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Abstract in English

The present work concerns local fracture analysis approaches for quasi-brittle heterogeneous materials based on the Embedded Finite Element Method (E-FEM). A framework that successfully considers all fracture modes and their associated triaxial stress states simultaneously is proposed in a mathematically and physically consistent fashion. The objective is the modelling a rich variety of tridimensional fracture processes at mesoscale in complex materials, such as concrete.

A detailed mathematical analysis work is done on the variational foundations of current E-FEM approaches for the simulation of local fractures and material heterogeneities. These insights help to identify theoretical faults and pathologies that have prevented the framework to reach a fully functional generalisation. A set of mathematical developments is carried on afterwards to consolidate a new E-FEM model proposal. First, the embedded strong discontinuity model handling the most important features of fracture mode generalisation is addressed. Then, the work continues with the integration of a weak discontinuity model, which deals with the representation of material heterogeneities within a single element. All previous works on E-FEM applications on heterogeneous materials, having single fracture mode approaches at the heart of their structure, are taken as a departure point for this process. Ideas coming from recent E-FEM works done on homogeneous materials and large scale mixed fracture mode analyses in two dimensions are integrated in this work as well. Eventually, the entire numerical implementation of this theoretical framework is done, achieving an optimal compromise between the prediction capability of the model and program efficiency. This final integrated generalisation is tested in a variety of settings and compared to other approaches for highlighting its most basic features and potentials. A set of validations are first carried out with the simulation of a classical mixed fracture mode test setup for homogeneous materials. The study of heterogeneous tridimensional fracture processes is then started with simulations having a regular material inclusion within a uniform material matrix. Finally, the generalised model is used to simulate concrete samples considering realistic material heterogeneity distributions coming from real test samples. A concluding discussion is held on the overall value of this model and forthcoming applications.

Résumé en Français

L'étude présentée concerne l'analyse numérique des mécanismes de rupture à l'échelle mésoscopique dans les matériaux quasi-fragiles hétérogènes. Cette analyse est basée sur la Méthode des Éléments Finis Enrichis (E-FEM). Un cadre, mathématiquement et physiquement cohérent, qui permet de considèrer simultanément tous les modes de rupture avec leurs états triaxiaux de contrainte associés est proposé. L'objectif est de modéliser une large variété de processus de rupture tridimensionnelle à l'échelle mésoscopique dans des matériaux complexes et fortement hétérogènes tels que le béton. Une analyse mathématique détaillée est réalisée des fondements variationnels des approches courantes de l'E-FEM utilisées pour la simulation de la rupture localisée et pour les matériaux hétérogènes. Cette analyse permet d'identifier des erreurs théoriques et des pathologies qui ont jusqu'ici empêché d'aboutir à un cadre de modélisation généralisé qui soit complètement fonctionnel.

Des développements sont ensuite réalisés pour consolider la proposition d'un nouveau modèle E-FEM. Tout d'abord, le modèle intègre une discontinuité forte qui gère les caractéristiques les plus importantes d'un mode de rupture mixte généralisé. On présente ensuite, l'intégration dans le modèle de la discontinuité faible, qui gère la représentation des hétérogénéités des matériaux dans un seul élément. Pour cela, l'étude s'appuie sur des travaux antérieurs d'application de l'E-FEM aux matériaux hétérogènes mais qui se sont toujours restreints à des approches à un seul mode de rupture. Des idées venant des travaux E-FEM récents sur des matériaux homogènes et des analyses de rupture à grand échelle en deux dimensions sont aussi intégrées dans cette étude.

Finalement, l'implémentation numérique de ce cadre théorique est finalisée, en proposant un compromis optimal entre la capacité de prédiction du modèle et l'éfficacité du logiciel. La version généralisée finale du modèle intégré est testée dans une variété de situations et comparée avec d'autres approches pour mettre en évidence ses caractéristiques de base et son potentiel. Un premier travail de validation est effectué sur matériau homogène en simulant une expérience classique de rupture en mode mixte. L'étude des processus de fracture tridimensionnels des matériaux hétérogènes est ensuite abordée avec la simulation numérique du comportement d'échantillons constitués d'une inclusion régulière dans une matrice uniforme de matériau. Pour terminer, le modèle généralisé est utilisé pour la simulation numérique d'échantillons de béton en considérant des distributions d'hétérogénéités (granulats et pores) réalistes venant de données de campagnes expérimentales. Une discussion sur l'intérêt et les limites du modèle, ainsi que sur ses perspectives d'utilisation et de développement, permet de conclure cette étude.
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Chapter 1

Introduction

The present work seeks the evolution of an advanced finite element method to build a numerical model capable of providing an accurate representation of fracture processes in heterogeneous quasi-brittle materials at small scales. Materials such as concrete and many rocks, considered as quasi-brittle, are known to exhibit complex fracture patterns that are product of numerous mechanical phenomena occurring at different scales. When critically loaded, the heterogeneous constitution of such materials gives rise to the formation of a large number of simultaneous microcracks, promoting spontaneous coalescence events that ultimately forge a defined tridimensional fracture process. The nature of these local fractures demands a numerical model flexible and general enough to capture different failure kinematic modes aiding the initiation and propagation of such crack networks, but at the same time balanced enough with respect to implementation efforts and computational requirements.

Among the advanced finite element methods making potential candidates for approaching this modelling problem, the Embedded Finite Element Method (E-FEM) has been chosen by the author due to its reasonable balance in the representation quality of local physics and multiple numerical implementation benefits. It allows the intrinsic modelling of weak mathematical discontinuities representing the presence of different material phases within a single domain, and strong mathematical discontinuities representing the emergence and kinematics of local fractures. A generalisation of the models recently developed in this line of research is presented to the reader along with its numerical implementation and application.

Each of the following chapters in this thesis work is based on a corresponding scientific article addressing a particular subject within the developments done for this E-FEM framework proposal. Nonetheless, it has been decided not to present the arrangement of these contents as a raw juxtaposition of these publications adding conjunctive pieces of writing in between. Such style is normally demanded by the academic entity validating this kind of work using the option of thesis validation through publications. Aside from the publications, a certain number of requirements are to be met by the writer involving additional contents. These requirements, as they are, were deemed not convenient for the author given the length, the depth and the overall style of the base articles, in which we can commonly find very thorough explanations of theoretical developments. Also, the author has actually conceived these articles thinking beforehand about a sequence of topics progressively describing the developments and findings of this research.

Hence, it has been chosen to rather adapt these pieces of writing into a single and coherent narrative, adjusting some sections to take advantage of internal references available within the thesis work as a whole. This will both ease the writing efforts already conceived by the author and the investment done by the reader. Each chapter represents a major area of study and development in this current E-FEM research, having its own introduction, literature review and general body. In this sense, the best effort has been made to avoid any prominent redundancies that might represent a potential loss of time and concentration for the reader. There are, however, some specific sections in which the quality of writing would have been significantly compromised by these adaptation efforts, and thus the author has decided to leave them as they are. For instance, the reader will find that the literature section in each of these chapters has an evident overlap when addressing the origins of the E-FEM approach as a whole, but it eventually comes to focus on a specific aspect of the framework, whether with the strong discontinuity, the weak discontinuity or the ultimate interest of an integrated approach for the study of heterogeneous quasi-brittle material failure. As a consequence of these decisions, this introduction will not go in very technical detail about the E-FEM framework proposal itself, but it will rather be a guide for the reader to illustrate the overall writing strategy followed through this work and how to make the best out of its content.

All research efforts, including a pertinent literature review, theoretical developments, the full numerical implementation, its final applications and the expected defense were developed under the time-frame of 36 months. Despite such time constraints, the author of this work stayed true to the belief that, in order to keep a line of research alive, it is imperative to sustain a certain amount of quality and detail in this kind of dissertations. It is only in this way that an effective transmission of all the know how required to carry on with future works will be achieved, bringing the most added value to the development of this field. Therefore, in this section and through all the remaining chapters of this work, the reader will perceive a pattern of a noticeable pedagogical style, which might render some of the discussions herein longer than expected.

Concerning the state of the base papers comprising the contents of this thesis work, two of them (those related to Chapter 2 and 3) have already been submitted at the time of writing to different journals specialised in computational mechanics. The last one, serving as the base of Chapter 4, is ready but yet to be submitted and will deliberately differ from the thesis version on its last section concerning simulation results. One one hand, the base paper will just be limited to demonstrate the overall capabilities of the numerical model without really dwelling on a specific correlation with certain test data to draw revealing conclusions from it. On the other hand, this thesis work makes an attempt to particularise this final discussion to the analysis of concrete as a quasi-brittle material, drawing an interesting conclusion on the nature of its 3D fracture processes, notably those related to micro-crack networks. In any case, a fourth article will be entirely devoted to this particular application.

The work will start by introducing the reader to the strong discontinuity formulation in Chapter 2, which acts as the principal theoretical base for the generalisation carried on in this line of research. As a consequence, this is the longest chapter of the thesis. The literature review in this chapter will focus on describing how researchers commonly start a definition for a strong embedded discontinuity formulation and how they have progressively added more complexity to increase its mathematical robustness and its kinematic consistency overall. This review is not concentrated at the beginning of the chapter but rather spread through the developments as the mathematical model description unfolds. The significant milestones of consolidating the approach on a 3D setting [START_REF] Wells | [END_REF] and extending the fracture kinematic mode set to rotations and simple axial strains on 2D schemes [Linder et Armero, 2007] are recalled and carefully inspected, along with theoretical faults and issues already identified by the community [Wells, 2001, Contrafatto et al., 2013].

In the first part of this chapter, a detailed analysis is made on the theoretical basis behind the strong discontinuity formulation, going from fundamental kinematics up to the entire variational analysis, scrutinizing all auxiliary functions typically introduced along the way and discussing key decisions made by authors working on this framework at certain points of the development. The author has mainly two reasons for devoting a significant space to this. One, the generalisation brought by this thesis demands for this level of comprehension to proceed with the proposal of all mathematical structures found later in this work. And two, the author finds that it is remarkably hard to find any source providing wholesome explications of the E-FEM framework basics at this level of detail. Thus, it was deemed fair enough to recapitulate all these bodies of knowledge along with recent findings to articulate a compelling unified reference for the subject, attempting the best at making its assimilation as effective as possible for graduate students and other researchers making an incursion on this field.

Based on this, a pathology and mathematical vulnerability analysis of the current approaches is brought upon the reader, to eventually propose a new strong discontinuity formulation that integrates a set of extended definitions, including the generalisation of fracture kinematic modes in three dimensions. Numerical validations done in this chapter are kept exclusively at elemental level using a symbolic mathematical programming language. The author rather decided to execute an intensive inspection process for the model having outstanding cases of irregular elements and crack plane configurations. This is because common faults in other approaches are clearly identifiable at this level already, and the effects of all underlying structures can be easily isolated for debugging. Indeed, this process helped to learn, refine and get to know the response of the new formulation under a variety of conditions before integrating it into large mesh simulations in Chapter 4.

Chapter 3 addresses the problem of using the framework for simulating multiple material phases through the use of a weak embedded discontinuity model. The literature review for this chapter is more concentrated at the beginning, remarking the shift of use of the weak discontinuity from a localisation band modelling tool to a material interface modelling tool. There is a remarkable lack of references on this specific approach in the field. Indeed, to the best knowledge of the author, it is only Markovic [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF] that has revived the approach as an alternate development within his thesis work, not directly related to the main goals of his research at that time. This weak embedded discontinuity formulation, as it is, has been first used in formal applications for heterogeneous quasi-brittle failure at the mesoscale by Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Roubin, 2013]. It was then kept and used without further inspection and improvements for all subsequent works involving heterogeneous domain simulations [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017, Stamati et al., 2019].

The author thus considered prudent, through the following parts of this chapter, to unfold and justify this formulation through a more rigorous mathematical analysis, using a top-down approach. It starts with the very fundamental definition of the kinematics of a weak discontinuity and its associated strain jump through an interface, bringing a series of consistency requirements that naturally give shape to enhancement functions under certain shape considerations. Based on this, the Markovic formulation is indeed retrieved, having its underlying assumptions clearly identified, and it is found to be not entirely consistent under the light of the variational framework. The works done in this formal mathematical analysis allow, just as in the case of Chapter 2 with the strong discontinuity, to articulate more robust proposals in this respect. Indeed, a new weak discontinuity proposal coming entirely from the author of this work is presented to the reader, which benefits from full variational consistency. A few key features of these two formulations are compared side-by-side, such as their mathematical stability and their impact to global stiffness matrices.

Validations at the end of this chapter will be presented to the reader through the numerical simulation of simple mesh models replicating a typical bi-material stack in series within a regular prism. Despite the simplicity of such model, the author manages to draw relevant conclusions that help to value each of these formulations on its own. Besides, no validations of this type had been performed so far on this part of the framework. The chapter closes by stating recommendations on the modelling approach considering both formulations.

Finally, Chapter 4 introduces to the reader an integration of all the aforementioned developments. It is on this chapter that the reader will have the chance to find a thorough introduction and literature review on the full application of the E-FEM framework for the modelling of triaxial fracture processes for quasi-brittle heterogeneous materials at the mesoscale. The main motivation for the generalisation made in this work is provided through the description of collective efforts done for building and applying a base E-FEM framework for the study of concrete and other geomaterials [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Roubin et al., 2015, Hauseux et al., 2017]. The latest efforts in this sense [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], Sun et al., 2021] culminate with the most accurate digital representation of microconcrete samples found in this line of research so far, in which the need of generalising the framework for accurately capturing mixed-mode 3D fracture processes is deemed very appropriate.

While the original article giving rise to this chapter had to remake an entire introduction of the strong and weak discontinuity models to present the integrated structure, this thesis chapter leverages the contents previously described in full details by making use of proper internal references. Thus, only relevant findings pertaining the integration of the models will be presented to the reader when describing the base kinematics and the variational analysis, without introducing further justifications. This chapter will nonetheless go in-depth with the discussions concerning some aspects of the model that involve large numerical simulations, such as the multi-localisation criteria, the model linearisation process for nonlinear solution methods and the approach taken for the local physics represented through the traction-separation laws. While the traction-separation laws are fairly discussed at element level in Chapter 2, the reader will find that in Chapter 4 the author has reestablished these bases in a more rigorous fashion, introducing new local physics under certain considerations. These additions are a key ingredient for improving the capability of the framework to portray local fracture mechanics. These last developments were profoundly reflected upon and finalised when executing an extensive testing phase at large model scale (high element count).

The author has also spent time to elaborate on some implementation details of this E-FEM framework, since the complexity of this specific proposal poses a number of challenges that are worth discussing.

The general algorithm flow is presented to the reader in such a way that the place and role of each of the previously stated models can be found within this final implementation. Special emphasis is placed on the particularisation process of one of the most important internal functions in the strong discontinuity formulation (the extended φ function, Chapter 2). The search for the balance between memory usage and calculation efficiency is also discussed, provided that the author himself actually had to solve computational resource management issues to be able to make the model perform in such a way that results presented in Chapter 4 were attainable with enough quality and within a reasonable time frame. A final point is made on the nonlinear solution process for some numerical equation systems emerging in the model.

The last section of this chapter presents a general showcase of the consolidated model performing under a variety of settings to examine its general response, and eventually for a concise application to the study of a tridimensional fracture process in a realistic concrete sample. The model is first tested in a homogeneous setup to inspect the performance of the strong discontinuity model for handling controlled mixed-mode fracture processes. The influence of heterogeneities in the emergence of spontaneous 3D fracture processes is then studied on a simple setup having a single spherical inclusion within a homogeneous matrix. The final numerical simulations will feature a cubical model having an accurate depiction of material heterogeneities coming from real microconcrete samples. All these numerical simulations are compared side by side with the most recent E-FEM model used in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], which is based on a single mode I kinematics, to elaborate on the differences found between both micro and macro-crack behaviours. This thesis work ends by providing the reader an overall evaluation of the entire framework, evoking future works and suggestions.

Chapter 2

General consistency of strong discontinuity kinematics in E-FEM formulations

Chapter 2 General consistency of strong discontinuity kinematics in E-FEM formulations fields. These functions are driven by internal variables representing the fracture kinematics in the normal and parallel directions to a given fracture plane. This kind of internal variable fracture representation is based on the theory of incompatible modes [Ibrahimbegovic et Wilson, 1991], which allows contiguous elements in the same mesh to have internal kinematic states that do not respect rigorous continuity between them. This gives rise to efficient and transparent solution processes where element fracture kinematic variables can be calculated in a completely internal solution process. The update of all elemental contributions for a nonlinear global solution step can then be done using a traditional FEM solver framework, requiring no modifications to it unless the framework is deliberately enriched with a non-local analysis features such as, for example, the use of a crack path field method to insure continuity between elements [START_REF] Oliver | Continuum approach to computational multiscale modeling of propagating fracture[END_REF].

The E-FEM approach has been praised for its simple, yet powerful capacity for the accurate modelling of local and global fracture processes of quasi-brittle materials over other methods such as X-FEM or the Partition of Unity [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. These latter have a more robust and deeper definition of their kinematics attacking directly to the definition of nodal interpolation functions and their support. This allows a natural continuity across elements and a more enriched description of a fracture in general [START_REF] Oliver | A comparative study on finite elements for capturing strong discontinuities: E-fem vs x-fem[END_REF]. However, this additional complexity works as a double-edged sword, bringing more challenges to their numerical implementation.

Despite this fact, the E-FEM approach has not become as popular as other alternative FEM options as X-FEM to gain much ground into commercial FEM packages such as ABAQUS or LS-DYNA [Tabiei et Zhang, 2016, Shi et al., 2009, Weaver et al., 2011]. While the simplicity of the E-FEM approach has been acknowledged many times, there are some numerical issues that prevent this formulation to gain a consensual solid stance as a reliable and accurate structural numerical simulation approach for material fractures. These have been recognized by many authors working on the field: mesh dependencies, severe stress locking, unintended coupling between fracture displacement modes, among others [START_REF] Contrafatto | Computational issues in the finite element with embedded discontinuity method based on non-homogenous displacement jump[END_REF], Wells, 2001[START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF].

The intent of this work is to make an analysis on how the basic definitions of strong discontinuity kinematics have been introduced so far on the E-FEM framework (Section 2.2 and 2.3) to identify the roots of its potential theoretical faults and related numerical issues (Section 2.4). Some authors gave their valuable insights on these challenges and propose theoretical enhancements as a workaround [Linder et Armero, 2007, Dias da Costa et al., 2009[START_REF] Dujc | An embedded crack model for failure analysis of concrete solids[END_REF], Contrafatto et al., 2013]. This work attempts to consolidate these efforts to establish a basic understanding that allows for a new set of wiser E-FEM proposals in a general 3D format, avoiding current issues and bringing more robustness and modelling capabilities for the framework. Following the previous considerations, this paper proposes a new specific E-FEM strong discontinuity enhancement scheme (Section 2.5). Simulations at element level are done to compare the results to older enhancement proposals (Section 2.6), with encouraging conclusions (Section 2.7).

It is important to remark that the present work will focus on the branch of the E-FEM framework related to SKON (Statically and Kinematically Optimal Non-symmetric) formulations, which is the one that produces the most physically consistent models, both kinematically and statically [Jirásek, 2000, Oliver, 1996a, Dvorkin et al., 1990, Simo et al., 1993]. The author believe it is worth continuing the theoretical works in this line since its physical correctness sets a solid foundation for modelling further complex crack phenomena like reclosure, local compression and explicit local friction, as well as the possibility to consider other kind of discontinuities in a simultaneous fashion.

Analysis of basic internal strong discontinuity kinematics

The starting point of every fracture representation done within the E-FEM framework is to enrich the basic displacement field of a continuous body with the direct addition of a mathematical discontinuity function representing the displacement jump from one split region of the body to the other:

u = u + H Γ d [|u|] ,
(2.1)

where the theoretical displacement of the body u is set as the composition of a regular displacement u and a jump normally introduced by means of a Heaviside function having the location of the fault surface Γ d as its main trigger. An internal fracture kinematics vector [|u|] is used to represent the general motion of one of the fractured regions with respect to the other. Figure 2.1 and Figure 2.2 are very common illustrations used by authors in the field to visualize the discontinuous enrichment for the fracture of a body split in two regions Ω + and Ω -. The origin, shape and orientation of the surface Γ d representing the fracture remains completely independent from this analysis, and will depend on the specific strain localisation criterion chosen for studying a given material. As the general philosophy of the E-FEM framework tends to aim for formulation simplicity, the most common fracture surface of choice is typically a plane or a line. This work assumes this simple geometry as the fracture surface from now on. We will also assume that the analysis is done on a general 3D domain unless specific remarks for 2D or 1D cases are made.

While Eq. 2.1 already allows for the calculation of a valid strain field directly through a symmetric gradient operator

∇ s (•) = 1 2 [∇ (•) + ∇ t (•)],
there is a couple of important basic remarks worth making at this point.

Kinematic consistency of boundary condition imposition

A discretized element whose kinematics is governed by Eq. 2.1, does not allow a consistent imposition of boundary conditions on any traditional global FEM solution engine. This is because the displacements on the borders of the Ω -domain of the element (i.e., the nodes on it) are directly reachable through the vector u, while the displacements on the borders of Ω + are rather a composition of u and [|u|]. We can use the vector u alone to impose boundary conditions on Ω -, but not on Ω + since the actual displacement in this region remains a composition of two different vectors u + [|u|]. This issue has been well identified even from the first evolving steps of the framework and also treated by Oliver [START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF] through the introduction of the so-called auxiliary function φ. The function φ is defined as to allow for the existence of a new displacement vector

û = u + φ [|u|] ,
(2.2) by letting φ to have a single property: it will have the value of 1 on any node lying on the border of Ω + and zero in those on the remaining Ω -border:

Basic φ function requirements

φ = 1 x i ∈ Ω + 0 x i ∈ Ω -, i = 1, .., N (2.3) 
where x i denotes a nodal position. This is the only formal mathematical requirement as stated in [START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF] apart from the basic fact that φ should be continuous. The most common form of φ taken from the literature is yet the simplest one to satisfy Eq. 2.3 for a given element geometry. E.g., for the linear tetrahedron, the simplest φ remains a composition of standard linear interpolation functions. In this case, φ also happens to be unique. Analogous constructions for φ can be easily made for a 2D triangle and for 1D cases (Fig. 2.3).

Figure 2.3: Example of the φ function for a constant stress triangle defined by the nodes N1, N2, N3, with node 1 on the Ω + domain and the others on Ω -. Note that for this case there is only one possible linear φ definition If φ complies with the previous definition, then the new vector û can be seen as a continuous fusion of the local displacement field and the jump vector associated to the fracture, having border displacements that coincide with those of u. Thus, for the practical purposes of nodal displacements in a discretized element, û contains all the correct information of border nodes and can be used for imposing boundary conditions in a direct and unequivocal fashion. Note that, on the other hand, the displacement field within the element does not coincide with that of u. û can be seen as a special version of u where the discontinuity jump is continuously spread by φ along the element domain. φ could be thus interpreted as a sort of regularisation function (see Fig. 2.2).

With this definition in mind, Eq. 2.1 is rewritten as

u = û + (H Γ -φ) [|u|] ,
(2.4)

where the previous vector u has been replaced by the newly defined vector û, and the discontinuity base function now gets composed of both a Heaviside and φ. From this point, authors generally stop referring to u and simply take û as the de facto standard solution vector for the reasons mentioned above, and Eq. 2.4 is taken as the reference for developing all derived mechanical fields.

While the introduction of φ solves a fundamental consistency problem on boundary conditions imposition, it also responsible for other undesired effects on general element kinematics and fracture mode coupling. A deeper discussion is presented on Section 4.

Kinematics at terminal separation conditions and meaning of [|u|]

Post-localisation behaviour within an element is generally modeled by making use of one of two popular options: a continuous strong discontinuity approach (CSDA) or a discrete strong discontinuity approach (DSDA) [Armero et Garikipati, 1996, Oliver et al., 2005]. Regardless of the approach taken, usually there is an initial mechanical connection between the newly split bodies, which will harden and/or decay as the crack separation evolves depending on the governing post-localisation law. Eventually, there should be no influencing forces from Ω + to Ω -when the split bodies have sufficiently separated. This state of failure will be referred to as a terminal separation condition. In such state, the traction happening at the fracture surface should be zero, and the internal fracture kinematics vector [|u|] will practically represent the rigid body motion of the Ω + domain with respect to Ω -, depending on the definition chosen for the vector [|u|].

[|u|] in most of the current E-FEM literature has been simply defined as a one to three components vector of constant values in space at the element scale describing a rigid body translation of Ω + with respect to Ω -. However, as [|u|] stands as an internal element definition with no strong global restrictions, it could be arranged to describe more complex kinematic modes such as rigid body rotations, having nonconstant component behaviour through the failure surface Γ d .

[|u|] thus remains a free modeling choice in this sense. But, whatever this choice may be, its behaviour should be consistent with the standard element kinematics (whether u or û). An obvious example is that the magnitude of a constant [|u|] in the normal direction n to the discontinuity plane (crack normal separation), should be no greater than the magnitude of the relative nodal displacement in the element giving rise to this separation. This is shown in Fig. 2.4 for a 2D constant stress triangle (CST). A relative displacement d n is imposed on this element and, assuming post-localisation, a corresponding crack separation [|u|] n develops. By common sense, it should be expected that [|u|] n ≤ d n , where at terminal separation conditions we could probably have [|u|] n ≃ d n depending on the specific model. Considering this, it is important to remark the framework does not explicitly guarantee any kinematic consistency between the internal variable [|u|] and a standard global variable û or any derived quantities such as d n . This is due to the same fact that [|u|] is an internal element definition. This is specially true when reaching a terminal separation condition, where there is no further influence of any post-localisation law derived through CSDA or DSDA that would imply any additional coercion to [|u|] in any way. In a terminal separation condition, there is no other governing law than that of the purely natural kinematics arising from the modeling choices made in the basic formulation of the strong discontinuity, such as φ.

In the end, it should be clear that the physical meaning of [|u|] should be carefully assessed with respect to the formulation choices made within the E-FEM framework. This will be further discussed in Section 4 and 5.

Having all this in mind, the strain field is extracted by taking the symmetrical gradient ∇ s (•) in Eq. 2.4. This study will assume a constant vector [|u|] through Γ d , which implies that this strong discontinuity study will be limited to a rigid body translation of Ω + with respect to Ω -. The strain field can be thus expressed as:

ε = ∇ s u = ∇ s û + ∇ s [(H Γ -φ) [|u|]] ⇒ ε = ∇ s û -(∇φ ⊗ [|u|]) s + (∇H Γ ⊗ [|u|]) s ⇒ ε = ∇ s û -(∇φ ⊗ [|u|]) s εb +δ Γ ( n ⊗ [|u|]) s εu , (2.5)
where the first tensor product is identified as the bounded part of the strong discontinuity strain εb and the second tensor product is the unbounded strain εu . δ Γ is the Dirac delta, with a trigger position corresponding to the failure surface Γ d , just as the Heaviside described previously.

In-depth analysis of variational foundations

The use of customized field enhancement functions on the E-FEM framework requires a variational principle that grants sufficient flexibility to effectively manage multiple independent mechanical fields when making element discretisation. After all, the E-FEM remains a mixed FE formulation. This is the main reason why the three-field Hu-Washizu principle has been the preferred approach for almost all authors working on the framework. There are, however, many details usually omitted on the description of its application that merit formal mathematical justification. This will allow the reader to know why some numerical choices prevail in the E-FEM literature and also to better understand the measures taken for improving the formulation explained in later sections. We take the Hu-Washizu functional for three independent fields of displacement, strain and stress (u, ε, σ) as the point of departure:

I HW (u, ε, σ) = 1 2 Ω ε : C : ε dV - Ω σ : ε dV + Ω σ : ∇u dV - Ω f b • u dV - ∂Ω t • u dA, (2.6)
where the double bar notation • specifies a mechanical field on its 2nd order tensor format (the omission of it would mean that the field is on the Voigt vector notation), C is a fourth-order linear elasticity tensor, f b is a vector of body forces and t is a vector of traction forces as commonly found in the conventional FEM. To reach equilibrium, a stationary condition for this functional is required, and this implies taking the variation of it along with the variations associated to each of the displacement, strain and stress fields (δI HW (δu, δε, δσ) = 0) , leading to three independent equations, already written using a Voigt vector notation:

Hu-Washizu variational system for the E-FEM framework

Ω ∂δu t σ dV - Ω δu t f b dV - ∂Ω δu t t dA = 0 (2.7a) Ωe δσ t (∂u -ε) dV = 0 (2.7b) Ωe δε t (σ (ε) -σ) dV = 0 (2.7c)
It is worth noticing the difference made in Eq. 2.7c between σ (ε), which is the stress field calculated from the constitutive relations (in this case through an elastic relation σ (ε) = Cε), and σ, which is the independent stress field to be found in the analysis. These fields are not necessarily equal, and the variational analysis will provide with a specific relation between them.

The Eq. Sys. 2.7 is the most commonly used form of the Hu-Washizu principle as seen on the E-FEM literature. The solution for the system, in this continuous format, inevitably returns the equilibrium of the body (already expressed on Eq. 2.7a), the strong kinematic compatibility and constitutive relations:

∇u -ε = 0 (2.8a) σ (ε) -σ = 0 (2.8b)
From this point, any further step requires stating a field discretisation strategy, and flexibility will be drawn from Eqs. 2.8a and 2.8b as required, having cases where these are not necessarily satisfied in a strong manner.

A word on the discretisation strategy

When using the Hu-Washizu functional, it is important to remember that the three fields of displacement, strain and stress (u, ε, σ) along with the other three fields of displacement variation, strain variation and stress variation (δu, δε, δσ) are all completely independent. Therefore, each of the six fields will require a unique discretisation choice and its entirely up to each study to determine the most convenient field discretisation setup, keeping in mind that the main goal of the framework is to represent the effects of the strong discontinuity in the most physically consistent, yet numerically efficient way. Apart from this, the only formal restriction is to satisfy the Eq. Sys. 2.7 at all costs.

It should be remembered that the discretisation strategy follows the outline of the SKON family of E-FEM approaches: the structure of the Hu-Washizu principle is exploited to render the formulation as physically consistent as possible, including both correct kinematics and statics simultaneously, resulting in a non-symmetric FE formulation.

Displacement field discretisation

For discretizing the displacement field u, authors naturally take advantage of the facts discussed in Section 2.1, and take only û into account:

u = û = Nd, (2.9)
with N as a standard interpolation matrix and d the standard nodal displacement vector. The variation of the displacement field δu is also discretized in the same way, taking the displacement vector variation δd: δu = Nδd (2.10) Eq. 2.9 implies that the displacement field to be found through this strategy does not exactly correspond to the initial definition of u in the interior of the element, but will perfectly coincide with it on the nodes, and therefore the vector d contains always the real displacement of the element through its nodes. This is considered as enough information to be extracted from the displacement field as there is generally no interest in studying it in detail considering that the vector [|u|] already contains embedded crack displacement information. The advantages emerge when dealing with Eq. 2.7a, as the simplification of the displacement field (especially the displacement variation field) will allow to reach the classical standard FEM global solution form without any additional terms involved. Note that Eq. 2.9 does not imply Eq. 2.10 in any way: having the same interpolation matrix N is totally a strategic choice that is convenient at this point. This present work will comply with it.

Strain field discretisation

Discretisation of the strain field ε is done following all the terms described in Eq. 2.5, giving this field the role for modeling all strong discontinuity kinematics on the element, including bound and unbound terms:

ε = Bd + G s [|u|] = Bd + (G sb + G su ) [|u|] , (2.11)
where B is the standard matrix corresponding to the partial differentiations of N and G s is the corresponding matrix for the strong discontinuity terms, including a bounded part G sb and an unbounded part G su . The specific form of the matrix operators G sb and G su is constructed by considering Eq. 2.5 alone. Their structure is fixed and determined by the natural kinematics of the strong discontinuity model assumed. A strain field following such idea within the E-FEM framework is referred to as a Kinematically Enhanced Strain (KES).

The choice for the strain variation field stays analogous by considering the same standard strain term associated with standard displacement variations, but leaving a choice open for a matrix G * s which, for reasons explained later (and also a deliberate choice), will adopt the same bounded-unbounded composition G * sb , G * su and will be associated to the variation of the crack displacements δ [|u|]:

δε = Bδd + G * s δ [|u|] = Bδd + (G * sb + G * sn ) δ [|u|]
(2.12)

In this case, the specific form of the matrix operators G * sb and G * su is not determined by strong discontinuity kinematics directly. It is rather derived from the demands of the variational principle itself through the satisfaction of Eq. 2.7, as it will be shown in the following sections. This means in principle that the components of this strain field attend more to static considerations. A strain field following such idea within the E-FEM framework is referred to as a Enhanced Assumed Strain (EAS).

Stress field discretisation

Finally, the independent stress σ and stress variation fields δσ are simply designated in a free-form fashion:

σ = Ss (2.13a) δσ = S * δs, (2.13b)
where s is an independent stress vector with the state of stresses associated to each node of a given element (e.g., , a six-component vector for a 3D, constant field). δσ would be its corresponding variation. The interpolation matrices S and S * are absolutely unrelated to any of the previously defined entities in the other mechanical fields.

Calculated stress field discretisation

The stress field coming from the constitutive relation σ (ε) will be calculated by taking only the bounded part of ε. The boundedness of σ (ε) despite of having unbounded terms within ε has been discussed since the first attempts of consolidating the E-FEM framework [Oliver, 1996a]. It remains an accepted practice in current theoretical developments. Considering this, this stress field is expressed as:

Calculated stress field σ (ε) = Cε b = C (Bd + G sb [|u|]) (2.14)

Application of the discretisation strategy

This is probably the hardest and the most loosely described mathematical development section in the E-FEM framework while it determines most of the operational conditions of the numerical solution. The definitions of the chosen discretisation strategy in the previous section are basically thrown into the variational principle represented by Eq. 2.7 to study their mathematical implications. The intention in this section is to unfold key parts of the process that strongly regulate the structure of current formulations as well as of future proposals.

Basic orthogonality analysis: the role of S *

We will start by taking Eq. 2.7b, which brings the following expression after considering the definitions of u, ε, the fact that [|u|] is a constant and that δs remains completely arbitrary:

Ωe δσ t (∂u -ε) dV = Ωe δs t S * t (Bd -[Bd + G s [|u|]]) dV = δs t Ωe S * t G s dV [|u|] = 0 ⇒ Ωe S * t G s dV = 0 (2.15)
Eq. 2.15 demands an orthogonality between S * t and G s in a weak sense. Given that G s has the specific purpose of modelling the kinematics of the strong discontinuity, it shall not be modified to satisfy Eq. 2.15. Thus, S * has to comply. Note that this variational relation does not impose any form restrictions to critical functions, as S * will not give shape to any real mechanical field. It could be stated that S * becomes just a support interpolation matrix that allows G s to exist. We can choose whatever kinematics we want for the strong discontinuity implied in G s , as long as we can actually prove that this support interpolation matrix S * satisfying Eq. 2.15 exists.

At this point, the specific form of φ comes into play, which is important to discuss because it determines the overall form of G s . G s in turn is composed by bounded and an unbounded parts G sb and G su . Let us suppose now that we work on a linear tetrahedron, and thus with a linear φ = a+bx+cy +dz, which is one of the most prominent choices made on the E-FEM literature. With this assumption and considering the structure of Eq. 2.5, expressions for matrix operators G sb and G su on [|u|] can be devised as:

G sb = -         φ ,x 0 0 0 φ ,y 0 0 0 φ ,z φ ,y φ ,x 0 0 φ ,z φ ,y φ ,z 0 φ ,x         = -∇φ, G su = -δ Γ         n x 0 0 0 n y 0 0 0 n z n y n x 0 0 n z n y n z 0 n x         = -δ Γ H s (2.16)
where φ x , φ y , φ z are the partial derivatives of φ and n x , n y , n z are the components of the normal vector n to the crack plane. If we assume for a first trial that S * remains constant, there will be only one single option to define it: the identity matrix I 6 (or a scalar multiple of it). Eq. 2.15 can be then worked using integral properties of the Dirac delta to show that:

Ωe S * t G s dV = Ωe I 6 (-∇φ + δ Γ H s ) dV = V e ∇φ + A Γ H s , (2.17)
where V e is the element volume and A Γ is the area of the crack surface. It can be easily seen that, as ∇φ and V do not have any kind of relation to A Γ and H s , Eq. 2.17 can never be asserted as zero and thus a constant S * satisfying Eq. 2.15 does not exist. Note that a constant S * was chosen to be consistent with the natural order for a stress field associated to a standard linear displacement field on a linear tetrahedron. There is no option but to go for a non-conventional definition for S * . Fortunately, Hu-Washizu allows for this.

Using a linear S * would imply a linear interpolation matrix based on a series of four points (x * i , y * i , z * i ), which would make a total of 12 free parameters to achieve the sought orthogonality. Let us define the four associated interpolation functions S * i = a * i + b * i x + c * i y + d * i z to these points. Eq. 2.15 can then be worked as: (2.18) leading to a linear system of the form:

-   Ωe S * t dV   ∇φ -   AΓ S * t dA   H s = 0,
S * Ve i φ ,j + S * AΓ i n j = 0, i = 1, 2, 3, 4 j = x, y, z (2.19)
where S * Ve i are the interpolation functions S * i integrated through the element volume V e and S * AΓ i are these same functions but integrated over the crack surface A Γ . As there are a total of 12 independent equations to fulfill and S * has 12 free parameters, a unique solution for S * exists. Note that this system will determine a very specific set of nodal positions (x * i , y * i , z * i ) that are absolutely unrelated to real element nodal positions. The base of S * is not the standard element base and thus it will be entirely different of that coming from S, which has to be the real one. This means that, from this very point, the framework is changed from a classical Galerkin scheme to an asymmetric Petrov-Galerkin scheme, a fact that almost all authors in the current E-FEM literature ignore. For more complex choices of φ or even a non-constant [|u|], it can be shown by the aforementioned approach that a sufficiently elaborate S * can be chosen to satisfy Eq. 2.15. This last point is the main takeaway from the work on Eq. 2.7b.

The bridge between real and constitutive stress fields

Eq 2.7c can be worked by using Eq. 2.12 and noting that δd and δ [|u|] remain independent, giving rise to two new equations:

Ωe δε t (σ (ε) -σ) dV = Ωe δd t B t + δ [|u|] t G * t s (σ (ε) -Ss) dV = δd t Ωe B t (σ (ε) -Ss) dV + δ [|u|] t Ωe G * t s (σ (ε) -Ss) dV = 0 ⇒ Ω B t σ (ε) dV = Ω B t Ss dV (2.20a) ⇒ Ω G * t s σ (ε) dV = Ω G * t s Ss dV (2.20b)
Eq. 2.20a is the only equation that allows to establish a direct relation between the calculated stresses from the constitutive law σ (ε) and the interpolated real stress Ss, since the form of B is known beforehand for a given standard element geometry. Eq. 2.20a is a weak equality involving B t as a weight factor. The form of S always remains a choice. For a constant real stress field, S will be a 6 × 6 identity matrix, whereas for a linear real stress interpolation, S will be a dense 6 × 24 matrix, and so on. Based on this choice and the form of B, Eq. 2.20a may or may not grant a strong equality between constitutive stresses and real interpolated stresses. In the case that S is chosen to match the order of σ (ε), Eq. 2.20a effectively reduces to a strong equality. Otherwise, for the case we have a constant B and a constant S, a real stress vector s can still be calculated though a simple volume averaged integral regardless of the order of σ (ε):

Volume-averaged real stress calculation

s = 1 V e Ω σ (ε) dV (2.21)
Note that, in any case, real stress calculations remain explicit and do not require for methods like a least-squares approach like in other mixed element variational frameworks [Simo et Rifai, 1990, Ibrahimbegovic et Wilson, 1991].

The bridge between real and constitutive traction vectors

Eq. 2.20b is treated differently. As mentioned before, G * s is assumed to be composed by bounded and unbounded terms as its counterpart G s , and in this section it will be clarified why. Usually, authors in the field choose at this point to enforce weak orthogonality conditions to each separate side of Eq. 2.20b since it becomes easier to devise the traction vector explicitly [Jirásek, 2000]. The present analysis will continue to do so. This creates once again two new relations:

Ω G * t s Ss dV = Ω G * t s σ (ε) dV = 0 (2.22)
The main idea is to derive an expression for the real traction vector T based on the real stress field (Ss), and then connecting it to the traction vector based on constitutive stress T ε , so that T can be explicitly calculated. This can be done by the developing the left and center side of Eq. 2.22, leading to:

Ω G * t sb Ss dV + Ω G * t su Ss dV = Ω G * t sb σ (ε) dV + Ω G * t su σ (ε) dV (2.23)
If we propose the specific form of the unbounded G * su as exactly the same as G su = δ Γ H s , we can use again the Dirac delta's properties to arrive to:

Ω G * t sb Ss dV + Γ d H t s SsdA = Ω G * t sb σ (ε) dV + Γ d H t s σ (ε) dA ⇒ Γ d T dA = Ω G * t sb [σ (ε) -Ss] dV + Γ d T ε dA, (2.24)
where it has been recognized that H t s remains a stress projection operator over the crack surface having n as its normal, thus returning traction vectors at once operating over both stress fields. The main intent of assuming G * su is to effectively reveal the traction vectors T and T ε . Depending on the stress relation coming from Eq. 2.20a, Eq. 2.24 might be simplified. A strong equality between T and T ε is possible only if we can ensure that the respective stress fields are constant and equal to each other.

EAS and static considerations -The patch test condition

The zero implied on the left side of Eq. 2.22 allows to define G * s under the EAS approach. The arbitrary vector s can be then taken out for reaching the following weak orthogonality condition:

Ω G * t s S dV = 0 (2.25)
As the form S is chosen based on real physics, it is clear that G * s must be determined by it. The works on Eq. 2.24 have already required the unbounded part G * su to be equal to δ Γ H * s in order to obtain the traction vectors, so only the bounded part G * sb can be used to satisfy Eq. 2.25:

Ω G * t sb S dV + H t s Γ d SdA = 0, (2.26)
where the final form of G * sb will basically depend on the choice of S. At this stage, authors generally also seek to comply with the traditional FE patch test to ensure element density convergence for a given parent element by verifying that it is able to work with constant stress fields regardless of its underlying complexity [Simo et Rifai, 1990, Ibrahimbegovic et Wilson, 1991, Jirásek, 2000]. This implies to additionally satisfy Eq. 2.26 for the case of a constant S, regardless of the form already chosen for it. This is the reason why most of the authors working on the E-FEM framework try to choose a constant S from the beginning, so that only one single solution for Eq. 2.26 is required, satisfying the patch test for once and for all. For that case indeed, solution to Eq. 2.26 simplifies to the expression commonly found in E-FEM literature for the SKON, EAS approach [START_REF] Wells | [END_REF], Roubin et al., 2015]: (2.27) for which G * sb has also been set as a constant matrix, as well. For other cases that are less restrictive, G * sb has to rise in complexity by simultaneously satisfying Eq. 2.26 for both a constant and a higher degree S, in a process analogous to that one followed during the analysis in Section 3.2.1. This leads to a linear system on the coefficients for G * sb similar to that of Eq. 2.19.

EAS G * sb operator for constant real stress G * sb = - A Γ V e H s ,
Note that, no matter what the choice is, it inevitably leads to have G sb ̸ = G * sb , again departing from a classical Galerkin scheme to a Petrov-Garlekin one. This is the only way to retain consistent kinematic representation while remaining variationally consistent under the light of Hu-Washizu. In the proposals made on the next sections, we will retain the choice of a constant real stress field, along with a constant S and the validity of Eq. 2.27.

Final traction calculation

If a constant G * sb is retained, Eqs. 2.24 and 2.21 allow further simplifications to get to a weak equality between traction vectors:

T ε = T = T , (2.28)
where we have used the fact that a constant σ yields a constant T . Having cleared this link, the right hand of Eq. 2.22 finally leads a way to explicitly calculate a surface average of the traction vector T , for then applying any pertinent damage, softening or traction-separation laws. The calculation is simply stated as:

T = 1 A Γ Γ d T ε dA = - 1 A Γ Ω G * t sb σ (ε) dV (2.29)
From now on, traction vector calculations will be simply referring to T .

Internal-external force balance

This part of the variational analysis has been left to the last as it does not bring any remarkable implications. Eq. 2.7a can be stated as follows: (2.30) where Eq. 2.20a can be used literally as it is to vanish the real stress field from the expression and leave all force balance calculations in terms of the calculated stress field σ (ε):

Ω B t σ dV = Ω N t f b dV + Ω N t t dA,
Ω B t σ (ε) dV = Ω N t f b dV + Ω N t t dA (2.31)
Note that no strong equality between the stress fields is required to satisfy Eq. 2.31 in any way. With this last equation, the application of the complete variational principle for a wide range of cases typically considered on the E-FEM framework is finished. The present work will now take all the basics presented in Section 2 and 3 to describe the general inconsistency problems on commonly proposed versions of the formulation in a precise manner.

Current formulation approaches and associated pathologies

The following analysis takes Eq. 2.29 as a departure point. After developing G * sb and σ (ε), the following form can be reached:

General traction vector equation

T = T e + M [|u|] n , (2.32)
where T e is a traction vector depending only on the standard element displacement vector d, and M is a crack stiffness matrix. The vector [|u|] n is the crack displacement vector expressed on the local frame n.

Eq. 2.32, which is expressed entirely on the local crack base ( n, t, m), is by itself probably the most important yet one of the most overlooked variationally-based expressions in this strong discontinuity analysis framework. Indeed, it grants information about the influence of the load-driven and the crack separation-driven parts on the overall evolution of the fracture traction T . The latter determines, along the chosen softening laws, the complete post-localisation mechanics of the element, including what happens in terminal separation conditions. Note that Eq. 2.32 has been derived merely from the discretisation strategy of the framework and the pure kinematics model proposed for the strong discontinuity itself. It has absolutely nothing to do with the application of any further traction-separation law schemes. The following subsections describe different ways to handle Eq. 2.32 depending on the general fracture modeling approach.

Single mode formulations

Single mode formulations are those that consider a single kinematic mode associated to the fracture within an element, normally a rigid body normal separation or a parallel sliding distance (the latter assuming a uniform fracture plane Γ d ). This implies the suppression of all other fracture kinematic modes. For illustrating the implications of this choice, Eq. 2.32 can be taken under terminal separation conditions: this is, assuming all averaged traction components are driven down to zero after the crack has sufficiently developed. We present the resulting equation as a system taking each of the local fracture plane directions:

T n = T en + M nn [|u|] n + M nt [|u|] t + M nm [|u|] t = 0 T t = T et + M tn [|u|] n + M tt [|u|] t + M tm [|u|] t = 0 T m = T em + M mn [|u|] n + M mt [|u|] t + M mm [|u|] t = 0
(2.33)

As an example, considering a single normal separation mode formulation, the model will be entirely based on [|u|] n and will automatically make

[|u|] t = [|u|] m = 0.
For the system given by Eq. 2.33, this would imply:

T n = T en + M nn [|u|] n = 0 T t = T et + M tn [|u|] n = 0 T m = T em + M mn [|u|] n = 0
(2.34)

The updated Eq. Sys. 2.34 remains overconstrained and cannot be satisfied by a single value of [|u|] n . Authors choosing this approach will only take the traction-separation equation corresponding to the chosen fracture mode to be satisfied. In this case, only the first equation in 2.34 depicting the general traction component T n will be driven to zero. A specific [|u|] n value will ensure this condition. This

[|u|] n will evidently not satisfy the remaining traction separation relations in the system. As the components T et , T em depend on the arbitrary disposition of the nodal displacement vector d, general traction components T t , T t will take totally non-physical values. This leads to the creation of undesired spurious internal forces that will produce severe stress locking.

In order for single mode formulations to thrive during entire nonlinear FEM simulations, it is required to deliberately drive these crack surface traction components to zero during a numerical solution, along with any other stresses still associated to the crack. This can be done by simply applying an arbitrary decay explicitly to these or by setting them immediately to zero when localisation is detected on a given element [START_REF] Wells | [END_REF]].

