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Résumé

Les données sont l’une des ressources les plus précieuses au monde, à tel
point qu’elles sont devenues le nouveau pétrole. Les stratégies fondées sur
les données, qui reposent sur des mesures objectives, des faits et des informa-
tions tirées de l’analyse des données, sont devenues la norme dans la société
et le monde industriel d’aujourd’hui, car elles aident les entreprises à com-
prendre les besoins actuels du marché, à ajuster les processus de production
et à améliorer leur efficacité globale.

La cybersécurité ne fait pas exception. L’analyse des données de télémétrie
peut aider les organisations à détecter les cybermenaces, les intrusions non
autorisées, les infections par des logiciels malveillants et elle est fondamen-
tale pour une réaction rapide et exhaustive aux cyberincidents. De plus, les
données collectées peuvent fournir des informations exploitables et des indi-
cateurs objectifs qui peuvent aider les organisations à prédire leurs risques
de cybersécurité et à éviter les événements indésirables en adoptant des
mesures proactives. Néanmoins, la faisabilité et l’efficacité des mesures
proactives dépendent d’une cascade de défis: comment quantifier les cyber-
risques d’une entité, quels indicateurs peuvent être utilisés pour les prédire,
et de quelles sources de données peuvent-ils être extraits?

Dans cette thèse, nous énumérons les défis actifs auxquels les prati-
ciens et les chercheurs sont confrontés lorsqu’ils tentent de quantifier les
cyber-risques et de les contextualiser dans le domaine émergent de la cyber-
assurance. Nous passons ensuite en revue les études antérieures qui se sont
penchées sur ce sujet et proposons plusieurs directions de recherche et prob-
lèmes non résolus qui nécessitent l’expertise des experts en sécurité des
systèmes.

Nous sélectionnons ensuite et commençons à explorer certaines des ques-
tions soulevées.Nous évaluons l’incidence de différentes mesures et postures
de sécurité sur les risques d’infection par des logiciels malveillants et nous
évaluons la pertinence de neuf indicateurs extraits des machines pour étudier
la nature systématique de ces risques.



Enfin, nous fournissons des preuves de l’importance de la collecte de
sources de données et d’une approche holistique pour la mesure des risques.
Nous examinons le ‘web tracking’ et démontrons à quel point les risques
liés à la vie privée sont sous-estimés lorsque l’on tente de les quantifier en
excluant la perspective des utilisateurs.



Abstract

Data is one of the most valuable resources in the world to such an extent as
to become the new oil. Data-driven strategies based on objective metrics,
facts, and insights derived from data analysis have become the mainstream
in nowadays society and industrial world as they help businesses to under-
stand the current market needs, adjust production processes and improve
their overall efficiency.

Cyber security is no exception. The analysis of telemetry data can
help organizations to detect cyber threats, unauthorized intrusions, malware
infections and it is fundamental for a quick and exhaustive reaction to cyber
incidents. More than that, collected data can provide actionable information
and objective indicators that can help organizations to predict their cyber-
security risks and avoid adverse events by adopting proactive measures.
Nevertheless, the feasibility and efficacy of proactive measures depend upon
a cascade of challenges: how can one quantify the cyber risks of a given
entity, what reliable indicators can be used to predict them, and from which
data sources can they be extracted?

At first, in this thesis we enumerate active challenges that practitioners
and researchers face when attempting to quantify cyber-risks and contex-
tualize them in the emerging domain of cyber insurance. We then go over
prior studies that looked at this topic and propose several research direc-
tions and unsolved problems that require the domain expertise of system
security experts.

We then select and start exploring some of the questions raised by our
analysis. We evaluate the incidence that different security measures and
security postures have on malware-infection risks and assess the goodness
of nine host-extracted indicators when investigating the systematic nature
of those risks.

We finally provide evidence about the importance that data-source se-
lection together with a holistic approach have on risk measurements. By
looking at web tracking we demonstrate how underestimated privacy risks
are when attempting to quantify them by excluding the users’ perspective.
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The modern society is highly dependent on Information and Communi-
cation Technologies (ICT). It is practically impossible to imagine what life
would be like without technology, as almost everything we do involves the
use of an electronic device and requires an internet access. As the use of
technology increases and becomes multi-fold in every sector, so does the vol-
ume of raw information that it produces, and that is collected and stored:
according to a recent report [97], we create 2.5 billion gigabytes of data
every single day, with 90% of that data in the whole world being created in
the last two years alone. Not surprisingly, data is one of the most valuable
resource in the world —to such an extent as to become the new oil [100]—
and the reason for that is simple: transforming raw data into meaningful in-
formation can yield to a plethora of valuable insights for businesses in order
to monitor their performance, meet goals and reach objectives. Data-driven
strategies based on objective metrics, facts and insights gleaned from data to
drive strategic business decisions have become the mainstream in nowadays
society and industrial world. For example, data analytics have paramount
importance to understand the current market landscape, change production
processes and trigger the creation of new products that match the market
needs; in the same way, the knowledge gained beforehand of what customers
want makes marketing campaigns easier and better oriented, as well as the
customization of advertisements to address a specific segment of an entire
customer portfolio; data analytics can also pave the way for other potential
profitable opportunities or for solving problems and improving the overall
operational efficiency.

Cyber security is no exception. The massive amount of data generated
through the everyday use of software, collected by monitoring tools on en-
terprise networks, produced on the web by users from all over the world,
and further scrutinised by data analysts can serve the purpose of detecting
cyber-security threats and raising the alarm when a security incident occurs.
In this respect, data analysis can help organizations in detecting potential
frauds, unauthorized intrusions with unusual network traffic patterns, mal-
ware infections, hardware failures, data leaks and security breaches. An
efficient data monitoring system is fundamental for an early threat identifi-
cation, damage prevention, business interruption limitation, and for a quick
reaction to adverse events.

In addition, data can provide actionable information and objective in-
dicators that can help businesses to predict their cyber-security risks, and
switch from a reactive to a proactive approach. Proactive cyber security
is nowadays gaining importance and current risk management methodolo-
gies have been complemented by adding incident avoidance and prevention
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strategies to enhance existing reactive measures. While in case of incident
the latter establish guidelines about determining the level of the threat, as-
sessing the amount of the damage, and installing measures to prevent such
an event from reoccurring, proactive measures provide a more holistic ap-
proach to securing Information Technology (IT) systems, focusing indeed
on prevention and avoidance rather than detection and response. Proac-
tive cyber-security measures include spotting the most vulnerable parts of
a system, forecasting those with the highest likelihood of being attacked,
protecting the most valuable assets, prioritizing security spendings for hard-
ening areas or people at higher risk, and even transferring part of this risk to
third-party entities by underwriting cyber-insurance policies. Nevertheless,
the goodness and feasibility of proactive measures depend upon a cascade of
challenges: how can one quantify the cyber risks of a given entity? What re-
liable indicators can be used to predict them? And from which data sources
can they be extracted?

1.1 Problem statement

Cyber-risk quantification is still an open problem among researchers and
practitioners. All the frameworks and methodologies that are currently in
use are limited to listing the best security practices, providing a score based
on potential hazardous events that can materialize with a certain likelihood,
and simulating adverse scenarios to assess subsequent damages. Unfortu-
nately, these solutions only have a qualitative foundation and base their
analysis, assessments, and consequently their results on metrics based on
experts knowledge and their previous experience. On top of that, very few
and scattered studies exist in the systems security community that tackle
quantitative cyber-risk estimation: as a result, we still lack rigorous and
reproducible ways to understand which security risks can even be predicted
in the first place, which features are most useful for such prediction and
from where they can be extracted. A first goal of this thesis is to raise
awareness in our community towards these problems and present the main
challenges of quantitative risk estimation and proactive security. Although
nowadays those are very debated topics in the security field, their practical
applications are very limited and the insights gathered from prior research
struggle to be included in security products. For this reason, we decided to
present those thematics by contextualizing them in an emerging area where
those are crucial: cyber insurance. Indeed, when underwriting cyber poli-
cies, insurance carriers have to necessarily transform information about the
prospective clients in a score that reflects their risk classes with the purpose
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of computing premiums. In this respect, cyber-risk quantification and the
capability to predict future events have vital importance for the success or
failure of the whole cyber-insurance market itself. By currently relying on
qualitative methodologies, risk assessment techniques in this in domain are
desperately in need of data-driven solutions which measure the risk expo-
sure by leveraging objective indicators and overcoming estimations based
on experts opinions.

The identification of good indicators becomes then paramount for re-
liably predicting cyber-risks. Despite a few prior studies exist in this di-
rection [208, 70, 69, 235, 61, 259, 79, 216, 68], there are still several re-
search areas that have not been explored, aim at predicting different cyber
events, focus on specific aspects or narrow their scope to particular environ-
ments. Indeed, the effectiveness of methodologies, indicators and informa-
tion sources strictly depends upon the problem under analysis: for example,
predicting the risk of experiencing malware infections requires data sources
and a series of indicators that may differ from those needed for data-breach
incidents. The second goal of this thesis is to look at the malware infec-
tion risks of machines used in two distinct environments (i.e., those used at
home and in enterprises) and evaluate the systemic and systematic nature
of those risks. Our goal is to understand the incidence that different secu-
rity postures and cyber hygienes have on malware infections together with
evaluating the predictive power of nine host-based attributes extracted from
real-world telemetry.

Finally, cyber-risk quantification and the research of powerful indica-
tors are two tasks that cannot be carried if not supported by reliable data
sources. More than that, obtained results can also be misleading if not con-
sidering a holistic perspective in which insights are gleaned by approaching
risk analysis from different points of view that are subsequently aggregated.
Therefore the last objective of this thesis aims at showing how risk mea-
surements from a novel perspective and by using distinct data sources can
provide new insights and also challenge long-held beliefs. We operate in the
domain of web-tracking and our goal in this case is to demonstrate how un-
derestimated privacy risks are when their quantification occurs by excluding
the users’ perspective.

1.2 Contributions and thesis outline

This thesis is centered around the importance of data-driven measurements
for the purpose of quantifying cyber-security risks. The manuscript is orga-
nized into 6 chapters.
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Following this introduction (Chapter 1), in Chapter 2 we provide the
reader with the necessary background knowledge to understand the main
contributions of the thesis. The chapter starts from the description of a
classic insurance process for the purpose of identifying its main phases and
actors, and then clarifies the differences and peculiarities when the same
scheme is applied to the cyber domain. We also discuss previous studies
that attempted to correlate indicators extracted from telemetry data to the
risk of cyber incidents and malicious software encounters. We then cover
previous works that quantified the extent of web tracking by using different
types of telemetry.

In Chapter 3 we report our Systematization of Knowledge (SoK) cen-
tered around the system aspects of cyber insurance. In this contribution, we
conduct a comprehensive literature review with the aim of categorizing pre-
vious research on the topic, presenting existing challenges to cyber-security
researchers, and listing future research directions and unsolved problems
which require the domain expertise of system security experts. Chapter 3
is based on the publication SoK: Cyber Insurance - Technical Challenges

and a System Security Roadmap [94] presented at the IEEE Symposium on

Security & Privacy (S&P) 2020.
In Chapter 4, we start exploring some of the open challenges presented

in Chapter 3. In particular, we conduct an exploratory study on risk in-
dicators of malware encounters by analyzing real-world telemetry and by
differentiating between home machines and those used in enterprise envi-
ronments. We assess whether the different security measures adopted in
either parties have a role in reducing malware infections. We then con-
tinue with verifying if machine attributes such as the days and hours of
activity together with the volume of generated files, the number of installed
software vendors, the recidivist infected state, and the geographical loca-
tion can provide valuable insights as risk indicators of malware infections.
We also discover that a portion of this risk is systematic and does not de-
pend on the adopted security measures. Chapter 4 is based on the paper
A Comparison of Systemic and Systematic Risks of Malware Encounters in

Consumer and Enterprise Environments currently under submission at the
ACM Transactions on Privacy and Security (TOPS).

In the subsequent Chapter 5, we focus on the importance that the se-
lection of data sources together with a holistic approach have on risk mea-
surements. We analyze the practice of web-tracking and look at it from the
users’ perspective, whereas previous studies only looked at it from the track-
ers’ one. We perform a correlation analysis to understand what increases
users’ web-privacy risk, estimate how long it takes to encounter a signifi-
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cant fraction of the trackers, and argument on the interesting relationship
among privacy and security risks on the web. We also quantify what per-
centage of the user’s browsing history is known to trackers and investigate
how much this knowledge could be extended through real or hypothetical
collaborations among different tracking companies. Our point of view al-
lows us to conclude that privacy risks due to web tracking are higher than
what estimated in the past from other perspectives. Chapter 5 is based on
the publication When Sally Met Trackers: Web Tracking From the Users’

Perspective that will be presented at the 31st USENIX Security Symposium

(2022).
In the last Chapter 6, we conclude this thesis by summarizing the valu-

able findings and insights gleaned from our work and outlining future re-
search directions to explore.

1.3 Ethical considerations

Two out of the three contributions presented in this thesis (Chapters 4
and 5) analyze datasets derived from human subjects. We analyzed the
datasets by collaborating with the researchers of NortonLifeLock [46], a
popular security company. The datasets contain the telemetry collected by
the company’s Antivirus (AV) sensor installed on Windows machines. The
data only includes users who voluntarily installed the product, accepted
the company’s privacy policy [176], and opt-in to share their data. As pri-
vacy advocates, we treat each piece of information —from its collection,
throughout its analysis, to its storing— in a way that preserves the cus-
tomers’ privacy and identity. The customer identifier is anonymized on
the client-side and sent in this form to a central system: in our works, we
observe users only through numeric anonymized identifiers, that do not con-
tain any detail or endpoint attribute able to trace back to their origin. We
never deanonymize users by singularly inspecting their telemetry and we
only look at aggregated data.
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This chapter discusses background information to allow the reader to
contextualize the thesis. We start by giving an overview of a classic insur-
ance process scheme and then discuss differences and peculiarities of cyber
insurances (Section 2.1). Afterwards, we focus on prior studies that investi-
gated the risk of malware infections and evaluated the goodness of indicators
for predicting cyber-security events (Section 2.2). We finally discuss past
research that attempted to quantify web-tracking risks and the extent to
which this practice impacts users (Section 2.3).

2.1 From insurance to cyber insurance

Insurance is a risk management method whose main purpose is to con-
vert the risk of harmful events into an expenditure. As depicted in the
diagram reported in Figure 2.1, the insurance process includes several in-
teracting components and generally involves two players: a first supply-side
entity who provides insurance, named insurer or insurance company, and
a second demand-side entity who buys the insurance, known as insured or
policyholder. The two parties interact in two different phases, respectively
identified as underwriting (or policy stipulation) and claiming for compen-
sation. During the drafting of a policy, an insurance carrier needs to acquire
useful information about the prospective client with the purpose of identi-
fying his risk class. Afterwards, the two parties need to clearly define the
conditions, circumstances, and nature of the events that are covered by the
policy. Coverage can encompass both first- and third-party losses: while
the former is purchased to cover the policyholder against damages or losses
suffered by the insured to his person or property (e.g., health, disability in-
surance), the latter is intended to protect the policyholder against liability
for damages or losses caused by the insured to other people or their property
(e.g., bystanders hit by insured’s car in an accident, stranger’s properties
damaged by a fire that comes out of insured’s house). At this point, the
insurer quantifies the material damage that the insured — or third subjects
if considered — would be subjected to if these occurrences were to happen.
Finally, the insurance company takes on the liability and management of
such situations cashing a premium payout from the insured.

The management of client portfolios is another crucial task insurance
companies need to consider during the underwriting phase. The goal is
typically to maintain a pool of policies, each of them having an independent
probability of claim. This diversification averts catastrophic scenarios in
which a single incident impacts a large fraction of the clients: in such cases,
a significant number of claims would be submitted at the same time and
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Figure 2.1: Classic insurance process workflow extended in a cyber scenario

the insurance would suffer a huge blow in covering losses. For instance, it
may not be a good strategy for an insurance company to insure against fire
hazards all apartments located in the same building.

Finally, when experiencing losses due to an incident which is potentially
covered by the insurance policy, the victim submits a claim to the insurer
who makes sure of its validity, assesses the impact of the event and com-
pensates the claimer with an indemnity determined according to the terms
of the policy. The contract can also include a deductible, i.e., an amount
for which the insured is liable on each loss.

In order to make this entire process possible, the insurer must carefully
set its tariffs to ensure that the premiums collected are enough to cover
future claims, in addition to yield profit for the insurance firm itself. Un-
fortunately, this is anything but easy. Indeed, when it comes to selling a
finished product or service, a firm can easily determine its price knowing
which costs have been incurred for its realization. On the contrary, an
insurer who places its product on the market does not know in advance
the amount of money required for claim compensations because of their
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inherent uncertain nature. In this respect, actuarial techniques allow to
estimate these disbursements and overcome the cost uncertainty related to
this inverted production cycle. A key element for this estimation relies on
statistical methods that study how claims for covered events have evolved
over the previous years to forecast their future evolution. Thus, the raw in-
formation required to build a classic insurance product consists of a large set
of historical records containing claims and compensations for events which
have similar characteristics to the ones being insured. Insurance firms usu-
ally do not rely only on their own data sources but also take advantage of
the market statistics that aggregate historical data of other companies in
the same domain. This statistical information, which normally goes under
the name of actuarial data, is what allows an insurance company to estimate
the risk of a certain event or client, given a number of relevant contextual
information (acquired during the underwriting phase). This includes, for
instance, the driver’s age and neighborhood for a car insurance or the age
of the building in a house insurance.

Extending Insurances to the Cyber Domain

With the help of Figure 2.1, we now look more closely at how the previous
process is applied to the cyber domain by discussing the differences and the
main challenges that affect each insurance phase.

Underwriting – As we discussed above, the policy underwriting re-
quires the insurer to collect information from the client that can be useful
for the purpose of risk assessment. Following a traditional model, also
in the cyber domain this is still performed by a mix of self-assessment
questionnaires, checklists, business documentation, meetings, and inter-
views [243, 226, 52, 50, 130, 86], whose objective is to identify the adopted
software and technologies, the deployed security measures, the presence of
sensitive data and how it is stored and processed, and any other information
that can affect the global security posture of the company under investiga-
tion [199, 109]. A deeper analysis can be carried out to tailor the product to
the specific customer based on its characteristics and requirements: a moni-
toring software equipment together with an overhaul of preexisting security
logs and telemetry serve this purpose. Finally, some deficiencies and precau-
tions are often advised to the client in order to comply with the best-known
security practices [16].

Assessing the cyber risk of organizations or individuals is an overly
challenging problem due to a number of reasons including the existence
of asymmetric information, the dynamic nature of the cyber ecosystem,
and the indirect risk that might be propagated from the relations with the
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third parties. Although with the traditional meticulous risk assessment
methodologies the underwriters could draw an approximate picture of the
customer’s risk exposure, they might not be aware of the residual risks that
might be known to the counterparts. The possession of a greater material
knowledge by one of two parties involved in an economic transaction cre-
ates the problem of carrying asymmetric information and this represents a
major issue in cyber insurance [58, 196, 60, 217, 65]. A risk assessment
that is made by analyzing asymmetric information can lead to adverse se-
lection [48, 116]. For example, unfair risk scores might be assigned to a
company whose private and inaccessible information may reveal a severe
exposure to risk compared to another with a better security hygiene.

The existence of asymmetric information also impacts negatively the
customer side as insurance firms may raise premium prices due to incom-
plete knowledge and risk overestimation, leading to an expensive, niche,
and not-appealing product [238, 160]. High premiums are also the result of
insufficient criteria to reduce them: even if a company holds security cer-
tifications and profusely invests in self-protection, the effectiveness of these
actions against the wide variety of cyber attacks is not clear, making, in
turn, difficult to assess to what extent they are useful to reduce the over-
all risk [238]. A timid step in this direction is the one of some carriers
that reduce premiums or deductibles if the client uses risk assessment tools,
security technologies, and breach response services of specific vendors [253].

The interdependent nature of the cyber ecosystem makes the risk esti-
mation even more complicated. Nowadays, when cloud computing and out-
sourcing are two mainstream phenomena, cyber risk is intertwined among
all entities that depend on one another [196, 64, 65]. Companies may in-
directly get damaged because they use external services that are targeted
by a cyber attack: an example is the recent Denial of Service (DoS) attack
against DynDNS – which impacted more than sixty of its customers [250].
Thus, a firm’s measures and expenditures in self-protection may not pro-
portionally increase its security level when making use of services from third
parties that do not invest as well [154, 65]. In the pre-binding phase, risk
exposure must be then identified from a holistic standpoint, preferring a
due diligence approach to a simple checklist and including in the review
all internal and external threat vectors that could potentially compromise
pre-insured’s security [75].
Actuarial and Pricing – The actuarial approach based on statistical mod-
els described above does not fit the cyber domain where historical data of
claims and compensations are still scant [196, 118, 112, 48, 238, 60]. Enter-
prises experiencing a cyber incident have a strong incentive not to publicly
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disclose it as this would tarnish their image. As a result, the few available
databases [9, 22, 19] contain records which are often vague, missing details,
and biased towards large and serious incidents, whose disclosure is unavoid-
able due to their resonance or due to mandatory-notification laws [20, 18].
The infeasibility of the actuarial approach alone for an accurate risk es-
timation is corroborated by its ever-evolving components: cyber threats
and attack methods swiftly evolve alike defense methods and strategies
do [154, 196, 109].
Portfolio Management – As briefly discussed before, a fundamental re-
quirement of traditional insurance schemes is that the insurer should strive
to obtain a portfolio of policies with an independent probability of claim
submission. This diversification can reduce the likelihood that a single in-
cident could harm a considerable portion of clients – a catastrophic event

that can have severe consequences and cause the bankruptcy of the in-
surer [236, 76, 77]. Unfortunately, it is harder to obtain such diversified
portfolio in the cyber domain, due to the monoculture of software and
hardware products [110, 63, 225, 213]. Although deploying different con-
figurations is possible, recent events have shown that the business continu-
ity of a large set of possible clients – independently of their size, sector,
and assets to protect – is simultaneously undermined when a piece of a
broadly-used software or hardware is found to suffer from a severe vulnera-
bility [119, 256, 171, 93, 71, 252, 134, 149].

In other domains, a common way insurers protect themselves against
catastrophic events such as wildfire and hurricanes is by purchasing policies
from other insurance companies. Sadly, the current lack of re-insurers in
the cyber domain further exacerbates this problem [108, 196, 53, 170].
Post-Binding Phase – Due to the complications in both the policy under-
writing and claiming phases, an additional post-binding phase is introduced,
which does not exist in other forms of insurance [75]. In fact, in traditional
insurances, the relationship between the firm providing coverage and the
policyholder ends once the contract has been signed and the two parties in-
teract again only in case of a claim submission. On the contrary, a cyber in-
surance may require periodic risk assessment after the underwriting is com-
pleted, to allow the insurer and the policyholder to collect updated informa-
tion related to new threats and evolved risks. Indeed, many cyber-insurance
policies already bring supplemental value through the inclusion of risk mit-
igation, tracking and loss-prevention tools [54]. Clients, in particular small
organizations that lack experience, can benefit from this continuous interac-
tion to better ponder their measures towards higher-priority situations [160].
The post-binding phase also helps to prevent the well-known issue of moral
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hazard [154, 56, 48, 237] — a form of post-underwriting opportunism by
the policyholder, who undertakes incautious actions knowing that, in case
of incidents, there exists a counterpart who will bear the brunt and will not
be able to verify the presence of negligent and fraudulent actions. In this re-
gard, insurers have to conduct continuous risk assessments to resize the set
of inaccessible information of the insured and mitigate its unfair behaviors.
Claim Submission and Validation – Cyber-insurance policies usually
cover the costs of incident response and forensic investigations, including the
identification of stolen or compromised data and the extent to which third
parties have to be informed according to the current regulations. Despite
this, a precise quantification of the involved and compromised assets is com-
plicated by their intangible nature [196, 48]. In addition, since jurisdictions
may apply different notification laws, each case must be accurately evalu-
ated according to the localization of the indirectly-damaged third party.

The insurer as well compensates for economic losses related to the event.
In particular, cyber insurance may refund losses due to business interruption
caused by an attack, as well as cyber extortion and stolen assets. This
approach is insufficient in the cyber scenario where the above primary losses
are often followed by secondary ones that result from a loss of reputation
whenever the incident is publicly disclosed [58].

Time is also a key component when it comes to claim submission. Some
attacks may silently compromise a system and remain undiscovered for a
considerable time-frame. The validity of claims in such situations is a more
arduous issue to formalize in cyber policies. Furthermore, carriers may re-
quire forensic investigations prior to claim submission to verify its validity,
resulting in an initial disbursement from the insured and a reputation dam-
age due to the disclosed incident.

2.2 Malware-Infection Risks

In the following sections, we look at previous studies that have explored
the malware infection landscape in the context of either home-users or or-
ganizations. In the second part, we cover those works that have correlated
indicators extracted from telemetry data to the risk of cyber incidents and
malicious software encounters.

