Marta Benito-Garzón 
  
Santiago C González-Martínez 
  
Juliette Archambeau 
  
Marta Benito Garzón 
  
Marina De 
  
Miguel Vega 
  
Benjamin Brachi 
  
Frédéric Barraquand 
  
Christophe Plomion 
  
Alexandre Changenet 
  
Camilla Avanzi 
  
Francesca Bagnoli 
  
Giovanni G Vendramin 
  
Understanding the origin and predicting adaptive genetic variation at large scale in the genomic era: a

Keywords: Population and quantitative genetics, Forest trees, Large-scale modeling, Landscape genomics, Adaptive genetic variation, Phenotypic plastiticty R quantitative genetic variation, adaptive potential, forest tree, natural selection, environmental heterogeneity, severe cold events Climate change, local adaptation, phenotypic plasticity, population response functions, positive-e ect alleles, range-wide predictive models, maritime pine Climate change, risk of maladaptation, genomic o set, maritime pine, landscape genomics, local adaptation

case study in maritime pine

Comprendre l'origine et prédire la variation génétique adaptative à large échelle à l'ère de la génomique : une étude de cas chez le pin maritime Résumé : Le changement climatique impacte déjà les populations d'arbres forestiers, comme en témoignent les évènements de mortalité de plus en plus fréquents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans précédent du changement climatique. Par conséquent, à des ns de conservation et de gestion, évaluer le potentiel des populations d'arbres forestiers à persister face au changement climatique est nécessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique a n d'associer la variation des traits quantitatifs à de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identi er les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les quantités massives de données génomiques provenant des outils de séquençage de nouvelle génération révolutionnent actuellement notre compréhension de la composante génétique des traits quantitatifs et stimulent le développement de nouvelles méthodes statistiques visant à anticiper les réponses des populations aux conditions changeantes. Dans les approches basées sur les traits, la combinaison des données phénotypiques et climatiques des jardins communs avec les données génomiques semble être une approche particulièrement pertinente a n de séparer les composantes plastiques et génétiques de la variation des traits, ainsi que les processus neutres et adaptatifs derrière la composante génétique, ce qui est prometteur vis-à-vis de l'amélioration des prédictions de la variation des traits à grande échelle. En génomique du paysage, les données génomiques et environnementales peuvent être combinées a n d'identi er les relations gènes-environnement actuelles, qui servent ensuite à estimer le changement génétique nécessaire au maintien des relations gènes-environnement dans les climats futurs, une métrique appelée 'décalage génomique'. Dans cette thèse, le pin maritime (Pinus pinaster Ait), un conifère à longue durée de vie originaire de la partie occidentale du bassin méditerranéen, est utilisé comme étude de cas a n d'évaluer comment les données génomiques pourraient contribuer à anticiper les réponses des populations au changement climatique. Le premier chapitre vise à comprendre comment la variation génétique quantitative est maintenue au sein des populations en testant trois hypothèses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes présentent une variation génétique quantitative plus élevée en raison de l'introgression en provenance d'autres pools génétiques, (ii) la variation génétique quantitative est plus faible dans les populations provenant d'environnements plus di ciles (c'est-à-dire subissant une sélection plus forte), et (iii) la variation génétique quantitative est plus élevée dans les populations provenant d'environnements spatialement hétérogènes. Le deuxième chapitre vise à déterminer si des modèles combinant des données climatiques et génomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi améliorer les prédictions à grande échelle, en particulier par rapport aux prédictions des fonctions de réponse des populations basées sur le climat qui sont actuellement couramment utilisées chez les arbres forestiers. Le troisième chapitre a pour but d'identi er les populations dont les relations gène-environnement seront les plus perturbées par le changement climatique (c'est-à-dire les populations à risque de maladaptation climatique à court terme) en utilisant l'approche du décalage génomique, et à valider les prédictions qui en résultent (c'est-à-dire que les populations avec un décalage génomique élevé devraient avoir une valeur adaptative plus faible) à la fois dans les populations naturelles et dans des conditions de jardins communs.

Mots-clés : Génétique quantitative et des populations, Arbres forestiers, Modélisation à grande échelle, Génomique du paysage, Variation génétique adaptative, Plasticité phénotypique biologie de l'évolution, et plus généralement, pour le monde de la recherche. Intérêt qui n'a pas décru puisque j'ai ensuite passé quatre étés consécutifs dans ton équipe, naviguant entre mise en place et maintien de dispositifs expérimentaux contrôlés, biologie moléculaire, suivi de populations naturelles et familiarisation avec les bases de la génétique quantitative. Et surtout, Benoit, tu m'as rattrapé in extremis alors que j'étais sur le point d'arrêter mes études à un passage à vide de ma vie, me redonnant l'élan et la motivation qui ne m'ont jamais quittée depuis. Je t'en serais toujours profondément reconnaissante et tu resteras toujours pour moi un mentor, une source d'inspiration.

Je ne peux parler de mes stages avec Benoit sans évoquer Sara Marin, une membre de l'équipe qui est devenue une amie chère. Que de bons souvenirs avec toi sur le terrain, dans le jardin commun-camping à Mérens-les-Vals, le jardin commun-limace à Garin, dans la voiture avec la musique à fond. Merci pour ta rigueur et ton sérieux lors des manips, ta bonne humeur et ton soutien à de nombreuses étapes de ma vie.

Je tiens également à remercier les deux autres membres de mon comité de thèse, Laura Leites et Stephen Cavers pour le temps qu'ils m'ont consacré et leurs précieux conseils et encouragements.

En comptabilisant les deux stages de master, je serais restée plus de cinq ans au sein du laboratoire , dont quasiment un an et demi de télétravail dû à la pandémie de Covid-19. C'est dans ce contexte que je tiens à brosser un tableau (forcément incomplet) des collègues, pour certains devenus des amis proches, qui auront marqué positivement mon passage à .

Je ne peux que commencer par Frédéric Barraquand. Fred, je suis venue te voir très vite au début de ma thèse car tu étais 'le matheux du premier étage qui fait des stats bayésiennes'. Je suis entrée dans ton bureau en ayant une question technique sur une histoire d'e ets xes et aléatoires dans mes modèles, j'en suis ressortie nageant dans un ou complet quant aux objectifs desdits modèles... Cette première interaction déroutante avec un matheux bayésien ne m'a nalement pas découragée puisque, trois ans plus tard, tu as contribué à la partie modélisation de tous mes papiers de thèse et est devenu un ami proche. Tu m'auras énormément appris en statistiques, mais plus largement en termes de méthode scienti que, de rédaction et d'organisation. Tu as été très présent lorsque j'avais des baisses de moral, notamment pendant les périodes de con nement, durant lesquelles nos petits cafés hebdomadaires étaient plus que ressourçants. Sans toi, cette thèse aurait pris une tournure très di érente c'est certain, merci pour tout Fred.

Le lien est vite fait entre le matheux bayésien et le petit groupe de motivés qui s'est construit progressivement a n de s'entraider pour progresser dans la programmation de modèles bayésiens avec le langage Stan. J'ai pris énormément de plaisir à participer et à animer nos workshops, que je trouvais toujours très intéressants et stimulants, et qui ont été particulièrement bénéques pour mon moral en périodes d'isolement dues au Covid-19. Merci donc au petit noyau dur des Stan-users de , Sylvain Schmitt, Simon Labarthe, Coralie Picoche, Frédéric Barraquand et Guillaume Ravel. Et un merci particulier à Sylvain Schmitt et Coralie Picoche pour m'avoir aider à apprivoiser Github.

Autres événements ayant eu un e et très positif sur ma motivation et l'avancée de mes recherches, les réunions de l'équipe 4 . Benjamin Brachi, un grand merci à toi d'avoir mis en place et poussé au maintien de ces réunions stimulantes scienti quement et très chouettes d'un point de vue humain.

Virgil Fievet, merci pour les -très très très -longues discussions poussant à la ré exion, les notions de biologie évolutive que tu m'auras apprise (même longtemps après le master !), le thé népalais qui donne mal à la tête, les conseils en escalade et dans la vie en général, qui, bien qu'ils me fassent d'abord râler, s'avèrent toujours avisés.

Myriam Heuertz, un immense merci pour m'avoir relancée dans la course à pied. Je garderai des souvenirs géniaux de nos escapades sportives matinales, de ton banana bread et de tes falafels, de ton courtisan le dindon, des randonnées avec Helena et Flor, des soirées à papoter et tellement d'autres moments chouettes.

Sophie Gerber, ou la philosophe-actrice-amie des plantes et des vélos-palme d'or pour la préparation de la vinaigrette, merci pour l'ouverture vers la philosophie en m'entraînant dans des conférences passionnantes (alors, les végétaux sont-ils sentients nalement ?), les mails amusants ('Finalement, soyons dégenrées, dérengées'), les pauses partagées.

Charlie Pauvert et Tania Fort, mes colocataires de bureau dans la vie avant-covid, les journées étaient bien plus tristes une fois que vous êtes partis. Heureusement qu'il y a encore sur les murs du bureau tes dessins et devises Shadok, Tania, et ta courbe de productivité, Charlie, c'est comme si vous étiez encore un peu là. Merci pour les séances de sport, en visio avec Tania pendant les con nements, les footings à la pause midi avec Charlie. Charlie, un merci particulier pour m'avoir motivée à apprendre le L A T E X(et pour le template du manuscrit de thèse, rien que ça !), pour tes conseils en programmation (et pour devenir un as des pains au levain), ton aide pour débugger mon ordinateur (quand j'étais en panique) ou installer la nouvelle version de Debian (le dimanche, quand j'étais de nouveau en panique).

Alexandre Changenet, merci pour les séances de cardio-training-footing inoubliables, tes houmous délicieux (sauf celui à la feta ! !) et surtout pour les échanges autour de la pensée critique qui m'ont amenée à complètement changer ma manière de mettre à jour mes connaissances, raisonner, débattre, échanger. Tu n'es jamais à cours de proposition de contenu à écouter, lire, regarder, c'est fantastique de discuter avec toi. Tu as été une réelle source d'inspiration et d'admiration, surtout, ne change rien héhé.

Deborah Corso, merci de ne pas m'avoir laissée seule nir ma thèse au rez-de-chaussée du B2. Merci pour les séances de sport en visio avec Tania lors des con nements, quand se refait-on le jeu de cartes ? Thomas Caignard, merci pour tes encouragements réguliers, les parties de Codenames et la relecture du manuscrit de thèse. Marine Cambon, merci pour ta compagnie brève mais fun, et pour les conseils Tikz. Mathieu Crétet, merci pour les nombreux joggings (mon premier marathon !) le soir à la frontale (avec les salamandres, les crapauds, les chevreuils et les sangliers) ou le dimanche dans le froid matinal, les discussions toujours chouettes et drôles ; tu m'as manqué quand tu es parti ! En n, un merci à tous les autres collègues de l'Université pour les discussions à la pause café ou autres circonstances : Xavier Bouteiller (notamment pour les conseils en statistique et programmation au début de la thèse), Annabel Porté (sacrée coach pour la préparation du concours de l'École doctorale), Thibaut Fréjaville, Natalia Vizcaíno-Palomar, Alice Sauve, Laurent Lamarque, Anne-Isabelle Gravel, Sylvain Delzon, Gaëlle Capdeville, Régis Burlett, Corinne Vacher, etc. Ainsi que les collègues de Pierroton, en particulier Marina de Miguel (un immense merci notamment pour le formatage des données CLONAPIN) et Katharina Budde.

Qu'on se le dise, on n'avancerait sûrement pas aussi loin dans la vie sans les amis. Merci Marie Savignac (Guiit-Guiit) pour la relecture du manuscrit de thèse, les appels réguliers depuis l'Afrique et les séjours ressourçants à la Coulinière. Merci Aila José pour égayer de ta bonne humeur notre appartement, les séances de brossage de dents, de sport, de ménage et les discussions pendant les balades de Falco. Merci Tanguy Aubé pour les weekends maraîchages (particulièrement les après-midis à étaler du fumier). Merci Cédric Lemaire (et les parents Lemaire, et Mireille !) pour les séjours à Saint-Bazerque, et Pierre Lemaire pour les séances d'escalade. Merci Thibaut Poiret pour avoir été le premier à me traîner à la salle d'escalade et pour les discussions sur les équilibres de Nash, l'altruisme e cace et l'illusionnisme. Merci à Valentin Hivert pour les explications sur la décomposition de la variance génétique et les skypes depuis Brisbane. Merci à Julien Dlubala pour les séances de sport en visio. Merci à Maxime de Ronne pour les skypes depuis Montréal et les ballades au bois de Pau. Merci aux amis sportifs du trail (en particulier Nicole Bach) et de l'escalade.

En n, merci à Benjamin Sozeau pour l'élan de motivation que tu m'as insu é sur la n de la thèse, tes précieux encouragements, les moments de détente et sportifs, les sorties en montagne 'incroyables' (vivement les prochaines !). Merci d'avoir été là, tout simplement, et d'être prêt et optimiste pour les prochaines aventures. Les arbres forestiers sont des espèces clés de voûte essentielles au fonctionnement et au maintien des écosystèmes, de la biodiversité et de multiples services écosystémiques. Prédire comment les populations d'arbres forestiers s'adapteront in situ aux conditions environnementales futures, notamment celles engendrées par le changement climatique, est aujourd'hui un enjeu critique et urgent, nécessitant une compréhension approfondie des processus évolutifs en jeu.

En outre, certaines populations ne seront pas en mesure de s'adapter assez rapidement face au rythme du changement climatique et sont donc susceptibles de connaître des déclins démographiques, voire des extinctions, dans un avenir proche. Identi er de telles populations en amont et les classer par ordre de priorité est nécessaire a n de mettre en oeuvre des stratégies de conservation et de gestion pertinentes. De plus, implémenter des stratégies tenant compte des processus adaptatifs, comme le déplacement d'individus vers des environnements au sein desquels ils sont supposés être mieux adaptés (stratégie de ux génétique assisté) ou vers des populations menacées en manque de variation génétique (stratégie de sauvetage évolutif), nécessite d'anticiper la réponse des individus transplantés aux nouveaux environnements.

Chez les arbres forestiers, une longue histoire de test de provenances (désormais communément appelés jardins communs) a fourni un cadre unique pour associer la variation des traits quantitatifs entre populations à de larges gradients environnementaux. L'estimation de fonctions de réponse des populations ('population response functions') a permis d'évaluer l'origine de la variation des traits quantitatifs (notamment en séparant la part plastique et génétique de la variation des traits) et d'identi er les populations présentant des risques de lags phénotypiques face au changement climatique, et donc potentiellement à risque de maladaptation (par exemple Fréjaville et al. 2020[START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Intraspeci c responses to climate in Pinus sylvestris[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]. Cependant, les jardins communs sont coûteux et chronophages à entretenir, et limités à quelques espèces ou populations. Parallèlement, la disponibilité croissante des données génomiques issues des nouvelles technologies de séquençage à des coûts abordables (et en constante diminution) pour les espèces non modèles o re de nouvelles perspectives pour comprendre les processus adaptatifs, identi er les populations à risque de maladaptation ou améliorer les prédictions des traits quantitatifs à l'échelle individuelle. En conséquence, en biologie de l'évolution et génétique quantitative, les approches de modélisation statistique incorporant des informations génomiques se développent rapidement (par exemple [START_REF] Gienapp | Genomic Quantitative Genetics to Study Evolution in the Wild[END_REF][START_REF] Meuwissen | Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps[END_REF], mais la plupart manquent encore de validations robustes et indépendantes, et peuvent être considérablement améliorées.

Les principaux objectifs de la présente thèse visent à contribuer à deux préoccupations majeures du domaine de la biologie évolutive : (i) la compréhension des mécanismes sous-jacents à l'adaptation des populations à leur environnement local, et (ii) l'amélioration des prédictions des réponses des populations aux changements environnementaux, tels que le changement climatique. Le pin maritime (Pinus pinaster Ait), un conifère à longue durée de vie originaire de la partie occidentale du bassin méditerranéen, est utilisé comme étude de cas. Le chapitre 1 vise à comprendre comment la variation génétique quantitative est maintenue au sein des populations de pin maritime en testant trois hypothèses concurrentes, mais non mutuellement exclusives, sur plusieurs traits phénotypiques : (i) les populations à forts niveaux d'introgression entre di érents pools génétiques présentent une variation génétique quantitative plus élevée, (ii) la variation génétique quantitative est plus faible dans les populations issues d'environnements plus rudes (car subissant potentiellement une sélection plus forte ; Fisher 1930), et (iii) la variation génétique quantitative est plus élevée dans les populations issues d'environnements spatialement hétérogènes [START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF][START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. Le chapitre 1 renseigne donc sur les populations qui pourraient être en mesure de s'adapter plus rapidement face au changement climatique puisque le potentiel adaptatif des populations est proportionnel à leur variation génétique ('breeder's equation' ; Falconer et [START_REF] Falconer | Introduction to quantitative genetics[END_REF][START_REF] Lush | Animal breeding plans[END_REF]. Le chapitre 2 a pour but de déterminer si des modèles combinant des données génomiques, climatiques et phénotypiques peuvent capturer les facteurs sous-jacents de la variation de croissance en hauteur, et ainsi améliorer les prédictions phénotypiques à large échelle, en particulier en comparaison avec les prédictions des fonctions de réponse des populations basées sur le climat d'origine des populations et qui sont actuellement généralement utilisées pour les arbres forestiers (par exemple Leites et al. 2012a[START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF]. En n, le premier objectif du chapitre 3 est d'identi er les populations de pin maritime dont les relations gène-environnement seront les plus altérées par le changement climatique (c'est-à-dire les populations à risque de maladaptation climatique à court terme) en appliquant l'approche du décalage génomique ('genomic o set' ; Fitzpatrick et [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF]. Le second objectif est de tester une hypothèse clé de l'approche du décalage génomique, à savoir que les populations pour lesquelles les prédictions de décalage génomique sont les plus élevées présentent une diminution de leur valeur adaptative absolue moyenne ou des tendances démographiques en déclin (Capblancq et al. 2020a). Les chapitres 2 et 3 fournissent donc des informations précieuses à la mise en oeuvre d'une gestion des populations de pin maritime tenant compte des processus adaptatifs. De plus, en étudiant comment combiner les données phénotypiques, génomiques et environnementales dans deux cadres de modélisation très di érents (respectivement basés sur les traits et la génomique du paysage), ces deux chapitres contribuent à l'objectif ambitieux de prédire comment les populations d'arbres forestiers répondront au changement climatique et quelles stratégies de gestion et de conservation seront les plus e caces pour sauver les populations en déclin.

2

Matériels & méthodes L'espèce modèle utilisée dans cette thèse est le pin maritime (Pinus pinaster Ait., Pinaceae), une espèce d'arbre forestier écologiquement et économiquement importante, largement exploitée pour son bois (Viñas et al. 2016), stabilisant les dunes côtières atlantiques et, en tant qu'espèce clé de voûte, soutenant la biodiversité forestière. Originaire de la partie occidentale du bassin méditerranéen, des montagnes de l'Atlas au Maroc et de la côte atlantique sud-ouest de l'Europe, sa répartition naturelle s'étend des montagnes du Haut Atlas au sud (Maroc) à la Bretagne française au nord, et de la côte du Portugal à l'ouest à l'Italie occidentale à l'est. Il a également été introduit à des ns commerciales en Australie où il est désormais considéré comme une espèce hautement invasive (Viñas et al. 2016).

Le pin maritime est une espèce d'arbre pollinisé par le vent, allogame et à longue durée de vie. Il pousse sur une grande variété de substrats, des sols sableux et acides aux sols plus calcaires. Il peut également tolérer des climats variés : le climat sec des côtes nord du bassin méditerranéen (du Portugal à l'Italie occidentale), le climat montagneux du sud-est de l'Espagne et du Maroc, le climat plus humide de la région atlantique (de la région ibérique espagnole à l'ouest de la France) et le climat continental du centre de l'Espagne. Comme de nombreuses espèces d'arbres méditerranéennes, le pin maritime présente une forte structure de population et des populations très fragmentées [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF]. Ses populations peuvent être regroupées en six pools génétiques [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], c'est-à-dire des groupes génétiques qui ne peuvent être di érenciés sur la base de marqueurs génétiques neutres et qui dérivent probablement d'un refuge glaciaire commun [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF].

Les données phénotypiques et génomiques utilisées dans la présente thèse proviennent du réseau de jardins communs clonaux CLONAPIN, composé de cinq sites situés dans des environnements di érents. Trois sites (Bordeaux, Asturias et Portugal) se trouvent dans la région atlantique, caractérisée par des hivers doux, des précipitations annuelles élevées et des étés relativement humides. Les deux autres sites (Cáceres et Madrid) sont localisés dans la région méditerranéenne continentale, caractérisée par des étés chauds et très secs et des hivers froids. En 2010 ou 2011 selon le site, des réplicats clonaux de 34 populations ont été plantés selon un plan expérimental en blocs aléatoires complets. Entre 2 et 28 clones (génotypes), en moyenne 15, représentaient chaque population . Pour obtenir des clones non apparentés, des arbres distants d'au moins 50 m ont été échantillonnés dans des peuplements naturels, et une graine par arbre a été plantée dans une pépinière et propagée végétativement par bouturage (voir Rodríguez-Quilón et al. 2016 pour plus de détails).

La mortalité et la hauteur des arbres ont été mesurées dans tous les jardins communs et à di érents âges des arbres : 10, 21 et 37 mois à Asturias, 25, 37 et 49 mois à Bordeaux (ainsi que 13 mois pour la mortalité et 85 mois pour la hauteur), 8 mois à Cáceres, 13 mois à Madrid et 11, 15, 20 et 27 mois au Portugal. La hauteur des arbres n'a été mesurée que sur les arbres vivants, déséquilibrant considérablement les données de hauteur à Cáceres et à Madrid, où 92% et 75% des arbres sont morts, respectivement (en partie à cause des sols argileux et d'une forte sécheresse estivale). Deux traits liés à la phénologie, la date moyenne de débourrement et la durée moyenne du débourrement, ont été mesurés à Bordeaux lorsque les arbres avaient 2, 3, 4 et 6 ans. Le débourrement correspond à la date d'émergence des brachyblastes en degrés-jours cumulés (avec une température de base de 0°C) à partir du premier jour de l'année, ce qui permet de tenir compte de la variabilité interannuelle des températures. La durée du débourrement correspond au nombre de degrés-jours entre le début de l'élongation des bourgeons et l'élongation totale des aiguilles (voir Hurel et al. 2019). En n, deux traits fonctionnels, δ 13 C et la surface foliaire spéci que (SLA), ont été mesurés au Portugal.

Les 34 populations plantées dans les cinq jardins communs représentent un échantillon de populations naturelles couvrant l'ensemble des pools génétiques connus du pin maritime. 523 clones collectés dans le jardin commun se trouvant à Asturias ont été génotypés avec le test In nium d'Illumina, ce qui a permis d'obtenir 5 165 SNPs polymorphes de haute qualité. Il n'y avait en moyenne que 3,3 valeurs manquantes par génotype (entre 0 et 142). Des détails sur l'extraction de l'ADN et le génotypage peuvent être trouvés dans Plomion et al. (2016b). Ce premier ensemble de données génomiques a été utilisé dans les chapitres 1 et 2. Dans le chapitre 3, nous avons combiné ce premier ensemble de données génomiques avec un autre obtenu avec le test de génotypage d'A ymetrix et développé dans le cadre du projet H2020 EU B4EST (4Tree ; https://b4est.eu). Les SNPs ayant une fréquence des allèles mineurs inférieure à 1% ou plus de 20% de données manquantes ont été ltrés, ce qui a permis d'obtenir 454 clones et 9 817 SNPs polymorphes de haute qualité. Parmi ces derniers, 2 855 étaient génotypés par les deux tests de génotypage (In nium d'Illumina et A ymetrix), garantissant ainsi l'identité de l'échantillon et permettant d'estimer les erreurs de génotypage. Le pourcentage de données manquantes par clone était inférieur à 12% pour tous les clones, avec une moyenne de 2,5%.
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Chapitre 1

La plupart des traits complexes présentent une variation héritable substantielle dans les populations naturelles. Comment l'interaction des forces évolutives maintient une telle variation reste un dilemme de longue date en biologie évolutive et en génétique quantitative, qui a fait l'objet d'un vaste corpus de travaux théoriques mais manque de preuves empiriques à ce jour [START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. Alors que la mutation et la migration augmentent la variation génétique au sein des populations, la sélection naturelle et la dérive génétique sont supposées l'appauvrir [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF]. Seulement, la variation génétique élevée des populations naturelles est di cile à expliquer sans tenir compte d'autres processus, tels que la sélection balancée au sein d'environnements hétérogènes [START_REF] Mitchell-Olds | Which evolutionary processes in uence natural genetic variation for phenotypic traits?[END_REF]. Chez les arbres forestiers, à ma connaissance, seules deux études ont examiné empiriquement comment les forces évolutives façonnent la variation génétique au sein des populations, et suggèrent un e et positif de l'hétérogénéité environnementale [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF] et un e et négatif de la sélection induite par le climat [START_REF] Ramírez-Valiente | Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides[END_REF].

Dans ce chapitre, nous avons testé des hypothèses concurrentes sur l'origine et le maintien de la variation génétique quantitative au sein des populations de pin maritime. Nous avons utilisé des mesures phénotypiques de traits de croissance (hauteur), phénologiques (date et durée du débourrement) et fonctionnels (δ 13 C et surface foliaire spéci que, SLA) issues des trois jardins communs du réseau CLONAPIN situés dans la région Atlantique (Bordeaux, Asturias et Portugal). Les mesures phénotypiques ont été réalisées sur 522 clones (génotypes) provenant de 33 populations, couvrant tous les pools génétiques connus de l'espèce [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF] et génotypés pour 5 165 SNPs (Plomion et al. 2016b). Pour chaque trait, nous avons comparé les estimations de modèles hiérarchiques bayésiens de l'association entre variance génétique au sein des populations et facteurs sous-jacents potentiels, à savoir la rigueur du climat sur le lieu d'origine des populations (intensité de la sécheresse et épisodes de froid intense), l'hétérogénéité environnementale dans les régions environnantes des populations, et le degré et origine du mélange génétique dans les populations (estimés avec les marqueurs SNPs). Les hypothèses concurrentes, mais non mutuellement exclusives, testées étaient les suivantes : (i) les populations présentant les plus forts degrés d'introgression en provenance d'autres pools génétiques ont une variation génétique quantitative plus élevée, et cette relation est proportionnelle à la divergence entre les pools génétiques sources et puits ; (ii) la variation génétique quantitative est plus faible dans les populations qui ont évolué dans des environnements plus rudes, en raison des pressions de sélection plus élevées dans ces régions ; et (iii) la variation génétique quantitative est plus élevée dans les populations qui ont évolué dans des environnements spatialement hétérogènes.

Le résultat le plus intéressant de ce chapitre était que les populations de pin maritime soumises à des événements de froid intense présentaient une variation génétique plus faible pour la hauteur dans les trois jardins communs. Ce résultat appuie l'hypothèse selon laquelle la variation génétique quantitative des traits liés à la valeur adaptative ( tness) est plus faible dans les populations soumises à une forte sélection (Fisher 1930), ici une sélection induite par le climat. Ce résultat a été validé sur des données de hauteur indépendantes provenant d'un ensemble supplémentaire de dispositifs expérimentaux (aimablement fournies par des collègues). La robustesse de nos résultats a également été con rmée par l'absence d'association entre le degré d'introgression des populations et leur variation génétique quantitative, suggérant l'absence d'in uence du ux génétique entre des pools de gènes distincts sur la variation génétique des traits considérés. En revanche, nous n'avons trouvé pour aucun des traits étudiés de variation génétique plus élevée dans les populations situées dans des environnements hétérogènes, ce qui va à l'encontre des prédictions de certains modèles théoriques (McDonald et [START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF][START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF] et d'une étude empirique chez le pin tordu [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF].

