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Résumé : Bitcoin est une crypto-monnaie pion-
niére qui enregistre les transactions dans un re-
gistre public et distribué appelé blockchain. Il est
utilisé comme support pour les paiements, les in-
vestissements et plus largement la gestion d'un
portefeuille numérique qui n'est pas administré par
un gouvernement ou une institution financiére. Au
cours de ces dix derniéres années, |'activité tran-
sactionnelle de Bitcoin a rapidement et largement
augmenté. La volumétrie ainsi que la nature évolu-
tive de ces données posent des défis pour |I'analyse
et I'exploration des usages ainsi que des activités
sur la blockchain. Le domaine de I'analyse visuelle
travaille sur la conception de systémes analytiques
qui permettent aux humains d'interagir et d'obte-
nir des informations a partir de données complexes.

Dans cette thése, j'apporte plusieurs contri-
butions a I'analyse des activités de minage sur la
blockchain Bitcoin. Tout d'abord, je propose une
caractérisation des travaux passés et des défis de
recherche liés a |'analyse visuelle pour les block-
chains. A partir de cette étude, j'ai proposé un
outil d'analyse visuelle pour comprendre les acti-
vités de minage qui sont essentielles pour main-
tenir l'intégrité et la sécurité des données sur la

blockchain Bitcoin. Je propose une méthode pour
extraire |'activité des mineurs & partir des don-
nées de transaction et tracer leur comportement
de bascule d'un pool de minage a un autre. L'ana-
lyse empirique de ces données a notamment révélé
que les nouveaux pools de minage offraient une
meilleure incitation et attiraient davantage de mi-
neurs. Cette analyse a également montré que les
mineurs choisissaient stratégiquement leur pool de
minage dans le but de maximiser leur profit. Pour
explorer |'évolution et la dynamique de cette ac-
tivité sur le long terme, j'ai développé un outil
d'analyse visuelle, appelé MiningVis, qui intégre
des données liees au comportement des mineurs
avec des informations contextuelles issues des sta-
tistiques et de |'actualité de Bitcoin. L'étude avec
des utilisateurs démontre que les participants au
minage de Bitcoin cherchent a utiliser |'outil pour
analyser |'activité globale plutét que pour étudier
les détails d'un pool de minage. Les commentaires
des participants prouvent que l'outil les a aidés a
mettre en relation plusieurs informations et a dé-
couvrir les tendances dans I'activité de minage de
Bitcoin.

Title : Visual analytics for monitoring and exploration of Bitcoin blockchain data

Keywords : Bitcoin, Bitcoin Mining, Mining Pools,

Abstract : Bitcoin is a pioneer cryptocurrency that
records transactions in a public distributed ledger
called the blockchain. It has been used as a me-
dium for payments, investments, and digital wallets
that are not controlled by any government or finan-
cial institution. Over the past ten years, transaction
activities in Bitcoin have increased rapidly. The vo-
lume and evolving nature of its data pose analysis
challenges to explore diverse groups of users and
different activities on the network. The field of Vi-
sual Analytics (VA) has been working on the deve-
lopment of analytical systems that allow humans
to interact and gain insights from complex data.
In this thesis, | make several contributions to
the analysis of Bitcoin mining activity. First, | pro-
vide a characterization of the past work and re-
search challenges related to VA for blockchains.
From this assessment, | proposed a VA tool to

Pool Hopping, Visual Analytics, Blockchain

understand mining activities that ensure data in-
tegrity and security on the Bitcoin blockchain. |
propose a method to extract miners from the tran-
saction data and trace pool hopping behavior. The
empirical analysis of this data revealed that emer-
ging mining pools provided a better incentive to at-
tract miners. Simultaneously, miners strategically
chose mining pools to maximize their profit. To
explore the evolution and dynamics of this acti-
vity over the long term, | developed a VA tool
called MiningVis that integrates mining behavior
data with contextual information from Bitcoin sta-
tistics and news. The user study demonstrates that
Bitcoin miner participants use the tool to ana-
lyze higher-level mining activity rather than mining
pool details. The evaluation of the tool proves that
it helped participants to relate multiple information
and discover historical trends of Bitcoin mining.




SYNTHESE DE THESE

Bitcoin est une crypto-monnaie qui enregistre les transactions dans
un registre public et distribué appelé blockchain. Elle est utilisée
comme un support pour les paiements, les investissements et plus
largement la gestion d"un portefeuille numérique qui n’est pas admin-
istré par un gouvernement ou une institution financiere. Au cours de
ces dix dernieres années, 1'activité transactionnelle de Bitcoin a rapi-
dement et largement augmenté. La volumétrie ainsi que la nature évo-
lutive de ces données posent des défis pour I’analyse et I’exploration
des usages ainsi que des activités sur la blockchain. Le domaine de
I'analyse visuelle travaille sur la conception de systémes analytiques
qui permettent aux humains d’interagir et d’obtenir des informations
a partir de données complexes.

Dans cette thése, j’apporte plusieurs contributions a 1’analyse des
activités de minage sur la blockchain Bitcoin. Les travaux de recherche
se sont jusque-la concentrés sur des analyses théoriques de l'activité,
des analyses des réseaux de transactions ainsi que des applications de
I'apprentissage non supervisé pour classer différents types d’entités
ou des transactions malveillantes. Pour comprendre 1’état de I'art de
la visualisation des données appliquée aux blockchains ainsi que la
facon dont les visualisations sont utilisées pour analyser 1'activité
blockchain, j’ai réalisé une revue systématique. En particulier, j’ai pro-
posé un schéma de classification permettant de caractériser les dif-
férents outils et visualisations existants. Ensuite, j’ai recensé les dé-
fis restant a lever ainsi que les opportunités de recherche associées.
J’ai constaté que les outils de visualisation dédiés a des questions
avancées et axées sur un domaine en particulier sont rares malgré
qu’ils puissent étre utiles a des experts et a des analystes afin d’étudier
et comprendre en profondeur une activité spécifique de la blockchain
Bitcoin telle que le minage.

Les principales parties de cette thése se concentrent ainsi sur le mi-
nage de Bitcoin qui est un mécanisme critique pour la validation des
transactions dans un réseau décentralisé. Il a également des implica-
tions sur le modele économique de la blockchain car les mineurs sont
sensibles aux incitations et ils participent principalement pour max-
imiser leur gain. Les pools miniers sont rapidement apparus comme
des organisations permettant d’assurer un revenu régulier aux mineurs.
En utilisant une approche d’analyse visuelle, j’ai mené une étude de
conception de deux ans avec mon collaborateur économiste pour étudier
différentes questions de recherche et développer des prototypes de
visualisation afin de proposer des réponses concernant 1’émergence
et I’évolution des pools miniers Bitcoin.



Dans la premiere itération de conception, j'ai extrait plusieurs sources
de données liées au développement des parts de marché et aux caractéris-
tiques des pools miniers comme la localisation, le systeme de paiement
et les frais de pool. Avec mon collaborateur économiste, nous avons présenté
une premiere analyse exploratoire de I'évolution des pools miniers couvrant
toute I'histoire de Bitcoin. Nous avons découvert que les premiers pools
miniers proposaient différents systémes de paiement tres variés avant
qu’ils ne convergent vers le paiement a la part (PPS) et le paiement in-
tégral a la part (FPPs). L'étude de la localisation des pools miniers
montre que les pools chinois sont devenus des pools internationaux
vers septembre 2017, lorsque le gouvernement chinois a réglementé
le commerce des crypto-monnaies.

Lors de la deuxieme itération de conception, nous avons étudié
plus avant la migration des mineurs entre les pools miniers. J'ai dé-
veloppé une méthodologie pour extraire les flux de paiement des récom-
penses des transactions de Coinbase vers les mineurs individuels. Ensuite,
jai défini trois mesures principales de flux de paiement : les nou-
veaux et les abandons, les entrées et les sorties, et le cross-pooling
pour comprendre les schémas de mobilité des mineurs. J'ai montré
que la méthode pouvait extraire des pools miniers basés sur des mod-
eles de flux de paiement différents. A I'aide de différents prototypes
de visualisation, nous avons pu étudier et proposer des explications sur
la motivation des mineurs a rejoindre, quitter ou se déplacer entre les pools
miniers. Nous avons constaté par exemple que les mineurs se dirigent
toujours vers le pool qui offre des frais de transaction moins élevés et
un revenu plus régulier aux mineurs. Nous avons également constaté
que les mineurs utilisent le cross-pooling pour diversifier leur risque
entre PPS (sans risque) et PPLNS (risqués).

Nous avons découvert que la compétition entre les pools de mi-
nage était en constante évolution et qu’elle devait faire 1’objet d'un
suivi constant sur une longue période. De plus, nous avons montré
que le prix du marché du bitcoin et les événements de division par
deux de la rémunération (halving days) avaient un impact sur la dé-
cision des mineurs de continuer a miner, et donc sur la durabilité
de cette activité. J’ai développé un outil d’analyse visuelle appelé Min-
ingVis qui permet a des analystes de mettre en relation plusieurs facteurs
liés aux pools de minage et aux comportements des mineurs. Mon collab-
orateur économiste a utilisé cet outil pour étudier et développer un
modele permettant d’expliquer 1'économie du minage. Nous avons
également réalisé une étude en ligne aupres de huit mineurs de bitcoins et
nous avons constaté qu’ils étaient plus intéressés par les informations
en temps réel que par les données historiques a long terme. Les ré-
sultats de notre étude avec les utilisateurs ont confirmé nos choix de
conception pour I'outil. Il est & noter que celui-ci peut également étre
étendu a d’autres crypto-monnaies basées sur le méme protocole de
preuve de travail.
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En revanche, que des contrariétés et un chagrin sans espoir aient enlevé i
un homme tout goilt de vivre, si le malheureux, a I'dme forte, est plus
indigné de son sort qu’il n’est découragé ou abattu, s’il désire la mort et
cependant conserve la vie sans I'aimer, non par inclination ni par crainte,
mais par devoir, alors sa maxime a une valeur morale.

— Emmanuel Kant, Fondements de la métaphysique des mceurs
(1785)
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Let me remind you of the particular characteristics of all of these
behavior systems that I am trying to focus on. It is that people are
impinging on other people and adapting to other people. What
people do affects what other people do.

— Thomas C. Schelling, Micromotives and Macrobehavior (1978)






INTRODUCTION

In the past years, blockchain has gained attention as a new technol-
ogy to revolutionize transactions and exchanges on the internet [150].
Blockchain is a distributed peer-to-peer network storing append-only
transaction data. The advantage of this technology lies in the decen-
tralized system governed by autonomous logic rather than being con-
trolled by any government or financial institution. Nowadays, most
blockchain applications are used for cryptocurrencies such as Bitcoin
[109] and Ethereum [170]. However, its use in practice is still evolving
and poorly understood. In order to adopt blockchain technology in a
wider set of domains, we will need to explore and analyze transaction
data to better understand emergent user behavior and mechanisms in
blockchain systems. As such, Visual Analytics (VA) tools can support
human analysts in deriving hypotheses and models of blockchain
use.

Bitcoin is the first and so far the highest valued cryptocurrency
blockchain. It was proposed by a pseudonym named Satoshi Naka-
moto in a seminal article, “Bitcoin: A peer-to-peer electronic cash sys-
tem” [109]. The article proposed a way to prevent double-spending of
digital currency transactions without requiring a trusted third party.
Since Bitcoin was initially released in 2009, the activities in its block-
chain increased substantially. As of September 2021, Bitcoin users cre-
ate 300k transactions to exchange a total of 100k Bitcoin currency ev-
ery day. Bitcoin also attracts investors who speculate to make a profit
from trading in the cryptocurrency exchange market with $170B mar-
ket capitalization.

In this thesis, I focus on the internal activities of Bitcoin users in
the transaction data. Internal activities are the fundamental factors to
understand the adoption and practical usages of Bitcoin. Cryptocur-
rency trading is an external activity that gives Bitcoin valuation to fiat
currencies (e.g., the U.S. Dollar, the Euro) and is outside the scope of
this thesis.

1.1 THE BITCOIN BLOCKCHAIN

Bitcoin records transactions in the public distributed ledger (i.e., da-
tabase) called the blockchain. A blockchain consists of a chain of
blocks that records all previous transactions, hence the term block-
chain. Transactions are registered, validated, maintained, and dis-
tributed across the entire network of users in the peer-to-peer net-
work. Unlike traditional financial data, Bitcoin transactions are pub-
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Figure 1: Building Blocks of the Bitcoin Blockchain (from Tschorsch et al.
[158] © 2015 IEEE)

licly available on the blockchain but the owner of the address cannot
be inferred directly from the address, hence they are referred to as
pseudonymous. Chapter 2 provides an overview of Bitcoin, its com-
ponents, and connections among them. I identify three groups of ac-
tivities that happened on 1) financial transactions, 2) mining (or con-
sensus protocol), and 3) peer-to-peer networks. Figure 1 summarizes
the process to append transactions to the blockchain network.

Bitcoin has been used to transfer digital currency between users,
payment to merchants, or as an investment. As the Bitcoin data is con-
stantly growing (>350 GB of raw data, as of September 2021 [O10]),
it offers a unique opportunity to study the evolution of the transac-
tion data as well as the interactions of users in the network. The Bit-
coin network involves diverse groups of users (e.g., individuals, enter-
prises, miners, and exchanges), and their activities are influenced by
multiple factors from both internal (e.g., Bitcoin protocol, frauds, and
cyber-attacks) and external (e.g., news and market price) historical
events.

To ensure the security and sustainability of Bitcoin and blockchain
technology, in general, we need to analyze transaction data to under-
stand its practical uses and the economic incentives of different kinds
of users and activities. As I review in Chapter 2, many existing works
present empirical analyses of Bitcoin data. However, the results re-
ported in those works have limitations because they 1) report on the
aggregated information, 2) focus on a particular historical event or
group of users, or 3) analyze the data within a limited time frame.
Nonetheless, as Bitcoin activities keep evolving over time, we need
methods for exploring diverse kinds of activities or monitoring the
Bitcoin blockchain in the long term.
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1.2 VISUAL ANALYTICS

Visual analytics (referred to as “VA”) is "the science of analytical rea-
soning supported by interactive visual interfaces" [31]. The field has
worked on combining information visualization with automated data
analysis methods and allows users to be involved in the analytical
process to gain insights into large and complex datasets [31]. Fig-
ure 2 depicts the VA model that involves the users interacting with
the visualization, and giving feedback to the data analysis model in
order to generate new insights from the data [130]. The VA model
also aims to study human factors by conducting design studies [139]
to understand research questions, design the visualization tool, get
the feedback, and evaluate the tool with real users [88].

VA is a suitable approach for analyzing the Bitcoin blockchain due
to the large scale of transaction data and evolving activities of dif-
ferent groups of Bitcoin users. But in this case, the aggregated infor-
mation cannot show different activities, user groups, or events in the
blockchain data. Chapter 3 presents a comprehensive review of the
past work and research challenges in blockchain data visualization. In
contrast to previous works presenting Bitcoin data on the aggregated
information, Bitcoin VA allows experts and researchers to 1) deeply
analyze the data at different levels of aggregation and time scales,
2) detect patterns and anomalies on a particular activity or group
of Bitcoin users, and 3) provide related information to describe the
behavior or patterns of the activity.

1.3 THESIS STATEMENT

Blockchain is an emerging research field that involves researchers
from various disciplines in computer science and economics. In com-
puter science, the majority of the work, mainly from cryptography
and computer networks, proposed new blockchain systems and pro-
tocols that give better performance and/or are more secure. Economic

Hypothesis

Knowledge
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researchers mainly studied the incentives of users both on the consen-
sus protocol and the market. The empirical analysis takes an impor-
tant role in both fields to understand what happened in the block-
chain and assess security issues to develop better blockchain solu-
tions. VA is a promising approach to facilitate blockchain analytics in
the long term but the advanced tools dedicated to Bitcoin and block-
chain are still rarely found in the existing work (Chapter 3).

Bitcoin is currently the most widely-used and longest-running block-
chain, and its mechanism is also applied to other cryptocurrency
blockchains. For this reason, I chose this blockchain as the subject
of study. In Bitcoin, there are many activities on the different layers
of the blockchain (Chapter 2). In this thesis, I focused on the min-
ing economy because it is the consensus mechanism that ensures
the integrity and stability of the blockchain network. Bitcoin min-
ing involves economic agents called miners who work on verifica-
tion and appending transactions to the blockchain network. Miners
expect to receive financial rewards as incentives to perform mining
operations. My economist collaborator is particularly interested in
this topic and would like to understand the evolution of mining ac-
tivity and the decision model of miners. Working closely with the
economist, I proposed a data analysis method to analyze this activ-
ity on the transaction level (Chapter 5) and developed a VA tool to
support the economist’s research questions (Chapter 6).

My thesis contributes to 1) a systematic review of past work and
research challenges on Bitcoin and blockchain VA, 2) a data process-
ing and algorithm to extract miners from transaction flow and detect
miners” mobility, 3) an empirical analysis on pool hopping behavior,
and 4) a new VA tool, called MiningVis, to analyze mining behavior
from a long-term historical perspective.

1.4 THESIS OVERVIEW

The thesis is structured into seven chapters. The title and short de-
scriptions of each chapter are listed as follows:

¢ Chapter 2 Background on Bitcoin and Blockchain Technology
describes the background details of Bitcoin blockchain and re-
views past work related to blockchain data analysis and visual-
ization.

¢ Chapter 3 Systematic Review on Blockchain Data Visualiza-
tion provides a comprehensive review of past work in block-
chain data analysis and visualization. I proposed the classifica-
tion scheme to group those works and listed research challenges
in blockchain VA.

¢ Chapter 4 The Emergence and Evolution of Bitcoin Mining
Pools presents data collection and first visualization prototypes
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to understand the competition of mining pools over a long his-
tory of Bitcoin mining. Based on these prototypes, my economist
collaborator and I reported some findings on the factors that af-
fect market share evolution in Bitcoin mining.