2.2.1 Infection landscape

Many industrial reports published by security companies [40, 39, 41, 36]
provide an annual summary of the malware families observed in the wild, the
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number of compromised machines, the losses due to data breaches, and the
malicious campaigns that targeted different organizations. However, those
documents only focus on statistics, do not carry a detailed analysis, and do
not make any distinction between consumer and enterprise environments.

In the scientific community, scattered studies leveraged network teleme-
try or internal logs provided by ad-hoc software to delineate the status and
the evolution of the malware landscape. Kotzias et al. [137] analyzed a
3-year-long collection of internal data from 28K enterprises to shed light
on their vulnerability patching behaviors and existing threats. The inves-
tigation carried out by the authors shows a higher prevalence of malware
with respect to potentially unwanted programs (Potential Unwanted Pro-
gram (PUP)), the presence of more secure and affected industrial sectors,
and the fact that the patching of server applications is much worse than the
one on the client-side.

Two studies focused on the trends of malware that spreads through Pay-
Per-Install (PPI) Services [74, 136]. Caballero et al. [74] built an infrastruc-
ture and deployed it in 15 countries to interact with 4 PPI providers. The
authors found that 12 out of 20 of the most prevalent families of malware
employ PPI services and that this distribution mechanism is more common
in richer countries. The follow-up paper narrowed the analysis down to PUP
families that spread through PPI services, performing a systematic study
of their prevalence using AV telemetry. The results indicate that PUPs are
installed on 54% of the considered machines and that up to 25% of them
are distributed by a limited number of publishers.

2.2.2 Risk indicators

In recent years, an increasing number of studies have tried to identify risk
indicators i.e., measurable features collected from external sources or inter-
nal telemetry, that can be correlated with the risk of suffering from cyber
incidents. Some of them also applied the features they identified to train
prediction algorithms and assess the prevalence of those risks in the future.

Yen et al. [259] used internal telemetry logs of a large organization to
spot risk indicators that are correlated to malware encounters. The authors
showed that user’s demographic features, as age and job title, together with
network-related features, such as the frequent use of untrusted internet con-
nections and longer browsing sessions, are effective at predicting which users
are more at risk of malware infections. RiskTeller [61] is a prediction tool
that leveraged internal data of 18 enterprises to predict which of their ma-
chines will be at risk of being infected by a broad spectrum of malware
classes. Its classification accuracy reaches 95%, showing that the identified
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features are strongly correlated with the likelihood of malware encounters.
Liu et al. [151] studied the extent to which cyber security incidents can be
predicted by using observed malicious activities associated with network
entities, such as spamming, phishing, and scanning. The study shows that
the resulting classifier is able to produce fairly accurate predictions over a
forecasting window of 2-3 months. The same authors also attempted to
predict the likelihood of organizations to suffer a cyber incident by using an
algorithm that only uses externally observable features [150]. The authors
trained a classifier by combining signs of network mismanagement, such
as misconfigured Domain Name System (DNS) or Border Gateway Proto-
col (BGP), with malicious activity time series, such as spam, phishing, and
scanning activity sourced from these organizations. Despite 10% of false
positives, the prediction reaches 90% accuracy, suggesting the possibility of
forecasting an organization’s breach without internal information. Thon-
nard et al. [235], discussed organization and individual-level features that
are likely to reflect the risk of experiencing targeted attacks. The authors
identify enterprise sizes and public profiles of individuals as potential risk
factors and show that there exists a degree of correlation with receipt of
targeted attacks. In a similar way, Sarabi et al. [208] built a predictor using
a set of industry, business and web visibility/population information. The
results demonstrate how, and to what extent, these externally-observable
features can help forecast an enterprise’s relative risk of experiencing differ-
ent types of cyber incidents.

Fewer prediction studies exist on the consumer side, probably due to
the lack of telemetry data for this segment of users. Lévesque et al. [147],
performed a 4-month study by collecting real-usage data of 50 subjects
and monitoring both user behaviors and possible infections. Using neural
networks, the authors developed a predictive model with 80% accuracy at
predicting the users’ likelihood of being infected. Canali et al., [79] assessed
to what extent a user’s web browsing behaviors can be used to predict her
risk class. The results show how particular types of user actions, such as
browsing the web late at night and during weekends, considerably affect
the risk exposure. Finally, by leveraging mobile users’ browsing patterns
and self-reported data, Sharif et al. [216] tried to predict whether users
will encounter malicious pages on a long and short term. With an overall
accuracy of 87% True Positive Rate (TPR), this work shows how useful
on-the-fly predictions can be in protecting users from malware distributed
on the web.
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2.3 Web-tracking risks

In the previous sections, we discuss prior works that highlight the challenges
faced by practitioners and researchers when attempting to quantify cyber
risks in the cyber-insurance domain. We also discuss past studies that
attempt to predict security risks and adverse events. Since the goal of our
last contribution is to also cover privacy risks arising from web tracking,
in the following section we provide an overview of this practice and discuss
related work that attempts to quantify its extent on the users.

The first tracker, based on a cookie from digital.net in microsoft.com,
was used in 1996 and discovered by an ‘archaeological’ study conducted by
Lerner et al. [145] in 2016 by using the Internet Archives Wayback Ma-
chine [124].

The first analysis regarding web tracking was performed in 2009 by
Krishnamurthy and Wills [138], where they examined the different technical
ways in which third-parties could obtain user-related information. Three
years later, the work from Mayer and Mitchell [159], and Roesner et al. [197],
helped to lay the foundations for future studies. More recent studies showed
that an increasingly larger percentage of the most popular websites include
some form of tracking, and that they use a variety of techniques to do
it [104, 204, 224, 125].

Olejnik et al. [180] were among the first to use real-user data to study
web tracking. The authors discovered that 69% of the users in their dataset
had a fingerprint that could differentiate them from the rest based on their
web history. This study was recently replicated by Bird et al. [62] with 52K
Firefox users, and found an even larger number, with 99% of them showing
unique patterns. Falahrastegar et al. [107] also used the web history of
real users to check whether user-specific IDs were being sent in requests:
authors found this to be very common between certain groups of domains.
Vallina et al. [241] performed instead a study based on network traffic of a
mobile carrier to check not only the presence, but also the efficiency of the
ecosystem based on energy consumption. They found that tracking is very
widespread but the delivery strategy is inefficient.

During the last years, the number of works based on real-user data
has increased. In 2018, Karaj et al. [131] performed a large-scale study
using the information gathered from a browser extension. They calculated
some general stats about the different trackers found online, and open-
sourced the corresponding global results obtained from the dataset. At the
same time, Papadopoulos et al. [185] presented a study focused on mobile
devices. By using the data collected from 1,270 users, the authors quantified
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the economical cost of showing ads for companies, and the corresponding
privacy loss by the users that receive them. The final results indicate that
there is a clear imbalance between the two, with the users paying the highest
price. The following year, Papadopoulos et al. [184] expanded their idea and
analyzed the concept of tracking cookie synchronization by using another
dataset of 850 real mobile users. They found that 97% of the users are
actually exposed to this type of practices in the first week of browsing.
Most recently, the work from Hu et al. [121] leveraged real-world browsing
histories to measure the prevalence of different tracking organizations in
UK and China. Authors discovered that there is a big difference in the
companies involved, with home-grown third-party operators in China, and
US players dominating the UK market. Finally, Mishra et al. [164] studied
the relevance of the Internet Protocol (IP) information in the web tracking
ecosystem, analyzing the information received from 2,230 users. Results
indicate that IP-based tracking is still a viable, as 87% of the participant
retained the same address for multiple days.

In summary, many papers attempted to analyze web tracking risks using
different types of telemetry, but they centered their work on very specific
cases such as user identifiers [107, 184] or web history uniqueness [180, 62,
241]. Despite finding many interesting results, these studies lack a global
overview of the phenomenon and a holistic view on the impact that this has
on users.
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3.1 Introduction

This chapter aims at providing an extensive discussion of the technical as-
pects and open challenges of quantitative cyber-risk estimation contextual-
ized in the cyber-insurance domain.

Our study starts by presenting a systematization of the existing liter-
ature along four main axes: risk management techniques and frameworks,
game theoretical methods, economic theories, and studies that attempted
to predict cyber security events. We clearly organize each contribution and
point out which part of the cyber-insurance puzzle it tries to address.

In the second half of the chapter, we introduce four main research areas
where we believe that expertise in computer security can support the cyber-
insurance domain. This includes risk prediction, automated data collection,
catastrophe modeling, and computer forensics. Each section identifies the
technical challenges and emphasizes a number of concrete future research
directions.

We then conclude this chapter by reporting a few studies that followed
ours and that contributed in one of the four research areas that we consid-
ered in our systematization.

3.1.1 Why this study matters

Despite the considerable and increasing investments in IT security prod-
ucts [26], it is well understood that cyber attacks cannot be prevented by
technical solutions alone and the protection against all possible threats is
neither possible nor economically feasible. To proactively defend against
adverse events and handle the residual risk that cannot be mitigated with
existing measures, organizations are rapidly moving by incorporating cyber
insurance into their multi-layer security frameworks. Cyber insurance is
defined to be the way to transfer the financial risks related to network and
computer incidents to a third party [65]. Compared with traditional insur-
ance policies for business interruption and crime, a cyber-insurance policy
can also cover, for instance, digital data loss, damage and theft, as well as
losses due to network outages, computer failures, and website defacements.

As evinced by recent market reports, the adoption of cyber insurance
has tremendously increased over the last decade, achieving an annual growth
rate of over 30% since 2011 [31]. This is also reflected in the growing num-
ber of claims submitted for cyber incidents in a wide range of business
sectors [34] and that, in few striking cases, have seen insurance companies
paying even hundred-million-dollar indemnities [35]. Following this trend,
the cyber-insurance market is forecasted to reach 14 billion USD in gross
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premiums by 2022 [191] and several indicators confirm this direction. First,
cyber crimes have never been so profitable [174] and the growing number
of attacks is increasing the awareness of board members about cyber risks
and the impossibility of only relying on preventive solutions [228]. This
pushes a growing number of companies, among which even more small- and
medium-size enterprises, to start considering cybersecurity insurance as a
risk mitigation strategy: in fact, data show that 66% of them would need
to shut down if hit by a data breach [175]. Another strong driver for the
cyber-insurance domain is the introduction of global regulations on person-
ally identifiable information loss, such as General Data Protection Regula-
tion (GDPR) and California Consumer Privacy Act (CCPA). For instance,
the need to cover fines and the high cost of handling user notifications are
already creating interest in purchasing cyber insurance [249].

This shows that, while researchers and security experts are still debating
whether cyber-insurance schemes even make sense and how they could be
better implemented, insurance companies are already selling them as part
of their portfolio. However, companies are currently struggling against the
demand of cyber policies as existing tools and methodologies to quantify risk
exposures and pricing are inadequate in the cyber domain. Although past
studies have concluded that, without considering catastrophic scenarios, the
vast majority of cyber risks are insurable [28, 27, 60], carriers are missing
solid methodologies, standards, and tools to carry out their measurements.
The result, as we will comprehensively detail later in this chapter, is that
purely qualitative assessment of such risks leads to inaccurate evaluations,
not properly tailored to the customers but mainly based on averages for
their industrial sectors [38].

Research-wise, the main aspects, the evolution, and the core challenges
of cyber insurance have been studied for more than two decades [154]. Sadly,
while researchers have extensively looked at the theoretical aspects of the
cyber ecosystem, there exists a very limited number of studies that relied
on real data and leveraged the domain expertise of system security experts
for cyber-risk quantitication [150, 208, 235, 70, 69, 61, 259, 79, 216, 68].

This chapter aims at covering this gap by providing an extensive dis-
cussion of the technical aspects and open challenges in the cyber-insurance
domain, emphasizing how security experts can contribute to this rapidly
evolving area. We believe the cyber-insurance field raises many technical
questions that require the expertise of system security researchers: how
can one identify and collect low-level risk indicators and compare them
with externally-observable events? Is it possible to automatically extract
dependencies among different software and services and capture the risk in-
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troduced by the supply-chain of a company? Our main goal is to present
a thorough discussion on these problems such that researchers understand
that to work properly cyber insurance will require practical solutions that
go well beyond its economic and game-theoretical aspects.

3.2 Cyber-Insurance literature systematization

Since its first appearance in the late 90s [154], cyber insurance has been the
focus of researchers from different disciplines. For our study, we selected and
analyzed 93 works among academic papers, standards, and frameworks. As
shown in Figure 3.1, we grouped these works in four main categories and
fourteen sub-categories. In particular, we found that previous research has
mainly focused on two areas: cyber risk management, which tries to estimate
attack probabilities and possible damages, and mathematical modeling and
game theory simulations, which aim at deriving interesting properties on the
consequences of cyber-insurance adoption. Two additional areas complete
the picture: research conducted by the economics community reporting fig-
ures from past incidents or discussing the costs of possible scenarios, and
research focusing on the prediction of future cybersecurity events.

Since these four macro categories refer to very different research do-
mains, we adopted distinct criteria to select and present the contributions
from each of them. Risk management is a very wide topic that covers a
wide range of domains, ranging from pharmaceutical products to natural
disasters. We reported all methodologies and frameworks that are currently
used in IT (Section 3.2.1), together with those academic papers presenting
risk aggregation techniques. Regarding the contribution from the economics

community, as an exhaustive discussion would be out of scope for a security
conference, we focused on the papers needed to emphasize research prob-
lems, existing tools, and on the major findings that can affect the work of
security researchers. For this reason, we comprehensively reported all of
the attempts made in quantifying economic losses following cyber incidents
(Section 3.2.3). The works employing mathematical modeling and game

theory have already been deeply analyzed by Marotta et al. in [156]. There-
fore, in Section 3.2.2, we decided to offer a different systematization that
focuses on which property the authors were interested to prove, along with
the choice of the simulation parameters —e.g., the market model, the pres-
ence of asymmetric information, and the network topology. Finally, since
our ultimate goal is a call to actions for security researchers to provide data-
driven solutions for the cyber-insurance domain, our study comprehensively
presents and compares previous prediction attempts in section 3.2.4.
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Figure 3.1: Cyber-insurance research areas
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3.2.1 Approaches and techniques for cyber risk management

According to the International Organization for Standardization (ISO) stan-
dard 31000, a risk management process can be described as a set of tasks
whereby it is possible to measure the risk and subsequently develop strate-
gies to monitor and control its evolution [127]. As a result, the first phase
of risk management is dedicated to the identification of the valuable as-
sets and of the related threats that represent the main components of risk.
Each threat is then analyzed by evaluating its likelihood and possible im-
pact from both a qualitative and quantitative perspective, and results are
then aggregated to obtain an overview of the whole risk. These two phases,
grouped and referred to as risk assessment, are usually followed by a risk

treatment step, which covers the choice of non-exclusive countermeasures
that can be adopted to tackle each of the risk components. Finally, as risks
may suddenly change, causing the previous estimations to become incorrect
and countermeasure ineffective, a number of risk monitoring and reviewing
actions are required to continuously update the risk estimation.

Risk management is an important process when it comes to information
technologies. Therefore, the literature is rich of guidelines, frameworks,
and techniques that contextualize it to the digital world. As depicted in
Figure 3.1, we grouped under the risk management sub-category the studies
that provide a walk-through of the entire procedure [126, 52, 226, 50, 15,
17, 85], defining terms and providing a helpful documentation of how to
address issues on risk assessment and treatment, as well as insights on risk
monitoring and reviewing. Other works often inherit or revisit a previous
risk management methodology and introduce new techniques to implement
a specific sub-component. In this respect, we created two different sub-
categories in which we respectively list the works addressing the whole risk
assessment [80, 25, 86, 88] and those narrowing down the discussion on risk
analysis[152, 130, 72].

Although widely used standards (such as ISO 27005 [126]) and tools
(e.g., NIST SP 800-30 [226], Magerit [52], OCTAVE Allegro [50], Clusif [86]
and the one proposed by Microsoft [17]) handle the single stages of the
management procedure in a different way, they share a common underly-
ing workflow for assessing individual risks. According to it, the process
typically starts by brainstorming which and how cyber-based threats could
prevent the company from reaching business goals and team objectives. In
this respect, real-life cyber events previously occurred to other companies
can be used as source of inspiration. In addition, frameworks often provide
guidelines on how to identify this collection, including checklists or question-
naires, and advising to adopt a what-if approach to understand what could



3.2. Cyber-Insurance literature systematization 25

go wrong and what the possible consequences are. The outcome of this pro-
cess is the creation of a risk register, whose structure, together with some
examples, is reported in Table 3.1. Once each row has been filled with a de-
scription of the threat, including its possible triggers and effects, the impact
and likelihood of its materialization are assessed to define the inherent risk.
Two approaches exist for scoring these factors and the choice of one rather
than the other depends on the company itself. Indeed, some tools provide a
table of decipherable words with a qualitative description, whilst others opt
for a quantitative numerical sliding scale (e.g., Table I3 and H3 of [25]). It
is worth pointing out that the same event could be assigned different val-
ues across distinct situations: if an organization’s public statement is “we

have built our reputation on our commitment [. . . ] to protect the privacy

and confidentiality of personal information”, the impact of user-data leaks
for this company will be higher if compared to another one with different
prerogatives. The next step is the identification and mapping of existing
mitigations or controls the could reduce the likelihood of each threat: com-
panies often take advantage of existing frameworks that list critical checks
and best practices, and indicate the extent to which the control environment
reduces the inherent risk. As a result, a value reflecting the residual risk
is obtained and a three-fold choice opens up: if the value falls within the
company’s risk appetite limit, no further action is needed in this phase. If
not, more controls and mitigations have to be investigated or the residual
risk has to be transferred to a third party —e.g. with a cyber-insurance
policy.

Finally, in the last sub-category of Figure 3.1, we reported all the method-
ologies that have been proposed to aggregate and propagate individual risks
based on tools that capture the relationships among different information
components or requirements of an attack. These modeling tools make use
of graph theory or model checking to draw conclusions starting from some
preconditions. Among them, attack trees are widely used techniques to
capture dependencies among threats [186, 73, 135, 233, 195, 57]. Each tree
is a leveled diagram made of nodes, leaves and a root; each node repre-
sents an attack or a threat which materializes only if all its children are
satisfied. The root attack is completed if all nodes are satisfied. Similarly,
vulnerabilities or exploits are represented as nodes in attack graphs and
conditionally linked to each other according to their preconditions and re-
sults. Such composition of vulnerabilities is used to simulate incremental
network penetration and attack likelihood propagation with the purpose of
measuring the overall security of a system or network [220, 190, 173, 219].
Finally, Hazard and Operability Analysis (HAZOP) [88] and Failure Mode
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and Effect Analysis (FMEA) [87], are other two techniques used to break
down a complex process into small sections and reason about possible un-
desired situations, their causes and consequences. Such kind of tools are
mostly employed when the use of ICT can introduce a series of hazards in
industrial environments [194, 91, 212]. As we will discuss later in this chap-
ter, these methodologies, inherited from other domains, can be unsuitable
when employed in cyber scenarios.
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Description Cause Effect Impact
Inherent

Likelihood
Inherent

Risk
Inherent

Impact
Residual

Likelihood
Residual

Risk
Residual

Third person
gains access
to sensitive
customer
information
via stolen
credentials

Employee
inadvertently
inputs access
credentials
within the
source code

1 million cus-
tomers at risk
of identity
theft.
Company
receives
significant
criticism for
its privacy
preserving
policy

•
Catastrophic

•
Possible

•
High

•
Catastrophic

•
Remote

•
Medium

Sensitive cus-
tomer data
exposed to
unauthorised
parties

Employee
deliberately
copied full
customers
records mo-
tivated by
personal fi-
nancial gain

1 million cus-
tomers at risk
of financial
theft •

Catastrophic

•
Remote

•
Medium

•
Catastrophic

•
Extremely Remote

•
Low

Remote code
execution on
webserver by
unauthorised
parties

Zero-day
vulnerability
exploited in
third-party
library used
for customer
authentica-
tion

1 million cus-
tomer data at
risk of theft.
Online plat-
form not
available to
customers.
Business-
continuity
interruption

•
Catastrophic

•
Possible

•
High

•
Catastrophic

•
Possible

•
High

Table 3.1: Risk register: qualitative assessment examples for inherent and residual risk



28 28

3.2.2 Cyber insurance and Game Theory

A large portion of existing contributions employ mathematical modeling
and game theory to infer properties and effects of adopting cyber insur-
ance. As comprehensively reported in [156], this approach allows in the first
place to create a mathematical model of cyber insurance which takes into
account its main actors (insurance carriers, policyholders and regulatory
entities), their interdependences (probability of infection and externalities),
the network topology (independent nodes, complete graph, random graph,
or others) and the market type (competitive, monopolistic, or oligopoly).
Once a model has been defined, game theory is used to simulate the behav-
ior of agents: insureds choose their desired level of protection and contract
type, insurers instantiate contracts, and regulators come into play by im-
posing regulation options (mandatory insurance, fines, bonuses, penalties,
mandatory investment, etc.). The use of game theory makes it possible
to also include in the models the major issue of information asymmetry in
its moral hazard and adverse selection forms. This way of tackling cyber
insurance is very useful for strategic purposes and allowed researchers, prac-
titioners, and governments to reason about consequences and peculiarities
of its employment, and market viability.

Viability of the cyber-insurance market – As already discussed,
the starting point of each simulation is the definition of a mathematical
model of cyber insurance that considers its main aspects, e.g. market type,
type of coverage, existence of asymmetric information, network topology,
etc. Therefore, an important finding of each simulation is to verify whether
the market defined by such pre-conditions may exist or not, i.e., whether the
actors would opt for the insurance case over the non-insurance one. One
way to achieve this result is the comparison between the average utility
function for agents with (E[U I ]) and without (E[UN ]) insurance: in the
economic theory, this function measures the welfare or satisfaction of an
entity from consuming a certain number of goods. Then, if E[U I ] ≥ E[UN ]
holds, the choice of an insurance policy directly contributes to increase the
wealth of an agent [156]. Almost all previous works —among which we
find the more realistic settings that include a competitive insurance market,
non-zero-profit carriers, the presence of moral hazard and adverse selection,
and a partial coverage whose level is defined by the policyholder— fall in
this category [239, 257, 218, 217, 215, 214, 182, 221, 67, 66, 261]. Only
two studies found that actors who decide not to invest in a cyber policy
would benefit from this choice [257, 169]. Yang and Lui [257] concluded
that cyber insurance is not a good incentive for all nodes when modeling a
competitive market with zero-profit carriers only offering full coverage and
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accepting asymmetric information in its moral-hazard form. Naghizadeh
and Liu [169] simulated instead a monopolistic profit-neutral insurer, acting
as a regulator that imposes fines and grants rebates, and found that this
leads to a market failure because of agents would not voluntarily purchase
any insurance.

Consequences of cyber-insurance employment – Among the main
topics of interest in this area, we find the use of cyber insurance as an
incentive for internet security [132, 144, 67, 66, 218, 215, 182, 141], the
change in self-protection investments when insurance is available [132, 239,
261, 221, 144, 67, 157] and its contribution for reaching the social wel-
fare [132, 181, 218, 214]. These studies concluded that cyber insurance
is not a good incentive for internet security in presence of a competitive
or monopolistic market and asymmetric information in its moral hazard
form [144, 66, 67, 218, 217]. On the other hand, researchers also concluded
that a non-competitive cyber-insurance market can increase internet se-
curity if fines are imposed by regulation entities and policy are carefully
designed. When analyzing the effect of employing cyber insurance on self-
protection, some works show that, if insurance is available, agents prefer
not to invest in self-protection, but rather in insurance contracts[113, 129].
In this case, minimal investments imposed by regulators do not change the
results. Finally, the usefulness of insurance as a tool to reach the social
welfare and the optimal level of self-protection investments has not been
yet understood: different studies [215, 179] reached contradictory conclu-
sions on this topic although considering the same preconditions, probably
because of adopting different network topologies —which lead to different
interactions among actors— throughout their simulations.

3.2.3 The Economics Perspective

Since cyber attacks are often considered inevitable events, cyber experts are
increasingly focusing on their economic consequences [1]. In this respect,
scenario-based evaluations are a very common approach used to serve two
main purposes. For a company, these scenarios provide a useful way to as-
sess the possible consequences of a cyber event [11], to measure the incident
response capabilities [4], and to identify the critical systems, people and
premises that are needed to continue to serve their customers [2]. On the
insurance carriers side, simulations based on scenarios are often used to es-
timate the financial impact of large-scale attacks or catastrophic events that
hit many businesses at once [14]. This simulation practice is rapidly gaining
popularity due to the current cyber landscape, in which the costs of recov-
ering from particular types of attacks are way greater than the cost required
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to prevent them [5]. Furthermore, tests can help companies to emphasize
the presence of valuable data to protect and shed light on interconnected
risks that could lead to catastrophic events [1]. Good evidence of this can be
found in the decision of the European Insurance and Occupational Pensions
Authority (EIOPA) to include, for the first time in 2018, cyber scenarios in
the collective insurance stress test used to assess cyber-risk response [6].

