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Résumé

Le tokamak est l’un des systémes prometteurs mis au point pour exploiter l’énergie

de fusion. Un tokamak est une chambre toröıdale dans laquelle un plasma chaud est

confiné magnétiquement. Pour le bon fonctionnement des tokamaks, il est souhaitable

que le plasma reste dans une configuration d’équilibre. Les ruptures de confinement,

appelées disruptions, sont des événements inévitables et indésirables d’instabilités

du plasma survenant dans les tokamaks qui peuvent dégrader les performances d’un

tokamak et endommager gravement les parois du tokamak. Afin d’atténuer les ef-

fets néfastes des disruptions, une quantité massive de matiére est injectée dans le

plasma du tokamak. En plus des expériences et observations réalisées sur des toka-

maks opérationnels, la compréhension et la mâıtrise des stratégies d’injection passent

souvent par les simulations numériques. En effet, la dynamique du plasma aprés

l’injection s’accompagne interactions complexes que nous pouvons décrire par les

équations de la MagnétoHydroDynamique (MHD). Il est donc primordial de développer

des méthodes numériques robustes et précises pour obtenir par la simulation numérique

une évaluation qualitative et quantitative des processus physiques complexes qui sont

en œuvres.

L’objectif principal de cette thése est de développer des stratégies numériques pour

la simulation des instabilités MHD dans les plasmas de tokamaks, en y incluant les

ondes acoustiques rapides absentes dans les modéles réduits. Les développements sont

effectués dans le cadre des méthodes d’éléments finis (FEM) dans une base décrite par

des fonctions de Bézier bi-cubique de régularité C1. Les écoulements concernés sont

trés souvent dominés par la convection, par conséquent il est indispensable de prendre

en compte les effets des échelles non résolues dans la formulation éléments finis. En

pratique, les échelles non résolues sont pris en compte á la fois par une approche multi-

échelle variationnelle et par une technique de capture des chocs. D’autres ingrédients

viennent compléter l’approche numérique : le traitement de la singularité des grilles

polaires, l’intégration temporelle par une méthode de Gears du second ordre pour

des pas de temps variables. Le modéle numérique proposé est validé par rapport

aux stratégies basées sur des modéles de MHD réduite. Une attention particuliére

est accordée aux simulations MHD non linéaires avec injection massive de matiére

dans le plasma de tokamak. Les équations de la MHD sont ici étendues pour y

inclure le transport des neutres et des impuretés dans le plasma ainsi que les termes



de source pour modéliser l’injection massive de matiére. Le modéle résultant est

utilisé pour simuler l’injection massive de gaz et l’injection de pastilles brisées dans

un plasma de type JET. De nombreuses simulations non linéaires sont réalisées et

démontrent la capacité, de la stratégie numérique développée, á capturer la dynamique

complexe d’instabilités MHD dans lesquels se développent l’étouffement thermique et

la stochastisation du champ magnétique.

Mots-clés: Magnétohydrodynamique, instabilités MHD, mitigation des disrup-

tions, MHD compléte, méthode des éléments finis, singularités du maillage, méthodes

implicites, stabilisation variationnelle multi-échelle, stabilisation par chocs, l’instabilité

de kink interne, injection massive de gaz, injection de pastilles éclatées.



Abstract

The tokamak is one of the promising systems developed to harness fusion energy.

A tokamak is a toroidal chamber in which a hot plasma is magnetically confined.

For tokamaks to function properly, it is desirable that the plasma remain in an equi-

librium configuration. Confinement failures, called disruptions, are unavoidable and

undesirable events of plasma instabilities occurring in tokamaks that can degrade the

performance of a tokamak and severely damage the tokamak walls. In order to miti-

gate the adverse effects of disruptions, a massive amount of material is injected into

the tokamak plasma. In addition to the experiments and observations carried out

on operational tokamaks, the understanding and control of injection strategies often

requires numerical simulations. Indeed, the dynamics of the plasma after the injec-

tion is accompanied by complex interactions that we can describe by the equations

of magneto-hydrodynamics (MHD). It is therefore essential to develop robust and ac-

curate numerical methods to perform numerical simulations and obtain a qualitative

and quantitative assessment of the complex physical processes.

The main objective of this thesis is to develop numerical strategies for the simu-

lation of MHD instabilities in tokamak plasma. The full MHD model is used for the

physical modeling that includes fast magnetosonic waves, which are absent in reduced

MHD models. The developments are carried out within the framework of bi-cubic

Bézier C1 finite element method (FEM). The plasma flows concerned are very often

dominated by convection and therefore it is essential to take into account the effects of

unresolved scales in the finite element formulation. In practice, the unresolved scales

are taken into account both by a variational multiscale approach and by a shock

capturing technique. Other ingredients used in the numerical approach include: the

treatment of the polar grid singularity, the time integration by a second order Gears

method for variable time steps. The proposed numerical model is validated against

the reduced MHD model. Particular attention is paid to nonlinear MHD simulations

with massive material injection in tokamak plasma. The full MHD equations are

then extended to include the transport of neutrals and impurities in the plasma and

the source terms to model the massive material injection. The resulting model is

used to simulate the massive gas injection and the shattered pellet injection into a

JET like plasma. Numerous nonlinear simulations are performed to demonstrate the

ability of the developed numerical strategy to capture the complex dynamics of MHD



instabilities in which thermal quench and magnetic field stochastization occur.

Keywords: Magnetohydrodynamics, MHD instabilities, Disruption mitigation,

Full MHD, Finite element method, Grid singularities, Implicit methods, Variational

multi-scale stabilization, Shock-capturing stabilization, Internal kink modes, Massive

gas injection, Shattered pellet injection.
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Chapter 1

Introduction

At present day, the major electricity production technologies use natural resources

like fossil fuels and uranium. These resources are depleting and their constant burning

is causing a threat of severe environmental risks. Nevertheless, the demand of energy

is ever growing as humans are becoming more and more dependent on electricity for

daily activities and comfort. With the current rate of energy consumption, the energy

demand around the year 2100 is predicted to be about four times higher than its

present level [65]. Therefore a sustainable, abundant and clean energy source is needed

to meet the growing demand of energy. Fusion offers the prospect of an intrinsically

safe, virtually inexhaustible and environmentally acceptable energy source [6]. Figure

(1.1a) shows consumption, in percentage, of the different energy resources used in 2001

and figure (1.1b) shows carbon dioxide (CO2) emissions per kW-hr from different

energy sources. Fusion is one of the energy sources that has a low specific carbon

dioxide emission.

1.1 Fusion and plasma confinement

1.1.1 Fusion energy

The sun is powered by fusion reactions and humankind is putting efforts to construct

‘artificial suns’ on Earth to harness fusion energy. Under certain conditions atoms or

nuclei of lighter elements undergo a reaction in which constituent atoms or nuclei may

fuse to become atoms or nuclei of a heavier element. In the process, some amount
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(a) (b)

Figure 1.1: (a) Global energy consumption in the year 2001. The sector marked
‘other’ includes geothermal, solar, and wind energy [65]. (b) Specific carbon dioxide
emissions (PV: photo voltaics; CCS: carbon capture and storage; LNG: liquefied
natural gas) [58] .

of mass is converted into pure energy which is quantified by Einstein’s famous mass-

energy relation E = mc2. This is the mechanism of fusion and energy liberated in

fusion reaction is known as fusion energy. Fusion of hydrogen isotopes deuterium (D)

and tritium (T) are of particular interest:

D + T → He4(3.5MeV) + n(14.1MeV)

where n denotes a neutron and the amount of energy liberated in the reaction is 17.6

MeV.

For fusion to take place, particles (atoms or nuclei of fusion fuel) should have

sufficient energy to overcome the repulsion barrier due to the electrostatic Coulomb

forces (≈ 0.01 MeV). For particles to achieve such amount of energy a fusion fuel is

heated to a very high temperature. The fusion reaction rate per unit volume can be

written as [85] :

R = n1 n2 〈σv〉12

where n1 and n2 are the particle densities of species 1 and 2, respectively, and 〈σv〉12
is the fusion reactivity of the two species. Figure (1.2) shows that the reactivity is

higher for D2-T3 reaction than deuterium-deuterium (D2-D2) and deuterium-helium

(D2-He3) reactions at a given temperature. This is why achieving the necessary

conditions for D2-T3 reaction is the goal of present phase of fusion research [85]. The

necessary conditions for fusion to take place include the temperature of the order 100

million degrees Celsius and the particle density of the order 1020 m−3.
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Figure 1.2: Fusion reactivity plotted vs ion temperature [85].

1.1.2 Plasma

At the temperatures of the order 100 million degrees Celsius, a gaseous fuel exists

as a macroscopically neutral collection of ions, electrons and very few neutral parti-

cles known as plasma. A plasma contains sufficiently many charged particles which

undergo long range Coulomb interactions. A collective behavior of a plasma is charac-

terized by these long range interactions and the statistics of many particles in presence

of the average electromagnetic field. The motion of charged particles in a plasma is

influenced by electromagnetic fields, moreover moving charged particles produce their

own electromagnetic fields altering the net field. This makes plasma dynamics highly

non-linear and rich in physics. For more precise description of a plasma, the following

requirements have to be satisfied [20, 37]

1) The time scales (T ) of plasma dynamics (Coulomb interactions) are sufficiently

small with respect to collision times with neutrals (Tn) : T ≪ Tn.

2) The length scale λ of plasma dynamics is much larger than the Debye length

λD such that quasi neutrality holds: λ ≫ λD. The Debye length is estimated

by comparing the thermal energy of particles with their electrostatic energy.

3) There are many particles in a sphere with radius of Debye length: ND ≫ 1.
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To harness fusion energy, a fusion reactor has to be built in which high temperature

plasma can be confined in a limited volume. Therefore, understanding plasma physics

is a key to harness fusion energy [58].

1.1.3 Plasma confinement

The amplification factor Q of a fusion reactor is defined as:

Q =
power obtained from fusion reactions

power input to the reactor

The reactor is beneficial if Q > 1. In such case a reactor will use part of the power

produced by itself so that the input power may progressively be diminished. However,

to keep a reactor with Q > 1 in operation for a long time poses further challenges.

The confinement time τE gives the rate at which energy is lost. It is written as

τE =
energy content of the plasma

power lost in the process

The Lawson Criterion gives the condition needed for a reactor such that the fusion

reactions can provide enough energy to maintain the temperature of plasma against

all power losses. This condition is n τE T > 3× 1021 m−3 keV where n is the particle

density and T is the temperature of the plasma.

The Sun holds its dense hot plasma by a gravitational field for which the Lawson

Criterion is well satisfied. For fusion reactors on the Earth two ways to confine plasma

are inertial confinement and magnetic confinement. In an inertial confinement, D2-

T3 gases at high densities are fired with a laser beam, however confinement times for

such reactors are low. In a magnetic confinement D2-T3 gases are brought at high

temperatures and a resulting plasma is confined using a strong magnetic field. In this

work, we are interested in a magnetic confinement configuration used in tokamaks, a

torus shaped fusion reactor.

1.2 Tokamaks and some terminologies

1.2.1 Tokamaks

The word tokamak is the Russian acronym of TOroidal’naya KAmera s MAgnit-

nymi Katushkami (toroidal chamber with magnetic coils). A tokamak is essentially a
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toroidal chamber in which the plasma is confined by a magnetic field. Figure (1.3a)

shows a schematic of a tokamak device and (1.3b) shows the toroidal and cylindrical

coordinate systems in which physics relevant to tokamaks is described. The coordi-

nate φ denotes the toroidal direction whereas the plane formed by R and Z (or θ)

denotes the poloidal plane. Since the poloidal plane is perpendicular to the toroidal

direction, any vector is often represented in terms of poloidal and toroidal parts. The

combination of the toroidal magnetic field Bφ and poloidal magnetic field Bθ gives

rise to ‘magnetic field lines’ with helical trajectories around a torus.

(a) (b)

Figure 1.3: (a) A schematic view of a tokamak [65] (b) Toroidal (r, θ, φ) and cylindrical
(R,Z, φ) coordinate systems. The geometric axis of a tokamak is identified by R0 =
(Rmax +Rmin)/2 while the minor radius is identified by a = (Rmax −Rmin)/2.

The amplitude of Bφ is given by Ampere’s theorem as:

Bφ =
µ0It
2πR

where, It is the current running in the toroidal field coils and R is the radial coordinate

of a device as shown in Figure (1.3b). Therefore, it can be seen that

Bφ ∝
1

R

Confinement is not possible with a purely toroidal field because the particles progres-

sively drift vertically due to the 1/R variation of Bφ. Since ions and electrons are

drifted in opposite directions, a vertical current is created and it carries the plasma
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to the wall of a device. In order to have an equilibrium, it is necessary also to have a

poloidal magnetic field [96], which is produced mainly by current in the plasma itself,

flowing in the toroidal direction.

As mentioned before, the amplification factor Q should be more than 1 in order

to gain net power from a tokamak device. After decades of tokamak experiments,

now Q ≈ 1 is achievable and it brings a good prospect for building and operating

a high Q reactor. The goal of International Thermonuclear Experimental Reactor

(ITER) is to achieve Q = 10. Figure (1.4a) shows a summary of the progress towards

the goal of controlled fusion where triple product (nτET ) achieved vs temperatures

is shown for different tokamaks. Empirical scaling may be used to extrapolate the

quantities of critical importance such as confinement time τE and performance of the

future devices. Data from many tokamaks is analyzed using statistical methods to

determine the dependence of τE on parameters like plasma current (Ip), major radius

(R0), particle density (n), inverse aspect ratio (ǫ = a/R0), heating power, toroidal

magnetic field (Bφ) etc. The figure (1.4b) shows that this extrapolation predicts the

confinement time for ITER as 3.7 to 6 seconds.

(a) (b)

Figure 1.4: (a) Fusion triple product as a function of the core ion temperature for
different tokamaks [80] (b) Experimental data from all the major tokamaks in the
international fusion program showing how the confinement time scales with physical
parameters [65].

Major steps to achieve commercial fusion power plants are sketched in Figure

(1.5). Scientific feasibility of fusion reactors have been demonstrated by smaller toka-

maks devices so far like JET, TFTR and JT-60U. The objective of the ITER is to

demonstrate the scientific and technical feasibility of fusion energy. In the next step,
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a full-size prototype fusion power plant DEMO will show that fusion is commercially

feasible. Apart from ITER, the biggest tokamak so far is JET with major radius

R0 = 3 m while ITER has R0 = 6 m and DEMO is expected to have R0 = 9 m.

Figure 1.5: Outline of the development of the fusion power program [65].

1.2.2 Magnetic surfaces and some definitions

Tokamak plasma can be described by a single fluid model called magneto-hydrodynamics

(MHD). The details of the MHD model and the relevant assumption are given in

Chapter 2. In the case of ideal (dissipationless prefectly conducting) MHD, it can be

shown that the particles in the plasma move along ‘magnetic field lines’, the condi-

tion often referred to as the ‘frozen flux’ constraint. This flux refers to the poloidal

magnetic flux ψθ which, in axisymmetric cylindrical coordinates, is given by:

ψθ = 2π

∫ a

0

Bθ · ∇θ R dR

where, a is a radial (r) coordinate. Moreover, the topology of the magnetic field is

conserved which means that the field lines may be distorted or compressed, but they

may not reconnect with one another (reconnection is possible in resistive MHD). The

magnetic field lines lie on the magnetic surfaces with constant ψθ and pressure. Such

nested surfaces are depicted in the illustration (1.6) and ψθ may be used as radial

coordinate.

One of the quantities of interest associated with the flux surfaces is safety factor.

It describes the pitch angle of the magnetic field lines and determines whether, on a

given flux surface, a magnetic field line will be closed or not. The safety factor q is

related to the number of turns n in the toroidal direction required to make exactly

m turns in the poloidal direction and is given by

q(ψ) =
dφ

dθ

The surfaces with rational values of q, that means the surfaces on which the field lines

are closed, are of particular importance for tokamak instabilities.
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Figure 1.6: Nested magnetic flux surfaces with magnetic lines on them.

Another important quantity in plasma physics is the plasma beta β which gives

the ratio of the thermal pressure over the magnetic pressure and is defined as

β =

∫

p dV

B0/2µ0

where integration is evaluated over plasma volume, B0 is the amplitude of the mag-

netic field at the magnetic axis and µ0 is the permeability of free space.

1.2.3 Limiter and divertor configurations

In tokamak devices direct contact between a plasma and the wall of a device is avoided

by means of either a material limiter or by a divertor which leads magnetic field lines

away from the surface of a plasma to a dump plate more remote from a plasma [96].

In the ‘core’ region the flux surfaces are closed (Figure 1.7) and plasma is confined.

The last closed flux surface forms a plasma boundary or a separatrix that separates

regions of closed and open flux surfaces. These surfaces open onto plasma facing

component (PFCs) and inner wall of a tokamak. The region with open flux surfaces

is called Scrape-Off -Layer (SOL).

In the limiter configuration, plasma boundary is formed by a limiter, a material

structure. The tokamak, Tore Supra in Cadarache, France is an example of limiter

configuration. The divertor configuration is characterized by a presence of saddle

points (X-points) in the plasma equilibrium. The flux surface that forms X-point is

called separatrix. This configuration avoids direct interaction between the plasma core

and PFCs. When plasma particles escape from the core region, they are transported
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(a) Limiter configuration (b) Divertor configuration

Figure 1.7: Tokamak configurations.

to the divertor via open field lines. The points where the separatrix meets the divertor

are called the strike points. The poloidal magnetic field Bθ vanishes at the separatrix

and the safety factor q diverges to infinity. Thus, in order to quantify q at the edge

of the plasma, the q95 = q(ψN = 0.95) is defined as the safety factor, where ψN is

the poloidal flux normalized between ψ at the magnetic axis and ψ at the separatrix.

The recent tokamaks have one or two X-points, for example, ITER in France will

have one X-point while, DIIID in USA has two X-points.

1.3 Disruptions and their mitigation

1.3.1 Disruptions

Plasma instabilities that arise in tokamaks are typically driven by parallel current or

pressure gradients [96]. Current driven instabilities can lead to the growth of kink

and tearing modes. If the pressure gradients are high near the separatrix, ballooning

modes can develop and lead to repetitive crashes and loss of pressure. Such instabili-

ties are called Edge-Localised Modes (ELMs) which can be related to transition from

low to high modes. When a plasma is heated beyond certain threshold value, a trans-

port barrier forms at the edge of a plasma causing the pressure gradients to rise. This

transport barrier forms a pedestal region as shown in Figure (1.8). In this situation,

the confinement time is improved and therefore the associated modes are called as

High confinement modes (H-modes). Similarly the name L-mode is associated with
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low confinement. Both situations are sketched in Figure (1.8).

Figure 1.8: L-mode and H-mode confinement [77].

It is desirable that a plasma remains confined inside a vacuum space of a toka-

mak, however there are different kinds of disruptive events which affect global plasma

confinement, for example sawtooth oscillations, ELMs etc. Major disruptions af-

fect plasma confinement severely and lead to the termination of tokamak discharge.

Disruptions are unavoidable and occur when certain limits on tokamak operating

parameters (such as plasma current Ip, plasma beta βN and particle density n) are

exceeded, causing loss of a large fraction of the plasma energy [12, 45]. This results

in dramatic fall of the temperature, plasma current Ip and the loss of confinement.

1.3.2 Sequence of events during major disruptions

An increase in the level of MHD activity is a sign of onset of a major disruption. Such

disruptions are characterized by a well-defined sequence of events: thermal quench

(TQ) and current quench (CQ) as sketched in Figure (1.9).

Thermal quench

After MHD activities reach a critical point, events occur on a much faster time scale

typically of the order of 1 ms [65]. Plasma confinement deteriorates, temperatures
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go down to sub-keV in less than 1 ms, and plasma losses several orders of magnitude

of the thermal energy. This phase is called thermal quench (TQ) and is sketched in

Figure (1.9). The thermal energy is transferred onto the PFC or lost by radiation,

which can damage them. A spike in the plasma current (Ip) associated with TQ is

observed in experiments. The dynamics of the TQ is complex and depends on plasma

parameters and disruption causes.

Current quench

After the TQ phase follows the current quench (CQ) in which the plasma current

(Ip) decays to zero rapidly as shown in Figure (1.9). Plasma resistivity has Spitzer

like dependence upon the temperature: η ∝ T−3/2 [96, 47]. During TQ phase plasma

cools down and as a consequence the resistivity of plasma increases. Plasma current

cannot be supported by such resistivities and a rapid CQ occurs whose rates can be as

high as 1000 MA/s [45]. Plasma looses its magnetic energy during CQ, part of which

can be converted into thermal energy and dissipated as radiation or convected and

conducted to the PFCs. Rapid decrease in the plasma current also induces currents

in the tokamak structure which may lead to damaging J ×B forces.

Figure 1.9: Phases of disruptions: the thermal quench (TQ) and current quench (CQ)

Another distinct phase of a disruption may be due to runaway electrons. The CQ

can cause a large toroidal electric field which can accelerate electrons. These electrons

can gain relativistic speeds and damage the tokamak walls.
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It will be discussed later that a tokamak magnetic configuration can become un-

stable to helical perturbations of the form

w(r, t) = w(r) e

[

i(γt+mθ−nφ)
]

where θ and φ are the poloidal and toroidal angles, whereas m and n are the corre-

sponding poloidal and toroidal harmonics. The rapid and nonlinear growth of such

instabilities gives rise to the rapid loss of thermal energy that starts the disruption

sequence [45]. In the precursor growth phase that triggers the TQ, magnetic recon-

nection of plasma is possible under the nonlinear development of helical instabilities

(non-linear tearing mode). The TQ occurs due to the growth of core modes such as

internal kink mode m/n = 1/1, tearing modes m/n = 2/1 and m/n = 3/1. Their

growth triggers the breaking of magnetic surfaces and a loss of confinement.

1.3.3 Disruptions control

As discussed above, disruptions can have damaging effects on the tokamak walls and

structure. Large thermal loads occur during the TQ and large mechanical loads

occur during the CQ on PFCs and the tokamak structures. Moreover, the severity

of damage increases as the size of a device increases. Therefore, disruptions need to

avoided for smooth running of a reactor or at least they should be mitigated to reduce

the damaging of the device and its components. The subject of disruption avoidance

or mitigation is divided into three considerations [45]:

• Avoidance of the operating conditions that lead to disruption.

• Intervention to avoid disruptions either before disruption precursors occur or

before onset of TQ

• Mitigation in which actions are taken after the disruption onset to reduce the

severity or consequential effects of a disruption.

Disruption avoidance and/or mitigation is highly desirable for ITER design and

its operational goals. The ITER Disruption Mitigation System (DMS) is designed to

inject massive amounts of material into plasma to reduce heat loads by dissipating

most of the thermal energy by radiation, to increase the plasma density to prevent

the formation of runaway electron (RE) beams, and to control the duration of the CQ

to reduce electromagnetic loads. The current design of the ITER DMS uses two kinds
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of injection techniques: Massive Gas Injection (MGI) and Shattered Pellet Injection

(SPI) as shown in the illustration (1.10a).

In MGI a massive amount (10-1000 times the initial plasma content) of neutral

gas, usually Argon (Ar) or Neon (Ne), is injected at the plasma edge. The objective

of MGI is to reduce heat loads by dissipating most of the plasma thermal energy by

radiation. The ability of MGI to mitigate TQ and CQ loads has been demonstrated

in tokamaks [45, 62]. The focus of the present work is mainly on the numerical

simulations of SPI.

1.3.4 Shattered pellet injection

SPI involves frozen pellets of D2 or Ne or Ar or their mixture in a specially designed

cryogenic pipe gun. The technology of forming and firing such cryogenic pellets

that are shattered before entering into a plasma has been developed at Oak Ridge

National Laboratory for mitigating disruptions [22, 8]. DMS is designed such that

the pellet will be injected into plasma at a given speed when a disruption is detected.

These pellets are shattered in a curved tube before the frozen pellets enter plasma, as

shown in Figure (1.10b). Shattering of pellets forms the fragments of pellet material

consequently increasing the ablation surface of neutrals/impurities and avoids the

damage of wall components from direct impact by a large solid pellet.

(a) (b)

Figure 1.10: (a) Illustration for SPI and MGI set ups in ITER. (b) Simple breaker
tube with single bend to shatter large pellets in DIII-D (figure from [28])
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Basic physical process of plasma interaction with SPI fragments is as follows: The

electrons in plasma collide with the injected fragments and heat them. Consequently,

heated fragments begin to ablate neutral molecules forming dense clouds around

the surface of fragments and shielding them from plasma. In the present work, the

ablation of the fragments is modeled by the strongly shielded neutral gas shielding

(NGS) model in a Maxwellian plasma [78, 33] meaning that the neutral gas cloud

dissipates almost all the incoming heat flux before it reaches the pellet surface due to

the smallness of the material’s ablation energy [49]. For a given electron temperature

Te and density ne , the ablation rate (in the number of ablated atoms per second) for

a spherical deuterium fragment with radius rp is given by

∂tN ∝ n1/3
e T 5/3

e r4/3p

This ablation rate will be used to model the source term for SPI in MHD equations.

One consequence of the presence of impurities in plasma is radiation power loss. In

the presence of impurities the bremsstrahlung radiation [96] is enhanced. It is a type

of radiation that electrons emit when they are accelerated due to collisions. Also,

there are losses due to ‘line radiation’ and ‘recombination radiation’ associated with

atomic processes [96].

Using SPI, successful mitigation has been achieved in DIII-D and hence SPI has

been selected as the baseline for ITER DMS. Since the plasma volume of ITER is ten

times greater than that of JET, to achieve injection of sufficient quantity, multiple

shattered pellets will be injected in ITER [2]. JET has been equipped with SPI in

2019 and will serve as an important demonstration and extrapolation tool for the

future ITER SPI design.

Remark: Impurities

Plasma in tokamaks (assuming D plasma) can quickly be contaminated with other

elements which are called as impurities. These impurities arise from the wall surfaces

as plasma interacts with PFCs and can penetrate into the plasma core. Presence

of impurities in the core can degrade the performance of a reactor. Experiments

show evidence of the effects due to impurity transport [96]. SPI involves injection of

impurities (inert gases) in the plasma for the purpose of mitigation of disruptions.

Transport of such impurities in SPI, atomic processes involved and radiation losses

are discussed in Chapter 2.
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1.4 Numerical modeling

Numerical simulations can give insights into nonlinear physical phenomena and can

play a complementary role to interpret experimental observations. To date, there

exist many nonlinear MHD codes for tokamak modeling. The following few concern

with magnetically confined tokamak and stellarator plasmas:

• BOUT++ [26] is a finite volume code that can handle unstructured grids.

• MEGA [89] is a linear as well as particle-MHD code developed to study interac-

tions between energetic ions and MHD modes using finite difference methods.

• M3D-C1 [57] is a two fluid MHD code that uses high-order C1 finite elements

and semi implicit time integration method.

• NIMROD [35] is a semi implicit MHD code that uses spectral finite elements in

the poloidal plane and Fourier series for the toroidal direction.

• XTOR-2F [64] is a fully implicit two fluid MHD code that uses finite differ-

ences in radial coordinate and Fourier representation in poloidal and toroidal

directions.

• JOREK [24, 47] is a fully implicit MHD code with extended physics that uses

bicubic Bézier elements in the poloidal plane and Fourier series in the toroidal

direction.

1.4.1 JOREK

The goal of this work is to implement a so called full MHD model with sources to

simulate SPI using JOREK. The code uses the Bicubic Bézier finite element method

in the poloidal plane, Fourier representation in the toroidal direction and a fully

implicit time stepping algorithm. Simulations can be run in hybrid parallel computing

framework coded using message passing interface (MPI) and OpenMP. It can be

used to run versatile simulations for studying large-scale plasma instabilities and

their control. Realistic geometries with divertor configurations can be handled and

grids can be generated with curved elements with the isoparametric mapping so that

grid elements can be made aligned to flux surfaces. The numerical methods used in

JOREK, relevant for the present work, are described in Chapter 3.
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Historically JOREK uses reduced MHD models [40] for a wide range of appli-

cations like ELMs and their control, disruptions and their control and many other

applications [47]. However, the full MHD model suitable for production level simula-

tions is a recent addition in JOREK. The first implementations of a full MHD model

in JOREK have been done in [44, 43] for simple geometries. The stabilization method

based on variable multi scale decomposition have been implemented in [23]. It has

been shown in [74] that the full MHD model is numerically robust and can be used

for nonlinear simulations. The benchmark of the reduced and full MHD models is

shown in [74] and is also presented in Chapter 4. It is shown that for certain types

of instabilities such as the internal kink (in a high plasma β regime), it is necessary

to use the full MHD model [74]. In addition to validation and benchmark of full

MHD model, in this work we present SPI simulations taking into account impurity

transport.

1.5 Organization of the manuscript

The manuscript is organized as follows:

Chapter 2 focuses on the governing equations for plasma physics and plasma

interactions. A hierarchy of plasma physics models starting from kinetic equations are

described and assumptions are outlined which are relevant for writing MHD equations.

These equations are then written for tokamak modeling in the cylindrical coordinate

system, normalized units and are referred to as full MHD model. The equation for

the equilibrium for axisymmetric plasma, ‘Grad-Shafranov equation’, is derived and

it is highlighted that the major task of the present work is to study evolution of the

perturbed plasma equilibrium. The difference between full and reduced MHD model

is emphasized. Finally MHD equations are written with source terms to model SPI.

The process of SPI is described via atomic reactions taking place in a plasma and the

physical significance of source and transport quantities is described.

Chapter 3 focuses on Galerkin finite element method (FEM) implemented in

JOREK. First, the governing equations are written as a system of partial differential

equations (PDEs) and the motivation for the choice of FEM is described. Brief de-

scription of Galerkin FEM is given along with the stabilized FEM based on Variable

Multi-Scale (VMS) and shock capturing approach. Then the construction of the fi-

nite dimensional space is described with the details of FEM used in the poloidal plane

and Fourier representation used in the toroidal direction. Variable time step second
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order backward difference (BDF2) method is derived and implemented. Grid gener-

ation is described in the context of Bézier formulation with main focus on the flux

surface aligned grids. Finally, the issue of grid singularity is discussed and numerical

treatment for polar grid center is proposed.

In Chapter 4, the details of the implementation of FEM on Grad-Shafranov equa-

tion along with few numerical equilibria are presented. This is followed by the details

of FEM implementation on the full MHD equations. Then the numerical results for

standard instability problems are presented which have been validated with the re-

sults obtained using the previously implemented reduced MHD model. Later, the

advantage of using variable time step BDF2 method and numerical treatment for

polar grid center is demonstrated. Finally, nonlinear simulations of the internal kink

mode are discussed.

In Chapter 5, the numerical results for MMI obtained using single and two tem-

perature models are presented. The numerical results for SPI obtained using single

temperature full MHD model are discussed for the effect of the resistivity, grid, numer-

ical stabilization and SPI configuration. The long run simulations showing pre-TQ

phase and the characteristics of related physics are discussed.

In Chapter 6, the numerical results for SPI obtained with shock-capturing stabi-

lization are presented. It is demonstrated that shock-capturing stabilization terms

helps capture the TQ physics. The thesis is ended with the global conclusions and

future perspectives.
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Chapter 2

Physical models

A plasma consists of a set of charged and uncharged particles (atoms, molecules, ions

and electrons) and exhibits a collective behavior due to the interactions among these

particles. If a plasma is fully ionized then it contains only charged particles, i.e., ions

(i) and electrons (e) and they interact via ‘Coulomb collisions’ [37]. If a plasma is

partially ionized, in addition to charged particles, it contains neutral particles (atoms

or molecules of same or different gases). Such plasma can occur naturally, for example:

astrophysical plasma, or it can be produced in a laboratory, for example: by injecting

neutral gases in a tokamak plasma. Many types of interactions are possible when

a plasma contains charged as well as neutral particles. These particles can interact

with each other via elastic collisions, Coulomb collisions and atomic reactions. These

atomic reactions can be excitation, ionization, recombination and charge exchange.

• An excitation involves collision of an electron with an atom in which an electron

transfers part of its energy to an atom.

• An ionization involves collision of an electron with a particle (atom or ion) in

which an electron is removed from a particle, thereby changing the ionization

level of a particle. The energy required to remove one electron so that the

particle goes from ionization level z to z + 1 is denoted by Ez+1
z .

• In a recombination process, an ion can absorb an electron to change its charge

state (ionization level).

• A charge exchange is possible between two colliding ions or ion-atom/molecule

in which one ion transfers a charge to another.
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Each of these atomic reactions are characterized by a reaction cross-section σ(v)

which defines the collision frequency for each process. This cross-section depends on

the relative speed v of interacting particles and is usually averaged over a Maxwellian

velocity distribution to give the reaction rate per time and volume units [66, 30]:

Γz,z′ = nz nz′ 〈σ(v) v〉

where nz and nz′ are the particle densities of two interacting species. The evolution of

each species can be calculated from reaction rates for ionization Γion
z,z′ , recombination

Γrec
z,z′ and charge exchange Γcx

z,z′ .

A plasma also emits radiation that results in the loss of its energy. Main radiative

processes are the bremsstrahlung and ‘line radiation’. The ‘bremsstrahlung radiation’

[96] is emitted when a charged particle is accelerated due to its Coulomb interaction

with other particles. The ‘line radiation’ is emitted by ions and atoms when an

electron is moving from one energy level to a lower one, as a result of de-excitation.

In summary, the charge state or ionization level of ions and neutral particles can

change due to atomic reactions in a plasma. Ions, electrons and neutral particles in

a plasma can be further subdivided into many species, where each species can be

identified based on physical properties of its particles such as charge, mass, velocity

etc. For example, a plasma in the core of a tokamak can have two species, D ions

(i) and electrons (e). In certain situations, a plasma in tokamaks can have so called

‘runaway electrons’ [96]. In such a case plasma can be thought to have three species:

ions, electron and fast moving electrons. When a neutral gas is injected in a tokamak

plasma, atomic reactions can change the charge state of ions and neutrals. In this

case, a plasma can contain electrons, neutral particles and many different species

of ions each characterized by their charge, mass and velocities. Transfer of mass,

momentum and energy is also possible among all these species, such that the total

mass, momentum and energy is conserved.

Governing equations for a multi species plasma described above can be written

on various levels: from kinetic to fluid modeling. In subsections below, kinetic and

fluid equations are described. Multi species equations are sometimes referred to as

multi fluid equations. A single fluid equations, which are also called as magneto-

hydrodynamics (MHD) equations, are derived from multi species equations. Finally,

MHD equations are described for tokamak modeling.
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2.1 Physical models for plasma

2.1.1 Kinetic model

It is noted in Chapter 1 that the collective behavior of a plasma is affected by long

as well as short range interactions and is a result of the statistics of many parti-

cles moving in the average electromagnetic field created by all other particles. In

statistical description, the physical information of a plasma is expressed in terms of

time-dependent distribution functions fα(r, u, t) such that the total number of par-

ticles Nα =
∫ ∫

fα dr3 du3 is assumed constant. The index α denotes the type of

particles (or species) and the distribution functions represent the density of the rep-

resentative points in six dimensional phase space formed by three space r and three

velocity u coordinates. The governing equation for the evolution of fα in the phase

space is given by Boltzmann equation and is written as [11]

∂fα
∂t

+∇ · (fαu) +∇u · (fαa) = Cα (2.1)

with

a =
qα
mα

(E + u×B)

where, qα and mα denotes the charge and mass of each particle of species α, respec-

tively. Cα denotes the ‘collisions’ due to short-range inter-particle interactions. The

vectors E and B denote electric and magnetic fields governed by Maxwell’s equations

for electrodynamics [39]:

Poisson’s eq: ∇ · E =
τ

ǫ0
(2.2)

Induction eq: ∇×E = −∂B
∂t

(2.3)

Gauss Law: ∇ ·B = 0 (2.4)

Ampère’s law: ∇×B = µ0J (2.5)

The charge density τ and current density J in the Maxwell’s equations are defined

as:

τ =
∑

α

qαnα and J =
∑

α

qαnαvα
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where, the particle densities nα and average particle velocities vα are the zeroth and

first moments of the distribution functions fα respectively:

nα(r, t) =

∫

fα(r, u, t) du (2.6)

vα =
1

nα(r, t)

∫

u fα(r, u, t) du (2.7)

Poisson’s equation (2.2) gives the relation between electric field E produced by the

charge density τ . The induction equation denotes Faraday’s law of induction and

means that changing magnetic field induces an electric field. The assumption is made

in writing Faraday’s law that the velocities under concern are non-relativistic [39].

Gauss law gives the divergence free condition that magnetic field B satisfies. Finally,

Ampère’s law gives the relation between magnetic fields and moving charges, i.e.

currents. The constants ǫ0 and µ0 are the permittivity and permeability of free space

and their values in SI units are 8.85×10−12 C2/N m2 and 4π×10−7 N/A2 respectively.

Another useful law in electrodynamics is the Lorentz force law [39]. It says that the

net force F acting on the charge q in the presence of both electric and magnetic fields

is given by:

F = q (E + v ×B)

The collision term in Equation (2.1) is decomposed into contributions due to collisions

of particles of species α with particles of species β: Cα =
∑

β

Cα,β(fα, fβ). The explicit

form of a collision term Cα,β may be given by ‘Landau collision integral’ [37]. However

for the purpose of this study, few general properties of collision terms such as the

conservation of mass, momentum and energy [37] are enough. In the process of

collisions, conservation of mass holds and it implies that the total number of particles

of each species α at a certain position is unchanged:

∫

Cα,β du = 0 (2.8)

The conservation of momentum applied to collisions of the particles of the same and

different species respectively implies:

∫

mα u Cα,α du = 0 (2.9)
∫

mα u Cα,β du+

∫

mβ u Cβ,α du = 0 (2.10)
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The conservation of energy applied to collisions of the particles of the same and

different species respectively implies:
∫

1

2
mα u

2 Cα,α du = 0 (2.11)
∫

1

2
mα u

2 Cα,β du+

∫

1

2
mβ u

2 Cβ,α du = 0 (2.12)

Boltzmann’s equation (2.1) along with Maxwell’s Equations (2.2-2.5) give a micro-

scopic description of plasma and in principle can be solved for the distribution func-

tion fα(r,u, t). In case of collisionless or weakly collisional plasmas, i.e., Cα = 0,

Boltzmann equations reduce to Vlasov equations:

∂fα
∂t

+∇ · (fαu) +∇u · (fαa) = 0 (2.13)

Equations (2.1) or (2.13) are difficult to analyze as they are written in six dimensional

phase space with the time being the additional independent variable. Moreover,

the length scales λD and time scales T that govern the evolution of fα are very

small. The codes LIGKA [61], GYSELA [60] etc. are based on the kinetic modeling

of magnetized plasma. In this work we focus on the macroscopic description of a

plasma. A macroscopic description of plasma is obtained from a kinetic model by

taking the moments of Boltzmann’s or Vlasov equations to get fluid equations. In

such a description, the dynamics occurs over the larger (hydrodynamic) length scales

λH ≫ λD and time scales TH ≫ T .

2.1.2 Multi fluid model

For a generic function of velocity g(u), the moments of Boltzmann equation can be

written as:
∫ [

∂fα
∂t

+∇ · (ufα) +∇u · (aαfα)
]

g(u) du =

∫

∑

β

Cα,β g(u) du (2.14)

By setting g(u) = 1, one writes the zeroth moment of Boltzmann’s equation:
∫ [

∂fα
∂t

+∇ · (ufα) +∇u · (aαfα)
]

du =

∫

∑

β

Cα,β du

Since, r, u and t are independent variables, integrals and derivatives can be commuted

in order to simplify the equation.

∂

∂t

(∫

fα du

)

+∇ ·
(∫

ufα du

)

+

∫

∇u · (aαfα) du =
∑

β

∫

Cα,β du
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Gauss theorem suggests that the third term on the left hand side will be zero, because

fα → 0 as v → ∞ and the surface integral vanish in velocity space. Using definitions

(2.6), (2.7) and relation (2.8), the above equation can be written as:

∂nα
∂t

+∇ · (nα vα) = 0 (2.15)

This is the equation for the evolution of the particle density of a species α and it

represents the conservation of mass. Now, the first moment is obtained by letting

g(u) = u in equation (2.14):

∫

u

[

∂fα
∂t

+∇ · (ufα) +∇u · (aαfα)
]

du =

∫

u
∑

β

Cα,β du

This equation is then multiplied by the mass of a particle mα and further simplified

using the definitions (2.6) and (2.7) to write:

∂

∂t
(nα mα vα) +mα∇ ·

∫

(u⊗ u fα) du− nαqα(E + vα ×B) = Rα (2.16)

The first term is straightforward. The third term results from an integration by

parts and the expression for aα is used. The term on the right hand side Rα =

mα

∫

u
∑

β

Cα,β du is a friction coefficient which is the effect of collisions. The velocity

from the tensor quantity in the second term is decomposed into the average vα and

random part v′ part: u = vα+v′ such that du = dv′ and by definition
∫

v′fαdv
′ = 0.

Now the tensor quantity from the second term can be expanded and the definition

(2.7) is used to write:
∫

(u⊗ ufα) du =

∫

(vα ⊗ vα + vα ⊗ v′ + v′ ⊗ vα + v′ ⊗ v′)as fα dv
′

=

∫

(vα ⊗ vα) fα dv
′ + 0 + 0 +

∫

(v′ ⊗ v′) fα dv
′

=

∫

(nα vα ⊗ vα) +

∫

(v′ ⊗ v′) fα dv
′

The random part of velocity v′ gives rise to a quantity measuring the mean kinetic

energy of the particles, which is the temperature (Tα):

Tα = mα
〈v′2〉
3k

and the stress tensor P α is given by:

P α = −
∫

(mαfαv
′ ⊗ v′) dv′
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where, k is Boltzmann’s constant. The stress tensor is further decomposed into

isotropic and anisotropic parts: P α = −pαI + πα. For an isotropic function fα, the

stress tensor becomes a diagonal tensor with identical terms on the diagonal, each

being pressure:

pα =

∫

mα
v′2

3
fα dv

′

The relation between the pressure and temperature is then written as pα = k nαTα.