En conclusion, ce chapitre contribue au débat sur le maintien de la variation génétique au sein des populations en apportant un appui empirique au rôle de la sélection naturelle dans la réduction de la variation génétique au sein des populations d'un arbre forestier à longue durée de vie. Plus largement, la variation génétique étant une brique essentielle de la réponse adaptative des populations à des changements de conditions environnementales, ce chapitre renseigne sur le potentiel adaptatif à court terme des populations, ce qui est d'une grande utilité pour prédire quelles populations sont en mesure de s'adapter rapidement face au changement climatique.
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Chapitre 2

Anticiper la croissance des individus et populations dans de nouveaux environnements est essentiel pour guider les stratégies de conservation des arbres forestiers, notamment les translocations d'individus visant à compenser le changement climatique rapide [START_REF] Aitken | Assisted Gene Flow to Facilitate Local Adaptation to Climate Change[END_REF]. À ce jour, les fonctions de réponse des populations basées sur le climat d'origine des populations restent la méthode la plus couramment utilisée a n d'anticiper les valeurs des traits des populations transplantées dans de nouveaux environnements (Fréjaville et al. 2020[START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models[END_REF], 1999[START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]. L'intégration des informations génomiques dans les modèles prédictifs des traits d'intérêts apparaît attrayante car elle permettrait de distinguer les contributions relatives de la variation génétique adaptative ou neutre dans les prédictions, et de prendre en compte la variabilité intraspéci que à une échelle plus ne que les modèles actuels, gagnant ainsi en précision de prédiction [START_REF] Holliday | Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding[END_REF].

L'objectif de ce chapitre était d'identi er les facteurs sous-jacents potentiels des composantes plastiques et génétiques de la croissance en hauteur des populations de pins maritimes et d'étudier comment les données phénotypiques des jardins communs peuvent être combinées avec des données génomiques a n d'améliorer les prédictions de la variation de la croissance en hauteur à l'échelle de l'aire de répartition de l'espèce. Nous avons comparé des modèles hiérarchiques bayésiens inférant les variations de croissance en hauteur du pin maritime en fonction de variables climatiques et génomiques, en utilisant les mesures de hauteur issues de 34 populations (523 génotypes et 12 841 arbres) plantées dans les cinq jardins communs du réseau CLONAPIN. Nous avons d'abord évalué l'importance relative des facteurs sous-jacents potentiels des variations de croissance en hauteur. Nous nous attendions à ce que : (i) la composante plastique (environnementale) explique la plus grande partie de la variation des traits et soit associée au climat des jardins communs, (ii) la composante génétique soit déterminée à la fois par des processus adaptatifs, tels que l'adaptation au climat, et des processus neutres, tels que l'histoire démographique des populations. Deuxièmement, nous avons comparé la capacité de prédiction hors échantillon (sur des observations ou des populations non incluses lors du t des modèles) de modèles basés exclusivement sur le design expérimental des jardins communs avec celle de modèles incluant (séparément ou conjointement) des prédicteurs potentiels de la composante génétique de la croissance en hauteur. Ces prédicteurs potentiels incluaient le climat d'origine des populations (un indicateur de l'adaptation au climat), l'assignement de chaque génotype aux di érents pools génétiques (un indicateur de l'histoire démographique des populations et de la dérive génétique, re étant probablement aussi les di érentes histoires sélectives des pools génétiques) et des comptages d'allèles spéci ques à chaque génotype et ayant un e et positif sur la hauteur ('positive-e et alleles', PEAs ; identi és via des études d'association pangénomique, 'genome-wide association studies', GWAS).

La composante plastique expliquait la proportion majeure des écarts à la trajectoire moyenne de croissance en hauteur (47%), ayant probablement pour origine de multiples facteurs environnementaux (confondus), dont le climat. La composante génétique expliquait 11% des déviations de la trajectoire moyenne de croissance en hauteur et était principalement associée au climat d'origine des populations dont l'e et est partiellement confondu avec l'assignement à des pools génétiques distincts. Les modèles combinant informations génomiques et climatiques capturaient bien la composante génétique de la croissance en hauteur. De façon importante, ils prédisaient mieux la croissance en hauteur de nouvelles populations (non incluses lors du t des modèles) que les modèles basés exclusivement sur le design expérimental des jardins communs (c'est à dire uniquement sur les données phénotypiques) ou les modèles incluant séparément informations climatiques et génomiques (comme les fonctions de réponse des populations basées uniquement sur le climat d'origine des populations). Il est également intéressant de relever que les PEAs qui avaient été identi és à une échelle régionale dans les GWAS avaient une plus grande capacité de prédiction que les PEAs identi és globalement à l'échelle de l'aire de répartition de l'espèce.

Ce chapitre est un pas de plus vers l'intégration des connaissances récentes apportées par les avancées de la génomique à la modélisation de la variation des traits quantitatifs chez les arbres forestiers. La combinaison des jardins communs avec les outils génomiques est très prometteuse a n d'accélérer et améliorer les prédictions de traits à grande échelle et pour un large éventail d'espèces et de populations. Cependant, un cadre solide est nécessaire a n de générer des prédictions ables et de déterminer quand et dans quelle mesure la génomique peut aider à prendre des décisions dans les stratégies de conservation ou à anticiper les réponses des populations au changement climatique.
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Chapitre 3

Un objectif majeur de la biologie de l'évolution est de comprendre comment les populations s'adaptent à leur environnement et de prédire comment elles répondront aux conditions futures, en particulier celles découlant du changement climatique. L'approche du décalage génomique ('genomic o set') est de plus en plus populaire et vise à identi er les populations pour lesquelles les relations gène-environnement seront les plus perturbées face aux nouvelles conditions climatiques, c'est-à-dire les populations à risque de maladaptation climatique à court terme (Fitzpatrick et [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF][START_REF] Rellstab | A practical guide to environmental association analysis in landscape genomics[END_REF]. Elle apparaît comme une méthode prometteuse pour guider les stratégies de conservation et de gestion, en particulier pour les espèces sessiles et à longue durée de vie comme les arbres forestiers, pour lesquelles l'adaptation in situ ou la migration des allèles adaptatifs peuvent ne pas être assez rapides face au rythme du changement climatique (Fitzpatrick et Keller 2015). Cependant, cette approche repose sur un certain nombre d'hypothèses clés nécessitant une validation empirique solide (discutées dans Capblancq et al. 2020a, Rellstab et al. 2021).

L'objectif principal de ce chapitre était double : (1) identi er les populations de pins maritimes à risque de maladaptation climatique à court terme, (2) véri er l'hypothèse selon laquelle les populations présentant les prédictions de décalage génomique les plus élevées présentent une diminution de leur valeur adaptative absolue ou des tendances démographiques en déclin (Capblancq et al. 2020a). Pour cela, une première étape de validation a consisté à détecter des associations négatives entre performance des populations (hauteur et taux de mortalité) et prédictions de décalage génomique dans des jardins communs (plutôt que dans les climats futurs), et à les comparer aux associations entre performance des populations et cinq distances de transfert climatique (di érence absolue entre le climat des populations et celui des jardins communs). Une deuxième étape de validation a consisté à estimer les associations entre les taux de mortalité récents dans les populations naturelles (sur la base des données des inventaires forestiers nationaux français et espagnols) et les prédictions de décalage génomique sous les climats futurs, en supposant que les populations dont les prédictions suggèrent une maladaptation climatique dans un futur proche connaissent déjà des taux de mortalité plus élevés que la moyenne. Les prédictions de décalage génomique dans les jardins communs et les populations naturelles ont été dérivées pour toutes les combinaisons possibles de quatre ensembles de SNPs (un ensemble de SNPs de référence et trois ensembles de SNPs candidats plus ou moins strictement sélectionnés à l'aide de deux analyses d'association génétique-environnement, GEAs), deux approches de modélisation en génomique du paysage ('Gradient Forest', GF, et 'Generalised Dissimilarity Modelling', GDM) et deux scénarios climatiques futurs plus ou moins alarmants (uniquement pour les prédictions dans les populations naturelles).

En ce qui concerne l'objectif (1), les prédictions de décalage génomique basées sur les SNPs candidats communs aux deux méthodes GEAs (c'est-à-dire ceux qui ont été sélectionnés avec le plus de con ance) indiquent un risque de maladaptation plus élevé pour les populations qui connaissent actuellement des conditions hivernales douces (la plupart des populations atlantiques et les populations méditerranéennes du sud-est de la France et du nord-ouest de l'Italie), mais pour lesquelles la transition vers des températures légèrement plus élevées impliquerait une étape évolutive importante. Le risque de maladaptation climatique dans un futur proche de ces populations pourrait s'expliquer par leur adaptation passée aux températures hivernales froides, contraignant une croissance et une survie optimales en cas de réchau ement des températures. Il est également important de noter que ces populations, qui se trouvent à l'extrémité chaude du gradient des températures froides hivernales, ne pourront pas béné cier de la migration d'allèles adaptatifs provenant d'autres populations. Il semble donc crucial de suivre leur dynamique démographique et leurs trajectoires adaptatives dans les années à venir, sachant notamment que les populations du sud-ouest de la France et du nord-est de l'Ibérie sont celles qui ont la plus grande valeur commerciale. Ainsi, une maladaptation climatique a ectant leurs traits phénotypiques d'intérêt pourrait avoir un impact substantiel sur l'économie locale.

En ce qui concerne l'objectif (2), les prédictions de décalage génomique étaient généralement négativement associées à la performance des populations dans les jardins communs et les populations naturelles, suggérant ainsi que les prédictions de décalage génomique peuvent être indicatives de déclins (futurs) de la valeur adaptative des populations, et donc validant nos résultats chez le pin maritime. Néanmoins, les prédictions de décalage génomique étaient très sensibles aux ensembles des SNPs considérés (c'est-à-dire à la rigueur de leur sélection en tant que SNP candidat) et à l'approche de modélisation utilisée (GDM vs GF), alors qu'elles étaient très similaires entre les deux scénarios de climats futurs. En particulier, aucune des modalités testées pour prédire le décalage génomique n'avait une meilleure capacité prédictive à travers toutes les étapes de validation. Nos résultats con rment donc que l'approche du décalage génomique est prometteuse, mais suggèrent également qu'une validation plus poussée de ses prédictions, notamment basée sur des données expérimentales et d'observations indépendantes, est nécessaire. En particulier, déterminer quelles méthodes de modélisation et quels critères de sélection de la composante génétique adaptative conduisent aux prédictions les plus robustes et ables possibles est indispensable avant que de telles prédictions soient utilisées pour guider les stratégies de conservation et de gestion forestière.

Discussion

Utilisant le pin maritime comme étude de cas, la présente thèse combine de façon innovante des approches de modélisation basées sur les traits phénotypiques (chapitres 1 et 2) avec des approches de génomique du paysage (chapitre 3). S'appuyant sur les données phénotypiques, environnementales et génomiques provenant d'un vaste réseau de cinq jardins communs et 34 populations, l'ensemble des résultats obtenus fournissent (i) une image globale et détaillée des patrons d'adaptation du pin maritime à large échelle et des processus évolutifs sous-jacents, et (ii) une évaluation du risque de maladaptation à court terme des populations de pin maritime face au changement climatique. Les conclusions des di érents chapitres convergent vers le rôle clé des températures froides dans l'histoire adaptative du pin maritime, ayant un impact à la fois sur les états adaptatifs actuels des populations, mais aussi potentiellement sur la variance de certains traits quantitatifs au sein même des populations (par exemple la hauteur des arbres). Les données génomiques apparaissent comme particulièrement prometteuses pour améliorer les prédictions des réponses à court terme des populations à des changements environnementaux, notamment climatiques. En e et, le chapitre 2 montre que les prédictions phénotypiques pour des individus transférés dans de nouveaux environnements sont améliorées en incorporant des informations génomiques dans les modèles, ce qui est d'un grand intérêt pour les stratégies de conservation ou de gestion (par exemple, ux de gène assisté ou sauvetage évolutif). De plus, le chapitre 3 met en évidence que l'approche du décalage génomique peut s'avérer être un outil très pertinent dans l'identi cation rapide des populations à risque de maladaptation climatique dans un futur proche, nécessitant cependant une validation empirique plus poussée avant sa généralisation. Plus généralement, la présente thèse contribue à une meilleure compréhension des processus adaptatifs, au développement de méthodes statistiques robustes nécessaires à la mise en oeuvre de stratégies de gestion basées sur l'évolution, et à la progression vers l'objectif ambitieux mais urgent de prédire la réponse des populations au changement climatique.

II I

How do species and populations adapt to their environment? This question has held the attention of countless scientists for centuries and is at the heart of this PhD work. Four centuries BC, Aristotle, who believed in ' nalism' and ' xism', had already observed that species were particularly well adapted to their habitats [START_REF] Gelber | Aristotle on Essence and Habitat[END_REF] and described adaptation as a state. Mechanisms of populations' adaptation to their environment only began to be elucidated centuries later, after the work of Charles Darwin and Alfred Russel Wallace, who believed in 'transformism' and saw adaptation as a process [START_REF] Darwin | On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life[END_REF][START_REF] Darwin | On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection[END_REF]. Depending on the context, the term adaptation is thus de ned as the average phenotypic change that enhances tness and has a genetic basis (i.e. adaptation as a process) or any condition/trait that enhances tness in a given environment relative to other possible conditions/traits in that environment (i.e. adaptation or adaptive trait as a state) [START_REF] Hendry | Eco-evolutionary Dynamics[END_REF]. Today, new sequencing technologies provide access to the genetic basis of adaptive traits, allowing us to investigate past adaptations but also to follow evolution in real time. We are therefore living in an extremely exciting time scienti cally as these new genomic data open the way to tremendous progress in our understanding of the evolutionary processes. Yet, reading the genome is not as simple as reading a book and we remain far from elucidating the mechanisms underlying the genotype-to-phenotype relationship. We are also living in worrying times, as global change induced by humans is already causing the extinction of many species and populations around the world [START_REF] Butchart | Global Biodiversity: Indicators of Recent Declines[END_REF][START_REF] Ste En | The Anthropocene: From Global Change to Planetary Stewardship[END_REF]. Thus, the question of how species adapt to their environment is now of primary importance and understanding the adaptive processes is necessary to anticipate how populations will adapt in the future. This is the context of this PhD. In the introduction, I will start by presenting the concepts and mechanisms of population and quantitative genetics necessary to understand the work presented here. I will then discuss in the second part the underlying mechanisms of the population responses to environmental changes, with a particular focus on changing climatic conditions. In the third part, I will discuss some current statistical methods integrating genomic data in predictive modelling of short-term population response to new environments. Finally, the fourth part will be dedicated to the speci cities of forest trees, which are excellent models to study adaptation to the environment but also present important challenges.
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Concepts and mechanisms in population and quantitative genetics

'There is no thing more practical than a good theory' [START_REF] Lewin | Psychology and the Process of Group Living[END_REF][START_REF] Mccain | Nothing as practical as a good theory" Does Lewin's Maxim still have salience in the applied social sciences[END_REF].

1.1 From Fisher's in nitesimal model to the omnigenic model

In the 1900's, a bitter debate was ongoing between the Mendelians, who were interested in monogenic (discrete) phenotypes and thought that evolution occurred via major new mutations, and the biometricians, who were interested in the inheritance and variation of continuous traits and believed that evolution consisted in very small steps. Fisher's in nitesimal model brilliantly settled the debate by showing that if many genes contribute to phenotypic variation, then, according to the central limit theorem, random sampling of alleles at each gene produces continuous and normally distributed phenotypes in the population [START_REF] Fisher | The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF]. This model states that quantitative traits are determined by an in nitely large number of genes, each with in nitely small and additive contributions to the phenotype, and by environmental factors [START_REF] Fisher | The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF]. It has been highly e ective in describing inheritance patterns, especially in plant and animal breeding, and formed the basis for quantitative genetics in the future (Visscher and Goddard 2019). In particular, the theory built in Fisher's 1918 paper allows the partitioning of phenotypic variance into genetic and environmental components, a point developed in detail in the next section.

In the genomic era, Fisher's in nitesimal model has proved highly successful in the face of accumulating empirical observations from new genomic tools, which now provide cheap genotyping of hundreds of thousands of common allelic markers or even whole genome sequencing for more and more species (see Section 3.1). Genome-wide association studies (GWAS) have been widely used to statistically associate genetic variants (usually SNPs, single nucleotide polymorphisms) with quantitative traits. They have resulted in the discovery of a huge number of adaptive variants in humans [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF], but also in other species (e.g. in plant model species; [START_REF] Brachi | Genome-wide association studies in plants: the missing heritability is in the eld[END_REF], thus con rming that quantitative traits are under the control of a large number of genes (i.e. polygenic), each having a small e ect on the phenotype (Tam et al. 2019, Visscher et al. 2017). Genetic variants with large e ect sizes may also in uence quantitative traits but they are extremely rare and are often associated with diseases that have a strong impact on tness [START_REF] Gibson | Rare and common variants: twenty arguments[END_REF], such as autism and schizophrenia [START_REF] Rubeis | Synaptic, transcriptional and chromatin genes disrupted in autism[END_REF], Purcell et al. 2014).

GWAS results have also highlighted that genetic variants are generally associated with multiple phenotypes, thus suggesting pervasive pleiotropy in quantitative traits (Gratten and Visscher 2016). This is supported by the widespread genetic correlations among traits observed in pedigree studies, implying that sets of genetic variants a ect two or more traits in a consistent direction (Visscher et al. 2017). Other noteworthy observations come from GWAS outputs: (i) most GWAS hits are noncoding variants probably in uencing gene regulation [START_REF] Li | RNA splicing is a primary link between genetic variation and disease[END_REF]); (ii) genetic variants are spread broadly across the genome (e.g. variants signi cantly associated with height can be found almost every 100 kb on the genome; [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF], which is supported by the correlation between the length of a chromosome and its heritability [START_REF] Shi | Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data[END_REF]; (iii) genes with putatively relevant functions have only marginally higher genetic contributions to phenotypes [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF]; and (iv) cell type-speci c regulatory elements and generically active regions contribute almost equally to genetic variance [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF]. All these observations have paved the way for the recent development of a new conceptual framework for understanding the genetic architecture of complex traits: the omnigenic model [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF][START_REF] Liu | Trans E ects on Gene Expression Can Drive Omnigenic Inheritance[END_REF]criticized in Wray et al. 2018). Under this model, genetic contributions are partitioned into direct e ects from core genes and indirect e ects from peripheral genes, which are far more numerous and drive the expression of core genes via weak trans e ects, thus explaining most of the genetic variance [START_REF] Liu | Trans E ects on Gene Expression Can Drive Omnigenic Inheritance[END_REF]. Extending the omnigenic model to the omni-environmental model has been recently proposed to consider that some environmental factors have direct e ects on phenotypes, which are likely to be constant across populations, while others have more peripheral e ects, which are likely to vary unpredictably [START_REF] Mathieson | The omnigenic model and polygenic prediction of complex traits[END_REF]).

The genetic architecture of complex traits will not be explored further in this manuscript. However, readers may nd it useful to bear in mind that behind the genetic component of quantitative trait variation lie extremely interconnected gene regulatory networks, whose functioning and organization are still very poorly understood. We will now explore in more details how variation in quantitative traits can be partitioned.

Components of quantitative trait variation

As previously mentioned, the phenotypic variance (V P ) can be partitioned into genetic (V G ) and environmental (V E ) components, plus their potential interactions (V GE ) and covariances (2cov GE ), such as:

V P = V G + V E + V GE + 2cov GE
In practice, covariances can often be neglected in randomized experiments, which break down potential correlations between environmental deviations and genotypic values [START_REF] Falconer | Introduction to quantitative genetics[END_REF]. Note that V GE should be included in the environmental variance as, although the environmental variance is speci c to each genotype, the source of the variation is environmental, and not genetic [START_REF] Falconer | Introduction to quantitative genetics[END_REF].

The genetic variance (V G ) can itself be partitioned into the additive (V A ), dominance (V D ) and epistatic (V I ) variances [START_REF] Falconer | Introduction to quantitative genetics[END_REF]Mackay 1996, Lynch andWalsh 1998), such as:

V G = V A + V D + V I
The additive variance is the variance of the breeding values (i.e. the additive genetic value of an individual based on the mean additive genetic value of its progeny), which accounts for the in uence of the additive e ects of the alleles on the phenotype. This has to be di erentiated from V G , the variance of the genetic values, which includes non-additive e ects, such as dominance and epistasis. The dominance deviations stem from within-locus interactions while the epistatic deviations come from among-locus interactions. Importantly, all these quantities depend on the gene frequencies and therefore are properties of a given population [START_REF] Falconer | Introduction to quantitative genetics[END_REF].

The relative contributions of dominance and epistasis to genetic variance have been debated in the face of the seemingly con ict between on the one hand, estimates of genetic variance suggesting the overall predominance of additive variance [START_REF] Falconer | Introduction to quantitative genetics[END_REF]Mackay 1996, Lynch andWalsh 1998) and on the other hand, the deepening understanding of gene networks and interactions, suggesting extensive epistasis [START_REF] Carlborg | Epistasis: too often neglected in complex trait studies?[END_REF]. However, this debate may stem mainly from two sources of confusion: (i) statistical epistasis (i.e. interaction variance due to deviation from additive e ects, as coined by [START_REF] Fisher | The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF] does not imply functional epistasis (i.e. a biological phenomenon in which the e ect of a particular locus depends on the genotype at another locus, as described by Bateson 1909), and vice versa [START_REF] Cordell | Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans[END_REF]; (ii) models estimating additive e ects do not assume the absence of gene interactions, since by de nition the average e ect of an allele is a function of both dominance and epistasis e ects (Hivert et al. 2021b). Recent empirical and theoretical work suggests that interactions at the gene level are unlikely to generate much interaction variance, and, therefore, that the bulk of genetic variance is additive [START_REF] Hill | Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits[END_REF], Hivert et al. 2021a). An exception can be noted in the case of inbred lines with high levels of heterozygosity, which maximize the variance from non-additive e ects (Hivert et al. 2021b).

Based on the partitioning of the phenotypic variance, two key parameters can be estimated for a given population: H 2 , the broad-sense heritability or degree of genetic determination (the ratio of genetic variance to total variance) and h 2 , the narrow-sense heritability (the ratio of additive variance to total variance). H 2 re ects to what extent the phenotypes of individuals are determined by their genotypes while h 2 re ects to what extent the phenotypes are determined by the genes passed on by their parents. h 2 is therefore the major determinant of the resemblance among relatives and a key component of the short-term population response to selection [START_REF] Falconer | Introduction to quantitative genetics[END_REF]. A general trend across species is that h 2 is higher for morphological traits and lower for life-history traits, which are more closely related to tness (Charmantier andGarant 2005, Merilä and[START_REF] Merilä | Lifetime Reproductive Success and Heritability in Nature[END_REF].

The environmental variance (V E ) can also itself be partitioned into the special environmental variance (V Es ), the general environmental variance (V E ) and the genotype-byenvironment interaction (V GE ), such as:

V E = V Es + V E + V GE
The special environmental variance refers to the within-individual variance, which originates from two main sources: developmental noise and temporal uctuations. Developmental noise, also called stochastic developmental variation, refers to phenotypic variation that is not explained by genetic or environmental factors. It results from stochastic cellular and developmental process, which occur during cleavage, cell di erentiation, patterning or morphogenesis but also tissue regeneration and life history attributes in adulthood (Vogt 2015). The temporal uctuations refer to phenotypic variation of successive measurements on the same individual, e.g. variation in phenology-related traits among years in perennial plants, variation in milk yield or number of o spring among litters in cattle [START_REF] Falconer | Introduction to quantitative genetics[END_REF]. In plant and animal breeding, the special environmental variance is considered as random noise in phenotype expression, which cannot be eliminated by experimental design and therefore interferes with arti cial trait selection by weakening the association between the genotype and the phenotype. In contrast, this variation is of particular interest in evolutionary biology because it could itself be the object of selection. For instance, proteins responding to environmental changes show higher expression noise than those involved in protein synthesis, suggesting that protein expression noise levels may be under selection [START_REF] Newman | Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise[END_REF]. Similarly, higher within-individual variation in labile traits can be selected in uctuating environments, thus allowing individuals to respond more exibly to changing environmental conditions across their lifespan [START_REF] Westneat | The biology hidden inside residual withinindividual phenotypic variation[END_REF].

The general environmental variance refers to the between-individual variance caused by external variations in the environment, e.g. nutritional or climatic factors [START_REF] Falconer | Introduction to quantitative genetics[END_REF]. It typically constitutes most of the variance in natural populations and can be partially controlled under experimental conditions. A potentially large part of the general environmental variance comes from maternal e ects, i.e. prenatal or postnatal causal in uences of the mother on the phenotypes of the o spring [START_REF] Wolf | What are maternal e ects (and what are they not)?[END_REF].

Genotype-by-environment interaction refers to the variance in the response of individual genotypes to general environmental variance. It may arise from changes in variance or in the ranking of genotype performance across di erent environments, i.e. one genotype may perform better than other genotypes in one environment but worse in other environments ( [START_REF] Jong | Genotype-by-environment interaction and the genetic covariance between environments: multilocus genetics[END_REF][START_REF] Falconer | Introduction to quantitative genetics[END_REF], Lynch and Walsh 1998). Classic examples include the genotype-speci c changes in bristle number across changing temperatures in Drosophila (Gupta and Lewontin 1982), the genotype-speci c larval development of a leaf-mining insect on two di erent host plant species (Via 1984) and the genotype-speci c growth of tobacco plants in environments with varying sowing dates and plant densities [START_REF] Falconer | Introduction to quantitative genetics[END_REF].

Individual responses of genotypes to the environment are modeled with reaction norms, in which trait values are a function of an environmental variable. Fig. II.1 shows three possible con gurations. In the rst panel, the two genotypes do not show phenotypic responses to environmental changes and their di erences in trait expression are purely genetic. In the second panel, the two genotypes respond similarly to environmental changes, i.e. they do not show genetic di erences in trait expression along the environmental gradient. In such a case, the phenotypic variance comes entirely from the general environmental variance and there is no genotype-by-environment interaction variance. In the third panel, the two genotypes respond di erently to environmental changes, i.e. there is genetic variation in trait expression along the environmental gradient (genotype-by-environment interaction). In this simpli ed example, reaction norms are linear but more realistic and informative reaction norms can be tted with nonlinear functions [START_REF] Arnold | How to analyse plant phenotypic plasticity in response to a changing climate[END_REF].