Chapter 5 Empirical Analysis of Bitcoin Mining Pools pre-
sented a data analysis framework to attribute mining pools for
each block, identify miners from the transaction graph, and de-
tect miners’ migration between pools. I justified that this method
can extract miners from various mining pools and. I also con-
ducted an empirical analysis to characterize the payout flow
patterns and understand possible factors related to mining pool
evolution and pool hopping behavior. Chapter 4 and Chapter 5
can be seen as the Data and Model part of the VA approach.

Chapter 6 MiningVis: Visual Analytics of the Bitcoin Mining
Economy presented a VA tool to analyze the Bitcoin mining
pool. The tool is designed based on the research questions of
the economist. I performed a user study to evaluate the tool
with real Bitcoin miners. This chapter describes the details of
the Visualization and User parts in the VA model.

Chapter 7 Conclusion provides the summary of my work and
outlook at the possible future work on Bitcoin and blockchain
VA.






BACKGROUND ON BITCOIN AND BLOCKCHAIN
TECHNOLOGY

Blockchain was introduced in the early 1990s as a theoretical system
to store a time-stamped digital document that cannot be modified [10,
56]. The articles proposed data structures and algorithms to store non-
modifiable data and maintain trust in decentralized systems without
centralized control. Bitcoin was initially released in 2009 and consid-
ered the first open-source implementation of the blockchain concept
for digital payment [109]. In 2015, Ethereum was released as a block-
chain that implements smart contract functionality [170]. A smart
contract is a piece of computer code guaranteed to run in the same
way on all peers. It has been used to build Decentralized Applica-
tions (dApps) that run on the Peer-to-Peer (P2P) network.

In this chapter, I describe the background of blockchain technology
and focus on Bitcoin blockchain mechanisms. I also summarize liter-
ature reviews to understand research challenges in blockchain and
look at dedicated surveys on blockchain data analysis and visualiza-
tion domains.

2.1 TYPES OF BLOCKCHAIN

Blockchains can be categorized into three types: public blockchains,
consortium blockchains, and private blockchains [29, 177].

* Public blockchains are open blockchains in which any partic-
ipant can read, write, and submit transactions to the ledger.
Any participant can join the consensus process to determine
whether to add blocks and transactions to the ledger. Public
blockchains are suitable for applications that are open for every-
one and need fully decentralized systems. Bitcoin and Ethereum
are well-known examples of this type of blockchain.

¢ Consortium blockchains are semi-private blockchains that re-
strict the consensus process to the selected group of participants
that are trusted by the system. This reduces the time to verify
transactions and blocks but also makes the systems partially
centralized to selected nodes. The overseeing group of organi-
zations grants permission to operate a node on a consortium
blockchain.

e Private blockchains are fully controlled by an organization that
determines the consensus of the blockchain ledger. The private



8

BACKGROUND ON BITCOIN AND BLOCKCHAIN TECHNOLOGY

Peer-to-Peer Network

(:propose) (:stored_in)

Blockchain

Figure 3: An overview of Bitcoin blockchain components

blockchain owner has the authority to allow or restrict the read
permission to participants. Private blockchains are centralized
systems, similar to database systems, and usually suitable for
applications that require high trust and privacy.

In this thesis, I focus on a public blockchain, in particular Bitcoin,
as the transaction data of this kind of blockchain is publicly available.
Some of the mechanisms described in the next section can differ for
consortium and private blockchains, where, for example, the consen-
sus is determined by selected nodes that can be trusted. Therefore
past records could theoretically be tampered with.

2.2 HOW THE BITCOIN BLOCKCHAIN WORKS

Since the Bitcoin blockchain is currently the most well-known and
widely-used public blockchain in the public domain, I will explain
the mechanism behind the Bitcoin system as many of its concepts
also similarly apply to other blockchains. I refer readers who are in-
terested in technical details to the original Bitcoin paper [109] and
books [5]. Technical details of blockchain technology, in general, can
be found in two articles [12, 158].

Bitcoin consists of multiple components, as depicted in Figure 3.
The arrow indicates interaction between two components. The com-
ponents can be grouped into three different layers: 1) financial trans-
actions, 2) mining economy, and 3) Peer-to-Peer (P2P) network. The
cryptocurrency market is an external activity of the Bitcoin network
but indirectly impacts activities in the Bitcoin network.
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b
Bob’s addresses 2020-08-25 15:05

1LrbhGUUVoda2L1wu21LpXBb9gjpUTNh5G 0.00215637 BTC & 1MBJCQEbDrisnbhwymoVaEGvYbfKjhpbmD 0.02914432 BTC &
1H8awgYJApFjbaKHxKTFBbNtABATfqxY6h 0.00088757 BTC ¢ bc1qg0sg5rsp6603py0qy42thbeegbnsSdy7ht... 419232163 BT
THxk3G6ocSdiegFYiLdVh6G4vgRyJnbuu5 0.00086700 BTC * belqug29mutxkgxmifdr7ayj3zd9adOldSmrhh8... 12.45160592 BTC &
belqug29mutxkgxmijfdr7ayj3zd9adOldSmrhh8... 16.66691540 BTC ¢
THMA2jVzA4RpD8uUfyZqaPY TEHg7eiURLV 0.00086800 BTC ¢
1GCzmKdxnzUSZjrTP3YjvPFLC8sYrAiSHi 0.00223857 BTC &

Transaction 0.00086104 8TC * Total output value oo 0o b

Fee (86.277 sat/B - 23.590 sat/WU - 998 bytes)

Change to Bob’s address . . 7
# of confirmations | 2Confirmations

Figure 4: An example of a Bitcoin transaction. In this example, Bob spent his
bitcoin stored in different addresses to Alice and kept the changes
back to one of his addresses. Transaction fees were paid to the
miner as the difference between the total input and the total output.
(The transaction was retrieved from Blockchain.info. Icons were
created by Muhammad Haq under CC BY 3.0 license.)

2.2.1 Financial Transaction

The transaction is the most granular data of the Bitcoin blockchain.
Each transaction records the bitcoin value transfer from the input ad-
dress(es) to the output address(es). Bitcoin uses cryptographic proof
to verify the ownership of transactions—which explains why it is
called a cryptocurrency. An address is represented as a long string
with cryptographic properties that can be signed by its owner. Fig-
ure 4 shows an example of a Bitcoin transaction. All the value of
input addresses is sent to the output addresses. The owner can send
the change back to any of his or her addresses if he or she wants
to transfer less than the total value of inputs. The owner also pays
transaction fees as the difference between input and output values.

Apart from financial transactions, blockchains can store any kind
of transaction rather than financial transactions. For example, a
smart contract is a kind of transaction with computer code that can
be executed in a peer-to-peer network. It has been implemented in
many public blockchains such as Ethereum, EOS.IO, and Tezos.

Transactions are publicly available on the blockchain but the owner
of the address cannot be inferred directly from the address, hence
they are referred to as pseudonymous. A common practice is that own-
ers should regularly change addresses to hide their identities. Yet, we
can still trace the activities of entities from address clustering heuris-
tics. Multiple input address is a common heuristic that assumes all
input addresses of the transaction belong to the same entity [123].
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Figure 5: Bitcoin mining process (from Guilherme de Freitas Castro [45])

The surveys of clustering heuristics can be found in four articles [16,
81, 93, 167]. Many blockchain analytics companies maintain the list
of addresses that belong to the known entity but keep the dataset
for private use. WalletExplorer.com is the rare public source that pro-
vides this kind of dataset, but the list of entities is not updated from
2016 [71].

2.2.2  Mining Economy

As Bitcoin and many other cryptocurrencies operate on decentral-
ized networks, the double-spending problem is a possible threat to the
blockchains. Users can fool the network that a unit of digital money
has never been spent before while sending other transactions which
contain the exact same value to different addresses simultaneously. To
solve this problem, Satoshi Nakamoto applied the proof-of-work proto-
col to validate Bitcoin transactions and append them to the block-
chain [109]. This mechanism—commonly refers as mining—is critical
to the integrity and trustworthiness of the blockchain data.

In Bitcoin mining, transactions are validated and appended into a
block by a pool of people called miners. Figure 5 explains the min-
ing process to add transactions to the blockchain. Miners participate
in collecting pending transactions in the blockchain network, validat-
ing them, and collecting them into a block. At the same time, min-
ers perform a proof-of-work consensus protocol that involves solving
the computational-intensive puzzle to obtain the right to append the
new block to the blockchain ledger. The more computational power a
miner has, the more chance that they successfully mine a block. The
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block will be broadcast to the network and permanently appended to
the blockchain.

The miner who successfully proposed a new block can then reclaim
a coinbase transaction that includes newly generated bitcoin values
(block reward) and transaction fees from every transaction in a block.
The block reward is initially set to 50 bitcoin for each block mined and
halved every 210,000 blocks (around 4 years) to control the supply of
Bitcoin circulating in the system. The difficulty of the puzzle is decided
by the total computation power in the blockchain network called hash
rate. The difficulty is adjusted for every 2,016 blocks (around 2 weeks)
to reach the desired rate of adding a new block every 10 minutes. The
more computational power in the Bitcoin network, the more difficult
it is to mine a new block.

Due to the rapid growth of the total hash rate in the network, nowa-
days, individual miners are hardly expected to receive a mining re-
ward in the short term. They also need to bear the cost of purchasing
specific hardware for mining and electricity costs. In practice, mines,
thus, pool their computational resources to mining pools to receive
a more stable and predictable income. The fierce competition of Bit-
coin mining also raises the carbon footprint concern of this activity
because tremendous amounts of electricity are consumed to run min-
ing hardware [14, 87, 146].

Other kinds of blockchain can implement other consensus proto-
cols (i.e., proof-of-x) to decide who can obtain the right to propose
a new block to the network. For example, proof-of-stake protocol
decides who has the right to propose a new block based on the
coins owned by miners. Other consensus protocols can be found
in dedicated articles on this topic [12, 174].

2.2.3 Peer-to-Peer Network

Once the new block is created, it will be broadcast to all nodes in
the network. Nodes in the Bitcoin blockchain are connected in the de-
centralized peer-to-peer network as depicted in Figure 6. Each node
stores its own version of blockchain data and broadcasts their block-
chain data to its closest neighbors. In this way, the blockchain data
will propagate through the entire network via a gossip protocol.
When each node receives the new block, it will verify all transac-
tions in the block to check that they have not been spent before in the
previous blocks. In other words, they check the absence of double-
spending. If the block is validated, the node will then append this
block to the chain. Figure 7 illustrates the blockchain where each
square represents a block. The longest chain from the genesis block
(block o, in green) is considered the main chain. If there are multiple

11
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Types of Networks

Centralized

Decentralized

Distributed

Figure 6: Comparison of different network types: centralized, distributed,
and decentralized networks. Bitcoin nodes are connected in the
decentralized network. (from Guilherme de Freitas Castro [45])

Figure 7: The illustration of blockchain. The main chain (black) consists of
the longest series of blocks from the genesis block (green) to the
latest block. Orphan blocks (purple) exist outside the main chain.
(Theymos, CC BY 3.0)

alternative chains to extend the chain, nodes will choose a new block
on the main chain to maximize the chance that their blockchain is
synchronized with the peers. Other blocks outside the main chain are
considered orphan blocks (in purple) which will be removed from
the blockchain.

2.2.4 Security Attacks in the Bitcoin Blockchain

Because Bitcoin is a decentralized network, it is vulnerable to cyber
attacks from criminals or dishonest users that exploit the consensus
protocol to manipulate or disfunction the network. The attacks can
happen in multiple layers in the Bitcoin network: transactions, min-
ing, or the peer-to-peer network. Some malicious users may try to
double-spend their bitcoin (e.g., Finney attack and Brute force attack).
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Bitcoin money can be stolen from a security breach as it happened to
the Mt.Gox exchange company. In the consensus layer, if a few miners
control more than 50% of the total mining power, they can perform
51% majority attacks to alter the record of transactions [6, 134, 175].
The peer-to-peer network is also vulnerable to network attacks (e.g.,
Distributed Denial-of-Service (DDoS) and Sybil attacks). I refer readers
to the dedicated survey on this issue for more detail [30].

2.2.5 Cryptocurrency Market

Apart from internal components in the Bitcoin blockchain, a cryp-
tocurrency exchange market provides platforms to exchange Bitcoin
value to fiat currencies (e.g., US Dollar and Euro) and therefore deter-
mine the market price of Bitcoin. The exponential growth of Bitcoin
value in recent years is partially explained by the spread of narra-
tives from news and social media to a wider public [143, Chapter 1].
This growth also raises the question of the true value of Bitcoin and
the price inflation [149]. When analyzing activities in Bitcoin, it is im-
portant to consider these external elements as contextual information
because they have some potential influences on internal activities in
the Bitcoin blockchain.

2.3 OVERVIEW OF BITCOIN AND BLOCKCHAIN RESEARCH

Blockchain is a vast research field involving algorithms, cryptography,
formal software verification, database systems, computer security, sys-
tem architecture, data security, and economics. To understand the
scope of this research domain, I describe previous surveys that related
to the blockchain. I started with previous surveys on blockchain tech-
nology to identify possible research challenges. After that, I looked
at blockchain analysis work to extract research questions and anal-
ysis methods that researchers have explored. As this thesis focuses
on Visualization and Visual Analytics (VA), I identified the work that
reviews visualizations and tools to explore blockchain data.

2.3.1 Reviews on blockchain research challenges

I found a total of 15 existing literature reviews on blockchain research.
Five articles described the research challenges of blockchain in gen-
eral [12, 48, 97, 103, 177]. Two articles focused on Bitcoin and cryp-
tocurrency blockchains [23, 158]. Four articles provide bibliographic
analysis [55, 100, 159, 176]. The other four surveys were dedicated to
the security and privacy issues [30, 49, 81, 167]. I found four main
research challenges repetitively identified in those surveys.

13



14 BACKGROUND ON BITCOIN AND BLOCKCHAIN TECHNOLOGY

SYSTEM PERFORMANCE concerns the scalability and availability of
the blockchain network when the size and the volume of trans-
actions grow [48]. Scalability problems occur from the growing
size of the blockchain, the block size limitation, and the time
interval between blocks. Availability concerns the increased vol-
ume of transactions on throughput (i.e., how many transactions
the blockchain can process per second) and latency (i.e., waiting
time for adding a block to the blockchain).

SECURITY ISSUES are critical to blockchain systems as transactions
need to be stored correctly in the peer-to-peer network. Secu-
rity problems involve double-spending, mining-related attacks,
client-side security threats, and network attacks [30]. Mining at-
tacks were listed directly as a challenge in several surveys as
mining is the consensus protocol of many blockchain networks.
For example, 51% of computational power (or even less than
that) can alter transaction history in the blockchain. Miners per-
form selfish mining by withholding validated blocks to gain
more profits but waste the overall resources.

PRIVACY AND ANONYMITY issues are related to the fact that the
identity of users should be anonymous, and their personal data
should be protected. Users are pseudonymous in blockchain as
they use public addresses to conceal their true identities. How-
ever, address clustering heuristics can group addresses that may
belong to the same user [30]. Mixing services can tackle privacy
and anonymity by hiding the trace of users’ transactions [158].

LAWS AND REGULATIONS have been actively developed by many
governments to regulate cryptocurrencies and blockchains in
recent years. Cryptocurrencies are the main focus of the cur-
rent rules to prevent money laundering and impose taxation
on blockchains’ financial activities. Some countries even made
cryptocurrency tradings illegal as they threatened the author-
ity of central banks [103]. As the new blockchain applications
emerged, especially smart contracts, the regulation guidelines
are not yet available, which may delay adopting the blockchain
technology [12].

Three dedicated surveys highlighted the importance of blockchain
analysis in practice. Bonneau et al. [23] argued that current work did
not provide adequate tools to assess blockchain in practice. Tschorsch
and Scheuermann [158] described alternative approaches to solve the
technical challenges above, but the consequence in practice remains
unclear. Merediz-Sola and Bariviera [100] suggested that interdisci-
plinary work on inefficiencies in the Bitcoin market and in-depth be-
havioral analysis were missing in the current work. This thesis pro-
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poses both the in-depth analysis result and the tool for studying min-
ing behavior in the Bitcoin blockchain to address these concerns.

2.3.2 Reviews on blockchain analysis

Blockchain analysis work aims to analyze and detect interesting be-
haviors and possible vulnerabilities in the current blockchain solu-
tions. The results from this kind of work suggest evidence and solu-
tions to those problems and challenges described in the previous sec-
tion. Researchers applied data analysis methods to investigate block-
chain data. I summarized three main methods usually applied: game
theory, graph analysis, and data mining.

GAME THEORY has been used widely to analyze the incentives of
theoretical agents and assess mostly security issues in block-
chain protocols. Azouvi and Hicks [7] surveyed game-theoretic
models applied to cryptographic and distributed systems and
described existing work that proposed models to cryptocurrency
blockchains and their limitations. Liu et al. [96] reviewed exist-
ing works analyzing privacy, mining, and economic issues on
blockchains. Most of the works they found heavily focused on
the incentive of miners and mining pools as they were the lead-
ing players in the consensus process.

GRAPH ANALYSIS is a primary technique to analyze the intercon-
nection of transactions, addresses, or entities as blockchain data
are represented in the graph data structure. Ankora et al. [2]
provided extensive technical backgrounds on graph analysis in
multiple blockchains, including Bitcoin, Monero, Zcash Ethereum,
Ripple, and Iota. Wu et al. [171] summarized the past work into
three steps: network modeling, network profiling, and network-
based detection. First, cryptocurrency transactions were repre-
sented as graph data (network modeling). Then, researchers can
extract features such as clustering coefficient, centrality, and net-
work motif from the graph representation (network profiling).
Finally, researchers can use those features for many analysis
tasks, including entity recognition, transaction pattern recogni-
tion, illicit activity detection, and transaction tracking (network-
based detection). Interestingly, the authors reported that current
research did not explore much on dynamic networks, mixing
services, and early warning of misbehavior.