The term πα denotes the viscous tensor. Substituting the definition of the stress

tensor P α into the second term of equation (2.16), the equation for the momentum

of the particles of species α is obtained as:

∂

∂t
(nα mα vα) +∇ · (nα mα vα ⊗ vα) +∇pα − nαqα(E + vα ×B)

= ∇ · πα +Rα

(2.17)

The equation of the particle density (2.15) can be removed from the above equation,

to write the equation in terms of the velocity vα as:

nα mα
∂vα
∂t

+ nα mα vα · ∇vα +∇pα − nαqα(E + vα ×B) = ∇ · πα +Rα (2.18)

The second moment is obtained by taking g(u) = mα

2
u2 in equation (2.14):

∫

mα

2
u2
[

∂fα
∂t

+∇ · (ufα) +∇u · (aαfα)
]

du =

∫

mα

2
u2
∑

β

Cα,β du

It can be treated in a similar way to first moment and steps for its simplification can

be found in [37, 32, 11]. The simplification of second moment gives the equation of

the total energy Eα which is written as:

∂Eα
∂t

+∇ · [(Eα + pα)vα]− qαnαvα ·E = ∇ · (πα · vα) +∇ · hα + vα ·Rα +Qα

(2.19)

with,

Eα =
nαmαv

2
α

2
+

1

γα − 1
pα

where, γα is the ratio of specific heats of a species α. The quantity hα =
∫

1
2
nαmαv

′2v′ du

denotes heat flow due to fluctuating motion of the particles of species α and the last

two terms come from the collision term, where Rα denotes the momentum transfer

and Qα =
∫

1
2
Cα,βmαv

2
α du denotes the heat transfer. The equation for the total
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energy can be simplified using the particle density equation (2.15) and momentum

equation (2.17) to obtain the equation for the temperature evolution as:

knα
γα − 1

(

∂Tα
∂t

+ vα · ∇Tα
)

+ knαTα∇ · vα = πα : ∇vα +∇ · hα +Qα (2.20)

By defining the partial mass densities as ρα = nαmα and including source terms, the

multi fluid equations are written as a system of the equations for mass, momentum

and total energy as:

∂ρα
∂t

+∇ · (ρα vα) = ρ̇α

∂

∂t
(ρα vα) +∇ · (ρα vα ⊗ vα) +∇pα − nαqα(E + vα ×B) = ∇ · πα +Rα + ṁα

∂Eα
∂t

+∇ · [(Eα + pα)vα] = ∇ · (πα · vα) +∇ · hα +
(

qαρα
mα

E +Rα

)

· vα +Qα + Ėα
(2.21)

along with Maxwell’s equations (2.2)-(2.5) to describe electromagnetic fields. The

terms ρ̇α, ṁα and Ėα denote the sources for the densities, momenta and energies

respectively. Atomic reactions through which particles can be added or removed from

the species (described at the beginning of this section) can be modeled using these

sources. The equation of the total energy can be written in terms of the temperature

evolution equation (2.20).

The diffusive and dissipative terms πα, Rα, hα and Qα have not been yet specified

in terms of macroscopic variables. Doing so, in order to bring closure to fluid system,

is a vast topic of ‘transport theory’ and has many approaches [37]. They are described

later for the single fluid equations.

2.1.3 Two fluid model

The multi fluid model can be used to write the equations for a plasma consisting of

two species (α = e, i): electrons with the charge qe = −e and ions with the charge

qi = Ze, where Z is the ion charge number. From the momentum conservation of

collision terms (2.10) it can be deduced that Re = −Ri and energy conservation of

the collision terms (2.12) implies that Qe = −(ve−vi) ·Re−Qi. Using these relations

and ignoring source terms in (2.21), the two-fluid model for electron-ion plasma can
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be written as a system of equations of the mass, momentum and temperature as:

∂ρe
∂t

+∇ · (ρe ve) = 0 (2.22)

∂ρi
∂t

+∇ · (ρi vi) = 0 (2.23)

∂

∂t
(ρeve) +∇ · (ρeve ⊗ ve) +∇pe + ene(E + ve ×B) = ∇ · πe +Re (2.24)

∂

∂t
(ρivi) +∇ · (ρivi ⊗ vi) +∇pi − Zeni(E + vi ×B) = ∇ · πi −Re (2.25)

kne
γe − 1

(

∂Te
∂t

+ ve · ∇Te
)

+ kneTe∇ · ve = πe : ∇ve +∇ · he − (ve − vi) ·Re −Qi

(2.26)

kni
γi − 1

(

∂Ti
∂t

+ vi · ∇Ti
)

+ kniTi∇ · vi = πi : ∇vi +∇ · hi +Qi (2.27)

along with Maxwell’s equations (2.2)-(2.5). The pressure due to electrons and ions

is given as pe = nekTe and pi = nikTi respectively. The charge density is given by

τ = −e(ne − Zni) while the current density is given by J = −e(neve − Znivi).

2.1.4 Single fluid model

The single fluid equations or MHD equations can be derived from the two-fluid equa-

tions by taking linear combinations of equations of the mass, momentum and total

energy or pressure of each species. Recalling that charges of electrons and ions are

−e and Ze respectively, some useful definitions to obtain single fluid variables are:

ρ ≡ ρe + ρi = neme + nimi

ρv ≡ nemeve + nimivi

p ≡ pe + pi = nekT + nikT

τ ≡ qene + qini = −e(ne − Zni)

J ≡ qeneue + qiniui = −e(neve − Znivi)

where, ρ is the total density, v is center of mass or average velocity and p is the total

pressure of a plasma. In general, the derivation of single fluid equations is a huge

task and depending upon assumptions made a hierarchy of single fluid equations can

be obtained. The systematic derivation at each assumption level can be found in

[37]. Here, we only note the assumptions that are relevant to tokamak plasmas and

describe the final model of interest. These assumptions are as follows:
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• Plasma maintains quasi-neutrality, i.e., |ne − Zni| ≪ ne. This assumption

holds upto high degree in plasmas on account of the property of plasma that

any charge imbalance is neutralized almost instantaneously [37].

• The mass of electron is much smaller that the mass of ions, i.e., me ≪ mi.

• The relative velocity of ions and electrons is small as compare to the center of

mass velocity:

|vi − ve| ≪ |v|

• The velocities of plasma dynamics under concern are non-relativistic, i.e., |v| ≪
c, where c is the speed of light.

• The temperature equilibriation time Teq is significantly smaller than other char-

acteristic times, i.e. Teq ≪ TH and hence Te = Ti. This assumption makes a

considerable simplification to the single fluid model, without which one would

get a single fluid but two temperature MHD model.

The equation for total density is obtained by adding the equation for electron density

(2.22) and ion density (2.23) and then using the definitions for density ρ and center

of mass velocity v:

∂ρ

∂t
+∇ · (ρv) = 0

The equation for the total momentum is obtained by adding momentum equation for

electrons (2.24) and ions (2.25) to get:

∂

∂t
(ρv) +∇ · (ρv ⊗ v) +∇p− J ×B = ∇ · π

where the definition of the center of mass or average velocity is used in the first term,

the definition of the total pressure is used in the third term while the definition of

the total current is used in the fourth term on the left hand side. The second term

is obtained by the decomposition of particle velocity into mean and random parts:

vα = v − v′
α. The additional terms coming from this decomposition are used in the

definition of viscous tensor on the right hand side as: π =
∑

α

πα +
∑

α

ραv
′
α ⊗ v′

α.

Finally, adding the equations of the electron temperature (2.26) and ion temperature

(2.27) gives evolution of the total pressure as:

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)

(

(πe : ∇ve + πi : ∇vi) +∇ · (he + hi) + ηJ · J
)
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The assumption Ti = Te is used to derive the above equation. The last term in

the equation of pressure denotes Ohmic heating and it arises from the ion-electron

transfer term Re which can be written as [37]:

Re = η
1

1 + µ

Ze

mi

ρJ

where, µ is the ratio of masses over charges, η is the resistivity of a plasma. The

viscosity (πe,i) and heat conduction (he,i) terms have not been represented in terms

of macroscopic variables yet. Neglecting viscosities πe,i → 0 and heat conduction

terms he,i → 0 gives a resistive MHD modeling. Collecting the equations for density,

velocity (or momentum), pressure along with Maxwell’s laws forms the MHD model

for plasma which is written as:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = 0

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)(ηJ · J)

∂B

∂t
+∇×E = 0

∇ ·B = 0

E + v ×B = ηJ

µ0J = ∇×B

where the sixth equation is the Ohm’s law E + v × B = ηJ and the last equation

gives the definition of current µ0J = ∇×B. The Ohm’s law can be used in induction

equation to write the system of resistive full MHD equations as:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = 0

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)(ηJ · J)

∂B

∂t
−∇× v ×B = −η∇× J

(2.28)

28



along with Gauss’s law ∇ ·B = 0 and Ampère’s law µ0J = ∇×B. With η = 0, one

recovers the system of ideal MHD equations:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = 0

∂p

∂t
+ v · ∇p+ γp∇ · v = 0

∂B

∂t
−∇× (v ×B) = 0

(2.29)

The above equations can be normalized with respect to µ0 such that µ0 can be dropped

from MHD equations without altering their form. Normalization of MHD equations

is described in detail later. The ideal MHD equations (2.29) can be written in the

conservative form:

∂ty +∇ · f(y) = 0

where, the conserved variables y = {ρ, ρv, ET , B}T represent the vector containing

the density ρ, momentum ρv, total energy E and magnetic field B. The total energy

is given by:

ET =
ρ

γ − 1
+

1

2
ρv · v +

1

2
B ·B

In order to find the characteristic wave speeds of the ideal MHD system, it can be

written in quasi-linear form:

∂tỹ +Ai(ỹ) ∂xiỹ = 0

for the vector of variables ỹ = {ρ, v, p, B}T . For any dimension d ∈ {1, 2, 3}, the
row for Bd equation will be zero for the matrix Ai(ỹ) as the equation for Bd becomes

∂tBd = 0. Therefore, the respective row and column can be removed from Ai(ỹ)

to get a matrix of rank 7. This matrix can be diagonalized with seven eigenvalues

corresponding to one entropy wave, two Alfvén waves and four magneto-acoustic (two

slow and two fast) waves traveling with speeds [81]:

λ4 = v1, λ2,6 = v1 ∓ ca, λ3,5 = v1 ∓ cs, λ1,7 = v1 ∓ cf

respectively, where,

ca =
|B1|√
ρ
, c2s,f =

1

2

(

γp+B ·B
ρ

±
√

(

γp+B ·B
ρ

)2

− 4γpB2
1

ρ2

)
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Since all eigenvalues are real, the system of ideal MHD equations is a hyperbolic

one with the wave speed ordering:

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7

These inequalities reveal that some eigenvalues may coincide and therefore the con-

servative system of ideal MHD equations is not strictly hyperbolic. The computation

of the complete set of eigenvectors is not straightforward (see, for example, [17], [5]).

2.2 Tokamak modeling

2.2.1 Co-ordinate system

The physical equations written so far are in coordinate free vector notations. From the

application to tokamak point of view, the cylindrical (or toroidal) coordinate system

is used. The base cylindrical coordinate system (R,Z, φ), shown in Figure (2.1), is

given by x = R cosφ, y = −R sinφ and z = Z, where (x, y, z) denotes Cartesian

coordinates. Thus, φ is oriented clockwise if viewed from the top. According to

the definitions in [82], this convention correspond to a COCOS number of 8. The

orthonormal basis vectors for this cylindrical coordinate system are denoted by eR =

∇R, eZ = ∇Z and eφ = R∇φ. Some useful identities for this set of basis vectors are

as follows:

∇eR = 1
R
eφ ⊗ eφ; ∇eZ = 0; ∇eφ = − 1

R
eφ ⊗ eR

∇ · eR = 1
R
; ∇ · eZ = 0; ∇ · eφ = 0

∇× eR = 0; ∇× eZ = 0; ∇× eφ = − 1
R
eZ

It is also useful to represent a vector in contra variant basis a1 = ∇R, a2 = ∇Z and

a3 = ∇φ which are orthogonal but not normalized. A vector A can be represented

in both basis as: A = AReR +AZeZ +Aφeφ = ARa
1 +AZa

2 +RAφa
3. Some useful

identities for contra variant basis are as follows:

∇a1 = Ra3 ⊗ a3; ∇a2 = 0; ∇a3 = − 1
R
a3 ⊗ a1 − 1

R
a1 ⊗ a3

∇ · a1 = 1
R
; ∇ · a2 = 0; ∇ · a3 = 0

∇× a1 = 0; ∇× a2 = 0; ∇× a3 = 0
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Figure 2.1: The coordinate system used for representation of plasma physics equa-
tions.

2.2.2 MHD instabilities

For tokamaks, it is of great interest to know whether a given plasma equilibrium, if

perturbed by a small amount, is stable or not. In stability theory, a physical variable

is decomposed into two parts, a time independent equilibrium w0 and small time

dependent perturbation w′ << w0 as:

w(x) = w0(x) +w′(x)eγt (2.30)

where γ may be a complex number and denotes the growth rate of perturbations.

Using this decomposition, the system of MHD equations can be linearized and ana-

lyzed for the growth rates γ. If Re(γ) > 0 then perturbations will grow exponentially

and MHD system is said to be unstable. A decomposition given by equation (2.30)

can be used in ideal MHD equations and all perturbed quantities can be expressed

as a function of w′. Then the potential energy δW can be expressed in terms of the

perturbations w′ [32] as:

δW = δWF + δWS + δWV

where δWF , δWS and δWV denote potential energy of plasma, plasma-vacuum surface

and vacuum respectively. Of particular interest here is the potential energy of plasma

given by:

δWF =
1

2µ0

∫ [

|B′
⊥|2 +B2

0 | ∇ ·w′
⊥ + 2w′

⊥ · (b · ∇b)|2

+ µ0 γ p0 |∇ ·w|2 − 2 µ0 (w′
⊥ · ∇p0) (w∗

⊥ · (b · ∇b))

− µ0 J0‖ w∗
⊥ × b ·B′

⊥

]

dV

(2.31)
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where b is the unit vector in the direction of equilibrium magnetic field B0. The

integral is taken over plasma volume and quantities with subscripts⊥ and ‖ denote the
components perpendicular and parallel toB0. The quantities with starred superscript

denote complex conjugates. The energy principle states that an MHD equilibrium

is unstable if the total potential energy δW < 0. The first three terms in δWF

are positive whereas the last two terms may be negative and hence can lead to an

instability. Therefore the possible sources of instabilities can be the pressure gradient

and the parallel current density.

Plasma instabilities caused by the pressure gradient may lead to ballooning modes

which are highly relevant to tokamaks. They appear in the low field side where the

curvature (b · ∇b) is unfavorable and can lead to violent and repetitive crashes and

loss of pressure. Such instabilities are called Edge-Localised Modes. The instabilities

driven by parallel currents are called kink modes.

In the core of tokamak plasma, the magnetic field lines are closed. They are peri-

odic in the toroidal direction as well as in the poloidal plane. Therefore, perturbations

maybe represented using Fourier series such that:

w′(x) =
∑

m,n

ŵ′
m,n(r) e

i(mθ−nφ)

where m and n are the poloidal and toroidal mode numbers, θ and φ are the poloidal

and toroidal angles respectively and ŵ′
m,n are functions of the radial coordinate r.

The set of mode numbers (m,n) are often seen to be unstable, in experiments as well

as in numerical simulations, on the rational surfaces of the plasma where q = m/n,

where q is the plasma safety factor. At these rational surfaces the instability structures

are similar to the structure of the magnetic field lines.

JOREK simulates the evolution of perturbations added to initial plasma equi-

librium numerically. Therefore, the first step is to compute the plasma equilibrium

which is described next.

2.2.3 Grad-Shafranov Equation

The static equilibrium for ideal MHD equations is written by setting ∂/∂t = 0 and

plasma velocity v = 0 in ideal MHD equations (2.29):

∇p = J ×B (2.32)
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with Gauss law ∇ · B = 0 and Ampère’s law J = ∇ × B. This equation balances

pressure with magnetic forces. It is immediately clear that B ·∇p = 0 and J ·∇p = 0

meaning that magnetic field lines and current lines lie on the surfaces of constant

pressure. These surfaces are called magnetic surfaces. At the center of a plasma the

pressure is maximum and this point is called the magnetic axis.

In the toroidal coordinate system described in (2.2.1), Gauss’s law is written as:

1

R

∂(RBR)

∂R
+
∂BZ

∂Z
+

1

R

∂Bφ

∂φ
= 0

In order to derive Grad-Shafranov equations a toroidal symmetry i.e., ∂φ() = 0 is

assumed [38, 84]. This implies that ∂φBφ = 0 and hence Bφ is a function of R and Z

only. Therefore, Gauss law reduces to:

1

R

∂(RBR)

∂R
+
∂BZ

∂Z
=

1

R

∂(RBR)

∂R
+

1

R

∂(RBZ)

∂Z
= 0

and the poloidal field can be represented in terms of a stream function ψ(R,Z) such

that:

BR = − 1

R

∂ψ

∂Z
and BZ =

1

R

∂ψ

∂R
(2.33)

The stream function ψ is analogous to the poloidal magnetic flux Ψ and therefore,

ψ is often referred to as poloidal magnetic flux. Now, the magnetic field may be

represented as:

B =
1

R
∇ψ × eφ +Bφeφ

This expression can be compared with the B = nabla×A to get the relation between

poloidal flux ψ and Aφ as: ψ = RAφ.

Similarly, the divergence of current ∇ · J = ∇ · ∇ ×B = 0 can be explored with

toroidal symmetry to write:

∇ · J =
1

R

∂(RJR)

∂R
+
∂JZ
∂Z

=
1

R

∂(RJR)

∂R
+

1

R

∂(RJZ)

∂Z
= 0

This gives rise to another poloidal current stream function F (R,Z) such that:

JR = − 1

R

∂F

∂Z
and JZ =

1

R

∂F

∂R

Hence the expression for the current in terms of F can be written as:

J =
1

R
∇F × eφ + Jφeφ
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and can be compared with the definition of the current, under the assumption of

toroidal symmetry:

J = ∇×B =
∂Bφ

∂Z
eR − 1

R

∂(RBφ)

∂R
eZ +R

(

∂BZ

∂R
− ∂BR

∂Z

)

eφ

to get the relation between F and Bφ as: F = RBφ. Substituting Bφ in the expression

for the magnetic field, we can write:

B =
1

R
∇ψ × eφ +

F

R
eφ = ∇ψ ×∇φ+ F ∇φ (2.34)

Now the toroidal component of the current can be written from above expression of

the current as:

Jφ = R

(

∂BZ

∂R
− ∂BR

∂Z

)

and equations (2.33) can be to used to represent it in terms of ψ as:

Jφ = −
[

∂

∂R

(

1

R

∂ψ

∂R

)

+
1

R

∂2ψ

∂Z2

]

= − 1

R
∆∗ψ

where ∆∗ is an elliptic operator known as Grad-Shafranov operator and is defined as:

∆∗ψ = R∇ ·
(

1

R2
∇ψ
)

= R
∂

∂R

(

1

R

∂ψ

∂R

)

+
∂2ψ

∂Z2

The projections of the momentum equation (2.32) with the magnetic field and current

vector derived above are written as:

B · ∇p = eφ · (∇ψ ×∇p) = 0

J · ∇p = eφ ·
(

∇F ×∇p
)

= 0

where toroidal symmetry is used while simplifying above projections. These equations

imply that the pressure and poloidal current stream function F are functions of ψ:

p = p(ψ) and F = R Bφ = F (ψ). The Grad-Shafranov equation is then obtained by

taking the projection of the force balance equation (2.32) with ∇ψ and it is written

as:

∆∗ψ = R2 ∂p

∂ψ
− F

∂F

∂ψ
(2.35)

This is a nonlinear elliptic PDE that governs equilibrium between plasma pressure

and magnetic forces. The functions p(ψ) and F (ψ) are completely arbitrary at this

point and may be defined from the experimental conditions of a tokamak device under

concern. If p(ψ) and F (ψ) are nonlinear functions, there is no theoretical guarantee of

the existence and/or uniqueness of the solution for Grad-Shafranov equation (2.35),

even with Dirichlet boundary conditions. In practice, these functions are constructed

by a polynomial fitting over experimental data.

34



2.2.4 Full MHD model with Potential vector formulation

The induction equation in MHD models: ∂tB +∇×E = 0, after taking divergence

gives: ∂t∇ ·B = 0, since ∇ · (∇ × E) = 0. This means that if the initial condition

satisfies the divergence free constrain ∇ · B = 0, it will be satisfied at any t > 0.

Since the divergence free constrain on the magnetic field is to be satisfied at all times,

the magnetic field can also be represented in terms of a vector potential A such that

∇ · (∇×A) = 0. Moreover, plasma equilibrium in tokamaks given by magnetic flux

ψ is related to the toroidal component of a magnetic vector potential as: ψ = RAφ.

The expression for magnetic field based on ideal MHD equilibrium for a tokamak

application is defined to have the form given by equation (2.34). It can be rearranged

as:

B = ∇× (ψ∇φ) + F∇φ

using the vector identity: ∇× (ψ∇φ) = ∇ψ ×∇φ+ ψ✘✘✘✘✘✿ 0∇×∇φ . In terms of the the

magnetic vector potential A = ψ∇φ the magnetic field can be further re-written as:

B = ∇×A+ F (ψ)∇φ (2.36)

It can be easily verified that, this form of the magnetic field satisfies Gauss’s law

∇ ·B = 0 when F (ψ) is a toroidally axisymmetric function. It is emphasized again

that F is a function of poloidal coordinates R and Z but is a constant in time.

Substituting the definition of the magnetic field (2.36) in the induction equation (2.3)

gives:

∇×
(

∂A

∂t
+E

)

= 0

Since curl of the gradient of any scalar function vanish, the above equation is satisfied

if there exists Φ such that:

∂A

∂t
+E = −∇Φ

where, Φ is an electric potential. Moreover, the magnetic vector potential A is not

uniquely defined and can be added with gradient of any scalar function A = A′+∇χ
without altering the magnetic field. In order to uniquely define potentials, a ‘gauge’

needs to be fixed [39] for Φ and χ and there can be many choices depending upon

the problem at hand. One convenient choice is to use Weyl’s gauge Φ = 0 and since
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χ is left free, Weyl’s gauge is also called as incomplete gauge. Another choice is the

Coulomb’s gauge ∇ ·A = 0. By taking divergence of the induction equation:

∂

∂t
(∇ ·A) +∇ ·E = −∇ · ∇Φ

and using Poisson’s equation (2.2) and Coulomb gauge, the induction equation reduces

to another Poisson equation:

∇2Φ =
τ

ǫ0

Therefore, the use of Coulomb gauge require the solution of this Poisson equation.

For a quasi-neutral plasma, this equation is reduced to a Laplace equation where

τ ≈ 0. In this work, we choose Weyl’s gauge and use Ohm’s Law E = v ×B + ηJ

to write the induction equation as:

∂A

∂t
− v ×B = −ηJ

This induction equation replaces the induction equation in resistive MHD equations

(2.28) so that the system of equations becomes:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = 0

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)(ηJ · J)

∂A

∂t
− v ×B = −ηJ

(2.37)

with Gauss’s law ∇ · B = 0 and Ampère’s law: µ0J = ∇ × B. This system of

equations is implemented in JOREK as the full MHD model with the potential vector

formulation. The equilibrium function F (ψ) in the definition of the magnetic field

(2.36) is constant in time.

2.2.5 Visco-resistive full MHD model with sources

So far, for simplicity we neglected dissipative and diffusive effects and focused upon

the resistive and ideal MHD equations. In this subsection, visco-resistive full MHD
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equations are written with dissipative, diffusive and source terms as follows:

∂ρ

∂t
+ ∇ · (ρv) = ∇ · (D∇ρ) + Sρ

ρ
∂v

∂t
+ ρv · ∇v + ∇p − J ×B = ∇ · π + Sv

∂p

∂t
+ v · ∇p + γp∇ · v = ∇ · (κ∇T ) + (γ − 1)∇π : ∇v + ST

∂A

∂t
− v ×B = − η(J − SJ)

(2.38)

with Gauss law ∇ ·B = 0 and Ampère’s law µ0J = ∇×B. The particle source Sρ

and the heating source ST can be used to maintain axisymmetric equilibrium. They

can also be used to model phenomena like massive gas injection [74] or shattered

pellet injection [49]. Similarly, a current source vector SJ can be used to preserve

the original current profile approximately throughout the simulation when specified

as SJ = J(t = 0). Consistently evolving bootstrap current can also be modeled using

the current source term [47]. The source term in the velocity equation contains the

contribution of diffusion and density source Sρ as well as momentum source Sm (recall

that the velocity equation is derived from the momentum equation by removing the

density equation from it) :

Sv = Sm − (∇ · (D∇ρ+ Sρ)) v

The source term in the pressure equation contains Ohmic heating term and the terms

with density, momentum and energy source:

ST = (γ − 1)

[

ηJ · J + SE − Sm · v +
v · v
2

(∇ · (D∇ρ+ Sρ))

]

The heat diffusion tensor is decomposed into parallel and perpendicular part with

respect to the magnetic field as:

κ = κ‖(b⊗ b) + κ⊥(I− b⊗ b) (2.39)

where b denotes the unit vector in the direction of B. Note that the factor (γ − 1)

in the heat diffusion term is absorbed in the coefficients κ‖ and κ⊥. The ratio of

specific heats is specified as γ = 5/3. Coefficients in the heat diffusion term may or

may not be constants. Radial profiles for κ⊥ can be used to mimic various levels of

cross-field kinetic turbulent transport, which cannot be described by MHD [47]. The

temperature dependence in accordance with Spitzer-Härm is used for parallel heat

diffusion coefficient κ‖:

κ‖ = κ0

(

T

T0

) 5
2
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where κ0 is defined at the magnetic axis and is calculated according to the Spitzer-

Härm formula. κ0 has well defined values for electrons and ions, however in single

fluid single temperature MHD model their average of value may be used for κ0.

The particle diffusion tensor has analogous form as that of the heat diffusion

tensor:

D = D‖(b⊗ b) +D⊥(I− b⊗ b) (2.40)

As particle transport is dominated by convection, the parallel particle diffusion coef-

ficient D‖ is generally not used. Similar to κ⊥, the radial profile for D⊥ may also be

used to mimic the turbulent transport phenomena.

The viscous stress tensor π may decomposed into three main parts that model

respectively the Newtonian-fluid type, neoclassical and gyro-viscous effects. The de-

tails of these tensors and their implementation for reduced MHD models can be found

in [47] and references therein. In the full MHD model considered here, the viscous

stress tensor is modeled as:

π = µ∇v (2.41)

where µ is the coefficient of viscosity. In general, µ is a tensor of higher order that

can be decomposed into the direction parallel and perpendicular to B and effects of

neoclassical and gyro-viscous terms can also be taken into account [47]. However,

the coefficient of viscosity is assumed here to be a scalar quantity. The coefficient of

viscosity and resistivity both can be constants or can have a Spitzer-like dependence

on temperature to keep Prandtl number constant:

η = η0

(

T

T0

)−3/2

; µ = µ0

(

T

T0

)−3/2

where η0 and µ0 are resistivity and viscosity at the magnetic axis.

2.2.6 Normalization

Full MHD equations (2.37) can be normalized using typical scales for length l0, density

ρ0, time t0 and magnetic field B0. The density scale is chosen as the density at the

center of the plasma ρ0. The scales for magnetic field and length are chosen as B0 = 1

and l0 = 1. The scales for other physical variables can be derived now. To derive the

times scale, Alfvén wave speed is considered which is given by

v0 =
B0√
ρ0µ0
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Inserting, B0 = 1 and l0 = 1, the scales for speed v0 and time t0 are written as:

v0 =
1√
ρ0µ0

, t0 =
l0
v0

=
√
ρ0µ0

The constant µ0 is the permeability of free space and its value in SI units is 4π ×
10−7 N/A2. The scale for the pressure can be derived to get:

p0 = ρ0v
2
0 =

1

µ0

and the relation between the pressure and temperature gives:

T0 =
ρ0
p0

= µ0 ρ0

Now, Ampère’s law in SI units J [SI] =
1
µ0
∇ × B[SI] is normalized using length and

magnetic field scales to write:

J = ∇×B

such that the current scale becomes J0 = 1/µ0. The conversion of other physical

variables from SI to normalized units can be derived to write:

t =
t[SI]√
ρ0 µ0

ρ =
ρ[SI]
ρ0

v = v[SI]
√
ρ0 µ0

p = p[SI] µ0

J = J [SI] µ0

T = T[SI]ρ0 µ0

η = η[SI]

√

ρ0
µ0

µ = µ[SI]

√

µ0

ρ0

D → D[SI]

√
ρ0 µ0

κ → κ[SI]

√

µ0

ρ0

(2.42)

The temperature is often written in electron volts in plasma physics and the unit

conversion associated with it is: T = T[eV] e n0 µ0, where e is the electron charge and

39



n0 = ρ0 × 1020 is the scale for particle density. Full MHD equations in normalized

units are now written as:

∂ρ

∂t
+ ∇ · (ρv) = ∇ · (D∇ρ) + Sρ

ρ
∂v

∂t
+ ρv · ∇v + ∇p − J ×B = ∇ · π + Sv

∂p

∂t
+ v · ∇p + γp∇ · v = ∇ · (κ∇T ) + (γ − 1)∇π : ∇v + ST

∂A

∂t
− v ×B = − η(J − SJ)

(2.43)

with Gauss’s law ∇ ·B = 0 and the definition of the current J = ∇×B. From the

mathematical point of view, the only change in the system is that µ0 is eliminated

from the current definition and the structure of the equations is preserved.

For D2 plasma with particle density n0 = 6 × 1019 m−3, the unit normal time

corresponds to about 0.7 µs. Hence a typical JOREK simulation needs to be run for

approximately 104 normalized time units to get the dynamics over a few milli seconds

in physical time.

2.2.7 Reduced MHD model

The aim of this subsection is only to highlight the differences in full and reduced

MHD models rather than to derive or present reduced models. The reduced models

have 6 to 7 variables whereas the full MHD model has 8 variables and hence reduced

models give advantages in terms of computational costs and memory requirements for

simulations. These models are based on the following assumptions that are relevant

to tokamaks:

• The toroidal magnetic field Bφ is significantly greater than the poloidal magnetic

field Bθ, i.e. Bφ ≫ Bθ. This assumptions implies that the poloidal plasma

current does not appear in the reduced MHD equations.

• The toroidal magnetic field is constant in space as well as time, i.e., F (ψ) = F0.

This assumption eliminates the fast magneto-acoustic waves while retaining the

relevant physics. With this assumption, the magnetic field is defined to have

the form:

B =
1

R
∇ψ × eφ +

F0

R
eφ
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The velocity in reduced MHD models is defined to have parallel (to magnetic field)

and perpendicular velocity as:

v = v⊥ + v‖B

The reduced MHD equations implemented in JOREK can be found in [47] and many

references therein and their derivation can be found in [77, 4]. They are the system of

MHD equations consisting the equations of poloidal magnetic flux (ψ), perpendicular

momentum (in terms of velocity stream function u), toroidal current density (j =

∆∗ψ), toroidal component vorticity (w), density (ρ), temperature (T ) and parallel

velocity (v‖). Another difference to be noted between reduced and full MHD models

is that the Coulomb gauge ∇·A = 0 has been used to derive reduced MHD equations

whereas Weyl’s gauge is used in full MHD model.

2.3 Full MHD: Massive Material Injection

As mentioned earlier, the source terms in full MHD equations can be used to model

Massive Gas Injection (MGI) or Shattered Pellet Injection (SPI) in which a massive

amount of material is injected into a tokamak plasma. A plasma in a tokamak mostly

consists of electrons and main core ions which are the ions in the plasma core (usually

D ions). The injected species may be D or Ne or Ar whose atoms (neutral/impurity

particles) interact with hot plasma via atomic reactions explained at the beginning

of this Chapter. The ions at different charge level can be formed when the impurity

particles interact with plasma electrons. To model MGI or SPI in a plasma, we must

consider the effects of transport of impurities and atomic processes including radiation

losses. The ionization energy and radiation power is determined as a function of the

electron temperature (Te) and electron density (ne) under the assumption of coronal

equilibrium (CE) [49]. Following we describe detailed derivation of full MHD model

with the transport of impurities.

Let us consider a tokamak plasma consisting electrons e, main core ions i and

impurities. Here, impurities are neutral particles of an injected gas (with charge

number higher than D) and ions resulting from these atoms (impurity ions). Injected

impurity neutral particles may undergo ionization to various levels due to atomic

processes. The charge associated with each ionization level is denoted by qz = Ze.

Let z ∈ {0, ..., Nz} be ionization level where z = 0 denotes no ionization, i.e. neutral

impurity particles and Nz denotes maximum level of ionization that can be attained.
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Let Eα be the total ionization energy required to fully ionized an atom from the

neutral state to the ionize state z such that:

Eα =
α
∑

z=1

Ez
z−1

where Ez
z−1 is the ionization energy required to move an ion from the level z − 1

up to level z. In such a situation, we have a multi fluid system with the evolution

equation for the impurity of each charge state and would result in a large number of

equations. However, under CE assumption, rapid change in temperature or strong

density source may cause artificially fast evolution of charge state distribution, thus

result in artificially high recombination radiation. To avoid this, we treat Eα as a

potential energy and use the recombination radiation function at CE from the open

ADAS data to model the corresponding radiation power. Such treatment ensures the

energy conservation and prevents artificially large recombination radiation [49].

The system of multi fluid equations (2.21) is re-written here for the evolution

of each species α ∈ {e, i} ∪ {0, ..., Nz} along with the induction equation in vector

potential form as:

∂ρα
∂t

+∇ · (ρα vα) = ρ̇Aα + ρ̇NAα

∂(ραvα)

∂t
+∇ · (ραvα ⊗ vα) +∇pα −

ρα
mα

qα(E + vα ×B) = ∇ · πα +Rα

+ ṁA
α + ṁNA

α

∂Eα
∂t

+∇ ·
(

(Eα + pα)vα

)

= ∇ · (παvα) +∇ · hα +Qα + ĖAα + ĖNAα

+

(

qαρα
mα

E −Rα

)

· vα
∂A

∂t
− v ×B = −ηJ

(2.44)

with Gauss’s law ∇ · B = 0 and Ampére’s law J = ∇ × B. These equations are

written in normalized units. The equation for the total energy (Eα) now has the

contribution due to ionization potential energy Eα as:

Eα =
pα

(γα − 1)
+

1

2
ραvα · vα + ραEα

The terms ρ̇NAα , ṁNA
α and ĖNAα denote sources for densities, momenta and energies

associated with non atomic reactions respectively, whereas the terms ρ̇Aα , ṁ
A
α and ĖAα

denote sources for densities, momenta and energies associated with atomic reactions.
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The terms Rα, hα and Qα denote momentum transfer, heat flow and heat transfer

respectively.

Using the equations for densities and momenta in the equations of total energies,

the equations for pressures pα evolution are obtained as follows:

1

(γα − 1)

(

∂pα
∂t

+ vα · ∇pα + γpα∇ · vα
)

= πα : ∇vα +∇ · hα +Qα

+

(

qαρα
mα

E −Rα

)

· vα + ĖNAα − (ṁA
α + ṁNA

α ) · v̇α +
ρ̇Aα + ρ̇NAα

2
vα · vα

+ ĖAα −
(

∂(ραEα)

∂t
+∇ · (ραEαvα)

)

We consider the situation in which atomic reactions do not affect the evolution of the

pressure of the impurity species α ∈ {0, 1, ..., Nz}. Therefore we can write:

ĖAα =
∂(ραEα)

∂t
+∇ · (ραEαvα) for α ∈ {0, ..., Nz} (2.45)

From the conservation of energy, sum of ionization potential energies over all species

α ∈ {i, e} ∪ {0, 1, ..., Nz} is zero and hence we can write:

ĖAe = −
Nz
∑

α=0

ĖAα = − ∂

∂t

( Nz
∑

α=0

ραEα

)

−∇ ·
( Nz
∑

α=0

ραEαvα)

)

Note that the main core ions are already ionized and hence the ionization energy

associated α = i is zero. Now we define the average quantities as:

ρimpEion =
Nz
∑

α=0

ραEα and ρimpEionvimp =
Nz
∑

α=0

ραEαvα

where ρimp is the total impurity density, Eion is the average ionization potential energy

and vimp is the average velocity of all species α. Therefore, the pressure evolution for

electrons can be written as follows:

1

(γe − 1)

(

∂pe
∂t

+ ve · ∇pe + γpe∇ · ve
)

= πe : ∇ve +∇ · he +Qe + ηJ · J

+ ĖNAe − (ṁA
e + ṁNA

e ) · ve +
ρ̇Ae + ρ̇NAe

2
ve · ve

−
(

∂(ρimpEion)

∂t
+∇ · (ρimpEionvimp)

)

(2.46)

and the pressure evolution for the species other than electrons α ∈ {i}∪{0, 1, ..., Nz}
is written as:

1

(γα − 1)

(

∂pα
∂t

+ vα · ∇pα + γpα∇ · vα
)

= πα : ∇vα +∇ · hα +Qα

+ ĖNAα − (ṁA
α + ṁNA

α ) · vα +
ρ̇Aα + ρ̇NAα

2
vα · vα

(2.47)
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The relation between the pressure and temperature: pα = knαTα can be used to write

equation of the electron temperature as follows:

nek

(γe − 1)

(

∂Te
∂t

+ ve · ∇Te + (γe − 1)Te∇ · ve
)

= πe : ∇ve +∇ · he +Qe + ηJ · J

+ ĖNAe − (ṁA
e + ṁNA

e ) · ve +
ρ̇Ae + ρ̇NAe

2
ve · ve −

kTe
(γe − 1)me

(

∂ρe
∂t

+ ve · ∇ρe
)

−
(

∂(ρimpEion)

∂t
+∇ · (ρimpEionvimp)

)

(2.48)

and equations for temperatures of rest of the species α ∈ {i}∪{0, 1, ..., Nz} as follows:

nαk

(γα − 1)

(

∂Tα
∂t

+ vα · ∇Tα + (γα − 1)Tα∇ · vα
)

= πα : ∇vα +∇ · hα +Qα + ĖNAα

− (ṁA
α + ṁNA

α ) · vα +
ρ̇Aα + ρ̇NAα

2
vα · vα −

kTα
(γα − 1)mα

(

∂ρα
∂t

+ vα · ∇ρα
)

(2.49)

Following a similar approach to the previous subsection, the multi fluid equations can

be combined to derive the single fluid (MHD) equations. A series of assumptions for

modeling source terms for MGI/SPI into full MHD model are written now:

Coronal Equilibrium:

The assumption of CE requires the plasma to be dominated by radiative recombina-

tion and to exist in an ionization equilibrium [67, 49]. The contributions from these

atomic reactions are contained in the source terms ρ̇, ṁ and Ė . The atomic reactions

conserve the mass, momentum and energy, therefore:
∑

α

ρ̇α = 0;
∑

α

ṁα = 0;
∑

α

Ėα = 0

We consider the time-dependent ionization and recombination reactions among the

species as described at the beginning of this section. These atomic reactions can be

represented in terms of a system of Ordinary Differential Equations (ODEs) as:

dWimp

dt
=

1

ǫ
F eWimp and

dWe

dt
=

1

ǫ
F impWe

where,

Wimp = {nz,vz, Tz}T z ∈ {1, 2, ..., Nz}T

We = {ne,ve, Te}T

F e = F e(We); F imp = F imp(Wimp,We)
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The right hand side of the equations are given by ionization and recombination rates

as described at the beginning of this Chapter. In practice, this system is solved by

setting velocities to zero. CE assumes that the time over which the macroscopic

plasma parameter vary is large enough as compared to the atomic reaction relaxation

time scale. Therefore, the distribution of ionization levels is determined by a balance

between ionization, radiative and recombination processes:

F eWimp = 0 and F impWe = 0

By solving these equations, the density distribution of ionization levels z(Te, ne) is

obtained [49] as a function of the electron temperature Te and weak function of the

electron density ne.

Quasi-neutrality:

The assumption of quasi-neutrality says that the plasma is neutral at the macroscopic

scales and the net resulting electric charge is zero.

qene + qini +
Nz
∑

z=1

qznz = −ene + Zeni +
Nz
∑

z=1

zenz ≈ 0

This can be further simplified to get:

ne ≈ Zni + Zimpnimp (2.50)

where impurity particle density nimp and mean charge Zimp of impurity ions are defined

as:

nimp =
Nz
∑

z=1

nz and Zimp =
Nz
∑

z=1

z
nz
nimp

Using CE assumption the ratio nz/nimp is given by a charge state distribution function

P(z, ne, Te). This function can be obtained from open ADAS [1] atomic data for a

given ne and Te. The ionization potential energy Eion is then determined as:

Eion(ne, Te) =
Nz
∑

z=1

P(z, ne, Te) Ez (2.51)

with Ez being the accumulated ionization potential energy of a charge state z.
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Total density:

The total density ρ is obtained by summing over all partial densities, for electrons ρe,

ions ρi and each impurity species ρz and is written as:

ρ = ρe + ρi +
Nz
∑

z=0

ρz = ρe + ρi + ρn + ρc = ρe + ρi + ρimp

with

ρimp =
Nz
∑

z=0

ρz = ρn +
Nz
∑

z=1

ρz = ρn + ρc = mimpnimp (2.52)

where ρn is the density of neutral particles (z = 0); ρimp and mimp is the total density

and total mass of impurities (including neutrals) respectively. The assumption that

allows to add the neutral and impurity density is that the mass of electron is very

small as compared to the mass of any impurity particle (me ≪ mimp) and addition or

removal of an electron does not change the mass of a impurity particle significantly.