General environmental variance, special environmental variance associated to temporal uctuations and the genotype-by-environment interaction are all generated by a mechanism called phenotypic plasticity. Phenotypic plasticity is de ned as the ability of a genotype to express di erent phenotypes across environments, i.e. one genotype may code for di erent environment-dependent phenotypes [START_REF] Dewitt | Phenotypic Plasticity: Functional and Conceptual Approaches[END_REF]. Fig. II.1 can thus be interpreted as follows: genotypes show no phenotypic plasticity in the rst panel, genotypes show the same plastic response to the environment in the second panel, and genotypes show a di erent plastic response to the environment in the third panel (i.e. genetic variation in phenotypic plasticity). In quantitative genetics, phenotypic plasticity was rst considered as a source of noise a ecting the precision of genetic studies and leading to unpredictable performance of genotypes in untested environments [START_REF] Bradshaw | Unravelling phenotypic plasticity -why should we bother?[END_REF][START_REF] Pigliucci | Evolution of phenotypic plasticity: where are we going now?[END_REF]. In contrast, it is now considered as a rapid-response process of major importance for individuals to cope with changing environmental conditions, which may even constrain or boost adaptive processes (Fox et al. 2019[START_REF] Nicotra | Plant phenotypic plasticity in a changing climate[END_REF]; see Section 2.3). In the present PhD, the focus was mainly on understanding the genetic rather than the plastic component of quantitative trait variation. That's why I will now concentrate mainly on the various forces and mechanisms driving the genetic component of quantitative trait variation.

Evolutionary forces underlying quantitative genetic variation

A population or a species is evolving when its genetic composition (often measured by allele frequencies) is changing over time. Four main evolutionary processes a ect the genetic composition of populations, and thereby their quantitative genetic variation: mutation, genetic drift, gene ow and natural selection.

Mutations originate from errors in the replication process of DNA sequences and are the only evolutionary force generating new alleles (i.e. new genetic variants). Mutations are rare, with mutation rates about 10 -5 and 10 -6 per generation for most loci in most organisms [START_REF] Falconer | Introduction to quantitative genetics[END_REF]. A mutation appearing in an individual has a high probability of being lost (with a zero probability of survival in an in nite population). Mutations therefore generate tiny changes in allele frequency (and thereby tiny increases in genetic variation), which might be important on an evolutionary scale but is di cult to detect on a ecological timescale (except in microorganisms). Importantly, for a mutation to be heritable, it has to be passed to a gamete (i.e. a reproductive cell, that is a haploid cell carrying a single copy of each chromosome).

Genetic drift is the random changes in allele frequency in nite populations due to sampling error between generations. For instance, the gametes of a sexually reproducing diploid organism contain only one copy of each gene, so that only one of the two copies is transmitted to the o spring. This reshu ing of the combinations of genes between parents and o spring is achieved through the process of recombination. In a broad sense, recombination is any genetic mechanism (e.g. independent assortment and crossing overs during meiosis, gene conversion) that can create new combinations of alleles or haplotypes (Templeton 2006). Importantly, recombination (and therefore genetic drift) is neutral, as it does not change allele frequencies in any speci c direction over time, and results in a progressive erosion of genetic variation.

The role of genetic drift in the allele dynamics, and therefore population and species evolution, has been a matter of intense debate [START_REF] Ohta | Development of Neutral and Nearly Neutral Theories[END_REF], which persists to date (Jensen et al. 2019, Kern and[START_REF] Kern | The Neutral Theory in Light of Natural Selection[END_REF]. The neutral theory of molecular evolution states that the vast majority of new mutations are either neutral (e.g. mutations arising in non-coding regions of the DNA) or deleterious (e.g. mutations disrupting important protein functions), and have therefore low probability of becoming xed in the population [START_REF] Kimura | Evolutionary Rate at the Molecular Level[END_REF]). Whether the neutral theory is right or wrong will not be discussed further here, what is relevant is that it can serve as a null model from which various hypotheses can be tested (e.g. Box 1).

Box 1. Mutation-drift balance

Here is an example of a simple null model derived from the neutral theory: the mutation-drift balance. While mutation is generating new genetic variation, genetic drift slowly erodes neutral (and weakly selected) genetic variation, as alleles drift to high or low frequencies until they get lost or xed over time. In a panmictic diploid population of size N and mutation rate µ, drift dominates whenever 4µ N < 1 (i.e. resulting in the xation of most alleles) while mutation dominates whenever 4µ N > 1 (i.e. maximizing genetic variation). The gure below shows an example of the dynamic of the two evolutionary forces in a very small population with high mutation rate, in which mutation-drift balance consists of a constantly evolving set of alleles maintaining an equilibrium level of polymorphism.
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An initial population of ve diploid individuals, each having the same black allele, evolves under 29 generations. Each transmitted allele can mutate between generations (thereby changing colour). In this example, the mutation rate is implausibly high to counterbalance the strong e ect of genetic drift (as the population is very small). The bottom plot shows the allelic frequencies over time.

From the 'Population and quantitative genetics' course of Graham Coop (University of California, Davis). Code available here.

Gene ow (e.g. through migrating individuals or dispersal of reproductive material such as gametes or seeds) can change the genetic composition of a population and increase its genetic variation through alleles carried by immigrants from the surrounding populations, or decrease its genetic variation by losing alleles carried by emigrants [START_REF] Slatkin | Gene Flow in Natural Populations[END_REF]. At the metapopulation level, gene ow homogenizes allele frequencies among populations.

The combination of the neutral (i.e. not a ected by natural selection) evolutionary processes presented above (i.e. mutation, genetic drift and gene ow) and the demographic history of the populations generates population structure across the species ranges. This is particularly true in species with fragmented populations (reduced gene ow and higher e ect of genetic drift in small populations) and has to be accounted for in studies aiming at detecting adaptation patterns (e.g. the case study of human height di erences across Europe; [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF].

Natural selection can trigger evolution when (i) there is phenotypic variation, (ii) tness (i.e. de ned here as the amount of successful DNA replication of an individual; Templeton 2006) is non-random with respect to this phenotypic variation and (iii) this phenotypic variation is heritable. Importantly, changes in allele frequency induced by natural selection tend to increase the average tness of the population, resulting in adaptation (Templeton 2006).

Unlike other evolutionary forces, the in uence of natural selection on quantitative genetic variation within populations is far more complex and still under debate (Pélabon et al. 2010, Walsh andLynch 2018). Selection is expected to deplete genetic variation when the tness function is concave, e.g. under stabilizing selection, but increase it when the tness function is convex, e.g. under disruptive selection [START_REF] Layzer | Genetic Variation and Progressive Evolution[END_REF]. Linear directional selection is unlikely to in uence genetic variation of complex traits with near-Gaussian distributions (Barton and Turelli 1987), except in the presence of directional epistasis (i.e. when epistasis consistently a ects the e ect of an allele in a given direction; [START_REF] Hansen | Global Change in Forests: Responses of Species, Communities, and Biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity[END_REF]. Finally, how selection can maintain genetic variation (i.e. balancing selection) remains unclear and has been the subject of extensive theoretical work, albeit lacking empirical validation [START_REF] Delph | On the importance of balancing selection in plants[END_REF]Kelly 2014, Johnson and[START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. For example, high levels of genetic variation may be maintained under selection pressures that uctuate in time or space (Felsenstein 1976, McDonald and[START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF], although some mechanisms may mitigate the expression of genetic variation under such conditions (e.g. genetic canalization; [START_REF] Kawecki | The Evolution of Genetic Canalization Under Fluctuating Selection[END_REF].

2

How populations respond to environmental change

(Mal)adaptation within the adaptive landscape framework

How populations respond to their environment can be conceptualized within the framework of the phenotype adaptive landscape, a n-dimensional surface (for n traits) describing the relationship between mean population tness and mean population phenotypes, assuming a constant variance in phenotypic traits [START_REF] Arnold | The adaptive landscape as a conceptual bridge between micro-and macroevolution[END_REF][START_REF] Hendry | Whither adaptation?[END_REF][START_REF] Lande | Natural Selection and Random Genetic Drift in Phenotypic Evolution[END_REF][START_REF]Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body Size Allometry[END_REF], Schluter 2000b[START_REF] Simpson | Tempo and Mode in Evolution[END_REF], Svensson and Calsbeek 2012). The direction and steepness of the surface at a given location on the landscape re ect the change over time in the mean phenotype and mean tness of a population [START_REF] Hendry | Eco-evolutionary Dynamics[END_REF], which is shown in Fig.

II.2 with blue vectors tangent to an hypothetical adaptive landscape. Far from the optimum (phenotype value Z A in Fig. II.2), the selection is stronger and therefore the evolution towards the optimum faster, especially for traits with higher additive genetic variance relative to their phenotypic variance (i.e. higher heritability). Importantly, selection decreases as the mean population phenotype gets closer to the optimum (phenotype value Z B in Fig. II.2), so that evolution towards the optimum is slower and selection becomes almost undetectable once the population have adapted to a tness peak (selection 'erases its traces'; [START_REF] Estes | Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales[END_REF]Arnold 2007, Haller and[START_REF] Merilä | Climate change, adaptation, and phenotypic plasticity: the problem and the evidence[END_REF]. The phenotypic adaptive landscape framework can help to understand the di erent ways of de ning the state of adaptation or maladaptation, and both concepts are referred under the term (mal)adaptation (Capblancq et al. 2020a). A key parameter is the mean absolute tness W of a population, which corresponds to the mean expected lifetime reproductive success in the population (see details in Brady et al. 2019b on how this quantity can be calculated). The absolute (mal)adaptation of a population can be calculated by comparing its mean absolute tness W with a threshold W = 1, that corresponds to the absolute tness of a population at demographic equilibrium (i.e. each individual of the population gives on average one individual that survives and reproduces; Brady et al. 2019b). In this case, a population is adapted to its environment if W ≥ 1, i.e. the population is at the equilibrium or in expansion and a population is maladapted to its environment if W < 1, i.e. the population is decreasing (Fig. II.2). Estimates of absolute (mal)adaptation are mainly used in the context of ecology and conservation biology and suggest pervasive maladaptation in nature (Brady et al. 2019b, Hendry and[START_REF] Hendry | Whither adaptation?[END_REF]. This conclusion follows, for example, from the observation that population declines and range contractions, eventually leading to population or species extinction, occur continuously over macroevolutionary time (Muscente et al. 2018, Novacek and[START_REF] Novacek | Extinction and phylogeny[END_REF], with increasing rates due to human activities [START_REF] Ceballos | Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines[END_REF][START_REF] Dirzo | Defaunation in the Anthropocene[END_REF].

Relative (mal)adaptation can be characterized via the mean relative tness w of a population, which is the mean absolute tness of the population W divided by the absolute tness of another entity w e , such as other populations (e.g. in reciprocal transplant experiments), the individual with the highest tness in the population (with the ttest individual having a relative tness of one; [START_REF] Crow | An introduction to population genetics theory. An introduction to population genetics theory[END_REF] or a local or global optimum (vertical red arrows in Fig. II.2;Brady et al. 2019b). A population is then considered maladapted when w < w e . Relative (mal)adaptation can also be characterized with trait-based approaches, in which the population mean phenotype is compared to the optimal phenotype (horizontal red arrows in Fig. II.2). However, inferring tness from phenotypes rather than directly may be biased by trade-o s among traits [START_REF] Shoval | Evolutionary Trade-O s, Pareto Optimality, and the Geometry of Phenotype Space[END_REF]), e.g. between reproduction and other life-history traits [START_REF] Obeso | The costs of reproduction in plants[END_REF].

The concept of relative (mal)adaptation has been mostly used in evolutionary biology and the general view is that both adaptation and maladaptation are widespread states (Brady et al. 2019b), though the latter has been largely less studied (Brady et al. 2019a). On the one hand, empirical evidence of the prevalence of adaptation mainly comes from: (i) reciprocal transplant studies showing that local individuals have generally higher tness than foreign ones [START_REF] Hereford | A Quantitative Survey of Local Adaptation and Fitness Trade-O s[END_REF][START_REF] Leimu | A Meta-Analysis of Local Adaptation in Plants[END_REF][START_REF] Nosil | Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats[END_REF], a pattern known as local adaptation or home-site advantage [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF], but whose prevalence may be overestimated (Schluter 2000a), (ii) di culties in detecting selection in the eld, which suggest that populations are generally close to tness peaks [START_REF] Estes | Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales[END_REF], Haller and Hendry 2014[START_REF] Hendry | Eco-evolutionary Dynamics[END_REF]), (iii) levels of additive genetic variance measured in wild populations for most traits [START_REF] Hansen | Global Change in Forests: Responses of Species, Communities, and Biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity[END_REF][START_REF] Houle | How should we explain variation in the genetic variance of traits?[END_REF][START_REF] Mousseau | Natural selection and the heritability of tness components[END_REF] and tness [START_REF] Burt | Perspective: The Evolution of Fitness[END_REF][START_REF] Hendry | Eco-evolutionary Dynamics[END_REF], which are high enough to respond rapidly to selection, (iv) numerous examples of rapid adaptive evolution due to selection in natural populations [START_REF] Gingerich | Rates of Evolution[END_REF][START_REF] Hendry | Perspective: The Pace of Modern Life: Measuring Rates of Contemporary Microevolution[END_REF][START_REF] Kinnison | The pace of modern life II: From rates of contemporary microevolution to pattern and process. Microevolution Rate, Pattern, Process[END_REF][START_REF] Reznick | The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution[END_REF], Thompson 1998), and (v) invasive species that can successfully colonize new environments through rapid adaptation (Colautti andBarrett 2013, Phillips et al. 2006). On the other hand, the ubiquity of maladaptation is supported by: (i) the obvious observation that, for selection to act, not all individuals within a population can be at the tness peak (Barton and Partridge 2000, Brady et al. 2019b), (ii) a considerable proportion of reciprocal transplant studies that do not nd patterns of local adaptation (Brady et al. 2019b[START_REF] Kooyers | Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkey ower[END_REF][START_REF] Rogalski | Maladaptation to Acute Metal Exposure in Resurrected Daphnia ambigua Clones after Decades of Increasing Contamination[END_REF][START_REF] Samis | Strong genetic di erentiation but not local adaptation toward the range limit of a coastal dune plant[END_REF], (iii) theoretical work suggesting that population mean phenotypes may constantly be tracking an optimum moving within stable limits [START_REF] Estes | Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales[END_REF]).

Global change as the main driver of contemporary maladaptation?

Global change encompasses any anthropogenic environmental change that alters ecosystems (Vitousek 1992), thus threatening their ability to sustainably provide goods and services, especially for future generations (Millennium Ecosystem Assessment 2005). Global change has ve major components: climate change, land-use change (i.e. habitat loss and fragmentation), overexploitation, pollution, and invasive species [START_REF] Matesanz | Global change and the evolution of phenotypic plasticity in plants[END_REF][START_REF] Soulé | Conservation: Tactics for a Constant Crisis[END_REF].

The components of global change can alter the phenotypic adaptive landscapes in multiple ways, detailed in Svensson and Calsbeek (2012) from which the following examples are taken. Invasive species can either induce the emergence (e.g. introduction of a new host plant representing a new resource) or loss of a tness peak (e.g. competition for resources leading to resource depletion), smooth the valley between two tness peaks (e.g. introduction of non-native plants increasing the relative abundance of intermediate-sized seeds; [START_REF] Hendry | Possible human impacts on adaptive radiation: beak size bimodality in Darwin's nches[END_REF], increase the dimensionality of the adaptive landscape by causing selection to act on a new trait (e.g. introduction of new predators on isolated islands), and alter the phenotypes and thus change their position on the adaptive landscape (e.g. through hybridization). Hunting, through the removal of larger individuals, can shift the position of the tness peak (toward smaller body size) and sharpen the tness peak (by reducing trait variance). Change in habitat quality can impact the elevation of a tness peak, thus impacting the absolute tness of the population (scenario of the degraded target in Brady et al. 2019a) and may also change the dimensionality of the landscape (e.g. new pollutants requiring new adaptations to persist in the new habitat). Habitat loss and fragmentation can reduce the diversity in habitats and resources, and thus the number of tness peaks, or change the tness peak position (e.g. selection for lower seed dispersal in urban environments; [START_REF] Cheptou | Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta[END_REF].

The components of global change may have cumulative e ects, thus bringing species to their adaptive capacity threshold faster than if only one of the components were involved (e.g. [START_REF] Drouineau | Freshwater eels: A symbol of the e ects of global change[END_REF], or alternatively, their e ects may counterbalance each other (e.g. [START_REF] Morelli | Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge[END_REF]). In addition, components of global change may interact, e.g. the long-lasting e ects of land-use change and human-altered re regimes on vegetation dynamics and biodiversity may interact with the climate change impacts (Franklin et al. 2016[START_REF] Hansen | Global Change in Forests: Responses of Species, Communities, and Biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity[END_REF], which adds considerable uncertainty to their long-term e ects on ecosystems [START_REF] Sala | Global Biodiversity Scenarios for the Year 2100[END_REF]. The Mediterranean area, a biodiversity hotspot, may experience a major change in biodiversity due to its high sensitivity to all components of global change, especially land-use and climate change [START_REF] Bellard | Vulnerability of biodiversity hotspots to global change[END_REF], IPCC 2018[START_REF] Sala | Global Biodiversity Scenarios for the Year 2100[END_REF]. Indeed, land-use change might be the most important factor a ecting terrestrial ecosystems in this biogeographical region, followed by climate change, nitrogen deposition, biotic exchange and elevated carbon dioxide [START_REF] Sala | Global Biodiversity Scenarios for the Year 2100[END_REF].

Maladaptation induced by climate change: tracking a moving optimum

Climate change is the component of global change for which the most extensive data are available and whose e ects on ecosystems are best documented (Foden et al. 2019[START_REF] Gattuso | Contrasting futures for ocean and society from di erent anthropogenic CO2 emissions scenarios[END_REF][START_REF] Parmesan | Ecological and Evolutionary Responses to Recent Climate Change[END_REF], Urban 2015, Visser 2008[START_REF] Wiens | Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species[END_REF]. To date, the Earth's climate has warmed by 1.5 °C above pre-industrial levels, which results from increased greenhouse gas emissions by human activities (IPCC 2015(IPCC , 2018(IPCC , 2021)). Projections for mean temperatures and heat extremes show an increase in almost all locations, both on land and oceans, while projections for precipitation are more uncertain, predicting a likely increase in droughts in the Mediterranean region (IPCC 2018(IPCC , 2021)).

Climate change primarily alters adaptive landscapes by moving the optimal phenotype (i.e. the tness peak) away from the population mean phenotype (scenario of the moving target in Brady et al. 2019a), thus decreasing the mean tness of the population (both absolute and relative). In face of climate change, species and populations within species may migrate to other geographical locations in which they have a higher tness (e.g. through habitat choice by individuals or seed dispersal; Edelaar and Bolnick 2019), thereby shifting their distribution range to track their climatic niche [START_REF] Hughes | Biological consequences of global warming: is the signal already apparent?[END_REF][START_REF] Parmesan | Ecological and Evolutionary Responses to Recent Climate Change[END_REF][START_REF] Peñuelas | Evidence of current impact of climate change on life: a walk from genes to the biosphere[END_REF]. Shifts in species distribution and abundance have already been observed [START_REF] Hill | Rapid Range Shifts of Species Associated with High Levels of Climate Warming[END_REF][START_REF] Dobrowski | Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits[END_REF][START_REF] Hughes | Biological consequences of global warming: is the signal already apparent?[END_REF], which notably create changes in species interactions and community dynamics [START_REF] Ockendon | Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct e ects[END_REF][START_REF] Prober | Combining communitylevel spatial modelling and expert knowledge to inform climate adaptation in temperate grassy eucalypt woodlands and related grasslands[END_REF][START_REF] Post | Ecological responses to recent climate change[END_REF]; but some species might not be able to migrate to more favorable environments [START_REF] Burrows | Geographical limits to species-range shifts are suggested by climate velocity[END_REF][START_REF] Liang | How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change[END_REF][START_REF] Rehm | The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences[END_REF]. Alternatively, populations may persist within their current geographical location by responding to new climates through genetic change and phenotypic plasticity [START_REF] Hendry | Human in uences on evolution, and the ecological and societal consequences[END_REF][START_REF] Merilä | Climate change, adaptation, and phenotypic plasticity: the problem and the evidence[END_REF][START_REF] Parmesan | Ecological and Evolutionary Responses to Recent Climate Change[END_REF], two processes I will now focus on.

Phenotypic plasticity is an immediate phenotypic response to changing conditions that operates at the scale of an individual's lifetime. If adaptive, it may allow at least some individuals to track a moving tness peak by adjusting their phenotype to the altered environment (West-Eberhard 2003), thereby increasing the population mean tness. This process, called the Baldwin e ect or plastic rescue (Baldwin 1896), may be particularly bene cial in resisting abrupt environmental shifts (e.g. extreme drought events during which most existing phenotypes may not be able to cope with the new environment) and has therefore a major in uence on the ability of populations to persist and colonize new environments [START_REF] Crispo | The Baldwin E ect and Genetic Assimilation: Revisiting Two Mechanisms of Evolutionary Change Mediated by Phenotypic Plasticity[END_REF][START_REF] Ghalambor | Adaptive versus nonadaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] Hendry | Eco-evolutionary Dynamics[END_REF]. In face of a negative demographic trend induced by climate change, a population may also recover and avoid extirpation through adaptive evolutionary change, a process called evolutionary rescue [START_REF] Carlson | Evolutionary rescue in a changing world[END_REF][START_REF] Gomulkiewicz | When does Evolution by Natural Selection Prevent Extinction?[END_REF][START_REF] Gonzalez | Evolutionary rescue: an emerging focus at the intersection between ecology and evolution[END_REF][START_REF] Kinnison | Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence[END_REF]. Accumulating evidence from empirical studies in natural populations shows that evolutionary change can be fast in natural populations in response to strong selection pressures, e.g. during native range expansion [START_REF] Lustenhouwer | Rapid evolution of phenology during range expansion with recent climate change[END_REF], colonization of new environments [START_REF] Colautti | Rapid Adaptation to Climate Facilitates Range Expansion of an Invasive Plant[END_REF][START_REF] Losos | Adaptive di erentiation following experimental island colonization in Anolis lizards[END_REF][START_REF] Reznick | Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata)[END_REF], soil contamination by heavy metals [START_REF] Antonovics | Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary[END_REF][START_REF] Antonovics | Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary[END_REF], changes in food supply (Grant and Grant 1995) and multiyear drought (Franks et al. 2007). Evolutionary rescue is facilitated by high standing genetic variation and mutation rate (Barrett and Schluter 2008[START_REF] Bell | Evolutionary rescue and the limits of adaptation[END_REF][START_REF] Gomulkiewicz | When does Evolution by Natural Selection Prevent Extinction?[END_REF][START_REF] Orr | Population Extinction and the Genetics of Adaptation[END_REF], and also depends on the genetic architecture and the genetic correlations among tness-related traits [START_REF] Chevin | Genetic Constraints on Adaptation to a Changing Environment[END_REF][START_REF] Gomulkiewicz | Genetics, adaptation, and invasion in harsh environments[END_REF]. Populations that are large -and therefore less prone to demographic stochasticity -and do not have excessive initial maladaptation are more likely to escape extinction through adaptation (Carlson et al. 2014, Gomulkiewicz and[START_REF] Gomulkiewicz | When does Evolution by Natural Selection Prevent Extinction?[END_REF]. Finally, the faster the environmental change relative to the population generation time, the shorter the time for adaptive genetic change to spread through the population and restore positive growth [START_REF] Bell | Evolutionary rescue and the limits of adaptation[END_REF][START_REF] Carlson | Evolutionary rescue in a changing world[END_REF].

Importantly, phenotypic plasticity and adaptive evolution might have interactive e ects on population persistence in face of climate change. First, if there is genetic variation in plasticity (third panel of Fig. II.1) and this variation induces di erences in tness between individuals, then plasticity can be under selection and, if heritable, can evolve [START_REF] Pigliucci | Evolution of phenotypic plasticity: where are we going now?[END_REF][START_REF] Scheiner | Genetics and Evolution of Phenotypic Plasticity[END_REF], Tufto 2000, Via and Lande 1985). Second, phenotypic plasticity can in uence the adaptive trajectories of populations [START_REF] Ghalambor | Adaptive versus nonadaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF][START_REF] Wund | Assessing the Impacts of Phenotypic Plasticity on Evolution[END_REF]). Indeed, it may constrain or slow the rate of adaptation by shielding genotypes from selection (e.g. [START_REF] Huey | Behavioral Drive versus Behavioral Inertia in Evolution: A Null Model Approach[END_REF]. Conversely, by allowing some individuals to cope with novel environments, plasticity can give time for selection to act (i.e. for adaptive mutations to appear and spread through the population), thus promoting evolutionary change [START_REF] Ghalambor | Adaptive versus nonadaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] Pennisi | Buying time[END_REF]. In a rst step, such evolutionary change may result in favoring the most plastic genotypes if the latter bring phenotypes closer to the new optimum, a process know as genetic accommodation [START_REF] Crispo | The Baldwin E ect and Genetic Assimilation: Revisiting Two Mechanisms of Evolutionary Change Mediated by Phenotypic Plasticity[END_REF][START_REF] Kelly | Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes[END_REF]. For instance, populations in heterogeneous environments with reliable environmental clues are expected to evolve towards higher plasticity [START_REF] Bonamour | Phenotypic plasticity in response to climate change: the importance of cue variation[END_REF][START_REF] Ghalambor | Adaptive versus nonadaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] Kleunen | Constraints on the evolution of adaptive phenotypic plasticity in plants[END_REF][START_REF] Schmitt | The Adaptive Evolution of Plasticity: Phytochrome-Mediated Shade Avoidance Responses[END_REF]. In a second step, if the environment is stable, a plastic trait (i.e. whose variation is environmentally induced) may be converted to a genetically determined and canalized trait (either xed or expressed constitutively in the population), a process called genetic assimilation [START_REF] Crispo | The Baldwin E ect and Genetic Assimilation: Revisiting Two Mechanisms of Evolutionary Change Mediated by Phenotypic Plasticity[END_REF][START_REF] Ehrenreich | Genetic assimilation: a review of its potential proximate causes and evolutionary consequences[END_REF], Waddington 1952, 1953[START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF]. Finally, phenotypic plasticity may be maladaptive (e.g. in rare and extreme environments; Chevin and Ho mann 2017, [START_REF] Schlichting | Hidden Reaction Norms, Cryptic Genetic Variation, and Evolvability[END_REF], which may boost adaptive evolution by increasing the strength of directional selection and may result in the loss of plasticity as an adaptation to counterbalance maladaptive phenotypic change (i.e. genetic compensation; [START_REF] Ghalambor | Adaptive versus nonadaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] Ghalambor | Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature[END_REF], Grether 2005). However, empirical evidence of selection on plasticity remains scarce (but see for instance [START_REF] Nussey | Selection on Heritable Phenotypic Plasticity in a Wild Bird Population[END_REF], and a meta-analysis found no evidence for selection on thermal phenotypic plasticity [START_REF] Arnold | How to analyse plant phenotypic plasticity in response to a changing climate[END_REF]. Indeed, evolution of plasticity may be constrained by costs, i.e. reduction in tness when a phenotype is expressed through plastic rather than xed development, and limits, i.e. the inability to express the optimal phenotype (Aubret and Shine 2010[START_REF] Dewitt | Costs and limits of phenotypic plasticity[END_REF][START_REF] Kleunen | Constraints on the evolution of adaptive phenotypic plasticity in plants[END_REF][START_REF] Murren | Evolutionary Change in Continuous Reaction Norms[END_REF]). That's why, in the face of climate change, there may be a threshold after which plasticity is not enough for population survival and genetic change will be required. This is expected, in particular, when the environmental change is large.