The only conditions in which this kind of formulation will naturally drive all stresses down to zero is for a specific combination of load (through d) and element geometry orientation with respect to Γ d (coefficients M nn , M tn , M mn ). As it will be shown later in a more detailed analysis of M for a linear tetrahedron and a normal separation mode, these conditions correspond to purely axial strain on the n direction, having an element face parallel to a planar Γ d .

Because of the aforementioned reasons, single mode formulations do not ensure physical sense for crack internal variables. However, they have the evident advantage of their simplicity and numerical solution speed, as the system to solve for [|u|] becomes a single algebraic equation. As simple as it is, this kind of formulation has been successfully used for the modeling of complex fracture phenomena in heterogeneous, quasi-brittle materials [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017, Stamati et al., 2019]. It has granted satisfactory results for the global strength prediction and overall crack position of actual test specimens under tensile and compressive loads, even when considering triaxial confinement preloading conditions [Stamati, 2020].

Full crack translation formulations: the role of φ

Full crack translation formulations consider all crack displacement components when articulating the traction-separation equation system. In terminal conditions, the full system depicted by Eq. 2.33 is to be solved for all variables

[|u|] n , [|u|] t , [|u|] m .
Regardless of the nature of the traction separation decay (exponential, polynomial, etc.), Eq. Sys. 2.33 remains strictly linear. A unique solution will always exist for [|u|] given that M is not singular. A detailed analysis of M is thus relevant in this study.

The crack stiffness matrix M has a direct dependence on G * sb and σ (ε) (Eq. 2.29). σ (ε) in turn depends directly on G sb (Eq. 2.14), and thus on φ (Eq. 2.16). As already discussed on Section 2.2.1, the nature of φ depends on the parent element, and authors typically take the simplest mathematical definition of it satisfying the basic requirements in Eq. 2.3.

The case of a linear tetrahedron parent element will be taken again as an illustrating reference. The simplest φ is linear and easily constructed by stating linear interpolation functions taking the values of 1 or 0 depending on which nodes are on which side of the fracture surface. A 2D case is again depicted in Fig. 2.3. Note that it is not required to use the same function φ for all three displacement components [|u|] m . Note that in this case there is only one possible definition of a linear φ for this parent element, anyway.

[|u|] n , [|u|] t ,
The standard deformation matrix B can be expressed as a block partition in a node-wise manner:

B = B 1 B 2 B 3 B 4 , (2.35)
where each block B i can be further expressed as a function of the unit vector

Ψ i = [Ψ ix , Ψ iy , Ψ iz ] t normal
to the opposing face to each node i in the tetrahedron (this is naturally coming from the basic FEM formulation of this parent element):

B i = A i 3V e         Ψ ix 0 0 0 Ψ iy 0 0 0 Ψ iz Ψ iy Ψ ix 0 0 Ψ iz Ψ iy Ψ iz 0 Ψ ix         , (2.36) 
where A i is the area of the opposite face to node i. Knowing that φ follows a similar structure as B but considering the selective condition in Eq. 2.3, G sb can be expressed as a superposition of the blocks defined in Eq. 2.36:

Bounded G sb operator for a linear φ (2.37) where p i adopts a value of 1 on the nodes lying on Ω + , and zero otherwise.

G sb = - Ne i p i B i ,
On the other hand, a constant field σ will be assumed so that the EAS approach matrix G * sb can be obtained using Eq. 2.27. With Eq. 2.14 in mind, Eq. 2.29 can now be developed to get the following:

Stiffness Matrix M and load-driven traction T e calculation   1 V e Ω H T s CB dV   Ke d +   1 V e Ω H T s CG sb dV   Km [|u|] (2.38) T = R T K e d + R T K m R [|u|] n = T e + M [|u|] n , (2.39)
where R is a rotation matrix allowing the passage from a global coordinate crack displacement vector [|u|] to a local-based [|u|] n. Working an explicit form for M yields finally:

M = - 1 V e   c n1 n • Ψ c n2 t • Ψ c n2 m • Ψ c s t • Ψ c s n • Ψ 0 c s m • Ψ 0 c s n • Ψ   ,
(2.40) where • denotes a dot product ( t • Ψ = tT Ψ ) and Ψ = A i Ψ i follows the superposition brought by Eq. 2.37. The constants c n1 , c n2 , c s are a function of the linear elastic material model parameters E, ν. The reader can find more details about the derivation of this compact expression for M on the A.

For now, let us assume a fracture plane that makes a 3-1 partition of the tetrahedron's nodes, having a single node on Ω + (Fig. 2.5), so that the interpretation of Ψ becomes easier. For the case of the linear tetrahedron, it is geometrically impossible to have the orientation of the opposite face to the single node to be perpendicular to n, thus Ψ • n will be always different than zero. Given this fact and the structure given by Eq. 2.40, it can be safely assumed that M will not be singular. The system defined in 2.33 will then have a unique solution for

[|u|] n , [|u|] t , [|u|] m .
It is relevant to note the presence of coupling fracture stiffness coefficients between different directions (M ij , i ̸ = j). This means that, even at terminal conditions (Eq. 2.33), a normal displacement [|u|] n of the fractured piece of the element Ω + will automatically induce a parallel rigid body motion [|u|] t , [|u|] m as well. This does not make physical sense since at this stage Ω + is already a completely independent body provisioned with free rigid body displacement modes. Another way to see this would be that the traction vector components at the fracture are strongly coupled through [|u|] n , [|u|] t , [|u|] m . Moving in a normal direction would mean to produce traction on the parallel direction. Again, this is not representative of a fractured body kinematics.

Eq. 2.40 also states that all coefficients M ij will depend in general on the orientation of the parent element's geometry with respect to the fracture plane. This is, the M ij coefficients have an explicit mesh dependency. Thus, if we were to avoid any unwanted kinematic/traction coupling, the element geometry must have a specific orientation with respect to the fracture plane. Otherwise, while a mathematical solution for the system given by Eq. 2.33 will be always assured, the overall physical sense of [|u|] will be once again compromised.

Wells [Wells, 2001] had already identified the influence of the function φ on the overall fracture kinematics and the induced strong coupling between traction components at the fracture plane. He proposed to fix it by redefining φ in such a way that the M components having the dot products Ψ • t and Ψ • m were driven to zero. This is, a φ capable of diagonalizing M. Illustrating the process in two dimensions, if an initial function φ was defined for a CST element on the xy plane having partial derivatives φ ,x and φ ,y , the following redefinition for the partial derivatives was made:

φ ′ ,x = n 2 x φ ,x + n x n y φ ,y (2.41a) φ ′ ,y = n 2 y φ ,y + n x n y φ ,x (2.41b)
It is not necessary to check after φ directly, as only the partial derivatives of φ are needed during the numerical calculation. Indeed, such a redefinition of φ will avoid the unwanted coupling of traction components. However, this φ will no longer be able to satisfy the basic requirements of Eq. 2.3. Remember that this was the main reason for conceiving φ in the first place. If this alternate definition of φ is checked on the position x 1 shown in Fig. 2.6 where it is supposed to be zero, it can be shown that:

φ (x 1 ) ∝ |( n × Ψ 12 )| |(x 1 × n)| ,
(2.42)

Figure 2.6: 2D CST element having a strong discontinuity with a vector n and a partition 2-1, node 3 located on Ω + . The vector Ψ in this case corresponds to the normal to the surface defined by nodes N2, N3, N4

.

where × denotes a cross product, Ψ 12 is the normal vector to the edge between nodes 1 and 2 and x 1 is the global position vector for node 1. This product of magnitudes nullifies whether the fracture line is aligned with the the normal of the opposed element edge or if it is also aligned with the position vector in question. The reader can find more details on the B.

Again, a mesh dependency is introduced, albeit more silent and rather impacting the pursuit of global equilibrium. It is clear that a deep knowledge of the fundamentals of the E-FEM framework is required for any kind of improvement proposals. This is the reason why this work has been devoted on its first half to describe its theoretical basis.

General crack kinematics formulations

At terminal separation conditions, there should be no internal forces in the element associated to any rigid body motion of Ω + with respect to Ω -. Otherwise, global strength assessment on a complete FEM model will never be realistic since these elemental contributions are out of control, regardless of their already damaged state. Liberalisation of the three rigid body translation modes for [|u|] ensures that it is possible to drive traction components T n , T m , T n down to zero. Unfortunately, this does not ensure a complete release of element internal forces. Internal forces can be obtained extracting a part of the internal-external force balance on Eq. 2.31: (2.43) where Eq. 2.20a and the fact that the present work stands for a constant stress field (σ = Ss = s) have been used. On the other hand, the kinematics proposed in Section 2.4.2 will only ensure the average traction vector T acting upon Γ d is driven down to zero:

f int = Ω B t σ (ε) dV = Ω B t σdV = V e B t s,
T = - 1 A Γ Ω G * t sb σ (ε) dV = 0 (2.44)
For a constant stress parent element (constant G * sb , B), it is obvious to see that Eq. 2.44 does not imply reaching zero on Eq. 2.43 since in general we have G * sb ∝ B. In this case, the whole real stress tensor on the element must be nullified so that all internal forces come to zero. Thanks to Eq. 2.44, we also know that some of the components of this stress tensor expressed on the local coordinate base ( n, t, m) correspond precisely to the traction vector components that have been already worked out in Section 2.4.2. There are thus four components left without any damage process:

σ :   σ nn = T n σ nt = T t ( ( ( ( ( σ nm = T m σ tn = T t σ tt σ tm ( ( ( ( ( σ mn = T m σ mt σ mm   (2.45)
These untouched components σ tt , σ tm , σ tt (only three since the tensor is symmetric) should be damaged in such a way that the framework retains mathematical consistency and physical meaningfulness.

In order to damage σ, Eq. 2.21 can be taken as a point of departure to relate a damaged state of stress σ to the constitutive stress σ (ε). Then, Eq. 2.14 is used to see the implications on specific terms within the formulation. At terminal conditions, nullifying σ will thus imply:

Ω σdV = 1 V e Ω σ (ε) dV = 1 V e Ω C (G sb [|u|] + Bd) dV = 0 (2.46) 1 V e   Ω G sb dV   [|u|] = - 1 V e   Ω BdV   d (2.47) G sb [|u|] = -Bd (2.48)
At the end, Eq. 2.48 makes a relation between two average strain fields: one coming from standard displacements and the other coming from the strong discontinuity enrichment function. For the case of a linear tetrahedron, the average standard strain field on the right side of Eq. 2.48 maps a R 12 vector to a R 6 subspace S d . We also have B = B, as B is constant for this case. On the other hand, the left side enriched average strain maps a R 3 vector to a R 6 subspace S [|u|] . If G sb happens to be constant, then we would also have G sb = G sb . Despite the fact we can stretch more demands to the matrix G sb through a richer definition of φ, it can be shown that, in general, S [|u|] ⫆ S d . Figure 2.7 illustrates this situation. It is impossible to nullify the strain subspace spanned by d only counting on a three rigid body displacement mode vector [|u|]. Fracture kinematics has to be enriched to at least 6 modes to do so. Thus, even full crack translation models might need to force a stress damaging mechanism such as in single mode formulations discussed in Section 2.4.1 to avoid stress locking. The idea of an extension for fracture kinematics variables on the E-FEM framework has been started by introducing the concept of a non-homogeneous (linear) crack displacement fields over a fracture surface in [START_REF] Alfaiate | Non-homogeneous displacement jumps in strong embedded discontinuities[END_REF] in bi-dimensional elements. The concept was further consolidated by associating a set of fracture kinematic modes to this feature in [Linder et Armero, 2007, Dias da Costa et al., 2009] and later applied in [START_REF] Contrafatto | Computational issues in the finite element with embedded discontinuity method based on non-homogenous displacement jump[END_REF], Dujc et al., 2010a, Raina et Linder, 2010], also for two dimensional problems.

The approach is to consider that each of the components of [|u|] are rather defined using linear functions instead of constant values. Each of the parameters within these linear functions is associated to general kinematics for the split body representing the Ω + domain. This can include rigid body translations, rigid body rotations and even simple axial strains in specific directions. The centroid of the Γ d is generally taken as the reference position for the rigid body modes. In essence, fracture kinematics is enriched by providing Ω + with improved modes that are able to represent more than just rigid body translations [|u|] m . For a 2D case, Fig. 2.8 illustrates how Ω + kinematics on a CST element is enriched by considering two rigid body translations, a single rigid body rotation on the plane and a single extension (simple axial strain) on the parallel direction to Γ d . This is the type of enrichment studied by Armero and Linder [Linder et Armero, 2007]. For the sake of readability, all descriptions on the rest of this section will take this CST triangle example as reference, knowing that the proposal in later sections will make a 3D generalisation of this approach. The enrichment of fracture kinematics implies a redefinition for [|u|] that introduces a new intermediary matrix J along with a more general fracture kinematics vector ξ:

[|u|] n , [|u|] t ,
[|u|] = Jξ (2.49) ξ = [|u|] n0 [|u|] t0 θ ϵ t t (2.50)
This enrichment has consequences on the mathematical framework developed on Sections 2 and 3, starting by the basic strain expression derived on Eq. 2.5, where the handling of gradients will change due to J. Additional interactions will also emerge between φ and this new matrix operator, yet giving rise to a different structure for the strain enrichment operators. Eqs. 2.47 and 2.48 will now be:

1 V e   Ω G sb JdV   ξ = 1 V e   Ω G ′ sb dV   ξ = - 1 V e   Ω BdV   d (2.51) G ′ sb ξ = -Bd, (2.52)
where a new compound operator G ′ sb along with its averaged counterpart G ′ sb have been defined.

In order to build a new coherent structure for G ′ sb under this scheme, authors typically choose not to rework Eq. 2.5 and prefer to build G ′ sb directly in a numerical, column by column fashion [Linder et Armero, 2007, Dujc et al., 2010a]. Each of the columns of G ′ sb represents a link between a fracture kinematic mode ξ k and a specific nodal displacement state d k :

Kinematic mode linking, general relation

G ′ sb k ξ k = -Bd k (2.53)
Here, the matrix G ′ sb is given a physical meaning by linking kinematic states of the element standard nodes to each of the fracture kinematic modes. Since all other sections of the framework can be expressed as a function of G ′ sb , this approach is enough to define the internal numerical solution process.

For example, suppose we would like to link the kinematic variable [|u|] n0 to an actual set of nodal displacements d [|u|] n0 on the element. To do so, a real [|u|] n0 is meant to represent a constant displacement of [|u|] n0 for nodes N 1 , N 2 lying on Ω + in the n direction. This specific displacement state d [|u|] n0 will generate a standard strain through B = B. The negative of this strain has to be equal to the product of a specific column of G ′ sb (the first one) and the kinematic mode [|u|] n0 . The block structure of B = B 1 B 2 B 3 can be used to our advantage:

G ′ sb[|u|] n0 [|u|] n0 = -Bd [|u|] n0 G ′ sb[|u|] n0 [|u|] n0 = -B 1 B 2 B 3   [|u|] n0 n [|u|] n0 n 0   = - Ne i p i (B i n) [|u|] n0 G ′ sb[|u|] n0 = - Ne i p i (B i n) (2.54)
The remaining columns

G ′ sb[|u|] t0
, G ′ sbθ , G ′ sbϵ t can be deducted following the same logic. This process allows to numerically define G ′ sb completely based on basic parent element characteristics.

One remark to this process is the nature of the link done between nodal displacements and kinematic variables (Eq. 2.53). A given mapping from the R 12 displacement space to the R 6 strain space is not unique, meaning that two or more different displacement states d k might correspond to exactly the same standard strain vector. This means that, even if we create a link between a specific fracture kinematic variable ξ k to a desired displacement state through a given d k , the strain produced by d k could be also produced by other entirely different d ′ k , breaking the meaning of this link, and thus the physical meaning of ξ k . This is specially true when trying to distinguish what happens on Ω + or Ω -. There might be cases in which nodes lying on Ω -will contribute to a vector d capable of exciting unexpected modes ξ k that were originally associated to the kinematics of Ω + . Rigid body modes are reflexive in the sense that they can be interpreted by fixing a reference frame whether at Ω -or Ω + , avoiding the risk of any mapping confusion. Simple axial strain modes are not, and these can be confused by this imperfect bijection. There is thus an inevitable kinematic coupling between Ω + and Ω -that prevents the approach to be fully objective. There is some work that has been done, as an example, to consider a more general definition for the factor p i : make it a continuous variable from 0 to 1 to control the coupling between Ω + and Ω -in a more flexible manner [Dias da Costa et al., 2013]. As this does not really solve the root problem, the author of the present work have decided to keep the classical binary definition for p i . Another issue with the approach, pointed out well by Armero and Linder [Linder et Armero, 2007], is the fact that it is assumed that the column decomposition of G ′ sb yields a set of vectors that compose a linearly independent base for building a ε space. For some node partitions on Ω + , Ω -, specifically when we have a single node on Ω + , it is found that the base will not be linearly independent. This means that there is no way to know a unique solution for all ξ k modes for a given element kinematic state. Let us take the same CST triangle as an example, for a 1-2 node domain partition having node 1 on Ω + . For a given displacement d 1 of this node, there are infinite ways to make a [|u|] n0 , [|u|] t0 , θ, ϵ t distribution in such a way that the resulting Ω + motion returns the same d 1 displacement on node 1 (See Fig. 2.9). [Linder et Armero, 2007] propose a numerical workaround to this problem by making use of Lagrange multipliers to relax unconstrained parameters during the solution process. This still leaves the question of physical meaningfulness and legitimacy of one solution over any other.

Finally, we already know the risk of forcing a definition of any G sb -related operators without making a direct assessment of φ. None of the previous relations actually ensures satisfaction of any of the main requirements for φ in Eq. 2.3. [Linder et Armero, 2007] mention the possibility to integrate G ′ sb to inquire about φ but this process is far from trivial given the multiple gradients implied in Eq. 2.5. A lot of information about the specific φ giving rise to the given G ′ sb has been already lost at this point. The only evident fact would be that φ remains far from linear. The next section will take this development state as a departure point, and will continue to work on a 3D setting.

Formulation approach proposal for three dimensional problems

This section makes a formulation proposal considering all the fundamentals from Sections 2 and 3 as well as the issues found during the evolution of different strong discontinuity modeling approaches described in section 4. At the end, this proposal is not meant to eradicate all the theoretical faults analysed so far. It is rather meant to make its best to reach a sound compromise between a theoretically sound E-FEM formulation but still operationally attractive. The key is to really retain mathematical robustness, ease of implementation and mesh independence as much as possible, which are the key characteristics that make the E-FEM framework attractive.

A consistent enrichment for φ

In section 2.4.2 the role of the function φ has been discussed. φ allows for a consistent boundary condition imposition, but it also introduces a mesh dependency that generates an unwanted coupling between traction components at the fracture surface. This in turn compromises the physical meaning of fracture displacement variables [Wells, 2001] proposed a fix, but is not completely effective due to a violation of the mathematical framework.

[|u|] n , [|u|] t , [|u|] m .
The theory described in Section 2 and 3 can be used to make a consistent φ proposal. The idea is to propose a φ with enough flexibility to both satisfy the requirements in Eq. 2.3 and the nullification of the out-of-diagonal terms of the M matrix in Eq. 2.40, as well as any other eventual requirements.

Recalling the analysis made in Section 2.3.2.1, it is allowed to increase the complexity for the definition for φ as long as it remains within the C 0 class of functions (continuous, derivative not necessarily continuous). It does not have to follow the same polynomial degree than the parent element. As an example, for a linear tetrahedron, a complete quadratic definition for φ is perfectly valid: Controlled/parameterised definition for the φ function

φ = P T 2 α α = α 0 α 1 α 2 α 3 α 12 α 23 α 13 α 11 α 22 α 33 P 2 = 1 x y z xy yz xz x 2 y 2 z 2 t (2.55)
This increase in order for φ implies an increase in order for the element strain field ε through G sb (Eq. 2.11), and thus for the calculated stress field σ (ε). If the real stress field σ is chosen to follow the natural order in the parent element (a constant field for a linear tetrahedron), the strong constitutive equality (Eq. 2.8b) will not be possible and stresses σ will have to be calculated through volume averages (Eq. 2.21).

On the other hand, the advantage of having a discordance of σ (ε) with respect to a constant σ field is that absolutely nothing will change in the treatment of the EAS part of the framework (Section 2.3.2.4). This means that Eq. 2.27 can still be used for managing a constant expression for G * sb .

The integrand in Eq. 2.29 is not constant anymore. This means that the integration process for all traction calculations will have to consider the geometric parameters of Γ d as well as the specific geometries of the subvolumes Ω + and Ω -. Eventually, after vanishing all variable terms of the base P 2 through definite integration, an expression for the fracture stiffness matrix M as a function of φ coefficients α will be attained. As per Eq. 2.40, we know that M remains almost symmetric, where the respective out-ofdiagonal term pairs (M ij , M ji ) share the same internal products ( tT Ψ ), ( mT Ψ ), and that there is already a pair (M tm , M mt ) which is zero. Thus, nullifying the out-of-diagonal terms in M for avoiding unwanted traction couplings implies the imposition of two additional linear equations on the α coefficients:

Manual diagonalisation of the fracture stiffness matrix M tT Ψ (α) = 0 → M nt (α) = 0, M tn (α) = 0 (2.56a) mT Ψ (α) = 0 → M mt (α) = 0, M tm (α) = 0 (2.56b)
Adding this to the basic φ requirements (Eq. 2.3, four linear equations on k φ ) makes a total of 6 linear constraints. As a complete quadratic base P 2 allows for a total of 10 free parameters, it is completely feasible to design a φ function capable of satisfying BC imposition consistency at the same time that mechanical requirements for traction behaviour.

While the relations 2.56a and 2.56b ensure diagonalisation of the fracture stiffness matrix M, there is nothing that ensures that the magnitude of these diagonal components is physically meaningful. Each diagonal term M jj independently controls the fracture stiffness associated to each displacement [|u|] j . These displacements should be consistent with the element standard nodal displacement vector d. As expected, φ can also help on this errand by imposing additional conditions for the diagonal fracture stiffness terms. Note that, as per Eq. 2.40, the diagonal terms are not independent, and only one single constraint would be needed to regulate them all.

The case depicted in Fig. 2.4 is taken as a reference for devising such constraints. For a 2-1 node partition on a 2D triangle, it is easy to find an exact relation between, for instance, the fracture normal separation [|u|] n and the normal displacement ∆d n of a single isolated node partition on Ω + : they should be equal. For other configurations however, like a 2-2 node partition on a tetrahedron, it is not evident to assign a constraint on two independent nodes versus a single rigid body displacement: there are multiple ways to do so and none of them would be rigorously correct. This work proposes to take the average separation ∆d between the groups of nodes on Ω + and Ω -:

∆d = d + -d - (2.57a) ∆d = p i d i p i - (1 -p i ) d i (1 -p i ) , (2.57b) 
Taking the normal direction n, we require:

[|u|] n = ∆d n = nT ∆d (2.58)
At this point, it will be assumed that φ has been already arranged as to diagonalise M through Eqs. 2.56a, 2.56b. With this, at terminal conditions, we can practically use the first equation of the system in Eq. 2.33 to finally arrive to a linear constraint for M nn :

T en + M nn [|u|] n = 0 nT K e d + M nn nT ∆d = 0
Fracture stiffness attuning for terminal separation conditions

M nn (α) = M nn∞ = - nT K e d nT F t pi - I T 3(4) -F T (1-pi) d (2.59)
Chapter 2 General consistency of strong discontinuity kinematics in E-FEM formulations Proper block matrix algebra has been used to express this constraint in terms of the complete vector d, using some auxiliary matrix blocks:

F T = p 1 I 3 p 2 I 3 p 3 I 3 p 4 I 3
(2.60a)

I T 3(4) = I 3 I 3 I 3 I 3 , (2.60b)
having the 3 × 3 identity matrix I 3 as the basic block.

Note that in Eq. 2.59, we are defining a component of M in terms of a nodal displacement vector d, which is the load imposed to the element. As the solution for all α coefficients takes place only once when reaching localisation, the load vector taken into account is precisely that corresponding to the closest localisation state for the element. For the kinematics to remain perfectly consistent under the definition of this M nn stiffness, the load path would have to remain proportional. This is highly unlikely during a global fracture phenomenon, since there are different loading and relaxation stages within the same element that would make d to change direction in an aggressive fashion. M nn can be updated as well in such cases. This will imply more than one solution for the α coefficients.

Imposing the constraint on a different component M tt , M mm will yield the same overall results given that a scaling factor of c s /c n1 is used as per Eq. 2.40. As this represents only one additional linear constraint on the system for the α coefficients (making 7 constraints and 10 free parameters), once again it is still possible to build a proper φ function handling all requirements at once. The next discussion will continue to explore the flexibility of φ under the light of fracture kinematics enrichment for 3D elements.

Fracture kinematics enrichment in 3D coexisting with φ

In Section 2.4.3, an introduction has been made to a more general definition of fracture kinematics. The approach has been partially illustrated for a 2D parent element following the work in [Linder et Armero, 2007], where an explicit φ is practically disregarded. This section will describe a detailed application for a 3D element, including the clear distinction and managing of the φ function. The process starts with the same definition of [|u|] as a linear field vector, but for three dimensions in the local frame:

[|u|] =   [|u|] n [|u|] t [|u|] m   =   a n η + b n ζ + c n ξ + d n a t η + b t ζ + c t ξ + d t a m η + b m ζ + c m ξ + d m   , (2.61)
where each of the parameters a j , b j , c j , d j is to be related to different fracture kinematic modes ξ k . It can be shown that such linear field structure allows for the modelling of three rigid body translations

[|u|] n0 , [|u|] t0 , [|u|] m0
, three rigid body rotations θ n , θ t , θ m and three axial deformations (associated to

Ω + ) ϵ n , ϵ t , ϵ m .
Figure 2.10 illustrates how to build the relations between all 3D rotation modes and the parameters a j , b j , c j , d j . The general idea is to make a careful geometric interpretation for the meaning of each parameter by introducing a small variation while keeping all the remaining parameters at zero. This helps to build simple equations to relate these parameters to each fracture mode ξ k . At the end, if small-angle approximations are allowed, the fields are finally expressed as:

  [|u|] n [|u|] t [|u|] m   =   -θ m η + θ t ζ + ϵ nn ξ + [|u|] n0 ϵ tt η -θ n ζ + θ m ξ + [|u|] t0 θ n η + ϵ mm ζ -θ t ξ + [|u|] m0   = Jξ (2.62)
From this point, an expression for the intermediary matrix J can be readily made having a definition for the vector ξ:

Jξ =   1 0 0 0 ζ -η ξ 0 0 0 1 0 -ζ 0 ξ 0 η 0 0 0 1 η -ξ 0 0 0 ζ                 [|u|] n0 [|u|] t0 [|u|] m0 θ n θ t θ m ϵ nn ϵ tt ϵ mm               (2.63) Figure 2
.10: Relations between the parameters ai, bi, ci, di and the rigid body rotation modes θn, θt, θm. Note that two parameters may be influenced by the same rotation mode. Each plot illustrates the effect of having a small rotation in the axes corresponding to θn, θt, θm, respectively.

With this analysis, Eq. 2.5 can be worked for a general definition for the strain field ε considering both ξ and φ. As all structures having to do with the enriched kinematics and J are in the local fracture surface frame (ξ, η, ζ), it makes sense to work all further developments on the local frame from now on. The same bounded-unbounded structure for ε can be derived:

G ′ s operators, enriched modes formulation ε = Bd + [G ′ sb + G ′ su ] ξ (2.64a) G ′ sb = H Γ ∇J -(φ∇J) -∇φJ (2.64b) G ′ su = δ Γ H s J (2.64c)
The term (φ∇J) has been grouped because it is not the product of a deformation gradient operator on J and φ, but rather a compound operator. The Heaviside function H Γ also forces a distinction between a bounded operator defined on Ω + (G ′+ sb ) and on Ω -(G ′- sb ).

In general, (G ′± sb ) will be an explicit function of φ coefficients α. To start the kinematic linking process between fracture modes and nodal displacements followed in Section 2.4.3, the requirement stated on Eq. 2.52 can be worked on a subvolume-basis:

G ′± sb ξ = 1 V ± Ω ± G ′± sb dV ξ = -Bd, (2.65)
where the averaged operators G ′± sb will be explicitly linear matrices on the coefficients α.

The linking of each kinematic mode will establish a series of linear equations on each of the column elements of G ′± sb . For instance, the first mode [|u|] n0 already studied in Section 2.4.3 for two dimensions, would require satisfaction of exactly the same form of Eq. 2.54. Fortunately, it can be shown that the first column of G ′± sb has exactly the same zeros as B i , so that in local base the following would be obtained:

G ′± sb [|u|] n0 =           G ′± sb 1[|u|] n0 (α) 0 0 G ′± sb 4[|u|] n0 (α) 0 G ′± sb 6[|u|] n0 (α)           = - Ne i p i         B ni 0 0 B ti 0 B mi         , (2.66)
where the first index l in the

G ′± sb l[|u|] n0
scalars is just the row placement. By looking at this structure, it can be seen that linking this kinematic mode requires satisfaction of three linear equations on the α coefficients. The specific expressions for

G ′± sb 1[|u|] n0 , G ′± sb 4[|u|] n0 , G ′± sb 6[|u|] n0
have to be retrieved by working φ and ξ in Eq. 2.64b and then taking the volume averaged integral demanded in Eq. 2.65. Note that φ is to be expressed as a function of local coordinates (ξ, η, ζ), and subvolume coordinate description in the local frame will be also required for evaluating the volume-averaged integrals.

The linking of some kinematic modes can be more demanding than others. Some will even repeat linear equations and these can be naturally omitted, e.g., the first three columns of G ′± sb which contain repetitions of the simple partial derivatives φ ,ξ , φ ,η , φ ,ζ . This depends on the symmetry of the kinematics defined and the model of the strong discontinuity overall. At the end, it is true that the demands for φ will do nothing but to increase, as the φ free parameters are the only way to satisfy these relations. As a result, a full quadratic base proposal P 2 might not be enough to fulfill all these requirements additionally from Eq. 2.3 and other constraints on the fracture stiffness matrix M: nullification of non-diagonal terms (Sys. 2.56) and terminal separation conditions (Eq. 2.59). While increasing the polynomial base order of φ might a quick and tempting option, there are also other options for improvement:

• As mentioned already in Section 2.2.1, it is not required to have the same φ structure associated for all fracture displacement components [|u|] n , [|u|] t , [|u|] m . Indeed, three different functions φ n , φ t , φ m may coexist in the model:

φ   [|u|] n [|u|] t [|u|] m   →   φ n 0 0 0 φ t 0 0 0 φ m     [|u|] n [|u|] t [|u|] m   (2.67)
While this might apparently triple the amount of free parameters, some of the model symmetries that allowed for redundancy simplifications will no longer emerge. As an example, the basic deformation gradient operator on φ (the first three columns of G ′± sb ) will now have all different terms with respect to the one developed with a single φ:

        φ ,ξ 0 0 0 φ ,η 0 0 0 φ ,ζ φ ,η φ ,ξ 0 0 φ ,ζ φ ,η φ ,ζ 0 φ ,ξ         →         φ n,ξ 0 0 0 φ t,η 0 0 0 φ m,ς φ n,η φ t,ξ 0 0 φ t,ς φ m,η φ n,ς 0 φ m,ξ         (2.68)
On the other hand, basic φ requirements in Eq. 2.3 will now require the triple of linear relations for boundary condition consistency: one set for each φ n , φ t , φ m .

φ n (x i ) = p i (2.69a) φ t (x i ) = p i (2.69b) φ m (x i ) = p i (2.69c)
While there is evidently a trade-off, there is still a gain in the effective number of free parameters in the global φ structure, without the need to modify the complexity of the algebraic base of it.

• In general, φ has only a C 0 continuity requirement. This means that while the function itself is required to be continuous through space, its derivatives are not. This allows for a piece-wise definition for φ. The most natural choice is to propose a first function for Ω + and then a second one for Ω -.

Piece-wise φ does not increase the number of equations for Eq. 2.3 requirements, but it still breaks some of the model symmetries. There will be also new linear equations to satisfy, which are associated to the basic C 0 continuity of φ at Γ d :

φ - Γ d = φ + Γ d , (2.70)
which will depend on the nature of the base P chosen for the structure of φ. For a P 2 base, C 0 continuity requires six linear relations. Again, the gain in free parameters is worth the trade-off.

By considering the combination of both options, φ can globally add up to 120 free parameters using a complete P 3 base. While this might seem just too much, the E-FEM model managed in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] which features also a weak discontinuity to represent different material phases within the element, requires approximately 110 linear relations to reach full consistency as described in this work. This process is carried out only one time for each element that has reached localisation. This last model is the one definitively used for later element simulations in this work. The reader can find the detail on the mode linking expressions as well as general φ handling on C.

A comment on linear system handling

Calculation of all φ parameters based on all kinematic considerations may represent a formidable linear system depending on the parent element needs. The more complex the overall definition for φ is (C), the hardest is to ensure the well-posedness of this linear system on the α coefficients. This is basically the price to pay when building a more robust kinematic model depending on φ.

On one hand, the linear dependency issues arising for some conditions during the construction of the columns of G ′± sb (discussed in Section 2.4.3) will still be present on the 3D proposal. This will render sometimes the linear system globally overconstrained (for the total number of equations) and locally underconstrained (impossible to find an unique solution for some groups of parameters).

On the other hand, for complex φ structures many symmetries in the overall kinematic model are lost. As an example, the structure of the M matrix deduced in Eq. 2.40 is not guaranteed for a piecewise, direction dependent, P 3 definition for φ. This implies that more α coefficients have to be used to re-enforce some desired constraints. It is not known by the author of this work if this leads to the introduction of additional linear relations that might contradict some others already present in the system, thus compromising well-posedness.

To avoid the need of introducing complex numerical relaxation mechanisms during the solution of the α coefficients system, this work has used a Singular Value Decomposition (SVD) approach [Brunton et Kutz, 2019]. The SVD approach basically takes the system, whether under or overconstrained, and solves whether for the least-square-optimal solution for overconstraints or for the minimum value possible for free independent variables if underconstrained. The SVD decomposition is only made once the element reaches localisation. Once definite values are obtained for the α coefficients, the G ′± sb can be numerically populated and these can be used for the rest of the load steps in the numerical analysis.

Further treatment of the traction separation law system

The introduction of additional fracture variables poses questions on how to handle the traction-separation part of the framework. The procedure depends basically on how the virtual fracture displacement field δ [|u|] is discretized and the impact on the structure of Eq. 2.25. While the real fracture displacement field vector [|u|] effectively requires a 9 variable interpolation matrix through φ and J, the virtual counterpart δ [|u|] does not have to share the same structure. δ [|u|] can still be assumed as a three constant field vector, or it can take the same detailed description as [|u|]. The Hu-Washizu framework allows this.

In this case, Eq. 2.25 retains exactly the same structure having the real stress interpolation matrix S and the EAS operator G * sb . Despite the fact that now we have a G ′± sb considering the ξ related upgrades, the EAS definition for G * sb does not have to consider any structures from the enriched fracture kinematics. The only requirement for the EAS definition of G * sb is just to have the same boundedunbounded composition featuring a Dirac delta and a projection operator H s as a minimum. This will allow the emergence and equality of the traction vector terms from Eq. 2.24 onwards.

Eq. 2.32 will return a new system with an enriched set of 9 variables in ξ:

T = T e + Mξ,
(2.71)

where T e remains exactly the same as per Eq. 2.38. Note that if the work is already done on the local frame, there is no need to use the rotation matrix R anymore. The expression for base fracture stiffness matrix M will have an updated definition:

Crack stiffness matrix M, enriched modes formulation

M =   1 V e Ω H T s CG ′ sb dV   ξ = 1 V e H T s C Ω G ′± sb dV M = 1 V e H T s C V + G ′+ sb + V -G ′- sb (2.72)
Here, all matrices have been already assumed in the local frame to avoid further transformations, and the definitions implied in Eq. 2.65 have been used. Note that matrix M now has dimensions 3 × 9.

The original three traction separation laws associated to traction components T n , T t , T m will return an underdetermined system: Traction-separation system, enriched modes formulation

T n = T en + k M nk ξ k = q n (ξ)
(2.73a)

T t = T et + k M tk ξ k = q t (ξ) (2.73b) T m = T em + k M mk ξ k = q m (ξ) , (2.73c) 
where q n , q t , q m are decaying expressions controlling the overall magnitude of T n , T t , T m until reaching fracture terminal conditions, where T n , T t , T m should be zero.

To fully determine the fracture mechanics, six additional relations are needed. Three equations can be proposed to explicitly damage the σ ij terms left untouched by the original approach: σ tt , σ tm , σ mm (Eq. 2.45). This additional damaging process can be done through additional traction-separation equations with specific decay behaviours. This brings a set of three additional equations to the system:

Complementary damage equations

σ tt = T tt + k M t tk ξ k = q tt (ξ)
(2.74a)

σ tm = T tm + k M t mk ξ k = q tm (ξ) (2.74b) σ mm = T mm + k M m mk ξ k = q mm (ξ) , (2.74c)
where the new load-driven terms T tt , T tm , T mm are calculated using the same structure as Eq. 2.38, but now using stress projection operators H st , H sm in the remaining local directions t, m, respectively:

H st =         t x 0 0 0 t y 0 0 0 t z t y t x 0 0 t z t y t z 0 t x         , in local frame : H st =         0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0         (2.75) H sm =         m x 0 0 0 m y 0 0 0 m z m y m x 0 0 m z m y m z 0 m x        
, in local frame :

H sm =         0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0         , (2.76)
and then using analogous expressions for new load-driven traction vectors T et , T em for finally projecting to t, m and obtaining the desired components:

T et = K et d =   1 V e Ω H T st CBdV   d = H T st CBd
(2.77)

T tt = T et • t, T tm = T et • m (2.78) T em = K em d =   1 V e Ω H T sm CBdV   d = H T sm CBd (2.79) T mm = T em • m, (2.80) 
The stiffness vectors M tt , M tm , M mm are calculated the same way as the rows of the original M matrix, but using the newly defined projection operators H st , H sm :

M t = 1 V e H T st C V + G ′+ sb + V -G ′- sb (2.81) M tt = tT M t , M tm = mT M t (2.82) M m = 1 V e H T sm C V + G ′+ sb + V -G ′- sb (2.83) M mm = mT M m (2.84)
It is important to remark that introducing the system of Eq. 2.74 is not the same as enforcing an artificial decay on σ tt , σ tm , σ tt as in Section 2.4.1. We're systematically involving all fracture modes ξ k in both systems (Eqs. 2.73 and 2.74). Simultaneous solution of these systems will ensure kinematically and statically consistent values for ξ nullifying σ tt , σ tm , σ tt , which should not exist at all once the crack develops.

The overall system in ξ still remains underdetermined. The last remaining three equations are free to implement more effects in fracture dynamics without having to resort to φ parameters exclusively. For example, three final relations could be established to finish the uncoupling of rigid body translations within system in Eq. 2.73 by grouping and isolating the effects of all other kinematic modes different than rigid body displacements:

System closing equations

M nθn θ n + M nθt θ t + M nθm θ m + M nϵn ϵ n + M nϵt ϵ t + M nϵm ϵ m = 0
(2.85a)

M tθn θ n + M tθt θ t + M tθm θ m + M tϵn ϵ n + M tϵt ϵ t + M tϵm ϵ m = 0 (2.85b) M mθn θ n + M mθt θ t + M mθm θ m + M mϵn ϵ n + M mϵt ϵ t + M mϵm ϵ m = 0 (2.85c)
This way, the system is completely closed and a complete solution for ξ can be found at each load state d after element localisation. The approach ensures that σ tt , σ tm , σ mm get progressively suppressed as the fracture develops. On the other hand, it might seem awkward to have a δ [|u|] discretized very differently with respect to [|u|], but this already happens with other fields within the framework.

Elemental validations

In this section, calculations with a single element have been done on many of the discussed formulations to illustrate the quality and pertinence of the results concerning fracture mechanics and element kinematics. Five models will be will be presented in a progressively complex fashion, going from a single mode approach up to the latest formulation proposal of Section 2.5. A graphical comparison will be made between all models, covering static behaviour (evolution of the fracture traction and its related stress state) and kinematic behaviour (consistency between internal kinematic modes and true element kinematics through d). This will allow to see how the framework gains robustness and physical meaningfulness overall as the formulations evolve.

Many authors working on the 3D version of the framework perform element-level calculations with an idealized regular element geometry and fracture orientations. The load direction is also often well-aligned to element edges or faces. Fig 2.11 shows examples of such cases on a linear tetrahedron for tension and shear testing. As discussed in previous sections, these conditions will hide the framework deficiencies since these are often the conditions in which almost all formulation versions will work properly. These will be referred to as vanilla conditions. Obtaining meaningful results using vanilla conditions at element level does not guarantee successful numerical simulations with larger scale models. It can be easily seen that even a simple large scale model such as a cubical material sample with a tetrahedral unstructured mesh in pure tension will generate far from vanilla conditions at local element level. If element fracture planes are generated through free and spontaneous element localisations, a complex loading-unloading state will be observed with plane orientations having random partition types between nodes in all elements. In some elements, the combination of element geometry and the nodal displacement vector d will be such that it will activate complex kinematic modes (Section 2.5.2), and a formulation not prepared for this will inevitably fail to return physical or even mathematically meaningful results.

A robust E-FEM formulation should be able to undertake such scenarios to be truly useful. From the view of the author of this work, there is no point in moving forward with a formulation if it is not capable of passing a realistic element test. This is the reason why this section presents the results at element level. We have taken one of such non-vanilla element samples coming from a real large scale model, having a specific geometry and fracture plane orientation.

An approximate illustration of the chosen element (again, a linear tetrahedron) is shown in Fig. 2.12. It has a characteristic length of approximately 1mm. The reference frame is such that the normal axis to the fracture plane n is almost perfectly aligned with the global z direction, but not to any of the tetrahedron's faces. The remaining parallel directions t, m are not aligned with the x, y directions. It has a 2-2 node partition with the volume of Ω -representing approximately 5% of total elemental volume while Ω + having the rest.

Figure 2.12: Two different views of a realistic element taken as the reference for the numerical simulations to test all formulations described in this work.

The load displacement vector d has been built in such a way that it helps to validate the kinematic consistency of the formulations. For this, load requirements are proposed as a function of the generalized fracture kinematic modes ξ k described in Section 2.5.2. A monotonic, nonlinear behaviour is prescribed for each of these modes, reaching a final target value. A load progression factor β between 0 and 1 is used to calculate any intermediate value between the starting point (zero) and the target value. Figures 2.13a, 2.13b and 2.13c show the chosen behaviours for each ξ k . For this case, a quadratic behaviour has been assigned for rigid body translations, an inverted exponential behaviour for rigid body rotations and a radical behaviour for simple axial strains.

The load demand overall remains a composition of strong rigid body displacements along with mild rotations and strains, having an emphasis on normal separation. All kinematic modes are activated without exception. The load proposed ensures the element arrives to terminal separation conditions at target values. The load displacement vector d associated to this particular evolution of the modes ξ k can be retrieved by knowing beforehand the nodes of the element corresponding to the Ω + domain and the mode linking equations discussed in Section 2.5.2. Once again, expressions have been explicitly detailed in the C. Starting from a load d 0 corresponding to element localisation, the effective d prescription can be calculated as a superposition of all effects:

d (β) = d 0 + m,n,t j d [|u|] j (β) + m,n,t j d θj (β) + m,n,t j d ϵj (β) , (2.86)
where d [|u|] j are the displacement vectors associated to rigid body translation demands, d θj for rigid body rotations and d ϵj the displacements related to simple axial strains.

Since the load requirements are finally prescribed based precisely on a controlled local fracture kinematics behaviour, a good E-FEM formulation should return a kinematics calculation ξ as closest and most consistent as possible with the source fracture kinematics, now referred to as ξ ref : the kinematic reference.

As mentioned before, the element is assumed to have already gone through localisation with a given stress state σ y at the fracture plane:

  σ ynn σ ynt σ ynm σ ytn σ ytt σ ytm σ ymn σ ymt σ ymm   → σ y =         σ ynn σ ynt σ ynm σ ytt σ ytm σ ymm         =         9.0 0.0 0.0 2.5 0.138 1.459         MPa,
where σ ynn , σ ytn , σ ymn correspond to the components of the traction vector T n , T t , T m at localisation. These are calculated through a specific localisation criterion in the element, which in this case has been a Rankine criterion. The remaining components σ ytt , σ ytm , σ ymm are found by projecting the entire state of stresses to t and m exactly at this load level. The traction-separation equations consider an exponential decay law for all pertinent fracture traction/stress components:

q j = σ yj e - σy nn G f I [|u|] n 0 + σy nt G f II [|u|] t 0 + σy nm G f II [|u|] m 0 , (2.87)
where σ yj are each of the aforementioned initial fracture yield stress components. Note that the exponential argument is exclusively controlled by the fracture kinematics corresponding to rigid body translations. G f I , G f II are the associated fracture energies for fracture separation [|u|] n0 and fracture sliding

[|u|] t0 , [|u|] m0
, respectively. This is a particular proposal that will conveniently fit all formulation types proposed so far, although richer proposals could be made for the generalized kinematics approaches.

All calculations have been done using SageMath 8.7 [The Sage Developers, 2019] mathematical open software on a Jupyter notebook 5.7.6 [START_REF] Kluyver | Jupyter notebooks -a publishing format for reproducible computational workflows[END_REF] platform. This has included all symbolic integrations to handle all enhancement functions parameters and operators such as φ, J and G ′ sb . All numerical procedures such as SVD operations and linear system solutions have been treated in this platform, as well. Graphical visualisation of the realistic element in question (Fig. 2.12) was also originally done using these tools.

In the following subsections, five different formulation versions will be described in order of increasing complexity. At the end, a graphical comparison will be made on their kinematic and static behaviours: the evolution of the relevant fracture kinematic state variables and the fracture stress state variables over load progression starting from localisation.

Single mode formulation

For a single mode approach, the calculation begins by considering rigid body translations [|u|] m , and having only one of them different than zero (Section 2.4.1). To follow the example, a normal separation calculation will be made, leaving thus [|u|] t = 0, [|u|] m = 0. The φ function remains linear and unique, so that G sb adopts its simplest way possible as a constant matrix (Eq. 2.37). The approach can be summarized in Table 2.1.

[|u|] n , [|u|] t ,

Single Mode Formulation

Kinematic modes :

[|u|] n Linear, known φ : The approach considers only the first equation of the traction-separation law system, and solves for [|u|] n . This solution implies finding the intersection between a straight line T en + M nn [|u|] n and the nonlinear behaviour σ yn e -σynn G f I [|u|] n . The solution can be expressed in a closed, explicit form using the main branch of the Lambert function W 0 [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF].

φ = α 0 + α 01 x + α 01 y Fixed, constant G sb : G sb = - Ne i p i B i Traction-separation system : T = T e + M [|u|] n = q ([|u|] n) Nullify [|u|] t , [|u|] m : [|u|] t = 0, [|u|] m = 0 Solve only for [|u|] n : T en + M nn [|u|] n = σ ynn e - σy nn G f I [|u|] n Calculate T n , T t , T m : T n = T en + M nn [|u|] n T t = T et + M tn [|u|] n T m = T em + M mn [|u|] n Calculate σ : σ = Cε = C (Bd + G sb n [|u|] n ) Determine σ tt , σ tm , σ mm : σ tt = tT σ t, σ tm = tT σ m σ mm = mT σ m (2.88)
After a solution for [|u|] n is obtained, the approach then proceeds to calculate the remaining statics of the fracture plane, mainly the three fracture traction components T n , T t , T m . At last, the remaining components of the state of stresses σ tt , σ tm , σ mm are retrieved for reference by calculating the entire stress σ (Eq. 2.14) and its projection to the corresponding directions.