Quasi-neutrality assumption (2.50) can be used in the definition of the total den-

sity to write it in terms of the ion density ρi and impurity density ρimp as:

ρ = ρe + ρi + ρn +
Nz
∑

1

ρα =

(

1 +
me

mi

Z

)

ρi +

(

1 +
me

mimp

Zimp

)

ρimp

With the assumption me ≪ mi and me ≪ mimp, the total density can be further

approximated as:

ρ ≈ ρi + ρimp

Average velocity:

The average or center of mass velocity of all species is defined as:

ρv = ρeve + ρivi +
Nz
∑

z=0

ρzvz = ρeve + ρivi + ρnvn + ρcvc (2.53)

where, vn is the velocity of neutral particles (z = 0) and vc is the average velocity of

the charged particles (z 6= 0) which is given by:

vc =
1

ρc

Nz
∑

z=1

ρzvz (2.54)
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Since the neutral particles are not affected by electromagnetic fields, vn can be dif-

ferent from vc. The average velocity of the neutral particles and charged species is

defined as:

vimp =
1

ρimp

(ρnvn + ρcvc) (2.55)

Total pressure:

The total pressure is obtained using Dalton’s law by summing partial pressures for

all species to write:

p = pe + pi +
Nz
∑

z=0

pz = k(neTe + niTi +
Nz
∑

z=0

nzTz) (2.56)

Using the relation obtained from quasi-neutrality assumption (2.50), the total pres-

sure can be written as:

p = k

(

Z
ρi
mi

Te + Zimp
ρimp

mimp

Te +
ρi
mi

Ti +
Nz
∑

z=0

ρz
mz

Tz

)

Since the removal or gain of electrons does not affect the mass of each impurity

species, it can be assumed that mz = mimp and the total pressure becomes:

p = k

(

Z
ρi
mi

Te + Zimp
ρimp

mimp

Te +
ρi
mi

Ti +
ρimp

mimp

Ti

)

Further, it can be assumed that the main core ions and impurities are at the same

temperature Ti = Tz, then the expression of the total pressure becomes:

p =
k

mi

[

ρi(ZTe + Ti) + ρimp
mi

mimp

(

ZimpTe + Ti

)]

Finally, it can be assumed that the temperature equilibration time of ions and elec-

trons is very small as compared to the MHD time scales which implies that Ti = Te,

then the total pressure for single fluid modeling becomes:

p =
kT

mi

[

ρi(Z + 1) + ρimp
mi

mimp

(

Zimp + 1

)]

Without the last assumption, one would get a two temperature model. Making use of

ρ ≈ ρi+ρimp and for deuterium plasma Z = 1, the definition of the pressure becomes:

p =
2k

mi

(ρ+ αimp ρimp) T with αimp =
1

2

mi

mimp

(Zimp + 1)− 1

47



Total current

The total current is defined as:

J = qeneve + qinivi +
Nz
∑

z=1

qznzvz = e

(

− neve + Znivi +
Nz
∑

z=1

znzvz

)

(2.57)

where qe = −e, qi = eZ and qz = ez. We assume that all the charged impurities have

the same velocity, vz = vc and use the definition of mean charge Zimp to write:

J = −e
(

neve + Zenivi + Zimpnimpvc

)

If it is further assumed that the main ion velocity is equal to the charged particles

velocity (vi = vc), then the expression for the current simplifies to:

J = −e
(

neve + (Zeni + Zimpnimp)vi

)

Further using the quasi neutrality (2.50), the expression of current can be written as:

J = −ene
(

ve + vi

)

(2.58)

This expression allows us to write velocity of electrons ve in terms of the velocity of

ions vi and greatly simplifies the derivation of single fluid equations.

Impurity density equation

The equation of the density of neutral particles ρn is written by setting α = 0 in the

partial density equation in (2.44) as:

∂ρn
∂t

+∇ · (ρnvn) = ρ̇NAn + ρ̇An

Similarly, the equation for evolution of the charged impurity species ρc is written from

the partial density equation in (2.44) by summing over α ∈ {1, 2, ..., Nz} as:

∂ρc
∂t

+∇ · (ρcvc) =
Nz
∑

α=1

ρ̇NAα +
Nz
∑

α=1

ρ̇Aα

where, vc is the average velocity of charged impurity species given by (2.54). The

source term related to atomic reactions ρ̇Aα involves the production or elimination of

electrons as a result of the transfer of electrons from one species to another during
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atomic processes. Since the mass of electron is assumed very small as compared to

neutrals and charge impurities, the effect of sources due to atomic reaction can be

neglected in the equation for neutrals density and charged species to write:

∂ρn
∂t

+∇ · (ρnvn) = ρ̇NAn

∂ρc
∂t

+∇ · (ρcvc) = ρ̇NAc

Source terms in above equations can be combined to write:

ρ̇imp = ρ̇NAn + ρ̇NAc =
Nz
∑

α=1

ρ̇NAα (2.59)

where ρ̇imp is the source term that include the effect of neutral particles s as well

charged impurities. Now, the evolution equation for total impurity density ρimp is

obtained by summing the above two equations and using the definitions (2.52), (2.55)

and (2.59) to write:

∂ρimp

∂t
+∇ · (ρimpvimp) = ρ̇imp

The variable vimp is an additional vector variable that can be removed using Fick’s

law. By adding and subtracting the average velocity v, the above equation becomes:

∂ρimp

∂t
+∇ · (ρimpv) = ∇ · (ρimp(v − vimp)) + ρ̇imp

Here, vimp can be thought as the random velocity about the average velocity v. Again,

for each species α, the mass fraction is defined as:

Yα =
ρα
ρ

s.t.
∑

α

Yα = 1

Now, defining the mass fraction for impurity density as Yimp = ρimp/ρ, the first term

at the right hand side in the impurity density equation can be written as

∇ · (ρimp(v − vimp)) = ∇ · (ρYimp(v − vimp))

According to the Fick’s law, this term can be modeled as a diffusion of Yimp as:

∇ · (ρYimp(v − vimp)) = ∇ · (ρDimp∇Yimp)

with the density diffusion tensor Dimp. This term is approximated further as:

∇ · (ρDimp∇Yimp) ≈ ∇ · (Dimp∇ρimp)
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and substituted in the impurity density equation to write:

∂ρimp

∂t
+∇ · (ρimpv) = ∇ · (Dimp∇ρimp) + ρ̇imp

The impurity source ρ̇imp is given by an ablation scaling law for ‘strongly shielded’

neutral gas shielding (NGS) model in a Maxwellian plasma which is used to determine

the ablation rate [49, 83, 73]. Strongly shielded means the neutral gas cloud dissipates

almost all the incoming heat flux before it reaches the pellet surface due to the

smallness of the material’s ablation energy [49]. The exact ablation rate depends

upon the material being injected in the plasma. The ablation models used in our

study are: Sergeev’s model for full impurity pellets [83] and Parks’s model for mixed

pellets [73]. The mathematical form of the impurity source is written as:

ρ̇imp = mimpṅimp

= mimp

N
∑

s=1

∂tNs exp

(

− (R−Rs)
2 + (Z − Zs)

2

∆R2

)

exp

(

− (φ− φs)
2

∆φ2

) (2.60)

where, s is the index over number of fragments N . The term ∂tNs denotes ablation

rate (i.e. the number of ablated atoms per second) of a fragment that depends upon

electron temperature Te and weakly upon the density ne. The ablation rate for a

spherical fragment with radius rs is given by:

∂tNs = f(X) r4/3s n1/3
e T 5/3

e

A mixed injection of different gases considered is realized through f(X) which is the

function of the mixture of gases X. In this work, pellets with single impurity are

considered (f(X) = 1) and details for the mixture of impurities can be found in [49].

The exponential term in the equation (2.60) denotes a Gaussian shape of an ablated

cloud of a fragment. The coordinates Rs, Zs and φs denote the location of the de-

posited fragments. We choose the neutral cloud parameter ∆R and ∆φ to determine

an elongated Gaussian shape of the neutral gas clouds. Such a choice of shape of

deposit is justified due to the limited resolution in the toroidal direction. Moreover,

the fast expansion of neutral clouds can not be modeled using fluid equations.

The coordinates Rs, Zs and φs evolve in time as pellets/fragments are injected at

some velocity U . In principle, a following system of ODEs determines the evolution
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of positions, velocity and size of ablated fragments:

dX

dt
= f(t,U)

dU

dt
= A

dr

dt
= g(r, ρe, Te)

where, the vector X = {Rs, Zs, φs} denotes the position of the fragment, A denotes

the acceleration and r is the size of ablated cloud. For a situation considered here

the injection velocity U is assumed constant and the system of ODE reduces to:

dX

dt
= U

dr

dt
= g(r, ρe, Te)

The evolution of a fragment size is governed by the conservation of mass:

ns 4 π r
2
s

drs
dt

= ∂tNs

where ns is the particle density of the fragments.

Total density equation

The equation of the total density ρ is obtained by summing the partial densities in

equation (2.44) over all species α ∈ {0, 1, ..., Nz} and is written using the definition

for total density and average velocity (2.53), as:

∂ρ

∂t
+∇ · (ρv) =

∑

α

ρ̇Aα +
∑

α

ρ̇NAα

Sum of the sources from atomic reactions is zero on the account of conservation of

mass, i.e.,
∑

α ρ̇
A
α = 0. The source terms for non atomic processes can be further

decomposed into sources for main ions and impurities and the definition (2.59) can

be used to write:

∑

α

ρ̇NAα = ρ̇NAi +
Nz
∑

0

ρ̇NAz = ρ̇i + ρ̇imp

Finally, substituting above term into the equation of the total density:

∂ρ

∂t
+∇ · (ρv) = ρ̇i + ρ̇imp
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Total momentum equation

The equation for the total momentum is obtained by summing the momentum equa-

tions in (2.44) over all species α ∈ {i, e} ∪ {0, 1, ..., Nz} to write:

∂(ρv)

∂t
+∇ · (ρv ⊗ v) +∇p− J ×B = ∇ · π + ṁ

where, the definitions of the average velocity (2.53), total pressure (2.56) and total

current (2.58) are used in the first, third and fourth terms on the left hand side,

respectively. Using the decomposition of particle velocities into average and random

part about the average velocity as: vα = v + v′
α, the second term at the right hand

side is written and the viscous stress tensor is defined as:

π =
∑

α

πα −
∑

α

ραv
′
α ⊗ v′

α

The source terms ṁ contain the sum of sources from all species with contributions

only from the non atomic parts because the sum of sources due to atomic reactions

vanishes due to conservation of the momentum:

ṁ =

✚
✚
✚
✚✚❃

0
∑

α

ṁA
α +

∑

α

ṁNA
α

Energy equation

We assume that the ratio of specific heats of all species is equal γi = γe = γα =

5/3. The energy equations are written in terms of the pressure, as can be seen from

equation for electron pressure (2.46) and ions pressure (2.47). The electron pressure

equation can be simplified using quasi-neutrality assumption on the current given by

equation (2.58) and the assumption that electron mass is negligible to write:

1

(γ − 1)

(

∂pe
∂t

+ v · ∇pe + γpe∇ · v
)

= πe : ∇v +∇ · he +Qe + STe − Cion (2.61)

where the term STe contains the sources due to non atomic processes along with

Ohmic heating:

STe = ηJ · J + P (Te)− ṁe · v +
ρ̇i + ρ̇imp

2
v · v

where P (Te) denotes radiation power loss. The last term in the equation (2.61) con-

tains energy sources due to atomic reactions that are modeled in terms of ionization
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potential energy Eimp as :

Cion =

(

∂(ρimpEion)

∂t
+∇ · (ρimpEionvimp)

)

The ion temperature equation is obtained from equation (2.49) by summing over

all the species other than electrons with the additional assumption that all ion species

are at the same temperature to write:

1

(γ − 1)

(

∂pI
∂t

+ v · ∇pI + γpI∇ · v
)

= πI : ∇v +∇ · hI +QI + STI (2.62)

here, the pressure pI denotes the pressure due to all the species except electrons and

STI contains the sources due to non atomic processes.

STI = −ṁI · v +
ρ̇i + ρ̇imp

2
v · v

Finally summing the equations of Te (2.48) and TI (2.49), the equation for the

total pressure is obtained which is written as:

1

(γ − 1)

(

∂p

∂t
+ v · ∇p+ γp∇ · v

)

= π : ∇v +∇ · h+ ST − Cion (2.63)

where, the term ST contains the sources due to Ohmic heating and non atomic pro-

cesses:

ST = ηJ · J + P (Te)− ṁ · v +
ρ̇i + ρ̇imp

2
v · v (2.64)

The term P (Te) is given by

P (Te) = −ne nimp Lrad(Te) (2.65)

where, Lrad represents the radiation power function obtained via the CE assump-

tion and includes the contribution from line radiation, recombination radiation and

bremsstrahlung radiation. The term Cion has the additional variable vimp. It can be

eliminated using Fick’s law. The last term in Cion can be rearranged by adding and

subtracting v as:

Cion =

(

∂(ρimpEion)

∂t
+∇ · (ρimpEionv) +∇ · (ρimpEion(vimp − v))

)

Using the definition of mass fraction for impurity species Yimp the last term can be

written as: ∇ · (ρYimpEion(vimp − v)) so that the Fick’s law can be applied to write

the expression for Cion as:

Cion =

(

∂(ρimpEion)

∂t
+∇ · (ρimpEionv) +∇ · (ρEionDimp∇Yimp)

)
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Further, the last term can be approximated to ∇·(EionDimp∇ρimp) and the remaining

terms can be simplified to write the expression for Cion as:

Cion = Eion

(

∂ρimp

∂t
+ v · ∇ρimp

)

+ ρimp

(

∂Eion

∂t
+∇ · (Eionv)

)

+∇ · (EionDimp∇ρimp)

(2.66)

This expression is substituted in the equation for the total pressure (2.63) where Eion

is given by the equation (2.51).

Induction equation

The induction equation is not affected by summation over species. The resistivity,

apart from Spitzer like dependence, is also considered to depend upon the effective

charge Zeff which is defined as:

Zeff =

∑

α

nαZ
2
α

∑

α

nαZα

where nα and Zα are the particle densities and charge of each species α. The expres-

sion for the resistivity is written as [96, 49]:

η =

√
2me Zeff e

2 ln(Λ)

12 π3/2 ǫ20 T
3/2
e

1 + 1.198Zeff + 0.222Z2
eff

1 + 2.966Zeff + 0.753Z2
eff

(2.67)

The equations for ρ, ρimp, v, T , A along with Gauss law and Ampères law forms

the MHD model with sources to be used for SPI simulations.

Single and two temperature models

In summary, we re-write equations by collecting them as a system of MHD equation

with single temperature and two temperature model. The single temperature model

is written below by collecting the equations for impurity density, total density, total
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momentum, total pressure and the induction equation as follows:

∂ρimp

∂t
+∇ · (ρimpv) = ∇ · (Dimp∇ρimp) + ρ̇imp

∂ρ

∂t
+∇ · (ρv) = ∇ · (D∇ρ) + ρ̇i + ρ̇imp

∂(ρv)

∂t
+∇ · (ρv ⊗ v) +∇p− J ×B = µ∇2v + ṁ

1

(γ − 1)

(

∂p

∂t
+ v · ∇p+ γp∇ · v

)

= µ∇v : ∇v +∇ · (κ ∇T ) + ST − Cion

∂A

∂t
− v ×B = −ηJ

(2.68)

with Gauss law ∇ ·B = 0 and Ampéres law ∇ ×B = J . The definition of viscous

tensor: π = µ∇v and as heat conduction flux: h = κ ∇T is used in the equation

for velocity and pressure respectively. The density diffusion is added in the equation

of ρ. The form of the total density and impurity density diffusion tensor is given

by equation (2.40) and that of heat diffusion tensor is given by equation (2.39). The

source term ST is given by equations (2.64) and (2.65) while Cion is given by equations

(2.66) and (2.51).

The two temperature model is written below by collecting the equations for im-

purity density, total density, total momentum, electron pressure, ion pressure and the

induction equation as follows:

∂ρimp

∂t
+∇ · (ρimpv) = ∇ · (Dimp∇ρimp) + ρ̇imp

∂ρ

∂t
+∇ · (ρv) = ∇ · (D∇ρ) + ρ̇i + ρ̇imp

∂(ρv)

∂t
+∇ · (ρv ⊗ v) +∇p− J ×B = ∇ · π + ṁ

1

(γ − 1)

(

∂pe
∂t

+ v · ∇pe + γpe∇ · v
)

= πe : ∇v +∇ · he +Qe + STe − Cion

1

(γ − 1)

(

∂pI
∂t

+ v · ∇pI + γpI∇ · v
)

= πI : ∇v +∇ · hI +QI + STI

∂A

∂t
− v ×B = −ηJ

(2.69)

All the source, diffusive and dissipative terms have the same meaning and form as in

case of single temperature model, except that the source terms due to Ohmic heating

and atomic reaction are to be included in the equation for electron pressure.
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2.4 Conclusion

This Chapter is introduced with the plasma interactions and basic atomic process that

take place in plasma. The equations for plasma physics are described on microscopic

and macroscopic level in the section (2.1). The series of assumptions are noted to get

a hierarchy of models from kinetic to multi fluid to single fluid model. The focus of

the present work is on plasma dynamics that can be modeled using MHD equations.

In the section (2.2), full MHD model is described including resistive and dissipative

terms and the variables are normalized with respect to the scales relevant for tokamak

modeling. It is emphasized that a magnetic vector potential formulation is used

to write the induction equation in terms of magnetic vector potential A instead of

magnetic field B. The Grad-Shafranov equation that governs ideal MHD equilibrium

in axisymmetric configuration is described. Plasma equilibrium, if perturbed, can

develop instabilities that are related to parallel current and pressure gradient. It is

noted that rational q surfaces are the likely locations of plasma instabilities. The

difference between full and reduced MHD models is briefly noted.

Finally, the neutrals and impurity transport terms are included in full MHD model

which can be used for MGI and SPI simulations. The detailed derivation of trans-

port and source terms is presented in the section (2.3) with the discussion of atomic

reactions involved. Underlying assumption of CE is described. The assumption that

the ionization potential energy does not effect the pressure of impurities is crucial in

obtaining a closed system of equations that does not involve evolution of each charged

state.

The governing equations for plasma physics written in this Chapter are nonlinear

PDEs. In the next Chapter, numerical methods used to discretize these PDEs are

discussed.
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Chapter 3

Numerical methods

The purpose of this Chapter is to describe numerical approximation techniques of

full magneto-hydrodynamic (MHD) equations described in Chapter 2. These MHD

equations nonlinear hyperbolic partial differential equations (PDEs), except Grad-

Shafranov equation which is a non-linear elliptic PDE. The strong form of MHD

equations for the vector of variables: y(x, t), where (x, t) ∈ R
nv × R+, defined over

the spatial domain Ω ⊂ R
d is written as:

∀x ∈ Ω, t > 0 : R(y) = 0

∀x ∈ Ω, t = 0 : y = y0

∀x ∈ ΓD, t > 0 : y = yD

∀x ∈ ΓN , t > 0 : n · κ∇y = yN

(3.1)

Here, nv and d represent the number of variables and spatial dimensions respectively;

R is residual of the strong form. The second equation specifies initial condition y0.

The boundary of the domain is ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ where, ΓD and

ΓN are parts of the boundary where Dirichlet and Neumann (or Robin) boundary

conditions are to be applied respectively. This decomposition of the boundary is for

representation purpose. In practice, boundary conditions can be applied separately

for each variable i.e. given y ∈ {yk}, for each variable yk there can be a division of

boundary such that ∂Ωk = ΓDk
∪ΓNk

with ΓDk
∩ΓNk

= ∅. The problem in strong form

(3.1) is assumed to be well-posed in the sense that it describes relevant MHD physics

for plasma dynamics and boundary conditions are taken from experimental data.

The vector y denotes the variables: y = {ρ, ρv, p,A}T for which MHD equations are

written in Chapter 2.
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The residual of the strong form above can be also represented in transport, ad-

vective, diffusive and reactive (TADR) [90] form:

R(w) = M
∂w

∂t
+C(w)∇w − d(w)− s(w) = 0 (3.2)

where, w is another set of variables such that: ∂ty = M (w)∂tw. The notations

C(w)∇, d(w) and s(w) denote convective operator, diffusive terms and source terms

respectively. For example, for the full MHD system (2.38) the vector of variables w

can be given as: w = {ρ,v, T,A}T , whereas the matrix M (w) and the operator

C(w)∇ can be given as:

M (w) =























1 0 0 0

0 ρI 0 0

T 0 ρ 0

0 0 0 I























, C(w)∇ =























v · ∇ ρ∇· 0 0

T∇ ρv · ∇ ρ∇ 0

Tv · ∇ γp∇· ρv · ∇ 0

0 0 0 −v ×∇×























The operatorC(w)∇ is associated with the convective (hyperbolic) terms. The vector

of diffusive terms d(w) and source terms s(w) are written as:

d(w) =























∇ · (D∇ρ)

∇ · (µ∇v)

∇ · (κ∇T )

−η(∇×∇×A)























, s(w) =























Sρ

−J ×B + Sv

ST

ηSJ























The diffusive and source terms are described in Section (2.2.5) for visco-resistive

full MHD model. Except the last term from the induction equation, the vector

of diffusive terms d(w) can be written as divergence of diffusive fluxes Γ(w) =

{D∇ρ, µ∇v, κ∇T, 0}T .
The properties of MHD phenomena like convection dominated flows, presence

of strong anisotropies in magnetized plasma and divergence free constrain on the

magnetic field, motivates the choices of certain numerical schemes to be used. For

convection dominated flows, numerical schemes must take into account the effects of

unresolved scales in order to insure stability of the numerical approach. In the context

of compressible hydrodynamics, the pioneering work of von-Neumann and Richtmyer

[93] and its 2D extension by Wilkins [97, 98], the effects of unresolved scale on the
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resolved scales are formulated as artificial viscosity. In [55], explicit evaluation of sub-

scale effects is made on the resolved scales via the resolution of the so-called Riemann

problems. However, these popular formulations are mainly applicable in finite volume

and discontinous Galerkin methods. Riemann problems are defined in the directions

normal to the mesh faces and have inherent numerical stabilization and hence are

highly dependent on the mesh topology. Such stabilizing effect can be undesirable for

the flows with strong anisotropic processes, as in strongly magnetized plasma.

In this context, the high-order Galerkin finite element method (FEM) can provide

a suitable framework for the numerical approximation. Galerkin FEM however gives

rise to the centered approximations of differential operators which can lead to disper-

sion errors for convection dominated flows. Galerkin FEM alone does not provide a

mechanism for the control of the sub-scales effects on the resolved scales: ‘stabiliza-

tion’. The variational multi-scale (VMS) formulation [18, 53, 51] provides attractive

guidelines for the development of stabilized schemes that take into account the effect

of unresolved scales. Within the VMS framework, stabilization of waves is achieved

by an additional contribution in the weak formulation. In this way, an upwinding pro-

cess is introduced which leads to numerical diffusion essentially in the flow direction,

so as to avoid crosswind diffusion effects for multidimensional flows over non-aligned

meshes. In the section (3.1), we describe general formulation for Galerkin FEM and

VMS based stabilization terms.

The divergence free constrain ∇ · B = 0 is another important factor deciding

the numerical scheme. At the discrete level, the divergence free constrain is not

guaranteed to satisfy and even small errors in∇h·B can cause large errors in numerical

simulations [14, 25]. There are strategies to overcome this difficulty for finite volume

methods as described in [91]. In case of FEM a special space of basis functions to be

satisfied divergence free constrain at discrete level may be used. The vector potential

formulation, as described in Chapter 2, can lead to a MHD system with third order

derivative terms (in reduced MHD models) and the divergence free constraint to be

satisfied becomes:

∇h · (∇h ×A) = 0

Therefore, a design of FEM with at least continuous gradients (C1-continuity) over

the finite elements is desired. In the section (3.2) we describe the construction of

a finite dimensional space for FEM to achieve this goal. In section (3.3), the time

integration method adapted to variable time stepping is described.
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The grid generation for realistic geometries is described in the section (3.4). With

the iso-parametric mapping, the grid and physical variables are interpolated using

the same order of interpolation. This allows us to construct curved finite elements so

that a grid can be aligned to flux surfaces and curved boundaries can be accurately

represented. The issue with grid singularities is then addressed and a strategy is

proposed to cure numerical problems arising at the polar grid center.

3.1 Finite element method and stabilization

3.1.1 Galerkin finite element method

The variational form of the problem (3.2) is obtained by multiplying the strong form

by a test function w∗ (with a certain level of regularity) and integrating over the

domain Ω to write:
∫

Ω

w∗ · R(w) dΩ = 0

Defining the L2 scalar product: (f, g) =
∫

Ω
f · g dΩ, the weak formulation of the

problem can be written as: Find trial functions w ∈ S where

S := {w|w(x, t) ∈ (H(Ω)nv × (0,∞), ∀x ∈ Γp : w(x, 0) = w0}

such that, for all test functions w∗ ∈ V where

V := {w∗|w∗(x) ∈ (H(Ω)nv × (0,∞), ∀x ∈ Γp : w
∗(x) = 0}

the residual evaluated with the trial function is orthogonal to the test function space,

i.e.:

(w∗,R(w))Ω = 0 (3.3)

Galerkin FEM consists of taking a projection of this infinite dimensional (continuous)

weak form to get a finite dimensional (discretized) weak form. The domain Ω is

‘triangulated’ by dividing into finite number of non-overlapping elements Ωe such

that:

Ωh =
⋃

e

Ωe
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Then the discrete weak form becomes: Find trial functions wh ∈ Sh where

Sh := {wh|wh(x, t) ∈ (H(Ω)nv × (0,∞)), ∀x ∈ Γp : wh = w0}

such that, for all test functions w∗
h ∈ Vh where

Vh := {w∗
h|w∗

h(x) ∈ (H(Ω)nv × (0,∞)), ∀x ∈ Γp : w
∗
h = 0}

the residual evaluated with the trial function is orthogonal to the test function space,

i.e.:

(w∗
h,R(wh))Ωh

= 0 (3.4)

The discretized domain Ωh, construction or choice of the space of test functions Vh
and the basis for nodal variables (N ) defines the FEM and the capability of the

method to resolve the scales in the physical problem. Before describing the space of

test functions and basis functions for FEM, we describe the stabilized FEM based on

VMS formulation in the following subsection.

3.1.2 Variable Multi-scale formulation

VMS formulation [18, 53, 51] consists of a decomposition of scales in the problem. The

purpose of scale decomposition can be development of physical/mathematical models,

for example, Reynolds stresses for incompressible flows. Here, we are concerned with

the modeling of unresolved or sub-grid scales, which involves approximations to the

local numerical solution of the problem. We consider the decomposition of the solution

w as large scales (w̄) which are resolved by FEM and fine scales (w′) that FEM can

not capture i.e.

w = w̄ +w′

Test functions w∗ are decomposed in the similar way.

w∗ = w̄∗ +w′∗

The decomposition for the trial and test functions are such that S = S̄ ⊕ S
′ and

V = V̄ ⊕V ′, where S̄ and V̄ are the function spaces for large scales while S′ and V ′

are function spaces for fine scales. Now the weak formulation (3.3) can be re-written

as:

(

(w̄∗ +w′∗),R(w̄ +w′)
)

Ω
= 0
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The orthogonality of the spaces allows us to separate the problem into two different

ones, i.e., the problem for large and fine scales:

∀w̄ ∈ S̄,w′ ∈ S
′, w̄∗ ∈ V̄

(

w̄∗,R(w̄ +w′)
)

Ω
= 0 (3.5)

∀w̄ ∈ S̄,w′ ∈ S
′, w̄′∗ ∈ V

′
(

w′∗,R(w̄ +w′)
)

Ω
= 0 (3.6)

The VMS approach can be used to obtain an equation for large scales alone. The

residual can be approximated as:

R(w̄ +w′) = R(w̄) +L(w̄, ∂)w′

where, L(w̄, ∂)w′ is the effect of unresolved scales and L is the transport operator for

the residual R. Using above expansion into Eq. (3.5), large scale problem becomes:

(w̄∗,R(w̄))Ω + (w̄∗,L(w̄, ∂)w′)Ω = 0

Further, using adjoint duality:

(w̄∗,R(w̄))Ω + (LT (w̄, ∂)w̄∗,w′)Ω = 0

where LT is the adjoint operator of L. Using the decomposition of the residual

R(w̄ +w′) into Eq. (3.6) the problem statement for fine scale is written as:

(w′∗,R(w̄) +L(w̄, ∂)w′)Ω = 0

Since this equation is true for any w′∗, we can write:

R(w̄) +L(w̄, ∂)w′ = 0

which gives the estimation for fine scales:

w′ = −L−1(w̄, ∂) R(w̄)

If L is a linear operator, then it is possible to express L−1 in terms of the Green’s

function for the operator L [52] and the projector operator onto the finite elements

space. Now the VMS formulation can be written in terms of large scales alone:

(w̄∗,R(w̄))Ω − (LT (w̄, ∂)w̄∗,L−1(w̄, ∂) R(w̄))Ω = 0

where LT is the transpose of the operator L. The operator L is not always simple to

invert and may lead to a problem which is more complex than the original problem

and therefore to obtain a tractable and computationally efficient method, the VMS
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formulation relies on approximations for the w′. In practice, algebraic formulations

are used in which the operator L−1 is approximated as intrinsic time-scale matrix T

and hence the approximate estimation of fine scale becomes:

w′ = −T R(w̄)

Using this estimate, the VMS formulation is then written as:

∀w̄∗ ∈ Vh, w̄ ∈ Sh
(

w̄∗, R(w̄)
)

Ω
−
(

LT (w̄, ∂)w̄∗, T R(w̄)
)

Ω
= 0 (3.7)

The first term in above equation comes from FEM while the second term give is

the stabilization scheme for a FEM based on VMS formulation. Many stabilization

approaches can be obtained from the VMS stabilization scheme depending upon the

choice of the stabilization operator, for example, if one chooses the operator L in-

stead of the adjoint LT then streamline-upwind/Petrov-Galerkin (SUPG) scheme is

retrieved.

3.2 Finite Element Method for tokamak modeling

3.2.1 Mixed Bi-cubic Bézier-spectral FEM

Recalling the discrete weak form (3.4): Find wh ∈ Sh such that

(w∗
h, R(wh))Ωh

=

∫

Ωh

w∗
h · R(wh) dΩh = 0 ∀w∗

h ∈ Vh (3.8)

First, the domain Ω needs to be discretized. Geometry of a tokamak device is toroidal

and hence the domain Ω can be decomposed as a poloidal plane (ξ = {R,Z}T ∈ Ωξ)

and the periodic toroidal direction (φ ∈ [0, 2π[) such that Ω = Ωξ × Ωφ. Therefore,

the differential dΩ is written as: dΩ = dΩξ dΩφ = dΩξ dφ. The grid generation in

JOREK, discussed later in detail, is essentially a discretization of 2D poloidal plane

Ωξ into non-overlapping elements Ωe such that:

Ωξh
=
⋃

e

Ωe

In the periodic direction, the grid is realized via Fourier representation. Therefore, the

space Vh is a tensor product of the space of functions in the poloidal plane (Vξ) and

that in the toroidal direction (Vφ). The space Vh is spanned by the basis functions

Vi such that:

Vh = Vξ(Ωξ)× Vφ([0, 2π[) = SPAN{Vi(ξ, φ)}
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where,

Vi(ξ, θ) = Ni2D(ξ) Ciφ(φ)

and the spaces Vξ and Vφ are spanned by the functions Ni2D(ξ) and Ciφ(φ) re-

spectively. The index i is a multi-component index such that i = (i2D, iφ) with

i2D ∈ {1, ..., N2D} and iφ ∈ {1, ..., Nφ} where N2D and Nφ denote the dimensions of

the poloidal and toroidal spaces respectively. A trial function for FEM is then written

as:

wh(ξ, φ, t) =

N2D Nφ
∑

i=1

wi(t) Vi(ξ, φ) =

N2D Nφ
∑

i=1

wi(t) Ni2D(ξ) Ciφ(φ)

where, degrees of freedom wi(t) are function of time t. In Galerkin FEM the trial

and test functions belong to the same space and hence the test functions are written

as:

w∗
h(ξ, φ) =

N2D Nφ
∑

i=1

w∗
i Vi(ξ, φ) =

N2D Nφ
∑

i=1

w∗
i Ni2D(ξ) Ciφ(φ)

Now, the discrete weak form (3.8) is written as:

∫

φ

∫

Ωξh

w∗
i Vi · R

(

∑

j

wj(t) Vj

)

dΩξ dφ = 0 ∀i (3.9)

The basis functions Ni2D are constructed such that continuous representation of a

function wh and their gradients is obtained. From algorithmic implementation point

of view, it is necessary to know what is the form of these functions on any given

element Ωe in Ωξh
and how the restrictions of these functions match across adjacent

elements. The idea is to evaluate the weak form written above for any given element

Ωe and then assemble the contributions of all elements to get the global system of

discrete equations. In order to do so, the ‘finite element’ (Ωe, Q,Σ) is defined [21] as

follows:

1) Ωe is a subdivision of a domain Ωξh
with piecewise smooth boundary and this

sub division is often called as element domain.

2) Q = {B1,B2, ...,Bk} is a finite dimensional space of functions on Ωe and these

functions are called as shape functions or basis functions of the finite element.

3) Σ = {P1, P2, ..., Pk} is a finite set of so called nodal variables such that: Pi(Bj) =
δij.
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There are several choices of finite elements that provide C1 continuity [21, 16]. The

finite element implemented in JOREK [24] uses Bézier basis functions and is described

below:

The finite element in poloidal plane

Let us consider a decomposition of the poloidal domain Ωξ into non-overlapping

quadrangular elements : Ωξ =
⋃

e

Ωe, where ξ = {R,Z}T . In the framework of the

iso-geometrical analysis, we consider that there exists a global, non-singular mapping

between the physical domain Ωξ and the parametric domain Ωζ =
⋃

e

τe, where ζ =

{s, t}T . This global mapping transforms the straight quadrangular element τe to

a curved quadrangular element Ωe in the physical space. Moreover, any element

τe can be mapped by a non-singular transformation to the unit reference square

τ̂(ζ̂) = [0, 1] × [0, 1] , where τ̂ = {ŝ, t̂}T . Elements in all three spaces are sketched

into the figure (3.1).

(a) An element Ωe in Ωξ (b) An element τe in Ωζ

v1 = (0, 0) v2 = (1, 0)

v3 = (1, 1)v4 = (0, 1)

ŝ

t̂

(c) The reference element τ̂

Figure 3.1: (a) A curved element Ωe in physical plane Ωξ is marked by the vertices
g(v1), g(v2), g(v3) and g(v4). (b) An element τe in the parametric plane Ωζ formed
by the same vertices. (c) The unit reference element τ̂ .

The space of bi-cubic polynomials Q3 is considered on τ̂ . The choice of Bernstein

polynomials gives the Bézier basis functions on the reference element τ̂ .

Q3 ≡ SPAN{Bv,d(ŝ, t̂), 1 ≤ v, d ≤ 4}

The basis functions Bv,d in 2D are natural extension of 1D Bernstein polynomials

and are obtained by taking tensor product of 1D Bernstein polynomials in ŝ and

t̂ direction. Using Bézier basis functions, a bicubic Bézier patch on the reference
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element can be represented as:

P (ŝ, t̂) =
4
∑

v=1

4
∑

d=1

P v,d Bv,d(ŝ, t̂), 0 ≤ ŝ, t̂ ≤ 1

In the context of iso-parametric formulation, the grid data and physical variables are

Figure 3.2: A Bézier patch shown in 3D space: The left plot represent the control
points of the patch highlighted in blue color. The red control points define the grid
nodes. The right plot depicts the resulting Bézier surface. The projection of the
surface bounded by red curves at the bottom represents a grid cell in (R,Z) plane.
The elevation represents the spatial distribution of any physical variable. The figure
is taken from [47].

represented by the same basis functions. Hence, the components of the control points

P i,j include poloidal mesh coordinates ξ = {R,Z} as well as variables of PDEs. One

such Bézier patch is shown in the Figure (3.2).

Bézier formulation is a generalization of the Hermite cubic elements such that

it relaxes the strong constraint of the continuity of the local coordinates in each

finite element. As a consequence, the functions and their gradients are continuous

in real (physical) space but not in the parametric coordinates. This generalization

of Hermite elements to bi-cubic Bézier elements is formulated in [24] and can very

briefly be summarized as:

• The adjacent Bézier patches share common control points on the common edge.

This continuity condition is said to be geometric continuity of order zero G0.
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• In addition to above requirement, the order of continuity G1 or ‘tangent plane

condition’ gives continuity of surface gradients. This means that the planes tan-

gent to both surfaces are identical along the edge. This situation is illustrated

in the figure (3.3). The left plots represent the control points of the elements

and the right plots depict the resulting surface. In the plots at the top, the

neighboring Bézier elements share the control points at the common boundary

such that values are continuous across the boundary between the elements (G0

continuity). However, since the control points around the boundary are not

aligned to each other, i.e., green lines exhibit bends, derivatives are not con-

tinuous across the element boundary. The plots at the bottom correspond to

the discretization where both values and derivatives are continuous across the

element boundaries (G1). Here, the control points at the element boundaries

are aligned, i.e., the green lines do not exhibit bends.

Figure 3.3: Two neighboring Bézier elements are shown. The figure is taken from
[47].
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(a) H1,1 (b) H1,2

(c) H1,3 (d) H1,4

Figure 3.4: Bézier basis functions associated with vertex 1 of the reference element
τ̂ . The coordinate (ŝ = 0, t̂ = 0) corresponds to vertex 1.

Moreover, the number of degrees of freedom can also be reduced using G1 continuity

condition. In the figure (3.5), a corner P0,0 is shown where 4 Bézier elements meet.

This corner is associated with 9 control points. Using G1 continuity, it can be shown

that [24], only 4 degrees of freedom are required to determine all 9 control points

associated with this corner P0,0.

In practice, for any element e, the mesh and physical variables can be expanded

in the Bézier basis as:

P (ŝ, t̂)|e =
4
∑

v=1

4
∑

d=1

P g(v),d σ
e
v,d Hv,d(ŝ, t̂)

where, the index v denotes local numbering of vertices of each element and d denotes

the degrees of freedom associated with the each vertex. The index g(v) denotes the

global numbering of the vertex v in the mesh. The scale factors σev,d corresponding

to the same node are different for each element to guarantee the G1 continuity. It

is important to remark here that these scale factors are a geometric property and

68



Figure 3.5: Corner between four Bézier patches with G1 continuity. The figure is
taken from [24].

therefore independent of time and identical for each physical quantity. The presence

of the scale factors σev,d is a consequence of reduction of the number of DoFs to 4

from 9. The basis functions Hv,d(ŝ, t̂) are written in the Table (3.1) and the figure

(3.4) shows plots of the 4 basis functions associated with vertex 1. Each vertex has 4

basis functions associated with it which can be seen in the Table (3.1) and they can

be obtained by substitutions:

• ŝ→ (1− ŝ) =⇒ H2,d(ŝ, t̂) = H1,d(1− ŝ, t̂)

• ŝ→ (1− ŝ) and t̂→ (1− t̂) =⇒ H3,d(ŝ, t̂) = H1,d(1− ŝ, 1− t̂)

• t̂→ (1− t̂) =⇒ H4,d(ŝ, t̂) = H1,d(ŝ, 1− t̂)

The DoFs P g(v),d are written with global index g(v) to emphasis that they are node

properties and they are shared among all elements containing that respective node.

The DoFs P g(v),d associated to any element e are related to the derivatives with

respect to parametric coordinates

ζ = {s, t}T
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as follows,

P g(v),1 → P |g(v) , P g(v),2 →
∂P

∂s

∣

∣

∣

∣

g(v)

, P g(v),3 →
∂P

∂t

∣

∣

∣

∣

g(v)

, P g(v),4 →
∂2P

∂s∂t

∣

∣

∣

∣

g(v)

which again highlights the equivalence between bicubic Bézier and Hermite finite

element.

H1,1 = (1− ŝ)2 (1 + 2ŝ) (1− t̂)2 (1 + 2t̂) H2,1 = ŝ2 (3− 2ŝ) (1− t̂)2 (1 + 2t̂)

H1,2 = 3 ŝ (1− ŝ)2 (1− t̂)2 (1 + 2t̂) H2,2 = 3 ŝ2 (1− ŝ) (1− t̂)2 (1 + 2t̂)

H1,3 = 3 (1 + 2ŝ) (1− ŝ)2 t̂ (1− t̂)2 H2,3 = 3 ŝ2 (3− 2ŝ) t̂ (1− t̂)2

H1,4 = 9 ŝ (1− ŝ)2 t̂ (1− t̂)2 H2,4 = 9 s2 (1− ŝ) t̂ (1− t̂)2

H3,1 = ŝ2 (3− 2ŝ) t̂2 (3− 2t̂) H4,1 = (1− ŝ)2 (1 + 2ŝ) t̂2(3− 2t̂)

H3,2 = 3 ŝ2 (1− ŝ) t̂2 (3− 2t̂) H4,2 = 3 (1− ŝ)2 ŝ t̂2 (3− 2t̂)

H3,3 = 3 ŝ2 (3− 2ŝ) t̂2 (1− t̂) H4,3 = 3 (1− ŝ)2 (1 + 2ŝ) t̂2 (1− t̂)

H3,4 = 9 ŝ2 (1− ŝ) t̂2 (1− t̂) H4,4 = 9 (1− ŝ)2 ŝ t̂2 (1− t̂)

Table 3.1: Bézier basis functions Hv,d where 1 ≤ v ≤ 4 and 1 ≤ d ≤ 4.

The space Vξ is spanned by the functions Ni2D(ξ) such that the restrictions of

Ni2D(ξ) on an element e, when mapped to the unit reference element, corresponds to

the functions σev,d Hgv,d. The index i2D = (g(v), d) corresponds to four basis functions

that are associated with the vertex g(v) and d = {1, 2, 3, 4}, hence N2D = 4np, where

np is the number of vertices in the grid. Therefore the global basis function Ni2D(ξ)

is written as:

Ni2D(ξ) =
⋃

σev,d Hv,d where, i2D = (g(v), d)

with Hv,d = 0 ∀v if g(v) does not belong to an element e.