DATA MINING TECHNIQUES allow researchers to discover patterns
from large blockchain transaction data. Liu et al. [93] described
data preparation techniques in cryptocurrency transaction data
and summarized previous works into three research questions:
1) traceability and linkability issues, 2) collective user behavior,

15
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and 3) individual user behavior. In the survey, data mining tech-
niques have been used to 1) predict entity types (e.g., exchange,
wallet, mining), 2) predict fraudulent entities, 3) forecast cryp-
tocurrency price, and 4) anomaly detection. Li et al. presented
a dedicated survey to anomaly detection methods. They sum-
marized four main techniques (i.e., statistical, machine learning,
deep learning, and graph learning) and discussed the advan-
tages and drawbacks of each technique.

As these techniques are commonly used to analyze the blockchain
data, research articles usually reported the analysis results at the ag-
gregated level or limited study time interval. Visual Analytics (VA)
framework combines analysis methods and visualization that allow
analysts to adjust model parameters and analyze the result in dif-
ferent levels of detail. However, blockchain VA tools were still rarely
found and included in the current surveys.

2.3.3 Reviews on blockchain visualization tools

Blockchain tools facilitate the exploration, analysis, and monitoring
of activities in the blockchain. In contrast to analysis literature, users
can interact with tools to filter the data they want to investigate, drill
down, roll up, or jump into the related information. I found three
existing surveys dedicated to this topic.

¢ Balaskas and Franqueira [8] examined 13 tools for the Bitcoin
blockchain available on the internet. They proposed a taxon-
omy based on analysis themes: analysis of entity relationships,
metadata, money flows, user behavior, transaction fee, and mar-
ket/wallets. The found tools are mainly able to track and moni-
tor cryptocurrency values, and therefore help detect fraudulent
transactions.

* Bartoletti et al. [9] surveyed 15 Bitcoin and cryptocurrency tools
found in academic articles and websites. The tools in their sur-
vey were classified based on analysis goals: anonymity, mar-
ket analytics, cybercrime, metadata, and transaction fees. For
each analysis goal, the authors further specified the kind of
blockchain-related data used in the tools, such as transaction
graphs, address tags, IP addresses, mining pools, exchange rates,
and lists of DDoS attacks.

e Sundara et al. [148] reviewed 8 Bitcoin tools available on the
internet and briefly described visual representations and im-
plementation techniques. Most tools in their survey performed
real-time monitoring for Bitcoin transactions. Nonetheless, the
authors neither performed an exhaustive search nor proposed a
method to classify the tools they found.



2.4 CONCLUSION

The first two surveys proposed a classification of blockchain tools
based on analysis tasks. The last article is the only previous work that
surveyed visualization tools. All of the surveys include only Bitcoin
blockchain tools which are available at their publication date. Many
aspects of the surveys on this topic are still missing, including tools
targeted at different types of blockchain, blockchain data, and visual-
ization.

2.4 CONCLUSION

This chapter describes three main types of blockchain and provides
a detailed explanation of the mechanism behind the Bitcoin block-
chain. I divided the elements of Bitcoin into three layers: 1) financial
transactions, 2) mining economy, and 3) the peer-to-peer network. To
understand the scope of blockchain research, I summarized the re-
search challenges in previous surveys on Bitcoin and blockchains. I
then focused on data analysis and visualization, which is the topic of
the thesis. Visual Analytics (VA) is a promising method to apply for
Blockchain analysis, but the comprehensive survey was still missing.
In the next chapter, I extend the survey to include more tools in other
blockchains and propose a new classification scheme to consider data,
analysis, visualization, and users.
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SYSTEMATIC REVIEW OF BLOCKCHAIN DATA
VISUALIZATION

To assess the current state-of-the-art in blockchain Visual Analytics
(VA), T conducted a comprehensive review from visualization arti-
cles, Exploratory Data Analysis (EDA) articles, and online sources. I
systematically assessed the motivations and characteristics of each
source. Then, I defined a classification scheme to group visualizations
based on five aspects: target blockchains, blockchain data, task do-
mains, target users, and visualization types. In the end, I summarized
the start-of-the-art and present research challenges in blockchain VA
that would benefit from future research.

This chapter is an updated version of my original article published
at IEEE Transactions on Visualizationand Computer Graphics (TVCG)
[153]. The article was led by myself and co-authored with my su-
pervisors: Nicolas Heulot, Jean-Daniel Fekete, and Petra Isenberg.

3.1 DATA COLLECTION

I collected articles and online sources from the internet using specific
keywords and manually filtered sources relevant to blockchain visu-
alization. I worked on searching blockchain visualization sources in
April 2019 and constantly updated the sources after publishing the
systematic review article.

3.1.1 Identifying search idioms

I used a combination of blockchain-related terms with visualization-
related terms to retrieve relevant sources for blockchain visualization.
I also added analysis-related terms because these sources often used
blockchain visualization to report empirical findings.

* Blockchain-related terms: I chose four keywords that commonly

refer to blockchain technology: “blockchain,” “bitcoin,” “cryp-
tocurrency,” and “ethereum.”

* Visualization-related terms: To narrow down the search result
to tools related to visualization techniques for blockchains, I
used the character sequence “visual” to cover keywords such as
“visualization,” “visual analytics,” “visualizing,” etc.

7
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¢ Analysis-related terms: I used the character sequences “data
analy” and “graph” to retrieve sources that did not specifically
use any “visual”-related key terms.

The search idioms are relatively broad to optimize for recall rather
than precision of the search results.

3.1.2  Searching academic articles

First, I searched relevant academic articles with the search idioms
defined above in six scientific databases: 1) IEEE Xplore, 2) ACM Dig-
ital Library, 3) ScienceDirect, 4) DBLP, 5) Springer Link, and 6) Google
Scholar. Then, I combined search results from these six databases and
removed duplicate articles in multiple databases. Next, I screened the
returned results by reading the title of returned articles one by one
and selected articles that seemed to include blockchain visualizations
beyond simple charts. If the title did not clearly describe an article’s
relevance, I also read the abstract before deciding on inclusion in our
survey. Inclusion criteria were: a) the article is related to VA on any
blockchain, and b) the article includes EDA on any blockchain tech-
nology and uses visualization to communicate results. I decided to
include EDA articles to understand possible questions that researchers
are interested in and common visualization types they used to convey
their results.

3.1.3 Searching online web-based visualization

To collect blockchain visualization tools that are available on the in-
ternet, I search idioms from the combination of (“blockchain” OR
“bitcoin” OR “cryptocurrency” OR “ethereum”) AND (“analysis” OR
“analytics” OR “visualization” OR “visual analytics” OR “graph” OR
“chart”) on Google Search and retrieved the first 100 results. I looked
at each web page one by one and checked whether the web page con-
tained blockchain visualizations. In the case of web pages that con-
tained links to other visualization tools, I followed each link in the
web page and added the link to our list. The web page had to con-
tain interactive graphics showing raw or aggregated data stored on
a blockchain to be selected. I excluded web pages that showed only
market data on cryptocurrency exchanges (e.g., the current $ value of
a Bitcoin).

At the end of the data collection phase, I collected a total of 110
blockchain visualization sources: 20 visualization articles (18%), 43
Exploratory Data Analysis (EDA) articles (39%), and 47 online web-
based visualizations (43%). I include references to all visualization
sources: visualization articles (annotated with [V#]), EDA articles ([A#]),
and online sources ([O#]) in Table 2, Table 3, and Table 4, respectively.



3.2 CLASSIFICATION SCHEME AND METHODOLOGY 21

Classification Scheme of Visualization on Blockchain Data

Target Blockchains Blockchain Data Target Audiences Task Domains } { Visualization Types

« Bitcoin « Blockchain components « Novices « Transaction detail analysis « Charts

« Ethereum « Entities ¢ Intermediates « Transaction network analysis « Time series

« Others « Nodes « Experts « Cybercrime detection « Tree and graph visualizations
+ Mining « Cryptocurrency exchange « Multi-dimensional
+ Network activities analysis visualizations

External data

Peer-to-peer (P2P) network e Map-based visualizations
activity analysis
Casual/entertaining information
communication

Casual visualizations

Figure 8: The classification scheme of blockchain data visualizations

3.2 CLASSIFICATION SCHEME AND METHODOLOGY

I considered many visualization-related categories such as data, tasks,
types of visualizations, or end-users. After several rounds of open
coding with an evolving code-set, I converged on five main aspects
for delineating blockchain visualization sources: 1) target blockchains,
2) blockchain data, 3) target audiences, 4) task domains, and 5) visual-
ization types. Figure 8 gives an overview of the classification scheme,
and Table 1 summarizes the number of sources in each category by
source type. Notice that the total counts and percentages do not neces-
sarily correspond to 110 sources (100%) as sources may have included
multiple types of visualizations in the classification scheme.

3.2.1  Target Blockchains

I extracted the blockchain that each visualization source targeted. The
Bitcoin blockchain (69%) was the most common to be visually repre-
sented. This is not surprising because Bitcoin is the oldest running
cryptocurrency blockchain and is still widely used nowadays. The
Ethereum blockchain (28%) was the second-most common visually
represented blockchain. I found that other blockchains (15%) were
mostly cryptocurrency blockchains, such as Namecoin, Litecoin, Doge-
coin, and Dash. Only two sources visualized the data on Hyperledger,
an open-source consortium blockchain.

3.2.2  Blockchain Data

I categorized seven different types of blockchain data that appeared
in visualization sources.

BLOCKCHAIN COMPONENTS (80%) are fundamental data types stored
in public ledgers, including transactions, addresses, blocks, and
smart contracts.
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Table 1: The number of blockchain data visualization sources for each data
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ENTITIES DATA (19%) contains the identity of users who own the
addresses or accounts in the blockchain. In Bitcoin, it requires
address clustering heuristics or external sources to identify en-
tities from anonymous addresses.

NODES (12%) ensure consensus through mining to verify transac-
tions and store them in the public ledger. The data from nodes
includes the IP address of nodes and inferred locations.

MINING ACTIVITY STATISTICS (22%) can be directly calculated from
the blockchain, such as, for Bitcoin, the average miner’s speed to
solve the proof-of-work problem (hash rate), mining difficulties
over time, and the amount of reward to the successful miners.

NETWORK ACTIVITIES (29%) displayed aggregated statistics of the
whole blockchain network. Network activity data usually in-
cluded the number of unique addresses used, the total number
of transactions recorded in a given time period, the number of
transactions waiting to be confirmed (mempool), and the num-
ber of Unspent Transaction Outputs (UTXOs).

EXTERNAL DATA SOURCES (29%) convey meaningful contexts such
as cryptocurrency exchange rates, online news, socio-economic
data (e.g., percentage of internet users, Gross Domestic Prod-
uct (GDP) per capita, or the Human Development Index (HDI)),
social media information, or even Google Trends data.

3.2.3 Task Domains

I categorized blockchain visualization sources into six task domains
to detect goals for developing, analyzing, and exposing existing tools.
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[V1] Ahmed et al. X X
[V2] BlockChainVis X X X X X
[V3] Bogner X X X X X X X
[V4] Chawathe X X X | x X
[Vs] Bitconeview X X X | x X X
[V6] Hao et al. X X X [ x X X X
[V7] GraphSense X X X X X [ X X X
[V8] Isenberg et al. X X X X | x X
[Vg] BitConduite X X X X | x X X X
[V10] Blockchain explorer | x X X X | x X X X
[V11]McGinn et al. 2016 | x X X X X X X
[V12] Norvill et al. X X X X X
[V13] BiVA X X X X X X
[V14] HyperSec X | x X X X X X X X X
[V15] Schretlen et al. X X X X X
[V16] BitVis X X X X X X X X
[V17] Chronograph X X X X X X X
[V18] SuPoolVisor X X X X X X X X X
[V19] BitExTract X X X X X [ x X X X X
[V20] SilkVisor X X X X X X X X
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Table 3: List of exploratory data analysis article sources
Blockchain Data Audience Task Domain Visualization Type
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[A1] Akcora et al. X X X X X X X
[A2] Algassem et al. X X X X X X
[A3] Anoaica and Levard X X X X | x X X X
[A4] Aw et al. X X X X X X X
[A5] Badev and Chen X X X X X X X X
[A6] De Balthasar et al. X X X X X X X
[A7] Bartoletti et al. X X X X X X X
[A8] Bartoletti and Pompianu | x X X X X X
[Ag] Bistarelli et al. 2020 X X X | x X X
[A10] Bistarelli et al. 2018 X X X X X
[A11] Cao et al. X X X X X X X
[A12] Chang and Svetinovic X X X X X X
[A13] Ting Chen et al. X X X X X X
[A14] Weili Chen et al. X X X [ x X X X X
[A15] Di Battista et al. X X X X X X
[A16] Fujiwara and Islam X X X X X X X
[A17] Gao et al. X X X X | X X X X X X
[A18] Gebraselase et al. X X X X X X | x X X X
[A19] Guo et al. X X X X X X X
[A20] Huang et al. X X X X [ X X X X X X
[A21] Jiang and Liu X X X X X X X
[A22] Kappos et al. X | x X X | X X X X X
[A23] Kondor et al. X X X X | x X X
[A24] Lee et al. X X X X X X X
[A25] Li et al. X X X X X X X X X
[A26] Lischke and Fabian X X X X X X X X X X X X X
[A27] Maesa et al. X X X X X X
[A28] McGinn et al. 2018 X X X X X X X
[A29] Meiklejohn et al. X X X X X X X X
[A30] Moser et al. 2013 X X X X X X X
[A31] Moser et al. 2018 X X X X X X
[A32] Norbutas X X X X X X X
[A33] Parino et al. X X X X X X X X X
[A34] Phetsouvanh et al. X X X [ x x X X X
[A35] Pinna et al. X X X X | X x X X
[A36] Reid and Harrigan X X X X X X X X
[A37] Romiti et al. X X X X X X X X X X X
[A38] Ron and Shamir X X X X X X
[A39] Vallarano et al. X X X X X X X X
[Ag0] Wang et al. X X X X X X X X
[A41] Wang and Liu X X X X X X
[A42] Zhao et al. X X X X X X
[A43] Zheng et al. X X X X | X x X X




3.2 CLASSIFICATION SCHEME AND METHODOLOGY

Table 4: List of online web-based sources
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[O1] EthStats.io X X X X X X
[O2] Alethio X X X X
[O3] BitBonkers X X X X X
[O4] Bitcoin Globe X X X X X
[Os5] BitcoinWisdom X X X X X X X X X
[O6] Etherchain X X X X X X X X X X
[O7] ChainFlyer X X X X X X
[O8] BitForces X X X X X
[O9g] BitInfoCharts X X X X X X X X X X X
[O10] Blockchain.info X X X X X X X X X X X X X X
[O11] Blockchair X X X X X X X X X X X
[O12] BlockSeer X X X X X
[O13] BTC.com X X X X X X X X X X X X X
[O14] Bitcoinity X X X X X X X X X
[O15] Coin Dance X X X X X X X X X
[O16] CoinDesk X X X X X X X X X
[O17] DailyBlockchain X X X X X
[O18] DashRadar X X X X X X X X X X X
[O19] Dune Analytics X X X X X X X X X X
[O20] Bitcoin Big Bang X X X X X
[O21] Ethernodes.org X X X X X X X X X
[O22] Etherscan X X X X X X X X X X X X X
[O23] EtherView X X X X X
[O24] Ethviewer X X X X X X
[O25] Ethplorer X X X X X X X
[O26] Plantoids X X X X X
[O27] Gastracker.io X X X X X X X X X
[O28] Interaqt X X X X X
[O29] Federal Bitcoin X X X X X
[O30]Johoe’s Mempool X X X X X X
[O31] Symphony X X X X X
[032] OXT X X X X X X X X X X
[O33] Bitcoin Visuals X X X X X X X X X
[O34] Hyperledger Explorer X | x X X X X X X X
[O35] BitListen X X X X X
[O36] BitcoinCity X X X X X
[O37] EthStats.net X X X X X X X X
[O38] Blockchain 3D Explorer | x X X X X
[O39] Statoshi.info X X X X X X
[O40] On Brink X X X X X
[O41] TradeBlock X X X X X X X X X X X X
[042] TX Highway X X X X X
[O43] Bitcoin Monitor X X X X X
[O44] Bitcoinrain X X X X X X
[O45] Bitcoin VR X X X X X
[O46] Wizbit X X X X X X
[O47] BitNodes X X X X X X
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These task domains are not mutually exclusive; in other words, a
visualization source could target multiple task domains.

TRANSACTION DETAIL ANALYSIS (37%): Transaction detail analy-
sis tools often expose basic statistics on the level of individ-
ual transactions, of blocks, and sometimes related to individual
blockchain users (entities) such as individual people, exchange
platforms, dark marketplaces, gambling services, or companies.

TRANSACTION NETWORK ANALYSIS (40%): A blockchain transac-
tion network is a bipartite graph connecting addresses through
transactions. Most of the sources targeting this task domain are
EDA articles that analyzed transaction networks and described
the structures and dynamics of blockchain transaction networks.
Visualization articles and online sources allowed for interactive
exploration of transaction networks based on specific events or
groups of entities.

CYBERCRIME DETECTION (19%): Cybercrime is a serious threat to
the use of blockchains. This task domain is particularly common
for the cryptocurrency community because of the historical fre-
quency of fraudulent activities (e.g., money laundering and ille-
gal trading) as well as cyberattacks (e.g., denial-of-service and
Sybil attacks) on most cryptocurrency blockchains.