Full translation formulations

The next step is to consider formulations that make complete liberalisation of all fracture displacement components

[|u|] n , [|u|] t , [|u|] m (Section 2.4.
2). Two versions from this family are considered for elemental simulations, depending on their assumptions taken on the φ function. One considers a classical linear definition for φ (and therefore a constant G sb ), representing the direct extension of the single mode approach of the previous section. The other builds a quadratic φ that helps the diagonalisation of the M matrix as well as for kinematic consistency at terminal separation conditions. Regardless of the φ assumptions, these formulations require a solution for the three-variable nonlinear system:

T = T e + M [|u|] = σ y e - σy nn G f I [|u|] n + σy nt G f II [|u|] t + σy nm G f II [|u|] m , (2.89)
which still has a closed, analytical solution using condensation techniques and the same Lambert W function W 0 approach. The first three-mode approach is summarized in Table 2.2.

Three Modes Formulation, Fixed φ

Kinematic modes : [|u|] n , [|u|] t , [|u|] m
Linear, known φ : For this case, the calculation of the traction vector components T n , T t , T m and the stress components σ tt , σ tm , σ mm is done exactly the same way as with the single mode approach using the solution values for

φ = α 0 + α 01 x + α 01 y Fixed, constant G sb : G sb = - Ne i p i B i Traction-separation system ↘ Solve for [|u|] n , [|u|] t , [|u|] m : T = T e + M [|u|] n = q ([|u|] n) Calculate T n , T t , T m ↗ Calculate σ : σ = Cε = C (Bd + G sb R [|u|] n) Determine σ tt , σ tm , σ mm : σ tt = tT σ t, σ tm = tT σ m σ mm = mT σ m (2.90)
[|u|] n , [|u|] t , [|u|] m .
The other three-mode approach will go forward and consider a more complex definition for the φ function, namely a quadratic one, as discussed at the beginning of Section 2.5.1 supported by a complete P 2 quadratic polynomial base (Eq. 2.55).

Ten free parameters (α coefficients) are available with this φ proposal. These will be used to build a linear system satisfying specific kinematic and static conditions: four of them to satisfy the basic boundary condition imposition requirements (Eq. 2.3), two for driving out-of-diagonal M ij fracture stiffness terms to zero (Eq. 2.40) and a last one to achieve consistent terminal separation conditions according to Eq. 2.59. This makes seven linear constraints, which leaves three free parameters. An SVD approach is used (Section 2.5.3) to manage these conditions and to look for the α coefficient vector with the smallest norm possible.

Once α is solved for, the element internal solution process continues as usual, solving the three-variable system and calculating the fracture traction vector. The complete fracture stress σ has to be calculated using a volume average (Eq. 2.21) as G sb is no longer constant in space. Please refer to Table 2.3.

Enriched kinematics formulation

The last formulation type uses full enriched fracture kinematics as described in Sections 2.4.3 and 2.5.2 through a generalized mode vector ξ:

ξ = [|u|] n0 [|u|] t0 [|u|] m0 θ n θ t θ m ϵ n ϵ t ϵ m t ,
counting three rigid body displacements, three rigid body rotations and three simple axial strains. Once again, two different models from this family are included in the present analysis: one considering a fixed definition for φ and the other a more complex, parameterised one.

For a fixed φ approach, the idea is to numerically define the G ′± sb operators by calculating each column corresponding to each of the modes ξ k using kinematic mode linking relations. The process was already Three Modes Formulation, Controlled φ Kinematic modes :

[|u|] n , [|u|] t , [|u|] m
Quadratic, unknown single φ : discussed in Section 2.4.3 for 2D as originally conceived in [Linder et Armero, 2007]. The same idea is brought now to the current three-dimensional problem. The specific expressions for each of the columns for G ′± sb are explicitly detailed in C ("right side expressions"), as well as all the rationale behind the kinematic mode linking in a 3D context. There is no need to look after the original shape for the φ function. This formulation is summarized in Table 2.4.

φ = P T 2 α Linear G sb , function of α : G sb = - Ne i p i ∇φ (α, x, y, z) Solution for α coefficients : φ(x i , α) = p i , M i̸ =j (α) = 0 M nn (α) = M nn∞ Traction-separation system ↘ Solve for [|u|] n , [|u|] t , [|u|] m : T = T e + M [|u|] n = q ([|u|] n) Calculate T n , T t , T m ↗ Calculate σ : σ = 1 V e C [Bd + G sb R [|u|] n] dV Determine σ tt , σ tm , σ mm : σ tt = tT σ t, σ tm = tT σ m σ mm = mT σ m (2.91)

Enriched Modes Formulation, Fixed φ

Kinematic modes

: [|u|] n0 , [|u|] t0 , [|u|] m0 θ n , θ t , θ m ; ϵ n , ϵ t , ϵ m Fixed (unknown shape) φ : Not used explicitly Fixed columns for G ′± sb : G ′± sb k ξ k = -Bd k Traction-separation system : T n = T en + M n nk ξ k = q nn (ξ) T t = T et + M n tk ξ k = q nt (ξ) T m = T em + M n mk ξ k = q nm (ξ)
Complementary damage :

σ tt = T tt + M t tk ξ k = q tt (ξ) σ tm = T tm + M t mk ξ k = q tm (ξ) σ mm = T mm + M m mk ξ k = q mm (ξ)
Closing constraints : Once the G ′± sb operator is populated, the approach follows the ideas proposed in Section 2.5.4 for building the three equation system depicted in 2.71 for the traction vector components T n , T n , T n . Three additional equations for damaging the fracture stress components σ tt , σ tt , σ tt are built as well following the structure in 2.74. The last required three equations are taken from 2.85, which help to uncouple fracture translations completely. Again, it is remarked that these last three auxiliary equations are proposed to close the system completely and to further help giving a physical sense to the kinematic modes ξ k , using some of them as buffer variables. At the end, a 9 × 9 nonlinear system is obtained, regardless of the φ approach. Once the system is solved, all fracture statics variables (T n , T t , T m , σ tt , σ tm , σ mm ) will be available directly.

A lk ξ k = B l , l = 1, 2, 3 Solve for ξ Calculate T n , T t , T m ↗ Calculate σ tt , σ tm , σ mm (2.92)
The controlled φ version of this model deals with a considerably more complex φ definition compared to that used on the three-mode approach: a full cubic, piece-wise, triple φ function capable of delivering up to 120 free parameters. The G ′± sb operators will be dependent on the α coefficients following the discussion of Section 2.5.2, and mode linking relations will serve to build linear restrictions on α. The specific structure of the complete linear system on α for this proposal is detailed in the C. It makes a total of 117 linear constraints. An SVD solution approach is once again used to avoid under/overconstraint problems. Once the α system is solved, the static solution process continues exactly the same as mentioned before. The approach is stated in Table 2.5.

Enriched Modes Formulation, Controlled φ Kinematic modes : [|u|] n0 , [|u|] t0 , [|u|] m0 θ n , θ t , θ m ; ϵ n , ϵ t , ϵ m
Cubic, Piece-wise, triple φ :

φ ± j = P T 3 α ± j , j = n, t, m Quad. G ′± sb , function of α : G ′± sb (α) = H Γ ∇J -(φ∇J) -∇φJ Solution for α coefficients : G ′± sb k (α) ξ k = -Bd k φ(x i , α) = p i φ + (α) Γ d = φ -(α) Γ d M i̸ =j (α) = 0, i, j = n, t, m M nn (α) = M nn∞ , M tt (α) = M tt∞ M mm (α) = M mm∞
Traction-separation system :

T n = T en + M n nk ξ k = q nn (ξ) T t = T et + M n tk ξ k = q nt (ξ) T m = T em + M n mk ξ k = q nm (ξ)
Complementary damage :

σ tt = T tt + M tti ξ i = q tt (ξ) σ tm = T tm + M tmi ξ i = q tm (ξ) σ mm = T mm + M mmi ξ i = q mm (ξ)
Closing constraints : 

A lk ξ k = B l , l = 1, 2, 3 Solve for ξ Calculate T n , T t , T m ↗ Calculate σ tt , σ tm , σ mm (2.93)

Results and discussion

A series of plots is presented next to make a direct comparison of the results obtained from the elemental simulations for the five formulations types. The results are divided in two sections: static analysis and kinematic analysis. The static analysis pertains the results of all fracture traction vector components

T n , T t , T m and the fracture stress state components σ tt , σ tm , σ mm . The kinematic analysis concerns the behaviour of the pertinent kinematic modes (one for the single formulation, three for the full translation and nine for the completely enriched formulations) and their comparison to the kinematic reference already defined at the beginning of this section.

Static results

The load profile is conceived with enough crack separation and sliding for placing the element at terminal separation conditions. The Ω + and the Ω -regions thus act as completely independent bodies, and no forces shall be exerted from one body to the other at all. This means that all fracture traction vector components T n , T t , T m and all the remaining stress state components associated to the fracture interface σ tt , σ tm , σ mm should be zero at this point. The expected behaviour for a good E-FEM formulation would be then to drive all these static components to zero at the end of the load profile. This is, the following plots evidence the damaging quality of the formulations.

Figure 2.14 show the behaviour of the traction vector components T n , T t , T m as a function of the load factor β. All formulations manage to damage T n completely: this is the most basic functionality of any E-FEM-based model. Generally speaking, the decaying rate depends on the fracture stiffness component M nn , with the only exception of the three-mode, fixed φ formulation. The value of M nn will differ slightly for formulations where normal separation consistency has been ensured through φ coefficients (Eq. 2.59). The three-mode, fixed φ approach will have an effective normal fracture stiffness that will be the resulting effect of combining M nn as well as coupled stiffness terms M nt , M nm , which will produce for this case a very low effective normal stiffness, so that the traction T n is drove immediately down after starting the load application.

For T t and T m , all formulations managing at least three kinematic modes are capable of successfully damaging these parallel traction components. These already start at zero since their localisation states σ ynt , σ ynm have begun at zero attending to the Rankine criterion assumed before. The task for the formulations is just then to keep these traction components stabilised at zero. The plots only point out the fact that a single mode formulation will never be able to so. Despite this fact, single mode calculations remain conveniently simple and these stress anomalies can be manually suppressed to continue with global nonlinear calculations in a large scale model. This is the approach followed by [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux, 2015, Vallade, 2016, Stamati et al., 2019]. Even with its partial loss of physical meaning at local level, its numerical robustness and fracture representation capabilities at large scale models have proven to be successful.

Figure 2.15 show the behaviour of the stress state components σ tt , σ tm and σ mm . Fracture stress components are only accessible when projecting the complete state σ to the t and m directions. Only the enriched modes formulations are designed to explicitly track these components and to damage them properly. They do so at different rates, again, due to φ implications on fracture stiffness. All remaining formulations simply make these stress components to grow without control, rendering the need for manual suppression necessary for avoiding stress locking problems.

Based on this static results analysis, only enriched mode formulations exhibit proper damaging properties for this realistic element.

Kinematic results

For the kinematic consistency analysis, we already have the kinematic reference on which the load design was based. The following plots will show how the formulations manage to follow this reference for each kinematic mode ξ k , knowing before-hand that the global approach taken for all formulations possesses mathematical ambiguities that will always prevent a perfect match (Section 2.4.3).

Figure 2.16 show the analysis on rigid body displacements. The normal crack separation [|u|] n0 plot is the one still having all five formulations with correct predictions at once. The formulations having a controlled φ will be naturally closer to the kinematic reference as the fracture stiffness has been designed to be consistent with normal displacement at terminal separation conditions. The other two having slightly different M nn miss the target by 30%, but still retain the same behaviour tendency. Again, all formulations were prepared, one way or another, to handle normal separation kinematics. The threemode, fixed φ again, has a very different effective normal stiffness, which causes even the first load step solution for [|u|] n0 to be excessively large.

The lack of kinematic consistency in the models starts to be truly appreciated in the analysis of crack sliding modes [|u|] t0 , [|u|] m0 . In this case there is only one single approach that gets the kinematic reference right: the enhanced kinematics with controlled φ. This is because this approach is the only one having a definition for φ complex enough allowing to have free parameters to help imposing terminal separation conditions on the fracture sliding stiffness terms M tt , M mm . It is important to note that, while the three-mode, controlled φ attempts to do the same, its limited φ structure does not brake the linear dependency observed on the diagonal of the M matrix. In this case, only one direction can be made to comply with terminal separation conditions, and it was chosen to be n. The three-mode fixed φ approach once again, has mixed stiffness interactions which drive the effective sliding stiffness to unrealistic levels in both directions.

Formulations not being able to control sliding fracture stiffness will even predict a completely opposite sliding direction to that demanded by the load vector d. This totally breaks the physical sense of these kinematic modes. It is interesting to note that, if the zero response from the single mode formulation was included, it would still be missing the kinematic target by less than the other formulations. In some conditions, the lack of response is indeed a good response, after all. Figure 2.17 show the analysis on rigid body rotations. From now on, only the last two formulations involving enriched modes are able to contend. The kinematic references remains mild compared to the displacement demands, so that the task for the formulations is basically to keep the response as low as possible. This is related to the fact that rotation modes, as well as axial strain modes, are mainly conceived as buffer variables that help kinematic consistency efforts to focus on fracture displacement modes.

In all cases, both formulations follow the same rotation tendency, having the controlled φ version to exhibit a considerably lower response. The torsion θ n presents the most notable deviations, with almost 83 • for the case of a fixed φ and 8 • for a controlled one.

Finally, the same trend is observed with the simple axial strains, shown in Figure 2.18. The fixed φ approach presents excessively high values for lateral strains. No formulation achieves to contain the strain response at zero, but results suggest the controlled φ formulation fairs better at controlling this buffer kinematic mode.

Conclusions

An extensive study has been presented on the E-FEM strong discontinuity analysis framework, stating a solid basis of its fundamentals and discussing the most common recent formulation approaches. This base has helped to analyse general flaws observed in current formulations and to propose reasonable options for evolving the framework. Many authors had already hinted some improvements. This work has consolidated this knowledge, added some enhancements and conformed a generalised working proposal in three-dimensional models.

A realistic test element has been taken as a reference to compare the performance of all described formulations. Simulations at this level have been done considering a prescription of fracture kinematic modes just right after localisation, producing a nodal displacement profile. This load has been designed to make the element reach terminal separation conditions. A comparison of all responses allowed to study relevant behaviours on fracture kinematics and statics.

As more complexity is introduced in the formulations, an increase in consistency is perceived in both the kinematic and static outputs of the element. The most elaborate proposal (fully enriched kinematics with explicit φ parameters) is the only one to report a relatively clean and sound fracture kinematics vector on its entirety. However, it is mathematical complexity and computational cost would rise questions on its practicality and ease of implementation. For the case developed in this study, this last formulation requires to solve (only once) a linear system of 120 equations to finish the definition of the structure of the enhancement functions. The next formulation following in degree of complexity (fully enriched kinematics, direct φ) does not require to solve such system at all. And still, it is able to satisfactorily damage all relevant fracture stresses, avoiding all numerical locking nuisances observed with other formulations.

Is it really worth to add this much complexity to the formulations just for the sake of obtaining cleaner fracture statics and kinematics? If it is desired to use the fracture kinematics information for more advanced modeling of internal fracture phenomena such as frictional sliding, fault reclosure and the effects of compression, then having these outputs right becomes important. These complex calculations will rely on having a more realistic state on how the fracture moves. On the other hand, if the modelling goal is just to have a general idea of how a global fracture pattern starts to develop in a model, an approximate path and an estimation of a global strength, the fixed φ approaches will suffice.

In all cases, while none of the formulations is perfectly robust and mechanically correct, it remains satisfactory to see that the E-FEM framework can be taken this far for the modeling of strong discontinuities, gaining a lot in physical meaningfulness and still retaining the charms that normally attract many computational mechanics researchers. Chapter 3

An analysis of weak discontinuity approaches for the modelling of heterogeneous materials 

Introduction

The numerical modeling of the heterogeneous nature of some materials is important for studying and predicting complex features of their physical behaviour, including their mechanical response and resistance under specific conditions.

Typical numerical analysis techniques such as the finite element or finite difference methods generally approach this problem considering homogeneous base domains. This requires a homogenisation procedure for a determined representative patch of the heterogeneous material that is big enough to exhibit the material is behaviour as if it were a whole continuum but still small enough to be able to reveal its heterogeneous structure. Such is the basis of representative volume element (RVE) approaches [START_REF] Rémond | Homogenization of Reconstructed RVE[END_REF], Weinan, 2011].

At some point, every approach following this line will require a realistic modeling of a limited domain on the scale in which the heterogeneities of a given material can be geometrically described in an accurate way. For such multi-scale simulation processes, a classical FEM approach will require an adapted mesh for the small scale to consistently capture the geometrical distribution of material heterogeneities in such domain. While sophisticated meshing adaptation techniques for heterogeneous objects are still an active subject of study [START_REF] You | Adaptive meshing for finite element analysis of heterogeneous materials[END_REF], Favino et al., 2020], the approach remains computationally expensive and mathematically complicated, depending always on the arbitrary shapes of the different material phases present on the heterogeneous structure. This is specially true when a study requires the analysis of a large amount of heterogeneity distribution samples for a meaningful statistical treatment, such as in the execution of Monte Carlo methods that require repetitive sampling for the homogenisation process [START_REF] Efendiev | Multilevel Monte Carlo approaches for numerical homogenization[END_REF]. Alternative approaches for the numerical modelling of heterogeneous material domains have emerged, such as Voronoi cell techniques [START_REF] Nikolic | Lattice element models and their peculiarities[END_REF], discrete elements for granular rocks [START_REF] Xu | Mesoscopic damage and fracturing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method[END_REF] or reinforced concrete [START_REF] Shiu | Compaction process in concrete during missile impact: a DEM analysis[END_REF], or the advanced finite element methods [START_REF] Huang | Mesoscopic characterization and modeling of microcracking in cementitious materials by the extended finite element method[END_REF], Vandoren et al., 2013, Diwan et al., 2015]. Some of these approaches will focus more on the material interfaces, like the Voronoi cells that make use of mixed 1-D finite elements to represent the presence of different material domains and the strength of the mechanical connection between them. Typically, it is the finite element methods in two or three dimensions that will grant a more meaningful representation of the state of stresses in continuous material models, since they attempt a more direct and accurate geometrical description of material heterogeneities.

In regards to the latter, the meshfree or non-adaptive mesh approaches have been introduced as an attractive solution to this modelling problem. Applications of many advanced FEM techniques can be found, such as the Generalized Finite Element Method (G-FEM) [START_REF] Diwan | Mixed enrichment for the finite element method in heterogeneous media[END_REF], the Extended Finite Element Method (X-FEM) [Moradi et Nazari, 2015], the Base Force Element Method (B-FEM) [START_REF] Peng | Mesoscopic numerical simulation of fracture process and failure mechanism of concrete based on convex aggregate model[END_REF] or the Embedded Finite Element Method (E-FEM) [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], the last one being precisely the scope of study in this work.

It is recognized by the authors of this study that some approaches such as the X-FEM, in the state as they are at the moment of writing, have a broader capacity for the representation of complex multiphasic material distributions within a finite element domain than that of the E-FEM element technology. The interest in this work, however, will remain focused on the E-FEM framework. The authors consider worth the effort to keep the advantages of this approach, such as the simplicity and hermeticity of the mathematical enhancements that leave the global finite element solution process almost untouched.

A brief analysis on the evolution of the use of the weak discontinuity model on the E-FEM approach will be presented to the reader in Section 3.2. A detailed analysis of the theoretical foundations for the definition of weak discontinuity enhancements for the modelling of heterogeneous materials will be introduced in Section 3.3. This will help to establish a set of basic consistency requirements for defining these enhancements under the light of the Hu-Washizu variational framework. In Section 3.4, two particular weak discontinuity enhancement functions will be derived based on this consistency analysis and the amount of requirements chosen to be satisfied. The first of them is the one typically managed in the reference E-FEM works, and a second one is proposed to purposefully maximize variational and kinematic consistency. Finally, basic comparative numerical simulations are made between the weak discontinuity enhancement proposals in Section 3.5. The analytical solution for a basic heterogeneous model will serve as a reference to assess the performance of the enhancements, as well as any further comments on particular behaviours. A concluding discussion will follow in Section 3.6, considering all theoretical and practical aspects of the developments presented in this work.

The role of weak discontinuity enhancements on the E-FEM framework

The use of weak discontinuity enhancements started actually as one of the first embedded finite element approaches for the modelling of shear instability bands, with some pioneering studies paving the way for consolidating the E-FEM approach as a whole [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF], Belytschko et al., 1988, Sluys et Berends, 1998]. The main idea was to model a shear band through the use of two parallel strain discontinuity lines that would cross a non-adapted mesh, typically having a uniform geometry. The elements having sub-domains enclosed by the shear band would have different constitutive properties to represent the local instability happening inside. It introduces a jump on the strain field, which translates into a sudden change in slope for its corresponding displacement field without breaking its continuity (this is thus the reason of calling it a weak discontinuity enhancement). The weak discontinuity approach for this kind of material failure modelling got diversified afterwards with the introduction of regularisation processes [START_REF] Larsson | Embedded localization band in undrained soil based on regularized strong discontinuity-theory and fe-analysis[END_REF], Simo et al., 1993] to avoid scale dependencies, especially concerning the problem of setting an arbitrary shear band thickness. Eventually, attention was diverted towards the strong discontinuity enhancement equipped with a discrete postlocalisation law as the method of choice for the modelling of internal element fracture on the E-FEM 3.2 The role of weak discontinuity enhancements on the E-FEM framework framework [Oliver, 1996a[START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF], Borja, 2000, Jirásek, 2000]. The tendency of this evolution was practically to drive the shear band model thickness to zero while maintaining mathematical and physical coherence on the formulation. This translates the discontinuity to the displacement field directly (thus the reason of naming it a strong discontinuity). The strong discontinuity enhancement was indeed proven to be a more pragmatic and robust way to avoid mesh dependencies as possible, granting more objectivity to the approach. Nonetheless, the application of embedded weak discontinuity enhancements for the modelling of shear bands still gathers some interest in recent works, such as ductile material failure simulations under dynamic conditions [START_REF] Jin | Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions[END_REF], Jin et al., 2019]. The authors of this study consider that the application of weak discontinuity enhancements to model material heterogeneities really started with the works on fracture simulations of cementitious materials on the mesoscale [Ibrahimbegovic et Melnyk, 2007, Benkemoun et al., 2010, Sukumar et al., 2001]. These developments began by modeling a single weak discontinuity on 1-D beam elements to represent the presence of two different linear elastic stiffness domains coexisting on the same element. The perspective was different to that of Voronoi cell constructions [START_REF] Nikolic | Lattice element models and their peculiarities[END_REF] in the sense that no regular inclusion recognition had to be made on a material matrix to assign one beam per interface. A totally random, unstructured 3-D mesh was built with beam elements and a material heterogeneity distribution in space was just projected directly onto it. Some elements would fall entirely on the domain of one material phase or other, while others would be found in a region where there was an interface between materials. It is those elements that were enriched with a weak discontinuity enhancement function.

The model was also equipped with a strong discontinuity enhancement at the same location as the weak discontinuity to represent eventual failure and separation of the domains. In this sense, the work was also innovating from the perspective of integrating both discontinuity enhancements for entirely different roles. While this model allowed an explicit use of the weak discontinuity to finally model meshindependent heterogeneities, no objective state of stresses was described in the domains as no spatially accurate representation of the continuum is possible by only making use of 1-D beam elements.

It was only with the work of Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] that this application of the weak discontinuity model was devised for 3-D elements, inspired on the works in [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF], Benkemoun et al., 2010]. The main idea was to establish a piece-wise displacement field enrichment that, once being processed through the application of a symmetrical gradient operator ∇ sym , it would comply with the Maxwell interface strain compatibility conditions [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF]. The model counts with one, two or three internal variables characterising the strain jump between materials depending on the dimension of the problem. As his predecessors, Roubin also appended a strong discontinuity enhancement to integrate a fracture model, but only considering a single fracture kinematic mode: normal separation. This 3-D development was later taken as a base in [START_REF] Hauseux | Fe modelling with strong discontinuities for 3d tensile and shear fractures: Application to underground excavation[END_REF], Stamati et al., 2019, Sun, 2019] to perform simulations for heterogeneous rocks and cementitious materials in a similar fashion. A variety of fracture phenomena was explored, such as plane sliding, crack reclosure and multi-scale analyses, among other developments. Further applications of these ideas can be found in the domain of poromechanics and electromechanics [START_REF] Benkemoun | Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation[END_REF], Linder et al., 2011]. The use of the weak discontinuity on this format acquired yet more relevance with the work of Stamati et al. [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019], where image processing techniques and X-Ray tomography made possible to project realistic heterogeneity distributions coming from actual samples used for experimental campaigns, reaching a new level of predictability and model validation procedures. This application of the weak discontinuity model for 3-D geometries, as seen in the work of Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], has been taken as the point of departure for the present study. In the next section, the theoretical basis behind it will be scrutinised in detail.

Theoretical foundations and consistency analysis

The basic construction of a weak discontinuity for the modelling of material heterogeneities starts with the assumption that a heterogeneous displacement field u, referred from now on to as the physical displacement, can be expressed as the composition of an average homogenized base field u and a field enhancement u carrying the mathematical weak discontinuity:

u = u + u (3.1)
Figure 3.2 illustrates a typical dual material partition for a 4-node tetrahedral element in domains Ω + , Ω -with a boundary ∂Ω and having a plane Γ d as an interface. The base work in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017] considers linear elastic properties for each domain such as Young moduli E + , E -and Poisson ratios ν + , ν -. A local coordinate system ( n, t, m) defines the orientation of the material interface, having n as the unit vector normal to Γ d . The homogeneous base field u is determined entirely by the displacement of the tetrahedral nodes and the natural interpolation functions of the element. The definition of the field u is determined by internal variables keeping in mind that its corresponding strain function should introduce the strain jump associated with the change of material domains. The strain fields, as second order tensors, are obtained through a symmetric gradient operator

∇ s (•) = 1 2 ∇ (•) T + ∇ (•) : ε = ∇ s u = ∇ s u + ∇ s u = ε + ε (3.2a) ε + = ε + ε + , x ∈ Ω + (3.2b) ε -= ε + ε -, x ∈ Ω - (3.2c)
where a distinction has been done between the strain fields on the Ω + and Ω -domains at each side of Γ d . Note that the base field ε remains invariant by the definition of u.

To retain kinematic and variational consistency, the weak discontinuity model has to comply with certain requirements through both displacement and strain fields. The approach in this study will be to determine the possible functions for the enhanced displacement field by introducing and applying these constraints, also noting the set of constraints effectively considered in the work of [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2016, Benkemoun et al., 2010] that shapes the most typical choice for it in those works.

From now on, the analysis will take place on the local reference frame ( n, t, m) unless stated otherwise. Its coordinate variables will be denoted as ξ, η, ζ.

The most basic constraint pertains the physical displacement field u: it shall not lose continuity through the material interface. Given that the base field u is already continuous by definition, this implies that the enhanced displacement u also has to be continuous:

Enhancement requirement 1: displacement continuity u + Γ d = u - Γ d (3.3)
The next involves an analysis of the strain field and the definition of the strain discontinuity jump. A strain discontinuity jump ∆ ε is defined as the difference of strain fields ε + and ε -at the material interface Γ d , resulting also in a second order tensor:

∆ ε = ε + Γ d -ε - Γ d =   ∆ ε nn ∆ ε nt ∆ ε nm sym ∆ ε tt ∆ ε tm sym sym ∆ ε mm   (3.4)
The components of the strain jump ∆ ε are not obliged to respect full continuity as their parent displacement field, but must still comply with Maxwell strain compatibility conditions [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF] to be coherent with it. For this, the projection of ∆ ε on the normal direction n will be free of constraints, while all other unrelated components of the tensor will be driven down to zero. Recall that in a local coordinate setting, the projections can be easily obtained by just extracting the line-column corresponding to a given direction within the tensor. Thus:

∆ ε • n = ∆ ε nn ∆ ε nt ∆ ε nm T ̸ = 0 ∆ ε tt = ∆ ε tm = ∆ ε mm = 0 (3.5)
This leaves the strain jump tensor ∆ ε with only three active components ∆ ε nn , ∆ ε nt , ∆ ε nm . These will be redefined as [ε] n , [ε] t and [ε] m , respectively. These are indeed the internal variables that define the weak discontinuity model. With this, a new enhancement requirement is defined:

Enhancement requirement 2: strain jump

∆ ε = ε + Γ d -ε - Γ d =   [ε] n [ε] t [ε] m [ε] t 0 0 [ε] m 0 0   (3.6)
The requirements to follow need considerations coming from the variational analysis. As in [START_REF] Benkemoun | Fe design for the numerical modelling of failure induced by differential straining in meso-scale concrete: Algorithmic implementation based on operator split method[END_REF], Roubin et al., 2015, Hauseux et al., 2016] and in most of other works on the E-FEM framework, the Hu-Washizu variational principle is chosen due to its flexibility to handle element field enhancements through the independence of displacement, strain and stress fields. In a Voigt format, it can be expressed as:

Ω ∂δu t σ dV - Ω δu t f b dV - ∂Ω δu t t dA = 0 (3.7a) Ωe δσ t (∂u -ε) dV = 0 (3.7b) Ωe δε t (σ (ε) -σ) dV = 0 (3.7c)
where the real fields have been denoted as (u, ε, σ) and the field variations (or virtual fields) as (δu, δε, δσ), having a boundary traction vector t and body forces f b . It is important to note that the real stress field σ, in general, is different from the stress coming from constitutive law calculations σ (ε). The same can be said from the real strain field ε and ∂u, where ∂ is the Voigt notation equivalent of the symmetric gradient operator ∇ s .

All fields are independent from each other, in the sense that they do not have to necessarily follow direct gradient relations such as in Eq. 3.2a. The Hu-Washizu variational principle allows for flexible field discretisation strategies. However, the fields should retain enough physical meaningfulness to be able to correctly model the phenomenon in question. Authors working on this framework generally choose a discretisation strategy as to render the model as manageable and efficient as possible sacrificing the minimal amount of mechanical representation quality. This choice also considers the ease of an integration process with other models that might have a similar field discretisation approach (such as a strong discontinuity model).

The displacement and displacement variation fields u, δu are commonly discretized taking only the standard displacement field u:

u = u = Nd (3.8a) δu = Nδd (3.8b)
with N as a standard interpolation matrix and d the standard nodal displacement vector. δd is the corresponding variation. This strategy means that only the field u is used for describing node positions and imposing boundary conditions. In such case, it should be clear that, in order to ensure that d retains the correct nodal information, the field u should have the same value as u at the boundaries ∂Ω of all the element (i.e. the nodes on it):

u| ∂Ω = u | ∂Ω (3.9)
Given that we already have a definition as stated in Eq. 3.1, this implies:

u| ∂Ω = u | ∂Ω + u | ∂Ω ⇒ u | ∂Ω = 0 (3.10)
This analysis defines the next constraint for the weak discontinuity model:

Enhancement requirement 3: null value on borders

u | x=xi = 0, i = 1, 2, ..., N e (3.11)
where x i are nodal positions and N is the number of nodes of the element. This requirement stands as the most overlooked in the current literature of this family of formulations applied to the modelling of material heterogeneities. It is also the one that will make a significant difference in the enhancement function shape with respect to the one used in typical heterogeneous E-FEM studies.

Going forward with the discretisation strategy, the domain dependent strain field ε and its variation δε conserve all kinematics description terms as stated in Eqs. 3.2a-3.2b. Their enhanced sections ( ε and δ ε, respectively), which depend on the internal variables

[ε] n , [ε] t , [ε] m , are stated through the definition of a weak discontinuity vector [|ε|] = [ε] n [ε] t [ε] m
T and its variation δ [|ε|]. This discretisation strategy also allows to use different interpolation matrices G ± w , G * ± w for the real and variation enhancements, respectively:

ε = Bd + G + w [|ε|] x ∈ Ω + Bd + G - w [|ε|] x ∈ Ω - (3.12a) δε = Bδd + G * + w δ [|ε|] x ∈ Ω + Bδd + G * - w δ [|ε|] x ∈ Ω - (3.12b)
Note that, until now, no specific form for G ± w , G * ± w has been assigned yet. In the original work of Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], it is actually assumed that G ± w = G * ± w . The reason for this choice will be explained in Section 3.4.1.

The stress field σ and its variation δσ are interpolated using single independent stress vectors s and δs through the use of interpolation matrices S and S * , respectively:

σ = Ss (3.13a) δσ = S * δs, (3.13b)
The definition for the stress field coming from the constitutive law σ (ε) is based on the assumption that each of the material domains possesses its own linear elastic constitutive law considering separate second order linear elastic constitutive tensors C + and C -. These linear operators act upon different regions of the real strain field ε. The definition for this stress field is thus devised as:

σ (ε) = C + (Bd + G + w [|ε|]) x ∈ Ω + C -(Bd + G - w [|ε|]) x ∈ Ω - (3.14)
It should be emphasized that while the constitutive stress σ (ε) is by default a domain-dependent definition, the real stress field σ is not necessarily obliged to follow the same characteristics.

Having set a discretisation strategy, the variational analysis takes place by using all previous equations to develop the Hu-Washizus system through Eqs. 3.7a-3.7c. For instance, after developing Eq. 3.7b and considering that independence of [|ε|] as well as the fact that the variation vector δs is to remain arbitrary, it follows that:

δs t Ωe S * t G ± w dV [|ε|] = 0 ⇒ Ωe S * t G ± w dV = 0 (3.15)
Eq. 3.15 demands orthogonality between the virtual stress interpolation matrix S * and the enhancement matrix operators G ± w on each respective subvolume V + , V -. Since the matrix S * does not represent any kind of constraint on any real field in the framework, most authors just take this relation as granted assuming that for any convenient choice of shape for the real G ± w matrix operators, there will always exist a definition for S * complex enough to satisfy Eq. 3.15. Indeed, this is case for usual enhancement function proposals, but the demonstration will not be done in the present work. It will be only stressed that, since S * will be defined following exclusively the structure of a chosen G ± w , it is clear that virtual stresses and real stresses will be interpolated in an asymmetrical fashion. Therefore, the framework already departs from this point from a classical Bubnov-Galerkin variational approach to a Petrov-Galerkin one.

Next, Eq. 3.7c leads to two independent equations thanks again to the arbitrary nature of δd and δ [|ε|]:

δd t Ωe B t (σ (ε) -Ss) dV + δ [|ε|] t Ωe G * ±t w (σ (ε) -Ss) dV = 0 (3.16a) → δd t Ωe B t (σ (ε) -Ss) dV = 0 → Ω B t σ (ε) dV = Ω B t Ss dV (3.16b) → δ [|ε|] t Ωe G * ±t w (σ (ε) -Ss) dV = 0 → Ω G * ±t w σ (ε) dV = Ω G * ±t w Ss dV (3.16c)
Eq. 3.16b is the only relation in the framework that establishes an explicit connection between real and constitutive stresses. It stands as a weak equality involving a known standard interpolation gradient matrix B. In the case that the choices in the weak discontinuity model render the shapes (e.g., polynomial order) of σ (ε) and σ to be the same, then a strong equality between the fields will hold. This also implies that the real stresses σ will have to be domain dependent as σ (ε). For other cases, notably for an assumed constant real stress field, a volume-averaged expression can be used for its calculation:

s = 1 V e Ω σ (ε) dV, (3.17)
where the shape, order or domain distribution of σ (ε) is irrelevant.

From Eq. 3.16c, authors commonly assume that both left and right sides can be set to zero, creating orthogonality constraints. On the right side, given that the real stress interpolation matrix S is fixed based on real node data, the orthogonality defines the structure of G * ±t w . In general we will have:

Ωe G * ±T w Ss dV = Ω + G * +T w S dV s + + Ω - G * -T w S dV s -= 0 (3.18)
Depending on the chosen form for σ, the definition for the G * ±T w operators will change attending to Eq. 3.18. Additionally, there is the requirement of passing a finite element patch test [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF], Borst et al., 2001]. The patch test states that it should be possible to satisfy all variational equations for a constant real stress field regardless of the form chosen for this field in the first place. In other words, Eq. 3.18 must be satisfied for both a case in which the interpolation matrix S is the identity matrix and the case in which S corresponds to the shape functions truly desired to describe the stress field. With this in mind, it will be required to have s + = s -= s for validating the case of some uniform and arbitrary-valued s over all the element domain Ω e . This yields another requirement for the weak discontinuity model enhancement, even if this part of the discussion focuses on its virtual definition:

Enhancement requirement 4: Patch Test Ω + G * +T w dV + Ω - G * -T w dV = 0 (3.19)
For instance, the works in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017] take the simplest approach for a tetrahedron element, which is to assume a constant real stress field. In this case, the patch test requirement actually obliges the entire real stress field to be constant and unique through all the element. Thus, it will have to be always calculated using a volume average (Eq. 3.17). On the other hand, this lowers the burden of also having to satisfy Eq. 3.18 for a higher order S. This leaves Eq. 3.19 as the only requirement for G * ± w , which allows the possibility to make constant matrix definitions, yielding:

V + G * + w + V -G * - w = 0 (3.20)
Setting the left side of Eq. 3.16c to zero brings the final relation for calculating the weak discontinuity internal variables

[ε] n , [ε] t , [ε] m as a function of a displacement input d.
If a definite shape for all weak discontinuity enhancement matrix operators G ± w and G * ± w have been established at this point, Eq. 3.14 can be used to develop Eq. 3.16c as follows:

Ω + G * +T w C + Bd + G + w [|ε|] dV + Ω - G * -T w C -Bd + G - w [|ε|] dV = 0 (3.21a) K wb d + K ww [|ε|] = 0 (3.21b) K wb = Ω + G * +T w C + BdV + Ω - G * -T w C -BdV (3.21c) K ww = Ω + G * +T w C + G + w dV + Ω - G * -T w C -G - w dV (3.21d) [|ε|] = K -1 ww K wb d, (3.21e) 
where specific enhancement stiffness matrices K wb , K ww have been defined.

The direct equality between both sides of equation Eq. 3.16c brings additional information on some internal constraints for the stress fields that will emerge implicitly without impacting further enhancement definitions on the weak discontinuity model overall. The implications are interesting to know but are not operationally useful. For instance, if constant matrix definitions are used for the virtual G * ± w operators, one can use Eq. 3.20 to express everything a function of the G * + w operator, isolate and finally reach:

1 V + Ω + σ + (ε) dV = 1 V - Ω - σ -(ε) dV (3.22)
If enhancements are defined in such a way that the constitutive stress fields are constant on each domain, then Eq. 3.22 practically dictates a strong equality and uniformity of the constitutive stress fields in all the element. At the same time, the strain fields are assured to be different on each domain by definition. While this emerging equality might appear counter-intuitive to the reader, this would resemble a very simplistic situation such as in a couple of springs connected in series, where the strain is different but the force through them is exactly the same. Indeed, Eq. 3.22 has been observed to hold for a large number of elements during actual numerical simulations based on the formulation of Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] for large models managed in the works of Stamati et al. [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF].

Weak discontinuity enhancement proposals

Now that all relevant constraints for defining weak enhancement functions have been introduced, a particularisation of the model will take place, deriving two different enhancement field functions considering slightly different ways of achieving the satisfaction of consistency requirements. For the sake of simplicity and coherence with the background literature, a linear tetrahedron will be set as the base element from now on. For now, it will be assumed that a constant stress field σ is sought.

Typical enhancement analysis

Authors managing the modelling approach in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017] decided to make the weak discontinuity enhancement completely symmetrical by letting G ± w = G * ± w . This automatically renders the weak discontinuity model variationally symmetric at the expense of removing the flexibility of having a virtual enhancement with different characteristics. At the same time, only requirements 1, 2 and 4 (Eqs. 3.3,3.6,3.19) are explicitly imposed to this unique enhancement function. Instead of requirement 3 (Eq. 3.11), a general zero reference for the enhancement is set at the interface plane Γ d . This last imposition is absolutely unrelated to any considerations on variational consistency. This line of approach also chooses the simplest definition for the model: a linear field u and therefore constant operators G ± w .

Considering these restrictions, it will be demonstrated that the possible function space for u reduces to a unique expression. Let the following linear definitions for the piece-wise enhanced displacement field be:

u + = a + + b + ξ + c + η + d + ζ (3.23a) u -= a -+ b -ξ + c -η + d -ζ (3.23b)
where each vector has components contributing to each local direction ( n, t, m), e.g.,

u + = u + n u + t u + m T .
The goal is to particularize the vectors a ± ,b ± , c ± , d ± as a function of basic element data and the weak discontinuity variables [|ε|] n , [|ε|] t and [|ε|] m . In local coordinates, it is not hard to see that the interface plane Γ d is simply described by the equation ξ = 0. This eases the application of requirement 1:

u + ξ=0 = u - ξ=0 (3.24a) a + + c + η + d + ζ = a -+ c -η + d -ζ (3.24b) ⇒ a + = a -= a, c + = c -= c, d + = d -= d (3.24c)
where the ± will be omitted from now on in all coefficients a, c, d.

The strain jump requirement (Eq. 3.6) requires the calculation of the symmetric gradients on each part of the enhanced displacement field:

ε + -ε -=   [ε] n [ε] t [ε] m [ε] t 0 0 [ε] m 0 0   (3.25a) ε ± =     u ± n,ξ 1 2 u ± n,η + u ± t,ξ 1 2 u ± n,ζ + u ± m,ξ sym u ± t,η 1 2 u ± t,ζ + u ± m,η sym sym u ± m,ζ     =   b ± n 1 2 c n + b ± t 1 2 (d n + b ± m ) sym c t 1 2 (d t + c m ) sym sym d m   (3.25b) ε + -ε -=   b + n -b - n 1 2 b + t -b - t 1 2 (b + m -b - m ) 1 2 b + t -b - t 0 0 1 2 (b + m -b - m ) 0 0   (3.25c) ⇒ [|ε|] =   [|ε] n [|ε] t [|ε] m   =   b + n -b - n 1 2 b + t -b - t 1 2 (b + m -b - m )   (3.25d)
Here, the results of Eq. 3.24c have been used. Note that for this reason, the zeros required in the strain jump matrix are produced naturally.

The application of the patch test (Eq. 3.19) becomes easier if both sides of Eq. 3.20 are multiplied (contracted) by the weak discontinuity variable vector [|ε|] to recover enhanced strain fields, but in vector format:

V + G + w [|ε|] ε + +V -G - w [|ε|] ε - = 0 [|ε|] = 0 (3.26a) V +         b + n c t d m 1 2 c n + b + t 1 2 (d t + c m ) 1 2 (d n + b + m )         = -V -         b - n c t d m 1 2 c n + b - t 1 2 (d t + c m ) 1 2 (d n + b - m )         (3.26b) ⇒ c t = d m = 0 (3.26c)
Afterwards, the original idea for this formulation coming from Markovic [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF] involves the imposition of a requirement that is not mandatory for variational consistency. The enhanced displacement u is prescribed with a value of zero through all the interface plane (ξ = 0). While Markovic did never reveal any particular reasons for this decision in his research, it is later found in this work through further mathematical analysis (Sections 3.4.3,3.4.4,3.4.5) that this constraint provides some operational benefits to the framework. Indeed, the imposition of a zero enhanced displacement reference at Γ d is an aggressive constraint that will simplify the enhancement function to a great extent:

u + ξ=0 = u - ξ=0 = 0 (3.27a)   a n a t a m   +   c n 0 c m   η +   d n d t 0   ζ =   0 0 0   (3.27b) ⇒   a n a t a m   =   0 0 0   ,   c n 0 c m   =   0 0 0   ,   d n d t 0   =   0 0 0   (3.27c)
It should not be forgotten that this condition is not a replacement of requirement 3 (Eq. 3.11). With these results and the expressions coming from the application of the patch test requirement (Eq. 3.26b), one can calculate the b coefficients directly as a function of weak discontinuity internal variables:

b + n = V - V [ε] n , b + t = 2 V - V [ε] t , b + m = 2 V - V [ε] m , (3.28a) b - n = - V + V [ε] n , b - t = -2 V + V [ε] t , b - m = -2 V + V [ε] m , (3.28b) 
In the end, the enhancement function reduces to just a set of b coefficients multiplying the coordinate ξ, which is the normal distance from the interface plane Γ d :

  u ± n u ± t u ± m   =   b ± n b ± t b ± m   ξ = ± V ∓ V   [ε] n 2 [ε] t 2 [ε] m   ξ (3.29a) ⇒ u ± = ± V ∓ V ξ [ε] n n + 2 [ε] t t + 2 [ε] m m (3.29b)
If this expression is reverted to global coordinates, the original weak discontinuity enhancement version as used in Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] is recovered:

Weak discontinuity enhancement: typical definition

u = Θ n • (x -x Γ d ) [ε] n n + 2 [ε] t t + 2 [ε] m m (3.30) Θ = Θ + = V - V x ∈ Ω + Θ -= -V + V x ∈ Ω - (3.31)
Here, the coordinate ξ has been expressed as a projection of a distance with respect to the Γ d plane and a domain-dependent scalar Θ containing the volume ratios has been defined. It is important to note that the intent of this work to derive this already-known enhancement field shape is to demonstrate that, instead of starting with a seemingly arbitrary definition [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF], Roubin et al., 2015], its final form comes rather from the application of a definite set of constraints. This sheds light on the theoretical basis on which this family of enhancements is built upon.

From Eq. 3.30, general expressions for the G ± w operators can be found on the global reference frame by applying the symmetrical gradient operator in global coordinates. Einstein index notation is useful to reach the following typical strain field tensor expression in terms of symmetric tensor products:

ε = Θ [ε] n ( n ⊗ n) s + 2 [ε] m ( n ⊗ m) s + 2 [ε] t n ⊗ t s , (3.32)
where factors of 2 have been accounted for in the shear strain-related terms to ease the use of 3D constitutive laws. This expression is converted into a Voigt format to finally obtain:

ε = G ± w [|ε|] = ΘH w [|ε|] , H w =         n 2 x n x m x n x t x n 2 y n y m y n y t y n 2 z n z m z n z t z n x n y + n y n x n x m y + n y m x n x t y + n y t x n z n y + n y n z n z m y + n y m z n z t y + n y t z n z n x + n x n z n z m x + n x m z n z t x + n x t z         (3.33)
Note that the domain-dependent term in all these definitions stands as a single scalar Θ taking the form of domain volume ratios.

Consistent enhancement analysis

For the case of a more variationally consistent enhancement field considering requirement 3 (Eq. 3.11), it is more practical to start the analysis by expressing the enhancement as a piece-wise definition of two linear fields using classical linear interpolation functions:

u + = u + 1 ϕ 1 + u + 2 ϕ 2 + u + 3 ϕ 3 + u + 4 ϕ 4 (3.34a) u -= u - 1 ϕ 1 + u - 2 ϕ 2 + u - 3 ϕ 3 + u - 4 ϕ 4 (3.34b)
where the interpolation functions ϕ associated each node i of a base linear tetrahedron have been defined as

ϕ i = a i + b i ξ + c i η + d i ζ,
where all coefficients a i , b i , c i , d i are known. This time, the goal of the model particularisation is to find the value of all the nodal enhanced displacements u ± i as a function of nodal coordinate information and weak discontinuity internal variables.

An auxiliary variable p i is defined as a position indicator between the Ω + and the Ω -domains as follow:

p i = 1 x i ∈ Ω + 0 x i ∈ Ω - i = {1, 2, 3, 4} (3.35)
Using this variable, a general mixed velocity variable u i is defined:

u i = (1 -p i ) u + i + p i u - i , i = {1, 2, 3, 4} (3.36)
Having all that, we can start by the application of requirement 3 (Eq. 3.11) in a very straight-forward fashion by just nullifying some nodal enhanced displacements in their corresponding domains. This leads to:

u + = N i (1 -p i ) u + i ϕ i (3.37a) u -= N i p i u - i ϕ i (3.37b)
This also implies that the mixed variable u i actually captures the set of all non-zero u ± i variables to be solved for in this process.