The error estimate for bicubic Bézier FEM discussed here is given as [87]:

hp+1−s
e + h2p+2−2m

e

where he is the characteristic length of one element, p is the order of the approximation

functions, s is the order of the derivatives and m denotes the order of the equation to

be solved. For cubic functions and second order elliptic operators like Grad-Shafranov

equations, the error in the solution (H0 norm) scales as h4e while that in the derivative

(H1 norm) scales as h3e. The fourth order convergence obtained for full MHD model

by performing numerical tests on the standard MHD is shown in [74].
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Toroidal basis functions:

The sine and cosine functions are used as the basis functions in the periodic toroidal

direction. Therefore, the approximated space Vφ is spanned by the functions Ciφ :

Vφ([0, 2π[) = SPAN{Ciφ , 1 ≤ iφ ≤ 2nH + 1 = Nφ}

where nH is the number of harmonics and Ciφ are:

Ciφ(φ) =



















1, if iφ = 1, n = 0

cos(nφ), if iφ = 2n, n ∈ 0, 1, ..., nH

sin(nφ), if iφ = 2n+ 1, n ∈ 0, 1, ..., nH

Now, the description of poloidal and toroidal basis functions is completed. The

function wh on any element e is represented as:

wh(ŝ, t̂, φ, t) =

Nφ
∑

iφ=1

4
∑

v=1

4
∑

d=1

wv,d,iφ(t) H
e
v,d(ŝ, t̂) Ciφ(φ)

here t refers to time and for conciseness He(ŝ, t̂) = σv,d Hv,d(ŝ, t̂) . The test function

is represented as:

w∗
h(ŝ, t̂, φ) =

Nφ
∑

iφ=1

4
∑

v=1

4
∑

d=1

w∗
v,d,iφ

He
v,d(ŝ, t̂) Ciφ(φ)

The weak form written in the equation (3.9) can be represented as sum of weak forms

on all elements:

∑

e

∫

φ

∫

τ̂

w∗
v,d,iφ

He
v,d Ciφ · R

(

∑

v′, d′, jφ

wv′,d′,jφ(t) H
e
v′,d′ Cjφ

)

det(J ) dΩτ̂ dφ = 0

(3.10)

∀v, d, iφ and J is the jacobian of transformation from physical coordinates ξ to the

reference coordinates (ŝ, t̂) and is given as:

J =

[

∂ŝR ∂t̂R

∂ŝZ ∂t̂Z

]

Using the weak form (3.10) and the residual of TADR system given by equation (3.2),

computational details of each term are written below. First, the contribution from
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the ‘mass matrix’ term is written as:
∫

φ

∫

τ̂

w∗
v,d,iφ

He
v,d Ciφ ·M (wh)

(

∑

v′, d′, jφ

∂twv′,d′,jφ(t) H
e
v′,d′ Cjφ

)

det(J ) dΩτ̂ dφ

= w∗
v,d,iφ

M e(wh) ∂twv′,d′,jφ(t) ∀v, d, iφ

where the element mass matrix M e(wh) is identified as:

M e
v,d,iφ,v′,d′,jφ

(wh) =

∫

φ

∫

τ̂

He
v,d Ciφ M (wh) H

e
v′,d′ Cjφ det(J ) dΩτ̂ dφ

Now the convective terms are written as:
∫

φ

∫

τ̂

w∗
v,d,iφ

He
v,d Ciφ ·C(wh,∇)

(

∑

v′, d′, jφ

wv′,d′,jφ(t) H
e
v′,d′ Cjφ

)

det(J ) dΩτ̂ dφ

= w∗
v,d,iφ

Ce(wh) wv′,d′,jφ(t) ∀v, d, iφ

The matrix Ce(wh) associated with the convective terms is identified as:

Ce
v,d,iφ,v′,d′,jφ

(wh) =

∫

φ

∫

τ̂

He
v,d Ciφ C(wh) ∂(H

e
v′,d′ Cjφ) det(J ) dΩτ̂ dφ

Note that the convective terms written here contain first derivatives only and hence

are not integrated by parts, see form of the term C(w)∇w at the beginning of the

section. The diffusive terms however are integrated by parts as they contain second

derivatives.
∫

φ

∫

τ̂

w∗
v,d,iφ

He
v,d Ciφ · ∇ ·

[

Γ∇
(

∑

v′, d′, jφ

wv′,d′,jφ(t) H
e
v′,d′ Cjφ

)]

det(J ) dΩτ̂ dφ

= −w∗
i Γ

e
v,d,iφ,v′,d′,jφ

wj +w∗ Γ
e,b
v,d,iφ,v′,d′,jφ

wj ∀v, d, iφ

The matrix Γei,j is identified as:

Γev,d,iφ,v′,d′,jφ(wh) = −
∫

φ

∫

τ̂

∂(He
v,d Ciφ) Γ(wh) ∂(H

e
v′,d′ Cjφ) det(J ) dΩτ̂ dφ

and the second term is a boundary integral coming from integration by parts per-

formed to get rid of second derivatives. This boundary integral is given as:

Γ
e,b
v,d,iφ,v′,d′,jφ

(wh) = −
∫

φ

∫

∂τ̂

He
v,d Ciφ Γ(wh) ∂(H

e
v′,d′ Cjφ) · n̂ det(J ) dS dφ

where, n̂ is the unit normal to the surface S of an element. The second integral

vanishes for internal cells as the unit vectors n̂ will be equal and opposite for neigh-

boring cells and the terms Γ will match on the boundaries. This integral will have

72



non-zero contributions only on the boundaries of the entire domain Ωξ. Finally, the

contribution from the source term is written as:

−
∫

φ

∫

τ̂

w∗
v,d,iφ

He
v,d Ciφ · s(wh) det(J ) dΩτ̂ dφ = −w∗

v,d,iφ
· se(wh) ∀v, d, iφ

and the vector s(wh)
e
i is identified as:

sev,d,iφ(wh) =

∫

φ

∫

τ̂

He
v,d Ciφ s(wh) det(J ) dΩτ̂ dφ

The integrals over unit reference element in above matricesM e
v,d,iφ,v′,d′,jφ

,Ce
v,d,iφ,v′,d′,jφ

,

Γev,d,iφ,v′,d′,jφ and the vector sev,d,iφ are evaluated using Gauss quadrature. The integrals

in the toroidal direction A
e,k,l
iφ,jφ

:

A
e,k,l
iφ,jφ

=

∫ 2π

0

A
e,k,l
v,d,v′,d′(φ) ∂

k
φCiφ ∂

l
φCjφ dφ

where, Ae,k,l
v,d,v′,d′(φ) can be poloidal integrals from any matrix: mass, convective or

diffusive. The index k and l denotes the order of the derivative with respect to φ

and 1 ≤ iφ, jφ ≤ Nφ. These integrals are estimated either by a direct summation

over equidistant toroidal planes or by Discrete Fourier Transform (DFT) using the

input data as Ae,k,l
v,d,v′,d′(φp) where p ∈ {1, ..., Np} and Np denotes number of equidistant

planes in the toroidal direction. The details of DFT implementation can be found in

Appendix B of [23].

3.2.2 Time stepping and matrix solver

The global mass matrix is obtained by adding the entries of all element mass matri-

ces M e
v,d,iφ,v′,d′,jφ

at respective locations depending on the vertices g(v) and g(v′) as

follows:

P =

[

∑

e

M e
v,d,iφ,v′,d′,jφ

]

The global mass matrix P has non zero entries only if g(v) and g(v′) are vertices

of an element e so that the matrix is sparse. The summation on poloidal elements

suggest how the assembling procedure is implemented. Similarly, the other matrices

Ce
v,d,iφ,v′,d′,jφ

, Γev,d,iφ,v′,d′,jφ and the vector sev,d,iφ can be assembled to write the global

system of discrete equations as:

P(W )
∂W

∂t
= Q(W )
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where, W is the vector of DoFs and Q(W ) contains contributions from convective,

diffusive, reactive and source terms. This system of semi discrete equations is dis-

cretized in time using a general implicit two step second order method [9] as:

P(W n)

(

(1 + ξ) W n+1 − (1 + 2ξ) W n + ξ W n−1

)

= ∆tn

(

θ Q(W )n+1 + (1− θ) Q(W )n
)

The term Q(W )n+1 can be linearized by using the approximation:

Q(W )n+1 ≈ Q(W )n +

(

∂Q

∂W

)n

δW n (3.11)

where, δW n = W n+1 −W n. Substituting the approximation of Q(W )n+1, a second

order method is written as:
[

(1 + ξ)P(W n)−∆tnθ

(

∂Q

∂W

)n]

δW n = ∆tnQ(W n) + ξP(W n)δW n−1 (3.12)

The choice of parameters ξ and θ decides the numerical method and its accuracy.

• ξ = 0 and θ = 1 recovers implicit Euler method

• ξ = 0 and θ = 0.5 recovers Crank-Nicholson method

• ξ = 0.5 and θ = 1 recovers second order backward difference (BDF2)

The system of linear equations (3.11) can be represented as a sparse matrix sys-

tem and is solved for δW n using iterative solvers. The solution of the linear system

is then used to update the DoFs at the next time level: W n+1 = W n + δW n and

thereby using the interpolation to determine the variables wh at the next time level.

Several matrix solvers are implemented in JOREK for solving the linear sparse ma-

trix system. For 2D axisymmetric simulations the whole matrix system is treated

by a direct solver and may be solved using interfaces to PaStiX [54] or MUMPS [3]

for direct sparse matrix solvers. PaStiX uses Cholesky method if the matrix is sym-

metric positive-definite or LU decomposition if the matrix is non-symmetric. For the

non-axisymmetric practical simulations, GMRES [31] iterative method is used along

with the physics based preconditioner [47]. The matrix is written into blocks corre-

sponding to the toroidal harmonics. The diagonal blocks describing the interaction

of each harmonic with itself are kept while all off-diagonal blocks are dropped in the

preconditioning. Each block matrix is solved by one or several MPI tasks on one
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or several compute nodes, with the number of cores inside a compute node being

exploited via the built-in thread support of the sparse matrix libraries (pthreads in

case of PaStiX). The detailed aspects of implementations of matrix solvers and their

performance can be found in [47, 71, 48].

3.2.3 Stabilized FEM for full MHD

VMS based stabilization:

In this subsection, VMS based stabilized FEM is applied to the full MHD model

(2.43). The residual for this system in TADR form (3.2) is pre-multiplied by M−1 to

define a new residual R1(w) as:

R1(w) = M−1 R(w) =
∂w

∂t
+A(w)∇w − d1(w)− s1(w) = 0

where, the new convective operator A(w)∇ is written as:

A(w)∇ =













v · ∇ ρ∇· 0 0
T
ρ
∇ v · ∇ ∇ 0

0 (γ − 1)T∇· v · ∇ 0

0 0 0 −v ×∇×













(3.13)

Consequently, the weak form of full MHD model can be re-written in terms of the

new residual R1(w) as:

(w∗, M R1(w))Ω = (v∗, R1(w))Ω = 0

where, v∗ = MTw∗ are the test functions projected with the transpose of the mass

matrix. The VMS approach described in the subsection (3.1.2) can be followed to

write a stabilized FEM as:

(v̄∗, R1(w̄))Ω − (LT
1 (w̄, ∂)v̄

∗, T R1(w̄))Ω′ = 0 (3.14)

where, the second term in above equation provides stabilization and the transport

operator LT
1 (w̄, ∂) is based on the definition of the residual R1(w̄). The symbol

Ω′ =
⋃

Ωe denotes element interiors, since the terms involving integrals over the

element interior boundaries are neglected. Equation (3.14) is the weak form of the full

MHDmodel in vector potential form with stabilization terms based on VMS approach.

From this VMS formulation, it is possible to recover the other stabilization schemes

as special cases like streamwise upwind/Petrov Galerkin (SUPG) and Galerkin least

square (GLS).
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• SUPG: As mentioned before, if one uses operator L instead of its adjoint LT
1

then the SUPG scheme is recovered.

• Additionally, if instead of the residual R1(w̄), the transport operator L is used

then the Galerkin least square method is recovered.

Simplifications of VMS stabilization used in this work are as follows:

1) Instead of the residual R1(w̄), an approximated residual is used in the equation

(3.14) such that:

R1(w̄) ≈ A(w)∇w − S

where, in time marching S is approximated as S = A(w)∇wn. This accounts

to the following stabilization scheme as:

(v̄∗, R1(w̄))Ω −
(

[A(w̄, ∂)]T v̄∗, T A(w)∇(w −wn)
)

Ω′ = 0 (3.15)

Therefore, this scheme involves the stabilization terms only in the implicit part

of the discrete system.

2) Another simplification used involves the use of only convective terms A(w)∇w

in the definition of R1 and the adjoint operator based on convective terms

LT
1 (w̄, ∂). Then the equation (3.14) gives the stabilization scheme as follows:

(v̄∗, R1(w̄))Ω −
(

[A(w)∇]T v̄∗, T A(w)∇w

)

Ω′

= 0 (3.16)

The convective operator is given by the equation (3.13). The stabilization

scheme can be further specialized to focus upon convective Ac∇ and acous-

tic Aa∇ part separately. Each of this part is written as:

Ac∇ =



























v · ∇ 0 0 0

0 v · ∇ ∇ 0

0 0 v · ∇ 0

0 0 0 −v ×∇×



























; Aa∇ =



























0 ρ∇· 0 0

T
ρ
∇ 0 ∇ 0

0 (γ − 1)T∇· 0 0

0 0 0 0


























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Determining the stabilization coefficient matrix T is usually a more difficult task than

the original problem itself and is a active area of research. Usually this matrix is either

given heuristic arguments or simplified analysis [90]. The stabilization coefficient

matrix is simply chosen here as T = T I where T is a time scale to guarantee the

consistency of the formulation and is written as:

T = kc
he
λmax

I (3.17)

where, he is the element size, λmax is the maximum of fastest characteristic speed

over an element and kc is the small real number to be set to control the amount of

stabilization added.

In additions to VMS based stabilization, shock capturing and fourth order stabi-

lization terms are also added in the FEM and are described as follows:

Shock capturing stabilization:

While VMS stabilization provides L2 stability, it is useful to have a mechanism for BV

stability as MHD equations can admit discontinuous solutions [34, 88, 95]. A pres-

ence of discontinuities or shocks can give rise to oscillations in the numerical solution

around the region of discontinuity and can affect the accuracy and stability of a nu-

merical method adversely. The shock-capturing stabilization term introduces artificial

viscosity to be added only in the regions surrounding shocks/discontinuities. These

stabilization terms can also be added in a certain direction giving rise to anisotropic

stabilization terms. The isotropic stabilization terms can be written as:

disc =
∑

e

∫

Ωe

∇w∗ : (T SC ∇wh) dΩe

and anisotropic stabilization terms can be written as:

dasc =
∑

e

∫

Ωe

(b · ∇w∗) :
(

T SC (b · ∇wh)
)

dΩe

where, the vector b denotes the direction of which the stabilization is to be added.

In case of a strongly magnetized plasma, this direction may be the direction of the

magnetic field. Many choices are available for stabilization matrix T SC as can be seen

in [88, 7, 34]. In this work a simplified choice for the stabilization coefficient matrix

is used as:

T SC = kSC I
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where, kSC is the shock sensor. Many choices can be found in literature to determine

this term [88]. A simplistic choice of h |∇p/p| maybe used as a criteria for the

detection of discontinuities.

Fourth order diffusion terms:

The fourth order stabilization terms are effective in removing very high oscillations

from the numerical solution as it damps high wave numbers quickly. The fourth order

stabilization terms is written in weak form as:

d4 =
∑

e

kc

∫

Ωe

∇2w∗ · ∇2wh dΩe

where kc is a small real number to be specified to control the amount of the stabiliza-

tion.

3.3 Time integration method with variable time

step

The second order implicit method is already described in section 3.2.2, however it

uses a constant time stepping. Often it is the case in a non-linear phase of MHD

simulations that a time step needs to be reduced as the time scale of MHD dynamics

reduces. Across a jump in the time step, the constant time stepping time integra-

tion method becomes inconsistent. In this section, we derive the second order time

integration method for variable time stepping.

The derivation of a two step method for first order ordinary differential equation

(ODE), that allows variable time steps, is presented first. Let us consider an initial

value problem given by a first order ODE:

du

dt
= f(u, t), u(t = 0) = u0

for which a two step difference method is to be derived. Following the procedure in

[9], the difference equation for the approximation of a first order ODE is written as

follows:

ρ(E) un = ∆t σ(E)fn
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where, ρ(E) and σ(E) denote the generating polynomials and E is the shifting op-

erator in time such that E(un) = un+1 = u(t + ∆t). The generating polynomial

ρ(E) takes the form: ρ(E) =
2
∑

j=0

αjEj and the second generating polynomial σ(E)

takes the form σ(E) =
2
∑

j=0

βjEj. Using the forms of two generating polynomials, the

difference equation for a two step method can be written as:

α2u
n+2 + α1u

n+1 + α0u
n = ∆t

(

β2f
n+2 + β1f

n+1 + β0f
n

)

Let us assume that the time discretization allows unequal intervals and the time step

is given by ∆tn = tn+1 − tn. Therefore, a two step method becomes:

α2u
n+2 + α1u

n+1 + α0u
n = ∆tn+1

(

β2f
n+2 + β1f

n+1 + β0f
n

)

(3.18)

Using Taylor’s series for unequal intervals, un+2 and un+1 can be approximated as:

un+2 ≈ un + sn
du

dt

∣

∣

∣

∣

n

+
s2n
2!

du2

dt2

∣

∣

∣

∣

n

un+1 ≈ un +∆tn
du

dt

∣

∣

∣

∣

n

+
∆t2n
2!

du2

dt2

∣

∣

∣

∣

n

where, sn = ∆tn +∆tn+1 is the sum of two successive time steps. These expansions

can be put into Eq. (3.18) and the coefficients of the first three terms can be equated

in order to get a second order method as:

α2 + α1 + α0 = 0

α2(1 + rn) + α1rn =

(

β2 + β1 + β0

)

= 1

α2(1 + r2n) + α1r
2
n = 2

(

β2(1 + rn) + β1rn

)

where, rn = ∆tn
∆tn+1

denotes the ratio of successive time steps. The first relation is the

consistency condition. Since we have 3 equations in 6 unknowns, some of the variables

may be set free. Letting α0 = ξ gives α1 = −ξ − α2 from the consistency condition.

Then, using the second relation in terms of αj it is easy to see that α2 = 1 + ξrn.

α1 = −(1 + ξ(1 + rn)) and α2 = 1 + ξrn

By letting β2 = θ, the second relation in terms of βj gives β1 = 1 − θ − β0. Finally,

by putting all these expressions in the third relation and after some simplification,

we get:

β0 =
θ

rn
+ 1− (1 + ξrn)(1 + rn)

2

2rn
+

(1 + ξ(1 + rn))rn
2
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The above relation needs to be satisfied for the resulting method to be second order

accurate. Further, letting β0 = 0 gives:

ξ =
2θ − 1

rn(1 + rn)

Putting the expressions for all coefficients into Eq. (3.18), a consistent two-step

method for variable time-step can be written as:

(1 + rnξ) u
n+2 − [1 + ξ(1 + rn)] u

n+1 + ξ un = ∆tn+1

(

θ fn+2 + (1− θ) fn+1

)

(3.19)

where,

ξ =
2θ − 1

rn(1 + rn)
and rn =

∆tn
∆tn+1

It can be readily verified that, for a constant time stepping ∆t = ∆tn, the ratio

rn becomes 1 and the second order method for constant time stepping is recovered,

where the requirement for second order accuracy reduces to:

ξ = θ − 1

2

Further, θ = 1
2
gives the Crank-Nicholson method and θ = 1 given classical Gears

(BDF2) method for constant time stepping. The stability of this method can be

investigated for a constant time stepping scheme using a model problem u̇ = f(u, t) =

λ u with the exact solution u(t) ∝ eλ t, where λ is a complex number. Dividing the

equation (3.19) by un+1:

(1 + ξ)
un+2

un+1
− (1 + 2ξ) + ξ

un

un+1
= λ∆t

(

θ
un+2

un+1
+ (1− θ)

)

The ratio of numerical solutions at two time steps un+2/un+1 and un+1/un denote

the ‘growth’ in the solution and are called as amplification factor G. Further, the

difference equation becomes:

(1 + ξ − λ∆tθ) G2 −
(

1 + 2ξ + λ∆t (1− θ)
)

G+ ξ = 0

which can be solved for the roots of G:

G1,2 =
−b±

√
b2 − 4ac

2a
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where,

a = (1 + ξ − λ∆tθ), b = −
(

1 + 2ξ + λ∆t (1− θ)
)

, c = ξ

For a stable scheme, |G| ≤ 1 when Re(λ) < 0 and it is shown in [9] that the condition

holds if 1 ≤ 2θ and −1 ≤ 2ξ ≤ 2θ−1. The convergence of the methods (with constant

time stepping) is shown by numerically solving a simple ODE:

du

dt
= −u, u(t = 0) = 1

the exact solution for which is uexact = e−t. The errors abs(u − uexact) are plotted

for series of time steps ∆t in Figure (3.6) and they show that implicit Euler method

shows first order convergence while Crank-Nicholson and BDF2 show second order

convergence. From the equation (3.19) it can be seen that for BDF knowledge of

the solution at n − 1-th time level is needed as ξ is non-zero and hence at the first

step it has to be started with a two time level method. Figure (3.6) also shows the

advantage of starting the computations with Crank-Nicholson over implicit Euler.

It can be seen that for a variable time step method the stability analysis is not

straight forward. It depends upon the equation to be solved as well as ratio of the

time steps [10, 27, 63]. In [72] it is shown that the variable time step BDF2 method

can generate large errors if started with BDF1 even if the initial time step is small

and it is recommended to start BDF2 with the self-starting second-order implicit

Runge-Kutta method in order to guarantee the second order convergence.

The method can be applied in a straight-forward manner to a system of PDEs

given by:

∂A(u)

∂t
= B(t,u)

whereA(u) andB(t,u) are the vectors of dimension equal to the number of variables.

The second order method for the system of PDE is then written as:

(1 + rnξ) A(u)n+1 − [1 + ξ(1 + rn)] A(u)n + ξ A(u)n−1

= ∆tn

(

θ B(u)n+1 + (1− θ) B(u)n
)
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Figure 3.6: Convergence of time integration methods shown by plotting absolute
value of the error computed for a series of time steps ∆t. Implicit Euler (IE) shows
first order convergence, Crank-Nicholson (CE) and second order back-word difference
(BDF2) show second order convergence. Since knowledge of n − 1-th time level is
needed for BDF2, at the first time step the simulation maybe started with either IE
or CN. Starting a simulation with CN shows advantage as the errors in this case are
lower.

where, rn = ∆tn−1

∆tn
. Above system of equations can be linearized by using the approx-

imations:

A(u)n+1 ≈ A(u)n +

(

∂A

∂u

)n

δun

A(u)n−1 ≈ A(u)n −
(

∂A

∂u

)n

δun−1

B(u)n+1 ≈ B(u)n +

(

∂B

∂u

)n

δun

where, δun = un+1 − un. After linearization, the second order method is written as:
[

(1 + rnξ)

(

∂A

∂u

)n

−∆tnθ

(

∂B

∂u

)n]

δun = ∆tnB(u)n + ξ

(

∂A

∂u

)n

δun−1 (3.20)

with

ξ =
2θ − 1

rn(1 + rn)
and rn =

∆tn−1

∆tn
(3.21)
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Finally, it is the choice of θ that will specify the second order method. θ = 1
2
gives the

analogue for Crank-Nicholson method and θ = 1 gives the analogue for Gears method

for variable time stepping. The equivalence between the form of equation (3.12) and

(3.21) suggest that the implementation of the second order time integration method

with variable time step involves only redefinition of ξ and making use of the ratio

rn in the formula. In this work simulations mostly use constant time stepping and

the variable time step method is active only when there is a jump in the time step.

However, the method can also be used if the time step is to be determined by Courant

condition and the successive time steps can be different.

3.4 Grid generation

As mentioned before, grid generation involves building 2D grids in a poloidal plane as

Fourier representation is used in toroidal direction. In recent developments, building

3D grid is also a possibility [47], however we focus our attention on 2D grids in poloidal

planes for this study. The poloidal domain Ωξ is discretized into quadrangular cells

Ωe (also referred as element). We recall that JOREK uses iso-parametric mapping,

i.e., the same mapping is used for the geometry and the physical unknowns. The

isoparametric mapping allows accurate alignment of finite elements to the magnetic

flux surfaces and hence curved elements can be constructed. This strategy is similar

to isoparametric Hermite elements but gives more flexibility with the grid generation

with the possibility of refinement [24].

Recalling the definition of the finite element, the description of a grid for any

element e can be written as:

ξ(ŝ, t̂)|e =
4
∑

v=1

4
∑

d=1

ξev,d Hv,d(ŝ, t̂) =
4
∑

v=1

4
∑

d=1

ξg(v),d σ
e
v,d Hv,d(ŝ, t̂)

The relation between the ‘local’ (ξev,d) and ‘global’ (ξg(v),d) DoFs can be interpreted

in a following way:

ξev,d =
∂ξ

∂ζ

∂ζ

∂ζ̂

∣

∣

∣

∣

e

= ξg(v),d σ
e
v,d

where,

σev,d =
∂ζ

∂ζ̂

∣

∣

∣

∣

e
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such that s = s(ŝ) and t = t(t̂). The grid data or DoFs of a grid along with the scale

factors σev,d are known to FEM solver and are computed as a part of grid generation.

The DoFs of a grid are associated to the grid vertices so that advantages of compressed

numerical graph and block formulation can be taken for computational efficiency

purposes [47]. DoFs for the grid are written as:

ξg(v),1 = ξ|g(v) ; ξg(v),2 =
∂ξ

∂s

∣

∣

∣

∣

g(v)

; ξg(v),3 =
∂ξ

∂t

∣

∣

∣

∣

g(v)

; ξg(v),4 =
∂2ξ

∂s∂t

∣

∣

∣

∣

g(v)

(3.22)

while the scale factors are written as:

σev,1 = 1 ; σev,2 =
∂s

∂ŝ

∣

∣

∣

∣

e

v

; σev,3 =
∂t

∂t̂

∣

∣

∣

∣

e

v

; σev,4 =
∂s

∂ŝ

∣

∣

∣

∣

e
∂t

∂t̂

∣

∣

∣

∣

e

v

(3.23)

Following, we describe briefly few types of grids those can be generated in JOREK

and are relevant for this study.

3.4.1 Rectangular grids

For a rectangular grid, let NR and NZ be the number of points in R and Z directions

respectively. The poloidal plane is represented by ξ = ξ(ζ) = ξo + ∆ξ ζ where ξ is

the linear functions of s and t such that the vertices of a grid can be represented as:

ξi,j =

(

Ri

Zj

)

=

(

Ro

Zo

)

+

(

(R−Ro)si

(Z − Zo)tj

)

1 ≤ i ≤ NR, 1 ≤ j ≤ NZ

Then, the DoFs and scale factors are given by relations (3.22) and (3.23) respectively.

3.4.2 Polar grids

For a polar grid, let NR and Nθ be the number of points in the radial and poloidal di-

rection respectively. The parametric domain, in this case, is denoted by ζ = {r, θ}T ,
where r =

√

(R−Ro)2 + (Z − Zo)2 and θ = tan−1(−Z/R). The domain is repre-

sented as ξ = ξo + ξ(ζ(τ̂ )) such that each point of a polar grid is given by:

ξi =

(

Ro

Zo

)

+

(

ri cos θj

ri sin θj

)
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Let the radius r and angle θ be smooth functions: r = f(s) and θ = θ(t). Then the

data required for Bézier representation becomes:

ξg(v),1 = f(s)

(

cos θ

sin θ

)

∂ξ

∂s

∣

∣

∣

∣

g(v),2

= f ′(s)

(

cos θ

sin θ

)

∂ξ

∂t

∣

∣

∣

∣

g(v),3

= f(s) θ′(t)

(

− sin θ

cos θ

)

∂2ξ

∂s∂t

∣

∣

∣

∣

g(v),4

= f ′(s) θ′(t)

(

− sin θ

cos θ

)

Polar grids represented by this Bézier formulation give a quite good accuracy and

tt is also possible to build a non-circular polar grids based on Soloviev equilibrium

[24]. For such grids ζ = {r(s, t), θ(t)}T where r =
√

(R−Ro)2 + (Z − Zo)2. The

boundary of the grid corresponds to ψ = 0 and can be specified in terms of the

ellipticity, quadrangularity and triangularity as follows:

R = cos(θ + Tu sin θ +Qu sin(2θ)), 0 ≤ θ < π

= cos(θ + Tl sin θ +Ql sin(2θ)), π ≤ θ < 2π

Z = E sin θ

where, Tu, Tl are upper and lower triangularities respectively, Qu and Ql are upper

and lower quadrangularities respectively and E is the ellipticity. The grid data for

Bézier representation of such a grid can be computed in a similar way as described

above for a circular grid. Polar grids described in this subsection can be used to

solve Grad-Shafranov equation and then to simulate MHD flows. The grids shown in

Figure (3.7a) and (3.7b) show examples of circular and non-circular grids respectively.

3.4.3 Flux-aligned grids

A grid that is aligned to the magnetic flux ψ can be constructed for MHD simulations.

To build a flux aligned grid, first Grad-Shafranov equation (2.35) needs to be solved

on a polar grids to obtain poloidal magnetic flux ψ(ξ). If the ψ field does not have

a X-point, then generation of new flux-aligned grid is similar to that of polar grids
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(a) Circular polar grid (b) Non circular polar grid

(c) Flux aligned polar grid
(d) Flux aligned grid with one
X-point

Figure 3.7: Polar grids generated in JOREK. First row shows circular and noncircular
polar grids on which Grad-Shafranov equation is solved for poloidal magnetic flux (ψ).
Second row shows grids aligned to the flux surfaces in red color plotted on the top of
previous grids.

described before, except that the parametric domain is now: ζ = {ψ(s), θ(t)}T . The
poloidal domain is represented by ξ = ξo + ξ(ζ(τ̂ )) such that each point of a flux

aligned grid is given by:

ξi =

(

Ro

Zo

)

+

(

R(ψi, θj)

Z(ψi, θj)

)
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Flux surfaces ψi are distributed between a flux surface at the magnetic axis ψa and a

suitable last flux surface ψx. The grid data is then written as:

ξg(v),1 = ξ|g(v)

ξg(v),2 =
∂ξ

∂ψ

∂ψ

∂s

∣

∣

∣

∣

g(v)

ξg(v),3 =
∂ξ

∂θ

∂θ

∂t

∣

∣

∣

∣

g(v)

ξg(v),4 =
∂2ξ

∂ψ∂θ

∂ψ

∂s

∂θ

∂t

∣

∣

∣

∣

g(v)

where, the data ∂ξ
∂ψ
, ∂ξ
∂θ

and ∂2ξ
∂ψ∂θ

is determined from the jacobian of the coordinate

transformation between ξ and ζ. An example of a polar flux aligned grid is shown in

Figure (3.7c).

3.4.4 Flux-aligned grids with X-points

If ψ field contains X-points, then the domain is decomposed into several sub-domains

and the meshing of each sub-domain is preformed step by step. In this case, ψ-

isosurfaces for X-points play an important role to identify sub-domains. For simplicity

of description, we focus upon the procedure for grid generation with one X-point only.

The grid center is marked by the position of magnetic axis ξa where ψ = ψa has an

extremum. The separatrix is also identified as the iso-surface ψ = ψx which separates

the closed field lines (inside the core region) and open field lines. The X-point on

the separatrix is marked by the position ξx. The iso-surface associated with the X-

point (the separatrix) crosses the divertor plates at two different points ξlx and ξrx as

shown in Figure (3.8b), where superscripts l and r are denote the left and right leg

of tokamak device. The separatrix can be decomposed into three parts: the curves

S(ξlx, ξx) and S(ξrx, ξx) and the remaining part that can be thought as a closed curve

S(ξx, ξx). The value ψb > ψx is chosen such that the iso-surface for ψb is a smooth

curve S(ξlb, ξrb) where ξlb and ξrb denote the locations on the divertor plates as shown

in Figure (3.8a). This surface is a last open flux surface and forms the part of the

boundary of the domain. Similarly, the value ψp < ψx is chosen such that the iso-

surface for ψp is a smooth curve S(ξlp, ξrp) where ξlp and ξrp also denote the locations

on the divertor plates as shown in Figure 3.8b. The divertor plates are defined by the

curves S(ξlb, ξlx), S(ξlx, ξlp), S(ξrp, ξrx) and S(ξrx, ξrb) those form part of the boundaries

which are not flux aligned.
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ξa

ξx

S(ξx, ξx)

(a) Flux-aligned grid with one X-
point (b) Zoomed view of flux aligned grid

ξx

ξlb ξrb
ξlx ξrx

ξlp ξrp

S(ξlb, ξrb)

S(ξx, ξx)

S(ξx, ξlx) S(ξx, ξrx)

Figure 3.8: Flux aligned grid generated in JOREK with one X-point. The magnetic
axis and X-point are marked by ξa and ξx. The red curve in a) denotes the separatrix.
The left divertor cuts the last open field line, separatrix and end of private region at
ξlb, ξ

l
x and ξlp respectively. Similarly, the right divertor cuts the last open field line,

separatrix and end of private region at ξlr, ξ
r
x and ξrp respectively. The separatrix

constitutes three curves: the curve that closes on X-point (S(ξx, ξx)), the curves
joining X-point with left (S(ξx, ξlx)) and right legs (S(ξx, ξrx)). Other strategic curve
are: S(ξlb, ξrb), S(ξlb, ξlx), S(ξrb, ξrx), S(ξlx, ξlp) and S(ξrx, ξrp).

Marking above points and curves now allow the domain to decompose into three

distinct sub-domains: core region Ωc, scrape-off layer (SOL) Ωs and private region

Ωp. The SOL is formed by ψ > ψx while private region is formed by ψ < ψx. The

boundary of entire domain ∂Ω is formed by several parts as follows:

∂Ω = S(ξlx, ξlb) ∪ S(ξlb, ξrb) ∪ S(ξrb, ξrx) ∪ S(ξrx, ξrp) ∪ S(ξrp, ξlp) ∪ S(ξlp, ξlx)

To construct a flux-aligned grid, the radial discretization is done by simply taking

a chosen set of flux contours, both inside and outside the separatrix. The poloidal

discretization is done in several steps. The poloidal plane is separated into two parts
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by a line from the X-point. The upper part is composed of the sub-domains with

both closed and open flux surfaces. The sub-domain inside the separatrix is meshed

as a polar grid by taking straight lines from the magnetic axis out to the separatrix.

The lower part of the grid, below the X-point, is separated into two regions from SOL

and the private region. The meshing of these parts and the SOL region from upper

part is done in straight-forward way, i.e., by curved mapping on real domain from

rectangular parametric domains. A flux aligned grid with one X-point is shown in

Figure (3.7d) using red color.

3.4.5 Grid singularities:

In the FEM described above, continuity of functions and their gradients is achieved

on the account of certain conditions satisfied when 4 elements share a common vertex

as shown in Figure (3.5). At any such vertex, the unit vectors of ∂ξ
∂ŝ
, ∂ξ
∂t̂

and ∂2ξ

∂ŝ∂t̂
form

a frame associated to each of four elements. Figure (3.9) shows frames drawn with

the unit vectors of ∂ξ
∂ŝ

(red arrows) and ∂ξ

∂t̂
(blue arrows) at a vertex associated to one

of the element. It is clear that reversing the signs of these unit vectors one by one

will give the frames associated with other 3 elements shared by a vertex. However,

such a pattern of frames is not possible at the grid center of a polar grid and at the

X-point as shown in Figures (3.9a) and (3.9b) respectively, highlighting the points of

concern.

(a) Vectors at polar grid center (b) Vectors at X-point

Figure 3.9: Grid singularities
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In practice there may be vertices in the grid where number of elements sharing

a vertex may be different than 4, for example the vertex denoting the location of

the X-point, where 8 elements meet together as shown in Figure (3.8b) and (3.9b).

Therefore, continuity of the gradients is not guaranteed at such points and the ac-

curacy of the finite element method may be degraded. Moreover, the mapping from

physical domain to parametric domain is assumed non-singular, a condition which is

not satisfied at the polar grid center. At the polar grid center each element has one

edge on the grid axis that collapses to a single vertex and as a consequence many

elements meet at the same vertex. Precisely, the number of vertices that meet at the

polar grid center is equal to the number of elements Nθ in the θ direction. Therefore,

the number of DoFs at the polar grid center is 4Nθ, instead of 4, resulting in an

over determined system. The global basis functions Vi2D are plotted at the polar grid

center and shown in Figure (3.11 (a)-(d)). It can be seen that the 3rd and 4rth basis

functions are oscillatory across elements and are not continuous at the grid center.

Such a basis can be a source of numerical instabilities and sometimes cause simula-

tions to crash. A strategy developed to treat such singular points is presented in this

section.

A situation is depicted in Figure (3.10a) where a curved element falls on the polar

grid center as radius r → ǫ where ǫ is a small real number. The edge of a curved

element, joining vertex v1 and v4, falls on the grid center (although in practice it can

be any edge). This edge when mapped onto the unit reference element denotes the

line ŝ = 0. Therefore, we focus on the representations of a grid and interpolation of

a function at ŝ = 0.

Theorem 1: The entire curve ξ(ŝ = 0, t̂) will asymptotically collapse to a single

point ξ∗ as ǫ→ 0, if and only if

ξg(1),1 = ξg(4),1 = ξ∗; ξg(1),3 σ
3
1,3 = ξg(4),3σ

3
4,3 = 0

As a consequence we asymptotically have

∂ξ

∂t̂
(t̂) = 0 ∀t ∈ [0, 1]

Proof: By looking at the interpolation for ŝ = 0:

ξ(ŝ = 0, t̂) =
4
∑

v=1

4
∑

d=1

ξg(v),d σ
e
v,d Hv,d(ŝ = 0, t̂)

following relations can be written:

ξ(t̂) = ξg(1),1 H1,1(t̂) + ξg(1),3 σ
e
1,3 H1,3(t̂) + ξg(4),1 H4,1(t̂) + ξg(4),3 σ

e
4,3 H4,3(t̂)

90



g(v1)

g(v2)

g(v3)

g(v4)

r = ǫ

t̂ = 0

t̂ = 1

ŝ = 0 ŝ = 1

(a) Curved element

v1 = (0, 0) v2 = (1, 0)

v3 = (1, 1)v4 = (0, 1)

ŝ

t̂

(b) Reference element

Figure 3.10: An element on the polar grid center. A typical situation where the edge
of an element on the axis is formed by vertex v1 and v4 falls on the polar grid center
which in the reference element forms the edge ŝ = 0.

It is easy to see that H1,1(t̂) and H4,1(t̂) form partition of unity : H1,1(t̂) +H4,1(t̂) =

1 ∀t̂ ∈ [0, 1]. Therefore, we can rewrite the above relations as:

ξ(t̂) = ξ∗ + (ξg(1),1 − ξ∗) H1,1(t̂) + ξg(1),3 σ
e
1,3 H1,3(t̂)

+ (ξg(4),1 − ξ∗) H4,1(t̂) + ξg(4),3 σ
e
4,3 H4,3(t̂)

where, ξ∗ is the coordinates of the grid center and σe1,1 = σe4,1 = 1 by the construction

of a grid. Since, the entire curve asymptotically falls on the single point ξ∗, it follows

that:

• ξg(1),1 → ξ∗ and ξg(4),1 → ξ∗

• ξg(1),3 → 0 and ξg(4),3 → 0 (since σe1,3 6= 0 and σe4,3 6= 0)

Now, let us look at the t̂ derivative at ŝ = 0:

∂ξ

∂t̂
(t̂) = ξg(1),1

∂H1,1

∂t̂
(t̂) + ξg(1),3 σ

e
1,3

∂H1,3

∂t̂
(t̂) + ξg(4),1

∂H4,3

∂t̂
(t̂) + ξg(4),3 σ

e
4,3

∂H4,3

∂t̂
(t̂)

Using the deduction from ξ(0, t̂) and ∂H1,1

∂t̂
(ŝ = 0, t̂) + ∂H4,1

∂t̂
(ŝ = 0, t̂) = 0, it can be

further deduced that:

∂ξ

∂t̂
(ŝ = 0, t̂) = 0
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This completes the proof of the theorem. The condition ∂t̂ξ = 0 plays an important

part in achieving the continuity of gradients at the grid center.

Lemma 1: As the entire curve ξ(ŝ = 0, t̂) asymptotically collapses to the single

point ξ∗, the DoFs ξg(v),2 and ξg(v),4 at the grid center can be written in terms of only
∂ξ
∂ŝ

and ∂2ξ

∂ŝ∂t̂
.

Proof: Let us look at ŝ and mixed derivative of ξ at ŝ = 0:

∂ξ

∂ŝ
(t̂) = ξg(1),2 σ

e
1,2

∂H1,2

∂ŝ
(t̂) + ξg(1),4 σ

e
1,4

∂H1,4

∂ŝ
(t̂)

+ ξg(4),2 σ
e
4,2

∂H4,2

∂ŝ
(t̂) + ξg(4),4 σ

e
4,4

∂H4,4

∂ŝ
(0, t̂)

∂2ξ

∂ŝ∂t̂
(t̂) = ξg(1),2 σ

e
1,2

∂2H1,2

∂ŝ∂t̂
(t̂) + ξg(1),4 σ

e
1,4

∂2H1,4

∂ŝ∂ŝ
(t̂)

+ ξg(4),2 σ
e
4,2

∂2H4,2

∂ŝ∂t̂
(t̂) + ξg(4),4 σ

e
4,4

∂2H4,4

∂ŝ∂t̂
(t̂)

Since, the curve ŝ = 0 collapses to a single point ξ∗, we can write ξg(1),2 = ξg(4),2 = ξ∗,2

and ξg(1),4 = ξg(4),4 = ξ∗,4. Therefore, above relations can be written as:

[

∂ξ
∂ŝ
(t̂)

∂2ξ

∂ŝ∂t̂
(t̂)

]

ŝ=0

=

[

σe1,2
∂H1,2

∂ŝ
+ σe4,2

∂H4,2

∂ŝ
σe1,4

∂H1,4

∂ŝ
+ σe4,4

∂H4,4

∂ŝ

σe1,2
∂2H1,2

∂ŝ∂t̂
(t̂) + σe4,2

∂2H4,2

∂ŝ∂t̂
σe1,4

∂2H1,4

∂ŝ∂ŝ
+ σe4,4

∂2H4,4

∂ŝ∂t̂

]

ŝ=0

[

ξg(∗),2

ξg(∗),4

]

Alternatively, rewriting the inverse equations:

[

ξg(∗),2

ξg(∗),4

]

=

[

σe1,2
∂H1,2

∂ŝ
+ σe4,2

∂H4,2

∂ŝ
σe1,4

∂H1,4

∂ŝ
+ σe4,4

∂H4,4

∂ŝ

σe1,2
∂2H1,2

∂ŝ∂t̂
(t̂) + σe4,2

∂2H4,2

∂ŝ∂t̂
σe1,4

∂2H1,4

∂ŝ∂ŝ
+ σe4,4

∂2H4,4

∂ŝ∂t̂

]−1

ŝ=0

[

∂ξ
∂ŝ
∂2ξ

∂ŝ∂t̂

]

ŝ=0

Hence it can be seen that at ŝ = 0, 2nd and 4rth DoFs can be written only in terms

of ŝ derivatives and mixed derivatives.