CRYPTOCURRENCY EXCHANGES ANALYSIS (10%): Cryptocurrency
exchanges are an important target domain, particularly cryp-
tocurrency blockchains such as Bitcoin. Tools in this target do-
main present exchange market statistics and financial data re-
lated to different cryptocurrencies, such as the exchange rate
between a cryptocurrency value and the US Dollar. In this re-
view, I did not systematically collect all tools focused on market-
related data without including some data stored on a block-
chain. A comprehensive review of online cryptocurrency ex-
change sources can be found in my EuroVis poster [152].

P2P NETWORK ACTIVITY ANALYSIS (33%): This target domain con-
cerns the presentation of aggregated statistics that gives an overview
of activities in the P2P network, such as mining, transaction
rates, transaction volume, mempool statistics, sometimes cou-
pled with inferred geographic locations.

CASUAL/ENTERTAINING INFORMATION COMMUNICATION (11%):
This kind of visualization was built on the web to attract the
attention of novice audiences to blockchain technologies and
engage them through casual information visualization.



3.3 DETAIL ANALYSIS PER TASK DOMAIN

3.2.4 Visualization types

I categorized blockchain visualization sources into six common visu-
alization types.

CHARTS (56%) showed predominantly two or three (never four) data
dimensions using basic representation types such as bar charts,
pie charts, histograms, scatterplots, word clouds, and heatmaps.

TIME SERIES (62%) were the most common visualization type be-
cause timestamps are essential in blockchain data. Most com-
monly, time series showed the activity of a blockchain address
or entity summarized across different time granularities. Time
series were often presented as line plots and bar graphs with
a temporal x-axis. Another time-oriented data visualization I
found is tilemaps [101], a heat map with calendar divisions to
encode activity statistics with one or two temporal dimensions.

TREE AND GRAPH VISUALIZATION (42%) was common to represent
the blockchains” money flows and transaction networks. These
representations typically showed the connection of transactions
from input addresses to output addresses. Node-link diagrams
were the most common technique to show the connectivity of
blockchain components. A few sources used different graph vi-
sualization techniques, such as an adjacency matrix, a Circos
diagram [85], or customized visualizations.

MULTI-DIMENSIONAL VISUALIZATIONS (7%) are designed for show-
ing data of higher dimensions than basic charts, including mul-
tiple glyphs, self-organizing maps, classification trees, 3D scat-
terplots, spider charts, and parallel coordinates.

MAP-BASED VISUALIZATION (9%) was a common technique to dis-
play geographical information associated with the blockchain.
I found point maps, density maps, choropleth maps, and 3D
virtual globes among all map-based sources.

CASUAL VISUALIZATIONS (11%) were a set of non-standard, custom-
made graphical representations of blockchain data as casual in-
formation visualizations [117]. These sources did not use com-
mon charts or plots as described above. Instead, they depicted
basic blockchain components in unique ways to attract atten-
tion.

3.3 DETAIL ANALYSIS PER TASK DOMAIN

As task domains are an important distinguishing factor in the classi-
fication scheme, I describe patterns of sources for each task domain
in greater detail and provide some representative examples.
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Figure 9: Representative examples of financial transactions and blocks vi-
sualizations: (A) BitInfoChart, (B) Schretlen et al. (Image from a
public presentation, used with permission of Uncharted Software
Inc.), and (C) Ethviewer.

3.3.1 Transaction detail analysis

Transaction detail analysis aims to analyze transaction patterns for
individual blockchain components (i.e., transactions, addresses, and
blocks) or derived entities in blockchain networks. Visualization sources
in this task domain can be divided into three main groups based on
the blockchain data visualized: 1) visualization of financial transac-
tions, 2) visualization of blocks, and 3) visualization of multiple enti-
ties.

Visualization of financial transactions: Visualizations of this cat-
egory allow intermediate users to search and explore the details of
cryptocurrency value transactions, addresses, and blocks. Most tools
in this task domain focus on representing financial transaction activi-
ties in a specific address or entity, such as the total received, sent, or
the balance amount over time in the form of time series. BitInfoCharts
[O9] uses line plot time series to show the balance amount of indi-
vidual addresses for several cryptocurrencies, including a conversion
rate to US Dollar (Figure 9 (A)). Other time series visualizations have
also been used. For example, Blockchain Explorer [V1o0] visualizes
weekly or monthly transaction volumes as a tilemap [101].

In contrast to most sources in this task domain that show aggre-
gated statistics on transactions and addresses, Schretlen et al. [V15]
proposed an interactive visualization for exploratory analysis of trans-
action data stored in the Bitcoin blockchain. It used a large-scale
tilemap (Figure 9 (B)) to display the distribution of Bitcoin transac-
tion values.

Visualization of blocks: Four sources displayed the content of blocks.
Chawathe [V4] applied a self-organizing map to create a low-dimensional
representation of transactions in a block. The self-organizing map
is visualized as a hexagonal grid of wind rose plots to show the
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BitConduite - Bitcoin entity explorer

i e

Figure 10: BitConduite is a VA tool to explore and filter entity groups in the
Bitcoin blockchain. (© 2021 IEEE)

main characteristics of transaction groups in a block. Ethviewer [O24]
shows the real-time transaction pool in Ethereum. The tool shows a
chain of linked blocks as a node-link diagram (Figure 9 (C)). In SilkVi-
sor [V20], blocks are illustrated as papers. The arrow connects papers
to show the block order. OXT Landscapes [O32] is the only source
that uses 3D scatterplots to represent attributes of blocks.

Visualization of multiple entities: Two sources presented finan-
cial information that allows experts to explore a single or a group
of entities and drill down to see transaction behavior. Attributes that
characterize entities were usually represented as multiattribute visu-
alizations. BitConduite [V9] is a visual analytics tool for exploring
entities in Bitcoin using multiple views (Figure 10). It allows analysts
to filter groups of entities visually from value range selectors (A) and
a classification tree (B). Then, the tool clusters entities with similar
activity patterns. It encodes them as radar charts to represent quanti-
tative attributes of entities, such as the number of transactions, time
active, and the average number of input addresses per transaction
(C-D). BitExTract [V19] is another visual analytics tool that also falls
in entity visualizations, focusing on the analysis of activities among
Bitcoin exchanges, including transactional volume, market share, and
connectivity between exchanges.

3.3.2 Transaction network analysis

Transaction network analysis sources generally showed three kinds of
information: 1) transaction networks, 2) the network of entities, and
3) value flow tracing the transfer of cryptocurrency values through
transactions over time. These sources were always represented as tree
and network visualizations. In particular, node-link diagrams were
most often used to show the connectivity among blockchain compo-
nents. A common technique to arrange nodes was the force-directed
graph layout.
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Figure 11: Representative examples of transaction network visualizations:
(A) BlockchainVis, and (B) The Bitcoin Blockchain Entity Ex-
plorer.
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Figure 12: Representative examples of entity network visualizations: (A) The
Bitcoin Big Bang, (B) The connection view in BitExTract, and (C)
Circos diagram in Parino et al.

A transaction network is a directed bipartite graph connecting ad-
dresses via a transaction. There are two kinds of nodes: one type for
addresses and one for transactions. Two kinds of directed edges exist
in such a graph. Input edges connect input address(es) to a transac-
tion, and output edges connect to output address(es).

Several visualization articles proposed tools to explore transaction
networks based on specific events. The BlockchainVis [V2] tool dis-
plays a fully connected network of a transaction or an address en-
tered by the user (Figure 11 (A)). McGinn et al. [V11] proposed a
system to display a transaction network on a large screen on which
users can pan, zoom, and hover over to geta better overview or more
detail. Blockchain 3D Explorer [O38] is the only tool in this domain
that visualizes a transaction network as a 3D graph. It also supports
virtual reality systems for Google Cardboard to explore the blockchain
network in an immersive way. Instead of showing a static transaction
network as a node-link diagram, Bitcoin Entity Explorer [V8] is an ex-
ception in that it presents a transaction activity timeline of a chosen
entity with a timeline-based squared graph layout connecting input
and output addresses over time (Figure 11 (B)).
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Figure 13: Representative examples of value flow visualizations: (A) Block-
chain.info, (B) BitConeView (© 2015 IEEE), and (C) The Bitcoin
visualization in BitInfoCharts.

A network of entities shows the connectivity between entities in
the blockchain network. Nodes represent entities, and edges repre-
sent connectivity through transactions. For example, in Bitcoin, an
edge represents the total amount of exchanged values between two
entities and is absent if no value was exchanged.

The Bitcoin Big Bang [O20] is an online visualization presenting a
network of entities as a node-link diagram connecting well-known
wallets and highlighting the transaction volume between them. It
adds a temporal dimension to the node-link diagram by arranging
the node distance from the center based on their first appearance
(Figure 12 (A)). BitExTract [V19] has a connection view that shows
the relationship of exchange entities using a circular network layout
to investigate the interaction of entities in the blockchain network
(Figure 12 (B)). Parino et al. [A33] describe a flow network of Bitcoin
transactions aggregated by country. The authors use a Circos diagram
[85], also known as dependency wheel, to visualize major countries’
total transactions (Figure 12 (C)).

A value flow presents traces of cryptocurrency value given a par-
ticular transaction or address of interest. Sources visualizing a value
flow usually used as a tree diagram to connect the values flowing
in chronological order. In this layout, a node represents a transaction
or address, and an edge represents the amount of value exchanged.
For example, Blockchain.info [O10] provides a tree diagram in which
users can click through tree levels to follow value flow from con-
nected input and output addresses (Figure 13 (A)). Instead of pre-
senting the value flow as a tree structure, BitConeView [V5] provides
a unique diagram showing the value flow of a seed transaction as it
appears in blocks from top to bottom (Figure 13 (B)).

All of the examples above present static graphs that do not consider
the timestamp of transactions. BitInfoCharts [Og] provides a unique
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Figure 14: Representative examples of cybercrime detection visualizations:
(A) Ahmed et al. and (B) Chronograph.

visualization that shows the flow of transactions over the entire his-
tory of a cryptocurrency blockchain as a kind of node-link diagram
arranged using a linear layout (Figure 13 (C)). The same kind of visu-
alization also appeared in McGinn et al. [A28] as an adjacency matrix
representation.

3.3.3 Cybercrime detection

The cybercrime detection task domain includes tools that can de-
tect suspicious transactions and entities or investigate cyber-attack
events. Sources in this task domain also include shared characteris-
tics with sources in the transaction detail analysis and transaction net-
work analysis domains. Additionally, they have particular user tasks
and subsequently focused features for cybercrime detection. Current
blockchain visualization tools for cybercrime detection focus on two
questions: 1) value flow analysis to see how cryptocurrency value is
propagated and 2) transaction network analysis to see how the block-
chain network reacted in light of cybercrime events.

One way to detect fraudulent financial activities in cryptocurrency
blockchains is to analyze the value flows of transactions. Di Battista
et al. [A15] and Ahmed et al. [V1] proposed transaction graph tools
to analyze Bitcoin stolen money mix in the transaction flow (i.e., taint
analysis). To analyze the degree of money mixing from the original
transaction, Di Battista et al. [A15] introduced a purity measurement,
the degree that a seed transaction is mixed with other transactions.
Ahmed et al. [V1] developed an interactive visualization tool to dis-
play taint propagation as a node-link tree visualization (Figure 14
(A)). They use a First-In-First-Out (FIFO) algorithm to track the dif-
fusion of tainted transactions in both forward (i.e., starting from a
stolen coin to the following transactions) or backward (i.e., tracing
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Transactions by Organization (C)

Figure 15: HyperSec is a tool to monitor security issues on the Hyperledger
blockchain. (A) The dashboard shows network statistics, recent
blocks, and open issues. (B) The transaction view displays trans-
action volume, size, and processing time. (C) The network view
shows traffic between nodes.

the previous transactions until the origin of a tainted coin is found)
directions.

Another kind of tool in this domain aims for transaction network
analysis on specific events or groups of entities. For example, BitVis
[V16] uses multiple graph visualizations with a filtering panel to
display transaction networks for detecting abnormal and suspicious
Bitcoin entities. Two articles from McGinn et al. [A28, V11] show
how their tool can be used to visualize a transaction network dur-
ing cybercrime attacks, including denial-of-service attacks where an
attacker tries to fill up a block with spam transactions. Chronograph
[V17] proposed a graph visualization tool to detect money launder-
ing transactions from a Graph Convolutional Network (Figure 14 (B)).
The positions of the nodes are set with a 2-dimensional projection
using Uniform Manifold Approximation and Projection (UMAP) tech-
nique. The BlockChainVis tool [V2] is another transaction network
tool that allows filtering specific parts of the transaction network dur-
ing an event of interest. It has been used to analyze the WannaCry
ransomware incident on May 12th, 2017 [A10]. Other EDA articles
performed ad-hoc analyses of transaction networks during attacks on
the Bitcoin network, including money laundry services [A6], online
drug marketplaces [A32], and Bitcoin thefts [A36].

I found only one tool dedicated to cybercrime detection in the
consortium blockchain. HyperSec [V14] extends the Hyperledger Ex-
plorer tool [O34] to monitor security issues on the Hyperledger net-
work (Figure 15). The tool consists of multiple dashboards to iden-
tify blockchain components, smart contracts, log files, configuration
changes, and network activities that could threaten the blockchain
network. Users can detect anomalies in blockchain activities from the
chart and further investigate individual transaction details.
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Figure 16: Representative examples of cryptocurrency exchange analysis vi-
sualizations: (A) Blockchain.info and (B) CoinDesk.

3.3.4 Cryptocurrency exchange analysis

Cryptocurrency exchanges convert cryptocurrency values into fiat
currencies, such as US Dollars and Euros. This kind of data is not
stored in the blockchain. Sources in this task domain either 1) cover
the conversion of cryptocurrency value to US Dollar for blockchain
components (Section 3.3.1), or 2) provide an additional view that re-
lates information on blockchain components to market statistics, such
as historical price, trading volume, and market capitalization.

The first type visualizes conversion rates for cryptocurrency val-
ues on blockchain components, such as individual addresses or blocks.
These sources are already described in the “transaction detail analy-
sis” task domain section (Section 3.3.1). The second type visualizes
cryptocurrency market statistics in separate charts to provide contex-
tual information. These sources mainly used time series to display the
historical exchange rate and market volume for different time scales
(i.e., hours, days, weeks, months) in addition to more detailed infor-
mation on individual transactions, addresses, or blocks. For example,
Blockchain.info [O10] provides a market view for various cryptocur-
rencies (Figure 16 (A)). CoinDesk [O16] is a unique online tool in this
category that shows summarized measures of several cryptocurren-
cies’ size and investment opportunities. It presents a spider chart to
compare multiple measures related to price, exchanges, social media,
developers, and the overall network size (Figure 16 (B)).

3.3.5 P2P network activity analysis

Blockchains are decentralized systems running with client nodes in a
Peer-to-Peer (P2P) network architecture. Understanding the activities
within the P2P network helps intermediate and expert users track the
current status of a block due to overall activities among participants
in the network. Sources in this task domain use two kinds of visu-
alizations: 1) time series to show the aggregated statistics of the rar
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Figure 17: Representative examples PP network activity visualizations: (A)
EthStats.net and (B) BitNodes.

network, and 2) map-based visualizations to show the geographical
distribution of blockchain usage around the world.

Most sources in this task domain present P2P network statistics
calculated from aggregated node activities in the blockchain network
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over time. All sources use time series visualizations to represent changes

in the blockchain network over time. Blockchain.info [O10] provides
a long list of time series charts to display a wide range of Bitcoin net-
work statistics, such as the total hash rate, average block size, total
transaction fee, mining difficulty, etc. Bogner [O8] proposed a dash-
board that presents time series and basic charts on Ethereum statistics
and highlights outlier data using anomaly detection techniques. Eth-
Stats.net [O1] provides a real-time dashboard for monitoring network
status and active nodes in the Ethereum blockchain (Figure 17 (A)).
Analyzing the global distribution of a blockchain network in-
volves observing the geographical distribution of blockchain nodes
and transactions. Public blockchain data does not inherently include
geographic information about senders, receivers, or blockchain nodes.
However, when nodes in the blockchain network have associated IP
addresses, these can be used to infer the geographic location with a
degree of uncertainty [15, 76]. The geographic origin of a transaction
can then be inferred from the IP address of the first node that relayed
it [79, 132]. They all display geography information in map-based
visualizations—the only task domain that uses this kind of visualiza-
tion type. I found 9 sources that display the number of nodes active in
the blockchain P2P network ([O6, Og, 018, O21, A26, A33, O47]) and
transaction origins ([O16, A38, O46]). For example, BitNodes [O47]
implemented a node crawler to gather reachable node locations to
estimate the global distribution of Bitcoin nodes (Figure 17 (B)).

3.3.6  Casual/entertaining information communication

Sources in this task domain generally provided original and experi-
mental visualizations of blockchain components distinct from those
used for the above task domains. These sources encoded, for exam-
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ple, attributes of transactions and blocks as custom objects—often in
3D—with animation and real-time updates. To show the wide variety
of visual encodings in this category, I briefly discuss a few examples:
BitBonkers [O3] shows live Bitcoin transactions as 3D balls falling
on a plate each time a new transaction broadcasts to the network.
BitcoinCity [O36] represents Bitcoin transactions as 3D toy models
of buildings along the road moving as new transactions are created.
BitListen [O35] presents transactions as animated bubbles floating
on the screen, producing notes that combine into improvised music.
Symphony of Blockchains [O31] includes a combination of interac-
tive visual representations of Bitcoin data. It allows web visitors to
browse blocks as a 3D visual representation and navigate through
a flight-simulator mode, along with background audio representing
the network hash rate and using a unique tone for each of the trans-
actions in the block. Bitcoin VR [O45] is an open-source project that
visualizes Bitcoin transactions as balloons flying over a 360-degree
view. Plantoids [O26] and On Brink [O40] represent Bitcoin block-
chain components as data physicalization [34].