The creation process of a scenario-based simulation goes through a multi-
stage procedure [77] and it is usually performed by C-Suite executives due
to their expertise in business-critical roles and operations [1]. The process
starts with the creation of a plausible scenario, defined by a footprint of
events to be simulated and a contagion mechanisms among the involved
entities [7]. There is a wide range in the type of scenarios that can be
used for different applications. For instance, scenarios can be based on
historical or synthetic events, they can be generic or specific for a given
company or sector, and they can consider single or multiple events [178].
Scenarios allow the simulation of both common digital incidents —like data
exfiltration, cyber extortion, denial of service attacks, financial transaction
compromise, and cloud service provider failure — as well as rare events —
such as cyber-induced fires in buildings or industrial plants, cyber theft of
marine cargo, cyber attacks on power grids, or oil rig explosions due to
Platform Control System (PCS) compromise [29].

Developing a scenario is a challenging task as it is not easy to fully un-
derstand all the systems involved and predict the possible cascading effects
that could be triggered [77]. For this reason, developing a coherent scenario
is a key aspect for successfully achieving the second phase of the simulation
that consists of estimating the inducted losses to a business or the impact of
claims submitted to an insurance company by taking into account its client
portfolio.

The output of the simulation can be further extended beyond a single
company by taking into account macroeconomic consequences too [7]. This
result can be achieved by selecting a representative subset of the whole
population of companies from a wide range of different business sectors and
use them to estimate the losses of a given scenario. In turn, this allows for
a quantification of the effects on many variables of the global economy [77].

Besides scenario-based simulations, other economic studies attempted
to gain insights into cyber risks by leveraging publicly available data. For
instance, Eling and Loperfido [102] analyze statistical properties of a data
breach information database to show that data breaches significantly differ
among each other, hence they must not be put in the same basket but must
be mapped to separate risk categories. Using another dataset of publicly
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available survey data, Herath et al. attempted instead to build a pric-
ing model for cyber-insurance premiums with the robust copula methodol-
ogy [117]. Premiums for first-party losses due to virus intrusions are com-
puted with a probabilistic model based on three factors: the occurrence of
the events covered by the policy, the time from the issue of the policy to
the incident, and the indemnity paid by the insurance in case of the breach
occurring. Biener et al. [60] analyzed the world’s largest collection of pub-
licly reported operational losses to draw empirical conclusions on whether
cyber risks are insurable or not based on Berliner’s criteria. Results suggest
that cyber risk owns some peculiarities that undermine its insurability, such
as its evolving nature, the lack of actuarial data and reinsurance, the se-
vere information asymmetries, the limited coverage and caps, and the high
deductibles and premiums for small and medium enterprises.

Wheatley et al. [248] statistically modeled a 15-year cyber-breach dataset
to show that the size of an organization is strongly coupled with the fre-
quency and severity of breaches, and the number of information leaked
during such events is expected to double within five years from two to four
billion items. The handling and response costs of two data breach events
are at the center of the study by Layton et al. [143]. Counterintuitively, the
authors show that none of the two incidents negatively affected the com-
pany stock price and economic growth, secondary and intangible losses have
negligible importance with respect to direct losses, and policy and proce-
dure for handling the event have a large effect on the overall cost. On the
contrary, in [258] security breaches are found to negatively impacting stock
quotation of the victims, especially in the case of e-commerce firms and DoS
attacks.
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Paper
Year Predicted event Ground truth Features Feature datasets

2015 [150] Cyber incidents Incident reports Ext Mismanagement signs
Malicious activities

Scanning tools
Public scan data Ext

2015 [208] Cyber incidents Incident reports Ext

Website statistics
Industry sector
Size
Region
Popularity

Information services Ext

2001 [70] Vulnerability incidents Incident reports Ext Exploit release timing Vulnerability database Ext
2010 [69] Vulnerability exploitation Vulnerability reports Ext Vulnerability features Vulnerability reports Ext

2015 [235] Targeted attacks Mail scanning service Int
Industry sector
Size
Employees features

Industry classification
Linkedin
Internal telemetry Ext

Int

2017 [61] Malware encounters AV Telemetry Int Binary file appearance Internal telemetry Int

2014 [259] Malware encounters AV Telemetry Int
Demographic
VPN logs
Network logs

Internal telemetry Int

2007 [79] Malicious websites AV Telemetry Int Browsing behaviors Internal AV service Int

2018 [216] Malicious websites Website Blacklist Ext Browsing behaviors
Self-reported data

Mobile ISP tracking data
User questionnaires Int

2009 [68] Losses from malware in-
fection User questionnaires Int

Routine Activities
Deviant Behavior
Guardianship

User questionnaires Int

Table 3.2: Works on prediction
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3.2.4 From risk assessment to risk prediction

So far, a considerable amount of studies, frameworks, and methodologies
have focused on assessing the risk of cyber attacks by explicitly defining
their underlying causes and triggers. In fact, as we show in Table 3.1, the
first column of each row specifies either the particular action, the vulnera-
bility or the exploit that makes the risk materialize. While this assessment

technique is well established in other domains (e.g., industrial and financial),
its effectiveness is still unclear in a cyber scenario. Indeed, if the whole eval-
uation is based on the current knowledge of vulnerabilities present in the
system and tools, and on the exploits available to the attackers, it quickly
becomes clear that the final measurement has limited lifespan, as new ones
are respectively discovered and released on a daily basis. Moreover, when
major cyber incidents occur, its root causes and enabling factors are almost
always unknown to the community, greatly complicating the assessment of
the associated risk.

The goal of prediction is to overcome this assumption and carry out the
risk estimation by leveraging a combination of risk indicators, measurable
factors that have been empirically proven to reflect the risk across a number
of experiments. For instance, back to Table 3.1, lower age, frequent use
of untrusted internet connections, and longer browsing sessions at night
have been found to be good signs for predicting which users are more at
risk of malware infections [259]. And this is done by mentioning none of
their actions or incautious behaviors — e.g., the user clicked on a malicious
banner or installed malicious software. In a similar way, companies with
misconfigured DNS services and expired certificates more frequently show
signs of botnet activities, otherwise less likely to be observed in other entities
where those are correctly set up [150].

These measurable indicators are merely correlated and not the cause
itself of the risk, the same way as the driver age is not the cause of car
accidents. But by measuring these signs, experts can make predictions of
the likelihood of future events.

Over the past two decades, few scattered studies have focused explicitly
on the problem of predicting security-related events. In 2001, Browne et
al. proposed a simple formula to predict the amount of security incidents,
as a function of time, related to a known vulnerability [70]. Bozorgi [69]
used instead publicly available vulnerability databases to predict which,
and how soon, a vulnerability is likely to be exploited in the future. In
2005, Schechter [211] looked at the challenges of predicting cyber attacks.
He discovers that experts had a much better understanding and success in
modeling traditional crimes, such as home burglary [114] while “attempts to



34 34

bring the quantitative approaches of insurance and risk management to the

measurement of [computer] security risk have failed”. The author concluded
that this is due to the fact that we still lack techniques to measure the
security strength of a piece of software (we will get back to this idea of
predicting risk through measuring security in Section 3.3.1).

Another traditional way to predict future events is to adapt Software

Reliability Growth (SRG) models commonly used by the reliability com-
munity to describe (typically through a non-homogeneous Poisson process)
and predict the evolution of defects in a software artifact. For instance,
Condon et al. [89] show that specific classes of computer incidents (such
as those that depend on particular vulnerabilities) can be modeled with an
SRG, while the total aggregated incident rate can be better approximated
by using time series [90].

In 2016, Edwards [101] found that the daily frequency of data breaches
can be described by using a negative binomial distribution and used this
model to estimate the likelihood of similar incidents in the future. Mail-
lart [153] found instead that the theft of personal information follows a
power-tail distribution that is robust independently of the sector and size
of the targeted organization.

On a different but related topic, a large corpus of works aimed at pre-
dicting the occurrence of new vulnerabilities in software products [262, 210,
222, 246, 115, 51]. However, as we will discuss in Section 3.3.1, it is still
unclear how this information can translate to a prediction or the likelihood
of being attacked or compromised in the future.

In recent years, prediction techniques have been at the center of few
works for the purpose of assessing the risk in different circumstances. In
2009, Bossler et at. [68] investigated the influence of different factors in
predicting data losses from malware infections by conducting a survey over
788 college students. More recently, Liu et al. [150], by using a set of
external observable features, attempted to predict the likelihood of an or-
ganization to suffer a cyber incident in the future. The authors achieved,
overall, a 90% accuracy with 10% of false predictions. Cyber incidents are
considered also by Thonnard et al. [235], who discussed organization- and
individual-level features that are correlated with the risk of experiencing
spearphishing attacks. In a similar way, Sarabi et al. [208] build a predictor
for cyber incidents using a set of industry, business, and web visibility/popu-
lation information. RiskTeller [61] is a prediction tool that leverages internal
telemetry data to predict which machines are at risk of being infected by a
broad spectrum of different malware. Its prediction accuracy reaches 95%,
showing that such tool could be used to prioritize security spending towards
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machines at higher risk of infection. The same conclusion is reached by Yen
et al. [259], who use logs from an antivirus software to infer the risk for
hosts in a large enterprise to encounter malware.

On the consumer side, Canali et al. [79], assess to what extent the risk
class of a given user can be predicted based only on his web browsing behav-
ior. The authors show how certain types of user actions considerably affect
their risk exposure. In a similar way, Sharif et al. [216] use mobile users’
browsing patterns complemented with self-reported data to predict whether
the users will encounter malicious pages on a long and short period of time.
In the latter case, on-the-fly predictions within a browsing session could be
useful to proactively prevent malicious-content exposures. All these predic-
tion efforts are summarized in Table 3.2, alongside the type of predicted
events, the source of ground truth information, the adopted features, and
the data from which they are extracted. The table also shows if the ground
truth and the predictive features are extracted from internal sensors (Int)
or are measured from public external information (Ext). We will return on
the importance of this aspect in Section 3.3.2.

Finally, few studies have focused on predicting the cost of cyber incidents
and data breaches. In this area, Jacobs [128] proposed a regression model
based solely on the number of user records compromised. Romanosky [198]
introduced more variables (including the revenue and company type) and
found that a 10% increase in firm revenues is correlated with a 1.3% increase
in the cost of an incident. The author also noted that the price is ultimately
related to the size of the company and the size of the breach, and not to
the malicious nature of the incident or its outcome.

3.2.5 Discussion

Nowadays, cyber risk management methodologies, results of game theo-
retical studies, and scenario-based simulations are key components for the
development of the cyber-insurance market. In the first case, companies and
individuals that want to adopt cyber insurance can take advantage from the
existence of these frameworks and guidelines, despite the fact that they were
not designed with the insurance market as ultimate goal: indeed, risk man-
agement plays a very important role to estimate attack probabilities and
possible damages, allowing, in turn, individuals and companies to reason
on their needs for a cyber policy. Insurance carriers as well use these tools
during contract underwriting for assigning a value to a certain entity’s risk
and compute premiums for cyber-insurance policies [199].

Unfortunately, all available solutions discussed above have a qualita-

tive foundation and base their analysis, assessments, and consequently their
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results on metrics based on experts knowledge and previous experience,
missing a feedback from real-world experiments and measurable quantities.
Existing methodologies rely on checklists, worksheets, knowledge basis, cat-
alogues, tables, and what-if reasoning for identifying threats and hazards.
The value of this type of analysis largely depends upon the quality of the
used documents and the experience of the experts who brainstorm about
undesired events and their effects. In the same way, the use of tools to
capture dependencies among threats such as fault trees or the outcome of
HAZOP and FMEA studies also assumes that who carries the analysis has
detailed knowledge about the areas, operations, and processes that may be
exposed to hazardous events and conditions.

The absence of objective measures and the qualitative nature of these
methodologies make it also harder to obtain an actual value for the likeli-
hood of a given threat in a cyber scenario: threat probability is, in fact,
a key component for assessing risks and, although simulations can approx-
imate the frequency of popular attacks found in the wild, the limitations
discussed in the actuarial paragraph of Section 2.1 exacerbate the quantifi-
cation of such quantity.

Finally, since a sheer number of risk assessment methodologies exists, it
is still unclear which one fits best the cyber domain and provides the most
precise way to compute the likelihood of cyber incidents. This aspect is fur-
ther exacerbated by the ever-growing adoption of Internet of Things (IoT)
devices, for which new risk metrics and specific risk evaluation methods
are still missing [193]. Very similar considerations apply to simulations
based on scenarios, as their creation, refinement, and precision to capture
the intricate relationships among different entities depends completely on
qualitative opinions of expert users and C-suite members.

As risk management methodologies and scenario-based tests, game the-
ory applied to cyber insurance can provide important practical insights.
Nevertheless, all conclusions obtained from these studies are purely based
on mathematical modeling, with all the limitations that this implies. First
of all, the finiteness of modeling can lead to a huge difference between the
actors considered and their actual number. Moreover, when using game
theory to simulate the behaviors of clients and carriers, players can under-
take a limited set of actions and interact with each other only in pre-defined
ways, defined by assumptions respectively on the market type and network
topology. Unfortunately, there is no measurement or comparison with real-
world data that confirms the validity of models and veracity of game theory
results.
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3.3 Challenges and Open Research Directions

As we described in the previous section, research in the cyber-insurance do-
main has mostly focused on theoretical studies (from a mathematical view-
point) and on the analysis of the costs/benefits tradeoff (from an economics
viewpoint). At the same time, the system security community has instead
been largely ignoring this emerging area. This could be simply the conse-
quence of the lack of interesting problems that require novel and practical
solutions, or it could be due to the lack of awareness from our community
towards these problems. As we believe the latter to be true, we now focus
on some of the areas where researchers’ experience with system and net-
work security can play a fundamental role to help the development of the
cyber-insurance domain. The contribution of system security researchers
can help the development of quantitative, data-driven methodologies, and
it can bring automation and support tools to replace questionnaires and
qualitative estimations.

In particular, we selected four classes of problems, one for each of the
insurance phases: actuarial, underwriting, portfolio management, and claim
validation. For each class, we underline the limitations in the current ap-
proaches, discuss the challenges of proposing new solutions, and outline a
number of open research directions for researchers in the security field. To
ease their identification, we tried to mark the main open problems we discuss
in the text as 〈Rn〉.

3.3.1 Area 1: Risk Prediction

“They could tell you exactly the chance of an office building burning down

in Midtown Manhattan, but there isn’t anyone on this planet who could tell

you the probability of a large U.S. retailer being hacked tomorrow”

– Graeme Newman, Director at CFC Underwriting [3]

Cyber-insurance providers employ underwriting tools to collect the in-
formation required to differentiate the risk across all the applicants [199].
Today, underwriting questionnaires ask a number of questions which in-
surance companies believe to be relevant to classify the risk of a potential
customer. However, as we discussed in Section 3.2.4, researchers still have
to identify reproducible ways to estimate risk based on a number of ob-
servable features that had been proven to be meaningful predictors across
a number of experiments. The experiments conducted to date were often
inconclusive and difficult to compare as they were all conducted on different
datasets and none of them was ever repeated or validated by other studies.
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As a result, as a community we still lack an understanding of which security

events can even be predicted in the first place, and which features are most

useful for such prediction. This opens several research directions to explore
different methodologies to capture and aggregate risk factors.
Measure the security posture of the target. One of the first ideas
that comes to mind to understand the risk of cyber incidents is to look at
the overall security of a given target. In fact, the security posture of an
organization may provide good insights on the level of risk – if we assume
that a better security hygiene can lower the risk of future attacks. Indeed,
at least intuitively, the higher is the security of a system, the lower should be
the probability of a security incident affecting that system. If we accept this
assumption, risk prediction can be re-formulated as a problem of measuring

security.
While the fact that security countermeasures could result in a reduced

amount of computer abuse was first assessed in 1990 by the seminal work of
Straub et al. [227], the link between security posture and cyber risk is not so
straightforward and it is still poorly understood today. Security measures
can certainly raise the bar for the attackers, but risk also depends on the
number of attacks a target may receive—which could be higher for large
and popular organizations. Moreover, relevant targets may attract more
sophisticated and motivated adversaries, which can make prediction more
complicated. But even if we accept this premise to be correct, there are still
two serious obstacles to this approach.

First, despite almost four decades of attempts, it is still unclear whether
a way to quantify security even exists [244]. For instance, in 2009 Verende
et al.[244] surveyed many techniques taken from the economics, the com-
puter science, and the reliability community, but still found unclear the
validity of the existing results. Second, even if we had a scale to precisely
measure security, it is still unknown what is the exact relationship between
the level of security and the probability of incidents 〈R1〉. Simply saying
that more security equals less risk is too vague to be practical. Does dou-
bling security reduces the risk by half or by a factor of four? Does the
curve reach a plateau, after which adding more security does not provide a
tangible reduction in terms of risk?
Measure the behavior of the target. The fact that the behavior of
the target can considerably affect its overall risk is another aspect which is
often taken for granted. The idea is that, regardless of its security posture,
the risk of being compromised of a given entity increases simply because
of the actions it performs. For instance, if a user spends a considerable
amount of her time browsing dubious and less reputable web sites, it seems
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reasonable that she would incur higher chances of being infected by malware
than a user who only browses corporate and popular sites. Unfortunately,
even if this may seem a logical conclusion, researchers have struggled to
measure this simple relationship 〈R2〉. For instance, in 2013 Levesque et
al. [139] found that the number of illegal and questionable websites visited
by a user is less related to the risk of malware infection than the number of
sport or computer sites. Similarly, Bossler et al. [68] found that the time
spent performing illegitimate computer activities was not a good predictor of
malware infections. Strangely, the authors found that even higher computer
skills and the adoption of careful password management failed to reduce this
risk.

Many independent studies [79, 139, 216] found instead evidence that the
volume of performed actions (e.g., the number of software installed or the
number of websites visited, independently from their category) was always
correlated to a higher risk. If confirmed, this finding seems to suggest that
there is a systematic risk of performing common actions – such as browsing
the web or installing software – and the final risk would mainly depend
on how many times these simple tasks are repeated by an individual or an
organization. In other words, a possible direction is to try to model the
risk of a compromise by using a frequency-based approach 〈R3〉, which is
already a common solution to describe safety risks.
Measure the attack surface. In a given cyber environment, the attack
surface is defined as the set of different points where an attacker can try to
break into the system or exfiltrate information. As a direct consequence,
reducing the attack surface by removing unnecessary services or limiting the
access to parts of the infrastructure represents a way to increase the security
by reducing the number of components that an attacker can target. The ra-
tionale behind this concept is that the likelihood of suffering from a security
issue will raise according to the number and diversity of software, services,
and systems used. While this is simple mathematics (and approached have
been proposed to measure the attack surface of a system [155, 120]), the
exact relationship that these variables have with cyber risk is still unknown
and more experiments are needed to measure how risk actually reduces with
the reduction of the attack surface 〈R4〉.
Influence of business sector, reputation, and assets of an organiza-

tion. As we already mentioned above, non-technical characteristics of the
target can influence the number, type, and sophistication of the adversaries
it needs to face. Today it is widely accepted the hypothesis that, given
enough time and resources, motivated attackers can always find a way to
compromise a target. Large state-sponsored cyber attacks have shown this
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to be the case also for the most secure government organizations [23, 13].
Therefore, the type of business, the sector, the reputation, and the assets
owned by an organization may influence the risk of compromise more than
other technical indicators, as they allow to capture the characteristics of
the attackers (incentives, risks, and resources as proposed by [211]) instead
of those of the defender. This assumption has already been shown to be
valid to characterize both the number and the type of attacks, respectively
by Sarabi et al. [208] and Thonnard et al. [235]. Moreover, this approach
could also cover the risk of targeted attacks, whose ad-hoc natures does not
allow them to be easily described by a frequency-based model [188].
Predict future events based on historical data. Historical data about
claims and incidents are routinely used to estimate the risk in other insur-
ance sectors. However, as already stated in section 2.1, the use of previously
collected data to predict future cyber events faces several challenges. First of
all, data on cyber incidents are scant and often biased towards those events
whose disclosure is mandatory because regulated by law [20, 18]. A second
challenge in this approach is to shed light on the so-called repeat players.
Although previous studies found a systematic difference between costs in-
curred by companies that experience single or multiple incidents [198] (the
so-called repeat players), it is still not clear whether having already been
compromised is a good indicator of being again compromised in the future
〈R5〉. Finally, an additional complication is represented by the fact that
attack techniques evolve very rapidly over time, making obsolete results
obtained from the observation of old data. For instance, if a known vulner-
ability associated with a high-risk factor were to be patched, past records
about events occurred because of its presence would probably not provide
any contribution to capture the risk associated to new attacks.
Measure the risk that propagates through third-party relations.

Outsourcing many critical business operations became a norm in the last
decade. It is very typical to store and process data owned by companies
on third-party cloud services and even common services such as DNS and
emails are now outsourced to the cloud. This largely complicates the picture
for cyber insurances as it is harder to draw a clear line of the boundaries
of a company. As common sense suggests, a company that is in relation
to other risky entities should have higher risk itself. While constructing
sufficiently accurate service-dependency graphs of businesses is a challenging
research topic by itself [95], measuring the amount of risk that propagates
through this graph is an open research problem that needs attention from
the community. We will come back to discuss this problem in more details
in Section 3.3.3.
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User’s weaknesses and social engineering. One of the most common
techniques used today to gain access to a network or system is social en-
gineering: indeed, while one can think that the most successful breaches
are the result of technical flaws or zero-day vulnerabilities exploitations,
almost 97% of them is achieved by tricking users to reveal sensitive infor-
mation using a social engineering scheme [30]. Unfortunately, while social
engineering attacks can pose a tremendous threat to organizations, current
approaches to IT security and risk management tend to underestimate or
completely ignore the human factor in risk assessment models, tools and
processes [192]. Extending existing schemes by modeling users and their
behavior could largely increase their prediction accuracy〈R6〉.
Risk aggregation. All the factors we previously mentioned are likely to
somehow affect (to a different and still unknown extent) the risk of cyber
incidents. But even if researchers would be able to precisely identify a
number of good and stable risk indicators, we would still have known very
little about the aggregation procedure required to combine the different
scores. This problem is exacerbated by the fact that, for practical reasons,
each study looks at a single factor in isolation. But different factors are
probably not independent and they can have very complex consequences
and side-effects on other indicators. For instance, a good security posture
may mitigate a larger attack surface, but it can be completely undermined
by untrained users. Therefore, if distinct studies respectively find good
predictors of risk, a constructive combination of them would still require a
considerable amount of research 〈R7〉. A classic insurance solution could
be to evaluate all risk indicators separately and then rely on actuarial data
about past incidents to combine them in a single risk class, but as we already
said this data may be very hard to put together and may become obsolete
very fast. Finally, a major obstacle to risk aggregation is the different
granularity of the risk computed by different approaches. Some can predict
the risk of compromise of a given software artifact, other of a user, or of
an individual machine. How to aggregate these values, for example, at a
company level is still an open research problem 〈R8〉.

Horizontal Issues

So far, we discussed different open problems and research questions and
their relevance for cyber insurance. However, we believe it is important to
also highlight three important aspects about cyber risk itself that apply to
all previously mentioned approaches:
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1. Cyber risk vs cyber-insurance risk – As briefly shown in sec-
tion 3.2.1, almost all the existing literature focuses on cyber risk as-
sessment or prediction. Although these are important for the purpose
of diverting security spendings towards most relevant threats, such
evaluation could be misleading for cyber-insurance risk assessment.
Indeed, a quantification of the first does not necessarily reflect the
second, that after all is the actual value insurances are interested in:
for instance, a class of events could have a high risk to harm one
entity but lead to claim submissions with a very low probability. In
other words, it is also important to study and measure how cyber risks
translate to insurance claims in the real world 〈R9〉.

2. Consumers vs corporations – Since cyber-insurance products are
recently made available also for the consumers market [12], it is possi-
ble that a different approach and/or set of features should be consid-
ered depending on the entity under investigation. Indeed, consumers
are less active with respect to big corporations, operate in a different
scenario, and may become an appealing target of cyber attacks for dif-
ferent reasons compared to large enterprises. However, no study exists
to date to compare the risk and threats encountered by consumer vs
enterprise users 〈R10〉.

3. Risk variety – risk assessment or prediction procedures need to be
targeted towards specific categories of risk. Indeed in an insurance
context, addressing cyber risk as a single-unit problem may be too
generic and may not lead to meaningful results. For instance, the
authors of [61, 259] predict machines and users at risk of malware in-
fections, without providing any fine-grained categorization (after all,
malware is a very generic term). In the same way, Liu et al. [150]
attempt to forecast generic cyber incidents specifying no type or ef-
fect. However, as shown by Eling et al. by using actuarial data [102],
different types of data breaches need to be modeled as distinct risk
categories. A more fine-grained classification is needed 〈R11〉to also
highlight particular categories of threats strongly coupled to the sub-
ject we are evaluating the risk for: for instance, malware targeted
against banking systems are probably not very relevant for those en-
terprises in other business sectors.
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3.3.2 Area 2: Automated Data Collection

“If you’re writing policies for personal automobile or personal homeowners

insurance you definitely have a lot of really good data. The worst data is

probably in cyber insurance”

– Nick Economidis, Cyber liability underwriter at Beazley PLC [253]

The importance of data collection for cyber-insurance carriers does not
only relate to the actuarial domain, whose issues have already been dis-
cussed in section 2.1. Data collection about prospective clients is indeed
the first crucial task of policy underwriting, as it allows insurance firms
to elicit a reasonable approximation of the overall security posture of the
applicants, measure their level of risk, and subsequently compute premi-
ums. The most common way to achieve this goal is to furnish organizations
wishing to buy a cyber-insurance policy with security questionnaires. In a
recent study, Romanosky et al. [199] analyze 44 of these questionnaires filed
across the states of California, Pennsylvania, and New York, and point out
commonalities that allow to group the questions into four macro categories.