Next, displacement continuity (requirement 1) is applied:

u + ξ=0 = u - ξ=0 (3.38a) N i (1 -p i ) u + i (a i + c i η + d i ζ) = N i p i u - i (a i + c i η + d i ζ) (3.38b)
where the mixed variable u i can be used to reach the following:

N i (1 -2p i ) a i u i = 0 N i (1 -2p i ) c i u i = 0, N i (1 -2p i ) d i u i = 0 (3.39)
The strain jump requirement 2 follows exactly the same process followed previously in Eqs. 3.25a-3.25d to find expressions relating enhanced nodal displacements to weak discontinuity internal variables:

N i b i u in = [ε] n N i b i u it = 2 [ε] t , N i b i u im = 2 [ε] m (3.40)
where u in , u it , u im are the three components of each non-zero u i on the local directions associated to each node i.

At this point, it is worth stopping to make a variable summary on the linear system being currently built for all non-zero enhanced nodal displacements u i . All non-zero variables corresponding to each direction n, t, m can be grouped in single vectors u n , u t , u m as follows:

u n =     u 1n u 2n u 3n u 4n     , u t =     u 1t u 2t u 3t u 4t     , u m =     u 1m u 2m u 3m u 4m     (3.41)
The system can then be summarized using block matrix definitions: (3.42) where:

  C e 0 4 0 4 0 4 C e 0 4 0 4 0 4 C e     u n u t u m   =   [ε] n,e [ε] m,e [ε] t,e   ,
C e =     (1 -2p 1 ) a 1 (1 -2p 2 ) a 2 (1 -2p 3 ) a 3 (1 -2p 4 ) a 4 (1 -2p 1 ) b 1 (1 -2p 2 ) b 2 (1 -2p 3 ) b 3 (1 -2p 4 ) b 4 (1 -2p 1 ) c 1 (1 -2p 2 ) c 2 (1 -2p 3 ) c 3 (1 -2p 4 ) c 4 (1 -2p 1 ) d 1 (1 -2p 2 ) d 2 (1 -2p 3 ) d 3 (1 -2p 4 ) d 4     , 0 4 =     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     (3.43a) [ε] n,e =     0 [ε] n 0 0     , [ε] t,e = 2     0 [ε] t 0 0     , [ε] m,e = 2     0 [ε] m 0 0     (3.43b)
The system already counts with 12 enhanced nodal displacement variables and 12 equations, which render it closed with a unique solution if the coefficient matrix in Eq. 3.42 is not singular. Further application of requirement 4 (the patch test) does not add any new variables to the system. Therefore, it can be stated that for a linear definition of the enhanced field u, it is not possible to make a variationally symmetric definition for the G w matrix operators having a unique base enhanced displacement field. To be fully consistent while keeping linear definitions, the framework requires to make G w ̸ = G * w , taking requirement 4 (Eq. 3.19) as the guidance to define G * w and the other requirements to define G w in a separate way. The typical weak discontinuity enhanced field (Eq. 3.30.) thus cannot be, by definition, variationally consistent. The analysis on this section will continue to particularize the enhanced field with the system proposed in Eq. 3.42. As the system is block-diagonal, a compact-closed solution is found: (3.44) where the C -1 i,2 coefficients come from the second column of the inverse of the C e matrix. The particularized enhanced field can then be expressed as:

u n =     C -1 1,2 C -1 2,2 C -1 3,2 C -1 4,2     [ε] n , u t = 2     C -1 1,2 C -1 2,2 C -1 3,2 C -1 4,2     [ε] t , u m = 2     C -1 1,2 C -1 2,2 C -1 3,2 C -1 4,2     [ε] m ,
u + = Ne i (1 -p i ) C -1 i,2 ϕ i   [ε] n 2 [ε] t 2 [ε] m   , u -= Ne i p i C -1 i,2 ϕ i   [ε] n 2 [ε] t 2 [ε] m   (3.45)
Finally, the consistent weak enhancement field can still be written in the familiar format:

Weak discontinuity enhancement: consistent definition

u = Θ [ε] n n + 2 [ε] t m + 2 [ε] m t (3.46) Θ = Θ + = Ne i (1 -p i ) C -1 i,2 ϕ i x ∈ Ω + Θ -= Ne i p i C -1 i,2 ϕ i x ∈ Ω - (3.47)
It is important to note that, while Θ stays as a constant in the typical enhancement model, it becomes a variable parameter on the consistent model depending on nodal coordinates embedded in the interpolation functions ϕ i .

The G ± w operators can be devised again by making use of the symmetric gradient operator. Taking, for instance, the enhanced strain field on the Ω + domain one can reach an analogous tensor expression to that of the typical model:

ε + = Ne i (1 -p i ) C -1 i,2 [ε] n (e i ⊗ n) s + 2 [ε] t (e i ⊗ m) s + 2 [ε] t e i ⊗ t s (3.48a) e i = b i c i d i T (3.48b)
Here, the vector e i coming from local interpolation function coefficients, has to be transformed (rotated) to global coordinates as needed. Again, expressing in a Voigt vector field format:

ε + = G + w [|ε|] = Ne i (1 -p i ) C -1 i,2 H W,i [|ε|] (3.49a) H W,i =         b i n x b i m x b i t x c i n y c i m y c i t y d i n z d i m z d i t z b i n y + c i n x b i m y + c i m x b i t y + c i t x d i n y + c i n z d i m y + c i m z d i t y + c i t z d i n x + b i n z d i m x + b i m z d i t x + b i t z         (3.49b)
where the coefficients b i , c i , d i are already taken from a rotated e i vector in this global definition. G - w follows in a similar way:

ε -= G - w [|ε|] = p i C -1 i,2 H W,i [|ε|] (3.50)
The virtual operators G * ± w only have the goal of complying with the patch test (requirement 4). If the simplest, constant definition for them is adopted, satisfaction of Eq. 3.20 allows an infinite amount of choices. G * ± w can, for instance, take the form of the typical enhancement (Eq. 3.33), which has been already built to satisfy Eq. 3.20.

Discussion on enhancement stability properties

The stability of the weak discontinuity model can be assessed by observing that in Eq. 3.21e, the calculation of the weak discontinuity variables [ε] t , [ε] t , [ε] m as a function of nodal standard displacements d depends on the inverse of a K ww stiffness matrix. The behaviour of K ww , depending on the form of the enhancement operators, will determine if the formulation becomes unstable under certain conditions. No other mathematical stability sources are identified.

For a more direct analysis, it is convenient to work in the local frame ( n, t, m). It will be assumed that the consistent enhancement will use the same operators G * ± w as the typical enhancement, while retaining the real operators G ± w as devised in Section 3.4.2. If this is the case, both formulations will share the same H w operator for virtual fields, which in local coordinates reduces to:

H T w =   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1   (3.51)
For a typical weak discontinuity enhancement, Eq. 3.21d can be developed to get to the following:

K ww = V + V - V 2 H T w C + V -+ C -V + H w , (3.52)
where linear elastic constitutive matrices in three dimensions can be assumed for the corresponding materials on Ω + and Ω -as:

C + =         c + 1 c + 2 c + 2 0 0 0 c + 2 c + 1 c + 2 0 0 0 c + 2 c + 2 c + 1 0 0 0 0 0 0 c + s 0 0 0 0 0 0 c + s 0 0 0 0 0 0 c + s         , C -=         c - 1 c - 2 c - 2 0 0 0 c - 2 c - 1 c - 2 0 0 0 c - 2 c - 2 c - 1 0 0 0 0 0 0 c - s 0 0 0 0 0 0 c - s 0 0 0 0 0 0 c - s         (3.53)
for some real, positive constants c ± 1 , c ± 2 , c ± s . Taking these definitions, the K ww matrix associated to the typical enhancement can be calculated in a diagonal, compact expression:

K ww =   V + c + 1 + V -c - 1 0 0 0 V + c + s + V -c - s 0 0 0 V + c + s + V -c - s   (3.54)
As the constants c ± 1 , c ± s stay real and positive as well as the subvolumes V + , V -, Eq. 3.54 reveals that the typical weak discontinuity enhancement turns out to be unconditionally stable, no matter what the orientation of the interface, the subvolume partition and the material elasticity characteristics are. This is the main reason why, despite not being variationally consistent by definition, authors in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2016, Stamati et al., 2019] have been keen to keep it on their heterogeneity modelling approaches, as it eases the implementation process and the numerical solution control.

Working with the consistent enhancement, Eq. 3.21d returns the following expression:

K ww = V + V - V H T w Ne i C -1 i,2 (1 -p i ) C + -p i C -H w,i , (3.55) 
where the node-dependant matrix H wi can be reduced to:

H T wi =   b i 0 0 c i 0 d i 0 c i 0 b i d i 0 0 0 d i 0 c i b i   (3.56)
Taking the same constitutive matrix definitions in Eq. 3.53, the K ww for this case can be devised as:

K ww = V + V - V Ne i C -1 i,2   b i k 1i c i k 2i d i k 2i c i k si b i k si 0 d i k si 0 b i k si   (3.57)
where the k ji parameters are defined using the (±) i notation used before:

k 1i = (1 -2p i ) c
(1-2pi) 1

(3.58a)

k 1i = (1 -2p i ) c
(1-2pi) 2

(3.58b)

k 1i = (1 -2p i ) c (1-2pi) s (3.58c)
The structure of Eq. 3.57 is considerably more complex than that of Eq. 3.54, where in the former we can appreciate a more extensive participation of elemental parameters such as interpolation function coefficients and functions that are domain dependent (interface location/orientation dependent) within nodal summations. No unconditional stability can be readily assured in Eq. 3.57.

While the specific subspace of parameters that drive K ww unstable for the consistent enhancement will not be calculated in a rigorous fashion in this work, it is not hard to see that there is a condition that will intuitively introduce mathematical ambiguity problems: when the interface plane crosses exactly or very close to one or more element nodes, where it makes a sudden change of behaviour. If a given finite element model manages a non-structured mesh with random orientations while also having random material interfaces, instability or near-instability conditions will be certain to happen in some elements with a sufficiently large mesh. Implementation efforts have to consider this fact.

Stiffness matrices and impact the to global solution process

One of the most attractive features of the E-FEM framework is its ability to limit the work with field enhancements and all their associated variables within internal element calculation routines. All stiffness calculations derived from the special internal calculations associated to the discontinuities can be condensed and integrated to the standard elemental stiffness matrix. This way, no formal degrees of freedom are added to the finite element global solution process, so that the methods, routines and the solution platform shall remain untouched. However, the classical stiffness matrix properties normally identified in standard finite elements may change depending on the structure of the embedded enhancement.

For the weak discontinuity enhancements presented in this work, the numerical solution process and the construction of an equivalent stiffness matrix can be started by taking Eq. 3.7a (elemental force balance) and Eq. 3.21b (main relation between nodal displacements and weak discontinuity variables) to build the following linear system:

K bb d + K bw [|ε|] = f e ext (3.59a) K wb d + K ww [|ε|] = 0 (3.59b)
Here, Eq. 3.7a has been integrated using the previously defined operators depending on the enhancement version to define stiffness matrices K bb and K bw .

Condensation of the system then takes place by reducing [|ε|] from Eq. 3.59b and substituting on Eq. 3.59a, giving rise to a definition of an equivalent elemental stiffness matrix K sc multiplying the standard normal displacements vector d:

K sc d = f e ext (3.60a) K sc = K bb -K bw K -1 ww K wb (3.60b)
With this, a global stiffness matrix assembly process may then be performed by taking the corresponding matrices K sc associated to each element on a given model.

For the case of a typical weak discontinuity enhancement, it is not hard to see that:

K bw = V + V - V B T C + -C -H w = V + V - V H T w C + -C -B T = K T wb (3.61)
so that:

K bw K -1 ww K wb T = K T wb K -1 ww T K T bw = K bw K -1 ww K wb (3.62)
Given that K bb is already symmetric, it can be concluded that the condensation process will always return a symmetric K sc . On the other hand, with the consistent enhancement, this is not the case:

B T Ne i C -1 i,2 (1 -p i ) V + + p i V -CH w,i T ̸ = V + V - V H T w C + -C -B (3.63a) K bw ̸ = K T wb (3.63b)
Indeed, the consistent enhancement will, in general, return an asymmetrical stiffness matrix. This will introduce the need to use asymmetric solvers during a global numerical solution, with all computational and implementation implications that come along.

Variational consistency errors in the typical enhancement

Now that it is known that the typical enhancement in general will not comply with basic requirement 3 (Eq. 3.11), it is relevant to discuss the conditions under which the formulation might produce large variational errors and the ones in which these errors will be kept within a reasonable range.

For a case of a 1-D element, like in the applications done by Benkemoun [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF] or Melnyk [Ibrahimbegovic et Melnyk, 2007], there can be only one node on each side of the material interface, and its orientation will always be normal to the line defining the body of the element. Under these conditions, it can be shown that the only difference between a typical and a consistent enhancement is only a constant offset ∆ u on the displacement function (refer to Fig. 3.3). Given that the slopes coincide and the operators of the formulation are based on field derivatives, it can be concluded that the typical formulation effectively complies with requirement 3 and thus also remains fully variationally consistent. For 2D and 3D elements in general, this is not the case. The slope of the typical enhancement will always be aligned to the orientation of the interface Γ d . If more than one node is present on one of the domains, the enhancement will not be able to return the same field value on all nodes simultaneously, no matter what offset is given to the field. The only condition in which this might happen is when the nodes within a domain are all located on the same ξ coordinate, which would mean having element geometry aligned to the material interface. As the respective nodal ξ coordinates start to divert, the typical field will miss to nullify the values at the boundaries. Figure 3.4 illustrates this for a 2D constant stress triangle (CST). The offset ∆ u can be arranged to minimize this variational error by making the field to roughly pass through zero at an average ξ position of all nodes on a given domain. Based on this rationale, the typical enhancement can be perceived as an average estimation of a fully consistent enhancement that will be closer to it under certain mesh geometry conditions. It can be expected that for an unstructured mesh with good aspect ratios, this estimation will grant reasonable results compared to a fully consistent approach. For a heavily distorted mesh having a very large disparity on ξ coordinates within a domain, the variational errors induced will certainly get larger.

Numerical simulations

In this section, a numerical comparison takes place between both weak discontinuity enhancements to discuss their performance with respect to an analytical solution to a given problem.

Numerical model description

Numerical simulations have been done on a simple cube model made up of two material layers separated by a planar interface. The interface is parallel to two of the cube faces. If interface concentrations are neglected, the total axial reaction associated to a normal displacement on one of the faces can be calculated by means of the classical theory of mechanics of materials, representing the system as two springs in series accounting for the axial stiffness of each layer. Linear elastic behaviour is assumed for both materials, characterized by Young Moduli E + , E -and Poisson ratios ν + , ν -. Figure 3.5 illustrates this simple mechanical system. The idea of the present study is to compare how each of the weak discontinuity enhancements can model this ideal bi-material layout by comparing them to the classical analytical solution. The interface plane location h will be varied taking regular steps from having a zero position at one of the cube faces until reaching the opposite side of the cube. This will represent situations in which the cube starts completely homogeneous with one of the material phases and gradually becomes entirely filled with the other material phase.

The cube will feature an unstructured mesh, totally independent from the planar interface. The interface will cross a certain amount of elements on random edges and positions, and these elements will be enhanced with one of the weak discontinuity field functions studied in previous sections. Special care has been taken with the mesh density: the size of the elements should be small enough to generate enough enhanced elements, but these special elements should cover a significant amount of the cube volume in order to have a significant contribution to the global response of the model. If the elements are too small, we might get a large number of enhanced elements near the interface, but also a much larger amount of normal elements having only one material phase or the other, and thus the global stiffness response of the numerical sample will be dominated by the standard finite elements instead, which are not the object of this study. The mesh finally selected for this study is shown in Figure 3.6, also highlighting the number of enhanced elements resulting from having the planar interface at 30% height from the designed bottom position. It is pertinent to mention that the quality of the mesh has been kept rather high, with no aspect ratios going beyond 3.

The cube has dimensions of 10 mm × 10 mm × 10 mm. The material properties chosen for these simulations have been those normally associated to a simplified concrete mixture: a material phase of mortar (Young modulus E -= 14000 MPa, Poisson ratio ν -= 0.2) and an aggregate material (E + = 70000 MPa, ν + = 0.2). No other material properties are needed since all simulations have been made in static conditions. Boundary conditions have been set as to retain an ideal axial prism problem as much as possible without significant effects of near-interface field concentrations. The load has been imposed as a uniform displacement of 0.015 mm on the free upper face. Figure 3.7 illustrates the details of the model.

FEAP (Finite Element Analysis Program) [Taylor, 2014] has been used as the finite element numerical solution platform to implement both enhancements described in previous sections and for simulating the problem mentioned beforehand. 21 static-implicit simulations have been performed considering each weak discontinuity enhancement approach having 21 uniformly separated positions for the interface plane, going from the lower z face of the cube (h = 0) all the way to the opposite face (h = 10 mm) taking steps of 0.5 mm. The solution is strictly linear elastic, where the only solver-specific difference between each enhancement case has been the use of symmetric and asymmetric stiffness matrix handling routines, which are used only one time at the beginning of each analysis. Direct linear equation system solvers are used in either case. 

Results and discussion

Two different kinds of results have been considered for the current discussion in this work. One is the total vertical force reaction associated to the imposed displacement load for each case of interface plane position. The analytical calculation can be easily done attending to the representation in Figure 3.5 and finding the total vertical reaction through an equivalent stiffness k eq :

F z = u z k eq (3.64a) k eq = k + k - k + + k - (3.64b) k ± = SE ± L ± (3.64c)
The other output of interest is the average strain field value on each side of the interface. Analytically, these values are easily obtainable by just making:

ε ± = σ ± E ± = F eq SE ± (3.65)
Numerical simulation results coming from both enhancement types for the vertical force reaction can be appreciated in Figure 3.8. This information is also shown as a relative error in Fig 3 .9. The first and last points in this plot represent the cases in which homogeneous material distributions are given for one or the other material phases (stiffer case and more compliant case, respectively), in which all numerical and analytical models naturally coincide. In the first part of the curves where the stiffer material is predominant, both weak discontinuity enhancements coincide for a while having a consistent error with respect to the analytical curve. At some point after having at least 20% volume fraction of the (-) material region, the consistent enhancement error drops almost entirely, closely sticking to the analytical curve until the end of the graph. The typical enhancement maintains a smooth behaviour with a consistent error, which also fades at the end when the (-) material dominates completely. A maximum error of approximately 19% is observed with the typical enhancement. The sudden variations on the consistent enhancement can be explained by its natural stability conditions depending on node positions relative to the cutting plane interface, already discussed in Section 3.4.3. The displacement load imposed to this simple model will ideally produce a piece-wise, constant strain field. The numerical approaches should be able to produce these constant strain regions taking the contribution of all elements on each side of the interface, aiming to have the least dispersion as possible. For this, the average strain field and its dispersion (standard deviation) have been calculated on each side of the cube model interface for both enhancement approaches, and results have been compared to the analytical model. The analytical results, of course, do not show any kind of field dispersion as they only exhibit a unique strain value. Figure 3.10 shows this comparison for the case of the (+) material side. Again, at homogeneous conditions all models coincide. Both enhancements start diverging at the beginning and the consistent enhancement quickly catches up the analytical behaviour with a mild error. The typical enhancement, once again, has a smoother curve keeping a sustained error. The last data point at h = 10 mm is not shown since the (+) region ceases to exist. The strain dispersion, represented as a translucent cloud around each enhancement curve, seems definitely more controlled for the consistent enhancement, albeit with apparently more erratic fluctuations coming from the stability nature of this formulation.

Figure 3.11 shows the analysis on the remaining material region. In this case, it is the first point at zero that is missing since there is no (-) material. The average strain again favours the consistent enhancement that keeps a lower error through all conditions. The dispersion of the consistent model is also remarkably low, with the exception of one point at 30% volume for the (-) material, where an outlier data point occurs. After model inspections, it is indeed found that at this height many nodes lie very close to the interface with separations as low as 0.03 mm, which seemingly compromise the stability of this enhancement as discussed in section 3.4.3. The impact of this outlier is not noticeable for the case of the analysis on the (+) domain, since at h = 3 mm there are considerably more homogeneous elements made up of the (+) material, which help to smooth these statistics.

Conclusions

A detailed analysis has been made on the use of weak discontinuity approaches within the E-FEM framework to model material heterogeneities. Kinematic and variational theoretical bases have been stated to identify a set of consistency requirements for the general construction of weak discontinuity displacement enhancement fields. Based on the consideration of these requirements, two field proposals have been derived: one which has been already used in the works of [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017, Stamati et al., 2019] and other which is fully consistent with all requirements.

Simulations have been made on a simple bi-material system subjected to an axial load to assess the performance of the enhancements. It has been seen that, in general, the consistent enhancement has a better performance than the typical enhancement at representing the expected response, but is more prone to uncontrolled fluctuations. It can be also argued, however, that under high quality mesh conditions and moderate difference between the elastic properties of material phases (a ratio of 5 is explored in this work), the typical field will have a reasonable behaviour that will allow for sound estimations at local and global level mechanical outputs. The formulation by itself naturally presents unconditional stability and retains the symmetry of global stiffness matrices. The internal calculations required to particularise the function parameters are also considerably simpler than in the case of the consistent enhancement version. For these reasons, the authors of this study recommend its use whenever possible, especially when dealing with large and complex numerical models where solution times and stability are crucial for the success of the numerical analysis project.

The use of the consistent weak discontinuity enhancement may find a better niche on problems where high accuracy is required for field shape calculations and where the use of an asymmetric solver poses no problem for the FEM numerical solution platform. The authors in this work have found that the stability nuisances on the consistent formulation can actually be avoided at a large extent by just locally shifting the interface location sightly away from its compromising position, in such a way that the elemental volume distribution is just mildly changed without significantly affecting the physical representation aimed by the element in question. From an operational standpoint, shifting the interface can be done by changing the volume ratio between V + and V -without altering the total element volume V .

The performance of the models has not been tested for badly shaped elements, where it is expected to have a worse behaviour for the typical enhancement. Both enhancements also tend to have a slightly worse performance for locally describing stiffer materials within a bi-material set. It would also be relevant to study material sets with more prominent differences in elastic properties to assess the enhancements' behaviour. It can also be shown that a higher polynomial degree proposal for the weak discontinuity enhancement will be able to fulfill all consistency requirements at once. The study of its particular shape and properties could be an interesting topic for future work. This would allow an enhancement function both as robust as the typical and as accurate as the consistent one. In either case, the authors of this work finish by stating that the use of weak discontinuity enhancements for the representation of material heterogeneities remains a reliable and efficient numerical method for approaching the problem of multiple material phases representation featuring non-adapted meshes.

Introduction

The numerical study of fracture phenomena in composite materials requires a detailed consideration of their heterogeneous structure, which contributes to the emergence of complex and unexpected mechanical behaviours. Multiscale analysis approaches have been devised in recent decades to develop mathematical models capable of capturing and predicting their response [START_REF] Fish | Multiscale analysis of composite materials and structures[END_REF]. Classical approaches are based on homogenisation principles, where it is assumed that it is possible to represent a given composite material as a completely homogeneous domain whose mechanical behaviour is governed by a sufficiently complex material law taking parameters from studies at smaller scales. As an example, the representative volume element (RVE) is a widely spread approach that has been successfully used both in academic research and industry [START_REF] Rémond | Homogenization of Reconstructed RVE[END_REF], Weinan, 2011].

Any of these homogenisation approaches require the analysis of composite materials at smaller scales where the effects of heterogeneities can be assessed in accurate manner, whether through their spatial layout, their material phase individual properties or possible local fractures that might significantly influence the behaviour within a limited domain. It also requires significant statistical analysis to ensure that the specific smaller scale material domain used to pull out the homogenisation procedure is sufficiently representative with respect to natural variations happening on the heterogeneous structure of the given composite.

It is clear that any multiscale approach benefits from having an efficient yet sufficiently accurate numerical analysis method at the smaller scales to fulfill all homogenisation requirements in a reasonable time frame. On this matter, the conventional finite element method, being one of the most prominently used techniques for the mechanical analysis of homogeneous materials, presents considerable challenges both in the problem of heterogeneity distributions and in the explicit modeling of local fractures. On one hand, a mesh has to be adapted to represent the regions having different material phases. Depending on the natural shapes of these phases and the kind of information that can be measured about them on a 3D setting, intensive adaptive meshing techniques might be required to ensure mesh continuity through these regions while maintaining an accurate depiction of all material interfaces. Even if such mesh configurations are feasible using currently available meshing software, the mere act of meshing these intricate structures would also bring the question of the resulting quality of the element domains. Element distortions and any other kind of geometrical anomalies will have an impact on the quality of results coming from the numerical analysis as a whole [Salagame et Belegundu, 1994]. Excessive mesh density requirements to avoid bad quality issues will translate into long computational solving times.

On the other hand, the modelling of a fracture, even if referring to a completely homogeneous domain, already poses numerous critical challenges for a standard finite element approach [Watwood, 1970]. The most evident is that the path of the fracture should be explicitly identified and delimited beforehand on the mesh itself. Spontaneous failure calculations can also be implemented, but the standard methods do not possess any mathematical features capable of modelling fracture separation and/or propagation other than complete element stiffness damage mechanisms or even direct element removal under certain failure criteria. While these techniques have gained acceptance in both academy and industry for their ease of use, they are well known to produce considerable solution stability problems and modelling limitations [START_REF] Unosson | Failure modelling in finite element analyses: Element erosion with crack-tip enhancement[END_REF], Song et al., 2008], deviating predictions from a realistic crack opening and propagation behaviours. As a final obstacle, the statistical analysis needed for robust homogenisation processes will require considering all these requisites for a large number of numerical simulations at once, only increasing computational demands.

In this context, quasi-brittle materials pose specific modelling challenges that must also be addressed by the numerical approaches proposed to face this analysis problem. The most prominent issue is the complexity of their fracture processes featuring multiple cracks happening in a simultaneous fashion, collectively exhibiting a network which, by itself, has clearly identifiable spatial characteristics and evolution behaviour depending on both large scale and small scale properties. What in a large scale would be called a defined fracture, at smaller scales would rather be a complex combined behaviour of multiple individual local cracks giving form to a dominant macro-crack in the material through a coalescence process. This is especially true if the material presents an intricate heterogeneous structure, where material phase interfaces are well-known sources of local stress concentrations that end up producing these individual crack networks. In this sense, concrete stands as a very representative example and a large number of studies have been dedicated to study the nature of its quasi-brittle fracture processes under a variety of load conditions [Faron et Rombach, 2020, Mauludin et Oucif, 2020]. Indeed, fracture processes in concrete at large scales are known to exhibit complex tridimensional behaviours featuring a mixture of fracture modes (attending to classical theories of fracture mechanics). Many experimental works illustrate very clearly the dependence of these mixed fracture phenomena to biaxial and triaxial load schemes as well as with having complex sample geometries [Nooru-Mohamed, 1992, Li et al., 2018]. In order to capture this kind of behaviour, the modelling of local fractures should be detailed enough to reveal this fracture kinematics and load triaxiality dependencies. While there is evidence that it suffices to model a basic set of local failure modes to accomplish this task [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], local cracks still need considerable flexibility to capture fundamental fracture kinematics such as normal separation, tridimensional sliding, closure following sustained compression and even frictional models, among other effects still under research [Jefferson et Mihai, 2015].

Advanced finite element approaches provide with attractive solutions to overcome the aforementioned problems on local scale material modelling, proposing integrating frameworks capable of representing both material heterogeneities and enriched local cracks using non-adaptive meshes. Among them we can find the Extended Finite Element Methods (X-FEM) [START_REF] Huang | Mesoscopic characterization and modeling of microcracking in cementitious materials by the extended finite element method[END_REF], the Base Force Element Method (B-FEM) [START_REF] Peng | Mesoscopic numerical simulation of fracture process and failure mechanism of concrete based on convex aggregate model[END_REF] or the Embedded Finite Element Methods [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], among others. Many of them are well-endowed with a mathematical flexibility capable of modelling different kinds of discontinuities to account for a variety of material phases and local fracture modes. They do this through mathematical enhancements on their supporting functions whether in a nodal base (X-FEM), through their elemental mechanical fields (E-FEM) or through new mechanical state variables (B-FEM). Some of them are even mesh-less, in the sense that their supporting functions do not depend on a definite division of elemental domains in space. The representation capability of these approaches is greatly enhanced at the expense of increasing operational and implementation complexities. This is due to their deeper mathematical definitions. Therefore, a full heterogeneity/fracture modelling scheme in 3-D is certainly harder to implement than with any standard approach and therefore harder to track in recent literature.

In this sense, the E-FEM framework, being the choice of the author of this work for the current study, retains a reasonable balance between mathematical complexity and representational capability. This is mainly because it is based on the method of incompatible modes [Simo et Rifai, 1990, Ibrahimbegovic et Wilson, 1991], allowing the building of independent mechanical field enhancements on each element without ensuring rigorous global continuity. From an operational standpoint, this allows working all heterogeneity and fracture mathematical enhancements in an internal-element fashion, with the possibility to use operator-split methods [Ibrahimbegovic et Melnyk, 2007] and thus condensing all element internal effects before attempting a global displacement solution step, whether linear or nonlinear. The E-FEM framework can then be developed in such a way that the global FEM numerical solution engine may be left untouched, enabling the support of a variety of available FEM solution platforms for implementation.

Out of the domain of finite element approaches, work has been done on developing many other techniques to face the modelling problem explored in this work, such as discrete elements [START_REF] Xu | Mesoscopic damage and fracturing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method[END_REF], phase field modelling [START_REF] Yang | X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete[END_REF], strain injection techniques [START_REF] Dias | Strain-injection and crack-path field techniques for 3d crack-propagation modelling in quasi-brittle materials[END_REF] or still standard finite element methods with highly adapted meshes and cohesive models [Zhou et Lu, 2018]. These techniques have already matured to the point of approaching 3D domains, but there is still lack of some required qualities for the mechanical solution sought by the authors of the current work like, for instance, the representation of objective continuum stress fields for the case of discrete elements.

The author of this work have chosen to focus on the use of the E-FEM framework for approaching the problem of triaxial failure in quasi-brittle materials. In Section 4.2, a review is made on how the E-FEM framework has recently evolved to approach this problem. In Section 4.3, the theoretical basis of the E-FEM framework used for this study is described. It makes the integration of a weak and a generalized strong discontinuity model. No detailed development of each of the discontinuity formulations will be done as the bases have already been discussed in other works [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Linder et Armero, 2007[START_REF] Wells | [END_REF]. Only the essential information characterising the outstanding features of each model will be introduced, as well as the implications of their superposition under the light of the Hu-Washizu variational framework. In Section 4.4, some highlights on the implementation process will be discussed to illustrate the reader notable considerations of using this or any other similar E-FEM frameworks having a standard numerical finite element solution engine as a base platform. A pedagogical tone is employed to clarify the implications of a successful integration of weak and strong discontinuity approaches and, most of all, the implementation of full 3-D fracture kinematics enrichment functions that poses unique challenges. Section 4.5 will introduce the numerical simulations done using this generalized E-FEM approach to discuss its performance in different problem scenarios allowing to scrutinise each of its enhancements in progressive fashion. Three different kinds of simulations will be presented in this work: homogeneous, simple heterogeneous and complex heterogeneous. Homogeneous simulations aim to present the response of the current model in basic uniform load problems and in the replication of a classical experimental setup meant to study mixed 3D fracture processes in concrete [Nooru-Mohamed, 1992]. These simulations will show how the strong discontinuity component of this E-FEM framework manages to capture stress triaxiality dependence in a fracture path, knowing that this is not the final objective of the approach as a whole, since the framework is meant to address intricate multi-crack events. Afterwards, simple heterogeneous simulations will feature a single spherical inclusion within an homogeneous matrix material considering different load conditions to discuss on the mixed 3D fracture processes unfolding due to the presence of different material phases on a simple layout. At the end, complex heterogeneous numerical simulations will include a cubic sample extracted from a realistic heterogeneity distribution coming from concrete samples. The heterogeneity layout is captured by means of X-ray tomography techniques and digitally treated by a specialized image-processing software (SPAM [START_REF] Stamati | spam': Software for practical analysis of materials[END_REF]) to have them projected onto an unstructured mesh, ready for FE studies. These simulations are meant to capture concrete behaviour at the mesoscale. A comparison is made with respect to another E-FEM model considering a single fracture kinematic mode approach to make an assessment on the resulting behaviour of three-dimensional fracture processes emerging in this problem. Section 4.6 will close this work with a final word on the overall effectiveness of the E-FEM framework to approach the problem of heterogeneous rupture, with potential future works.

Evolution of the E-FEM approaching composite quasi-brittle failure problems

From the founding works that established the main base of the E-FEM framework [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF], Simo et Rifai, 1990], this analysis approach was originally conceived to model localisation phenomena in general materials as an alternative to standard techniques with adapted meshes. It started with the idea of using weak discontinuity enhancements to represent the presence of shear localisation bands, associating specific damage behaviour laws to all domains falling between two parallel lines having an arbitrary separation (shear band thickness). As the mathematical depth of these developments evolved, the framework began to turn towards the use of strong discontinuities equipped with discrete or regularized crack behaviour laws to gain objectivity in the definition of strain localisation regions [Oliver, 1996a, Jirásek, 2000].

Applications to quasi-brittle materials began to emerge at this stage, but only for one or twodimensional problems [START_REF] Gálvez | An embedded cohesive crack model for finite element analysis of quasi-brittle materials[END_REF], Dominguez et al., 2005]. The pioneering work by Wells and Sluys [START_REF] Wells | [END_REF] started with a full deployment of the approach for 3D problems, pushing the boundaries of the framework and evidencing new theoretical weaknesses in the mathematical structure of strong discontinuity enhancements. They managed to implement the E-FEM framework for a linear tetrahedron including the rigid body displacement crack kinematic modes of normal separation and sliding, making the comparison between variationally symmetric and asymmetric strong discontinuity enhancements. The numerical reproduction of classical concrete fracture test setups in three dimensions like double-notched and single-edge-notched beams were achieved by using these models considering a homogeneous material domain. In all these applications, the local fracture interface is defined as a plane having from one to three translational degrees of freedom.

At the same time, the works on improving mathematical robustness and kinematic consistency in the framework are sustained by the notable work of Jirasek and Oliver [Jirásek, 2000, Oliver, 1996a[START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF] in the early 2000s. Non-symmetrical variational schemes were favored to achieve consistent modelling of both statics and kinematics simultaneously. An enrichment of the fracture formulation was explored by implicitly incorporating a rotational degree of freedom in the kinematics of the local fracture plane of a constant stress triangle (CST) element [START_REF] Alfaiate | Non-homogeneous displacement jumps in strong embedded discontinuities[END_REF], establishing the basis for nonuniform and enriched local fracture kinematics. The idea of having fully local enriched fracture modes for improving the consistency of fracture kinematics was later developed in detail on a 2D setting [Linder et Armero, 2007]. The authors managed to fully equip fracture kinematics with translational and rotational degrees of freedom in addition to the capability for one of the segregated domains of the element to have a simple lateral tension/compression mode. This allowed to reach new levels of variational consistency and better element internal equilibrium conditions, while having internal fracture variables that really described a physically meaningful state of the local fracture. The idea was further used in [Dias da Costa et al., 2013[START_REF] Dujc | An embedded crack model for failure analysis of concrete solids[END_REF], Raina et Linder, 2010, Contrafatto et al., 2013, Stanic et al., 2020] and finally in the works developed in Chapter 2 of this thesis work, where a deep assessment was made for its generalisation on a 3D setting. The present chapter considers this last development.

Concerning the applications to heterogeneous quasi-brittle fracture, the interest of multiscale approaches and the eventual need to incorporate the E-FEM framework into homogenisation procedures began with the notable works in [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF]. In particular, it was Markovic who set the point of departure of heterogeneity modelling by reviving the effective use of the weak discontinuity formulation taking the foundations of previous works on the X-FEM approach [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite-element method[END_REF]. This line of research gave rise to the first successful integration of strong and weak discontinuities within the framework for one-dimensional bar elements in [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Ibrahimbegovic et Melnyk, 2007]. In these works, an idealized 3D heterogeneity layout composed by perfectly spherical inclusions within a homogeneous matrix was used for the modelling of concrete samples. The use of bar elements greatly simplified the mathematical complexity inherent to the strong and weak discontinuity enhancements, avoiding all kinematic and variational consistency complications already found in past works. In this approach, a small cubic concrete sample was portrayed as a 3D truss made up of 1D bars, a part of which would be enhanced with weak discontinuity functions to represent material interfaces when these are intersected by borders of different material phases. The other pure elements would eventually activate a strong discontinuity enhancement if localisation was attained by means of a given criterion, for then following a discrete traction-separation law. Elements already enhanced with the weak discontinuity are also equipped with the strong one at the same location. While this method was successful in predicting typical tensile resistance values for concrete, the disadvantage was that it did not return satisfactory values for tension/compression resistance ratios. The use of 1D elements also prevented having an objective perspective of local stress and strain field distributions. Nonetheless, it was a significant milestone for the framework in the modelling of heterogeneous quasi-brittle materials, notably at small scales.

This line of research began its first truly 3D approach in the work done by Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF]. The 3D generalisation of the weak discontinuity enhancement model for heterogeneities was based on the works of Markovic [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF], while a strong discontinuity model equipped with a discrete traction separation law was used for local fractures. The strong discontinuity model was capable of representing a single fracture mode of normal separation, activated by a Rankine localisation criterion and followed by an exponential traction-separation law. The representation of heterogeneity distributions was evolved to make use of probabilistic excursion sets, which enhanced the random nature of material phases improving their packaging quality and conserving a degree of smoothness on their interfaces. Despite the limitation of using a single fracture mode kinematics approach, typical tension and compression resistance ratios were found to be more reasonable than the previous works with 1D bars. This was considered as relevant evidence for the hypothesis of having some quasi-brittle materials like concrete to locally exhibit predominant mode I fracture modes, collectively yielding to more complex fracture processes following the interfaces set by inclusion layouts.

Having at this point approached 3D problems where material continuum can be modelled in a more direct fashion through 3D finite elements, one of the most discussed characteristics of these E-FEM models was the lack of cross-elemental continuity for the emerging cracks. As the mathematical foundations of these enhancements are intrinsically based on the method of incompatible modes [Simo et Rifai, 1990, Ibrahimbegovic et Wilson, 1991], there is no guarantee to keep continuity of a local crack to neighboring elements once one of them starts to develop. This leads to the simultaneous creation of multiple local cracks that, by the mere mechanism of stiffness damaging and internal force redistribution, will tend to favour a spontaneous coalescence phenomenon giving rise to a larger scale fracture without explicitly aiming for it. While nonlocal crack continuity within the E-FEM framework has already been well studied and implemented in multiple applications for homogeneous material simulations [Jirásek et Zimmermann, 2001, Dias da Costa et al., 2013, Zhang et al., 2015], the line of research currently discussed [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Roubin et al., 2015, Hauseux et al., 2017, Stamati et al., 2019, Stamati et al., 2021]) intentionally keeps the locally discontinuous nature of the E-FEM models to favour this behaviour in the context of complex heterogeneous materials. This decision is supported by multiple studies that favour the hypothesis of multi-cracks at smaller scales contributing to the emergence of larger fracture processes in such materials [START_REF] Nguyen | Initiation and propagation of complex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microct experiments and phase field simulations[END_REF], Chateau et al., 2018].

Hauseux [START_REF] Hauseux | The embedded finite element method (e-fem) for multicracking of quasi-brittle materials[END_REF] later achieved the simulation of fracture sliding modes (mode II) with the same framework in the context of simulations of excavations of geomaterials. The strong discontinuity model was still based on a single fracture mode, but it considered mode II local fracture kinematics activated by means of a Mohr-Coulomb localisation criterion, followed by a discrete exponential tractionseparation law. Even if the original excavation simulations in [START_REF] Hauseux | The embedded finite element method (e-fem) for multicracking of quasi-brittle materials[END_REF] were done considering homogeneous materials, Hauseux also experimented with the simulation of heterogeneous cubic samples, considering compressive loads under preconfinement conditions. Heterogeneities in this case were still represented by means of mathematical idealisations, such as packed spheres containing different material phases having different size ratios. Typical Mohr-Coulomb resistance behaviour of some rock samples was captured with this model.

The works of Stamati [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019] added a new dimension to the E-FEM framework experimental validation by means of test setups having in-situ measurements in concrete samples that allowed direct comparisons with numerical simulations at the mesoscale. The data acquisition included accurate 3D descriptions of the heterogeneity distributions (largest pores and aggregates) within the samples in question by means of X-ray tomography scans. A linear quasi-static displacement loading profile is imposed on the sample, stopping the loading process at determined points to make a complete 360 • scan of it, assessing its entire state at the given load step. The process continues until breaking the sample completely, where a last scan is retrieved for capturing its terminal fracture distribution.

The grayscale data from all scans is then treated with the digital image processing software SPAM [START_REF] Stamati | spam': Software for practical analysis of materials[END_REF] to have well-isolated heterogeneity data describing the distribution of each of the material phases in the concrete samples. This heterogeneity distribution can also be taken by SPAM to make a final projection onto an unstructured mesh meant to use the E-FEM framework for numerical analysis, creating elements with 3D plane interfaces with appropriate assignations of material properties when applicable. This is considered by the author of this work as the most accurate heterogeneity representation made so far in the context of all E-FEM simulation efforts. Figure 4.1 illustrates the projection process and a sample of a resulting heterogeneous, non-adapted mesh ready for using any of the E-FEM formulations discussed so far. In the works of Stamati [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], a first approach consisted in correlating a single mode I fracture kinematics E-FEM model [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] with the results of a tensile test including in-situ measurements. With a very reduced set of material parameters comprising local linear elastic isotropic properties for concrete mortar and inclusions, Rankine tensile stress criterion values and fracture energies, the model was able to capture both global resistance and the local fracture process within a satisfactory threshold.

No significant evolution on the mathematical structure of the E-FEM framework was registered at these stages. In this same line of research, another experimental campaign was done considering a quasistatic compressive load having different levels of triaxial preconfinement, from zero to 15 MPa. Again, in-situ measurements were done on concrete samples similarly to previous testing campaigns and simulations were made to validate the models under unexplored loading conditions. The same single fracture kinematic mode E-FEM model was used to perform all these simulations. The material parameters used were exactly those that were calibrated for the numerical simulations in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], Stamati et al., 2021]. Overall results of the comparison were promising, showing a correlation in global predictions for global sample strengths. Figure 4.2 shows a summary of these comparisons. There is some discrepancy on the overall ductility predictions that become larger as confinement pressures are increased. Despite this fact, it remains astounding to find that the local modelling of a single fracture kinematic mode of normal separation can lead to such level of behaviour predictions for larger scale fracture processes. A more detailed analysis on the fracture patterns within the sample also reveals that the model is capable of capturing both the location and path through local crack coalescence up to a certain extent. However, some very specific local phenomena pertaining highly preconfined samples such as volumetric compaction within the fracture process region are not captured by the single fracture mode E-FEM proposal. The same can be said about simpler local events such as crack re-closures. Data and plot taken with permission from the segmentation article data in [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019, Stamati et al., 2020, Stamati et al., 2021] .

Finally, this review will mention the works done by Sun [START_REF] Sun | Strong discontinuity fe analysis for heterogeneous materials: The role of crack closure mechanism[END_REF], precisely on including crack reclosure and healing within the discussed E-FEM models. In this work, mode I and mode II strong discontinuity models were further enhanced with full crack reclosure mechanisms. Comparisons were made between models having exclusively a mode I fracture modeling approach or a mode II. This work evidences that, while single local fracture mode formulations are able to successfully predict a variety of large-scale phenomena under specific load conditions, these are restrained by a physical representation limit and will not be able to approach other local phenomenology that remains relevant for the modelling of tridimensional fracture processes in quasi-brittle heterogeneous materials. In order to have a fully functional E-FEM framework, the strong discontinuity formulation should be generalized to gain enough flexibly to handle all local requirements at once, thus acquiring a more universal character on its application to all types of mechanical problems.

The current work continues with this line of research, attempting such generalisation on the strong discontinuity model. The next section will detail the reasons that led the author to revise in considerable detail the theoretical bases of each part of the models coming from the E-FEM framework.

Double enhancement formulation with generalized fracture kinematic modes

At this point, the author will break the natural pace of this article fragment to take advantage of the detailed discussions already done in Chapters 2 and 3 for the current dissertation. The reader will only find very brief re-statements of the strong and weak discontinuity models and some related operators, along with their respective internal references.

Weak discontinuity formulation

The weak discontinuity model to be used is the typical enhancement, whose development details can be found in Section 3.4.1 within Chapter 3 in this thesis work. Recalling its general form:

Weak discontinuity enhancement u = Θ n • (x -x Γ d ) [ε] n n + [ε] t t + [ε] m m (4.1) Θ = Θ + = V - V x ∈ Ω + Θ -= -V + V x ∈ Ω - (4.2)
where n • (xx Γ d ) is the normal distance from a given point x to the nearest location x Γ d of the surface Γ d .

As already discussed in Chapter 3, this weak discontinuity formulation proposal satisfies most of the variational consistency requirements with the exception of making u zero at the element node positions. This entails a permanent variational inconsistency depending on element geometry and its alignment with respect to the interface Γ d . However, if the model features a mesh with good aspect ratios (< 3.0) and if the ratio between linear elastic parameters falls within the order of 5 or less, it has been demonstrated that this formulation grants a reasonable representation of the heterogeneous stiffness response and the expected strain field distributions (Section 3.5). Considering this, the fact that the enhancement benefits from unconditional numerical stability, and that it also allows for the use of a completely symmetric solver, this work justifies its use for the current study as it grants a sound compromise between its physical meaningfulness and ease of implementation. Such conveniences will be needed for handling the most complex models in this study (Section 4.5).

Strong discontinuity formulation

The strong discontinuity formulation taken as the base for this integration will be the most complete version as developed in Section 2.5 within Chapter 2 in this thesis work. As already described, this formulation features enriched set of nine fracture kinematic modes. Figure 4.3 illustrates an example of this enriched set of fracture kinematic modes for a domain Omega+ on a tetrahedron. The simple axial strains have been omitted for the sake of clarity, but these fracture kinematic modes are, in general, also activated for a wide range of nodal displacement configurations.

Its general form is restated to the reader: Strong discontinuity enhancement

u = û + (H Γ -φ) Jξ (4.3)
where the definitions for the new interpolation matrix operator J can be found in Section 2.5.2, Eq. 2.63. The most complete definition for the φ function has been contemplated (Section 2.5.1), based on a P 3 polynomial base, having a piece-wise definitions on Ω ± domains and three independent branches for each direction n, t, and m Its structure is recalled once again for ease of reading:

φ =   φ ± n 0 0 0 φ ± t 0 0 0 φ ± m   φ ± j = P T 3 α ± j j = n, t, m P 3 = 1 ξ η ζ ξη ηζ ξζ ξ 2 η 2 ζ 2 ξ 2 η ξη 2 η 2 ζ ηζ 2 ξ 2 ζ ξζ 2 ξηζ ξ 3 η 3 ζ 3 T α = α + n α - n α + t α - t α + m α - m T (4.4)
where the alpha coefficients are to be solved imposing a series of constraints by introducing kinematic link relations and other essential equations. Again, the complete development for this proposal can be found in (C).

Deliberate modifications to the article associated to this thesis chapter end at this point. For the following, the author considers that the variational analysis remains still relevant to present on its entirety since some definitions pertaining the superposition of both discontinuity models are introduced.