Finally, the unprecedented rate and magnitude of climate change may push populations to the limits of their persistence ability, even with genetic adaptation. For all the reasons mentioned above, disentangling the contribution of phenotypic plasticity and genetic changes to observed phenotypic changes and determining the maximum rates of climate change that populations can cope with remains very di cult but, nevertheless, necessary to predict population responses to future climates and risks of extinction and extirpation [START_REF] Bradshaw | Evolutionary Response to Rapid Climate Change[END_REF][START_REF] Chevin | Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory[END_REF], Hendry et al. 2008[START_REF] Merilä | Climate change, adaptation, and phenotypic plasticity: the problem and the evidence[END_REF]).
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Predicting short-term population responses to climate change in the genomic era

Next-generation sequencing approaches

The development and generalization of the so-called 'next-generation sequencing' (NGS) approaches provide, at decreasing costs, access to thousands of markers for a number of individuals, more or less densely scattered across the genome depending on its size [START_REF] Stapley | Adaptation genomics: the next generation[END_REF]. The gold standard high-throughput genotyping method is whole-genome sequencing, which consists in determining nearly the entire DNA sequence and therefore o ers the largest number of markers and the denser genotyping. However, performing whole-genome sequencing is currently cost-prohibitive, requires high DNA quality and quantity, and involves high computational power and data storage capacity (de [START_REF] Villemereuil | Common garden experiments in the genomic era: new perspectives and opportunities[END_REF], Tam et al. 2019). Consequently, to date, this method is not appropriate for non-model species with large or highly repetitive genomes, or in studies in which genomic sequence data for all individuals is unnecessary (e.g. many studies in ecological and conservation genomics; [START_REF] Narum | Genotypingby-sequencing in ecological and conservation genomics[END_REF]). In such cases, reduced representation library (RRL) sequencing approaches have been extensively used and the most popular techniques are restriction site associated DNA sequencing (RADseq;Baird et al. 2008[START_REF] Miller | Rapid and cost-e ective polymorphism identi cation and genotyping using restriction site associated DNA (RAD) markers[END_REF]) and genotype-by-sequencing (GBS; [START_REF] Elshire | A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species[END_REF]). These approaches do not involve the costly process of genome assembly and decrease the sequencing e ort by sequencing only restriction fragments resulting from restriction enzyme digestion [START_REF] Davey | Genome-wide genetic marker discovery and genotyping using next-generation sequencing[END_REF]). In addition, the genomic regions to be sequenced can be either randomly selected (as in RADseq or GBS), or targeted based on previous analyses or a priori knowledge of gene function (i.e. candidate gene or targeted resequencing approaches; [START_REF] Stapley | Adaptation genomics: the next generation[END_REF], Tabor et al. 2002). This di erent kind of sequencing thus provides cheaper and less computationally heavy genotyping for huge number of markers, even in species with limited or no previous genomic information, and, in some cases, a greater depth of coverage per locus (and thus improved genotyping reliability) than whole-genome sequencing [START_REF] Andrews | Harnessing the power of RADseq for ecological and evolutionary genomics[END_REF], Tam et al. 2019). However, as sequencing costs decline, computational and bioinformatics methods develop, and more and more species have their whole genome sequenced, wholegenome sequencing may become the predominant method in the future, even for non-model species.

Predicting phenotypes based on genomic markers

Trait-based approaches that aim at predicting short-term responses of natural populations to changing conditions (e.g. climate change) have started to integrate genome-wide molecular markers provided by high-throughput genotyping [START_REF] Gienapp | Genomic Quantitative Genetics to Study Evolution in the Wild[END_REF]). Genomic markers have been used in GWAS to investigate the genetic architecture of quantitative traits (see Section 1.1). This is particularly relevant for predicting the response of populations to selection because, for a given h 2 , polygenic traits are likely to have higher evolutionary potential than traits with large e ect alleles [START_REF] Chevalet | An approximate theory of selection assuming a nite number of quantitative trait loci: 22[END_REF][START_REF] Kardos | The Genetic Architecture of Fitness Drives Population Viability during Rapid Environmental Change[END_REF][START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF]. Genomic markers are also more and more used to predict phenotypes based on genotypes, which is appealing to predict trait values of populations across the species ranges and under future climates, but remains highly challenging, as I will elaborate in this section.

In humans, GWAS outputs are increasingly used to predict the phenotype of individuals through the use of polygenic scores (PRS). PRS are calculated by adding up the e ects of the alleles associated with the trait of interest, under the assumption that alleles have additive e ects (Lynch and Walsh 1998). They are highly promising towards identifying individuals that are more likely to be at risk of some diseases such as breast cancer [START_REF] Khera | Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[END_REF][START_REF] Mavaddat | Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes[END_REF]. However, GWAS have been criticized as the loci involved in signi cant associations often explain only a small fraction of the heritability of quantitative traits estimated from the resemblance between relatives in classical quantitative genetics analyses, such as twin or family studies (i.e. the missing heritability problem; [START_REF] Manolio | Finding the missing heritability of complex diseases[END_REF]. For instance, for height and body mass, a GWAS meta-analysis in humans found signi cant associations for 3,290 and 941 near-independent SNPs, respectively explaining ∼ 24.6% and ∼ 5% of the phenotypic variance, respectively [START_REF] Yengo | Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry[END_REF]. By contrast, classical quantitative genetics analyses yield heritabilities of 80% for height and 40-60% for body mass. In reality, this apparent paradox is in accordance with the in nitesimal model [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF], or translations of it in the genomic era, such as the omnigenic model (see Section 1.1;[START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF][START_REF] Liu | Trans E ects on Gene Expression Can Drive Omnigenic Inheritance[END_REF]. Indeed, as the vast majority of alleles have tiny e ects on quantitative traits, they do not reach the stringent signi cant threshold common in GWAS and are therefore excluded from the models [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF]. This is supported by the increased h 2 explained by GWAS as sample sizes become larger, e.g. the landmark study of [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF] which showed that 45% of the additive variance in human height can be explained by including all SNPs in h 2 estimation. The remaining missing heritability may be explained by the incomplete linkage disequilibrium between markers and causative alleles [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF], in ated heritability estimates in classical quantitative genetic studies [START_REF] Mayhew | Assessing the Heritability of Complex Traits in Humans: Methodological Challenges and Opportunities[END_REF]Meyre 2017, Zuk et al. 2012) or gene-gene and gene-environment interactions (Aschard et al. 2012, Frazer et al. 2009).

In plant and animal breeding, genome-wide markers have rst been used to estimate the relatedness between individuals via genomic relationship matrices (GRM), which contain the realized proportion of genome shared among all pairs of individuals in a population (VanRaden 2008). Incorporating a GRM in an animal model (Box 2) provides more accurate estimates of key genetic parameters (i.e. breeding values, and additive and non-additive genetic variance) than previous pedigree-based approaches [START_REF] Bouvet | Modeling additive and nonadditive e ects in a hybrid population using genome-wide genotyping: prediction accuracy implications[END_REF][START_REF] El-Dien | Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic E ects. G3[END_REF][START_REF] Jannink | Genomic selection in plant breeding: from theory to practice[END_REF][START_REF] Muñoz | Unraveling Additive from Nonadditive E ects Using Genomic Relationship Matrices[END_REF]. Further, since Meuwissen's landmark paper (2001), plant and animal breeders have turned to genomic selection to predict the additive genetic value of individuals (Box 2), which is based on estimating genomic estimated breeding values (GEBVs; conceptually equivalent to PRS; [START_REF] Wray | Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction[END_REF]. This has led to tremendous progress in livestock improvement [START_REF] García-Ruiz | Changes in genetic selection di erentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[END_REF]. Importantly, these methods do not require to breed individuals in costly experiments and can be applied directly in natural populations and in virtually any species [START_REF] Beaulieu | Accuracy of genomic selection models in a large population of open-pollinated families in white spruce[END_REF][START_REF] Bérénos | Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches[END_REF][START_REF] Gienapp | Genomic selection on breeding time in a wild bird population[END_REF], 2017[START_REF] Robinson | Partitioning of genetic variation across the genome using multimarker methods in a wild bird population[END_REF]).

Box 2. From the animal model to genomic selection

The animal model [START_REF] Henderson | Best Linear Unbiased Estimation and Prediction under a Selection Model[END_REF]) is most often used to estimate genetic parameters such as the additive genetic variance and the narrow-sense heritability and can be written as follows: i = µ + a i + e i where i is the phenotype of the individual i, µ is the average population phenotype, a i is the breeding value of the individual i and e i is the residual variation. a i are unknown and can be estimated from the covariance among relatives in additive genetic e ects, such as:

a i ∼ N(0, AV A )
where V A is the additive genetic variance and A is the relatedness matrix which can either be estimated from a pedigree or from genomic markers. In this latter case, the relatedness matrix is called a genomic relationship matrix (GRM) and is often referred as G.

This model has been the subject of many interesting extensions, and I will mention two here that I used during my PhD work. Since the presence of di erent genetic groups (e.g. genetically di erentiated breeds) can bias the estimates of the additive genetic variance, [START_REF] Wolak | Accounting for genetic di erences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models[END_REF] proposed a model that allows for di erences in mean breeding values among individuals from di erent genetic groups, which can be written as follows (for r genetic groups):

i = µ + u i + e i u i = r j =1 q i j j + a i
where u i replaces the breeding value a i of the basic animal model without genetic groups. More precisely, u i corresponds to the total additive genetic e ect of individual i, that is separated between a weighted sum of the group-speci c means j and a breeding value a i that accounts for deviations from the weighted sum. [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF] further extended this model by allowing the genetic groups to have di erent additive genetic variances, such as:

i = µ + r j=1 q i j j + r j=1 a i j + e i
where a i j ∼ N(0, V A j A j ). V A j is the additive genetic variance in the genetic group j and A j is a relatedness matrix speci c to the genetic group j (see details in [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF] on how the A j matrices are calculated). a i j can be considered as a partial breeding value, as it accounts for the contribution to the breeding value a i of individual i that is inherited from the genetic group j.

In breeding, predicting individuals with the best performing progeny is mainly done within the framework of genomic selection [START_REF] Meuwissen | Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps[END_REF]. Genomic estimated breeding values (GEBVs) are estimated in a training population with the following model:

i = µ + (S N P i j γ j ) + e i
where S N P i j is the genotype of the individual i at the locus j and γ j is the e ect of the SNP on the phenotype. GEBVs are then used to estimate the additive genetic values of individuals in a candidate population of related individuals. GEBVs are generally more accurate than the breeding values obtained from the animal model.

A major limitation of phenotypic predictions with PRS and GEBVs is that their accuracy greatly decreases when predicting the phenotype of individuals from genetic groups only weakly or not related to the one used to adjust the models. As such, the low transferability of PRS has been shown when predicting the phenotype of individuals with di erent genetic ancestry [START_REF] Martin | Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations[END_REF][START_REF] Martin | Clinical use of current polygenic risk scores may exacerbate health disparities[END_REF], or individuals within the same ancestry but with di erent characteristics such as age, sex, and socio-economic status [START_REF] Mostafavi | Variable prediction accuracy of polygenic scores within an ancestry group[END_REF], and their accuracy improves when incorporating relatives in the discovery sample [START_REF] Lee | Using information of relatives in genomic prediction to apply e ective strati ed medicine[END_REF].

Similarly, in breeding, GEBVs usually predict phenotypes well within-population (or withinbreed), as a result of the low e ective population size [START_REF] Wray | Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction[END_REF]), but very poorly across populations or breeds [START_REF] Hayes | Accuracy of genomic breeding values in multi-breed dairy cattle populations[END_REF][START_REF] Hidalgo | Accuracy of genomic prediction of purebreds for cross bred performance in pigs[END_REF][START_REF] Moghaddar | Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep[END_REF], Resende et al. 2012) or across environments [START_REF] Jr | Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments[END_REF]). Potential explanations include population structure [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF], variable patterns of linkage disequilibrium, inconsistent allelic e ects across genetic groups, genetic interactions [START_REF] Dai | In uence of Genetic Interactions on Polygenic Prediction[END_REF] or genotype-by-environment interaction [START_REF] Jr | Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments[END_REF]. Interestingly, [START_REF] Mathieson | The omnigenic model and polygenic prediction of complex traits[END_REF] recently suggested that the low transferability of PRS provides further support for the omnigenic model. Indeed, under the assumption that the omnigenic model is true, the phenotypic e ects of peripheral alleles are expected to vary across populations as a result of variation among populations in the structure and complexity of the gene networks and in the interactions with environmental factors [START_REF] Mathieson | The omnigenic model and polygenic prediction of complex traits[END_REF]. This limitation on the use of PRS and GEBVs for phenotypic prediction across populations may therefore be hard, if not impossible, to overcome for some traits (and we have limited clues as to which traits will be predictable or not; Mathieson 2021), which would constrain their usefulness to be population speci c [START_REF] Resende | Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees[END_REF].

Finally, combining multi-site common gardens (i.e. randomized controlled experiments where populations from di erent geographical locations are planted; also known as provenance tests) with genomic information may prove particularly valuable for phenotypic prediction and detection of adaptive variants/traits (de [START_REF] Villemereuil | Common garden experiments in the genomic era: new perspectives and opportunities[END_REF][START_REF] Josephs | Detecting Adaptive Di erentiation in Structured Populations with Genomic Data and Common Gardens[END_REF]. First, common gardens are the gold standard to separate the plastic and genetic components of trait variation and thus directly allow to control for the confounding e ect of plasticity, which is otherwise very hard to do in situ. Second, genomic data can be used to infer the underlying population structure resulting from the population demographic and evolutionary history [START_REF] Luikart | The power and promise of population genomics: from genotyping to genome typing[END_REF][START_REF] Nicholson | Assessing population di erentiation and isolation from single-nucleotide polymorphism data[END_REF]. This is particularly valuable for methods aiming at detecting alleles under selection (e.g. genome scans, GWAS, genotype-environment association methods discussed in the next section) as they have to account for population structure to avoid false positives, which can be done for instance via latent factors (Frichot et al. 2013) or a covariance matrix based on the population allele frequencies [START_REF] Gautier | BayPass Genome-Wide Scan for Adaptive Di erentiation and Association Analysis with population-speci c covariables (en lien avec la publication Gautier M[END_REF]. However, as already mentioned before, accounting for population structure is hard [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF]) and available methods still show high rates of false positives (de Villemereuil et al. 2014, Lotterhos and[START_REF] Lotterhos | Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests[END_REF].

To conclude, incorporating genomic information in trait-based approaches is already largely improving the predictions of individual phenotypes within-population (i.e. individual genetic values) and on the way to expand to natural populations. A rst potential application consists in the identi cation of pre-adapted individuals, i.e. individuals with adaptive variants or trait values allowing them to persist under future climates, which could be potentially used in conservation strategies based on adaptive states such as assisted migration [START_REF] Derry | Conservation through the lens of (mal)adaptation: Concepts and meta-analysis[END_REF]. Another application could be to identify a set of individuals maximising the diversity in traitassociated variants and trait values, which could be potentially used to boost genetic variation -and thus maybe evolution-in populations at risk under climate change, i.e. in conservation strategies based on adaptive processes such as evolutionary rescue [START_REF] Derry | Conservation through the lens of (mal)adaptation: Concepts and meta-analysis[END_REF]).

Landscape genomics

Landscape genomics is the study of the processes shaping the geographical patterns of adaptive genetic variation across the landscape [START_REF] Storfer | Navigating the Interface Between Landscape Genetics and Landscape Genomics[END_REF], and stems from landscape genetics, which focuses on patterns of neutral genetic variation [START_REF] Manel | Landscape genetics: combining landscape ecology and population genetics[END_REF][START_REF] Storfer | Putting the 'landscape' in landscape genetics[END_REF]). In the same vein as trait-based approaches using GWAS, landscape genomics approaches are widely used to detect adaptive variants through genotype-environment association analyses (GEAs; [START_REF] Rellstab | A practical guide to environmental association analysis in landscape genomics[END_REF], which test for associations between genetic variants and environmental variables measured at the sample location. GEAs assume that genetic variants whose frequency varies along an environmental gradient (once the underlying population structure is accounted for) are linked to tness, and focus on the choice of the spatial scale and the particular environmental variables that potentially create a selection pressure (e.g. extreme cold or heat events). GEAs have the bene t of not relying on phenotypes, thus avoiding potential biases arising from the choice of which phenotypes to measure (and in which ontogenic stage or environment) and the uncertain link between tness and the phenotypes under study (Capblancq et al. 2020a).

A space-for-time substitution approach, known as genomic o set (Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF] or risk of nonadaptedness [START_REF] Rellstab | Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions[END_REF], has recently become popular for identifying populations at risk of maladaptation under climate change (Capblancq et al. 2020a). This approach aims at predicting the change in genomic composition required to maintain the current relationships between a set of putatively adaptive alleles and the environment, and typically consists in four main steps: (1) identifying candidate adaptive SNPs via either genome scans, GEAs or GWAS, or a combination of methods; (2) modelling the turnover in adaptive allele (or genotype) frequencies along current environmental gradients; (3) projecting the current and future genomic composition across the species range, including areas where climate data are available but no individuals or populations were genotyped (i.e. extrapolation); ( 4) estimating the magnitude of genetic change required to maintain the current gene-environment relationships (i.e. the genomic o set metric). Importantly, this approach relies on four key assumptions (Capblancq et al. 2020a, Rellstab et al. 2021): (1) adaptive alleles have been correctly identi ed, which requires validation of the GWAS and GEAs results [START_REF] Ioannidis | Validating, augmenting and re ning genomewide association signals[END_REF][START_REF] Oetting | Validation Is Critical for Genome-Wide Association Study-Based Associations[END_REF]), for instance with gene knock-out experiments [START_REF] Curtin | Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation[END_REF][START_REF] Monroe | Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function[END_REF][START_REF] Rohde | Functional Validation of Candidate Genes Detected by Genomic Feature Models[END_REF]); (2) populations with a higher genomic o set are expected to experience a decrease in tness, which may be tested by determining whether they show decreasing demographic trends [START_REF] Ruegg | Ecological genomics predicts climate vulnerability in an endangered southwestern songbird[END_REF][START_REF] Ruegg | Ecological genomics predicts climate vulnerability in an endangered southwestern songbird[END_REF], or whether they have lower tness in common gardens [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF]); (3) the populations are currently at their tness optimum, which can be evaluated in reciprocal transplant experiments (see Section 2.1;Browne et al. 2019, Leimu and[START_REF] Leimu | A Meta-Analysis of Local Adaptation in Plants[END_REF]; (4) the current gene-environment relationships (spatial patterns) remain unchanged over space (spatial extrapolations), over time (space-for-time approach) and in a changing climate. This latter assumption strongly depends on the variation in genetic background across the landscape and processes such as migration, demographic trends and admixture (Capblancq et al. 2020a[START_REF] Ho Mann | Opportunities and challenges in assessing climate change vulnerability through genomics[END_REF], Rellstab et al. 2021). In this line, recent studies have incorporated information related to evolutionary processes that may mitigate future adaptive mismatch of populations, thus rendering the genomic o set approach more realistic and robust, e.g. by incorporating the migration potential of adaptive alleles in the predictions [START_REF] Aguirre-Liguori | Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize[END_REF], Capblancq et al. 2020b, Gougherty et al. 2020a). Last, climate forecasts are highly uncertain, and although some studies have used the average of di erent general circulation models (e.g. Gougherty et al. 2020b), they remain a serious source of uncertainty that propagates into the predictions (Hallingbäck et al. 2021). To conclude, the genomic o set approach is still under development and in need of further experimental validation [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF]. Like other phenotype-free approaches, the links with tness-related traits and processes such as phenotypic plasticity are missing, which limits the assessment of the ability of populations to persist under climate change (Capblancq et al. 2020b, Rellstab et al. 2021). Therefore, the use of genomic o set approaches in conservation strategies and restoration projects remains subject to caution [START_REF] Ho Mann | Opportunities and challenges in assessing climate change vulnerability through genomics[END_REF]), but also holds great promise for identifying potential recipient and donor populations or suitable future habitats (e.g. [START_REF] Borrell | Genomic assessment of local adaptation in dwarf birch to inform assisted gene ow[END_REF]).

4

Investigating past, current and future adaptation in forest trees 4.1 Forest trees are ecologically key species threatened by climate change Forests cover 31% of the land area worldwide (i.e. 4.06 billion ha; FAO 2020). Forest trees, as foundation and keystone species, provide habitats for many species and thus contribute to maintaining biodiversity [START_REF] Brockerho | Forest biodiversity, ecosystem functioning and the provision of ecosystem services[END_REF][START_REF] Gibson | Primary forests are irreplaceable for sustaining tropical biodiversity[END_REF], which in turn promotes numerous ecosystem functions (e.g. primary production, decomposition, nutrient cycling, trophic interactions) and services (e.g. water retention and puri cation, pollination, pest regulation, prevention of soil erosion) (Balvanera et al. 2006[START_REF] Cardinale | Biodiversity loss and its impact on humanity[END_REF][START_REF] Hooper | E ects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge[END_REF][START_REF] Mori | Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology[END_REF]. Forests play a key role in the global carbon cycle, storing ∼ 45% of terrestrial carbon and absorbing annually ∼ 33% of anthropogenic carbon emission from fossil fuel and land-use change [START_REF] Bonan | Forests and Climate Change: Forcings, Feedbacks, and the Climate Bene ts of Forests[END_REF]. Forests have also biophysical e ects, such as evapotranspiration, which tends to produce cooling, and albedo, which has a warming e ect [START_REF] Anderson | Biophysical considerations in forestry for climate protection[END_REF][START_REF] Gibbard | Climate e ects of global land cover change[END_REF][START_REF] Li | Local cooling and warming e ects of forests based on satellite observations[END_REF][START_REF] Marland | The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy[END_REF]. Forest trees are extensively exploited for timber and ber production, and 7% of the forested area worldwide is planted (i.e. 290 million ha; FAO 2020). Forests also provide other economic services, such as the provision of food and medicinal products, along with social and aesthetic services (e.g. through recreational uses).

Global change, including climate change, is already impacting forests worldwide, and thereby the ecosystem services they provide [START_REF] Bonan | Forests and Climate Change: Forcings, Feedbacks, and the Climate Bene ts of Forests[END_REF]), e.g. the southeastern Amazonian forest now acts as a net carbon source (due to both climate change and deforestation; [START_REF] Gatti | Amazonia as a carbon source linked to deforestation and climate change[END_REF]. Increasingly frequent and hotter droughts, often associated with pathogen and pest outbreaks [START_REF] Weed | Consequences of climate change for biotic disturbances in North American forests[END_REF]) and more frequent res [START_REF] Seidl | Forest disturbances under climate change[END_REF], cause an increase in tree mortality, through both die-backs and background mortality, across all terrestrial biomes [START_REF] Allen | On underestimation of global vulnerability to tree mortality and forest die-o from hotter drought in the Anthropocene[END_REF], 2010[START_REF] Anderegg | Tree mortality from drought, insects, and their interactions in a changing climate[END_REF][START_REF] Mantgem | Widespread Increase of Tree Mortality Rates in the Western United States[END_REF]. In face of climate change, tree migration northward and in altitude is already underway (Boisvert-Marsh [START_REF] Laura | Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes[END_REF][START_REF] Davis | Range Shifts and Adaptive Responses to Quaternary Climate Change[END_REF][START_REF] Woodall | An indicator of tree migration in forests of the eastern United States[END_REF]). However, trees may not be able to migrate fast enough to keep pace with the unprecedented rate of climate change [START_REF] Aitken | Adaptation, migration or extirpation: climate change outcomes for tree populations[END_REF], Dauphin et al. 2021[START_REF] Johnstone | Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine[END_REF][START_REF] Mclachlan | Molecular Indicators of Tree Migration Capacity Under Rapid Climate Change[END_REF][START_REF] Sittaro | Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits[END_REF][START_REF] Zhu | Biotic and abiotic drivers of the tree growth and mortality trade-o in an old-growth temperate forest[END_REF], which may be explained by their population dynamics (i.e. slow biomass increase and long-generation time) and interspeci c competition, and only marginally by dispersal limitation [START_REF] Scherrer | Competition and demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps[END_REF]. Determining whether forest trees will be able to persist in their current locations is therefore particularly important and urgent, and represents an area of research with a long history [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], in which the contribution of new genomic data is very promising.

A long history of common gardens

In forest trees, investigating adaptation clines has mainly relied on multi-site common gardens, which were initially settled to identify populations with the highest values of some commercial traits (e.g. height, diameter, straightness) in di erent environments [START_REF] Langlet | Two Hundred Years Genecology[END_REF][START_REF] Morgenstern | Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]). These large networks of common gardens have provided a unique framework for quantitative geneticists as they are the gold standard to separate the plastic (i.e. environment) and genetic components of quantitative trait variation. Further, phenotypic data from common gardens have been combined with climatic data to derive population reaction norms along climatic gradients or climatic-transfer distances (i.e. climatic distances between the provenance and the common garden locations), often called population response (or transfer) functions (see details in Box 3;[START_REF] Rehfeldt | Intraspeci c responses to climate in Pinus sylvestris[END_REF], 1999[START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]. The development of the universal response function was a step forward to jointly evaluate, in a single step, the relative contribution of climate-driven plasticity (associated with the climate in the common gardens) and genetic di erentiation (associated with the climate-of-origin of the populations) in explaining quantitative trait variation [START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]). This approach have been extensively used to investigate potential climatic drivers of the genetic and plastic components of trait variation for a large variety of traits [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF], Leites et al. 2012a,b) and determine the climatic optimum of the populations (e.g. Fréjaville et al. 2020).

Box 3. Population reaction norms and site-speci c functions

The relative in uence of climate-associated plasticity and genetic di erentiation on quantitative trait variation can be modeled with population reactions norms (also referred as population response functions; [START_REF] Rehfeldt | Intraspeci c responses to climate in Pinus sylvestris[END_REF], 1999[START_REF] Wang | Use of response functions in selecting lodgepole pine populations for future climates[END_REF]) and site-speci c functions, which can be combined into an universal response function [START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]). These functions rely on phenotypic data (e.g. height, survival) from multi-site common gardens in which populations (i.e. provenances) from di erent parts of the species range are included, and can be applied within the mixed model framework (Leites et al. 2012a,b). For instance, a given trait can be expressed as a function of a climatic variable of interest (e.g. minimum or mean temperature) such as:

ipsb = β 0 + P p + S s + B s (b) + β 1s PC p + β 2p SC s + β 3p SC 2 s + β 4 PC p SC s + ϵ ipsb • β 0 is the global intercept.
• P p are the varying intercepts of the populations, associated with the genetic component of the trait and theoretically capturing the e ects not accounting for by the climatic variable at the population location (PC p ). • S s and B s (b) are the varying intercepts of the common gardens (i.e. sites) and blocks nested within common gardens, associated with the plastic component of the trait and theoretically capturing the e ects not accounting for by the climatic variable in the common gardens. • PC p is the value of the climatic variable at the location of the population p, and β 1s are the associated regression coecients which are speci c to each common garden. • SC s is the value of the climatic variable at the location of the common garden s, and β 2p and β 3p are the associated regression coe cients which are speci c to each population. • β 4 is the regression coe cient associated with the interaction between the values of the climatic variables at the location of the populations and the common gardens. • ϵ ipsb is the residual variation.