3.4 DISCUSSION AND OPEN CHALLENGES

Even though the attention to the blockchain is increasing over the
years, visualization and visual analytics tools on blockchain data are
still rarely found in visualization research. There were only 20 visu-
alization articles (18%) in our survey. Most of the works were online
tools (43%) that display basic blockchain information or ad-hoc data
analyses published in research articles (39%). Consequently, I saw
opportunities for researchers to develop more advanced tools that
support higher-level and more in-depth studies of blockchain data. I
describe some open challenges in this emerging research field from
three perspectives: data, users, and visualizations.

3.4.1 Data

Blockchain technology produces a large transaction dataset which
provides opportunities to pseudonymize data in such granular de-
tails. However, the analysis and visualization of blockchain data are
challenging because blockchain activities keep and involve various
types of actors who use the blockchain in different ways. Blockchain
networks are much more complex than most social networks due to
their pseudonymous use of addresses and the heterogeneity of users’
behaviors. Besides, blockchains are regulated by automated mecha-
nisms, which are challenging to comprehend for non-technical audi-
ences.
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THE DOMINANCE OF CRYPTOCURRENCY BLOCKCHAINS: In this sur-
vey, most of the sources present cryptocurrency blockchain data,
in particular, Bitcoin and alt-coins. Ethereum-related visualiza-
tions usually focus on the cryptocurrency aspect of value ex-
changes among entities, not the smart contract functionality
that makes Ethereum different from Bitcoin. Some analysis arti-
cles present the analysis of smart contracts, but dedicated visu-
alization tools are still largely missed. Consortium and private
blockchains apply the same concept as public blockchains but
have different mechanisms (e.g., the transaction data structure
and mining protocol). So far, I found only Hyperfabric Explorer
and HyperSec that visualize these kinds of blockchains. There-
fore, a lot of exciting future work remains to be done in this
domain.

MINING TOOLS IN SOME BLOCKCHAIN DATA TYPES: The majority
of tools in the survey visualize blockchain components while we
miss VA tools that help analyze nodes and mining data. In par-
ticular, mining is an critical activity that ensures the integrity
and security of transaction data. This domain was rarely ex-
plored the past work. The existing tools on mining only show
summary statistics on hash rate, mining difficulty, and market
shares of mining pools. Nonetheless, the continuous growth of
mining activites raise questions on the economic incentive as
well as miners’” actions taken to keep the blockchain network
stable.

MISSING CONTEXT OF BLOCKCHAIN DATA: Most visualization sources
presented details about blockchain components and overviews
of network activities in the transaction detail analysis and P2P
network analysis task domains. However, those tools did not
provide contextual information for monitoring and analysis of
activities in the blockchain, including the identification of enti-
ties, geographic information, social network activity, or histori-
cal events. For example, there is an opportunity for VA tools to
help study the blockchain network in light of historical events,
such as volatility of market prices, cyber-attacks (e.g., bitcoins
stolen from Mt. Gox exchange, money laundering, and denial-
of-service attacks), government regulation, or changes in min-
ing rewards.

DEANONYMIZATION OF BLOCKCHAIN USERS: Blockchain users were
originally meant to be anonymous through non-identifiable ad-
dresses to create and sign in transactions. However, the iden-
tity of users will be revealed if people or enterprises post their
addresses openly and connect them to other pieces of identifica-
tion, such as usernames in public forums, their websites, or data
leaks from blockchain services. To understand how individual
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users use blockchains, information about which addresses be-
long to the same entities is required (e.g., individual users, busi-
nesses receiving Bitcoin for payment, or exchanges). Clustering
heuristics are effective strategies to group addresses that may
belong to the same entities [61, 107], while data mining mod-
els were proposed to classify different types of users [75, 179].
These methods can deanonymize users with a degree of un-
certainty. However, entity-based visualizations are, nevertheless,
rarely found in the current visualization work (e.g., [V9, V16,

Vig]).

BLOCKCHAIN DATA INFRASTRUCTURE: Accessing blockchain data
requires installing a full blockchain node and some technical
knowledge to parse the raw data. Data infrastructures should
provide easier access, update, and preprocessing of blockchain
data to facilitate blockchain visualization research. Some work
in this direction has emerged, such as BlockSci [78] and Graph-
Sense [V7], but it will need further development to become us-
able for visual analytics. Data infrastructures would allow re-
searchers on Bitcoin analysis tools to focus on designing analy-
sis tools rather than the data backend needed to extract block-
chain data, compute usage metrics, and make them accessible
for quick visual analysis.

3.4.2 Users

Blockchain enthusiasts and startups have developed online visualiza-
tions tools to understand what happens in and around blockchains.
Most of the online sources aim to communicate transaction details
and P2P network statistics for blockchain users. These sources only
use simple charts and time series visualization to display data on
the aggregated level. Nonetheless, many EDA articles in the survey
indicate the demand from researchers and blockchain experts for vi-
sualization tools to analyze the blockchain data in deeper detail.

IN-DEPTH ANALYSIS OF BLOCKCHAIN DATA: Blockchain analysis
articles often focused on a higher-level data analysis on the
blockchain network (i.e., the global blockchain network or longi-
tudinal study of P2P network analysis). The number of EDA arti-
cles indicates the demand for data analysis experts and decision-
makers. To better understand blockchain activities, it would be
an opportunity for the VA research to develop more advanced
tools that support higher-level and more in-depth analyses of
blockchain data. In particular, future VA tools should allow
experts to take on specific viewpoints such as individual enti-
ties in the network (e.g., people, enterprises, miners), historical
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events (e.g., cyber-attacks), or network-related events (e.g., halv-
ing days or forks).

TRANSACTION NETWORK ANALYSIS TOOLS: Most analysis articles
focused on transaction network analysis—indicating a current
research focus. However, a few tools exist that experts could use
to explore and monitor transaction networks in detail. Those
analysis articles often did not conduct an in-depth analysis of
the entire blockchain, probably because of the large data size
and the lack of simple ways to explore and statistically ana-
lyze the data in its entirety. Therefore, new visualization tools
would help analysts better understand different types of activi-
ties in the blockchain rather than global network statistics of the
blockchain data.

TASK-FOCUSED TOOLS FOR BLOCKCHAIN EXPERTS: There isalack
of tools tailored to the specific needs of particular experts, in-
cluding economists, regulators, and blockchain managers. Eco-
nomists want to understand activities on blockchains and com-
pare them with related economic activities in the real world.
Regulators want to identify the real-world identity of users and
detect possible money laundering transactions. Consortium block-
chain managers need to monitor the network and compare its
performance to other blockchains.

3.4.3 Visualization

Most visualization sources focused on using common chart types (i.e.,
time series and basic charts) with basic interaction techniques (i.e.,
querying and zooming) that give an overview of the blockchain net-
work. Those charts and interactions are not sufficient for advanced
analysis tasks, which require exploration on multiple levels of data
aggregation and to relate different factors.

MULTIPLE-COORDINATED VIEWS VISUALIZATION: Sources from EDA
articles and online sources usually provide many single view
charts showing a particular blockchain measure over time. How-
ever, single disconnected views make it difficult to relate mul-
tiple blockchain characteristics to each other. As numerous fac-
tors and actors interconnect and evolve, multiple-coordinated
visualizations would help analyze the cause and effect that drives
changes in the blockchain network. These multiple-coordinated
tools are mostly found in visualization articles. For example,
BitExTract [V19] proposes a dashboard with multiple chart el-
ements for analyzing transaction activities among Bitcoin ex-
change entities. Yet, additional sophisticated interaction tech-
niques for visual comparison [51] would help to connect views
and generate more comprehensive insights.
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VISUAL REPRESENTATIONS FOR TRANSACTION NETWORKS: Existing
network visualization sources present transaction networks and
value flows as static graphs at specific points of interest (i.e., a
time interval, a particular block, or a group of entities). In the
survey, there are 16 network online tools and visualization arti-
cles. However, those tools, except [Og, O20], do not consider the
temporal evolution of the network and, in other words, changes
in blockchain connectivity over time. The advancement in dy-
namic network visualization [11] will add a time dimension into
current network visualization sources and help experts explore
the changes in blockchain activities.

Transaction networks can be very large and heterogeneous. Hence,
they may not display precisely on the screen without filtering
the network to a manageable size. Clustering heuristic can help
simplify the raw graph into the entity network. To handle the
large graph, blockchain networks could benefit from dedicated
graph visualization layouts, such as Alvarez et al. [4], to inter-
actively display and navigate from the overview of the network
to focus on a particular subgraph of interests.

UNCERTAINTY VISUALIZATION: Much of the contextual informa-
tion related to Bitcoin comes with a degree of uncertainty. For
example, heuristics to cluster Bitcoin entities are not sure to cap-
ture Bitcoin entities with 100% accuracy, and IP addresses of
nodes in the P2P network are not necessarily reliable indicators
of the geographic location of a node. Moreover, analysis tools
that may label specific transaction patterns as fraudulent or
belonging to certain services (e.g., exchanges, mixing services,
etc.) may induce false predictions. Any uncertainty in the data
should be made evident in the visualization [72, 98, 113] and ex-
pose where viewers should be cautious about inferring insights
and making decisions on the data.

PROGRESSIVE VISUAL ANALYTICS: Exploring Blockchain data in-
volves navigating over large amounts of data for computing ag-
gregated values on selections of the transactions or over time
windows. These operations are usually simple to compute but
take a long time. Current visualization sources in the survey
mostly perform data computation offline. Doing the calcula-
tion offline means that the data exploration is limited to pre-
computed values. All the interactive sources were limited in
that respect. Novel tools could rely on progressive data anal-
ysis and visualization to present the intermediate result while
progressively compute the data [41, 147].

Techniques proposed by Boukhelifa et al. [24] could be applied
to continuously compute derived data when the Blockchain evolves.
Kinkeldey et al. report that BitConduite [V9] provides dynamic
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queries on time and attribute values to visualize aggregated in-
formation about Bitcoin transactions, but each filter operation
takes a minute or so to complete depending on the amount of
loaded data. Performing these operations iteratively using meth-
ods reported by Moritz et al. [105] would drastically reduce the
interactive latency and significantly improve the efficiency of
exploring Bitcoin data.

3.5 CONCLUSION

This chapter provides a systematic review of 110 blockchain data vi-
sualizations from both academic and online sources—a2o0 visualization
articles, 43 exploratory data analysis EDA articles, and 47 online web-
based tools. I classified those sources based on blockchain data, task
domains, and visualization types and described each task domain’s
different kinds of tools. Most of the online tools focus on PP network
analysis and transaction detail analysis task domains. EDA articles
show the demands from data analysis experts for more advanced
tools in transaction network analysis and cybercrime detection. Most
of the sources I found reported aggregated information. VA tools have
emerged to facilitate the exploration and monitoring of blockchain
data from overviews to detailed investigations. As the need for more
VA tools will grow, I outlined several opportunities and open chal-
lenges for future research in this domain.

In this thesis, I focus on mining which is an intriguing activity in
the Bitcoin blockchain. However, as I showed, VA tools to deeply ex-
plore this data are missing. In the next chapters, I propose a multiple-
coordinated visualization tool to relate various information sources
in the context of Bitcoin mining. The following chapters describe a
design study process with an economist expert, intermediate data
analysis results, and a VA tool as the outcome from the design study.
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THE EMERGENCE AND EVOLUTION OF BITCOIN
MINING POOLS

In the previous chapter, I outlined research challenges in blockchain
Visual Analytics (VA). One of the topics that are missed in current
work is task-focused tools for blockchain experts. As a consequence,
my work focuses on an in-depth analysis of an important activity in
Bitcoin called mining. Mining is a backbone mechanism to ensure the
integrity and security of transaction data in blockchains. Economists
are interested in mining as the activity generates new bitcoins circulat-
ing in the network from block rewards. However, empirical research
in Bitcoin mining needs more attention, and economists need a tool
to help access the data. I present a data analysis methodology, results,
and a VA tool in the following three chapters.

Bitcoin miners are assumed to be economic agents who invest in
mining hardware and compete to profit from mining. As the compe-
tition among miners escalated, mining pools emerged to reduce min-
ers’ risk and share more regular rewards among pool participants.
This chapter extracts both on-chain (i.e., transaction data and Bitcoin
statistics) and off-chain data (i.e., market price and other external fac-
tors) to investigate Bitcoin mining as an economic ecosystem. The
data and results help my economist collaborator empirically study
the dynamics of mining pools and miners” migration among pools
over the entire history of Bitcoin mining.

This chapter is written mainly based on my original article pub-
lished at the Blockchains and Smart Contracts workshop (BSC 2020-
2021) in IFIP International Conference on New Technologies, Mobility
& Security [156]. The work was led by myself in collaboration with
an economist, Nicolas Soulié, and my supervisor, Petra Isenberg.

4.1 BITCOIN MINING AS AN ECONOMIC ECOSYSTEM

In Section 2.2.2, I described the Bitcoin mining mechanism as min-
ers follow the proof-of-work protocol to obtain a mining reward and
participate in mining pools to share more regular rewards among the
mining pool participants. At the time of writing, known mining pools
contribute about 99% of the total hash rate and have become the dom-
inant actors of the mining activity. As miners and mining pools are
driven by monetary incentives to perform mining operations, they
consider multiple factors from the competition among them: the mar-
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Figure 18: As an economic system, Bitcoin mining consists of three actors:

(A) miners, (B) mining pools, and (C) the Bitcoin blockchain. (D)
External factors, such as market price, news, and social media,
can also affect miners’ decisions to participate in this activity. (Im-
age from https://miningpools.com/)

ket share of mining pools, the mining reward from the blockchain,
the Bitcoin market price, and the cost of mining. Figure 18 models Bit-
coin mining as an economic ecosystem considering interaction among
three main actors and external factors.

* Miners participate in mining pools to get mining rewards. They
invest in mining hardware and pay electricity costs in expecta-
tion to make a profit. Miners typically join a mining pool to
increase their chance of a reward [94, 131]. Considering differ-
ent mining pools, they decide to participate in mining pools or
move to another pool—called pool hopping—to maximize their
profit [13]. Besides, miners can also cross pool with more than
one pool at the same time [127].

* Mining pools merge the computational resources from miners to
maximize the chance to obtain mining rewards frequently and
share them among miners. The market share indicates the rela-
tive size of the pool. Mining pools compete with other pools to
attract more miners by providing better reward incentives. The
reward incentives that I consider in this study include reward
payout schemes [128] and imposed pool fees.

* The Bitcoin blockchain pays a mining reward when miners or min-
ing pools successfully mine a new block and broadcast it to the
blockchain network. The mining reward includes block reward,
newly generated bitcoins from the network, and transaction fees
from transactions included in the block. Its protocol regularly
adjusts the mining difficulty to maintain the block discovery
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rate and half the block reward every 210,000 blocks (so-called
halving days) to control the bitcoins supply in the system.

* Apart from the above actors of the Bitcoin mining activities, ex-
ternal factors also impact miners” decisions to mine Bitcoin. For
example, market price determines the mining profit when ex-
changed to fiat currencies, such as US Dollars and Euros. News
and social network sentiments can encourage or discourage po-
tential miners from investing in this activity.

In this chapter, I explore the relationship between mining pools
and the Bitcoin blockchain network. Chapter 5 will investigate the
behavior of individual miners and their impact on mining pools. Fi-
nally, Chapter 6 combines data and analysis tasks from both preced-
ing chapters and proposes a visual analytics tool to help economists
and Bitcoin miners to understand the Bitcoin mining economy from
these three main actors.

4.1.1  The Dangers of Mining Pools

In the Bitcoin mining ecosystem, three significant risks to its security
and sustainability exist: 1) The risk that one pool becomes dominant,
2) The risk that mining stops carrying economic incentives and min-
ers stop participating, and 3) The carbon footprint of Bitcoin mining.

As mining pools represent a large group of miners, they play a ma-
jor role in ensuring miners’ consent income and potentially danger-
ous position in the network. To guarantee the security and trustwor-
thiness of the Bitcoin network in the long term, none of the mining
pools (or the combination of a few pools) should dominate the mar-
ket. When one or more collaborating pools gain the majority of the
total mining power, they can perform a 51% majority attack to double
spending their bitcoin values and prevent other miners from propos-
ing new blocks [25]. As large and specific investments are needed to
mine successfully, only a few large and persistent mining pools dom-
inate the market share [127]. Hence, the danger of a 51% attack is real
and needs to be monitored constantly.

Another possible attack is selfish mining or block withholding. The
attack occurs when a mining pool or miner intentionally withholds
a new block they found and continues mining from the withheld
block to form a longer chain. Later, they broadcast their chain to the
network. If their chain is the longest one, it will become the main
chain, and the mining pool will obtain all rewards from all withhold-
ing blocks. In contrast, the block mined by an honest miner or pool
becomes invalid in an orphan chain. A study shows that this attack
is possible if a selfish mining pool has more than 33% of the market
share [39]. This potential attack raises questions on which factors lead
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to mining pool concentration and how miners collectively react when
concern about an attack emerges.

The second issue relates to financial incentives and mining rewards.
On what is called a “halving day”, the Bitcoin protocol halves the
block reward. Halving days happen every 210,000 blocks (x4 years)
to control the Bitcoins supply. There will be 33 halving days in to-
tal, after which transaction fees will remain the only compensation for
miners. Transaction fees are expected to increase to compensate for
the decrease of block rewards [109]. A theoretical study previously
cast doubt on the compensation of these freely fixed transaction fees
[66]. In fact, early evidence showed that transaction fees are relatively
deficient and seem to be driven by social norms rather than economic
reason [106]. Analyzing miners” behavior around halving days and
the evolution of transaction fees allows observing the consequence
of mining rewards on the behavior of mining pools and individual
miners.