Variational integration of both discontinuity enhancements

Enhancement superposition

To model both heterogeneities and local element fractures in the same element domain, the aforementioned definitions have to be integrated within a unique mathematical framework. From the works in [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF] with 1D bars, the strategy has been to express the actual displacement field u as a linear superposition of both weak and strong discontinuity enhancements:

u = u + u + H Γ [|u|] (4.5)
The main assumption by doing this superposition is that both the material interface and the fracture interface coincide perfectly at the same surface during all the analysis. This means that no local rupture is detected out of Γ d . This current modelling style, which is to be applied mainly on small scale simulations, stands for the idea that in most of heterogeneous microcracking events, failure is going to originate on the interfaces between different material phases, which is a reasonable hypothesis for many quasi-brittle materials that have already undergone studies at such scales [START_REF] Ren | Meso-scale fracture modelling of concrete based on x-ray computed tomography images[END_REF], Zhou et Lu, 2018] All previous mathematical modifications are still valid on this linear superposition, so that the following can be reached from Eq. 4.5:

u = û + u + (H Γ -φ) Jξ (4.6)
which is the final form for expressing an actual displacement field in this work. The general strain field ε associated to this displacement field can be reached by applying a symmetric gradient operator

∇ s (•) = 1 2 ∇ (•) T + ∇ (•) : ε = ∇ s u = ε + ε + ε (4.7a) ε = ∇ s u (4.7b) ε = ∇ s u = ε = Θ [ε] n (n ⊗ n) s + [ε] m (n ⊗ m) s + [ε] t n ⊗ t s (4.7c) ε = ∇ s [(H Γ -φ) Jξ] = H Γ ∇ s J -φ∇ s J -∇ s φJ ξ bounded + δ Γ [ n ⊗ (Jξ)] s unbounded = εb + εu (4.7d)
Here, the resulting strain field has been expressed as a sum of the different respective strain fields coming from both weak ( ε) and strong (ε) discontinuity enhancements, as well as the standard strain field ε.

The strain field coming from the strong discontinuity enhancement is further classified as bounded (ε b ) and unbounded (ε u ), depending on the presence of the Dirac δ Γ . The strain field coming from the weak discontinuity field is expressed using tensor products (⊗) between the different unit vectors conforming the local frame.

Variational principle and its associated discretisation strategy

The variational principle serving as the base for an enhanced finite element formulation must be able to handle the newly added variables coming from the field enhancements in addition from the standard mechanical fields. For this reason, the Hu-Washizu framework has been the choice of all authors working on this E-FEM approach. This work will be no exception. The Hu-Washizu principle treats displacement, strain and stress fields (real fields) (u, ε, σ) as well as their respective variations (virtual fields) (δu, δε, δσ) as completely independent of each other. This allows a considerable flexibility on the discretisation strategy for each of the fields. Expressed already in a Voigt vector format, the equation system entailed by this variational framework is the following one:

Ω ∂δu t σ dV - Ω δu t f b dV - ∂Ω δu t t dA = 0 (4.8a) Ωe δσ t (∂u -ε) dV = 0 (4.8b) Ωe δε t (σ (ε) -σ) dV = 0 (4.8c)
where t and f b are the boundary traction and body force vectors. The ∂ operator is the equivalent of the symmetric gradient operator ∇ s in a Voigt format. An important distinction is made between the stress field σ (ε) that is calculated from a constitutive law taking the real strain field ε and the real stress field σ, which is independent. Only under certain conditions a strong equality will be found between these, as it will be explained later. In the same way, the real strain field ε is not necessarily equal to the symmetric gradient of the displacement field ∂u.

While the discretisation strategy for each of the real (and virtual) fields remains free, it should be always taken into account that these fields aim to represent the physics sought by the modelling goals of the study: heterogeneities and local fractures. The discretisation must be able to capture them to a satisfactory extent. Apart from that, the variational principle gives freedom to articulate a discretisation scheme that allows for mathematical simplicity and numerical efficiency. Everything, of course, given that satisfaction of all Eqs. 4.8a-4.8c is granted. This work will keep with the approach followed since the works of Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF]. The displacement field u and its variation δu are discretized by only considering the standard base displacement field û without the addition of any enhancements:

u = û = Nd (4.9a) δu = Nδd (4.9b)
with N as a standard interpolation matrix and d the standard nodal displacement vector. δd is the corresponding variation. This strategy means that only the field û is used for describing node positions and imposing boundary conditions. Therefore, in order for this to be valid, the effect of the enhancements should be zero at all element nodes. The basic definitions in the strong discontinuity approach are able to ensure this. It is technically not the case for the weak discontinuity enhancement but, as mentioned before, a satisfactory approximation is ensured with the conditions granted for the simulations being done in this work.

The strain field ε and its variation δε conserve all kinematics description terms as stated in Eqs. 4.7a-4.7d. Thus, it is this field that has the main role of representing the physics of both heterogeneities and potential local fractures and to spread it within the variational framework.

The discretisation of the weak discontinuity model considers the grouping of its internal strain jump variables

[ε] n , [ε] t , [ε] m within a weak discontinuity vector [|ε|] = [ε] n [ε] t [ε] m T along with its vari- ation δ [|ε|].
The definition of the weak enhancement has already been designed to handle a symmetrical real-virtual discretisation structure, and this work will adhere to it. The real enhancement field in the strong discontinuity model, as seen in Eq. 4.7d, has already a fracture kinematics modes vector ξ defined having all pertinent interpolation information. On the other hand, it has been preferred to discretize the virtual version of the strong discontinuity field by only considering a three-mode constant virtual displacement jump field δ

[|u|] = δ [|u|] n δ [|u|] t δ [|u|] m T .
This asymmetric structure will allow a more transparent management of the damage process for all interface stress components as described later on. The resulting discretisation can be stated as:

ε = Bd + G ± w [|ε|] + G ′ s ξ (4.10a) δε = Bδd + G ± w δ [|ε|] + G * s δ [|u|] (4.10b)
where weak enhancement operators G ± w have been introduced, as well their strong counterparts G ′ s , G * s . The apostrophe in these latter indicate an interpolation based on an enriched 9 fracture kinematic modes set to differentiate with respect to a three-mode interpolation without apostrophe, like in the virtual operator G * s . The operator for real and virtual weak discontinuity enhancements can be retrieved by putting Eq. 4.7c on a proper Voigt format, giving rise to a new operator H w :

G w = ΘH w , H w =         n 2 x n x m x n x t x n 2 y n y m y n y t y n 2 z n z m z n z t z n x n y + n y n x n x m y + n y m x n x t y + n y t x n z n y + n y n z n z m y + n y m z n z t y + n y t z n z n x + n x n z n z m x + n x m z n z t x + n x t z         (4.11)
where the components from each local frame vector n, t, m are explicitly used in H w . For the strong discontinuity, Eq. 4.7d can used directly to obtain the real matrix operator:

G ′ s = H Γ ∂J -φ∂J -∂φJ bounded + δ Γ H s J unbounded = G ′ sb + G ′ su (4.12)
where a distinction has been made again between bounded and unbounded expressions. A more detailed explanation for each of the convoluted differential terms within G ′ sb is provided to the reader in C. H s is identified as a projection operator in Voigt format on the n direction, with the following structure:

H s =         n x 0 0 0 n y 0 0 0 n z n y n x 0 0 n z n y n z 0 n x         (4.13)
As only a brief summary of the variational analysis will be presented in this work, the virtual strong discontinuity operator G * s will be just supplied to the reader, knowing that its definition takes into account careful considerations within such developments. G * s is actually defined as the classical threemode component matrix operator used in previous works using the EAS (enhanced assumed strain) approach [START_REF] Wells | [END_REF], Roubin et al., 2015]:

G * s = - A Γ V e H s + δ Γ H s = G * sb + G * su (4.14)
The stress discretisation is approached by adopting an independent interpolation style for real and virtual fields (σ, δσ):

σ = Ss (4.15a) δσ = S * δs (4.15b)
where S, S * are the respective interpolation matrices and s, δs are the real and virtual stress vectors. The interpolation matrix S remains a free choice, which determines the possible shape (and order) of the definitive stress field on the element. The matrix S * remains rather constrained by the structure of both weak and strong discontinuity enhancements. In this work, a uniform behaviour for the stress field will be chosen, having S as the identity matrix and s as a six component vector.

The stress field σ (ε) calculated from a constitutive law will be defined by following the Discrete Strong Discontinuity Approach (DSDA), where only the bounded part of the real strain field (Eq. 4.10a) is contemplated. From Eqs. 4.7a-4.7d, it is seen that the only singular term on the strain definition is identified as εu . A linear elastic constitutive law having a second order tensor C ± will be considered in this study, whose linear parameters depend on the material phase present on each domain Ω + , Ω -. This is an exigence coming from the weak discontinuity model, which respects each material phase with its own material law. Having all this in mind, σ (ε) can be set as:

σ (ε) = C ± ε b = C ± Bd + G ± w [|ε|] + G ′ sb ξ (4.16)
where:

C ± =         c ± 1 c ± 2 c ± 2 0 0 0 c ± 2 c ± 1 c ± 2 0 0 0 c ± 2 c ± 2 c ± 1 0 0 0 0 0 0 c ± s 0 0 0 0 0 0 c ± s 0 0 0 0 0 0 c ± s         (4.17a) c ± 1 = E ± (1 -ν ± ) (1 + ν ± ) (1 -2ν ± ) , c ± 2 = E ± ν (1 + ν ± ) (1 -2ν ± ) , c ± s = E ± 2 (1 + ν ± ) (4.17b)
The unbounded expression, which influences the interface directly, is compensated by a tractionseparation law, discussed later in this section.

Summary of variational analysis

Substitution of all discretised fields into Eqs. 4.8a-4.8c and their subsequent treatment yield the main equations governing the behaviour of all discontinuity enhancement internal variables. This work will not describe all the mathematical development of this process. Only the main highlights of the variational analysis will be provided to the reader.

Working the second equation from the variational system (Eq. 4.8b) and keeping the independence between the internal variables [|ε|] and ξ, two different orthogonality constraints are found for the virtual stress interpolation matrix S * :

S * T G ± w dV = 0 (4.18a) S * T G ′ s dV = 0 (4.18b)
These relations only demand to prove that, for a chosen definition of the real field enhancements, a matrix S * capable of being simultaneously orthogonal to both enhancement operators exists. It should be recalled that G ′ s has already a formidable cubic, piece-wise form due to the definitions done for the φrelated functions. Despite this, it can be shown that a matrix S * can be always found having polynomial components with high enough order to yield the necessary free parameters to satisfy both Eqs. 4.18a, 4.18b. Other than this verification, Eqs. 4.18a, 4.18b represent no impact to any structure within this E-FEM approach. It only reveals that S * is obliged to have a form which is overly different with respect to S. This already warrants a highly asymmetric variational model without the need of any other choices in the framework.

It is the last variational equation (Eq. 4.8c) that grants the most relevant foundations for the model structure. Taking the arbitrary nature of all independent vectors (δd, δ [|ε|] , δ [|u|]) involved in δε, three equations are derived:

B T σ dV = B T σ (ε) dV (4.19a) G ±T w σ dV = G ±T w σ (ε) dV (4.19b) G * T s σ dV = G * T s σ (ε) dV (4.19c)
The first one (4.19a), as it is, serves to simplify the internal-external force balance. It is also the only direct relation that helps to calculate the real stress field σ as a function of the constitutive stress field σ (ε) since B is fixed for a given finite element. If the stress fields had the same polynomial order, a strong equality could established. It is clearly not the case for this study. However, a volume-weighted average can be devised:

σ = 1 V e σ (ε) dV (4.20)
Eq. 4.19b is used to obtain the governing expression for the weak discontinuity law. It is a custom to assume that both sides of Eq. 4.19b are equal to zero. Having zero in the left side will allow the imposition of the patch test constraint that finishes the definition of G ± w through Θ (which has been provided to the reader beforehand for the sake of intelligibility). The patch test demands the expression to be satisfied at least for the case of a constant real stress field. Therefore, choosing σ already constant in the first place simplifies the process. The right hand in Eq. 4.19b, having particularised G ± w , yields the governing relation for the weak discontinuity model:

G ±T w C ± Bd + G ± w [|ε|] + G ′ sb ξ dV = 0 (4.21a) → K wb d + K ww [|ε|] + K ws ξ = 0 (4.21b) K wb = V + V - V e H T w C + -C -B (4.21c) K ww = V + V - V 2 e H T w V -C + + V + C -H w (4.21d) K ws = V + V - V e H T w C + G ′+ sb -C -G ′- sb (4.21e)
where subdomain integrations have been done through Ω + , Ω -, introducing the definition of specific stiffness matrices K wb , K ww and K ws . For the case of strong discontinuity operators, averaged versions G ′+ sb , G ′- sb were defined per subdomain as:

G ′+ sb = 1 V + Ω + G ′ sb dV, G ′- sb = 1 V - Ω - G ′ sb dV (4.22)
The governing relation coming from the strong discontinuity model provides with the means to calculate the average traction vector T on the crack surface Γ d which, in this case, having chosen a constant real stress field, is equal to the actual traction vector T itself. Calculating the traction vector at the discontinuity is vital for the model since it is this mechanical output which is used to regulate the magnitude of all crack kinematic modes through the use of traction-separation laws (DSDA approach). Again, left and right hands of Eq. 4.19c are simultaneously set to zero as a deliberate assumption in the framework. First, in an analogous process to the weak discontinuity model, the zero at the left side of Eq. 4.19c provides information to set a definition for G * T s , which has been already shown to the reader (Eq. 4.14). As already mentioned, this matrix is defined assuming that the virtual enhancement field for the strong discontinuity has a rather uniform jump vector instead of being characterised by nine fracture kinematic modes. G * T s is also assumed as a constant matrix (the simplest form) having the same bounded-unbounded constitution as its real counterpart. Its unbounded term is defined exactly as with the real enhancement, only without the matrix J (three modes instead of nine). All integrations related to it can be done using basic properties of the Dirac function δ Γ . The bounded term is then determined from this left-hand relation, again, considering the satisfaction of a patch test constraint for a constant σ field.

The equality between both left and right hands in Eq. 4.19c allows finding an expression for the discontinuity traction vector T as a function of the traction vector T e based on the constitutive stress σ (ε). This is relevant since it is rather T e which is reachable through direct calculations, and not T . Both traction vectors arise when working the unbounded terms, which are multiplied by the operator H s which is nothing but a projection operator onto the discontinuity surface Γ d . Using then the equivalence between stress fields in Eq. 4.20, one can reach the convenient conclusion that T e = T = T . Ultimately, the zero in the right hand of Eq. 4.19c establishes the governing relation for the traction through Γ d as a function of T e = T :

T = G * T s C ± Bd + G ± w [|ε|] + G ′ sb ξ dV (4.23a) → T = K s * b d + K s * w [|ε|] + K s * s ξ (4.23b) K s * b = 1 V e H T s V + C + -V -C -B (4.23c) K s * w = V + V - V 2 e H T s C + -C -H w (4.23d) K s * s = 1 V e H T s V + C + G ′+ sb -V -C -G ′- sb (4.23e)
where additional stiffness matrices K s * b , K s * w , K s * s have been defined. From both governing equations 4.21b, 4.23b, the internal state variable [|ε|] can be eliminated to express the traction vector T as a function of standard nodal displacements d and the fracture kinematic modes vector ξ:

[|ε|] = -K -1 ww (K ws ξ + K wb d) (4.24a) → T = T e + Mξ (4.24b
)

T e = K e d = K s * b -K s * w K -1 ww K wb d (4.24c) M = K s * s -K s * w K -1 ww K ws (4.24d)
Eq. 4.24b is the standard form for presenting the traction vector associated with the local crack on the current E-FEM framework. Priority is given to ξ as it is assumed that, once after localisation, the modelling approach will be giving much more priority to the fracture process phenomenon than the fact of having different material phases in the element domain. Eq. 4.24b determines the state of crack traction depending on loads and the kinematic state of the crack. On one hand, the T e vector represents the traction imposed by the current load in the element, depending on the standard displacement vector d. It is a variable mechanical demand that will guide the evolution of the fracture process within the element. The M matrix, referred to in this work as the fracture stiffness, accounts for the mechanical impact of having a kinematic state of fracture. It does not depend on load but only on a mixture between element geometry characteristics and basic properties of the surface Γ d . This composition of load effects and the crack state yield a current state for T . In turn, T is to be controlled (damaged) by a traction separation law. All this together brings a closed algebraic system that determines a unique state for all internal and standard variables in the element within the framework.

From now on, the description of all remaining mathematical structures in the model will be done on the local frame n, t, m (with the respective ξ, η, ζ coordinates). For instance, the traction vector T is now expressed as T = T n T t T m T . The same will be done with other vectors and matrices in later sections.

At last, the internal-external elemental force balance can be established from the first relation of the Hu-Washizu system (Eq. 4.8a), and using Eq. 4.19a as it is to express the real stress field σ as a function of the constitutive stress field σ (ε) directly:

f e int = Ω B t σ (ε) dV = Ω N t f b dV + Ω N t t dA = f e ext (4.25)
where the classical distinction of internal and external elemental forces f e int , f e ext has been brought upon. Special interest is placed on the internal forces f e int , where Eq. 4.16 can be used to further develop:

f e int = K bb d + K bw [|ε|] + K bs ξ (4.26a) K bb = B t V + C + + V -C -B (4.26b) K bw = V + V - V e B t C + -C -H w (4.26c) K bs = B t V + C + G ′+ sb + V -C -G ′- sb (4.26d)
where, again, intermediary stiffness matrices K bb , K bw , K bs have been defined.

The use of intermediary K matrices such as in these latest definitions allows a compact presentation of the main relations governing the behaviour of internal variables [|ε|] , ξ and nodal displacements d (Eq. 4.21b, 4.23b and 4.26a), and will help to present the global solution process in Section 4.3.6.1.

Localisation criteria

A localisation criterion is required to designate a local failure within an element and to start introducing the impact of fracture mechanics through the expressions developed earlier plus a set of traction separation laws (Section 4.3.5). The localisation criteria should be extensive in the sense that it should cover all possible stress limit states within a given element. If this is not the case, linear stress locking may arise in a number of elements depending on external load evolution.

Localisation also has the secondary role in the case of homogeneous elements of determining the orientation and location of the fracture surface Γ d . The base element explored in this work remains a linear tetrahedron whose real stress field has been set as uniform. Thus, a localisation criterion can objectively determine the orientation but not the exact location of the local fracture. On this matter, the author of this study have decided to take the approach followed in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017] and make Γ d to pass through the centroid of the element reaching localisation. For all heterogeneous elements, it has been already stated that the crack plane will be made perfectly coincident with the material interface plane.

The mathematical developments in the E-FEM framework naturally return the traction vector T as the main mechanical output characterizing the state of stresses and the equilibrium at the fracture surface. Thus, this work has taken its components T n , T t , T m to articulate the localisation criterion on the normal-shear stress space (σ n , τ ) on Γ d . A completely closed criterion has been built by composing a piece-wise function with three different sub-criteria:

• A Rankine criterion meant to set the limit for predominantly tensile state of stresses, represented by a straight vertical line on the (σ n , τ ) plane with a positive abscissa σ y R .

• A compression limit criterion intended to limit the amount of compression undertaken by an element. This is also represented by a straight vertical line on the (σ n , τ ) plane with a negative abscissa σ y C .

• A Mohr-Coulomb criterion for covering all remaining possible limit combinations of shear-tensile and shear-compressive state of stresses on the same plane. This is represented by a couple of symmetric lines (with respect to the σ n axis) described with the equation τ = ±C ∓ (tan ψ) σ n

This piece-wise curve remains very simple (4 material parameters) and ensures that all possible stress failure states are covered. .

To detect if a given load has breached this localisation criterion, a different assessment is done whether a fully homogeneous or heterogeneous element is examined. Figure 4.5 shows the approach for each case. A heterogeneous element already has a potential Γ d orientation defined, so the only task is to take the effective traction on this plane, given directly by the components of T e (Eq. 4.24c) to calculate the current location (σ ni , τ i ) on the (σ n , τ ) plane:

σ ni = T n , τ i = T 2 t + T 2 m (4.27)
Note that the failure is in a certain way forced to emerge on the plain given by the material phase interface, regardless if the criterion has already been violated by considering another different orientation for the traction plane. Having a current traction location point (A), a line can be constructed beginning from the origin assuming a proportional load behaviour, and an intersection (B) can be found between this line and a localisation criterion. The actual distance AB from the envelope curve to the current load point through this line (outwards is positive) defines the localisation criterion Φ w for this case, depending on the type of intersection:

Φ w =          σy R σn i -1 |T | , Intersection with Rankine line σy C σn i -1 |T | , Intersection with compression line C τi+σn i tan ψ -1 |T | , Intersection with Mohr-Couloumb line (4.28)
where it has been recognized that

|T | = τ 2 i + σ 2 ni .
The element is considered in a localised state if Φ w is equal or larger than zero, establishing the intersection point (σ y , τ y ) as the initial yield parameters for operating the respective traction-separation laws (Section 4.3.5):

(σ y , τ y ) =          σ y R , σy R σn i τ i Rankine Intersection σ y C , σy C σn i τ i Compression Intersection C τi+σn i tan ψ σ ni , C τi+σn i tan ψ τ i Mohr Coulomb Intersection (4.29)
Note that while the normal direction n of the plane is fully determined, the parallel direction remains arbitrary. In this work it is assumed that the direction of the resultant shear traction component τ i is assigned with the t unit vector exclusively. Thus, at localisation, T m is set to zero. For a homogeneous element, the state of stresses on the (σ n , τ ) plane can be portrayed by drawing the biggest of its three Mohr stress circles with the help of the principal stresses σ 1 , σ 2 , σ 3 . The distances from the circle to the nearest points on each sub-criterion line are monitored for detecting localisation, producing three criteria Φ R , Φ M C , Φ C for Rankine, Mohr-Coulomb and compression lines, respectively:

Φ R = σ 1 -σ Y R Φ C = σ Y C -σ 3 Φ M C = r σ -(C -σ tan ψ) cos ψ (4.30)
Sign conventions are the same as with heterogeneous calculations. Figure 4.5 does not show the distance Φ C for the sake of clarity. When the Mohr circle grows sufficiently to touch one of the lines, the predicted intersection values (σ y , τ y ) are set as initial yield parameters:

(σ y , τ y ) =      (σ y R , 0) Rankine Intersection (σ y C , 0) Compression Intersection cos 2 ψ (σ + C tan ψ) , cos 2 ψ (C -σ tan ψ) Mohr Coulomb Intersection (4.31)
The direction n of the normal to the plane corresponding to the maximized criterion can be calculated by considering the angle α (Figure 4.5) between the radial line containing the intersection and the horizontal axis. From classical 3D Mohr circle theory, this represents the double of the rotation angle that the actual stress plane has, expressed in principal stress coordinates, around the σ 2 axis on the principal stress reference frame. For the case of localisations occurring with Rankine or compression criteria, it is clear that n will be whether the direction associated to σ 1 or σ 3 , respectively (α = 0, π). For the case of a collision with the Mohr-Coulomb line, α can be expressed as a function of ψ using basic geometry. The cosine directors (v 1 , v 2 , v 3 ) for n in the principal stress frame of reference can then be calculated as:

v 1 = cos α 2 v 2 = 0 v 3 = sin α 2 (4.32)
The directors v 1 , v 2 , v 3 should then be rotated into the current frame of reference to continue the analysis. Again, as with the heterogeneous element case, parallel directions cannot be fully specified. For the case of Rankine or compression localisations, t is just set as the direction of the following the next eigenvector from the one selected for n. For the Mohr-Coulomb criterion, the direction of the resultant shear stress (knowing n) on Γ d is set as t. In all cases, m is calculated by a product vector between n and t.

The collection of traction-separation laws explained later in this work also involve the crack surface stress components not explicitly included in the traction vector T , as it is just a projection of an entire stress tensor (a vector if presented in a Voigt format) on the n direction. In the local frame, three components of the stress tensor σ| Γ d associated to the crack plane Γ d can be already identified as T n , T t , T m directly:

σ| Γ d =   σ nn = T n σ nt = T t σ nm = T m σ tn = T t σ tt σ tm σ mn = T m σ mt σ mm   (4.33)
Thus, it is pertinent to establish a yield value for σ ytt , σ ytm , σ ymm for further damage treatment. An easy option would be to take these stress components from the current stress state whose traction vector just breached the localisation criteria. But, this traction point could not be necessarily placed close enough to the criteria lines, so that the σ ytt , σ ytm , σ ymm values would not be correct. This is especially true when managing constant load steps that could breach a localisation criterion leaving big gaps in between. As the aforementioned calculations only consider the (σ n , τ ) plane, there is no way to assess these stress components accurately. As estimation of their state at the calculated yield point (σ y , τ y ) must be made. Whether in the case of a homogeneous or a heterogeneous element, a unique estimation approach is proposed: a linear scale factor β is calculated based on the current load point (σ ni , τ i ) and the established yield intersection (σ y , τ y ). The approach differs slightly if managing heterogeneous or homogeneous cases:

β =      √ σ 2 y +τ 2 y σ 2 n i +τ 2 i heterogeneous element √ σ 2 y +τ 2 y rσ homogeneous element (4.34)
Then, a complete tensor σ| Γ d is scaled using this factor, for then retrieving a projected value for σ ytt , σ ytm , σ ymm associated to the state (σ y , τ y ). The goal is to be as most consistent as possible with the state of stresses at localisation, as it will determine the initial behaviour for all fracture kinematic modes (ξ) in the traction-separation laws described in the next section.

Traction-separation laws and fracture mechanics

A traction separation law has the unique role of describing the behaviour of fracture mechanics directly once the element has reached a localisation state. It is entirely propositional, product of hypotheses on fracture processes that come from experimental observations (which are technically harder to make at small scales) and previous knowledge of other modelling techniques. It talks entirely from the perspective of the fracture, without any regard to native element characteristics. Its definition starts by setting an expression for relating an equivalent stress σ eq associated to the discontinuity surface Γ d and a postlocalisation behaviour function q, where q shall involve fracture state variables (ξ) along with intrinsic fracture physical properties:

Φ m = σ eq -q = 0 (4.35)
where a Φ m criterion is always assumed as zero for defining physically admissible states for σ eq . Note that Eq. 4.35 has been cast in a vector mode since multiple traction-separation relations can be defined. Physical (thermodynamic) consistency and mathematical justifications for the validity of such traction separation laws within the E-FEM framework will not be detailed in this work. The reader can refer to [Dias da Costa et al., 2009, Brancherie et Ibrahimbegovic, 2009] to find more about these developments that make part of the DSDA philosophy.

Main traction-separation relations

As already mentioned before, the strong discontinuity part of the framework is already expressed as a function of the traction vector T . Therefore, it is intuitive to build traction separation laws around it, and set σ eq simply as T deriving one traction-separation equation for each traction component T n , T t , T m :

σ eqq = Tq = T e + Mξq = 0 (4.36a)

T n = T en + 9 k M n k ξ k = q n (4.36b) T t = T et + 9 k M t k ξ k = q t (4.36c) T m = T em + 9 k M m k ξ k = q m (4.36d)
where the vector T has been expanded on its load-driven (elastic) vector T e and fracture mode-driven component Mξ featuring the 3 × 9 fracture stiffness matrix. Consequently, three different q j functions will control the evolution for each of the traction components. While the q j functions can have a versatile definition to represent a variety of hardening phenomena, in this work these functions will exclusively have the role of damage drivers, decreasing the traction values associated to the crack as it grows through the evolution of its kinematic modes (ξ), e.g., as the crack separates ([|u|] n0 ) or slides more ([|u|] t0 , [|u|] m0 ).

For simplifying the approach, it has been decided not to involve all the nine possible kinematic modes in the q j functions. Emphasis will be placed on the rigid body kinematic modes [|u|] m0 to control the evolution of the damaging process for all traction vector components. q is then defined as:

[|u|] n0 , [|u|] t0 ,
q =   q n q t q m   =   σ yn σ yt σ ym   e - σy n G f I [|u|] n 0 + σy t G f II [|u|] t 0 + σy m G f II [|u|] m 0 (4.37)
where σ yj are the initial yield values set from the localisation calculations (Section 4.3.4). For this specific case, it has been already mentioned that σ ym = 0 because of the way parallel plane orientations were assigned. The G f I and G f II constants are defined as internal fracture physical parameters that can be perceived as fracture surface energies for mode I and mode II fracture types coming from the classical theory of fracture mechanics, respectively. The choice of an exponential damage law allows to consider the compound contribution of each fracture rigid body mode to develop the crack completely until reaching a point in which the local crack no longer offers any resistance on any direction in a smooth fashion. Such state is referred to as a terminal separation condition. As theoretically these conditions will strictly hold at infinite separation, the author has decided that a crack progression returning a damaging factor of at least e -4 (0.0183) is enough for all following discussions.

Alternate traction-separation relations

To complete the damaging process on the stress components σ ytt , σ ytm , σ ymm not explicitly present in T (refer to the discussion in the 4.3.4), three additional relations of the same style are added to the system. These relations arise from the projections of σ on the other remaining directions t and m, completely unrelated to that happening on the n direction. Indeed, it should be noted that satisfaction of the Eqs. 4.36b-4.36d during all the crack development process does not guarantee a decrease of σ ytt , σ ytm , σ ymm . If no conditions are imposed on these components, the model will inevitably present stress locking, which has been already shown as problematic [START_REF] Wells | [END_REF]. This is actually the main motivation to enrich fracture kinematics beyond rigid body translations

[|u|] n0 , [|u|] t0 , [|u|] m0 :
the liberalisation of additional kinematic modes is needed in order have enough parameters to establish consistent internal equilibrium within an element. To build relations analogous to Eqs. 4.36b-4.36d for the t and m directions, the corresponding projections are extracted by proposing alternate H st , H sm projection operators instead of H s in Eq. 4.23a-4.23e:

H st =         t x 0 0 0 t y 0 0 0 t z t y t x 0 0 t z t y t z 0 t x        
, in local frame :

H st =         0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0         (4.38) H sm =         m x 0 0 0 m y 0 0 0 m z m y m x 0 0 m z m y m z 0 m x        
, in local frame :

H sm =         0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0         , (4.39)
Following the structure of Eq. 4.23a, this would produce two different traction vectors T ′ and T ′′ corresponding the t and m directions, respectively:

T ′ = 1 V e H T st C ± Bd + G ± w [|ε|] + G ′ sb ξ = T ′ e + M ′ ξ (4.40a) T ′′ = 1 V e H T sm C ± Bd + G ± w [|ε|] + G ′ sb ξ = T ′′ e + M ′′ ξ (4.40b)
where corresponding load driven vectors T ′ e , T ′′ e and stiffness matrices M ′ , M ′′ come along. For the t projection, only two traction components T ′ t , T ′ m are needed to capture the stress components σ tt , σ tm , while for the m projection, only one is ultimately required (T ′′ m ) for addressing σ mm . The following system of three alternate traction-separation relations can then be reached:

T ′ m = T ′ et + 9 k M ′ t k ξ k = q tt (4.41a) T ′ t = T ′ em + 9 k M ′ m k ξ k = q tm (4.41b) T ′′ m = T ′′ em + 9 k M ′′ m k ξ k = q mm (4.41c)   q tt q tm q mm   =   σ ytt σ ytm σ ymm   e - σy n G f I [|u|] n 0 + σy t G f II [|u|] t 0 + σy m G f II [|u|] m 0 (4.41d)
where new damaging functions q tt , q tm , q mm have been defined, related to yield parameters σ ytt , σ ytm , σ ymm coming from the localisation calculations (estimated at the end of Section 4.3.4). Note that the exponential decay function in Eq. 4.41d remains the same as with the main traction-separation equation system (Eq. 4.37).

Satisfaction of will guarantee a proper and complete damage process for any element regardless of its geometric properties, fracture surface characteristics and load evolution patterns. This part of the framework eludes any kind of post-localisation stress locking events, so that all elements can reach terminal separation conditions retaining numerically stable internal equilibrium.

Crack reversibility and a phenomenological fracture mechanics approach

As this framework has liberalised multiple degrees of freedom for local fractures, a variety of physical situations can virtually happen to a given element having a certain load, geometry and crack configurations. One could think about a crack relaxation and its potential closure, or sliding in an opposite direction under a specific load evolution pattern, or crack compression, among others. If these local phenomena are not correctly assessed from the modelling standpoint, they will induce non-physical and instability-prone behaviours in a number of elements. For instance, allowing negative values for any crack rigid body mode [|u|] j0 on any of the exponential expressions defining the q j functions will return nonsensical damage factors over 1.0. If it is chosen in this case to just freeze such rigid body modes for a predicted reversible behaviour beforehand, will respond to this arbitrary overconstraint by returning physically incoherent values for other kinematic modes and/or the spurious growth of traction vector components. This would happen mainly because the fracture kinematic modes are already linked to actual nodal displacement patterns (Eq. 2.53), and the latter demand a specific behaviour coming from the crack. All these issues promote the emergence of numerical disturbances in the model that will prevent the successful solution of a particular problem.

To prevent this, such offending elements could be killed during numerical simulation runtime by enforcing an arbitrary damage mechanism on them (or just on part of their structure), thus disabling the propagation of these abnormal effects. This, however, would mean that the model would deliberately neglect local physical phenomena in favour of numerical hygiene and, depending on the element count, it could go up to the point of influencing the response of a given system considerably, preventing a meaningful study.

For this reason, the author of this work have made their best to incorporate the modelling of certain local crack physics in a mostly basic but efficient style. The reader might find these additions to lie on the edge of overburdening the E-FEM framework and might probably find a hard time justifying their existence or even their accurate representation. In any way, a reasonable compromise has been found between the introduction of new physics along their parameters, computing memory management, computing solution times and the quality of modelling results. The idea is to look for the positive evolution of the E-FEM framework while preserving its main attractiveness resting on its practicality.

Going forward on this matter, one of the most practical features of the model is that, by the way the main traction-separation laws ) were defined, they can be used to model direct fracture mechanics with a variety of effects. Indeed, the system conformed by Eqs. 4.36b-4.36d can be perceived as a cohesion force balance on each of the n, t, m directions normalized by the crack surface area. As such, they represent the direct mechanics of Ω + as a physical body with respect to Ω -:

i T ni = q n (4.42a) i T mi = q t (4.42b) i T ti = q m (4.42c)
where the damaging functions q n , q t , q m represent a cohesion force (per surface area) between the bodies. At terminal separation conditions, these cohesion forces are driven to zero, which completely renders the Ω + body independent from Ω -. However, Eqs. 4.42a-4.42c can be taken as a base for representing further effects adding the presence of additional forces in the corresponding directions and adapting the expressions as necessary, keeping physical coherence in the model. In this sense, the author of this work have added the possibility to model crack reclosure, crack compression and crack sliding with frictional resistance.

Crack reclosure on this kind of E-FEM framework has been addressed in [START_REF] Sun | Strong discontinuity fe analysis for heterogeneous materials: The role of crack closure mechanism[END_REF], and the ideas managed in this specific research are taken by the author of this work to incorporate a basic closing mechanism. This modelling approach implies the definition of irreversible crack separation/sliding states that determine the current state of cohesion damage (q n , q t , q m ), while having an actual crack separation/sliding states that describe the current physical state of the crack (kinematic state of Ω + ). In the works done in [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Roubin et al., 2015, Hauseux et al., 2017], all irreversible crack kinematic modes are made permanently equal to actual crack kinematic modes, thus reclosure modelling is not possible in such models. Again, it is only in [START_REF] Sun | Strong discontinuity fe analysis for heterogeneous materials: The role of crack closure mechanism[END_REF] that this distinction has been made, albeit only for a single kinematic mode formulation. In this work, as only crack rigid body modes [|u|] n0 , [|u|] t0 , [|u|] m0 are involved in the q n , q t , q m damaging functions, only these can serve as a base for irreversible crack mode definitions. These are named as |u| n , |u| t and |u| m , respectively. They shall only have positive change rates:

|u| j ≥ 0 (4.43)
Whenever the state of load imposes growing conditions for all crack rigid body modes further from their accumulated/irreversible values |u| n , |u| t and |u| m , Eqs. 4.42a-4.42c are solved exactly as shown considering nonlinear exponential decay functions q n , q t , q m . If the load state is such that it promotes a crack rigid body response less than the one already registered by |u| n , |u| t , |u| m in any direction, then the current cohesion force q j becomes a simple linear spring model, allowing the decreasing kinematic mode [|u|] j0 to return through a straight line down to a certain value, possibly reaching closure ([|u|] j0 = 0). Figure 4.6 shows this basic reversibility behaviour for both normal separation and sliding cases from points 1 to 3.

The stiffness of the linear spring driving this reversible behaviour varies depending on the current values of |u| n , |u| t and |u| m . For a given mode that is currently on a decreasing state, its balance equation changes to the following form: 4.44) where the right hand is the equation of a straight line with its slope value enclosed in brackets, and having an intersection with the origin [0, 0]. Note that the slope depends on irreversible values |u| n , |u| t and |u| m , which are assumed to be completely determined from a previous load step, so that Eq. 4.44 continues to be solved for an actual kinematic state [|u|] j0 , resulting in a value less than the currently stored |u| j .

i T ji = σ yj |u| j e - σy n G f I |u| n + σy t G f II |u| t + σy m G f II |u| m [|u|] j0 ( 
For the specific case of having [|u|] n0 reversing enough to reach a value of zero, the crack is considered to be in a state of compression, and normal contact force between the Ω + , Ω -will start to develop (i.e., a The path from 1 to 2 is irreversible, while 2-3 is depicted as a reversible path forced by an insufficient load that fails to continue crack evolution to point 2a. If the load is reversed enough, the crack can will be eventually closed (3). Further load reversibility induces compression for the left plot and sliding on the opposite side of the crack for the right plot (3-4). Eventually, one can even reach irreversible behaviour zones once again (4)(5). There is an inherent asymmetry between the normal and parallel models since the normal model is the only one capable of exhibiting compression states.

negative value of T n ). The value of this normal force will depend on the amount of compression (negative [|u|] n0 ) and a proposed contact "stiffness". This is actually what in contact analysis literature would be called an interface stiffness, in this case regularised by a characteristic length due to the nature of the normalized force balance. In this work, it has been estimated using the young modulus E c of the least stiff of the materials found in Ω + , Ω -divided by the characteristic length l c of the whole element in question. This brings the following behaviour for the n direction under compression:

T n = E c l c [|u|] n0 (4.45)
The summation symbol has been removed as from now on no further forces/effects will be accounted for the n direction. Note also that the slope of the straight line continues to be strictly positive. Indeed, for negative values of T n , Eq. 4.45 will return a negative value for [|u|] n0 . The stiffness of the straight line in Eq. 4.45 is naturally much larger than that used for crack closing in Eq. 4.44. This means that, once in compression, a very high normal force T n will be attained with very low values of effective compression [|u|] n0 . Again, Figure 4.6 (left) shows this behaviour for T n up to point 4. This contact interface cannot reach infinite compression values, as a compaction limit has been set. This value remains precisely the limit stress under compression σ y C already defined for localisation. Reaching this compression limit will reach a state of material compaction, tempering T n to a final value T C in a permanent fashion.

The author acknowledges that more physically consistent compaction models that consider microporosity properties exist in current literature. The present simple approach was just deemed sufficient to complete the physical behaviour for the model at this stage of development. This is finally depicted by point 5 in Figure 4.6 for T n .

For the crack sliding directions ĵ, m, there is no special consideration for any sign change, and the reversibility relation (Eq. 4.44) can be still used to predict the actual values for [|u|] t0 and [|u|] m0 . However, their behaviour will fall back to irreversible decay if their respective absolute values go beyond |u| t and |u| m , i.e., if the current sliding values go negative enough to attain the current accumulated sliding on the opposite sense. This means that sliding damage is considered as symmetric, and it can be accumulated whether triggering from the positive side of the ĵ, m directions or their negative sides, as well. This is portrayed also on the right side of Figure 4.6.

The last important effect to account for on the ĵ, m directions is the friction induced by normal compression. Whenever a negative value of T n is calculated, an associated resisting traction T µt , T µm will emerge, and will totally prevent or moderately diminish further sliding motion between Ω + , Ω -. This 

T ti = T t ± T µt = T et + 9 k M t k ξ k ± T µt = q t (4.46a) i T mi = T m ± T µm = T em + 9 k M m k ξ k ± T µm = q m (4.46b) T µt | max = µ t |T n | , T µm | max = µ m |T n | (4.46c) T µt ≥ q t , T µm ≥ q m (4.46d)
where µ t characterises the friction on the sliding direction t (recalling that it was chosen during localisation analysis as the direction of the shear traction vector component resultant, Section 4.3.4) and where µ m corresponds to the friction model on the perpendicular sliding direction m. Also, a ± has been introduced to select the proper sign corresponding to oppose the driving motion by T t or T m . Independent Coulomb friction coefficients µ t , µ m have been introduced. Note that, while Eqs. 4.46a, 4.46b have been written for the case of nonlinear decay behaviour, these also apply for crack closure states. The conditions in Eq. 4.46d imply that the friction model is to be applied once the respective damaged cohesion normalized forces q t , q m are weakened enough to fall below the generated friction. This avoids having a duplicated resistance to sliding motion, as the cohesion forces associated to the original traction separation law already imply some physics due to surface roughness while developing the crack.

The application of friction in Eqs. 4.46a, 4.46b does not exactly work as an addition of a residual constant to the entire traction curve, but rather as a resistance threshold preventing a current equilibrium position to move further whether in the main crack direction or backwards. Figure 4.7 has been conceived to better illustrate the intended use of Coulomb friction. Departing from a current equilibrium point at [|u|] t0 i , the current load step will attempt to move from the current state, whether further through the nonlinear curve by means of a positive traction load change ∆T + t on the crack stiffness line with fixed slope M tt or to retract on the opposite direction by means of a negative traction load change ∆T - t . If friction is present, this available traction load has to overcome this amount of friction, otherwise the crack will remain on its current equilibrium state. This threshold given by T µt is the same for both sliding directions. If external load effects manage to overcome friction, the effective sliding will be provided by a diminished traction ∆T ± t ∓ T µt , to end whether in a state This model allows the situation where compression is high enough so that the resisting traction components T µt , T µm go even beyond the original yield limit values σ yt and σ ym originally fixed at the onset of localisation. The author concedes that frictional effects cannot growth indefinitely, since microroughness properties at local scale would certainly change and eventually impose physical limits to further friction development. Once again, the author deemed this simplistic assumption sufficient to regulate the amount of complexity for local physics, but it could certainly become a subject for future studies.

Even after all measures taken concerning the incorporation of these local mechanics effects, there are still some rare cases of extremely unexpected element behaviour. At this point, where the offending element count represented a substantially tiny proportion of the active global model, the author of this work finally rendered the act of deliberately killing these elements as totally justified. This is already a discussion that pertains the implementation process, of which the reader will find more information in section 4.4.

Closing relations, a complete view of the system

At this point, even if enough relations have been defined to determine (and properly damage) the full state of the traction separation vector T and all remaining stress components σ ytt , σ ytm , σ ymm associated to the crack surface, the complete algebraic system described so far remains open (infinite solutions). This is because the strong discontinuity model counts with nine fracture kinematic modes and only six tractionseparation equations have been defined so far. For the author of this work, the existence of three extra fracture kinematic modes is regarded as an opportunity: the framework allows to define three additional auxiliary relations for any kind of mathematical or phenomenological representation improvements.

In this work, three final closing relations are defined to fully uncouple rigid body translations by driving the compound effect of all other (non-translational) kinematic modes to zero on each of the main traction balance equations. This way, the three main traction equations can be written having their linear left hands based on a single variable. Note that some coefficients of the M matrix have been already nullified to accomplish this, but other terms remain. This goes in line with the phenomenological philosophy that crack rigid body translations have a more prominent influence in fracture mechanics than the other non-uniform field kinematic modes. This way, three final relations are added to the system, closing it completely. A summary can be described as follows:

Main traction-separation laws (T n , T t , T m ) -

T en + M nn [|u|] n0 =            q n [|u|] n0 > |u| n (qn) i-1 |u| n [|u|] n0 0 ≤ [|u|] n0 ≤ |u| n Ec lc [|u|] n0 σ y C ≤ T n ≤ 0 q C T n ≤ σ y C (4.47a) T et + M tt [|u|] t0 ± T µt = q ± t [|u|] t0 > |u| t qt| |u| t [|u|] t0 [|u|] t0 < |u| t (4.47b) T em + M mm [|u|] m0 ± T µm = q ± m [|u|] m0 > |u| m qm| |u| m [|u|] m0 [|u|] m0 < |u| m (4.47c)
Alternate traction-separation laws (σ ytt , σ ytm , σ ymm ) -

T ′ et + 9 k M ′ t k ξ k = q tt (4.48a) T ′ em + 9 k M ′ m k ξ k = q tm (4.48b) T ′′ em + 9 k M ′′ m k ξ k = q mm (4.48c) Closing relations - 9 k=4 M n k ξ k = 0 (4.49a) 9 k=4 M t k ξ k = 0 (4.49b) 9 k=4 M m k ξ k = 0 (4.49c)
In this summary, the fact that all the non-diagonal terms from the first three columns of the M matrix have been nullified by making the correct choice for the φ-related functions (Eq. 2.56), leaves only the M nn , M tt , M mm terms (M 11 , M 22 , M 33 ) as slope coefficients for the crack rigid body translations [|u|] n0 , [|u|] t0 and [|u|] m0 , respectively. Note that the closing relations ) have been also implicitly considered in the first three traction-separation equations ) to isolate rigid body translations completely. So, basically, these three first equations remain completely independent, for then solving the behaviour of the remaining rotation and simple axial strain modes in the rest of the system. Once again, the choices taken in this work have led the crack rigid body translation modes to get the highest modelling priority. Other approaches could introduce more involvement for rigid body rotations and simple axial strains.

Nonlinear global solution

At this point, it is worth providing certain details of the nonlinear global solution process pertaining the E-FEM model managed in this work. The discussion will be focused on some key features and modelling decisions that impart some of the most noteworthy implementation advantages that motivated all these developments in the first place.

Linearisation of the model

The linearisation process for the application of nonlinear global iterative solutions can be accomplished by departing from the main relations governing each of the internal discontinuity variables [|ε|], ξ and the nodal displacements d (Eqs. 4.21b, 4.26a and the system 4.47a-4.49c).

The process starts by stating expressions for linear increments of key dependent variables in these governing equations as a function of linear increments of a set of independent variables in the following fashion:

∆Y = nv i=1 ∂Y ∂X i ∆X i (4.50)
where general vectors X, Y are designated as independent and dependent variables, respectively. In this work, different dependent variable increments ∆Y are defined to aid the calculation of the complete state of the global mechanical system through Eqs. 4.21b, 4.26a and 4.47a-4.49c, while the increments of the main independent variables ∆X in the framework remain always as ∆d, ∆ [|ε|] and ∆ξ following all the developments so far.

The first and most standard case is the global internal-external force balance, in which the increment ∆Y is taken as the global residual of internal and external nodal forces from successive iterations k and k + 1 for a set of assembled element force balance equations. For this, the linearisation of Eq. 4.26a is assembled repeatedly (A operator) for all n e elements currently iterating during the application of a load step p + 1 coming from an already solved step p. This yields the following:

n el A K bb ∆d (k+1) p+1 + K bw ∆ [|ε|] (k+1) p+1 + K bs ∆ξ (k+1) p+1 = - n el A f e int (k+1) p+1 -f e ext p (4.51)
It is important to remark that, in a standard finite element method, linearisation normally takes place at the global scale involving independent variables associated to all nodes and elements of the problem at once. However, on the E-FEM framework, which is based on the principle of incompatible modes [Simo et Rifai, 1990], no global continuity is guaranteed for any of the internal variables characterising both weak and strong discontinuities. Hence, none of the linearisations associated to Eqs. 4.21b, 4.47a-4.49c go through any conventional assembly process. Indeed, there will be one relation to be satisfied for each element in an independent fashion. For instance, the weak discontinuity governing relation (Eq. 4.21b) can also be linearised by defining its balance through a dependent variable Φ w at element level, which is always sought as zero during the nonlinear solution process. Taking increments in this expression leads to the following:

K wb ∆d (k+1) p+1 + K ww ∆ [|ε|] (k+1) p+1 + K ws ∆ξ (k+1) p+1 = ∆Φ w p+1 = 0 -Φ w k p+1 (4.52)
where Eq. 4.52 is never assembled in a global format.

Linearisation of the strong discontinuity model governing relations is not evident since different sets of traction separation laws were incorporated with different considerations and there are also the closing relations coming from purely algebraic considerations .