From this model, we can derive quadratic response functions speci c to each population along the gradient of the climate in the common gardens, such as shown in the gure below, where each curve corresponds to a population with a di erent climatic niche. According to [START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF], the climatic optimum of each population corresponds to its physiological optimum (i.e. the climate in which the population shows the highest trait values but is most often competitively excluded), while the climate in which the population is found corresponds to its ecological optimum (i.e. the climate in which the population is competitively exclusive). This model can also be used to derive linear functions speci c to each common garden along the gradient of the climate in the provenance location, as shown in the gure below. This is useful for identifying the best performing populations in a given common garden. Noticeably, incorporating environmental sources of variation (either at the location of the populations or the common gardens) in quantitative genetic models can also be done with matrices of environmental similarity, either based on Euclidean distances (e.g. Thomson et al. 2018) or on covariances (e.g. [START_REF] Jarquín | A reaction norm model for genomic selection using high-dimensional genomic and environmental data[END_REF]. This method has the bene t of not assuming linearity in the relationship between environment and phenotypes, but it does rely on the assumption that the environmental components included in the matrix have equal weight. Therefore, the choice of including climate variables directly in the model (as in the model above) or via similarity matrices should be decided based on the goals of the study (e.g. whether the researchers are interested in a particular environmental variable or not).

Climate in the common garden

Climate in the provenance location

Quantitative traits in forest trees (and plants more generally) show large plastic variation and less (but still considerable) genetic variation, with notable di erences across traits [START_REF] Anderson | Phenotypic plasticity and adaptive evolution contribute to advancing owering phenology in response to climate change[END_REF][START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF][START_REF] Cornelius | Heritabilities and additive genetic coe cients of variation in forest trees[END_REF], Franks et al. 2014[START_REF] Morgenstern | Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture[END_REF]. Reproduction and phenology traits generally show higher heritabilities than growth traits [START_REF] Caignard | Heritability and genetic architecture of reproduction-related traits in a temperate oak species[END_REF][START_REF] Howe | From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees[END_REF][START_REF] Lind | The genomics of local adaptation in trees: are we out of the woods yet?[END_REF][START_REF] Scotti-Saintagne | Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L[END_REF]). Population reaction norms revealed that populations of the same species have di erent climatic optima and niches, the latter being narrower than the whole species climatic niche [START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF]; but see [START_REF] Gömöry | Adaptation to common optimum in di erent populations of Norway spruce (Picea abies Karst[END_REF]. Growth traits generally show cogradient variation, i.e. the genetic and plastic e ects in uence the phenotypes in the same direction along geographical or environmental gradients, and therefore plasticity is considered adaptive and the change in trait mean value along the gradient is accentuated [START_REF] Conover | The Covariance between Genetic and Environmental In uences across Ecological Gradients: Reassessing the Evolutionary Signi cance of Countergradient and Cogradient Variation[END_REF]e.g. Caignard et al. 2021[START_REF] Ensing | Interannual variation in season length is linked to strong co-gradient plasticity of phenology in a montane annual plant[END_REF][START_REF] Kremer | Genetic divergence in forest trees: understanding the consequences of climate change[END_REF]. A general pattern derived from population reaction norms in temperate and boreal forests is that populations at the cold limit of the species range would grow and survive more under warmer temperatures, while populations at the warm limit would bene t from colder temperatures (Fréjaville et al. 2020[START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models[END_REF], 2002, 1999[START_REF] Reich | Climate warming will reduce growth and survival of Scots pine except in the far north[END_REF]; but see [START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF] for a di erent response to warming temperatures for height and survival in Scots pine). This suggests that populations at the climatic edges of the species range are currently maladapted, which may be explained by gene ow from populations at the center of the distribution (García-Ramos and Kirkpatrick 1997[START_REF] Kirkpatrick | Evolution of a Species' Range[END_REF][START_REF] Kremer | Long-distance gene ow and adaptation of forest trees to rapid climate change[END_REF] or, for populations at the cold margins, by adaptation lags along post-glacial colonization routes (García-Valdés et al. 2013, Johnstone and[START_REF] Johnstone | Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine[END_REF]. In contrast to latitudinal gradients, adaptation along altitudinal gradients for growth and survival traits appears to be more variable among species, as some species show adaptation lags (e.g. Ponderosa pine in [START_REF] Martínez-Berdeja | Evidence for population di erentiation among Je rey and Ponderosa pines in survival, growth and phenology[END_REF] while others show patterns of home-site advantage (e.g. Sakhalin r in Ishizuka and Goto 2012; Je rey pine in [START_REF] Martínez-Berdeja | Evidence for population di erentiation among Je rey and Ponderosa pines in survival, growth and phenology[END_REF], suggesting that they will not bene t from increased temperatures.

Phenology traits show either cogradient or countergradient variation depending on the species (e.g. [START_REF] Gauzere | Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology[END_REF], Vitasse et al. 2009; and see the meta-analysis of [START_REF] Radersma | Plasticity leaves a phenotypic signature during local adaptation[END_REF] on plant reciprocal transplant experiments). Countergradient patterns arise when the genetic and plastic e ects in uence the phenotype clines in opposite directions [START_REF] Conover | Phenotypic similarity and the evolutionary signi cance of countergradient variation[END_REF], which may be an adaptation to counteract maladaptive plasticity [START_REF] Crispo | Modifying e ects of phenotypic plasticity on interactions among natural selection, adaptation and gene ow[END_REF], Grether 2005) or can also emerge under spatially and temporally uctuating environments (King andHad eld 2019, Scheiner 2013). To my knowledge, only one study derived population reaction norms for reproduction traits in forest trees. [START_REF] Caignard | Counter-gradient variation of reproductive e ort in a widely distributed temperate oak[END_REF] found a countergradient in reproductive e ort and a cogradient in growth along an altitudinal gradient in the white oak Q. petraea, i.e. trees from higher elevations grew less and produced more and larger fruits in a low-elevation common garden, whereas in eld conditions, they still grew less but produced smaller and fewer fruits than trees from lower elevations. This pattern suggests a genetic trade-o between growth and reproduction and may be related to the demographic compensation phenomenon frequently observed in marginal natural populations (e.g. [START_REF] Doak | Demographic compensation and tipping points in climateinduced range shifts[END_REF]Morris 2010, Sheth and[START_REF] Sheth | Demographic compensation does not rescue populations at a trailing range edge[END_REF]. Finally, not only considering traits related to the viability component of tness (e.g. survival, growth), but also traits related to the reproductive component seems necessary to get a complete picture of how natural populations will perform over the long run under warmer temperatures.

To conclude, population reaction norms derived from multi-site common gardens have been extremely useful for identifying genetic and plastic e ects on phenotypes along environmental gradients and for inferring population responses to future climates. However, they rely on phenotypic data from common gardens, which are expensive and time-consuming to maintain. Therefore, determining how genomic information may be combined with current modelling approaches to facilitate monitoring of population evolution in the face of global change would be extremely valuable and needed.

Speci cities of forest tree genomics

Forest trees represent unique experimental systems to investigate plastic and adaptive variation in quantitative traits because their populations remain nearly undomesticated (i.e. their genetic variation has been little in uenced by human-induced selection, even in species with breeding programs), they often have large e ective population size, and they are distributed across wide geographical and environmental gradients (Alberto et al. 2013, Neale and[START_REF] Neale | Association genetics of complex traits in conifers[END_REF]. Most forest trees are outcrossing, have high lifetime reproductive output, and show important gene ow among populations through long-distance pollen dispersal [START_REF] Kremer | Long-distance gene ow and adaptation of forest trees to rapid climate change[END_REF] and slow rates of macroevolution (i.e. low nucleotide substitution rates and low speciation rates; [START_REF] Petit | Some Evolutionary Consequences of Being a Tree[END_REF]. They are particularly challenging to study because of their long generation times and their large and complex genomes. In particular, conifer genomes, apart from being large, display a rapid decay of linkage disequilibrium and contain numerous repetitive sequences (i.e. transposable elements) and gene duplications [START_REF] Ahuja | Evolution of Genome Size in Conifers[END_REF][START_REF] Kovach | The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences[END_REF][START_REF] Mackay | Towards decoding the conifer giga-genome[END_REF][START_REF] Morse | Evolution of Genome Size and Complexity in Pinus[END_REF][START_REF] Zonneveld | Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram[END_REF]. Therefore, extensive and dense genotyping is required in conifers to identify most of the relevant polymorphisms underlying (highly polygenic) quantitative traits (Jaramillo-Correa et al. 2015, Neale and[START_REF] Neale | Association genetics of complex traits in conifers[END_REF]. Since the whole genome sequencing of Norway spruce (19.6 Gbp;[START_REF] Nystedt | The Norway spruce genome sequence and conifer genome evolution[END_REF], an increasing number of conifer reference genomes have been released, e.g. white spruce (20.8 Gbp;[START_REF] Birol | Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data[END_REF][START_REF] Warren | Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism[END_REF], loblolly pine (20.1 Gbp; [START_REF] Neale | Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[END_REF], Zimin et al. 2014), sugar pine (31 Gbp;Stevens et al. 2016), coastal Douglas-r (16 Gbp;[START_REF] Neale | The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae[END_REF]) and giant sequoia (8.1 Gbp;[START_REF] Scott | A Reference Genome Sequence for Giant Sequoia[END_REF]. However, as whole genome sequencing remains highly challenging in conifers and concerns only a limited number of species and few individuals, candidate gene approaches are still mainly used to identify adaptive genetic variants and determine the genomic architecture of local adaptation.

As previously mentioned in Section 3.2, genomic information is already broadly used in tree breeding to predict phenotypes, but these predictions strongly depend on the relatedness among individuals and are therefore limited to within-population (or within-family) predictions. Recent pioneering studies in forest trees have explored how to incorporate genomic information in trait-based approaches encompassing multiple populations. [START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF] used GEBVs in valley oak to identify individuals with the best performing progeny under future climates and showed that selecting these individuals for assisted gene ow strategies would help to considerably mitigate the predicted negative e ects of rising temperatures on growth rates. In loblolly pine, [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] and MacLachlan et al. ( 2021) used counts of phenotypeassociated positive-e ect alleles (i.e. number of SNPs that each individual has among the 1% top hits from a GWAS on the trait of interest; that they called PEAs) as they were more robust to stochastic SNP sampling e ects than PRS. [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] showed that local adaptation patterns of several traits (growth cessation and initiation, cold injury and shoot mass) were similarly or slightly better described by the PEAs than by climate or geographical data. [START_REF] Maclachlan | Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer[END_REF] demonstrated the usefulness of PEAs for phenotypic predictions and to rapidly assess the e ects of arti cial selection on adaptive genetic variation of polygenic traits. These rst studies pave the way for combining phenotypic, genomic and environmental data for predictive and monitoring purposes in forest trees, although a robust framework is still needed to make reliable phenotype predictions across species ranges and for many species.

Landscape genomics approaches based on genomic o set are also becoming popular in forest trees, in part because the founding studies of these methods were conducted on trees (poplar in Fitzpatrick and Keller 2015 and white oak species in [START_REF] Rellstab | Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions[END_REF], and because these methods, as they do not require hard-to-collect data from common gardens, are particularly well suited to long-lived and sessile organisms. Populations at risk of short-term maladaptation (in a scenario of persistence in the current location without evolution or migration) have already been identi ed in many forest tree species, e.g. in balsam poplar [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF], Gougherty et al. 2020b[START_REF] Keller | In uence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes[END_REF], loblolly pine [START_REF] Lu | Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models[END_REF], European aspen (Ingvarsson andBernhardsson 2020), yellow box (Supple et al. 2018) and cork oak (Vanhove et al. 2021). Interestingly, Gougherty et al. (2020b) di erentiated the local (i.e. the commonly used metric, which assumes no gene ow), forward (i.e. minimum genetic distance between the focal population under current climate and all possible locations under future climates, which will be high if the focal population is maladapted to all future climates) and reverse (i.e. minimum genetic distance between the focal population under future climate and all possible locations under current climates, which will be high in regions where we expect changes in the gene-climate associations that are not found elsewhere) genomic o sets to identify populations that might be maladapted to future climates and cannot bene t from migration or gene ow (natural or arti cial). Much-needed experimental support of the genomic o set approach is also underway. For instance, in balsam poplar, Fitzpatrick et al. ( 2021) validated the predictions based on the genomic o set with data from common gardens and showed that they were more accurate than predictions based on climatic tranfer distances. Therefore, integrating genomic o set into the toolbox of forest tree conservation and management seems very promising, however, caution and further validation are still needed [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF]).

Objectives

The general objectives of the present PhD are to contribute to (i) accumulating knowledge on the mechanisms underlying population adaptation to the environment, and (ii) improving predictions of population responses to changing environments, such as climate change. Maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin and the Atlantic regions of Iberian and southern France, is used as a case study. C 1 aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection; Fisher 1930), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments (McDonald and[START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF][START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. Importantly, 1 provides insights into which populations may be able to adapt more quickly to climate change since the adaptive potential of populations depends directly on their genetic variation.

In the genomic era where the new sequencing technologies are now at a ordable (and steadily decreasing) costs, an important part of this PhD dealt with how genomic data can be combined with environmental and phenotypic data to obtain more robust and ne-scale phenotypic predictions than current approaches, or predictions of the short-term population (mal)adaptation, without having to go through the cumbersome process of setting up common gardens. More speci cally, 2 investigates whether models combining climatic, phenotypic and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographic scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees (e.g. Leites et al. 2012a[START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF]. Finally, the rst goal of 3 is to identify maritime pine populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using, to meet this objective, the genomic o set approach (see Section 3.3;Fitzpatrick and Keller 2015). The second goal is to evaluate a key assumption of the genomic o set approach, namely that populations with the highest predicted genomic o set do show a decrease in absolute tness or declining demographic trends (Capblancq et al. 2020a). C

2 and 3 provide valuable information for managing maritime pine populations while accounting for adaptive processes: the genetic height-growth response of transferred individuals (populations) to new environments ( 2) and the short-term risk of climate maladaptation in local populations ( 3). Further, these two chapters investigate how to combine phenotypic, genomic, and environmental data in two very di erent modelling frameworks (trait-based approaches and landscape genomics, respectively), and thus contribute to the far-reaching goal of predicting how forest tree populations will respond to climate change, and which management and conservation strategies will be most e ective in rescuing declining populations. . Maritime pine is a wind-pollinated, outcrossing and long-lived tree species that can grow on a wide range of substrates, from sandy and acidic soils to more calcareous soils. It can also withstand many di erent climates: the dry climate along the northern coasts of the Mediterranean Basin (from Portugal to western Italy), the mountainous climates of southeastern Spain and Morocco, the wetter climate of the Atlantic region (from the Spanish Iberian region to the western part of France) and the continental climate of central Spain.

As many Mediterranean tree species, maritime pine has a strong population genetic structure as well as highly fragmented populations [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF]. Populations can be grouped into six gene pools [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], that is, genetic clusters that cannot be di erentiated on the basis of neutral genetic markers and that probably derive from a common glacial refuge [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF]). Tree mortality and height were measured in all common gardens and at di erent tree ages: 10, 21, and 37 months in Asturias, 25, 37, and 49 months in Bordeaux (plus at 13 months for mortality, and 85 months for height), 8 months in Cáceres, 13 months in Madrid, and 11, 15, 20 and 27 months in Portugal. Noticeably, tree height was not measured on dead trees, which resulted in a strongly unbalanced height measurements in Cáceres and Madrid in which 92% and 75% of the trees died, respectively (partly due to the clay soils and a strong summer drought; Fig. III.2c). Two phenology-related traits, the mean bud burst date and the mean duration of bud burst, were measured in Bordeaux when trees were 2, 3, 4 and 6 years old. Bud burst corresponds to the date of brachyblast emergence in accumulated degree-days (with base temperature 0°C) from the rst day of the year to account for between-year variability in temperature. The duration of bud burst corresponds to the number of degree-days between the beginning of bud elongation and the total elongation of the needles (see [START_REF] Hurel | Genetic basis of susceptibility to Diplodia sapinea and Armillaria ostoyae in maritime pine[END_REF]. Last, two functional traits, δ 13 C and the speci c leaf area (SLA), were measured in Portugal.

CLONAPIN experiment

The 34 populations planted in the ve common gardens represent a rangewide sample of natural populations covering all known gene pools in maritime pine (Fig. V.1). A total of 523 clones collected in the Asturias common garden were genotyped with the Illumina In nium assay, resulting in 5,165 high-quality polymorphic SNPs. There were on average only 3.3 missing values per genotype (ranging between 0 and 142). Details about DNA extraction and genotyping can be found in Plomion et al. (2016b). This rst genomic dataset was used in 1 and 2. In 3, we combined this rst genomic dataset with another one developed within the framework of the H2020 EU B4EST project (4Tree; https://b4est.eu). SNPs with MAF < 1% or more than 20% missing data were ltered out, which resulted in 454 clones (i.e. genotypes) and 9,817 high-quality polymorphic SNPs, of which 2,855 were genotyped by both assays to ensure sample identity and estimate genotyping errors. The percentage of missing data per clone was less than 12% for all clones, with an average of 2.5%.

Bayesian inference

'The search for the most reliable paths to knowledge is arguably one of the greatest joys of being human. ' [START_REF] Hoang | The Equation of Knowledge: From Bayes' Rule to a Uni ed Philosophy of Science[END_REF].

Most of the statistical models of this PhD work were implemented within the Bayesian framework. The choice to use Bayesian statistics has several origins: (1) my interest in learning how to use Bayesian statistics that have already been extensively used in quantitative genetics [START_REF] Beaumont | The Bayesian revolution in genetics[END_REF]Rannala 2004, Shoemaker et al. 1999) and are increasingly common in evolutionary biology [START_REF] Holder | Phylogeny estimation: traditional and Bayesian approaches[END_REF][START_REF] Huelsenbeck | Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology[END_REF][START_REF] O'hara | Bayesian approaches in evolutionary quantitative genetics[END_REF]) and ecology [START_REF] Clark | Why environmental scientists are becoming Bayesians[END_REF]; ( 2) the greater exibility, transparency, robustness and intuitiveness of Bayesian statistics (McElreath 2016); ( 3) the bene ts in my daily life experience and reasoning that learning Bayesian philosophy, which some authors have even called a universal philosophy of knowledge [START_REF] Hoang | The Equation of Knowledge: From Bayes' Rule to a Uni ed Philosophy of Science[END_REF], has brought to me. I will brie y present some key concepts of Bayesian inference, and some of the main epistemic di erences between Bayesian and 'classical' frequentist statistics.

A rst epistemic di erence between the two approaches is that frequentist inference estimates the probability of the data given a particular hypothesis (or event or parameter) while Bayesian inference estimates the probability of a hypothesis being true (or the occurrence of an event, or the value of a parameter) in light of the available data [START_REF] Ellison | Bayesian inference in ecology[END_REF]. For example, suppose we have collected some observations corresponding to random deviations from a normal distribution of mean µ and variance σ 2 (i.e. the parameters to be estimated). In a frequentist analysis, we will estimate p( |µ, σ 2 ), i.e. the probability of the observed data given the parameters µ and σ 2 , known as the likelihood and estimated with the maximum likelihood estimation. In a Bayesian analysis, we will estimate p(µ, σ 2 | ), i.e. the conditional probability of the parameters given the observed data. This probability is referred as the posterior probability distribution and, according to Bayes's Theorem, can be expressed as follows:

p(µ, σ 2 | ) = p( |µ, σ 2 )p(µ, σ 2 )
p( ) The rst term of the numerator is the likelihood, identical to its frequentist counterpart. The second term of the numerator is the prior probability distribution and re ects a prior belief about the parameters µ and σ 2 expressed as a probability distribution, i.e. what we know before seeing the data. The denominator is often referred as the marginal likelihood and is the marginal probability density of the data across all possible parameters (a normalizing constant). It quickly becomes a high-dimensional integral impossible to solve as soon as several parameters have to be estimated. Markov Chain Monte Carlo (MCMC) algorithms bypass this problem by directly sampling the posterior distribution via probability ratios. They are both a strength of Bayesian statistics, being extremely exible and robust (e.g. easily accommodating generalized linear mixed models; [START_REF] Villemereuil | On the relevance of Bayesian statistics and MCMC for animal models[END_REF], but also a weakness as they require large computational capacities.

A second essential conceptual di erence between Bayesian and frequentist statistics stems from their di erent interpretations of probability. A frequentist probability is de ned as the long-term frequency of events in a sequence of trials (often hypothetical), while a Bayesian probability quanti es an individual's degree of belief (i.e. uncertainty) in the likelihood of an event [START_REF] Ellison | Bayesian inference in ecology[END_REF]. The interpretation of a frequentist con dence interval directly derives from this interpretation of probability, and corresponds to the range of values including the true value of the parameter with some minimum probability, e.g. 95%. In other words, in n hypothetical runs of the study and analysis, 95% of the computed con dence intervals will cover the true parameter value. Therefore, a frequentist interval can strictly be interpreted only with respect to a sequence of similar inferences that might be replicated in practice. In contrast, the Bayesian interpretation of probability implies that probabilities are associated to any possible parameter values (i.e. inferences in the form of of a full posterior distribution). It follows that a Bayesian credibility interval is interpreted as an individual's belief that there is a 95% probability that the parameter of interest lies within the interval, which corresponds to an intuitive interpretation of the uncertainty around estimates. As applied statistics increasingly emphasizes interval estimation rather than hypothesis testing, Bayesian thinking seems particularly appropriate since it provides a common-sense interpretation of statistical conclusions (Gelman et al. 2020a).

Another major strength of Bayesian statistics comes from the di erent bene ts brought by the prior probability distribution. First, state-of-the-art knowledge, expert opinion or information from previous studies can be incorporated into prior distributions. In particular, as Bayesian inference is iterative, a posterior probability distribution derived from a previous analysis can then be used as prior in a subsequent analyses. Importantly, this allows uncertainty to be propagated between di erent subsequent analyses/studies (de Villemereuil 2019). In contrast, a frequentist analysis is always a de novo exercise, testing a null hypothesis by assuming that there is no relevant information available, even if the null hypothesis had been repeatedly falsi ed in previous experiments [START_REF] Ellison | Bayesian inference in ecology[END_REF]).

The prior probability distribution can also be used for regularization, a statistical procedure used to reduce over tting and give more stable posterior estimates (Gelman et al. 2020a[START_REF] Mcelreath | Statistical Rethinking: A Bayesian Course with Examples in R and Stan[END_REF]. For instance, 'weakly informative priors' are regularizing priors that contain enough information to keep the posterior distributions within plausible bounds without aiming at fully incorporating one's expert knowledge about the underlying parameters [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)[END_REF][START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF]. In other words, weakly informative priors will have only a marginal in uence on the posterior distribution if there is a large enough amount of data (in which case the likelihood will dominate), whereas if there is little data, they can have a considerable e ect on posterior inference. Hence, such priors can prove highly useful in enabling inference of key parameters that would otherwise be impossible to estimate, especially in very small samples ( [START_REF] Villemereuil | On the relevance of Bayesian statistics and MCMC for animal models[END_REF][START_REF] Mcelreath | Statistical Rethinking: A Bayesian Course with Examples in R and Stan[END_REF]. In this PhD work, I mostly used weakly informative priors.

Historically, Bayesian inference has been criticized as 'subjective' because of the requirement to make a necessarily arbitrary choice of priors (McElreath 2016). However, non-Bayesian procedures also have subjective choices to make, which are often swept under the rug, such as the choice of estimator or likelihood penalty [START_REF] Mcelreath | Statistical Rethinking: A Bayesian Course with Examples in R and Stan[END_REF]. The inclusion of prior information in a completely transparent way in Bayesian procedures therefore makes them less opaque than likelihood-based approaches. It is now easy to nd recommendations for the priors to use depending on the questions being asked, the likelihood and the di erent types of parameters (e.g. 'Prior choice recommendations' of Andrew Gelman). Moreover, the consistency of the chosen priors with domain knowledge can be assessed with prior predictive checks, which simulate predictions from a model using only the prior distribution instead of the posterior distribution [START_REF] Gabry | Visualization in Bayesian work ow[END_REF][START_REF] Mcelreath | Statistical Rethinking: A Bayesian Course with Examples in R and Stan[END_REF]. Last, it is important to keep in mind that as the amount of data increases, the in uence of priors on posterior inference decreases and the estimates of Bayesian or frequentist analyses converge towards the same values.

Finally, Bayesian inference is above all characterized by its explicit use of probability for quantifying uncertainty, and can be de ned as 'the process of tting a probability model to a set of data and summarizing the result by a probability distribution on the parameters of the model and on unobserved quantities such as predictions for new observations' (Gelman et al. 2020a). It provides a very intuitive, robust and powerful framework (see the very complete Bayesian work ow recently proposed in [START_REF] Gelman | Bayesian Work ow[END_REF], with great exibility and generality to deal with complex problems (Gelman et al. 2020a). This applies to hierarchical models (also known as multilevel models), which have been extensively used in the present PhD work. Hierarchical models are used when information is available on several di erent levels of observation units (e.g. genotype, population, test site) and exchangeable at each level of units (Gelman et al. 2020a).

In the present PhD work, I used the Stan probabilistic programming language [START_REF] Carpenter | Stan : A Probabilistic Programming Language[END_REF]) and its default Hamiltonian Monte Carlo algorithm, the no-U-turn sampler (NUTS; Ho man and Gelman 2014). The Bayesian models of 1 and 3 were implemented through the R package rstan, the R interface of Stan. Models in 2 were implemented through the R package brms [START_REF] Bürkner | brms: An R Package for Bayesian Multilevel Models Using Stan[END_REF], whose functions are passed to rstan. Introduction Most complex traits show substantial heritable variation in natural populations. How evolutionary forces interact to maintain such variation remains a long-standing dilemma in evolutionary biology and quantitative genetics [START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. While mutation and genetic drift have straightforward roles, generating and eliminating variation respectively, the e ect of natural selection is more complicated [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF]. Stabilizing selection, i.e. the selection of intermediate phenotypes, is often strong in natural populations [START_REF] Hereford | Comparing Strengths of Directional Selection: How Strong Is Strong?[END_REF]). This type of selection is expected to deplete genetic variation (Fisher 1930), either directly on the focal trait or indirectly via pleiotropic e ects [START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. Theoretical models based on the balance between mutation, drift and stabilizing selection support this idea, but they suggest lower tness heritability values than those generally observed in empirical studies [START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. Balancing selection encompasses various evolutionary processes that can maintain greater than neutral genetic variation within populations [START_REF] Mitchell-Olds | Which evolutionary processes in uence natural genetic variation for phenotypic traits?[END_REF]). The most widely studied of these processes are heterozygote advantage, frequency-dependent selection, e.g. in disease resistance or self-incompatibility systems [START_REF] Bergelson | Evolutionary Dynamics of Plant R-Genes[END_REF][START_REF] Charlesworth | Plant self-incompatibility systems: a molecular evolutionary perspective[END_REF], and temporally or spatially uctuating selection pressures [START_REF] Felsenstein | The theoretical population genetics of variable selection and migration[END_REF]). The maintenance of stable polymorphism in spatially heterogeneous environments was rst theorized by Levene's archetypal model (1953), under the assumptions of random mating within generations and soft selection. Since then, a large corpus of single-locus and polygenic models, most often deterministic, have generally concluded that genetic polymorphisms can only be maintained under restrictive conditions (Byers 2005, Spichtig andKawecki 2004). In this line, [START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF] showed with stochastic individual-based simulations that substantial within-population genetic variation can be maintained in spatially heterogeneous environments at intermediate migration rates, regardless of population size. However, the relative importance of the di erent evolutionary forces driving within-population genetic variation remains largely unknown.