Before we look the interpolation of any scalar function W (ŝ, t̂) at ŝ = 0, we note

the following relations between DoFs and alternate DoFs:

Wg(v),1 = W(g(v))

Wg(v),2 =
∂W

∂ŝ
= ∇ξW · ∂ξ

∂ŝ

Wg(v),3 =
∂W

∂t̂
= ∇ξW · ∂ξ

∂t̂

Wg(v),4 =
∂2W
∂ŝ∂t̂

= ∇ξW · ∂
2ξ

∂ŝ∂t̂
+Hξ(W) :

(

∂ξ

∂ŝ
⊗ ∂ξ

∂t̂

)

(3.24)
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(a) 1st (b) 2nd

(c) 3rd (d) 4rth

Figure 3.11: Basis function plotted at the polar grid center. The third and fourth
basis functions are oscillatory in the θ direction and are not continuous at the grid
center.

where, W (τ̃) = W(ξ) is the function in the physical space and Hξ(W) is a Hessian

matrix for W with respect to ξ given by:

Hξ(W) =

[

∂RRW ∂RZW
∂RZW ∂ZZW

]

These relations imply that bicubic Bézier FEM can be written alternatively in terms

six DoFs: W , ∇ξW , Hξ(W) those corresponds to derivatives in the physical space

ξ.

Theorem 2: If the entire curve ξ(ŝ = 0, t̂) asymptotically collapse to a single

point ξ∗ as ǫ→ 0, then for a scalar function W one gets:

Wg(1),1 = Wg(4),1 = W∗; Wg(1),3 σ
3
1,3 = Wg(4),3 σ

3
4,3 = 0
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where, W∗ is the value of the function W at the polar grid center. As a consequence

we asymptotically have

∂W

∂t̂
(t̂) = 0 ∀t̂ ∈ [0, 1]

This theorem can be proved similar to Theorem 1.

Theorem 3: Assuming that the edge formed by vertices v = 1 and v = 4 of an

element lies on the polar grid center, the interpolation of a function W in the element

on the grid center is given by:

W (ŝ, t̂) =
3
∑

v=2

4
∑

d=1

Wg(v),d σ
e
v,d Bv,d(ŝ, t̂) +

4
∑

d=1

Wg(1),d N
e
1,d +

4
∑

d=1

Wg(4),d N
e
4,d

where, N e
v,d are given by the equation (3.25).

Proof: Looking at the equations (3.24) at ŝ = 0 for vertex v = 1 and v = 4:

Wg(v),1 = W(g(v))

∣

∣

∣

∣

ŝ=0

Wg(v),2 = ∇ξW · ∂ξ
∂ŝ

∣

∣

∣

∣

ŝ=0

Wg(v),3 = ∇ξW · ∂ξ
∂t̂

∣

∣

∣

∣

ŝ=0

Wg(v),4 = ∇ξW · ∂
2ξ

∂ŝ∂t̂

∣

∣

∣

∣

ŝ=0

+Hξ(W) :

(

∂ξ

∂ŝ
⊗ ∂ξ

∂t̂

)∣

∣

∣

∣

ŝ=0

From Theorem 2, it is clear that the first and fourth DoFs are the same at the grid

center: Wg(1),1 = Wg(4),1 = W∗. From Theorem 1, we have

∂ξ

∂t̂
(t̂) = 0 ∀t̂ ∈ [0, 1]

which implies that the 3rd DoF become zero: Wg(1),3 = Wg(4),3 = Wg(∗),3 = 0 and the

remaining two equations are written as:

Wg(v),2 = ∇ξW · ∂ξ
∂ŝ

∣

∣

∣

∣

ŝ=0

Wg(v),4 = ∇ξW · ∂
2ξ

∂ŝ∂t̂

∣

∣

∣

∣

ŝ=0
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Using Lemma 1, these equations can be rewritten as:
(

Wg(v),2

Wg(v),4

)

=

[

∂ξ
∂ŝ
∂2ξ

∂ŝ∂t̂

]

ŝ=0

· ∇ξW

=

[

σe1,2
∂H1,2

∂ŝ
+ σe4,2

∂H4,2

∂ŝ
σe1,4

∂H1,4

∂ŝ
+ σe4,4

∂H4,4

∂ŝ

σe1,2
∂2H1,2

∂ŝ∂ŝ
(t̂) + σe4,2

∂2H4,2

∂ŝ∂t̂
σe1,4

∂2H1,4

∂ŝ∂ŝ
+ σe4,4

∂2H4,4

∂ŝ∂t̂

]

ŝ=0

[

ξg(∗),2

ξg(∗),4

]

· ∇ξW
(

Wg(v),2

Wg(v),4

)

=

[

N e
1,2 N e

4,2

N e
1,4 N e

4,4

]

ŝ=0

·
(

∂RW
∂ZW

)

where,

N e
1,2(t̂) = ξg(∗),2 σ

e
1,2

∂H1,2

∂ŝ
(t̂) + ξg(∗),4 σ

e
1,4

∂H1,4

∂t̂
(t̂)

N e
4,2(t̂) = ξg(∗),2 σ

e
4,2

∂H4,2

∂ŝ
(t̂) + ξg(∗),4 σ

e
4,4

∂H4,4

∂t̂
(t̂)

N e
1,4(t̂) = ξg(∗),2 σ

e
1,2

∂2H1,2

∂ŝ∂t̂
(t̂) + ξg(∗),4 σ

e
1,4

∂2H1,4

∂ŝ∂t̂
(t̂)

N e
4,4(t̂) = ξg(∗),2 σ

e
4,2

∂2H4,2

∂ŝ∂t̂
(t̂) + ξg(∗),4 σ

e
4,4

∂2H4,4

∂ŝ∂t̂
(t̂)

(3.25)

Above equations can be thought as the new basis functions for the new 2nd and 4rth

DoFs given by ∂RW and ∂ZW respectively. Now, the interpolation of a sufficiently

smooth scalar function for an element on the polar grid center can be written as:

W (ŝ, t̂) =
4
∑

v=1

4
∑

d=1

Wg(v),d σ
e
v,d Bv,d(ŝ, t̂)

=
3
∑

v=2

4
∑

d=1

Wg(v),d σ
e
v,d Bv,d +

4
∑

d=1

Wg(1),d σ
e
1,d B1,d +

4
∑

d=1

Wg(4),d σ
e
4,d B4,d

Using the results of Theorem 1, 2 and Lemma 1, the interpolation can be written in

terms of new basis functions and DoFs as:

W (ŝ, t̂) =
3
∑

v=2

4
∑

d=1

Wg(v),d σ
e
v,d Bv,d(ŝ, t̂)

+
4
∑

d=1

Wg∗,d N
e
1,d(t̂) +

4
∑

d=1

W∗,d N
e
4,d(t̂)

The new DoFs and new basis functions are summarized in Table (3.2). Note that the

basis function associated with 3rd DoF do not play any role as 3rd DoF is set to zero.

In practice this is done by penalization. These new basis functions impose continuity

of gradients at the polar grid center in the physical plane and are shown in Figure

(3.12).
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Node 1 Node 4
DoF Scales Basis functions DoF Scales Basis functions
Wg(∗),1 = W∗ 1 N e

1,1 = H1,1 Wg(∗),1 = W∗ 1 N e
1,1 = H4,1

Wg(∗),2 =
∂W
∂R

∣

∣

∗
1 N e

1,2 Wg(∗),2 =
∂W
∂R

∣

∣

∗
1 N e

4,2

Wg(∗),3 = 0 1 N e
1,3 = σe1,3 H1,3 Wg(∗),3 = 0 1 N e

4,3 = σe4,3 H4,3

Wg(∗),4 =
∂W
∂Z

∣

∣

∗
1 N e

1,4 Wg(∗),4 =
∂W
∂Z

∣

∣

∗
1 N e

4,4

Table 3.2: Summary of new DoFs, scales and basis functions to be applied at the polar
grid center. The basis functions N e

1,2, N
e
1,4, N

e
4,2 and N e

4,4 are given by the equations
(3.25).

(a) 1st (b) 2nd (c) 3rd

Figure 3.12: New global basis functions plotted at the polar grid center. The first basis
function is unchanged. The second and fourth basis functions are linear combinations
of original basis functions. The third basis function is not to be used as the DoF
associate it with 0.

A simple demonstration is shown in Figure (3.13) where the errors in the quantities
∂ξ
∂ŝ

and ∂2ξ

∂ŝ∂t̂
at ŝ = 0 for a circular polar grid are plotted vs t̂ where m denotes number

of points in the θ direction. It can be seen that the errors in the grid data even for

m = 20 are sufficiently small. Here, the errors refer to the difference between exact

polar representation and bicubic Bézier representation of a polar grid.

Figure (3.14) shows the L2 norm of the interpolation error in the function

W = R4 +R3 +R2 +R + Z4 + Z3 + Z2 + Z

for any element on the polar grid center plotted vs element size h. The parametric

(r, θ) plane is discretized by equi-spaced points such that the rectangular elements

have sides of length:

dr =
1

2m+1
and dθ =

2π

2m+1
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Figure 3.13: Error in the grid representation at the polar grid center. Errors in ∂ξ
∂ŝ

and
∂ξ

∂2ŝ∂t̂
at ŝ = 0 are plotted vs. t̂ where m denotes number of points in the θ direction.

The interpolation is computed using new basis functions derived above and it can

be seen in Figure (3.14) that errors follow convergence of order 4. For the sake of

discussion, the numerical tests to demonstrate the effect of the new basis functions

proposed are presented in Chapter 4.

3.5 Conclusions

In this Chapter numerical methods used for nonlinear modeling of MHD equations

are discussed. Chapter introduces the motivation for the choice of numerical methods

from the spatial and temporal discretization point of view. In section (3.1) a general

framework of Galerkin FEM is discussed while in section (3.2) mixed bicubic Bézier-

Spectral FEM used in JOREK is described and the stabilization term are based on

VMS and shock-capturing strategies are formulated. In section (3.3) the implicit

time integration method adapted for variable time step is derived whereas section
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Figure 3.14: L2 norm of the interpolation error for the function W = R4+R3+R2+
R + Z4 + Z3 + Z2 + Z plotted vs element size h. The interpolation of a function is
computed using new basis functions derived for elements on the polar grid center.

(3.4) describes the multi-block grid generation for the realistic tokamak geometries.

The choice of FEM allows one to generate grids with curved elements so that accu-

rate representation of boundaries can be made and grid elements can be aligned to

magnetic flux surfaces. Finally, issues of grid singularities is discussed and a strategy

is proposed to overcome the numerical problems due to grid singularities.

This Chapter sets all the numerical tools required to simulated nonlinear MHD

phenomena. On the top of the bicubic Bézier FEM used in JOREK, we have im-

plemented the stabilization terms as an additional contribution to the weak form,

adapted the time integration method for variable time stepping and proposed a nu-

merical treatment for the grid singularities encountered. These tools are applied on

the MHD equations discussed in Chapter 2 and the numerical results obtained are

presented in next Chapters.
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Chapter 4

Implementation and validation of

full MHD model

In this Chapter we describe the implementation of numerical methods discussed in

Chapter 3 on the governing equations discussed in Chapter 2 along with the details

of the FEM implementation. Then we present the numerical results for standard

MHD instabilities. The main idea is to perturb a plasma equilibrium and evolve

perturbations numerically about an equilibrium. Energy principle tells us that the

MHD instabilities can be driven by parallel current or pressure gradient [32, 96].

Moreover, in tokamak plasma, probable locations of MHD instabilities are rational

q surfaces and hence grids used in the simulations are often refined in the region of

rational q surfaces.

Since Fourier representation is used in the toroidal direction, finite number of

toroidal harmonics, denoted by n, are included in the simulations. Linear runs refer

to the simulations in which axisymmetric n = 0 kept stationary and n 6= 0 modes

are evolved in time. Usually this is done to investigate the growth rates of a single

harmonic. When all harmonics including n = 0 are evolved in time, the simulation is

referred to as a nonlinear run.

In section (4.1) we describe implementation of bicubic Bézier finite element method

(FEM) on Grad-Shafranov equation, which is a nonlinear elliptic partial differential

equation (PDE) that governs axisymmetric plasma equilibrium in 2D. In section (4.2),

implementation of FEM on full MHD model is described focusing upon the weak form

and projections used in vector test functions. In section (4.3), we present numerical

results of linear simulations for standard MHD instability problems such as internal
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kink, tearing and ballooning modes. The growth rates of energies for these modes

are computed as dE/dt where E can be kinetic or magnetic energy and are compared

for full and reduced MHD models. Finally, in section (4.4) nonlinear simulations are

presented for internal kink modes.

4.1 Solving Grad-Shafranov equation

Grad-Shafranov equation (2.35) for ideal MHD equilibrium is a nonlinear elliptic

PDE, re-written here in a strong form as:

∆∗ψ = R2

(

∇ · 1

R2
∇ψ
)

= f(ψ) in Ωξ

where f in the right hand side is given by

f = R2 p′ − F F ′

where prime denotes the derivative with respect to ψ. Three essential inputs required

to solve Grad-Shafranov equations are:

• boundary conditions on ψ

• pressure profile p(ψ)

• FF ′(ψ) profile

Boundary conditions on ψ along with the R and Z coordinates of the boundary may

be obtained from ‘geqdsk’ files or from equilibria created with CLISTE code. The

functions p and F are specified as the profiles of normalized magnetic flux surface ψN

:

ψN =
ψ − ψa
ψe − ψa

where, ψa denotes the flux at the magnetic axis and ψe refers to the separatrix (in

case of a divertor configuration) or the last closed surface (a limiter configuration).

The profiles are usually constructed by fitting with the experimental data. The fitting

assumes polynomial profile for the density ρ, temperature T and square of the poloidal

current flux G = (F (ψ))2. The profile for density is specified as:

ρ(ψN) = (ρ0 − ρ1)

(

1 +
3
∑

i=1

C(i) ψiN

) (

0.5− 0.5 tanh

(

ψN − C(5)

C(4)

))

+ ρ1 (4.1)
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where,

ρ0 : Density at the magnetic axis

ρ1 : Density outside the separatrix or at the last closed flux surface

C(1) : linear slope of modified tanh

C(2) : quadratic slope of modified tanh

C(3) : cubic slope of modified

C(4) : width of tanh

C(5) : position of tanh

In the similar way, a temperature profile is also specified. Finally, the equation of the

(a) (b) (c)

Figure 4.1: (a) The density (blue circles) and temperature (red circles) profiles from
the JET experiment (pulse no. 73569), with the corresponding fitted profiles used for
simulations (plain black lines). [75] (b) Interpretations for the coefficients of profiles
of the density and temperature (c) Interpretations for the coefficients of profiles of
FF ′

state p = ρ T gives the pressure profile as:

dp

dψ
=
dρ

dψ
T + ρ

dT

dψ
=

1

ψe − ψa

(

dρ

dψN
T + ρ

dT

dψN

)

The fit of density and temperature profiles with the experimental data of a particular

JET run is shown in Figure (4.1a). Each of the density and temperature profile is

constructed with the coefficients whose interpretations are shown in Figure (4.1b).

The profile for FF ′ is obtained from the profile of G = F 2 which is written as:

G(ψN) = G0 + 2 (ψe − ψa)
3
∑

i=1

Ci
ψiN
i

which after deriving with respect to ψ becomes:

FF ′(ψN) =
1

2(ψe − ψa)

∂G

∂ψN
=

3
∑

i=1

Ci ψ
i−1
N
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An additional perturbation at the plasma edge may be added in FF ′ profile to account

for the bootstrap current and the profile is precisely given as:

FF ′(ψN) = ((C0 − C1)fpoly + fpert) ftanh + C1 (4.2)

where

fpoly(ψN) = 1 + C(1) ψN + C(2) ψ2
N + C(3) ψ3

N

ftanh(ψN) = 0.5− 0.5 ∗ tanh
(

ψN − C(5)

C(4)

)

fpert(ψN) =
C(6)

2C(8)
cosh

(

ψN − C(7)

C(8)

)−2

The meaning of the coefficients for FF ′ profile are:

C0 : Value at magnetic axis

C1 : Value outside separatrix

C(1) : linear slope of modified tanh

C(2) : quadratic slope of modified tanh

C(3) : cubic slope of modified

C(4) : width of tanh (to switch off profile in SOL)

C(5) : position of tanh

C(6) : amplitude of edge perturbation

C(7) : position of edge perturbation

C(8) : width of edge perturbation

Figure (4.1c) shows the role of coefficients in defining FF ′ profile. We now seek a

weak formulation of Grad-Shafranov equation. Let W be the space of functions such

that W = {ψ∗ ∈ [H1(Ωξ)]} where ψ∗ is a test function. Multiplying the strong form

with a test function and then integrating over the domain gives:
∫

Ωξ

1

R2
ψ∗ R2

(

∇ · 1

R2
∇ψ
)

dΩξ =

∫

Ωξ

1

R2
ψ∗ f dΩξ

The factor 1/R2 is multiplied at the both sides for convenience. Using integration by

parts the weak form is written as:

−
∫

Ωξ

1

R2
∇ψ∗ · ∇ψ dΩξ +

∮

1

R2
ψ∗∇ψ · n̂dS =

∫

Ωξ

1

R2
ψ∗ (R2 p′ − FF ′) dΩξ

For a homogeneous Dirichlet boundary condition, the boundary integral term vanishes

and then the weak form becomes: Find ψ ∈ V such that:

−
∫

Ωξ

1

R2
∇ψ∗ · ∇ψ dΩξ =

∫

Ωξ

1

R2
ψ∗ f dΩξ ∀ψ∗ ∈ W
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To formulate a FEM we need finite-dimensional subspace Vh ⊂ V and Wh ⊂ W .

Now, the discrete weak form becomes: Find ψh ∈ Vh such that:

−
∫

Ωξ

1

R2
∇ψ∗ · ∇ψh dΩξ =

∫

Ωξ

1

R2
ψ∗ f dΩξ ∀ψ∗ ∈ Wh

where, Wh is a space for test functions yet to be specified. The function ψh is

represented in terms of shape functions as:

ψh(ξ) =

np
∑

p=1

4
∑

d=1

ψp,d Np,d(ξ)

where, np are number vertices in poloidal plane. Substituting this expansion, the

weak form then becomes:

−
∫

Ωξ

np
∑

p=1

4
∑

d=1

ψp,d
1

R2
∇ψ∗ · ∇Np,d dΩξ =

∫

Ωξ

1

R2
ψ∗ f dΩξ ∀ψ∗ ∈ Wh

In Galerkin FEM, the test functions ψ∗ are chosen from the same space as trial

functions and hence Wh = Vh. Now, the Galerkin FEM is written as:

−
∫

Ωξ

np
∑

p=1

4
∑

d=1

ψp,d
1

R2
∇Np′,d′ · ∇Np,d dΩξ =

∫

Ωξ

1

R2
Np′,d′ f dΩξ ∀Np′,d′ ∈ Vh

To discretize the weak form above one needs to construct a finite dimensional subspace

on the domain Ωξ which is described in Chapter 3. To construct Vh, first the domain

is subdivided into non overlapping quadrangular elements Ωe such that Ωξ =
⋃

Ωe.

In order to achieve higher order of approximation, curved elements represented by

bicubic Bézier polynomials are constructed. A curved finite element is defined as

(Ωe, Q,Σ) where Q is a finite dimensional space of shape functions Bk on Ωe and Σ is

a finite set of nodal variables. The shape functions Bk are such that the restrictions

of Np,d on any element gives shape functions for that particular element. Therefore,

the discrete weak form on any element Ωe is written as:

−
∫

Ωe

4
∑

v=1

4
∑

d=1

ψg(v),d
1

R2
∇Bg(v′),d′ · ∇Bg(v),d dΩe =

∫

Ωe

1

R2
Bg(v′),d′ f dΩe ∀Bg(v′),d′

Above equation can be rewritten in the matrix-vector form as:

4
∑

v=1

4
∑

d=1

Aeg(v′),d′,g(v),d ψ
e
g(v),d = reg(v′),d′ ∀Bg(v′),d′
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where,

Aeg(v′),d′,g(v),d = −
∫

Ωe

1

R2
∇Bg(v′),d′ · ∇Bg(v),d dΩe

reg(v′),d′ =

∫

Ωe

1

R2
Bg(v′),d′ f dΩe

These integrals are computed by mapping a curved element Ωe onto a unit reference

element τ̂ . The reference finite element is defined as (τ̂ , Q, Σ̂) where τ̂(ŝ, t̂) is a biunit

reference element as shown in Figure (3.1c). Let M denote one-to-one mapping of τ̂

onto a curved element Ωe in ξ plane as:

M : Ωe(ξ) → τ̂

The jacobian matrix of the mapping is then given by:

J =

[

∂ŝR ∂t̂R

∂ŝZ ∂t̂Z

]

The space of shape function Q is then written as:

Q = {B : B(ξ) = B(M−1(ξ)), ξ ∈ Ωe, B ∈ Q(τ̂)}

and nodal variables are given by:

Σ̂ = {ψ : ψi2D(Bj2D) = δi2D,j2D}

where i2D = (g(v), d) is a multi index that denotes the index of the shape function

associated to vertex g(v) and DoF d. Representing the integrals in the reference

element:

Aeg(v′),d′,g(v),d = −
∫

τ̂

1

R2
∇Bv′,d′ · ∇Bv,d |J | dτ̂

reg(v′),d′ =

∫

τ̂

1

R2
Bv′,d′ f |J | dτ̂

These integrals are evaluated using Gauss quadrature as:

I ≈
Ng
∑

p=1

Ng
∑

q=1

wp wq Î(ŝp, t̂q)

where, I is any integral with integrand Î, Ng is the order of the Gauss quadrature

and wp/q are the weights for the Gaussian quadrature. Due to the choice of bicubic

polynomials, Ng must be at least 4. The contributions from all elements can be
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computed in the same manner and are assembled to obtain the global system of

equations:

[A] {ψ} = {r(ψ(k))}

This is a system of nonlinear equations which is solved using Picard iterations by

inverting the following linear system for ψ
(k+1)
i2D

:

[A] {ψ(k+1)} = {r(ψ(k))}

The right hand side vector r contains the contribution due to profiles p′ and FF ′

which are functions ψN(ψ) and hence ψN(ψ) is computed at each iteration. When

the quantity ψ(k+1) − ψ(k) is below a certain tolerance, the approximate solution

ψeq of Grad-Shafranov equation is assumed to obtained. This solution is used as a

starting point of tokamak modeling and is used to determine the initial conditions

for numerical simulations. It can also be used to construct a grid which is aligned to

flux surfaces.

Following are some of the tokamak equlibria described for which Grad-Shafranov

equation is numerically solved and these equilibria are used for MHD simulations

later.

Equlibrium 1:

This equilibrium is for cylindrical plasma with major radius 10 m and minor radius

of plasma 1 m. The density and temperature profiles are specified using the form

of profile given by equation (4.1) whereas the FF ′ profile is given by equation (4.2).

The coefficients used for the density profile are:

ρ0 = 1, ρ1 = 0.1, C(1) = −1, C(2) = 0, C(3) = 0, C(4) = 1, C(5) = 5

The coefficients used for the temperature profile are:

T0 = 0.002, T1 = 10−8, C(1) = −0.8, C(2) = 0, C(3) = 0, C(4) = 1, C(5) = 5

The coefficients used for the FF ′ profile are:

FF0 = 2, FF1 = 0, C(1) = −1, C(2) = 0, C(3) = 0,

C(4) = 0.03, C(5) = 5, C(6) = 0.4793, C(7) = 10, C(8) = 1

With F0 = 10, resulting profiles are shown in Figure (4.2a). Dirichlet boundary

conditions are used to compute the equilibrium. The numerical solution obtained of

Grad-Shafranov equation is shown in Figure (4.2b).
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Figure 4.2: For a circular equilibrium 1: (a) The density, temperature and FF ′ profiles
plotted vs ψN . (b) Numerically computed equilibrium ψ.

Equilibrium 2

This equilibrium is similar to the equilibrium 1. The coefficients used for the density

profile are:

ρ0 = 1, ρ1 = 0.1, C(1) = −1, C(2) = 0, C(3) = 0, C(4) = 1, C(5) = 5

The coefficients used for the temperature profile are:

T0 = 4.335× 10−4, T1 = 10−8, C(1) = −0.8, C(2) = 0, C(3) = 0, C(4) = 1, C(5) = 5

The coefficients used for the FF ′ profile are:

FF0 = 2, FF1 = 0, C(1) = −7, C(2) = 0, C(3) = 0,

C(4) = 0.01, C(5) = 5, C(6) = 1, C(7) = 10, C(8) = 1

With F0 = 19.45, resulting profiles are shown in Figure (4.3a). Dirichlet boundary

conditions are used to compute the equilibrium. The numerical solution obtained for

Grad-Shafranov equation is shown in Figure (4.3b).
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Figure 4.3: For a circular equilibrium 2: (a) The density, temperature and FF ′ profiles
plotted vs ψN . (b) Numerically computed equilibrium ψ..

Equilibrium 3

Here, we use the cbm18 dens18 equilibrium used for bench marking NIMROD [19],

M3D-C 1 [29], and BOUT++ [99]. The coefficients used for the density profile are:

ρ0 = 1, ρ1 = 0.99, C(1) = −1, C(2) = 0, C(3) = 0, C(4) = 99, C(5) = 99

The coefficients used for the temperature profile are:

T0 = 0.038727, T1 = 10−6, C(1) = −0.2191, C(2) = −0.1901,

C(3) = 0.0503, C(4) = 0.0398, C(5) = 0.5893

The coefficients used for the FF ′ profile are:

FF0 = 3.28, FF1 = 0, C(1) = −0.2, C(2) = −5.2, C(3) = 4.97,

C(4) = 0.00001, C(5) = 0.7, C(6) = −0.36, C(7) = 0.59, C(8) = 0.0424

With F0 = 6, resulting profiles are shown in Figure (4.4a). Dirichlet boundary con-

ditions are used to compute the equilibrium. The numerical solution obtained for

Grad-Shafranov equation is shown in Figure (4.4b).

107



0.0 0.2 0.4 0.6 0.8 1.0
N

4

2

0

2

FF
′ ,n

,T

FF ′

n(1020/m3)
T(107K)

(a) (b)

Figure 4.4: For a circular equilibrium 3 (cbm18): (a) The density, temperature and
FF ′ profiles plotted vs ψN . (b) Numerically computed equilibrium ψ..

Equilibrium 4

This is an artificial equilibrium similar to a JET plasma and uses the divertor con-

figuration. The coefficients used for the density profile are:

ρ0 = 1, ρ1 = 0.01, C(1) = −1, C(2) = 0, C(3) = 0, C(4) = 0.08, C(5) = 0.94

The coefficients used for the temperature profile are:

T0 = 0.03, T1 = 0.0003, C(1) = −0.66, C(2) = 0,

C(3) = 0, C(4) = 0.08, C(5) = 0.94

The coefficients used for the FF ′ profile are:

FF0 = 1.6, FF1 = 0, C(1) = −1, C(2) = 0, C(3) = 0.0857,

C(4) = 0.00001, C(5) = 1, C(6) = −0.254, C(7) = 0.88, C(8) = 0.058

With F0 = 3, resulting profiles are shown in Figure (4.5a). The equilibrium is first

solved on the polar grid with 100 and 150 points in radial and poloidal direction

respectively with major radius R0 = 3 m and minor radius a = 1 m. The polar grid is

non-circular and based on based on Soloviev equilibrium where ellipticity E is set to

1.7, triangularities and upper quadrangularities set to 0 while lower quadrangularity

is set to −0.4 ( see subsection (3.4) on polar grid generation). The boundary condition
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specified on the ψ is plotted vs θ in Figure (4.5b) and is based on Soloviev equilibrium.

Grad-Shafranov equation is solved on this polar grid first and the polar grid along

with the contours of ψ are shown in Figure (4.5c). It can be seen that ψ field has

one saddle point. As described in section (3.4), the new grid aligned to flux surfaces

is generated and is shown by red color in Figure (4.5d). Finally, Grad-Shafranov

equilibrium is solved again on the new grid using the same profiles for ρ, T and FF ′

and the numerical equilibrium is shown in Figure (4.5e).
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Figure 4.5: For a JET like equilibrium: (a) The density, temperature and FF ′ profiles
plotted vs ψN . (b) Boundary conditions specified for ψ on the polar grid. (c) Polar
grid on which Grad-Shafranov equation is solved and contours for numerical solution
ψ. (d) Grid aligned to numerical solution ψ shown in red color. (e) Pseudocolor plot
of ψ on the flux aligned grid.
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4.2 Implementation of full MHD model

In previous section we demonstrated the application of FEM to Grad-Shafranov equa-

tion. The next step is to apply FEM to the full MHD model given by equations

(2.43). The vector variables of the full MHD model are written in the cylindrical

(toroidal) coordinate system (R,Z, φ), for example, the velocity vector is represented

as: v = vReR + vZeZ + vφeφ. Whereas the magnetic potential vector is represented

as: A = AReR +AZeZ +A3∇φ, where A3 = RAφ and ∇φ = eφ/R is the contravari-

ant basis vector. In an axisymmetric equilibrium, A3 is equivalent to the magnetic

poloidal flux ψ. For a system of PDEs detailed steps to apply FEM have been de-

scribed in (3.2). In this section we focus upon the FEM applied to full MHD model

and the choice of test functions. The weak form of the density equation is written by

multiplying it with a test function ρ∗ and integrating over entire domain as:

∫

Ω

ρ∗
∂ρ

∂t
dΩ =

∫

Ω

ρ∗
(

−∇ · (ρv) +∇ · (D∇ρ) + Sρ

)

dΩ

= −
∫

Ω

ρ∗∇ · (ρv) dΩ−
∫

Ω

D∇ρ · ∇ρ∗ dΩ +

∫

∂Ω

ρ∗(D∇ρ) · n̂ dS

+

∫

Ω

ρ∗Sρ dΩ

The particle diffusion term is integrated by parts and n̂ is the outward unit normal

to the surface element dS.

The weak form of the pressure equation is obtained in the similar way by multi-

plying it with a test function p∗ and integrating over entire domain:

∫

Ω

p∗
∂p

∂t
dΩ =

∫

Ω

p∗
(

− v · ∇p− γp∇ · v +∇ · (κ∇T ) + (γ − 1)π : ∇v + ST

)

dΩ

= −
∫

Ω

p∗v · ∇p dΩ−
∫

Ω

p∗γp∇ · v dΩ−
∫

Ω

κ∇T · ∇p∗ dΩ

+

∫

∂Ω

T ∗(κ∇T ) · n̂ dS +

∫

Ω

(γ − 1)p∗π : ∇v dΩ +

∫

Ω

p∗ST dΩ

where heat conduction term is integrated by parts.

The weak form of the velocity equation is written by multiplying it with the vector
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test function v∗ and integrating over entire domain:
∫

Ω

v∗ · ρ∂v
∂t

dΩ =

∫

Ω

v∗ ·
(

− ρv · ∇v −∇p+ J ×B +∇ · π + Sv

)

dΩ

= −
∫

Ω

v∗ · (ρv · ∇v) dΩ−
∫

Ω

v∗ · ∇p dΩ +

∫

Ω

v∗ · (J ×B) dΩ

+

∫

Ω

v∗ · (∇ · π) dΩ +

∫

Ω

v∗ · Sv dΩ

Since in the normalized units J = ∇×B, the identity J ×B = B · ∇B −∇
(

B·B
2

)

can be used to further simplify the weak form. Furthermore, a simplified viscosity

tensor π = µ∇v is used where µ is the coefficient of the viscosity. Therefore, the

viscous term becomes:

∇ · π = µ∇v = µ∇(∇ · v)− µ(∇×∇× v)

Using above identity, the viscous term in the weak form becomes:
∫

Ω

v∗ · (∇ · π) dΩ =

∫

Ω

v∗ · µ∇(∇ · v) dΩ−
∫

Ω

v∗ · µ(∇×∇× v) dΩ

Putting these terms in the weak form of the velocity equation and using the integration

by parts:
∫

Ω

v∗ · ρ∂v
∂t

dΩ =

∫

Ω

v∗ ·
(

− ρv · ∇v +B · ∇B
)

dΩ +

∫

Ω

(

p+
B ·B

2

)

(∇ · v∗) dΩ

−
∫

Ω

µ(∇ · v)(∇ · v∗) dΩ−
∫

Ω

µ(∇× v) · (∇× v∗) dΩ +

∫

Ω

v∗ · Sv dΩ

−
∫

∂Ω

(

p+
B ·B

2

)

v∗ · n̂ dS +

∫

∂Ω

µ(∇ · v)v∗ · n̂ dS

+

∫

∂Ω

µ(v∗ ×∇× v) · n̂ dS

where, µ is assumed constant. In practice, µ can be a function of temperature T .

Finally, the weak form of the induction equation is written by multiplying it with

the vector test function A∗ and integrating over entire domain:
∫

Ω

A∗ · ∂A
∂t

dΩ =

∫

Ω

A∗ ·
(

v ×B + η(J − SJ)

)

dΩ

=

∫

Ω

A∗ · (v ×B) dΩ +

∫

Ω

A∗ · η∇×B dΩ−
∫

Ω

A∗ · SJ dΩ

=

∫

Ω

A∗ · (v ×B) dΩ +

∫

Ω

∇× (ηA∗) ·B dΩ

−
∫

∂Ω

(ηA∗ ×B) · n̂ dS −
∫

Ω

A∗ · SJ dΩ
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where the definition of current J = ∇ ×B is used and then integration by parts is

performed.

The next step is to construct a finite dimensional space in which the trial functions

are sought for. The domain Ω is subdivided into curved quadrangular elements Ωe via

grid generation (see section (3.4)) such that Ωh =
⋃

Ωe. The global basis functions

Vj are constructed on the discretized domain Ωh such that any variable w can be

represented in terms of basis functions as: w =
∑

j

wjVj, where wj are the DoFs. For

scalar equations, the test functions are chosen from the space of basis functions of

Galerkin FEM. Hence, the discrete weak form of the density equation becomes:
∫

Ωh

Vi
∂ρ

∂t
dΩh = −

∫

Ωh

Vi∇ · (ρvh) dΩh −
∫

Ωh

D∇ρ · ∇Vi dΩh +

∫

∂Ωh

D∇ρ · n̂ dS

+

∫

Ωh

ViSρ dΩh

and similarly, the discrete weak form of the pressure equation can be written as:
∫

Ωh

Vi
∂p

∂t
dΩh = −

∫

Ωh

Vi v · ∇p dΩh −
∫

Ωh

Viγp∇ · v dΩh −
∫

Ωh

κ∇T · ∇Vi dΩh

+

∫

∂Ωh

κ∇T · n̂ dS +

∫

Ωh

Vi(γ − 1)π : ∇v dΩh +

∫

Ωh

ViST dΩh

The vector test functions may also be used as projections to obtain individual equa-

tions for each of the vector field components. In principle, the vector test functions

A∗ to get equations for the components A can be: VieR, VieZ and Vieφ. However a

convenient choice of a covariant basis vector is made such that the vector test function

for A3 equation is written as: ViReφ. This choice helps to get rid of the factor 1/R.

Using these test functions, the equations for AR, AZ and A3 can be written as:
∫

Ωh

Vi
∂AR
∂t

dΩ =

∫

Ωh

VieR · (v ×B) dΩ +

∫

Ωh

∇× (ηVieR) ·B dΩh

−
∮

(

(ηVieR)×B
)

dS −
∫

Ωh

VieR · ηSJ dΩh

∫

Ωh

Vi
∂AZ
∂t

dΩ =

∫

Ωh

VieZ · (v ×B) dΩ +

∫

Ωh

∇× (ηVieZ) ·B dΩh

−
∮

(

(ηVieZ)×B
)

dS −
∫

Ωh

VieZ · ηSJ dΩh

∫

Ωh

Vi
∂A3

∂t
dΩ =

∫

Ωh

ViReφ · (v ×B) dΩ +

∫

Ωh

∇× (ηViReφ) ·B dΩh

−
∮

(

(ηViReφ)×B
)

dS −
∫

Ωh

ViReφ · ηSJ dΩh
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Again, in principle, the vector test functions v∗ to get equations of the velocity

components can be used respectively as: VieR, VieZ and Vieφ. However this is not

the numerically stable choice, as noted in [44, 74]. Even simple simulations with

this projections are seen to be polluted by numerical noise. To remove this issue, a

choice of ‘parallel projection’ [43] is used where the vector test functions are chosen

respectively as: VieR, VieZ and ViB. With the first test function, the weak form of

the equations of vR can be written as:

∫

Ω

Viρ
∂vR
∂t

dΩ =

∫

Ω

VieR ·
(

− ρv · ∇v +B · ∇B
)

dΩ +

∫

Ω

(

p+
B2

2

)

(

∇ · (VieR)
)

dΩ

−
∫

Ω

µ(∇ · v)(∇ · (VieR)) dΩ−
∫

Ω

µ(∇× v) · (∇× (VieR)) dΩ

+

∫

Ω

VieR · Sv dΩ−
∫

∂Ω

(

p+
B ·B

2

)

VieR · n̂ dS

+

∫

∂Ω

µ(∇ · v)VieR · n̂ dS +

∫

∂Ω

µVi(eR ×∇× v) · n̂ dS

Similarly the weak form for vZ equation is written as:

∫

Ω

Viρ
∂vZ
∂t

dΩ =

∫

Ω

VieZ ·
(

− ρv · ∇v +B · ∇B
)

dΩ +

∫

Ω

(

p+
B2

2

)

(

∇ · (VieZ)
)

dΩ

−
∫

Ω

µ(∇ · v)(∇ · (VieZ)) dΩ−
∫

Ω

µ(∇× v) · (∇× (VieZ)) dΩ

+

∫

Ω

VieZ · Sv dΩ−
∫

∂Ω

(

p+
B ·B

2

)

VieZ · n̂ dS

+

∫

∂Ω

µ(∇ · v)VieZ · n̂ dS +

∫

∂Ω

µVi(eZ ×∇× v) · n̂ dS

Finally the weak form of the velocity equation obtained by parallel projection ViB is

used to evolve vφ:

∫

Ω

ViB · ρ∂v
∂t

dΩ = −
∫

Ω

ViB ·
(

ρv · ∇v
)

dΩ +

∫

Ω

ViB · ∇p dΩ

+

∫

Ω

ViB · (∇ · π) dΩ +

∫

Ω

ViB · Sv dΩ

It can be seen that the Lorentz force term J ×B is eliminated as it is dotted with

B. This removes fast magnetosonic waves from the vφ equations that pollute the

numerical solution. The advantage of using parallel projection is demonstrated in

[44, 43] with the help of the numerical tests for standard MHD instabilities. It is

indeed observed that vφ contains numerical noise with test function Vieφ.
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The weak form of equations above can written as a system of semi discrete equa-

tions:
∫

w∗ · P(w)
dw

dt
dΩ =

∫

w∗ ·Q(w, t) dΩ

where, the vector of primitive variables w is:

w = {ρ, vR, vZ , vφ, T, AR, AZ , A3}T

and Q(w, t) is the right hand side of each equation. The matrix P and the jacobians

∂wQ required for the implementation of the implicit method are given in Appendix

A along with the boundary integral terms. The variable time step Gears method

described in section (3.3) is the implicit method used here. It is shown in [43] that

even with so called ‘parallel projection’ a second order convergence is obtained for

the implicit time integration method considered.

Initial and boundary conditions:

The numerical solution (ψ) of Grad-Shafranov equation (2.35) is used to specify initial

conditions for MHD simulations. The magnetic vector potential is initiated from ψ.

Since we are interested in the evolution of perturbation about ideal MHD equilibrium

(ψ), the initial equilibrium is perturbed by small numbers ǫ(ξ). Initial density and

temperature field are specified from the profiles ρ(ψN) and T (ψN) and plasma velocity

is initialized to zero.

AR(ξ, φ, t = 0) = AZ(ξ, φ, t = 0) = 0

A3(ξ, φ, t = 0) = ψ(ξ) + ǫ(ξ)

v(ξ, φ, t = 0) = 0

ρ(ξ, φ, t = 0) = ρ(ψ(ξ))

T (ξ, φ, t = 0) = T (ψ(ξ))

The form of the perturbation added in ψ is given by:

ψ′(ξ) = ǫ ψN (1− ψN)

ψN =
ψ − ψa
ψe − ψa

where ψN , ψa and ψe is the normalized poloidal flux, value of ψ the magnetic axis

and at the boundaries. ψN takes value 0 at the magnetic axis and 1 at the boundaries

and ǫ is a small real number which denotes the amplitude of perturbations.
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Depending upon the simulation set-up, a boundary of a grid can either be aligned

to flux surfaces or not. If a boundary is aligned to ψ, then all variables are kept fixed

in time (Dirichlet boundary condition). If a boundary intersects magnetic field lines,

then a mixture of Dirichlet and Neumann boundary conditions is applied. In such a

case, Dirichlet condition is enforced for the magnetic vector potential A, free outflow

of density is allowed as Neumann boundary condition, while Mach-1 and Sheath

boundary conditions are applied to velocity and temperature respectively, such that

v · b = ±cs =
√

γT

nTv · b+ κ‖∇‖T = γshnTv · b

where b is the unit vector along the magnetic field, γsh is the ion sheath transmission

factor, which is typically taken between 4.5 and 10, depending on the ion or electron

temperature, and on transient energy fluxes [86].

4.3 Linear simulations

In this section, we present the numerical results to validate the full model and bench-

mark it with the reduced MHD model that has already been implemented and used

for a wide range of physical phenomena [47]. The standard MHD instabilities that

are relevant to tokamaks are chosen such as internal kink modes, tearing modes and

ballooning modes for validation.

4.3.1 Resistive internal kink modes

Kink modes are current driven modes in which the dominant driving source of in-

stability is proportional to the parallel current. Depending upon the location of a

‘resonant surface’ (rational q surface), kink modes can be categorized into internal

and external modes. In case of the internal modes, a resonant surface lies inside the

core of a plasma.

To simulate the internal kink modes ‘equilibrium 1’ from section (4.1) is used.

The ρ(ψN), T (ψN) and FF
′(ψN) profiles along with the numerical solution of Grad-

Shafranov equation is shown in Figure (4.2). For this equilibrium configuration,

q = 1 surface lies inside the core at ψN ≈ 0.5 as shown in Figure (4.6a). When such

equilibrium is perturbed, the instability with the structure of mode m = n = 1 grows

around q = 1 surface. The simulations are run for n = 0 and 1, by keeping n = 0
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mode fixed. This is done to investigate a growth rate of n = 1 mode. Simulations

in which n = 0 mode is not evolved are called as linear runs. Flux aligned polar

grids are used to run the internal kink simulations as shown in Figure (3.7c). Since

it is expected that instabilities will occur around q = 1 surface, the grids are radially

accumulated around ψN ≈ 0.5 to ensure that the solution structures are well resolved.

The plasma beta for this case is βN = 0.425%. Gears method is used for the time

integration.
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Figure 4.6: Linear runs for internal kink mode: (a) q profile showing the location of
q = 1 surface roughly at ψN = 0.5 (b) magnetic energies (ME) vs resistivity for full
MHD (FMHD) and reduced MHD (RMHD) models.

