D. Vu, M. Fakih, K. Grüttner, S. Le Nours, and S. Pillement. Feasibility Study
of Probabilistic Timing Analysis Methods for SDF Applications on Multi-Core Processors. PhD
thesis, IETR; OFFIS, 2019.

[219] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In Proceedings of the 44th annual Design
Automation Conference, pages 777–782, 2007.

[220] J. J. Tan, K. N. Otto, and K. L. Wood. Relative impact of early versus late design decisions in
systems development. Design Science, 3, 2017.

[221] G. Tepper and P. Kemper. Traviando-debugging simulation traces with message sequence charts.
In Third International Conference on the Quantitative Evaluation of Systems-(QEST’06), pages
135–136. IEEE, 2006.

[222] L. Thiele and E. Wandeler. Performance analysis of distributed embedded systems. Embedded
Systems Handbook, 2, 2005.

[223] L. Thiele, E. Wandeler, and W. Haid. Performance analysis of distributed embedded systems. In In-
ternational Conference On Embedded Software: Proceedings of the 7 th ACM & IEEE international
conference on Embedded software, volume 30, pages 10–10. Citeseer, 2007.

[224] M. TREzzY, I. Ober, I. Ober, and R. OliVEiRA. Applying mde to ros systems: A comparative
analysis. In The 4th Working Formal Methods Symposium, 2021.

[225] J. J. P. Tsai, S. J. Yang, and Y.-H. Chang. Timing constraint petri nets and their application to
schedulability analysis of real-time system specifications. IEEE transactions on Software Engineer-
ing, 21(1):32–49, 1995.

[226] F. Vahid and T. D. Givargis. Embedded system design: a unified hardware/software introduction.
John Wiley & Sons, 2001.

[227] J.-P. Vasseur and A. Dunkels. Interconnecting smart objects with ip: The next internet. Morgan
Kaufmann, 2010.

209

BIBLIOGRAPHY

[228] G. Venkataramani, K. Kintali, S. Prakash, and S. van Beek. Model-based hardware design. In
2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 69–73.
IEEE, 2013.

[229] S. Verma, T. Gruber, P. Puschner, C. Schmittner, and E. Schoitsch. A quantitative approach for
the likelihood of exploits of system vulnerabilities. In International Conference on Computer Safety,
Reliability, and Security, pages 177–189. Springer, 2018.

[230] A. Viehl, T. Schönwald, O. Bringmann, and W. Rosenstiel. Formal performance analysis and
simulation of uml/sysml models for esl design. In Proceedings of the conference on Design,
automation and test in Europe: Proceedings, pages 242–247. European Design and Automation
Association, 2006.

[231] S. Vilardell, I. Serra, H. Tabani, J. Abella, J. D. Castillo, and F. J. Cazorla. Cleanet: enabling timing
validation for complex automotive systems. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pages 554–563, 2020.

[232] E. Villar, J. Merino, H. Posadas, R. Henia, and L. Rioux. Mega-modeling of complex, distributed,
heterogeneous cps systems. Microprocessors and microsystems, 78:103244, 2020.

[233] M. A. Wahab. Hardware support for the security analysis of embedded softwares: applications on
information flow control and malware analysis. PhD thesis, CentraleSupélec, 2018.

[234] H. Wang, D. Zhong, and T. Zhao. Avionics system failure analysis and verification based on model
checking. Engineering failure analysis, 105:373–385, 2019.

[235] T. Wilmshurst. An introduction to the design of small-scale embedded systems. Palgrave, 2001.

[236] M. Wolf. Computers as components: principles of embedded computing system design. Elsevier,
2012.

[237] M. Woodside, G. Franks, and D. C. Petriu. The future of software performance engineering. In
Future of Software Engineering (FOSE’07), pages 171–187. IEEE, 2007.

[238] J. Wu and S. Yang. Process algebra approach to verifying safety specification of hybrid embedded
systems. In 2009 International Conference on Communication Software and Networks, pages 129–
133. IEEE, 2009.

[239] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-time android application auditing. In
2015 IEEE Symposium on Security and Privacy, pages 899–914. IEEE, 2015.

[240] D. Yue, V. Joloboff, and F. Mallet. Trap: trace runtime analysis of properties. Frontiers of
Computer Science, 14(3):143201, 2020.

[241] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang. Vetting undesirable
behaviors in android apps with permission use analysis. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 611–622, 2013.

[242] Y. Zhang, F. Mallet, H. Zhu, Y. Chen, B. Liu, and Z. Liu. A clock-based dynamic logic for
schedulability analysis of ccsl specifications. Science of Computer Programming, 202:102546,
2021.

210

BIBLIOGRAPHY

[243] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti. Cross-layer codesign for secure
cyber-physical systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(5):699–711, 2016.