Long-dating empirical work has addressed the evolutionary processes underlying the maintenance of genetic and discrete-trait polymorphisms (reviewed in [START_REF] Hedrick | Genetic Polymorphism in Heterogeneous Environments: A Decade Later[END_REF]Hedrick , 2006)), e.g. plant-pathogen interactions [START_REF] Karasov | The long-term maintenance of a resistance polymorphism through di use interactions[END_REF], antagonistic pleiotropy [START_REF] Carter | Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles[END_REF], environmental heterogeneity [START_REF] Chakraborty | Evidence that Environmental Heterogeneity Maintains a Detoxifying Enzyme Polymorphism in Drosophila melanogaster[END_REF], and temporal uctuations [START_REF] Bergland | Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila[END_REF]. Genomics have allowed the broad application of genome-wide scans for signatures of selection. Overall these scans suggest that many loci are under adaptive directional selection (Barreiro et al. 2008, Fu andAkey 2013) and that the proportion of genetic polymorphisms maintained by environmental heterogeneity tends to be low (Hedrick 2006). However those scans typically have low power to detect signatures of balancing selection or local adaptation [START_REF] Fijarczyk | Detecting balancing selection in genomes: limits and prospects[END_REF]. Far fewer empirical studies have focused on assessing the distribution and extent of the quantitative genetic variation within populations, and its underlying causes (Lynch and Walsh 1998). Traits more closely related to tness, such as life-history traits, have generally higher additive genetic variance, but lower heritabilities, than morphometric traits [START_REF] Houle | Comparing evolvability and variability of quantitative traits[END_REF][START_REF] Kruuk | Heritability of tness in a wild mammal population[END_REF][START_REF] Price | On the Low Heritability of Life-History Traits[END_REF]. The hypothesis that populations evolving under strong selection pressures display lower levels of genetic variation has been supported in experimentally evolving quail populations under unfavorable vs favorable treatments [START_REF] Marks | Long term selection for four-week body weight in Japanese quail under di erent nutritional environments[END_REF], in controlled experiments [START_REF] Colautti | Evolutionary constraints on adaptive evolution during range expansion in an invasive plant[END_REF]; but see [START_REF] Merilä | Local Adaptation and Genetics of Acid-Stress Tolerance in the Moor Frog, Rana arvalis[END_REF][START_REF] Stock | Quantitative genetic variance and multivariate clines in the Ivyleaf morning glory, Ipomoea hederacea[END_REF], in natural populations of Drosophila birchii subject to climatic selection (but see D. bennata and D. serrata; van Heerwaarden et al. 2009) and in some natural populations of great tits subject to varying levels of food availability [START_REF] Charmantier | Testing for microevolution in body size in three blue tit populations[END_REF]). Higher genetic variation in populations evolving under spatially varying selection pressures is supported by experimental evolution of Drosophila populations [START_REF] Huang | Quantitative genetic variance in experimental y populations evolving with or without environmental heterogeneity[END_REF][START_REF] Mackay | Genetic variation in varying environments[END_REF][START_REF] Yeaman | No E ect of Environmental Heterogeneity on the Maintenance of Genetic Variation in Wing Shape in Drosophila Melanogaster[END_REF] and in forest trees evaluated in common gardens [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. The lack of general trends from these empirical studies can be explained by method-speci c pitfalls to accurately estimate quantitative genetic variation, e.g. the genetic and environmental variances are hard to disentangle in the wild, and when estimated in common gardens, their environment-dependent nature does not allow for wide generalization of estimates [START_REF] Charmantier | Testing for microevolution in body size in three blue tit populations[END_REF][START_REF] Ho Mann | Evolutionary genetics and environmental stress[END_REF][START_REF] Merilä | Explaining stasis: microevolutionary studies in natural populations[END_REF]). In addition, gene ow has been hypothesized to have either a positive e ect on the adaptive potential, by increasing standing genetic variation, or a negative e ect via gene swamping (Kremer et al. 2012, Tigano andFriesen 2016), which may depend on the spatial scale considered [START_REF] Bridle | Testing limits to adaptation along altitudinal gradients in rainforest Drosophila[END_REF].

Forest trees have speci c life-history traits and genomic features making them interesting model species in population and quantitative genetic studies (Petit andHampe 2006, Savolainen et al. 2007). Compared to crop species, they remain largely undomesticated [START_REF] Neale | Association genetics of complex traits in conifers[END_REF]. Most forest trees are outcrossing, have high lifetime reproductive output and long generation times. They often display important gene ow among populations through long-distance pollen dispersal [START_REF] Kremer | Long-distance gene ow and adaptation of forest trees to rapid climate change[END_REF]. They show slow rates of macroevolution (i.e. low nucleotide substitution rates and low speciation rates; [START_REF] Petit | Some Evolutionary Consequences of Being a Tree[END_REF], generally have large e ective population sizes, with distributions often covering a wide range of environmental conditions [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF]. Extensive work has revealed strong clines at large geographical scales in the population-speci c mean values of phenotypic traits (reviewed in Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]), e.g. phenological traits with latitude or altitude [START_REF] Bou | Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient[END_REF], Thibault et al. 2020) or height growth with cold hardiness [START_REF] Leites | Heightgrowth response to climatic changes di ers among populations of Douglas-r: a novel analysis of historic data[END_REF][START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF]. Genetic di erentiation at microgeographic spatial scales has also been repeatedly observed (reviewed in Jump and [START_REF] Peñuelas | Running to stand still: adaptation and the response of plants to rapid climate change[END_REF][START_REF] Linhart | Evolutionary Signi cance of Local Genetic Di erentiation in Plants[END_REF], Scotti et al. 2016), suggesting rapid rates of microevolution [START_REF] Petit | Some Evolutionary Consequences of Being a Tree[END_REF]. Possible explanations include the fact that forest trees have high levels of genetic diversity and that most of their quantitative and neutral genetic variation is within populations [START_REF] Hamrick | Response of forest trees to global environmental changes[END_REF]).

To our knowledge, only two empirical studies investigated the potential causes underlying the maintenance of quantitative trait variation within forest tree populations. [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF] showed that 20% of growth genetic variation in lodgepole pine populations was attributable to regional heterogeneity, suggesting an important role of gene ow and varying selection pressures. In the neotropical oak Q. oleoides, [START_REF] Ramírez-Valiente | Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides[END_REF] found lower quantitative genetic variation in harsher environments, but not higher quantitative genetic variation in temporally uctuating environments. They also suggested only a marginal e ect of genetic structure and diversity on the maintenance of within-population genetic variation.

In this study, we aimed to test competing hypotheses regarding the relationship between quantitative genetic variation within maritime pine populations and the potential underlying drivers that maintain this variation. We used phenotypic measurements of growth (height), phenological (bud burst and duration of bud burst) and functional (δ 13 C and speci c leaf area, SLA) traits from three clonal common gardens, consisting of 522 clones (i.e. genotypes) from 33 populations, spanning all known gene pools in the species [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF] and genotyped for 5,165 SNPs. For each trait, we compared Bayesian hierarchical models that estimate the relationship between the total genetic variances within populations and some potential drivers, namely climate's harshness at the locations of origin of the populations (i.e. drought intensity and severe cold events), environmental heterogeneity in the forested areas surrounding the populations, and the level and origin of admixture in the populations, as estimated with SNP markers. The competing, but not mutually exclusive, hypotheses tested are: i) the most admixed populations have higher quantitative genetic variation due to introgression from other gene pools, and this relationship is proportional to the divergence between sink and source gene pools; ii) quantitative genetic variation is lower in populations that have evolved in harsher environments, as a result of higher selection pressures in these regions; and iii) quantitative genetic variation is higher in populations that have evolved in spatially heterogeneous environments. Importantly, the last two hypotheses require the action of natural selection, while the rst does not. Therefore, we expect the last two hypotheses to be mostly supported for tness-related traits, while the rst hypothesis may apply uniformly to all traits. Determining the patterns of within-population quantitative genetic variation across species' ranges and the relative importance of the evolutionary forces driving the maintenance of such variation is necessary to assess the evolutionary potential of forest tree populations. Empirical studies tackling these questions remain extremely rare in forest trees (but see Ramírez-Valiente et al. 2019, Yeaman and[START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]), yet they are much needed to anticipate forest tree responses to ongoing global change and therefore develop adaptive management and conservation strategies.

3

Materials & Methods

Maritime pine, a forest tree growing in heterogeneous environments

Maritime pine (Pinus pinaster Ait., Pinaceae) is a wind-pollinated, outcrossing and long-lived tree species with large ecological and economical importance in western Europe and North Africa. Maritime pine is largely appreciated for its wood, for stabilizing coastal and fossil dunes and, as a keystone species, for supporting biodiversity (Viñas et al. 2016). The distribution of maritime pine natural populations is scattered and covers a wide range of environmental conditions. Several studies have provided evidence of genetic di erentiation for adaptive traits in this species, suggesting local adaptation (e.g. [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF][START_REF] González-Martínez | Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits[END_REF]. Maritime pine can grow in widely di erent climates: the dry climate along the northern coasts of the Mediterranean Basin (from Portugal to western Italy), the mountainous climates of south-eastern Spain and Morocco, the wetter climate of the Atlantic region (from the Spanish Iberian region to the western part of France) and the continental climate of central Spain. Maritime pine can also grow on a wide range of substrates, from sandy and acidic soils to more calcareous ones. Maritime pine presents a strong population genetic structure with occasional admixture, suggesting gene ow among gene pools. Six gene pools have been described by previous literature, located in the French Atlantic region, Iberian Atlantic region, central Spain, south-eastern Spain, Corsica and Northern Africa (Fig. 1;[START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], Jaramillo-Correa et al. 2015). These gene pools probably result from the expansion of di erent glacial refugia [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF]).

Phenotypic data

Phenotypic data was obtained from three clonal common gardens (Table X.1 and Fig. IV.1), planted in 2011 and located in environments considered favorable to maritime pine, as evidenced by the high survival rate at these sites (Table X.1). The common gardens of Asturias (Spain, Iberian Atlantic region) and Bordeaux (France, French Atlantic region) have very similar climates, with mild winters, no severe cold events, high annual rainfall and relatively wet summers (Tables X.3-X. 5 and Fig. IV.1). The common garden of Portugal (planted in Fundão) shows slightly colder winters and lower summer precipitation than in Asturias (Table X.4 and Fig. IV.1). In each of these common gardens, trees belonging to 522 clones (i.e. genotypes) from 33 populations, including the six known gene pools in the species, were planted following a randomized complete block design with 8 blocks, 8 trees per clone and from 2 to 28 clones per population (with an average of 15). To obtain the clones, trees at least 50 m apart were sampled in natural stands, and one seed per tree was planted in a nursery and vegetatively propagated by cuttings (see [START_REF] Rodríguez-Quilón | Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species[END_REF] for details). Clones were therefore considered unrelated.

One growth trait, height, was measured in all common gardens and at di erent tree ages (Table X.1). Two phenology-related traits, the mean bud burst date over four years and the mean duration of bud burst over three years, were measured in Bordeaux and were averaged over several years to suppress di erences across years and approximate a normal distribution of their trait values (Table X.1). Bud burst corresponds to the date of brachyblast emergence in accumulated degree-days (with base temperature 0°C) from the rst day of the year to account for between-year variability in temperature. The duration of bud burst corresponds to the number of degree-days between the beginning of bud elongation and the total elongation of the needles (see [START_REF] Hurel | Genetic basis of susceptibility to Diplodia sapinea and Armillaria ostoyae in maritime pine[END_REF]. Last, two functional traits, δ 13 C and the speci c leaf area (SLA) were measured in Portugal (Table X.1). These traits were selected because they showed broad-sense heritabilities that were mostly low but with credibility intervals not crossing zero (> 0.08 in [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF]. For each trait, phenotypic means and variances across populations are shown in Section 1.1 of the Supplementary Information. Prior to analyses, some traits were log-transformed to get closer to normality or mean-centered to help model convergence (Table X.1). 

SNP genotyping and population admixture

The 522 clones planted in the Asturias common garden were genotyped with the Illumina In nium assay described in Plomion et al. (2016a), resulting in 5,165 high-quality polymorphic SNPs. There were on average only 3.3 missing values per genotype (ranging between 0 and 142). For each clone, the proportions of ancestry from each of the six known gene pools were estimated in Jaramillo-Correa et al. ( 2015) using the Bayesian approach available in Structure [START_REF] Pritchard | Inference of Population Structure Using Multilocus Genotype Data[END_REF], and were then averaged by population. Populations were assigned to the gene pool that contributed more than 50% ancestry and the other gene pools were considered as 'foreign' gene pools. First, we calculated a population admixture score A, as the proportion of ancestry from foreign gene pools (Table X.6). Second, we calculated a population admixture score D that considers both the proportion of foreign ancestries and the divergence between the main and foreign gene pools (Table X.6). For that, we weighted the proportions of ancestry from foreign gene pools by the sum of the allele frequency divergence of the main and foreign gene pool from the common ancestral one (F k , which should be numerically similar to F ST ; [START_REF] Falush | Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies[END_REF]. We developed D considering that some gene pools are more divergent than others and thus may bring higher genetic diversity to an admixed population at the same level of introgression. A was highly correlated with D (Pearson correlation coe cient of 0.91; Table X.6), and also with a related index that used weights based on pairwise F ST (Table X.6).

Population-speci c environmental heterogeneity and climate harshness indexes

To describe the climate under which the populations have evolved, we used the climatic variables at 1-km resolution and averaged over the period 1901-1950 from the ClimateEU database [START_REF] Marchi | ClimateEU, scale-free climate normals, historical time series, and future projections for Europe[END_REF]. Topographic data were generated from NASA's Shuttle Radar Topography Mission (SRTM) at 90-m resolution and then aggregated at 1-km resolution. We used the SAGA v 2.3.1 [START_REF] Conrad | System for Automated Geoscienti c Analyses (SAGA) v. 2.1.4[END_REF] to calculate the topographic ruggedness index (TRI) which quanti es the terrain heterogeneity, i.e. di erences in elevation between adjacent cells [START_REF] Riley | Index that quanti es topographic heterogeneity[END_REF]. Soil variables were extracted from the European Soil Database at 1-km resolution [START_REF] Hiederer | Mapping soil properties for Europe spatial representation of soil database attributes[END_REF]. All environmental variables used are listed in Table X.7 and were mean-centered and divided by their standard deviation prior to analyses.

To calculate the environmental heterogeneity around each population location, we extracted raster cell values of the climatic, topographic and soil variables within a 20-km radius around each population location, and kept only raster cells that fell within forested areas, to avoid including environmental data from non-suitable areas (e.g. lakes, mountain peaks; Section 1.3.2 of the Supplementary Information). We then performed a principal component analysis (PCA) on the raster cell values and extracted the PC1 and PC2 scores of each cell, accounting for 45.2% and 34.1% of the variance, respectively (Fig. X.10). To obtain the four indexes of environmental heterogeneity, we calculated the variances of the PC1 and PC2 scores in a 20-km and 1.6-km radius around each population location. The environmental heterogeneity indexes were only very weakly correlated (Pearson correlation coe cients lower than 0.36) with the number of forested cells (i.e. the area considered to calculate the indexes), ensuring that the estimated e ects of environmental heterogeneity in further analyses were not due to the area per se [START_REF] Stein | Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales[END_REF], Triantis et al. 2003).

To describe the climate harshness at each population location, we used a drought index (the summer heat moisture index averaged over the period 1901-1950, SHM, Table X.7) and an index related to severe cold events (the inverse of the extreme minimum temperature during the period 1901-1950, invEMT, Table X.7). These two indexes were selected as maritime pine shows local adaptation patterns associated with cold tolerance (Grivet et al. 2011) and because detecting changes in the within-population genetic variation along a drought gradient would be key to anticipate tree population responses to ongoing climate change.

Bayesian statistical modelling

We modeled the eight phenotypic traits with the same Bayesian statistical model, in which we estimate the linear relationship between the within-population genetic variance and each of the potential drivers successively (i.e. one model per driver): the two admixture scores, the four environmental heterogeneity indexes and the two climate harshness indexes. Each trait followed a normal distribution (Fig. X.1), such as:

bpcr = N (µ bpc , σ 2 r ) µ bpc = β 0 + B b + P p + C c(p) (3.1)
where σ 2 r is the residual variance, β 0 the global intercept, and B b , P p and C c(p) are the block, population and clone (nested within population) varying intercepts, which are drawn from a common distribution, such as:

B b P p ∼ N 0, σ 2 B σ 2 P C c(p) ∼ N (0, σ 2 C p ) (3.2)
where σ 2 B and σ 2 P are the variance among blocks and populations and σ 2 C p are the populationspeci c variances among clones (i.e. the within-population genetic variation). To estimate the association between σ 2 C p and its potential underlying drivers, we expressed σ C p as follows:

σ C p ∼ LN ln(σ C p ) - σ 2 K 2 + β X X p , σ 2 K (3.3)
where σ C p is the mean of the population-speci c standard deviation among clones σ C p and X p is the potential driver considered (see Section 2 in the Supplementary Information for more details).

To test the accuracy of the model estimates for σ 2 K and β X , we simulated data based on two traits (height in Portugal and Bordeaux at 20 and 25-month old, respectively). For each trait, we ran 100 simulations and extracted the mean standard error and bias error of the estimates and the coverage of the 80% and 95% credible intervals.

Model speci cation and t were performed using the Stan probabilistic programming language [START_REF] Carpenter | Stan : A Probabilistic Programming Language[END_REF], based on the no-U-turn sampler algorithm. Models were run with four chains and between 2,500 iterations per chain depending on the models (including 1,250 warm-up samples not used for the inference). All analyses were undertaken in R version 3.6.3 (R Core Team 2020) and scripts are available at https://github.com/JulietteArchambeau/H2Pinpin.

Validation step on independent data

To validate our results for height, we used an independent dataset provided by Ricardo Alía in which 23 populations shared with the CLONAPIN network were planted in a progeny test near Asturias (thus in a similar environment). As the progeny test is based on families, we were able to estimate the additive genetic variance within populations. We applied the same model as in our study (replacing clones by families) to height measurements when the trees were 3 and 6-year old (see Section 8 of the Supplementary Information for more details). 98% for σ 2 K and 96% for β X (Table X.9 and X.10). These simulations therefore showed that, under the assumption that the statistical model re ects the processes at work, our model displayed a satisfactory accuracy to be used in the following analyses.

The proportion of variance explained by the models (i.e. the sum of the among-population, among-clone and among-block variances) and the variance partitioning varied broadly across traits (Fig. X.11 and Section 5.3 in the Supplementary Information). More speci cally, the models explained between 40% and 50% of the variance for phenology-related traits, between 30% and 40% for functional traits, and from 20% for height in Portugal to almost 60% for height in Bordeaux at 85-month old (Fig. X.11). Residual variance explained most of the variance for all traits, except for height in Bordeaux at 85-month old, where 40% of the variance came from variation among populations, 40% from residuals and the remaining 20% from variation among clones (Fig. X.18). Variation among populations was higher than variation among clones for height and δ 13 C (Figs. X.14, X.16, X.18, X.20 and X.28), but not for SLA and phenology-related traits (Figs. X.26, X.22 and X.24). Environmental heterogeneity indexes and population admixture scores were not associated with within-population genetic variation for any trait (Figs. IV.2 and X.12). In contrast, we found a consistent negative association with the inverse of the extreme minimum temperature across the three common gardens for height, indicating that populations undergoing severe cold events display less genetic variation (Fig. IV.2). Interestingly, in the Bordeaux common garden, this negative relationship was found at 25-month old, but not at 85-month old (Fig.

IV.2). A negative association with the summer heat moisture index was also detected for height in Asturias, and less markedly but still with a high probability in Bordeaux at 25-month old (Fig. IV.2). Holding all other parameters constant, a one-standard deviation increase in the inverse of the extreme minimum temperature was associated, on average, with a 32.6%, 21.6% and 17.9% decrease of σ C p for height in Portugal, Bordeaux at 25-month old and Asturias, respectively. Similarly, a one-standard deviation increase in the summer heat moisture index was associated, on average, with 15.6% and 23.8% decrease of σ C p for height in Bordeaux at 25-month old and Asturias, respectively (see details of the calculation in Section 4 of the Supplementary Information). Unexpectedly, populations experiencing severe cold events showed higher genetic variation for SLA (Fig. IV.2). Within-population genetic variation was not correlated with the number of clones per population for any trait (maximum Pearson correlation coe cient = 0.57; Table X.11).

Importantly, in the validation analysis, we also found a negative association between the inverse of the extreme minimum temperature and the within-population additive genetic variation for height at 3-year old, but not at 6-year old, and we did not nd any association with the other potential drivers (Fig. IV.3).

Discussion

How quantitative genetic variation is maintained within populations remains a long-standing open question that has been extensively explored in theoretical work but lacks empirical evidence to date [START_REF] Johnson | Theoretical models of selection and mutation on quantitative traits[END_REF]. Our study suggests that genetic variation for height in maritime pine is lower in populations exposed to severe cold events, thus supporting the hypothesis that quantitative genetic variation in tness-related traits is lower in populations under strong selection (Fisher 1930). Across all traits studied, we did not nd higher genetic variation in populations located in heterogeneous landscapes, which goes against the predictions of some theoretical models (McDonald andYeaman 2018, Walsh andLynch 2018) and an empirical study in lodgepole pine [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. Admixed populations did not show higher genetic variation, suggesting that the observed patterns are not confounded by gene ow between distinct gene pools increasing genetic variation. Empirically-based detection of the footprints of natural selection on within-population genetic variation is much needed to understand how populations are adapted to their current environments and will evolve under changing conditions.

5.1 Severe cold events may decrease within-population genetic variation Height genetic variation was lower in populations experiencing harsher climates, especially severe cold events (invEMT; Fig. IV.2). This result supports the hypothesis that strong stabilizing selection in harsh environments depletes quantitative genetic variation within populations (Fisher 1930) and echoes similar results in another forest tree, Quercus oleoides. For this Mesoamerican white oak species, Ramírez-Valiente et al. ( 2019) found lower genetic variation averaged over functional and growth traits in populations experiencing low precipitation and high temperatures during the dry season. The importance of severe cold events as a driver of height genetic variation in maritime pine is supported by the association between candidategene allele frequency and temperature gradients (Grivet et al. 2011, Jaramillo-Correa et al. 2015), suggesting a major role of minimum temperatures in the species adaptive evolution. Indeed, lower genetic variation in areas subject to cold events may enhance adaptation to local conditions, but it may also hamper the adaptive potential of populations under new climates. Noticeably, severe cold events were highly correlated with altitude in our study (Pearson's correlation of 0.9), and adaptation patterns along altitudinal gradients are common in forest trees (e.g. [START_REF] Kurt | Genetic di erentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude[END_REF]. Therefore, we cannot exclude that the association between height genetic variation and severe cold events is triggered by more complex environmental factors typical of high altitude conditions (e.g. reduced vapor pressure de cit, higher maximum solar radiation; [START_REF] Körner | Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences[END_REF].

The lower within-population genetic variation for height in populations experiencing harsher climates was unlikely to be the result of demographic factors (i.e. processes that a ect the e ective population size independently from natural selection; Lawton-Rauh 2008) given that (i) the pattern of reduced genetic variation was only observed for height and not for the other traits, whereas we would have expected demographic factors to impact all traits similarly; (ii) we did not nd any association between quantitative genetic variation and genetic diversity estimated with molecular markers (i.e. expected heterozygosity) for any trait (see Section 7 of the Supplementary Information; [START_REF] Rodríguez-Quilón | Local e ects drive heterozygosity-tness correlations in an outcrossing long-lived tree[END_REF] suggesting negligible e ects on trait genetic variation of di erences in e ective population size among populations; and (iii) our results suggest a negligible impact of gene ow across gene pools (as evaluated by population admixture indexes) on within-population genetic variation for any trait (Fig.

IV.2).

The di erences in height genetic variation among populations were also unlikely to originate from the expression of hidden genetic variation in novel environments (i.e. 'cryptic genetic variation'; Schlichting 2008) as the lower height genetic variation in populations from harsher climates was consistent across the three common gardens (i.e. independent of their environmental conditions) and thus likely to be intrinsic to the populations. Last, the sampled populations may not fully cover the climatic range of maritime pine (Fig. IV.1), which may reduce our ability to detect an association between some climatic drivers and within-population genetic variation; this could explain, for example, the lack of association with the summer heat moisture index (SHM), an important climatic factor in Mediterranean environments.

Most importantly, the validation analysis provided independent evidence that additive withinpopulation genetic variation for height was lower in populations experiencing extreme cold events for young trees but not for older trees (Fig. IV.3). This supports the robustness of our study and suggests that our results were unlikely to be biased by considering the total variance instead of the additive one, which was somehow expected as two previous studies in maritime pine found low non-additive e ects for growth [START_REF] Gaspar | Genetic Variation of Drought Tolerance in Pinus pinaster at Three Hierarchical Levels: A Comparison of Induced Osmotic Stress and Field Testing[END_REF], and height and diameter [START_REF] Lepoittevin | Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster[END_REF].

With respect to speci c leaf area (SLA), where only a single common garden (i.e. a single environment) was assessed, cryptic genetic variation (as de ned above) may indeed underlie the higher genetic variation found in populations experiencing severe cold events. A study in maritime pine suggests that SLA depends strongly on environmental conditions [START_REF] Alía | Environmentdependent microevolution in a Mediterranean pine (Pinus pinasterAiton)[END_REF], which is also supported in our study by its low genetic control (Fig. X.26). Cryptic genetic variation is more likely to be expressed when the di erences between original and current environments are large [START_REF] Paaby | Cryptic genetic variation: evolution's hidden substrate[END_REF] , as it may be the case for some of the populations planted in the Portugal common garden. However, this is not a general pattern as we did not nd any association between the climatic transfer distances (i.e. the absolute di erence between the climate in the population and the climate in the test site) and the within-population genetic variation for SLA (see Section 6 of the Supplementary Information).

Environmental heterogeneity is not associated with higher genetic variation

Populations from heterogeneous environments did not show higher genetic variation for any trait (Fig. IV.2), which was also the case for the independent height data from the validation analysis (Fig. IV.3). This goes against a previous estimate in lodgepole pine suggesting that up to 20% of the genetic variation in growth within populations is explained by environmental heterogeneity [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. A potential explanation of this discrepancy is the smaller experiment size in our study compared to that of Yeaman and Jarvis (103 populations with an average of 28 planting sites per population). However, in our study, we obtained reasonable credible intervals for most traits (allowing the detection of associations with other drivers) and data simulations suggested that our models have adequate power, rendering this explanation unlikely.

Another explanation is that genetic variation within populations is not a ected by the environmental heterogeneity at the regional scale imposed by the 1 × 1 km resolution of our climate dataset but at ner spatial scales (also discussed in [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. Indeed, populations can adapt along microgeographic environmental gradients despite the homogenizing e ect of gene ow [START_REF] Richardson | Microgeographic adaptation and the spatial scale of evolution[END_REF], even for forest tree populations with their long-generation times and large e ective population sizes [START_REF] Scotti | Fifty years of genetic studies: what to make of the large amounts of variation found within populations?[END_REF]). However, a correlation between regional and microgeographic environmental heterogeneity across the maritime pine range is very likely: populations showing the highest environmental heterogeneity in our study were located in mountainous areas in which we also expect higher microgeographic variation, e.g. the Cómpeta population (COM) located in the Tejeda and Almijara mountains (southern Spain), the Arenas de San Pedro population (ARN) located in the Sierra de Gredos (central Spain) or the Pineta population (PIE) located close to the Punta di Forchelli (Corsican mountains), while populations with the lowest environmental heterogeneity were located on at plateaus, e.g. populations from the Landes plateau and the Atlantic coastal regions in France (HOU, MIM, PET, VER, OLO, STJ, PLE), and populations from the central Spain plateau near to Segovia (CUE, COC, CAR). Thus, even if genetic variation was maintained by migration-selection balance at microgeographic scales, we would have been able to detect the e ect of environmental heterogeneity at the regional scale. Nevertheless, more studies characterizing adaptation at microgeographic scales are needed to assess the spatial scale of genetic adaptation in maritime pine.