The third issue concerns the carbon footprint of Bitcoin mining.
Tremendous amounts of electricity are needed to run mining hard-
ware [14, 87, 146, 161]. Bitcoin price increases have incentivized min-
ers to compete in a prisoner’s dilemma to upgrade their hardware
continuously [163]. This violates the one-CPU-one-vote policy initially
envisioned by Nakamoto [109] and causes a negative externality on
climate change [44, 99, 104]. Alternative solutions, such as proof-of-
stake, have been recently promoted to reduce the excessive energy
consumption of cryptocurrencies [110]. Analyzing miners’ revenue
function and the environmental impact would help inform policy-
makers to develop sustainable mining regulation and policy [50, 73,

157, 161]

4.2 RELATED WORK

As mining is central to how Bitcoin and other cryptocurrencies work,
researchers have started to analyze it more closely. Much of the re-
search on Bitcoin mining and mining pools is theoretical in nature
and focuses on analyzing reward rules [43, 128, 138], mining strate-
gies [65, 90], and attacks [39, 74, 83, 89].

Yet, empirical analyses on the Bitcoin mining economy have re-
cently appeared. On the development of Bitcoin mining activity, Prat
and Walter [118] built a structural model to explain the rapid growth
of the hash rate considering Bitcoin market price and mining hard-
ware evolution. They showed that Bitcoin mining operates under com-
petitive conditions. Song and Aste [144] estimated the mining cost
from energy to run the hardware and found that the ratio between
mining cost and transaction volume remained in the same range from
2010 to 2020. Moser and Bohme [106] concluded that transaction fees
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between 2011 and 2014 were not totally driven by bitcoin demands
but followed the conventions of other bitcoin users.

The rapid growth of mining activity was associated with the rise
of mining pools as intermediaries to collect mining rewards. Mining
pools raised concerns on the sustainability and security of the Bitcoin
blockchain as they posed a threat of the majority attack. Apart from
theoretical studies on the mining pools, as comprehensively reviewed
by Liu et al. [96], a few studies had analyzed the evolution of mining
pools based on empirical data.

An early work from Wang and Liu [165] provided evidence that the
top mining pools gained a larger market share while the hash rate
grew exponentially between Mar. 2013 and Mar. 2014. The authors
analyzed the mining profit regarding hardware cost and electricity
price and concluded that the profit became negative when the hash
rate increased faster than the Bitcoin price. Another work by Romiti
et al. [127] analyzed the distribution of mining pools from Dec. 2013
to Dec. 2018 and found that 3—4 mining pools controlled >50% of the
hash rate. The authors further analyzed the reward payout among
the top-3 mining pools and found that a small number of members
received a total of >50% of the reward from the pool. In addition, the
authors detected cross-pool miners who received rewards from mul-
tiple mining pools and provided evidence that miners tend to trans-
fer their rewards to exchange services and wallet providers. Wang et
al. [164] analyzed the daily hash rate of the top mining pools from
Feb. 2016 to Jan. 2019. They found that mining pools increased their
hash rate exponentially to maintain their market share. Mining pools
were caught in the Prisoner’s Dilemma. They raise their hash rate to
compete with other pools, but their mining profit diminishes. Finally,
Wang et al.’s data confirmed that pools tended to collect transactions
with higher transaction fees to maximize their profit.

My work studies mining pools more broadly using various parame-
ters instead of focusing on just a few mining pools and a limited time-
frame. As such, my work overlaps with previous results (e.g., Romiti
et al.’s study of mining pool distribution), but extends the past work
with custom visualizations. My work shows the distributions of min-
ing pools” market shares and help detect changes in their ranks over
time. I also provide a first exploratory analysis of the evolution of
reward rules and locations, which has not been studied in previous
empirical works. The findings provide new information toward more
realistic theoretical models of the Bitcoin mining organization.

4.3 DATA PREPARATION

To analyze the evolution of Bitcoin mining over time, I retrieved coin-
base transactions (the first transaction in each block) from the Bitcoin
genesis block (the first-ever mined block) until the last block mined
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in Sep. 2021. From the coinbase transactions, I extracted several met-
rics as described next. Moreover, I collected monthly Bitcoin statistics
from Blockchain.info and historical data about mining pools from
the Bitcoin Wiki to give contextual information to the mining activ-
ity. The datasets about mining pool attribution and pool characteris-
tics are available in a public repository: https://zenodo.org/record/
4342747.

Mining pool attribution: First, I identified the mining pool that
mined each block in the Bitcoin blockchain. When a mining pool
mines a block, it receives a mining reward from the coinbase transaction
of the block. A coinbase transaction combines the block reward from
the Bitcoin network and transaction fees from every transaction in the
mined block. It also includes a coinbase string inserted by the miner.
For each coinbase transaction, I attributed the mining pool based on
address matchings or coinbase string patterns. I initially used the
dataset from Romiti et al. [127] that compiled known mining pool at-
tribution until the block 556,400 (December 31, 2018). After this block,
I continued their procedure and tagged pools until the block 700,714
(September 16, 2021) with the datasets from Blockchain.info [22] and
BTC.com [28]. The blocks that did not match any known mining pool
are labeled as “unknown.”

Mining pool market shares: The market share of a mining pool in-
dicates to which extent that mining pool dominates the Bitcoin min-
ing activity. I calculated each pool’s market share as the percentage
of the blocks it mined compared to the total blocks mined in a month.
To assess whether there are a few pools that dominated the market, I
adopt the Herfindahl index (H) to measure the concentration of mining
pools for each month.

Let n be the number of active mining pools and s; indicates the
market share of pool i as a percentage. The concentration index is
defined as:

n
H=) sf (1)
i=1
H is equal to 1 for a perfectly concentrated market and converges
toward o for a very fragmented market.

Mining pool characteristics: I obtained information about pool
characteristics, in particular payout schemes and pool fees, from the
Bitcoin Wiki page [17] on the topic. I downloaded the page’s edit his-
tory and manually cleaned the data for each month by comparing it
with the information from the Bitcoin Forum [18]. As a result, I con-
structed panel data that includes all changes in pool characteristics
over time, such as locations, reward payout schemes, and pool fees.
My economist collaborator, Nicolas Soulié, manually verified pool
characteristics data, particularly payout scheme and pool fees, from
the Bitcointalk discussion forum [18] and mining pools” websites.
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4.3 DATA PREPARATION

From the Bitcoin Wiki data, I grouped reward payout schemes
into five main groups that are commonly found in mining pools:
Proportional (Prop), Score, Pay Per Last N Shares (PPLNS), and Double
Geometric Method (DGM), and Pay Per Share (Prs). For the full tech-
nical coverage and analysis of reward payout schemes, I refer readers
to a detailed analysis article by Rosenfeld [128].

* Proportional (Prop) is the most straightforward payout policy in
which mining pools distribute the rewards to their miners after
receiving the block reward. Miners receive the reward shares in
proportion to the computational power they contribute for that
block reward (or round).

e Score distributes the block reward to miners based on the pro-
portion of miners’ scores in each round. Miners who contribute
to the mining pool will receive a score calculated from the time
elapsed from the previous round. The more time has passed
without finding a new block, the higher score the miner re-
ceives.

e With Pay Per Last N Shares (PPLNS), mining pools share mining
rewards to only miners who submitted the last N shares in each
round. This policy aims to prevent miners from profiting early
in the round before moving to other pools (pool hopping).

* Double Geometric Method (DGM) distributes mining rewards to
miners with the PPLNS payout scheme. However, mining pools
keep varied fees depending on the time between blocks it suc-
cessfully mined before paying the remaining amount to miners
(geometric method). The longer the time gap between blocks,
the fewer rewards it will keep. This method is a hopping-proof
payout scheme.

* Pay Per Share (PPS) pools pay miners a certain amount for each
share submitted to the pool, regardless of how many blocks
the mining pool mined. Miners receive reward shares regularly
(usually every day). With this method, mining pools need to
have reserved funds to manage the risk of not obtaining enough
rewards to pay miners.

I grouped the locations of mining pools on a continent-level: Asia
(including Australia), Europe, America, and Africa. I assigned Aus-
tralia to the Asian continent as only one pool (OzCoin) is listed with
an insignificant influence on the overall market share. South Africa is
the only country in the Africa continent for which I found a pool (ZA
Bitcoin) in the Bitcoin Wiki dataset. I defined “global” for pools that
operated in more than two continents while kept China separately as
some large mining pools are located in the country.
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Bitcoin network statistics: Apart from information about mining
pools, I also obtained Bitcoin network statistics from Blockchain.info
[O10]. I averaged those measures to a monthly time window. These
measures are used to relate to the evolution of mining pools. Exam-
ples of network statistics for each month include the market price,
total hash rate, total block reward, total transaction fees, mining dif-
ficulty, or the number of transactions. Other external data that I in-
cluded in Bitcoin statistics are mining hardware evolution [82, 151],
electricity consumption [14], and the global energy price index [68].

4.4 VISUALIZATION DESIGN

To understand what the economist wants to analyze d on Bitcoin min-
ing pools, I collaborated with an economic lecturer, Nicolas Soulié,
who is working on research in this domain. We identified data anal-
ysis goals, design requirements, and iteratively revised prototype vi-
sualization designs. The visualization design process loosely follows
Tamara Munzner’s four-level nested model [108]. We identified the
first four analysis questions listed below.

Q1 What is the evolution of mining pools over Bitcoin history?

Q2 Are there any mining pools likely to dominate the market at a
time?

Q3 Are there any external factors from the Bitcoin network that
affect the mining pool competition?

Q4 What are the pool characteristics that dominate the mining mar-
ket?

I developed visualization prototypes in Jupyter Notebook using Al-
tair [160], an interactive visualization library in Python. Using Google
Colaboratory allowed me to create rapid prototypes to share them
with the economist, and improve the design based on his feedback.
At the end of the design iterations, I developed three visualization
views to help the economist explore the data and answer his analysis
questions.

4.4.1  Visualizing the emergence and evolution of mining pool market shares

The first visualization allows economists to explore when mining
pools started to gain market share and which pools dominated the
market over time. To answer Q1 and Q2, Figure 19 (A) provides infor-
mation on the historical evolution of the top 30 mining pools based
on their market share for each month. The scatterplot-based chart
gives an overview of the top mining pools and shows when each
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Figure 19: (A) The market share of the top 30 mining pools over time. (B)
The concentration index of mining pools. (C) The total hash rate
in tera hashes per second. (D) The average market price in the US
Dollar. (E) The total mining reward from bitcoin is divided into
block reward (blue line) and transaction fees (orange line).

mining pool started or stopped its operation and gained or lost min-
ing power. The size of each circle indicates the market share for each
month. I used a heated color scale to describe mining power domina-
tion (0%—>50%) and detect the pools that were likely to dominate the
Bitcoin network at a time. In the case of 50% of the mining power (or
even only >33% [39]), a mining pool can modify the transactions and
perform majority attacks on the Bitcoin network. Three grey vertical
lines in both charts indicate three halving days on Nov. 28, 2012, Jul. 9,
2016, and May 11, 2020. I chose this representation over a simple heat
map alternative because it can represent two quantitative variables:
market share and market domination.

To quantify the dominance of a few mining pools over time, Fig-
ure 19 (B) shows the Herfindahl index on the time series chart. The
chart provides reference points to assess when there is a potential risk
of a majority attack. Figure 19 (C-E) includes a list of chosen relevant
Bitcoin statistics: hash rate, market price, and total mining rewards.
These time series charts help answer Q3 by giving contextual infor-
mation concerning the evolution of mining pools in (A). Hash rate is
the total mining power in the Bitcoin network, indicating the competi-
tion in the activity. The valuation of mining income can be estimated
from the mining reward and converted to the market price in the US

Dollar.
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4.4.2  Visualizing mining pool characteristics influencing the evolution of
market shares and their distribution

Understanding when and why mining pool market shares change
is critical to understanding the Bitcoin mining economy. The second
visualization presents the evolution of mining pools” market shares
in connection to the panel data we collected (e.g., reward payout
schemes and location). Using the same visual representation from the
previous section, Figure 20 presents the market share together with
mining pool characteristics. For each mining pool, the first row shows
the market share of the mining pools as the circle size. I changed the
color of the circles to encode the location of the pool. As mining pools
can implement different payout schemes and pool fees over time, I
added the payout scheme in separate rows and encoded the pool
fee as the color scale. I used two pastel colors in the background to
distinguish whether the mining pool kept transaction fees or shared
them with miners. However, this visual representation cannot fully
help answer Q4 because it shows the details of individual mining
pools rather than explores the big picture of which payout schemes
or locations that dominate the mining market share over time.

In particular, the economist wanted to understand the overall evo-
lution of pool characteristics and assess if mining pools converged to
the reward payout schemes or locations that are the most attractive
to miners to address Q4. Therefore, we wanted to analyze 1) which
pool characteristics are commonly found in all mining pools and 2)
how much the total market share for active pools is in each char-
acteristic over time. I proposed a third visualization to explore the
pool characteristics that dominate Bitcoin mining over time. I used a
ribbon chart design—a stacked bar chart showing quantitative mea-
surement over time with ribbons connecting the same data category.
Figure 21 and Figure 22 show the temporal evolution of reward pay-
out schemes and pool locations sorted by pools” market shares. Each
mining pool is represented as a bar whose height is relative to the
pool’s market share in a month. The color indicates categorical data
(i.e., mining pool, reward rule, or location). For each month, the bars
are sorted by the total market share of the category from the high-
est to the lowest value. Within each category, the bars are sorted by
their market shares. This sorting helps to identify large mining pools
or categories that dominate mining power. Ribbons track a mining
pool’s ranking connection between months. This visualization shows
overall distributions and detects the top mining pools, while the first
visualization is better for observing the development of individual
pools.
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Figure 20: The market share of the top-30 mining pools with location (color
on the market share rows), payout scheme (rows below each
pool’s market share), and pool fee (color scales in the payout
scheme lines). The background color in pool fee rows indicate
if the mining pool kept transaction fees to itself or shared them
to miners.
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Figure 22: The market share distribution according to mining pool locations.

4.5 RESULT AND ANALYSIS

In this section, I present results and analysis of mining pools evolu-
tion over the Bitcoin history based on the four analysis questions I
identified with the economist collaborator.

4.5.1  Q1: What is the evolution of mining pools over Bitcoin history?

Before 2011, most mining activities were performed by small inde-
pendent miners following Bitcoin’s original one-CPU-one-vote policy.
Some pools might have existed between 2009 and 2011. However, they
are not identifiable in our data, and their market shares were very
small. DeepBit is the first mining pool detected in our dataset that
operated from 2011 to 2014. It almost dominated 50% of the market
share from mid-2011 to early 2012. After that, the market share contin-
uously decreased while new pools named BTC Guild and SlushPool
emerged and gained a larger market share. In late 2013, GHash.IO
started its mining operation and replaced BTC Guild to be the top
pool. The market share of GHash.IO has been growing and was likely
to cross the 50% threshold before it suddenly dropped in 2014. Top
mining pools in this period tended to be short-lived but solely domi-
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nated almost 50% of the market share. From this period, only Slush-
Pool still operates and obtained constant rewards until now.

After 2015, many top mining pools emerged, including F2Pool,
AntPool, BitFury, BTCC Pool, and BW.com. F2Pool and AntPool are
two top mining pools that have remained the top mining pools until
now. These mining pools tended to have a moderate market share.
However, only 3—4 top mining pools have a total of >50% market
share, which poses a risk to the majority attack. After the second
halving day, we found three new mining pools, BTC.com, ViaBTC,
and BTC.TOP that still operates and maintains the same market share
over time. Poolin and Huobi emerged on the market and became the
top pool after 2019. We observe that mining pools become less dom-
inant in market shares as more mining pools enter the competition.
Since 2020, the concentration of mining activities has been relatively
stable, with five main pools accounting for around 10% of market
share in a total of >50% market share: AntPool, BTC.com, F2Pool,
Poolin, and ViaBTC.

4.5.2 Q2: Are there any mining pools likely to dominate the market at a
time?

To detect the possibility that mining pools dominated the market, we
observed five cycles of concentration index in Figure 19 (B). The peaks
of the later cycles decreased, indicating that the market shares became
less concentrated than before. All these cycles are associated with the
increment of bitcoin’s value, as investments in mining hardware are
indeed strongly correlated with bitcoin’s value [119]. By increasing
the expected revenue of mining, a rise in bitcoin value gives an in-
centive to miners to enhance their investments and might also attract
new miners into pools [164].

The first cycle of mining pool concentration started in early 2011
with the emergence of the first large and identifiable pools, namely
DeepBit and Eligius. DeepBit’s hash power grew during the first peak
of bitcoin’s value in Jul. 2011. At this moment, bitcoin’s value reached
more than $30, compared to roughly $1 a few months earlier. The ex-
pected growth in revenue gained from mining probably lead miners
to create new large pools such as BTCGuild and SlushPool. These two
pools contributed to the increase in the mining concentration index
until the beginning of 2012.

The second cycle began in 2013. Two peaks occurred in Apr. and
Nov., during which bitcoin’s value respectively reached more than
$260 and $1,200. During this period, existing pools increased their
hash power (e.g., BTICGuild, SlushPool, or 50BTC), and new collec-
tions experienced significant growth (F2Pool and GHash.IO), espe-
cially in 2014. After the decrease of bitcoin’s value in 2015, the market
price raised again and reached peaks at roughly $450 in Dec. 2015 and
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even $750 in Jun. 2016. During this period, F2Pool and AntPool vastly
increased their hash power. Newly created pools (Bitfury, BTCC Pool,
and BW.COM) also enhanced their hash rate.

The fourth cycle was driven by the sharp rise of the Bitcoin market
price at the end of 2017. Most existing large pools, and in particu-
lar, BTC.com and AntPool, increased their hash rates. Both mining
pools are owned by BitMain, the Chinese Bitcoin mining hardware
manufacturer. In the most recent cycle, the concentration index re-
mains stable at around o.1 for the entire period. We found that seven
mining pools share around 10-20% market share: F2Pool, AntPool,
BTC.com, ViaBTC, Poolin, Huobi, Binance. The evidence shows that
Bitcoin mining has become less dominant when a higher number of
mining pools gain a competitive market share and become top pools
in the market.