In [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], a cascade linearisation approach was followed, in which a Φ criterion (as the one defined in Eq. 4.35) is established as the base dependent variable. Then, a first linearisation step is done with respect to the increment of an intermediate variable ∆T along with ∆ξ. Finally, the increment ∆T is expressed as increments of all main independent variables, merging any common expressions at the end.

In this work, such approach will be taken to address . The first three main traction separation equations can be grouped having Φ m as their main dependent variable, considering exactly the vector T as an intermediate independent variable to express the linearisation as:

∆Φ m = ∂Φ m ∂T ∆T + ∂Φ m ∂ξ ∆ξ (4.53a) ∆Φ m = ∂ (T -q) ∂T ∆T + ∂ (T -q) ∂ξ ∆ξ (4.53b) ∆Φ m = ∆T - ∂q ∂ξ ∆ξ (4.53c) ∆Φ m = K s * b d + K s * w [|ε|] + K s * s - ∂q ∂ξ ∆ξ (4.53d)
The partial derivative of q with respect to ξ will create a number of null components within a 3 × 9 matrix since all exponential damage functions q j defined so far have been defined involving only the three first fracture kinematic modes

[|u|] n0 , [|u|] t0 , [|u|] m0
. This is then merged with the stiffness matrix K s * s (Eq. 4.23b).

The next three traction separation relations (Eqs. 4.48a-4.48c) are treated the same way by setting a zero balance Φ a as their dependent variable. A three component traction vector

T a = T ′ t T ′ m T ′′ m T
is designated this time as the intermediate independent variable and the cohesion force expressions are grouped as q a = q tt q tm q mm T , yielding:

∆Φ a = ∂Φ a ∂T a ∆T a + ∂Φ a ∂ξ ∆ξ (4.54a) ∆Φ a = ∆T q - ∂q a ∂ξ ∆ξ (4.54b) ∆Φ a = K s * * b ∆d + K s * * w ∆ [|ε|] + K s * * s - ∂q a ∂ξ ∆ξ (4.54c)
where double star ( * * ) notations have been introduced to define stiffness matrices K s * * b , K s * * w , K s * * s for each of these alternate traction components coming from other projections different than n.

Finally, linearisation of the closing Eqs. 4.49a-4.49c is done by defining a dependent variable Φ c and directly taking an increment with respect to ξ:

∆Φ c = ∂ ∂ξ   3 j=1 9 k=4 M jk ξ k   ∆ξ (4.55)
Here, again, a semi-empty 3 × 9 matrix is generated by the partial derivatives since the closing relations only involve all non-rigid body translation fracture kinematic modes.

Once the nine relations have been linearised, they can be assembled to build a single matrix blockbased equation to pack down the nine relations into a single linearised expression defining ∆Φ 0 as a collective dependent increment:

K s * b ∆d (k+1) p+1 + K s * w ∆ [|ε|] (k+1) p+1 + K s * s ∆ξ (k+1) p+1 = ∆Φ 0 = 0 -Φ 0 k p+1 (4.56)
where the matrices K s * b , K s * w , K s * s contain the aforementioned small-scale assembly of linearisations of all traction separation laws and closing equations previously developed.

Having all these linearisations, the same global solution approach in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] is followed. A complete linearised system is first built in a block-matrix format as:

  K bb K bw K bs K wb K ww K ws K s * b K s * w K s * s   (k) p+1   ∆d ∆ [|ε|] ∆ξ   (k) p+1 =    - n el A {f e int -f e ext } -Φ w -Φ 0    (k) p+1 (4.57)
Considering, once again, that the weak and strong discontinuity models only have immediate influence at a local level, the typical global strategy solution for a nonlinear iteration k + 1 is to take the solution of the standard displacement vector d solved on the previous iteration k to internally update the actual state of the weak and strong discontinuity variables [|ε|] , ξ using the nonlinear equation system (Eqs. 4.47a-4.49c) and Eq. 4.21b. With this, the linear system 4.57 is condensed in the ∆ [|ε|] , ∆ξ increments to reach a final expression involving exclusively the increment of the standard nodal vector ∆d and a condensed elemental stiffness matrix K sc , which is to one to be assembled and eventually used to execute a numerical method of choice by a standard finite element global solution engine. The final condensed global FEM equilibrium equation system has the following form:

n el A K sc (k+1) p+1 ∆d (k+1) p+1 = - n el A {f e int -f e ext } (k) p+1 (4.58a) K sc (k+1) p+1 = K bb -K bw K bs K ww K ws K s * w K s * s -1 K wb K s * b (k) p+1 (4.58b) 
As a final step, for the calculation of the residuals at the right hand of Eq. 4.58a, element internal forces f e int can be easily retrieved each iteration k by using whether Eq. 4.25 or 4.26a depending if real stresses σ have been already calculated during program runtime:

f e int (k) p+1 = K bb d + K bw [|ε|] + K bs ξ (k) p+1 (4.59a) f e int (k) p+1 = Ω B t σ (ε) dV (k) p+1 = Ω B t σ dV (k) p+1 = V e B t σ (k) p+1 (4.59b)

A balance between model invasiveness and global solution quality

The decision to selectively update the local enhancement variables [|ε|] , ξ having an already solved standard nodal displacement vector ∆d from a previous iteration is inspired by the operator split method [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Ibrahimbegovic et Melnyk, 2007]. Indeed, this is the core ingredient that allows the E-FEM framework to retain an exclusively local solution process for all internal field discontinuity effects, taking advantage of the method of incompatible modes. This way, Eq. 4.58a has the standard form of any conventional finite element solver, accounting already for all discontinuity effects in two different ways:

• Through the residuals at the right hand of Eq. 4.58a that involve the internal forces f e int . These regulate the convergence goal of the non-linear iterative process to pursue an adequate ∆d vector that grants both local and global equilibrium.

• Through the condensed tangential stiffness matrix K sc that helps the nonlinear process to be in right increment direction for converging into such ∆d vector.

The fact of conserving such compact and standard form allows for the framework to take any existing FEM global solution platform and implement the model code within a single element internal routine without worrying about absolutely any other program sections related to global entities in such platform, almost like in a "plug and play" fashion. No global unknowns are added to the problem, and all physical modelling operations happen within the element internal residuals and tangent matrix building routines.

The only outstanding concern for keeping the use of global solution routines completely intact is the nature of the K sc tangent matrix, which in most conventional solvers shall be absolutely symmetric. While the weak discontinuity enhancement developments used in this work have been designed to render all variational operators symmetric, the strong discontinuity enhancement field and the phenomenological treatment of all related discrete traction-separation laws inevitably become a remarkable source of variational asymmetry. This naturally yields K sc asymmetric, rendering the use of asymmetric numerical solvers imperative. Unfortunately, asymmetric solvers are certainly not a standard feature of common finite element method programs. Indeed, they require to store the entirety of the global stiffness matrix, considerably increasing memory requirements. The linear equation system solver repeatedly executed for each nonlinear iteration must be also prepared to handle non-symmetrical structures.

Certain nonlinear solution strategies can be contemplated to avoid the need of asymmetric solvers if the interest is to seek an implementation within a rather basic FEM platform. A compromise is to be done with the quality of results in such case, normally in the form of increased residuals preventing a highly accurate nonlinear convergence. As an example, many simulations done in this work have managed to keep the use of a symmetric global stiffness matrix. To do so, the strategy is to choose a nonlinear solution method that is rather residual driven than tangent matrix driven, so that there is a less frequent need to assemble a tangent stiffness matrix. Quasi-Newton methods make particularly good candidates for this. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method has been the main choice in the present work. This method starts its first nonlinear iteration with a tangent stiffness matrix of reference, for then using the resulting residuals to estimate a secant stiffness matrix for the next iteration, and then successively updating the secant matrix each time a new residual is calculated for next iterations. The process will not be illustrated in this work, and can be found in any basic nonlinear numerical solution reference [Kelley, 1999].

Particularising the approach to the current model, the initial tangent stiffness to deploy the BFGS method can be simply a symmetric matrix based on the linear behaviour phase of the system in question. The best option based on Eq. 4.58b is a condensed matrix that only incorporates the effects of the weak discontinuity field enhancement as follows:

K sc (0) p+1 = K bb -K bw K -1 ww K wb , (4.60) 
where the iteration/load step indices have been dropped in the right hand as the approach could go as far as only taking a single tangential stiffness matrix as the reference for the beginning of all nonlinear iterations. This K sc | (0) p+1 matrix considers linear effects from the material bulk associated to all homogeneous and heterogeneous elements containing material interfaces, but nothing about local element cracks. This particular choice will return low residuals with a minimum number of iterations during the linear or quasi-linear phase of a numerical analysis for a large model containing heterogeneities. As load evolution continues, K sc | (0) p+1 will become less and less useful, most notably as a fracture process emerges, requiring more iterations to reach the same level of convergence than before, sometimes possibly not reaching such degree of convergence at all. This is where a careful judgement between results quality and solver invasiveness has to be assessed. After a number of numerical simulations already executed for a variety of modelling problems using the presented E-FEM framework with the aforementioned symmetric nonlinear solution strategy, the author of this work have considered such approach as satisfactory to draw meaningful conclusions on the behaviour of the treated mechanical systems with the given quality of results. It should be finally noted that this is not, by any means, an invitation for the reader to abandon the possibility of getting a more accurate and reliable nonlinear global solution control through the entire use of all non-symmetrical structures proposed in Eqs. 4.58a, 4.58b. Indeed, fully capable and efficient asymmetric solvers are becoming more and more customary due to emergence of this and other advanced FEM approaches that require irregular solution procedures. The aim of this discussion is rather to illustrate the versatility of the E-FEM framework to adapt to specific modelling goals and available computational resources.

4.3.6.3 Sacrificing crack continuity for a more adapted approach at the mesoscale As a final word in this section, the strictly local approach for handling all discontinuity enhancements for the sake of leaving the global solution process as clean as possible also disfavors the implementation of any global crack trajectory monitoring routines. These approaches would aid to establish explicit continuity for a fracture process at a large scale. This has been a deliberate choice from the author of this work for phenomenological reasons, considering the desired scope of the model and the materials to be studied by it. Heterogeneous quasi-brittle materials, such as concrete, are known to exhibit clear and defined fracture processes that, if examined at the mesoscale, are rather built by a network of individual cracks emerging in a disordered and simultaneous fashion. These cracks follow the intricate heterogeneous material structure giving rise to local stress concentrations, among other phenomena specific to such small scales.

A method that is specifically adapted to track a fracture process on a larger scale will be completely adept at identifying a single or a limited number of cracks within a homogeneous material domain to improve the modelling of very defined propagation patterns following load evolution and particular traits of the geometry of the large scale domain. At the mesoscale, these models would not be efficient at modelling the spontaneous and nonuniform emergence of an entire crack network giving rise to coalescence phenomena. A method adapted to analyse such complex multi-crack systems should be flexible enough to grant local crack independence at a certain extent while keeping numerical efficiency and reliability. This is the main reason why the author of this work persist with the E-FEM approach with the already discussed solution traits to address the modelling of heterogeneous quasi-brittle fracture at the mesoscale.

Despite this prominent strictly local trademark, the present model is nonetheless tested on a largescale homogeneous setting to assess the capability of the strong discontinuity formulation for the correct modelling of definite crack propagation patterns in Section 4.5. The discussion is enriched afterwards with local multi-crack simulations, which is naturally the main core of this research.

Implementation highlights

This section will describe some relevant points from the general implementation and coding that will enrich the discussion on the value and challenges associated to the application of this E-FEM development. Some of these will address specific parts of the framework in which the author of this work consider that it is worth elaborating to the reader. Some others will rather talk about practical aspects of the general solution process and some decisions taken based on the accumulated experience with the code so far.

The implementation of this E-FEM framework was done on an instance of the FEAP program [Taylor, 2020] adapted as a component for multi-scale and coupled multi-physics simulations (coFEAP) through the software component framework CTL [START_REF] Kassiotis | Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples[END_REF]. It should be stressed that this work does not make use of any multi-scale features of this entire structure but only the basic FEAP core numerical solution engine itself. Within the FEAP program, the implementation only consisted in introducing an element code routine and auxiliary local routines associated to the present model, without altering absolutely anything of the global solution process routines, whether linear or iterative non-linear. The overall addition represents approximately 3000 code lines.

Basic element calculation flow

We start by briefly discussing the general flow of the complete internal element solution routine to introduce the reader into the implementation context. A graphical flow diagram is provided in the considers all the phenomenological additions explained in Section 4.3.5.3, such as crack reversibility and local friction. The output from this subroutine is an updated state for the actual fracture kinematic modes ξ and the irreversible fracture displacements |u| n , |u| t , |u| m if deemed necessary. Once having a definitive fracture kinematics state, the current weak discontinuity variable [|ε|] is updated (Eq. 4.24a). With this, the complete calculation of the entire enhancement state variables is finished, and a update can be done on current real strain ε and real stress vectors σ through a volume average of the constitutive stress σ (ε) (Eqs. 4.16, 4.20). The final routine outputs in the form of internal forces f int for residual calculations are then fully reachable using Eq. 4.59b, along with the condensed tangent matrix (Eq. 4.58b) taking any symmetry considerations as desired (Eq. 4.60). The routine ends at this point.

Particularisation of the φ function

One of the most remarkable numerical challenges in the element code is the process of complete numerical determination of the α coefficients pertaining the φ function as per Eq. 4.4. This cubic, domain piecewise and three-independent component structure grants 120 free parameters. As already explained, this compound function will be subject to a variety of linear constraints going from fundamental requirements for boundary condition imposition up to some relations aiding the modelling of certain physical traits at local crack scale. In this work, the total amount of linear constraints add up to 117, summarised as follows:

• Basic requirements for the φ function (Eq. 2.3), implying four constraints for each individual φ j function, adding up to 12 equations.

• C 0 continuity (function continuity without necessary continuity for all its derivatives) between each of the φ + j and φ - j pairs. In the local frame, it can be shown that this adds up to 10 constraints in each of the n, t, m directions, yielding 30 equations.

• Kinematic linking relations (Eq. 2.53) for the Ω + domain through all the non-zero values in each of the columns of G ′+ sb . This makes 33 equations. (C)

• The same kinematic linking relations applied to the Ω -through G ′- sb . This also makes 33 equations. (C)

• The diagonalisation of the three fist columns of the crack stiffness matrix M for aiding the uncoupling of crack rigid body translations (Eq. 2.56). This makes 6 relations.

• Additional controls for each of the elements of the diagonal for the three first columns of M for regulating the amount of displacement at terminal separation conditions for each direction n, t, m. This makes 3 relations.

The building of the system as pure linear combinations on α parameters poses a noteworthy challenge, since the development of a considerable part of the constraints involves a variety of symbolic operations on polynomials, like differentiation, multiplication and domain-based integrations. This is specially true for the kinematic mode linking constraints (Eq. 2.53), where the underlying structures of Eqs. 4.12 and 4.22 that are required to build the columns of G ′+ sb , G ′- sb demand multiple operations to attain numerical values for the coefficients of each of the α parameters (C).

If the programming language is able to handle symbolic polynomial operations directly, such as in the case of SageMath [The Sage Developers, 2019], Eqs. 4.12 and 4.22 can be written directly as they are to get the output as linear combinations on the α parameters. In the case of FEAP, however, element routines are coded in the FORTRAN language, hindering the usage of any of such tools. FORTRAN requires direct and precise numerical values for the coefficients accompanying each of the α parameters. The solution found in this work was to express each of the non-zero terms of the G ′+ sb , G ′- sb matrices as a product of numerical matrix blocks followed by an umbrella complete polynomial base P n in the following way:

G ′± sb lk = α T A ± lk P n (4.61)
where G ′± sb lk is the element in the l-th line and the k-th column in either G ′+ sb or G ′- sb . A ± lk is a numerical matrix produced by polynomial multiplication operations between the different partial derivatives of the φ functions. The umbrella base P n is high enough to cover the maximum monomial degree found in all these operations. By making a quick inspection, it has been found that an order of 6 is sufficient.

The umbrella base P n , a single vector, is the only coordinate variable (ξ, η, ζ)-dependent entity to be numerically integrated only once (in the entire research project) for this particular model using another tool (SageMath for the case in this work). The resulting numerical vector is then incorporated into the FORTRAN code. The construction of A ± lk can be automated by coding a simple polynomial multiplication routine in FORTRAN that also stores the specific monomial to which it belongs within P n . This way, all the numerical coefficients accompanying each of the α parameters are determined by the numerical multiplication of these blocks, reaching finally the following structure:

D α α = E (4.62)
Numerical solution of the linear system depicted in Eq 4.62 still poses a notable difficulty, even if knowing beforehand that the number of constraints (117) remains below the number of free parameters (120) for the element type considered in this study. Although all constraints imposed to φ have been carefully planned to aid the kinematic and equilibrium improvements of the framework without incurring in any non-physical situation, there might be some linear constraints within this large list that could be whether contradictory or overly independent under certain conditions. To this effect, the author of this work have not performed a deep study to assess the self-consistency properties of the linear system 4.62 for all α parameters. To avoid numerical instabilities and eventual program faults associated to these possible incidents, the approach chosen for solving this linear system has been through a Singular Value Decomposition (SVD) process [Brunton et Kutz, 2019]. An SVD approach for solving an intricate linear system of this nature will return the following depending on the specific situation:

• For the groups of variables rendered free, i.e., underconstrained with infinitely possible solution values, the SVD process will return a solution having a group of parameters with the lowest euclidean norm possible.

• For groups of relations deemed contradictory, i.e., overconstrained, the SVD process will return the square-root optimisation for the parameters involved in such overconstrained states.

As of now, the author of this work have not found any issues concerning this method to obtain the α coefficients, yielding reasonably satisfactory values for each of the constraints imposed. Models counting up to 2 million elements were considered for sampling the residuals associated to the respective α systems for those elements reaching a localisation state. Needless to say that the SVD approach remains computationally expensive, and scrutinizing the system 4.62 in a better and deeper manner would shed light to more efficient solution alternatives.

A compromise between speed and memory management

As discussed in Section 4.3.6, the current E-FEM approach has the benefit of not increasing the number of global unknowns and therefore not increasing the effective size of a given FE problem with respect to a classical element formulation. Despite this fact, the internal element solution process in the E-FEM framework still remains a formidable calculation requiring a considerable amount of auxiliary variables and other data structures, many of which require permanent storage in physical memory for their use in successive iterations and load steps.

Since many FE programs like FEAP determine physical memory allocation beforehand by accounting for the total number of variables per element that are going to require permanent saving during program runtime, the number of such variables has an enormous impact on the overall memory requirements for executing a numerical nonlinear solution for a problem, and thus potentially limiting the maximum size of the models that is possible to study in reasonable time with a modest amount of computational resources [START_REF] Taylor | [END_REF]. It is evident that, among all the numerical structures and operators developed during the building of the present E-FEM framework, there will be a limited strategic group worth saving for then retrieving all other required entities needed to complete the element routine by recalculation. It is never reasonable to save all variables in static memory. No modern FE code does.

Among basic examples of essential variables worth saving we can find the localisation flag that is needed to determine whether the element is already on a localised state to proceed with all calculations pertaining fracture kinematic modes. There are also all the associated initial yield stress values (σ yn , σ yt , σ ym , σ ytt , σ ytm , σ ymm ) for each of the traction separation laws, and so on. Indeed, it turns out that most of these structures are related to the strong discontinuity model.

It has been the keen interest of the author of this work to achieve a reasonable compromise for computational resource optimisation in the current E-FEM framework to be able to simulate sufficiently meaningful physical problems as to draw useful conclusions for the sake of the goals on this research. In this regard, the φ related structures stand again as a challenge, since for storing a single φ function data, 120 variables would be technically required. After analysing all base expressions behind the strong discontinuity operators and matrices, it is found that it is more effective to store this information through the the non-zero elements of the G ′+ sb or G ′- sb matrices. Still, these structures require the storage of the hefty amount of 66 numerical variables, easily tripling/quadrupling the default amount of memory requirements by other known element codes using the E-FEM framework [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017].

After analysing the construction of these matrices in details, a few symmetries are found that allow expressing selected components as a function of others within the same matrix, reducing the amount of effective variables to store. The intricate structure of Eq. 4.12 hinders the identification of any evident dependencies between matrix elements. It was decided to follow a more pragmatic approach: a statistical analysis of G ′+ sb , G ′- sb matrix samples to identify pseudo-relations between the matrix values that would reasonably hold "most of the time". This way, significantly more relations between in-matrix values and also shared between Ω + , Ω -domains were identified. Thus, surrogate matrices G ′′+ sb , G ′′- sb were created for each particular case, and memory requirements were more than halved. The only moment in the analysis where the accurate G ′+ sb , G ′- sb matrices are handled in the code is right after localisation is detected. In all subsequent load steps, the surrogate versions are retrieved from permanent memory storage and worked upon.

The author of this work are aware that, evidently, not all element cases are fitted with the use of these surrogate G ′′+ sb , G ′′- sb matrices to describe their correct consistent post-localisation behaviour. Considering all simulations done so far at the time of writing, these are rare exceptions (0.005%). Under these circumstances, the author of this work have deemed acceptable to kill these elements (as discussed in Section 4.3.5.3). These are the only elements officially considered as aberrant in the E-FEM framework developed for this research. It should be noted that, as a matter of fact, technically they are not: they would have their proper physics if the program allowed for storing all data necessary to reconstruct all their respective strong discontinuity operators correctly. This was just a strategic decision.

Solution of the nonlinear traction-separation law equation system

The last discussion on implementation will address the solution of the traction-separation equation system depicted by . As formidable as it might seem, there is a closed and compact analytical solution for all kinematic fracture modes involved in the system. As a first step it should be recognised that, by the way the function φ was carefully designed and the consideration of the closing relations 4.49a-4.49c, the first three equations 4.47a-4.47c conform a system completely independent by itself. This means that a solution for [|u|] n0 , [|u|] t0 , [|u|] m0 can be obtained from this system, which can be later used to solve the remaining six equations. There is, however, a nonlinear multivariate exponential linking the three equations at once. It should be remembered that there could be the case in which reversibility is detected on one or more directions. Should that be the case, the corresponding rigid body translation [|u|] j0 can be solved and used immediately on the other equations. In the worst case scenario of having three nonlinear relations, an effective approach is to condense to a single univariate equation. This can be done by finding linear relations between each pair of variables by suppressing the common exponential factor. An example, a reduction to [|u|] n0 can be done as follows:

1 σ yn T en + M nn [|u|] n0 = 1 σ yt T et + M tt [|u|] t0 (4.63a) 1 σ yn T en + M nn [|u|] n0 = 1 σ ym T em + M mm [|u|] m0 (4.63b) → [|u|] t0 = σ yt σ yn M tt T en + M nn [|u|] n0 - T et M tt (4.63c) → [|u|] m0 = σ ym σ yn M mm T en + M nn [|u|] n0 - T em M mm (4.63d)
Once with that, the equation treating the n direction is taken to the general form

a + b [|u|] n0 = ce -(d[|u|] n 0 +f ) (4.64)
which, following the typical approach in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], has a closed solution expressed with the first branch of the Lambert W 0 function:

[|u|] n0 = 1 A W 0 (C) - B A (4.65a) A = d B = d b a C = d b ce (-f+ d b a) (4.65b) 
Whether for nonlinear or reversible behaviour cases, the solution of the system is viewed as the intersection of each of the lines represented by the left hand of each of Eqs. 4.47a-4.47c with the behaviour law functions (right hand of the equations). The ordinate of the intersection represents the current value for the entire traction vector T j for each corresponding direction. The straight lines have fixed slopes coming from their M nn , M tt , M mm crack stiffness coefficients. Because of the nature of the strong discontinuity models and the way the φ was designed, these crack stiffness values are strictly negative. The lines can only vary their position depending on the load demand implied by the components of the vector T e . By the way the traction-separation phenomenological laws were conceived, there will always exist a solution for the subsystem on the [|u|] n0 , [|u|] t0 , [|u|] m0 crack rigid body translations. Figure 4.8 illustrates the intersection for multiple positions of the representative straight lines just discussed.

For the case of frictional resistance on the t, m directions, the first equation on n becomes linear univariate (immediate solution), and the straight lines for the t, m equations will just feature an additional vertical offset. The solution actually becomes easier than any of the frictionless nonlinear cases. Having

[|u|] n0 , [|u|] t0 , [|u|] m0
, the remaining equations of the system are entirely linear, and thus the solution for the remaining kinematic modes θ n , θ t , θ m , ϵ n , ϵ t , ϵ m can be readily obtained by any conventional linear system solution method.

Numerical Simulations

In this section, the implementation done within the FEAP program will be tested under a variety of conditions to study the response of the generalised E-FEM formulation and its capability for predicting different kinds of fracture processes. Three types of simulations will be presented to the reader:

• Homogeneous sample simulations, which are primarily a test for the strong discontinuity model consistency. These setups will feature completely homogeneous elements without the presence of any weak discontinuities. Two different simulations will take place to discuss the emergence of controlled fracture processes. By controlled, the author of this work imply that a specific pattern for a tridimensional fracture process is already expected for a given simulation setup knowing its geometry and load conditions. In this sense, basic tensile and pure torsional cases will be introduced, which should qualitatively return well-known fracture processes. Afterwards, the replication of a typical mix-mode fracture test setup for concrete is made: the Nooru-Mohamed test. Crack initiation and crack propagation with a sudden change of fracture process kinematics is expected as the outcome, and the proficiency of the E-FEM framework studied in this work will be assessed for capturing this behaviour. The position of all these lines is regulated by the load driven traction vector T e, which determines the intersection with the vertical axis. The slope of the lines never change, and it is always negative.

• Basic heterogeneous sample simulations, in which the development of fracture processes around a definite region having material interfaces will be studied. A cubical homogeneous matrix material domain having a spherical inclusion in the center is prescribed with different load configurations. This allows to test the weak discontinuity and its influence on the initiation and growth of fractures in this model. Tension and compression load cases are presented to the reader, tracking the development of the local crack networks at various points of the evolution of fracture processes.

• Micro-concrete sample simulations, which will be the most complete and yet challenging assessment for the current E-FEM framework. Cubical samples are modelled containing realistic heterogeneity distributions coming from actual micro-concrete samples used during the test campaigns for the research done in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], Stamati et al., 2021]. From these experiences, the prediction capability for the single Mode I formulation has been already assessed, and this will help to estimate a projected behaviour for test results in the simulations done in this work. With these data, an informal correlation for the parameters used in the proposed E-FEM formulation is performed. Having this, the detailed study of the intricate evolution of the local crack networks, their eventual coalescence and the entire tridimensional fracture processes emerging in the model is studied.

All these simulations will be done side-by-side with a numerical model having the single mode I E-FEM framework as proposed in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Roubin, 2013] and used already in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] for the analysis of micro-concrete samples. The comparison will help to study the added value implied by the introduction of the fracture mode generalisation and also to better determine the reliability limits for the single mode I framework.

It is important to remark that this last analysis section in this thesis work is not meant to execute a formal and extensive validation procedure for the generalisation built in this E-FEM framework. The latter would require a structured correlation process for each of its input parameters and a more in-depth research of the particular material under the scope of study, possibly implying a number of dedicated test campaigns for this purpose. While some of the aforementioned simulations serve well as a platform to complete this process, the author of this work would rather like to present this section to the reader as an illustrative showcase of the new model capabilities, triggering ideas that will make a solid case for future works.

Homogeneous simulations

The objective in this section is to assess the general consistency and the reach of the strong discontinuity formulation in this E-FEM framework through simulations of controlled fracture processes having domains with the presence of a single material. While some of these setups might appear overly basic for the reader, they highlight some relevant features of the model that drove the author to take decisions on some of its parameters. They also introduce an analysis style for the fracture process evolution that will be reconsidered through the rest of this section.

Tensile simulations

The introduction of a basic tensile load simulation in this work responds to the need of studying the limitation of not having a global fracture tracking algorithm to ensure the continuity of a given crack once it has initiated within a model. In particular, the phenomenon of crack diffusivity is examined, since it prevents the model to reproduce a well-defined fracture process under certain conditions. It is relevant to identify what model parameters or setup characteristics are able to influence it.

The proposed numerical model is a cubic domain having a tensile load applied as a uniform displacement in the vertical direction (z). This load is increased until completely developing a fracture process within the sample. In such state, no further mechanical resistance is offered by the model at all in the vertical direction. Setting a displacement-controlled load allows to capture the global resistance behaviour even after the fracture process has completely developed. Otherwise, the simulation would become inevitably unstable due to the loss of global equilibrium. Two of the side faces of the cube are fixed in the lateral directions (x and y) to avoid rigid body modes. A special feature of this setup is that it is has a weakened material band with a height ∆h at the center of the model. Here, the first occurrence of crack initiation is promoted by letting the remaining material bulk (above and below the band) to have slightly increased strength values (σ y R , C). This bulk has exactly the same linear material parameters. This is actually the way for making fracture process control, since the load and the model are absolutely uniform and symmetric, and thus the stress field does not allow to determine a unique crack initiation spot within the domain. The reader will see the influence this has on the phenomenon of fracture process diffusivity in strictly local E-FEM formulations. This is also done to avoid any spurious concentrations near the vicinity of the regions having boundary conditions to avoid a direct bias on fracture initiation at the lower and upper faces. This can also be accomplished by means of introduction of a deliberate geometrical flaw, but this approach for fracture process control will be explored later in Section 4.5.1.3.

The basic description of the model is shown in Figure 4.9. The length L c of the cube is 10 mm, and it features a non-structured tetrahedral mesh having a characteristic length of 0.5 mm. As a reference, the maximum tensile load displacement found in all following simulations is of 0.1 mm (meaning a sample strain of 1.0×10 -2 mm/mm). Material properties assigned for the weakened material band for both generalised and single modes formulations can be appreciated in Tables 4.1 and 4.2. For the remaining bulk material, the only difference is the increased σ y R , C parameters (by 10%) in both formulation cases.

Generalised modes formulation input parameters: weakened band

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa C = 10 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.05 MPa•mm G f II = 0.1 MPa•mm µ t = 0.6 µ m = 0.6
Table 4.1: Input material parameters used for the generalised modes formulation for the weakened material band in the homogeneous tension simulations. + and -domains report the same material properties as it is a completely homogeneous simulation.

Single mode formulation input parameters: weakened band

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν + = 0.2 σ y R = 9 MPa G f I = 0.05 MPa•mm Table 4
.2: Input material parameters used for the single modes formulation for the weakened material band in the homogeneous tension simulations. + and -domains report the same material properties as it is a completely homogeneous simulation. .9: Model descriptions for homogeneous tensile simulations having a 5% weakened material band (left) and a 30% weakened material band (right), respectively (band coloured in red). General bulk mesh has been made transparent to better appreciate the material bands in the middle. Node count in both models has been of 4822 elements (14466 global degrees of freedom), while element count was at 22022 elements.

The first set of results considering a weakened material band height of ∆h = 0.1L c is shown in Figure 4.10 in the form of a global sample stress-strain curves. The global stress is calculated as the total vertical reaction divided by the cube cross section, and the global strain is calculated as the amount of imposed displacement divided by L c . Figure 4.11 also shows nodal displacement contours at the end of the load application, where the strong field discontinuity associated to the full fracture process can be appreciated for both formulations. First of all, it can be seen that defined crack processes were completely developed for both models, and they have the expected global horizontal plane orientation. They also retrieve the same tensile Rankine limit of 9 MPa at large scale. Knowing all this, an estimation of the global fracture energy per unit area is obtained by calculating quick numerical integrals with the data used for the stress curves. For an ideally planar and well-defined fracture process in this perfectly symmetric domain, this calculation should retrieve the local fracture energy parameter value G f I , given that all the localised elements produced a local crack plane completely perpendicular to the load direction (z). After performing these calculations, the corresponding values found for the single mode and the generalised modes formulations are 0.1 MPa•mm (integral goes beyond the curve shown in Figure 4.10 until the stress level goes practically to zero) and 0.052 MPa•mm, respectively. These results suggest that the single mode I formulation expends more energy than it should for a wellcontrolled planar fracture process under pure tension. Figure 4.11 also reveals that, while both fracture processes exhibit well-defined horizontal field discontinuities, the single mode I formulation discontinuity remains slightly more diffuse than that of the generalised model. Indeed, the global fracture for the generalised model draws a continuous line (plane) having strictly one-element-thickness, while the single mode formulation takes two or three elements in many zones along the developed fracture surface. The more the fracture process is diffused, the more elements are involved for increasing the local crack network, and thus the more energy is expended. The generalised formulation fairs better at having a controlled fracture process in this case due to the slight participation of fracture sliding modes when relaxing the model in the post-localisation phase.

The go further in this study, results are presented having the band height increased to ∆h = 0.8L c . This is a case in which the fracture process has a very large possible range for initiation and propagation, with absolutely no mechanical bias. Figure 4.10 shows the resulting global stress-strain curves. Although the maximum tensile resistance of 9 MPa is still found, a considerable increase in post-localisation ductility is observed for both formulations. Figure 4.12 again show the 3D schematic of the nodal displacement contours.

It is clearly shown that these changes are explained, once again, by nothing more than an increase in fracture process diffusivities, where the lack of inter-element crack continuity enforcement allows the fracture process to span through wider thicknesses, recruiting more localised elements on their vicinity. This time, this leads to predict normalised global fracture energies of 0.26 MPa•mm and 0.085 MPa•mm for the single and generalised modes formulations, respectively. Both the curves and the displacement contours suggest that the generalised formulation is able to better withstand fracture diffusivity. On the other hand, crack propagation takes the entire weakened band to follow an erratic (but still welldefined) trajectory. Given the perfectly uniform axial load and model geometries, there is theoretically no preference for the model to follow a specific outcome. In other E-FEM approaches possessing crack propagation continuity algorithms, priority would be given to a crack to prevail once initiated. It is not the case for current E-FEM formulations being currently studied where the forming of multi-crack networks is actually encouraged. This is a direct consequence of their strictly local nature.

As a matter of fact, the authors in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] were aware of this phenomenon in the predictive capability of the single mode I formulation when working with the numerical simulation of actual concrete sample test setups. In these works, a G f I value as small as 0.00001 MPa•mm has been fixed after a correlation process to reproduce a typical concrete behaviour with a mesoscale model having tensile loads. Note that these models were completely heterogeneous, involving a large amount of weak discontinuities.

Torsion simulations

Torsion simulations are meant to introduce the reader to the process of tracking the evolution of a tridimensional fracture process as addressed by the author. The same cube model approach is used having a homogeneous material with no strong discontinuities. This time, a considerably denser mesh has been contemplated, with a tetrahedron characteristic size of 0.1 mm. This will allow a very rich graphical description of the formation of multi-crack networks having different shapes. Again, a central material band with slightly different resistance is set only for the purpose of avoiding the bias coming from boundary conditions at the top and bottom faces, which are certainly more complex than in uniform tension simulations. The middle band has been set to ∆h = 0.8L c . Material properties for both formulations can be found in Tables 4.3 and 4.4. To imitate pure torsional load as much as possible while simultaneously maintaining a displacement-controlled scheme, a quick dedicated sub-routine has been implemented. An angular torsion value β is set as the main load reference, for then calculating a set of polar coordinates r i , θ i for each node i at the upper face of the cube taking the center of the cube as the origin. Based on each node's radial and angular position, a magnitude and direction of displacement on the x, y direction is assigned (u xi , u yi ), which is consistent with the reference angular torsion β. The lower face of the cube is kept completely fixed. Figure 4.13 shows a schematic of this boundary condition imposition. For this simulation, a final torsional angle of 0.03 • was prescribed (equivalent to a sample shear strain of 3.7×10 -4 mm/mm at the outermost fibers).

Generalised modes formulation input parameters: weakened band

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa C = 12 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.0005 MPa•mm G f II = 0.001 MPa•mm µ t = 0.6 µ m = 0.6
Table 4.3: Input material parameters used for the generalised modes formulation for the weakened material band in the homogeneous torsion simulations.

Single mode formulation input parameters: weakened band This time, the simulations do not aim to track the strain-stress characteristics in detail but the formation and evolution of the crack networks for the two formulations being compared. Specifically, it is of interest to study how the fracture process switches its nature during the global post-localisation stage. Differences are expected within the single mode and generalised mode formulations when shear and fracture sliding demands become more significant during the load application. To make a clear point on this, Figures 4.14,4.15 and 4.16 are proposed to illustrate the initiation and consolidation of the local crack networks for both models.

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν + = 0.2 σ y R = 9 MPa G f I = 0.00001 MPa•mm
Figure 4.14 focuses on the initiation of the fracture process, fixed at the first load step where the global behaviour of the model becomes nonlinear. Here, it can be observed how both models start to promote the emergence of classical 45 • fracture processes for a brittle or quasi-brittle material under torsion, forming an angular periodic pattern of local crack networks. Each of the cube model faces presents this initiation as these are the outermost surface layers of the body under torsion, which are well-known to be the first regions to reach high levels of stress following the classical theory of mechanics of materials. The entirety of these local crack networks have been localised under the mode I criterion, i.e., all in tension failure (shown as blue elements within the transparent cube). Almost no difference can be perceived between the networks predicted by the single mode and generalised modes formulations. Figure 4.15 portrays a state where the fracture process related to mode I failure and kinematics has completely developed in both models. The four local crack networks have converged in a slightly helical fashion, all reaching the core of the cubical sample. Again, the single mode and the generalised modes formulations make the same overall prediction for the shape of this consolidation of local crack networks. The generalised model, however, starts exhibiting small regions containing mode II related failures and kinematics (shown as red elements). These are non-consolidated networks and they still do not have any influence in global mechanical behaviour. Finally, Figure 4.16 captures the final state of both numerical simulations at the end of torsion application. This is where a critical divergence in behaviour can be acknowledged between both formulations. The single mode formulation is not able to predict any significant evolution of the fracture process but only a slight expansion of the already predicted shape. On the other hand, the generalised formulation allows a complete change of nature for the fracture process: it starts to focus exclusively on mode II failure and kinematics, expanding through the entirety of upper and lower borders of the weakened material band. This allows to finalise the entire fracture process for the sample and to release all the remaining stored energy therein. This difference can be better appreciated in Figure 4.17, where a global reaction response of the model was monitored with respect to load application in both models. The vertical reaction was chosen since it was the simplest to measure and still provides information about the current energy being stored in all the material domain. Indeed, a clear divergence in global post-localisation behaviour can be easily spotted, where the single mode curve goes off to increase without any perceptible bound, while the generalised modes curve suggests a clear loss of mechanical resistance in the model. It could be stated that the single mode formulation is not able to give a correct conclusion to this mixed-mode fracture process, and therefore the numerical model is doomed to a global stress locking phenomenon.

Figure 4.17: Total vertical reaction measured with both models during the entire simulation. Vertical reaction normally does not emerge in elastic torsion analysis, but as a fracture process begins, the nonuniform stiffness distribution due to dead regions promotes its growth. In any way, as the tridimensional fracture process fully develops in the model, energy should be released in one way or another. The generalised modes formulation is able to predict this due to its consideration of mode II failure mechanics, while the single mode formulation remains stress-locked.

This simple setup helps to illustrate the reader that a single mode E-FEM formulation will be properly capable of portraying a full 3D fracture process while the general state of stresses promotes the emergence of the corresponding single mode within the domain of the simulation model. Once the current state of the structure along with a given load demands the fracture process to change its nature due to its nonlinear behaviour, a single mode formulation will fail to capture subsequent fracture evolution.

Nooru-Mohamed test simulations

The author of this work have taken the Nooru-Mohamed test setup as the reference for performing a classical mixed-mode concrete fracture process simulation [Nooru-Mohamed, 1992, Li et al., 2018]. This test setup starts by having a square plate structure with small horizontal notches at each side in a symmetrical fashion. The side walls are thus divided in four different regions, and these are loaded anti-symmetrically, as per Figure 4.18. An initial horizontal inwards shear load f s is applied in a first simulation phase, meant to precondition the structure without triggering any fracture process. Afterwards, maintaining this preload, a vertical load f a is applied outwards, promoting the emergence of two anti-symmetrical fracture processes that will tend to come to each other. Figure 4.18 also shows the overall dimensions of the homogeneous domain and the slots. This mesh features 3654 nodes and 13325 tetrahedral elements, having a characteristic length of 0.35 mm. The model remains practically a small plate in the scale of millimeters. This would be normally questionable in regards to the concrete homogeneity assumption, but for the effects of the demonstration in these simulations it will be not considered important. Despite the fact that most of the simulations of this setup are done in a 2D setting, the current models consider a finite thickness across the shown z direction.

One very important remark concerning these boundary conditions is that, despite the fact the shearing preload is technically a forced-based imposition, the experimental setup transmits this force through a rigid body making contact at the boundary of the respect regions of the plate. The same happens with the imposition of the loads at the second phase of the test. The simulation setup has to consider this fact to be successful in replicating the correct fracture process. For the current study, boundary conditions were displacement-based, and some iterations were required to keep the required forces at their respective values by checking on the resulting reactions associated to these displacements.

Depending on the amount of shear preconditioning, the path of the fracture processes will vary, from mostly horizontal to more sloped paths as shear preload increases. A the some point of all these fracture processes, a transition in propagation behaviour takes place and the fractures will tend to go towards the opposite notches. This is a remarkably complex mixed-mode fracture feature occurring exclusively with this test that is generally taken as a benchmark for any numerical models attempting to predict fracture paths in a reliable manner. Figure 4.19 shows a qualitative tendency. It should be noted that this is a structure-scale experimental study and, as such, it does not represent a formal modelling validation goal for the E-FEM framework proposed in this work. The author of this work just want to show to the reader the extent of the capabilities of the generalised E-FEM formulation benefiting from improved variational and kinematic consistencies despite the lack of non-local enhancements or tracking models. The use of an E-FEM model to replicate the Nooru-Mohamed mixed-mode fracture process is not new. A 2D quad element model attaining a good reproduction of this setup has been recently developed in [START_REF] Stanic | Fracture of quasi-brittle solids by continuum and discrete-crack damage models and embedded discontinuity formulation[END_REF] and [START_REF] Wu | Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids[END_REF]. It should be noted, however, that the post-localisation behaviour of these models features non-local crack-tracking to enforce global fracture continuity and a more sophisticated elasto-damage post-localisation law involving both discrete and continuum domains of the model, based on rigorous thermodynamic principles. Such models were certainly designed for in-depth applications at larger scales, such as the one depicted precisely in the Nooru-Mohamed setup.

The parameters given for the generalised mode formulation in this simulation are shown in Table 4.5. It should be noted that no formal calibration process has been done in this work. It is acknowledged that, within the parameter space that is able to make the model exhibit the expected response, there might be multiple working options, not all of them necessarily rigorously coherent with the true physics of concrete fracture processes. The best has been made to select the aforementioned parameter set so that, to the best knowledge of the author, it remains consistent with general knowledge about concrete models at large scales, including the knowledge shared in the works presented in [START_REF] Stanic | Fracture of quasi-brittle solids by continuum and discrete-crack damage models and embedded discontinuity formulation[END_REF] addressing the application of a similar E-FEM framework.

Generalised modes formulation input parameters: Nooru

-Mohamed E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 10 MPa C = 13 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.002 MPa•mm G f II = 0.05 MPa•mm µ t = 0.6 µ m = 0.6
Table 4.5: Input material parameters used for the generalised modes formulation in the Nooru-Mohamed simulations. Note the low value of G f I despite managing a relatively coarse mesh. This is to have the best possible control over the fracture process to display a thin path in this large-scale application.

A comparison is made between an estimated projection of the experimental behaviour expected for a Nooru-Mohamed setup managing the same description as the simulations done in this work, attempting to describe the tendency described in Figure 4.19. Six different values for the inwards shear preload f s were considered: 10 N, 20 N, 30 N and 35 N. The outwards vertical force f a was just increased until developing the full pair of anti-symmetric fracture processes, without regard to its exact final value. Figure 4.20 shows a superposition of all these results.

It is quite remarkable to find that, even if not having an explicit algorithm for the control of crack propagation such as in [START_REF] Stanic | Fracture of quasi-brittle solids by continuum and discrete-crack damage models and embedded discontinuity formulation[END_REF] and many other works [START_REF] Oliver ; Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation[END_REF], Wu et al., 2015, Zhang The structure in general seems to be slightly less affected by shear preconditioning, and thus lowering the average slope of the curves for the same fs. Still, it could be stated that the classical shape tendency still holds properly for this material parameter set. For reference, the maximum value for the vertical force fa registered for this case for complete failure of the sample was of 9.29 N.

While this model has not been originally conceived for the representation of this kind of fracture processes, it has been shown that having a sufficiently consistent and mathematically robust strong discontinuity model within the E-FEM approach is already able to reach the reproduction of intricate mixed-mode fracture processes without the need of additional enrichment structures, whether at local or global scale. The fact that different parameter sets are able to depict the intended fracture behaviour stresses once again the importance of a formal calibration process following solid premises based on the knowledge of a given materials and rigorous statistical methods.

Simulations considering the single mode formulation were also done taking exactly the same mode I parameters as in the first setup with the generalised modes formulation. The single mode formulation was able to reproduce almost identical results than those shown in Figure 4.20. Crack diffusivity effects, known to be more prominent in this formulation (Section 4.5.1.1), are not appreciated in these simulations as the value chosen for G f I is small enough (0.002 MPa•mm) to prevent them given the current mesh density. These studies would suggest that the Nooru-Mohamed test does not pose a critical modelling exigence concerning this E-FEM framework style, at least for the qualitatively description of the global fracture process path. No detailed analysis has been done on the evolution of the global resistance as the fracture process develops completely.

Basic Heterogeneous Simulations

The next set of simulations aims to study the effect of weak discontinuities in the formation and propagation of a tridimensional fracture process considering a simple heterogeneity distribution and having simple load cases. The main simulation setup will focus on a homogeneous matrix domain having the presence of a spherical inclusion made of a stronger material. The materials assigned portray those composing a typical concrete sample: a mortar matrix having aggregate inclusions. Fracture processes are expected to start at the material interfaces and to evolve in particular ways depending on each load case. This gives hint on basic failure mechanisms happening at the mesoscale for many quasi-brittle materials. Again, the idea is to make a comparison with respect to the single mode I formulation conceived by Roubin et al. [Roubin, 2013], so that the influence of having a generalised mixed-mode approach can be clearly appreciated in the differences within the behaviour of the tridimensional fracture process.

The geometry of the heterogeneous sample is a cube with a side dimension of 10 mm having a perfectly spherical inclusion of 6 mm of diameter. This material phase distribution is projected onto a mesh conformed, once again, by regular (good aspect ratios) but unstructured tetrahedral elements. The average characteristic length of the elements is 0.15 mm. As a consequence, a number of these elements have been cut by the inclusion boundaries, generating a number of material interfaces modelled through the weak discontinuity approach. Figure 4.22 shows the general mesh built and already projected with the material phases for all these simulations, as well as the generated weak discontinuity interfaces for the sphere boundary. .22: General model mesh description for the basic heterogeneous setups featuring a single spherical inclusion. On the left, the mesh of all elements touched by the inclusion sphere within a translucent mesh of the remaining bulk of the material matrix domain. In the middle, a mid-cut section of the entire mesh, distinguishing exclusive mortar material elements (in blue), exclusive aggregate material elements (in gray) and bi-phase elements (in red) generally found at the sphere border. On the right, a sphere reconstructed by taking the resulting planar interface surfaces Γ d coming from each bi-phase element, along with their respective normal vector. The latter usually stands as a cross check for correct inclusion boundary construction.

The material parameters used in these numerical simulations are meant to portray a micro-concrete material at small scales, providing independent definitions for both the mortar and the aggregate materials. On one hand, the works done by [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] have been taken as a reference to fix the model parameters for the single-mode formulation. On the other hand, the material parameters used for the generalised formulation are taken from the informal correlation done in the next sub-section (4.5.3), in which a sort of validation has taken place by using an estimated projection of results coming from actual test campaigns. Roughly speaking, the generalised formulation has taken similar parameters from the single mode inputs for setting up the mode I parameters and those concerning mode II are an exclusive product of the informal correlation process.

