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Résumé : Bitcoin est une crypto-monnaie pion-
nière qui enregistre les transactions dans un re-
gistre public et distribué appelé blockchain. Il est
utilisé comme support pour les paiements, les in-
vestissements et plus largement la gestion d’un
portefeuille numérique qui n’est pas administré par
un gouvernement ou une institution financière. Au
cours de ces dix dernières années, l’activité tran-
sactionnelle de Bitcoin a rapidement et largement
augmenté. La volumétrie ainsi que la nature évolu-
tive de ces données posent des défis pour l’analyse
et l’exploration des usages ainsi que des activités
sur la blockchain. Le domaine de l’analyse visuelle
travaille sur la conception de systèmes analytiques
qui permettent aux humains d’interagir et d’obte-
nir des informations à partir de données complexes.

Dans cette thèse, j’apporte plusieurs contri-
butions à l’analyse des activités de minage sur la
blockchain Bitcoin. Tout d’abord, je propose une
caractérisation des travaux passés et des défis de
recherche liés à l’analyse visuelle pour les block-
chains. À partir de cette étude, j’ai proposé un
outil d’analyse visuelle pour comprendre les acti-
vités de minage qui sont essentielles pour main-
tenir l’intégrité et la sécurité des données sur la

blockchain Bitcoin. Je propose une méthode pour
extraire l’activité des mineurs à partir des don-
nées de transaction et tracer leur comportement
de bascule d’un pool de minage à un autre. L’ana-
lyse empirique de ces données a notamment révélé
que les nouveaux pools de minage offraient une
meilleure incitation et attiraient davantage de mi-
neurs. Cette analyse a également montré que les
mineurs choisissaient stratégiquement leur pool de
minage dans le but de maximiser leur profit. Pour
explorer l’évolution et la dynamique de cette ac-
tivité sur le long terme, j’ai développé un outil
d’analyse visuelle, appelé MiningVis, qui intègre
des données liées au comportement des mineurs
avec des informations contextuelles issues des sta-
tistiques et de l’actualité de Bitcoin. L’étude avec
des utilisateurs démontre que les participants au
minage de Bitcoin cherchent à utiliser l’outil pour
analyser l’activité globale plutôt que pour étudier
les détails d’un pool de minage. Les commentaires
des participants prouvent que l’outil les a aidés à
mettre en relation plusieurs informations et à dé-
couvrir les tendances dans l’activité de minage de
Bitcoin.

Title : Visual analytics for monitoring and exploration of Bitcoin blockchain data
Keywords : Bitcoin, Bitcoin Mining, Mining Pools, Pool Hopping, Visual Analytics, Blockchain

Abstract : Bitcoin is a pioneer cryptocurrency that
records transactions in a public distributed ledger
called the blockchain. It has been used as a me-
dium for payments, investments, and digital wallets
that are not controlled by any government or finan-
cial institution. Over the past ten years, transaction
activities in Bitcoin have increased rapidly. The vo-
lume and evolving nature of its data pose analysis
challenges to explore diverse groups of users and
different activities on the network. The field of Vi-
sual Analytics (VA) has been working on the deve-
lopment of analytical systems that allow humans
to interact and gain insights from complex data.

In this thesis, I make several contributions to
the analysis of Bitcoin mining activity. First, I pro-
vide a characterization of the past work and re-
search challenges related to VA for blockchains.
From this assessment, I proposed a VA tool to

understand mining activities that ensure data in-
tegrity and security on the Bitcoin blockchain. I
propose a method to extract miners from the tran-
saction data and trace pool hopping behavior. The
empirical analysis of this data revealed that emer-
ging mining pools provided a better incentive to at-
tract miners. Simultaneously, miners strategically
chose mining pools to maximize their profit. To
explore the evolution and dynamics of this acti-
vity over the long term, I developed a VA tool
called MiningVis that integrates mining behavior
data with contextual information from Bitcoin sta-
tistics and news. The user study demonstrates that
Bitcoin miner participants use the tool to ana-
lyze higher-level mining activity rather than mining
pool details. The evaluation of the tool proves that
it helped participants to relate multiple information
and discover historical trends of Bitcoin mining.



S Y N T H È S E D E T H È S E

Bitcoin est une crypto-monnaie qui enregistre les transactions dans
un registre public et distribué appelé blockchain. Elle est utilisée
comme un support pour les paiements, les investissements et plus
largement la gestion d’un portefeuille numérique qui n’est pas admin-
istré par un gouvernement ou une institution financière. Au cours de
ces dix dernières années, l’activité transactionnelle de Bitcoin a rapi-
dement et largement augmenté. La volumétrie ainsi que la nature évo-
lutive de ces données posent des défis pour l’analyse et l’exploration
des usages ainsi que des activités sur la blockchain. Le domaine de
l’analyse visuelle travaille sur la conception de systèmes analytiques
qui permettent aux humains d’interagir et d’obtenir des informations
à partir de données complexes.

Dans cette thèse, j’apporte plusieurs contributions à l’analyse des
activités de minage sur la blockchain Bitcoin. Les travaux de recherche
se sont jusque-là concentrés sur des analyses théoriques de l’activité,
des analyses des réseaux de transactions ainsi que des applications de
l’apprentissage non supervisé pour classer différents types d’entités
ou des transactions malveillantes. Pour comprendre l’état de l’art de
la visualisation des données appliquée aux blockchains ainsi que la
façon dont les visualisations sont utilisées pour analyser l’activité
blockchain, j’ai réalisé une revue systématique. En particulier, j’ai pro-
posé un schéma de classification permettant de caractériser les dif-
férents outils et visualisations existants. Ensuite, j’ai recensé les dé-
fis restant à lever ainsi que les opportunités de recherche associées.
J’ai constaté que les outils de visualisation dédiés à des questions
avancées et axées sur un domaine en particulier sont rares malgré
qu’ils puissent être utiles à des experts et à des analystes afin d’étudier
et comprendre en profondeur une activité spécifique de la blockchain
Bitcoin telle que le minage.

Les principales parties de cette thèse se concentrent ainsi sur le mi-
nage de Bitcoin qui est un mécanisme critique pour la validation des
transactions dans un réseau décentralisé. Il a également des implica-
tions sur le modèle économique de la blockchain car les mineurs sont
sensibles aux incitations et ils participent principalement pour max-
imiser leur gain. Les pools miniers sont rapidement apparus comme
des organisations permettant d’assurer un revenu régulier aux mineurs.
En utilisant une approche d’analyse visuelle, j’ai mené une étude de
conception de deux ans avec mon collaborateur économiste pour étudier
différentes questions de recherche et développer des prototypes de
visualisation afin de proposer des réponses concernant l’émergence
et l’évolution des pools miniers Bitcoin.
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Dans la première itération de conception, j’ai extrait plusieurs sources
de données liées au développement des parts de marché et aux caractéris-
tiques des pools miniers comme la localisation, le système de paiement
et les frais de pool. Avec mon collaborateur économiste, nous avons présenté
une première analyse exploratoire de l’évolution des pools miniers couvrant
toute l’histoire de Bitcoin. Nous avons découvert que les premiers pools
miniers proposaient différents systèmes de paiement très variés avant
qu’ils ne convergent vers le paiement à la part (PPS) et le paiement in-
tégral à la part (FPPS). L’étude de la localisation des pools miniers
montre que les pools chinois sont devenus des pools internationaux
vers septembre 2017, lorsque le gouvernement chinois a réglementé
le commerce des crypto-monnaies.

Lors de la deuxième itération de conception, nous avons étudié
plus avant la migration des mineurs entre les pools miniers. J’ai dé-
veloppé une méthodologie pour extraire les flux de paiement des récom-
penses des transactions de Coinbase vers les mineurs individuels. Ensuite,
j’ai défini trois mesures principales de flux de paiement : les nou-
veaux et les abandons, les entrées et les sorties, et le cross-pooling
pour comprendre les schémas de mobilité des mineurs. J’ai montré
que la méthode pouvait extraire des pools miniers basés sur des mod-
èles de flux de paiement différents. À l’aide de différents prototypes
de visualisation, nous avons pu étudier et proposer des explications sur
la motivation des mineurs à rejoindre, quitter ou se déplacer entre les pools
miniers. Nous avons constaté par exemple que les mineurs se dirigent
toujours vers le pool qui offre des frais de transaction moins élevés et
un revenu plus régulier aux mineurs. Nous avons également constaté
que les mineurs utilisent le cross-pooling pour diversifier leur risque
entre PPS (sans risque) et PPLNS (risqués).

Nous avons découvert que la compétition entre les pools de mi-
nage était en constante évolution et qu’elle devait faire l’objet d’un
suivi constant sur une longue période. De plus, nous avons montré
que le prix du marché du bitcoin et les événements de division par
deux de la rémunération (halving days) avaient un impact sur la dé-
cision des mineurs de continuer à miner, et donc sur la durabilité
de cette activité. J’ai développé un outil d’analyse visuelle appelé Min-
ingVis qui permet à des analystes de mettre en relation plusieurs facteurs
liés aux pools de minage et aux comportements des mineurs. Mon collab-
orateur économiste a utilisé cet outil pour étudier et développer un
modèle permettant d’expliquer l’économie du minage. Nous avons
également réalisé une étude en ligne auprès de huit mineurs de bitcoins et
nous avons constaté qu’ils étaient plus intéressés par les informations
en temps réel que par les données historiques à long terme. Les ré-
sultats de notre étude avec les utilisateurs ont confirmé nos choix de
conception pour l’outil. Il est à noter que celui-ci peut également être
étendu à d’autres crypto-monnaies basées sur le même protocole de
preuve de travail.
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Let me remind you of the particular characteristics of all of these
behavior systems that I am trying to focus on. It is that people are

impinging on other people and adapting to other people. What
people do affects what other people do.

— Thomas C. Schelling, Micromotives and Macrobehavior (1978)





1
I N T R O D U C T I O N

In the past years, blockchain has gained attention as a new technol-
ogy to revolutionize transactions and exchanges on the internet [150].
Blockchain is a distributed peer-to-peer network storing append-only
transaction data. The advantage of this technology lies in the decen-
tralized system governed by autonomous logic rather than being con-
trolled by any government or financial institution. Nowadays, most
blockchain applications are used for cryptocurrencies such as Bitcoin
[109] and Ethereum [170]. However, its use in practice is still evolving
and poorly understood. In order to adopt blockchain technology in a
wider set of domains, we will need to explore and analyze transaction
data to better understand emergent user behavior and mechanisms in
blockchain systems. As such, Visual Analytics (VA) tools can support
human analysts in deriving hypotheses and models of blockchain
use.

Bitcoin is the first and so far the highest valued cryptocurrency
blockchain. It was proposed by a pseudonym named Satoshi Naka-
moto in a seminal article, “Bitcoin: A peer-to-peer electronic cash sys-
tem” [109]. The article proposed a way to prevent double-spending of
digital currency transactions without requiring a trusted third party.
Since Bitcoin was initially released in 2009, the activities in its block-
chain increased substantially. As of September 2021, Bitcoin users cre-
ate 300k transactions to exchange a total of 100k Bitcoin currency ev-
ery day. Bitcoin also attracts investors who speculate to make a profit
from trading in the cryptocurrency exchange market with $170B mar-
ket capitalization.

In this thesis, I focus on the internal activities of Bitcoin users in
the transaction data. Internal activities are the fundamental factors to
understand the adoption and practical usages of Bitcoin. Cryptocur-
rency trading is an external activity that gives Bitcoin valuation to fiat
currencies (e.g., the U.S. Dollar, the Euro) and is outside the scope of
this thesis.

1.1 the bitcoin blockchain

Bitcoin records transactions in the public distributed ledger (i.e., da-
tabase) called the blockchain. A blockchain consists of a chain of
blocks that records all previous transactions, hence the term block-
chain. Transactions are registered, validated, maintained, and dis-
tributed across the entire network of users in the peer-to-peer net-
work. Unlike traditional financial data, Bitcoin transactions are pub-

1



2 introduction

Figure 1: Building Blocks of the Bitcoin Blockchain (from Tschorsch et al.
[158] © 2015 IEEE)

licly available on the blockchain but the owner of the address cannot
be inferred directly from the address, hence they are referred to as
pseudonymous. Chapter 2 provides an overview of Bitcoin, its com-
ponents, and connections among them. I identify three groups of ac-
tivities that happened on 1) financial transactions, 2) mining (or con-
sensus protocol), and 3) peer-to-peer networks. Figure 1 summarizes
the process to append transactions to the blockchain network.

Bitcoin has been used to transfer digital currency between users,
payment to merchants, or as an investment. As the Bitcoin data is con-
stantly growing (>350 GB of raw data, as of September 2021 [O10]),
it offers a unique opportunity to study the evolution of the transac-
tion data as well as the interactions of users in the network. The Bit-
coin network involves diverse groups of users (e.g., individuals, enter-
prises, miners, and exchanges), and their activities are influenced by
multiple factors from both internal (e.g., Bitcoin protocol, frauds, and
cyber-attacks) and external (e.g., news and market price) historical
events.

To ensure the security and sustainability of Bitcoin and blockchain
technology, in general, we need to analyze transaction data to under-
stand its practical uses and the economic incentives of different kinds
of users and activities. As I review in Chapter 2, many existing works
present empirical analyses of Bitcoin data. However, the results re-
ported in those works have limitations because they 1) report on the
aggregated information, 2) focus on a particular historical event or
group of users, or 3) analyze the data within a limited time frame.
Nonetheless, as Bitcoin activities keep evolving over time, we need
methods for exploring diverse kinds of activities or monitoring the
Bitcoin blockchain in the long term.
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Figure 2: Knowledge generation model for visual analytics (from Sacha et
al. [130] © 2014 IEEE)

1.2 visual analytics

Visual analytics (referred to as “VA”) is "the science of analytical rea-
soning supported by interactive visual interfaces" [31]. The field has
worked on combining information visualization with automated data
analysis methods and allows users to be involved in the analytical
process to gain insights into large and complex datasets [31]. Fig-
ure 2 depicts the VA model that involves the users interacting with
the visualization, and giving feedback to the data analysis model in
order to generate new insights from the data [130]. The VA model
also aims to study human factors by conducting design studies [139]
to understand research questions, design the visualization tool, get
the feedback, and evaluate the tool with real users [88].

VA is a suitable approach for analyzing the Bitcoin blockchain due
to the large scale of transaction data and evolving activities of dif-
ferent groups of Bitcoin users. But in this case, the aggregated infor-
mation cannot show different activities, user groups, or events in the
blockchain data. Chapter 3 presents a comprehensive review of the
past work and research challenges in blockchain data visualization. In
contrast to previous works presenting Bitcoin data on the aggregated
information, Bitcoin VA allows experts and researchers to 1) deeply
analyze the data at different levels of aggregation and time scales,
2) detect patterns and anomalies on a particular activity or group
of Bitcoin users, and 3) provide related information to describe the
behavior or patterns of the activity.

1.3 thesis statement

Blockchain is an emerging research field that involves researchers
from various disciplines in computer science and economics. In com-
puter science, the majority of the work, mainly from cryptography
and computer networks, proposed new blockchain systems and pro-
tocols that give better performance and/or are more secure. Economic
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researchers mainly studied the incentives of users both on the consen-
sus protocol and the market. The empirical analysis takes an impor-
tant role in both fields to understand what happened in the block-
chain and assess security issues to develop better blockchain solu-
tions. VA is a promising approach to facilitate blockchain analytics in
the long term but the advanced tools dedicated to Bitcoin and block-
chain are still rarely found in the existing work (Chapter 3).

Bitcoin is currently the most widely-used and longest-running block-
chain, and its mechanism is also applied to other cryptocurrency
blockchains. For this reason, I chose this blockchain as the subject
of study. In Bitcoin, there are many activities on the different layers
of the blockchain (Chapter 2). In this thesis, I focused on the min-
ing economy because it is the consensus mechanism that ensures
the integrity and stability of the blockchain network. Bitcoin min-
ing involves economic agents called miners who work on verifica-
tion and appending transactions to the blockchain network. Miners
expect to receive financial rewards as incentives to perform mining
operations. My economist collaborator is particularly interested in
this topic and would like to understand the evolution of mining ac-
tivity and the decision model of miners. Working closely with the
economist, I proposed a data analysis method to analyze this activ-
ity on the transaction level (Chapter 5) and developed a VA tool to
support the economist’s research questions (Chapter 6).

My thesis contributes to 1) a systematic review of past work and
research challenges on Bitcoin and blockchain VA, 2) a data process-
ing and algorithm to extract miners from transaction flow and detect
miners’ mobility, 3) an empirical analysis on pool hopping behavior,
and 4) a new VA tool, called MiningVis, to analyze mining behavior
from a long-term historical perspective.

1.4 thesis overview

The thesis is structured into seven chapters. The title and short de-
scriptions of each chapter are listed as follows:

• Chapter 2 Background on Bitcoin and Blockchain Technology
describes the background details of Bitcoin blockchain and re-
views past work related to blockchain data analysis and visual-
ization.

• Chapter 3 Systematic Review on Blockchain Data Visualiza-
tion provides a comprehensive review of past work in block-
chain data analysis and visualization. I proposed the classifica-
tion scheme to group those works and listed research challenges
in blockchain VA.

• Chapter 4 The Emergence and Evolution of Bitcoin Mining
Pools presents data collection and first visualization prototypes
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to understand the competition of mining pools over a long his-
tory of Bitcoin mining. Based on these prototypes, my economist
collaborator and I reported some findings on the factors that af-
fect market share evolution in Bitcoin mining.

• Chapter 5 Empirical Analysis of Bitcoin Mining Pools pre-
sented a data analysis framework to attribute mining pools for
each block, identify miners from the transaction graph, and de-
tect miners’ migration between pools. I justified that this method
can extract miners from various mining pools and. I also con-
ducted an empirical analysis to characterize the payout flow
patterns and understand possible factors related to mining pool
evolution and pool hopping behavior. Chapter 4 and Chapter 5

can be seen as the Data and Model part of the VA approach.

• Chapter 6 MiningVis: Visual Analytics of the Bitcoin Mining
Economy presented a VA tool to analyze the Bitcoin mining
pool. The tool is designed based on the research questions of
the economist. I performed a user study to evaluate the tool
with real Bitcoin miners. This chapter describes the details of
the Visualization and User parts in the VA model.

• Chapter 7 Conclusion provides the summary of my work and
outlook at the possible future work on Bitcoin and blockchain
VA.





2
B A C K G R O U N D O N B I T C O I N A N D B L O C K C H A I N
T E C H N O L O G Y

Blockchain was introduced in the early 1990s as a theoretical system
to store a time-stamped digital document that cannot be modified [10,
56]. The articles proposed data structures and algorithms to store non-
modifiable data and maintain trust in decentralized systems without
centralized control. Bitcoin was initially released in 2009 and consid-
ered the first open-source implementation of the blockchain concept
for digital payment [109]. In 2015, Ethereum was released as a block-
chain that implements smart contract functionality [170]. A smart
contract is a piece of computer code guaranteed to run in the same
way on all peers. It has been used to build Decentralized Applica-
tions (dApps) that run on the Peer-to-Peer (P2P) network.

In this chapter, I describe the background of blockchain technology
and focus on Bitcoin blockchain mechanisms. I also summarize liter-
ature reviews to understand research challenges in blockchain and
look at dedicated surveys on blockchain data analysis and visualiza-
tion domains.

2.1 types of blockchain

Blockchains can be categorized into three types: public blockchains,
consortium blockchains, and private blockchains [29, 177].

• Public blockchains are open blockchains in which any partic-
ipant can read, write, and submit transactions to the ledger.
Any participant can join the consensus process to determine
whether to add blocks and transactions to the ledger. Public
blockchains are suitable for applications that are open for every-
one and need fully decentralized systems. Bitcoin and Ethereum
are well-known examples of this type of blockchain.

• Consortium blockchains are semi-private blockchains that re-
strict the consensus process to the selected group of participants
that are trusted by the system. This reduces the time to verify
transactions and blocks but also makes the systems partially
centralized to selected nodes. The overseeing group of organi-
zations grants permission to operate a node on a consortium
blockchain.

• Private blockchains are fully controlled by an organization that
determines the consensus of the blockchain ledger. The private
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Figure 3: An overview of Bitcoin blockchain components

blockchain owner has the authority to allow or restrict the read
permission to participants. Private blockchains are centralized
systems, similar to database systems, and usually suitable for
applications that require high trust and privacy.

In this thesis, I focus on a public blockchain, in particular Bitcoin,
as the transaction data of this kind of blockchain is publicly available.
Some of the mechanisms described in the next section can differ for
consortium and private blockchains, where, for example, the consen-
sus is determined by selected nodes that can be trusted. Therefore
past records could theoretically be tampered with.

2.2 how the bitcoin blockchain works

Since the Bitcoin blockchain is currently the most well-known and
widely-used public blockchain in the public domain, I will explain
the mechanism behind the Bitcoin system as many of its concepts
also similarly apply to other blockchains. I refer readers who are in-
terested in technical details to the original Bitcoin paper [109] and
books [5]. Technical details of blockchain technology, in general, can
be found in two articles [12, 158].

Bitcoin consists of multiple components, as depicted in Figure 3.
The arrow indicates interaction between two components. The com-
ponents can be grouped into three different layers: 1) financial trans-
actions, 2) mining economy, and 3) Peer-to-Peer (P2P) network. The
cryptocurrency market is an external activity of the Bitcoin network
but indirectly impacts activities in the Bitcoin network.
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Figure 4: An example of a Bitcoin transaction. In this example, Bob spent his
bitcoin stored in different addresses to Alice and kept the changes
back to one of his addresses. Transaction fees were paid to the
miner as the difference between the total input and the total output.
(The transaction was retrieved from Blockchain.info. Icons were
created by Muhammad Haq under CC BY 3.0 license.)

2.2.1 Financial Transaction

The transaction is the most granular data of the Bitcoin blockchain.
Each transaction records the bitcoin value transfer from the input ad-
dress(es) to the output address(es). Bitcoin uses cryptographic proof
to verify the ownership of transactions—which explains why it is
called a cryptocurrency. An address is represented as a long string
with cryptographic properties that can be signed by its owner. Fig-
ure 4 shows an example of a Bitcoin transaction. All the value of
input addresses is sent to the output addresses. The owner can send
the change back to any of his or her addresses if he or she wants
to transfer less than the total value of inputs. The owner also pays
transaction fees as the difference between input and output values.

Apart from financial transactions, blockchains can store any kind
of transaction rather than financial transactions. For example, a
smart contract is a kind of transaction with computer code that can
be executed in a peer-to-peer network. It has been implemented in
many public blockchains such as Ethereum, EOS.IO, and Tezos.

Transactions are publicly available on the blockchain but the owner
of the address cannot be inferred directly from the address, hence
they are referred to as pseudonymous. A common practice is that own-
ers should regularly change addresses to hide their identities. Yet, we
can still trace the activities of entities from address clustering heuris-
tics. Multiple input address is a common heuristic that assumes all
input addresses of the transaction belong to the same entity [123].
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Figure 5: Bitcoin mining process (from Guilherme de Freitas Castro [45])

The surveys of clustering heuristics can be found in four articles [16,
81, 93, 167]. Many blockchain analytics companies maintain the list
of addresses that belong to the known entity but keep the dataset
for private use. WalletExplorer.com is the rare public source that pro-
vides this kind of dataset, but the list of entities is not updated from
2016 [71].

2.2.2 Mining Economy

As Bitcoin and many other cryptocurrencies operate on decentral-
ized networks, the double-spending problem is a possible threat to the
blockchains. Users can fool the network that a unit of digital money
has never been spent before while sending other transactions which
contain the exact same value to different addresses simultaneously. To
solve this problem, Satoshi Nakamoto applied the proof-of-work proto-
col to validate Bitcoin transactions and append them to the block-
chain [109]. This mechanism—commonly refers as mining—is critical
to the integrity and trustworthiness of the blockchain data.

In Bitcoin mining, transactions are validated and appended into a
block by a pool of people called miners. Figure 5 explains the min-
ing process to add transactions to the blockchain. Miners participate
in collecting pending transactions in the blockchain network, validat-
ing them, and collecting them into a block. At the same time, min-
ers perform a proof-of-work consensus protocol that involves solving
the computational-intensive puzzle to obtain the right to append the
new block to the blockchain ledger. The more computational power a
miner has, the more chance that they successfully mine a block. The
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block will be broadcast to the network and permanently appended to
the blockchain.

The miner who successfully proposed a new block can then reclaim
a coinbase transaction that includes newly generated bitcoin values
(block reward) and transaction fees from every transaction in a block.
The block reward is initially set to 50 bitcoin for each block mined and
halved every 210,000 blocks (around 4 years) to control the supply of
Bitcoin circulating in the system. The difficulty of the puzzle is decided
by the total computation power in the blockchain network called hash
rate. The difficulty is adjusted for every 2,016 blocks (around 2 weeks)
to reach the desired rate of adding a new block every 10 minutes. The
more computational power in the Bitcoin network, the more difficult
it is to mine a new block.

Due to the rapid growth of the total hash rate in the network, nowa-
days, individual miners are hardly expected to receive a mining re-
ward in the short term. They also need to bear the cost of purchasing
specific hardware for mining and electricity costs. In practice, mines,
thus, pool their computational resources to mining pools to receive
a more stable and predictable income. The fierce competition of Bit-
coin mining also raises the carbon footprint concern of this activity
because tremendous amounts of electricity are consumed to run min-
ing hardware [14, 87, 146].

Other kinds of blockchain can implement other consensus proto-
cols (i.e., proof-of-x) to decide who can obtain the right to propose
a new block to the network. For example, proof-of-stake protocol
decides who has the right to propose a new block based on the
coins owned by miners. Other consensus protocols can be found
in dedicated articles on this topic [12, 174].

2.2.3 Peer-to-Peer Network

Once the new block is created, it will be broadcast to all nodes in
the network. Nodes in the Bitcoin blockchain are connected in the de-
centralized peer-to-peer network as depicted in Figure 6. Each node
stores its own version of blockchain data and broadcasts their block-
chain data to its closest neighbors. In this way, the blockchain data
will propagate through the entire network via a gossip protocol.

When each node receives the new block, it will verify all transac-
tions in the block to check that they have not been spent before in the
previous blocks. In other words, they check the absence of double-
spending. If the block is validated, the node will then append this
block to the chain. Figure 7 illustrates the blockchain where each
square represents a block. The longest chain from the genesis block
(block 0, in green) is considered the main chain. If there are multiple
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Figure 6: Comparison of different network types: centralized, distributed,
and decentralized networks. Bitcoin nodes are connected in the
decentralized network. (from Guilherme de Freitas Castro [45])

Figure 7: The illustration of blockchain. The main chain (black) consists of
the longest series of blocks from the genesis block (green) to the
latest block. Orphan blocks (purple) exist outside the main chain.
(Theymos, CC BY 3.0)

alternative chains to extend the chain, nodes will choose a new block
on the main chain to maximize the chance that their blockchain is
synchronized with the peers. Other blocks outside the main chain are
considered orphan blocks (in purple) which will be removed from
the blockchain.

2.2.4 Security Attacks in the Bitcoin Blockchain

Because Bitcoin is a decentralized network, it is vulnerable to cyber
attacks from criminals or dishonest users that exploit the consensus
protocol to manipulate or disfunction the network. The attacks can
happen in multiple layers in the Bitcoin network: transactions, min-
ing, or the peer-to-peer network. Some malicious users may try to
double-spend their bitcoin (e.g., Finney attack and Brute force attack).
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Bitcoin money can be stolen from a security breach as it happened to
the Mt.Gox exchange company. In the consensus layer, if a few miners
control more than 50% of the total mining power, they can perform
51% majority attacks to alter the record of transactions [6, 134, 175].
The peer-to-peer network is also vulnerable to network attacks (e.g.,
Distributed Denial-of-Service (DDoS) and Sybil attacks). I refer readers
to the dedicated survey on this issue for more detail [30].

2.2.5 Cryptocurrency Market

Apart from internal components in the Bitcoin blockchain, a cryp-
tocurrency exchange market provides platforms to exchange Bitcoin
value to fiat currencies (e.g., US Dollar and Euro) and therefore deter-
mine the market price of Bitcoin. The exponential growth of Bitcoin
value in recent years is partially explained by the spread of narra-
tives from news and social media to a wider public [143, Chapter 1].
This growth also raises the question of the true value of Bitcoin and
the price inflation [149]. When analyzing activities in Bitcoin, it is im-
portant to consider these external elements as contextual information
because they have some potential influences on internal activities in
the Bitcoin blockchain.

2.3 overview of bitcoin and blockchain research

Blockchain is a vast research field involving algorithms, cryptography,
formal software verification, database systems, computer security, sys-
tem architecture, data security, and economics. To understand the
scope of this research domain, I describe previous surveys that related
to the blockchain. I started with previous surveys on blockchain tech-
nology to identify possible research challenges. After that, I looked
at blockchain analysis work to extract research questions and anal-
ysis methods that researchers have explored. As this thesis focuses
on Visualization and Visual Analytics (VA), I identified the work that
reviews visualizations and tools to explore blockchain data.

2.3.1 Reviews on blockchain research challenges

I found a total of 15 existing literature reviews on blockchain research.
Five articles described the research challenges of blockchain in gen-
eral [12, 48, 97, 103, 177]. Two articles focused on Bitcoin and cryp-
tocurrency blockchains [23, 158]. Four articles provide bibliographic
analysis [55, 100, 159, 176]. The other four surveys were dedicated to
the security and privacy issues [30, 49, 81, 167]. I found four main
research challenges repetitively identified in those surveys.



14 background on bitcoin and blockchain technology

system performance concerns the scalability and availability of
the blockchain network when the size and the volume of trans-
actions grow [48]. Scalability problems occur from the growing
size of the blockchain, the block size limitation, and the time
interval between blocks. Availability concerns the increased vol-
ume of transactions on throughput (i.e., how many transactions
the blockchain can process per second) and latency (i.e., waiting
time for adding a block to the blockchain).

security issues are critical to blockchain systems as transactions
need to be stored correctly in the peer-to-peer network. Secu-
rity problems involve double-spending, mining-related attacks,
client-side security threats, and network attacks [30]. Mining at-
tacks were listed directly as a challenge in several surveys as
mining is the consensus protocol of many blockchain networks.
For example, 51% of computational power (or even less than
that) can alter transaction history in the blockchain. Miners per-
form selfish mining by withholding validated blocks to gain
more profits but waste the overall resources.

privacy and anonymity issues are related to the fact that the
identity of users should be anonymous, and their personal data
should be protected. Users are pseudonymous in blockchain as
they use public addresses to conceal their true identities. How-
ever, address clustering heuristics can group addresses that may
belong to the same user [30]. Mixing services can tackle privacy
and anonymity by hiding the trace of users’ transactions [158].

laws and regulations have been actively developed by many
governments to regulate cryptocurrencies and blockchains in
recent years. Cryptocurrencies are the main focus of the cur-
rent rules to prevent money laundering and impose taxation
on blockchains’ financial activities. Some countries even made
cryptocurrency tradings illegal as they threatened the author-
ity of central banks [103]. As the new blockchain applications
emerged, especially smart contracts, the regulation guidelines
are not yet available, which may delay adopting the blockchain
technology [12].

Three dedicated surveys highlighted the importance of blockchain
analysis in practice. Bonneau et al. [23] argued that current work did
not provide adequate tools to assess blockchain in practice. Tschorsch
and Scheuermann [158] described alternative approaches to solve the
technical challenges above, but the consequence in practice remains
unclear. Merediz-Solà and Bariviera [100] suggested that interdisci-
plinary work on inefficiencies in the Bitcoin market and in-depth be-
havioral analysis were missing in the current work. This thesis pro-
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poses both the in-depth analysis result and the tool for studying min-
ing behavior in the Bitcoin blockchain to address these concerns.