It is noticeable that the five cycles have a decreasing amplitude
over time, indicating that the market might progressively reach an
equilibrium situation. This is due to the exponential increase of the
hash power which involves a huge investment for an incumbent or a
new pool to get a significant market share.

4.5.3 Q3: Are there any external factors from the Bitcoin network that
affect the mining pool competition?

Bitcoin mining activity had increased exponentially over time, accord-
ing to the total hash rate in the network (Figure 19 (C)). The market
price growth was highly correlated with the hash rate, indicating that
miners were motivated to participate in this activity in expectation of
monetary profit (D). Over the years, the market price was increased
sharply and partially compensated for block reward halving days (E).
The total transaction fees did not increase as expected to substitute
for diminished block rewards, except for an outlier period between
2017 and 2018.

We calculated the mining revenue per hash rate to explore the re-
lationship between the hash rate, market price, and mining rewards.
Figure 23 (A) shows that miner revenues per computational power
unit had decreased drastically over time. It seems that the competition
among miners drove the expected revenue to fall sharply. However,
as the market prices have been volatile in recent years, we question
the sustainability of Bitcoin mining rewards after the next halving
day. To measure the efficiency of Bitcoin mining, we compared the
hash rate growth with the energy consumed for mining operations.
Figure 23 (B) shows the energy consumption per hash rate compared
to the mining hardware evolution. The chart displayed the exponen-
tial decreased trend of the energy consumption per hash rate. The
energy efficiency improved abruptly when the hardware upgraded
from FPGA to ASIC and faster ASIC devices.
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Figure 23: (A) Mining revenue in US Dollars per hash rate (TH/s). (B) Elec-
tricity consumption in Watts per hash rate (TH/s). I annotated
new mining technology evolution as a dot on the charts.

Both charts in Figure 23 show that while mining hardware is more
efficient over time, the profit per hash rate decreased as more miners
upgraded their hardware to stay competitive in the market. Besides,
supporting Bitcoin statistics from Figure 19 provide evidence that the
increased market price cannot wholly compensate for the block re-
ward dropped after halving days. As the market prices have been
volatile and miner revenue has been relatively low in recent years, we
question the sustainability of Bitcoin mining after the next halving
day.

4.5.4 Q4: What are the pool characteristics that make the mining pool dom-
inate the market?

We analyzed two main mining pool characteristics: reward payout
schemes and pool locations. Reward payout schemes determine how
the mining pool distributes the reward to miners and the risk of re-
ward variance handled by the pool. To sustain the market share, pool
managers adopt a payout scheme that attracts miners and prevents
them from performing block withholding and pool hopping. In Fig-
ure 21, we observed heterogeneity of applied reward rules until 2015.
DeepBit applied the proportional payout scheme to pay its miners.
After the DeepBit market share declined, many mining pools entered
the market with a variety of payout schemes. Noticeably, PPS/PPLNS
and PPLNS have become common payout methods in many mining
pools. In this period, we also observed that PPS pools emerged and
gained a higher market share. After 2015, two payout schemes domi-
nated the market: PPS and PPS/PPLNS. PPS/PPLNS offered two reward
schemes that miners could choose. Miners obtain regular income with
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the PPS scheme. The PPLNS scheme is riskier because only miners in
the last N shares are eligible to receive reward shares.

After 2017, we observed a decline in the market share of PPS/PPLNS,
and PPS became the standard payout scheme for mining pools. The to-
tal market share of mining pools that applied the PPS payout scheme
increased from around 20% in 2013 to at the peak of 40% in 2017.
After 2017, PPS mining pools increasingly switched to Full Pay Per
Share (FPPs) payout scheme, notably BTC.com and F2Pool in 2017 and
2018, respectively. FPPS have become the dominant payout scheme
since 2019 with more than 50% of the total market share. It imple-
ments the same PPS protocol to share a constant income to miners
while also sharing transaction fees with miners. AntPool is the only
top pool that still offers the PPLNS payout scheme in addition to FPPs.
This result implies that miners prefer to receive a regular payment,
and mining pools have become the industry since they need to ab-
sorb mining variance and pay miners regularly.

From the economic perspective, both PPs (also applied for FPPs) and
PPLNS rely on their different but complementary risk/return ratios.
These payout schemes are more attractive for pool managers because
they are more robust to pool hopping than the proportional reward
[128]. While PPs provides risk-free but lower income, PPLNS generates
higher revenue but more randomly. PPS pools pay miners in propor-
tion to their contribution to the pool, thus providing risk-free, low
income. The pools hold all the risks by creating a reserve of money
to pay the miners during “bad luck” periods. In comparison, PPLNS
pools pay only those miners who contributed to the last N shares in
a given time window. Miners who contribute but leave the pool be-
fore a block mined might not get any reward. Therefore, PPLNS lefts
all the risk to the miners, and the expected reward variance is higher
compared to PPS [128] These two payout schemes can be viewed then
as two different financial assets. For this purpose, it is noticeable that
the fees applied to these two financial assets follow the classical two-
parameter financial asset pricing model [140]. In financial markets, risky
investments must have a higher expected return to be attractive. In
the case of Bitcoin mining, Figure 20 shows that the more risky asset
(PPLNS) is likely to have a lower fee (~0%) compared to the risk-free
one (PPS, ~2-3%).

Next, we were interested in the continents on which mining pools
operate. The mining pools” locations may collectively pose a risk to
mining if a country controls the majority of mining power. Figure 22
shows the large evolution in mining pool locations. Until 2015, most
pools were located in Europe and the US. Then, the market share of
European pools rapidly decreased while the hash rate grew exponen-
tially together with the rise of Chinese pools. The rapid growth of
two important Chinese pools (F2Pool and AntPool) profoundly mod-
ified this landscape and made China the largest pool hosting nation



4.6 CONCLUSION

from 2015 to 2018. According to Hileman and Rauchs [64], cheap
electricity and land costs in remote Chinese areas (e.g., Sichuan and
Xinjiang) are significant drivers of this location pattern. Between Mar.
2015 and Feb. 2017, the combination of Chinese pools exceeded the
51% mining power threshold and therefore posed the risk of a ma-
jority attack. This situation persisted until 2019 when global pools
became dominant. This growth resulted from the increase of origi-
nally global pools (BTC.com and Poolin) and Chinese or European
pools that turned into global ones (F2Pool and SlushPool). Currently,
global pools are common to manage the risk in the case that some big
Bitcoin countries, like China, suddenly made Bitcoin mining illegal or
shut down mining farms.

4.6 CONCLUSION

Mining pools are the heart of the Bitcoin ecosystem’s security and
growth. Their evolution toward rational and stable organizations is
critical for Bitcoin’s future. I collected and joined multiple datasets
about mining pools and developed two custom visualizations to in-
vestigate their evolution according to several variables. In particular, I
combined aggregated measures of market share with pool-level infor-
mation across time. The visualizations allowed me and my economist
collaborator to document the rise of mining activity concentration
and give rise to insights and further hypotheses about the cause of
this evolution. Important events regarding mining activity profitabil-
ity (e.g., halving days and bitcoin value) seem to be major drivers of
changes to the Bitcoin ecosystem.

The visualizations based on ribbon charts show two other impor-
tant trends regarding pool organization. First, we can observe the
rise of PPS and PPS/PPLNS as the standard reward rules used by pools.
These rules seem to provide attractive and stable incentives for min-
ers. Secondly, ribbon charts highlight the emergence of China as the
leading hosting country for mining pools and show that global pools
have become dominant in recent times. These findings raise questions
worth further examination, particularly the possible factors that stim-
ulate the stability of Bitcoin mining. The visualizations are relatively
simple but already provide the first practical tools for people who
want to analyze the evolution of mining pools by highlighting rele-
vant elements that affect these organizations.

In the next chapter, I investigate miners” behaviors to choose min-
ing pools and how their migration from one pool to another impacts
mining pool competitiveness.
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EMPIRICAL ANALYSIS OF POOL HOPPING
BEHAVIOR IN THE BITCOIN BLOCKCHAIN

As miners join mining pools to obtain reward shares, their behaviors
directly affect the rise and fall of mining pools and the entire Bitcoin
mining economy. Miners can be studied as economic agents who in-
vest in mining hardware and join a mining pool to ensure a stable
income. Joining or leaving a pool is a decision miners make to max-
imize their profit and counteract the possible domination of pools
in the network. In return, miners” behaviors also affect how mining
pools set their policies (e.g., payout schemes and pool fees) to com-
pete in the market. Nonetheless, the internal dynamics of miners and
the impact on the mining economy are not yet well understood. Few
methods exist that allow studying a larger number of mining pools
over the entire Bitcoin history.

In this chapter, I propose a data analysis method to detect miners
and analyze miners that migrated among mining pools. First, I de-
rived a heuristics algorithm identifying individual miners from the
mining pools’ reward payout flows. Next, I derived quantitative mea-
surements to estimate miners who move to another pool (called pool
hopping) or received reward shares from more than one pool (called
cross pooling). Finally, I produced visualizations to explore patterns of
miners’ migrations compared to different payout schemes and pool
fees. Working with my economist collaborator, we studied the possi-
ble factors that impact miners” decisions to join or leave mining pools
over Bitcoin history. We found evidence that miners make economic
decisions to select a pool and that mining pools compete to offer bet-
ter reward incentives to attract miners.

This chapter is an updated and extended version of my original
article published at IEEE International Conference on Blockchain and
Cryptocurrency (ICBC 2021) [154]. The work was led by myself in
collaboration with Nicolas Soulié, Nicolas Heulot, and Petra Isen-
berg.

5.1 RELATED WORK

Bitcoin mining has become an industry where miners gather into
pools to maximize their investments in mining devices [119]. Choos-
ing a pool becomes a strategic economic decision for miners as a
pool’s characteristics (e.g., payout schemes and pool fees) greatly af-
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fect a miner’s income. Some previous theoretical work related to pool
hopping analysis has applied game theory to explain the motivation
behind pool selection and miners” migration [96].

Lewenberg et al. [go] showed that miners are motivated to switch
between pools to increase their expected rewards due to non-linear re-
ward payout incentives and communication delays between mining
pools. Schrijvers et al. [138] compared the payout schemes between
Proportional and Pay Per Last N Shares (PPLNS) in an optimized in-
centive compatibility condition. They showed that only PPLNS is in-
centive compatible where all miners received the best income. Liu
et al. [94] considered the hash rate and the block propagation delay
as metrics in their analysis and numerical simulation. They found
that miners’ strategies will converge at the market equilibrium when
there is a dominant strategy and no miner can switch pools without
undermining some other miner’s payoff. Altman et al. [3] studied
non-cooperative game competition over mining resources with con-
strained resource allocation. Their model suggests that only two ma-
jor mining pools would dominate the network unless the market is
not stabilized or miners are not entirely rational.

Even though there is a lot of work on the analyses of pool hop-
ping behavior in theoretical studies, there are few works that provide
an empirical analysis on this topic. Belotti et al. [13] investigated pool
hopping between KanoPool and SlushPool from April 6-20, 2016. The
authors found that a few miners tried to exploit the time difference
of reward payout between two pools with diverse strategies to gain a
higher profit. However, the result is varied among pool-hopping min-
ers, and their profit gain is negligible. Romoti et al. [127] presented
reward payout flow patterns of three pools: BTC.com, AntPool, and
ViaBTC, between block 510,000 and 514,032 (1 month) and detected
overlapped miners in those pairs. They noticed high cross-pooling
between BTC.com and AntPool because the same company, Bitmain,
owns both pools. Xia et al. [V18] developed a visualization tool show-
ing the internal address networks of mining pools and the estimated
number of pool hoppers for each pool. Xia et al. is closely related to
my study but deviates in several areas. I propose a miners’ migration
flow model and measurements to detect different types of pool hop-
pers over long time intervals. The miners extraction method is also
less computationally expensive, although it shares a similar underly-
ing concept to detect miners.

This chapter contributes to an empirical analysis attempting to de-
tect miners in mining pools and analyze miners’ migration patterns
among pools in the Bitcoin network. Compared to most past work,
my proposed method can be used to analyze more mining pools
across Bitcoin’s mining history. Moreover, I compare the results with
off-chain information (e.g., market shares, payout schemes, and pool



5.2 DATA PREPARATION

fees) to help explain mining pools” evolution and pool hopping be-
havior.

5.2 DATA PREPARATION

I trace the reward payout from coinbase transaction to miners. As
Bitcoin transactions do not include any identity of miners and mining
pools, I extract off-chain information from external sources to identify
mining pools that receive mining rewards and trace pools’ reward
sharing to detect miners who participated in each pool. I provide
the data about mining pool attribution and miner’s migration in the
public repository https://zenodo.org/record/4342747.

5.2.1 Mining pool payout flows

Mining pools collect mining rewards from the Bitcoin network before
distributing them to pool members. I track reward payouts from coin-
base transactions and follow the money until it reaches the miners’
addresses. I adopt a transaction flow graph and transaction purity
notions to detect miners in the pool automatically.

A transaction flow is a directed graph of Bitcoin transactions from
a seeding transaction. Each node represents a transaction tx in the
transaction flow. Transaction purity measure determines how much
Bitcoin value in the transaction is received from the seeding transac-
tion. This measure is commonly used for taint analysis in Bitcoin (e.g.,
[1, 32]).

Let tx.in and tx.out be sets of receiving (inputs) and spending (out-
puts) edges of a transaction tx respectively. The transaction purity is
recursively defined as being the average purity of the input transac-
tions weighted by their respective values. The purity of a transaction
tx can be expressed as follows:

.. purity(e.receive) - e.value
purity(tx) = 2 ccix.in PUTHY( ) »
Zeetx.in e.value

The purity of a transaction without inputs is 1 because it is the root
transaction in the transaction flow.

Reward payout flow model: Past work reported that mining pools
distribute rewards to individual miners in different patterns [92, 127].
I propose that those different payout patterns can be generalized
by annotating four transaction types in the payout flow: coinbase
(® txcoinbase), payout (@ txpayout), intermediate (@ txinter), and
miner (@ tX,miner)-

1. A mining pool receives mining rewards from coinbase transac-
tions @ tXcoinbase and collects them in a payout transaction
® tx,qyout before distributing them to miners.

63


https://zenodo.org/record/4342747

64 EMPIRICAL ANALYSIS OF POOL HOPPING BEHAVIOR IN THE BITCOIN BLOCKCHAIN

2. A mining pool distributes the reward from @ txp,qyout to inter-
mediate transactions ® txinter before splitting rewards to pool
member (miner) addresses.

3. Pool members receive a reward from @ txinter and spend it
in a transaction called miner transaction @ txminer. I assume
that pool members receive the reward from this flow and then
combine it with other Bitcoin values outside the flow to spend
in @ tXminer. Therefore, the purity of @ txminer is < 1.

In short, the reward payout flow is the Bitcoin transaction flow from a
payout transaction @ txpqyout to pool members @ tX;iner - I consid-
ered @ txpayout as the seeding transaction because it collects every
mining reward and distributes it to pool members. Figure 24 shows
reward payout flow patterns extracted from the top 10 mining pools
in my study. A payout flow was sampled for each pool in the month
when it had the highest market share. Each node represents a trans-
action type with branches of similar patterns grouped together. The
color of the node indicates the transaction type. The total value of
transactions in each node is encoded by circle size in proportion to
the @ txpayout value. The number of transactions and their com-
bined values are the top and the right labels for each node, respec-
tively. I omitted labels for combined values below 1 BTC.

Reward payout flows extraction: Based on the reward payout flow
model, I present Algorithm 1 to automatically extract payout flows
from the coinbase transaction and follow the transaction network un-
til it finds miners. I used the BlockSci API [78] to access the transac-
tion data. First, the list of @ tx,qyout has been initiated from all out-
puts of ® txcoinbase asinputs of the algorithm. For each @ tx;, qyout,
the algorithm traversed the transaction graph from ® tx;, oyout Which
has purity = 1 until the transaction has purityix < 1 (i.e. @ tXminer)-
Finally, the algorithm returns a directed edge list that represents the
payout flow.

I added two additional termination criteria valid(tx) that stop fol-
lowing the current transaction tx flow: 1) when the time difference
between ® tx,qyout and tx is more than one day and 2) when the
tx.value is < 0.001 BTC—as most mining pools have a minimum pay-
out value [13, V18].

Identifying individual miners: For each edge list obtained from Al-
gorithm 1, I constructed a payout flow graph using the NetworkX
library [58]. Next, I extracted @ txminer and derived the list of min-
ers from each payout flow graph.

Miner transaction (® txminer) is a transaction in the payout flow
graph that does not have any output in the payout flow graph
[tXminer.-out| = 0. I tagged all input edge(s) of ® txminer as owner
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Figure 24: Reward payout flow patterns extracted from the top 10 mining
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Algorithm 1 Reward payout flow extraction

Input: txpayout is a payout transaction as a seeding node of the
payout flow.
Output: edges is the edge list of the the payout flow.
queue < PriorityQueue([txpayout])
edges < List()
while queue is not empty do
tx < queue.pop()
if purity(tx) = 1 and valid(tx) = True then
for edge in tx.out do
edges.append(edge)
queue.append(edge.spend)
end for
end if
end while

edges. The list of miners who received the reward from ® tx,qyout
is defined as Mix, 4y ou:-

Some @ tXiner transactions may be connected to the pool wallet
to keep the represented value as profits for the pool or deposits it
as reserve the reward to pay for the next payout, as illustrated in
Figure 24 (E), (F), and (I). I detected @ txminer input edges with
the same owner addresses as the mining pool and assigned them as
® tx,ayout to extract further reward payout flows.

5.2.2  Miners’ migration between mining pools

To analyze miner migration between pools, I compared the list of
miners who received rewards from each mining pool in a set time
interval and calculated the intersection of miners between pools. I set
the time interval to months to be able to analyze detailed patterns for
the entire mining pool history.