The parameters given for both single and generalised modes formulations can be found in Tables 4.6 and 4.7. Note that the interface failure parameters take the resistance limits coming from the weakest material phase (mortar). This is a general assumption done in this work. It should be also noted that the single and generalised formulations do not share exactly the same mode I parameters. In this sense, the influence of mode I parameters in the generalised model remains different because of coupling effects emerging with the sliding kinematic mode in a variety of situations. The difference in tensile behaviour effects has been already discussed in section 4.5.1.1. Despite this, it remains true that both formulations make use of a small mode I fracture energy parameter G f I to minimize crack diffusivity effects given this fine mesh domain.

Single Mode Formulation Input Parameters

Mortar-only elements 

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa G f I = 0.00001 MPa•mm Aggregate-only elements E + = 70000 MPa ν + = 0.2 E -= 70000 MPa ν -= 0.2 σ y R = 45 MPa G f I = 0.

Generalised Modes Formulation Input Parameters

Mortar-only elements

E + = 14000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa C = 36 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.0001 MPa•mm G f II = 0.6 MPa•mm µ t = 0.6 µ m = 0.6 Aggregate-only elements E + = 70000 MPa ν + = 0.2 E -= 70000 MPa ν -= 0.2 σ y R = 45 MPa C = 180 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.0001 MPa•mm G f II = 0.6 MPa•mm µ t = 0.6 µ m = 0.
6 Interface elements (-for mortar, + for aggregate) Pure tensile and pure compressive load cases have been contemplated for the following simulations. As in previous sections, each load is exerted until a full tridimensional fracture process is developed in the entire domain, reaching a terminal point in which the cohesion between the mortar and the inclusion can be considered as completely broken, rendering the model no longer capable of offering any kind of mechanical resistance for further progress in displacement application.

E + = 70000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa C = 36 MPa tan ϕ = 0.6 σ y C = -500 MPa G f I = 0.0001 MPa•mm G f II = 0.6 MPa•mm µ t = 0.6 µ m = 0.6

Tensile simulations

In a first model, a pure tensile load will be imposed exactly as in the previous homogeneous material simulations, fixing the face corresponding to the lower z vertical position and having a displacement on the opposite face on the positive z direction. Again, two adjacent lateral faces are again restricted in the x and y directions to avoid rigid body modes. As a reference, the maximum vertical displacement imposed in both setups is of 0.006 mm. Based on previous discussions, no significant differences are expected between both E-FEM formulations, as the single-mode version is known to perform in a very similar manner than the generalised model given that the global load is purely tensile. Figure 4.23 shows the global response for each model concerning total vertical reactions. Indeed, both models attain approximately the same global maximum resistance, having some slight differences in post-localisation behaviour. The direct development of the tridimensional fracture process is described through a series of pictures depicting the micro-crack networks at multiple steps of the load application process, done exactly as in Section 4.5.1.2. The state of local fracture networks is first captured at the moment of maximum structural resistance for both formulations 4.24, and then a state portraying completely post-localisation behaviour is retrieved 4.25. All these images are taken by making a plane cut at the middle of the cube model, revealing what happens around and within the spherical inclusion with detail.

For the single-mode formulation, there is only one possible progression state for a local crack, which is opening. Thus, the coloured contours for this case only show a single blue colour, indicating that the elements concerned did break on a Rankine criterion, exhibiting a certain amount of normal separation exclusively, without any possibility for crack reversal, local compression or sliding. For the generalised model, different colours are assigned to elements that broke under a determined criterion (a blue palette for Rankine, a red palette for Mohr-Coulomb or compaction limit), and also by their current local crack state: opening, relaxing or closed, the last necessarily implying a certain amount of compression and a certain frictional resistance to slide.

As anticipated, the local crack network initiation and eventual coalescence for a fully developed fracture process was practically the same for both E-FEM formulations. The only perceptible difference is that the generalised model is able to provide slightly more insight about elements exhibiting relaxation (lighter blue coloured elements). Absolutely no element was observed having any kind of local mode II failure. The interface between mortar and spherical inclusion is clearly segregated through pure tensile planes. Again, it is striking to see this uniform fault plane predictions having no global crack tracking algorithms. However, the lack of priority to develop a single fracture process is also a trait that drives the presence of two simultaneous failure bands, which is not intuitive from a physically practical standpoint. It should be recalled that this simulation setup remains an unusual representation featuring a perfectly centered sphere within an equally perfect cubic homogeneous matrix domain.

Compression simulations

In this case, a pure compression load is imposed by just reverting the displacement direction in the setups presented in the previous section, having exactly the same surrounding boundary conditions. There is a significant difference in both global resistance and ductility (defined hereby as the sample strain corresponding to maximum resistance ε max ) between single mode and generalised modes formulations. Thus, different maximum compression distances have to be used to fully developed their respective fracture processes: -0.05 mm and -0.1 mm, respectively. The outcome of these simulations is presented in the same style as in the tensile load case. Figure 4.26 shows the behaviour of globally defined stress-strain curves for both models. This time, the evolution of the fracture process will be presented in a separate fashion for the single and generalised formulations, as they have significant differences in multiple stages through the development of local crack networks. Each step as identified with a strain value relative to the sample ductility (ε max ), covering states before and during the maximum resistance load steps as well as complete global post-localisation behaviours. Figure 4.27 shows a four step description ((ε 1ε 4 )) for the case of the single mode formulation, containing naturally only blue element networks corresponding to mode I local failures.

The single mode formulation presents a double band initiation at the lower and upper hemispheres of the inclusion (ε 1 ), the fracture process then propagates completely around it (ε 2 ). At maximum resistance, the fracture process begins to extend out of the sphere vicinity in a rather uncontrolled and irregular fashion (ε 3 ). At post-localisation, the single mode formulation exhibits a sudden fall in resistance, and the fracture process seems to evolve in an arbitrary manner, extending to most of the mortar domain (ε 4 ). Cohesion between the inclusion and matrix material is completely broken, finishing ending the evolution of the fracture process. Figures 4.28 and describe six evolution steps (ε 1 -ε 6 ) for the case of the generalised model. A two band network initiation and an eventual takeover of the inclusion surface is also observed for this formulation. The elements in this network are predominantly associated to a mode I failure (ε 1 ), but it can be observed a small amount of regularly diffused mode II elements in the upper and lower regions (ε 2 ). The behaviour starts to diverge from the single mode formulation from the third step (ε 3 ), where shear-compression zones initiate at the top and bottom faces of the mortar domain. These regions contain exclusively elements associated to a mode II local failure, and also in a crack closure state, presenting frictional behaviour (the reddest colour in the palette denotes this state). These zones extend vertically until fusing with the inclusion surface fracture process (ε 4 ). At maximum resistance, a middle shear band emerges and surrounds the inclusion surface completely (ε 5 ), and finally the fracture extends from this band to all the mortar domain in a vertical fashion, finishing the tridimensional fracture process. (ε 6 ) Note that most of the mode II-related elements within these local networks remain in a crack closure/compression state. These results suggest that these predominant state serves to provide more ductility and resistance to the sample, and the author continues to state that the modelling of this local fracture phenomenon is of utter importance for the prediction of compressive failure at larger scales in quasi-brittle materials. Overall, it is observed once again that both formulations share certain stages of the behaviour of the tridimensional fracture process, but the generalised model is able to grant a larger insight of further steps where mode II local failures and compression having frictional sliding become significantly important. Again, this is reflected on the global stress-strain response. Indeed, it appears to be evident that the modelling of mode II-related phenomena cannot be neglected under certain load cases.

Realistic concrete sample simulations

The last section describing developments in this thesis work pertains the numerical simulations of samples having a realistic material heterogeneity (pores, aggregates and mortar). As mentioned during the introduction of this chapter, it was through the pioneering work of [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019, Stamati et al., 2020, Stamati et al., 2021], both through the experimental campaigns involving in-situ X-ray tomography measurements and the contributions to the dedicated software SPAM, that it was possible to process sample raw digital data to end up with a projected mesh with all pertinent details in the coming simulation setups.

The raw grayscale data of a complete tridimensional X-ray scan of a micro-concrete sample is first treated to discriminate different material phases. Mortar, aggregate and pore regions are identified as the predominant components of the heterogeneity distribution. The original samples as tested in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] have a cylindrical geometry having an average length of 20 mm and an average diameter of 10 mm. The phase identification returns binary maps for each phase (1) and a background (0) selected as the mortar region for all cases. These binary distributions are smoothed through the construction of distance fields, and these are finally the spatial distributions to be projected onto a given unstructured mesh, superposing as many different distance fields as different material phases (apart from mortar) are identified within the material.

For the simulations in the present work, only a cubical subregion has been extracted from one specific micro-concrete cylindrical sample used in the works in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF]. The reason why the author did not take the complete cylindrical sample was simply to manage a less heavy model to be able to perform a multitude of iterations for an informal calibration process described shortly. Indeed, the cylinder model has approximately three times the size of the domain finally contemplated for this work, counting already with 1.5 million elements. On the other hand, the current limitations posed by the FEAP solver do not allow for a parallel core numerical solution process for now, setting the bound for a reasonable model size considering time constraints.

The cube has a length dimension of √ 50 ≈ 7.071 mm. The characteristic length of the unstructured tetrahedral mesh to which the heterogeneities are projected is 0.1 mm. In this case, despite the fact that the spirit of the E-FEM approach is to have a non-adapted mesh with respect to the emergence of both local cracks and material heterogeneities, there is indeed a mesh density restriction coming from the heterogeneity distribution. The fact that the interface surface shape Γ d is constrained to a plane limits the representation capability of the geometry of material phases. This is, if material interfaces are captured with planes, a minimum element size will be naturally required to make reasonable picture of the different inclusions and pores in the domain. Since the size of these is bounded to the order of millimetres [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], the chosen size (0.1 mm) is rendered with enough resolution. Figure 4.29 shows the resulting projected mesh for the sample managed for all the following numerical simulations. Note that the internal pore regions have been accounted for in this setup. Originally, they were treated with the same rigorous weak discontinuity approach, creating interfaces between the mortar matrix and the pores. Very weakened material properties had been assigned as the pore material inputs. This has proven to be a source of numerical instabilities in the model. It was finally concluded in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] that it is better to treat these pore regions with free stress conditions (voids). The interface elements originally cut by pore boundaries were simply assigned pure mortar material properties. This slight increase in mortar material did not undermine the prediction capability of the model.

The load cases considered for this model will be tension and compression under different levels of triaxial pre-confinement considering 0, 5, 10 and 15 MPa. This is the entire test program achieved so far by the works of [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019, Stamati et al., 2021] for the mesoscale studies on this micro-concrete material. In this sense, it is important to note that the single mode I formulation has already gone through a calibration process using the tension load case, for then testing its response for all other load cases. A plot with these results has been already presented at the introduction of the current chapter in figure 4.2. The general conclusions drawn by [START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019, Stamati et al., 2021] from this process and its successive validations within this entire line of research can be summarised as follows:

• The single mode calibration with the tension load test data allowed to capture global nonlinear resistance behaviour (stress-strain) and local crack network distributions for this load case in an accurate fashion. This was expected since this formulation was originally conceived for addressing such fracture processes.

• This calibrated single model formulation, as it is, was tested for another sample undergoing pure compression with no triaxial pre-confinement. A reasonable match concerning global resistance response was obtained (only one case with an error of 25% was identified). This was rather unexpected due to the nature of the formulation but was also welcoming some hypothesis stating that local crack networks in quasi-brittle materials are predominantly composed by mode I failures even if the large scale load type remains shear or compression. This encouraged the application of this correlated single mode formulation for triaxial preconfinement load cases.

• The comparisons with the results coming from the samples undergoing triaxial preconfinement reveal that the single mode formulation gradually loses prediction capability. Overall, initial global resistance predictions still remain within a reasonable margin with more deviation as confinement pressure growths (10-30% errors). Ductility (perceived as the global strain value at which maximum resistance is obtained) is not captured accurately in any of the preconfined cases (errors up to 50%).

This whole set of observations are taken as a reference to establish a set of informal correlation goals for the generalised mode formulation parameters. Based on the behaviour observed in figure 4.2, the position of a single mode I formulation can be established with respect to a set of experimental test results. With this, an estimated projection for the experimental behaviour can be done by having simulation results of the single mode I formulation with the proposed cubical sample through all load cases.

The informal correlation process carried on to propose a definite set of input local material parameters for the generalised model did not follow a rigorous statistical method. Certain educated guesses were taken based on previous simulations in this work as initial propositions, such as some parameters from the single mode I formulation for the tensile load case. Eventually, most of the last iterations rather focused on varying the values for the Mohr-Coulomb cohesion C and the fracture energy G f II , which were deemed the most influential inputs for resistance and ductility during compressive (and confined compressive) behaviours. This rather intuitive and holistic approach is the main reason why this process is considered as an informal correlation.

Simulation setups for each of the load cases was similar to that already implemented with the single spherical inclusion models. Triaxial confinement, on the other hand, was implemented in two different phases: pre-confinement phase and uniaxial loading case. In the preconfinement case, a hydrostatic pressure is imposed in two of the horizontal faces of the cube model (x and y), while a displacement is imposed on the upper vertical face. The amount of vertical displacement to prescribe corresponds to that granting a force reaction equalizing the pressure from the horizontal faces, thus obtaining an approximately hydrostatic state. The reason why the upper vertical face remains displacement-controlled is that it remains the face in which further uniaxial load will be specified. The remaining faces have normal displacement constraints as to avoid rigid body motion as in the models managed in previous sections. Afterwards, the uniaxial loading case just continues to increase the compressive displacement on the vertical face while maintaining the same level of lateral pressure. This is done until fully developing a fracture process in the sample.

After multiple iterations with the generalised modes formulation within its informal correlation process, a set of material input parameters was set that matches the projected test results as best as possible by the author at the time of writing. This is done considering a reasonable time frame for the development of this thesis work. This final set of parameters has been already presented when discussing the spherical inclusion simulations in Section 4.5.2. The reader can quickly refer to Table 4.7 to recall the specific numerical values. The parameters used for the single mode formulation also remain the same (Table 4.6).

The behaviour from the single mode I formulation, along with the projected test results and the response of the generalised model are shown in Figure 4.30. X markers have been placed at the maximum resistance positions for each curve, so that the reader can easily compare the corresponding ductility characteristics for the models. Results suggest that the informally correlated generalised model is able to drive the predictions closer, in both ductility and resistance, to that projected as a tendency for the experimental results. The generalised model tends to overshoot over the projected experimental values for low confinement pressures, eventually falling behind for 10 and 15 MPa. It should be noted that the behaviour after localisation cannot be assessed for any of the test data projection sets as the load cell was not capable of providing with reliable measurements in this phase of the test. For all cases, the generalised model exhibits a more ductile post-localisation behaviour than the single mode formulation. On the other hand, the ductility of the generalised model appears to decrease as the confinement pressure is increased, struggling each time more to keep up with the ductility imposed by the projected results.

As in the last subsection, it is of utter importance to study what kind of local crack network behaviour lies behind the results shown in Fig. 4.30, to analyse any differences from which relevant conclusions can be drawn on the modelling of the tridimensional fracture processes happening in this sample. It should be remembered that this work, however, is not fully devoted to a formal study on concrete phenomenology at the mesoscale. Considering this, the author will refrain from showing an entire analysis of the tridimensional fracture process evolution for all load cases simulated in this section. For the sake of making a concise point and continuing with the general demonstration of the proposed model in this work, the specific analysis for the case of a preconfinement of 5 MPa is proposed to the reader. As in the previous sections, a comparison is made by capturing the state of the local networks at different values of global strain with respect to the strain of maximum resistance ε max . Figures 4.31,4.32 and 4.33 show the comparison between both models for three states approximately at the same level of global strain related to ε max : one at half of maximum resistance, other at maximum resistance, and finally, one in global post-localisation behaviour. The analysis of local crack networks for realistic heterogeneity distributions is not as accessible as in the previous sections. Given the large amount of stress concentrators irregularly distributed in this domain, there is a large number of elements that will go through a localisation state, but not necessarily with full participation on the emerging tridimensional fracture process. The elements were thus filtered by considering whether the amount of rigid body normal separation ([|u|] For figure 4.31, a threshold of 0.4 µm has been considered, and for the remaining figures a value of 1 µm has been rendered appropriate. For the case of the generalised mode, elements undergoing closure and local compression also had the same considerations, taking a threshold of -0.2 µm of compression distance as the minimum to start displaying in all figures.

The reader will note that perspectives for all these images has been oriented in a such a way that an inclined fracture process definition can be clearly appreciated through the evolution of the local crack networks. This is certainly not striking, since the same kind of failure was experimentally identified during the experimental campaigns in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] under the same conditions. Indeed, in Figure 4.31, on the early stages of the fracture process, a network coalescence starts to take place to promote the emergence of this inclined fracture process. Note that the background transparency of the sample allows to distinguish the regions occupied by pores, and that interestingly, the initiation of the fracture process is favoured around these regions. In the case of the generalised model, some mode II local failures start to be identified, but these do not remain prominent in the arising network. It is relevant to note that, in the global resistance behaviour described by Fig 4 .30, both single and generalised mode formulations still share the same response at this global strain level.

At maximum resistance (Figure 4.33), the full fracture process has already taken a very definite shape, and the inclined fracture process clearly covers all the cube length scale. The participation of mode II local failures has significantly increased for the generalised modes formulation, and almost all these elements remain in a closure/frictional state. The global resistance at this point has considerably diverged between both formulations at this point. It is clear that fracture process benefits from the support of this mode II mechanics from the networks to increase its resistance and its overall ductility. Finally, in post-localisation, the extent of the defined global fracture remains stable, but recruiting more surrounding elements (not shown since their separation/sliding is still not significant), beginning the collapse of the sample. For the generalised formulation, it is fairly interesting to note the emergence of elements failing under pure compaction criteria (purple colour). These do not conform a significant network, but it still remains quite remarkable that given the high limit (σ C = -500) MPa, the nature of the fracture process is still able to demand their presence. It is possible that the modelling behaviour for these compacted micro-regions play an important role for ductility at higher confinement pressures.

Conclusions

This work has introduced the reader to an integration of a generalised strong discontinuity model with a weak discontinuity model to conform a numerical analysis approach capable of delivering meaningful representations of tridimensional fracture processes for quasi-brittle materials at small scales. A theoretical background was provided, describing the fundamental mathematical aspects of the generalised fracture mode kinematics for the strong discontinuity and the weak discontinuity. A clear description of localisation criteria has been provided, along with the traction separation equation system that benefits from the generalised structure of the fracture kinematic modes to incorporate more robust local crack physics. It is worth remembering that the author of this work gave priority to the influence of crack rigid body displacements modes (separation and sliding) for the damage-regulating definitions. This was a deliberate choice that could have contemplate a more extensive use of all fracture kinematic modes in the future.

Subjects such as the global problem linearisation and implementation details were addressed to further illustrate important considerations, benefits and challenges when dealing with the application of an E-FEM framework like the one proposed in this work. In particular, some decisions for simplifying the nonlinear solution process and for memory and speed optimisation were presented to the reader. These were crucial to achieve a satisfying level of functionality for the framework, achieving useful results in a reasonable time frame.

A number of numerical simulations have been done to attest to general capabilities of the generalised models for different domain types, scales and load cases. The reader should always keep in mind that this work was never intended to be a formal validation and application of the model to the context of a specific material study. Despite this fact, the author recognises that many of the results found through Section 4.5 are quite revealing on the behaviour of tridimensional fracture processes for quasi-brittle materials, notably for concrete. In particular, there is the participation of mode II mechanics on the emergence of different global and local crack network behaviours. Results suggest that a model capable of considering local sliding, compression and frictional mechanics will be able to gain more insight at the fracture processes under highly compressive or shear demands at larger scales, specifically those featuring larger ductility and resistance through more energy dissipation mechanisms. This could serve as an evidence for stating that mode I local failures are not sufficiently enough to tell the completely story of tridimensional fracture processes at small scales for quasi-brittle materials.

Again, these findings are to be taken prudently and rather as an inspiration for more detailed and robust studies using perhaps this E-FEM framework or other that allows a similar kind of numerical simulations at the mesoscale. The author of this work are truly convinced that there is a plenty of compelling studies that can follow these efforts: studies on full-size test samples, statistics of local crack orientations and more formal definitions and post-processing treatment for the tridimensional fracture process in general. Also, there is the possibly of a more meaningful correlation process for input parameters, including dedicated test campaigns aiming for specific phenomena.

The present work has shown that it is still possible to remain with an E-FEM framework having a strictly local mathematical structure, benefiting of enough simplicity without having to make a significant incursion on a global FE numerical solution platform. The framework is generous enough to deliver meaningful results even if multiple accuracy sacrifices were made for the sake of memory and solution speed optimisation. It should be reminded that the essence of this line of research was to achieve a sufficiently predictive advanced FE numerical model keeping its computational burdens and implementation complexities to a minimum. In this sense, the author of this work believe that the E-FEM framework is still an attractive option worth exploring, offering unique advantages over other advanced FE techniques.

Chapter 5

General Conclusions

This thesis work has brought the reader through a long journey of deep theoretical analysis and mathematical developments on the E-FEM framework seeking a robust generalisation while retaining its simplicity and benefits as much as possible. In the end, a full new implementation for studying tridimensional fracture processes in heterogeneous quasi-brittle materials has been set forth, beginning to reveal local fracture phenomena that are important for explaining certain behaviours happening at large scale that could not be clearly described with precedent models.

The author hopes that such level of detail for all theoretical developments herein will help researchers to understand the E-FEM framework in a more pragmatic and efficient way, and that it compels future researchers to be more instigating about the theoretical bases of advanced finite element formulations. It is through this level of analysis that the author was able to carry on with the generalisation on the strong discontinuity model thoroughly discussed in Chapter 2. The general pathology analysis helped to pave the way for a formulation proposal that considers all the implications of the mathematical structures and operators defined over time by authors working in this field. The definition of a generalised set of kinematic modes for the strong discontinuity and the extensive use of the φ function opened a door for increasing general consistency and introducing a whole new way for incorporating new local crack physics through the discrete traction-separation laws. The model became unquestionably heavier than the single mode formulation by [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], but still retained its strictly local trademark.

The author takes this last chance to remark once again that the simulation section is not meant to be a formal application of the integral model presented in this work for the dedicated study of a specific quasi-brittle material. It is rather an inviting demonstration of the capabilities of the model. However, if any interesting or valuable insights are to be retained by the reader from the works done on the case of concrete (Sections 4.5.2,4.5.3), one that the author would certainly suggest is to challenge the idea that micro-crack networks in quasi-brittle materials are exclusively originated and driven through mode I failure mechanics. In this sense, the author hopes to have shown the reader that there is a rich variety of local phenomena at small scales that are related to crack relaxation, closure, compaction and frictional sliding. Any attempt to properly model these local effects brings new ways to represent the local use and dissipation of energy that significantly contribute to the global response of quasi-brittle materials.

Another interesting highlight brought by all the simulations done in Section 4.5 is the fact that no global crack tracking algorithm was used to perform any of the studies, retaining the strictly locality of the original E-FEM approach inspired by the method of incompatible modes. Despite this, physically meaningful simulations were achieved whether at structure scale (Section 4.5.1.3) or small scales (Sections 4.5.2,4.5.3). It is also important to recall that a set of optimisation choices were made and some accuracy features of the model were sacrificed, notably those related to the linearisation procedures and the strict storage of some φ-related operators. Nevertheless, that did not prevent the model to grant sound simulation results. Such are the benefits from an E-FEM framework built out of a solid theoretical foundation, and the author wanted to make a clear point on this.

It has never been the intent, however, to discourage the use of simpler models to approach mechanical problems where it is known that the load demands are captured properly by such approaches. In this regard, it remains an undeniable fact that the single mode formulation, serving as the main benchmark in this work, still stands as a exceptionally efficient and robust E-FEM application that will provide quick answers to complex problems under a wide variety of conditions. The author only stresses future researches to know the limits for its validity and to use this and other basic formulations accordingly.

The generalisation done in this current work has intended to open a door in the domain of the advanced finite element methods for making a better study of complex behaviours happening in tridimensional fracture processes at small scales. A small glimpse of these intricacies has been revealed in the last discussions presented to the reader, but this work has done nothing but a humble scratch for this new exploration stage. The author foresees the following steps for carrying on with the evolution of the framework:

• On one side, there is the execution of true calibration procedures for the input parameters of this model. The work done in this dissertation was rather informal and the reader could attest to imperfect correlation results in Section 4.5.3. A true calibration process should carefully consider the proper literature available for the specific material in question to incorporate reliable characterisation procedures and possibly complementing with test campaigns dedicated to this purpose.

The line of research in [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF] has consistently making efforts on experimental data for small micro-concrete samples which are a good source of correlation material for this E-FEM framework at small scales. Going forward and enriching the characterisation with more accurate physical measurements will be definitely helpful for any serious correlation process.

• This work did not really explore the post-processing capabilities already incorporated in the implementation and in the mathematical structures surrounding the strong discontinuity in general.

Using the quantified amount of each of the fracture kinematic modes for making more meaningful interpretations of the state of a sample in different regions would be rather interesting, for instance. Post-processing the location of the local fracture surfaces at least for making a more illustrative graphical representation could help to gain more understanding into the initiation and the coalescence of a tridimensional fracture process as well. A more detailed statistical treatment of local network data to better define global characteristics for an emerging tridimensional fracture process should also be pursued from the views of the author of this work. Again, the tools developed in [START_REF] Stamati | spam': Software for practical analysis of materials[END_REF] (SPAM) seem promising to continue these efforts.

• The developments done on the proposed E-FEM framework aimed for a maximum of variational and kinematic consistency and the benefits could be already witness regarding its prediction capability. Nonetheless, the model remains computationally expensive compared to other similar E-FEM implementations. The author did the best to reasonably optimise by trading and flexing some features of the framework, but a more detailed evaluation should be done for persisting on these works. Are all the mathematical constraints really necessary for the model to work the way the reader just saw during this dissertation? Can the framework be truly parallelised to take advantage of the of a powerful computational architecture?

• Local physics have been incorporated through the use of some of the generalised fracture kinematic modes in the traction-separation laws. In this sense, this work has only taken advantage of the generalised kinematic modes approach in a limited way, as a large priority has been given to the crack rigid body modes [|u|] n0 , [|u|] t0 , [|u|] m0 to guide these physics and also to drive the mathematical structures in charge of determining damage in the framework. It was just assumed that pure normal separation and sliding modes play a predominant role in local physics. Other proposals considering a more engaging role for the other kinematic modes (rotations, for instance) could also emerge, portraying further local mechanics that totally escaped the scope of this model.

• This framework was based exclusively on linear tetrahedrons. While this finite element platform allows for a relatively quick mathematical development and integration of all required equations for building the framework, it is well known that the linear tetrahedron is not the most preferred choice both in academy and industry for accurate finite element numerical analysis in general due to its limited constant field representation capabilities. One evident drawback, as an example, is that the location of the local fracture plane cannot be accurately located for homogeneous elements even if a specific localisation criterion is used for assessing the initiation of the crack. The assumption of having the plane at the centroid of the element is a very strong and questionable one, indeed. A more robust base element technology can be used, such as tri-linear hexahedrons or second order tetrahedrons, the latter being the most common choice in commercial FE packages, such as ANSYS or ABAQUS. The methodology for structuring both strong and weak discontinuity formulations would remain the same in principle, only with some interesting mathematical challenges to address. Also in the subject of local physics, it was already specified that their definition is rather basic, and the main intention from the author perspective was to conform a model flexible enough to cover the modelling of a range of essential local mechanics without introducing a considerable amount of complexity to the model. The treatment of compaction failure laws do not make a correct consideration of micro-porosity effects, for instance. The author believes that the behaviour of these local physics could still be improved with the incorporation of simple and thoughtful additions without compromising the simplicity of the model. Once again, the format of the framework allows for easy modifications.

As a finishing thought, the author remains at least satisfied for having contributed to the sustainability and usefulness of the E-FEM approach in face of other advanced finite element methods currently thriving in the search of better analysis tools for fracture processes. Each approach has its niche of specialty, with realistic limitations and particular benefits. If the reader was able to get a grasp of those corresponding to the E-FEM philosophy, then the author has made a decent job in this dissertation.

Chapter 6

Résumé étendu de thèse en français

Dans le cadre des requis imposés par l'école doctorale validant la version définitive de la thèse rédigée dans une langue différente au français comme langue officielle (anglais dans le cas présent), un résumé étendu des travaux de thèse déjà expliqués en anglais est présenté au lecteur dans cette section. Ce résumé n'aura pas la même structure de contenu des chapitres 2, 3 et 4 de la thèse. Ce résumé fera plutôt un point qui condense ces travaux en traitant les sujets suivants :

• Introduction/Évolution de l'E-FEM • Présentation du modèle proposé de la discontinuité faible

• Présentation du modèle proposé de la discontinuité forte • L'intégration des modèles, développements additionnels et implémentation • Résultats des simulations numériques Afin de rendre la lecture plus aisée au lecteur, le résumé fera une répétition de quelques figures (ainsi que d'autres contenus comme des équations) déjà montrées dans le contenu principal de la thèse sans avoir recours aux références croisées.

Introduction

L'étude numérique de phénomènes de rupture dans les matériaux composites nécessite une considération détaillée de leur structure hétérogène, ce qui contribue à l'émergence de comportements mécaniques complexes et inattendus. Des approches d'analyse multi-échelles ont été conçues au cours des dernières décennies pour développer des modèles mathématiques capables de capturer et de prédire leur réponse [START_REF] Fish | Multiscale analysis of composite materials and structures[END_REF]. Les approches classiques reposent sur des principes d'homogénéisation comme l'approche du Volume Élémentaire Représentatif (VER), qui nécessitent une analyse de matériaux composites à plus petite échelle où les effets des hétérogénéités peuvent être évalués de manière précise.

À cet égard, la méthode des éléments finis conventionnelle présente des défis considérables à la fois dans le problème des distributions d'hétérogénéité et dans la modélisation explicite des fractures locales. Dans ce contexte, les matériaux quasi-fragiles posent des défis de modélisation spécifiques. Le problème le plus important est la complexité de leurs processus de fracture comportant de multiples fissures se produisant de manière simultanée. Ce que l'on appellerait à grande échelle une fracture définie, à plus petite échelle serait plutôt un comportement combiné complexe de multiples fissures locales individuelles donnant forme à une macro-fissure dominante dans le matériau par un processus de coalescence.

En effet, les processus de rupture dans le béton à grande échelle sont connus pour présenter des comportements tridimensionnels complexes présentant un mélange de modes de rupture (conformément aux théories classiques de la mécanique de la rupture). De nombreux travaux expérimentaux illustrent très clairement la dépendance de ces phénomènes de fracture mixte aux schémas de charge biaxiale et triaxiale ainsi qu'aux géométries d'échantillons complexes [Nooru-Mohamed, 1992, Li et al., 2018]. Afin de capturer ce type de comportement, la modélisation des fractures locales doit être suffisamment détaillée pour révéler les dépendances de la cinématique de la fracture et de la triaxialité de la charge. Bien qu'il soit prouvé qu'il suffit de modéliser un ensemble de base de modes de rupture locaux pour accomplir cette tâche [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], les fissures locales ont encore besoin d'une flexibilité considérable pour capturer la cinématique de rupture fondamentale telle que la séparation normale, le glissement tridimensionnel, une réfermeture après une compression importante et même des modèles de frottement, parmi d'autres effets encore à l'étude [Jefferson et Mihai, 2015].

Les approches avancées par éléments finis offrent des solutions intéressantes pour surmonter les problèmes déjà mentionnés à l'aide de maillages non adaptatifs. Ils le font grâce à des améliorations mathématiques sur leurs fonctions de support que ce soit dans une base nodale (X-FEM), grâce à leurs champs mécaniques élémentaires (E-FEM) ou grâce à de nouvelles variables d'état mécaniques (B-FEM). En ce sens, le cadre E-FEM, étant le choix de l'auteur de ce travail pour la présente étude, conserve un équilibre raisonnable entre complexité mathématique et capacité de représentation. Le cadre E-FEM peut ensuite être développé de telle sorte que le moteur de solution numérique FEM global puisse être laissé intact, permettant la prise en charge d'une variété de plates-formes de solutions FEM disponibles pour la mise en oeuvre. L'auteur de ce travail a choisi de se concentrer sur l'utilisation du cadre E-FEM pour aborder le problème de la rupture triaxiale dans les matériaux quasi-fragiles.

Evolution de l'E-FEM abordant les problèmes de rupture quasi-fragile des composites

A partir des travaux fondateurs qui ont établi la base principale de la méthode E-FEM [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF], Simo et Rifai, 1990], cette approche d'analyse a été conçue à l'origine pour modéliser les phénomènes de localisation dans les matériaux généraux comme alternative aux techniques standards avec des maillages adaptés. Cela a commencé avec l'idée d'utiliser des améliorations de discontinuité faible pour représenter la présence de bandes de localisation de cisaillement [Oliver, 1996a, Jirásek, 2000].

Des applications aux matériaux quasi-fragiles ont commencé à émerger à ce stade, mais uniquement pour des problèmes à une ou deux dimensions [START_REF] Gálvez | An embedded cohesive crack model for finite element analysis of quasi-brittle materials[END_REF], Dominguez et al., 2005]. Les travaux pionniers de Wells et Sluys [START_REF] Wells | [END_REF] ont commencé par un déploiement complet de l'approche pour les problèmes 3D. Ils ont réussi à implémenter le cadre E-FEM pour un tétraèdre linéaire comprenant les modes cinématiques de fissure de déplacement de corps rigide de séparation normale et de glissement, faisant la comparaison entre les améliorations à forte discontinuité à symétrie variationnelle et asymétrique. Un enrichissement de la formulation de la fracture a été exploré en incorporant implicitement un degré de liberté de rotation dans la cinématique du plan de fracture local d'un élément triangle à contrainte constante (CST) [START_REF] Alfaiate | Non-homogeneous displacement jumps in strong embedded discontinuities[END_REF], établissant la base d'une fracture locale non uniforme. L'idée d'avoir des modes de rupture enrichis localement avec des modes additionnels pour améliorer la cohérence de la cinématique de rupture a ensuite été développée en détail sur un cadre 2D [Linder et Armero, 2007]. L'idée a ensuite été utilisée dans [Dias da Costa et al., 2013[START_REF] Dujc | An embedded crack model for failure analysis of concrete solids[END_REF], Raina et Linder, 2010, Contrafatto et al., 2013, Stanic et al., 2020] et enfin dans les travaux développés dans le chapitre 2 de ce travail de thèse, où une évaluation générale en profondeur a été faite en 3D.

Concernant les applications à la rupture hétérogène quasi-fragile, c'est Markovic [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF] qui a posé le point de départ de la modélisation de l'hétérogénéité en renouant avec l'utilisation effective de la formulation de la discontinuité faible en reprenant les fondements des travaux passés sur l'approche X-FEM [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite-element method[END_REF]. Cette ligne de recherche a donné lieu à la première intégration réussie de discontinuités fortes et faibles dans le cadre d'éléments barre unidimensionnels dans [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF], Ibrahimbegovic et Melnyk, 2007]. Cet axe de recherche a débuté sa première approche véritablement 3D dans les travaux de Roubin [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF]. La généralisation 3D du modèle d'enrichissement de la discontinuité faible pour les hétérogénéités a été basée sur les travaux de Markovic [START_REF] Markovic | Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i -physical and mathematical aspects[END_REF], tandis qu'un modèle de discontinuité forte équipé d'une loi de séparation-traction discrète a été utilisé pour les fractures locales. Le modèle à discontinuité forte était capable de représenter un seul mode de fracture de séparation normale, activé par un critère de localisation de Rankine et suivi d'une loi exponentielle de traction-séparation.

Hauseux [START_REF] Hauseux | The embedded finite element method (e-fem) for multicracking of quasi-brittle materials[END_REF] a réalisé plus tard la simulation des modes de glissement de fracture (mode II) dans le cadre de simulations de fouilles de géomatériaux. Les travaux de Stamati [Stamati et al., 2018, Stamati et al., 2019] ont ajouté une nouvelle dimension à la validation expérimentale de l'approche E-FEM au moyen de configurations de test comportant des mesures in-situ dans des échantillons de béton qui ont permis des comparaisons directes avec des simulations numériques à l'échelle mésoscopique. Dans 6.3 Présentation du modèle proposé de la discontinuité faible les travaux de Stamati [Stamati et al., 2019], une première approche a consisté à corréler un modèle E-FEM de cinématique de fracture au mode I [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] avec les résultats d'un essai de traction incluant des mesures in-situ . Une autre campagne expérimentale a été réalisée en considérant une charge de compression quasistatique ayant différents niveaux de préconfinement triaxial, de zéro à 15 MPa. Des simulations ont été effectuées pour valider les modèles E-FEM un seul mode cinématique de fracture. Les résultats globaux de la comparaison étaient prometteurs, montrant une corrélation dans les prédictions globales pour les forces de l'échantillon global. La figure 4.2 montre un résumé de ces comparaisons. Il existe un certain écart sur les prévisions globales de ductilité qui s'agrandit à mesure que les pressions de confinement augmentent.

Enfin, cette revue mentionnera les travaux effectués par Sun [START_REF] Sun | Strong discontinuity fe analysis for heterogeneous materials: The role of crack closure mechanism[END_REF], précisément sur l'inclusion de la refermeture et de la cicatrisation des fissures dans les modèles E-FEM discutés. Ce travail montre que, bien que les formulations de mode de fracture local unique soient capables de prédire avec succès une variété de phénomènes à grande échelle dans des conditions de charge spécifiques, cellesci sont restreintes par une limite de représentation physique et ne seront pas en mesure d'approcher d'autres phénoménologies locales qui restent pertinentes pour la modélisation des processus de rupture tridimensionnelle dans des matériaux hétérogènes quasi-fragiles.

Les travaux en cours se poursuivent dans cette ligne de recherche, en tentant une généralisation sur le modèle de la discontinuité forte qui répond à ces problématiques.

Présentation du modèle proposé de la discontinuité faible

La construction de base d'une discontinuité faible pour la modélisation des hétérogénéités matérielles part de l'hypothèse qu'un champ de déplacement hétérogène u, appelé désormais déplacement physique, peut être exprimé comme la composition d'un champ de base homogénéisé moyen u et d'un enrichissement de champ u portant la discontinuité mathématique faible : u = u + u (6.1) La figure 6.1 illustre une partition typique à double matériau pour un élément tétraédrique à 4 noeuds dans les domaines Ω + , Ω -avec une limite ∂Ω et ayant un plan Γ d comme interface. Le travail de base dans [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF], Hauseux et al., 2017] considère les propriétés élastiques linéaires pour chaque domaine telles que les modules d'Young E + , E -et les coefficients de Poisson ν + , ν -. Un système de coordonnées local ( n, t, m) définit l'orientation de l'interface matérielle, ayant n comme vecteur unitaire normal à Γ d . Le modèle de discontinuité faible à utiliser est celui de l'enrichissement typique, dont les détails de développement peuvent être trouvés dans la section 3.4.1 du chapitre 3 de ce travail de thèse. Rappelant sa forme générale : Enrichissement de la discontinuité faible

u = Θ n • (x -x Γ d ) [ε] n n + [ε] t t + [ε] m m (6.2) Θ = Θ + = V - V x ∈ Ω + Θ -= -V + V x ∈ Ω - (6.3)
où n • (xx Γ d ) est la distance normale d'un point donné x à l'emplacement le plus proche x Γ d de la surface Γ d .

Cette proposition de formulation de discontinuité faible satisfait la plupart des exigences de cohérence variationnelle à l'exception de la remise à zéro de u aux positions des noeuds de l'élément. Ceci entraîne une incohérence variationnelle permanente selon la géométrie de l'élément et son alignement par rapport à l'interface Γ d . Cependant, si le modèle présente un maillage avec de bons aspect ratios (< 3.0) et si le rapport entre les paramètres élastiques linéaires est de l'ordre de 5 ou moins, il a été démontré que cette formulation permet une représentation raisonnable de la raideur hétérogène et des distributions de champ de déformation attendues (Section 3.5 du texte complet).

Présentation du modèle proposé de la discontinuité forte

Le point de départ de chaque représentation de fracture effectuée dans le cadre de l'E-FEM est d'enrichir le champ de déplacement de base d'un corps continu avec l'ajout direct d'une fonction de discontinuité mathématique représentant le saut de déplacement d'une région divisée du corps à l'autre : La formulation de discontinuité forte prise comme base pour cette intégration sera la version la plus complète telle que développée dans la section 2.5 du chapitre 2 de ce travail de thèse. Comme déjà décrit, cette formulation présente un ensemble enrichi de neuf modes cinématiques de rupture. La figure 6.2 illustre un exemple de cet ensemble enrichi de modes cinématiques de rupture pour un domaine Ω + sur un tétraèdre. Les déformations axiales simples ont été omises par souci de clarté. Sa forme générale est rappelée au lecteur : où les coefficients α doivent être résolus en imposant une série de contraintes en introduisant des relations de liens cinématiques et d'autres équations essentielles. Encore une fois, le développement complet de cette proposition peut être trouvé dans l'Appendice (C).

u = u + H Γ d [|u|] , (6.4 

Intégration des modèles, développements additionnels et implémentation

Pour modéliser à la fois les hétérogénéités et les fractures d'éléments locaux dans le même domaine des éléments, ces définitions doivent être intégrées dans un cadre mathématique unique. D'après les travaux de [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF] avec des barres 1D, la stratégie a été d'exprimer le champ de déplacement réel u comme une superposition linéaire des améliorations de discontinuité faible et forte:

u = û + u + (H Γ -φ) Jξ (6.7)
Celle-ci est la forme finale pour exprimer un champ de déplacement réel dans ce travail. Le champ de déformation général ε associé à ce champ de déplacement peut être atteint en appliquant un opérateur de gradient symétrique ∇ s (•) = 1 2 ∇ (•) T + ∇ (•) .

Le principe variationnel servant de base à une formulation d'éléments finis enrichis doit être capable de gérer les variables nouvellement ajoutées provenant des enrichissements en plus des champs standard. Pour cette raison, le principe de Hu-Washizu a été le choix de tous les auteurs travaillant sur cette approche E-FEM. Ce travail ne fera pas exception. Le principe de Hu-Washizu traite les champs de déplacement, de déformation et de contrainte (real fields) (u, ε, σ) ainsi que leurs variations respectives (champs virtuels) (δu, δε, δσ) comme complètement indépendants les uns des autres. Ceci permet une flexibilité considérable sur la stratégie de discrétisation pour chacun des champs. Exprimé déjà dans un format vectoriel de Voigt, le système d'équations qu'implique ce cadre variationnel est le suivant : Un critère de localisation est nécessaire pour désigner une rupture locale au sein d'un élément et commencer à introduire l'impact de la mécanique de la rupture à travers les expressions développées précédemment plus un ensemble de lois de traction-séparation. À cet effet, un critère complètement fermé a été construit en composant une fonction par morceaux avec trois sous-critères différents :

• Un critère Rankine destiné à fixer la limite pour l'état de contraintes à prédominance de traction, représenté par une ligne droite verticale sur le plan (σ n , τ ) avec une abscisse positive σ y R .

• Un critère limite de compression destiné à limiter la quantité de compression effectuée par un élément. Ceci est également représenté par une ligne droite verticale sur le plan (σ n , τ ) avec une abscisse négative σ y C .

• Un critère Mohr-Coulomb pour couvrir toutes les combinaisons limites possibles restantes de l'état de cisaillement-traction et de cisaillement-compression sur le même plan. Ceci est représenté par quelques lignes symétriques (par rapport à l'axe σ n ) décrites avec l'équation τ = ±C ∓(tan ψ) σ n

Cette courbe par morceaux reste très simple (4 paramètres de matériau) et garantit que tous les états possibles de rupture sous contrainte sont couverts. La figure 6.3 illustre ce critère composé. .

Après avoir atteint un état de localisation, un état de rupture local est établi dans l'élément, et le comportement est régi par une loi de traction-séparation. La loi de traction-séparation décrit l'évolution des composantes du vecteur de traction cohésive à l'interface locale de rupture en fonction des variables cinématiques de rupture. Étant donné que la nouvelle cinématique généralisée proposée pour la rupture locale nécessite désormais 9 variables différentes, il devrait y avoir suffisamment d'équations pour déterminer pleinement l'état interne complet d'un élément.

Un premier ensemble de trois tractions-séparation est proposé pour assurer le processus d'endommagement des composants principaux du vecteur traction cohésive T n , T m , T t : σ eqq = Tq = T e + Mξq = 0 (6.9a)

T n = T en + 9 k
M n k ξ k = q n (6.9b)

T t = T et + 9 k M t k ξ k = q t (6.9c) T m = T em + 9 k M m k ξ k = q m (6.9d)
Par conséquent, trois fonctions différentes q j vont contrôler l'évolution de chacun des composants de traction. Pour simplifier l'approche, il a été décidé de ne pas faire intervenir les neuf modes cinématiques possibles dans les fonctions q j . L'accent sera mis sur les modes cinématiques des corps rigides Illustration des comportements réversibles et irréversibles pour les modes de séparation normale de fissure (à gauche) et de cinématique de glissement (à droite). Le chemin de 1 à 2 est irréversible, tandis que 2-3 est décrit comme un chemin réversible forcé par une charge insuffisante qui ne parvient pas à poursuivre l'évolution de la fissure jusqu'au point 2a. Si la charge est suffisamment inversée, la fissure peut être éventuellement fermée (3). Une réversibilité supplémentaire de la charge induit une compression pour le tracé de gauche et un glissement du côté opposé de la fissure pour le tracé de droite (3)(4). A terme, on peut même atteindre à nouveau des zones de comportement irréversible (4)(5). Il existe une asymétrie inhérente entre les modèles normal et parallèle puisque le modèle normal est le seul capable de présenter des états de compression.

Le sous-système final pour ces lois de traction séparation devient : Principales lois traction-séparation (T n , T t , T m ) -

T en + M nn [|u|] n0 =            q n [|u|] n0 > |u| n (qn) i-1 |u| n [|u|] n0 0 ≤ [|u|] n0 ≤ |u| n Ec lc [|u|] n0 σ y C ≤ T n ≤ 0 q C
T n ≤ σ y C (6.11a) Un deuxième ensemble de trois équations de traction-séparation est proposé pour endommager les composantes de contraintes hors plan σ ytt , σ ytm , σ ymm associées au plan d'interface qui ne sont pas affectées par l'opération de projection impliquant la normale du plan de fracture local:

T et + M tt [|u|] t0 ± T µt = q ± t [
Lois alternatives traction-séparation (σ ytt , σ ytm , σ ymm ) - M m k ξ k = 0 (6.13c)

T ′ et + 9 k M ′ t k ξ k = q tt (6.12a) T ′ em + 9 k M ′ m k ξ k = q tm (6.

Résultats des simulations numériques

Une implémentation réalisée dans le cadre du programme FEAP [Taylor, 2020] est testée dans diverses conditions pour étudier la réponse de la formulation E-FEM généralisée et sa capacité à prédire différents types de processus de rupture. Trois types de simulations sont présentés :

• Simulations d'échantillons homogènes, qui sont principalement un test pour la cohérence du modèle à forte discontinuité. Ces configurations comporteront des éléments complètement homogènes sans la présence de discontinuités faibles.

• Simulations basiques d'échantillons hétérogènes, dans lesquelles le développement de processus de fracture autour d'une région définie ayant des interfaces matérielles sera étudié. Un domaine de matériau matriciel homogène cubique ayant une inclusion sphérique au centre est prescrit avec différentes configurations de charge.

• Simulations d'échantillons de micro-béton, qui sera l'évaluation la plus complète et la plus complexe pour le cadre E-FEM actuel. Des échantillons cubiques sont modélisés contenant des distributions d'hétérogénéité réalistes provenant d'échantillons réels de micro-béton utilisés lors des campagnes d'essais pour la recherche effectuée dans [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF], Stamati et al., 2021].