Another explanation of the discrepancy with [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF] could be that we used young trees (between 20 and 85-month old) while they used 20-year old trees. Indeed, the processes generating within-population genetic variation might be age-dependent, as shown for climate harshness in Bordeaux, where the association was present when the trees were 25-month old but not in older trees. In forest trees, genetic parameters often vary with age; e.g. heritability generally increases with age until reaching a plateau, especially for height-related traits (Balocchi et al. 1993[START_REF] Jansson | Time Trends in Genetic Parameters for Height and Optimal Age for Parental Selection in Scots Pine[END_REF][START_REF] Johnson | Age trends in Douglas-r genetic parameters and implications for optimum selection age[END_REF][START_REF] Kroon | Patterns of genetic parameters for height in eld genetic tests of Picea abies and Pinus sylvestris in Sweden[END_REF][START_REF] Sierra-Lucero | Performance Di erences and Genetic Parameters for Four Coastal Provenances of Loblolly Pine in the Southeastern United States[END_REF], but may also decrease in some cases (Kroon et al. 2011, Lu and[START_REF] Lu | Genetic parameter estimates for growth traits of black spruce in northwestern Ontario[END_REF]. In maritime pine, an increase in heritability with age was found in [START_REF] Costa | Time trends in genetic control over height and diameter in maritime pine[END_REF] but not in [START_REF] Kusnandar | Age Trends in Variances and Heritabilities for Diameter and Height in Maritime Pine (Pinus pinaster AIT.) in Western Australia[END_REF]. To our knowledge, the drivers of heritability changes with age remain unclear. Competition among trees in common gardens might play a role in the expression of age-dependent heritabilities for diameter growth, but not for height in Pinus radiata [START_REF] Lin | E ect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth[END_REF]. Replicating our analysis in older trees would be interesting to further assess patterns of association between within-population genetic variation and environmental heterogeneity, and their underlying causes.

Finally, a last explanation is related to the di erent biological features between lodgepole pine and maritime pine. Lodgepole pine has extensive gene ow and low population structure (F ST = 0.016 in [START_REF] Yeaman | Convergent local adaptation to climate in distantly related conifers[END_REF]) while maritime pine shows restricted gene ow with strong population structure (at least six distinct gene pools and F ST = 0.112; Jaramillo-Correa et al. 2015; our study) and fragmented distribution [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF]. Pollen dispersal kernels in maritime pine are highly leptokurtic, as for other wind-pollinated pines (Robledo-Arnuncio and Gil 2005, Schuster and Mitton 2000), with estimated mean dispersal distances from 78.4 to 174.4m (de-Lucas et al. 2008). Interestingly, [START_REF] Mcdonald | E ect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study[END_REF] showed that high levels of quantitative genetic variance can be maintained when a trait is under stabilizing selection only at intermediate levels of migration. Migration rates in maritime pine may therefore not be strong enough to compensate for the purifying e ect of natural selection in heterogeneous environments, especially in mountainous areas which may represent barriers to gene ow and where populations are more isolated (see [START_REF] González-Martínez | Spatial genetic structure of an explicit glacial refugium of maritime pine (Pinus pinaster Aiton) insoutheastern Spain. Phylogeography of Southern European Refugia: Evolutionary perspectives on the origins and conservation of European biodiversity[END_REF] for maritime pine). Meanwhile, in the homogeneous plateaus of the Landes forest and central Spain, natural selection may be low because conditions are more favorable, and these populations are less isolated, which may maintain genetic variation at levels similar to those of populations in heterogeneous landscapes. Investigating local adaptation and gene ow at microgeographic scales in natural populations of maritime pine located in both homogeneous and heterogeneous environments would be highly valuable to understand why environmental heterogeneity does not seem to play a major role in maintaining genetic variation in this species. Moreover, conducting similar analyses in sister species such as Scots pine, with low population genetic structure and continuous populations [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], could help to determine whether genetic variation in forest tree populations experiencing higher migration rates are more prone to be impacted by environmental heterogeneity.

Link to tness and genetic constraints may explain the di erent patterns across traits

Height was the only trait that showed a consistent association between within-population genetic variation and climate harshness. This pattern supports the hypothesis that natural selection mainly depletes genetic variation of traits most directly related to tness. Indeed, height can be seen as the end-product of multiple ecophysiological processes (Grattapaglia et al. 2009). Taller trees perform better in the competition for light, water and nutrients, and are therefore more likely to have higher fecundity [START_REF] Aitken | Time to get moving: assisted gene ow of forest trees[END_REF][START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF][START_REF] Wu | Geographic pattern of local optimality in natural populations of lodgepole pine[END_REF] and lower mortality [START_REF] Wycko | The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains[END_REF]Clark 2002, Zhu et al. 2017). However, taller trees are also more susceptible to spring and fall cold injury [START_REF] Howe | From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees[END_REF]) and to drought [START_REF] Bennett | Larger trees su er most during drought in forests worldwide[END_REF], McDowell and Allen 2015[START_REF] Stovall | Tree height explains mortality risk during an intense drought[END_REF]. In maritime pine, e ective reproductive success (i.e. the number of successfully established o spring) is related to tree size. Indeed, [START_REF] González-Martínez | E ective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton)[END_REF] found a signi cant positive female selection gradient for diameter (height was not tested, but diameter and height are strongly correlated in conifers; see, for example, Fig. 1 in Castedo-Dorado et al. 2005 for maritime pine) and suggested that o spring mothered by bigger trees could have a selective advantage due to better quality seeds favouring resilience in the face of severe summer droughts and microsite variation. This evidence also supports the idea of height as a relevant tness component in maritime pine.

Although less directly related to tness than height, leaf phenology-related traits exhibit steep adaptation gradients in forest trees and have a relatively high heritability, e.g. 0.15-0.51 for bud burst in pedunculate oak [START_REF] Scotti-Saintagne | Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L[END_REF]), 0.45-1 in Sitka spruce [START_REF] Alfaro | Budburst phenology of sitka spruce and its relationship to white pine weevil attack[END_REF] and 0.54 for bud burst and 0.30 for the duration of bud burst in our study in maritime pine. [START_REF] Gauzere | Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology[END_REF] showed that both the mean and the variance of leaf phenology-related traits varied along an altitudinal gradient in natural oak populations, with populations at high altitude having a narrower tness peak. We might therefore have expected lower genetic variation for leaf phenology-related traits in populations experiencing severe cold events (and at higher altitude), as found along an altitudinal gradient in sessile oak for bud phenology [START_REF] Bou | Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient[END_REF]. However, such association may be hidden in common gardens with di erent climates from those of the populations' location, because of the release of high levels of cryptic genetic variation [START_REF] Schlichting | Hidden Reaction Norms, Cryptic Genetic Variation, and Evolvability[END_REF]. Moreover, phenology-related traits can show opposite genetic clines in common gardens and natural populations (e.g. Vitasse et al. 2009). Estimating genetic parameters of phenology-related traits directly in the eld, which is now technically possible by using large genomic datasets and advanced statistical methodologies [START_REF] Gienapp | Genomic Quantitative Genetics to Study Evolution in the Wild[END_REF], may therefore be necessary to investigate potential associations between within-population genetic variation and climate harshness, or other selective pressures.

Importantly, theoretical work suggests that much of the genetic variation associated with a trait is likely maintained by pleiotropic e ects, which are independent of the selection on that trait, implying that stabilizing selection can only act on a reduced number of independent dimensions in the trait space (Barton 1990, Walsh andLynch 2018). As we used univariate models, we cannot exclude that the likely associations with height genetic variation originate from genetic correlation with other traits under selection, or that the lack of association with other traits (notably functional traits such as δ 13 C) does not originate from genetic constraints [START_REF] Walsh | Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation[END_REF]. For example, in maritime pine, trait canalisation and genetic constraints may explain low quantitative genetic di erentiation for hydraulic traits (e.g. P50, the xylem pressure inducing 50% loss of hydraulic conductance; [START_REF] Lamy | Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine[END_REF], and sapling height was found to be either positively or negatively associated with disease susceptibility depending on the pathogen (e.g. necrosis length caused by Diplodia sapinea or Armillaria ostoyae, respectively; [START_REF] Hurel | Genetic basis of susceptibility to Diplodia sapinea and Armillaria ostoyae in maritime pine[END_REF]. Trade-o s between traits may also explain the unexpected association between minimum temperatures and high genetic variation for SLA, as, for instance, SLA is known to be positively correlated with leaf life span, low assimilation rates and nutrient retention, i.e. traits linked to conservation of acquired resources [START_REF] Ackerly | Leaf size, speci c leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[END_REF].

Conclusion

Our manuscript contributes to the current debate on the maintenance of quantitative genetic variation within populations by providing empirical support for the role of natural selection in decreasing genetic variation. Indeed, our results consistently showed that genetic variation for height is lower in maritime pine populations experiencing severe cold events (i.e. experiencing stronger selection). Surprisingly, we found no association between environmental heterogeneity at the regional scale and within-population genetic variation for several traits; whether for technical reasons (e.g. sample size, spatial scale considered) or for genuine biological reasons (e.g. too low migration), it would be worth further exploration. Indeed, understanding the evolutionary forces shaping within-population genetic variation could shed light on how populations adapt to their local environment, thereby providing insight into how they may respond to future changes in environmental conditions.

All authors interpreted the results. JA led the writing of the manuscript. All authors contributed to the manuscript and gave nal approval for publication.
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Data and script availability

Data are publicly available. SNP data were deposited in the Dryad repository at http: //dx.doi.org/10.5061/dryad.8d6k1. Height data have been deposited in GENFORED, the Spanish Network of Genetic Trials (http://www.genfored.es). Scripts are available at https://github.com/

V C 2. C 1 Abstract
Population response functions based on climatic and phenotypic data from common gardens have long been the gold standard for predicting quantitative trait variation in new environments. However, prediction accuracy might be enhanced by incorporating genomic information that captures the neutral and adaptive processes behind intra-population genetic variation. We used ve clonal common gardens containing 34 provenances (523 genotypes) of maritime pine (Pinus pinaster Aiton) to determine whether models combining climatic and genomic data capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales. The plastic component explained most of the height-growth variation, probably resulting from population responses to multiple environmental factors. The genetic component stemmed mainly from climate adaptation, and the distinct demographic and selective histories of the di erent maritime pine gene pools. Models combining climate-oforigin and gene pool of the provenances, and positive-e ect height-associated alleles (PEAs) captured most of the genetic component of height-growth and better predicted new provenances compared to the climate-based population response functions. Regionally-selected PEAs were better predictors than globally-selected PEAs, showing high predictive ability in some environments, even when included alone in the models. These results are therefore promising for the future use of genome-based prediction of quantitative traits.

Introduction

Global change is expected to have a profound impact on forests (Franklin et al. 2016[START_REF] Seidl | Forest disturbances under climate change[END_REF], and whether tree populations will be able to migrate or persist across their current range is uncertain [START_REF] Aitken | Adaptation, migration or extirpation: climate change outcomes for tree populations[END_REF]. Assessing the potential of populations to accommodate future environmental conditions requires a thorough understanding of the origin of variation in quantitative traits subject to natural selection (Alberto et al. 2013, Shaw and[START_REF] Shaw | Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics[END_REF]. To this aim, a necessary rst step is to quantify the plastic and genetic components of adaptive traits and their interaction in multiple environments (Des Marais et al. 2013, Merilä and[START_REF] Merilä | Climate change, adaptation, and phenotypic plasticity: the problem and the evidence[END_REF], which has been done extensively in forest trees (Franks et al. 2014). A second step consists of identifying the underlying drivers of these components [START_REF] Merilä | Climate change, adaptation, and phenotypic plasticity: the problem and the evidence[END_REF]. The plastic component corresponds to the ability of one genotype to produce varying phenotypes depending on the environment [START_REF] Bradshaw | Evolutionary Signi cance of Phenotypic Plasticity in Plants[END_REF]. Phenotypic plasticity can help individuals to overcome new conditions up to a certain threshold [START_REF] Nicotra | Plant phenotypic plasticity in a changing climate[END_REF], and can be to some extent genetically assimilated and therefore involved in the evolutionary process of adaptation [START_REF] Pigliucci | Phenotypic plasticity and evolution by genetic assimilation[END_REF]). The genetic component can stem from both neutral (e.g. population demographic history and genetic drift) and adaptive processes (e.g. adaptation to local biotic and abiotic environments), both processes implying changes in allele frequencies. Populations are locally adapted when they have higher tness in their own environment than populations from other environments [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF]. In forest trees, a large amount of work highlighted the importance of climate in driving the plastic and genetic responses of quantitative traits to new environmental conditions [START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF], Valladares et al. 2014b). However, it is still unclear how multiple and interacting drivers underlying quantitative trait variation could be combined to improve predictions of population responses to global change. The increasing availability of genomic data opens new opportunities to boost prediction accuracy, which is critical for breeding (i.e. genomic selection; Grattapaglia and Resende 2011), to anticipate future distribution of natural populations (e.g. [START_REF] Razgour | Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections[END_REF], or to support the ongoing development of assisted gene ow strategies aiming to help populations adapt to future environments [START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF][START_REF] Maclachlan | Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer[END_REF][START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF]).

In forest trees, a long history of common gardens [START_REF] Langlet | Two Hundred Years Genecology[END_REF] has provided a unique framework to associate population-speci c quantitative trait variation with large environmental or geographical gradients, and thus identify populations at risk under climate change (Fréjaville et al. 2020[START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF], 1999[START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]). The development of population response functions was a step forward to evaluate the relative contribution of plasticity -associated to current climatic conditions (i.e. the climate in the common gardens)-and genetic adaptation -associated to the past climatic conditions under which the populations have evolved (i.e. the climate-of-origin of the provenances tested)-in explaining quantitative trait variation [START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]). These models have now been applied to a large variety of traits (Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF], Leites et al. 2012a,b, Vizcaíno-Palomar et al. 2020) and one of their main conclusions is that trait variation across species ranges is mostly associated with the climate in the common garden (i.e. related to the plastic component) and, only to a much lesser extent, with the climate-of-origin of the provenances (i.e. related to the genetic component) (Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF][START_REF] Leites | Heightgrowth response to climatic changes di ers among populations of Douglas-r: a novel analysis of historic data[END_REF]). Importantly, these models do not allow us to determine to what extent associations between trait variation and provenance climate-of-origin, or the higher trait values of local compared to foreign populations, are caused by adaptive or neutral processes (Franks et al. 2014[START_REF] Hereford | A Quantitative Survey of Local Adaptation and Fitness Trade-O s[END_REF][START_REF] Leimu | A Meta-Analysis of Local Adaptation in Plants[END_REF]. This limits our understanding of the genetic processes that led to the current patterns of quantitative trait variation, and therefore our ability to predict trait variation of new (untested in common gardens) populations under new environments.

The advent and generalization of genomic tools have enhanced our understanding of adaptive and neutral genetic processes resulting in trait variation, and their relationship with climatic gradients [START_REF] Leroy | Adaptive introgression as a driver of local adaptation to climate in European white oaks[END_REF], Savolainen et al. 2013[START_REF] Sork | Genomic Studies of Local Adaptation in Natural Plant Populations[END_REF]. Integrating genomic information into quantitative trait prediction would be highly valuable to consider intraspeci c variability at a ner scale than in current models [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF], thereby probably improving model accuracy, especially for populations not previously planted in commons gardens. More speci cally, rapidly growing knowledge on trait-associated alleles identi ed by Genome-Wide Association Studies (GWAS) is promising for anticipating the genetic response of populations to new environments [START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF], Exposito-Alonso et al. 2018a). For example, [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] used counts of alleles positively associated with the traits of interest (PEAs) to describe patterns and identify drivers of local adaptation in lodgepole pine. Recent studies have shown that most quantitative traits are highly polygenic (see reviews in Barghi et al. 2020[START_REF] Pritchard | The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation[END_REF][START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] for maritime pine) and that the e ect of trait-associated alleles may vary across environments [START_REF] Anderson | Genetic trade-o s and conditional neutrality contribute to local adaptation[END_REF], Ti n and Ross-Ibarra 2014), which complicates the use of genomic information in trait prediction. In addition, patterns in allele frequencies induced by population demographic history are often correlated with environmental gradients [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF][START_REF] Latta | Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence[END_REF], Nadeau et al. 2016), which makes di cult to separate the signature of population structure from that of adaptive processes [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF]Barton 2019, Sohail et al. 2019). At the species range scale, population structure hinders the use of genomic relationship matrices, which provide more accurate estimates of genetic parameters (e.g. breeding values, additive and non-additive variance) within breeding populations than previously used pedigree-based approaches [START_REF] Bouvet | Modeling additive and nonadditive e ects in a hybrid population using genome-wide genotyping: prediction accuracy implications[END_REF], El-Dien et al. 2018). Indeed, admixed populations or distinct genetic groups may present di erent means and variances of their genetic values, which requires new statistical methods to estimate them (e.g. [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF]. Thus, integrating genomic information into quantitative trait prediction in natural populations, while highly valuable, remains challenging.

Forest trees are remarkable models to study the genetic and plastic components of quantitative trait variation. Forest tree populations often have large e ective population size and are distributed along a large range of environmental conditions, which makes them especially suitable to study current and future responses to climate [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]. Moreover, forest trees remain largely undomesticated (including those species with breeding programs) and, therefore, genetic variation in natural populations has been little in uenced by human-induced selection [START_REF] Neale | Association genetics of complex traits in conifers[END_REF]). However, forest trees have also large and complex genomes (especially conifers; [START_REF] Mackay | Towards decoding the conifer giga-genome[END_REF], that show a rapid decay of linkage disequilibrium [START_REF] Olson | Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera)[END_REF], and extensive genotyping would be needed to identify all (most) relevant polymorphisms underlying (highly polygenic) quantitative traits (Jaramillo-Correa et al. 2015, Neale and[START_REF] Neale | Association genetics of complex traits in conifers[END_REF]). In addition, although early results have been convincing in predicting trait variation within tree breeding populations (i.e. using populations with relatively low e ective population size; [START_REF] Jarquín | A reaction norm model for genomic selection using high-dimensional genomic and environmental data[END_REF][START_REF] Jr | Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments[END_REF], Resende et al. 2012), predicting the genetic component of trait variation across populations or geographical regions of forest trees remains poorly explored.

In the present study, we aim to identify the potential drivers of the plastic and genetic components of height growth in distinct maritime pine gene pools (i.e. genetic clusters) and investigate how common garden data can be combined with genomics to e ciently predict height-growth variation across the species range. We compared Bayesian hierarchical mixed models that inferred height-growth variation in maritime pine as a function of climatic and genomic-related variables, using a clonal common garden network (CLONAPIN) consisting of ve sites and 34 provenances (523 genotypes and 12,841 trees). First, we evaluated the relative importance of potential drivers underlying height-growth variation. We expected that: (i) the plastic component explains most trait variation and is associated with climate in the common gardens, (ii) the genetic component is driven by both adaptive processes, such as adaptation to climate, and neutral processes, such as population demographic history. Second, we compared the out-of-sample predictive ability (on unknown observations or provenances) of models based exclusively on the common garden design and models including (either separately or jointly) potential predictors of the genetic component of trait variation, notably those related to climate and positive-e ect height-associated alleles (PEAs). We expected that the distinct demographic history of maritime pine gene pools, the provenance climate-of-origin and the counts of PEAs, either combined or alone, may improve height-growth predictions of unknown provenances. We also expected that height-associated alleles selected regionally, i.e. in particular environments, would have a better predictive ability than globally-selected alleles. Our study is a step towards integrating the recent knowledge brought by large genomic datasets to the modelling of quantitative trait variation in forest trees. Combining common gardens with genomic tools hold great promise for speeding up and improving trait predictions at large scales and for a wide range of species and populations. However, a robust framework is needed to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in anticipating population responses to climate change.
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Materials & Methods

Plant material and phenotypic measurements

Maritime pine (Pinus pinaster Ait., Pinaceae) is an economically important forest tree, largely exploited for its wood (Viñas et al. 2016). It has also an important ecological function stabilizing coastal and fossil dunes and as keystone species supporting forest biodiversity. Native to the western part of the Mediterranean Basin, the Atlas mountains in Morocco, and the southwest Atlantic coast of Europe, its natural distribution spans from the High Atlas mountains in the south (Morocco) to French Brittany in the north, and from the coast of Portugal in the west to western Italy in the east. Maritime pine is a wind-pollinated, outcrossing and long-lived tree species that can grow on a wide range of substrates, from sandy and acidic soils to more calcareous ones. It can also withstand many di erent climates: from the dry climate of the Mediterranean Basin to the highly humid climate of the Atlantic Europe region, and the continental climate of central Spain. Maritime pine populations are highly fragmented and can be grouped into six gene pools [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], Jaramillo-Correa et al. 2015;see Fig. V.1), that is genetic clusters that cannot be di erentiated on the basis of neutral genetic markers and that probably derive from a common glacial refuge [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF].

Height growth is a key adaptive trait in forest trees, including maritime pine. Height can be seen as the end-product of multiple ecophysiological processes that are both genetically regulated and a ected by multiple environmental e ects (Grattapaglia et al. 2009). As such, taller trees compete more e ciently for light, water and nutrients, and are also more likely to have high fecundity [START_REF] Aitken | Time to get moving: assisted gene ow of forest trees[END_REF][START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF][START_REF] Wu | Geographic pattern of local optimality in natural populations of lodgepole pine[END_REF]. We obtained height data from the clonal common garden network CLONAPIN, consisting of ve common gardens located in di erent environments (also referred as test sites; Fig.

V.1). Three sites are located in the Atlantic Europe region, with mild winters, high annual rainfall and relatively wet summers: Bordeaux in the French part, and Asturias and Portugal in the Iberian part, the Portugal site experiencing slightly colder winters and half the summer precipitation than the site in Asturias. The two other sites, Cáceres and Madrid, are located in the Mediterranean region with high temperatures and intense summer drought, as well as large precipitation di erences between summer and winter. In 2010 or 2011 depending on the test site, clonal replicates from 34 provenances were planted in a randomized complete block design with eight blocks. For each provenance, trees represent between 2 and 28 genotypes (clones), on average about 15 (see Rodríguez-Quilón et al. 2016 for details). Genotypes were originally sampled from natural populations, with enough distance among trees (over 50 m) to avoid sampling related individuals. Depending on the site, height was measured from one to four times, when the trees were between 13 and 41 month old (Table XI.1). Only survivors were measured for height, which resulted in a strongly unbalanced design as 92% and 75% of the trees died in Cáceres and Madrid, respectively (partly due to the clay soils and a strong summer drought). After removing genotypes for which we had no genomic information, we analyzed 33,121 height observations from 12,841 trees and 523 genotypes (Table XI.2). 

Gene pool assignment and positive-e ect alleles (PEAs)

DNA was extracted from leaves collected in the Asturias common garden and genotyped with a 9k Illumina In nium SNP assay (described in Plomion et al. (2016a)), resulting in 5,165 high-quality polymorphic SNPs scored on 523 genotypes. There were on average only 3.3 missing values per genotype (ranging between 0 and 142). For each genotype, the proportion belonging to each gene pool was estimated in [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], using nine nuSSRs as well as a subset of the same SNPs as in our study (1,745 SNPs) and the Bayesian approach available in S v2. 3.3 (Pritchard et al. 2000;Table XI.3). This gene pool assignment aimed at re ecting the neutral genetic structure in maritime pine, which results from population demographic history and genetic drift, but may also arise from di erent selective histories across gene pools.

Based on the 523 genotypes for which there were both genotypic and phenotypic data, we performed four GWAS following the Bayesian variable selection regression (BVSR) methodology implemented in the piMASS software (Guan and Stephens 2011), correcting for population structure and using the height BLUPs reported in [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF], that accounted for site and block e ects. First, a global GWAS was performed to identify SNPs that have an association with height at range-wide geographical scales, thus using the combined phenotypic data from the ve common gardens. Second, three regional GWAS were performed to identify SNPs that have a local association with height in a particular geographical region r (i.e. in a particular environment), thus using separately data from the Iberian Atlantic common gardens (Asturias and Portugal), the French Atlantic common garden (Bordeaux) and the Mediterranean common gardens (Madrid and Cáceres). For each of the four GWAS, we selected the 350 SNPs (∼7% top associations) with the highest absolute Rao-Blackwellized estimates of the posterior e ect size, corresponding approximately to the estimated number of SNPs with non-zero e ects on height in a previous multi-trait study using the same SNP marker set (de [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF]). These SNPs were used to compute the counts of global and regional positive-e ect alleles (gPEAs and rPEAs) for each genotype (see Section 2.1 of the Supplementary Information for more details).

Climatic data

In forest trees, large-scale patterns of allele frequencies or quantitative trait variation are known to be associated with climatic variables related to mean temperature and precipitation (e.g. [START_REF] Eckert | Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae)[END_REF], Fréjaville et al. 2020[START_REF] Leites | Adaptation to climate in ve eastern North America broadleaf deciduous species: Growth clines and evidence of the growth-cold tolerance trade-o[END_REF][START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF][START_REF] Mclane | Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment[END_REF], or episodic climatic conditions, such as summer aridity or maximum temperatures (Fréjaville et al. 2020, Grivet et al. 2011, Jaramillo-Correa et al. 2015[START_REF] Mclane | Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment[END_REF][START_REF] Rehfeldt | Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models[END_REF]. As climate change will cause major changes in temperature and precipitation in the near future, particularly in the Mediterranean basin, there is a need to understand the complex in uence of climatic variables on quantitative trait variation. We extracted monthly and yearly climatic data from the EuMedClim database with 1 km resolution (Fréjaville and Benito Garzón 2018). The climatic similarity among test sites was described by a covariance matrix Ω including six variables related to both extreme and average temperature and precipitation in the test sites during the year preceding the measurements, and with at most a correlation coe cient of 0.85 among each other (see Section 3.1 in the Supplementary Information for more details). The climatic similarity among provenances was described by a covariance matrix Φ including four variables related to the mean temperature and precipitation in the provenance locations over the period from 1901 to 2009 (i.e. representing the climate under which provenances have evolved), and with at most a correlation coe cient of 0.77 among each other (see Section 3.2 in the Supplementary Information for more details).

Hierarchical height-growth models

Twelve height-growth models were compared. We rst built two baseline models relying exclusively on the common garden design and aimed at quantifying the relative contribution of the genetic and plastic components of height-growth variation (models M1 and M2; Table V.1). Second, we used climatic and genomic data to detect association of height-growth variation with potential underlying drivers related to plasticity, adaptation to climate or gene pool assignment (i.e. a proxy of the population demographic history and genetic drift experienced by the populations), and estimated gene pool-speci c total genetic variances (models M3 to M6; Table V.1). Third, we built models either including separately or combining potential drivers of the genetic component of height-growth variation to predict unknown observations and provenances without relying on the common garden design (models M7 to M12; Table V.1). In every model, the logarithm of height (log(h)) was used as a response variable to stabilize the variance. Tree age at the time of measurement i was included as a covariate to account for the average height-growth trajectory. This implies that all models shared the form log(h i ) = f (age i ) + m(covariates), where m(covariates) is the rest of the model. Therefore, all models can also be written h i = exp(f (age i )) exp(m(covariates)), which explains why covariates in our models a ect height growth (i.e. modulate the height-growth trajectory) rather than simply height. We used a second-degree polynomial to account for tree age (f (age i + age 2 i )) because the logarithm of height rst increases linearly with age and then reaches a threshold (Fig. XI.11). Each tree was measured between one and four times (14% of the trees were measured only once), but we did not include a varying intercept for each tree as it resulted in model miss-speci cation warnings and strong over tting. A description of each model speci cation follows.