2.3.2 Reviews on blockchain analysis

Blockchain analysis work aims to analyze and detect interesting be-
haviors and possible vulnerabilities in the current blockchain solu-
tions. The results from this kind of work suggest evidence and solu-
tions to those problems and challenges described in the previous sec-
tion. Researchers applied data analysis methods to investigate block-
chain data. I summarized three main methods usually applied: game
theory, graph analysis, and data mining.

game theory has been used widely to analyze the incentives of
theoretical agents and assess mostly security issues in block-
chain protocols. Azouvi and Hicks [7] surveyed game-theoretic
models applied to cryptographic and distributed systems and
described existing work that proposed models to cryptocurrency
blockchains and their limitations. Liu et al. [96] reviewed exist-
ing works analyzing privacy, mining, and economic issues on
blockchains. Most of the works they found heavily focused on
the incentive of miners and mining pools as they were the lead-
ing players in the consensus process.

graph analysis is a primary technique to analyze the intercon-
nection of transactions, addresses, or entities as blockchain data
are represented in the graph data structure. Ankora et al. [2]
provided extensive technical backgrounds on graph analysis in
multiple blockchains, including Bitcoin, Monero, Zcash Ethereum,
Ripple, and Iota. Wu et al. [171] summarized the past work into
three steps: network modeling, network profiling, and network-
based detection. First, cryptocurrency transactions were repre-
sented as graph data (network modeling). Then, researchers can
extract features such as clustering coefficient, centrality, and net-
work motif from the graph representation (network profiling).
Finally, researchers can use those features for many analysis
tasks, including entity recognition, transaction pattern recogni-
tion, illicit activity detection, and transaction tracking (network-
based detection). Interestingly, the authors reported that current
research did not explore much on dynamic networks, mixing
services, and early warning of misbehavior.

data mining techniques allow researchers to discover patterns
from large blockchain transaction data. Liu et al. [93] described
data preparation techniques in cryptocurrency transaction data
and summarized previous works into three research questions:
1) traceability and linkability issues, 2) collective user behavior,
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and 3) individual user behavior. In the survey, data mining tech-
niques have been used to 1) predict entity types (e.g., exchange,
wallet, mining), 2) predict fraudulent entities, 3) forecast cryp-
tocurrency price, and 4) anomaly detection. Li et al. presented
a dedicated survey to anomaly detection methods. They sum-
marized four main techniques (i.e., statistical, machine learning,
deep learning, and graph learning) and discussed the advan-
tages and drawbacks of each technique.

As these techniques are commonly used to analyze the blockchain
data, research articles usually reported the analysis results at the ag-
gregated level or limited study time interval. Visual Analytics (VA)
framework combines analysis methods and visualization that allow
analysts to adjust model parameters and analyze the result in dif-
ferent levels of detail. However, blockchain VA tools were still rarely
found and included in the current surveys.

2.3.3 Reviews on blockchain visualization tools

Blockchain tools facilitate the exploration, analysis, and monitoring
of activities in the blockchain. In contrast to analysis literature, users
can interact with tools to filter the data they want to investigate, drill
down, roll up, or jump into the related information. I found three
existing surveys dedicated to this topic.

• Balaskas and Franqueira [8] examined 13 tools for the Bitcoin
blockchain available on the internet. They proposed a taxon-
omy based on analysis themes: analysis of entity relationships,
metadata, money flows, user behavior, transaction fee, and mar-
ket/wallets. The found tools are mainly able to track and moni-
tor cryptocurrency values, and therefore help detect fraudulent
transactions.

• Bartoletti et al. [9] surveyed 15 Bitcoin and cryptocurrency tools
found in academic articles and websites. The tools in their sur-
vey were classified based on analysis goals: anonymity, mar-
ket analytics, cybercrime, metadata, and transaction fees. For
each analysis goal, the authors further specified the kind of
blockchain-related data used in the tools, such as transaction
graphs, address tags, IP addresses, mining pools, exchange rates,
and lists of DDoS attacks.

• Sundara et al. [148] reviewed 8 Bitcoin tools available on the
internet and briefly described visual representations and im-
plementation techniques. Most tools in their survey performed
real-time monitoring for Bitcoin transactions. Nonetheless, the
authors neither performed an exhaustive search nor proposed a
method to classify the tools they found.
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The first two surveys proposed a classification of blockchain tools
based on analysis tasks. The last article is the only previous work that
surveyed visualization tools. All of the surveys include only Bitcoin
blockchain tools which are available at their publication date. Many
aspects of the surveys on this topic are still missing, including tools
targeted at different types of blockchain, blockchain data, and visual-
ization.

2.4 conclusion

This chapter describes three main types of blockchain and provides
a detailed explanation of the mechanism behind the Bitcoin block-
chain. I divided the elements of Bitcoin into three layers: 1) financial
transactions, 2) mining economy, and 3) the peer-to-peer network. To
understand the scope of blockchain research, I summarized the re-
search challenges in previous surveys on Bitcoin and blockchains. I
then focused on data analysis and visualization, which is the topic of
the thesis. Visual Analytics (VA) is a promising method to apply for
Blockchain analysis, but the comprehensive survey was still missing.
In the next chapter, I extend the survey to include more tools in other
blockchains and propose a new classification scheme to consider data,
analysis, visualization, and users.
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S Y S T E M AT I C R E V I E W O F B L O C K C H A I N D ATA
V I S U A L I Z AT I O N

To assess the current state-of-the-art in blockchain Visual Analytics
(VA), I conducted a comprehensive review from visualization arti-
cles, Exploratory Data Analysis (EDA) articles, and online sources. I
systematically assessed the motivations and characteristics of each
source. Then, I defined a classification scheme to group visualizations
based on five aspects: target blockchains, blockchain data, task do-
mains, target users, and visualization types. In the end, I summarized
the start-of-the-art and present research challenges in blockchain VA

that would benefit from future research.

This chapter is an updated version of my original article published
at IEEE Transactions on Visualizationand Computer Graphics (TVCG)
[153]. The article was led by myself and co-authored with my su-
pervisors: Nicolas Heulot, Jean-Daniel Fekete, and Petra Isenberg.

3.1 data collection

I collected articles and online sources from the internet using specific
keywords and manually filtered sources relevant to blockchain visu-
alization. I worked on searching blockchain visualization sources in
April 2019 and constantly updated the sources after publishing the
systematic review article.

3.1.1 Identifying search idioms

I used a combination of blockchain-related terms with visualization-
related terms to retrieve relevant sources for blockchain visualization.
I also added analysis-related terms because these sources often used
blockchain visualization to report empirical findings.

• Blockchain-related terms: I chose four keywords that commonly
refer to blockchain technology: “blockchain,” “bitcoin,” “cryp-
tocurrency,” and “ethereum.”

• Visualization-related terms: To narrow down the search result
to tools related to visualization techniques for blockchains, I
used the character sequence “visual” to cover keywords such as
“visualization,” “visual analytics,” “visualizing,” etc.

19
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• Analysis-related terms: I used the character sequences “data
analy” and “graph” to retrieve sources that did not specifically
use any “visual”-related key terms.

The search idioms are relatively broad to optimize for recall rather
than precision of the search results.

3.1.2 Searching academic articles

First, I searched relevant academic articles with the search idioms
defined above in six scientific databases: 1) IEEE Xplore, 2) ACM Dig-
ital Library, 3) ScienceDirect, 4) DBLP, 5) Springer Link, and 6) Google
Scholar. Then, I combined search results from these six databases and
removed duplicate articles in multiple databases. Next, I screened the
returned results by reading the title of returned articles one by one
and selected articles that seemed to include blockchain visualizations
beyond simple charts. If the title did not clearly describe an article’s
relevance, I also read the abstract before deciding on inclusion in our
survey. Inclusion criteria were: a) the article is related to VA on any
blockchain, and b) the article includes EDA on any blockchain tech-
nology and uses visualization to communicate results. I decided to
include EDA articles to understand possible questions that researchers
are interested in and common visualization types they used to convey
their results.

3.1.3 Searching online web-based visualization

To collect blockchain visualization tools that are available on the in-
ternet, I search idioms from the combination of (“blockchain” OR
“bitcoin” OR “cryptocurrency” OR “ethereum”) AND (“analysis” OR
“analytics” OR “visualization” OR “visual analytics” OR “graph” OR
“chart”) on Google Search and retrieved the first 100 results. I looked
at each web page one by one and checked whether the web page con-
tained blockchain visualizations. In the case of web pages that con-
tained links to other visualization tools, I followed each link in the
web page and added the link to our list. The web page had to con-
tain interactive graphics showing raw or aggregated data stored on
a blockchain to be selected. I excluded web pages that showed only
market data on cryptocurrency exchanges (e.g., the current $ value of
a Bitcoin).

At the end of the data collection phase, I collected a total of 110

blockchain visualization sources: 20 visualization articles (18%), 43

Exploratory Data Analysis (EDA) articles (39%), and 47 online web-
based visualizations (43%). I include references to all visualization
sources: visualization articles (annotated with [V#]), EDA articles ([A#]),
and online sources ([O#]) in Table 2, Table 3, and Table 4, respectively.
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Classification Scheme of Visualization on Blockchain Data

Target Blockchains Blockchain Data Target Audiences Task Domains

Bitcoin
Ethereum
Others

Blockchain components
Entities
Nodes
Mining
Network activities
External data

Novices
Intermediates
Experts

Transaction detail analysis
Transaction network analysis
Cybercrime detection
Cryptocurrency exchange
analysis
Peer-to-peer (P2P) network
activity analysis
Casual/entertaining information
communication

Charts
Time series
Tree and graph visualizations
Multi-dimensional
visualizations
Map-based visualizations
Casual visualizations

Visualization Types

Figure 8: The classification scheme of blockchain data visualizations

3.2 classification scheme and methodology

I considered many visualization-related categories such as data, tasks,
types of visualizations, or end-users. After several rounds of open
coding with an evolving code-set, I converged on five main aspects
for delineating blockchain visualization sources: 1) target blockchains,
2) blockchain data, 3) target audiences, 4) task domains, and 5) visual-
ization types. Figure 8 gives an overview of the classification scheme,
and Table 1 summarizes the number of sources in each category by
source type. Notice that the total counts and percentages do not neces-
sarily correspond to 110 sources (100%) as sources may have included
multiple types of visualizations in the classification scheme.

3.2.1 Target Blockchains

I extracted the blockchain that each visualization source targeted. The
Bitcoin blockchain (69%) was the most common to be visually repre-
sented. This is not surprising because Bitcoin is the oldest running
cryptocurrency blockchain and is still widely used nowadays. The
Ethereum blockchain (28%) was the second-most common visually
represented blockchain. I found that other blockchains (15%) were
mostly cryptocurrency blockchains, such as Namecoin, Litecoin, Doge-
coin, and Dash. Only two sources visualized the data on Hyperledger,
an open-source consortium blockchain.

3.2.2 Blockchain Data

I categorized seven different types of blockchain data that appeared
in visualization sources.

blockchain components (80%) are fundamental data types stored
in public ledgers, including transactions, addresses, blocks, and
smart contracts.
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Table 1: The number of blockchain data visualization sources for each data
source.

Blockchain Data Audience Task Domain Visualization Type
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Visualization Articles 16 2 2 19 6 1 2 2 3 0 4 16 11 11 9 0 2 0 5 10 16 5 0 0

EDA Articles 26 12 6 35 12 2 7 6 15 0 0 43 11 28 11 2 11 0 38 36 21 1 2 0

Online Sources 34 17 9 34 3 10 15 24 14 16 30 1 19 5 1 9 23 12 19 22 9 2 8 12

Total 76 31 17 88 21 13 24 32 32 16 34 60 41 44 21 11 36 12 62 68 46 8 10 12

Percent 69 28 15 80 19 12 22 29 29 15 31 55 37 40 19 10 33 11 56 62 42 7 9 11

entities data (19%) contains the identity of users who own the
addresses or accounts in the blockchain. In Bitcoin, it requires
address clustering heuristics or external sources to identify en-
tities from anonymous addresses.

nodes (12%) ensure consensus through mining to verify transac-
tions and store them in the public ledger. The data from nodes
includes the IP address of nodes and inferred locations.

mining activity statistics (22%) can be directly calculated from
the blockchain, such as, for Bitcoin, the average miner’s speed to
solve the proof-of-work problem (hash rate), mining difficulties
over time, and the amount of reward to the successful miners.

network activities (29%) displayed aggregated statistics of the
whole blockchain network. Network activity data usually in-
cluded the number of unique addresses used, the total number
of transactions recorded in a given time period, the number of
transactions waiting to be confirmed (mempool), and the num-
ber of Unspent Transaction Outputs (UTXOs).

external data sources (29%) convey meaningful contexts such
as cryptocurrency exchange rates, online news, socio-economic
data (e.g., percentage of internet users, Gross Domestic Prod-
uct (GDP) per capita, or the Human Development Index (HDI)),
social media information, or even Google Trends data.

3.2.3 Task Domains

I categorized blockchain visualization sources into six task domains
to detect goals for developing, analyzing, and exposing existing tools.
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Table 2: List of visualization article sources
Blockchain Data Audience Task Domain Visualization Type
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[V1] Ahmed et al. x x x x x x

[V2] BlockChainVis x x x x x x

[V3] Bogner x x x x x x x

[V4] Chawathe x x x x x

[V5] Bitconeview x x x x x x

[V6] Hao et al. x x x x x x x

[V7] GraphSense x x x x x x x x

[V8] Isenberg et al. x x x x x x

[V9] BitConduite x x x x x x x x

[V10] Blockchain explorer x x x x x x x x

[V11] McGinn et al. 2016 x x x x x x x

[V12] Norvill et al. x x x x x

[V13] BiVA x x x x x x

[V14] HyperSec x x x x x x x x x x

[V15] Schretlen et al. x x x x x

[V16] BitVis x x x x x x x x

[V17] Chronograph x x x x x x x

[V18] SuPoolVisor x x x x x x x x x

[V19] BitExTract x x x x x x x x x x

[V20] SilkVisor x x x x x x x x
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Table 3: List of exploratory data analysis article sources
Blockchain Data Audience Task Domain Visualization Type

Source
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[A1] Akcora et al. x x x x x x x x

[A2] Alqassem et al. x x x x x x x

[A3] Anoaica and Levard x x x x x x x x

[A4] Aw et al. x x x x x x x

[A5] Badev and Chen x x x x x x x x

[A6] De Balthasar et al. x x x x x x x

[A7] Bartoletti et al. x x x x x x x

[A8] Bartoletti and Pompianu x x x x x x

[A9] Bistarelli et al. 2020 x x x x x x

[A10] Bistarelli et al. 2018 x x x x x

[A11] Cao et al. x x x x x x x

[A12] Chang and Svetinovic x x x x x x

[A13] Ting Chen et al. x x x x x x

[A14] Weili Chen et al. x x x x x x x x

[A15] Di Battista et al. x x x x x x

[A16] Fujiwara and Islam x x x x x x x

[A17] Gao et al. x x x x x x x x x x

[A18] Gebraselase et al. x x x x x x x x x x

[A19] Guo et al. x x x x x x x

[A20] Huang et al. x x x x x x x x x x

[A21] Jiang and Liu x x x x x x x

[A22] Kappos et al. x x x x x x x x x

[A23] Kondor et al. x x x x x x x

[A24] Lee et al. x x x x x x x

[A25] Li et al. x x x x x x x x x

[A26] Lischke and Fabian x x x x x x x x x x x x x

[A27] Maesa et al. x x x x x x

[A28] McGinn et al. 2018 x x x x x x x

[A29] Meiklejohn et al. x x x x x x x x

[A30] Möser et al. 2013 x x x x x x x

[A31] Möser et al. 2018 x x x x x x

[A32] Norbutas x x x x x x x

[A33] Parino et al. x x x x x x x x x

[A34] Phetsouvanh et al. x x x x x x x x

[A35] Pinna et al. x x x x x x x x

[A36] Reid and Harrigan x x x x x x x x

[A37] Romiti et al. x x x x x x x x x x x

[A38] Ron and Shamir x x x x x x

[A39] Vallarano et al. x x x x x x x x

[A40] Wang et al. x x x x x x x x

[A41] Wang and Liu x x x x x x

[A42] Zhao et al. x x x x x x

[A43] Zheng et al. x x x x x x x x
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Table 4: List of online web-based sources
Blockchain Data Audience Task Domain Visualization Type
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[O1] EthStats.io x x x x x x x x

[O2] Alethio x x x x x x

[O3] BitBonkers x x x x x

[O4] Bitcoin Globe x x x x x

[O5] BitcoinWisdom x x x x x x x x x

[O6] Etherchain x x x x x x x x x x

[O7] ChainFlyer x x x x x x

[O8] BitForce5 x x x x x

[O9] BitInfoCharts x x x x x x x x x x x

[O10] Blockchain.info x x x x x x x x x x x x x x

[O11] Blockchair x x x x x x x x x x x

[O12] BlockSeer x x x x x

[O13] BTC.com x x x x x x x x x x x x x

[O14] Bitcoinity x x x x x x x x x

[O15] Coin Dance x x x x x x x x x

[O16] CoinDesk x x x x x x x x x

[O17] DailyBlockchain x x x x x

[O18] DashRadar x x x x x x x x x x x

[O19] Dune Analytics x x x x x x x x x x

[O20] Bitcoin Big Bang x x x x x

[O21] Ethernodes.org x x x x x x x x x

[O22] Etherscan x x x x x x x x x x x x x

[O23] EtherView x x x x x

[O24] Ethviewer x x x x x x

[O25] Ethplorer x x x x x x x

[O26] Plantoids x x x x x

[O27] Gastracker.io x x x x x x x x x

[O28] Interaqt x x x x x

[O29] Federal Bitcoin x x x x x

[O30] Johoe’s Mempool x x x x x x

[O31] Symphony x x x x x

[O32] OXT x x x x x x x x x x

[O33] Bitcoin Visuals x x x x x x x x x

[O34] Hyperledger Explorer x x x x x x x x x

[O35] BitListen x x x x x

[O36] BitcoinCity x x x x x

[O37] EthStats.net x x x x x x x x

[O38] Blockchain 3D Explorer x x x x x

[O39] Statoshi.info x x x x x x

[O40] On Brink x x x x x

[O41] TradeBlock x x x x x x x x x x x x

[O42] TX Highway x x x x x

[O43] Bitcoin Monitor x x x x x

[O44] Bitcoinrain x x x x x x

[O45] Bitcoin VR x x x x x

[O46] Wizbit x x x x x x

[O47] BitNodes x x x x x x
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These task domains are not mutually exclusive; in other words, a
visualization source could target multiple task domains.

transaction detail analysis (37%): Transaction detail analy-
sis tools often expose basic statistics on the level of individ-
ual transactions, of blocks, and sometimes related to individual
blockchain users (entities) such as individual people, exchange
platforms, dark marketplaces, gambling services, or companies.

transaction network analysis (40%): A blockchain transac-
tion network is a bipartite graph connecting addresses through
transactions. Most of the sources targeting this task domain are
EDA articles that analyzed transaction networks and described
the structures and dynamics of blockchain transaction networks.
Visualization articles and online sources allowed for interactive
exploration of transaction networks based on specific events or
groups of entities.

cybercrime detection (19%): Cybercrime is a serious threat to
the use of blockchains. This task domain is particularly common
for the cryptocurrency community because of the historical fre-
quency of fraudulent activities (e.g., money laundering and ille-
gal trading) as well as cyberattacks (e.g., denial-of-service and
Sybil attacks) on most cryptocurrency blockchains.

cryptocurrency exchanges analysis (10%): Cryptocurrency
exchanges are an important target domain, particularly cryp-
tocurrency blockchains such as Bitcoin. Tools in this target do-
main present exchange market statistics and financial data re-
lated to different cryptocurrencies, such as the exchange rate
between a cryptocurrency value and the US Dollar. In this re-
view, I did not systematically collect all tools focused on market-
related data without including some data stored on a block-
chain. A comprehensive review of online cryptocurrency ex-
change sources can be found in my EuroVis poster [152].

p2p network activity analysis (33%): This target domain con-
cerns the presentation of aggregated statistics that gives an overview
of activities in the P2P network, such as mining, transaction
rates, transaction volume, mempool statistics, sometimes cou-
pled with inferred geographic locations.

casual/entertaining information communication (11%):
This kind of visualization was built on the web to attract the
attention of novice audiences to blockchain technologies and
engage them through casual information visualization.
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3.2.4 Visualization types

I categorized blockchain visualization sources into six common visu-
alization types.

charts (56%) showed predominantly two or three (never four) data
dimensions using basic representation types such as bar charts,
pie charts, histograms, scatterplots, word clouds, and heatmaps.

time series (62%) were the most common visualization type be-
cause timestamps are essential in blockchain data. Most com-
monly, time series showed the activity of a blockchain address
or entity summarized across different time granularities. Time
series were often presented as line plots and bar graphs with
a temporal x-axis. Another time-oriented data visualization I
found is tilemaps [101], a heat map with calendar divisions to
encode activity statistics with one or two temporal dimensions.

tree and graph visualization (42%) was common to represent
the blockchains’ money flows and transaction networks. These
representations typically showed the connection of transactions
from input addresses to output addresses. Node-link diagrams
were the most common technique to show the connectivity of
blockchain components. A few sources used different graph vi-
sualization techniques, such as an adjacency matrix, a Circos
diagram [85], or customized visualizations.

multi-dimensional visualizations (7%) are designed for show-
ing data of higher dimensions than basic charts, including mul-
tiple glyphs, self-organizing maps, classification trees, 3D scat-
terplots, spider charts, and parallel coordinates.

map-based visualization (9%) was a common technique to dis-
play geographical information associated with the blockchain.
I found point maps, density maps, choropleth maps, and 3D
virtual globes among all map-based sources.

casual visualizations (11%) were a set of non-standard, custom-
made graphical representations of blockchain data as casual in-
formation visualizations [117]. These sources did not use com-
mon charts or plots as described above. Instead, they depicted
basic blockchain components in unique ways to attract atten-
tion.

3.3 detail analysis per task domain

As task domains are an important distinguishing factor in the classi-
fication scheme, I describe patterns of sources for each task domain
in greater detail and provide some representative examples.
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(A)

(C)

(B)

Figure 9: Representative examples of financial transactions and blocks vi-
sualizations: (A) BitInfoChart, (B) Schretlen et al. (Image from a
public presentation, used with permission of Uncharted Software
Inc.), and (C) Ethviewer.

3.3.1 Transaction detail analysis

Transaction detail analysis aims to analyze transaction patterns for
individual blockchain components (i.e., transactions, addresses, and
blocks) or derived entities in blockchain networks. Visualization sources
in this task domain can be divided into three main groups based on
the blockchain data visualized: 1) visualization of financial transac-
tions, 2) visualization of blocks, and 3) visualization of multiple enti-
ties.

Visualization of financial transactions: Visualizations of this cat-
egory allow intermediate users to search and explore the details of
cryptocurrency value transactions, addresses, and blocks. Most tools
in this task domain focus on representing financial transaction activi-
ties in a specific address or entity, such as the total received, sent, or
the balance amount over time in the form of time series. BitInfoCharts
[O9] uses line plot time series to show the balance amount of indi-
vidual addresses for several cryptocurrencies, including a conversion
rate to US Dollar (Figure 9 (A)). Other time series visualizations have
also been used. For example, Blockchain Explorer [V10] visualizes
weekly or monthly transaction volumes as a tilemap [101].

In contrast to most sources in this task domain that show aggre-
gated statistics on transactions and addresses, Schretlen et al. [V15]
proposed an interactive visualization for exploratory analysis of trans-
action data stored in the Bitcoin blockchain. It used a large-scale
tilemap (Figure 9 (B)) to display the distribution of Bitcoin transac-
tion values.

Visualization of blocks: Four sources displayed the content of blocks.
Chawathe [V4] applied a self-organizing map to create a low-dimensional
representation of transactions in a block. The self-organizing map
is visualized as a hexagonal grid of wind rose plots to show the
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Figure 10: BitConduite is a VA tool to explore and filter entity groups in the
Bitcoin blockchain. (© 2021 IEEE)

main characteristics of transaction groups in a block. Ethviewer [O24]
shows the real-time transaction pool in Ethereum. The tool shows a
chain of linked blocks as a node-link diagram (Figure 9 (C)). In SilkVi-
sor [V20], blocks are illustrated as papers. The arrow connects papers
to show the block order. OXT Landscapes [O32] is the only source
that uses 3D scatterplots to represent attributes of blocks.

Visualization of multiple entities: Two sources presented finan-
cial information that allows experts to explore a single or a group
of entities and drill down to see transaction behavior. Attributes that
characterize entities were usually represented as multiattribute visu-
alizations. BitConduite [V9] is a visual analytics tool for exploring
entities in Bitcoin using multiple views (Figure 10). It allows analysts
to filter groups of entities visually from value range selectors (A) and
a classification tree (B). Then, the tool clusters entities with similar
activity patterns. It encodes them as radar charts to represent quanti-
tative attributes of entities, such as the number of transactions, time
active, and the average number of input addresses per transaction
(C–D). BitExTract [V19] is another visual analytics tool that also falls
in entity visualizations, focusing on the analysis of activities among
Bitcoin exchanges, including transactional volume, market share, and
connectivity between exchanges.

3.3.2 Transaction network analysis

Transaction network analysis sources generally showed three kinds of
information: 1) transaction networks, 2) the network of entities, and
3) value flow tracing the transfer of cryptocurrency values through
transactions over time. These sources were always represented as tree
and network visualizations. In particular, node-link diagrams were
most often used to show the connectivity among blockchain compo-
nents. A common technique to arrange nodes was the force-directed
graph layout.
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(A) (B)

Figure 11: Representative examples of transaction network visualizations:
(A) BlockchainVis, and (B) The Bitcoin Blockchain Entity Ex-
plorer.

(A) (B) (C)

Figure 12: Representative examples of entity network visualizations: (A) The
Bitcoin Big Bang, (B) The connection view in BitExTract, and (C)
Circos diagram in Parino et al.

A transaction network is a directed bipartite graph connecting ad-
dresses via a transaction. There are two kinds of nodes: one type for
addresses and one for transactions. Two kinds of directed edges exist
in such a graph. Input edges connect input address(es) to a transac-
tion, and output edges connect to output address(es).

Several visualization articles proposed tools to explore transaction
networks based on specific events. The BlockchainVis [V2] tool dis-
plays a fully connected network of a transaction or an address en-
tered by the user (Figure 11 (A)). McGinn et al. [V11] proposed a
system to display a transaction network on a large screen on which
users can pan, zoom, and hover over to get a better overview or more
detail. Blockchain 3D Explorer [O38] is the only tool in this domain
that visualizes a transaction network as a 3D graph. It also supports
virtual reality systems for Google Cardboard to explore the blockchain
network in an immersive way. Instead of showing a static transaction
network as a node-link diagram, Bitcoin Entity Explorer [V8] is an ex-
ception in that it presents a transaction activity timeline of a chosen
entity with a timeline-based squared graph layout connecting input
and output addresses over time (Figure 11 (B)).
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(A) (B)

(C)

Figure 13: Representative examples of value flow visualizations: (A) Block-
chain.info, (B) BitConeView (© 2015 IEEE), and (C) The Bitcoin
visualization in BitInfoCharts.

A network of entities shows the connectivity between entities in
the blockchain network. Nodes represent entities, and edges repre-
sent connectivity through transactions. For example, in Bitcoin, an
edge represents the total amount of exchanged values between two
entities and is absent if no value was exchanged.

The Bitcoin Big Bang [O20] is an online visualization presenting a
network of entities as a node-link diagram connecting well-known
wallets and highlighting the transaction volume between them. It
adds a temporal dimension to the node-link diagram by arranging
the node distance from the center based on their first appearance
(Figure 12 (A)). BitExTract [V19] has a connection view that shows
the relationship of exchange entities using a circular network layout
to investigate the interaction of entities in the blockchain network
(Figure 12 (B)). Parino et al. [A33] describe a flow network of Bitcoin
transactions aggregated by country. The authors use a Circos diagram
[85], also known as dependency wheel, to visualize major countries’
total transactions (Figure 12 (C)).

A value flow presents traces of cryptocurrency value given a par-
ticular transaction or address of interest. Sources visualizing a value
flow usually used as a tree diagram to connect the values flowing
in chronological order. In this layout, a node represents a transaction
or address, and an edge represents the amount of value exchanged.
For example, Blockchain.info [O10] provides a tree diagram in which
users can click through tree levels to follow value flow from con-
nected input and output addresses (Figure 13 (A)). Instead of pre-
senting the value flow as a tree structure, BitConeView [V5] provides
a unique diagram showing the value flow of a seed transaction as it
appears in blocks from top to bottom (Figure 13 (B)).

All of the examples above present static graphs that do not consider
the timestamp of transactions. BitInfoCharts [O9] provides a unique
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(A) (B)

Figure 14: Representative examples of cybercrime detection visualizations:
(A) Ahmed et al. and (B) Chronograph.

visualization that shows the flow of transactions over the entire his-
tory of a cryptocurrency blockchain as a kind of node-link diagram
arranged using a linear layout (Figure 13 (C)). The same kind of visu-
alization also appeared in McGinn et al. [A28] as an adjacency matrix
representation.

3.3.3 Cybercrime detection

The cybercrime detection task domain includes tools that can de-
tect suspicious transactions and entities or investigate cyber-attack
events. Sources in this task domain also include shared characteris-
tics with sources in the transaction detail analysis and transaction net-
work analysis domains. Additionally, they have particular user tasks
and subsequently focused features for cybercrime detection. Current
blockchain visualization tools for cybercrime detection focus on two
questions: 1) value flow analysis to see how cryptocurrency value is
propagated and 2) transaction network analysis to see how the block-
chain network reacted in light of cybercrime events.

One way to detect fraudulent financial activities in cryptocurrency
blockchains is to analyze the value flows of transactions. Di Battista
et al. [A15] and Ahmed et al. [V1] proposed transaction graph tools
to analyze Bitcoin stolen money mix in the transaction flow (i.e., taint
analysis). To analyze the degree of money mixing from the original
transaction, Di Battista et al. [A15] introduced a purity measurement,
the degree that a seed transaction is mixed with other transactions.
Ahmed et al. [V1] developed an interactive visualization tool to dis-
play taint propagation as a node-link tree visualization (Figure 14

(A)). They use a First-In-First-Out (FIFO) algorithm to track the dif-
fusion of tainted transactions in both forward (i.e., starting from a
stolen coin to the following transactions) or backward (i.e., tracing
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(A) (B)

(C)

Figure 15: HyperSec is a tool to monitor security issues on the Hyperledger
blockchain. (A) The dashboard shows network statistics, recent
blocks, and open issues. (B) The transaction view displays trans-
action volume, size, and processing time. (C) The network view
shows traffic between nodes.

the previous transactions until the origin of a tainted coin is found)
directions.

Another kind of tool in this domain aims for transaction network
analysis on specific events or groups of entities. For example, BitVis
[V16] uses multiple graph visualizations with a filtering panel to
display transaction networks for detecting abnormal and suspicious
Bitcoin entities. Two articles from McGinn et al. [A28, V11] show
how their tool can be used to visualize a transaction network dur-
ing cybercrime attacks, including denial-of-service attacks where an
attacker tries to fill up a block with spam transactions. Chronograph
[V17] proposed a graph visualization tool to detect money launder-
ing transactions from a Graph Convolutional Network (Figure 14 (B)).
The positions of the nodes are set with a 2-dimensional projection
using Uniform Manifold Approximation and Projection (UMAP) tech-
nique. The BlockChainVis tool [V2] is another transaction network
tool that allows filtering specific parts of the transaction network dur-
ing an event of interest. It has been used to analyze the WannaCry
ransomware incident on May 12th, 2017 [A10]. Other EDA articles
performed ad-hoc analyses of transaction networks during attacks on
the Bitcoin network, including money laundry services [A6], online
drug marketplaces [A32], and Bitcoin thefts [A36].

I found only one tool dedicated to cybercrime detection in the
consortium blockchain. HyperSec [V14] extends the Hyperledger Ex-
plorer tool [O34] to monitor security issues on the Hyperledger net-
work (Figure 15). The tool consists of multiple dashboards to iden-
tify blockchain components, smart contracts, log files, configuration
changes, and network activities that could threaten the blockchain
network. Users can detect anomalies in blockchain activities from the
chart and further investigate individual transaction details.
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(A) (B)

Figure 16: Representative examples of cryptocurrency exchange analysis vi-
sualizations: (A) Blockchain.info and (B) CoinDesk.

3.3.4 Cryptocurrency exchange analysis

Cryptocurrency exchanges convert cryptocurrency values into fiat
currencies, such as US Dollars and Euros. This kind of data is not
stored in the blockchain. Sources in this task domain either 1) cover
the conversion of cryptocurrency value to US Dollar for blockchain
components (Section 3.3.1), or 2) provide an additional view that re-
lates information on blockchain components to market statistics, such
as historical price, trading volume, and market capitalization.

The first type visualizes conversion rates for cryptocurrency val-
ues on blockchain components, such as individual addresses or blocks.
These sources are already described in the “transaction detail analy-
sis” task domain section (Section 3.3.1). The second type visualizes
cryptocurrency market statistics in separate charts to provide contex-
tual information. These sources mainly used time series to display the
historical exchange rate and market volume for different time scales
(i.e., hours, days, weeks, months) in addition to more detailed infor-
mation on individual transactions, addresses, or blocks. For example,
Blockchain.info [O10] provides a market view for various cryptocur-
rencies (Figure 16 (A)). CoinDesk [O16] is a unique online tool in this
category that shows summarized measures of several cryptocurren-
cies’ size and investment opportunities. It presents a spider chart to
compare multiple measures related to price, exchanges, social media,
developers, and the overall network size (Figure 16 (B)).