The first set of questions aims at defining some general organizational
details of the company, like its business sector and annual revenues, the
kind of sensitive information stored and handled, how relationships with
third-party service providers are managed, the nature and amount of IT
security investments and, if any, its cyber-incident history. The second cat-
egory focuses on technical aspects, often covering questions on security and
access control measures adopted by the company and, less frequently, on
its information technology and computing infrastructure. The existence of
policies and procedures for data management is investigated in a third set
of questions, in which insurance firms investigate whether data processing,
retention and destruction practices are compliant with current regulation
laws and procedures to maintain and strengthen information security. Fi-
nally on the legal side, questionnaires verify how well a variety of laws and
regulations, enacted to protect consumers from the consequences of cyber
incidents and data breaches, are implemented and adhered.

The information collected is then used for premium computation: while
some carriers use flat-rate pricing for each first- and third-party coverage
(with no differentiation by firm or industry), others incorporate more fea-
tures (such as firm’s sector and revenue) as factors to be multiplied in a
base rate pricing. In more sophisticated policies, also the soundness and
completeness of security controls and practices have a weight in the final
result.

Although these questionnaires are widely adopted by cyber-insurance
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firms, the measure of their accuracy as a standalone tool for defining the
security posture —and as a step further the risk — of an organization is still
questionable. A recent work examines 24 application forms to determine
whether the collection of security checks referred by technical questions
corresponds to the controls defined in two well-known standards of security
best practices [254]. As result, existing forms are found to be predominantly
focused on a small range of controls and the authors suggest how to extend
them to be in alignment with the two information security frameworks.
Nevertheless, the extent to which security standards compliance reflect the
level of risk a company faces has not been yet understood 〈R12〉.

As suggested by modern approaches for data collection about cyber-
insurance applicants [75], cyber questionnaires should be only one of many
tools employed by insurance firms. For instance, instead of relying on self-
assessment, the security posture of an organization can be automatically
refined using two types of data sources: (i) internal data, provided by mon-
itoring and telemetry tools installed inside the subject under investigation;
and (ii) external data, collected from publicly available databases or by
scanning Internet-facing services.

Although recent works show the feasibility of both approaches [150,
61], open questions still exist on both sides. Intuitively, internal data (if
available) should provide a better accuracy to understand the cybersecurity
risks of an organization. However, organizations do not exist in the void
and the outcomes of internal telemetry analysis could be insufficient when
assessing the security posture of an entity that maintains relationships or
dependencies with external subjects – thus requiring a combination of the
two approaches to cover unavailable information about these third parties.

On the other hand, in a cyber-insurance scenario, internal data could be
unavailable to the insurer, who needs to base his evaluation on external data
only. In this respect, the effectiveness of methods based on such sources only
is not known, neither conditions and circumstances in which they can be
used to achieve a good accuracy. As already depicted in Table 3.2 , studies
that use external indicators to predict risk also validate their findings based
on externally available ground truth. This is a big limitation, as cyber
incidents are insufficiently reported and records, even if available, are often
published too late and miss details and key elements. Moreover, the different
precision and granularity of the ground truth make impossible to compare
the results with those obtained with internal indicators. More research
is therefore needed to compare the accuracy and relationship of externals
indicators and internal telemetry information on the same dataset 〈R13〉.
In particular, no previous work has provided insights on a combined use of



3.3. Challenges and Open Research Directions 45

both sources, trying to answer the question whether internal data can serve
as ground truth for refining the power of external indicators 〈R14〉.

3.3.3 Area 3: Catastrophe modeling

“One key challenge is accumulation. [. . . ] We know we can write earth-

quake exposures in both Japan and California with the confidence that the

same event will not impact all these exposures at once. We know to be wary

of writing two industrial risks along the same river basin, and the role flood

defenses play in mitigating loss. With cyber risks, the contours of systemic

accumulation are not as clear”

– Hemant Shah, Risk Management Solutions [76].

For an insurance company, catastrophe modeling (or simply cat model-
ing) is a way to estimate the likelihood or frequency at which catastrophes
can occur and to what extent they can impact the insurance. To decrease the
likelihood of cyber catastrophes, a typical solution that is widely adopted
is client diversification. The assumption here is that if the clients of the
insurance company have diverse attack surfaces and diverse characteristics,
a potential new zero-day vulnerability will not exist in all of them, leaving
only a percentage of insureds affected by a possible cyber attack. While
this may seem a reasonable conclusion, a recent unpublished work from
Eling and Schnell [103] suggested that, when modeling losses with specific
distributions, diversification may not be a good idea because of the heavy-
tailed distribution nature of cyber risks. This would be an important and
counter-intuitive finding, that needs to be confirmed by further measure-
ments 〈R15〉.

At its core, cat modeling boils down to capturing and modeling depen-
dencies among different entities. This, in turn, translates into the identi-
fication of the dependencies that come from the software, hardware, and
services used by a company. However, obtaining such detailed and com-
prehensive information about a large enterprise is a very challenging task.
Moreover, because of the cyber-insurance context and the transitive nature
of these dependencies, this task would need to be performed by using pub-
licly available datasets. This makes the problem even more complex and
hence, we believe, it opens new directions for researchers to explore and
contribute.

In an ideal scenario where all companies reveal the software, hardware,
and services they use and share with the community, building the service
dependency graph, identifying the nodes in this graph that might cause
catastrophic events, and calculating the indirect risk that comes from these
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dependencies would be a simple task. However, even in such a perfect
world, the dynamicity of the graph would require to continuously report
and recalculate the risk and likelihood of the existing catastrophes and the
identification of new catastrophe scenarios. In other domains, if two risks
are not connected (such as a fire hazard on two areas tens of thousands of
miles apart) this fact is not likely to change in the near future. But in the
cyber-insurance domain, the relationships among two different companies
are often very ephemeral – as services providers and software libraries may
change very often. But as of now, there is no existing work that studied
how the dynamicity of the ecosystem could influence the whole cat modeling
topic and whether (and how often) the portfolios defined by the insurance
companies should also be updated 〈R16〉.

Moreover, the reality is far from this ideal scenario and even the topic of
building adequately accurate service dependency graphs and modeling the
catastrophes with sparse and incomplete data are research topics that need
more attention from the community 〈R17〉. Altogether, this can lead to a
supply chain risk analysis that would provide a principled foundation for
catastrophe modeling.

However, the identification of all services used by a company, especially
without its cooperation, is often infeasible. For instance, the presence of
backup or redundancy services can remain undetected, as those only come
into play when the primary provider fails. As a full and precise view of all
the dependencies of a company may be impossible to obtain, then a model-
ing algorithm should be able to work with incomplete information, poten-
tially inferring the missing connections from settings and relations observed
elsewhere 〈R18〉. Although not done particularly for the cyber-insurance
domain, there exist two works [95, 223] that aimed at building dependency
graphs of popular companies by using public datasets such RIPE atlas, pas-
sive DNS records, and web crawling data. In 2017, Dell’amico et al [95]
performed a large-scale study to identify the dependencies between web-
sites and Internet services. The findings of the study confirm the monopoly
problem in the current service ecosystem. To make matters worst, over
time the Internet appears to be loosing its decentralized nature and the
popularity of the few dominant providers is steadily increasing. In the same
year, Simeonovski et. al [223] built a service dependency graph to explore
what percentage of the Internet would be effected when a popular provider
is attacked. The study found that by only targeting a handful of service
providers it would be possible to take down 23% of the websites.

Another challenge that affects cat modeling is the lack of a mapping
procedure to reliably associate measurements and public data to organi-
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zations. Network scans, web crawlers, service monitoring systems, public
blacklist, and other techniques that can be used to identify the software and
technologies adopted by a company typically work at the level of domain
names or IP addresses. On the contrary, incident reports and risk prediction
operate at a company granularity. Sadly, the connection between the two is
not always straightforward and new techniques are needed to link the two
information 〈R19〉. For instance, Liu et al. [150] explain their attempt to
perform a manual mapping and all the difficulties and caveats encountered
in the process, making it evident the necessity of a clearer and automated
procedure.

3.3.4 Area 4: Forensic Analysis

“I often think of the 1990s as the decade of prevention, the 2000 as the

decade of detection, and this is the decade of incident response.”

– Bruce Schneier, Security Specialist

After the detection of a cyber incident, the response phase requires the
intervention of computer security experts to analyze and understand the de-
tail of the event. However, computer security skills are not only required for
helping the company to recover from the incident but also, from an insurer’s
perspective, to verify the claim, assess the damage, and confirm whether it
is covered by the subscriber’s policy. Indeed, forensic investigations are the
norm to assess if, and to which extent, the insurance is liable for the event.

Computer forensics is a broad research field that covers the collection,
analysis, and preservation of digital evidence. It is a highly developed
science with its own language, modus operandi, and standardized proce-
dures [81]. However, while the other research topics discussed in this paper
have all been recently contextualized (in terms of specific problems and
new challenges) to the cyber-insurance domain, no study has looked at the
problem of computer forensics from a cyber-insurance perspective.

For instance, one aspect that may require special attention is informa-
tion forgery. In traditional insurance sectors, fake accidents cost over 30
billion dollars per year, with several insurers reporting these frauds to ac-
count for up to 20% of claims costs [55]. However, while set-up wrecks and
burning houses are sadly common practice for fraudsters to cash the insur-
ance coverages, there is almost no mention to date about similar frauds in
the cyber domain.

Current forensic approaches are mainly concerned with the possibility
that an attacker can hide undetected or that important evidence and arti-
facts can be deleted or manipulated. In other words, the focus on evasion
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and not on forgery. The lack of motivation can explain why planting fake
evidence in a computer system is not yet very common, but forged inci-
dents are extremely easy to set up for anyone with average programming
skills [111]. The vast majority of the indicator of compromise used today
rely on the simple existence of filesystem and registry artifacts - without
any knowledge of how (and by whom) the data was created in the first
place. In this setting, it is not hard to mimic a malware infection or even
a targeted attack against an organization. However, with cyber insurances
becoming more and more common, forged digital evidence may become a
major problem in the future.

In particular, digital evidence forgery could help businesses to overcome
one of the cyber-insurance most-common pitfalls: the fact that technicali-
ties can invalidate coverage allowing insurance carriers to deny indemnity
payments [8]. For instance, cyber insurance does not normally cover when
employee errors (e.g., falling for phishing attacks) are the cause of a malware
infection (e.g., ransomware) [10]. Since these events are instead covered un-
der other clauses (e.g., malware installed by an external attacker), forging
digital evidence would allow to “fake” a botnet infection to fall within the
scenario covered by the insurance policy, thus allowing the victim to cash
the indemnity.

Since today staging fake security incidents requires very little effort,
researchers should not only study how to collect hidden signs of compromise,
but also how to double-check and validate their authenticity 〈R20〉.

3.4 Development of cyber-insurance research

Cyber insurance is still a hot research topic among practitioners and aca-
demics. In this section, we briefly discuss follow-up works that have been
published after our study and that contribute to one of the four research
areas that we consider in our systematization.

As we widely discuss in section 3.2, cyber-insurance carriers make large
use of questionnaires and self-assessment surveys to collect useful infor-
mation from prospective clients in order to establish premiums. Nurse et
al. [177] interviewed a group of cyber-insurance professionals and reported
the challenges in both gathering and using collected data. Authors found
that insurers are likely to investigate security-related information —such as
whether the enterprise has a Chief Information Security Officer (CISO) and
the extent to which employees received cybersecurity training. During the
underwriting phase, practitioners also note that if too much of this data is
requested to potential clients, those may choose a competitor that requests
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less information, which usually translates into accepting more risk. At the
same time, a crucial issue mentioned by the authors is the storage of the
huge amount of data collected after an incident and the lack of systems for
analyzing it in the future.

Uuganbayar et al. [240] instead proposed a game-theory-based approach
to help organizations in distributing investments between self-protection
measures and cyber-insurance policies. Their unique approach not only
defines the amount of investments but also how those should be spent by
selecting the most cost-efficient security controls.

Given the rise of interconnections among IoT-driven service organiza-
tions, Pal et al. [183] investigated the feasibility of a cyber re-insurance
market able to cover the catastrophic service disruptions that propagate
through these networks and that are worth billions of dollars. Authors
proved through a game-theoretical analysis that it may not be economically
incentive compatible to cover the aggregate cyber-losses arising due to this
kind of cyber-attacks.

Finally, Woods et al. [255] published a systematization study that or-
ganizes prior work on cyber-risk quantification by using a causal model
inspired by structural equation modeling. The authors analyzed past litera-
ture that attempts to quantify how much harm results from cyber incidents
and whether this has changed over time. They found little evidence that
either the typical size or variance of cyber harm is particularly exceptional.
On the other hand, while analyzing studies that focus on the impact that
different security interventions have to reduce harm, they discover that those
studies do not consider important factors as the threat level and often report
spurious results like increased security budgets leading to greater frequency
of breach or that applying software updates increases the likelihood of web-
server compromise.

3.5 Conclusions

Even with profuse investments, attacks targeting cyber infrastructures are
not preventable in their entirety. As this awareness of cyber risks increases
among companies and organizations, cyber insurance gains prominence as a
tool to cope with residual risks and face hazards and losses resulting from the
use of computer systems and services. This new insurance sector presents
unique challenges and unsolved problems: quantify cyber-risk exposures and
consequently price them remain major issues due to the lack of historical
data and effective modeling techniques; on top of those, risk accumulation
due to the interconnected nature of some attacks and catastrophe occurrence
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are other two wide open research areas.
In this chapter we discussed the unique challenges that affect the cyber-

insurance sector. We focus on a pure technical perspective, highlighting
the limitations of current approaches, evaluating the feasibility of new so-
lutions, and proposing research areas in which system and network security
experts can play a fundamental role for the development of cyber insurance.
Differently from legacy frameworks based on qualitative approaches for risk
assessment and data collection, we endorse the relevance of prediction tech-
niques based on objective measures and automatic feature gathering.

In the next chapter, we start exploring some of the open challenges
proposed in this chapter. In particular, we look at risk indicators of malware
encounters by analyzing real-world telemetry and by differentiating between
home machines and those used in enterprise environments.
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4.1 Introduction

In this chapter, we leverage real-world telemetry to conduct an exploratory
study on risk indicators of malware encounters, differentiating between home
machines and those used in enterprise environments.

In the first part of the chapter we carry an extensive analysis of common
aspects and differences in malware encounters between the two segments. To
assess the implications of different choices in security investments and poli-
cies, we quantify the malware encounter rate in consumers and enterprises
and provide evidence of the most common classes and signatures observed
by the two parties. We also look at the reporting frequency and different
labels of popular malware families, the different incidence that PUA and
Adware, and the impact that behavioral signatures have on corporate and
consumer hosts.

In the second part of the chapter, we conduct an exploratory study of un-
diversifiable risk indicators that we were able to extract from our real-world
telemetry. For instance, we assess whether the days and hours of activity
together with the volume of host-generated files can serve this purpose. We
also look at the effect that the number of installed software vendors has on
the malware encounter rate. We assess whether being in a recidivist infected
state can be a good risk predictor, and finally, we verify whether the size
of an enterprise or its industrial sector can provide useful insights on the
systematic risk the company encounters.

4.1.1 Systemic vs Systematic

The way in which consumers and enterprises approach security is very dif-
ferent: while the former follow a reactive approach, installing defenses (typ-
ically in the form of AV software) to detect and remove possible malware
infections, companies are expected to work more proactively, by relying on
articulated risk assessment, mitigation, and risk transfer methodologies [94].
It is also well-known that consumers invest less in security, often preferring
off-the-shelf, easy-to-use solutions that offer few customization options. On
the contrary, organizations tend to protect their assets and data by de-
ploying complex and multi-faced solutions that rely on several layers of
defenses, such as firewalls and security proxies, intrusion detection and pre-
vention systems, email protection and anti-exfiltration software, together
with measures to prevent insider attacks and to limit the spread of infec-
tions. Consumers and enterprises also differ from a user point of view. In
fact, in addition to educating employees on the best security practices, en-
terprises may adopt stricter security policies about what software can be
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installed— thus preventing users from running software of dubious origin
that is often a vehicle for malware. For end-users, this choice is left to the
sole user’s security awareness and knowledge. Each of these factors may
affect the risk of experiencing cyber incidents and malware infections. This
risk, known as systemic, is strictly related to the individual security posture
and to the adopted counter-measures.

However, there are also other factors to be accounted for, as both con-
sumer and enterprise machines are not isolated entities. The interconnected
nature of our society brings companies to rely on external services and to
outsource computational tasks to third-party subjects, thus exposing the
hosts of both parts to a potential systematic risk — which is a form of undi-
versifiable risk that is independent of how much a subject spends in security
products and from its cyber hygiene.

The two terms, systematic and systemic, are commonly used in the
financial sector. In particular, the systematic risks (also known as undiver-
sifiable, volatility, or market risk) refer to the risk inherent to the entire
market, that is not specific to a particular stock or industry and that there-
fore is impossible to completely avoid and cannot be mitigated through
investment diversification. On the contrary, systemic risk (also known as
nonsystematic, specific, or residual risk), is unique to a specific company,
industry, or market segment. This second type of risk can be reduced by
simply redirecting the investment towards multiple companies,stocks, and
markets related to different sectors, thus reducing the likelihood that a fail-
ure in one of them could influence the others.

4.1.2 Why this study matters

Cyber risk estimation is a very complex and challenging problem, that to
date was mainly approached from a qualitative perspective [94]. In this
work, we aim instead at exploring quantitative metrics, obtained by lever-
aging empirical data. In fact, while it might sound obvious to the reader
that some factors are correlated to higher security risks, (e.g., the fact that
machines with higher activity are more likely to encounter malware, or that
a broader and more diverse set of software results in higher attack surface),
the exact relationships that these variables have with the risk of encoun-
tering malicious software has never been measured before. In addition, our
study provides numerous insights on the different impact these factors have
on consumers and enterprises environments.

It is also important to stress that the cyber security risks of consumers
and enterprises have never been compared before. Although it is possible to
infer some differences and similarities by looking at studies that analyzed
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either the first or the second segment in isolation, those studies relied on
different data sources, focused on different aspects, and were performed
over disjoint timeframes, thus making it difficult to compare results. On
the contrary, the internal telemetry information we use for our experiments
comes from a single AV sensor, it has been collected in the same time period,
and it allows us to clearly distinguish between corporate and consumer
machines. Moreover, while risk assessment is one of the cornerstones of
computer security, the difference among consumer vs enterprise security
has never been experimentally measured before: do enterprise machines
encounter less malware because they are protected by more and more diverse
cyber defenses? Are enterprise users more security conscious and, therefore,
less likely to visit risky websites at work? Is there some relevant difference
among the malicious files encountered by end-users and large companies
employees?

4.2 Datasets

This section provides a detailed description of the different data sources we
used in this study, as summarized in Table 4.1. Our main source of informa-
tion is the telemetry data obtained from NortonLifeLock [46] collected on
Windows machines and made of different feeds. Activity reports provided
a starting point to list all machines that had the antivirus sensor installed
and opted in to share their data, allowing us to compute the number of
hours each machine was active every day. File appearance logs helped us
to identify vendors of installed programs. Using malware encounters logs

we identify where, how many times, and which signatures were triggered
for each malware encounter. Finally, we scraped the company website to
retrieve a list of all existing signatures along with their class and description.

4.2.1 Consumers vs Enterprises

Our data contains 640 K unique enterprise identifiers. However, since big
corporations can span multiple countries and comprise several subsidiaries—
each of which may possess a different identifier— we use a second mapping
to further group those cases to a single organization. In total, we were
able to identify 45.6 K (2nd record in Table 4.1) unique organizations. We
distinguish 6.5 K micro (≤ 10 hosts), 12.3 K small (≤ 50 hosts), 11.9 K
medium (≤ 250 hosts) and 14.8 K large enterprises (> 250 hosts), with the
biggest of them having 3.4 M machines.

In the period of our experiments, we observed a total of 144.9 M dis-
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Unique instances
Dataset Info About Consumers Enterprises
Activity Hosts 144.9 M 226.4 M

Enterprises 45.6 - 640 K
Countries 239 235

File appearance Vendors 59.9 K 40.9 K
File appearance Vendors 59.9 K 40.9 K
Encounters Hosts 14.2 M 27.1 M

Enterprises 26.6 - 244.2 K
Records 62.4 M 76.5 M
Signatures 24.0 K 23.3 K
Countries 239 235

Signatures Labels 32.0 K
Subclasses 41

Industrial sectors Sectors 10 - 1215

Table 4.1: Overview of datasets used

tinct consumer machines and 226.4 M enterprise machines. Our dataset
covers 239 (for consumers) and 235 (for enterprises) of the 249 countries,
territories or areas of geographical interest with an assigned ISO 3166-1
code [24]. The two tables below (Table 4.2 and Table 4.3) report the geo-
graphical breakdown of the machines in our dataset: North America is the
most represented region (38% of the machines), followed by Europe (27%)
and Asia (22%). In South America, Africa and Oceania we measure the
lowest concentrations (< 10 % overall).

4.2.2 Host activity and file appearance

All the 371 M machines in our dataset have an anonymized identifier linked
to the AV software licence and thus stable throughout the period under
analysis. Each of them routinely queries a centralized system to assess the
reputation of files that appear on the host. These requests are made possible
thanks to the explicit consent of both consumer and enterprise users, who
opted-in to share their data in an anonymized and privacy-preserving form.
We leverage this process for two different purposes. First, for each machine
and for each day in the time frame of this study, we computed the number
of active hours. We then computed the number of active days per month
by counting the days in which the machine submitted at least one request.
On average, consumer and enterprise hosts are active 6.4 and 7.6 days
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Consumers Enterprises
Country % hosts Country % hosts
United States 33.87 United States 35.52
Japan 7.46 India 6.60
Germany 5.41 China 4.51
United Kingdom 4.60 Brazil 3.39
China 3.74 Japan 3.12
Brazil 3.52 United Kingdom 3.02
Canada 3.45 Germany 2.22
France 3.25 France 2.10
Australia 3.07 Canada 1.90
India 2.61 Australia 1.55
Italy 1.98 Mexico 1.52
Others 27.04 Others 34.55

Table 4.2: Host distribution per countries

Consumers Enterprises
Continent % hosts Continent % hosts
North America 38.89 North America 42.55
Europe 27.57 Asia 27.18
Asia 22.32 Europe 19.76
South America 5.49 South America 5.80
Oceania 3.49 Africa 2.57
Africa 2.24 Oceania 2.13

Table 4.3: Host distribution per continents

per month, respectively for 2.9 and 3.7 hours per day. Second, for all
executed applications we extract the vendor name (if the file is signed),
thus identifying more than 40 K distinct vendor names for enterprises and
around 60 K for consumers.

4.2.3 Malware Encounters

When a file is flagged as malicious by the host AV sensor, the event (includ-
ing the hash and the signature identifier) is reported to the central server.
We use these logs to create a register that, for each machine, records the
day, the number of encounters (as the same object can be reported multiple
times), and the matching signature name. Our data do not allow us to
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perform a retroactive analysis of files to catch newly identified threats, but
only consider those reported by existing signatures at the time of detection.
Over the 140 M collected events, we identified 14.2 M distinct consumers
and 27.1 M distinct enterprise hosts that encounter at least one malicious
file within the year. Overall, malware was encountered by 58.3% of the
enterprise.

We scraped the website of the AV vendor to obtain the list of available
signatures—together with their descriptions, years of creation, and sub-
classes. In this way, we were able to gather information about 18143 labels
classified in 41 subclasses (out of roughly 24 K signatures observed in the
dataset). For a more concise classification, we decided to merge similar
and smaller subclasses into seven broader groups: Adware, PUA, Trojan,
Ransomware, Worms, Viruses, and Others. The full mapping among the
different classes is reported in Table 4.4.

Class Subclass
Adware Adware, Adware-trojan

PUA Misleadingapplication, Misleadingapplication-trojan,
Potentiallyunwantedapp

Ransom Ransom

Trojan
Trojanhorse, Trojanhorse-macro, Trojanhorse-virus,
Trojanhorse-worm, Trojanhorse-worm-macro,
Trojanhorse-worm-virus, Trojan-virus, Trojan-worm

Virus Virus, Virus-macro
Worm Worm, Worm-macro, Worm-virus

Others

Dialer, Dialer-adware, Dialer-hacktool,
Dialer-trojan, Hacktool, Hoax, Joke, Joke-trojan,
Macro, Other, Other-trojan, Other-worm,
Parentalcontrol, Remoteaccess, Removalinformation,
Securityassessmenttool, Securityassessmenttool-trojan,
Spyware, Spyware-trojan, Trackware,
Trackware-trojan

Table 4.4: Malware classes grouping

4.2.4 Enterprise industry sectors

For a subset of the anonymized enterprise identifiers, we were provided with
a number of additional information; including their industry sectors and the
countries in which their registered offices are based. This industry classi-
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fication is available in different granularities, ranging from a fine-grained
classification of up to 1215 distinct sectors to a coarse version of only 10
macro-sectors.