Let t be a time interval where t € T = {to,...,t—1,t,t+1,..., tn}
The set of miners in the mining pool M;‘) ool is the summation of the
miner list My, ., for all payout transactions of a mining pool pool
at time t.

The miner’s migration flow is modelled as a diagram in Figure 25.
For each time interval t, the list of miners that migrate from/to a
mining pool pool, annotated as M;‘jool, is divided into 7 miner groups
as follows:

* New (Dropout) miners are miners that enter (exit) the mining
activity at time t, annotated as M, poot (Maroplpool)-

t

pool but are also in

* Same before (Same after) miners are in M
-1 1
Mt (M:fol).

pool o
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Figure 25: The miners’ migration flow model of pool at time interval t. t —1
(t+1) is the time interval before (resp. after) t. Mnew (Marop)
is the list of miners not in any pool at t — 1 (resp. is not found
in any mining pool at t 4 1). The union of the list of miners from
other pools is Mythers-

* Hopping in (Hopping out) miners are in M;C)ool

t—1 t+1
(tO) other pOOlS Motherslpool (Mothers\pool)'

but move from

e Cross-pooling miners are in Mt _ . but also found in other pools

pool
t
at the same t (Mother5|poo1)-

The quantity of miners” migration is calculated from the percent-
age of the total reward of miners for each miner group. I report the
percentage of value rather than the number of addresses because it
gives more weight to miners with a high contribution to the pool.
Therefore, the measure is more robust regarding small or occasional
miners.

The percentage of the total value of miners (X) is the total value of
M! . associated with M,, where x is a set of miners from miner

poo
groups, defined as:

. Zm€M£oolﬂMx m.value
X(Mpoor, Mx) = > m.value
m»el\/l;ool .

(3)

For example, the percentage of hopping in (hopping out) miners is an-
-1 1
notated as X(M},, 1, Mgthers‘pool) (resp. X(My 501/ M:‘;hws'pool)).
For each mining pool, I obtained the monthly percentage of miners’

migration for each miner group. As there are many variables to con-
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sider in the miners” migration flow, I summarized miners” migration
flows into three flow types. Each type of the flow indicates a net gain
or loss percentage of the miners in the mining pool from different
flow types.

1. New and dropout flow: the percent difference between new and
dropout miners.

2. Hopping in and out flow: the percent difference between hopping
in and hopping out miners.

3. Cross-pooling: the percentage of cross-pooling miners. This is the
only flow that compared miners within the same time period.

Additionally, the percentage of cross miners’ rewards from the pool is
the total reward that cross miners received from the pool divided by
the total reward that cross miners received from all mining pools. A
higher percentage implies that miners dedicated more computational
resources to this particular pool. It also indicates the attractiveness of
the pool compared to other pools at the same time interval.

5.2.3 Evaluation and discussion on the data preparation method

This section discusses the validity and quality of the data preparation
method and compares it to related work. Table 5 shows the median
and median absolute deviation (MAD) on the number of miners, path
length from payout transaction to miners, and the number of coinbase
transactions per payout, for each mining pool in this study. I detected
that these measures are non-normal distributions in many mining
pools. Thus, I report robust statistics measures that provide a more
reliable point estimation and variance of the distributions.

5.2.3.1 Assumption on the payout flow model

The primary assumption of our approach is that mining pools spend
only the mining reward from coinbase transactions to distribute among
their miners. Therefore, the purity of payout and intermediate trans-
actions is set to 1. However, this assumption did not apply to 6 min-
ing pools in our study: ASICMiner, Binance Pool, BitFury, DPOOL,
KnCMiner, OzCoin, and Poolin. I observed that these pools sent all
rewards to one or two miner addresses which are likely to be miners’
addresses, for instance, Poolin in Figure 24 (J). This can be detected
by a very low median number of miners in Table 5. Most of them
were small pools and tended to operate in a short period (Figure 20).
BitFury is likely to be a private pool as they keep the reward in their
wallets and do not show an obvious payout pattern. Binance provides
wallet and exchange services to miners in addition to mining pools.
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Table 5: List of the top-30 mining pools with the number of blocks until
August 31, 2021. I reported median and median absolute deviation
(MAD) of the number of miners, miners’ path lengths, and the num-
ber of tXcoinbase Per txpayout. Mining pools that I cannot extract
the payout pattern from the algorithm (resp. has no pool character-
istics information) are highlighted in red (grey).
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Mining Pool # Blocks # Miners Path Length # tXcoinbase

Median | MAD | Median | MAD | Median | MAD
F2Pool 65,772 3,351 | 1,469 3 0 5 4
AntPool 57,271 187 186 13 8 8 7
BTC.com 36,811 1,519 | 1,513 0 16 10
SlushPool 35,240 162 104 0 1 0
BTC Guild 32,936 38 29 4 2 1 0
DeepBit 31,107 30 12 23 13 1 0
ViaBTC 23,157 35 28 3 0 5 3
GHash.IO 23,083 6 4 2 0 1 0
Poolin 21,097 2 0 4 1 1 0
BitFury 20,901 1 o) 3 0 1 o)
BTCC Pool 18,036 1 0 4 2 1 0
BTC.TOP 16,748 184 183 2 0 7 5
BW.COM 12,733 1 0 16 12 4 2
Eligius 11,430 62 39 1 0 1 0
Huobi 9,155 16 7 4 1 1 0
50BTC 7,859 25 19 42 31 1 0
KnCMiner 7,477 2 1 4 2 1 0
BitMinter 6,464 87 46 4 2 1 0
Binance Pool 6,046 2 1 3 0 10 5
EclipseMC 6,024 43 23 6 3 1 0
Bixin 5,852 2 0 3 1 1 0
BitClub Network 5,672 2 1 7 3 29 27
1THash 4,967 177 175 2 0 5 3
0OzCoin 4,845 1 0 10 7 1 0
okpool.top 3,153 9 4 4 1 1 0
ASICMiner 3,146 1 0 10 5 30 26
Bitcoin.com 2,475 11 6 3 1 1 0
KanoPool 2,432 795 253 2 0 1 o}
GBMiners 2,093 2 1 8 3 4 2
DPOOL 1,918 1 0 3 0 6 2
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The pool sent all the reward to their wallet adress and could draw bit-
coin value from other services to pay miners. In these cases, I cannot
track miners from payout flow because the pool has its own mecha-
nism or use money outside the flow to pay miners.

The payout flow extraction algorithm stops crawling the payout
flow because the pools may add bitcoin values outside the payout
flow (e.g., their saving account), and therefore the purity of the trans-
action is < 1. To fix this problem, the purity threshold could be ad-
justed to less than 1 in case that mining pools combine bitcoin values
from non-mining related sources. I tried a lower purity threshold and
found that it is computationally much slower. Besides, it tends to clas-
sify miners as intermediate transactions and continues following the
flow because miners can also combine the reward with other sources
of bitcoin values to spend in Bitcoin marketplaces and services.

5.2.3.2 Justification on using addresses to identify miners

Another important assumption is that individual miners who receive
a reward share will spend it in a transaction that includes input trans-
actions outside the flow. The algorithm will make a false classification
when a miner simply forwards the reward using a transaction with-
out further inputs. In this case, the algorithm will calculate that the
transaction purity is 1, assign it as txinter, and follow all outputs
from txinter.out.

Although the basic address clustering method [123] is an effective
method to group the addresses that are likely to belong to the same
entity [61], I found that it led to false-positive clusters. For example,
the method may group different miners in the same cluster because
they used the same exchanges or mixing services. I expect that miners
would participate in 1-2 pools at a time. I report the average number
of mining pools that miners participated as the average weighted by
their total reward with the 95% bootstrap confidence intervals. Dur-
ing the first halving (second halving) period, miners received rewards
from 3.92 [3.12, 4.74] (3.06 [2.47, 3.68]) different pools per cluster com-
pared to 1.46 [1.39, 1.56] (1.30 [1.24, 1.37]) pools per address. I also
found that the percentage of cross-pooling per month using address
clustering is higher than using solely miner addresses on the aver-
age of 25.9% [24.2%, 27.6%] (31.6% [29.7%, 33.7%]), using pairwise
comparison for the same pool and month. According to this result,
I decided to use miner addresses to avoid adding errors from the
address clustering to the results.

5.2.3.3 Miners addresses association with known entities

Since there is no ground truth to evaluate the identity of individ-
ual miners, I indirectly validated whether our approach can identify
individual miners correctly. I assumed that miners should receive a



Table 6: The percentage of addresses and total Bitcoin values associated with

known entities from 2013 to 2016

5.2 DATA PREPARATION

Type Addresses Total Value

Input ‘ Miner ‘ Output | Input ‘ Miner ‘ Output
Unknown 96.1 84.8 91.5 44.0 84.8 68.6
Mining pool 1.38 0.555 | 7.43e-2 45.9 6.02 0.371
Exchange 1.42 8.36 4.80 0.35 6.52 18.0
Wallet 0.428 4.38 2.67 7.62 2.48 12.6
Marketplace 0.665 1.19 0.567 2.14 0.162 0.398
Gambling 3.46e-2 0.609 0.347 | 1.86e-4 | 3.25e-2 | 5.07e-2
Mixer 1.15e-3 | 5.51e-2 | 3.69e-2 | 1.16e-5 | 6.57e-3 | 3.57e-2
Lending 5.03e-3 | 4.54e-2 | 2.86e-2 | 3.68e-5 | 1.50e-3 | 1.51e-3

mining reward (input address) from the mining pool and keep it in
their wallet (miner address) before spending it (output address) on

services (e.g., exchange, mixer, or marketplace).

I used a known entity dataset from WalletExplorer.com with entity
type classification from Zola et al. [178]. I studied the payout flows
that were spent between 2013 and 2016 because the website stopped
updating more known entities from 2016 [71]. The percentage of ad-
dresses and Bitcoin values for each entity type is reported in Table 6.

The main findings from the result are as follows:

1. Miners detected from our algorithm mostly cannot be associ-

ated with any known address (“unknown” type in Table 6)
(84.8%) as well as input and output address (96.1% and 91.5%
resp.). However, when I measured the total value for each entity
type, I found that 84.8% of miner rewards are from unknown
addresses, compared to 44.0% for input and 68.6% for output
addresses. The result shows that our algorithm can detect indi-
vidual miners because they are largely not associated with any
known Bitcoin entities.

. Miners tend to receive a reward from known mining pool ad-
dresses (45.9% of the total value) followed by unknown ad-
dresses (44%). This result aligns with the assumption that min-
ers should receive money from ® txinter of the mining pool.
For unknown addresses, mining pools may use external ad-
dresses that are undetected in the known entity dataset to pay
miners.

. Miners spent 68.6% of their total reward using unknown out-
put addresses. I also detected that some miners spent their re-
wards on exchanges (18% of the total value) and wallet services
(12.6%). This result provides evidence that regular miners con-
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vert mining rewards to fiat currencies or deposit them to their
Bitcoin wallets.

The pool hopping detection approach I developed differs from Xia
et al.’s work [V18] as I did not filter out known entities after I ex-
tracted the payout flow based on three reasons: 1) Xia et al. focus on
only a 1-month time frame. The WalletExplorer dataset, however, in-
cludes 30,167,518 labeled addresses. It is computationally expensive
to linearly scan for addresses in every transaction; 2) WalletExplorer
did not update new entity labels after 2016 [71]. Hence, it cannot be
applied to recent reward payout flows; and 3) The percentages of re-
ward values are tolerant to possible misclassification of miners.

5.3 CHARACTERIZATION OF REWARD PAYOUT FLOW PATTERNS

Using the payout flows I extracted from the previous section, I ana-
lyzed the patterns of payout flows and reward payout regularity. Pre-
vious work has reported the payout patterns for some mining pools in
a limited time interval. Romiti et al. explore the payout flow pattern
of three miners: BTC.com, AntPool, and ViaBTC [127]. They reported
that BTC.com and AntPool used an address to distribute rewards
in multiple steps, while ViaBTC divided the reward to random ad-
dresses 10 BTC each before payout to miners. This work extracted the
payout flow of a more significant number of mining pools over the
entire Bitcoin history.

Liu et al. reviewed the payout patterns from previous studies and
classified them into direct and indirect distributions [93]. The payout
structure of indirect distributions can be divided into tree-like and
chain-like structures. Yet, they did not consider the regularity that min-
ing pools distribute the reward. In this work, I proposed two quan-
titative measures to characterize the reward payout flows based on
reward payout regularity and payout flow structures.

1. Payout regularity can be measured from the correlation between
blocks mined and the number of payouts per month. Mining
pools that pay per block(s) (or per round) to miners should have a
high positive correlation since they distributed rewards to min-
ers when they obtained the reward from coinbase transaction. In
contrast, mining pools that pay miners reqularly (e.g., daily) will
have a fixed number of payout transactions regardless of the
block mined. Therefore, there should be no correlation among
those regular payout pools.

2. Payout flow structures determine the complexity of reward pay-
out flows. Mining pools can distribute rewards to miners di-
rectly from the payout transaction or forward them to interme-
diate addresses before paying to miners in multiple steps. I cal-
culated the path length for each miner to see how many steps it
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Figure 26: The scatter plot shows the payout flow pattern of mining pools
regarding the payout regularity and payout flow structure. The
color indicates the payout flow structure for each mining pool.
The shape suggests whether a mining pool pay per block (round)
or regularly (e.g., daily). The size of each point is Proportional
to the median number of miners per payout on the logarithmic

scale.

took for miners to receive the reward from the payout transac-
tion. I measured the median absolute deviation (MAD) of path
lengths to describe the payout pattern for each mining pool. The
large MAD indicates a high variability of path length. It implies
that miners received rewards in different steps, and therefore
the payout flow looked like a chain-like or a tree-like structure.
The low MAD means that miners were likely to receive the re-
ward in the same step. Therefore, the mining pool tends to have
a direct or fixed-length payout flow pattern.

Figure 26 reports payout regularity, and miners’ path length vari-
ability for each mining pool in a scatter plot. I looked into samples
of payout flows for each mining pool and annotated what I found
as the shape (regularity) and color (payout flow structure). The pay-
out patterns I observed align into four clusters based on two axes: 1)
whether mining pools pay per block (per round) or pay regularly (e.g.,
per day) and 2) the payout of structure tends to be the fixed-length or

chain-like structure.
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5.3.1 Payout regularity

Mining pools in the early years between 2011 and 2013 commonly
distributed reward shares to miners directly after they successfully
mined a block. DeepBit is the first mining pool that dominated the
market and spread the reward to miners for each block mined. After
the inception of DeepBit, others mining pools also adopted the same
policy to pay miners per block, such as Eligius, BTC Guild, BitMinter,
and SlushPool. The correlation between payouts and blocks mined is
close to 1, implying that mining pools pay miners as much as they
receive from coinbase transactions.

The pay-per-block policy poses no risk for mining pools because they
do not need to hold any funds to pay miners [128]. Instead, miners
accepted uncertainty to keep a constant income as the expected re-
ward time is in proportion to the market share of the pool. This pol-
icy induces some miners to mobilize between pools (cross-pool) to
maximize their reward. After the first halving day, pay-per-block pools
tended to be less successful in market share and eventually disap-
peared from the mining competition. Even though new mining pools
emerged, they tended to be short-lived (e.g., 50BTC) due to the com-
petition from mining pools which provided a more stable income to
miners (e.g., F2Pool and AntPool). SlushPool is an exceptional pool
that adopted this policy and is still active and has constantly mined
new blocks from 2012 until now.

As the Bitcoin mining activity has grown exponentially since 2013,
new mining pools offer miners a more regular income to attract min-
ers. These mining pools collect mining rewards to their address be-
fore regularly distributing them to miners (i.e., daily). Therefore, the
number of payout transactions remains constant over time and has
a low correlation with blocks mined in the range of -0.3 and 0.6.
F2Pool and AntPool are early pools that adopted this policy from
2013-2014. BTC.com and ViaBTC emerged around the second halving
day in mid-2018 and adopted the same regular payout policy. Nowa-
days, these four mining pools remain the top pools in the mining
market.

With the regular payout policy, miners are guaranteed to receive a
predictable income from the pool. Mining pools need to cope with
the risk from the uncertainty of Bitcoin mining and have some funds
to pay miners when they do not manage to obtain enough rewards on
bad luck days. This can be seen from the payout flow where mining
pools send rewards to their addresses and spend them in subsequent
payout transactions. Hence, mining pools with this risk tend to pose
more fees to miners. The domination of regular payout pools shows
that miners are willing to join mining pools that provide a steady in-
come. Nowadays, the top mining pools distribute rewards to miners
regularly, indicating that mining has become an industry since min-
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ing pools reserved some funds to pay miners and manage the risk
from mining new blocks.

I spotted two mining pools whose correlations do not match our ex-
pectations in the study: BTCC Pool and GBMiners. BTCC Pool paid
rewards to miners per block. However, the pool split coinbase trans-
actions into numerous payout transactions with a tiny amount of bit-
coins (e.g., https://bit.ly/3FCcgPo). Therefore, the number of pay-
out transactions outnumber the block mined. GBMiners distribute, in
multiple payout transactions (median = 2, MAD = 1), the reward to
miners at the same hour every day. However, each payout transaction
usually contains the median of 4 coinbase transactions (MAD = 2).
This explains why the correlation of GBMiners is high even though it
is a regular payout mining pool.

5.3.2  Payout flow structure

The variability of path length to miners (y-axis on Figure 26) can im-
ply the complexity of payout flow structure ranging from the most
straightforward pattern in which a mining pool distributes the re-
ward to miners in a fixed path length to a more complex pattern in
which it pays miners in multiple steps. The median path length vari-
ability of o implies that mining pools were likely to distribute rewards
to miners at the same path length. I called this “fixed-length” payout
structure. This pattern has been used among th