3.3.5 P2P network activity analysis

Blockchains are decentralized systems running with client nodes in a
Peer-to-Peer (P2P) network architecture. Understanding the activities
within the P2P network helps intermediate and expert users track the
current status of a block due to overall activities among participants
in the network. Sources in this task domain use two kinds of visu-
alizations: 1) time series to show the aggregated statistics of the P2P
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(A) (B)

Figure 17: Representative examples P2P network activity visualizations: (A)
EthStats.net and (B) BitNodes.

network, and 2) map-based visualizations to show the geographical
distribution of blockchain usage around the world.

Most sources in this task domain present P2P network statistics
calculated from aggregated node activities in the blockchain network
over time. All sources use time series visualizations to represent changes
in the blockchain network over time. Blockchain.info [O10] provides
a long list of time series charts to display a wide range of Bitcoin net-
work statistics, such as the total hash rate, average block size, total
transaction fee, mining difficulty, etc. Bogner [O8] proposed a dash-
board that presents time series and basic charts on Ethereum statistics
and highlights outlier data using anomaly detection techniques. Eth-
Stats.net [O1] provides a real-time dashboard for monitoring network
status and active nodes in the Ethereum blockchain (Figure 17 (A)).

Analyzing the global distribution of a blockchain network in-
volves observing the geographical distribution of blockchain nodes
and transactions. Public blockchain data does not inherently include
geographic information about senders, receivers, or blockchain nodes.
However, when nodes in the blockchain network have associated IP
addresses, these can be used to infer the geographic location with a
degree of uncertainty [15, 76]. The geographic origin of a transaction
can then be inferred from the IP address of the first node that relayed
it [79, 132]. They all display geography information in map-based
visualizations—the only task domain that uses this kind of visualiza-
tion type. I found 9 sources that display the number of nodes active in
the blockchain P2P network ([O6, O9, O18, O21, A26, A33, O47]) and
transaction origins ([O16, A38, O46]). For example, BitNodes [O47]
implemented a node crawler to gather reachable node locations to
estimate the global distribution of Bitcoin nodes (Figure 17 (B)).

3.3.6 Casual/entertaining information communication

Sources in this task domain generally provided original and experi-
mental visualizations of blockchain components distinct from those
used for the above task domains. These sources encoded, for exam-
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ple, attributes of transactions and blocks as custom objects—often in
3D—with animation and real-time updates. To show the wide variety
of visual encodings in this category, I briefly discuss a few examples:
BitBonkers [O3] shows live Bitcoin transactions as 3D balls falling
on a plate each time a new transaction broadcasts to the network.
BitcoinCity [O36] represents Bitcoin transactions as 3D toy models
of buildings along the road moving as new transactions are created.
BitListen [O35] presents transactions as animated bubbles floating
on the screen, producing notes that combine into improvised music.
Symphony of Blockchains [O31] includes a combination of interac-
tive visual representations of Bitcoin data. It allows web visitors to
browse blocks as a 3D visual representation and navigate through
a flight-simulator mode, along with background audio representing
the network hash rate and using a unique tone for each of the trans-
actions in the block. Bitcoin VR [O45] is an open-source project that
visualizes Bitcoin transactions as balloons flying over a 360-degree
view. Plantoids [O26] and On Brink [O40] represent Bitcoin block-
chain components as data physicalization [34].

3.4 discussion and open challenges

Even though the attention to the blockchain is increasing over the
years, visualization and visual analytics tools on blockchain data are
still rarely found in visualization research. There were only 20 visu-
alization articles (18%) in our survey. Most of the works were online
tools (43%) that display basic blockchain information or ad-hoc data
analyses published in research articles (39%). Consequently, I saw
opportunities for researchers to develop more advanced tools that
support higher-level and more in-depth studies of blockchain data. I
describe some open challenges in this emerging research field from
three perspectives: data, users, and visualizations.

3.4.1 Data

Blockchain technology produces a large transaction dataset which
provides opportunities to pseudonymize data in such granular de-
tails. However, the analysis and visualization of blockchain data are
challenging because blockchain activities keep and involve various
types of actors who use the blockchain in different ways. Blockchain
networks are much more complex than most social networks due to
their pseudonymous use of addresses and the heterogeneity of users’
behaviors. Besides, blockchains are regulated by automated mecha-
nisms, which are challenging to comprehend for non-technical audi-
ences.
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the dominance of cryptocurrency blockchains : In this sur-
vey, most of the sources present cryptocurrency blockchain data,
in particular, Bitcoin and alt-coins. Ethereum-related visualiza-
tions usually focus on the cryptocurrency aspect of value ex-
changes among entities, not the smart contract functionality
that makes Ethereum different from Bitcoin. Some analysis arti-
cles present the analysis of smart contracts, but dedicated visu-
alization tools are still largely missed. Consortium and private
blockchains apply the same concept as public blockchains but
have different mechanisms (e.g., the transaction data structure
and mining protocol). So far, I found only Hyperfabric Explorer
and HyperSec that visualize these kinds of blockchains. There-
fore, a lot of exciting future work remains to be done in this
domain.

mining tools in some blockchain data types : The majority
of tools in the survey visualize blockchain components while we
miss VA tools that help analyze nodes and mining data. In par-
ticular, mining is an critical activity that ensures the integrity
and security of transaction data. This domain was rarely ex-
plored the past work. The existing tools on mining only show
summary statistics on hash rate, mining difficulty, and market
shares of mining pools. Nonetheless, the continuous growth of
mining activites raise questions on the economic incentive as
well as miners’ actions taken to keep the blockchain network
stable.

missing context of blockchain data : Most visualization sources
presented details about blockchain components and overviews
of network activities in the transaction detail analysis and P2P

network analysis task domains. However, those tools did not
provide contextual information for monitoring and analysis of
activities in the blockchain, including the identification of enti-
ties, geographic information, social network activity, or histori-
cal events. For example, there is an opportunity for VA tools to
help study the blockchain network in light of historical events,
such as volatility of market prices, cyber-attacks (e.g., bitcoins
stolen from Mt. Gox exchange, money laundering, and denial-
of-service attacks), government regulation, or changes in min-
ing rewards.

deanonymization of blockchain users : Blockchain users were
originally meant to be anonymous through non-identifiable ad-
dresses to create and sign in transactions. However, the iden-
tity of users will be revealed if people or enterprises post their
addresses openly and connect them to other pieces of identifica-
tion, such as usernames in public forums, their websites, or data
leaks from blockchain services. To understand how individual
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users use blockchains, information about which addresses be-
long to the same entities is required (e.g., individual users, busi-
nesses receiving Bitcoin for payment, or exchanges). Clustering
heuristics are effective strategies to group addresses that may
belong to the same entities [61, 107], while data mining mod-
els were proposed to classify different types of users [75, 179].
These methods can deanonymize users with a degree of un-
certainty. However, entity-based visualizations are, nevertheless,
rarely found in the current visualization work (e.g., [V9, V16,
V19]).

blockchain data infrastructure : Accessing blockchain data
requires installing a full blockchain node and some technical
knowledge to parse the raw data. Data infrastructures should
provide easier access, update, and preprocessing of blockchain
data to facilitate blockchain visualization research. Some work
in this direction has emerged, such as BlockSci [78] and Graph-
Sense [V7], but it will need further development to become us-
able for visual analytics. Data infrastructures would allow re-
searchers on Bitcoin analysis tools to focus on designing analy-
sis tools rather than the data backend needed to extract block-
chain data, compute usage metrics, and make them accessible
for quick visual analysis.

3.4.2 Users

Blockchain enthusiasts and startups have developed online visualiza-
tions tools to understand what happens in and around blockchains.
Most of the online sources aim to communicate transaction details
and P2P network statistics for blockchain users. These sources only
use simple charts and time series visualization to display data on
the aggregated level. Nonetheless, many EDA articles in the survey
indicate the demand from researchers and blockchain experts for vi-
sualization tools to analyze the blockchain data in deeper detail.

in-depth analysis of blockchain data : Blockchain analysis
articles often focused on a higher-level data analysis on the
blockchain network (i.e., the global blockchain network or longi-
tudinal study of P2P network analysis). The number of EDA arti-
cles indicates the demand for data analysis experts and decision-
makers. To better understand blockchain activities, it would be
an opportunity for the VA research to develop more advanced
tools that support higher-level and more in-depth analyses of
blockchain data. In particular, future VA tools should allow
experts to take on specific viewpoints such as individual enti-
ties in the network (e.g., people, enterprises, miners), historical
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events (e.g., cyber-attacks), or network-related events (e.g., halv-
ing days or forks).

transaction network analysis tools : Most analysis articles
focused on transaction network analysis—–indicating a current
research focus. However, a few tools exist that experts could use
to explore and monitor transaction networks in detail. Those
analysis articles often did not conduct an in-depth analysis of
the entire blockchain, probably because of the large data size
and the lack of simple ways to explore and statistically ana-
lyze the data in its entirety. Therefore, new visualization tools
would help analysts better understand different types of activi-
ties in the blockchain rather than global network statistics of the
blockchain data.

task-focused tools for blockchain experts : There is a lack
of tools tailored to the specific needs of particular experts, in-
cluding economists, regulators, and blockchain managers. Eco-
nomists want to understand activities on blockchains and com-
pare them with related economic activities in the real world.
Regulators want to identify the real-world identity of users and
detect possible money laundering transactions. Consortium block-
chain managers need to monitor the network and compare its
performance to other blockchains.

3.4.3 Visualization

Most visualization sources focused on using common chart types (i.e.,
time series and basic charts) with basic interaction techniques (i.e.,
querying and zooming) that give an overview of the blockchain net-
work. Those charts and interactions are not sufficient for advanced
analysis tasks, which require exploration on multiple levels of data
aggregation and to relate different factors.

multiple-coordinated views visualization : Sources from EDA

articles and online sources usually provide many single view
charts showing a particular blockchain measure over time. How-
ever, single disconnected views make it difficult to relate mul-
tiple blockchain characteristics to each other. As numerous fac-
tors and actors interconnect and evolve, multiple-coordinated
visualizations would help analyze the cause and effect that drives
changes in the blockchain network. These multiple-coordinated
tools are mostly found in visualization articles. For example,
BitExTract [V19] proposes a dashboard with multiple chart el-
ements for analyzing transaction activities among Bitcoin ex-
change entities. Yet, additional sophisticated interaction tech-
niques for visual comparison [51] would help to connect views
and generate more comprehensive insights.
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visual representations for transaction networks : Existing
network visualization sources present transaction networks and
value flows as static graphs at specific points of interest (i.e., a
time interval, a particular block, or a group of entities). In the
survey, there are 16 network online tools and visualization arti-
cles. However, those tools, except [O9, O20], do not consider the
temporal evolution of the network and, in other words, changes
in blockchain connectivity over time. The advancement in dy-
namic network visualization [11] will add a time dimension into
current network visualization sources and help experts explore
the changes in blockchain activities.

Transaction networks can be very large and heterogeneous. Hence,
they may not display precisely on the screen without filtering
the network to a manageable size. Clustering heuristic can help
simplify the raw graph into the entity network. To handle the
large graph, blockchain networks could benefit from dedicated
graph visualization layouts, such as Alvarez et al. [4], to inter-
actively display and navigate from the overview of the network
to focus on a particular subgraph of interests.

uncertainty visualization : Much of the contextual informa-
tion related to Bitcoin comes with a degree of uncertainty. For
example, heuristics to cluster Bitcoin entities are not sure to cap-
ture Bitcoin entities with 100% accuracy, and IP addresses of
nodes in the P2P network are not necessarily reliable indicators
of the geographic location of a node. Moreover, analysis tools
that may label specific transaction patterns as fraudulent or
belonging to certain services (e.g., exchanges, mixing services,
etc.) may induce false predictions. Any uncertainty in the data
should be made evident in the visualization [72, 98, 113] and ex-
pose where viewers should be cautious about inferring insights
and making decisions on the data.

progressive visual analytics : Exploring Blockchain data in-
volves navigating over large amounts of data for computing ag-
gregated values on selections of the transactions or over time
windows. These operations are usually simple to compute but
take a long time. Current visualization sources in the survey
mostly perform data computation offline. Doing the calcula-
tion offline means that the data exploration is limited to pre-
computed values. All the interactive sources were limited in
that respect. Novel tools could rely on progressive data anal-
ysis and visualization to present the intermediate result while
progressively compute the data [41, 147].

Techniques proposed by Boukhelifa et al. [24] could be applied
to continuously compute derived data when the Blockchain evolves.
Kinkeldey et al. report that BitConduite [V9] provides dynamic
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queries on time and attribute values to visualize aggregated in-
formation about Bitcoin transactions, but each filter operation
takes a minute or so to complete depending on the amount of
loaded data. Performing these operations iteratively using meth-
ods reported by Moritz et al. [105] would drastically reduce the
interactive latency and significantly improve the efficiency of
exploring Bitcoin data.

3.5 conclusion

This chapter provides a systematic review of 110 blockchain data vi-
sualizations from both academic and online sources—20 visualization
articles, 43 exploratory data analysis EDA articles, and 47 online web-
based tools. I classified those sources based on blockchain data, task
domains, and visualization types and described each task domain’s
different kinds of tools. Most of the online tools focus on P2P network
analysis and transaction detail analysis task domains. EDA articles
show the demands from data analysis experts for more advanced
tools in transaction network analysis and cybercrime detection. Most
of the sources I found reported aggregated information. VA tools have
emerged to facilitate the exploration and monitoring of blockchain
data from overviews to detailed investigations. As the need for more
VA tools will grow, I outlined several opportunities and open chal-
lenges for future research in this domain.

In this thesis, I focus on mining which is an intriguing activity in
the Bitcoin blockchain. However, as I showed, VA tools to deeply ex-
plore this data are missing. In the next chapters, I propose a multiple-
coordinated visualization tool to relate various information sources
in the context of Bitcoin mining. The following chapters describe a
design study process with an economist expert, intermediate data
analysis results, and a VA tool as the outcome from the design study.





4
T H E E M E R G E N C E A N D E V O L U T I O N O F B I T C O I N
M I N I N G P O O L S

In the previous chapter, I outlined research challenges in blockchain
Visual Analytics (VA). One of the topics that are missed in current
work is task-focused tools for blockchain experts. As a consequence,
my work focuses on an in-depth analysis of an important activity in
Bitcoin called mining. Mining is a backbone mechanism to ensure the
integrity and security of transaction data in blockchains. Economists
are interested in mining as the activity generates new bitcoins circulat-
ing in the network from block rewards. However, empirical research
in Bitcoin mining needs more attention, and economists need a tool
to help access the data. I present a data analysis methodology, results,
and a VA tool in the following three chapters.

Bitcoin miners are assumed to be economic agents who invest in
mining hardware and compete to profit from mining. As the compe-
tition among miners escalated, mining pools emerged to reduce min-
ers’ risk and share more regular rewards among pool participants.
This chapter extracts both on-chain (i.e., transaction data and Bitcoin
statistics) and off-chain data (i.e., market price and other external fac-
tors) to investigate Bitcoin mining as an economic ecosystem. The
data and results help my economist collaborator empirically study
the dynamics of mining pools and miners’ migration among pools
over the entire history of Bitcoin mining.

This chapter is written mainly based on my original article pub-
lished at the Blockchains and Smart Contracts workshop (BSC 2020–
2021) in IFIP International Conference on New Technologies, Mobility
& Security [156]. The work was led by myself in collaboration with
an economist, Nicolas Soulié, and my supervisor, Petra Isenberg.

4.1 bitcoin mining as an economic ecosystem

In Section 2.2.2, I described the Bitcoin mining mechanism as min-
ers follow the proof-of-work protocol to obtain a mining reward and
participate in mining pools to share more regular rewards among the
mining pool participants. At the time of writing, known mining pools
contribute about 99% of the total hash rate and have become the dom-
inant actors of the mining activity. As miners and mining pools are
driven by monetary incentives to perform mining operations, they
consider multiple factors from the competition among them: the mar-
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Figure 18: As an economic system, Bitcoin mining consists of three actors:
(A) miners, (B) mining pools, and (C) the Bitcoin blockchain. (D)
External factors, such as market price, news, and social media,
can also affect miners’ decisions to participate in this activity. (Im-
age from https://miningpools.com/)

ket share of mining pools, the mining reward from the blockchain,
the Bitcoin market price, and the cost of mining. Figure 18 models Bit-
coin mining as an economic ecosystem considering interaction among
three main actors and external factors.

• Miners participate in mining pools to get mining rewards. They
invest in mining hardware and pay electricity costs in expecta-
tion to make a profit. Miners typically join a mining pool to
increase their chance of a reward [94, 131]. Considering differ-
ent mining pools, they decide to participate in mining pools or
move to another pool—called pool hopping—to maximize their
profit [13]. Besides, miners can also cross pool with more than
one pool at the same time [127].

• Mining pools merge the computational resources from miners to
maximize the chance to obtain mining rewards frequently and
share them among miners. The market share indicates the rela-
tive size of the pool. Mining pools compete with other pools to
attract more miners by providing better reward incentives. The
reward incentives that I consider in this study include reward
payout schemes [128] and imposed pool fees.

• The Bitcoin blockchain pays a mining reward when miners or min-
ing pools successfully mine a new block and broadcast it to the
blockchain network. The mining reward includes block reward,
newly generated bitcoins from the network, and transaction fees
from transactions included in the block. Its protocol regularly
adjusts the mining difficulty to maintain the block discovery

https://miningpools.com/
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rate and half the block reward every 210,000 blocks (so-called
halving days) to control the bitcoins supply in the system.

• Apart from the above actors of the Bitcoin mining activities, ex-
ternal factors also impact miners’ decisions to mine Bitcoin. For
example, market price determines the mining profit when ex-
changed to fiat currencies, such as US Dollars and Euros. News
and social network sentiments can encourage or discourage po-
tential miners from investing in this activity.

In this chapter, I explore the relationship between mining pools
and the Bitcoin blockchain network. Chapter 5 will investigate the
behavior of individual miners and their impact on mining pools. Fi-
nally, Chapter 6 combines data and analysis tasks from both preced-
ing chapters and proposes a visual analytics tool to help economists
and Bitcoin miners to understand the Bitcoin mining economy from
these three main actors.

4.1.1 The Dangers of Mining Pools

In the Bitcoin mining ecosystem, three significant risks to its security
and sustainability exist: 1) The risk that one pool becomes dominant,
2) The risk that mining stops carrying economic incentives and min-
ers stop participating, and 3) The carbon footprint of Bitcoin mining.

As mining pools represent a large group of miners, they play a ma-
jor role in ensuring miners’ consent income and potentially danger-
ous position in the network. To guarantee the security and trustwor-
thiness of the Bitcoin network in the long term, none of the mining
pools (or the combination of a few pools) should dominate the mar-
ket. When one or more collaborating pools gain the majority of the
total mining power, they can perform a 51% majority attack to double
spending their bitcoin values and prevent other miners from propos-
ing new blocks [25]. As large and specific investments are needed to
mine successfully, only a few large and persistent mining pools dom-
inate the market share [127]. Hence, the danger of a 51% attack is real
and needs to be monitored constantly.

Another possible attack is selfish mining or block withholding. The
attack occurs when a mining pool or miner intentionally withholds
a new block they found and continues mining from the withheld
block to form a longer chain. Later, they broadcast their chain to the
network. If their chain is the longest one, it will become the main
chain, and the mining pool will obtain all rewards from all withhold-
ing blocks. In contrast, the block mined by an honest miner or pool
becomes invalid in an orphan chain. A study shows that this attack
is possible if a selfish mining pool has more than 33% of the market
share [39]. This potential attack raises questions on which factors lead
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to mining pool concentration and how miners collectively react when
concern about an attack emerges.

The second issue relates to financial incentives and mining rewards.
On what is called a “halving day”, the Bitcoin protocol halves the
block reward. Halving days happen every 210,000 blocks (≈4 years)
to control the Bitcoins supply. There will be 33 halving days in to-
tal, after which transaction fees will remain the only compensation for
miners. Transaction fees are expected to increase to compensate for
the decrease of block rewards [109]. A theoretical study previously
cast doubt on the compensation of these freely fixed transaction fees
[66]. In fact, early evidence showed that transaction fees are relatively
deficient and seem to be driven by social norms rather than economic
reason [106]. Analyzing miners’ behavior around halving days and
the evolution of transaction fees allows observing the consequence
of mining rewards on the behavior of mining pools and individual
miners.

The third issue concerns the carbon footprint of Bitcoin mining.
Tremendous amounts of electricity are needed to run mining hard-
ware [14, 87, 146, 161]. Bitcoin price increases have incentivized min-
ers to compete in a prisoner’s dilemma to upgrade their hardware
continuously [163]. This violates the one-CPU-one-vote policy initially
envisioned by Nakamoto [109] and causes a negative externality on
climate change [44, 99, 104]. Alternative solutions, such as proof-of-
stake, have been recently promoted to reduce the excessive energy
consumption of cryptocurrencies [110]. Analyzing miners’ revenue
function and the environmental impact would help inform policy-
makers to develop sustainable mining regulation and policy [50, 73,
157, 161]

4.2 related work

As mining is central to how Bitcoin and other cryptocurrencies work,
researchers have started to analyze it more closely. Much of the re-
search on Bitcoin mining and mining pools is theoretical in nature
and focuses on analyzing reward rules [43, 128, 138], mining strate-
gies [65, 90], and attacks [39, 74, 83, 89].

Yet, empirical analyses on the Bitcoin mining economy have re-
cently appeared. On the development of Bitcoin mining activity, Prat
and Walter [118] built a structural model to explain the rapid growth
of the hash rate considering Bitcoin market price and mining hard-
ware evolution. They showed that Bitcoin mining operates under com-
petitive conditions. Song and Aste [144] estimated the mining cost
from energy to run the hardware and found that the ratio between
mining cost and transaction volume remained in the same range from
2010 to 2020. Möser and Böhme [106] concluded that transaction fees
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between 2011 and 2014 were not totally driven by bitcoin demands
but followed the conventions of other bitcoin users.

The rapid growth of mining activity was associated with the rise
of mining pools as intermediaries to collect mining rewards. Mining
pools raised concerns on the sustainability and security of the Bitcoin
blockchain as they posed a threat of the majority attack. Apart from
theoretical studies on the mining pools, as comprehensively reviewed
by Liu et al. [96], a few studies had analyzed the evolution of mining
pools based on empirical data.

An early work from Wang and Liu [165] provided evidence that the
top mining pools gained a larger market share while the hash rate
grew exponentially between Mar. 2013 and Mar. 2014. The authors
analyzed the mining profit regarding hardware cost and electricity
price and concluded that the profit became negative when the hash
rate increased faster than the Bitcoin price. Another work by Romiti
et al. [127] analyzed the distribution of mining pools from Dec. 2013

to Dec. 2018 and found that 3–4 mining pools controlled >50% of the
hash rate. The authors further analyzed the reward payout among
the top-3 mining pools and found that a small number of members
received a total of >50% of the reward from the pool. In addition, the
authors detected cross-pool miners who received rewards from mul-
tiple mining pools and provided evidence that miners tend to trans-
fer their rewards to exchange services and wallet providers. Wang et
al. [164] analyzed the daily hash rate of the top mining pools from
Feb. 2016 to Jan. 2019. They found that mining pools increased their
hash rate exponentially to maintain their market share. Mining pools
were caught in the Prisoner’s Dilemma. They raise their hash rate to
compete with other pools, but their mining profit diminishes. Finally,
Wang et al.’s data confirmed that pools tended to collect transactions
with higher transaction fees to maximize their profit.

My work studies mining pools more broadly using various parame-
ters instead of focusing on just a few mining pools and a limited time-
frame. As such, my work overlaps with previous results (e.g., Romiti
et al.’s study of mining pool distribution), but extends the past work
with custom visualizations. My work shows the distributions of min-
ing pools’ market shares and help detect changes in their ranks over
time. I also provide a first exploratory analysis of the evolution of
reward rules and locations, which has not been studied in previous
empirical works. The findings provide new information toward more
realistic theoretical models of the Bitcoin mining organization.

4.3 data preparation

To analyze the evolution of Bitcoin mining over time, I retrieved coin-
base transactions (the first transaction in each block) from the Bitcoin
genesis block (the first-ever mined block) until the last block mined
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in Sep. 2021. From the coinbase transactions, I extracted several met-
rics as described next. Moreover, I collected monthly Bitcoin statistics
from Blockchain.info and historical data about mining pools from
the Bitcoin Wiki to give contextual information to the mining activ-
ity. The datasets about mining pool attribution and pool characteris-
tics are available in a public repository: https://zenodo.org/record/
4342747.

Mining pool attribution: First, I identified the mining pool that
mined each block in the Bitcoin blockchain. When a mining pool
mines a block, it receives a mining reward from the coinbase transaction
of the block. A coinbase transaction combines the block reward from
the Bitcoin network and transaction fees from every transaction in the
mined block. It also includes a coinbase string inserted by the miner.
For each coinbase transaction, I attributed the mining pool based on
address matchings or coinbase string patterns. I initially used the
dataset from Romiti et al. [127] that compiled known mining pool at-
tribution until the block 556,400 (December 31, 2018). After this block,
I continued their procedure and tagged pools until the block 700,714

(September 16, 2021) with the datasets from Blockchain.info [22] and
BTC.com [28]. The blocks that did not match any known mining pool
are labeled as “unknown.”

Mining pool market shares: The market share of a mining pool in-
dicates to which extent that mining pool dominates the Bitcoin min-
ing activity. I calculated each pool’s market share as the percentage
of the blocks it mined compared to the total blocks mined in a month.
To assess whether there are a few pools that dominated the market, I
adopt the Herfindahl index (H) to measure the concentration of mining
pools for each month.

Let n be the number of active mining pools and si indicates the
market share of pool i as a percentage. The concentration index is
defined as:

H =

n∑
i=1

s2i (1)

H is equal to 1 for a perfectly concentrated market and converges
toward 0 for a very fragmented market.

Mining pool characteristics: I obtained information about pool
characteristics, in particular payout schemes and pool fees, from the
Bitcoin Wiki page [17] on the topic. I downloaded the page’s edit his-
tory and manually cleaned the data for each month by comparing it
with the information from the Bitcoin Forum [18]. As a result, I con-
structed panel data that includes all changes in pool characteristics
over time, such as locations, reward payout schemes, and pool fees.
My economist collaborator, Nicolas Soulié, manually verified pool
characteristics data, particularly payout scheme and pool fees, from
the Bitcointalk discussion forum [18] and mining pools’ websites.

https://zenodo.org/record/4342747
https://zenodo.org/record/4342747
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From the Bitcoin Wiki data, I grouped reward payout schemes
into five main groups that are commonly found in mining pools:
Proportional (Prop), Score, Pay Per Last N Shares (PPLNS), and Double
Geometric Method (DGM), and Pay Per Share (PPS). For the full tech-
nical coverage and analysis of reward payout schemes, I refer readers
to a detailed analysis article by Rosenfeld [128].

• Proportional (Prop) is the most straightforward payout policy in
which mining pools distribute the rewards to their miners after
receiving the block reward. Miners receive the reward shares in
proportion to the computational power they contribute for that
block reward (or round).

• Score distributes the block reward to miners based on the pro-
portion of miners’ scores in each round. Miners who contribute
to the mining pool will receive a score calculated from the time
elapsed from the previous round. The more time has passed
without finding a new block, the higher score the miner re-
ceives.

• With Pay Per Last N Shares (PPLNS), mining pools share mining
rewards to only miners who submitted the last N shares in each
round. This policy aims to prevent miners from profiting early
in the round before moving to other pools (pool hopping).

• Double Geometric Method (DGM) distributes mining rewards to
miners with the PPLNS payout scheme. However, mining pools
keep varied fees depending on the time between blocks it suc-
cessfully mined before paying the remaining amount to miners
(geometric method). The longer the time gap between blocks,
the fewer rewards it will keep. This method is a hopping-proof
payout scheme.

• Pay Per Share (PPS) pools pay miners a certain amount for each
share submitted to the pool, regardless of how many blocks
the mining pool mined. Miners receive reward shares regularly
(usually every day). With this method, mining pools need to
have reserved funds to manage the risk of not obtaining enough
rewards to pay miners.

I grouped the locations of mining pools on a continent-level: Asia
(including Australia), Europe, America, and Africa. I assigned Aus-
tralia to the Asian continent as only one pool (OzCoin) is listed with
an insignificant influence on the overall market share. South Africa is
the only country in the Africa continent for which I found a pool (ZA
Bitcoin) in the Bitcoin Wiki dataset. I defined “global” for pools that
operated in more than two continents while kept China separately as
some large mining pools are located in the country.



50 the emergence and evolution of bitcoin mining pools

Bitcoin network statistics: Apart from information about mining
pools, I also obtained Bitcoin network statistics from Blockchain.info
[O10]. I averaged those measures to a monthly time window. These
measures are used to relate to the evolution of mining pools. Exam-
ples of network statistics for each month include the market price,
total hash rate, total block reward, total transaction fees, mining dif-
ficulty, or the number of transactions. Other external data that I in-
cluded in Bitcoin statistics are mining hardware evolution [82, 151],
electricity consumption [14], and the global energy price index [68].

4.4 visualization design

To understand what the economist wants to analyze d on Bitcoin min-
ing pools, I collaborated with an economic lecturer, Nicolas Soulié,
who is working on research in this domain. We identified data anal-
ysis goals, design requirements, and iteratively revised prototype vi-
sualization designs. The visualization design process loosely follows
Tamara Munzner’s four-level nested model [108]. We identified the
first four analysis questions listed below.

Q1 What is the evolution of mining pools over Bitcoin history?

Q2 Are there any mining pools likely to dominate the market at a
time?

Q3 Are there any external factors from the Bitcoin network that
affect the mining pool competition?

Q4 What are the pool characteristics that dominate the mining mar-
ket?

I developed visualization prototypes in Jupyter Notebook using Al-
tair [160], an interactive visualization library in Python. Using Google
Colaboratory allowed me to create rapid prototypes to share them
with the economist, and improve the design based on his feedback.
At the end of the design iterations, I developed three visualization
views to help the economist explore the data and answer his analysis
questions.

4.4.1 Visualizing the emergence and evolution of mining pool market shares

The first visualization allows economists to explore when mining
pools started to gain market share and which pools dominated the
market over time. To answer Q1 and Q2, Figure 19 (A) provides infor-
mation on the historical evolution of the top 30 mining pools based
on their market share for each month. The scatterplot-based chart
gives an overview of the top mining pools and shows when each



4.4 visualization design 51

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

unknown
F2Pool

AntPool
BTC.com

SlushPool
BTC Guild

DeepBit
ViaBTC

GHash.IO
Poolin

BitFury
BTCC Pool

BTC.TOP
BW.COM

Eligius
Huobi
50BTC

KnCMiner
BitMinter

Binance Pool
EclipseMC

Bixin
BitClub Network

1THash
OzCoin

okpool.top
ASICMiner

Bitcoin.com
KanoPool
GBMiners

DPOOL
others

10 20 30 40 ≥50

Market domination (%)

(A) Top-30 mining pools

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0.0

0.1

0.2

(B) Herfindahl index

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

10
1k

100k
10M

(C) Hash rate (TH/S)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

1

100

10k

(D) Market price (USD)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0k

200k

(E) Mining reward (BTC)

Block reward Transaction fees

20 40 60 80 100

Market share (%)

1st halving 2nd halving 3rd halving 1st halving 2nd halving 3rd halving

Figure 19: (A) The market share of the top 30 mining pools over time. (B)
The concentration index of mining pools. (C) The total hash rate
in tera hashes per second. (D) The average market price in the US
Dollar. (E) The total mining reward from bitcoin is divided into
block reward (blue line) and transaction fees (orange line).

mining pool started or stopped its operation and gained or lost min-
ing power. The size of each circle indicates the market share for each
month. I used a heated color scale to describe mining power domina-
tion (0%–>50%) and detect the pools that were likely to dominate the
Bitcoin network at a time. In the case of 50% of the mining power (or
even only >33% [39]), a mining pool can modify the transactions and
perform majority attacks on the Bitcoin network. Three grey vertical
lines in both charts indicate three halving days on Nov. 28, 2012, Jul. 9,
2016, and May 11, 2020. I chose this representation over a simple heat
map alternative because it can represent two quantitative variables:
market share and market domination.