Table 4.5 shows the number of machines and enterprises per sector, ac-
cording to the most concise classification: information technology is the
prevalent industry with more than 3 M hosts and 4732 enterprises. Glob-
ally, our dataset shows good industry coverage, with all sectors having at
least 200 K active machines, and half of the sectors having more than 1 M
hosts.

Sector Enterprises Hosts
Consumer Discretionary 5030 1.99 M
Consumer Staples 1495 912.22 K
Energy 654 210.71 K
Financials 5052 2.96 M
Healthcare 2349 1.96 M
Industrials 7715 2.79 M
Information Technology 4732 3.63 M
Materials 2159 427.00 K
Telecommunication Services 314 307.08 K
Utilities 496 245.59 K

Table 4.5: General sector statistics

4.2.5 Selection Bias

The dataset we used for our study is the largest ever adopted for risk-based
experiments: while the telemetry of previous works included at most 20 K
consumer devices [216], and 82M machines of 28k enterprises [137], the one
used in this work has been collected on more than 226M organization hosts
and 144M home-user computers located in almost 250 countries. However,
it is not completely unbiased. For instance, we only analyze consumers and
enterprises that invest in security products: it is reasonable to believe that
those without any protection should have a worse security posture, thus
making our results conservative. Moreover, our datasets are obtained from
a single vendor and only from those users who opted-in to share data: al-
though this allows us to better compare the two classes of machines, software
from other vendors may provide different security, and users who opted-out
due to privacy concerns could be more security conscious. Finally, our
telemetry is only collected on Windows hosts and so it is possible that users
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running other OSes (e.g., macOS) may have a different security posture.
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0

6
0

Consumers

Class/Label Hosts
Events

Reported
Labels

Trojan 11.3M (79.5%) 186.7 M 3.4 K

W97M.Downloader 627.3 K 3.1 M

Mdropper 305.8 K 1.1 M

Dromedan 303.6 K 916.8 K

PUA 6.3M (44.4%) 32.6 M 747

InstallCore 699.2 K 1.0 M

DownloadSponsor 509.3 K 1.6 M

OpenCandy 335.4 K 438.6 K

Others 4.6M (32.4%) 12.6 M 820

Jswebcoin 148.5 K 669.8 K

Remacc.Ammyy 101.2 K 155.5 K

Remacc.Radmin 10.9 K 18.9 K

Adware 770.9K (5.4%) 2.4 M 491

Browext 154.0 K 623.3 K

DealPly 54.3 K 87.6 K

DriverUpdater 48.2 K 56.0 K

Worm 559.1K (3.9%) 4.1 M 1.1 K

Silly 125.3 K 353.8 K

Ippedo 64.7 K 206.8 K

Dunihi 53.4 K 1.5 M

Virus 279.5K (2.0%) 15.1 M 589

Sality 56.1 K 2.1 M

Virut 47.8 K 493.1 K

Bursted 34.5 K 154.8 K

Ransom 112.0K (0.8%) 416.1 K 326

Wannacry 51.4 K 299.8 K

Crysis 15.1 K 26.7 K

Cerber 7.5 K 10.3 K

Enterprises

Class/Label Enterprises Hosts
Events

Reported
Labels

Trojan 16.1K (60.5%) 22.7M (83.8%) 217.1M 3.2 K

Dromedan 2.6 K 481.7 K 1.4 M

W97M.Downloader 4.0 K 179.3 K 603.5 K

JS.Downloader 1.5 K 98.9 K 187.7 K

Others 10.9K (41.0%) 2.3M (8.5%) 7.1 M 616

Remacc.Ammyy 985 74.6 K 115.2 K

Jswebcoin 1.6 K 70.2 K 286.0 K

Remacc.Radmin 172 26.5 K 42.2 K

PUA 10.5K (39.5%) 1.9M (7.0%) 3.8 M 548

InstallCore 3.6 K 245.6 K 307.9 K

OpenCandy 3.0 K 186.7 K 231.2 K

DriverPack 1.1 K 105.1 K 149.5 K

Worm 4.1K (15.4%) 692.1K (2.6%) 5.1 M 884

Silly 1.8 K 164.5 K 438.5 K

Ippedo 1.0 K 83.5 K 325.2 K

Dunihi 1.1 K 68.5 K 2.0 M

Virus 2.6K (9.8%) 320.9K (1.2%) 17.6 M 396

Sality 1.1 K 74.8 K 3.2 M

Virut 933 59.2 K 739.5 K

Bursted 639 52.8 K 232.4 K

Ransom 1.2K (4.5%) 160.6K (0.6%) 665.8 K 307

Wannacry 550 109.2 K 546.3 K

Crysis 210 21.5 K 37.2 K

Locky 31 4.0 K 7.8 K

Adware 2.8K (10.5%) 149.5K (0.5%) 444.6 K 429

Browext 1.0 K 30.5 K 121.0 K

Lop 339 16.4 K 20.5 K

Funshion 153 6.9 K 15.5 K

Table 4.6: Most common malware signatures and classes for consumers and enterprises. For each malware class,
percentages represent a normalization to the total number of hosts and organizations that encounter malware.
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4.3 Malware Specificity

In this section, we describe similarities and differences in malware encoun-
ters among consumer and enterprise hosts. We start by analyzing the over-
all picture of encountered malware signatures and classes in section 4.3.1.
Considerations about the number of malware classes on each host and the
average age of signatures follow in sections 4.3.2 and 4.3.3. In section 4.3.4,
we finally discuss how behavioral signatures, PUA, and Adware impact con-
sumers and enterprises in a different way.

4.3.1 Overall picture

We start our analysis by measuring malware encounter prevalence in con-
sumers and enterprises. Over the twelve months observation period at
our disposal, we found that the percentage of hosts that encounter mal-
ware slightly differs between the two groups: for consumers, 14.2 M of the
144.9 M active hosts have suffered at least one encounter (9.80%), while
in enterprises 27.1 M out of 226.0 M machines (12.0%) detected malicious
software. We verified that this difference is statistically significant (p<.001)
by running a Chi-squared test on a 2-by-2 contingency table obtained by
considering infected and clean devices in consumers and enterprises.

It is worth noting that the malware encounter rate we measured in en-
terprise environments is consistent with prior works. In fact, in their conser-
vative estimation along three years (from 2015 to 2017), Kotzias et al. [137]
report a prevalence rate of 13%; the same ratio increases to 15% in the
study of Yen et al. [259], who consider hosts of a large enterprise in a four-
month time frame in 2013. This shows that, once averaged over a sufficient
number of computers, the malware encounter rate in enterprises remained
relatively constant across different studies, AV vendors, and even across
multiple years.

No prior study exists instead that specifically focuses on consumer hosts
encompassing every class of malware. Some measured a combined encounter
rate —therefore also including enterprise machines— on a global scale [41],
others restricted their analysis to only few malware classes to investigate
their distribution vectors [136, 167, 74]. Although in the report published by
Microsoft [41] there is no clear distinction between consumer and enterprise
machines, our study reveals an encounter rate that is higher than the 6%
assessed by their researchers in the security bulletin over the same period.

While the overall encounter rates are similar, a closer look at the malware
families shows that there are some relevant differences between consumer
and enterprise encounters. Table 4.6 summarizes the most common malware
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signatures and their corresponding classes in our telemetry data, together
with percentages that represent a normalization to the fraction of devices
and organizations that encounter malware. Labels are sorted by the number
of distinct hosts in which they appeared, after removing generic records and
those for which we could not assign a class (as explained in Section 4.2.3).
As a single signature could be triggered multiple times in the same machine,
we also measure and report these occurrences. We complete the picture by
counting the total number of distinct labels for each class and the number
of enterprises in which each signature has been observed.

Results show that Trojan is by far the most popular class: these signa-
tures alone represent 47% of total number of signatures matched for con-
sumers and nearly 80% for enterprises. Although this malware class is also
prevalent in organization environments, home users show higher infection
frequency and a more diverse set of labels: on average, consumer hosts re-
port Trojan detection events 16.46 times during the year and encounter 2.02
distinct families in the same period. Enterprise frequency and distinct la-
bels are lower (respectively 9.56 and 1.33). Again, the differences between
the two means are statistically significant (Reporting frequency: Welch’s
Analysis of Variance (ANOVA) F-test = 5104, p<.001; Families: Welch’s
ANOVA F-test = 1709257, p<.001). The most common families are respec-
tively W97M.Downloader, a well-known set of malicious macros embedded
in Microsoft Word document files, and Dromedan, a label associated with a
Trojan family spread via email attachments.

Table 4.6 also highlights the completely different incidence of PUA and
Adware between the two groups. Although InstallCore —a large family of
bundlers that install Adware and PUP— and Browext — malicious soft-
ware that shows advertisement and slows down the system to frustrate the
user— are the most observed labels on both sides, PUA and Adware ac-
count upwards 29% for consumers, but not more than 7.1% for enterprises.
In addition, home users report Adware and PUA detections on average 5.18
times per year, while enterprise machines only 2.05 times (Welch’s ANOVA
F-test = 649, p<.001). Since this is an important difference between the
two groups we decided to dedicate Section 4.3.4 to investigate it in more
detail.

On the contrary, Viruses and Worms (respectively 1.1% and 1.2% of all
the signatures matched) appear with similar frequency in both groups. Al-
though we register a statistically significant difference in the mere detection
rate between the two segments of machines (Virus: X-squared = 12447,
p<.001; Worm: X-squared = 14164, p<.001), we find no such difference
when considering the reporting-event frequency and distinct-label encoun-
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ters: Viruses are respectively detected on average 53.92 and 54.99 times
during the year on home-user and organization machines (Welch’s ANOVA
F-test = 0.12, p=.12), showing the same average presence of 1.21 different
signatures per host (Welch’s ANOVA F-test = 2.88, p=.09). Similarly,
Worms are reported 7.40 (consumers) and 7.38 (enterprises) times on av-
erage (Welch’s ANOVA F-test = 0.02, p=.90), in the form of 1.24 and 1.21
distinct labels (Welch’s ANOVA F-test = 1.06, p=.08). Our data reveals
that the family of Silly Worms, that replicates through email attachments
and local copies to steal sensitive information and disable other software, is
the most common in its corresponding class. Sality, a popular malware that
infects executable files acting as backdoor or botnet, dominates instead the
scene when it comes to Viruses.

4.3.2 Distribution of malware subclasses

Figure 4.1 shows the cumulative distribution of the number of distinct mal-
ware subclasses observed in enterprise and consumer hosts. For each ma-
chine, a subclass is counted if at least one of its signatures is matched
by the AV product. The maximum number of distinct classes (22 for con-
sumers and 21 for enterprises) has been reported by two machines per group.
While at a first sight the graph might suggest similar behaviors in the two
categories, the Chi-squared tests separately considering up to 20 distinct
encountered categories reported significant differences with p < .001. In
particular, substantial differences are present in the leftmost part of the
plot: while nearly 82% of enterprise hosts have encountered only a single
subclass of malware, this percentage drops below 57% for consumers. This,
in turn, reveals that on average consumer machines are more likely to en-
counter a more diverse set of malicious files than enterprise computers. As
already discussed in the introduction, a possible explanation for these dif-
ferences can be the adoption of stricter security policies and multiple layers
of defenses present in enterprises but not in consumer environments.

Our measurements show that for most of the malware categories there
was no relevant change over the year in terms of the fraction of hosts that
detect them. This supports the hypothesis that different malware classes
reach a plateau that they maintain over time despite the effort of security
companies to mitigate them. There were only two exceptions to this rule,
which we present in Figure 4.2. The first was a slight but steady decrease
of Ransomware families, both in consumer and enterprise data. The sec-
ond was a rapid increase of Cryptominer families, followed by a general
downward trend. Ransomware and Cryptominers are the last two malware
classes that emerged over the last few years and their curves show that in
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Figure 4.1: Cumulative distribution of the number of distinct subclasses per
host

fact they did not yet reach a stable trajectory.
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Figure 4.2: Ransomware and Miner trends for consumers and enterprises

4.3.3 Age of encountered malware

We continue our analysis by estimating how old the malware encountered
by the hosts in our dataset is, by looking at the date in which each signa-
ture was first introduced by the vendor. Figure 4.3 depicts the average age
of matched signatures in our one-year observation period. For each of the
12 months, we group all the labels based on the year in which they were
created. Then, for each of the 29 years (from 1990 to 2018) we average
the number of distinct records over the months and compute the 95% con-
fidence interval. Despite a common peak of over 300 signatures written
in 2014 and a drop for those developed in 2018, the number of matching
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signatures present in our dataset is almost constant since 2003. This cor-
roborates what has already been observed in other studies about the fact
that it is still common to encounter today samples belonging to very old
malware families [146]. In fact, about 174 K consumer hosts and 151 K cor-
porate machines (respectively 1.0% and 0.5% of those that suffered at least
a malware encounter) report encounters for signatures whose creation even
predates the year 2000. Among those, the most common for consumers
(4858 hosts) and enterprises (1990 hosts) is CIH , a 22-year-old signature
to identify a computer Virus that targets Microsoft Windows 9x systems.
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Figure 4.3: Average number of different signatures per year of creation.
Error bars provide a 95% confidence interval

4.3.4 Behavioral signatures, Adware, and PUA prevalence

So far, in this manuscript we have used the word signature to indicate with-
out distinction the set of unique data that allows an AV software to detect,
quarantine, and remove specific malware. However, two main approaches
exist to create a signature: the older pattern-based methodology in which
a model was built to match a particular family of malware, and the more
recent behavioral-based approach in which generic heuristics are used to
capture different aspects of malicious behavior. While the first leverages
object attributes to create a unique fingerprint, the latter typically evalu-
ates an object based on its runtime actions [84].

In our dataset, we identified 6.7 K behavioral signatures by using their
label and report their prevalence for consumers and enterprises in Figure 4.4.
The reported percentages are obtained by dividing the number of distinct
hosts with at least one behavioral-based detection and the number of distinct
hosts that have suffered one or more encounters of any kind. We verify that
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Figure 4.4: Prevalence of behavioral signatures in consumer and enterprise
machines

all the monthly differences are statistically significant (p < .001) by running
a Chi-squared test on the contingency table obtained by considering devices
that trigger behavioral signatures and those that do not, in consumers and
enterprises.
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Figure 4.5: Prevalence of PUA and Adware signatures in consumer and
enterprise machines

The curve for enterprise hosts lies considerably above the one of con-
sumers, a sign that behavioral signatures match much more in the former
environment (an average of 59% of hosts in enterprise vs 30% in consumer
hosts). This could be due to the presence of less popular software and of
custom applications built and compiled on corporate machines, for which
the AV has not been tested against to whitelist or tune its behavioral sig-
natures. On the contrary, consumer machines mostly run well-known appli-
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cations that are therefore accounted for by AV vendors. However, since the
totality of behavioral signatures is categorized as Trojan by the AV vendor,
we speculate that this difference could also be due to sophisticated mal-
ware that targets specifically certain enterprises, which could not be easily
detected with a traditional pattern-based signature.

In Figure 4.5, the trends are inverted when considering Adware and
PUA. In fact, their prevalence in consumer hosts is constantly higher (6.06
times on average with a statistically significant difference for each month —
p < .001) than in enterprises. As already discussed in section 4.3.2, a very
likely explanation can be found in the freedom that consumer users have
to install any kind of software, whereas more rigorous rules are enforced in
enterprises.

4.4 Undiversifiable risk analysis

We now shift our focus to the analysis of systematic risks, to investigate
whether this kind of risk exists in the cyber domain and identify correlated
indicators for consumers and enterprises that can help us to measure its
significance together with the differences between the two classes.

To this end, we employ regression analysis by constructing several mod-
els that simultaneously use a combination of host attributes as regressors,
thus controlling for conflicting explanatory variables when modeling the risk
of encountering malware. We detail the model generation in section 4.4.1
and deeply discuss each risk factor in the subsequent sections.

4.4.1 Model generation

We postulate that the monthly risk of encountering malware for one host is
influenced by a combination of the following seven independent variables:
active days and hours, file-request volume, reputation and number of in-
stalled vendors, geographical location and whether or not malware has al-
ready been detected on the machine the month before.

Our objective is to obtain a Log-Odds distribution for the dependent
variable Y , that expresses the odds —the ratio of successes (host encoun-
ters malware) and failures (host is clean)— as a linear combination of the
regression variables. Since Y is monthly given in our telemetry as a boolean
value (i.e., host encounters malware or is clean), we transform it as to obtain
a count by bucketing numerical variables (days, hours, files created, vendor
number and enterprise size) into bins to reduce granularity, grouping all
the machines that share the same combination of values, and counting how
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Attribute

Host

Category

Bin

family

Malware
Monthly Odds

Consumers

Monthly Odds

Enterprises

µ σ µ σ

Ref: [0-4]

Days

Activity

8-12 Any 2.78 0.45 1.59 0.30

4-8 Any 2.10 0.19 1.44 0.19

12-16 Any 3.26 0.67 1.82 0.57

16-20 Any 3.58 0.85 1.91 0.71

20-24 Any 4.01 1.11 1.97 0.75

24-28 Any 4.15 1.25 1.79 0.73

28+ Any 4.51 1.33 1.85 0.48

28+ Virus 4.26 1.40 3.73 1.89

Ref: [0-3]

Hours

Activity

3-6 Any 1.34 0.09 1.02 0.20

6-9 Any 1.57 0.32 0.95 0.14

12-15 Any 1.25 0.47 0.88 0.21

15-18 Any 1.35 0.38 0.98 0.23

18-21 Any 1.59 0.49 0.99 0.39

21+ Any 2.65 1.67 1.32 0.56

18-21 Adware 1.68 1.32 0.63 1.46

21+ Adware 3.30 2.23 0.08 0.25

Ref: [0-1K]

Activity

File-volume

1K-2K Any 1.05 0.07 1.19 0.26

3K-4K Any 1.64 0.33 1.33 0.54

5K-10K Any 2.21 0.55 1.59 0.90

10K-50K Any 3.19 1.05 1.85 0.79

50K+ Any 4.77 1.23 2.34 1.38

10K-50K Adware 9.67 3.87 2.62 1.77

50K+ Adware 13.52 4,71 9.79 3.76

Ref: [0-20]

Vendors

20-40 Any 1.11 0.04 1.09 0.12

40-60 Any 1.22 0.06 1.30 0.28

60+ Any 1.39 0.09 1.54 0.55

60+ Adware 1.46 0.31 4.86 3.74

60+ PUP 1.56 0.09 3.37 1.06

Ref: No

vendors only

Reputable Yes Any 1.00 0.05 0.99 0.25

Yes PUP 0.98 0.05 0.82 0.06

Yes Virus 0.64 0.04 0.70 0.09

Ref: No

player

Repeat Yes Any 1.77 0.77 1.33 0.49

Yes Adware 8.33 3.15 5.86 1.14

Yes Virus 2.21 1.03 5.50 2.56

Yes Worm 10.56 2.45 8.44 2.82

Ref: NA

location

Geographical

AF Virus 6.35 2.10 12.14 2.49

AS Virus 4.19 0.51 9.72 1.21

AF Worm 20.77 2.61 18.59 4.61

AS Worm 5.39 0.23 9.49 2.31

OC PUP 0.86 0.18 1.25 0.45

OC Trojan 1.04 0.10 0.82 0.22

Table 4.7: Odds ratios of encountering malware according to our regression
models
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many of them are infected or clean.
We then make use of Generalized Linear Model (GLM)s [78], test them

in different configurations, and analyze the outcome of several goodness-of-
fit quantities (Pseudo R-Squared, Log-Likelihood, Dispersion, and the esti-
mation provided by the Akaike Information Criterion (AIC)). We achieve
the best results when modeling the risk of malware encounters Y as a Bino-
mial distribution using a Logit link function. The analysis of the pseudo-R-
Squared values obtained when modeling the different malware classes along
the year revealed that, on average, between 68.4% and 89.9% of variance
in the encounter rate is explainable by the chosen control variables.

Once the model has been fitted to the data, the extent to which the
independent variables influence the dependent variable is captured by their
regression coefficients. In particular, for each regressor, we select a bin (e.g.,
0-4 days) or categorical value (e.g., North America) as a reference baseline,
and express the odds ratio of other bins or values to derive the attribute’s
importance.

We separately model consumer and enterprise machines. We are aware
that comparing the magnitude of odds ratio from models that use different
samples from different populations may introduce an error [166]. However,
our ultimate goal is to analyze the trends within each segment —odds ratio
increase, decrease or fluctuations— and hereinafter we never directly com-
pare the magnitude of the coefficients between consumers and enterprises.

In our experiments, we consider each month separately, as data are
monthly aggregated due to anonymity constraints. We run a separate model
for each month starting from February, by only considering hosts that have
been active all the 12 months (11.7M consumer machines and 2.8M hosts of
33.7K enterprises), as to have information of the previous-month clean/in-
fected state always available. At first, we define one host being targeted
by malware if it encounters any kind of malware in that specific month. In
addition, we separately consider and model five different malware classes
—Adware, Trojan, PUP, Virus, Worm— to explore any variations in host-
attribute importance or differences between consumers and enterprises when
narrowing down the analysis to a specific class. In Table 4.7, we report the
average µ and the standard deviation σ of the odds ratio along the 11-month
period for the most explanatory cases that we discuss in the following sec-
tions. We note that all reported values are statistically significant with
p < .001 for all the months of the considered period.

We do not include the enterprise size (i.e., number of hosts) and its in-
dustrial sector in the previous experiment, as these regressor variables are
not available for consumers. In fact, the odds analysis of models that have
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been constructed with different variables is statistically unsound [166]. We
instead repeat the experiment by isolating enterprise machines and simul-
taneously modeling all the 9 attributes at our disposal for this segment of
hosts. In Table 4.11, we only report the odds ratio of the two features that
were added at this step. Also in this case, all reported values —including
those that are not reported in Table 4.11— are statistically significant with
p < .001 for all the months of the considered period.

4.4.2 Time-based activity

It is reasonable to expect that the longer a machine is active, the more
likely it is to encounter malware. Indeed, the odds of detecting malware
for consumers linearly increase with the number of active days, reaching a
4.51 factor with respect to the reference class for those active on average
more than 28 days per month. While a similar relationship also exists for
enterprises, the effect is much less pronounced and the odds reach a peak
of only 1.97 when considering those hosts active between 20 and 24 days
per month. Activity days represents a stable indicator along the months,
as detailed by the low standard deviation in relative odds. A similar trend
exists also with respect to the number of hours of activity per day – but
in this case, both enterprise and consumers show a comparable magnitude
and a similar random behavior for those machines active on average more
than 9 hours per day.

To better understand this phenomenon, we separately assess the influ-
ence of activity days and hours in Figure 4.6. We split the machines based
on their average uptime days and, for each of the 31 days, we compute
the percentage of hosts that detect malware. Regardless of the number of
days, we repeated the same task for the number of uptime hours. While for
consumers the plot suggests that malware detection rates keep increasing
alongside the number of active days, for enterprises this growth stops at
around 20 days (roughly the number of working days in a month), but then
the curve considerably drops for machines that are always running. The
same trend is exhibited by looking at the daily hours of activity. In this
case, the growth of the encounter rate stops at around eight hours for both
groups (which again seems to align with the number of working hours in a
day). As we clarify later in the section, these values seem to suggest that
the active time changes with the role of the machine, and different roles
may have very different encounter rates.

With these results in mind, we identified a set of machines for which the
time-to-risk relationship was more regular. These include machines with
up to eight hours of activity per day and, for enterprises, hosts that are
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Figure 4.6: Disjoint influence of activity days and hours on malware en-
counters

active no more than 20 days per month. This group accounts respectively
for 96% of the consumer hosts and for 73% of the enterprise machines.
Figure 4.7 shows the joint influence that activity time has on the Regular
Group: for each day X and each hour Y , the point on the 3D surface is
given by selecting the machines active for X days and Y hours on average,
and computing the percentage of those that detect malware. Interestingly,
both plots follow a smooth behavior according to the one of the two control
variables, confirming the goodness of time activity as a risk indicator for
this type of machine.
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Figure 4.7: Joint influence of activity days and hours on malware encounters

For machines in the regular group, we also computed to what extent
each additional day or hour of activity increases the odds of encountering
malware by fitting a model that considers days and hours as integer vari-
ables, while keeping unchanged the other regressors. We measure that for
any additional day of activity the odds of encountering malware increases
by 4% for consumers and 3% for enterprise machines. An additional hour
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of daily activity results instead in an additional 17% and 6% extra risk.
At first, both results suggest that adding more daily uptime has a stronger
impact than adding more days of activity, but we need to keep in mind that
machines in the regular group have a maximum of 8 hours of daily activity
vs 20 (for enterprise) and 31 (for consumers) days per month. If we repeat
the experiment by considering only specific classes of malware, in the case
of number of active days we find a consistent behavior with the general case
in both odds magnitude and increasing trends.