Simulation de torsion homogène

Cette simulation de torsion est devouée à présenter au lecteur le processus de suivi de l'évolution d'une fracture tridimensionnelle controlée. Une approche de modèle cubique est prise ayant un matériau homogène sans discontinuités fortes. Un maillage tétraédrique avec une taille caractéristique de 0,1 mm a été considéré. Une bande large centrale de matériau avec une résistance légèrement différente est définie uniquement dans le but d'éviter le biais provenant des conditions aux limites sur les faces supérieure et inférieure. Les propriétés des matériaux pour les deux formulations peuvent être trouvées dans les tableaux 4.3 et 4.4 (texte complet). Un angle de torsion de 0,03 • a été prescrit (équivalent à une déformation de cisaillement d'échantillon de 3,7×10 -4 mm/mm au niveau des fibres les plus externes). La Figure 6.5 illustre cette configuration. La Figure 6.6 capture l'état final des simulations numériques à la fin de l'application de torsion pour la formulation à un seul mode de fracture (I) et la nouvelle formulation généralisée. C'est là qu'une divergence critique de comportement peut être reconnue entre les deux formulations. La formulation à mode unique n'est pas en mesure de prédire une évolution significative du processus de fracture. D'autre part, la formulation généralisée permet un changement complet de nature pour le processus de rupture : il commence à se concentrer exclusivement sur la rupture et la cinématique de mode II, s'étendant à travers l'intégralité des frontières supérieure et inférieure de la bande de matériau fragilisé. Cela permet de finaliser l'ensemble du processus de fracture de l'échantillon et de libérer toute l'énergie restante stockée dans celui-ci. Cette différence peut être mieux appréciée dans la figure 6.7, où une réponse de réaction globale du modèle a été surveillée par rapport à l'application de la charge dans les deux modèles. La réaction verticale a été choisie car elle était la plus simple à mesurer et fournit toujours des informations sur l'énergie actuelle stockée dans tout le domaine matériel. En effet, une nette divergence dans le comportement global post-localisation peut être facilement repérée, où la courbe de la formulation à un seul mode va augmenter sans aucune borne perceptible, tandis que la courbe des modes généralisés suggère une nette perte de résistance mécanique dans le modèle. On peut affirmer que la formulation à un seul mode n'est pas en mesure de donner une conclusion correcte à ce processus de rupture en mode mixte, et donc le modèle numérique est voué à un phénomène global de verrouillage des contraintes. .7: Réaction verticale totale mesurée avec les deux modèles pendant toute la simulation. La réaction verticale n'émerge normalement pas dans l'analyse de torsion élastique, mais lorsqu'un processus de rupture commence, la distribution de rigidité non uniforme due aux régions endommagées favorise sa croissance. De toute façon, au fur et à mesure que le processus de fracture tridimensionnelle se développe pleinement dans le modèle, l'énergie doit être libérée d'une manière ou d'une autre. La formulation des modes généralisés est capable de prédire cela en raison de sa prise en compte de la mécanique de rupture de mode II, tandis que la formulation à un seul mode reste verrouillée en contrainte.

Simulation de compression hétérogène simple

Cette simulation vise à étudier l'effet des faibles discontinuités dans la formation et la propagation d'un processus de fracture tridimensionnel en considérant une distribution d'hétérogénéité simple. La configuration principale de la simulation se concentrera sur un domaine homogène ayant la présence d'une inclusion sphérique constituée d'un matériau plus résistant. Les matériaux attribués représentent ceux qui composent un échantillon de béton typique : une matrice de mortier comportant des inclusions de granulats. Les processus de rupture devraient commencer aux interfaces des matériaux et évoluer de manière particulière en fonction de chaque cas de charge.

La géométrie de l'échantillon hétérogène est un cube de 10 mm de côté ayant une inclusion parfaitement sphérique de 6 mm de diamètre. Cette répartition de phase du matériau est projetée sur un maillage comportant des éléments tétraédriques non structurés ayant une longueur caractéristique de 0,15 mm. La figure 6.8 montre le maillage général construit et déjà projeté avec les phases matérielles pour toutes ces simulations, ainsi que les interfaces de discontinuité faible générées pour la frontière de la sphère. Les paramètres donnés pour les formulations de modes simples et généralisés peuvent être trouvés dans les tableaux 4.6 et 4.7 (du texte complet).

Une charge de compression est imposée au modèle. Il existe une différence significative à la fois dans la résistance globale et la ductilité (définie ici comme la déformation de l'échantillon correspondant à la résistance maximale ε max ) entre les formulations à un seul mode et généralisée. Ainsi, différentes distances de compression maximales doivent être utilisées pour développer pleinement leurs processus de fracture respectifs : -0,05 mm et -0,1 mm, respectivement. Le résultat de ces simulations est présenté dans le même style que dans le cas de charge de traction. La figure 6.9 montre le comportement des courbes contrainte-déformation définies globalement pour les deux modèles. Dans l'ensemble, il est à nouveau observé que les deux formulations partagent certaines étapes du comportement du processus de rupture tridimensionnelle, mais le modèle généralisé est capable de donner un aperçu plus large des étapes ultérieures où les ruptures locales de mode II et la compression ayant un glissement par frottement deviennent significativement importantes. Encore une fois, cela se reflète sur la réponse globale contrainte-déformation. En effet, il apparaît évident que la modélisation des phénomènes liés au mode II ne peut être négligée sous certains cas de charge. 

Simulation d'échantillons de béton réaliste

La dernière section décrivant les développements de ce travail de thèse concerne les simulations numériques d'échantillons présentant une hétérogénéité réaliste (pores, granulats et mortier). C'est grâce aux travaux pionniers de Stamati et al. [Stamati et al., 2018, Stamati et al., 2019, Stamati et al., 2020, Stamati et al., 2021], tant au travers des campagnes expérimentales impliquant des mesures de tomographie à rayons X in-situ que des contributions au logiciel dédié SPAM, qu'il a été possible de traiter des échantillons de données numériques brutes pour aboutir à une projection maillage avec tous les détails pertinents dans les configurations de cette simulation.

Pour les simulations du présent travail, une sous-région cubique a été extraite d'un échantillon cylindrique de micro-béton utilisé dans les travaux de [START_REF] Stamati | Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography[END_REF]. La figure 6.10 montre le maillage projeté résultant pour l'échantillon géré pour toutes les simulations numériques suivantes. Les cas de charge considérés pour ce modèle seront la traction et la compression sous différents niveaux de précon- Les résultats suggèrent que le modèle généralisé est capable de rapprocher les prédictions, à la fois de ductilité et de résistance, des résultats expérimentaux. Le modèle généralisé a tendance à dépasser les valeurs expérimentales projetées pour les faibles pressions de confinement, finissant par prendre du retard pour 10 et 15 MPa. Il convient de noter que la localisation du comportement après l'étape de localisation ne peut être évaluée pour aucun des ensembles des essais expérimentaux, car la cellule de charge n'était pas capable de fournir des mesures fiables dans cette phase du test. Pour tous les cas, le modèle généralisé présente un comportement post-localisation plus ductile que la formulation à mode I. D'autre part, la ductilité du modèle généralisé semble diminuer à mesure que la pression de confinement augmente.

Conclusions

Ce travail a introduit le lecteur à une intégration d'un modèle de discontinuité forte généralisé avec un modèle de discontinuité faible pour se conformer à une approche d'analyse numérique capable de fournir des représentations significatives des processus de rupture tridimensionnels pour les matériaux quasi-fragiles à petite échelle. Un contexte théorique a été fourni, décrivant les aspects mathématiques fondamentaux de la cinématique généralisée des modes de rupture pour la discontinuité forte et la discontinuité faible. Une description claire des critères de localisation a été fournie, ainsi qu'un système d'équations de traction-séparation qui bénéficie de la structure généralisée des modes cinématiques de rupture pour incorporer une physique de fissure locale plus robuste.

L'auteur suggérerait certainement de remettre en cause l'idée que les réseaux de microfissures dans les matériaux quasi-fragiles sont exclusivement créés et entraînés par la mécanique de rupture en mode I. En ce sens, l'auteur espère avoir montré au lecteur qu'il existe une riche variété de phénomènes locaux à petite échelle qui sont liés à la relaxation, la fermeture, le compactage et le glissement avec frottement des fissures. Toute tentative de modéliser correctement ces effets locaux apporte de nouvelles façons de représenter l'utilisation et la dissipation locales de l'énergie qui contribuent de manière significative à la réponse globale des matériaux quasi-fragiles.

La généralisation faite dans ce travail actuel a pour but d'ouvrir une porte dans le domaine des méthodes avancées d'éléments finis pour mieux étudier les comportements complexes se produisant dans les processus de fracture tridimensionnelle à petite échelle.

now have:

G ′ sb = H Γ ∂J -φ∂J -∂φJ H Γ ∂J = H Γ         J n,ξ J t,η J m,ς J n,η + J t,ξ J t,ς + J m,η J n,ς + J m,ξ         = H Γ        
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 It is important to remember that the ∂ operator is the same partial differential operator used to map a displacement interpolation matrix N to a strain operator matrix B in classical FEM theory. For the sake of readability, we present the final expression for G ′ sb in blocks related to kinematic groups.

        (C.5) φ∂J =         φ n J n,ξ φ t J t,η φ m J m,ς φ n J n,η + φ t J t,ξ φ t J t,ς + φ m J m,η φ n J n,ς + φ m J m,ξ         =        
For the rigid body translation block : For the rigid body rotation block :

G ′ sb1-3 = -         φ n,ξ 0 
G ′ sb4-6 = -                0 φ n,ξ ς -φ n,ξ η -φ t,η ς 0 φ t,η ξ φ m,ς η -φ m,ς ξ 0 -φ t,ξ ς φ n,η ς -φ n,η η + φ t,ξ ξ -φ n + φ t -φ t,ς ς + φ m,η η -φ t + φ m -φ m,η φ t,ς ξ φ m,ξ η φ n,ς ς -φ m,ξ ξ +φ n -φ m -φ n,ς η                (C.9)
Finally, for the simple axial strain block :

G ′± sb7-9 = -         φ n,ξ ξ + φ n -H 0 0 0 φ t,η η + φ t -H 0 0 0 φ m,ς ς + φ m -H φ n,η ξ φ t,ξ η 0 0 φ t,ς η φ m,η ς φ n,ς ξ 0 φ m,ξ ς         (C.10)
With this, the complete G ′± sb matrix is integrated at each subvolume to obtain the averaged operators G ′± sb as per Eq. 2.65. All populated fields within G ′± sb are a function of some of the 120 α coefficients defined so far. Note that, for the case of the simple axial strain block, the Heaviside function H will not be a function of α coefficients, since it can only have a value of 1 and zero and it is not multiplied by any function of the φ family. This specific term piece has to be moved to the right-hand expressions when passing to the solution of the complete linear system. With this, the left-hand expressions work is completed.

For the right-side expressions, the procedure is similar to that followed in Section 2.4.3 and proposed by Armero and Linder [Linder et Armero, 2007], but generalised to three-dimensions. The key is to find the expression for each displacement state d k associated to each kinematic mode k = [|u|] n0 , [|u|] t0 , ..., ϵ m , for then multiplying by B.

For the rigid body displacement modes, the deduction was already explained for 2D and can be easily extrapolated to 3D: The displacements states d k associated to rigid body rotation modes can be easily found by taking a cross product of the type s = θ × r. The centroid of the fracture surface x 0 is considered as the center of rotation to calculate a rotation radius r i to each element node position x i , while the rotation itself will have an axis corresponding to each of the local directions:

d [|u|] n0 =     p 1 [|u|] n0 n p 2 [|u|] n0 n p 3 [|u|] n0 n p 4 [|u|] n0 n    12×1 =     p 1 n p 2 n p 3 n p 4 n    [|u|] n0 (C.11a) G ′ sb[|u|] n0 [|u|] n0 = -Bd [|u|] n0 (C.11b) G ′ sb[|u|] n0 [|u|] n0 = -B 1 B 2 B 3 B 4     p 1 n p 2 n p 3 n p 4 n    [|u|] n0 = - Ne i p i (B i n) [|u|] n0 G ′ sb[|u|] n0 = - Ne i p i (B i n) (C.
d θn =     p 1 ([θ n n] × r 1 ) p 2 ([θ n n] × r 2 ) p 3 ([θ n n] × r 3 ) p 4 ([θ n n] × r 4 )     =     p 1 ( n × r 1 ) p 2 ( n × r 2 ) p 3 ( n × r 3 ) p 4 ( n × r 4 )     θ n (C.14a) r i = x i -x 0 (C.14b) G ′ sbθ n θ n = -Bd θn (C.14c) G ′ sbθ n θ n = -B 1 B 2 B 3 B 4     p 1 ( n × r 1 ) p 2 ( n × r 2 ) p 3 ( n × r 3 ) p 4 ( n × r 4 )     θ n = - Ne i p i [B i ( n × r i )] θ n G ′ sbθ n = - Ne i p i [B i ( n × r i )] (C.14d)
Noting that, if the system has been already worked in a local frame having the origin at the centroid of the fracture surface, nodal positions will be already the rotation radii with

r i = x i . Again, G ′ sbθ t , G ′ sbθ m
Finally, for obtaining the displacement states d k for the case of simple axial strains, the most basic definition of the type ϵ = ∆d/∆x → ∆d = ϵ∆x will be taken. This will consider, once again, the centroid of the fracture surface as the point where there are no displacements associated with this elastic strain.

For instance, we will have the following for the case of ϵ n :

d ϵn =     p 1 (r 1 • n) ϵ n n p 2 (r 2 • n) ϵ n n p 3 (r 3 • n) ϵ n n p 4 (r 4 • n) ϵ n n    =     p 1 r 1n n p 2 r 2n n p 3 r 3n n p 4 r 4n n    ϵ n (C.17)
As the simple axial strain ϵ n is actually meant to happen only on the Ω + domain, the linking equation for this mode will equal to a Heaviside function rather than to zero, making imperative to use a domaindependent G ′± sb ϵn :

G ′± sb ϵn ϵ n + Bd ϵn = H Γ d         ϵ n 0 0 0 0 0         ⇒ G ′± sb ϵn ϵ n + B 1 B 2 B 3 B 4     p 1 r 1n n p 2 r 2n n p 3 r 3n n p 4 r 4n n    ϵ n =         H Γ d 0 0 0 0 0         ϵ n (C.18a) G ′± sb ϵn =         H Γ d 0 0 0 0 0         - Ne i p i r in [B i n] (C.18b)
G ′± sb ϵt , G ′± sb ϵm will follow:

G ′± sb ϵt =         0 H Γ d 0 0 0 0         - Ne i p i r it B i t , G ′+ sb ϵm =         0 0 H Γ d 0 0 0         - Ne i p i r im [B i m] (C.19)
With this, the right-hand expressions are covered, and all constraints concerning kinematic mode linking are closed and ready to be added to the α coefficients system. With the given compound definition for the φ functions, all populated terms of the left-hand side matrix operator G ′+ sb yield different expressions for the α coefficients. This adds 33 equations for each +/-domain, which makes a total of 66 linear constraints.

We continue with the linear constraints belonging to the basic φ requirements of Eq. 2.3. Considering the three direction-based, piece-wise definition of the φ functions proposed at the beginning of this section, the following constraints are added to the system:

φ - n (x i ) = 0, φ - t (x i ) = 0, φ - m (x i ) = 0 x i ∈ Ω - φ + n (x i ) = 1, φ + t (x i ) = 1, φ + m (x i ) = 1 x i ∈ Ω + (C.20)
This adds a total of 12 linear constraints.

  God bless caffeine. I know I'm late... But I'll be there... Every step gets me closer... No matter what it takes... I'll find my way... And I'll fight by your side... Just wait for me...
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 21 Figure 2.1: Basic schematic of an embedded strong discontinuity in 2D

Figure 2 . 2 :

 22 Figure 2.2: Example of the behaviour of the field u for a 1D element (conformed by nodes N1 and N2) with a constant displacement jump [|u|], as well as a corresponding û

Figure 2 . 4 :

 24 Figure 2.4: Example of kinematic consistency that should hold between the fracture displacement vector [|u|] and the nodal displacement vector d for a constant stress triangle.
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 25 Figure 2.5: Tetrahedron element having a strong discontinuity with a basis n, t, m and a partition 3-1, node 1 located on Ω +

Figure 2 . 7 :

 27 Figure 2.7: Generation of strain sub-spaces coming from d and [|u|].The subspace generated by the fracture kinematics only represented through rigid body translations is not able to cover the subspace spanned by the nodal standard displacement vector.

Figure 2 . 8 :

 28 Figure 2.8: Enriched kinematics variables on the fracture local frame for a 2D CST element having a fracture line Γ d with orientation vectors n, t and nodes N1, N2 lying on Ω + . This kinematic variable set is composed by two rigid body translations [|u|] n0 , [|u|] t0 , one rigid body rotation θ and a single axial strain ϵt on the direction parallel to Γ d . The centroid of Γ d is taken as the zero reference for rigid body motion description.
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 29 Figure 2.9: Illustration of linearly dependent kinematic mode decomposition for a CST having one single node on the Ω + domain. Two different paths using different values for the kinematic modes are portrayed. Both paths (and endless others), lead to d1 in this case.

Figure 2 . 11 :

 211 Figure 2.11: Schematics of typical vanilla elements taken for formulation testing at small scale. Left element for pure tension, right element for pure shear.

  Figure 2.13: Proposed load evolution through a controlled behaviour of generalized kinematic modes

  Figure 2.14: Comparison of fracture traction components response for all five formulations.

  Figure 2.15: Comparison of the response for stress state components σtt, σtm, σmm for all five formulations.

  Figure 2.16: Comparison of the response for fracture rigid body displacements for all five formulations. The single mode formulation has been set at zero for both sliding modes.

  Figure2.17: Comparison of the response of fracture rigid body rotations for the enriched modes formulations. The other formulations do not count with such kinematic modes.

Figure 2 . 18 :

 218 Figure 2.18: Comparison of the response of the simple axial strain associated to the Ω + body partition. Only for enriched modes formulations.
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  Figure 3.1 shows an example for a constant stress triangle (CST) element. The localisation band model represents a finite and continuous region of a fracture process.

Figure 3 . 1 :

 31 Figure 3.1: Basic schematic of weak discontinuity enhancements used to represent a shear band within a triangular 2D element having a local frame n, t. The shear band possesses a set of different (damaged) mechanical properties E l while the rest of the element retains its original elastic behvior E. Note the introduction of a thickness d characterising the shear band.

Figure 3 . 2 :

 32 Figure 3.2: Basic schematic of a weak discontinuity in 3-D for the modelling of material heterogeneities within a tetrahedral element
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 33 Figure 3.3: Graphical analysis on 1D typical weak discontinuity enhancements. (a) Original enhanced field. (b) Enhanced field with an offset ∆ u. Nullification of the field at element nodes can be achieved by adding an offset ∆ u.
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 34 Figure 3.4: Graphical analysis on 2D typical weak discontinuity enhancements taking a constant stress triangle (CST) as the base element, compared to a consistent enhancement. For the typical enhancement, it is assumed that an offset ∆ un has been given to the field to minimize the error when trying to nullify field values on the CST nodes. (a) Typical enhanced field over a CST. (b) Consistent enhanced field over a CST.
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 35 Figure3.5: Basic description of a bi-material layered prismatic body with total height L and cross section A, treated as a two-spring mechanical system in series having constants k + and k -. The stiffness partition depends of the position h of the interface plane.

  Figure 3.6: General mesh description and view of all enriched elements crossed by the material interface plane. (a) General view of entire model mesh. Interface in white outline. (b) Mesh view isolating all enriched elements. Interface in white outline. (c) The discontinuity surfaces Γ d for each element cut by the material interface. 92 elements and 43 nodes are used for the entire model. Enriched elements make up approximately for 50% of total volume.
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 37 Figure 3.7: Description of model details, as simulated in the FEAP program.
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 38 Figure 3.8: Vertical reaction on the entire lower face of the cube model for both enhancement types and the analytical solution.
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 39310 Figure3.9: Vertical reaction comparison between the typical and full consistent weak discontinuity formulations in a relative error format.

Figure 3

 3 Figure3.11: Average strain and corresponding dispersion for both weak discontinuity enhancements compared to analytical calculations on the (-) (more compliant) domain.
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 4142 Figure 4.1: Heterogeneous morphology construction by segmentation of an X-ray tomography grayscale image and eventual projection onto a FE unstructured mesh using SPAM. Image taken with permission from the segmentation article data in[START_REF] Stamati | Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography[END_REF], Stamati et al., 2019, Stamati et al., 2020, Stamati et al., 2021] .
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 43 Figure 4.3: Illustration of an enriched fracture kinematic mode set including rigid body translations and rotations from the Ω + domain with respect to Ω -. An example of the effect of simple strains ϵn, ϵt, ϵm is not included for the sake of clarity in the figure.
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 4 4 illustrates this compound criterion.

Figure 4 . 4 :

 44 Figure 4.4: The envelope localisation criterion on the (σn, τ ) plane used in this work showing notable intersecting points. A proportional load is shown beginning on a zero state up to reaching an intersection with the curve at (σy, τy)

Figure 4 . 5 :

 45 Figure 4.5: Illustration for the assessment of the different localisation criteria whether if treating a heterogeneous element (left) or a homogeneous element (right), which uses the classical 3D Mohr circle theory. The compression line and any related calculations with it are not shown for the sake of clarity in this illustration.
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 46 Figure 4.6: Illustration for reversible and irreversible behaviours for crack normal separation (left) and sliding kinematic modes (right). The path from 1 to 2 is irreversible, while 2-3 is depicted as a reversible path forced by an insufficient load that fails to continue crack evolution to point 2a. If the load is reversed enough, the crack can will be eventually closed (3). Further load reversibility induces compression for the left plot and sliding on the opposite side of the crack for the right plot (3-4). Eventually, one can even reach irreversible behaviour zones once again(4)(5). There is an inherent asymmetry between the normal and parallel models since the normal model is the only one capable of exhibiting compression states.

4. 3

 3 Double enhancement formulation with generalized fracture kinematic modes dissipation is introduced as a simple Coulomb friction model as follows:

  i

Figure 4 . 7 :

 47 Figure 4.7: Illustration of the application of the friction model to resist further sliding on the t direction.
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 48 Figure 4.8: Solution of individual equations for crack rigid body translations as intersections between a straight line and the behaviour laws proposed in Section 4.3.5.3. Three exemplary lines are introduced for analysis in the normal n and parallel t directions. The position of all these lines is regulated by the load driven traction vector T e, which determines the intersection with the vertical axis. The slope of the lines never change, and it is always negative.

Figure 4

 4 Figure 4.9: Model descriptions for homogeneous tensile simulations having a 5% weakened material band (left) and a 30% weakened material band (right), respectively (band coloured in red). General bulk mesh has been made transparent to better appreciate the material bands in the middle. Node count in both models has been of 4822 elements (14466 global degrees of freedom), while element count was at 22022 elements.
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 4 Figure 4.10: Global stress-strain behaviours for the single mode and generalised modes formulations. Continuous lines denote the case of a thin 5% weakened material band and the dashed lines correspond to the more extensive 80% weakened material band.
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 411 Figure 4.11: Nodal displacement colour band plots at the end of load imposition for both single mode and generalised modes formulations, 5% weakened material band scenario. A fully developed and highly localised strong field discontinuity can be appreciated in both cases, with slightly more diffusivity for the single mode formulation.
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 4 Figure 4.12: Nodal displacement colour band plots at the end of load imposition for both single mode and generalised modes formulations, 80% weakened material band scenario. A fully developed and strong field discontinuity can still be appreciated, but with significantly more fracture diffusion on the single mode formulation. The generalised model has more defined localisation, but the fracture path chooses an erratic and unbounded path through the entire weakened material band.
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 44 Input material parameters used for the single modes formulation for the weakened material band in the homogeneous torsion simulations.

Figure 4 .

 4 Figure 4.13: Model descriptions for homogeneous torsion simulations having a 80% weakened material band and a torsion angle of 0.03 • .

Figure 4 .

 4 Figure 4.14: Elements conforming the local crack networks within the cube domain for a torsion load just right after beginning global nonlinear behaviour. All blue elements correspond to a tensile (mode I) failure model. Each network develops a tilted classical brittle fracture process with no difference between single and generalised models. The cube shows also a translucent contour of resultant nodal displacements having red as maximums and red as minimums.

Figure 4 .

 4 Figure 4.15: Elements conforming the local crack networks within the cube domain for a torsion load almost halfway through load application. All blue elements correspond to a tensile (mode I) failure model, and red elements are associated to a mode II failure model. The networks have evolved to converge to the center of the cube. The generalised model starts to exhibit the emergence of a shift in the fracture process towards a mode II behaviour.

Figure 4 .

 4 Figure 4.16: Elements conforming the local crack networks within the cube domain for a torsion load at the end of load application. All blue elements correspond to a tensile (mode I) failure model, and red elements are associated to a mode II failure model. The fracture process has not significantly evolved for the single mode formulation, whereas the generalised model predicts a mode II behaviour for the conclusion of the fracture process.
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 4 Figure 4.18: Model description for the Nooru-Mohamed setup simulation model in this work. Global square dimensions along with slot sizes are shown therein.The model remains practically a small plate in the scale of millimeters. This would be normally questionable in regards to the concrete homogeneity assumption, but for the effects of the demonstration in these simulations it will be not considered important. Despite the fact that most of the simulations of this setup are done in a 2D setting, the current models consider a finite thickness across the shown z direction.
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 4 Figure 4.19: Typical behaviour for crack propagation in a Nooru-Mohamed test setup. An anti-symmetric pair of cracks develop at each of the notches having an inclination that grows as the shear preload fs grows as well. The range of fs producing this behaviour and the specific inclination of each fracture case varies depending on material parameters and sample sizes. No formal correlation with a specific experimental data set is done in this work but only a qualitative validation of such fracture process behaviour.
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 4 Figure 4.20: Superposition of all fracture process results for the Nooru-Mohamed simulation considering different values of shear preconditioning fs. Despite managing the generalised formulation, all these elements have failed under mode I criterion. For reference, the maximum value for the vertical force fa registered for this case for complete failure of the sample was of 12.92 N.

Figure 4 .

 4 Figure 4.21: Superposition of all fracture process results for the Nooru-Mohamed simulation considering different values of shear preconditioning fs, having σy R = 30 MPa.The structure in general seems to be slightly less affected by shear preconditioning, and thus lowering the average slope of the curves for the same fs. Still, it could be stated that the classical shape tendency still holds properly for this material parameter set. For reference, the maximum value for the vertical force fa registered for this case for complete failure of the sample was of 9.29 N.

Figure 4

 4 Figure 4.22: General model mesh description for the basic heterogeneous setups featuring a single spherical inclusion. On the left, the mesh of all elements touched by the inclusion sphere within a translucent mesh of the remaining bulk of the material matrix domain. In the middle, a mid-cut section of the entire mesh, distinguishing exclusive mortar material elements (in blue), exclusive aggregate material elements (in gray) and bi-phase elements (in red) generally found at the sphere border. On the right, a sphere reconstructed by taking the resulting planar interface surfaces Γ d coming from each bi-phase element, along with their respective normal vector. The latter usually stands as a cross check for correct inclusion boundary construction.

  00005 MPa•mm Interface elements (-for mortar, + for aggregate)E + = 70000 MPa ν + = 0.2 E -= 14000 MPa ν -= 0.2 σ y R = 9 MPa G f I = 0.00001 MPa•mm
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 4 Figure 4.23: Global stress-strain curves under a tensile load for the single spherical inclusion setups for both single mode and generalised modes formulations. The sample stress and sample strain are calculated exactly the same way as in previous sections.

Figure 4 .

 4 Figure 4.24: Elements conforming the local crack networks for a global strain corresponding to the maximum sample resistance. All blue elements correspond to a tensile (mode I) failure model. The fracture process initiates at the top and bottom of the inclusion for both formulations.

Figure 4 .

 4 Figure 4.25: Elements conforming the local crack networks for a global strain corresponding to a completely developed fracture process. All elements are still related to mode I local failures, reporting some crack relaxations (lighter blue colours) for the generalised formulation. The fracture process has a very definite double band shape for both formulations, observing no significant differences.
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 4 Figure 4.26: Global stress-strain curves under a compressive load for the single spherical inclusion setups for both single mode and generalised modes formulations.
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 4 Figure 4.27: Fracture process evolution for the compressive load case considering the single mode formulation. Four different stages are reported at different strains relative to the maximum resistance strain εmax

Figure 4 .

 4 Figure 4.28: Fracture process evolution for the compressive load case considering the generalised modes formulation. Colours having a blue palette denote those related to mode I local failures, while the red palette corresponds to those related to mode II. The reddest colour specifically indicates elements under crack closure compression.

Figure 4 .

 4 Figure 4.29: Two views of the cubical mesh domain having the realistic concrete sample heterogeneity already projected. Based in this projection, element classification is shown on the right. Pure pore elements were simply removed from the model to represent stress-free conditions in these regions.

Figure 4 .

 4 Figure 4.30: Global stress-strain behaviours for both single and generalised models for tension and all compression load cases, along with the projected tendencies for the experimental results in this model. The markers identify the positions at maximum resistances for each model, which allow to compare the ductility characteristics.

Figure 4 .

 4 Figure 4.31: State of local crack networks for the single and generalised modes in the realistic concrete sample domain numerical simulation at approximately halfway to the state of maximum resistance, considering a confinement pressure of 5 MPa. All elements in a blue palette belong to mode I local failures, while the red palette belongs to mode II-related events.

Figure 4 .

 4 Figure 4.32: State of local crack networks for the single and generalised modes in the realistic concrete sample domain numerical simulation at the state of maximum resistance, considering a confinement pressure of 5 MPa. All elements in a blue palette belong to mode I local failures, while the red palette belongs to mode II-related events.

  n0 ) or sliding ([|u|] t0 , [|u|] m0 ).

Figure 4 .

 4 Figure 4.33: State of local crack networks for the single and generalised modes in the realistic concrete sample domain numerical simulation a bit after the state of maximum resistance, considering a confinement pressure of 5 MPa. All elements in a blue palette belong to mode I local failures, while the red palette belongs to mode II-related events. Purple elements have failed under a pure compression criterion (failure by compaction).
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 61 Figure 6.1: Schéma de principe d'une discontinuité faible en 3-D pour la modélisation des hétérogénéités matérielles au sein d'un élément tétraédrique

  ) où le déplacement théorique du corps u est défini comme la composition d'un déplacement régulier u et d'un saut normalement introduit au moyen d'une fonction Heaviside ayant l'emplacement du surface de défaut Γ d comme déclencheur principal.
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 623 Figure 6.2: Illustration d'un ensemble de modes cinématiques de fracture enrichis comprenant des translations et des rotations de corps rigides du domaine Ω + par rapport à Ω -. L'effet des déformations simples ϵn, ϵt, ϵm n'est pas inclus par souci de clarté dans la figure.

Ω

  ∂δu t σ dV -Ω δu t f b dV -∂Ω δu t t dA = 0 (6.8a) Ωe δσ t (∂uε) dV = 0 (6.8b) Ωe δε t (σ (ε)σ) dV = 0 (6.8c) d'où t et f b sont les vecteurs limites de traction et de force corporelle. L'opérateur ∂ est l'équivalent de l'opérateur de gradient symétrique ∇ s dans un format Voigt. Une distinction importante est faite entre le champ de contraintes σ (ε) qui est calculé à partir d'une loi de comportement prenant le champ de déformation réel ε et le champ de contrainte réel σ, qui est indépendant.
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 63 Figure 6.3: Le critère de localisation d'enveloppe sur le plan (σn, τ ) utilisé dans ce travail montre des points d'intersection notables. Une charge proportionnelle est montrée à partir d'un état zéro jusqu'à atteindre une intersection avec la courbe à (σy, τy)

[

  |u|] n0 , [|u|] t0 , [|u|] m0 pour contrôler l'évolution du processus d'endommagement pour tous les composants du vecteur de traction. q est alors défini comme : sont les valeurs de résistance initiales définies à partir des calculs de localisation. Les constantes G f I et G f II sont définies comme des paramètres physiques de rupture interne qui peuvent être perçus comme des énergies de surface de rupture pour les types de rupture de mode I et de mode II issus de la théorie classique de la mécanique de la rupture, respectivement.Cet ensemble d'équations est enrichi d'une mécanique de rupture locale plus détaillée capable de représenter les phénomènes de refermeture, le glissement par frottement basé sur l'amplitude des forces normales de contact et la possibilité d'un compactage supplémentaire de la microporosité impliquée dans l'une des phases des matériaux. La définition de ces physiques locales repose entièrement sur les modes rigides cinématiques de rupture liés à la translation de corps rigide [|u|] n0 , [|u|] t0 , [|u|] m0 . La Figure6.4 montre respectivement le comportement proposé pour les modes cinématiques de séparation normale et de glissement parallèle.

Figure

  Figure6.4: Illustration des comportements réversibles et irréversibles pour les modes de séparation normale de fissure (à gauche) et de cinématique de glissement (à droite). Le chemin de 1 à 2 est irréversible, tandis que 2-3 est décrit comme un chemin réversible forcé par une charge insuffisante qui ne parvient pas à poursuivre l'évolution de la fissure jusqu'au point 2a. Si la charge est suffisamment inversée, la fissure peut être éventuellement fermée (3). Une réversibilité supplémentaire de la charge induit une compression pour le tracé de gauche et un glissement du côté opposé de la fissure pour le tracé de droite (3-4). A terme, on peut même atteindre à nouveau des zones de comportement irréversible(4)(5). Il existe une asymétrie inhérente entre les modèles normal et parallèle puisque le modèle normal est le seul capable de présenter des états de compression.

  un ensemble de trois équations de clôture est proposé pour compléter le système. Ces équations n'ont pas de sens rigoureusement physique, et ne servent qu'à renforcer l'hypothèse que les modes de rupture par translation du corps rigide [|u|] n0 , [|u|] t0 , [|u|] m0 sont les plus prédominants pour déterminer la mécanique locale de la rupture. Ces équations permettent de découpler faiblement les premiers de ces modes cinématiques des autres équations du système : Relations de clôture -
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 65 Figure 6.5: Descriptions du modèle pour la simulation de torsion homogène ayant une bande de matériau affaibli faisant 80% du volume du cube et un angle de torsion de 0,03 • .

Figure 6 . 6 :

 66 Figure6.6: Eléments conformant les réseaux locaux de fissures au sein du domaine cubique pour une charge de torsion en fin d'application de la charge. Tous les éléments bleus correspondent à un modèle de rupture en traction (mode I), et les éléments rouges sont associés à un modèle de rupture en mode II. Le processus de rupture n'a pas significativement évolué pour la formulation à un seul mode, alors que le modèle généralisé prédit un comportement en mode II pour la conclusion du processus de rupture.

Figure 6

 6 Figure6.7: Réaction verticale totale mesurée avec les deux modèles pendant toute la simulation. La réaction verticale n'émerge normalement pas dans l'analyse de torsion élastique, mais lorsqu'un processus de rupture commence, la distribution de rigidité non uniforme due aux régions endommagées favorise sa croissance. De toute façon, au fur et à mesure que le processus de fracture tridimensionnelle se développe pleinement dans le modèle, l'énergie doit être libérée d'une manière ou d'une autre. La formulation des modes généralisés est capable de prédire cela en raison de sa prise en compte de la mécanique de rupture de mode II, tandis que la formulation à un seul mode reste verrouillée en contrainte.

Figure 6 . 8 :

 68 Figure 6.8: Description générale du maillage du modèle pour les configurations hétérogènes de base comportant une seule inclusion sphérique. A gauche, le maillage de tous les éléments touchés par la sphère d'inclusion au sein d'un maillage translucide de la masse restante du domaine matriciel du matériau. Au milieu, une coupe médiane de l'ensemble du maillage, distinguant les éléments exclusifs de matériau mortier (en bleu), les éléments exclusifs de matériau d'agrégat (en gris) et les éléments biphasés (en rouge) se trouvant généralement en bordure de sphère. A droite, une sphère reconstruite en prenant les surfaces d'interface planaires résultantes Γ d provenant de chaque élément biphasé, ainsi que leur vecteur normal respectif. Ce dernier sert généralement de contre-vérification pour une construction correcte des limites d'inclusion.
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 69 Figure 6.9: Courbes globales contrainte-déformation sous une charge de compression pour les configurations d'inclusions sphériques simples pour les formulations à un mode et des modes généralisés.

Figure 6 .

 6 Figure 6.10: Deux vues du domaine du maillage cubique ayant déjà projeté l'hétérogénéité réaliste de l'échantillon de béton. Sur la base de cette projection, la classification des éléments est indiquée sur la droite. Les éléments pore purs ont simplement été supprimés du modèle pour représenter les conditions à contrainte libre.
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 611 Figure6.11: Comportements globaux contrainte-déformation pour les modèles simples et généralisés pour la traction et tous les cas de charge de compression, ainsi que les tendances projetées pour les résultats expérimentaux dans ce modèle. Les marqueurs identifient les positions aux résistances maximales pour chaque modèle, ce qui permet de comparer les caractéristiques de ductilité.
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 46 Input material parameters used for the single mode formulation in the realistic concrete cube sample simulations.
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 4 7: Input material parameters used for the generalised modes formulation in the realistic concrete cube sample simulations.

  |u|] t0 > |u| t

	qt| |u| t	[|u|] t0 [|u|] t0 < |u| t	(6.11b)
	T		

em + M mm [|u|] m0 ± T µm = q ± m [|u|] m0 > |u| m qm| |u| m [|u|] m0 [|u|] m0 < |u| m (6.11c)
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Chapter 4

Modelling of triaxial fracture processes in heterogeneous quasi-brittle materials Contents Appendix D. Again, these works only address the routine that returns an elemental force internal vector f int for residuals calculations and a condensed tangent stiffness matrix K sc . This routine is to be called as many times as elements exist in a model for a single nonlinear iteration calculation. It receives basic elemental data as its geometry (nodal data x i ) and all relevant material properties, whether associated to its static linear behaviour (E, ν) or to its localisation and crack mechanics (σ y R , C, ϕ, σ y R and local crack friction µ t , µ m ). In the case of having an element possessing an inherent weak discontinuity due to the presence of two material phases, a set of different material properties is also provided for describing the second material phase, including the orientation of the n vector. The location of the plane is determined by the volume ratio between V + , V -, providing the code only with the latter (V -), as the element volume V e is naturally calculated within the code for standard shape function routines. In practice, the code is always prepared to receive two different material phases, and the user can decide to set a homogeneous configuration by just managing the same material properties for the dual material set. This is the only additional part of the FEAP code that required modification: the program must be prepared to receive element data containing an increased number of fields for a full weak discontinuity description. FEAP is flexible enough and already predisposed for such user demands.

Calculations start with the standard and unique strain field ε. An internal-permanent flag variable indicates whether the element is already in a localised (broken) state. If the element remains linear, ε is enhanced with ε if a weak discontinuity is detected, for then calculating an associated stress field σ that is used to assess the different localisation criteria already described in Section 4.3.4. If the element still remains linear after all, its linear residuals f res are reported along with a tangent stiffness matrix K sc (whether as a symmetric homogeneous K bb or a weak-enhanced as per Eq. 4.60 and discussed in Section 4.3.6.2). If it is the first non-linear iteration within a given load step, FEAP is instructed to assemble all K sc matrices. If not, only the residuals f res are assembled for continuing the execution of the BFGS method.

If the localisation assessment determines a breach of any of the already described criteria, a crack plane orientation reference frame n, t, m is fully determined in the case of managing a completely homogeneous element. It is important to remember that, for having a linear constant stress tetrahedron as the base of all finite element calculations, an exact position for the crack plane cannot be fully determined and is thus placed at the centroid of the element, and the associated domain volumes V + , V -are updated. On the other hand, for the case of a heterogeneous element, the normal local direction n remains naturally the same, and the t direction is determined by the direction of the resultant shear traction vector that prompted the localisation state, for then calculating m through a cross product. The location of the plane in this case remains already fixed by the volume ratio already setup from the input data. Whatever the case, all initial yield parameters, both for the main traction-separation laws (σ yn , σ yt , σ ym , Eqs. 4.29, 4.31) and the alternate traction-separation laws (σ ytt , σ ytm , σ ymm , by a linear scaling estimation) are determined and stored into the permanent memory for their use in the solution of the nonlinear traction-separation law equation system (4.47a-4.49c), described in detail in Section 4.4.4. By the way the local parallel directions were set, σ ym = 0 for all simulations.

Once in a localisation state, the code starts by inquiring if it is the first time element calculations take place in this section. If it is the case, a complete particularisation of the φ structure (Eq. 4.4) is performed. This process stands as one of the most complex operations in the entire element calculation routine, and more details are provided in Section 4.4.2. The outcome of this calculation is delivered as the averaged operators G ′+ sb and G ′- sb already in fully numerical form, and this information is to be stored in permanent memory for each element (strategies for memory management and code speed balance are discussed in Section 4.4.3). Having this, all specific stiffness matrices related to weak (K wb , K ww , K ws ) and strong discontinuities (K b , K s * w , K s * s ) are calculated to eventually reach the load-driven traction vector T e and the crack stiffness matrix M (Eqs. 4.24c and 4.24d, respectively). This is repeated for the alternate traction vector cases to attain load-driven traction vectors T ′ , T ′′ with their corresponding fracture stiffness matrices M ′ , M ′′ (Eqs. 4.40a, 4.40b). This clearly implies calculation of all pertinent basic operators, whether for the weak discontinuity (H w , Eq. 4.11) or the strong discontinuity (H s , H st , H sm , Eqs. 4.13, 4.38, 4.39). Again, all these post-localisation calculations are done in the local frame to simplify these expressions.

Having already calculated all different traction-related entities, the code proceeds for the solution of the nonlinear system of nine equations governing the behaviour of the nine fracture kinematic modes ξ through a dedicated subroutine. This process is discussed in Section 4.4.4. This routine Appendix A

Derivation of an explicit crack stiffness matrix M

The final expression for the crack stiffness matrix M shown in Eq. 2.40 may appear surprisingly compact considering its origin on Eq. 2.38. This appendix will clear out the derivation process for the case of a 1-3 node partition on Ω + , Ω -. Other cases can be expressed as linear superpositions of this one.

Isolating an expression for M we have:

which assumes a constant G sb . The matrix C, considering a linear elastic constitutive law, can be expressed as:

where:

It is not hard to see that these coefficients entail the following relation between them:

Recalling the definitions for H s from Eq. 2.16 and for G sb from Eqs. 2.36, 2.37, the matrix multiplication in Eq. A.1 can be developed. The approach is to explicitly devise a couple coefficients M ij to find general simplification rules for the whole M matrix. Taking for instance, the resulting expression for the element M 11 , one can group terms by the coefficients of the vector components of Ψ : Ψ ix , Ψ iy , Ψ iz . The following is obtained:

Here, unitary vector properties (n 2 x + n 2 y + n 2 z = 1) along with Eq. A.6 can be used to reach:

Other M ij can be worked out this way, sometimes making use of orthogonality properties of the ( n, t, m) base. Taking as a last example the grouped coefficient for Ψ ix in the expression for M 23 :

where coefficients of Ψ iy , Ψ iz follow the same result in a symmetrical fashion. ■ Appendix B

Analysis of φ proposal by Wells

In this Appendix, the derivation of equations Eqs. 2.41 and 2.42 is explained by taking the same 2D triangular element example discussed in Section 2.4.2.

To fix the crack displacement coupling introduced by means of a fixed definition for φ, Wells [Wells, 2001] proposes a workaround through a redefinition of φ as follows: the vector ∇φ = [φ ,x , φ ,y ]

T is rotated to the local frame n, t :

where the fact that [t x , t y ] = [-n y , n x ] for a 2D setting has been used.

Once in the local frame, the ∇φ n component in the t direction is driven to zero, and this new vector is once again rotated to the global frame:

The components of this updated vector become the new definitions for the derivatives φ ,x , φ ,y , thus recovering Eq. 2.41. This would be a sort of equivalent to forcing an alignment between element side normals and the fracture normal n.

The impact of this redefinition on the properties of φ alone can be assessed as follows. Let the bi-dimensional linear φ be expressed as:

where C is a constant. This φ yields the original φ ,x , φ ,y when applying a gradient operator. As such, this φ satisfies the basic requirements of Eq. 2.3 by definition. Let us assume a 1-2 node partition, where node 1 belongs to the Ω -domain. We will naturally have:

Based on this, the outcome of a new function φ ′ built upon φ ′ ,x , φ ′ ,y under the same conditions can be studied. Its definition will be:

If this φ ′ were to satisfy the same basic requirements, then we should have φ ′ (x 1 ) = 0. Working this and considering Eq. B.2 we get:

for some constant A. This proves the statement of Eq. 2.42. Similar expressions can be derived for nodes 2 and 3. ■

Appendix C

Detailed description of φ coefficients linear system building

In this Appendix, a detailed description of the process for stating a complete strong discontinuity enhancement function definition through an explicit φ in three dimensions is made. We start by proposing a form for φ, for then enunciating each of the mode linking expressions required to start building the linear system to solve for the α coefficients. Then, additional linear constraints related to basic φ properties are described, adding the constraints related to the crack stiffness matrix M as well.

The model works the φ function on a full cubic base P 3 (20 terms) on the local frame (ξ, η, ζ) (terms described earlier in P 2 are not shown):

A separate φ function (φ n , φ t , φ m ) is defined for each local direction, and each one is further partitioned in a dual, piece-wise fashion:

Consequently, different coefficient vectors α ± j (j = n, m, t) will be assigned to each of the functions φ ± j :

Afterwards, the definition of a global coefficient vector α is made having a total of 120 coefficients: 20 (size of the base) times 3 (separate directions) times 2 (piece-wise in Ω + , Ω -). It will be expressed by blocks:

Having cleared a definition for the φ functions, the construction of linear constraints for all α coefficients is described. From now on it will be already implied that the φ j functions may take a different form on Ω + (φ + j ) or Ω -(φ - j ), and the signs will be omitted in many of the following equations for the sake of readability.

We start by the kinematic mode linking process, which produces most of the bulk of such constraints. This work is divided in two parts attending Eq. 2.53: devising the left-hand expressions for the α coefficients within each G ′± sb lk component of G ′± sb (l = 1, .., 6; k = [|u|] n0 , ..., ϵ m ), and working out the righthand expressions for strains associated to each displacement state d k specific to each excited kinematic mode k, so that the linear relations are complete.

The left-hand expressions require developing each of the terms of Eq. 2.64b. Recalling the expression for the matrix J found in Eq. 2.63, let J n , J t , J m be the first, second and third rows, respectively. We just follow:

The piece-wise definition for the φ functions requires constraints related to the C 0 continuity on the fracture surface Γ d as per Eq. 2.70. If the φ functions are expressed on the local frame, it suffices just to set the coordinate ξ = 0:

which implies that all α ± coefficients with not having the index 1 will impose a linear constraint. For the present work we have:

for j = n, t, m, making a total of 30 restrictions.

At last, we have the restrictions associated with the crack stiffness matrix M. For an enriched kinematic mode set and the assumption of a constant real stress field, the M matrix will have dimensions of 3 × 9. The first three columns of the matrix will certainly represent the same rigid body displacement coupling observed on the three crack displacement component approach, although the symmetry with respect to dot products observed in Eq. 2.40 is not assured. At this point one can choose to use the remaining free α coefficients to enforce some values in the crack stiffness matrix. More relations can be defined through the kinematic modes themselves, but this is left to the crack solution process (Section 2.5.4).

In this work, it has been decided to uncouple the rigid body displacements as in other approaches (out of diagonal components on the first three columns of M), as these are the most important kinematic modes of the framework. 6 constraints are needed:

For a compound φ definition, the diagonal terms lose the linear dependence once observed in Eq. 2.40.

If control is desired in all terms regulating crack rigid body displacement stiffness for terminal separation conditions, three more relations are required following the logic of Eq. 2.59:

At the end, all linear relations imposed in terms of α coefficients add up to 117. The α coefficient set has up to 120 free parameters, which is theoretically enough to hold the system solvable. Numerical handling of the linear system is discussed in Section 2.5.3.

Appendix D

General algorithm for the current E-FEM model implementation