To quantify the dominance of a few mining pools over time, Fig-
ure 19 (B) shows the Herfindahl index on the time series chart. The
chart provides reference points to assess when there is a potential risk
of a majority attack. Figure 19 (C–E) includes a list of chosen relevant
Bitcoin statistics: hash rate, market price, and total mining rewards.
These time series charts help answer Q3 by giving contextual infor-
mation concerning the evolution of mining pools in (A). Hash rate is
the total mining power in the Bitcoin network, indicating the competi-
tion in the activity. The valuation of mining income can be estimated
from the mining reward and converted to the market price in the US
Dollar.
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4.4.2 Visualizing mining pool characteristics influencing the evolution of
market shares and their distribution

Understanding when and why mining pool market shares change
is critical to understanding the Bitcoin mining economy. The second
visualization presents the evolution of mining pools’ market shares
in connection to the panel data we collected (e.g., reward payout
schemes and location). Using the same visual representation from the
previous section, Figure 20 presents the market share together with
mining pool characteristics. For each mining pool, the first row shows
the market share of the mining pools as the circle size. I changed the
color of the circles to encode the location of the pool. As mining pools
can implement different payout schemes and pool fees over time, I
added the payout scheme in separate rows and encoded the pool
fee as the color scale. I used two pastel colors in the background to
distinguish whether the mining pool kept transaction fees or shared
them with miners. However, this visual representation cannot fully
help answer Q4 because it shows the details of individual mining
pools rather than explores the big picture of which payout schemes
or locations that dominate the mining market share over time.

In particular, the economist wanted to understand the overall evo-
lution of pool characteristics and assess if mining pools converged to
the reward payout schemes or locations that are the most attractive
to miners to address Q4. Therefore, we wanted to analyze 1) which
pool characteristics are commonly found in all mining pools and 2)
how much the total market share for active pools is in each char-
acteristic over time. I proposed a third visualization to explore the
pool characteristics that dominate Bitcoin mining over time. I used a
ribbon chart design—a stacked bar chart showing quantitative mea-
surement over time with ribbons connecting the same data category.
Figure 21 and Figure 22 show the temporal evolution of reward pay-
out schemes and pool locations sorted by pools’ market shares. Each
mining pool is represented as a bar whose height is relative to the
pool’s market share in a month. The color indicates categorical data
(i.e., mining pool, reward rule, or location). For each month, the bars
are sorted by the total market share of the category from the high-
est to the lowest value. Within each category, the bars are sorted by
their market shares. This sorting helps to identify large mining pools
or categories that dominate mining power. Ribbons track a mining
pool’s ranking connection between months. This visualization shows
overall distributions and detects the top mining pools, while the first
visualization is better for observing the development of individual
pools.
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Figure 20: The market share of the top-30 mining pools with location (color
on the market share rows), payout scheme (rows below each
pool’s market share), and pool fee (color scales in the payout
scheme lines). The background color in pool fee rows indicate
if the mining pool kept transaction fees to itself or shared them
to miners.
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Figure 21: The market share distribution according to payout schemes.

2011-01 2012-01 2013-01 2014-01 2015-01 2016-01 2017-01 2018-01 2019-01 2020-01
0

10

20

30

40

50

60

70

80

90

100

M
a
rk

e
t 

sh
a
re

 (
%

)

Location

China
Global
unknown
Europe
America, Europe
America, China
America
Asia
Asia, America
Asia, Europe
Africa

Figure 22: The market share distribution according to mining pool locations.

4.5 result and analysis

In this section, I present results and analysis of mining pools evolu-
tion over the Bitcoin history based on the four analysis questions I
identified with the economist collaborator.

4.5.1 Q1: What is the evolution of mining pools over Bitcoin history?

Before 2011, most mining activities were performed by small inde-
pendent miners following Bitcoin’s original one-CPU-one-vote policy.
Some pools might have existed between 2009 and 2011. However, they
are not identifiable in our data, and their market shares were very
small. DeepBit is the first mining pool detected in our dataset that
operated from 2011 to 2014. It almost dominated 50% of the market
share from mid-2011 to early 2012. After that, the market share contin-
uously decreased while new pools named BTC Guild and SlushPool
emerged and gained a larger market share. In late 2013, GHash.IO
started its mining operation and replaced BTC Guild to be the top
pool. The market share of GHash.IO has been growing and was likely
to cross the 50% threshold before it suddenly dropped in 2014. Top
mining pools in this period tended to be short-lived but solely domi-
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nated almost 50% of the market share. From this period, only Slush-
Pool still operates and obtained constant rewards until now.

After 2015, many top mining pools emerged, including F2Pool,
AntPool, BitFury, BTCC Pool, and BW.com. F2Pool and AntPool are
two top mining pools that have remained the top mining pools until
now. These mining pools tended to have a moderate market share.
However, only 3–4 top mining pools have a total of >50% market
share, which poses a risk to the majority attack. After the second
halving day, we found three new mining pools, BTC.com, ViaBTC,
and BTC.TOP that still operates and maintains the same market share
over time. Poolin and Huobi emerged on the market and became the
top pool after 2019. We observe that mining pools become less dom-
inant in market shares as more mining pools enter the competition.
Since 2020, the concentration of mining activities has been relatively
stable, with five main pools accounting for around 10% of market
share in a total of >50% market share: AntPool, BTC.com, F2Pool,
Poolin, and ViaBTC.

4.5.2 Q2: Are there any mining pools likely to dominate the market at a
time?

To detect the possibility that mining pools dominated the market, we
observed five cycles of concentration index in Figure 19 (B). The peaks
of the later cycles decreased, indicating that the market shares became
less concentrated than before. All these cycles are associated with the
increment of bitcoin’s value, as investments in mining hardware are
indeed strongly correlated with bitcoin’s value [119]. By increasing
the expected revenue of mining, a rise in bitcoin value gives an in-
centive to miners to enhance their investments and might also attract
new miners into pools [164].

The first cycle of mining pool concentration started in early 2011

with the emergence of the first large and identifiable pools, namely
DeepBit and Eligius. DeepBit’s hash power grew during the first peak
of bitcoin’s value in Jul. 2011. At this moment, bitcoin’s value reached
more than $30, compared to roughly $1 a few months earlier. The ex-
pected growth in revenue gained from mining probably lead miners
to create new large pools such as BTCGuild and SlushPool. These two
pools contributed to the increase in the mining concentration index
until the beginning of 2012.

The second cycle began in 2013. Two peaks occurred in Apr. and
Nov., during which bitcoin’s value respectively reached more than
$260 and $1,200. During this period, existing pools increased their
hash power (e.g., BTCGuild, SlushPool, or 50BTC), and new collec-
tions experienced significant growth (F2Pool and GHash.IO), espe-
cially in 2014. After the decrease of bitcoin’s value in 2015, the market
price raised again and reached peaks at roughly $450 in Dec. 2015 and
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even $750 in Jun. 2016. During this period, F2Pool and AntPool vastly
increased their hash power. Newly created pools (Bitfury, BTCC Pool,
and BW.COM) also enhanced their hash rate.

The fourth cycle was driven by the sharp rise of the Bitcoin market
price at the end of 2017. Most existing large pools, and in particu-
lar, BTC.com and AntPool, increased their hash rates. Both mining
pools are owned by BitMain, the Chinese Bitcoin mining hardware
manufacturer. In the most recent cycle, the concentration index re-
mains stable at around 0.1 for the entire period. We found that seven
mining pools share around 10-20% market share: F2Pool, AntPool,
BTC.com, ViaBTC, Poolin, Huobi, Binance. The evidence shows that
Bitcoin mining has become less dominant when a higher number of
mining pools gain a competitive market share and become top pools
in the market.

It is noticeable that the five cycles have a decreasing amplitude
over time, indicating that the market might progressively reach an
equilibrium situation. This is due to the exponential increase of the
hash power which involves a huge investment for an incumbent or a
new pool to get a significant market share.

4.5.3 Q3: Are there any external factors from the Bitcoin network that
affect the mining pool competition?

Bitcoin mining activity had increased exponentially over time, accord-
ing to the total hash rate in the network (Figure 19 (C)). The market
price growth was highly correlated with the hash rate, indicating that
miners were motivated to participate in this activity in expectation of
monetary profit (D). Over the years, the market price was increased
sharply and partially compensated for block reward halving days (E).
The total transaction fees did not increase as expected to substitute
for diminished block rewards, except for an outlier period between
2017 and 2018.

We calculated the mining revenue per hash rate to explore the re-
lationship between the hash rate, market price, and mining rewards.
Figure 23 (A) shows that miner revenues per computational power
unit had decreased drastically over time. It seems that the competition
among miners drove the expected revenue to fall sharply. However,
as the market prices have been volatile in recent years, we question
the sustainability of Bitcoin mining rewards after the next halving
day. To measure the efficiency of Bitcoin mining, we compared the
hash rate growth with the energy consumed for mining operations.
Figure 23 (B) shows the energy consumption per hash rate compared
to the mining hardware evolution. The chart displayed the exponen-
tial decreased trend of the energy consumption per hash rate. The
energy efficiency improved abruptly when the hardware upgraded
from FPGA to ASIC and faster ASIC devices.
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Figure 23: (A) Mining revenue in US Dollars per hash rate (TH/s). (B) Elec-
tricity consumption in Watts per hash rate (TH/s). I annotated
new mining technology evolution as a dot on the charts.

Both charts in Figure 23 show that while mining hardware is more
efficient over time, the profit per hash rate decreased as more miners
upgraded their hardware to stay competitive in the market. Besides,
supporting Bitcoin statistics from Figure 19 provide evidence that the
increased market price cannot wholly compensate for the block re-
ward dropped after halving days. As the market prices have been
volatile and miner revenue has been relatively low in recent years, we
question the sustainability of Bitcoin mining after the next halving
day.

4.5.4 Q4: What are the pool characteristics that make the mining pool dom-
inate the market?

We analyzed two main mining pool characteristics: reward payout
schemes and pool locations. Reward payout schemes determine how
the mining pool distributes the reward to miners and the risk of re-
ward variance handled by the pool. To sustain the market share, pool
managers adopt a payout scheme that attracts miners and prevents
them from performing block withholding and pool hopping. In Fig-
ure 21, we observed heterogeneity of applied reward rules until 2015.
DeepBit applied the proportional payout scheme to pay its miners.
After the DeepBit market share declined, many mining pools entered
the market with a variety of payout schemes. Noticeably, PPS/PPLNS

and PPLNS have become common payout methods in many mining
pools. In this period, we also observed that PPS pools emerged and
gained a higher market share. After 2015, two payout schemes domi-
nated the market: PPS and PPS/PPLNS. PPS/PPLNS offered two reward
schemes that miners could choose. Miners obtain regular income with
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the PPS scheme. The PPLNS scheme is riskier because only miners in
the last N shares are eligible to receive reward shares.

After 2017, we observed a decline in the market share of PPS/PPLNS,
and PPS became the standard payout scheme for mining pools. The to-
tal market share of mining pools that applied the PPS payout scheme
increased from around 20% in 2013 to at the peak of 40% in 2017.
After 2017, PPS mining pools increasingly switched to Full Pay Per
Share (FPPS) payout scheme, notably BTC.com and F2Pool in 2017 and
2018, respectively. FPPS have become the dominant payout scheme
since 2019 with more than 50% of the total market share. It imple-
ments the same PPS protocol to share a constant income to miners
while also sharing transaction fees with miners. AntPool is the only
top pool that still offers the PPLNS payout scheme in addition to FPPS.
This result implies that miners prefer to receive a regular payment,
and mining pools have become the industry since they need to ab-
sorb mining variance and pay miners regularly.

From the economic perspective, both PPS (also applied for FPPS) and
PPLNS rely on their different but complementary risk/return ratios.
These payout schemes are more attractive for pool managers because
they are more robust to pool hopping than the proportional reward
[128]. While PPS provides risk-free but lower income, PPLNS generates
higher revenue but more randomly. PPS pools pay miners in propor-
tion to their contribution to the pool, thus providing risk-free, low
income. The pools hold all the risks by creating a reserve of money
to pay the miners during “bad luck” periods. In comparison, PPLNS

pools pay only those miners who contributed to the last N shares in
a given time window. Miners who contribute but leave the pool be-
fore a block mined might not get any reward. Therefore, PPLNS lefts
all the risk to the miners, and the expected reward variance is higher
compared to PPS [128] These two payout schemes can be viewed then
as two different financial assets. For this purpose, it is noticeable that
the fees applied to these two financial assets follow the classical two-
parameter financial asset pricing model [140]. In financial markets, risky
investments must have a higher expected return to be attractive. In
the case of Bitcoin mining, Figure 20 shows that the more risky asset
(PPLNS) is likely to have a lower fee (≈0%) compared to the risk-free
one (PPS, ≈2-3%).

Next, we were interested in the continents on which mining pools
operate. The mining pools’ locations may collectively pose a risk to
mining if a country controls the majority of mining power. Figure 22

shows the large evolution in mining pool locations. Until 2015, most
pools were located in Europe and the US. Then, the market share of
European pools rapidly decreased while the hash rate grew exponen-
tially together with the rise of Chinese pools. The rapid growth of
two important Chinese pools (F2Pool and AntPool) profoundly mod-
ified this landscape and made China the largest pool hosting nation
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from 2015 to 2018. According to Hileman and Rauchs [64], cheap
electricity and land costs in remote Chinese areas (e.g., Sichuan and
Xinjiang) are significant drivers of this location pattern. Between Mar.
2015 and Feb. 2017, the combination of Chinese pools exceeded the
51% mining power threshold and therefore posed the risk of a ma-
jority attack. This situation persisted until 2019 when global pools
became dominant. This growth resulted from the increase of origi-
nally global pools (BTC.com and Poolin) and Chinese or European
pools that turned into global ones (F2Pool and SlushPool). Currently,
global pools are common to manage the risk in the case that some big
Bitcoin countries, like China, suddenly made Bitcoin mining illegal or
shut down mining farms.

4.6 conclusion

Mining pools are the heart of the Bitcoin ecosystem’s security and
growth. Their evolution toward rational and stable organizations is
critical for Bitcoin’s future. I collected and joined multiple datasets
about mining pools and developed two custom visualizations to in-
vestigate their evolution according to several variables. In particular, I
combined aggregated measures of market share with pool-level infor-
mation across time. The visualizations allowed me and my economist
collaborator to document the rise of mining activity concentration
and give rise to insights and further hypotheses about the cause of
this evolution. Important events regarding mining activity profitabil-
ity (e.g., halving days and bitcoin value) seem to be major drivers of
changes to the Bitcoin ecosystem.

The visualizations based on ribbon charts show two other impor-
tant trends regarding pool organization. First, we can observe the
rise of PPS and PPS/PPLNS as the standard reward rules used by pools.
These rules seem to provide attractive and stable incentives for min-
ers. Secondly, ribbon charts highlight the emergence of China as the
leading hosting country for mining pools and show that global pools
have become dominant in recent times. These findings raise questions
worth further examination, particularly the possible factors that stim-
ulate the stability of Bitcoin mining. The visualizations are relatively
simple but already provide the first practical tools for people who
want to analyze the evolution of mining pools by highlighting rele-
vant elements that affect these organizations.

In the next chapter, I investigate miners’ behaviors to choose min-
ing pools and how their migration from one pool to another impacts
mining pool competitiveness.





5
E M P I R I C A L A N A LY S I S O F P O O L H O P P I N G
B E H AV I O R I N T H E B I T C O I N B L O C K C H A I N

As miners join mining pools to obtain reward shares, their behaviors
directly affect the rise and fall of mining pools and the entire Bitcoin
mining economy. Miners can be studied as economic agents who in-
vest in mining hardware and join a mining pool to ensure a stable
income. Joining or leaving a pool is a decision miners make to max-
imize their profit and counteract the possible domination of pools
in the network. In return, miners’ behaviors also affect how mining
pools set their policies (e.g., payout schemes and pool fees) to com-
pete in the market. Nonetheless, the internal dynamics of miners and
the impact on the mining economy are not yet well understood. Few
methods exist that allow studying a larger number of mining pools
over the entire Bitcoin history.

In this chapter, I propose a data analysis method to detect miners
and analyze miners that migrated among mining pools. First, I de-
rived a heuristics algorithm identifying individual miners from the
mining pools’ reward payout flows. Next, I derived quantitative mea-
surements to estimate miners who move to another pool (called pool
hopping) or received reward shares from more than one pool (called
cross pooling). Finally, I produced visualizations to explore patterns of
miners’ migrations compared to different payout schemes and pool
fees. Working with my economist collaborator, we studied the possi-
ble factors that impact miners’ decisions to join or leave mining pools
over Bitcoin history. We found evidence that miners make economic
decisions to select a pool and that mining pools compete to offer bet-
ter reward incentives to attract miners.

This chapter is an updated and extended version of my original
article published at IEEE International Conference on Blockchain and
Cryptocurrency (ICBC 2021) [154]. The work was led by myself in
collaboration with Nicolas Soulié, Nicolas Heulot, and Petra Isen-
berg.

5.1 related work

Bitcoin mining has become an industry where miners gather into
pools to maximize their investments in mining devices [119]. Choos-
ing a pool becomes a strategic economic decision for miners as a
pool’s characteristics (e.g., payout schemes and pool fees) greatly af-
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fect a miner’s income. Some previous theoretical work related to pool
hopping analysis has applied game theory to explain the motivation
behind pool selection and miners’ migration [96].

Lewenberg et al. [90] showed that miners are motivated to switch
between pools to increase their expected rewards due to non-linear re-
ward payout incentives and communication delays between mining
pools. Schrijvers et al. [138] compared the payout schemes between
Proportional and Pay Per Last N Shares (PPLNS) in an optimized in-
centive compatibility condition. They showed that only PPLNS is in-
centive compatible where all miners received the best income. Liu
et al. [94] considered the hash rate and the block propagation delay
as metrics in their analysis and numerical simulation. They found
that miners’ strategies will converge at the market equilibrium when
there is a dominant strategy and no miner can switch pools without
undermining some other miner’s payoff. Altman et al. [3] studied
non-cooperative game competition over mining resources with con-
strained resource allocation. Their model suggests that only two ma-
jor mining pools would dominate the network unless the market is
not stabilized or miners are not entirely rational.

Even though there is a lot of work on the analyses of pool hop-
ping behavior in theoretical studies, there are few works that provide
an empirical analysis on this topic. Belotti et al. [13] investigated pool
hopping between KanoPool and SlushPool from April 6–20, 2016. The
authors found that a few miners tried to exploit the time difference
of reward payout between two pools with diverse strategies to gain a
higher profit. However, the result is varied among pool-hopping min-
ers, and their profit gain is negligible. Romoti et al. [127] presented
reward payout flow patterns of three pools: BTC.com, AntPool, and
ViaBTC, between block 510,000 and 514,032 (1 month) and detected
overlapped miners in those pairs. They noticed high cross-pooling
between BTC.com and AntPool because the same company, Bitmain,
owns both pools. Xia et al. [V18] developed a visualization tool show-
ing the internal address networks of mining pools and the estimated
number of pool hoppers for each pool. Xia et al. is closely related to
my study but deviates in several areas. I propose a miners’ migration
flow model and measurements to detect different types of pool hop-
pers over long time intervals. The miners extraction method is also
less computationally expensive, although it shares a similar underly-
ing concept to detect miners.

This chapter contributes to an empirical analysis attempting to de-
tect miners in mining pools and analyze miners’ migration patterns
among pools in the Bitcoin network. Compared to most past work,
my proposed method can be used to analyze more mining pools
across Bitcoin’s mining history. Moreover, I compare the results with
off-chain information (e.g., market shares, payout schemes, and pool
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fees) to help explain mining pools’ evolution and pool hopping be-
havior.

5.2 data preparation

I trace the reward payout from coinbase transaction to miners. As
Bitcoin transactions do not include any identity of miners and mining
pools, I extract off-chain information from external sources to identify
mining pools that receive mining rewards and trace pools’ reward
sharing to detect miners who participated in each pool. I provide
the data about mining pool attribution and miner’s migration in the
public repository https://zenodo.org/record/4342747.

5.2.1 Mining pool payout flows

Mining pools collect mining rewards from the Bitcoin network before
distributing them to pool members. I track reward payouts from coin-
base transactions and follow the money until it reaches the miners’
addresses. I adopt a transaction flow graph and transaction purity
notions to detect miners in the pool automatically.

A transaction flow is a directed graph of Bitcoin transactions from
a seeding transaction. Each node represents a transaction tx in the
transaction flow. Transaction purity measure determines how much
Bitcoin value in the transaction is received from the seeding transac-
tion. This measure is commonly used for taint analysis in Bitcoin (e.g.,
[1, 32]).

Let tx.in and tx.out be sets of receiving (inputs) and spending (out-
puts) edges of a transaction tx respectively. The transaction purity is
recursively defined as being the average purity of the input transac-
tions weighted by their respective values. The purity of a transaction
tx can be expressed as follows:

purity(tx) =

∑
e∈tx.in purity(e.receive) · e.value∑

e∈tx.in e.value
(2)

The purity of a transaction without inputs is 1 because it is the root
transaction in the transaction flow.

Reward payout flow model: Past work reported that mining pools
distribute rewards to individual miners in different patterns [92, 127].
I propose that those different payout patterns can be generalized
by annotating four transaction types in the payout flow: coinbase
( txcoinbase), payout ( txpayout), intermediate ( txinter), and
miner ( txminer).

1. A mining pool receives mining rewards from coinbase transac-
tions txcoinbase and collects them in a payout transaction

txpayout before distributing them to miners.

https://zenodo.org/record/4342747
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2. A mining pool distributes the reward from txpayout to inter-
mediate transactions txinter before splitting rewards to pool
member (miner) addresses.

3. Pool members receive a reward from txinter and spend it
in a transaction called miner transaction txminer. I assume
that pool members receive the reward from this flow and then
combine it with other Bitcoin values outside the flow to spend
in txminer. Therefore, the purity of txminer is < 1.

In short, the reward payout flow is the Bitcoin transaction flow from a
payout transaction txpayout to pool members txminer . I consid-
ered txpayout as the seeding transaction because it collects every
mining reward and distributes it to pool members. Figure 24 shows
reward payout flow patterns extracted from the top 10 mining pools
in my study. A payout flow was sampled for each pool in the month
when it had the highest market share. Each node represents a trans-
action type with branches of similar patterns grouped together. The
color of the node indicates the transaction type. The total value of
transactions in each node is encoded by circle size in proportion to
the txpayout value. The number of transactions and their com-
bined values are the top and the right labels for each node, respec-
tively. I omitted labels for combined values below 1 BTC.

Reward payout flows extraction: Based on the reward payout flow
model, I present Algorithm 1 to automatically extract payout flows
from the coinbase transaction and follow the transaction network un-
til it finds miners. I used the BlockSci API [78] to access the transac-
tion data. First, the list of txpayout has been initiated from all out-
puts of txcoinbase as inputs of the algorithm. For each txpayout,
the algorithm traversed the transaction graph from txpayout which
has purity = 1 until the transaction has puritytx < 1 (i. e. txminer).
Finally, the algorithm returns a directed edge list that represents the
payout flow.

I added two additional termination criteria valid(tx) that stop fol-
lowing the current transaction tx flow: 1) when the time difference
between txpayout and tx is more than one day and 2) when the
tx.value is < 0.001 BTC—as most mining pools have a minimum pay-
out value [13, V18].

Identifying individual miners: For each edge list obtained from Al-
gorithm 1, I constructed a payout flow graph using the NetworkX
library [58]. Next, I extracted txminer and derived the list of min-
ers from each payout flow graph.

Miner transaction ( txminer) is a transaction in the payout flow
graph that does not have any output in the payout flow graph
|txminer.out| = 0. I tagged all input edge(s) of txminer as owner
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Figure 24: Reward payout flow patterns extracted from the top 10 mining
pools in this study. Each node represents a transaction type with
branches of similar patterns grouped together. The color of the
node indicates the transaction type. The total value of transac-
tions in each node is encoded by circle size in proportion to the
txpayout value.
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Algorithm 1 Reward payout flow extraction

Input: txpayout is a payout transaction as a seeding node of the
payout flow.

Output: edges is the edge list of the the payout flow.
queue← PriorityQueue([txpayout])

edges← List()

while queue is not empty do
tx← queue.pop()
if purity(tx) = 1 and valid(tx) = True then

for edge in tx.out do
edges.append(edge)
queue.append(edge.spend)

end for
end if

end while

edges. The list of miners who received the reward from txpayout

is defined as Mtxpayout .
Some txminer transactions may be connected to the pool wallet

to keep the represented value as profits for the pool or deposits it
as reserve the reward to pay for the next payout, as illustrated in
Figure 24 (E), (F), and (I). I detected txminer input edges with
the same owner addresses as the mining pool and assigned them as

txpayout to extract further reward payout flows.

5.2.2 Miners’ migration between mining pools

To analyze miner migration between pools, I compared the list of
miners who received rewards from each mining pool in a set time
interval and calculated the intersection of miners between pools. I set
the time interval to months to be able to analyze detailed patterns for
the entire mining pool history.

Let t be a time interval where t ∈ T = {t0, ..., t− 1, t, t+ 1, ..., tn}.
The set of miners in the mining pool Mt

pool is the summation of the
miner list Mtxpayout for all payout transactions of a mining pool pool
at time t.

The miner’s migration flow is modelled as a diagram in Figure 25.
For each time interval t, the list of miners that migrate from/to a
mining pool pool, annotated as Mt

pool, is divided into 7 miner groups
as follows:

• New (Dropout) miners are miners that enter (exit) the mining
activity at time t, annotated as Mnew|pool (Mdrop|pool).

• Same before (Same after) miners are in Mt
pool but are also in

Mt−1
pool (Mt+1

pool).
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New Dropout

Same after

Hopping outHopping in

Cross pooling

Same before

Figure 25: The miners’ migration flow model of pool at time interval t. t− 1

(t+ 1) is the time interval before (resp. after) t. Mnew (Mdrop)
is the list of miners not in any pool at t− 1 (resp. is not found
in any mining pool at t+ 1). The union of the list of miners from
other pools is Mothers.

• Hopping in (Hopping out) miners are in Mt
pool but move from

(to) other pools Mt−1
others|pool

(Mt+1
others|pool

).

• Cross-pooling miners are in Mt
pool but also found in other pools

at the same t (Mt
others|pool).

The quantity of miners’ migration is calculated from the percent-
age of the total reward of miners for each miner group. I report the
percentage of value rather than the number of addresses because it
gives more weight to miners with a high contribution to the pool.
Therefore, the measure is more robust regarding small or occasional
miners.

The percentage of the total value of miners (X) is the total value of
Mt

pool associated with Mx, where x is a set of miners from miner
groups, defined as:

X(Mt
pool,Mx) =

∑
m∈Mt

pool∩Mx
m.value∑

m∈Mt
pool

m.value
(3)

For example, the percentage of hopping in (hopping out) miners is an-
notated as X(Mt

pool,M
t−1
others|pool

) (resp. X(Mt
pool,M

t+1
others|pool

)).
For each mining pool, I obtained the monthly percentage of miners’

migration for each miner group. As there are many variables to con-
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sider in the miners’ migration flow, I summarized miners’ migration
flows into three flow types. Each type of the flow indicates a net gain
or loss percentage of the miners in the mining pool from different
flow types.

1. New and dropout flow: the percent difference between new and
dropout miners.

2. Hopping in and out flow: the percent difference between hopping
in and hopping out miners.

3. Cross-pooling: the percentage of cross-pooling miners. This is the
only flow that compared miners within the same time period.

Additionally, the percentage of cross miners’ rewards from the pool is
the total reward that cross miners received from the pool divided by
the total reward that cross miners received from all mining pools. A
higher percentage implies that miners dedicated more computational
resources to this particular pool. It also indicates the attractiveness of
the pool compared to other pools at the same time interval.

5.2.3 Evaluation and discussion on the data preparation method

This section discusses the validity and quality of the data preparation
method and compares it to related work. Table 5 shows the median
and median absolute deviation (MAD) on the number of miners, path
length from payout transaction to miners, and the number of coinbase
transactions per payout, for each mining pool in this study. I detected
that these measures are non-normal distributions in many mining
pools. Thus, I report robust statistics measures that provide a more
reliable point estimation and variance of the distributions.

5.2.3.1 Assumption on the payout flow model

The primary assumption of our approach is that mining pools spend
only the mining reward from coinbase transactions to distribute among
their miners. Therefore, the purity of payout and intermediate trans-
actions is set to 1. However, this assumption did not apply to 6 min-
ing pools in our study: ASICMiner, Binance Pool, BitFury, DPOOL,
KnCMiner, OzCoin, and Poolin. I observed that these pools sent all
rewards to one or two miner addresses which are likely to be miners’
addresses, for instance, Poolin in Figure 24 (J). This can be detected
by a very low median number of miners in Table 5. Most of them
were small pools and tended to operate in a short period (Figure 20).
BitFury is likely to be a private pool as they keep the reward in their
wallets and do not show an obvious payout pattern. Binance provides
wallet and exchange services to miners in addition to mining pools.



5.2 data preparation 69

Table 5: List of the top-30 mining pools with the number of blocks until
August 31, 2021. I reported median and median absolute deviation
(MAD) of the number of miners, miners’ path lengths, and the num-
ber of txcoinbase per txpayout. Mining pools that I cannot extract
the payout pattern from the algorithm (resp. has no pool character-
istics information) are highlighted in red (grey).

Mining Pool # Blocks
# Miners Path Length # txcoinbase

Median MAD Median MAD Median MAD

F2Pool 65,772 3,351 1,469 3 0 5 4

AntPool 57,271 187 186 13 8 8 7

BTC.com 36,811 1,519 1,513 3 0 16 10

SlushPool 35,240 162 104 2 0 1 0

BTC Guild 32,936 38 29 4 2 1 0

DeepBit 31,107 30 12 23 13 1 0

ViaBTC 23,157 35 28 3 0 5 3

GHash.IO 23,083 6 4 2 0 1 0

Poolin 21,097 2 0 4 1 1 0

BitFury 20,901 1 0 3 0 1 0

BTCC Pool 18,036 1 0 4 2 1 0

BTC.TOP 16,748 184 183 2 0 7 5

BW.COM 12,733 1 0 16 12 4 2

Eligius 11,430 62 39 1 0 1 0

Huobi 9,155 16 7 4 1 1 0

50BTC 7,859 25 19 42 31 1 0

KnCMiner 7,477 2 1 4 2 1 0

BitMinter 6,464 87 46 4 2 1 0

Binance Pool 6,046 2 1 3 0 10 5

EclipseMC 6,024 43 23 6 3 1 0

Bixin 5,852 2 0 3 1 1 0

BitClub Network 5,672 2 1 7 3 29 27

1THash 4,967 177 175 2 0 5 3

OzCoin 4,845 1 0 10 7 1 0

okpool.top 3,153 9 4 4 1 1 0

ASICMiner 3,146 1 0 10 5 30 26

Bitcoin.com 2,475 11 6 3 1 1 0

KanoPool 2,432 795 253 2 0 1 0

GBMiners 2,093 2 1 8 3 4 2

DPOOL 1,918 1 0 3 0 6 2
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The pool sent all the reward to their wallet adress and could draw bit-
coin value from other services to pay miners. In these cases, I cannot
track miners from payout flow because the pool has its own mecha-
nism or use money outside the flow to pay miners.

The payout flow extraction algorithm stops crawling the payout
flow because the pools may add bitcoin values outside the payout
flow (e.g., their saving account), and therefore the purity of the trans-
action is < 1. To fix this problem, the purity threshold could be ad-
justed to less than 1 in case that mining pools combine bitcoin values
from non-mining related sources. I tried a lower purity threshold and
found that it is computationally much slower. Besides, it tends to clas-
sify miners as intermediate transactions and continues following the
flow because miners can also combine the reward with other sources
of bitcoin values to spend in Bitcoin marketplaces and services.

5.2.3.2 Justification on using addresses to identify miners

Another important assumption is that individual miners who receive
a reward share will spend it in a transaction that includes input trans-
actions outside the flow. The algorithm will make a false classification
when a miner simply forwards the reward using a transaction with-
out further inputs. In this case, the algorithm will calculate that the
transaction purity is 1, assign it as txinter, and follow all outputs
from txinter.out.