The odds related to number of active hours per day deserve instead
special attention. In fact, we observe that for enterprise machines running
more than 8 hours per day (i.e., the threshold we identified for the regular
groups), the odds across all malware classes are lower than for hosts active
fewer hours per day. We speculate that the reason is that those machines
are likely dedicated to performing not-interactive tasks (e.g., servers). This
hypothesis is confirmed by looking at the almost-zero odds of encountering
Adware in enterprise machines that are always running: since this particular
malware is usually shipped during software installations or web-browsing
activity, very low odds of suffering this kind of infection can be explained by
the lack of this kind of tasks. On the contrary, we observe a decrease-increase
behavior for consumers, an indicator that those machines are probably used
in both automated and interactive fashion.

4.4.3 File-based activity

As we already mentioned, the machines in our dataset routinely query a cen-
tralized system to assess the reputation of new objects: by monthly counting
the number of these requests, we build a second metric for host activity and
correlate its magnitude to the odds of malicious program detection. We
find that the odds of detecting malware steadily increase with the level of
activity in terms of files generated for both consumer and enterprise hosts
and across malware families. This relationships does not vary month by
month, as confirmed by the very low standard deviation reported with the
mean. While we observe a similar magnitude in the odds of machines that
generate less than 5K files per month, the effect of a greater file-volume
activity (5K+) more consistently impacts consumer hosts. At its extreme,
we observe that the odds of infection reach twice those of enterprises when
selecting machines that generate a very high file-volume activity (50K+).

In Figure 4.8, we provide the reader with a visual representation of the
relationship between files generated and malware encounters: for a given
number X of file requests, we group the machines that queried the central-
ized system exactly X times in a month, and compute the percentage Y of
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Figure 4.8: File volume influence on malware encounters

those that encounter malware. The orange curve in the graphs provides an
indication of the underlying trend, and it has been obtained by sampling the
percentage every 100 values. The two figures reveal a similar logarithmic
trend for both corporate and consumer machines. While for a low number
of queries (up to roughly 5 K for consumers and 2.5 K for enterprises) a rise
in the file-based activity entails a severe increase in the malware encounter
rate, this effect gets weaker as we move in the right part of the plot.

4.4.4 Software vendors

We now measure to what extent various machine profiles might have an
impact on the overall risk. We achieve this by looking at the set of software
installed on the computers, extracting the vendor name from the publisher
subject that can be obtained from signed binaries. On the vast majority
of computers (around 80% for both groups), we identify software that is
signed by between 10 and 15 different publishers. The maximum numbers
of publishers identified on a single machine were 2312 for consumers and
349 for corporations. We first test whether an increasing number of software
vendors implies a higher risk of detecting malicious programs. The rationale
behind including the vendor number as a regressor in our model is that the
odds of encountering malware –and in turn suffering from security issues–
may raise according to the number and diversity of software installed in a
system.

Our modeling reveals that a relationship exists between the two vari-
ables, and that enlarging the set of software installed on a machine results
in higher odds of encountering malware. For instance, consumer and en-
terprise machines with a number of vendors between 20 and 40 are 1.11
and 1.07 times more likely to be targeted by malware than those with less
than 20 signers. Odds increase to 1.22 and 1.18 for hosts with a number of
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vendors between 40 and 60, and reach 1.39 and 1.22 for those with more
than 60 vendors. Once again we measure a very low standard deviation,
which suggests that results persist for all the considered months. When
restricting to Adware and PUA, we find that the presence of a very high
number of vendors entails higher odds ratios in enterprises (4.69 and 3.44).
This difference is not reflected for home users, for which the magnitude of
odds follows the general case.

We further dive into the relationship between a diverse set of programs
and malware encounters by dividing both consumer and enterprise machines
into groups based on the number of different software vendors installed. For
each group in which we have at least 100 elements, we compute the fraction
of hosts that encountered malware at least once.
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Figure 4.9: Relationship between the number of distinct vendors installed
and hosts that encounter malware.

In Figure 4.9 we report these percentages together with straight lines,
that represent linear regressions obtained using the least-squares method
with a mean squared error of 1.86 for consumers and 4.75 for enterprises.
Again, the diversity of software installed on the computers positively and
linearly correlates with the rate of malware encounters. This is true both for
consumers and enterprises, with the difference that the slope associated with
the consumer trend is steeper than the one of enterprises. This discrepancy
is also reflected by the higher odds ratios in the former group. We can
justify this behavior with the fact that in enterprise contexts, even if a user
were to install a diverse set of applications, each of them would probably
serve the purpose to carry some tasks related to her job: indeed, with the
existence of security policies, users are less likely to install software from
dubious origin on the machines provided by their employers.

As a further insight, we also consider whether the nature of the installed
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software influences the odds of malware encounters and whether that could
be used to profile the role of the machines that installed them. We rank the
top 20 vendors in our dataset based on the number of hosts on which they
appear and report their list in Table 4.8.

Consumers Enterprises
Microsoft Corporation Microsoft Corporation
Symantec Corporation Symantec Corporation
Google Inc Google Inc
Apple Inc Adobe
Adobe Intel
Dell Inc Oracle America Inc
Mozilla Corporation Citrix Systems Inc
Intel Corporation VMware Inc
NVIDIA Corporation ESET
HP Inc Mozilla Corporation
McAfee Inc Cisco Systems Inc
Dropbox Inc Hewlett Packard Company
Hewlett Packard Company Lenovo
OracleAmerica Inc Pulse Secure LLC
ESET Dell
Garmin International Inc Sun Microsystems Inc
Wild Tangent Inc Apple Inc
Valve NVIDIA Corporation
CyberLink LogMeIn Inc
Lenovo CrowdStrike Inc

Table 4.8: Top-20 vendors for consumers and enterprises

Our hypothesis here is that the machines that installed only those could
be used as a control group, as they might belong to regular user profiles
who only use common software, such as browsers, document editing tools
and such. We therefore create two different profiles, isolating machines with
only top-20 vendors installed from the rest: while for enterprises this set
is composed of around 12% of the active hosts, this percentage rises above
42% for consumers. In our tests, we found that a higher vendor reputation
has a negligible contribution to lowering the odds of encountering malware.
Indeed, we register no changes in odds for consumers (µ = 1.00 and σ =
0.05) and a small decrease for enterprises (µ = 0.99 and σ = 0.18). However,
we register a more significant impact when modeling malware classes as
PUA (0.98 consumers - 0.77 enterprises) and Adware (0.64 consumers -
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0.65 enterprises): in this case, the presence of only reputable vendors is
an important factor that contributes in lowering the odds of encountering
particular families that are usually shipped with dubious software.

4.4.5 Repeat players

We now assess whether being a repeat player has an impact on the odds
of encountering malware. When fitting the model for a specific month, we
consider a machine being a repeat player if malicious software was detected
on it the month before. Our hypothesis is that repeated encounters with
malware can be a sign of users’ hazardous behaviors or of their poor security
practices during the year under analysis.

In fact, we found a difference (µ = 1.77 for consumers and µ = 1.48 for
enterprises) between the odds that a recidivist host will encounter malware
versus a clean machine. The importance of this risk factor and the differ-
ences between home and corporate users increase when considering malware
classes as Adware, Worm and Virus. When looking at consumers and at
the first two cases, repeat players are 8.33 and 10.56 times more likely to
encounter malicious software than machines that were clean the previous
month. Although odds increase also for enterprises, here we register factors
of lower factors (3.01 and 7.06).

4.4.6 Geographical location

Previous works show that the number and types of malware that computers
encounter vary greatly across countries [163, 74, 162]. To verify these find-
ings, we consider the continent in which one host is located as a regressor
variable, and model how the odds of encountering malware vary with the
geographical location.

When considering all malware categories, we register the same order
of odds magnitude both across countries and types of machines. On the
contrary, geographical location constitutes a considerable risk factor when
restricting to Worms and Viruses. For those classes, we measure compa-
rable odds in North America, South America, Europe and Oceania, but
register a massive increase in continents like Africa (> 20 for Worms, > 6
for Viruses) and Asia (> 5 for Worms, > 4 for Viruses) for both consumers
and enterprises. We refer the interested reader to Tables 4.9 and 4.10 for a
complete geographical breakdown of malware classes.

This result is in line with what reported in a previous study by Mezzour
et al. [162], who found a predominant prevalence of these two classes in
Sub-Saharan Africa and South Asia. In the opposite direction, we find that
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Consumers
Country Trojan PUA OT Worm Adware Virus
Africa 64.01 15.36 7.15 9.3 0.8 3.38

Asia 66.71 14.47 10.94 3.81 1.47 2.61
South America 60.17 23.62 12.49 1.5 1.65 0.57
Europe 56.57 25.51 14.4 0.99 2.22 0.31
North America 58.04 24.8 13.68 0.61 2.59 0.27
Oceania 58.17 22.19 15.67 0.93 2.8 0.25

Table 4.9: Geographical breakdown of malware classes for consumers

Enterprises
Country Trojan PUA OT Worm Adware Virus
Africa 77.05 5.80 4.87 9.57 0.34 2.36

Asia 81.76 5.59 6.63 3.28 0.45 2.29
Europe 87.42 4.88 6.21 0.94 0.3 0.26
North America 93.39 2.34 3.53 0.44 0.17 0.12
Oceania 90.88 3.17 4.84 0.72 0.2 0.2
South America 86.64 5.18 5.72 1.42 0.4 0.65

Table 4.10: Geographical breakdown of malware classes for enterprises

machines in Oceania have lower odds of encountering Trojans and PUA.
Here, we find that the odds home-users facing PUA are reduced by a factor
of 0.86 with respect to those in North America. A similar result holds for
corporate machines whose odds ratio of encountering Trojan is 0.79.

We also tested whether there exist geographical regions where many ma-
chines encounter some malware families that appear very rarely elsewhere.
To analyze this aspect, we first ranked all the signatures in our dataset based
on the number of distinct hosts on which they have been detected. We then
isolated the top-100 labels among behavioral signatures, PUA and Adware,
and the remaining set of malware and, for each label, we broke down the
machines that have encountered it across continents (Figure 4.10).
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Figure 4.10: Breakdown of top 100 behavioral signatures, PUA and Adware, and remaining malware families.
Percentages are sorted according to the number of distinct hosts on which the signatures have been detected.
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Although we identified some differences, machines located in North Amer-
ica, Europe and Asia encountered the top-100 signatures with a similar
frequency, while Africa and South America follow different behaviors.

After discarding generic cases, we observe that the family of the track-
ware TransitGuide (218 K hosts), developed to monitor browser activity of
the targets, and of the Trojan Kotver (122 K hosts), that performs click-
fraud operations in order to generate revenue for its authors, are almost ex-
clusively detected in consumers located in North America (97% and 92%).
At the same time, the Adware families of KpZip (22 K machines for con-
sumers and enterprises) and Funshion (19 K consumer and 11 K enterprise
machines), both created with the aim of displaying ads to profit from user
clicks, are mostly encountered by computers located in Asia (92%).

4.4.7 Enterprise size and industrial sector

We finally focus our analysis on the risk profiles of enterprises with different
sizes and industrial sectors. As reported in Table 4.11, the odd ratios related
to small, medium and large organizations slightly differ from the baseline
of micro firms. In addition, we do not observe any trend that relates an
increasing number of hosts to higher or lower odds of malware detection,
but instead register a fluctuating value when considering any malware class
as well as when narrowing to specific categories. This suggests that the
enterprise size is not correlated with the likelihood of malicious software
encounters.

To get a clearer picture of this relationship, we decide to separately con-
sider the enterprise size as a risk factor. Figure 4.11b shows a scatterplot
in which each blue dot represents a separate enterprise, and on the axis we
report its size (i.e., number of computers) and the fraction of its machines
that encountered malware at least once in the one-year period of our ex-
periments. Green crosses indicate clean enterprises, i.e., companies whose
hosts do not encounter malware in the considered timeframe. The orange
line shows the average among companies of the same size, considering both
clean entities and those that encounter malware. We also plot a dotted line
showing the average consumer rate—i.e., the ratio of consumer machines
that had at least one encounter (9.8%)— with the aim of detecting whether
the consumer encounters distribution is more similar to that observed in
enterprises with a particular size.

In line with the insights gathered analyzing the odds ratio, the figure
depicts an almost constant trend, slightly above the consumer line, with a
flexion of the curve for those companies with sizes lower than 50 machines
or higher than 100 K hosts. This may seem to suggest that small (<50) and
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Attribute
Host

Category
Bin

family
Malware Monthly Odds

Enterprises

µ σ

Ref: [0-10]
Size

Enterprise 10-50 Any 1.09 0.20
50-250 Any 1.04 0.19
250+ Any 0.98 0.49

Technology
Ref: Information

Sector
Enterprise

Consumer Discretionary Any 1.55 0.47
Consumer Staples Any 1.02 0.25

Energy Any 1.82 0.51
Financials Any 1.01 0.36
Healthcare Any 0.93 0.30
Industrials Any 1.32 0.28
Materials Any 1.48 0.38

Telecommunication Any 1.37 0.66
Utilities Any 1.56 0.26

Table 4.11: Odds ratios of encountering malware according to our regression
models for enterprise size and industrial sector

large enterprises (>100 K) tend, in proportion, to have a smaller number
of computers that encounter malware. However, the difference is very small
and the Pearson correlation coefficient for size and the fraction of hosts that
encounter malware is 0.01, indicating a negligible relationship between the
two. Once again, this is a sign the number of machines in enterprises is not
correlated to how much malware is detected.

To further investigate this aspect, we decided to focus our analysis only
on those machines that were active for each of the 12 months of our experi-
ment (2.8 M hosts of 33.7 K distinct enterprises). The rationale behind this
choice is that hosts active only few months have less likelihood of reporting
detections, thus lowering the average encounters rate we are interested in
measuring. In Figure 4.11b, companies are still represented by blue dots.
However, while the x-coordinate indicates the enterprise size (as in the pre-
vious case, obtained considering all machines), the y-coordinate is computed
by considering only hosts active 12 months, and thus dividing those that
encounter malware by their total number.

Interestingly, the effect of this filtering is more pronounced for con-
sumers, where the percentage of machines that encounter malware raises
to 30.3% (+ 20.4%), while in enterprises we register an average of 21.5%
(+9.5%). We also observe a discrete gap between small organizations (<50)
and those with a number of hosts comprised within 50 and 500 K: while
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Figure 4.11: Relationship between enterprise size and the fraction of hosts
that encounter malware, computed for any host and for those active each
of the 12 months of our experiment

for the former the mean stays around 16%, in the other case it reaches 23%.
While this may indicate the existence of a relationship between enterprise
size and malware detection rate, overall we still observe a very low Pear-
son correlation coefficient (0.02). In fact, excluding the companies with less
than 50 machines, the remaining set of organizations (> 50 and < 500K,
i.e., 92% of the total) exhibit an almost constant trend regardless of their
size.

To gather further insights, we verify whether the industrial sector affects
the relationship between the size of enterprises and the malware encounter
rate. For this, we compute the Pearson correlation coefficient to measure
the extent to which an increase in enterprise size leads to a higher number
of hosts that detect malware. We also report in Figure 4.12 a plot for each
sector. Again, we do not observe any general correlation, similar to the one
obtained by looking at all enterprises (0.01), a sign that the number of hosts
alone does not play a very important role in explaining the encounter rate.
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Figure 4.12: Relationship between the enterprise size and the fraction of
hosts that encounter malware. Each plot represents a distinct sector.
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In addition, we conduct a test to verify whether a statistically significant
difference exists among the distributions in Figure 4.12 across industrial sec-
tors. We opt for a non-parametric Kruskal-Wallis one-way ANOVA rather
than a parametric one-way ANOVA, as this allows us to relax the one-way
ANOVA assumption of data normality, which is not met in our case. The
Kruskal-Wallis test assumes that a) the independent variable (enterprise
size) has two or more independent groups; b) the measurement scale of the
dependent variable (ratio between hosts that encounter malware and enter-
prise size) is ordinal, ratio or interval; c) the observations within a group
and among groups must be independent. d) no data distribution assump-
tions if the test is used as a test of dominance, i.e., to verify whether at least
one group stochastically dominates another one. With those assumptions
verified, we run the test, our null hypothesis being that the samples come
from populations with the same distribution. We obtain a test statistic H =
13.75 (p=.13), values that do not allow us to reject the null hypothesis: we
conclude, once again, that the malware encounter rate based on enterprise
size is not influenced by its industrial sector.

To conclude the study of enterprise environments, we evaluate how the
risk of encountering malware varies across organizations in the different
fields. In this case, we consider IT as a baseline for comparisons when
evaluating odds ratios. We measure that machines of firms in the fields of
Consumer Staples and Financials show negligible differences with those in
the IT segment (1.5% higher likelihood of infection). Overall, we also find
that the Healthcare industry is the best sector with the odds ratio with re-
spect to the reference segment being 0.93. On the other hand, firms dealing
with Energy, Consumer Discretionary, Utilities, Industrials, Materials and
Telecommunications reveal a higher likelihood of encountering malware, We
end up to similar conclusions when narrowing the analysis down to specific
malware classes.

4.5 Discussion and conclusions

Home-computer users and enterprises tend to face malware in two different
ways: while consumers approach the problem in a reactive fashion, often re-
lying on a single AV product to detect and block possible malware infections,
corporations act in a proactive manner, installing multiple security prod-
ucts, activating several layers of defenses, and establishing policies among
employees.

In the first part of our work, we investigate whether the different mea-
sures in the two environments have an impact on their risks. In other
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words, we want to answer the question whether more security products,
tools, policies and restrictions in the enterprise segment are effective to
lower the risk of malware encounters. Globally, we measure for 144.9 M
consumer machines and 226.4 M corporate hosts an encounter rate of 9.8%
and 12.0% respectively. According to these results, home-machine users
encounter slightly less malware than the counterpart, suggesting, at first
glance, that all the choices that enterprises adopt are not effective in prac-
tice. However, we believe this first impression to be misleading: when con-
sidering all the available hosts in our dataset, a lot of them have been found
to be active for only a few months, or even a few days, and these low-activity
hosts are more prevalent among end-users than corporate machines.

When we restrict the two sets of machines to only those active every
month of the year, we find an opposite result: around 30% of consumer
hosts report malware encounters vs 21% of enterprise machines. If we go
one step further and select only those machines that are active more than 20
days and 15 hours per day, the gap widens as 89% of consumers encounter
malware against 53% of corporate machines. Moreover, we also found that
the average consumer machine encounters a more diverse set of malicious
files compared with its corporate counterpart, and this finding holds for all
the malware classes considered in our study.

Security policies and restrictions also seem to have a relevant impact
on reducing risks. Indeed, when analyzing the presence of Adware and
PUAs, we report a concentration of such malware families 6 times higher
in consumers, due to the freedom in installing any kind of software that
this group of users has. Since the presence of less reputable programs is
often a vehicle for malware, we believe the same findings apply also when
considering other families. On the opposite, generic behavioral signatures
(who might match unknown threats or suspicious files) are twice as likely
to trigger in enterprise environments than in consumers hosts.

If on the one hand a good security posture and a better cyber hygiene
are important to reduce the risk of malware encounters, on the other hand
it is not the only factor to take into account. Indeed, the interconnected
nature of our society, the use of third-party software and the sharing of
the same networks expose all the classes of machines to undiversifiable and
systematic risk, regardless of the number and type of security measures and
policies in place.

In the second part of this work, we leverage the data at our disposal
to investigate whether this portion of risk exists and provide quantitative
indicators that can be used to measure its significance: for this purpose,
we extract seven indicators for each consumer machine and nine for each
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enterprise host that carry no information about its security level, and test
their correlation with malware encounter risks. Interestingly, we find that
height of them serve this purpose: host uptime days and hours can act
as control variables for the encounter rate of a subset of regular machines;
with a logarithmic relationship, the same holds for file-based activity; en-
countering malware over and over and being recidivist along time represents
an important risk factor, which is even more pronounced when considering
malicious categories as Adware, Virus and Worm; for the same classes, host
geographical location can explain the risk of suffering from higher encounter
rate; finally, we also verify the effectiveness of vendor number and reputa-
tion; For organization environments, we compare industrial sectors and spot
those that have higher odds of reporting malicious software; we fail, instead,
in proving any correlation between enterprise size and malware encounter
rate, even when separately considering each industrial sector.

To our knowledge, no scientific or empirical work has looked at the
systematic nature of cyber risks, although the topic is largely discussed
in other domains. The existence and quantification of systematic cyber
risks is an emerging problem among risk management experts and cyber-
insurance underwriters, as the number of events that simultaneously affect
a large number of hosts across different enterprises and countries is increas-
ing every year. Hypotheses to explain it have also been advanced consid-
ering global-scale incidents and the subsequent market reactions: experts
agree that factors and events such as common widespread vulnerabilities,
infrastructure failure cascade, loss of integrity of trusted systems, concen-
trated dependencies and indirect attacks to central actors characterize its
nature [33, 32, 37, 92].

Despite these conclusions, systematic risks need a deeper understanding
for what concerns their underlying factors and likelihood. An objective
analysis of the extent to which these indicators can explain cyber risks would
definitely be beneficial for particular tasks, such as premium establishment
for cyber insurance policies [199]. Indeed, in order to compute premiums,
insurance carriers scale a base rate by factors depending on the enterprise
size, industrial sector, and by considering whether or not the company had
already suffered cyber security events (i.e., it is a repeat player). In this
respect, our study shows that an assessment done considering the enterprise
size as a factor may not be appropriate - we find no correlation with malware
encounter- and that different indicators are needed to come up with a correct
assessment.

In this work, we try, for the first time, to shed light on systematic risk
indicators, by shifting the analysis at the host level and by using real-world
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data telemetry. With the findings previously discussed in mind, we support
the hypothesis that this portion of risk exists in the cyber scenario —in both
consumer and enterprise context— and that the factors we identified can be
used as good indicators to quantify it. We believe these insights can help
both companies and academic researchers to better understand the global
picture of malware encounters in the wild, and that our study can be used
as a foundation for future works in the area of systematic risk.
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5.1 Introduction

In this last contribution, we emphasize the importance of data sources and
analysis perspective when assessing cyber risks. In particular, we focus on
the web-tracking practice and its effects on users’ privacy risks. Although
this phenomenon has been extensively studied by web practitioners and
researchers, all the previous works looked at it from the trackers’ standpoint,
leaving a lot of unknowns regarding the real impact of tracking on real users.
In this chapter we fill this gap by considering real-world telemetry as data
source, and analyze web-tracking and related risks from the users’ eyes.

We split this chapter in two parts. First, we look at web-tracking from a
time and frequency perspective (Section 5.4): for each user in our dataset,
we estimate how long it takes to encounter a significant fraction of the track-
ers. We then perform a correlation analysis to understand what increases
the privacy risk, discovering that there is an interesting relationship among
privacy and security risks on the web.

In the second part of the study, we estimate what percentage of the
user’s browsing history is known to trackers and investigate how much this
knowledge could be extended through real or hypothetical collaborations
among different tracking companies (Section 5.5). For instance, our exper-
iments show that the actual knowledge popular trackers have of the users’
histories is almost double the estimate obtained by crawling the top Alexa
popular domains, thus confirming the importance of a holistic approach
when measuring cyber risks. We also shed light on the most efficient moni-
toring strategy and what sensitive information could be learned about the
users because of their visits to particular classes of websites.

5.1.1 Why this study matters

Third-party web tracking was first introduced to support web analytics
and advertisement [145] but evolved over the years into a very widespread
phenomenon employed for a wide range of purposes. Currently, more than
90% of the websites include at least one tracking script [104, 204], resulting
in a multi-billion dollar business [142, 165, 122, 260] where many companies
earn huge amounts of money by selling or leveraging the data collected from
users.

Previous works showed that users are aware of this practice and have
rightfully started to complain about the amounts of online tracking present
on the web [200, 247]. On the other hand, those studies also reported that
participants are surprised when confronted with detailed information about
the extent and prevalence of web tracking [247, 161]: once aware of the
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actual impact, users’ general attitudes often resulted in being at odds with
such practices [161], and in stronger intentions to take privacy-protective
actions [247].

The scarcity of works that investigate how impactful web-tracking is for
Internet users can explain why, despite being aware of the practice, only
a few are conscious of the actual implications and take the appropriate
actions to protect themselves. For example, only 7.74% of the browsers’
market share belongs to privacy-centered browsers [133], 8.5% of the users
reported the use of tracker-blocking tools [247], and just 0.59% of them use
privacy-preserving search engines [209]. We believe that studies that look
at the problem from the users’ perspective to identify concrete evidence for
its seriousness could be immensely helpful to the general population.