The internal kink mode simulations are run with resistivity alone and hence the

term ‘resistive kink modes’. All other diffusivities such as viscosity, thermal and par-

ticle diffusivities are set to zero. The resistivity is set to a constant value (independent

of T ) and a scan in resistivity is performed. For each value of the resistivity, growth

rates in kinetic and magnetic energies are computed. Figure (4.6b) shows magnetic

energies obtained using full and reduced MHD models plotted vs resistivity. It can

be seen that growth rates obtained using both models agree with each other as well

as the theoretical scaling η1/3. The kinetic energies also show the similar behavior.

Each value of the growth rate is determined by running the simulations on the series

of grids with increasing resolution until a convergence of growth rate is obtained.

Table (4.1) shows the numerical values of the growth rates of the magnetic energies

obtained on a series of grids for some values of η.

In Figure (4.7), visualizations of internal kink mode instabilities plotted on φ = 0

poloidal plane are shown. These visualizations show perturbations in the variables
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Grid η = 10−7 η = 10−6 η = 10−5

50× 50 8.089653614E-04 1.715721384E-03 3.627257497E-03

60× 60 8.103627001E-04 1.716151821E-03 3.627635158E-03

70× 70 8.111041129E-04 1.716608095E-03 3.627832391E-03

80× 80 8.111041129E-04 1.716823911E-03 3.627928350E-03

90× 90 8.111041129E-04 1.716981313E-03 3.627993444E-03

Table 4.1: Growth rates (in normalized units) of magnetic energies for internal kink
mode obtained by full MHD model on a series of grids. The grid is denoted by Nψ×Nθ

where Nψ and Nθ are the number of points in radial and poloidal direction.

A3, T and vR for three different values of η. The instabilities are seen to develop a

structure of m = n = 1 mode and linearly grow in time. It can be seen that the

structures become finer as resistivity decreases. For a resistivity η = 10−8, more

resolution is needed to capture kink modes correctly, as the structures are very thin.

On the other hand, for resistivities η ≥ 10−4 the instability structures are comparable

in size to the plasma domain and hence scaling is lost. It can be seen in Figure (4.6b)

that the growth rates for such resistivities do not follow η1/3 curve.

4.3.2 Tearing Modes

Tearing modes are essentially resisitive and current driven modes that can become

unstable around a rational surface. The tearing mode instability in a tokamak is

driven by radial gradients of the equilibrium toroidal current density [96]. Tearing of

the magnetic field lines occur during such instability because of finite resistivity. The

theoretical scaling of the growth rate is proportional to η3/5.

To simulate the tearing modes ‘equilibrium 2’ from the section (4.1) is used.

The ρ(ψN), T (ψN) and FF
′(ψN) profiles along with the numerical solution of Grad-

Shafranov equation is shown in Figure (4.3). For this equilibrium configuration, q = 2

surface lies inside the core at ψN ≈ 0.28 as shown in Figure (4.8a). When such equi-

librium is perturbed, the instability with the structure of mode m = 2, n = 1 grows

around q = 2 surface. The simulations are run for n = 1 by keeping n = 0 toroidal

harmonic fixed. Flux aligned polar grids are used to run tearing mode simulations

as shown in Figure (3.7c). Since it is expected that instabilities will occur around
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Figure 4.7: Visualizations for the perturbations in internal kink simulations plotted
on the poloidal plane φ = 0. The first, second and third row show results for η = 10−5,
10−6 and 10−7 (in normalized) units respectively. The first, second and third columns
show the perturbations in A3, T and vR respectively.

q = 2 surface, the grids are radially accumulated around ψN ≈ 0.28 to ensure that the

solution structures are well resolved. The plasma beta for this case is βN = 0.046%.

Gears method is used for the time integration.

Tearing simulations are run by specifying all diffusivity coefficients and the resis-

tivity. The coefficient of viscosity µ, D⊥, and κ⊥ are fixed as 10−8 while κ‖ is set

to 1 (in normalized units). The resistivity is set to a constant value (independent of

T ) and a scan in resistivity is performed, like the internal kink simulations in above

subsection. For each value of the resistivity, growth rates in kinetic and magnetic
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Figure 4.8: Linear runs for tearing mode: (a) q profile showing the location of q = 1
surface roughly at ψN ≈ 0.28 (this corresponds to R ≈ 10.5) (b) magnetic energies
(ME) vs resistivities for full MHD (FMHD) and reduced MHD (RMHD) models.

energies are computed. Figure (4.8b) shows magnetic energies obtained using full

and reduced MHD models plotted vs resistivity. It can be seen that growth rates

obtained using both models agree with each other. The theoretical scaling is also

well represented by the scaling η3/5 for lower resistivities. The kinetic energies also

show the similar behavior. Each value of the growth rate is determined by running

the simulations on the series of grids with increasing resolution until a convergence

in the growth rate is obtained. Table (4.2) shows the numerical values of the growth

rates of the magnetic energies obtained on a series of grids for some values of η.

Grid η = 5× 10−8 η = 10−7 η = 5× 10−7

50× 51 2.455923655E-05 4.022210311E-05 1.005353787E-04

60× 71 2.578588617E-05 4.115275969E-05 1.009738128E-04

70× 91 2.590501466E-05 4.125351362E-05 1.010148643E-04

80× 111 2.594115382E-05 4.127952158E-05 1.010224675E-04

90× 131 2.596923153E-05 4.128825390E-05 1.010259615E-04

Table 4.2: Growth rates (in normalized units) of magnetic energies for tearing modes
obtained by full MHD model on a series of grids. The grid is denoted by Nψ × Nθ

where Nψ and Nθ are the number of points in radial and poloidal direction.

In Figure (4.9), visualizations of tearing mode instabilities plotted on the poloidal
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plane φ = 0 are shown. These visualizations are for perturbations in the variables

A3, T and vφ for two different values of η. The instabilities are seen with structures

m = 2 which linearly grow in time. It can be seen in Figure (4.8b) that the growth

rates for such resistivities do not follow η3/5 curve.

Figure 4.9: Visualizations for the perturbations in tearing mode simulations plotted
on the poloidal plane φ = 0. The first and second row show results for η = 10−6 and
10−7 (in normalized) units respectively. The first, second and third columns show the
perturbations in A3, T and vφ respectively.

4.3.3 Ballooning modes

This is the test case for ballooning modes in a circular plasma with the radius of

device is 3 m and radius of a plasma 2 m. Ballooning mode instability is driven by

pressure gradients. If the pressure gradient is high, perturbations can concentrate in

the region of destabilizing curvature resulting in the ballooning modes.

The initial condition is set such that ρ is kept almost constant and a sharp gradient

in the T profile is set that make initial T field as shown in Figure (4.10). The flux

aligned grid is constructed which is locally refined in the region of the sharp gradient.

Note that, the grid center of polar grid is at the location of magnetic axis of the
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plasma where ∇ψ = 0. The location of the center is very much shifted from the

actual geometric center of the circular domain. This shift is known as Shafranov shift

[96, 36] which is a consequence of a plasma equilibrium.

Figure 4.10: Flux aligned grid used for circular ballooning mode where magnetic axis
is shifted to R ≈ 3.68m. Pseudocolor shows the temperature field at the t = 0. The
grid is clustered around the sharp gradient in the temperature to capture ballooning
modes.

This case is run for individual toroidal mode numbers between n = 4 and n =

16. To simulate circular ballooning modes ‘equilibrium 3’ from section (4.1) is used.

The ρ(ψN), T (ψN) and FF
′(ψN) profiles along with the numerical solution of Grad-

Shafranov equation is shown in Figure (4.4). The q profile is shown in Figure (4.11a)

that shows q profile increases rapidly near the boundary ψN = 1. The plasma beta

for this case is βN = 1.5%. Flux aligned polar grids are used to run ballooning mode

simulations as shown in Figure (3.7c). Gears method is used for the time integration.

The resistivity and other diffusive coefficients µ, D⊥, and κ⊥ are set to 10−6

while κ‖ is set to 1 (in normalized units). Growth rates in kinetic and magnetic

energies are computed for the simulations with each n and magnetic energies are
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Figure 4.11: Linear runs for circular ballooning mode: (a) q profile (b) magnetic
energies (ME) vs resistivities for full MHD (FMHD) and reduced MHD (RMHD)
models.

Figure 4.12: Visualizations for the perturbations in circular ballooning mode simula-
tions plotted on the poloidal plane φ = 0. The first and second row show results for
n = 4 and 16 respectively. The first, second and third columns show the perturbations
in A3, T and ρ respectively.
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plotted in Figure (4.11b). Growth rates obtained using both full and reduced MHD

model agree reasonably with each other. The kinetic energies also show the similar

behavior. In Fgure (4.12), visualizations of ballooning mode instabilities are shown.

These visualizations are for perturbations in the variables A3, T and ρ for n = 4 and

16 respectively. The ballooning structures are observed across the temperature (or

pressure) gradient (Figure (4.10)).

4.3.4 Ballooning modes in X-point plasma

Next, an X-point plasma is run for ballooning instabilities. This is an artificial equi-

librium similar to JET plasma. To simulate ballooning modes in X-point plasma

‘equilibrium 4’ from section (4.1) on the flux aligned grid shown in Figure (4.5d) is

used. The ρ(ψN), T (ψN) and FF
′(ψN) profiles along with the numerical solution of

Grad-Shafranov equation is shown in Figure (4.5). The q profile is plotted in Figure

(4.13a) shows that the near boundaries q increases rapidly. The plasma beta for this

case is βN = 3.36%. Gears method is used for the time integration.
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Figure 4.13: Linear runs for ballooning modes in JET like X-point plasma (a) q
profile (b) magnetic energies (ME) vs number of harmonics n for full and reduced
MHD models.

The linear simulations are run for n = 2, 4, 6, 8, 10 and 12. The resistivity and

diffusivities used for the simulations are set in normalized units as:

η = 10−5, µ = 3× 10−6, D⊥ = κ⊥ = 10−6, κ‖ = 10
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The plasma corresponds to βN = 3.36 %. Growth rates in kinetic and magnetic

energies are computed for the simulations with each n and plotted in Figure (4.13b).

Although the growth rates obtained using both full and reduced MHD model do not

match the trend of growth rates as n increases is alike. The mismatch in the growth

rates is primarily because grid convergence is not performed for these simulations.

Nevertheless, visualizations of the numerical results show ballooning mode structures

as expected. In Figure (4.14), visualizations of ballooning mode instabilities are

shown for n = 10. The ballooning mode structures are observed across the pressure

gradient. It has been shown in the [74] that the growth rates match well for both

models with βN = 2.5 % and different set of diffusivities.

Figure 4.14: Visualizations for the perturbations in X-point plasma for ballooning
mode simulations for n = 10. The left and right window shows |∇p| and perturbations
in A3 respectively plotted on a poloidal plane φ = 0.

4.4 Nonlinear Simulations

In previous section, validation of the full MHD model is shown by computing MHD

instabilities. The comparison of results obtained with reduced MHD models shows a

good agreement. The simulations presented in the previous section are linear runs,

where a single harmonic is evolved with the stationary n = 0 harmonic in the back-

ground. However, the goal is to simulate nonlinear MHD phenomena with many

toroidal harmonics all evolving in time. The reduced MHD models have already been

used extensively to perform nonlinear MHD simulations [47]. Next, we demonstrate

124



that the full MHD model can also be used for nonlinear simulations. In this section,

we present the nonlinear simulations for internal kink modes.

Before we present nonlinear MHD simulations, some numerical aspects are dis-

cussed. The numerical properties of a numerical tool depend upon a grid as well as

numerical method used. The desirable quality for any numerical tool is that there

should not be sudden variations in the numerical properties across grid nodes. There-

fore, grids should be constructed in a way that grid shocks are avoided.

During nonlinear simulations, when MHD activities increase, it is often the case

that the time step needs to be decreased. Across a jump in the time step classical

Gears method for constant time stepping is not strictly valid and it looses second order

accuracy. Therefore, the time integration method adapted to variable time stepping is

used to avoid effects of jumps in the time steps and is discussed in subsection (4.4.1).

Similarly, numerical properties of the polar grid center are likely to be different

than surrounding grid vertices. In general, any vertex of a grid is shared by 4 quadran-

gular elements and in this situation a choice of FEM gives continuous representation

of functions and their gradients. At the polar grid center however, a single vertex

is shared by many elements, one edge of each element reduces to a point and as a

consequence mapping of such elements to the unit reference element is singular. This

vertex can be a source of spurious waves in the numerical solution. The treatment

proposed in subsection (3.4.5) is implemented on the elements sharing polar grid

center and the results are discussed in subsection (4.4.2).

Finally, nonlinear simulations for internal kink modes are discussed in the subsec-

tion (4.4.3) where both strategies are implemented.

4.4.1 Effect of variable time step Gears method

Although the linear simulations presented in previous section are performed using

variable time step Gears method, constant time steps have been used in all simula-

tions. This means that the method effectively reduces to a classical Gears method.

However, in practice, the time steps may be required to decrease during nonlinear

simulations, for example when MHD dynamics occur over smaller time scales, the

time step needs to be decreased. Across such a jump in the time step, a classical

Gears method is not strictly valid. Therefore a consistent method for variable time

step that will preserve second order representation is derived in the section (3.3)

and is implemented here. In order to demonstrate its advantages, internal kink and
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ballooning mode simulations are performed with variable time steps with full and

reduced MHD models. As an example we present here numerical results for internal

kink simulations with full MHD model alone, as the results with the reduced MHD

show similar trend.

The set up for internal kink simulation is described in section (4.3). In order

to demonstrate the effectiveness of the variable time step Gears method we design

following tests with jumps in the time steps:

• Test1 : ∆t alternates between 200 and 50 after each 20 time steps.

• Test2 : ∆t alternates between 100 and 10 after each 20 time steps.

• Test3 : ∆t alternates between 200 and 10 after each 10 time steps.

Hence the ratio of successive time steps encountered in these 3 tests respectively are

4, 10 and 20 (and their inverse). In Figure (4.15) it can be seen that across a jump

in the time steps, with classical Gears method, the growth rates show spikes. As the

ratio of successive time steps become extreme, spikes in growth rates also becomes

larger. However, the use of variable time step method removes these spikes. This

demonstrates the correction that the variable time step method brings across a jump

in the time step.

If the time step is determined via a criterion like Courant conditions, in general,

each time step can be different than its successive time step. For such simulations,

the use of variable time step Gears method is desirable, provided the ratio of time

steps follow certain restrictions for stability.

4.4.2 Effect of polar grid center treatment

The treatment that enforces C1 continuity in (R, Z) plane at the polar grid center

is described in section (3.4.5) and is implemented here. This treatment uses the new

basis functions and DoFs for the elements on the polar grid center. The effect of these

new basis functions is shown below in linear and nonlinear tearing modes and linear

circular ballooning mode simulations below.

The set up and the equilibrium for tearing modes is described in the section

above. Here, only resistivity η = 10−6 (in normalized units) is specified and all other

diffusivities, i.e., particle, heat diffusivities are set to zero. A series of grids is used

with the number of points in the radial direction Nψ = 101 and in the azimuthal
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Figure 4.15: Comparison of growth rates of magnetic energies γME plotted vs t for
internal kink modes obtained using Gears method with rn = 1 and rn 6= 1 for the 3
tests described.

direction Nθ = 70 with different amount of clustering of the vertices near the polar

grid center. The factor a controls the grid accumulation in radial direction near the

polar grid center whose effect is shown in Figure 4.16. Smaller the a, higher is the

accumulation of points near the center while a = 99 denotes a random large value

that denotes no accumulation of points. Hence, this series of grids creates a sense of

local refinement near the grid center.

Both linear and nonlinear simulations are run with n = 0, 1 on the series of grids

with old and new basis functions at the grid center and magnetic energies (ME) are

plotted vs time in Figure (4.17). It can be seen that as the grid is refined near the

center, growth rate of ME decreases. In fact simulations with old basis show numerical

noise near the grid center as can be seen in Figure (4.18a) and (4.18c) for linear and

nonliear runs respectively. This noise grows faster than the instabilities of the tearing
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(a) a = 99 (b) a = 0.2 (c) a = 0.1

Figure 4.16: Grids used for tearing mode simulations with new basis for the elements
of the polar grid center. These grids are zoomed near grid center to show the effect of
parameter a on grid accumulation. As a reduces, grid is accumulated near the center,
while a = 99 denotes no accumulation.
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(a) Linear run
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(b) Nonlinear run

Figure 4.17: Magnetic energies for (a) linear and (b) nonlinear tearing mode run with
n = 0, 1. The factor a in the legends denote amount grid accumulation near the polar
grid center. With old basis functions at the grid center numerical noise is seen. With
new basis functions at the grid center the noise is removed.

modes and hence growth rates for simulations with old basis are higher. As the grid

is refined near the grid center the numerical noise reduces. With new basis functions,

a level of noise at the grid center is very small as compared to the tearing modes

perturbations. On the grids with a = 0.1, clean solutions are obtained at the grid

center as can be seen in the figure (4.18b) and (4.18d) for linear and nonliear runs

respectively. As a result, the growth rates obtained are only due to the instabilities

of the tearing modes.
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(a) (b)

(c) (d)

Figure 4.18: Effect of polar grid center treatment: First and second row show visual-
izations for linear and nonlinear runs for tearing modes respectively. First and second
column show visualizations without and with polar grid center treatment respectively.
(a) and (b) show perturbations in A3 for linear tearing mode runs. (c) and (d) show
perturbations in vφ for nonlinear tearing mode runs.

The similar effect of the new basis functions is seen in linear simulation of the

circular ballooning modes with n = 0 and 6. Once again, the equilibrium 3 is used

and simulations are run without any diffusivities but with η = 10−6. Figure (4.19)

shows the visualization of perturbation in vφ, where it can be seen that the noise

at the grid center disappears and a clean solution is obtained with the new basis

functions. Note that the grid center is Shafranov shifted from the geometrical center
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as shown in the Figure (4.10) and hence the location of noise at the grid center is

skewed.

(a) (b)

Figure 4.19: Perturbations in vφ with (a) old and (b) new basis functions at the polar
grid center. With the new basis functions the noise at the grid center disappears.

The exercises shown in this subsection highlight the advantage of the treatment of

the grid center proposed in the section (3.4.5). This treatment is used in the nonlinear

simulations presented below and in next Chapter.

4.4.3 Nonlinear runs for internal kink modes

In a typical nonlinear simulation of the internal kink mode, instabilities grow linearly

in the first stage. At the end of linear growth, follows a ‘saturation’ phase in which the

modes may interact nonlinearly with each other and undergo a cyclic dynamics. Such

cyclic dynamics or oscillations are investigated numerically in [41, 42] in the context

of the internal kink modes, where sawtooth oscillations are observed for realistic

plasma parameters. Sawtooth oscillations consists of repeated ramps and crashes in

the nonlinear phase of the internal kink dynamics, a phenomenon often observed in

experiments. To simulate the physically realistic sawtooth oscillations, the full MHD

model may need inclusion of diamagnetic terms and Ohmic heating term, former are

not used in this work and latter is currently ignored from the full MHD model for the

numerical reasons.
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Remark: Excluding Ohmic heating terms

The Ohmic heatig term is ignored from the full MHD model. To compute the current,

second derivative of A is required: J = ∇h × ∇h × A. Moreover, the current is a

divergence free quantity ∇ ·J = ∇ · (∇×B) = 0. Since the FEM used here promises

continuity of A only upto the gradients, the computed current is not continuous across

elements and the numerically obtained current is not divergence free. FEM with higher

order continuity is needed to cleanly incorporate the Ohmic heating term, the work

which is currently under development [76].

Excluding Ohmic heating and diamagnetic terms, an attempt is made to push a

nonlinear internal kink simulation in a saturation phase with large values of resistivi-

ties and numerical stabilization rather than computing realistic sawtooth oscillations,

which is one of the future perspective of this work.

The resistivity is set to η = 10−5 and all other physical diffusivities are set to zero.

The time stepping is fixed by the Courant criterion (CFL number) given by:

CFL = ∆t min
e

(

he
λemax

)

where he is the characteristic element size, λemax is the maximum characteristic speed

over an element and index e runs over total number of element. The element size

is evaluated as minimum of the lengths of the lines joining midpoints of opposite

edges (assuming a linear quadrangular element). The characteristic speed is chosen

as the speed of fast magnetosonic waves from the characteristic analysis of ideal MHD

system and is specified as:

λemax = max
e

(

√

γ p+B ·B
ρ

)

The time integration method used is Crank Nicholson method and time steps are

determined by setting CFL = 500. The numerical stabilization is added via shock

capturing terms in the equations of the velocity, density and pressure. Instead of shock

detecting stabilization matrix terms, the stabilization coefficient is used everywhere

by setting:

T SC = 10−2 he
λmax

I

This essentially means that diffusivities in the velocity, density and pressure equations

are set numerically and have coefficients that are grid dependent.
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Figure 4.20: (a) Flux surface aligned polar grid used for nonlinear simulation of
internal kink mode (b) Evolution of energies with (solid lines) and without (dotted
lines) numerical stabilization.

Nonlinear internal kink simulations are run with n = 0, 1, 2, 3, 4 on flux aligned

polar grid as shown Figure (4.20a). The ‘equilibrium 1’ from the section (4.1) is used

and the grid is refined at the location of q = 1 surface. Figure shows comparison of

energies for n = 1 mode with and without numerical stabilization. It can be seen

in Figure (4.20b) that the growth of energies obtained using numerical stabilization

are clearly lower than the actual rates. Note that the numerical stabilization used

in this case is very high and plasma beta βN drops from 0.38 to 0.025 % during the

simulation.
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Figure 4.21: Evolution of energies showing nonlinear saturation phase after linear
growth of internal kink modes.
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In Figure (4.21) the evolution of the magnetic and kinetic energies are shown for

all n > 0 harmonics obtained with the numerical stabilization and it can be seen

that kink modes are saturated and undergo kink cycles. The similar behavior of kink

cycles is also observed with high values of D⊥ ≈ 10−6 to 10−5 and κ⊥ ≈ 10−4 and

10−3 using Gears method.

4.5 Conclusion

In this chapter, implementation of FEM is described for Grad-Shafranov and the full

MHD equations. The full MHD model is validated by performing standard instability

problems like internal kink, tearing and ballooning modes. The numerical results ob-

tained with full and reduced MHD are seen to be in agreement. In [74] the benchmark

is performed for the full MHD model with reduced MHD model as well as other codes

such as CASTOR and MISHKA. With the help of the numerical stabilization, the

nonlinear simulations of internal kink modes enter into a nonlinear saturation phase.

A first implementation of the full MHD model was demonstrated in [44] which was

restricted to the simple geometries and standard MHD instabilities. It was shown in

[74] that the full model is ready for production by demonstrating several nonlinear

simulations like a model disruptions problem, ELMs etc. The linear tests presented

in this Chapter are similar to that in [74]. They are kept here for the sake of the

discussion and used further to demonstrate the advantages due to the added numerical

features such as the numerical stabilization, variable time step method and the polar

grid center treatment. The numerical results for massive material injection (MMI)

simulations using all the developed tools are presented in next Chapter.
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Chapter 5

Nonlinear simulations with

Massive Material Injection

Basic experimental process of Massive Material Injection (MMI) is described in Chap-

ter 1 and equations to govern MMI in tokamak plasma are described in Chapter 2.

The equations form a system of nonlinear hyperbolic PDEs with sources. Massive

gas injection (MGI) involves a stationary source through which a massive amount

of neutral gas is injected inside a tokamak plasma. Shattered pellet injection (SPI)

involves a moving source that models multiple fragments of a shattered pellet in the

plasma which generate impurity particles via interactions with plasma electrons. Both

processes can be modeled either with single or two temperature models discussed in

Chapter 2. The numerical tools to discretize these equations are described in Chapter

3 while the details of their implementation and numerical validations are shown in

Chapter 4. In this Chapter we present the proof of concept and the numerical results

for MMI obtained using full MHD model.

In both kinds of injections, MHD instabilities are triggered at rational q surfaces.

As injection is usually done at the edge of a plasma, a cooling front develops in the

outer layer of a plasma that may cause the magnetic field to become stochastic (to

be visualized via Poincaré plots) in the outer layer of a plasma. Later the cooling

front propagates radially inwards in the plasma core. The core modes may grow and

interact nonlinearly with each other causing plasma core to become stochastic. In

presence of both mechanisms, that means MHD instabilities in outer layer and core

modes, a complete loss of plasma confinement (stochatization) may be seen which is

associated with the sudden drop in the plasma thermal energy. Such plasma dynamics

have already been seen in JOREK simulations with reduced MHD for MGI [30, 68, 69]
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and for SPI [49, 70, 46, 50].

The main focus of this Chapter is on the SPI simulations with the full MHD.

The SPI set up used here is similar to [49] where the simulations are performed

using reduced MHD model on JET like equilibrium with Ar injection. Some physical

characteristics of the results in [49] include the stochastization of the outer layer of

plasma, the current and temperature profile contractions, excitation of core modes

and a distinct TQ phase. The full MHD simulations performed here use Ne SPI

instead of Ar.

5.1 Preliminary validations: MGI and SPI

JET like equilibrium that resembles JET pulse No. 85943 at time 62.4 s is used to

simulate MGI and SPI. Some parameter for this pulse are as follows:

• toroidal magnetic field Bφ ≈ 3 T

• total plasma current Ip ≈ 2 MA

• core electron temperature Te(ψN = 0) ≈ 3.28 keV

• core electron density ne(ψN = 0) ≈ 2.1× 1019 m−3.

A polar grid is used to solve Grad-Shafranov equation with boundary condition

on ψ shown in Figure (5.1b). The coefficients used to construct the density profile

(in normalized units) are:

ρ0 = 1, ρ1 = 0.01, C(1) = −1.1946, C(2) = 0.9443, C(3) = −0.4874,

C(4) = 0.03, C(5) = 0.98

The coefficients used for the temperature profile (in normalized units) are:

T0 = 0.0279, T1 = 10−4, C(1) = −1.9810, C(2) = 1.6734,

C(3) = −0.6742, C(4) = 0.03, C(5) = 0.98

The value T0 corresponds to the core electron temperature 3.28 keV. The coefficients

used for the FF ′ profile are:

FF0 = 5.6089, FF1 = 0, C(1) = −1.4947, C(2) = 0.0949, C(3) = 0.4078,

C(4) = 0.01, C(5) = 0.9800, C(6) = 0, C(7) = 0.9750, C(8) = 0.022
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With F0 = −8.7829, the resulting profiles for ρ, T and FF ′ are shown in Figure (5.1a).

The poloidal magnetic flux ψ obtained by numerical solution of Grad-Shafranov equa-

tion whose contours are shown in Figure (5.1c) along with the polar grid. A new flux

aligned grid is generated with one X-point and Grad-Shafranov equation is solved

again on this new grid which are shown Figures (5.1d) and (5.1e), respectively. Fi-

nally, profile for q is plotted vs ψN in Figure (5.1f) and it can be seen that q = 2, 3, 4, 5

surfaces are present at ψN ≈ 0.58, 0.79, 0.89, 0.95 respectively. On the flux aligned

grid, the contours of ψN are plotted for the values those correspond to rational q

surfaces and is shown in Figure (5.1d) by red contour lines. It can be seen that q = 1

surface lies close to the magnetic axis, while q = 6, 7 surfaces are close to separatrix

at ψN ≈ 0.99.

Massive Gas Injection

We present a MGI simulation performed using the two temperature full MHD model

in which D gas is injected into a plasma with JET like equilibrium described above.

The governing equations based on the two temperature model (2.69) are written

below:

∂ρn
∂t

= ∇ · (Dn∇ρn)− ρ ρn Sion(Te) + ρ2αrec(Te) + ρ̇n

∂ρ

∂t
+∇ · (ρv) = ∇ · (D∇ρ) + ρ ρn Sion(Te)− ρ2αrec(Te) + ρ̇

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = µ∇2v + ṁ− v(ρ ρn Sion(Te)− ρ2αrec(Te) + ρ̇n)

1

(γ − 1)

(

∂pe
∂t

+ v · ∇pe + γpe∇ · v
)

= µ∇v : ∇v +∇ · (κe∇Te) + STe − ρ ν (Ti − Te)

1

(γ − 1)

(

∂pi
∂t

+ v · ∇pi + γpi∇ · v
)

= µ∇v : ∇v +∇ · (κi∇Ti) + ρ ν (Ti − Te)

∂A

∂t
− v ×B = −ηJ

(5.1)

with,

STe = −ξ∗ρ ρn Sion(Te)− ρρnLline(Te)− ρ2Lbrem(Te)

This is the system of equations for neutral (in this case D) density (ρn), total density

(ρ), velocity (v), electron temperature (Te), ion temperature (Ti) and magnetic vector

potential (A) along with Gauss law ∇ ·B = 0 and Ampére’s law ∇×B = J . The
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Figure 5.1: JET like equilibrium used for MMI simulations: (a) ρ, T and FF ′ profiles
plotted vs ψN . (b) Boundary conditions specified to solve Grad-Shafranov equation
on the polar grid. (c) Contours showing the numerical solution of the Grad-Shafranov
equation ψ plotted upon polar grid. (d) Flux aligned grid with the contours of ψN
highlighting q = 1, 2, .., 6 surfaces (drawn radially outwards) (e) Numerical solution
ψ plotted on the flux aligned grid. (f) q profile plotted vs ψN .

forms used for the viscosity coefficient, particle and heat diffusivities are described

in Chapter 3. The neutrals transport equation is modeled in [30] and contains only

particle diffusion term. Since the neutrals are not affected by presence of the magnetic

field, the diagonal diffusion tensor used is written as follows:

Dn =







DnR
0 0

0 DnZ
0

0 0 Dnφ







The ionization rate Sion and recombination rate αrec coefficients for D2 are parame-

terized [94, 30] as:
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Sion(Te) = 0.2917× 10−13

(

13.6

Te

)0.39
1

0.232 + 13.6
Te

exp

(

− 13.6

Te

)

αrec(Te) = 0.7× 10−19

(

13.6

Te

)1/2

where Sion and αrec are in m3/s and eV respectively. The normalized ionization

energy of a D2 atom is denoted by ξ∗ and is equal to 13.6 eV. The term ρ̇n denotes

the neutral source term and is specified as:

ρ̇n =
dNn

dt

f(R,Z, φ)
∫

fdV

where

f = exp

(

− (R−Rmgi)
2 + (Z − Zmgi)

2

∆R2
mgi

)

exp

(

− (φ− φmgi)
2

∆φ2
mgi

)

where, (Rmgi, Zmgi, φmgi) is the position where neutrals are delivered into plasma.

The poloidal and toroidal extents of the neutral source are denoted by ∆Rmgi and

∆φmgi respectively. The form of dNn/dt, based on experimental set-up, can be found

in [13, 30]. The symbols Lline and Lbrem denote the line and bremsstrahlung radiation

rate coefficients and the open ADAS [1] database is used to compute these coefficients.

The last terms in the both temperature equations denote the ion-electron collisional

energy exchange terms where ν is the electron-ion collision rate for the background

species.

All the variables and physical quantities are written in normalized units, unless

specified otherwise. The same temperature profile is used for ions and electrons.

The temperature independent values of resistivity and viscosity coefficient are spec-

ified as: η = 10−5 and µ = 10−5. The parallel and perpendicular components for

heat conductive coefficients for both the electron and ion temperature equations are

specified as κ‖ = 104 and κ⊥ = 10−6. The perpendicular particle diffusion coeffi-

cient is specified as D⊥ = 10−6. The neutrals diffusion coefficients are specified as

DnR
= DnZ

= Dnφ
= 10−5. The thermal equilibriation terms are not used in this

simulation. Boundary conditions used are described in section (4.2).

Flux aligned grid is built with the number of points in radial and poloidal di-

rections in the core nψ = 51 and nθ = 64 respectively. To resolve private and SOL

regions respectively 5 and 2 points are used. D2 gas is injected at (Rmgi, Zmgi, φmgi) =

(3.65, 0.25, 5.89) with 1 bar pressure (which is very much lower than the experimental
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Figure 5.2: MGI with full MHD: (a) Te at the magnetic axis. (b) Te profiles at
midplane plotted vs R. Evolution of : (c) magnetic energies (solid lines) and kinetic
energies (dotted lines) for n = 1, 2, 3, 4 (d) plasma current Ip.

value of 33 bar) at t = 0 (in practice, the code is run without injection for some time

before the injection, as it is done in SPI simulations). The shape of source is specified

with ∆Rmgi = 0.08 and ∆φmgi = 1.2. Toroidal harmonics used in the simulations are

n = 0, 1, 2, 3, 4 and number of equidistant planes used in the toroidal direction are

16.

The evolution of the temperature at the magnetic axis as shown in Figure (5.2a)

and it shows the sign of thermal quench (TQ) around 3 ms. Sudden drop in Te starts

roughly at 2.5 ms and last until 3.1 ms. In Figure (5.2b) Te profiles at midplane are

shown, where a sudden drop in Te profile is seen, for example, Te profile at t = 2.97 ms

is much lower than that at t = 2.37 ms. The drop in Te is associated with the increase

in energies as shown in Figure (5.2c). Figure (5.2d) shows evolution of plasma current

139



Ip which decreases steadily due to the fact that the resistivity used is higher for this

simulation. (Here, Ip is an integrated quantity over plasma volume. The expression

for Ip and other relevant integrated quantities are shown in Appendix (B)).

In Figure (5.3), visualizations of Te (in keV) and ρ (particle density in 1020) are

shown at time instants t = 1.48, 2.37, 2.97 and 3.86 ms along with Poincaré plots of

magnetic fields. As more and more particles are injected in plasma, a cooling front

is developed in the outer layer which is seen in the Te field at t = 1.48. This can

also be seen in Figure (5.2b) where gradient in Te is developed in the outer region.

This cooling is associated with the growth of 3/1 mode seen in the outer layer of

the Poincaré plot in Figure (5.3) at t = 1.48 ms. Beyond this time, the energies

associated with n = 3 and 4 grow which is seen in Figure (5.2c) and m/n = 3/1

mode grows as can be seen at the further time instants in Figure (5.2c). At t = 2.97

ms presence of 2/1 mode is seen which grows for some time and then stabilizes. At

t = 3.86 ms Te at the magnetic axis drops to almost half of the initial value and in

the significant portion, plasma becomes stochastic as seen from the last Poincaré plot

in Figure (5.3).

With the time step of 10, the simulation stops converging after t = 3.86 ms as

modes starts to interact with each other and MHD activities increase. In practice,

a typical simulation is restarted by reducing the time step at such a stage, as it is

done in SPI simulation. Although this simulation is performed on a coarse grid with

the parameters selected mostly for the ease of numerical treatment (which cause Ip

to drop unrealistically faster rate), it shows overall physical characteristics similar to

TQ, growth of core modes and stochastization of plasma.

Shattered pellet injection

The single temperature full MHD model used for SPI simulations is rewritten below:

∂ρimp

∂t
+∇ · (ρimpv) = ∇ · (Dimp∇ρimp) + ρ̇imp

∂ρ

∂t
+∇ · (ρv) = ∇ · (D∇ρ) + ρ̇i + ρ̇imp

ρ
∂v

∂t
+ ρv · ∇v) +∇p− J ×B = µ∇2v + ṁ− v(ρ̇i + ρ̇imp)

1

(γ − 1)

(

∂p

∂t
+ v · ∇p+ γp∇ · v

)

= µ∇v : ∇v +∇ · (κ ∇T ) + ST − Cion

∂A

∂t
− v ×B = −ηJ

(5.2)
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Figure 5.3: MGI with full MHD: First, second and third column shows Te [keV], ne
(1020) and Poincaré plots respectively. First, second, third and fourth row corresponds
to t = 1.48, 2.37, 2.97, 3.86 in ms respectively.

141



with Gauss law ∇·B = 0 and Ampéres law ∇×B = J . The source term ST is given

by equations (2.64) and (2.65) while Cion is given by equations (2.66) and (2.51). In

SPI a frozen pellet of D2 or Ar or Ne or mixture of them is shattered before the

injection into tokamak plasma. The number of atoms in the pellet and the number of

shattered fragments can be specified as inputs to the code. Each fragment generates

neutrals through ablation process. In JET-like equilibrium described at the beginning

of this section, we simulate the injection of 100 Ne fragments.

The physical parameters used for the simulation are as follows:

• The temperature dependent resistivity with the value at the magnetic axis η0 =

10−8 is specified only in A3 equation and not in AR and AZ equation. The

temperature and effective charge (Zeff ) dependence of the resistivity is specified

in the equation (2.67).

• The coefficient of viscosity is set with the value at the magnetic axis as µ0 = 10−6

with the Spitzer like temperature dependence. The viscous heating terms are

ignored in this simulation.

• The total density diffusion coefficients are set as D⊥ = D‖ = 5 × 10−5. The

same coefficients are used for impurity density diffusion. For the total density

equation, D‖ has no physical origin and is used only for numerical stability

reasons.

• The coefficients of heat conduction at the magnetic axis are set as κ⊥0
= 5×10−7

and κ‖0 = 4×104 where κ‖ depends upon the temperature as κ‖ = κ‖0(T/T0)
5/2

while κ⊥ is constant.

Flux aligned grid with one X-point is built with the number of points in radial

and poloidal directions in the core nψ = 51 and nθ = 64 respectively. To resolve

private and SOL regions respectively 4 and 3 points are used, while 10 points are

used in each left and right leg region. Toroidal harmonics used in the simulations are

n = 0, 1, ..., 7 and the number of planes used in the toroidal direction are 32.

The effective charge Zeff and the charge state distribution functions P(z, Te, ne)

are determined using coronal equilibrium (CE) assumption. The openADAS [1]

database is used to determine P(z) and Zeff which are plotted in the figure (5.4a)

and (5.4b) respectively, for the electron density ne = 1020 m−3. For given values of

Te, the charge state distribution functions of all charge states z sums up to 1. These
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Figure 5.4: The data obtained from CE assumption and openADAS [1] database:
(a) the charge state distribution function P(z) plotted vs electron temperature (in
log10(K)) where z ∈ 0, 10 for Neon atom. The legend ‘sum’ denotes summation of
P(z) over all charge states. (b) Zeff plotted vs electron temperature. (c) Radiation
function plotted vs electron temperature (in log10(K)).

functions are used to compute the ionization potential energy Eion. The radiation

power function (Lrad) to determine the radiation power loss, including contribution

from line radiation, recombination radiation and bremsstrahlung radiation, is also

determined at CE from the open ADAS data [1] and is shown in Figure (5.4c). For

simplicity we assume that there is no absorption of the radiated power. For more

details on assumptions made and the impact of CE assumption, see [49].

OP

V_spi

δV_spi

(a)

 

(b)

Figure 5.5: Sketch illustrating SPI: (a) Distribution of initial position and velocity of
the SPI fragments (b) The direction and the extent of SPI fragments propagation.

All fragments are assumed to come from the same point O and appear suddenly
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after a certain time tspi in the simulation so that they travel inside a cone of aperture

δVspi with the apex O as shown in Figure (5.5a). The point P = (Rspi, Zspi, φspi) is the

location around which fragments arrive in the domain directly. These locations are

chosen randomly in the neighborhood of the point P. The velocity of each fragment

Vfrag is chosen around the SPI reference velocity Vspi such that the difference between

Vfrag and Vspi is picked randomly between 0 and δVspi/2, where δVspi is shown in

Figure (5.5a). Figure (5.5b ) shows the sketch of the propagation of the SPI fragments

based on the SPI velocity and the initial position of fragments specified here. This

configuration mimics the SPI system installed on JET and that in [49].
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Figure 5.6: (a) Ablation rate plotted vs t (b) Total number of Ne atom in plasma
plotted vs t.

Neutral gas shielding (NGS) model is used to determine the ablation rate. The

ablated neutral cloud is assumed to have a circular cross-section in poloidal plane,

with a radius equal to Rspi and a toroidal extent ∆φspi. The details of the source

term due to SPI are given in section (2.3). The number fragments are assumed to be

100. We assume the fragment size rp follows the statistical fragmentation model [79]

as follows:

P(rp) =
rp K0(κp rp)

I
; I ≡

∫ ∞

0

rpK0(κp rp) dr = κ−2
p

where K0 is the modified Bessel function of the second kind, and κp is the inverse

of the characteristic fragment size. Theses fragments arrive at the location around

(Rspi, Zspi, φspi) = (3.05, 1.7, 4.51) after the time tspi = 0.03564 ms. The shape of a gas

cloud formed by the fragments is specified by equation (2.60) with ∆Rspi = 0.08 and

∆φspi = 1.2. R, Z and φ components of the SPI velocity are specified as −89.4427,
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−178.885 and 0 respectively in m/s with δVspi = 0.349 m/s. The total number of Ne

atoms injected are 1.5 × 1022. The ablation rate and the total number of Ne atoms

ablated in the simulation are shown in Figure (5.6).

A shock capturing stabilization is added where |∇·v| is used as a criterion to detect

discontinuities and high gradients. This criterion is chosen based on the observation

that near the location of fragments, higher gradients in T , ρ and v are seen that

eventually lead to negative densities. However, a more reasonable stabilization scheme

is devised which is presented in next section. Fourth order diffusion terms are also

added in all the equations, except those of A, with a constant coefficient 10−12 to

remove the high wavenumber spurious oscillations from the numerical solution.

Figure (5.7) shows snapshots of nimp [1020], T [keV], A3 and Zeff plotted on φ = 0

plane at t = 0.83, 0.88 and 1 ms. As opposed to MGI, SPI involves a moving source

with SPI velocity vspi and it can be seen from ρimp snapshots that the impurity

source is moving in the plasma core. The moving fragments interact with electrons

and create impurities via ablation which can be seen from the high values of ρimp in

Figure (5.7). These high values also approximately show the location of the fragments.

As fragments move inside the plasma core, MHD instabilities are triggered along the

rational q surfaces and it can also be seen in the evolution of the magnetic and kinetic

energies in Figure (5.9a). Along the rational q surfaces, the convective mixing helps

impurities to spread in plasma which is seen from Zeff plots in Figure (5.7). As

impurities spread, a cooling front is generated around plasma core that propagates

inwards which is seen from the snapshots of the temperature.