Although the basic address clustering method [123] is an effective
method to group the addresses that are likely to belong to the same
entity [61], I found that it led to false-positive clusters. For example,
the method may group different miners in the same cluster because
they used the same exchanges or mixing services. I expect that miners
would participate in 1–2 pools at a time. I report the average number
of mining pools that miners participated as the average weighted by
their total reward with the 95% bootstrap confidence intervals. Dur-
ing the first halving (second halving) period, miners received rewards
from 3.92 [3.12, 4.74] (3.06 [2.47, 3.68]) different pools per cluster com-
pared to 1.46 [1.39, 1.56] (1.30 [1.24, 1.37]) pools per address. I also
found that the percentage of cross-pooling per month using address
clustering is higher than using solely miner addresses on the aver-
age of 25.9% [24.2%, 27.6%] (31.6% [29.7%, 33.7%]), using pairwise
comparison for the same pool and month. According to this result,
I decided to use miner addresses to avoid adding errors from the
address clustering to the results.

5.2.3.3 Miners addresses association with known entities

Since there is no ground truth to evaluate the identity of individ-
ual miners, I indirectly validated whether our approach can identify
individual miners correctly. I assumed that miners should receive a
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Table 6: The percentage of addresses and total Bitcoin values associated with
known entities from 2013 to 2016

Type
Addresses Total Value

Input Miner Output Input Miner Output

Unknown 96.1 84.8 91.5 44.0 84.8 68.6

Mining pool 1.38 0.555 7.43e-2 45.9 6.02 0.371

Exchange 1.42 8.36 4.80 0.35 6.52 18.0

Wallet 0.428 4.38 2.67 7.62 2.48 12.6

Marketplace 0.665 1.19 0.567 2.14 0.162 0.398

Gambling 3.46e-2 0.609 0.347 1.86e-4 3.25e-2 5.07e-2

Mixer 1.15e-3 5.51e-2 3.69e-2 1.16e-5 6.57e-3 3.57e-2

Lending 5.03e-3 4.54e-2 2.86e-2 3.68e-5 1.50e-3 1.51e-3

mining reward (input address) from the mining pool and keep it in
their wallet (miner address) before spending it (output address) on
services (e.g., exchange, mixer, or marketplace).

I used a known entity dataset from WalletExplorer.com with entity
type classification from Zola et al. [178]. I studied the payout flows
that were spent between 2013 and 2016 because the website stopped
updating more known entities from 2016 [71]. The percentage of ad-
dresses and Bitcoin values for each entity type is reported in Table 6.
The main findings from the result are as follows:

1. Miners detected from our algorithm mostly cannot be associ-
ated with any known address (“unknown” type in Table 6)
(84.8%) as well as input and output address (96.1% and 91.5%
resp.). However, when I measured the total value for each entity
type, I found that 84.8% of miner rewards are from unknown
addresses, compared to 44.0% for input and 68.6% for output
addresses. The result shows that our algorithm can detect indi-
vidual miners because they are largely not associated with any
known Bitcoin entities.

2. Miners tend to receive a reward from known mining pool ad-
dresses (45.9% of the total value) followed by unknown ad-
dresses (44%). This result aligns with the assumption that min-
ers should receive money from txinter of the mining pool.
For unknown addresses, mining pools may use external ad-
dresses that are undetected in the known entity dataset to pay
miners.

3. Miners spent 68.6% of their total reward using unknown out-
put addresses. I also detected that some miners spent their re-
wards on exchanges (18% of the total value) and wallet services
(12.6%). This result provides evidence that regular miners con-
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vert mining rewards to fiat currencies or deposit them to their
Bitcoin wallets.

The pool hopping detection approach I developed differs from Xia
et al.’s work [V18] as I did not filter out known entities after I ex-
tracted the payout flow based on three reasons: 1) Xia et al. focus on
only a 1-month time frame. The WalletExplorer dataset, however, in-
cludes 30,167,518 labeled addresses. It is computationally expensive
to linearly scan for addresses in every transaction; 2) WalletExplorer
did not update new entity labels after 2016 [71]. Hence, it cannot be
applied to recent reward payout flows; and 3) The percentages of re-
ward values are tolerant to possible misclassification of miners.

5.3 characterization of reward payout flow patterns

Using the payout flows I extracted from the previous section, I ana-
lyzed the patterns of payout flows and reward payout regularity. Pre-
vious work has reported the payout patterns for some mining pools in
a limited time interval. Romiti et al. explore the payout flow pattern
of three miners: BTC.com, AntPool, and ViaBTC [127]. They reported
that BTC.com and AntPool used an address to distribute rewards
in multiple steps, while ViaBTC divided the reward to random ad-
dresses 10 BTC each before payout to miners. This work extracted the
payout flow of a more significant number of mining pools over the
entire Bitcoin history.

Liu et al. reviewed the payout patterns from previous studies and
classified them into direct and indirect distributions [93]. The payout
structure of indirect distributions can be divided into tree-like and
chain-like structures. Yet, they did not consider the regularity that min-
ing pools distribute the reward. In this work, I proposed two quan-
titative measures to characterize the reward payout flows based on
reward payout regularity and payout flow structures.

1. Payout regularity can be measured from the correlation between
blocks mined and the number of payouts per month. Mining
pools that pay per block(s) (or per round) to miners should have a
high positive correlation since they distributed rewards to min-
ers when they obtained the reward from coinbase transaction. In
contrast, mining pools that pay miners regularly (e.g., daily) will
have a fixed number of payout transactions regardless of the
block mined. Therefore, there should be no correlation among
those regular payout pools.

2. Payout flow structures determine the complexity of reward pay-
out flows. Mining pools can distribute rewards to miners di-
rectly from the payout transaction or forward them to interme-
diate addresses before paying to miners in multiple steps. I cal-
culated the path length for each miner to see how many steps it



5.3 characterization of reward payout flow patterns 73

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation between number of payouts and blocks mined

0

1

2

3

4

5

6

7

8

9

≥10

V
a
ri

a
b

il
it

y
 o

f 
M

in
e
rs

' 
P

a
th

 L
e
n

g
th

50BTC

AntPool

BTC.com

BTCC Pool

BW.COM

BitClub Network

BitMinter

DeepBit

F2Pool

GBMiners

Huobi

ViaBTC okpool.top

chain direct direct/chain direct/tree tree

Payout flow pattern

10 100 1,000

# Miners per payout
block regular

Payout regularity

Eligius
KanoPool

EclipseMC

BTC Guild

Bitcoin.com

DeepBit 50BTC

BTC.TOP 1THash SlushPoolGHash.IO

Figure 26: The scatter plot shows the payout flow pattern of mining pools
regarding the payout regularity and payout flow structure. The
color indicates the payout flow structure for each mining pool.
The shape suggests whether a mining pool pay per block (round)
or regularly (e.g., daily). The size of each point is Proportional
to the median number of miners per payout on the logarithmic
scale.

took for miners to receive the reward from the payout transac-
tion. I measured the median absolute deviation (MAD) of path
lengths to describe the payout pattern for each mining pool. The
large MAD indicates a high variability of path length. It implies
that miners received rewards in different steps, and therefore
the payout flow looked like a chain-like or a tree-like structure.
The low MAD means that miners were likely to receive the re-
ward in the same step. Therefore, the mining pool tends to have
a direct or fixed-length payout flow pattern.

Figure 26 reports payout regularity, and miners’ path length vari-
ability for each mining pool in a scatter plot. I looked into samples
of payout flows for each mining pool and annotated what I found
as the shape (regularity) and color (payout flow structure). The pay-
out patterns I observed align into four clusters based on two axes: 1)
whether mining pools pay per block (per round) or pay regularly (e.g.,
per day) and 2) the payout of structure tends to be the fixed-length or
chain-like structure.
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5.3.1 Payout regularity

Mining pools in the early years between 2011 and 2013 commonly
distributed reward shares to miners directly after they successfully
mined a block. DeepBit is the first mining pool that dominated the
market and spread the reward to miners for each block mined. After
the inception of DeepBit, others mining pools also adopted the same
policy to pay miners per block, such as Eligius, BTC Guild, BitMinter,
and SlushPool. The correlation between payouts and blocks mined is
close to 1, implying that mining pools pay miners as much as they
receive from coinbase transactions.

The pay-per-block policy poses no risk for mining pools because they
do not need to hold any funds to pay miners [128]. Instead, miners
accepted uncertainty to keep a constant income as the expected re-
ward time is in proportion to the market share of the pool. This pol-
icy induces some miners to mobilize between pools (cross-pool) to
maximize their reward. After the first halving day, pay-per-block pools
tended to be less successful in market share and eventually disap-
peared from the mining competition. Even though new mining pools
emerged, they tended to be short-lived (e.g., 50BTC) due to the com-
petition from mining pools which provided a more stable income to
miners (e.g., F2Pool and AntPool). SlushPool is an exceptional pool
that adopted this policy and is still active and has constantly mined
new blocks from 2012 until now.

As the Bitcoin mining activity has grown exponentially since 2013,
new mining pools offer miners a more regular income to attract min-
ers. These mining pools collect mining rewards to their address be-
fore regularly distributing them to miners (i.e., daily). Therefore, the
number of payout transactions remains constant over time and has
a low correlation with blocks mined in the range of -0.3 and 0.6.
F2Pool and AntPool are early pools that adopted this policy from
2013–2014. BTC.com and ViaBTC emerged around the second halving
day in mid-2018 and adopted the same regular payout policy. Nowa-
days, these four mining pools remain the top pools in the mining
market.

With the regular payout policy, miners are guaranteed to receive a
predictable income from the pool. Mining pools need to cope with
the risk from the uncertainty of Bitcoin mining and have some funds
to pay miners when they do not manage to obtain enough rewards on
bad luck days. This can be seen from the payout flow where mining
pools send rewards to their addresses and spend them in subsequent
payout transactions. Hence, mining pools with this risk tend to pose
more fees to miners. The domination of regular payout pools shows
that miners are willing to join mining pools that provide a steady in-
come. Nowadays, the top mining pools distribute rewards to miners
regularly, indicating that mining has become an industry since min-
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ing pools reserved some funds to pay miners and manage the risk
from mining new blocks.

I spotted two mining pools whose correlations do not match our ex-
pectations in the study: BTCC Pool and GBMiners. BTCC Pool paid
rewards to miners per block. However, the pool split coinbase trans-
actions into numerous payout transactions with a tiny amount of bit-
coins (e.g., https://bit.ly/3FCcgPo). Therefore, the number of pay-
out transactions outnumber the block mined. GBMiners distribute, in
multiple payout transactions (median = 2, MAD = 1), the reward to
miners at the same hour every day. However, each payout transaction
usually contains the median of 4 coinbase transactions (MAD = 2).
This explains why the correlation of GBMiners is high even though it
is a regular payout mining pool.

5.3.2 Payout flow structure

The variability of path length to miners (y-axis on Figure 26) can im-
ply the complexity of payout flow structure ranging from the most
straightforward pattern in which a mining pool distributes the re-
ward to miners in a fixed path length to a more complex pattern in
which it pays miners in multiple steps. The median path length vari-
ability of 0 implies that mining pools were likely to distribute rewards
to miners at the same path length. I called this “fixed-length” payout
structure. This pattern has been used among the pools that started op-
erating between 2011 and 2014: SlushPool, GHash.IO, and KanoPool.
During this time, I observed a constant increase in the transaction fees.
Eligius is an exceptional pool in this study in which it paid miners
directly from the output of coinbase transactions (median path length
= 0).

Mining pools with this pattern send all of the mining rewards from
coinbase transactions to their address and distribute them to all min-
ers in the same payout transaction. Due to the simplicity of the payout
flow, it minimizes the number of transactions for each payout. How-
ever, miners’ addresses can be detected easily from the flow. Despite
this concern, it has still been used among the recent small-size pools,
such as KanoPool and 1THash. F2Pool and Binance Pool are an ex-
ception in that they offer a regular income to miners but still use this
pattern to pay miners (path length = 3).

As the number of miners became higher (1,000–10,000 miners per
payout), BTC.com and ViaBTC used a tree-like structure to distribute
rewards to more miners in a few path lengths (path length = 3).
They are currently the top mining pool with 12% and 9% of market
shares, respectively (as of Aug. 2021). For each payout flow, the min-
ing pools split rewards into multiple intermediate transactions before
sending them to miners’ addresses. These pools have a low miners’

https://bit.ly/3FCcgPo
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path length variability because miners received reward shares from
the different intermediate transactions with the same path length.

In comparison, mining pools that distribute rewards to miners in a
“chain-like” structure have a path length variability > 1. DeepBit dis-
tributed rewards to miners per block in a long-chain structure. A high
path length variability characterizes this pattern. Three other pools,
EclipseMC and 50BTC that came later, also used the same payout pat-
tern. Mining pools sent the reward to a single miner in each step and
kept the change to pay other miners in the subsequent transactions.
Mining pools need to create as many transactions as many miners
they need to pay. Nonetheless, it is feasible at this period due to the
small number of miners and negligible transaction fees.

Active mining pools from 2012 to 2013 also adopt chain-like payout
pattern to distribute rewards to multiple miners, including ElicpseMC,
BTC Guild, BitMinter, and Bitcoin.com. At each step, these mining
pools spread rewards to some miners due to the limitation of transac-
tion size. Then, they forwarded the remaining reward in the following
steps to pay to the remaining miners. Compared to the long-chain, this
pattern helps reduce the number of intermediate transactions, and
therefore, transaction fees to distribute rewards. Table 5 shows that
the median path length of these pools is around 3–5 compared to 23

for DeepBit and 42 for 50BTC. Besides, I observed that these pools
also sometimes distribute rewards to miners directly. As a result, the
variability of their payout flow dropped to around 1–3 path lengths.

AntPool is the only regular payout mining pool that adopted the
chain-like payout structure (Figure 27 (A)). The pool distributed the
reward to 50–100 miners at each step. According to the icicle plot
on the right, there is one txinter that holds a large reward. Even
though I found more than one txinter at each step is shown in
the node-link diagram, they are likely to be txminer that the algo-
rithm misclassified as txinter. The median path length is highly
correlated with the number of miners (path length = 13). Nonethe-
less, I detected that AntPool changed the pattern to tree-like payout
flow from November 2019 (Figure 27 (B)). The icicle plot shows that
AntPool distributes the reward into five equal txpayout. After that,
each txpayout distributes the reward to miners in a chain-like struc-
ture, as the txpayout in the following steps have a slightly less
amount of Bitcoin than the previous one.

From this analysis, I witnessed the development of payout flow
structure from a chain-like in the first mining pools to fixed-length pat-
terns. Mining pools pay miners from the reward obtained from coin-
base transactions and adopt a payout structure that minimizes trans-
action fee cost at a time. Therefore, most mining pools use simple
payout flow patterns as indicated by the path length variability. Ac-
tive large mining pools nowadays use tree-like distributions to pay a
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Figure 27: Reward payout flow patterns of AntPool. (A) AntPool paid min-
ers in a chain-like payout structure. (B) After November 2019,
AntPool adopt a tree-like payout structure to distribute the re-
ward. The icicle plots on the right display the distribution of
txpayout and txinter for the first five path lengths in the pay-
out flow.



78 empirical analysis of pool hopping behavior in the bitcoin blockchain

large number of miners, such as and ViaBTC and BTC.com (Figure 26

H–I).

5.4 visualization design

The miners’ migration flow provides in-detail information on min-
ers’ mobility incoming from and outgoing to each mining pool and
hopping with other pools. The economist wanted to assess whether
the mobility of miners affects market shares and pool characteristics
or vice versa. I provided two interactive visualizations based on a
Jupyter Notebook that offered him an overview of three main miner
flows, zoom and filter on a specific time period, and detail of the
percentage of mobility between pools.

5.4.1 Visualizing the overview of the miners’ migration flow

The first set of visualizations helps analysts understand the net flow
of miners for each pool over time. As there are 28 mining pools to
observe at a glance, I used the same bubble chart visualization de-
sign as in Figure 20. Each row represents the development of min-
ers’ flow for a particular mining pool. Mining pools are sorted by
the time sequence when they mined the first block. The new and
dropout miners flow statistics (resp. the hopping in and out flow) are
displayed in Figure 28 (Figure 29). The absolute percentage difference
is encoded as the circle size. The color indicates the direction of the
difference: green for a positive and red for a negative number. For the
cross-pooling flow, the circle size is proportional to the percentage of
cross-pooling miners. I used a sequential single-hue color scheme to
represent the percentage of reward that cross-pool miners received
from the pool. The result from the cross-pooling flow is shown in
Figure 31. These three figures are concatenated horizontally in the
notebook.

5.4.2 Visualizing the detail of pool hopping and cross-pooling miners

After the economist figured out the time period of interest, his re-
search questions was 1) how many miners migrate from one pool to
another or cross cross with other pools and 2) can we detect signif-
icant miners’ flow between pools? The overview visualization could
not display detailed information on the relationship among pools.
Hence, I developed a compound chart to allow the economist to look
in detail at the pool hopping and cross pooling over a time period of
interest. The compound chart consists of three elements: 1) a stacked
bar showing the total payout amount to miners and cross-pooling
miners; 2) a heatmap showing the percentage of cross-pooling be-
tween mining pools; and 3) context information about reward payout
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schemes and transaction fees for each mining pool. I showed four
insights that this visualization produced in Section 5.5.4.

5.5 result and analysis

Based on miners’ migration flow visualizations, we explored whether
the collective behavior of miners affects the evolution of market share
and pool characteristics (i.e., payout schemes and pool fees). First, we
focused on the competition between pools based on payout schemes
and transaction fees. Then, we investigated market entry and the ex-
pected revenue of new miners. Finally, we analyzed miners’ cross-
pooling behavior that helps to diversify income and risks.

5.5.1 Miners’ migration flow and Bitcoin market price

Overall, the new and dropout miners’ flow (Figure 28) shows that
more new miners were joining the top mining pools over time. The ev-
idence aligns with the total hash rate that has been growing very fast
over time (Figure 19). Compared to the Bitcoin market price, we ob-
served that many new miners entering pools and pool creations hap-
pened on the local peaks in the market price: June 2011 ($19), April
2013 ($130), February 2013–March 2014 ($800), June 2014 ($600), De-
cember 2015 ($420), June 2016 ($630), May–December 2017 ($15,000)
and June–December 2019 ($10,500). We also observed a significant
miner dropout from mining pools close to halving days, which corre-
spond to periods of the sharp decrease in mining revenue.

5.5.2 Mining pools’ competition, fees, and pool hopping

In the competition to attract miners, payout schemes and pool fees
are major pool characteristics that directly impact miners’ income.
Two prime payout schemes (PPS and PPLNS) provide different reward
incentives, either risk-averse or risk-seeking strategies. Pool fees are
used as a competitive advantage for mining pools. The lower the pool
fee, the more attractive it should be to miners. We compared the re-
ward payout scheme (Figure 20) of mining pools with the migration
flows to examine whether miners were affected by the mining pools’
competition.

Within each payout scheme type, Figure 20 illustrates that new
pools tend to apply a lower fee than the incumbents. For instance,
DeepBit applied a relatively high fee for PPS (10%) as the first domi-
nant mining pool between 2011–2012. In 2012, mining pools, such as
BTC Guild or OzCoin, applied lower PPS fees (5%) to attract new min-
ers (Figure 28) and hopping-in miners (Figure 29 (C)), probably from
DeepBit which had more hopping-out miners in the same period. We
see the same pattern in 2013 when F2Pool (4%, named Discus Fish at
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Figure 28: New and dropout flow. (A) The line chart displays the market
price of Bitcoin in US Dollar on the log scale. (B)The size of the cir-
cle represents the absolute difference between new and dropout
miners. New miners’ positive (or negative) flow is encoded with
the green (or red) color.
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ers. The color indicates more hop-in miners than hop-out miners
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the time) or 50BTC appeared (3%), then in 2014 with AntPool (2.5%)
or BTCC (2%), and in 2016 with BTC.com (1.5%). This competition
led to a decrease in pools’ average PPS fees, which stabilized around
2% from 2016.

The same dynamics occurred for PPLNS pools. While BTC Guild
has applied a 3% fee since 2011, 50BTC created in 2012 applied a
lower fee (2.5%). This trend got stronger with GHash.IO (0%) in 2013

or AntPool (0%) in 2014. When these pools appeared with lower fees,
new miners were attracted by those pools (Figure 28) and hopped out
from older pools (Figure 29).

In summary, the market share of mining pools is a confounding fac-
tor with miner flows. Mining pools that gain market share tend to at-
tract new and hopping-in miners. Miners drop out and hop out from
pools that lose market share. This feedback loop probably explains
the domination of a few mining pools at a time. The main driver for
pool-hoping we observed in our study is the gap between pool fees
for a given reward scheme. New successful pools adopted lower fees
to attract miners while the older ones declined or stopped operat-
ing if they did not follow this trend. After 2015, pool fees tended to
converge for each reward scheme, and pool-hopping flow decreased.

5.5.3 The impact of Chinese government policy on Bitcoin mining pools

Chinese mining pools (e.g., AntPool and F2Pool) emerged in the mar-
ket around 2013 and increasingly became the dominant source of Bit-
coin mining power. As shown in Figure 22, the total market share
of Chinese mining pools exceeded the 51% majority attack threshold
from March 2015 and continued until early-2017. At this point, the
mining community raised concerns that Chinese pools had relatively
too much computational power [114, 122] and could collectively pose
a threat to the Bitcoin network [77, 134].

The Chinese authorities monitored activities in Bitcoin closely [70].
The People’s Bank of China banned cryptocurrency trading and peer-
to-peer lending in September 2017 [Investopedia_2019-06-25]. Com-
pared to our pool characteristics information in Figure 20, many Chi-
nese pools in this period transformed themselves into global pools,
including three top mining pools: BTC.COM (March 2017), AntPool
(August 2017), and F2Pool (September 2019). We also saw two Chi-
nese pools, BTCC Pool and BW.COM, that lost their market share
and stopped their operation during this time (Figure 20).

In May 2021, Chinese authorities shut down Bitcoin trading and
mining by cutting electricity supply to mining farms [141]. The to-
tal hash rate dropped suddenly in this month (Figure 30 (A)). From
the miners’ migration flow in Figure 28, we found a large number
of dropout miners for most of the active pools, such as BTC.COM,
BTC.TOP and okpool.top. Interestingly, the market shares of Chinese
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Figure 30: (A) The total hash rate (in TH/S) and (B) the market price (in US
Dollar) of Bitcoin from January 2020 to September 2021. The time
period that the Chinese government shut down mining farms is
highlighted in grey.

pools (e.g., Huobi, 1THash, and BTC.TOP) suddenly dropped after
this event (Figure 30 (B)). Nowadays, miners moved their facilities to
America, and Central Asia [125], while the total hash rate gradually
recovered (Figure 30 (A)).

5.5.4 Payout scheme, income optimization, and cross-pooling

Cross-pooling should imply that miners try to diversify risks and op-
timize income from mining pools. Figure 31 shows that cross-pooling
tends to be very important at the beginning of many new pools. This
cross-pooling occurs from incumbent pools toward the new pools,
especially if the latter offers similar or better expected income. We
identified four periods of intense cross-pooling shown in Figure 31

and further explored cross-pooling and pool hopping behaviors be-
tween pools. We chose four time periods where we detected a high
percentage of cross-pooing to investigate what happened in further
detail.

April 2013 – November 2013: This period corresponded to the switch
from PPS toward the PPLNS scheme for BTC Guild as we discovered
from Figure 32. BTC Guild applied PPS until February 2013, then pro-
posed PPS and PPLNS until March 2014. After that, it offered PPLNS

uniquely. Before that time, cross-pooling was very low. F2Pool pro-
posed remunerating miners using a PPS reward scheme with a 4%
pool’s fee when entering the mining market in 2013. At that time
(May 2013), the three biggest pools were BTC Guild (PPS, 5% fee), 50

BTC (PPS, 3%), and SlushPool (Score, 2%). The entry of F2Pool is as-
sociated with an important and cross-pooling between those pools,
especially with BTC Guild, which provides a higher transaction fee.
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Figure 31: Cross pooling flow. The size of the circle corresponds to the per-
centage of cross-pooling of all miners in a given month. The per-
centage of reward that cross-pooling miners obtained from the
pool is encoded using a brown color scale. Four periods with a
high cross-pooling are highlighted in the grey background: (A)
April 2013 – November 2013, (B) June 2014 – December 2014, (C)
September 2016 – April 2017, and (D) January 2020 – December
2020.
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Figure 32: The compound chart displays the total payout (left), reward pay-
out scheme (right), and cross-pooling between mining pools (mid-
dle) between April 2013 and November 2013.
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Figure 34: The compound chart displays the total payout (left), reward pay-
out scheme (right), and cross-pooling between mining pools (mid-
dle) between September 2016 and April 2017.

June 2014 – December 2014: The period followed a similar pattern as
the previous one, except for AntPool, a newly created pool in this pe-
riod. Before the creation of AntPool, cross-pooling was limited. Once
AntPool launched the PPLNS payout scheme (in addition to PPS), cross-
pooling rose considerably. Figure 33 shows that AntPool (PPLNS, 0%)
generated large cross-pooling with the main existing pools: GHash.IO
(PPLNS, 0%), F2Pool (PPS, 4%), and Eligius (PPS, ∼0%).

September 2016 – April 2017: In this period, neither the creation nor
the switch toward a PPLNS pool led to cross-pooling. However, the
apparition of a large PPS pool (BTCC Pool) generated a lot of cross-
pooling with an already existing PPLNS pool (AntPool). Figure 34

shows that a large cross-pooling flow existed between AntPool and
BTCC Pool, and also other PPS pools (BTC.com or F2Pool). BW.com
which entered the market in 2015 (PPS, 4%; PPLNS, 1%) is also associ-
ated with cross-pooling with the currently largest pools—F2Pool (PPS,
4%) and AntPool (PPLNS, 0%).

Surprisingly, we also found that GBMiners has a very high cross-
pooling with F2Pool. We checked the payout flow of GBMiners dur-
ing this period and found that it has two different payout flows, as
shown in Figure 35 (A–B). On one hand, the pool distributed rewards
in a chain-like payout flow pattern (A). On the other hand, GBMiners
sent all payout rewards to a single miner. We suspect that a miner
address is the external address of the mining pool (B). We detected
that those miners happen to be an address of the F2Pool miners. This
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Figure 35: Reward payout flow patterns of mining pools that has high cross-
pooling miners: (A–B) GBMiners, (C–D) 1THash, (E–F) BTC.TOP,
and (G–H) Bitcoin.com. I detected that these mining pools has
two payout flow patterns: (Left) mining pools pay reward directly
to miners; (Right) mining pools forward the reward to their own
addresses.
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Figure 36: The compound chart displays the total payout (left), reward pay-
out scheme (right), and cross-pooling between mining pools (mid-
dle) between January 2020 and December 2020.

result offers evidence that there is a connection between GBMiners
and F2Pool.

All three cases reviewed above demonstrated that cross-pooling is
used to diversify miners’ risk and leads them to combine mining in
risk-free pools (PPS) and more risky ones (PPLNS). In this respect, indi-
vidual miners seem to act as portfolio manager who optimizes their
income concerning the risk associated with each type of asset.

January 2020 – December 2020: Though we observed a large per-
centage of cross pooing among new mining pools operating around
the 3rd halving period. To study this, we plotted a chart to see the
detailed cross-pooling in 2020 (Figure 36). 1THash, BTC.TOP, and Bit-
coin.com miners are largely cross-pooling. This result generates a first
hypothesis that these mining pools are probably associated as they to-
tally have the same miners. Figure 35 (C), (E), and (G) show that pay-
out flow patterns of these pools look very similar. Besides, we found
that, like GBMiners, these pools have many payouts flows that pay a
considerable amount to a few miners, probably to their own wallet
addresses as displayed in Figure 35 (D), (F), and (H). This pattern vi-
olates one assumption of our payout flow model. We assume that the
practice of mining pools nowadays tends to operate together with the
wallet and exchange services, in which they can draw other sources
of money to pay miners. As a consequence, we have a new challenge
to automatically track the miners directly from the transaction flow.
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5.6 conclusion

This chapter presented a new approach to assess the flow of incom-
ing, outgoing, pool-hopping, or cross-pooling miners among mining
pools. The approach consists of extracting reward payout flows of
mining pools and detecting individual miners from each mining pool.
I provide rationale and evidence that it can be used to extract pay-
out flows with different payout patterns. Based on the top-30 mining
pools, the payout flows from the algorithm is consistent with previ-
ous findings. They can be characterized into four clusters based on
the payout frequency and miners’ path length variability.

The miners’ migration flow measures the net amount of mining
rewards given to 1) new and dropout miners, 2) pool-hopping miners,
and 3) cross-pooling miners. I developed visualizations that allow
me and my economist collaborator to study the impact of payout
schemes, pool fees, and Bitcoin values on miners’ decisions. The main
findings are:

1. The competition of mining pools leads to a lower fee which
converged toward an equilibrium after 2016. Payout schemes
can be seen as a risk index for mining activities. PPLNS pools are
considered more risky assets, so they compensate with lower
fees than PPS for attracting miners.

2. Miners perform cross-pooling between PPS and PPLNS pools to
diversify their risk to maximize their income and act as financial
asset portfolio managers.

3. Bitcoin value significantly affects the expected income and then
entry or exit decisions. New miners enter the market when the
market price is high, while sharp decreases of the reward, such
as halving days, lead many miners to exit this activity.

The empirical analysis provides an insight into the development
of mining pools which is crucial for improving regulations and poli-
cies in cryptocurrency. As the mining pool competition is constantly
changing, I spotted an opportunity to develop a visual analytics tool
to explore and continuously monitor this activity in the long term.
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Based on analysis questions that we came up with, we wanted to
integrate our visualization prototypes into a unified view to help ex-
plore the interconnection of multiple factors in Bitcoin mining activity.
The results and analysis discussed in the two previous papers built
the foundation for our Visual Analytics (VA) tool but only focused
on specific narrow elements of Bitcoin mining. Some questions could
not be solved with simple charts and single datasets. For example,
the economist’s questions regarding pool hopping required the anal-
ysis of various internal and external factors that affect the evolution
and dynamics of the activity. Therefore, we found a need to integrate
those visualization prototypes into a single muti-coordinated view to
help explore the interconnection between three main actors in mining
activity.

Over two years, I iteratively developed a visual analytics tool called
MiningVis for the analysis of long-term historical trends of mining
pools for economic analysis. The tool allows analysts to detect inter-
esting time periods and engage in a multi-variate exploratory analysis
of pool characteristics. In this chapter, I describe analysis factors and
motivations from the economist’s collaboration that drove the devel-
opment of our Visual Analytics (VA) tool. Additionally, I conducted
a two-week online user study with eight Bitcoin miners aiming to
understand research questions of interest to them and insights they
were able to make with the tool. I reported the qualitative and quan-
titative results from the user study and compare differences between
the types of questions relevant to miners and economic researchers.

This chapter is written mainly based on my original article pre-
sented at IEEE Visualization & Visual Analytics conference (VIS 2021)
[155]. The work was led by myself in collaboration with Nicolas
Soulié, Nicolas Heulot, and Petra Isenberg.

6.1 design study

The data-first design study [112] is a research approach that modi-
fied the design study methodology [139] to put data acquisition in
the early process before eliciting tasks from stakeholders. Motivated
by the impact and necessity for understanding Bitcoin mining and
mining pools, I loosely follow this approach by initially studying the
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domain and iteratively collecting mining-related data from various
sources. I collaborated with an economist working on the Bitcoin
mining economy, who was considered the primary stakeholder. To
study this kind of activity, the economist needed to analyze multi-
ple internal and external factors that affect the evolution and dynam-
ics of Bitcoin mining. I organized regular meetings, mostly virtual,
with my economist collaborator to discuss my visualization proto-
types and discover new findings from the prototype. I talked with
the economist to brainstorm what we wanted to analyze based on
our data. After that, I developed a visualization prototype in a Jupyter
Notebook and demonstrated it to the economist. The economist used
the prototype to analyze the data, annotate interesting observations
or patterns, and give feedback about the design. I improved the pro-
totype from his feedback and observed how he used the tool. We also
discovered many new findings and developed further research ques-
tions that started subsequent design iterations. At the end of each
iteration, we identified additional data we should collect to help ex-
plain our findings in the next iteration.

After the first year of collaboration, we made progress in collecting
data, creating visualization prototypes, and producing exploratory
data analysis results. I describe the scientific discoveries we made
during the design study in the two previous chapters—showing the
potential success of close collaborations for VA researchers. As Bitcoin
market price is highly volatile and the block reward will be halved
around every four years, little is still known about miners’ behaviors
and whether this activity remained and will remain stable in the fu-
ture. Therefore, we identified the need to develop a VA tool to help re-
searchers and miners explore and monitor this activity’s development
over the long term. Our tool targets two types of users: 1) researchers
who look for exploratory analysis tools to generate hypotheses and
models of mining pools dynamics, and 2) Bitcoin miners and users
who would like to see economic data and make decisions related to
their personal goals. I developed the tool with constant feedback from
the economist.