In fact, as mentioned earlier, web tracking is not a new phenomenon on
the Internet and a wide corpus of previous works have analyzed both the
impact and the prevalence of web tracking. However, previous studies have
assessed its size by measuring how many websites contain trackers, or how
many websites are known to a given tracking company [172, 49, 224, 125].
As we will demonstrate in this work, knowing in how many websites a tracker
is detected is difficult to translate into how much the tracker knows about
the average user. More than that, our experiments show that measuring
the coverage by only crawling top-ranked websites results in gross under-
estimation. In reality, users visit only a tiny fraction of the Internet websites
– typically composed of a mix of popular (such as social networks, search
engines, news) and less popular sites (such as regional pages, friends blogs, or
specific work-related sources). As a result, it is still unknown what fraction
of the user’s browsing history is known to web trackers or what fraction of
trackers are encountered by each user.

In this work, we aim at filling this gap by complementing the current
knowledge on web tracking with real-user browsing behaviors. We leverage
the telemetry of 250K users and the information collected by a large-scale
crawling experiment to analyze the impact that web tracking has end-users
located all around the world. Differently from previous studies, whose re-
sults are based on the analysis of the top websites listed on publicly available
services [42, 43], the use of browsing telemetry allows us to exactly know
when and which websites are accessed by users, without the need for dis-
tribution approximations. This allows us to precisely understand how often
users encounter new trackers, how many different ones, and what amount
of information each tracker knows about them.
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5.2 Data Sources and Methodology

As in the previous work, our main dataset comes from the telemetry of
NortonLifeLock [46]. The data, collected on the consumer hosts about the
users’ web-browsing activity is described in Section 5.2.1. We acquire the
category and risk score (Section 5.2.3) for each domain in the telemetry,
and detect the trackers present on the webpages by using a custom crawler
(Section 5.2.2). We also take advantage of a linkage graph published by
Sanchez-Rola et al. [203] about the information-sharing relationships among
different trackers (Section 5.2.4).

5.2.1 Web-browsing telemetry

This dataset contains the web-browsing history of 250K users. The teleme-
try spans a period of 8 days and was collected from October 14th to 21st of
2019. The data includes a code that reports the country registered by the
user when installing the AV software, a daily log with the list of domains
browsed by each user, and the hour in which the request was performed.
Overall, we count 2.35M distinct websites (0.8% were not accessible or
offline), which finally accounted for 107M entries in the users’ browsing
history.

5.2.2 Website trackers

We identify the trackers that exist on the websites in our dataset through a
custom crawling framework. The crawler is based on the open-source web
browser Chromium, and uses a custom instrumentation developed using
the Chrome debugging protocol (CDP) [82]. By connecting into its net-
work tracing processes, we gather all the requests and responses performed
by the browser during a web access. In order to avoid possible detections of
our automated browser, we implemented the most recently-proposed meth-
ods [205, 206, 207, 98], also leveraged by other recent studies [201, 242].
When third-party scripts were loaded into each page we analyze the request,
extract the destination domain and verify that the loaded entities were ac-
tually trackers by leveraging the tracker list used by Mozilla Firefox [168],
and EasyPrivacy [99]. The two monitor different forms of tracking, such as
web bugs, tracking scripts, and information collectors. Once the tracking
domains are identified, we map the domain names to organizations based
on three manually-curated lists: Disconnect [96], WhoTracks.me [83] and
webxray [148].

We scanned the 2.33Mwebsites in our telemetry using a server located in
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the US and discovered 6,320 distinct tracker names. To account for tracker
variability due to geographic locations, we deployed additional crawlers in
three different countries from three continents. For this, we leverage a com-
mercial Virtual Private Network (VPN) service [45]. Specifically, we looked
at browsing histories of users from France (6213), Brazil (5152), and Aus-
tralia (5603), and crawled 130.70K, 67.81K, and 126.73K websites from
the respective country. We report the results and compare them with the
data collected from the US in Table 5.1. We found that on average 80.3%
of the websites include exactly the same trackers, while another 6.9% has
only one additional tracker. To obtain further insights into the remaining
websites that have more than one different tracker (∼ 12%), we compute the
Intersection over Union (IoU) coefficient between the two sets of trackers
obtained by crawling from US and the respective location: the rationale is
that a result close to 1 (e.g., > .8) refers to very similar organization lists;
on the other hand, a value close to 0 (e.g., < .2) implies the opposite. We fi-
nally assess that around 95.5% of the websites show no or subtle differences
in the trackers detected, whereas we detect a diverse tracking ecosystem
only on a very small subset of 4.5% domains.

US
Country Same trackers ±1 tracker IoU > 0.8 IoU < 0.2
France 84.42% 5.52% 0.46% 4.97%
Brazil 79.28% 6.84% 1.14% 4.56%
Australia 77.20% 8.04% 1.84% 4.04%

Table 5.1: Comparison summary between trackers detected crawling web-
sites from US and France, Brazil and Australia

5.2.3 Website categories and risk

By using the public classification service from the same security vendor, we
were able to assign a category to the websites in our telemetry [230]. The
service supports over 60 languages and is composed of more than 300 spe-
cialized modules that disassemble web pages and analyze their components.
The main features used to feed the classification algorithm are: webpage
language, source code language, document type, character set, external link
categories, content words, scripts and iframes. In addition, the catego-
rization is fine-tuned by an offline system, which simultaneously analyzes
multiple pages looking for connections and additional evidence to supple-
ment what was collected in real time. Hypertext Transfer Protocol (HTTP)
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referrer headers and hyperlinks are examples of attributes used in this phase.
In addition, to better investigate the impact of tracking and the preva-

lence of different trackers on websites that could be related to user’s sensitive
information, we selected a set of sensitive categories: Health, Legal, Finan-
cial, Sexuality, Political, and Religion. Our decision was guided by cate-
gories defined as sensitive in various data protection laws [105, 106, 140],
and used in recent studies [202, 158].

Finally, we additionally assigned a security-related risk level to each
distinct website in the telemetry by leveraging the rating service from the
security vendor [229]. The service uses cloud-based Artificial Intelligence
(AI) engines to categorize websites by combining multiple data sources. At
first, historical information of the domain is used to detect the existence of
malicious behaviors, e.g., whether its DNS resolutions belong to malicious
networks and the website has already been identified as source of malware,
scams or phishing. The webpage is then queried and the characteristics
of its content together with features extracted from the server behavior
are analyzed (e.g., shady file content, network errors, lie detector analysis).
The AI algorithm then outputs a risk score between 1 and 10, going from
websites with huge traffic and long history of good behavior (risk 1), through
webpages with evidence of shady behavior (risk 5), to domains with solid
evidence of maliciousness (risk 10).

5.2.4 Tracker relationships

A previous study [203] investigated the relationships among 810K actors
during the creation and sharing of cookies through cookie chains. In par-
ticular, the authors shed light on the role of those acting as dispatchers of
information, receivers, or cookies direct creators.

We manually extracted the dependency relationships of the top track-
ers from the linkage graph and its related table in their manuscript, and
used them to evaluate information sharing between a sender and a receiver
organization. In this measurement, we assume that this happens in all the
cases, i.e., the former always shares any data with the latter: although for
many of the relationships this does not match the reality —trackers share
part of the information and not for all the webpages—, in our discussion we
consider it as an upper bound in order to evaluate the worst-case scenario
for some of our findings.
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5.3 Dataset Statistics

The users in our telemetry span 214 of the 249 countries with an assigned
ISO 3166-1 code [24]. More than 44% of the users are located in North
America (with 38% of them in the United States). Asia and Europe follow
with about 20% of the users each. In South America, Africa and Oceania we
find the lowest percentages (less than 17% overall). We report the complete
geographical breakdown in Table 5.2.

Continent and Countries % Users % Trackers Categories
North America 44.16

United States 37.08 80.30 92
Canada 2.63 59.84 92
Mexico 2.61 43.75 91

Asia 20.87
Philippines 6.27 58.54 93
India 3.97 51.16 92
Malaysia 2.70 40.16 88

Europe 18.69
Great Britain 4.10 66.33 91
France 2.35 51.17 90
Italy 1.72 46.71 88

South America 9.33
Peru 2.05 43.83 91
Brazil 1.95 39.40 90
Colombia 1.91 38.62 85

Africa 5.00
Nigeria 1.59 30.08 83
South Africa 1.15 39.76 89
Egypt 0.66 34.05 91

Oceania 2.74
Australia 2.12 53.34 91
New Zealand 0.44 37.83 90
Fiji 0.10 22.37 75

Table 5.2: Overview of the continents and their top-3 countries ordered by
percentage of users in our dataset.

On average, the median user is active slightly less than 6 days out of 8,
and for a number of hours per day that ranges from 3 to 10. We report a
graphical summary of users’ activity in terms of mean browsing days and
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hours in Figure 5.1.
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Figure 5.1: Overview of the average number of active days and average
number of active hours per day for all the users in our dataset.

We further look at the aggregated users’ browsing behaviors in our
dataset: we detect that on average during the 8 days, users present a history
with 406 entries, browse 19 distinct categories, 118 different webpages, visit
more than once 59 of them, and encounter 3,170 trackers from 177 distinct
organizations. Additionally, we measure that 93% of them have less than
10 trackers, and for a single webpage visited, users encounter on average 3.5
different trackers.

In Table 5.3 we provide a summary of both sensitive and top-10 cat-
egories in our dataset, sorted by the number of websites they encompass.
Webpages related to users’ Health are the most frequent among the sensi-
tive categories, also reporting the longest list of trackers encountered (34%
of the 6,320 trackers). On the contrary, the Political category, the small-
est among the sensitive category in terms of number of websites, visiting
users, and different trackers detected, shows the highest average of track-
ers. This suggests that fewer organizations focus on political websites but
more consistently. We will come back to this comparison in Section 5.5,
when we will discuss in more detail which and how much sensitive infor-
mation the different trackers can obtain about users. Regarding the other,
non-sensitive, categories almost the totality of users browse websites classi-
fied in the Technology/Internet and Business/Economy groups: we indeed
detect in the pages of these two categories almost 50% of the tracking or-
ganizations.

We finally analyze the coverage of the top 20 trackers in our dataset,
reporting the percentage of known history, websites and users who encounter
them in Table 5.4, together with the average values for all the trackers. We
point out to the reader the subtle difference between two recurrent concepts
throughout the manuscript: when computing the known history percentage
by a tracker, we refer to the portion of entries in our telemetry in which
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Category Websites
%

Trackers
Avg

Trackers
%

Users
%

Health 4.89 10.80 34.78 33.89
Sexuality 2.89 2.82 24.75 17.97
Financial 2.00 7.77 29.11 53.86
Legal 1.95 2.64 19.73 34.62
Religion 1.91 8.29 20.41 19.84
Political 0.52 14.25 16.66 11.58
Business/Economy 11.62 8.64 48.94 83.30
Technology/Internet 6.55 9.36 46.06 99.18
Shopping 6.37 14.52 38.32 58.56
Education 4.44 7.01 30.97 50.68
Suspicious 3.79 1.45 28.84 40.49
Entertainment 3.47 13.84 40.41 53.34
Travel 2.76 8.27 31.33 33.36
Search Engines 2.43 3.43 26.41 94.32
Restaurants/Food 2.24 18.90 27.07 21.85
Personal Sites 2.18 8.90 26.61 19.66

Table 5.3: Overview of sensitive (above) and top-10 (below) categories in
our dataset

we detect the tracker —thus also considering revisited websites across hours
and days. On the contrary, when reporting the known website percentage,
we only consider the fraction of unique website IDs —i.e., we do not take
into account revisited webpages.

At a glance, Google clearly stands out, being directly present in almost
73% of the websites in our dataset. The other top-20 tracking organizations
cover on average 15.27% of users’ history and 8.45% of the websites. From
the users’ perspective, almost all of them encounter at least once one of
the top organizations in Table 5.4. Interestingly, while the average number
of users reached by a single tracker is 3%, we measure that almost the
totality encounters at least one tracker. The few exceptions – 419 users
corresponding to 0.16% of the total – have a clean and not-tracked history.
However, the small number together with the fact that those users only
browsed an average of two different websites in 8 days, suggests that in
practice everyone who browses the web is tracked to some extent.

It is also interesting to observe the difference between the two middle
columns, i.e., the coverage in terms of unique websites and the one in terms
of entries in the users browsing history. Google is the only tracker in which
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Tracker % History % Websites % Users
Google 63.07 72.33 99.76
Facebook 30.05 26.53 98.33
Microsoft 22.97 4.11 97.56
Adobe 19.92 7.83 97.42
Appnexus 18.91 5.27 97.58
Yahoo! 17.36 5.33 97.05
Twitter 16.73 6.10 96.85
Rubiconproject 15.16 4.52 96.79
Thetradedesk 14.54 3.61 96.37
Rapleaf 13.92 4.19 96.12
Casalemedia 13.68 4.26 96.61
Pubmatic 13.30 4.08 96.45
Openx 13.09 4.16 96.40
Mediamath 12.69 2.49 96.56
Drawbridge 12.41 3.30 94.39
Amazon.com 12.00 2.69 95.14
Akamaitechnologies 11.53 1.11 95.48
Linkedin 11.33 2.09 94.13
Quantcast 10.84 3.68 95.81
Taboola 9.65 1.45 94.24
Average 0.14 0.06 3.00
Untracked 20.07 23.11 0.16

Table 5.4: Coverage overview for the top-20 companies involved in tracking
in our dataset

the first is bigger than the second, meaning that it is the only company
that also covers many less popular websites that do not receive many visits.
Microsoft is instead an example of a company that seems to focus mostly
on popular sites, as shown by the fact that its history coverage is more than
five times the one of websites.

5.3.1 Dataset Limitations

Although our telemetry is large and contains hundreds of thousands of users
from almost every region in the world, it may still be subject to some selec-
tion biases. For instance, it only includes users who protected themselves by
installing an AV product and opted in to share their data: users who decided
not to opt-in due to privacy concerns could behave differently, being more
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conscious with respect to tracking and high-risk websites. Furthermore, our
entire telemetry comes from Windows machines. It is possible that users
running other OSes (e.g., macOS and Linux) or browsing through mobile
devices may exhibit a different behavior. Moreover, our data covers only
8 days of users’ browsing experiences. As we will discuss in the following
sections, users encounter the vast majority of the trackers already in the
first day of browsing. Therefore, it is very unlikely that the final results
would significantly get impacted with more data.

5.4 Standing in users’ shoes

We start our analysis of web tracking by looking at the trends from the
users’ perspective. Our goal is to use our telemetry information to estimate
how much, and how fast, real users encounter web trackers during their
daily activity. We are also interested in finding whether some users are
more exposed than others, or whether a certain class of online behavior
leads to higher or lower privacy risks.

5.4.1 How long does it take for a user to encounter trackers?

To answer this first question we investigate the relationship between the
time a user spends browsing the Web and the number of new trackers she
encounters. To this end, we initialize a cumulative tracker set for each user.
Then, for each cumulative ith hour spent browsing, we add the new trackers
encountered to the set and register its length variation from the previous
time interval. Each ith point of the blue curve in Figure 5.2 is then obtained
by averaging the ith values of all the users active at least i hours. For the
jth daily curve, the ith hours close to the boundary with the next day refer
to users active i hours in the jth day —thus active almost all the jth day.
Activity does not refer to the day fraction (i.e., active only late night).

In a similar way, we maintain also a daily set for each user. For every jth

day, we add new trackers and register variations as for the cumulative case.
We finally compute each of the ith points for a jth daily curve in Figure 5.2,
by averaging the values of users active at least i hours in the jth day. We
do not include the daily plot of the 8th day in our telemetry because our
data does not cover all its 24 hours.

The analysis of Figure 5.2 provides three important findings. First, the
curve of new trackers per hour of activity follows a decreasing exponential
distribution, with a drastic drop in the first 12 hours. Indeed, the average
of new trackers encountered falls below 5 after 12 hours, below 2 after 22
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Figure 5.2: Cumulative and daily distribution of new trackers encountered
per hour of activity.

hours and users encounter almost no new tracker after 35 hours of activity.
Another way to look at this data is to compute how many hours it takes

for users to encounter a given percentage of all the trackers they encountered
during the week under analysis (on average 177 trackers per user). In this
case, on average after 2, 12, and 24 hours of activity users have already
encountered respectively 50%, 84%, and 94% of their trackers.

The second interesting finding is that given a window of i hours (e.g.,
24), users who are active for more consecutive hours encounters a higher
number of trackers with respect to the others. This discrepancy is clearly
visible in Figure 5.2, when comparing the first part of the cumulative curve
with the daily curve of the first day.

For instance, we can consider two users that both have three hours of
activity over a 24h window. The first browses the Web in three separate
sessions of one hour each – in the morning, afternoon, and evening. The
second browses instead for three hours straight in a single session. In our
experiments, we noticed that the second user is more likely to encounter a
higher number of unique trackers. And the reason is that sessions that are
far apart are more likely to have larger intersections in the visited websites.
In other words, the likelihood of revisiting the same websites and running
into already encountered trackers is higher in those cases. On the contrary,
users characterized by longer browsing sessions show higher variability in
the websites and trackers encountered.

The third observation we can make from Figure 5.2 is that all daily
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Figure 5.3: Average number of new trackers per new website

curves have really similar shapes, with a sudden decrease in the number of
new encountered trackers in the very first hours. This suggests that, even
if the user would restart with a clean browsing history every day, it would
only take two hours on average to re-encounter 50% of all trackers. In other
words, if a user encounters on average 177 different trackers per week, half
of them are regularly encountered every day within the first two hours of
web browsing.

So far we have captured the users’ activity by counting the time they
spend browsing. Another way to do that is to count the number of visited
sites. The trend of how the newly encountered trackers evolves for each new
website visited is summarized in Figure 5.3. The points on the blue curve
are obtained by averaging the number of new trackers encountered for the
ith new visited website, among users who browse at least i distinct websites.
The distribution in Figure 5.3 shows a similar trend of the corresponding
cumulative curve when considering the hours of activity (Figure 5.2). The
exponential shape has a maximum at 9 — suggesting that users encounter
more than the average of 3.5 trackers when visiting the very first website,
probably indicating a popular page with multiple trackers—, and quickly
drops: after 20 different websites, users only encounter on average 2 new
trackers. When computed in percentages, our data shows that by visiting
22, 100, and 300 distinct websites, the trackers encountered are respectively
50%, 75%, and 85% of the total encountered over the week.

However, this represents a best-case scenario that considers each tracker
in isolation. In reality, trackers also exchange data with one another. There-
fore, we complement our analysis by plotting a second curve, but this time
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considering the relationships among the different actors indicated in Sec-
tion 5.2.4. In this case, when we add a new encountered tracker to the set,
we also add all other trackers that directly receive information from it [203].
This curve, in orange in the graph, represents a worst-case scenario. In fact,
the fact that a relationship exists between two trackers does not imply that
the two companies share all data about all users on all websites. Therefore,
reality lies somewhere in between the two curves.

Even in the worst-case scenario, it is interesting to observe that the
data shared among trackers exposes the users to a higher number of track-
ing companies for the first few visited websites. However, after around 20
websites the two curves overlap, showing that at that point the number of
new trackers encountered by the user is independent from possible collabo-
rations among trackers.

5.4.2 Is there a correlation among distinct visited websites

and encountered trackers?

We now look at the correlation between the total number of distinct websites
visited by a user and the number of encountered trackers. In particular,
we are interested in finding (and comparing) those users that encounter
a disproportionate number of trackers despite visiting a few websites, and
those that instead encounter a few trackers while visiting many different
pages.

To begin with, we compute the two attributes (distinct websites and
distinct trackers) and plot them for each user in Figure 5.4: a point (x, y)
on the red curve represents the average number y of trackers encountered
for users who visit x different websites, and the green area defines the 95%
confidence interval.

The total number of visited websites positively correlates with the track-
ers encountered (Pearson Correlation Coefficient: 0.98, p < 0.001). How-
ever, Figure 5.4 exhibits two classes of outliers, whose attributes fall out
outside the confidence interval boundaries. Specifically, we define Upper

Outliers (UO) those with an abnormal-higher ratio between encountered
trackers and visited websites (blue dots in the picture, users that encounter
a lot of trackers while not visiting many websites). On the contrary, we
report in orange the Lower Outliers (LO) (users that browse a lot but en-
counter less trackers), for which this ratio is lower than the average and
outside the confidence interval. The UO and LO sets contain respectively
6,726 and 5,552 users, which together account for 4.6% of the users in our
dataset.
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Figure 5.4: Correlation trend between the number of visited websites and
encountered trackers

To investigate whether any significant difference exists in the websites
visited by the two groups of outliers, we use two metrics: popularity and
security risk score. We compute the popularity of each website in our teleme-
try by simply considering the number of times it appears in different users’
browsing histories. This score is conceptually similar to the reputation re-
turned by online rating services [42, 43, 44, 47], and it is strictly related to
the data in our experiment.

Given a popularity x, we separately plot for each group the sum of visits
that each distinct website with reputation x receives (Figure 5.5). We next
compute the weighted average for UO and LO according to the following
criterion:

Wavg =
∑max_reput

reput=1 reput ∗ visits(reput)
sum(visits)

The two averages, represented by the vertical lines in the figure, show
that users that encounter fewer trackers (LO group) are indeed visiting less
popular websites. Instead, users who browse fewer websites but encounter
on average more trackers mainly visit popular web pages: this is the case,
for instance, of very popular news websites, social media, and online mar-
ketplaces, which incorporate a large number of advertisers, and a myriad of
analytics services. For those users within the green zone in Figure 5.4, the
reputation score falls between the one of UO and LO (i.e., 3,997), confirm-
ing our hypothesis that reputable websites are more tracked.

To compute the security risk score we leverage the website risk score
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Figure 5.5: Website reputation distribution for UO and LO. The difference
between the means in the two groups is significantly different (Welch′st =
113.06, p < 0.001).

provided by the AV vendor. Then, for each set of users, we split the websites
they visited according to their risk value, and plot a histogram with the
percentage of the total history they account for (Figure 5.6). The figure
also includes the weighted average of both groups, computed by following
the same procedure described for Figure 5.5.

The plot shows that users in the UO group mainly browse benign web-
sites. In our dataset, not a single website visited by these users had a rating
that classifies it as either suspicious or malicious (>= 6). On the other end
of the spectrum, users in the LO group visit a larger percentage of danger-
ous sites. Similarly, the users in the green zone visit websites with low-risk
scores however slightly higher than those UO users (2.6 risk score).

Overall, we found that websites that include no trackers are often less
popular and characterized by a higher security risk. Table 5.5 reports the
top and bottom website categories, sorted by the percentage of webpages in
which we do not detect any trackers. The top categories show a considerably
higher risk score (6.96 on average) than the bottom (3.90 on average) sug-
gesting that the former often present suspicious or malicious content rather
than the latter (confirmed also by the category names). A clear exception
in top half of the table is represented by the Business/Economy category,
which is both low-risk and low-tracking. This category represents websites
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Figure 5.6: Website risk score distribution for UO and LO. The difference
between the means in the two groups is significantly different (Welch′st =
432.41, p < 0.001).

devoted to businesses (including information and management) that are
not linked to any selling activity. Taking this into account, a possible ex-
planation is that websites in this group are directly related to customers or
employees, so they do not include any type of tracking.

5.4.3 How Frequently do Users Encounter the Same Track-

ers?

So far we only looked at how often users encounter new trackers. But the
key point of tracking is identifying the same user across different websites.
So, if a user encounters a specific tracker only once a day, then deleting its
cookie at the end of the browsing session could prevent the tracker to connect
the different visited sites. It is clearly possible that some trackers perform
some type of browser fingerprinting [125] in order to be able to track users
around. In these cases, deleting cookies would not avoid tracking. However,
as cookies are still the de-facto tracking method on the web [203], we wanted
to investigate how effective the cookie cleaning option could be to improve
users’ privacy posture.