Snapshots of A3 are also shown in Figure (5.7) showing MHD instabilities devel-

oping along rational q surfaces. This leads to stochatization of plasma as can seen

from Poincaré plot of the magnetic field in Figure (5.8). The blue dots show location

of the fragments at t = 1 ms. The growth of the modes in the outer layer of plasma

cause magnetic surfaces to break as fragments propagate inside plasma. The breaking

of the magnetic surfaces is a sign of loss of confinement. The mode m/n = 1/1 grows

near the magnetic axis, as q = 1 surface is close to the magnetic axis. After t = 0.75

ms the growth in 1/1 mode causes the core temperature to collapse. The growth of

2/1 can also be seen in Poincaré plot at the radial location where the fragments are

located at t = 1 ms.

Figure (5.9a) shows that until 0.7 ms energies increase during which the temper-

ature profile also increases as can be seen in Figure (5.9b) and (5.9c). After t = 0.75

ms, because of the growth of 1/1 mode, the temperature profile cools rapidly and
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Figure 5.7: First, second, third and fourth row show visualization of nimp [1020], T
[keV], A3 and Zeff while first, second and third columns shows the quantities plotted
at t = 0.83, 0.88 and 1 ms. All the figures are plotted at φ = 0 plane.

energies increase more rapidly. In Figure (5.10), a sign of a thermal quench is seen

via rapid decrease in the thermal energy (TE) and increase in the radiation energy.

Figure (5.10c) shows the evolution of the plasma current Ip which is the integrated
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Figure 5.8: Poicaré plot of magnetic field plotted at t = 1 ms along with the position
of SPI fragments marked by blue dots.

quantity over the plasma volume. At the beginning of the injection Ip shows dramatic

decrease which is a consequence of not using η in AR and AZ equations. This drawback

is eliminated when we use the resistivity in all components of the magnetic potential

(shown in next subsection). Figure (5.9d) shows j = −R jφ profiles (where j is a

variable of the reduced MHD model) at the midplane plotted vs R. A smoothing

operation is performed on these profile as the continuous description of the current

vector is not available and j profile obtained is non smooth. The current profile

contraction is seen approximately at R = 3.6 m where gradients in T profiles are also

seen. Both T and j profiles’ contractions follow the cooling front.

Despite the use of a coarse grid, removal of η from AR and AZ equations and

absence of Ohmic heating term, physical aspects of SPI are captured in these simu-

lations which look similar to JET SPI simulations in [49] and a MGI simulation in

[74]. MHD instabilities are triggered by two mechanisms, first a convective mixing

147



0.00 0.25 0.50 0.75 1.00
t [ms]

0.0

0.2

0.4

0.6

0.8

1.0

M
E

 a
nd

 K
E

1e 3

n=1
n=2

n=3
n=4

n=5
n=6

n=7

(a)

0.25 0.50 0.75 1.00
t [ms]

0.015

0.020

0.025

0.030

0.035

0.040

T 
[k

eV
]

(b)

2.0 2.5 3.0 3.5
R [m]

0

2

4

6

8

T 
[k

eV
]

t=0.00
t=0.74
t=0.88

t=0.97
t=1.00

(c)

3.2 3.3 3.4 3.5 3.6 3.7
R [m]

10

5

0

5

10

j [
M

A]

t=0.00
t=0.74
t=0.88

t=0.97
t=1.00

(d)

Figure 5.9: SPI with full MHD: Evolution of (a) magnetic energies (solid lines) and
kinetic energies (dotted lines) for n = 1, 2, 3, 4, 5, 6, 7 (b) T at the magnetic axis. (c)
T profiles at midplane plotted vs R. (d) j = −Rjφ profiles at midplane plotted vs R.
Smoothing operation is performed on this profile.
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Figure 5.10: SPI with full MHD: Evolution of (a) thermal energy (b) radiation energy
(c) plasma current Ip. These are integrated quantities over plasma volume.
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in the outer layer of plasma triggered by SPI fragments and then the growth of core

1/1 mode. A TQ like phase is seen after which the linear solver fails to converge as

negative values of ρimp are seen, which denotes the need of higher resolution and/or

numerical stabilization. Summarizing, physical characteristics of TQ like phase is

seen in the simulation which is associated with the increase in MHD activities and

growth of core modes leading to plasma stochastization in the outer layer.

5.2 SPI triggered MHD dynamics

The SPI parameters used in following simulations are the same as the SPI simulation

described in the above section. Nonlinear simulations are performed in a range of

parameters to study plasma response to SPI.

Stabilization based on acoustic waves

It is observed in the preliminary simulations that high values of ∇ · v follow the SPI

fragments and may lead to numerical problems such as the negative densities near

the location of the fragments. Indeed, the presence of impurities alters the equation

of pressure and the speed of sound. Let us look at the pressure equation:

∂p

∂t
+ v · ∇p+ γp∇ · v + (γ − 1) ρimp

(

∂Eion

∂t
+ v · ∇Eion

)

= Rp

where, Rp denotes all other terms in the pressure equation and the pressure is given

as p = (ρ+αimp ρimp) T . Recalling the assumption that Eion is a (strong) function of

electron temperature (and a weak function of ne, so that the variation with respect

to ne is ignored):

∂p

∂t
+ v · ∇p+ γp∇ · v + (γ − 1) ρimp

∂Eion

∂T

(

∂T

∂t
+ v · ∇T

)

= Rp (5.3)

Using the definition of the total pressure p = (ρ+ αimp ρimp) T ,

∂p

∂t
= ρ̃

∂T

∂t
+ T

∂ρ

∂t
+ αimp T

∂ρimp

∂t

∇p = ρ̃ ∇T + T ∇ρ+ αimp T ∇ρimp

(5.4)

where,

ρ̃ =

(

ρ+ αimp ρimp + ρimp T
∂αimp

∂T

)
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Using Eq. (5.4) into (5.3),

∂p

∂t
+ v · ∇p+ γp∇ · v + (γ − 1)

ρimp

ρ̃

∂Eion

∂T

(

∂p

∂t
+ v · ∇p

)

− (γ − 1)
ρimp

ρ̃
T
∂Eion

∂T

(

∂ρ

∂t
+ v · ∇ρ

)

− (γ − 1)
ρimp

ρ̃
αimp T

∂Eion

∂T

(

∂ρimp

∂t
+ v · ∇ρimp

)

= Rp

and further using equations of ρ and ρimp in the pressure equation:

(

1 + (γ − 1)
ρimp

ρ̃

∂Eion

∂T

)(

∂p

∂t
+ v · ∇p

)

+

[

γ + (γ − 1)
ρimp

p

(

T ρ

ρ̃

∂Eion

∂T
+

T αimp ρimp

ρ̃

∂Eion

∂T

)]

p ∇ · v = Rp

where, rest of the terms in ρ and ρimp equations are absorbed into Rp. Therefore, the

pressure equation is written in compact notation as:

∂p

∂t
+ v · ∇p+ γ̃ p ∇ · v = Rp

where

γ̃ =

γ + (γ − 1)
ρimp

p

(

T ρ
ρ̃

∂Eion

∂T
+

T αimp ρimp

ρ̃
∂Eion

∂T

)

1 + (γ − 1)
ρimp

ρ̃
∂Eion

∂T

This analysis suggests that the sound speed in the plasma changes due to the

presence of impurities and becomes:

c2s =
γ̃ p

ρ

Therefore, a simplified VMS stabilization (Eq. (3.16)) that focuses only on the

acoustic waves should take into account the contribution in the pressure due to im-

purities as well. The stabilization terms added in the velocity equation then takes

the form:

dv = kc
γ p

ρ
(∇ · v∗) (∇ · v)

where, p is the total pressure. The constant stabilization coefficient is specified as

kc = 10−6. Since the stabilization term will be effective only when the divergence of

v is high, the grid (he) dependence of the stabilization coefficient is ignored.
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Boundary conditions

Boundary conditions at the divertor enforces the Mach 1 flow of the plasma as de-

scribed in Section (4.2) . Rewriting the total pressure as:

p =

(

1 + αimp
ρimp

ρ

)

ρ T (5.5)

The term in the bracket is a factor that arises due to the presence of impurities and

needs to accounted for in the boundary conditions at the divertor. The ratio of atomic

mass of a ion and Ne atom is roughly 1/20 and Zimp for Ne ranges in between 1 to

10. An approximate estimate can be made for αimp based on

αimp =
1

2

mi

mimp

(Zimp + 1)− 1

and it can be seen that αimp takes values in between −19/20 and −29/40. For

simplicity, the average value of these two limits−67/80 is used to update the boundary

conditions for the presence of the impurities such that the pressure at the divertor is

written as:

p =

(

1− 67

80

ρimp

ρ

)

ρ T

Ideally, the definition (5.5) needs to be implemented in the boundary conditions

which, in practice, will require computation of αimp and therefore calling CE and

openADAS routines in the subroutine of boundary conditions. This implementation

will be beneficial if one uses high values of D‖ which transports impurities fast upto

the divertors causing high values of ρimp at the divertors. When D‖ is not used, the

simplification of using average value is reasonable since low ρimp values are observed

at the divertors.

Effect of resistivity in poloidal equations

The SPI simulation shown in previous section uses resistivity only in A3 equation

which resulted in large variations in Ip. The rationale behind using the resistivity

only in A3 equation was that the MHD dynamics is assumed to be dominated by this

equation. In this subsection the effect of suppressing η from AR and AZ equations is

discussed. The coarse grid used for the simulation presented in the previous section

is used again to run the two cases with the temperature dependent resistivity with

the values at the magnetic axis as:
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• η0 = 10−8 in all AR, AZ and A3 equations.

• η0 = 10−10 in AR and AZ equations while η0 = 10−8 in A3 equation.

The other physical parameters used are as follows:

• The temperature dependent viscosity coefficient with the value at the magnetic

axis µ = 10−6.

• The particle diffusion coefficientsD‖ = D⊥ = 5×10−5 in both density equations.

• The perpendicular heat conductivity is specified as κ⊥ = 2 × 10−5 while the

temperature dependent parallel conductivity is specified with the value at the

magnetic axis as κ‖0 = 4000.
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Figure 5.11: Effect of η in AR and AZ equations: (a) ablation rates (b) Total impu-
rities injected (c) plasma current Ip (d) plasma thermal energy (e) magnetic energies
(ME) (f) kinetic energies (KE). For ME and KE solid lines denote the energies ob-
tained using the same value of η in all equations AR, AZ and A3. While, dashed lines
denote the energies obtained by the use of smaller value of η in AR and AZ equation.

Figure (5.11) shows the comparison of ablation rates, total impurities injected, Ip,

plasma thermal energy, magnetic and kinetic energies for the two cases. Removing

or suppressing η in AR and AZ affects the numerical solution greatly. The use of the
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smaller value of η in AR and AZ makes the dynamics faster which causes Ip to change

significantly. It also causes A3 to change dramatically as can be seen Figure (5.7).

(a) (b)

Figure 5.12: Poicaré plots of the magnetic field at t = 0.94 ms showing effect of η in
AR and AZ equations.

The use of the smaller value of η in AR and AZ equations triggers the MHD insta-

bilities which can be seen from the evolution of the magnetic and kinetic energies in

Figure (5.11). The magnitude of magnetic energies are much lower for the simulation

with the same value of η used in all three equations. The effect is also seen in the

kinetic energies at later times. Suppression of η from AR and AZ destabilization the

MHD modes and may trigger disruptions. For this case, the plasma thermal energy

plotted in (5.11d) starts to decrease from t ≈ 0.8 ms. This is the result of the stochas-

tization of the magnetic field in the outer layer of plasma as seen in Figure (5.12b),

where the magnetic island associated with 2/1 mode is also seen. MHD instabili-

ties and stochastization of the magnetic field are not seen in the simulation where

η = 10−8 in all three equations (Figure (5.12a)).

Therefore, the assumption that MHD dynamics is dominated by the A3 equation

seems not valid, at least for the resistivities of the order 10−8 which are practically

relevant. Henceforth, the same value of the resistivity is added in all three equations

for AR, AZ and A3. In contrast, the poloidal resistivities (those in AR and AZ

equations) should be higher than the toroidal resistivity [15] which may be a step
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towards more realistic simulations in future.

Scan in resistivity

In this subsection the scan over η is performed. The grid used is as described above

with nψ = 51 and nθ = 64. The SPI parameters used are described in previous section

and the numerical results are shown for η = 10−6, 10−7 and 10−9. The other physical

parameters used are as follows:

• The coefficient of viscosity: µ = 10−6.

• The particle diffusion coefficients D‖ = 0 and D⊥ = 10−5 in both total and

impurity density equations.

• The coefficients of heat conductivities are specified as κ⊥ = 5× 10−6 and κ‖ =

4000.

The use of the temperature dependence in the resistivity leads to the high values

and sharp gradients in η field near the edge. Such regions are found to be numer-

ically unstable for the resistivities specified by η0 ≥ 10−7. Hence, the temperature

dependence on η is removed from the simulations with η0 ≥ 10−7. Similarly, the

viscosity coefficient is also kept independent of the temperature. The reason being,

at the divertors low temperatures results in high viscosity coefficients that destabilize

the viscous heating term.

These simulations with different values of η are run until approximately 1 ms. The

ablation rates and the number of impurity particles ablated do not depend signifi-

cantly upon the resistivity as can be seen in Figure (5.13). The similar observation

is made for plasma current Ip and the plasma thermal energy. The simulation with

η = 10−9 uses temperature as well as Zeff dependent resistivity (in all three AR,

AZ and A3 equations). Therefore, as Zeff in plasma domain increases the resistivity

also increases which may explain the drop in Ip. Figure (5.14) shows the ratio of

the resistivity at t ≈ 0.72 and t ≈ 0.057 ms and it can be seen that the resistivity

becomes almost twice in the layer where Zeff values are higher than 1. The sharp

peek in the ratio is seen at the location of SPI injection where T drops down signif-

icantly. Magnetic energies increase with the decrease in η (Figure (5.13e)), while no

significant effect of the resistivity is seen on the kinetic energies, until t = 1 ms.
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Figure 5.13: Effect of η on SPI simulations: (a) ablation rates (b) Total impurities
injected (c) plasma current Ip (d) plasma thermal energy (e) magnetic energies (ME)
(f) kinetic energies (KE). For ME and KE solid lines, dashed lines and dotted-dashed
lines denote the energies obtained using η = 10−6, 10−7 and 10−9.

(a) (b) (c)

Figure 5.14: Effect of T and Zeff dependence on the resistivity (a) T (in normalized
units) plotted in log scale at t ≈ 0.72 ms (b) Zeff plotted at t ≈ 0.72 ms (c) ratio of
resistivities (in normalized units) η(t ≈ 0.72)/η(t ≈ 0.057)

Summarizing, in the early stages of SPI simulations physics is not effected by the

resistivities significantly. In order to incorporate the dynamics due to the tempera-

ture and Zeff dependent resistivity, smaller values of the resistivities (than 10−7 in
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normalized units) should be considered which are also practically relevant values of

η.

Grid convergence

SPI simulations are run with the constant resistivity η = 10−7 on the series of 5

grids described in Table (5.1). The simulation on the last grid uses the number of

toroidal harmonics n = 0, 1..., 12 as opposed to first four that use n = 0, 1, ..., 7. The

emphasis is given to the refinement in the azimuthal (θ) direction since the convection

in azimuthal direction is observed as SPI fragments penetrates in plasma.

Grid # nψ nθ n Np

Grid 1 51 64 7 32

Grid 2 71 100 7 32

Grid 3 71 128 7 32

Grid 4 71 151 7 32

Grid 5 71 151 12 64

Table 5.1: A series of grids used for SPI simulation with constant η = 10−7. Here, nψ
and nθ denotes the number of points in radial and azimuthal direction respectively.
n denotes the number of toroidal harmonics added in the simulations and Np denotes
the number of equidistant planes in the toroidal direction which needs to chosen for
FFT implementation.

The other physical parameters used are as follows:

• The constant viscosity coefficient is set to µ = 10−6.

• The particle diffusion coefficients are specified as D‖ = 0 and D⊥ = 10−5 for

both the total and impurity densities.

• The perpendicular heat conductivity is specified as κ⊥0
= 5×10−6 and temper-

ature dependent parallel heat conductivity with κ‖0 = 4000.

Figure (5.15a) shows physical times until which the simulations are run. A typical

simulation is started with the time step of ∆t = 5 normalized units from the beginning

of the injection. As fragments move inside the plasma core and reach the rational
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Figure 5.15: SPI simulations run on a series of grids for η = 10−7 (a) physical time for
which simulation is run (b) ablation rates (c) total impurities injected (d) radiation
energy (e) plasma current Ip (f) plasma thermal energy.
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Figure 5.16: SPI simulations run on a series of grids for η = 10−7 (a) magnetic energies
(b) kinetic energies. Dotted, dashed, dashed-dotted and solid lines represents energies
plotted for grid 2, 3, 4 and 5 respectively.

q surfaces, the convection of impurities in the azimuthal direction is observed. This

plasma dynamics occurs on smaller time scales and hence the times steps need to be

reduced otherwise a linear solver fails to converge. This can be seen in the Figure
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(5.15a) that in each simulation the time step has been reduced before the onset of the

convection in θ direction. Although initially the ablation rates are almost the same

in each simulation, it is found to be highly dependent on the grid in later stages as

can be seen in Figure (5.15b). The coarse grid (Grid1) underestimates the ablation

rate. This may be due to the extra stabilization effect produced by the physical

diffusivities (resistivity, particles diffusion and heat conductivity) on the coarser grids

that underestimates the temperatures and densities in the region of fragments, which

further underestimates the ablation rates. Later in the simulations, the ablation rates

obtained are higher for the finer grids and consequently the larger number of impurity

particles are deposited in the plasma which is seen Figure (5.15c).

No significant effect of the grid refinement is seen on the radiation and thermal

energies which can be seen in Figure (5.15d) and (5.15f). Figure (5.15e) shows the

plasma current evolution obtained with all grids for which a convergence behavior is

seen at initial times. A correlation between ablation rate and plasma current is seen

such that, the ablation rate and Ip both increase with the grid refinement. On the

most refined grid, Ip begins to deviate from t ≈ 1 ms and at the same time increase

in the ablation rate is also observed. Such increase in the ablation rates occur earlier

with the grid refinement and is associated with the growth of magnetic energies. The

magnetic energies on the finer grids grow rapidly as seen in Figure (5.16a). After

certain time, the magnetic energies of the higher toroidal harmonics dominates the

energies of the lower harmonics and oscillations are seen in the Ip and the ablation

rates. This behavior indicates the need of the numerical stabilization of the magnetic

field. Figure (5.16b) shows the evolution of the kinetic energies on the series of grids

which do not show significant difference, indicating that the hydrodynamic part of

the model is well resolved.

Finally the comparison of Poincaré plots is shown in Figure (5.30) for Grid 2, 3,

4 and 5, approximately at the same physical times. On Grid 5 the formation of a

stochastic layer near the edge of the plasma is seen at t = 1.262 ms whereas with all

other grids there is no sign of stochastization even at later physical time instants. As

ablation rate begins rise later with the first four grids, the outer layer of the plasma

also becomes stochastic later in time (not shown here).

The grid convergence is seen in SPI simulation however, a rapid growth in the

magnetic energies highlight the of stabilization of the magnetic field. The lack of

temperature and Zeff dependence of the resistivity cannot take into account the the

increase in the resistivity due to plasma cooling and increase in Zeff due to SPI.

158



(a) t = 1.316 (Grid 2) (b) t = 1.292 (Grid 3)

(c) t = 1.328 (Grid 4) (d) t = 1.262 (Grid 5)

Figure 5.17: Poincare plots of the magnetic field plotted for the simulation with
η = 10−7 at the mentioned time instants and grids.

Effect of the particle diffusion

On the grid with nψ = 71 and nθ = 100 and with the toroidal harmonics included

from n = 0 to 7, following simulations are run to see the effect of D⊥:

• D⊥ = 10−5 with the time step ∆t = 5

• D⊥ = 2× 10−5 with ∆t = 5

• D⊥ = 2× 10−5 with ∆t = 2
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A constant restitivity with η0 = 10−7 is specified along with the constant viscosity

coefficient µ = 10−6. The heat conductivities are specified as κ⊥0
= 5 × 10−6 and

temperature dependent κ‖ with κ‖0 = 4000.
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Figure 5.18: SPI simulations to show effect of D⊥ with η = 10−7 (a) physical time for
which simulation is run (b) ablation rates (c) total impurities injected (d) radiation
energy (e) plasma current Ip (f) plasma thermal energy.

Figure (5.18a) shows the physical time for which simulations are run vs number

of time steps. The simulation with D⊥ = 2 × 10−5 runs for longer physical times

than that with D⊥ = 10−5. Although higher ablation rates are obtained with D⊥ =

2 × 10−5, the number of impurities deposited and the radiation energy obtained are

lower than that with D⊥ = 10−5 as can be seen in Figure (5.18). The evolution

of plasma current Ip obtained is almost the same in all cases (Figure (5.18e)). As

expected the thermal energies are higher with D⊥ = 10−5. Since the simulations with

D⊥ = 2 × 10−5 run for longer physical times, the SPI fragments penetrate further

into plasma and starts cooling effect. This can be seen via faster decrease in thermal

energies near t = 1.5 ms.

With the large time step the ablation rate is higher and hence the amount of

impurities deposited. A higher ablation rate results into slightly faster decrease in

thermal energies as seen in Figure (5.18). The comparison of the magnetic and

kinetic energies for the toroidal harmonics n = 1, 3, 5 and 7 is shown in Figure (5.19).
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Figure 5.19: SPI simulations to show effect of D⊥ with η = 10−7 (a) magnetic energies
(b) kinetic energies. Solid, dashed and dashed-dotted lines represents energies plotted
for the simulations (D⊥ = 10−5,∆t = 5), (D⊥ = 2 × 10−5,∆t = 5) and (D⊥ =
2× 10−5,∆t = 2) respectively.

The rise in ablation rate is associated with the rise in magnetic energies as seen in

Figure (5.19a) which again highlights the need of stabilization of the magnetic field.

The kinetic energies are smaller for D⊥ = 2 × 10−5 which is expected due to the

stabilization provided by larger particle diffusion. With the smaller time step no

significant difference is seen in the kinetic energies.
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Figure 5.20: SPI simulations to show effect of D⊥ with η = 10−7 (a) T (b) j = −R jφ
plotted at midplane vs R for (D⊥ = 2× 10−5,∆t = 2).

In Figure (5.20), T and j = −R jφ profiles are plotted at the midplane at dif-

ferent time instants for the simulation with ∆t = 2. The cooling of plasma is seen
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in the outer layer of plasma. The current profiles do not change significantly and

current contraction is not prominently seen. As temperature profiles go down in

the outer layer, the current profiles also go down. Ideally, these simulations may be

pushed forward in physical time by further reducing time steps and/or by the use of

stabilization. The purpose of this exercise was to to show effect of D⊥.

It is found that use of the smaller values of D⊥ than 10−5 needs restrictive time

steps and higher grid resolution. For the grids used in this work 10−5 seems the lower

limit of the D⊥ that can be used.

Effect of numerical stabilization

Although the numerical stabilization based on the acoustic waves is added in all the

simulations, we now present the effect of the simplified VMS stabilization based on

convective terms. The VMS stabilization is supposed to account the effect of the

unresolved scales and hence the comparison performed between the simulation with

the stabilization and the simulation without stabilization but on the finer grid in the

θ direction. The details of the two simulations are as follows:

• sim1 : Simplified VMS stabilization based on the convective terms (equation

(3.16)) is used in the simulation on the grid with nψ = 71 and nθ = 100 along

with the acoustic wave stabilization. The stabilization matrix is specified as:

T = 10−2 he
λmax

I

• sim2 : Only simplified stabilization based on the acoustic wave is added on the

finer grid in the poloidal plane with nψ = 71 and nθ = 128. In this case, the

stabilization is added in the velocity equation with the stabilization coefficient

specified as 10−6.

Both simulation are run with the toroidal harmonics n = 0, 1, ..., 7. The physical

parameters used for these simulations are as follows:

• The temperature and Zeff dependent resistivity is used with η0 = 10−8 (in all

three AR, AZ and A3 equations).

• The constant viscosity coefficient µ = 10−6 is used.
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• The coefficient of the density diffusion D⊥ = 2 × 10−5 is used while the D‖ is

set to 0 in both the density equations.

• The perpendicular heat conductivity are specified as κ⊥ = 5 × 10−6 and the

temperature dependent parallel conductivity with κ‖0 = 4000.
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Figure 5.21: SPI simulations to show effect of the numerical stabilization : (a) physical
time for which simulation is run (b) ablation rates (c) total impurities injected (d)
radiation energy (e) plasma current Ip (f) plasma thermal energy.

Figure (5.21a) show that both simulations have been run approximately until

same physical time. The finer grid demands smaller time steps and hence needs

more number of time steps to reach the same physical time. Change in slopes in

Figure (5.21a) denote the reduction in the time steps. The ablation rate, number

of impurities injected, radiation energy and thermal energy obtained are almost the

same in the two simulations (Figure (5.21)). The evolution of the kinetic energy is

also comparable for the two simulations as can be seen in Figure (5.22b), except that

the kinetic energy of n = 7 is lower because of the use of the numerical stabilization.

The evolution of the plasma current Ip obtained with ‘sim1’ is different than

that with ‘sim2’ (Figure (5.21e)). This is the effect of the different grid resolutions

as discussed in the subsection on grid refinement. The magnetic energies of lower

harmonics are comparable while the distinct effect of the stabilization is seen in the
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Figure 5.22: SPI simulations to show effect of the numerical stabilization (a) magnetic
energies (b) kinetic energies. Solid and dashed represents energies plotted for the sim1
and sim2 respectively.

energies of the higher harmonics (5.22a). For example the magnetic energy of n = 7

is lowered by the order of 10 due to the stabilization.

(a) (b)

Figure 5.23: SPI simulations to show effect of the numerical stabilization. Poincaré
plots shown for (a) sim1 at t = 2.118 ms and for (b) sim2 at t = 2.088 ms.

Figure (5.23) shows Poincaré plots obtained using two simulations where the simi-

larity of the MHD dynamics obtained is seen. The blue dots show the position of SPI

fragments in the plasma. Poincaré plot for ‘sim1’ is shown at t = 2.118 ms (Figure
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(5.23)) where the magnetic island associated with 3/1 and 2/1 modes can be seen.

Poincaré plot for ‘sim2’ also shows the growth of 3/1 mode and the onset of 2/1

mode as it is slightly behind in the physical time. The signature of 1/1 mode is also

seen near the magnetic axis however, the mode does not grow significantly until the

simulations have been run.

This exercise shows that the use of the numerical stabilization formulated here

does not alter the physics. The stabilization terms used in the induction equation are

not however adequate to stabilize the magnetic energies. This is because the terms

containing the current in VMS stabilization are ignored as the second derivatives with

respect to φ are not yet implemented in JOREK via DFT. Use of the stabilization of

the magnetic fields is the scope for the future work and may help push simulations

until thermal quench as observed in [49]. Following we present the simulation with

high value of the particle diffusion in order to simulate SPI for longer physical times

that helps to capture a pre-TQ physics.

Pre-thermal quench

This simulation is run for longer physical time than the previous runs and the physical

parameters specified are:

• To be able to use the temperature dependent resistivity, the resistivity is chosen

with η0 = 10−8 (in all three AR, AZ and A3 equations).

• The constant viscosity coefficient µ = 10−6 is used.

• The perpendicular density diffusivity is specified as D⊥ = 5 × 10−5 while the

parallel diffusivity D‖ is set to 0 in both the density equations. This value of

D⊥ is higher than the previous runs and adds the stabilization effect allowing

larger time steps.

• The perpendicular heat conductivity are specified as κ⊥ = 10−6 and the tem-

perature dependent parallel conductivity with κ‖0 = 4000.

• The grid is built with nψ = 71 and nθ = 100 points and the number of toroidal

harmonics used are n = 0, 1, ..., 7.

The simulation runs until t ≈ 2.4 ms and at the beginning of SPI the time step used

is ∆t = 2 (in normalized units) which is reduced by the factor of 2 in 4 steps whenever
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the linear solver fails to converge. The ablation rate, total impurities ablated and

radiation energy obtained are shown in Figure (5.24). The ablation rate rises rapidly

at the end of the simulation where magnetic and kinetic energies also rise rapidly

(Figure (5.29)). The plasma current Ip do not vary significantly over the time but

starts to decrease after 2 ms (Figure (5.24d)). The thermal energy decreases steadily

but does not show any sign of TQ (Figure (5.24e)). The temperature at the magnetic

axis rises until almost t ≈ 1.75 and then decreases (Figure (5.24f)).
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Figure 5.24: SPI simulation with η = 10−8: (a) The ablation rates (b) total impurities
injected (c) radiation energy (d) plasma current Ip (e) plasma thermal energy (f) T
at the magnetic axis.

Figure (5.25) shows the temperature and current profiles plotted at midplane vs

R. The temperature profile rises in the core initially until t ≈ 1.75 ms as can also be

seen in Figure (5.9b). However, during this time the plasma cools in the outer layer

due to the effect of impurities from SPI. After t ≈ 1.75 ms, the entire temperature

profile starts to drop. The distinct current contraction is not obtained as opposed

to [49]. However, the current profile drops in the outer layer (5.25b) following the

behavior of the temperature profile.

Figure (5.26 - 5.28) show snapshots of the mentioned variables at the time instants

t = 0.651, 1.207, 1.95 and 2.381 ms. All the snapshots are plotted at φ = 0 plane

and in normalized units. The rational surfaces are marked by the dotted lines in the
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Figure 5.25: The temperature and current profiles plotted at midplane at the men-
tioned time instants for the SPI simulation with η = 10−8: (a) T vs R (b) j(= −R Jφ)
vs R.

visualizations which correspond to q = 5, 4, 3, 2 surfaces identified radially inwards.

The presence of SPI fragments in the plasma starts the ablation process, i.e., inter-

action of the fragments with the electrons and it results the release of neutral atoms

into plasma. These neutral atoms then interact with plasma ions and electron via

ionization, recombination and charge exchange processes forming charged impurities.

The formation of the charged impurities along with the neutral impurities is realized

by the local rise in ρimp field. Ionization process involve the liberation of the ioniza-

tion energy. The charged species with different level of charge states gives rise to Zeff

field in plasma. Effects of the atomic processes along with the radiation energy losses

are shown in the visualizations.

The time instant t = 0.651, 1.207 and 1.95 approximately corresponds to arrival

of the SPI fragments at q = 4, 3 and 2 surfaces respectively. Arrival of the fragments

on the rational q surface triggers the convection of the impurities in θ direction as can

be seen from the snapshots of ρimp. The spread of impurities in θ direction is seen in

the snapshots via the mass ratio ρ/ρimp (Figure 5.26), Zeff and ionization potential

energy field (Figure 5.27). Impurities in the outer layer of plasma results into the

cooling front around the plasma core and causes T and j profiles to decrease in the

outer layer. Further in time the cooling front propagates radially inwards to cross

q = 3 and 2 surfaces, which causes entire temperature profile to drop down. The need

of the reduction in the time step is associated with the fragments reaching q = 3 and

2 surfaces as MHD dynamics occur on faster time scales. From the snapshot of ρimp
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at t = 2.381 ms shown in Figure (5.26), a strong convection in the θ direction is seen

and at the same location plasma temperature drops. The A3 field is also affected by

the cooling of the core as shown in Figure (5.28).

Along with A3, Figure (5.28) also shows the quantities B · ∇T and v · ∇ρimp

plotted at the same time instants. The localized peak of high values in v · ∇ρimp

field denotes the approximate location of the SPI fragments at respective time in-

stants. Snapshots also show that the convection of impurities in the poloidal plane

is enhanced particularly at q = 2 surface. The quantity B · ∇T denotes the change

in the temperature in the direction of the magnetic field. This quantity shows high

values along the rational q surfaces and the structures in the visualizations highlight

the growth of the respective MHD modes. As cooling front propagates inwards, the

modes inside the plasma core are highlighted. In the last snapshot, the rapid increase

in the magnitude of the B · ∇T is seen which is also associated with the distortion

of A3 field at the same time.

Figure (5.29) shows the evolution of the magnetic and kinetic energies which begin

to increase rapidly after t = 2 ms as SPI fragments cross q = 2 surface. The smooth

behavior of the energies is the result of the stabilization provided by large value of

D⊥. After t = 2 ms, despite a rapid increase in the energies, the growth is lead by

the lower harmonics. The rapid growth is associated with the SPI fragments crossing

q = 2 surface.

Finally Poincaré plots of the magnetic field is shown in Figure (5.30) at the men-

tioned time instants along with the locations of SPI fragments marked by blue dots.

At t = 1.653 ms fragments have crossed q = 4 surface while at t = 1.95 fragments

are at q = 3 surface. The growth of 3/1 mode is seen by the magnetic island in

Poincaré plot at t = 1.95. As fragments penetrate further in the plasma core 2/1

mode is excited as can be seen at t = 2.247 ms along with the other core modes.

The plasma dynamics occur over faster time scales further and the modes 3/1 and

2/1 grows rapidly. This is associated with the formation of the stochastic layer in

the outer region of the plasma core. The crossing of q = 2 surface is associated with

strong convection currents which further cause stochastization in the plasma core.

However, the simulation does not lead to the TQ and current profile contraction.
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Figure 5.26: Visualizations of SPI simulation with η = 10−8. 1st, 2nd and 3rd columns
show T [keV ], nimp [1020] and ρimp/ρ while 1st, 2nd, 3rd and 4rth row show snapshots
at t = 0.651, 1.207, 1.95 and 2.381 ms respectively.
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Figure 5.27: Visualizations of SPI simulation with η = 10−8. 1st, 2nd and 3rd columns
show Zeff , (γ−1) ρimp Eion and Prad while 1st, 2nd, 3rd and 4rth row show snapshots
at t = 0.651, 1.207, 1.95 and 2.381 ms respectively.
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Figure 5.28: Visualizations of SPI simulation with η = 10−8. 1st, 2nd and 3rd columns
show A3, B · ∇T and v · ∇ρimp while 1st, 2nd, 3rd and 4rth row show snapshots at
t = 0.651, 1.207, 1.95 and 2.381 ms respectively.
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Figure 5.29: SPI simulation with η = 10−8: (a) magnetic energies (b) kinetic energies.

172



(a) t = 0.104 ms (b) t = 1.207 ms (c) t = 1.653 ms

(d) t = 1.95 ms (e) t = 2.247 ms (f) t = 2.336 ms

(g) t = 2.366 ms (h) t = 2.381 ms (i) t = 2.382 ms

Figure 5.30: Poincaré plots of the magnetic field at mentioned time instants along
with the projected position of SPI fragments shown by blue dots.
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Effect of SPI parameters

The initial position and velocity of SPI fragments specified in the previous simulations

mimics the actual SPI experiments in JET. For the simulation presented below, a

hypothetical SPI set up is used and compared with the previous set up in the sketches

shown in Figure (5.31a) and (5.31b). With the second set up the fragments travel

primarily in the negative R direction.

 

(a) JET like SPI set up

 

(b) Equatorial injection from low field side

Figure 5.31: Two SPI configurations used each using different initial position and SPI
velocity.

The initial position of SPI fragments is chosen around the location (Rspi, Zspi, φspi)

= (3.86, 0.28, 4.51) m while the SPI velocity of the fragments is chosen around the

velocity vector (VRspi
, VZspi

, Vφspi) = (−91.1, 0, 0) m/s. This velocity corresponds to

the magnitude of almost 10 times smaller than the previous configuration. All other

SPI parameters are kept same as the JET like SPI set up 1. The physical parameters

chosen are as follows:

• The temperature and Zeff dependent resistivity is specified with the value η0 =

10−9 (in all three AR, AZ and A3 equations).

• The constant viscosity coefficient µ = 10−6 is used.

• The perpendicular density diffusivity is specified as D⊥ = 2 × 10−5 while the
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parallel diffusivity D‖ is set to 0 in both the total and impurity density equa-

tions.

• The perpendicular heat conductivity is specified as κ⊥ = 5 × 10−6 and the

temperature dependent parallel conductivity is specified with κ‖0 = 4000.

• The grid is built with nψ = 71 and nθ = 100 points and the number of toroidal

harmonics used are n = 0, 1, ..., 7.
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Figure 5.32: SPI simulations compared with two different injection set ups: (a) phys-
ical time for which simulations are run (b) ablation rates (c) total impurities injected
(d) radiation energy (e) plasma current Ip (f) plasma thermal energy.

The simulations with the two set ups are compared and some quantities are shown

in Figure (5.32). From the beginning, the simulation with the new set up demands

a low time step of ∆t = 0.5. Figure (5.32a) shows the comparison of the number of

time steps required for the two simulations to reach almost the same physical time.

With the new SPI set up, a huge spike is observed at the beginning of the simulation

in the ablation rate, which cause higher deposition of impurities in plasma (5.32b).

The spike in the ablation rate may be due to higher gradients in T and ne at the

new initial position. Since the ψN contours are densely packed near the new initial

location, a small distance that fragment travel must encounter rapid increase in the
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temperature and density. Indeed, a sharp rise in the density profile near ψN = 1

can be seen in Figure (5.1a). Overall, the ablation rate, the number of impurity

atoms deposited and the radiation energy vs time is higher for the new SPI set up

as shown in Figure (5.32). The decrease in the thermal energy at the beginning of

the simulations is associated with the higher deposition of impurities. Throughout

the simulation thermal energy decreases faster than that in the old set up (Figure

(5.32f)). The overall behavior of plasma current Ip obtained with the both set ups

shows a similar trend (Figure (5.32e)).
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Figure 5.33: The comparison of the evolution of the energies with SPI simulations
with two different injection set ups: (a) magnetic energies (b) kinetic energies. Solid
and dashed represents energies plotted for the old and new SPI set up respectively.

Note that since the comparison involves two different SPI set ups, the focus is only

on the qualitative comparison. Figure (5.33) shows the evolution of the magnetic and

kinetic energies with the both SPI set ups. Overall, it can be seen that both magnetic

and kinetic energies with the new set up are higher. Energies with the new set up

show rapid growth at the beginning of the injection which is associated with the spike

in the ablation rate. With the old set up the magnetic energies grow rapidly after

t = 1 ms similar to the simulations presented before. However, the magnetic energies

with the new set up are well behaved in the sense that the rapid growth of the energies

are not seen and the growth is always lead by the lower harmonics. The effect is also

seen in Ip evolution which is smoother than the old set up.

Figure (5.34 - 5.36) show snapshots of the mentioned variables at the time instants

t = 0.336, 0.93, 1.638 and 1.762 ms. All the snapshots are plotted at φ = 0 plane and

in normalized units. The rational q surfaces are marked by the dotted lines in the
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visualizations which corresponds to q = 5, 4, 3, 2 surfaces identified radially inwards.

The time instant t = 0.336 and 0.93 ms approximately corresponds to arrival of the

SPI fragments at q = 3 and 2 surfaces respectively. Arrival of the fragments on the

rational q surface triggers the convection of impurities in θ direction as can be seen

from the snapshots of ρimp, ρ/ρimp, Zeff and ionization potential energy field (Figure

5.35). The spread of impurities in the outer layer of plasma forms the cooling front

around the plasma core and causes T and j profiles to decrease in the outer layer.

Further in time, the cooling front propagates radially inwards to cross q = 3 and 2

surfaces, which causes entire temperature profile to drop down. A3 field is seen to

develop fine scale structures in the outer layer of plasma in Figure (5.36) where the

contours to denote rational q surfaces have been removed for clarity.

Figure (5.36) shows the snapshots of A3, B · ∇T and vφ plotted at the same

time instants. The quantity B · ∇T shows the effect of cooling front that propagates

radially inwards and highlights the structures of MHD modes. As opposed to the

previous simulation with η = 10−8, rapid increase in the values of B · ∇T at the end

of the simulation is not observed which is related to the fact that magnetic energies

do not grow violently in this simulation. The distortion of A3 field is also milder

as compared to the simulation with η = 10−8. The snapshots of vφ show that the

transport of the impurities drives parallel flows. The parallel flows driven by the SPI

fragments convect the impurities around the torus, the obsrevation which is similar

to SPI simulations with NIMROD [59]. It is also observed in [59] that the mixed

D2/Ne SPI fragments drives stronger flows than the pure Ne SPI resulting in greater

parallel transport of the impurities, greater mixing and less radiation asymmetry.

Figure (5.37) shows the temperature and current profiles plotted at midplane vs

R. As opposed to the previous simulation with η0 = 10−8 where the temperature

profile initially rises, in this simulation the temperature profile decreases from the

beginning of the simulation (Figure (5.37a)). Initially the plasma cools in the outer

layer due to SPI fragments and later it cools in the core region as core modes grow.

The distinct current contraction is not observed as opposed to [49]. However, the

current profile drops down slightly in the outer layer (5.37b) following the trend of

the temperature profile.

Finally Poicaré plots of the magnetic field are shown in Figure (5.38) at the men-

tioned time instants along with the locations of SPI fragments marked by blue dots.

At t = 1.638 ms the fragments have already crossed q = 2 surface and the magnetic

islands associated with 3/1 and 2/1 modes are visible in Figure (5.38a). As fragments
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further travel in the plasma core, the outer layer become stochastic (Figure 5.38b).

At t = 1.761 ms, the 2/1 islands are still visible. However, TQ is not observed in this

simulation.
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Figure 5.34: Visualizations of SPI simulation with η = 10−9 and different configura-
tion. 1st, 2nd and 3rd columns show T [keV], nimp [1020] and ρimp/rho while 1st, 2nd,
3rd and 4rth row show snapshots at t = 0.336, 0.93, 1.638 and 1.762 ms respectively.
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Figure 5.35: Visualizations of SPI simulation with η = 10−9 and different configura-
tion. 1st, 2nd and 3rd columns show Zeff , (γ − 1) ρimp Eion and Prad while 1st, 2nd,
3rd and 4rth row show snapshots at t = 0.336, 0.93, 1.638 and 1.762 ms respectively.
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Figure 5.36: Visualizations of SPI simulation with η = 10−9 and different configura-
tion. 1st, 2nd and 3rd columns show A3, B · ∇T and vφ [km/s] while 1st, 2nd, 3rd
and 4rth row show snapshots at t = 0.336, 0.93, 1.638 and 1.762 ms respectively.
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Figure 5.37: The temperature and current profiles plotted at midplane at the men-
tioned time instants for the SPI simulation with η = 10−9 and a new SPI set up: (a)
T vs R (b) j(= −R Jφ) vs R.

(a) (b)

Figure 5.38: Poincaré plots of the magnetic field for the simulation with a new SPI
set up: (a) t = 1.638 ms and (b) at t = 1.761 ms.
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5.3 Conclusion

Nonlinear MHD simulations have been performed to simulate MMI in tokamak plasma

using full MHD model. MGI simulation with the two temperature MHD model show

TQ like physics even on a coarse grid. However, the main focus was SPI simulations.