At the end of the design study, we performed a user study to vali-
date the tool prototype with eight Bitcoin miners recruited from the
internet. The user study consists of three phases: 1) the tool demo
and the first interview, 2) free exploration of the tool and 3) final
interview and survey. Users in the first interview gave me some feed-
back to improve the functionalities of the tool. In the free exploration
phase, we adopt the micro-entries [21] method to capture users’ in-
sights and analyze their usage patterns. Finally, we conducted a final
interview with users to ask about the impression and practical usages
of the tool. We reported the quantitative results from System Usability
Scale (SUS) [27] and the slightly adapted version of the Value-driven
Visualization Evaluation (ICE-T) [162] questionnaires.
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6.2 datasets

My economist collaborator and I progressively collected the data over
the design iterations. I described datasets D1–D4 in the two previ-
ous chapters. For the MiningVis tool, I additionally crawled news
related to Bitcoin (D5) to help users describe mining pools’ evolu-
tion from contextual information not captured in Bitcoin statistics
(e.g., the legality of Bitcoin, ransomware, and social sentiments). The
datasets are updated until September 2021 and publicly available at
https://zenodo.org/record/4342747. However, I did not include D3

and D5 datasets that can be retrieved from the original sources.

D1: The mining pool distribution dataset gives information about
the evolution of mining pools over time. The dataset consists of com-
puted quantitative measures related to mining power: hash rate, mar-
ket share (normalized hash rate), and total reward received from min-
ing (in BTC and USD). I also estimated the electricity consumption of
each pool from their hash rate. (described in Section 4.3)

D2: The mining pool characteristics dataset consists of external data
about mining pools from public sources [17, 19] and manually cleaned
by the economist. The attributes include the primary location of the
pool (nominal), payout scheme (nominal), pool fee (quantitative), and
whether the pool kept transaction fees or shared it with miners (bi-
nary). (described in Section 4.3)

D3: The Bitcoin network statistics dataset contains multiple quan-
titative measurements of the Bitcoin network for each month. Exam-
ples of network statistics for each month include the market price,
total hash rate, total block rewards, total transaction fees, mining dif-
ficulty, the number of transactions, electricity consumption [14], and
the global energy price index [68]. (described in Section 4.3)

D4: The miners’ migration dataset describes miners’ migration be-
tween mining pools over months. The dataset includes the total re-
wards paid to miners who participate in more than one pool (cross-
pooling). Besides, it also contains the total reward of miners who join
a mining pool for the first time (enter), move from a pool to another
(pool hopping), and leave the mining pool (exit) between months. (de-
scribed in Section 5.2)

D5: The Bitcoin news dataset lists headlines from the Press forum
in Bitcointalk.org [20], where users posted links to news articles re-
lated to Bitcoin. Each news contained information about the pub-
lished date from the source, the news headline, and the number of
replies and views. There are 33,325 news items in the dataset, as I
crawled the last news at the end of September. Assuming that impor-
tant news should have many viewers and encourage discussions in
the Bitcoin community, I defined an importance score of each news

https://zenodo.org/record/4342747
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item as views× (replies+1). This factor is used as a criterion to select
the news to display in the tool.

The news headlines covered various Bitcoin-related topics ranging
from articles on the market price, regulation, or specifically about
mining pools. However, the dataset does not group similar types of
news into the same category. Various topic modeling techniques are
proposed to infer the latent topics on short texts [121]. I used spaCy
[38] library to process each headline into bag-of-words, filter stop
words, and get the lemma for each word. Then, I examined many
methods implemented in the STTM library [120] to group news head-
lines into different topics.

I manually checked the top-10 topic keywords for each model to
find the model which can easily distinguish topics from the keywords
list. In the end, I decided to use the Word Network Topic Model
(WNTM) model for this dataset. The WNTM method is a simple and
effective approach that learns the latent features of the topics from
the word co-occurrence network, rather than the topics of documents
[180]. After training the WNTM model with different configurations,
I divided the headlines into 15 topics and manually labeled the topic
name (e.g., illegal activities, market price, and mining) based on the
top-10 keywords and a list of news headlines for each topic.

6.3 analysis factors and motivation

Here, I characterize the three main analysis factors that drove the
development of MiningVis—mainly based on the previous research
questions derived during the design study.

AF1: Bitcoin regulation and the evolution of mining pools. An ex-
cessive concentration of pool market shares is dangerous to Bitcoin’s
operations and raises questions about potential mining regulations.
The economist wanted to analyze factors that pose a risk to pool
concentration and detect critical periods in Bitcoin mining. Periods
characterized by significant variations of bitcoin values (e.g., halving
days, peak in bitcoin value) impact mining pools and should be ana-
lyzed. Furthermore, external data such as news about Bitcoin might
give better insights into the impact of regulatory changes in some
countries.

AF2: Pool managers’ behaviors and the competition to attract min-
ers. Mining pools share mining rewards to their miners with differ-
ent payout schemes [128] that define when and how much miners are
paid. They also kept some amount for operating costs by setting pool
fees [17]. These mining pools compete to gain higher market share by
offering better reward incentives to attract miners. Pool competition
might be visible by convergence toward a limited number of (best)
payout schemes and reduced pool fees. Such information is crucial
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for economic debates around pool viability as these fees correspond
to a significant part of their income. Analyzing these pool characteris-
tics information might provide additional evidence of the importance
of payout schemes and pool fees in attracting miners and the evolu-
tion of market shares.

AF3: Miners’ decision to join or leave a pool and its impact on min-
ing pool market shares. Miners are economic agents who consider
the cost and benefit of mining. In this respect, Bitcoin value, payout
schemes, and pool fees are major determinants of miners’ expected
income and might impact the behavior of miners. To understand the
effect of market share, pool characteristics, and external events on
miners, miners’ migration data (i.e., pool hopping and cross-pooling)
helps to test assumptions and explore the drivers behind collective
miners’ pool choice. Such analyses are critical to analyzing a mining
pool’s growth or decline and to which extent miners behave as ratio-
nal economic agents.

From an economic viewpoint, these three analysis directions are
associated with the security and sustainability of Bitcoin mining in
the long term. This analysis factor can also benefit Bitcoin miners and
users who want to explore mining pool evolution from a long-term
historical perspective.

6.4 task analysis

I derived visualization analysis tasks from my observations on actions
the economist repeatedly performed on visualization prototypes. The
visualization tasks on the tool are:

1. Temporal overview of mining pool rankings. Analyzing the
Bitcoin mining activity requires gaining an overview of the emer-
gence and evolution of mining pools (T1.1) as well as assessing
the competition among them by comparing market share, min-
ing power and rank of pools over time (T1.2).

2. Temporal zoom and filter to explore relevant time periods to in-
vestigate in more detail. The economist frequently searched for
time periods of importance to Bitcoin mining (T1.3). He looked
in particular at periods where one or two mining pools were
close to dominating the market share (“concentration index”)
as well as outliers in Bitcoin statistics (e.g., market price, trans-
action fees).

3. Comparison of mining pool characteristics. The evolution of
mining pools may be associated with some characteristics that
affect miners’ pool choice. To explain pool distributions, the
economist compared the evolving characteristics of competing
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Table 7: Mapping design levels of MiningVis tool from analysis direction,
data, analysis tasks, to visualization (view).

Analysis
Factor

Data Analysis Task View

AF1

D1 T1.1: Explore the evolution of mining pool distribu-
tion and rankings over time

V2

D1 T1.2: Compare the evolution of rankings and min-
ing power of mining pools over time

V2

D1, D2,
D3

T1.3: Identify outlier time periods in mining pool
concentration and Bitcoin statistics

V1, V2

D2 T1.4: Browse Bitcoin statistics measures that corre-
late with the mining activity

V4

D5 T1.5: Browse Bitcoin news that explain the mining
activity evolution in a chosen period.

V5

AF2

D1, D3 T2.1: Compare mining pool characteristics with the
mining pool distribution over time

V2, V3

D1, D3 T2.2: Lookup the detail mining power and charac-
teristics of the mining pool of interests

V3

D2, D3 T2.3: Identify characteristics of mining pools that
dominate the market share over time

V2, V3,
V4

D3 T2.4: Compare mining power and pool characteris-
tics across multiple pools

V3

AF3

D4 T3.1: Identify a pair of mining pools that have a
significant miners’ migration flow.

V6

D4, D2 T3.2: Lookup the mining pool characteristics of the
pools that have a high miner’s migrations.

V6, V3
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pools to identify characteristics that could affect the mining dis-
tribution (T2.1, T2.4).

4. Relating mining migration behavior with blockchain-internal
data. Comparison of internal pool characteristics with pool dis-
tribution (T2.2) and detection of miners’ migration among pools
(T3.1) at a focused time period. The economist looked at pool
distributions, characteristics, and miners’ migration to identify
characteristics that dominate the market (T2.3) and explain min-
ers’ behavior selecting or switching pools (T3.2).

5. Relating external contextual information. The economist browsed
external factors including Bitcoin statistic measures (T1.4) or
specific news events (T1.5) to find additional explanations for
observations related to the evolution of mining distribution.

In Table 7, I summarize the relationship of analysis factors (AF1–
AF3), the datasets (D1–D5), and the visualization tasks (T1.1–T3.2).
The last column lists the views in the MiningVis tool using specified
data and tasks.

6.5 related work

In Chapter 3, I reported that most blockchain visualizations came
from online sources and used basic representations of blockchain net-
work statistics and individual transaction details. However, dedicated
visualization tools for in-depth analyses and task-focused for expert
users are still rare and should be challenges for future research. In
this work, I focused on mining activities in Bitcoin rather than propos-
ing a general-purpose blockchain exploration tool. Khairuddin et al.
[80] documented the practice of Bitcoin mining from interviews with
20 miners to understand their motivation and characterize different
types of miners. Instead, our work focuses on the economic analysis
of Bitcoin mining over the long term and applies our tool with the
real Bitcoin miners. Besides, they also raised trust and centralization
issues in the Bitcoin mining activity, which our tool facilitates the
monitoring of these issues.

Even though mining is an important activity in the Bitcoin block-
chain, most existing visualizations simply show mining pool market
shares as pie and area charts (e.g., [O10, O13]). SuPoolVisor [V18]
is the only prior work in the visualization literature on Bitcoin min-
ing. It presents a visual analytics system that tracks mining pools’
daily computational power and their reward distribution network.
The tool focuses on showing the payout network between two pools
and top miners’ rewards over a short period. In contrast to this tool,
MiningVis focuses on mining activity as a long-term macroeconomic
process and considers both internal and external incentives that af-
fect mining pool dynamics and miners’ migration. The competition
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among mining pools is the focus of our tool rather than the individ-
ual miners of previous work. Moreover, I conducted a user study to
understand the usability and value of our tool for Bitcoin miners and
economic researchers.

Related to the analysis tasks in Section 6.4, I also reviewed some re-
lated visualization work on similar tasks, including rank comparison,
temporal text visualizations, and abstract flow visualizations.

6.5.1 Rank visualization

Tasks T1.1 and T1.2 require the visualization of mining pool rankings
over time. I considered several previous solutions: The Rank chart
stacks ranked objects in multiple columns (e.g., per year) and con-
nects the same items with a line, similar to parallel coordinates with
discrete rank steps [26, Fig. 63]. LineUp similarly ranks items in a
table-like structure and focuses on exposing the comparison of mul-
tiple attributes in columns connected by ribbons [53]. Rank charts
recently inspired Gap Charts that use ribbons to encode both a rank
and a quantitative difference between ranked items (y-axis) over time
(x-axis) [115]. For rank visualizations in large datasets, Xia et al. pro-
posed another table-like visualization to show changing ranks (y-axis)
of most viewed pages on Wikipedia. In each column (x-axis), they
added a time-series glyph to observe trends in a particular month
[173].

In contrast to these approaches, we wanted each column to repre-
sent a stacked bar chart to show the total value of each measure per
time step. More similar to our analysis tasks is RankExplorer, which
applies a stream chart variant in which quantities are stacked per
ranked item [142]. I decided to use a ribbon chart to encode mining
pools with stacked bars for each time point and ribbons connecting
the same items. This choice allowed me to show different quantitative
measures as bars and their changes in rank and quantity by ribbons.

6.5.2 Stock and flow visualization

For Task T3.1, we model miners’ migration data as a flow relationship
between mining pools with cross-pooling miners flowing between
mining pools. Common visualization types that can encode this kind
of data are Sankey and Chord Dependency diagrams.

Sankey diagrams [126, 137] display stock and flow data as nodes
and links. The stocks are represented as nodes while the flows from
one stock to another are shown as links. A node is usually encoded
as the rectangular bar where the height indicates the node value. A
link connects between nodes where the width of links encodes a flow
value. A famous example is Minard’s map showing the number of
French soldiers during Napoleon’s invasion of Russia in 1812 [124].
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It encodes the flow of men in both space and time. Telly’s Stock and
Flow Visualization [40] divides students into groups and tracks their
high school advancement. Rosvall and Bergstrom [129] use an Allu-
vial diagram to show the scientific network community changing over
time.

Chord dependency diagrams encode the inter-relationship among
stocks in a circular form. The arcs’ length indicates the node’s value,
while the ribbon’s size represents the flow’s value between two stocks.
Circos [85] adopts this representation to show the similarity between
genomic intervals. The work adds an outer circle in which detailed
information in various forms is encoded, such as bar charts, time se-
ries, or customized visualizations. Among Bitcoin empirical research,
Parino et al. [A33] use the Circos diagram to show the total amount of
Bitcoin values (flow) transfer between countries (stock). In our analy-
sis tool, I represent the flow of miners between pools (cross-pooling).
The stock equivalent for us is the size of the pool. I chose the chord de-
pendency diagram because it effectively shows the crossing amount
among many pools (as well as self-loops) with a high data-to-ink ra-
tio.

6.5.3 Text visualization

MiningVis includes a view to visualize news headlines over time in
relation to mining pool rankings. The Text Visualization Browser [86]
surveys the text visualization domain and provides a taxonomy based
on multiple aspects (e.g., analysis task, visualization task, data do-
main, visual encoding). Particularly relevant to our task, T1.5 works
on temporal text data. The stream graph, an extension of ThemeRiver
[62], is one method to encode evolving topics in large-scale docu-
ments. CiteRivers [63] is an example of past work that applied a
stream graph to show the citation popularity of multiple topics over
time as a stream chart. Word clouds are overlayed on the top of the
stream chart to show top keywords for each topic at each time. Cloud-
Lines [84] proposed different visual representation that shows the
intensity of separated topics (x-axis) as a dots stream (y-axis). The ar-
ticle also proposed a smoothing function to determine the dot size
based on text counts over time series. In contrast to this work, I
focused on visualizing individual news items rather than topics or
themes. As such, my work is more closely related to past work on
exploring documents over time.

TimeLineCurator [47] is a visual analytics system that shows a time-
line of event distributions extracted from text documents. The tool
provides coordinated views that allow users to browse and curate
events by editing or adding documents. BrandSediment [95] adopted
a visual sedimentation [67] metaphor to show brand perception (doc-
ument) distribution in each trait (topic) as a facet of beeswarm charts.
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Figure 37: The MiningVis tool consists of six coordinated views: (V1) the
time filter view, (V2) the mining distribution view, (V3) the min-
ing pool details view, (V4) the Bitcoin statistics view (toggle with
V3, see Figure 41), (V5) the Bitcoin news view, and (V6) the cross
pooling view.

I adopted the same concept in our Bitcoin news view because it al-
lows to encode data with two additional visual channels (hue, size)
per news item.

The Bitcoin news dataset contains a list of news headlines that also
have a time attribute. To display text documents over time, Thread
River [46] displays sequences of events in an individual thread of
a discussion forum on a compact timeline. The timeline consists of
posts as nodes and arcs showing a reply-to relationship. E-Comp
[166] includes a temporal view of restaurant reviews (document) as
a stack of papers (y-axis) over months (x-axis). For each stack, visual
elements (i.e., shape, color, and size) encode different aspects of the re-
view. The time layouts of those two previous works are on the x-axis,
which is similar to the MiningVis tool, except that I use a beeswarm
plot to increase the visibility of smaller items.

6.6 visualization design

Given the variety of information we wanted to make available for ex-
ploratory analysis, I designed MiningVis to include six coordinated
views; each showing multiple different metrics. Figure 37 presents
a screenshot of the tool. The display centers around a larger rank-
ing visualization that allows analysts to gain an overview of the Bit-
coin mining pool competition and then offers supporting information
about factors that may impact mining activities. The tool is publicly
available at http://miningvis.fr/.

http://miningvis.fr/
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6.6.1 V1: Time selection view

At the top of the tool, a time series chart serves as a historic overview
of mining statistics and a filter for the remaining views.

Visual Encoding: The time series shows a selected network statistic
measure for the entire history of Bitcoin mining. By default, the time-
line shows the mining pool concentration index as an indication to
which extent the mining pool distribution risks being dominated by
just a few pools. Analysts can select other Bitcoin statistics measures
(e.g., total reward, market price, mining difficulty) from a dropdown
menu and switch to a log scale. The time series highlights halving
days as critical events related to mining rewards. The halving day
lines reference critical days in Bitcoin when the mining reward is re-
duced by half, directly impacting miners’ reward function.

Interaction: Analysts can filter all remaining views (V2–V6) to a
specific time interval by brushing on the time axis or specifying a
range with the calendar inputs. The selection will then trigger the
other views to filter the information to the specified time interval.

Use: My economist collaborator used this view to see historic Bit-
coin statistics and look for time periods based on a specific event,
outlier, or trend in the selected Bitcoin mining or network statistics.

6.6.2 V2: Mining distribution view

The mining distribution view allows analysts to detect the dominat-
ing mining pool, the rise, and decline of mining pools, and to find
characteristics that possibly lead to changes in ranking. The view al-
lows analysts to detect the evolution of mining pools, especially the
dominated mining pool at the time, and the concentration of mining
power. These factors are critical and need to be monitored regularly
to ensure the integrity and security of the Bitcoin network.

Visual Encoding: I used the same temporal ribbon chart design
from Section 4.4.2. The ribbon chart allows analysts to see both the
changing rank and a quantitative metric related to each mining pool.
The time axis is filtered to the time period selected in V1. Analysts can
choose among multiple statistical measures and how to group and
color the pools on the input panel. For each stacked bar, mining pools
are sorted from the highest value at the top of the stack to the lowest
one at the bottom per month. The same mining pool is connected
across months with a ribbon to highlight its rank changing. The top-
10 mining pools for the selected time and measure are encoded in
distinct colors, while the remaining pools are colored in grey.

Figure 38 shows examples of different configurations of the ribbon
chart. Analysts can select the mining power measure, e.g., market
share, hash rate, total reward, and transaction fees. They can also
choose mining pool characteristics to display in different color hue
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Figure 38: The mining pool distribution view (V2) with different configu-
rations. (A) Measure: Transaction fees (USD), Group by Mining
pool, and Color by: Mining pool. (B) Measure: Hash rate (TH/s),
Group by: Payout scheme, and Color by: Payout scheme with la-
bel selection. (C) Measure: Electricity (GW), Group by: Location,
Color by: Location with brush selection.
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scales, i.e., the mining pool’s name, its payout scheme, and location.
Using the coloring mechanism, analysts can see patterns for the char-
acteristics of the top mining pool. Furthermore, analysts can group
those mining pools by the same characteristics to see if any factors cor-
relate with the mining growth and domination in the market. Within
each group, mining pools are sorted by the selected measure.

Interaction: Besides the measures, group-by, and color-by selectors,
I provide three ways to highlight mining pools or their characteristics:

1. Analysts can click on the left side labels, increasing the trans-
parency of the unselected pools and highlighting those that fall
into the selection (e.g., Figure 38 (B)). The selection also affects
and filters the mining pools displayed on the mining pool de-
tails view (V3).

2. Analysts can draw a brush on the ribbon chart to filter both
mining pools and highlight a specific time range (e.g., Figure 38

(C)). The highlighted timeframe is also represented in views V3–
V6.

3. Like in all other views, detail-on-demand is available on hover
via tooltips that show the mining pool name and the exact value
of the selected measure for this pool.

Use: My economist collaborator used this view primarily to study
the emergence and evolution of mining pools (T1.1) as intended. Pri-
marily, he aimed to detect which mining pool dominates the market
and how much mining power a pool has compared to other pools
over time (T1.3). After that, he investigated which characteristics of
mining pools might have led to mining power domination in the se-
lected time interval (T2.3).

Design Alternatives: In the early prototypes, I used a bubble chart
to show the mining power over time (Figure 19). The economist was
able to observe each mining pool’s mining power but found it difficult
to detect rank changes and the extent to which multiple top pools
dominated the market. I also considered using a gap chart design but
found it difficult to estimate the total hash rate of mining pools over
time. In the end, I opted for the ribbon chart design because it allows
analysts to examine the total mining power while also showing the
mining power and rank changing for each pool. The bar length is
a more accurate channel to estimate the value with bar height than
circle area [145]. Besides, the ribbon chart displays total mining power
in the same view, which requires an additional chart in the bubble
chart.
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Figure 39: The mining pool details view (V3) shows the details of each min-
ing pool as a dual-axis chart. The measure on the left y-axis and
the bar color are selected from V2: Measure: Market share (%) and
Color by: Location, respectively.

6.6.3 V3: Mining pool details view

The mining distribution view (V2) focused on the overall evolution
of mining pool measures and detecting the dominant mining pools.
However, the view makes it difficult to see and compare the develop-
ment of an individual pool. The mining pool details (V3) view dis-
plays the details for each mining pool in multiple small charts to ad-
dress this challenge. The view allows analysts to look at the evolution
of each mining pool in detail while also correlating it with additional
pool characteristics not present in V2.

Visual Encoding: I used a temporal bar chart to encode aggregated
(per month) mining pool measures (Figure 39 (B)). Each bar chart is
normalized to the maximum measure of the individual pool to help
see the mining power of small pools more clearly. The color of each
bar corresponds to the one in V2 to help cross-comparison between
these two views and detect changes in a single pool’s characteristics.

To address task T2.3, I added two additional visual encodings to the
bar chart: the pool fees kept by the pool (quantitative) and whether
the mining pool shares the transaction fee to its miners (nominal).
Due to the limited screen space, I chose a dual-axis encoding instead
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Figure 40: Design alternatives for the mining pool details view: (A) F2Pool—
The bar chart displays market share, and the line chart below
shows pool fees; (B) AntPool—The area chart displays market
share, and the heat map below encodes pool fees for each payout
scheme.

of an additional chart and showed the pool fee as a line chart (Fig-
ure 39 (C)). I used different line colors for reward schemes because a
mining pool can have more than one payout scheme at a time. This
dual-axis allows analysts to estimate a possible correlation between
pool measures and pool fees. The information about the share of the
transaction fee (binary) is encoded as the background color (Figure 39

(D)) to detect when a mining pool changed its policy.
Interaction: The charts in V3 are mostly controlled by selections

made in V2 as they are meant as accompanying detail. Analysts can
click the info icon for a text description of the pool’s characteris-
tics (Figure 39 (A)). Additional interactions are tooltips for detail-on-
demand.

Use: The economist looked at the individual mining pool and as-
sessed the correlation between mining power, payout fee, and share
of the transaction fee (T2.2). Then, he compared across pools in the
list to validate if a similar pattern holds for other pools (T2.4). He
also used this view to locate if pools with the lower fee attract more
miners and validate whether they obtained a higher market share.

Design Alternatives: I selected bar charts as the visual encoding
in V3 as it is closely related to V2 and added lines in the second axis
to encode pool fees. The dual-axis chart provides three pieces of data
in a single chart, which may be overwhelming at first glance. Dual-
axis encodings have been extensively critiqued and careful design has
been advised [42, 57, 69, 136]. The alternative design is an additional
line chart or heat map below each pool’s bar chart to encode pool
fees (). After some tests, I decided against it due to screen-space is-
sues. These additional charts took away to focus on the display of the
selected measure. In addition, my collaborator preferred the dual-axis
chart as he was familiar with this chart type from the economic litera-
ture. I opted for overlaying a line chart on the bar chart to emphasize
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Figure 41: The Bitcoin statistics view (V4) shows each Bitcoin statistics mea-
sure as the area chart.

two different data types and provide summary data in the text form.
Nevertheless, I acknowledge that this chart is relatively complex, but
analysts can directly correlate mining power and pool fee.

6.6.4 V4: Bitcoin statistics view

Apart from measures directly related to mining pools, broader Bit-
coin statistics can influence people’s behavior related to mining pools
and can help to explain competition. The economist tried to discover
factors that could explain the phenomena they observed in the Bit-
coin mining and then generalize those observations into the model.
I provide two views, V4 and V5, to help analysts find contextual in-
formation for observations made from V2 and V3: Bitcoin statistics
(T1.4) and Bitcoin-related news (T1.5).

Visual Encoding: The Bitcoin statistics view (Figure 41) is located
in the same position as V3, reachable via a toggle bar. I encoded each
of the 20 Bitcoin statistics measures as a gray temporal area chart, in-
cluding Bitcoin-internal statistics. These include the total number of
blocks mined, the total hash rate, the median confirmation time for
a block, total rewards paid out, or the total number of transaction
fees. In addition, I calculated statistics with external data such as fees
converted to USD according to the current market price or the trade
volume in USD. As such, the list of Bitcoin statistics provides informa-
tion about the status of the Bitcoin network. For example, the number
of transactions implies the demand of users; the amount of Bitcoins
in transactions means the supply of currency circulating in the mar-
ket; and the average waiting time indicates the network capacity to
verify transactions.
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Interaction: Analysts can search and select statistics measures with
the dropdown selection.

Use: The economist uses this view to search and browse statistics
measures and compare with the mining distribution view (V2) to find
the correlation between the development of mining activity and other
factors, such as block size, market price, energy consumption, etc.

Design Alternatives: I considered coloring the area chart instead
of using gray but opted against it to avoid confusing the view with
V2 and V3 that include an explicit color encoding. Representing the
data as line charts instead of area charts or bar charts would also be
possible without compromising the readability of the data. Again, I
opted for a slightly different chart type to make it visually obvious
which view was currently shown.

6.6.5 V5: Bitcoin news view

News and social media are good sources for additional information to
give context about historic mining behavior and its relation with other
factors, such as competing blockchains, new mining hardware, or a
surprise ban of Bitcoin from some governments. The Bitcoin news
view allows analysts to both get overviews of the news over time
and further browse news headlines that are potentially relevant to
Bitcoin mining activities. Individuals and groups of news headlines
might explain trends or patterns in the Bitcoin measures directly or
might themselves have influenced miners’ and mining pools’ behav-
ior. I used short-text topic modeling to structure and group the rel-
evant news in our large corpus of documents (D4) and designed a
beeswarm plot with search functionality. The dataset I collected in-
cluded >30,000 postings that cannot be displayed in one chart. There-
fore, the news is selected from its importance score and balanced by
the news frequency in each month.

Visual Encoding: I used a swarm plot to display each news item in
a compact fashion across a timeline. It trades off an accurate position
across the timeline for an overlap-free layout. Each circle represents
one news article, and its size corresponds to the calculated impor-
tance score. The larger the size, the more frequently the posting was
read or commented. Each news has a different color to indicate topic
membership.

The list of all news topics and their top-10 keywords is displayed
on the left panel. The numbers behind the topic label indicate the
number of news shown in the swam plot versus the total news on
that topic. The topics are sorted by the number of news displayed in
the swarm plot.

Interaction: An example use case for the news view is demon-
strated in Figure 42. Analysts can browse the news by hovering circles
to see tooltips with news headlines on the top-left of the chart. When
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News with high 
importance  score

News with low importance score

Topic name (#shown / #all)

keywords

A

B

C

Figure 42: Examples of the Bitcoin news view configurations. (A) Top 300

news over the time period. (B) Selected news from the “mining”
topic. (C) Search for news that contain the term “pool” in their
headline.

the analyst clicks on the circle, it will open a new tab to the news
source. Analysts can use the left panel to select news on the topic of
their interests.

On the top panel, the list of news can also be narrowed down by
keyword search. Analysts can use a slider to specify the number of
the news displaying in the chart. The panel also shows the number
of total news and the percentage of news that the chart currently
displays.

Use: The economist usually used the news view to search for news
headlines about specific mining pools (e.g., AntPool and F2Pool) and
specific terms indicating the external event (e.g., law, regulation, Bit-
coin ban). Then, he focused on the time of changes in market share
and looked for the plausible news that explains why the pools’ mar-
ket share was rising or declining.

Design Alternatives: The first design used a stream chart and heat
map to focus on news topic distribution over time (Figure 43). How-
ever, the economist wanted to browse individual news items to find
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Figure 43: Design alternatives for Bitcoin news view: (A) stream chart and
(B) heat map.

detailed information that would explain the mining distributions he
observed. I then considered using a simple news list sorted by im-
portance coupled with a keyword search. However, with this design,
analysts would not gain an overview of the news distribution over
time. In the end, I decided to use a beeswarm design because it uses
a compact layout to show the distribution of news while still encod-
ing topic membership and importance with the color and size of the
circle.

6.6.6 V6: Cross pooling view

Exploring miners’ migration between pools is crucial to understand-
ing why they gain or lose their market share over time. At a se-
lected time period, the economist wanted to investigate whether there
was any significant miners’ migration among pools (T3.1), and if so,
what factors might influence miners’ decision to switch (T3.2). Min-
ers’ flows are complicated to visualize because they involve several
processes: new, hop-in, cross-pooling, hop-out, and dropout miners
within and across the time frame. I designed the cross pooling view
to represent and summarize migration patterns. Compared to the
past work [172], I proposed cross-pooling as an additional measure
to track miners who received the mining reward from multiple min-
ing pools. This measure allows the economist to understand miners’
strategies to maximize their profit at the focused time interval.
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The circleʼs arc = the total reward 
that F2Pool paid to miners.

Miners who join only with F2Pool. 

Chord Diagram
(inner circle)

Bar Charts
(outer circle)

1st row: Miners join the pool / 
hop-in to the pool.

2nd row: Miners exit the mining / 
hop-out to other pools.

3rd row: Miners cross-pooling 
in the inner chord diagram.

Miners who join in both F2Pool 
and AntPool.

Figure 44: The miners’ migration flows are represented as a chord diagram
to visualize the amount of cross-pool miners between pools. For
each pool, the bar chart displays the percentage of new, pool hop-
ping, cross pooling, and dropout miners.

Visual Encoding: The cross-pooling miners during a selected time
interval can be considered as a flow of miners between mining pools.
Figure 44 shows the visual encoding of the view, which consists of
two parts: chord diagram and bar chart. I used a chord diagram to
display a metric related to miners crossing between pools; the total
amount of miners’ rewards (default) or the total number of miner
addresses. The diagram shows the metric encoded as the outer arcs’
length. The flow between mining pools represents the total amount
of the metric for those miners who cross-pooled.

Around the outer ring of the chord diagram, the average percent-
ages of the miner’s migration statistics per month are represented as
stacked bar charts (i.e., new, exit, hopping in, hopping out, cross pool-
ing). For each pool, three rows of the bar chart represent the percent-
ages of miners incoming (new and hopping in), outgoing (dropout
and hopping out), and cross-pooling with the mining pool.

Interaction: Analysts can hover over the flow or stacked bars to see
the exact value. They can also change the metric from the total reward
to the number of miner addresses. The total reward is a weighted
average that considers the impact of large players in the pool. The
measure is more robust than just the number of miners.

Use: The view allows the economist to look up cross-pooling flows
directly in the chord diagram and overall miners’ flow in the bar chart.
He used the view to detect the pairs of mining pools with high cross-
pooling miners and then focused on those pools in other views (T3.1).
He also selected the color-by dropdown menu in V2 to directly check
if any pool characteristics affect miners’ flow (T3.2).
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Design Alternatives: Cross-pooling is represented as a flow to high-
light miners that receive a reward from multiple pools. Previous work
had used glyph charts [172] to show numbers over time but does not
highlight the association between pools. Due to the fluctuations of
miner counts in the data [154], I chose to show aggregated data to
reduce outliers. A heatmap matrix is an alternative to display the
percentage of cross-pooling miners like in Figure 32. Still, the color
encoding turned out to be problematic due to the different largely
varying scales of mining pools. In contrast, the chord diagram en-
codes the scale of mining pools as the arcs that allow analysts to see
how large the mining pool is and detect significant miners’ flow be-
tween pools.