211

Titre: Vérification de la latence dans les traces d’exécution du modèle de partitionnement HW/SW
Mots clés: Systèmes embarqués, Analyse de la trace d’exécution, Analyse temporelle, Simulation,
Graphes de dépendance, SysML
Résumé: Alors que de nombreux travaux de
recherche visent à définir de nouvelles techniques
de vérification (formelle) pour vérifier les exi-
gences dans un modèle, la compréhension de
la cause profonde de la violation d’une exi-
gence reste un problème ouvert pour les plate-
formes complexes construites autour de com-
posants logiciels et matériels. Par exemple,
la violation d’une exigence de latence est-elle
due à un ordonnancement temps réel défavor-
able, à des conflits sur les bus, aux caractéris-
tiques des algorithmes fonctionnels ou des com-
posants matériels ? Cette thèse introduit une
approche d’analyse précise de la latence appelée
PLAN. PLAN prend en entrée une instance d’un
modèle de partitionnement HW/SW, une trace
d’exécution, et une contrainte de temps ex-
primée sous la forme suivante : la latence entre
l’opérateur A et l’opérateur B doit être inférieure
à une valeur de latence maximale. PLAN véri-
fie d’abord si la condition de latence est satis-
faite. Si ce n’est pas le cas, l’intérêt principal

de PLAN est de fournir la cause première de
la non satisfaction en classant les transactions
d’exécution en fonction de leur impact sur la la-
tence : transaction obligatoire, transaction in-
duisant une contention, transaction n’ayant au-
cun impact, etc. Une première version de PLAN
suppose une exécution pour laquelle il existe une
exécution unique de l’opérateur A et une exécu-
tion unique de l’opérateur B. Une seconde version
de PLAN peut calculer, pour chaque opérateur A
exécuté, l’opérateur B correspondant. Pour cela,
notre approche s’appuie sur des techniques de
tainting. La thèse formalise les deux versions de
PLAN et les illustre par des exemples ludiques.
Ensuite, nous montrons comment PLAN a été
intégré dans un Framework Dirigé par le Mod-
èle (TTool). Les deux versions de PLAN sont
illustrées par deux études de cas tirées du pro-
jet H2020 AQUAS. En particulier, nous mon-
trons comment l’altération peut traiter efficace-
ment les multiples et occurrences concurrentes
du même opérateur.

Title: Latency Verification in Execution Traces of HW/SW Partitioning Model
Keywords: Embedded systems, Execution Trace Analysis, Timing analysis, Simulation, Depen-
dency Graph, SysML
Abstract: While many research works aim at
defining new (formal) verification techniques to
check for requirements in a model, understand-
ing the root cause of a requirement violation is
still an open issue for complex platforms built
around software and hardware components. For
instance, is the violation of a latency requirement
due to unfavorable real-time scheduling, to con-
tentions on buses, to the characteristics of func-
tional algorithms or hardware components? This
thesis introduces a Precise Latency ANalysis ap-
proach called PLAN. PLAN takes as input an
instance of a HW/SW partitioning model, an ex-
ecution trace, and a time constraint expressed in
the following format: the latency between op-
erator A and operator B should be less than a
maximum latency value. First PLAN checks if
the latency requirement is satisfied. If not, the
main interest of PLAN is to provide the root

cause of the non satisfaction by classifying ex-
ecution transactions according to their impact
on latency: obligatory transaction, transaction
inducing a contention, transaction having no im-
pact, etc. A first version of PLAN assumes an
execution for which there is a unique execution of
operator A and a unique execution of operator B.
A second version of PLAN can compute, for each
executed operator A, the corresponding operator
B. For this, our approach relies on tainting tech-
niques. The thesis formalizes the two versions
of PLAN and illustrates them with toy examples.
Then, we show how PLAN was integrated into a
Model-Driven Framework (TTool). The two ver-
sions of PLAN are illustrated with two case stud-
ies taken from the H2020 AQUAS project. In
particular, we show how tainting can efficiently
handle the multiple and concurrent occurrences
of the same operator.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Acronyms
	Glossary of Mathematical Notations
	Introduction
	Embedded Systems
	Problem Statement
	Contributions
	Precise Latency Analysis Approach
	Integration into a Model-Driven Engineering Framework

	Organization of This Thesis

	Context
	Structure of Embedded Systems
	Model-Driven Engineering
	Timing Constraints
	SysML-Sec
	HW/SW partitioning
	Simulation

	Related Work
	Software Development Methodologies
	Functional and Nonfunctional Requirements
	Using UML design tools and techniques

	Verification Techniques
	Formal Verification Approaches
	Runtime Verification Approaches
	Performance Evaluation
	Simulation-Based Approaches

	Information Flow Analysis
	Taint Analysis

	Conclusion

	Precise Latency Analysis Approach: Overview and Problem Formalization
	Motivation
	Precise Latency Analysis Approach
	System Model Formal Definition
	Application
	Platform
	Allocation
	Example 1

	Model Executional Semantics
	Requirement on Model Execution
	Conclusion

	Primitive Precise Latency Analysis Approach
	Execution Trace Analysis
	Causality between operators: an Example
	Valid Execution Trace
	Read Write Dependencies Accuracy
	Classification of Execution Transactions
	Impact Sets
	On Path Sets
	In Functions Sets
	Contention Set
	No Contention Set
	Other Hardware Set (OH)
	Indirect Impact Set
	No Impact Set

	Conclusion

	Advanced Precise Latency Analysis Approach Using Graph Tainting (PLAN-GT)
	Motivation
	Example 2
	Tainting
	Static attributes
	Dynamic attributes
	Tainting Algorithm
	Operator Transactions Granularity
	Calculating latency based on tainting
	Tainting Choice operators inside loops

	Collect transactions and compute latencies
	Conclusion

	Integration into Model-Driven Engineering Framework
	Application to UML/SysML
	Model simulation

	PLAN integration into TTool
	Industrial Drive System Use Case
	Description of the use case
	Model simulation and trace analysis

	Rail Carriage Mechanisms Use Case
	Description of the use case
	HW/SW partitioning models

	Model simulation and trace analysis

	Conclusion

	Conclusion
	Resume of Contributions
	Perspectives
	Model enhancements at current abstraction level
	Model enhancement to support different abstraction levels
	Verification aspects
	Tooling aspects

	Résumé
	List of System Model Formal Definitions
	Execution Trace in XML format