In the first step, nonlinear SPI simulations are performed by removing the resistivity

from AR and AZ equations, which gave deceptively stable results. It is noted that the

removal or suppression of the resistivity from the AR and AZ equations seems to yield

numerical solutions showing TQ, however A3 field and the plasma current Ip in such

a case show unphysical behavior. Hence the same value of the resistivity is added

in all three equation of the components of the magnetic vector potential. The effect

of the resisitivity, grid refinement, particle diffusivity and numerical stabilization is

discussed. Based on the observation of these simulations, the parameters are identified

that will allow long run simulations. These simulations capture pre-TQ physics well.

The key physical phenomena that show onset of TQ such as parallel convection driven

by impurities, cooling of plasma, growth of core modes and stochastization of the

magnetic field in the outer layer of plasma are seen.

All SPI simulations presented here crash after certain point when fragments arrives

at q = 2 surface and magnetic energies grow violently. The removal of the resistivity

from AR and AZ gives a seemingly stable model but yields unrealistic results where

plasma current Ip drops at unrealistically faster rates. Retaining the resistivity in

AR and AZ-equations however requires the use of the numerical stabilization. The

numerical stabilization scheme developed here suffers from two drawbacks:

• The stabilization terms containing current are not taken into account. This is

because the second derivatives with respect to φ direction, to be obtained via

DFT, have not yet been implemented in JOREK.

• Shock/discontinuity detecting criterion that will make the shock capturing sta-

bilization terms effective needs to be formulated.

Despite absence of the Ohmic heating term and a complete numerical stabilization

scheme, MHD dynamics of pre-TQ is captured well by the full MHD model.
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Chapter 6

MHD destabilization and thermal

quench

VMS stabilization provides L2 stability which is useful when solutions are smooth.

When shocks and discontinuities are present in the numerical solution, spurious oscil-

lations maybe generated around discontinuities which can cause severe accuracy and

stability problems. The rationale behind a shock or discontinuity capturing stabiliza-

tion is that the stabilization should act only in neighborhood of a sharp discontinuities

to mitigate the spurious oscillations. The idea has been used to develop stabilization

schemes for finite volume methods [56] and discontinuous Galerkin methods [7, 92].

The similar approach has also been used successfully for continuous Galerkin methods

[34, 90, 88].

SPI source terms gives rise to sharp discontinuities in the solution field. In the

previous Chapter, VMS based stabilized FEM is used for SPI simulations to capture

pre-TQ physics. However, simulations fail to enter into TQ stage. At onset of TQ,

MHD activities increase where the matrix solver demands very small time steps to

converge which indicates stability problems. The stabilized FEM presented in Chap-

ter 3, in principle, contains shock-capturing stabilization terms. Shock/discontinuity

detection criterion is the important part of the shock-capturing stabilization scheme.

In this chapter, we demonstrate the use of a proper discontinuity detection criterion

that enables simulations to capture MHD destabilization and TQ stage during SPI

simulations. The numerical results obtained here uncover similar dynamics captured

using the reduced MHD model [49].
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6.1 Discontinuity capturing criterion

In order to discuss the discontinuity detection criterion, we first rewrite the shock-

capturing stabilization terms from section (3.2.3) as:

d =
∑

e

∫

Ωe

∇w∗ : (T SC∇wh) dΩe

where the stabilization coefficient matrix is simplified to

T SC = kSC I

Here, we adapt the discontinuity detection criterion based on that given in [7, 34] and

is written as:

kSC = C h2e
dp
p
fp (6.1)

where, he is the characteristic element size, C is a user defined parameter,

dp =

∣

∣

∣

∣

nv
∑

i=1

∂p

∂wi

R̃(wi)

∣

∣

∣

∣

and fp =
||∇p||
p

he

The quantity fp is the shock-sensor based on the pressure p. The quantity dp denotes

the nonlinear weights for fp and depends upon the approximated residual R̃(wi) of

the equations in the variables wi where nv denotes the number of variables. For the

full MHD model pressure (p) depends upon the density and temperature and hence

dp becomes the sum of two terms. For extended full MHD model for SPI, dp is the

sum of three terms because the total pressure depends upon the impurity density as

well. Similarly, the term fp needs to be accounted for the pressure due to impurities

in case of SPI. Here, the approximated residuals are chosen as:

R̃(ρ) = ∇ · (ρv)
R̃(T ) = (γ − 1) T (∇ · v) + v · ∇T
R̃(ρimp) = ∇ · (ρimpv)

The term kSC takes high values in the vicinity of discontinuities and very small

values everywhere else making a good criterion to be utilized in the shock-capturing

method. The term kSC is used as the coefficient of shock capturing stabilization and

hence stabilization acts near discontinuities only. The parameter C in kSC is to be
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controlled by user to tune the sufficient amount of stabilization and in general C

depends on the grid resolution. In the following Section we demonstrate the use of

shock-capturing stabilization in SPI simulations and effect of the parameter C.

Although, a general stabilization scheme written in Chapter 3 includes isotropic

as well as anisotropic stabilization terms, only isotropic stabilzation is used here.

Furthermore, the criterion (6.1) may be updated by adding the effect of source terms

[7], however the approximate residuals written above are found to be sufficient to

push simulations into TQ. The addition of source terms may be needed if the sources

are stronger, for example, larger amount of material being injected in plasma.

6.2 Thermal quench

The JET like equilibrium and SPI configuration from Chapter 5 is used here to run SPI

simulations with shock-capturing stabilization. SPI simulations with constant and

temperature dependent resistivities are presented below. As mentioned in Chapter

5, when η0 ≥ 10−7 the temperature dependence in the resistivity is removed for the

numerical reasons. The simulations with η0 < 10−8 however use the Spitzer like

temperature dependence. Such dependence is physically more relevant and yields

more realistic physical modeling of plasma.

6.2.1 SPI with constant resistivity

SPI simulations presented in this subsection use the constant resistivity with η0 =

10−6. The simulations are run on two different grids (denoted by g) and with different

values of C. The resulting cases are shown in Table (6.1).

The other physical parameters used are as follows: The constant viscosity coef-

ficient is set to µ = 10−6. The particle diffusion coefficients are specified as D‖ = 0

and D⊥ = 10−5 for both the total and impurity densities. The perpendicular heat

conductivity is specified as κ⊥0
= 5× 10−6 and temperature dependent parallel heat

conductivity with κ‖0 = 4000.

All the cases listed in Table (6.1) are started with ∆t = 5 from the point of the

injection. Figure (6.1a), (6.1b) and (6.1c) show comparisons of ablation rates, total

ablation and radiation energy respectively, for the cases in Table (6.1). The matrix

solver for ‘case 1.0’ fails to converge shortly after 1 ms even if time step is reduced
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case g.C nψ nθ n C

case 1.0 51 64 7 0

case 1.1 51 64 7 1

case 2.1 71 100 7 1

case 2.5 71 100 7 5

case 2.10 71 100 12 10

Table 6.1: SPI simulations with constant η = 10−6 identified by grid (g) and the
shock-capturing stabilization parameter (C) as ‘case g.C’
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Figure 6.1: Evolution of (a) ablation rates (b) total impurities injected (c) radia-
tion energy (d) plasma thermal energy (e) plasma current Ip (f) temperature at the
magnetic axis for the cases shown in Table (6.1).

to ∆t = 1. In ‘case 1.1’, shock-capturing stabilization with C = 1 is used where the

solver converge with ∆t = 5 and ‘case 1.1’ runs for a long physical time. With more

resolved grid and C = 1, shock-capturing stabilization appears insufficient and the

matrix solver for ‘case 2.1’ fails to converge shortly after 2 ms. Increasing C to 5 and

10 allows the matrix solver to converge with ∆t = 5 where ‘case 2.5’ and ‘case 2.10’

run for long physical time. Between ‘case 2.5’ and ‘case 2.10’, ablation rates and total
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ablation is higher in ‘case 2.10’ while radiation energy is lower. The ablation rates

and radiation energy is influenced by the parameter C and therefore it is important

to find the optimum value for C.
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Figure 6.2: Comparison of the evolution (a) magnetic energies (b) kinetic energies for
SPI simulations with η0 = 10−6. Solid, dashed and dashed dotted lines denote ‘case
1.0’, ‘case 1.1’ and ‘case 2.1’ respectively.

Figure (6.1d) shows comparison of plasma thermal energy obtained for the five

simulations under discussion. In ‘case 1.1’, ‘case 2.5’ and ‘case 2.10’ plasma looses

thermal energy rapidly after 2 ms and this phase is identified as TQ. In ‘case 2.5’

and ‘case 2.10’, the grid is more resolved where the decrease of thermal energy is

more rapid than that with ‘case 1.1’. Since ‘case 2.10’ yields higher ablation (total

impurities deposited) the TQ obtained in more rapid than ‘case 2.5’. Figure (6.1e)

shows comparison of plasma current obtained in different simulations showing the

effect of grid and C. The notable feature is a signature of Ip spike which is usually

observed in experiments at the end of TQ. When thermal energy becomes minimum,

Ip shows a spike followed by oscillatory behavior in ‘case 1.1’, ‘case 2.5’ and ‘case

2.10’. Figure (6.1f) shows evolution of the temperature at the magnetic axis where

two stages of rapid decrease of the temperature are seen and second stage corresponds

to occurrence of Ip spike.

Figure (6.2) shows comparison among the evolution of the magnetic and kinetic

energies for ‘case 1.0’, ‘case 1.1’ and ‘case 2.1’. It can be seen that energies for ‘case

1.0’ increase rapidly before simulation fails to converge. Strong discontinuities develop

in ‘case 1.0’ which can be seen in the top row of Figure (6.3) where discontinuity

capturing criterion kSC is evaluated and plotted at the mentioned time instants. Very
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(a) t ≈ 0.50 ms (b) t ≈ 0.77 ms (c) t = 1.12 ms

(d) t ≈ 0.50 ms (e) t ≈ 0.77 ms (f) t ≈ 1.12 ms

Figure 6.3: Discontinuity detecting criterion kSC plotted to show the local nature of
the shock-capturing stabilization scheme. Top row shows the estimate of kSC with
C = 1 for ‘case 1.0’ while the bottom row shows the same for ‘case 1.1’.

high values of kSC are seen near the location of the injection at t ≈ 0.5 and t ≈ 0.77

ms highlighting the location of discontinuities while everywhere else kSC takes very

low values. At t = 1.12 in ‘case 1.0’, kSC highlights the location of oscillations

developed due to the presence of discontinuities. In the bottom row of Figure (6.3),

kSC evaluated for ‘case 1.1’ at the same time instants shows much smaller values.

Indeed, ‘case 1.1’ runs for very long physical time with ∆t = 5 and the evolution of

energies for ‘case 1.1’ is seen in Figure (6.2). The ‘case 2.1’ uses refined grid with

C = 1 and fails shortly after 2 ms, however the magnetic and kinetic energies of the

‘case 1.1’ and ‘case 2.1’ are comparable before the ‘case 2.1’ fails.

Figure (6.4) shows comparison among the evolution of the magnetic and kinetic

energies for ‘case 2.1’, ‘case 2.5’ and ‘case 2.10’ which use the same refined grid but

different values of C. As discussed before, C = 1 does not provide sufficient amount

of stabilization, however ‘case 2.5’ and ‘case 2.10’ run for long physical times with

the comparable evolution of the magnetic and kinetic energies. Long time simulations
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Figure 6.4: Comparison of the evolution (a) magnetic energies (b) kinetic energies for
SPI simulations with η0 = 10−6. Solid, dashed and dashed dotted lines denote ‘case
2.1’, ‘case 2.5’ and ‘case 2.10’ respectively.

show that the growth in the magnetic energies after t = 2 ms which is associated with

the SPI fragments crossing q = 2 surface and the growth of 2/1 mode in the plasma

core. The MHD dynamics beyond this stage was not obtained in the simulations

with VMS stabilization presented in Chapter 5. It is the shock-capturing stabilization

terms that allow simulations beyond this stage.

Figure (6.5) shows visualizations of T [keV], nimp [1020] and vφ [km/s] at φ = 0

plane and at the mentioned time instants for ‘case 2.5’. In the first column, tempera-

ture field is plotted to show cooling of plasma due to TQ as time progresses. During

the simulation, impurities are transported due to parallel convection in the plasma

forming a cooling front. It can be seen from the second and third column in Figure

(6.5) that as time progresses parallel convection is seen via vφ which drives trans-

port of impurities first in the poloidal (helical) direction to form the cooling front

surrounding the plasma core. Then as SPI fragments travel radially inwards, cooling

front also propagates inwards that leads to destabilization of core modes and TQ.

Figure (6.6) shows the temperature and current plotted at midplane vs R at the

mentioned time instants for ‘case 2.5’. The effect of formation of a cooling front

in the outer layer of plasma is seen in T profiles at t = 1.37 and 2.08 ms where

plasma starts to cool in the outer layer. The effect of radially inward propagation

of the cooling front is seen at the further time instants where plasma cools in the

core region. Evolution of the current profile shows the signature of current sheet

formation at the location of the cooling front, the observation which is similar to
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T [keV] nimp [1020] vφ [km/s]

Figure 6.5: Visualizations of SPI simulation with η = 10−6 for ‘case 2.5’. 1st, 2nd and
3rd columns show T [keV], nimp [1020] and vφ [km/s] at the mentioned time instants.

[49]. Note that a smoothing operation is performed on the current profile during

post-processing as the computed current profile, being the second derivative of the

magnetic vector potential, is discontinuous.
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Figure 6.6: Profiles of temperature and current plotted at midplane at the mentioned
time steps for SPI simulations with η = 10−6 for ‘case 2.5’.

Figure (6.7) shows Poincaré plots of the magnetic field for ‘case 2.5’ at the men-

tioned time instants. At t = 1.9579 ms growth of 3/1 mode is seen which is associated

with the cooling of outer layer of plasma. As SPI fragments move inwards, 2/1 mode

grows further cooling plasma in the outer layer which seen at t = 2.5519 ms and

plasma stochastization is seen near the separatrix. At further time instants, core

modes are seen to nonlinearly interact with each other and cause plasma core to cool

rapidly. At t = 5.8189 ms plasma is completely cooled where 2/1 island is still seen.

Complete stochastization of plasma is not seen in these simulations.
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(a) t = 1.9579 ms (b) t = 2.5519 ms (c) t = 2.8489 ms

(d) t = 3.1459 ms (e) t = 3.4429 ms (f) t = 5.8189 ms

Figure 6.7: Poicaré plots of the magnetic field for the SPI simulation with constant
resistivity specified by η0 = 10−6 for ‘case 2.5’. The color maps denote the plasma
temperature (in keV) and solid black circles denote the projection of the position of
SPI fragments in φ = 0 plane.

6.2.2 SPI with realistic resistivity

SPI simulations presented in this subsection use T as well as Zeff dependent resistivity

with η0 = 10−8 and therefore more realistic model. The simulations are run on two

different grids without and with shock-capturing stabilization. The resulting cases

are shown in Table (6.2).

The other physical parameters used are as follows: The constant viscosity coef-

ficient is set to µ = 10−6. The particle diffusion coefficients are specified as D‖ = 0

and D⊥ = 2×10−5 for both the total and impurity densities. The perpendicular heat

conductivity is specified as κ⊥0
= 5× 10−6 and temperature dependent parallel heat

conductivity with κ‖0 = 4000.

Figure (6.8a) compares the number of time steps for the simulations listed in

Table (6.2) where the effect of shock capturing stabilization is immediately seen.
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case g.C nψ nθ n C

case 1.0 71 100 7 0

case 1.1 71 100 7 1

case 2.0 71 128 7 0

case 2.1 71 128 7 1

Table 6.2: SPI simulations with temperature dependent resistivity with η0 = 10−8

identified by by grid (g) and the shock-capturing stabilization parameter (C) as ‘case
g.C’.
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Figure 6.8: SPI simulations to show effect of shock-capturing stabilization with tem-
perature dependent resistivity specified by η0 = 10−8: (a) physical time for which
simulation is run (b) ablation rates (c) total impurities injected (d) radiation energy
(e) plasma thermal energy (f) plasma current Ip.

The shock capturing stabilization allows the use of larger time steps for the matrix

solver to converge enabling simulations for longer physical times in lesser number

of time steps. Figure (6.8b) and (6.8c) show that the ablation rate and the total

ablation for the cases under discussion has no significant effect due to the use of the

shock-capturing stabilization. Figure (6.8d) shows the radiation energy with shock

capturing stabilization is lower but rises sharply after 3 ms. During this interval TQ
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is obtained as can be seen from Figure (6.8e) where plasma thermal energy drops

rapidly over the time scale of 1 ms. At the beginning of TQ, oscillations are seen in

the plasma thermal energy, ablation rate and Ip. No significant effect of the grid and

shock-capturing stabilization is seen on Ip.
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Figure 6.9: Effect of shock-capturing stabilization on SPI simulation with temperature
dependent resistivity specified by η0 = 10−8. For ‘case 1.0’ and ‘case 1.1’, comparison
of the evolution of (a) magnetic and (b) kinetic energies. For ‘case 2.0’ and ‘case
2.1’, comparison of the evolution of (c) magnetic and (e) kinetic energies. Solid lines
corresponds to C = 0 while dashed lines corresponds to C = 1.

Figure (6.9a) and (6.9b) show comparison of the evolution of the magnetic and

kinetic energies respectively for ‘case 1.0’ and ‘case 1.1’. Similarly, Figure (6.9c)

and (6.9d) show comparison of the evolution of the magnetic and kinetic energies

respectively for ‘case 2.0’ and ‘case 2.1’. The simulations without shock-capturing

stabilization do not converge shortly after 2 ms where 2/1 mode grows and fails to
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capture increased MHD activities. Shock-capturing stabilization helps to simulate

increased MHD activities which are seen as rise in the energies. Since the magnetic,

kinetic and plasma energies along with Ip are comparable for all 4 simulations, the

C = 1 seems a good criterion to allow simulation to run for long physical time without

affecting physics.

Figure (6.10) and (6.11) show visualizations for ‘case 1.1’ at the mentioned time

instants. In the first column of Figure (6.10), evolution of T field is seen at φ = 0

showing plasma cooling and the effect of TQ. The second and third columns contain

snapshots of ρimp and vφ to show parallel convection, transport of impurities in plasma

and evolution of the cooling front. First column of (6.11) shows the evolution of A3

field which changes significantly showing the signature of magnetic reconnection and

loss of magnetic confinement. Second column of (6.11) shows the evolution of Zeff

which again highlights the transport of impurities and cooling front propagation in

plasma. Third column of (6.11) shows the evolution of η as a function of T and

Zeff which shows that as plasma cools the resistivity increases. At the end of the

simulation, the resistivity takes the values of order 10−6 in the core region.

Figure (6.12a) shows the evolution of the temperature at the magnetic axis for

‘case 1.1’ and ‘case 2.1’ showing rapid cooling of plasma core after 2 ms. Figures

(6.12b) and (6.12c) show the temperature and current plotted at midplane vs R at

the mentioned time instants for ‘case 1.1’. Initially plasma cools from the outer region

as can be seen from T and current profiles at t = 2.48 ms. T profiles show sudden

gradient in the profile indicating the location of the cooling front. As the cooling front

propagates further in the plasma the current sheet is seen in the smoothed current

profile.

Finally, Poincarś plots of the magnetic field for ‘case 1.1’ are shown in (6.13) at

the mentioned time instants where color maps denote values of the temperature and

solid black circles denote projected positions of SPI fragments. When SPI fragments

enter the plasma, no immediate magnetic stochasticity is observed. As SPI fragments

begin to propagate inwards, 3/1 mode grows (not shown here) as a consequence the

plasma begins to cool in the outer layer of plasma, which is seen in (6.12). This

pre-TQ dynamics is seen in the previous Chapter as well. Further propagation of

fragments excites 2/1 as can be seen at t = 2.1292 ms in (6.13). The 3/1 and 2/1

modes continue to grow and the outer layer of plasma becomes stochastic as seen at

t = 2.5281 ms whose effect can also be seen in the midplane profiles in Figure (6.12).

As SPI fragments move further inwards, the core modes are excited and they
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T [keV] nimp [1020] vφ [km/s]

Figure 6.10: Visualizations of SPI simulation with η = 10−8 for the ‘case 1.1’. 1st,
2nd and 3rd columns show T [keV], nimp [1020] and vφ [km/s] at the mentioned time
instants.

nonlinearly couple with the outer growing modes to cause stochastization of plasma

as seen at t = 2.7063 ms which leads cooling of plasma core. Growth of 1/1 mode is

seen at t = 3.0003 ms before which cyclic dynamics is seen in energies and ablation
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A3 Zeff η

Figure 6.11: Visualizations of SPI simulation with η = 10−8 for the ‘case 1.1’. 1st,
2nd and 3rd columns show A3, Zeff and η (in normalized units) at the mentioned time
instants.

rates. This dynamics seems to be related to internal kink modes and triggers the

TQ. At further time instants, the core modes look stabilized until the end of TQ. At

t = 4.0487 ms a complete plasma stochastization is seen.
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Figure 6.12: SPI simulations with temperature dependent resistivity specified by
η0 = 10−8: (a) Evolution of T at magnetic axis for ‘case 1.1’ and ‘case 2.1’. (b)
temperature and (c) current profile plotted at midplane at the mentioned time instants
for ‘case 1.1’.

Summarizing, two phases of MHD destabilization and TQ are seen in SPI process.

First, the plasma temperature drops down in the outer layer of the plasma tempera-

ture through parallel conduction in a stochastic field region and then through helical

convective mixing in the core plasma during the second phase. Some key features of

the non-linear dynamics of the MHD destabilization are seen in the simulations such

as the formation of magnetic islands and stochastic regions.
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(a) t = 0.1758 ms (b) t = 2.2192 ms (c) t = 2.5281 ms

(d) t = 2.7063 ms (e) t = 3.3003 ms (f) t = 3.5379 ms

(g) t = 3.8943 ms (h) t = 4.0131 ms (i) t = 4.0487 ms

Figure 6.13: Poicaré plots of the magnetic field for the SPI simulation with tempera-
ture dependent resistivity specified by η0 = 10−8 for ‘case 1.1’. The color maps denote
the plasma temperature (in keV) and solid black circles denote the projection of the
position of SPI fragments in φ = 0 plane.

6.3 Conclusion

Shock capturing stabilization with a proper discontinuity detection criterion is used to

stabilize FEM that helps push SPI simulations into TQ. The discontinuity detection
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criterion is the important part of the scheme and it may be further improved by

taking into account the effects of source terms [7]. However, the criterion used here

works quite well. Further, shock-capturing stabilization terms are included only in

the hydrodynamic equations and are found to be sufficient to simulate SPI.

Shock capturing stabilization seems to improve the conditioning of the matrix

and thereby allow the solver to converge for larger time steps and hence improves the

computational efficiency. It helps capture MHD destabilization dynamics, particularly

the dynamics which is followed by growth of 2/1 modes and coupling of core modes.

The physical details similar to the TQ over time scale of 1 ms, MHD destabilization

during TQ, signature of Ip spike, current profile contraction and complete plasma

stochastization are seen in the simulations. These physical details qualitatively look

similar to Ar SPI simulated using the reduced MHD model [49].

201



Chapter 7

Conclusions and perspectives

The work presented in this thesis deals with the development and implementation

of stabilized finite element method (FEM) for nonlinear simulations of full MHD

equations with applications to tokamak plasma. The application focused is Massive

Material Injection (MMI) with the particular emphasis on Shattered Pellet Injection

(SPI). SPI is a primary candidate for ITER’s Disruption Mitigation System (DMS)

and will play a role in deciding lifetime and budget of the Plasma Facing Components

(PFC) and wall [59]. Experimental measurements of SPI provide a limited overview

while simulations are expected to provide deeper insight with the spatio-temporal

details of physics and accurate prediction of the loads. Therefore, accurate modeling

of disruption physics and implementation of robust numerical methods is essential.

With the robust numerical tool at hand, scans in several parameters can be simulated

for which a lot of experiments may be costly to perform.

Physics of SPI phenomenon involves moving sources, convection dominated flows,

complex dynamics of thermal quench (TQ) and current quench (CQ). In SPI, shat-

tered pellets of frozen gases are injected at velocities of order hundreds of m/s in

tokamak plasma. SPI fragments act as localized sources of impurities which drive a

strong parallel flow transporting impurities across the torus. The transported impu-

rities are believed to govern TQ. The time scales of the physical processes involved

are diverse, such as resistive (associated with current profile contraction and helical

cooling), transport of impurities, flight of SPI fragments in plasma and TQ. The

physical model should accommodate all these scales along with impurity transport

and sources for SPI.

High resolution numerical methods are required to discretize the physical model
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encompassing diverse length and time scales. Galerkin FEM is an attractive choice

of high resolution numerical methods with the ability to handle complex geome-

tries. However, they give centered approximation of differential operators and do not

provide a mechanism for numerical stabilization. For hyperbolic partial differential

equations (PDEs), when the flow is convection dominated, centered approximations

can lead to dispersion errors and unphysical behaviors in the numerical solution. The

numerical stabilization is needed to suppress the dispersion errors in such a way that

the accuracy of the method is not compromised. Variable Multi-Scale (VMS) decom-

position offers a general framework to devise the numerical stabilization to be added

in the weak form as additional terms. While VMS-stabilization provides L2 stabil-

ity which is effective in dealing with smooth solutions, shock/discontinuity capturing

stabilization is required to enforce BV stability where the numerical solution contains

high gradients. Localized SPI fragments create a region of high gradients of the den-

sity, impurity density and temperature in their neighborhood and can lead to Gibbs

phenomena generating spurious oscillations in the numerical solution. Therefore, both

VMS and shock capturing stabilization terms are required for SPI simulations.

Computational framework of JOREK is used to implement physical models and

stabilized FEM. JOREK is a fully implicit a nonlinear MHD code with extended

physics that uses mixed bi-cubic Bézier-Spectral FEM. It has proven a useful nu-

merical tool to simulate a wide range of nonlinear MHD physics relevant to tokamak

plasma including disruptions, ELMs, vertical displacement events etc using reduced

MHD models. The present work involves implementation of a more complete full

MHD model in the sense that it contains fast magnetosonic waves which are removed

from the reduced modeling. It has been shown in [74] that full MHD model captures

the growth of internal kink mode accurately at high plasma beta where reduced model

fails. In this light, it will be an interesting study to compare the full and reduced

MHD simulations and gain understanding on the region of validity of the reduced

MHD model. SPI simulations with reduced MHD have already been performed using

JOREK [50, 46, 49]. In this work, we incorporate SPI modeling into full MHD model

and use stabilized FEM for nonlinear simulations.

Single and two temperature full MHD models are derived in Chapter 2 while

Chapter 3 discusses details of the stabilized FEM. Further numerical improvements

implemented involve treatment of the polar grid singularities and use of the consistent

BDF2 method adapted to variable time stepping. The grids used in JOREK simula-

tions are essentially polar grids with the grid center being a point of singularity. At
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this point continuous representation of functions and their gradients is not guaran-

teed. Presence of such points in the grid can act as a source of spurious waves that

can pollute the numerical solution. A strategy is proposed to enforce C1 continuity

of variables at the grid center that helps reduce the noise at the grid center.

Chapter 4 presents the details of the implementation the full MHD model and its

validation. Single temperature full MHD model was first implemented in JOREK in

[44, 43] and was validated for standard MHD test cases on simple geometries. In this

work, we extend the capabilities of full MHD models to perform simulations on the

production level with the realistic geometries. The linear growth rates for standard

MHD instabilities such as internal kink, tearing and ballooning modes obtained using

full MHD models are compared with those obtained using the reduced MHD model.

The numerical results obtained with the two models are found to be in agreement. The

full MHD model is also benchmarked with other codes such as CASTOR3D in [74].

Nonlinear simulations of a disruption and ELMs are shown in [74] which capture the

MHD dynamics that is comparable to the dynamics obtained using reduced MHD

models. At the end of Chapter 4, a nonlinear simulation of internal kink mode is

presented showing the capability of model to simulate nonlinear MHD instabilities.

In Chapter 5 we present nonlinear simulations for MMI performed using stabi-

lized FEM. The governing equations and source modeling for MMI are described in

Chapter 2. First, a nonlinear MGI simulation performed using the two temperature

full MHD is presented. The numerical results obtained highlight the capability of the

model to capture TQ like phase even on a coarse grid. Then, a range of nonlinear

SPI simulations are presented with the single temperature full MHD. The numerical

simulations uncovered that the neglecting or suppressing resistivity from AR and AZ

equations give numerically stable but a deceptive model. Henceforth, the same value

of the resistivity is added in AR, AZ and A3 equations. Grid convergence, scan in

resistivity and particle diffusion is performed to identify the reasonable simulation

parameters that will allow simulations to run for long physical times.

In Chapter 6 long run simulations presented using shock-capturing stabilization

show the key features such TQ dynamics including transport of impurities by parallel

flows; MHD destabilization in the outer layer of plasma; helical mixing of impurities

with plasma; growth and interaction of core modes; formation magnetic islands as-

sociated with these modes; stochastization of plasma; sudden loss of thermal energy

and a signature of Ip spike.
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Perspectives

The stabilized FEM designed and implemented in this work makes JOREK an excel-

lent tool to study a range of MMI physics using the full MHD model. In this light,

the possible future perspectives of this work can be identifies as follows:

First, the Ohmic heating term, which is ignored in the present implementation

of the full MHD model, needs to be included to guarantee the energy conservation.

The Ohmic heating term requires computation of second derivatives of the magnetic

potential vector and the present implementation of DFT does not include the compu-

tation of the second derivatives of the variables and the basis functions with respect

to φ direction. Further, the full MHD model can be extended to include the SPI

modeling for mixed impurities such as Ne/D2, Ar/D2; two temperature equations

and multiple SPIs. After intensive validation and comparison of the numerical re-

sults with the disruptions experiments, the model to be used for production may be

identified.
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Appendix A

Jacobians required for the implicit

method

The weak form of the full MHD model is written in compact form as:

∫

w∗ · P(w)
∂w

∂t
dΩ =

∫

w∗ · Q̃(w, t) dΩ

where, w is the vector of primitive variables:

w = {ρ, vR, vZ , vφ, T, AR, AZ , A3}T

Q̃(w, t) is the vector of right hand sides of the each equation and the matrix P is

given by

P =


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The test functions with projections to get the components of the vector equations

are written as:

w∗
ρ = {Vi, 0, 0, 0, 0, 0, 0, 0}T

w∗
vR

= {0, Vi, 0, 0, 0, 0, 0, 0}T

w∗
vZ

= {0, 0, Vi, 0, 0, 0, 0, 0}T

w∗
vφ

= {0, BR Vi, BZ Vi, Bφ Vi, 0, 0, 0, 0}T

w∗
T = {0, 0, 0, 0, Vi, 0, 0, 0}T

w∗
AR

= {Vi, 0, 0, 0, 0, Vi, 0, 0}T

w∗
AZ

= {Vi, 0, 0, 0, 0, 0, Vi, 0}T

w∗
A3

= {Vi, 0, 0, 0, 0, 0, 0, R Vi}T

where, ‘parallel projection’ is used to get the equation for vφ. Application of the FEM

to the weak form involves the representation of function w by an finite dimensional

approximate form:

w =
∑

j

W jVj

Rewriting the system of the equation as follows:

P (w, w∗)
∂w

∂t
= Q(w, w∗, t)

where the integration signs are ignored for brevity and the vector P (w, w∗) = P
T w∗

and the term Q(w, w∗, t) = w∗ · Q̃(w, t). The variable time step Gears method

then becomes:
[

(1 + rnξ) P
n − ∆tn θ

(

∂Q

∂w

)n]

δwn = ∆tn Q
n + ξ P n δwn−1 (A.1)

where, the ratio of the time steps rn and ξ are given by

rn =
∆tn−1

∆tn
ξ =

2θ − 1

rn(1 + rn)

The jacobian matrix of the implicit method contains the contributions from the

terms P n = P (wn, w∗) and

(

∂Q
∂w

)n

. These contributions coming from each equation

are shown below.
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Density equation

Using the test function w∗
ρ, the contribution of the term P (wn, w∗

ρ) for the density

equation is straight forward and is:

P (wn, w∗
ρ) = {Vi Vj, 0, 0, 0, 0, 0, 0, 0}T

The term Qρ = Q(w, w∗
ρ, t) for the density equation is:

Qρ = −Vi ∇ · (ρv)−D⊥∇ρ · ∇Vi −
(D‖ −D⊥)

B2
(B · ∇ρ) (B · ∇Vi) + Vi ρ̇

where the density diffusion term is integrated by parts and boundary integral part is

ignored for the moment. Differentiating above equation with respect to each variable:

∂Qρ

∂w
=























































−Vi ∇ · (Vjv)−D⊥∇Vj · ∇Vi − (D‖−D⊥)

B2 (B · ∇Vj) (B · ∇Vi) + Vi
∂ρ̇
∂ρ

−Vi ∇ · (ρVjeR)

−Vi ∇ · (ρVjeZ)

−Vi ∇ · (ρVjeφ)

0

∂AR

[

− (D‖−D⊥)

B2 (B · ∇ρ) (B · ∇Vi)
]

∂AA

[

− (D‖−D⊥)

B2 (B · ∇ρ) (B · ∇Vi)
]

∂A3

[

− (D‖−D⊥)

B2 (B · ∇ρ) (B · ∇Vi)
]























































The source term usually is a part of modeling and may depend upon density but on

other variables as well.

Velocity equation

Using the test function w∗
vk

= Viek, the contribution of the term P (wn, w∗
vk
) for the

equation of each velocity component is straight forward and is:

P (wn, w∗
vR
) = {0, ρ Vi Vj, 0, 0, 0, 0, 0, 0, 0}T

P (wn, w∗
vZ
) = {0, 0, ρ Vi Vj, 0, 0, 0, 0, 0, 0}T

P (wn, w∗
vφ
) = {0, 0, 0, ρ Vi Vj, 0, 0, 0, 0, 0}T
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The term Qk for the equation of the each velocity component becomes:

Qk = Q(w, w∗
vk
, t) = −Vi ρ ek · (v · ∇v)− (B · ∇Vi)(B · ek) + Vi(B ⊗B) : ∇ek

+

(

p+
1

2
B2

)

∇ · (Viek)− µ∇v : (∇Vi ⊗ ek)− Vi∇v : ∇ek

where J × B is integrated by parts and boundary integral part is ignored for the

moment. Differentiating above equation with respect to each variable:

∂Qk

∂w
=























































































































−Vi Vj ek · (v · ∇v) + Vj T ∇ · (Viek)

∂vR

[

− Vi ρ ek · (v · ∇v)− µ∇v : (∇Vi ⊗ ek)− Vi∇v : ∇ek

]

∂vZ

[

− Vi ρ ek · (v · ∇v)− µ∇v : (∇Vi ⊗ ek)− Vi∇v : ∇ek

]

∂vφ

[

− Vi ρ ek · (v · ∇v)− µ∇v : (∇Vi ⊗ ek)− Vi∇v : ∇ek

]

ρ Vj ∇ · (Viek)

∂AR

[

− (B · ∇Vi)(B · ek) + Vi(B ⊗B) : ∇ek +

(

1
2
B2

)

∇ · (Viek)
]

∂AZ

[

− (B · ∇Vi)(B · ek) + Vi(B ⊗B) : ∇ek +

(

1
2
B2

)

∇ · (Viek)
]

∂A3

[

− (B · ∇Vi)(B · ek) + Vi(B ⊗B) : ∇ek +

(

1
2
B2

)

∇ · (Viek)
]























































































































where, is assumed that viscosity of coefficient is constant scalar. In practice, it can

be a function of T . The viscosity tensor is assumed to have a form µ∇v in above

equations. The contributions of source terms is straight forward and is not shown

here.
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However, the parallel projection is used in practice to get the evolution of vφ and

in that case the test function w∗
B = ViB. The contribution of the term P (wn, w∗

B)

then becomes:

P (wn, w∗
B) = {0, ρ BR Vi Vj, ρ BZ Vi Vj, ρ Bφ Vi Vj, 0, 0, 0, 0, 0}T

This choice of projection removes J × B term from the velocity equation and then

QB = Q(w, w∗
B, t) is written as:

QB = −Vi ρ B · (v · ∇v)− ViB · ∇p− µ∇v : (∇Vi ⊗B)− Vi∇v : ∇B

The last term in above equation contains gradients of the magnetic which are not

continuous across the elements. Therefore, the approximation is made such that the

effects of curvature of the magnetic field due to ∇B are ignored and the resulting

equation is written as:

QB = −Vi ρ B · (v · ∇v)− ViB · ∇p−
∑

k

Bk

[

µ∇v : (∇Vi ⊗ ek) + Vi∇v : ∇ek
]
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Finally the contribution of the above term to the jaconian is written as:

∂QB

∂w
=

















































































































































−Vi Vj B · (v · ∇v)− ViB · ∇(Vi T )

∂vR

[

− Vi ρ B · (v · ∇v)−∑
k

Bk

[

µ∇v : (∇Vi ⊗ ek) + Vi∇v : ∇ek
]

]

∂vZ

[

− Vi ρ B · (v · ∇v)−∑
k

Bk

[

µ∇v : (∇Vi ⊗ ek) + Vi∇v : ∇ek
]

]

∂vφ

[

− Vi ρ B · (v · ∇v)−∑
k

Bk

[

µ∇v : (∇Vi ⊗ ek) + Vi∇v : ∇ek
]

]

−ViB · ∇(ρ Vj)

∂AR

[

− Vi ρ B · (v · ∇v)− ViB · ∇p−∑k Bk

[

µ∇v : (∇Vi ⊗ ek)

+Vi∇v : ∇ek
]

]

∂AZ

[

− Vi ρ B · (v · ∇v)− ViB · ∇p−∑k Bk

[

µ∇v : (∇Vi ⊗ ek)

+Vi∇v : ∇ek
]

]

∂A3

[

− Vi ρ B · (v · ∇v)− ViB · ∇p−∑k Bk

[

µ∇v : (∇Vi ⊗ ek)

+Vi∇v : ∇ek
]

]
















































































































































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Pressure equation

Using the test function w∗
T , the contribution of the term P (wn, w∗

T ) for the pressure

equation is:

P (wn, w∗
T ) = {T Vi Vj, 0, 0, 0, ρ Vi Vj, 0, 0, 0}T

The term QpQ(w, w
∗
T , t) for the pressure equation is:

Qp = −Vi v · ∇p− γ p ∇ · v − κ⊥∇T · ∇Vi −
(κ‖ − κ⊥)

B2
(B · ∇T ) (B · ∇Vi)

+ Vi (γ − 1) µ ∇v : ∇v + Vi ST
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where the heat diffusion term is integrated by parts and boundary integral part is

ignored for the moment. Differentiating above equation with respect to each variable:

∂Qp

∂w
=































































































































−Vi v · ∇(Vj T )− γ Vj T ∇ · v + Vi ∂ρ ST

∂vR

[

− Vi v · ∇p− γ p ∇ · v + Vi (γ − 1) µ ∇v : ∇v + Vi ST

]

∂vZ

[

− Vi v · ∇p− γ p ∇ · v + Vi (γ − 1) µ ∇v : ∇v + Vi ST

]

∂vφ

[

− Vi v · ∇p− γ p ∇ · v + Vi (γ − 1) µ ∇v : ∇v + Vi ST

]

−Vi v · ∇(ρ Vj)− γ ρ Vj ∇ · v − κ⊥∇Vj · ∇Vi

− (κ‖−κ⊥)

B2 (B · ∇Vj) (B · ∇Vi) + Vi ∂T ST

∂AR

[

− (κ‖−κ⊥)

B2 (B · ∇T ) (B · ∇Vi)
]

∂AZ

[

− (κ‖−κ⊥)

B2 (B · ∇T ) (B · ∇Vi)
]

∂A3

[

− (κ‖−κ⊥)

B2 (B · ∇T ) (B · ∇Vi)
]






























































































































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Induction equation

Using the test function w∗
Ak

= Viek, the contribution of the term P (wn, w∗
Ak
) for

the induction equation components is:

P (wn, w∗
AR

) = {0, 0, 0, 0, 0, 0, Vi Vj, 0, 0}T

P (wn, w∗
AZ

) = {0, 0, 0, 0, 0, 0, 0, Vi Vj, 0}T

P (wn, w∗
A3
) = {0, 0, 0, 0, 0, 0, 0, 0, R Vi Vj}T

The term QAk
for the induction equation component is written from the weak form

as:

QAk
= Vi ek · (v ×B) +∇× (η Vi ek) ·B − Vi ek · SJ

where, the resistive term is integrated by parts and the boundary integral term is

ignored for the moment. Differentiating QAk
with respect to w:

∂QAk

∂w
=



























































0

∂vR

[

Vi ek · (v ×B)

]

∂vZ

[

Vi ek · (v ×B)

]

∂vφ

[

Vi ek · (v ×B)

]

0

∂AR

[

Vi ek · (v ×B) +∇× (η Vi ek) ·B − Vi ek · SJ

]

∂AZ

[

Vi ek · (v ×B) +∇× (η Vi ek) ·B − Vi ek · SJ

]

∂A3

[

Vi ek · (v ×B) +∇× (η Vi ek) ·B − Vi ek · SJ

]



























































The resistivity is assumed constant in above equation, however in practice it is a

function of T and hence will have contribution in the fifth line.
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Boundary integral terms

The contribution of the boundary integral terms can be derived in the similar manner.

They are written as follows:

Bρ =

∫

∂Ω

Vi (D∇ρ · n̂) dS

Bv =

∫

∂Ω

[

(B · v∗)(B · n̂)− (p+ 0.5B2)(v∗ · n̂)
]

dS

Bp =

∫

∂Ω

Vi (κ∇T · n̂) dS

BA =

∫

∂Ω

A∗ · (ηB × n̂) dS
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Appendix B

Integrated quantities

A physical quantity of interest is integrated over whole plasma volume as:

I =

∫

f(R,Z, φ) dV =

∫ 2π

0

∫

Ωξ

f R dR dZ dφ

where ξ denoted poloidal plane formed by R and Z coordinates. Further, the integral

may be split into two parts to compute the integral over the core region and outside

of the core region of a plasma. Following are some quantities used in this work:

• Magnetic energy (ME) with f = 0.5B ·B

• Kinetic energy (ME) with f = 0.5 ρ v · v

• Plasma thermal (TE) energy with f = ρ T + Eion ρimp T

• Plasma current (Ip) with f = j = −R Jφ.
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