6.7 user study

MiningVis was designed with an economist and focused on analy-
sis questions about the Bitcoin mining economy. To evaluate whether
the tool would also apply to other user groups, we identified Bitcoin
miners as other potential users with economic interests in this ac-
tivity. Therefore, we conducted a multi-week online user study with
eight Bitcoin miners to evaluate the usability and relevance of the tool.
The research ethics board of the Université Paris-Saclay approved this
study, CER-Paris-Saclay-2020-062.

The study consisted of four phases. First, we recruited Bitcoin min-
ers from an online questionnaire posting on Bitcoin forums. Then,
we conducted a 1-hour introductory session to introduce the tool
and the first interview to get usability feedback. After that, partici-
pants were asked to use the tool for around two weeks and report
findings on the micro-entries form. Finally, we asked them to fill the
questionnaires to evaluate the tool and conducted a follow-up inter-
view on the practical usages of the tool. The background and sur-
vey responses of all participants are published in the OSF repository
https://osf.io/ud2c9/.

6.7.1 Participant recruitment

We asked potential participants to sign up for our user study in
the popular Bitcointalk.org1 forum as well as Reddit channels ded-
icated to Bitcoin (r/Bitcoin and r/BitcoinMining)2. As compensation,
we offered participants free access to our tool. Prospective partic-
ipants filled a consent form, contact e-mail, country of residence,
and short questions about their Bitcoin and mining experience. We
needed country information to check the legality of Bitcoin mining

1 https://bitcointalk.org/index.php?topic=5311277.0

2 https://www.reddit.com/r/BitcoinMining/comments/l1zmgn/call_for_

participation_in_a_user_study_of_bitcoin/

https://osf.io/ud2c9/
https://bitcointalk.org/index.php?topic=5311277.0
https://www.reddit.com/r/BitcoinMining/comments/l1zmgn/call_for_participation_in_a_user_study_of_bitcoin/
https://www.reddit.com/r/BitcoinMining/comments/l1zmgn/call_for_participation_in_a_user_study_of_bitcoin/
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Figure 45: Participant background about Bitcoin and mining activity.

in their country. We received 11 complete responses and were able to
recruit eight participants for the first interview.

All participants were male and had experience with Bitcoin mining.
Six mined Bitcoin as part of a mining pool, one mined Bitcoin alone,
and one worked with Bitcoin as part of his job. Their age ranges
are 25–34 years old (3 participants), 35–44 (3), 18–24 (1), and 45–54

(1). Their experiences with Bitcoin-related activities is reported in Fig-
ure 45. Participants had 4.38 years of experience on average in Bitcoin
mining before the user study (min: 1, max: 8, median: 4.5, sd: 2). Three
participants read Bitcoin news several times a week, followed by ev-
ery day (2), several times a month (2), and once a week (1). I will refer
to each participant with a unique ID (i.e., P1–P8).

During the interview, I also asked participants to freely express
their Bitcoin mining experience and motivation to use our tool. P4,
P6, and P7 owned mining hardware and mined Bitcoin as their hobby.
P1 had experience working with a Chinese mining company. P5 was
developing a small mining farm and looked for the optimal mining
pool to join. Participants’ motivation to participate in our user study
was curiosity about our tool. P1, P3, and P7 wrote that they were
interested in exploring the empirical data on Bitcoin mining pools.
P2 expressed an interest in understanding the shifting of computa-
tional power and miners participating in mining pools. P8 worked on
research related to blockchains.
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Figure 46: Participant experience on data visualization tools.

6.7.1.1 Introductory Session

The study began with a 1-hour online interview with each partici-
pant. Before its start, we asked participants to fill a consent form and
answer questions about their data visualization experience. All partic-
ipants reported that they were familiar and comfortable with reading
data visualizations, as exhibited in Figure 46.

In the first 15 minutes, we asked participants about their interests in
Bitcoin mining and any specific analysis questions they may already
have. Then, we gave a 15-minute presentation about the features of
MiningVis. Next, we asked participants to think aloud while explor-
ing the MiningVis tool for around 30 minutes with a set of short ex-
ploratory tasks we had prepared. The tasks aimed to get participants
familiar with various aspects of the tool and to see how participants
would intuitively go about answering them with MiningVis.

task 1 Which mining pool received the most BTC in August 2019?

task 2 Can you explain why GHash.IO dominated the Bitcoin min-
ing activity and then stopped its operation?

task 3 Can you identify when top mining pools nearly dominated
the market and posed a risk to the 51% attack?

task 4 Can you find a historical anomaly in the transaction fees? If
yes, can you explain what else happened in the same period?

At the end of the session, we asked participants for their first im-
pression about the tool’s data displays and usability and explained
the subsequent steps of the user study.
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6.7.1.2 Usage patterns from the warm-up tasks

During the think-aloud session in the first interview, we observed
participants performing the four warm-up tasks. When participants
got stuck, we explained views they had not considered yet to increase
familiarity with the tool. I tracked the sequence of views participants
interacted with for each task, summarized the patterns to see which
ones they considered important, and verified our visualization design
choices. Table 8 reports these exploration patterns for every partici-
pant.

task 1 All 8 participants quickly used V1 to zoom close to the
month and then select the “Total Reward (BTC)” measure in
V2.

task 2 7 participants detected the GHash.IO pool from V2 quickly,
then selected the pool in the legend, and looked at the market
share domination and decline. After that, 4 of them filtered the
time to see patterns more clearly in V1. Finally, 7 participants
searched for the news with “GHash.IO” that could explain the
decline.

task 3 7 participants searched for pools with outstanding market
shares in V2 and looked for detail in V3 later and 1 participant
looked at V3 directly. 6 of them were satisfied with naming the
pools and stopped looking for mining pool details. Exception-
ally, 1 participant searched for the news about “51% attack.”

task 4 All 8 participants changed the measure to “Transaction Fee”
and spotted the anomaly in V2. Then, 4 of them proceeded to
use V1 to zoom-in on the time with extreme transaction fees.
Another 4 participants browsed the news with the “Transaction
Fee” keyword before finding the Bitcoin statistics in V4 that
correlated with this event.

Participants reported that they were comfortable and easily inter-
acted with the three central MiningVis views: V1 (the overall time-
line), V2 (the ranking view), as well as V5 (the news view). The most
frequently used view was V2, which aligns with our expectations. V5

was also used frequently to look for explanations in the news. Par-
ticipants often overlooked the detail provided by V3 and V4 and I
had to remind them about those views and visual encoding details
occasionally. Participants never used V6 to investigate miners’ mobil-
ity, even though it might have provided information for Task 2. Pool
hopping was not a familiar metric related to participants’ work or Bit-
coin usage, and participants reported that the metric is non-intuitive
to interpret.
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Task 1: Which mining pool received the most BTC in August 2019?
V1 (7) V2 (7) 

Measure: Total 
Reward

Measure: Market 
Share

V2 (1) 
Measure: Total 
Reward

Task 2: Can you explain why GHash.IO dominated the Bitcoin mining activity and then stop its operation?
V2 (6)
Selection: GHash.IO

V1 (3) V2 (2)
Selection: Top 3 
pools

V3 (1) V5 (1)
Search: GHash.IO

Hilight Brush V5 (1)
Search: GHash.IO

V3 (1)

V5 (1)
Search: GHash.IO

V2 (1)
Group/Color by:
Location

V2 (1)
Group/Color by:
Payout Scheme

V3 (1) V2 (1)
Selection: GHash.IO 
& F2Pool

V5 (1)
Search: GHash.IO

V5 (2)
Search: GHash.IO

Selection: GHash.IO 
& F2Pool

V3 (1)

V1 (1) V2 (1)
Selection: GHash.IO
Measure: Tx fee

V3 (1)

Task 3: Can you identify when top mining pools nearly dominate the market and pose a risk to 51% attack?
V2 (6)
Measure: Market 
Share

V3 (3)

V2 (1)
Group/Color by:
Location

V3 (1)

V5 (1)
Search: 51% attack

V2 (1) V3 (1)

Select: DeepBit V1 (1)
Zoom-in

V2(1)
Measure: Market 
Share

V1(1)
Reset

V2 (1) V3 (1)

V3 (1)

Task 4: Can you find a historical anomaly in the transaction fees? If yes, can you explain what else happened in the 
same period?
V2 (6)
Measure: Tx fee

V1 (3) V4 (2)

V1 (1) V2 (1) V4 (1)

V5 (1) V4 (1)

V4 (2)

V2 (1)
Highlight Brush

V5 (1) V1 (1) V3 (1) V5 (1) V4 (1)

V5 (1)
Search: Tx fee

V2 (1)
Measure: Tx fee

V1 (1) V4 (1)

Table 8: The sequence of views that participants used in the MiningVis tool
to explore the four warm-up tasks.
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6.7.2 Usability Improvements

After the warm-up task, we interviewed participants to get their first
impression and feedback to improve the usability of the tool. Overall,
they reported being slightly overwhelmed by the amount of informa-
tion in the tool. After the first two tasks, they became more familiar
with the tool and adopted their strategy to solve the following two
tasks. Nonetheless, participants reported some issues that helped me
improve the tool’s usability.

• Several participants expected the highlight brush in V2 to zoom
in on a specific time interval instead of only highlighting min-
ing pools and time intervals. I improved the tool by adding a
highlight brush on V1 and a “Focus” button to allow users to
focus on a highlighted time interval.

• The mining pool color legend changed every time participants
changed the time interval because it assigned colors to the top-
10 pools of the selected time interval. A future improvement
would be adding a feature to allow users to assign a persistent
color to specific mining pools they want to focus on. However,
this feature was not my priority because only 4–5 top mining
pools dominate the market and impact the mining economy.

• Participants wanted to specify additional ways to sort the min-
ing pools in V3. I added a sorting dropdown that allows the user
to sort mining pools according to the total, average, minimum,
or maximum of the selected pool measurement (e.g., market
share, hash rate, and total rewards).

• Participants also wanted to look at their own mining pool’s
performance, even though a small pool never significantly im-
pacted the market. Here, the search function in the web browser
was sufficient to navigate to a specified mining pool in V3.

• There are a lot of Bitcoin statistics measures to compare with
the evolution of mining pools. I added a search panel in V4 to
allow users to filter specific Bitcoin measures.

6.7.3 Free-Exploration Phase

At the end of the first interview session, we gave participants free ac-
cess (login and password) to the tool and asked them to use it at their
own pace for two weeks. To learn which questions our participants
were trying to answer, we encouraged them to report any finding or
insight from the tool in the short form inspired by the micro-entries
[21] methodology (Figure 47). The Micro-entries method intends to
capture insights from users while they are using the tool. In this study,
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Figure 47: The micro-entries form to report insight-based findings in the
free-exploration study.

we tried to minimize the time of participants to report each finding.
The form includes three short questions about a) any interesting pat-
tern they found using the tools, b) the views in the tool they used,
and c) the short explanation about what they observed. we sent them
an e-mail notification to remind them to submit at least five entries in
the middle of this phase.

6.7.3.1 Insights and findings from micro-entries

We received 12 micro-entries from four participants. We coded each
entry according to analysis factors from Section 6.3. 6 entries referred
to AF1 (evolution of pools), 4 to AF2 (pool payments), and 1 to AF3

(miner decisions). Participants related V2 (6 entries) to their entries,
followed by V1 (3), V5 (3), V3 (2), and V6 (1). Among 12 micro-entires,
we found that some entries are not recording insights as expected:
three were feature suggestions, and an exceptional one was a general
tool review.

Overall, the 8 insight-based micro-entries from three participants
focused on higher-level mining activity evolution (i.e., mining pool
domination and Bitcoin statistics) rather than on a specific mining
pool (i.e., via payout schemes, pool fees, and cross pooling). In com-
parison, our economist delved deeper into the data and used the tool
to detect pools that dominated the market, then looked at the pool
characteristics and noticed a high cross pooling amount between the
pools. Three entries mentioned periods in which mining activity had
high transaction fees, a hash rate decline, or halving days. For exam-
ple, one participant found high volatility in the transaction fee during
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the 3rd halving period in May 2020. The transaction fee was tripled
in the halving month and then decreased in the next month before it
turned to increase again. Surprisingly, he did not observe the same
pattern during the 2nd halving period. Four other entries looked at
the shift in pool characteristics (i.e., location and payout scheme) that
dominated the mining ecosystem over time. One entry observed that
BTC.com became the top pool in Sep. 2020. He then looked at the min-
ing pool details and discovered that BTC.com’s pool fee is 4%, which
is higher than other pools. This finding is counter-intuitive to the as-
sumption that a lower pool fee should lead to a higher market share.
Exceptionally, one entry explored the news related to “exchange” ser-
vices and found interesting information on how bitcoins are used to
buy other cryptocurrencies.

6.7.4 Final Interview and Survey

After two weeks, we contacted all eight participants to schedule a
follow-up interview and quantitative questionnaires. Five participants
responding to two questionnaires: System Usability Scale (SUS) [27],
and Value-driven Visualization Evaluation (ICE-T) [162]. One of them
was not available for the interview but sent his responses. The other
three participants did not respond to my e-mails at all after the first
interview. The SUS questionnaire was intended to evaluate the gen-
eral usability of the tool, including effectiveness, efficiency, and eval-
uation. We used a slightly modified version of the ICE-T questionnaire
to assess the visualization tool on the four perspectives: time, insight,
essence, and confidence.

Four participants agreed to be interviewed. The session took around
one hour for each participant. We asked participants open-ended
questions about their experience using the tool, what they found the
most considerable value, and what variables were missing.

6.7.4.1 Results

Participants reported that they logged in 5.2 times on average (sd:
4.38, median: 3) within the two weeks. All but one participant men-
tioned spending only a limited amount of time with the tool during
the free-exploration phase and therefore did not make deep insights.
Next, I reported the quantitative results from SUS and ICE-T question-
naires and related them to follow-up responses from the interviewees.

System Usability Scale: After the two-week free exploration, we asked
participants to fill the SUS survey. The responses showed an average
score of 73.5/100 (sd: 13.3, median: 72.5), which is an above-average
(68) usability score [133]. However, the score still shows room for
improvement. The average score for each question is reported in Fig-
ure 48. No individual question scores were below average (on a nega-
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Figure 48: The average score from the System Usability Survey with the 95%
bootstrap confidence interval.

tive to positive response scale). The highest scores were given for con-
fidence of use and learnability. The lowest (but still positive) scores
were given for ease of use. From feedback on the final interview, the
unavailability of real-time mining data kept users from considering
extended future use of the tool. One participant from the first inter-
view even declined to participate in the follow-up due to a lack of
real-time data.

Value of the Visualization: We evaluated the value of the imple-
mented visualizations with an adaptation of the ICE-T questionnaire
[162]. Our modified questionnaire is shown in Table 9 compared to
the original version. We changed some wordings to be more specific
on the mining domain and removed three heuristics that are vague
to measure. We used a scale of five to score the heuristics (from 1–
Strongly Disagree to 5–Strongly Agree) and calculated the average
score for each value component through the hierarchy from heuris-
tics to guidelines and then from guidelines to components. Table 9

reports the average score and standard deviation for each heuristics
while Figure 49 displays the average score with 95% confidence inter-
val for each visualization value guideline.

The tool was rated high on its ability to provide insights (average:
4.30, sd: 0.36) on Bitcoin mining pools and essence (4.05, sd: 0.43) to
see overall mining pool evolution. In the interview, participants par-
ticularly mentioned the good analytic structure of the tool and the
diversity of available Bitcoin mining indicators. One participant said
that the tool “helps understand well the unfolding of the competition be-
tween mining pools and can go from a broad overview of the historical un-
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Origial Heuristics Our Adapted Version Average SD

Insight 4.30 0.36

The visualization facilitates answering questions about the data. 3.90 0.66

The visualization exposes individual data cases and 
their attributes.

Not included

The visualization facilitates perceiving relationships 
in the data like patterns & distributions of the 
variables.

The visualization facilitates perceiving relationships 
like patterns & distributions of the variables related to 
mining pools.

4.40 0.49

The visualization promotes exploring relationships 
between individual data cases as well as different 
groupings of data cases.

The visualization helpes to compare individual 
mining pools as well as different groups of pools

3.40 1.02

The visualization provides a new or better understanding of the data. 4.40 0.20

The visualization helps generate data-driven 
questions.

The visualization helps generate data-driven 
questions.

4.20 0.40

The visualization helps identify unusual or 
unexpected, yet valid, data characteristics or values.

The visualization helps identify unusual or 
unexpected, yet valid, data characteristics or values.

4.60 0.49

The visualization provides opportunities for serendipitous discoveries. 4.60 0.37

The visualization provides useful interactive 
capabilities to help investigate the data in multiple 
ways.

The visualization provides useful interactive 
capabilities to help investigate the data in multiple 
ways.

4.60 0.49

The visualization shows multiple perspectives about 
the data.

The visualization shows multiple perspectives about 
the data.

4.60 0.49

The visualization uses an effective representation of 
the data that shows related and partially related data 
cases.

Not included

Time 3.70 0.56

The visualization affords rapid parallel comprehension for efficient browsing. 3.70 0.51

The visualization provides a meaningful spatial 
organization of the data.

The visualization uses a meaningful layout of the 
data on the screen.

3.60 0.49

The visualization shows key characteristics of the 
data at a glance.

The visualization shows key characteristics of the 
data at a glance.

3.80 0.75

The visualization provides mechanisms for quickly seeking specific information. 3.70 0.87

The interface supports using different attributes of 
the data to reorganize the visualization's 
appearance.

Not included

The visualization supports smooth transitions 
between different levels of detail in viewing the data.

The visualization supports smooth transitions 
between different levels of detail in viewing the data.

3.40 1.02

The visualization avoids complex commands and 
textual queries by providing direct interaction with the 
data representation.

The visualization avoids complex commands and 
textual queries by providing direct interaction with the 
data representation.

4.00 1.10

Essence 4.05 0.43

The visualization provides a big picture perspective of the data. 4.20 0.40

The visualization provides a comprehensive and 
accessible overview of the data.

The visualization provides a comprehensive and 
accessible overview of the data.

4.20 0.40

The visualization presents the data by providing a 
meaningful visual schema.

The visualization presents the data by providing a 
meaningful visual schema.

4.20 0.40

The visualization provides an understanding of the data beyond individual data cases. 3.90 0.58

The visualization facilitates generalizations and 
extrapolations of patterns and conclusions.

The visualization facilitates generalizations and 
extrapolations of patterns and conclusions.

4.00 0.63

The visualization helps understand how variables 
relate in order to accomplish different analytic tasks.

The visualization helps understand how different 
mining pool metrics relate in order to accomplish 
different analytic tasks.

3.80 0.75

Confidence 3.73 0.54

The visualization helps avoid making incorrect inferences. 4.20 0.51

The visualization uses meaningful and accurate
visual encodings to represent the data.

The visualization uses meaningful visual encodings 
to represent the data.

4.00 0.63

The visualization avoids using misleading 
representations.

The visualization avoids using misleading 
representations.

4.40 0.49

The visualization facilitates learning more broadly about the domain of the data. 4.20 0.75

The visualization promotes understanding data 
domain characteristics beyond the individual data 
cases and attributes.

The visualization promotes understanding data 
domain characteristics beyond the individual data 
cases and attributes.

4.20 0.75

The visualization helps understand data quality. 2.80 0.75

If there were data issues like unexpected, duplicate, 
missing, or invalid data, the visualization would 
highlight those issues.

If there were data issues like unexpected, duplicate, 
missing, or invalid data, the visualization would 
highlight those issues.

2.80 0.75

Table 9: Our adapted version of ICE-T questionnaire compared to the orig-
inal version. We reported the average and standard deviation for
each heuristic.
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Figure 49: The average score from the ICE-T questionnaire with the 95%
bootstrap confidence interval.

folding to a deep zoom into a very specific data point”. One participant
further said that he did not find any other tools that give complete
data about Bitcoin mining.

Participants also gave a high score for confidence (3.73, sd: 0.54), ex-
cept for “the visualization helps to understand data quality” (2.80,
sd: 0.75). The result reflects that the tool does not specifically re-
veal the quality of the datasets, which is correct because our tool
focuses on data exploration tasks rather than assessing data qual-
ity. However, our economist collaborator used the tool to cross-check
if the pool characteristics information aligned with the Bitcoin min-
ing pool statistics. Time-related heuristics were scored the lowest (but
still above average) (3.70, sd: 0.56). In the interview, participants com-
mented on latency issues when the tool processed the entire Bitcoin
history data. This probably explained why they gave a relatively low
score on “the visualization supports smooth transitions between dif-
ferent levels of detail in viewing the data” (3.40, sd: 1.02). Hence,
the time-related heuristics can be improved by refactoring the source
code on both the front-end and back-end to optimize the data re-
trieval performance.

6.8 discussion

The outcomes from the design iterations with the economist and the
user study with Bitcoin miners highlight the tool’s usefulness to an-
alyze the Bitcoin mining economy while also pointing out future im-
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provements from the practitioners’ perspectives. The result from the
user study also raised some discussion on the user study methodol-
ogy we applied in this work.

6.8.1 Value of the visualization tool

Throughout the design iterations of the MiningVis tool, we used vi-
sual analytics approaches to help my economist collaborator under-
stand the evolution of mining pools and the Bitcoin mining economy
as a whole. My economist collaborator and I were able to make dis-
coveries reported in two analysis articles [153, 154] based on the visu-
alization prototypes. The economists used the tool to identify time
periods to investigate pool hopping behavior, compared the char-
acteristics between pools, and discovered contextual information to
explain the behavior of actors in the activity, including individual
miners, mining pools, and the Bitcoin blockchain. Still today, our
economist collaborator actively uses the tool to develop a miner’s de-
cision model. From this past work, we found that mining activity con-
stantly evolves and is volatile relative to multiple factors. Therefore,
the tool will still benefit both analysts and practitioners to monitor
and analyze the behavior of mining pools in the long term.

In the user study, participants complimented that the tool provided
complete information on Bitcoin mining. Still, we found that the value
of our tool was a little less obvious for them. Participants, who were
all Bitcoin miners, can detect interesting time periods and explore the
changes in mining pool domination. However, they did not have spe-
cific research questions like the economist and did not use all the fea-
tures presented in the tool. In particular, participants rarely used the
cross-pooling view (V2) because it is unfamiliar to them or unrelated
to their work. They wanted to decide on a pool to join. Therefore,
they demanded real-time data focusing on recent information rather
than the long-term overview of the mining activity we provided. In
the follow-up interviews, four participants suggested that the tool
potentially benefits researchers and mining companies to analyze his-
torical trends of Bitcoin mining. According to the user study result,
We concluded that the current version of the MiningVis tool is most
useful for modeling and long-term decision-making from a historical
perspective.

6.8.2 Future improvements

The overall feedback on usability and visualization design was pos-
itive and confirmed our visualization design choices. However, we
identified some possible improvements of the tool from the feedback
of participants in the user study.
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Integration with real-time data: Many participants demanded real-
time data to monitor the market share of the mining pool and decide
on which mining pool to choose or move to. To do so, real-time up-
dates of Bitcoin transaction data require attributing a mining pool to
each new block. The calculation of cross-pooling poses a bottleneck
as we need to track transaction flows to identify individual miners.
For future work, we plan to update the Bitcoin transaction data in
real-time and integrate a script to crawl external data. Pool charac-
teristics are collected and cleaned by hand but could be extracted
automatically from the Bitcoin Wiki [17] and Bitcoin news APIs with
natural language processing techniques. Moreover, the calculation of
cross-pooling poses a bottleneck as the tool needs to track transac-
tion flows to identify individual miners. Because participants did not
focus on the cross-pooling data, a simplified version of the tool with-
out the cross pooling view could be more easily deployed to present
real-time data.

Generalization to other cryptocurrencies: While the MiningVis tool
is focused on Bitcoin, other cryptocurrencies implement the same
proof-of-work (PoW) mining protocol, such as Bitcoin, Ethereum, Mon-
ero, and Dash. Mining pools also emerged in those cryptocurrencies.
For example, miners joining BTC.com mining pool can also mine
Ethereum, Bitcoin Cash, Litecoin, or Monero. Those cryptocurrencies
also require miners to solve a computationally-expensive puzzle and
provide financial rewards as an incentive to mine. Therefore, the tool
can be easily adapted to analyze the mining patterns of those cryp-
tocurrencies. The future tool would be interesting to study miners’
behaviors and assess the risk of mining pools across cryptocurren-
cies.

6.8.3 Reflections on the micro-entries

In the user study, we applied the micro-entry methodology to record
the insight when participants discovered any findings from the tool.
We assumed that the lightweight format to collect even simple “find-
ings” using this methodology would encourage participants to report
more. However, we were disappointed by the low response rate and
quality of the micro-entries from participants.

In the follow-up interview, we specifically asked participants about
the micro-entries method and what led them to submit only a few or
no findings. Participants reported that they neither had the time nor
specific questions they wanted to investigate in depth. They did not
add entries even about data they were already familiar with through
their daily activities with Bitcoin. This evidence shows challenges to
conducting a micro-entries study in a free exploration phase and con-
vincing Bitcoin miners to spend more time exploring the tool and
coming up with more in-depth findings. Besides, some participants



124 miningvis : visual analytics of the bitcoin mining economy

used the form to provide usability feedback on the tool rather than
report findings. An additional feedback form should solve this prob-
lem to allow participants to report any bugs or feedback on the user
interface.

We found that the interest of miners was in monitoring the recent
activities in mining but not an in-depth analysis of mining pools on
the historical data as my economist did. In the first interview, par-
ticipants were intimately familiar with the transaction fee spike we
asked about in Task 4. However, they were not spending more time
looking for relevant information nor investigating familiar phenom-
ena such as this one in-depth. If participants did not have their own
questions, it would have been good to give specific analysis tasks and
ask them to report answers to these tasks as in micro-entries. For ex-
ample, asking participants to make one report each about pool fees,
pool hopping, or rising and declining pools would have likely helped
increase the number of responses—but given less useful information
about their personal interests.

6.9 conclusion

In this chapter, I proposed a visual analytics tool called MiningVis to
understand the Bitcoin mining economy. Mining is a critical activity
in cryptocurrencies that involves multiple longitudinal factors, both
internal and external to the Bitcoin ecosystem. The tool allows ana-
lysts to relate multiple measures from complementary datasets in a
multi-coordinated view. During the design iterations, the tool helped
my economist collaborator discover new findings and he currently
uses it to develop an economic model. We conducted a user study
with Bitcoin miners to study both the usability and insights obtained
from the tool. The user study confirmed the design of our main views
but we also learned that pool hopping was less attractive to general
miners than our collaborator. Participants rated the tool highly for
usability and visualization value, and we were able to make improve-
ments based on participants’ detailed feedback. For the first time, we
used the micro-entries methodology and reported ideas on how to
improve its utility for studying a deployed tool. In the end, we dis-
cuss the potential of applying the tool to analyze mining patterns in
other related cryptocurrencies.



7
C O N C L U S I O N

The Bitcoin blockchain provides a unique big dataset for the study
of anonymous financial transactions in a decentralized network. Bit-
coin consists of multiple components that can be studied in various
aspects as categorized in the task domains of our systematic review
in Chapter 3. The main challenge is that the activities related to Bit-
coin, or blockchain in general, are diverse and organized not by cen-
tralized control but from the participants in the network (called self-
organization). Bitcoin can be considered as a complex system because
there are heterogeneous and autonomous entities in complex inter-
action [116]. On the contrary, Dos Santos argued that it should be
viewed as an algorithmically complicated system unlikely to enter a
chaotic regime [33]. Nonetheless, the Bitcoin economy is an exciting
research field for the study of interaction between economic agents
in a decentralized system governed by autonomous mechanisms.

Due to the complexity of the data, most of the existing works pro-
vide analyses on aggregated information of blockchain data. Most
current tools show basic information visualizations that allows peo-
ple to see aggregated information or granular transaction details. In
this thesis, I applied a Visual Analytics (VA) approaches to to explore
and monitor diverse activities in blockchain data with human-in-the-
loop data analytics. The overarching goal of my thesis is to explore
collective phenomena of the Bitcoin blockchain from collective mac-
robehavior analyses and allow analysts to drill down to micromotives
behaviors of a diverse group of actors in the blockchain network [135].

This chapter summarizes the work of my thesis and my contribu-
tions to both blockchain and visual analytics research. I also propose
some perspective toward future work in data-driven blockchain anal-
ysis and visualization.

7.1 summary and contributions of the thesis

In this section, I provide a short summary and describe the main con-
tributions of my thesis. The contributions of my work are highlighted
in italics.

The Bitcoin blockchain has a complicated mechanism to validate
and store diverse transaction activities. Past research focused on theo-
retical analysis, analyzing transaction graphs, and applying machine
learning to classify entity types or malicious transactions Chapter 2.
To assess the current state of blockchain visualization and how they
are used to understand activities in the blockchain, I conducted a sys-
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tematic review to understand the state-of-the-art in blockchain data visual-
ization (Chapter 3). I proposed a classification scheme to characterize
tools I found. In addition, I assessed open challenges and research
opportunities. I found that visualization tools dedicated to advanced
and domain-focused questions are rare but will be helpful for experts
and analysts to understand a particular activity in the Bitcoin block-
chain in depth.

In the remainder of the thesis, I focused on Bitcoin mining which
is a critical mechanism for the validation of transaction in the decen-
tralized network. It also has implications on economic theory as min-
ers react to reward incentives to continue perform their tasks. Mining
pools emerged as organizations to ensure regular income among min-
ers. Using a VA approach, I conducted a two-year design study with my
economist collaborator to discover research questions and develop vi-
sualization prototypes to address questions regarding the emergence
and evolution of Bitcoin mining pools.

In the first design iteration, I extracted multiple data sources related to
the development of market shares and characteristics of mining pools (i.e.,
location, payout scheme, and pool fees) as explained in Chapter 4.
Then, I created interactive visualization prototypes in Jupyter Notebooks
that allowed my economist collaborator to analyze the evolution of
mining pools regarding external factors from pool characteristics and
Bitcoin network statistics. Based on these visualization prototypes,
we reported a first exploratory analysis on the evolution of mining pools
over the entire Bitcoin history. We discovered that early mining pools
proposed various payout schemes before converging to PPS and FPPS

because they pay regular income to miners. The primary location of
mining pools shows that Chinese pools became global pools around
September 2017 as the Chinese government regulated cryptocurrency
trading.

After that, my economist collaborator and I further investigated the
migration of miners among mining pools in the second design itera-
tion described in Chapter 5. I developed a methodology to extract reward
payout flows from coinbase transactions to individual miners. Then, I de-
fined three main payout flow measures: new and dropout, hopping in
and out, and cross-pooling to understand miners’ mobility patterns. I
showed that the method could extract various mining pools with dif-
ferent payout flow patterns. Using visualization prototypes, we were
able to report evidence about the motivation of miners to join, leave, or move
in mining pools. We found that miners move to the pool that provides
lower transaction fees and more regular income to miners. We also
detected that miners use cross-pooling to diversify their risk between
PPS (risk-free) and PPLNS (risky) reward schemes.

During two design iterations, we discovered that mining pools com-
petitions were evolving and needed to be constantly monitored over a
long period of time. Moreover, Bitcoin market price and halving days



7.2 reflections , lessons learned, and limitations 127

in the future will impact the decision of miners to continue mining,
and therefore the sustainability of this activity. Due to the demand
to monitor this activity constantly, I developed a visual analytics tool
called MiningVis that allows analysts to relate multiple factors related to
mining pools and miners’ behaviors. The VA approach visualizes detailed
information and allows analysts to detect trends, outliers, or data het-
erogeneity from visualization views that cannot be detected directly
from summary statistics. The details and visualization designs of the
tool are described in Chapter 6. My economist collaborator uses the
tool to derive interesting findings and develop a model to explain the
mining economy. We also conducted an online user study with eight
Bitcoin miners and found that they were more interested in real time
information than long-term historical data. Nonetheless, the result
from our user study supports our design choices for the tool. The
tool can also be extended to other cryptocurrencies with the same
proof-of-work protocol.

7.2 reflections , lessons learned, and limitations

In this thesis, I closely collaborated with an economist to discover
research questions and developed a visualization tool to analyze the
mining pool ecosystem. We started with rough research questions
and continuously collected and analyzed data for the past two years
while refining our questions further. Besides, I proposed a heuristic
algorithm to extract miners from the payout flow to answer questions
on miners’ mobility. There are many interesting findings and prac-
tices from my thesis that I think it is worth discussing here as well as
the limitations of my work.