To better understand this aspect we looked at how frequently each
tracker was encountered by each user. In Table 5.6, we report the per-
centage of users for which the top-5 most recurrent trackers appear with a
frequency lower than 2 hours. Google, for instance, is encountered on aver-
age every 1.11 hours. This means that to fully prevent the largest company
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Category trackers
% with zero

risk
Avg

Malicious Outbound Data/Botnets 90.23 9.40
Business/Economy 70.45 3.93
Potentially Unwanted Software 56.75 7.00
Spam 56.21 7.00
Placeholders 55.81 6.00
Suspicious 53.41 7.58
Scam/Questionable/Illegal 49.24 7.35
Email 43.69 4.47
Malicious Sources/Malnets 42.89 9.99
Social Networking 12.92 4.09
E-Card/Invitations 12.69 3.44
Informational 12.39 3.93
Alcohol 12.11 4.03
Translation 12.02 3.29
Restaurants/Food 11.85 4.19
Charitable Organizations 11.78 3.95
News/Media 10.93 3.77

Table 5.5: Zero-Tracker website percentage and risk score for top and bot-
tom 0-tracker categories

in our dataset from being involved in tracking practices, a user should delete
the cookies after every single browsing hour, which is obviously not realistic.
Figure 5.7 and Figure 5.8 respectively report the cumulative distributions
for a time-based and site-based perspective. The plots show that 50% of the
trackers are repeatedly encountered every 8 hours or 60 websites. In other
words, if the cookies are cleaned up every 8 hours or after 60 website visits,
only half of the trackers could be prevented from tracking. However, cookie
cleaning is clearly is not an absolute solution for those privacy conscious
users who do not want to be tracked by any means: this practice is not
effective against big players that can know much more and are encountered
much frequently (on average every 1.34 browsing hours)

5.5 The Knowledge of Trackers

In the previous section, we have seen that the average users encounter 84%
of the trackers within just half a day of web browsing. While this is very
concerning for the privacy of Internet users, the impact on their privacy
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Figure 5.7: Percentage of trackers deleted according to the frequency
(browsing hours and days) of cookie cleaning.
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Figure 5.8: Percentage of trackers deleted according to the frequency
(browsed websites) of cookie cleaning.

might not be as significant and worrying unless those trackers can compro-
mise a significant fraction of the users’ browsing history. In this section, we
take a closer look to estimate how much information about users is known
(or potentially known) by those trackers. We first assess to what extent
main trackers on the visited websites know about the users’ browsing his-
tories, and then, how much additional coverage they could gain by sharing
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Tracker % Users (hours)
Avg frequency

Google 80.41 1.11
Microsoft 67.61 1.29
Twitter 67.18 1.41
Yahoo! 66.25 1.43
Rubiconproject 62.68 1.44

Table 5.6: Top-5 trackers according to the frequency (browsing hours) of
appearance. % Users refers to users for which the tracker appears with a
frequency < 2 browsing hours.
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Figure 5.9: Possible browsing history gain through collaboration

information among one another. We also investigate the type of information
that could be learned about the identity of users through regularly brows-
ing particular types of websites. Finally, we conclude the section with an
optimal tracking strategy analysis.
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(Receiver)
Tracker A

(Sender)
Tracker B

Tracker A
Coverage

Tracker A+B
Coverage Gain overlapping

% B

Linkedin Amazon.com 11.33 20.62 9.29 22.57
Amazon.com Linkedin 12.00 20.62 8.62 23.90
Microsoft Google 22.97 70.19 47.22 25.13
Taboola Linkedin 9.65 17.54 7.89 30.40
Linkedin Openx 11.33 20.43 9.10 30.49

...
Rubiconproject Casalemedia 15.16 15.95 0.79 94.21
Casalemedia Openx 13.68 14.43 0.75 94.28
Casalemedia Pubmatic 13.68 14.27 0.59 95.55
Google Facebook 63.07 64.38 1.31 95.65
Appnexus Rubiconproject 18.91 19.54 0.62 95.89
Microsoft Google 22.97 70.19 47.22 25.13
Facebook Google 30.05 64.38 34.33 45.56
Microsoft Facebook 22.97 38.92 15.95 46.91
Adobe Microsoft 19.92 31.79 11.87 48.30
Appnexus Microsoft 18.91 30.27 11.35 50.56

...
Drawbridge Linkedin 12.41 13.24 0.83 92.71
Rubiconproject Casalemedia 15.16 15.95 0.79 94.21
Casalemedia Openx 13.68 14.43 0.75 94.28
Appnexus Rubiconproject 18.91 19.54 0.62 95.89
Casalemedia Pubmatic 13.68 14.27 0.59 95.55

Table 5.7: Upper (Lower) part: top and bottom 5 relationships sorted by ascending overlapping (descending gain)
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(c) Appnexus

Figure 5.10: Known-history percentage distribution of the trackers that
directly appear the most in users’ history without (solid line) and with
information sharing (dotted line). The percentage of users’ history without
any tracker is 20.07%.

5.5.1 How much do trackers know about you?

For each tracker we identified in our dataset, we computed the average frac-
tion of browsing history known, the percentage of websites in which they
are present, and also the fraction of users who encounter them. On average,
each tracker tracks 3% of the users and knows 0.14% of their browsing his-
tory. However, the top trackers (such as Google, Facebook, and Microsoft)
are quite far from the average. In fact, they are able to track nearly all
users, as can be seen from Table 5.4, and they know on average 47% of
each user’s browsing history. Google alone, which is the biggest player in
the tracking ecosystem, covers 64% of the average users’ history logs. The
percentage increases to 80% for 9.73% of the users, and reaches a stunning
100% for 2% of them.

5.5.2 How much can trackers know about you through col-

laboration?

Collaboration among trackers is not a new phenomenon [107, 184, 203]. It
allows them to merge the user data with another tracker, reconstructing
users browsing history, and bypassing the same-origin policy [234]. In order
to do it, tracking companies can use multiple methods, with cookie shar-
ing/synchronization being the most common one. For example, a tracker
can include its cookie in the request of another third party, facilitating an
information-sharing channel even if not directly present in that specific web-
site. Our goal here is to estimate the concrete impact of such collaborations
on users’ browsing history, which was not explored before by other studies.
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In the previous section, we have seen that with the exception of Google,
none of the other trackers knows more than 30 percent of the average user’s
browsing history. Clearly, if Google shared its knowledge with any other
tracker, they could also achieve similar coverage. However, this is not a
very realistic scenario from a strategic point of view. On the other hand,
collaboration among smaller players in the ecosystem might make more
sense. Therefore, to understand how much information trackers could gain
through collaboration, we calculated the browsing history gain for all possi-
ble pairs of companies among the top 20 trackers in our dataset and plotted
the percentage of gain versus known history percentage in Figure 5.9. If
the two companies were already known to collaborate according to previous
measurements [203], we colored them in orange. If you remove the top three
players, in general most trackers over the top 20 can know between 10 and
20% of the browsing history of the users. Through collaboration, they can
increase their knowledge of an additional 5 to 10% (mean gain is 5.3%) in
the best case scenario unless they can collaborate with Google.

In Table 5.7 we also provide concrete examples for some of the interest-
ing collaboration options. Similarly, those collaborations that are known to
exist by other means are marked in gray. The most obvious gain examples
come from the collaboration among the biggest players. Because in most
of the websites in which we observe Facebook, we also encounter Google
(95.65%), Google gains not much (1.31%) from getting information from
Facebook. However, Facebook could immensely increase its knowledge, up
to 64.38%, from a potential collaboration with Google. Another interesting
observation is that Microsoft and Google do not target similar sets of web-
sites, therefore a possible collaboration would have a much larger impact.
On the contrary, the overlap among the top 20 trackers ranges between 23
and 96% (mean overlap of 64%). This clearly indicates that many of them
are tracking users in a very similar set of websites.
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Figure 5.11: Known history percentages of the 6 sensitive categories by the top trackers.
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Now let’s look at the worst-case scenario, in which we assume that all
trackers that were identified to be sharing information according to recent
studies collaborate to increase their knowledge as much as possible. In
Figure 5.10, we provide three examples of how much information can be
potentially gained in such a scenario. It is interesting to see that Microsoft
could potentially already know up to 73% of the users browsing history (in-
stead of the 27% it has if it was completely disconnected from other players).
Another similar spike is observed in Appnexus (from 21 to 73%). While the
gain for Microsoft is mostly due to its relationship with Google, Appnexus
receives information from a variety of other trackers including Microsoft,
Adobe, Yahoo!, and more. Again, these numbers assume a complete share
of all tracking information among the companies, so in reality the numbers
are likely somewhere in between the two scenarios (no collaboration and full
collaboration).

Continent Websites Percentage
All Sexuality Health Religion Financial Legal Political

Africa 6.03 1.74 0.84 0.49 1.45 0.70 0.11
Asia 5.84 0.96 0.89 0.42 2.07 1.27 0.09
Europe 5.45 1.91 0.87 0.50 1.80 0.86 0.12
North America 5.00 1.27 1.20 0.75 3.12 0.77 0.18
Oceania 4.85 1.72 1.00 0.52 2.36 0.88 0.11
South America 5.38 1.04 1.26 0.42 1.95 1.93 0.14

Table 5.8: Sensitive website prevalence in users’ history.

Continent Average trackers
All Sexuality Health Religion Financial Legal Political

Africa 7.01 4.50 10.34 7.50 6.64 2.53 7.53
Asia 6.96 5.96 14.44 7.31 5.54 1.79 7.39
Europe 7.12 5.56 7.52 5.87 4.81 2.82 6.10
North America 8.55 6.79 12.97 8.68 8.23 3.70 14.69
Oceania 7.69 6.59 12.47 8.84 6.33 2.60 8.52
South America 7.20 6.02 10.06 9.44 4.87 2.23 12.85

Table 5.9: Sensitive website average number of trackers in users’ history.
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5.5.3 What type of sensitive information can be obtained

about you?

Visiting or regularly browsing particular types of websites could reveal sen-
sitive information about users. In this part of our analysis, we focus on
websites that could fall into sensitive categories and check which trackers
are present on those sites and could therefore gain access to private users’
information. In particular, we identified six categories that are widely con-
sidered to be sensitive (see Section 5.3) and we computed the portion known
by top trackers. Figure 5.11 reports the averages over the whole dataset. In
gray, we represent the percentage of history in which we do not detect any
trackers.

At a glance, we observe that the tracking activity is not uniform among
the six sensitive categories: while the percentage of untracked history is
very low in the Health, Religion, and Political categories (respectively 12,
15 and 10%), the fraction doubles for the Sexuality, Financial, and Legal

classes (30, 24, 28%).
A first interesting case is the Political category: although it presents the

lowest number of websites and users who browse it (see Table 5.3), it turns
out to be the category the top trackers know the most about. In fact, our
crawler detects multiple trackers on average on each of these pages, with
top trackers uniformly present on most of them.

The Legal category results in the opposite case: top organizations on
average know less than 5% of sites in this category, with the exclusion
of Google (69.10%): we measure an average presence of 2.64 trackers for
websites in this group.

More concretely, if looking at the per-tracker details in the graph, the
figure presents similar trends and known history percentages, except for
Google and Facebook. Since in general Google knows over 60% of the
users’ history, it is not very surprising that it also covers a good fraction
of the browsing history related to the sensitive categories. However, the
Facebook case is utterly interesting. On the general data, it only knows
up to 30% of the users browsing history, which is in line with other top
players. Despite that, it covers almost 60% of the browsing on the Political
sector, and around 50% of the Health category. This seems to indicate, for
example, that Facebook puts a particular effort in tracking specific website
classes. On the other side of the spectrum lies Microsoft, which on the
general data has a much larger coverage (over 20%) than its presence on
sensitive website categories.

We also investigate whether the prevalence and tracking of sensitive
websites are uniform across continents. For each of them, in Tables 5.8 and
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Figure 5.12: Relationships among sensitive and top categories

5.9 we respectively report the average percentage of browsed websites per
sensitive category together with the average number of trackers encountered.
Results show no substantial differences across continents and confirm that
sensitive information about Health, Religion, and Political is more subject to
tracking practices, although their prevalence is very small in users’ histories.
The only comforting difference is observed in Europe. Very likely thanks to
the GDPR, the average number of trackers found in websites is lower than
others.

As a next step, we investigate how much more information can be iden-
tified about a user’s identity by connecting the pieces. For example, if a
tracker knows that a user follows a particular political party or religious
belief, can we estimate the likelihood of them knowing also about the user’s
travel plans, health interests, etc? To this end, we build a linkage graph
among the sensitive categories and other website categories. We consider
each user at the time, and isolate the history containing webpages of the
sensitive category (SI) under analysis from the remaining part (RI) — note
that the group also contains other sensitive categories besides the one we
investigated so far. For each webpage in SI, we extract the list of trackers
and check their presence in the remaining webpages of RI. Given the list of
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matched websites, we detect their categories and increase a counter for each
of them. Once n webpages in SI have been analyzed, we divide each of the
category counters by n, obtaining a ratio. For a single user, a ratio close to
1 between a sensitive category a and another one b means that, each time
we encounter a website in a, the trackers also know that the user visited b.

We plot the resulting linkage graph in Figure 5.12. Node sizes represent
the percentage of history that falls in the category: the biggest category is
Technology/Internet (39% users’ history), the smallest is Political, account-
ing for 0.13%. Each edge between two nodes expresses the average category
correlation for all the users in our dataset. To increase the readability, the
graph only includes the sensitive and the most prominent ten categories that
have at least one ingoing edge with a weight greater than 70%. We observe
that the strongest correlation percentage (95.55%) holds between Political

and Technology/Internet, while the weakest (70.01%) between Legal and
Chat (IM)/SMS.

We also see that some categories are much less connected with the oth-
ers. For instance, Sexuality and Financial have very few connections with
other categories, and those connections are very small. On the other hand,
Political has many strong connections with many other categories found in
the dataset. In the middle, we find cases like Health, Religion and Legal,
that despite having more connections than the first two, only have a couple
of strong connections with others. We also verify how the linkage graph
varies according to users’ geographical location, and find that relationships
are stable across continents except from Asia, in which we see Health has
stronger connections than Political.

Another interesting point is that sensitive categories do not seem to have
many connections among them. However, we have to note that, not having
a direct connection in the graph does not necessarily indicate that trackers
could not connect them through their relations to other common categories.
For example, both Political and Health are connected to Potentially Adult,
which could be used as a hub.

5.5.4 What is the optimal tracking strategy?

Earlier in this section, we have made estimations on how much browsing
history knowledge could be obtained through collaboration among trackers,
concluding that unless collaboration happens with Google, it is hard to gain
a significant fraction of the browsing histories. An alternative option for
the trackers to achieve the same goal is to plant themselves on key websites.
For an optimal tracking strategy, the trackers need to build a list of popular
websites such that the minimum number of them is required in order to cover
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Tracker websites
% key

Google 66.04
Facebook 35.50
Adobe 21.54
Appnexus 19.02
Yahoo! 18.44
Microsoft 17.04
Rapleaf 16.00
Thetradedesk 15.56
Drawbridge 15.50
Rubiconproject 14.90
Twitter 13.92
Casalemedia 13.22
Openx 12.30
Pubmatic 11.80
Amazon.com 11.46
Linkedin 11.32
Mediamath 10.50
Quantcast 8.92
Akamaitech 6.98
Taboola 6.86

Category websites
% key

Technology/Internet 22.96
Business Economy 12.94
Shopping 6.60
News Media 5.82
Travel 5.04
Entertainment 3.90
Games 3.20
Suspicious 3.04
Financial Services 3.02
Education 2.70
Search Engines 2.36
Reference 2.28
Pornography 2.20
Mixed Content 1.74
Social Networking 1.38
Placeholders 1.38
Health 1.10
Restaurants/Food 1.08
Sports 0.98
Government 0.94

Table 5.10: Top-10 prevalence in the 5K key-websites: trackers (left) and
categories (right)

a certain percentage of the whole users’ history. To assess the effectiveness
of this option, we created a sorted list of the 5K most reputable websites,
according to the definition provided in Section 5.4.

In Figure 5.13, we plot how the known history percentage grows in
relation to how many key websites the trackers need to work with. We also
plot the existing presence of the top three trackers on those top 5K sites.
The blue curve shows that, by cherry-picking only 200 websites, a company
could observe 50% of the users browsing history. This value increases to
65% and 78% when extending the set of key webpages to the first 1K and 5K
respectively (over a total of 2.33M in our dataset), indicating that being able
to add a tracker to the top sites brings much more additional information
than collaborating with other trackers.

As seen in Table 5.10, top players already show a significant presence on
the key websites. When we look closer at the tracking strategy of Google,
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Figure 5.13: Optimal tracking strategy on key-websites vs top-3-tracker
strategy on their top-5K websites

Facebook, and Microsoft (Figure 5.13), we identify interesting differences.
First, although present in 66% of the key websites, the coverage of Google
diverges from the optimal curve after considering only 10 websites (0.2% of
the 5K): a sign that its presence is more prominent in the less reputable
website of the group. We also noticed that Microsoft had a better coverage
strategy than Facebook: although the two organizations show a similar
trend in Figure 5.13, the first is only present in 17% of the key websites —half
the percentage of the second—, suggesting that it appears in more reputable
websites. In Table 5.10, we report the breakdown of categories together
with the fraction of key websites for each of them: Technology/Internet and
Business/Economy group a sheer number of webpages, being the two most
popular categories overall.

5.6 Comparison and Discussion

While web tracking is widely considered a common phenomenon, the results
that we obtained by studying web tracking from the users’ perspective show
that it is considerably more widespread than previously thought. Previous
studies [203, 204, 131, 104] attempted to quantify its scale by conduct-
ing large-scale measurements on open datasets, such as Alexa 1M [42] or
Tranco [189]. However, while one would expect that crawling the most pop-
ular websites should provide an upper bound approximation of exposure,
we found this to be wrong. For example, Google was found to track user
activities on 46% [204, 131] of the top domains, but our study reveals that
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the actual knowledge of the users’ histories reaches 73%. In the same way,
Facebook prevalence was estimated around 18% [203], but our measurement
shows it to be almost twice that value.

One of the main results of our study is to show that if the impact of
web-tracking is measured only by considering top websites, the fraction
of known browsing history would be largely under-estimated. Moreover,
the relationship among the two is not always the same. As an example,
Microsoft and Pubmatic appear both in 4% of the analyzed websites, but the
former covers on average almost twice the users’ browsing history compared
to the latter (Table 5.4). The use of telemetry makes it also possible to
quantify the exact impact of collaborations among organizations on end
users. Previous studies discovered that 66% of the top-100 trackers share
cookies [104] and that users with a larger browsing profile are tracked by
more identifier sharing domains [107]. Thanks to our analysis we now know
that this practice could increase the knowledge that trackers have of the
users’ activity by almost 50%.

Another advantage of our method with respect to previous works is
that it also allows us to shed light on the timing and frequency with which
users are tracked, thus unveiling insights on research areas that have never
been explored so far and whose investigation is impossible by crawling top
websites. For instance, we show that users encounter almost all the tracking
organizations in just half a day of activity. Even more worryingly, we show
that the frequency with which some of the top trackers are encountered
makes it infeasible to prevent their monitoring by simply deleting the cookie
history.

The knowledge that tracker organizations have of users’ browsing inter-
ests, habits, recurrence, location and hourly activity enables the creation
of powerful profiles that get more and more refined and available to many
players willing to purchase them. As a result, users risk to lose control of
their private information and face several serious consequences. For exam-
ple, a known use of tracking is the personalization of search results based on
users’ interests and the creation of the so-called Filter Bubble [251], a per-
sonalized search where an algorithm guesses what results the user would like
to see based on previously collected information. Web tracking is also mas-
sively used to serve targeted advertising, facilitate marketing, and increase
sales profit by influencing customer purchasing behaviors. In this respect,
tracking can be used to modify product prices according to the geographical
location and the financial situation of potential customers [59, 245]. Many
companies also leverage this information to assess users’ financial credibil-
ity [231, 232] and establish insurance coverage [123].
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5.6.1 What can users do to protect themselves?

As web-tracking closely concerns users and their activities, several tools and
strategies exist to defend against this practice, being the most important:
cookie clearing, list/rules-based blocking, and network-level masking.
Cookie clearing – In order to significantly reduce cookie-based tracking,
users could delete the cookies stored in their browsers. However, this ap-
proach is complex to strictly follow in the long term and it would require a
lot of effort: users must delete cookies with high frequency (i.e., less than
one hour according to our findings in Section 5.4) and cherry-pick the ones
to delete in each case.
List/rules-based blocking – The most common solution is the use of
browser extensions or privacy-centered browsers that maintain an up-to-
date list of tracking domains or rules and block all the connections towards
them, thus preventing data collection about browsing sessions. Some of
them rely on large-scale crawls to analyze how the ecosystem evolves [96],
and some others principally have a crowdsourcing model [99]. These kind
of solutions are easy to setup (i.e., install and forget) and avoid the need for
manually deleting cookies on a regular basis. However, blocking resources
can sometimes generate unexpected functionality problems in the page. In
order to avoid them, solutions generally offer a page-specific disable option,
but as indicated in Section 5.5, a large percentage of the browsing history in
sensible categories is being tracked by multiple companies, so users should
be extremely careful when disabling protection tools in them.

Although these solutions exist, and are practical and effective, extension
or application-based blocking is not yet widely adopted: privacy-centered
browsers only represent 7.74% of the market, and only 8.5% of the users
adopt tracker-blocking tools [133, 247]. Therefore raising awareness about
the extent of web-tracking is crucial to increase these percentages and we
believe that the quantitative insights presented in this work could be im-
mensely helpful to serve this purpose.
Network-level masking – Section 5.3 shows that the knowledge of tracker
organizations spans a high percentage of the users’ browsing history, reach-
ing up to 63% in the case of Google. Therefore, some protections can be
implemented at the network level to protect a larger portion of users and de-
vices. Protective measures can be installed in home routers [187] or adopted
as a privacy layer in companies. Despite being flexible and allowing protec-
tion of multiple devices at the same time, those tools are more difficult to
set up, and require users to regularly maintain them, discouraging regular
web users in adopting them.

There are also some solutions to mask the user’s real IP address from
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the remote site, thus preventing IP-based tracking. This goal is achieved
by using anonymous proxy servers (which act as intermediary and offer
anonymization services by removing sensitive information), virtual private
networks (VPNs) (whose nodes result to be hosts of a single network, re-
gardless of their physical locations), or Tor [21] (whose browser prevents
tracking by routing the traffic through a chain of relays which protects the
real user’s IP address). Even if this is only one part of online tracking, some
studies have already proven that a large percentage of users retain their
same IP addresses for more than a month [164], allowing companies to use
it as an identifier. When adopting this type of solutions, users should ad-
ditionally use a list/rules-based blocking tool on top, to also avoid general
types of tracking.

5.7 Conclusions

Despite the existence of these solutions and the users’ awareness of online
tracking practices, the adoption of such countermeasures is still limited. A
possible reason is that users might feel they are not directly impacted. The
goal of this study is to provide a more accurate measure of how web-tracking
directly impacts them, and with evidence about how their online privacy is
affected. We hope our findings can enable better decision making and foster
a larger adoption of existing privacy-preserving services.
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6.1 Future work

The challenges that affect cyber-risk quantification are far from being solved.
In addition, the dynamic and ever-changing nature that characterizes the
cyber-threat landscape makes it difficult to find a definitive solution and
requires a constant refinement of methodologies and techniques that adapt
to this evolution.

This thesis shows that data plays an important role in providing both re-
searchers and practitioners with actionable information for cyber-risk quan-
tification. In the first contribution, we enumerated several research direc-
tions that build on top of data but we were able to investigate only part of
them. For instance, future work may look at the effectiveness of externally-
collected indicators that reflect the security posture of a given entity when
internal telemetry is not available. Another key obstacle when conducting
cyber-risk measurements consists of merging all the different assessments
that look at the problem from a particular perspective and that need to
be aggregated to provide a comprehensive view to the analysts: risk ag-
gregation is still a major challenge to address in the cyber domain. The
interconnection of cyber risks and the catastrophic consequences that arise
from major events overly complicate cyber-risk quantification. Future work
may want to look at cascading effects of cyber incidents and how risks
propagate to all the parties that depend on each other because they share
third-party services, software or infrastructures.

The study on systemic and systematic indicators presented in this manuscript
showed that host-extracted features carry useful information to explain why
certain classes of machines are more likely to encounter malware. Although
in our work we comment on the predictive power that those features have
on the different malware families, future studies may want to narrow the
analysis down to specific cases. For example, it is important to under-
stand whether some indicators may explain the likelihood of suffering from
particular cyber incidents (e.g., data breaches) or being targeted by more
sophisticated malware classes (e.g., banking trojan or spyware). With cyber-
insurance as an ultimate goal, it is also fundamental to understand whether
any correlation exists between objective features and falling for incidents
that require an insurance claim. In this respect, it is important to dis-
tinguish between those events that can be covered by an insurance policy
(e.g., ransomware attack, DoS) and those that can not (e.g., Adware or
PUA infections).

Finally, the last contribution highlighted the importance that different
data sources and a holistic perspective have when evaluating cyber risks.
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Although our analysis spans several countries and leverages the telemetry
of 250K users, we only focus on those who browse by using regular desktop
machines running Windows. Future contributions that aim at quantify-
ing the extent of web tracking may focus on different OSs that were not
considered in this analysis and well as look at the mobile ecosystem.

6.2 Conclusion

This thesis uncovers existing challenges of cyber risk quantification and
provides contributions to measuring particular classes of cyber risks, such
as malware-infection and privacy risks.

In Chapter 3, we detailed the complex challenges that researchers and
practitioners have to face when quantifying the cyber risks of a given entity
and contextualized them in the cyber-insurance domain where those are
fundamental for an exhaustive definition of premiums. We also listed several
research directions that system-security experts can explore to refine and
improve the process of risk measurement.

In Chapter 4, we investigated the systemic and systematic nature of cy-
ber risks by differentiating between consumer and enterprise environments.
We show how the different security postures and defensive measures adopted
by the two parties contribute to lower the risk of encountering particular
malware classes, such as Adware and PUA. Our measurements also reveal
that some host-extracted indicators —related to activity, installed-software
reputation, geographic location and enterprise size —carry useful informa-
tion when explaining the systematic nature of cyber risks.

In our last Chapter, we show how important a holistic approach together
with reliable data sources are when assessing the extent of particular risk
classes. We indeed show that privacy risks due to web tracking are underes-
timated if carrying the measurements by only crawling top websites as this
excludes the users’ perspective.

We really hope that the insights and contributions of this thesis can
serve as a starting point for future work in the field, and assist academics
and practitioners to better deal with cyber-risk quantification.
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