A needle in the haystack. Bitcoin transaction data is vast and keeps
growing. It contained >350 GB of raw data at the time of writing.
Anyone can create a transaction for any purpose they want. This
blockchain data pose analysis challenges because it has heterogeneous
and pseudonymous properties. Without knowing the real-world in-
formation of users, it is difficult to track who exchanges with whom
and extract meaningful patterns from such massive data. Data min-
ing techniques are effective in finding frequent patterns from histor-
ical data. However, the lack of labeled datasets causes the limitation
to training accurate supervised learning models. Weak signals on the
sparse data like the Bitcoin transaction network also pose a difficulty
in implementing unsupervised pattern mining. Moreover, the behav-
iors of Bitcoin users are diverse and changed over time, as we found
some evidence in our Bitcoin mining activity studies. Therefore, data
mining models should consider heterogeneous and paradigm shifts
in blockchain data. In this case, VA should be an additional feature
that helps researchers to detect the changes in the blockchain data
and give feedback to tuning the model.
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Other activities in the Bitcoin blockchain. Based on the demand of
my economist collaborator, I focused on Bitcoin mining in this the-
sis. Bitcoin mining activity can be tracked from the origin of Bitcoin
values from coinbase transactions. Besides, the topic has economic im-
plications for the Bitcoin and blockchain ecosystems. However, other
activities in Bitcoin are also worth investigating (e.g., money laun-
dering, dark marketplaces, and the use of Bitcoin in some countries
with high inflation rates). This could be a future challenge for visual
analytics research to develop tools to investigate these activities.

Collaboration with the economist. During the design study, I had
worked with one economist, which limits my ability to generalize
observations from my work to the economists’ community. Nonethe-
less, the outcome of my thesis is another piece of evidence that design
study methodology can help not only to develop a VA tool but also to
allow us to discover exciting results from exploratory data analysis.
We were able to publish new findings in publications in our data-
first visualization design study. With this respect, the MiningVis tool
proved to be useful to our economist to investigate a lot of informa-
tion on Bitcoin mining in multiple coordinated views and facilitated
him to observe the data from both the overview and to drill down to
the granular detail.

Quantitative evaluation of reward payout flow. In Section 5.2, I de-
rived a heuristic algorithm to identify miners from the reward pay-
out flow. However, there is no ground truth dataset that I can use
to evaluate the method I proposed. Instead, I justified my approach
indirectly by manually exploring the algorithm’s payout flow result
and calculating summary statistics to remove mining pools that do
not satisfy the assumptions. Mining pool companies should have this
information but could not share their customer data due to privacy
concerns. Without this ground truth data, it will not be possible to
directly evaluate the miners’ detection model in the real world. Block-
chain intelligence companies have been collecting the known entity
dataset associated with addresses which are also helpful to assess the
model I proposed. Still, they used that dataset as their competitive
advantage and did not share the data with the public. Due to these
limitations, I think the research community needs to develop a bench-
mark or hypothetic dataset to facilitate evaluation and comparison
among different models.

The devil is in the details. My economist collaborator and I use many
visualization prototypes to explore the data in the most granular de-
tail possible. We found that the further we examined the data, the
more we saw the heterogeneity and outliers in the details. This can
possibly happen due to various reasons, including the noise in the
data, errors from our miners’ extraction approach, and some special
events that drive miners to behave differently. Using the VA approach,
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we were able to investigate the data from aggregated-levels to the
detailed information and vice versa to find explanations and contex-
tual information as well as to detect interesting time periods that
behave differently from what we expected. Nonetheless, we found it
difficult to generalize the patterns we found. However, data visual-
izations keep us aware that granular detail data can be different from
aggregated information.

Using micro-entries with Bitcoin miners. In our MiningVis user study,
we were disappointed that Bitcoin miners did not actively report their
findings as micro-entries, even though we tried to make the form
lightweight. After the first interview, we lost contact with three par-
ticipants without providing the reasons. As they were Bitcoin miners
who wanted to take advantage of the competition, it is possible that
they opted out of our study if they did or did not find something use-
ful for their work. Five remaining participants who remained in our
study reported that they did not have any specific questions to inves-
tigate and dedicated time to use the tool. Even though micro-entries
are a helpful methodology for capturing user insights, we need to fig-
ure out how to motivate our participants in the online study to report
findings to the remote study actively.

Instead of writing about their new observations, many participants
reported bugs or suggestions about new features in micro-entries. In
the future user study, I will be more careful to clarify what “finding”
we expected and provide another feedback form for participants to
report any bug or feature recommendations.

7.3 future work

In this section, I propose some possible future directions for block-
chain visual analytics research.

7.3.1 Characterization of entities in the Bitcoin network

In contrast to traditional financial transactions, the identities of Bit-
coin users (entities) are normally pseudonymous, in other words,
cannot be derived directly from transaction data. The challenge is
to characterize different types of users in the Bitcoin network as well
as the pattern of their usages over time. Previous visualization works
proposed tools to explore activities of a single entity [V8] or groups
of entities [V9] based on clustering heuristics. Recent works about
Bitcoin entities classification applied machine learning techniques to
classify different types of entities (e.g., exchanges, miners, gambling,
and marketplace) [60, 75, 91, 178, 179]. Those black-box classifica-
tion models gave high accuracy but are difficult to interpret. Inter-
pretable machine learning [54, 59, 102] and dimensionality reduction
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techniques [36, 37, 111] should help VA researchers develop tools to
visually explore feature attributes (i.e., summary statistics, temporal
pattern, and graph attributes) that distinguish different entity types
while also displaying the degree of uncertainty in classification mod-
els.

7.3.2 Illegal activity tracking in the Bitcoin blockchain

Bitcoin and other cryptocurrencies have been used to transfer money
for illegal activities, such as dark markets, gambling, mixing services,
terrorist organizations, scams, ransomware, and Ponzi schemes, since
they are not regulated by the government. Financial regulators would
be interested to analyze transaction networks and detect suspicious il-
legal transactions. BitConeView [V5] and Tendril of Crime [V1] are the
existing tools that trace suspicious transactions. Elliptic, a cryptocur-
rency intelligence company, published a public data set of the Bitcoin
transaction network [35]. Each transaction is annotated as either con-
taining licit or illicit addresses. The dataset has been used for graph
machine learning classification tasks [168]. The result shows that the
classification model did not perform well when activities in Bitcoin
are abruptly changed (e.g., dark market shutdown and government
regulation). To help money laundering investigators improve the au-
tomatic classification, it would be interesting to develop a new VA tool
to explore illicit transactions in the large network as well as capture
the abrupt changes of transaction patterns at different time intervals
that could not be captured in the machine learning model.

7.3.3 Smart contracts and decentralized finance

Ethereum is one of the widely used blockchains that implements
smart contract functionality [170]. A smart contract is a piece of com-
puter code guaranteed to run in the same way on all peers. Develop-
ers can develop smart contracts to build decentralized applications
that run on the Ethereum network. Nowadays, smart contracts have
been used extensively to create Decentralized Finance (DeFi) that pro-
vide financial services (e.g., lending, borrowing, exchanges, deriva-
tives) on the decentralized network [169]. Dune Analytics provides
an online platform that allows users to create a dashboard to mon-
itor aggregated statistics of measures over time [O19]. For more ad-
vanced analytics, The Graph provides a decentralized API to access
transactions on DeFi protocols [52]. These open financial datasets of-
fer researchers opportunities to analyze traders’ behaviors, dynamics
of exchange activities, and systematic risks of the protocols in gran-
ular detail. However, the transaction data is challenging to compre-
hend and model due to the complicated mechanisms that govern the
protocol. Therefore, VA would be a useful approach to help visually
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present the transaction data that is both understandable to the general
audience and facilitate advanced analytics to researchers.

7.4 conclusion

This thesis studies the Bitcoin mining economy from comprehensive
data sources and uses a visual analytics approach to facilitate data
analysis tasks. I conducted a systematic review of visualizations of
blockchain data and proposed a classification scheme to understand
what is missing in the current work. For two years, I conducted a de-
sign study with an economist expert to acquire research questions re-
garding Bitcoin mining pools. During this process, we obtained some
new results and reported them in two articles [154, 156]. The empiri-
cal analysis provides evidence that Bitcoin mining became an indus-
try that mining pools compete to offer a regular reward while miners
behave like rational agents to maximize their income. We also found
that the top mining pools and their pool characteristics keep chang-
ing over the years. At the end of the design study, I proposed a visual
analytics tool called MiningVis to monitor the Bitcoin mining econ-
omy in the long term. I conducted an online user study to study the
usability of the tool. MiningVis tool helps the economist and Bitcoin
miners in our user study to relate multiple factors in Bitcoin mining
and look into a specific time frame of interests. The outcomes of my
thesis prove that the visual analytics approach is promising to explore
complex and heterogeneous data for a sophisticated mechanism like
the Bitcoin blockchain. The result from the user study confirms that
the value of the MiningVis tool lies in helping analysts identify inter-
esting findings and relate multiple economic factors from numerous
sources of data.
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[12] Marianna Belotti, Nikola Božić, Guy Pujolle, and Stefano Secci.
“A vademecum on blockchain technologies: When, which, and
how.” In: IEEE Communications Surveys & Tutorials 21.4 (2019),
pp. 3796–3838. doi: 10.1109/COMST.2019.2928178.

[13] Marianna Belotti, Sofiane Kirati, and Stefano Secci. “Bitcoin
pool-hopping detection.” In: IEEE 4th International Forum on
Research and Technology for Society and Industry (RTSI). IEEE,
2018, pp. 1–6. doi: 10.1109/RTSI.2018.8548376.

[14] Marc Bevand. Cambridge Bitcoin Electricity Consumption Index.
Accessed on: Aug 26, 2021. 2021. url: https://cbeci.org/.

[15] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
“Deanonymisation of clients in Bitcoin P2P network.” In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security. 2014, pp. 15–29. doi: 10.1145/2660267.
2660379.

[16] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. “A
suite of tools for the forensic analysis of bitcoin transactions:
Preliminary report.” In: European Conference on Parallel Process-
ing. Springer. 2018, pp. 329–341. doi: 10.1109/COMST.2018.
2818623.

[17] Bitcoin Wiki contributors. Comparison of mining pools. Accessed
on: Dec 12, 2020. url: https://en.bitcoin.it/wiki/Comparison_
of_mining_pools.

[18] Bitcointalk contributors. Bitcoin Mining Pools Discussion Forum.
Accessed on: Dec 12, 2020. url: https://bitcointalk.org/
index.php?board=41.0.

[19] Bitcointalk contributors. Bitcoin Mining Pools Discussion Forum.
https://bitcointalk.org/index.php?board=41.0. url:
https://bitcointalk.org/index.php?board=41.0.

https://doi.org/10.1145/3152824.3152831
https://doi.org/10.1145/3152824.3152831
https://doi.org/10.1007/978-1-4613-9323-8_24
https://doi.org/10.1007/978-1-4613-9323-8_24
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/RTSI.2018.8548376
https://cbeci.org/
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1109/COMST.2018.2818623
https://doi.org/10.1109/COMST.2018.2818623
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://bitcointalk.org/index.php?board=41.0
https://bitcointalk.org/index.php?board=41.0
https://bitcointalk.org/index.php?board=41.0
https://bitcointalk.org/index.php?board=41.0


bibliography 135

[20] Bitcointalk contributors. Bitcoin Press Discussion Forum. url:
https://bitcointalk.org/index.php?board=77.0.

[21] Jeremy E Block and Eric D Ragan. “Micro-entries: Encourag-
ing deeper evaluation of mental models over time for interac-
tive data systems.” In: IEEE Workshop on Evaluation and Beyond
- Methodological Approaches to Visualization (BELIV). IEEE. 2020,
pp. 38–47. doi: 10.1109/BELIV51497.2020.00012.

[22] Blockchain.info. Blockchain Known Pools. Accessed on: Dec 12,
2020. url: https://raw.githubusercontent.com/blockchain/
Blockchain-Known-Pools/master/pools.json.

[23] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. “SoK: Research Per-
spectives and Challenges for Bitcoin and Cryptocurrencies.”
In: IEEE Symposium on Security and Privacy. 2015, pp. 104–121.
doi: 10.1109/SP.2015.14.

[24] Nadia Boukhelifa, Fanny Chevalier, and Jean-Daniel Fekete.
“Real-time aggregation of wikipedia data for visual analyt-
ics.” In: IEEE Symposium on Visual Analytics Science and Tech-
nology (VAST). IEEE. 2010, pp. 147–154. doi: 10.1109/VAST.
2010.5652896.

[25] Danny Bradbury. “The problem with Bitcoin.” In: Computer
Fraud & Security 2013.11 (2013), pp. 5–8. doi: 10.1016/S1361-
3723(13)70101-5.

[26] Willard Cope Brinton. Graphic methods for presenting facts. En-
gineering magazine company, 1919.

[27] John Brooke. “SUS: a quick and dirty usability.” In: Usability
evaluation in industry 189 (1996).

[28] BTC.com. Blockchain Known Pools. Accessed on: Dec 12, 2020.
url: https://raw.githubusercontent.com/btccom/Blockchain-
Known-Pools-BCH/master/pools.json.

[29] Vitalik Buterin. On Public and Private Blockchains. 2015. url:
https://blog.ethereum.org/2015/08/07/on-public-and-

private-blockchains/.

[30] Mauro Conti, E Sandeep Kumar, Chhagan Lal, and Sushmita
Ruj. “A survey on security and privacy issues of bitcoin.” In:
IEEE Communications Surveys & Tutorials 20.4 (2018), pp. 3416–
3452. doi: 10.1109/COMST.2018.2842460.

[31] Kristin A Cook and James J Thomas. Illuminating the path:
The research and development agenda for visual analytics. Tech.
rep. Pacific Northwest National Lab. (PNNL), Richland, WA
(United States), 2005.

https://bitcointalk.org/index.php?board=77.0
https://doi.org/10.1109/BELIV51497.2020.00012
https://raw.githubusercontent.com/blockchain/Blockchain-Known-Pools/master/pools.json
https://raw.githubusercontent.com/blockchain/Blockchain-Known-Pools/master/pools.json
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/VAST.2010.5652896
https://doi.org/10.1109/VAST.2010.5652896
https://doi.org/10.1016/S1361-3723(13)70101-5
https://doi.org/10.1016/S1361-3723(13)70101-5
https://raw.githubusercontent.com/btccom/Blockchain-Known-Pools-BCH/master/pools.json
https://raw.githubusercontent.com/btccom/Blockchain-Known-Pools-BCH/master/pools.json
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://doi.org/10.1109/COMST.2018.2842460


136 bibliography

[32] Giuseppe Di Battista, Valentino Di Donato, Maurizio Patrig-
nani, Maurizio Pizzonia, Vincenzo Roselli, and Roberto Tamas-
sia. “Bitconeview: visualization of flows in the bitcoin trans-
action graph.” In: Symposium on Visualization for Cyber Secu-
rity (VizSec). IEEE, 2015, pp. 1–8. doi: 10.1109/VIZSEC.2015.
7312773. url: https : / / doi . org / 10 . 1109 / VIZSEC . 2015 .

7312773.

[33] Renato P Dos Santos. “On the philosophy of Bitcoin/Blockchain
technology: is it a chaotic, complex system?” In: Metaphiloso-
phy 48.5 (2017), pp. 620–633. doi: 10.1111/meta.12266.

[34] Pierre Dragicevic, Yvonne Jansen, and Andrew Vande Moere.
“Data Physicalization.” In: Springer Handbook of Human Com-
puter Interaction. Springer, 2021. url: https://hal.inria.fr/
hal-02113248.

[35] Elliptic. Elliptic Data Set: Bitcoin Transaction Graph. 2019. url:
https://www.kaggle.com/ellipticco/elliptic-data-set.

[36] Daniel Engel, Lars Hüttenberger, and Bernd Hamann. “A sur-
vey of dimension reduction methods for high-dimensional
data analysis and visualization.” In: Visualization of Large and
Unstructured Data Sets-Proceedings of IRTG 1131 Workshop 2011.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2012. doi:
10.4230/OASIcs.VLUDS.2011.135.

[37] Mateus Espadoto, Rafael M Martins, Andreas Kerren, Nina
ST Hirata, and Alexandru Cristian Telea. “Towards a quan-
titative survey of dimension reduction techniques.” In: IEEE
Transactions on Visualization and Computer Graphics (2019). doi:
10.1109/TVCG.2019.2944182.

[38] ExplosionAI GmbH. spaCy: Industrial-Strength Natural Language
Processing. Accessed on: Oct 24, 2021. url: https://spacy.
io/.

[39] Ittay Eyal and Emin Gün Sirer. “Majority is Not Enough: Bit-
coin Mining is Vulnerable.” In: Commun. ACM 61.7 (June 2018),
pp. 95–102. issn: 0001-0782. doi: 10.1145/3212998. url: https:
//doi.org/10.1145/3212998.

[40] Susan Fairchild, Timothy Farrell, Brad Gunton, Anne Mackin-
non, Christina McNamara, and Roberta Trachtman. “Design
and Data in Balance: Using Design-Driven Decision Making
to Enable Student Success.” In: New Visions for Public Schools
(2014). url: https://files.eric.ed.gov/fulltext/ED547420.
pdf.

[41] Jean-Daniel Fekete, Danyel Fisher, Arnab Nandi, and Michael
Sedlmair. “Progressive Data Analysis and Visualization (Dagstuhl
Seminar 18411).” In: Dagstuhl Reports 8.10 (2019), pp. 1–40.
doi: 10.4230/DagRep.8.10.1.

https://doi.org/10.1109/VIZSEC.2015.7312773
https://doi.org/10.1109/VIZSEC.2015.7312773
https://doi.org/10.1109/VIZSEC.2015.7312773
https://doi.org/10.1109/VIZSEC.2015.7312773
https://doi.org/10.1111/meta.12266
https://hal.inria.fr/hal-02113248
https://hal.inria.fr/hal-02113248
https://www.kaggle.com/ellipticco/elliptic-data-set
https://doi.org/10.4230/OASIcs.VLUDS.2011.135
https://doi.org/10.1109/TVCG.2019.2944182
https://spacy.io/
https://spacy.io/
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3212998
https://files.eric.ed.gov/fulltext/ED547420.pdf
https://files.eric.ed.gov/fulltext/ED547420.pdf
https://doi.org/10.4230/DagRep.8.10.1


bibliography 137

[42] Stephen Few. “Dual-Scaled Axes in Graphs—Are They Ever
the Best Solution?” In: Visual Business Intelligence Newsletter.
Perceptual Edge, Mar. 2008. url: http://www.perceptualedge.
com/articles/visual_business_intelligence/dual-scaled_

axes.pdf.

[43] Ben Fisch, Rafael Pass, and Abhi Shelat. “Socially Optimal
Mining Pools.” In: Web and Internet Economics. Springer, 2017,
pp. 205–218. doi: 10.1007/978-3-319-71924-5_15.

[44] Spyros Foteinis. “Bitcoin’s alarming carbon footprint.” In: Na-
ture 554.7690 (2018), pp. 169–170. doi: 10.1038/d41586-018-
01625-x.

[45] Guilherme de Freitas Castro. The Bitcoin’s lifecycle overview.
2018. url: https://dev.to/gmfcastro/the-bitcoins-lifecycle-
overview-1fld.

[46] Siwei Fu, Jian Zhao, Weiwei Cui, and Huamin Qu. “Visual
analysis of MOOC forums with iForum.” In: IEEE Transactions
on Visualization and Computer Graphics 23.1 (2016), pp. 201–210.
doi: 10.1109/TVCG.2016.2598444.

[47] Johanna Fulda, Matthew Brehmer, and Tamara Munzner. “Time-
LineCurator: Interactive authoring of visual timelines from
unstructured text.” In: IEEE Transactions on Visualization and
Computer Graphics 22.1 (2015), pp. 300–309. doi: 10.1109/TVCG.
2015.2467531.

[48] Weichao Gao, William G Hatcher, and Wei Yu. “A survey
of blockchain: Techniques, applications, and challenges.” In:
27th International Conference on Computer Communication and
Networks (ICCCN). IEEE. 2018, pp. 1–11. doi: 10.1109/ICCCN.
2018.8487348.

[49] Simin Ghesmati, Walid Fdhila, and Edgar Weippl. “Studying
Bitcoin Privacy Attacks and Their Impact on Bitcoin-Based
Identity Methods.” In: International Conference on Business Pro-
cess Management. Springer. 2021, pp. 85–101. doi: 10.1007/
978-3-030-85867-4_7.

[50] Pasquale Giungato, Roberto Rana, Angela Tarabella, and Cate-
rina Tricase. “Current trends in sustainability of bitcoins and
related blockchain technology.” In: Sustainability 9.12 (2017),
p. 2214. doi: 10.3390/su9122214.

[51] Michael Gleicher. “Considerations for visualizing comparison.”
In: IEEE Transactions on Visualization and Computer Graphics
24.1 (2017), pp. 413–423. doi: 10.1109/TVCG.2017.2744199.

[52] The Graph. The Graph: APIs for a vibrant decentralized future.
2021. url: https://thegraph.com/en/.

http://www.perceptualedge.com/articles/visual_business_intelligence/dual-scaled_axes.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/dual-scaled_axes.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/dual-scaled_axes.pdf
https://doi.org/10.1007/978-3-319-71924-5_15
https://doi.org/10.1038/d41586-018-01625-x
https://doi.org/10.1038/d41586-018-01625-x
https://dev.to/gmfcastro/the-bitcoins-lifecycle-overview-1fld
https://dev.to/gmfcastro/the-bitcoins-lifecycle-overview-1fld
https://doi.org/10.1109/TVCG.2016.2598444
https://doi.org/10.1109/TVCG.2015.2467531
https://doi.org/10.1109/TVCG.2015.2467531
https://doi.org/10.1109/ICCCN.2018.8487348
https://doi.org/10.1109/ICCCN.2018.8487348
https://doi.org/10.1007/978-3-030-85867-4_7
https://doi.org/10.1007/978-3-030-85867-4_7
https://doi.org/10.3390/su9122214
https://doi.org/10.1109/TVCG.2017.2744199
https://thegraph.com/en/


138 bibliography

[53] Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter
Pfister, and Marc Streit. “LineUp: Visual analysis of multi-
attribute rankings.” In: IEEE Transactions on Visualization and
Computer Graphics 19.12 (2013), pp. 2277–2286. doi: 10.1109/
TVCG.2013.173.

[54] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco
Turini, Fosca Giannotti, and Dino Pedreschi. “A survey of
methods for explaining black box models.” In: ACM comput-
ing surveys (CSUR) 51.5 (2018), pp. 1–42. doi: 10.1145/3236009.

[55] Yi-Ming Guo, Zhen-Ling Huang, Ji Guo, Xing-Rong Guo, Hua
Li, Meng-Yu Liu, Safa Ezzeddine, and Mpeoane Judith Nkeli.
“A bibliometric analysis and visualization of blockchain.” In:
Future Generation Computer Systems 116 (2021), pp. 316–332.
doi: 10.1016/j.future.2020.10.023.

[56] Stuart Haber and W Scott Stornetta. “How to time-stamp a
digital document.” In: Proc. Conference on the Theory and Ap-
plication of Cryptography. Springer. 1990, pp. 437–455. doi: 10.
1007/3-540-38424-3_32.

[57] K. W. Haemer. “Double Scales are Dangerous.” In: The Amer-
ican Statistician 2.3 (June 1948), p. 24.

[58] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Ex-
ploring Network Structure, Dynamics, and Function using
NetworkX.” In: Proceedings of the Python in Science Conference.
2008, pp. 11–15.

[59] Patrick Hall. On the Art and Science of Machine Learning Expla-
nations. 2020. arXiv: 1810.02909 [stat.ML].

[60] Mikkel Alexander Harlev, Haohua Sun Yin, Klaus Christian
Langenheldt, Raghava Mukkamala, and Ravi Vatrapu. “Break-
ing bad: De-anonymising entity types on the bitcoin block-
chain using supervised machine learning.” In: Proceedings of
the 51st Hawaii International Conference on System Sciences. 2018.
doi: 10.24251/HICSS.2018.443.

[61] Martin Harrigan and Christoph Fretter. “The unreasonable
effectiveness of address clustering.” In: IEEE Conferences on
Ubiquitous Intelligence & Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE. 2016, pp. 368–
373. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.
2016.0071.

[62] Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Now-
ell. “Themeriver: Visualizing thematic changes in large doc-
ument collections.” In: IEEE Transactions on Visualization and

https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1145/3236009
https://doi.org/10.1016/j.future.2020.10.023
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/3-540-38424-3_32
https://arxiv.org/abs/1810.02909
https://doi.org/10.24251/HICSS.2018.443
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071


bibliography 139

Computer Graphics 8.1 (2002), pp. 9–20. doi: 10.1109/2945.
981848.

[63] Florian Heimerl, Qi Han, Steffen Koch, and Thomas Ertl. “Ci-
teRivers: Visual analytics of citation patterns.” In: IEEE Trans-
actions on Visualization and Computer Graphics 22.1 (2015), pp. 190–
199. doi: 10.1109/TVCG.2015.2467621.

[64] Garrick Hileman and Michel Rauchs. “Global cryptocurrency
benchmarking study.” In: Cambridge Centre for Alternative Fi-
nance (2017).

[65] Nicolas Houy. “The Bitcoin mining game.” In: Ledger 1 (2016),
pp. 53–68. doi: 10.5195/ledger.2016.13.

[66] Nicolas Houy. “The economics of Bitcoin transaction fees.” In:
GATE WP 1407 (2014). doi: 10.2139/ssrn.2400519.

[67] Samuel Huron, Romain Vuillemot, and Jean-Daniel Fekete.
“Visual sedimentation.” In: IEEE Transactions on Visualization
and Computer Graphics 19.12 (2013), pp. 2446–2455. doi: 10.
1109/TVCG.2013.227.

[68] International Monetary Fund. Primary Commodity Price Sys-
tem: Fuel (Energy) Index. Accessed on: Aug 26, 2021. 2021. url:
https://data.imf.org/?sk=471DDDF8- D8A7- 499A- 81BA-

5B332C01F8B9&sId=1547558078595.

[69] Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic, and
Jean-Daniel Fekete. “A Study on Dual-Scale Data Charts.” In:
IEEE Transactions on Visualization and Computer Graphics 17.12

(Dec. 2011), pp. 2469–2487. doi: 10.1109/TVCG.2011.160.

[70] Jacob J. China Tightens Online Finance Regulations. 2016. url:
https://cointelegraph.com/news/china-tightens-online-

finance-regulations?ref=5823.

[71] Aleš Janda. Information about WalletExplorer.com. Accessed on:
Dec 12, 2020. url: https://www.walletexplorer.com/info.

[72] Amit Jena, Ulrich Engelke, Tim Dwyer, Venkatesh Raiaman-
ickam, and Cecile Paris. “Uncertainty visualisation: An inter-
active visual survey.” In: IEEE Pacific Visualization Symposium
(PacificVis). IEEE. 2020, pp. 201–205. doi: 10.1109/PacificVis48177.
2020.1014.

[73] Shangrong Jiang, Yuze Li, Quanying Lu, Yongmiao Hong,
Dabo Guan, Yu Xiong, and Shouyang Wang. “Policy assess-
ments for the carbon emission flows and sustainability of Bit-
coin blockchain operation in China.” In: Nature communica-
tions 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-22256-
3.

https://doi.org/10.1109/2945.981848
https://doi.org/10.1109/2945.981848
https://doi.org/10.1109/TVCG.2015.2467621
https://doi.org/10.5195/ledger.2016.13
https://doi.org/10.2139/ssrn.2400519
https://doi.org/10.1109/TVCG.2013.227
https://doi.org/10.1109/TVCG.2013.227
https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9&sId=1547558078595
https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9&sId=1547558078595
https://doi.org/10.1109/TVCG.2011.160
https://cointelegraph.com/news/china-tightens-online-finance-regulations?ref=5823
https://cointelegraph.com/news/china-tightens-online-finance-regulations?ref=5823
https://www.walletexplorer.com/info
https://doi.org/10.1109/PacificVis48177.2020.1014
https://doi.org/10.1109/PacificVis48177.2020.1014
https://doi.org/10.1038/s41467-021-22256-3
https://doi.org/10.1038/s41467-021-22256-3


140 bibliography

[74] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek,
and Tyler Moore. “Game-Theoretic Analysis of DDoS Attacks
Against Bitcoin Mining Pools.” In: Financial Cryptography and
Data Security. Springer, 2014, pp. 72–86. doi: 10.1007/978-3-
662-44774-1_6.

[75] Marc Jourdan, Sebastien Blandin, Laura Wynter, and Pral-
had Deshpande. “Characterizing entities in the bitcoin block-
chain.” In: IEEE International Conference on Data Mining Work-
shops (ICDMW). IEEE, 2018, pp. 55–62. doi: 10.1109/ICDMW.
2018.00016.

[76] Péter L Juhász, József Stéger, Dániel Kondor, and Gábor Vat-
tay. “A bayesian approach to identify bitcoin users.” In: PloS
one 13.12 (2018), e0207000. doi: 10.1371/journal.pone.0207000.

[77] Ben Kaiser, Mireya Jurado, and Alex Ledger. The Looming
Threat of China: An Analysis of Chinese Influence on Bitcoin. 2018.
arXiv: 1810.02466 [cs.CR].

[78] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder,
Martin Plattner, Alishah Chator, and Arvind Narayanan. “BlockSci:
Design and applications of a blockchain analysis platform.”
In: 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, 2020, pp. 2721–2738. isbn: 978-1-939133-
17-5. url: https://www.usenix.org/conference/usenixsecurity20/
presentation/kalodner.

[79] Dan Kaminsky. Black Ops of TCP/IP 2011 (Black Hat USA 2011).
2011. url: https://www.slideshare.net/dakami/black-ops-
of-tcpip-2011-black-hat-usa-2011.

[80] Irni Eliana Khairuddin and Corina Sas. “An Exploration of
Bitcoin mining practices: Miners’ trust challenges and moti-
vations.” In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 2019, pp. 1–13. doi: https://
doi.org/10.1145/3290605.3300859.

[81] Merve Can Kus Khalilov and Albert Levi. “A survey on anonymity
and privacy in bitcoin-like digital cash systems.” In: IEEE
Communications Surveys & Tutorials 20.3 (2018), pp. 2543–2585.
doi: 10.1109/COMST.2018.2818623.

[82] Christine Kim. The Rise of ASICs: A Step-by-Step History of Bit-
coin Mining. 2020. url: https://www.coindesk.com/tech/
2020/04/26/the-rise-of-asics-a-step-by-step-history-

of-bitcoin-mining/.

[83] Joshua A Kroll, Ian C Davey, and Edward W Felten. “The
economics of Bitcoin mining, or Bitcoin in the presence of
adversaries.” In: Proceedings of Workshop on the Economics of
Information Security (WEIS). Vol. 2013. 2013, p. 11.

https://doi.org/10.1007/978-3-662-44774-1_6
https://doi.org/10.1007/978-3-662-44774-1_6
https://doi.org/10.1109/ICDMW.2018.00016
https://doi.org/10.1109/ICDMW.2018.00016
https://doi.org/10.1371/journal.pone.0207000
https://arxiv.org/abs/1810.02466
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner
https://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
https://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
https://doi.org/https://doi.org/10.1145/3290605.3300859
https://doi.org/https://doi.org/10.1145/3290605.3300859
https://doi.org/10.1109/COMST.2018.2818623
https://www.coindesk.com/tech/2020/04/26/the-rise-of-asics-a-step-by-step-history-of-bitcoin-mining/
https://www.coindesk.com/tech/2020/04/26/the-rise-of-asics-a-step-by-step-history-of-bitcoin-mining/
https://www.coindesk.com/tech/2020/04/26/the-rise-of-asics-a-step-by-step-history-of-bitcoin-mining/


bibliography 141

[84] Milos Krstajic, Enrico Bertini, and Daniel Keim. “Cloudlines:
Compact display of event episodes in multiple time-series.”
In: IEEE Transactions on Visualization and Computer Graphics
17.12 (2011), pp. 2432–2439. doi: 10.1109/TVCG.2011.179.

[85] Martin Krzywinski, Jacqueline Schein, Inanc Birol, Joseph Con-
nors, Randy Gascoyne, Doug Horsman, Steven J Jones, and
Marco A Marra. “Circos: an information aesthetic for com-
parative genomics.” In: Genome Research 19.9 (2009), pp. 1639–
1645. doi: 10.1101/gr.092759.109.

[86] Kostiantyn Kucher and Andreas Kerren. “Text visualization
techniques: Taxonomy, visual survey, and community insights.”
In: IEEE Pacific Visualization Symposium (PacificVis). IEEE. 2015,
pp. 117–121. doi: 10.1109/PACIFICVIS.2015.7156366.
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