Variables Baseline Explanatory models Predictive models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Site/Block × × × × × × × × × × × × Provenance × × × × × × Genotype × × × × × Site × Provenance × Climatic similarity among sites × × × × Proportion belonging to each gene pool × × × × × × Gene pool-speci c genetic variance × Climatic similarity among provenances × Provenance climate-of-origin × × × Global PEAs (gPEAs) × × Regional PEAs (rPEAs) × × Table V.1.
Variables included in the height-growth models. Baseline models M1 and M2 separate the genetic and plastic components of height-growth variation via varying intercepts relying exclusively on the common garden design. Explanatory models (models M3 to M6) test di erent hypotheses regarding the potential drivers underlying height-growth variation. Predictive models (models M7 to M12) are used to compare the predictions on new observations and provenances when combining or including separately genomic and climatic drivers of height-growth variation. The provenance climate-of-origin is evaluated using the precipitation of the driest month, min.pre, and the maximum temperature of the warmest month, max.temp. gPEAs and rPEAs correspond to the counts of height-associated positive-e ect alleles, selected either globally (across all common gardens) or regionally (in speci c common gardens). The provenance climate-of-origin and the PEAs were included in the predictive models with site-speci c slopes. All models also contained the age e ect, not shown in the table.

Baseline models M1 and M2: separating the genetic and plastic components of heightgrowth variation

In the baseline model M1, height h was modeled as a function of tree age, varying intercepts for the sites S s and blocks nested within sites B b(s) (i.e. the plastic component), and varying intercepts for the provenances P p and genotypes within provenances G (p) (i.e. the genetic component):

log(h isbp ) ∼ N (Xβ + µ sbp , σ 2 ) Xβ = β 0 + β a e age i + β a e2 age 2 i µ sbp = S s + B b(s) + P p + G (p) (3.1)
where X is the 3-column design matrix and β is a vector including the intercept β 0 and the coe cients β a e and β a e2 of the xed e ect variables (a e and a e 2 , respectively). µ sbp is the vector of varying intercepts. Model M2 was based on model M1 but including an interaction term between provenance and site (S s P p ). We also performed a model without the genetic component (called M0) whose outputs are reported in the Supplementary Information.

Explanatory models M3 to M6: potential drivers underlying height-growth variation

In model M3, we hypothesized that the plastic component of height growth was in uenced by the climatic similarity among test sites during the year preceding the measurements. This model can be expressed with the same likelihood as M1 but with the vector of varying intercepts equal to:

µ isbp = S s + B b(s) + P p + G (p) + cs is cs is ∼ N (0, Ω σ 2 cs is ) (3.2)
where Ω is the covariance matrix describing the climatic similarity between test sites s during the year i preceding the measurements (Fig. XI.6) and cs is are varying intercepts associated with the climatic conditions in each test site s during the year i. In M3, the plastic component was partitioned between the regression on the climatic covariates (cs is ) and the deviations related to block and site e ects due to the local environmental conditions that are not accounted for by the selected climatic covariates.

In models M4, M5 and M6, we investigated the drivers of the genetic component of height growth. In M4, we hypothesized that the genetic component was in uenced by the proportion belonging to each gene pool j. M5 extends M4 by estimating di erent total genetic variances in each gene pool while accounting for admixture among gene pools, following [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF]. Equations for M4 and M5 can be found in Section 4 of the Supplementary Information. In M6, we hypothesized that populations are genetically adapted to the climatic conditions in which they evolved. Thus, we quanti ed the association between height growth and the climatic similarity among provenances, while still accounting for the gene pool assignment, such as:

µ ijsbp = S s + B b(s) + P p + G (p) + cs is + cp p + 6 j=1 q j j cp p ∼ N (0, Φ σ 2 cp p ) (3.3)
where q j corresponds to the proportion belonging of each genotype to the gene pool j, j is the mean relative contribution of gene pool j to height growth, Φ is the covariance matrix describing the climatic similarity between provenances p (Fig. XI.9) and cp p are varying intercepts associated with the climate in each provenance p. Therefore, in M6, the genetic component was partitioned among the regression on the climatic covariates (cp p ), the gene pool covariates ( j ), and the deviations related to the genotype (G (p) ) and provenance (P p ) e ects (resulting, for example, from adaptation to environmental variables not measured in our study).

Predictive models M7 to M12: combining climatic and genomic information to improve predictions

In this last set of models, we replaced the provenance and genotype intercepts with di erent potential drivers of height-growth variation that do not rely directly on the common garden design, namely the gene pool assignment (as in M4), two variables describing the climate in the provenance locations (min.pre the precipitation of the driest month and max.temp the maximum temperature of the warmest month) and either global or regional PEAs. This allowed us to determine whether these potential drivers were able to predict the height-growth genetic component as accurately as the provenance and genotype intercepts (i.e. the variables relying directly on the common garden design). In models M7 and M8, the potential predictors were all included together in the models to quantify their predictive performance conditionally to the other predictors, and were expressed as follows (here for M7):

µ jsbp = S s + B b(s) + 6 j=1
q j j + β min.pre,s min.pre p + β max .temp,s max .temp p + β PEA,s PEA (3.4) where min.pre p and max .temp p are the climatic variables in the provenance locations, β min.pre,s and β max .temp,s their site-speci c slopes, PEA the counts of global PEAs and β PEA,s its site-speci c slopes. M8 is identical to M7, except that the counts of gPEAs were replaced by counts of rPEAs (i.e. regionally-selected alleles, with positive e ects in speci c geographical regions/environments). We also performed models in which the potential predictors were included individually to determine their speci c predictive performance: the gene pool assignment in M9, the provenance climate-of-origin in M10 and the counts of gPEAs and rPEAs, in M11 and M12, respectively.

All models were inferred in a Bayesian framework as this approach better handles unbalanced and multilevel designs [START_REF] Clark | Why environmental scientists are becoming Bayesians[END_REF]) and also to better propagate sources of uncertainty from data and parameter values into the estimates ( [START_REF] Villemereuil | On the relevance of Bayesian statistics and MCMC for animal models[END_REF]. Priors used in the models were weakly informative and are provided in Section 4.2 of the Supplementary Information. To build the models, we used the R package brms [START_REF] Bürkner | brms: An R Package for Bayesian Multilevel Models Using Stan[END_REF], based on the no-U-turn sampler algorithm. Models were run with four chains and between 2,000 and 3,000 iterations per chain depending on the models (including 1,000 warm-up samples not used for the inference). All analyses were undertaken in R version 3.6.3 (R Core Team 2020) and scripts are available at https://github.com/JulietteArchambeau/HeightPinpinClonapin.

Comparing model goodness-of-t and predictive ability

Three partitions of the data (P1, P2 and P3) were used to evaluate model goodness-of-t (i.e. in-sample explanatory power, using training datasets) and predictive ability (out-ofsample predictive power, using test datasets). In P1, we aimed to predict new observations, an observation being a height-growth measurement in a given year on one individual. P1 corresponds to a random split of the data between 75% of observations used to t the models (the training dataset of 24,840 observations) and 25% of observations used to evaluate model predictions (the test dataset of 8,281 observations). Notice that the test dataset of the P1 partition was not totally independent from the training dataset as it belongs to the same genotypes/provenances and blocks/sites. In P2 and P3, we aimed to predict new provenances. P2 corresponds to a random split between a training dataset of 28 provenances and a test dataset containing the remaining 6 provenances. P3 corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented gene pool (i.e. northern Africa, south-eastern Spain and Corsican gene pools; see Section 6.3 of the Supplementary Information for details). Therefore, the test datasets of the P2 and P3 partitions represent fully independent sets of provenances.

To evaluate the model goodness-of-t, we calculated the in-sample (in the training dataset) proportion of the variance explained by each model m in each common garden s, conditional on the age e ect, such as: R 2

ms |a e = (V pred ms -V age 2s )/(V y s -V age 2s ), where V pred ms is the variance of the modeled predictive means from model m in site s, V y s the phenotypic variance in the site s and V age 2s the variance explained by the age e ect in the model M2 in site s. We used V age 2 of model M2 and not of model m because the variance predicted by the di erent xed e ects of some of the models (M7 to M12) could not be properly separated. Moreover, as M2 is the model with the highest predictive ability among the models relying only on the common garden design (Table XI.4), it constitutes an adequate baseline for model comparison. In addition, for baseline models M1 and M2, we also calculated the in-sample proportion of the variance explained by the di erent model components (i.e. genetic, environment and genetic × environment) conditional on the age e ect, e.g. for the genetic component in M1:

R 2 1, en |a e = (V pred 1, en -V age 1 )/(V y -V age 1 ) where V pred 1, en is the variance explained by the genetic component (including the provenance and clone e ects) in M1, V y the phenotypic variance and V age 1 the variance explained by the age e ect in M1.

Finally, to evaluate the model predictive ability, we calculated the out-of-sample (in the test dataset) proportion of the variance predicted by each model m in each common garden s conditional on the age e ect, that we called prediction R 2 ms |a e. Details about calculating prediction R 2

ms |a e and some supplementary indexes used for model comparison are presented in Section 5 of the Supplementary Information.

Results

Underlying drivers of height-growth variation

In this part, we disentangled the di erent components of height-growth variation and provided insights on their underlying drivers. Baseline and explanatory models (i.e. models M1 to M6) explained ∼81.5% of height-growth variation, including 57% due to the age e ect (Table XI.4). Based on M1, ∼47% (45-48% CIs) of the variation that was not explained by the age e ect (i.e. deviating from the growth trajectory) came from the plastic component, ∼11% (11-12% CIs) from the genetic component and ∼43% (42-44% CIs) remained unexplained (Fig.

V.2A & Table XI.5). In M2 (same model as M1 but adding the provenance-by-site interaction), the proportion of variance explained by the provenance-by-site interaction was not di erent from zero (Table XI.5). Therefore, we mostly interpret parameter estimates of M1 (Fig. XI.16). The genetic component was equally attributed to the variance among provenances (σ 2 P ) and genotypes (σ 2 G ; Table XI.15), with the average height of the provenances appearing to be in uenced by their belonging to particular gene pools (Fig.

V.3; and more details in Section 6.1.1 of the Supplementary Information).

Based on M3, the plastic component of height-growth came only marginally from the variance associated with climate similarity among sites, which was more than ve times lower than the variance associated with site intercepts (Fig. V.2B & Table XI.19). However, M3 may be unable to separate the e ect of these two components (see Section 6.1.2 in the Supplementary Information). Indeed, when estimating the e ect of the climate similarity among sites in a model that did not include varying intercepts for the sites, we found that height growth was positively associated with the climatic conditions in Bordeaux and Asturias, and negatively with those in Madrid and Cáceres, the two Mediterranean sites, and to a lesser extent also in Portugal (Table XI.24).

Based on M6, the genetic component of height growth was mostly determined by the climatic similarity among provenances and to a lesser extent by the gene pool assignment (Fig. XI.29). However, the e ects of the gene pools and climatic similarity among provenances were partially confounded, so that the association between height growth and the gene pools was stronger when the climatic similarity among provenances was not included in the models (i.e. model M4; Table XI.25). Populations from climatic regions neighboring the Atlantic Ocean, and mainly belonging to the French and Iberian Atlantic gene pools, were generally 

V.2C & Table

Improved prediction of new observations and provenances by combining climatic and genomic data

In this part, we compared the baseline model M2 (relying exclusively on the common garden design) to the predictive models that either combine genomic and climatic drivers of heightgrowth variation (i.e. models M7 and M8) or include each driver separately (i.e. models M9 to M12). Models combining genomic and climatic data generally explained in-sample variation almost as well as M2, and sometimes even better; e.g. model M8 (which includes regional PEAs, rPEAs) in the Mediterranean sites (Madrid and Cáceres) (Fig. XI.10). Models including each driver of height-growth variation separately had a lower goodness-of-t (for all common gardens) than both M2 and the models combining the genomic and climatic data, except for M12 (the model including only rPEAs), which explained in-sample variation almost as well as M2 and even better than M7 in Madrid (Fig. XI.10).

Model di erences in their predictive ability on new observations (observations not used to t the models; test dataset of the P1 partition) showed similar patterns than for the goodnessof-t (Table V.4), which was expected as the new observations were sampled among the same provenances and genotypes. However, importantly, models combining genomic and climatic data provided much better predictions of height-growth on new provenances (provenances not used to t the models; test datasets of the P2 and P3 partitions) than did M2, with M8 having a better predictive ability than M7 in the Mediterranean sites in the P2 partition and in the Atlantic sites in the P3 partition (Fig. V.4). Models including each driver of height-growth variation separately had also a higher predictive ability on new provenances than M2, albeit lower than models combining genomic and climatic data, except model M12 that showed a higher predictive ability than M7 in the Mediterranean sites in the P2 partition (Fig. V.4). In model M12, one standard deviation increase in rPEAs was associated, on average, with 19.0% increase in height in Madrid, 12.7% in Cáceres, 13.0% in Portugal, 10.4% in Asturias and 9.6% in Bordeaux (section 6.4 of the Supplementary Information). More details on model comparisons are given in Section 5 of the Supplementary Information. ms |a e) in the test datasets (data not used to t the models). In the P1 partition, the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances and the test dataset contains the remaining 6 provenances. The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented gene pool. The exact values of the prediction R 2 ms |a e estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition).

Discussion

We combined genomic, climatic and phenotypic data from ve common gardens and 34 provenances of maritime pine (over 30,000 observations) to predict range-wide variation in height growth, a key adaptive trait in forest trees. The plastic component explained the largest part of the deviation from the mean height-growth trajectory (∼47%), probably due to multiple (confounded) environmental factors, including climate. The genetic component explained ∼11% of the deviation from the mean height-growth trajectory and was mainly associated with the provenance climate-of-origin (a proxy of adaptation to climate), whose e ect was partially confounded with the proportion belonging to distinct gene pools (a proxy for population demographic history and genetic drift, probably re ecting also the di erent selective histories of the gene pools). Importantly, we showed that models combining climatic drivers of adaptation, gene pool assignment and counts of height-associated positive-e ect alleles (PEAs) captured well the genetic component underlying height-growth variation. They also better predicted height growth of new provenances than models relying exclusively on the common garden design or models including separately climatic and genomic information (e.g. the widely used climate-based population response functions). Interestingly, PEAs that show a regional association with height growth (rPEAs) had a higher predictive ability than PEAs identi ed globally across the species range (gPEAs). These results pave the way towards integrating genomics into large-scale predictive models of quantitative trait variation.

Predominant role of height-growth plasticity

Plants are known for their remarkable phenotypic plasticity to changing environments [START_REF] Bradshaw | Evolutionary Signi cance of Phenotypic Plasticity in Plants[END_REF]. In long-lived forest trees, the plastic component of quantitative trait variation estimated based on the common garden design is generally higher than the genetic component (Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF], Franks et al. 2014), e.g. in maritime pine [START_REF] Chambel | Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes[END_REF][START_REF] Corcuera | Phenotypic plasticity in Pinus pinaster δ 13C: environment modulates genetic variation[END_REF][START_REF] De La Mata | Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population[END_REF], Vizcaíno-Palomar et al. 2020). This plastic component is also generally associated with the climatic conditions experienced by the trees (Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF], Franks et al. 2014), allowing them to overcome changing climate up to a certain threshold [START_REF] Matesanz | Global change and the evolution of phenotypic plasticity in plants[END_REF][START_REF] Nicotra | Plant phenotypic plasticity in a changing climate[END_REF], Valladares et al. 2014a). In our study, the plastic component of height growth was largely higher than the genetic component (Fig. V.2) and, although climate plays a role, was likely to be driven by multiple and interacting drivers including the biotic environment, soil quality, and other factors not considered in our study.

Plants also present an important genetic variation in plasticity (i.e. the genotype-byenvironment interaction, G×E; Des [START_REF] Marais | Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment[END_REF][START_REF] Sork | Genomic Studies of Local Adaptation in Natural Plant Populations[END_REF], often approximated by the family or provenance-by-site interaction in forest tree common gardens, as is the case in our study. G×E is particularly prevalent for growth traits in trees [START_REF] Li | Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application[END_REF], as already shown in maritime pine [START_REF] Alía | Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction[END_REF][START_REF] Corcuera | Phenotypic plasticity in Pinus pinaster δ 13C: environment modulates genetic variation[END_REF][START_REF] Correia | Genotype × Environment interactions in Pinus pinaster at age 10 in a multienvironment trial in Portugal: a maximum likelihood approach[END_REF][START_REF] De La Mata | Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population[END_REF]; but see [START_REF] Chambel | Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes[END_REF] where no provenance-speci c responses were observed under two di erent watering regimes). In our study, provenance-by-site interaction was only weakly associated with height growth and the proportion of variance it explained was not di erent from zero (model M2; Table XI.5). Previous work in the context of tree breeding argued that G×E may hinder model transferability across sites and populations [START_REF] Jr | Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments[END_REF], Resende et al. 2012). In maritime pine, our results suggest that large-scale predictions of height-growth variation will be only marginally impacted by not accounting for provenanceby-environment interaction. However, further work is necessary to assess the importance of the genetic variation of plasticity at the genotype level.

Potential drivers underlying height-growth genetic component

Our study shows that the height-growth genetic component in maritime pine is mostly associated with adaptation to climate, whose e ect is partially confounded with the e ect of gene pool assignment, re ecting both adaptive (di erent selective histories) and neutral processes (population demographic history and genetic drift) (Fig. V.2; see also [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. For example, the higher growth of most provenances from the French Atlantic gene pool (known for their high growth under a wide range of conditions, including Mediterranean sites in our study; see also [START_REF] Alía | Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction[END_REF][START_REF] Corcuera | Phenotypic plasticity in Pinus pinaster δ 13C: environment modulates genetic variation[END_REF][START_REF] De La Mata | Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population[END_REF]) was both associated with the provenance climate-of-origin and the gene pool assignment. As another example, in the northern Africa gene pool, the Madisouka (MAD) provenance was taller than the Tamrabta (TAM) provenance, which could be both explained by its noticeable ancestry proportion (23.3%) from the south-eastern Spanish gene pool [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF] or its adaptation to lower elevation (300 m lower than TAM). As a last example, the Leiria (LEI) provenance grew well in Asturias and Bordeaux as was the case for French Atlantic provenances (that share similar climates) but unlike them, it did not maintain growth in drier and warmer sites, probably due to a di erent genetic background (this provenance has a strong central Spain gene pool component; Table XI.3). Nevertheless, in contrast to the three examples above, for some provenances, the e ects of the gene pool assignment and adaptation to climate on height growth could be clearly separated. This was the case, for example, for the Corsican provenances: the higher growth of Pinia (PIA) than Pineta (PIE) can only be explained by adaptation to di erent environmental conditions (and in particular climate), as both belong to the same gene pool. Indeed PIA is at the sea level under a climate similar to that of provenances from Central and south-eastern Spain whereas PIE is located at an altitude of 750 m a.s.l. in the mountains under a climate similar to that of the Atlantic provenances (Fig. XI.9). These di erent adaptations within a same gene pool calls for a more targeted investigation of the Corsican gene pool. More generally, a Q ST -F ST analysis supported adaptive di erentiation of height growth in maritime pine (see details in Section 7 of the Supplementary Information).

The entanglement of the e ect of climate adaptation and gene pool assignment to explain the genetic component of height-growth variation may partly stem from the distinct selective histories experienced in di erent parts of maritime pine range, despite gene pools being identi ed using genetic markers considered neutral [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. This is supported by the estimation of gene pool-speci c heritabilities in our study (model M5): the Corsican gene pool, and to a lesser extent the south-eastern Spain gene pool, have higher heritabilities than the French and Iberian Atlantic gene pools (Fig. XI.13; and see Section 6.1.3 for a potential explanation of this pattern).

Overall, maritime pine proved to be a particularly suitable model species to study the joint in uence of genetic neutral (population demographic history, genetic drift) and adaptive (climate adaptation) processes on quantitative traits. Further work on provenances that have di erent demographic histories but are exposed to similar climates (e.g. the LEI provenance and provenances from the Atlantic gene pools) would be relevant for understanding how a given genetic background guides population adaptation. Conversely, targeting provenances that have a similar demographic history but are found in highly contrasted environments (e.g. the Corsican provenances) would be valuable to identify signatures of adaptation while avoiding common issues due to confounding population structure [START_REF] Berg | Reduced signal for polygenic adaptation of height in UK Biobank[END_REF][START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF][START_REF] Sohail | Polygenic adaptation on height is overestimated due to uncorrected strati cation in genome-wide association studies[END_REF]. Likewise, investigating trait genetic architecture will also help better understand how adaptive and neutral processes have shaped the genotype-phenotype map and how this will in uence future responses to selection (e.g. Kardos and Luikart 2021; see [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] for maritime pine). Finally, it would also be critical to consider drivers of adaptation other than climate, such as resistance to pathogens or other biotic-related traits.

Towards integrating genomics into population response functions

Anticipating how provenances will grow in new environments is key to guide forest conservation strategies and population translocations to compensate for rapid climate change [START_REF] Aitken | Assisted Gene Flow to Facilitate Local Adaptation to Climate Change[END_REF]. To date, population response functions based on the climate in the provenance location have been the most widely used method for anticipating trait values when transplanting provenances in new environments (Fréjaville et al. 2020[START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF], 1999[START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF]. Genome-informed predictive modelling of key adaptive traits is highly promising as it may provide a means to further integrate adaptive or neutral genetic variation in the predictions, and to consider intraspeci c variability at a ner scale than current models, thus gaining in prediction accuracy [START_REF] Holliday | Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding[END_REF]. In valley oak, [START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF] used genomic estimated breeding values (GEBVs; sum of the marker predicted e ects, also known as polygenic scores) to identify genotypes that will grow faster under future climates. In lodgepole pine, [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] showed that phenotype-associated positive-e ect alleles (PEAs, as used in our study) can predict phenotypic traits (e.g. cold injury) as well as climatic or geographical variables. In our study, we investigated whether including genomic information related to past demographic and selective processes resulting in distinct gene pools and counts of trait-associated alleles could improve range-wide height-growth predictions in maritime pine. Models combining climatic conditions in the provenance location, gene pool assignment, and PEAs captured most of the genetic component of height-growth variation (see Fig. XI.10) and better predicted height growth of new provenances, compared to models relying exclusively on the common garden design or models including separately climatic or genomic information (see Fig. V.4). This suggests that range-wide trait prediction would bene t from jointly considering di erent sources of information (i.e. climatic and genomic), even though they may have overlapping e ects (e.g. confounded e ects of provenance climate-of-origin and gene pool assignment), as it may help to embrace the complexity and multidimensionality of the genetic component underlying quantitative traits. Noticeably, regional PEAs were generally better predictors of height growth in new provenances than gene pool assignment or provenance climate-of-origin as, when they were included alone in the models, they made better predictions in the driest common gardens (Madrid, Cáceres and Portugal) and similar ones to models combining multiple drivers of height growth variation in all common gardens except Bordeaux (P2 partition in Fig. V.4). Although this highlights the major role that trait-associated alleles identi ed using GWAS may play in predictive modelling, predicting traits of new provenances depends also on the number of provenances used to t the models and the strength of the genetic relationship among them [START_REF] Hidalgo | Accuracy of genomic prediction of purebreds for cross bred performance in pigs[END_REF][START_REF] Jarquín | A reaction norm model for genomic selection using high-dimensional genomic and environmental data[END_REF][START_REF] Moghaddar | Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep[END_REF], Resende et al. 2012). This was re ected in our study by better predictive ability on new provenances in the P2 partition (random) compared to the P3 partition (containing provenances from underrepresented gene pools) for models including climatic and genomic information separately but not for models considering both jointly (Fig. V.4). Thus combining multiple sources of information may also be particularly relevant for predicting traits in marginal or di cult-to-access populations, as they normally belong to underrepresented geographical areas/gene pools in ecological and genetic studies.

The high predictive ability of PEAs, both alone and combined with climatic and gene pool information, was somehow unexpected given the sparse genomic sampling in our study : 5,165 SNPs to cover the 28 Gbp maritime pine genome [START_REF] Zonneveld | Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram[END_REF]. Indeed, conifers have particularly huge genomes, generally ranging from 18 to 35 Gbp [START_REF] Mackay | Towards decoding the conifer giga-genome[END_REF]) and thus rendering the current cost of whole-genome resequencing prohibitive [START_REF] Holliday | Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding[END_REF]. Targeted genotyping approaches, such as the one used in the present study, select candidate genes based on previous population and functional studies, thus allowing to include potential targets of selection and climate adaptation, but probably inducing an ascertainment bias [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. However, as height is a particularly polygenic trait (degree of polygenicity estimated at ∼7% in de [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF], we were able to identify a considerable number of PEAs despite the weak genome coverage of our study. Further genomic sampling would be highly valuable to capture the polygenic architecture of height more broadly, turning PEAs into much better predictors than the provenance climate-of-origin or the gene pool assignment, and ultimately making climatic data redundant, at least for main range populations (see above for marginal populations). This would also allow to characterize the genetic variation within provenances more precisely, thereby increasing the estimation accuracy and reducing the residual variance. Similar to [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] and MacLachlan et al. ( 2021) who selected the positive-e ect alleles as the 1% of SNPs that showed the strongest association with phenotypes (estimated via a GWAS performed on 18,525 SNPs), we used PEA counts instead of the more commonly used polygenic scores [START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF], Fuller et al. 2020[START_REF] Pritchard | The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation[END_REF]. Unlike polygenic scores, PEAs do not account for allele e ect sizes, thus minimizing the circularity of the analysis (i.e. e ect sizes that are estimated based on the same dataset as the one used for the models, only serve for PEAs identi cation) and potentially enhancing the prediction accuracy across genetic groups compared to polygenic scores. Indeed, low observed transferability of polygenic scores across genetic groups [START_REF] Sella | Thinking about the evolution of complex traits in the era of genome-wide association studies[END_REF], Martin et al. 2017, 2019) may stem from varying e ect sizes of "peripheral" alleles (i.e. alleles indirectly a ecting the phenotype), as suggested in [START_REF] Mathieson | The omnigenic model and polygenic prediction of complex traits[END_REF].

Although combining climatic and genomic information allowed us to capture most of the genetic component of height-growth variation (Fig. XI.10), the residual variance remained high in our study. As already mentioned, this may be partly related to the models' di culty in accounting for genetic variation within provenances, which might be improved by denser genomic sampling. However, this unexplained variance may also originate from developmental stochasticity, which can play an important role in explaining di erences between individuals with the same genotype (Ballouz et al. 2019, Vogt 2015). Height growth may also be in uenced by the correlative e ects of other traits. For example, [START_REF] Stern | Disentangling selection on genetically correlated polygenic traits using whole-genome genealogies[END_REF] recently showed that variation in some human traits (hair color and educational attainment), previously thought to be under selection, can instead be explained by indirect selection via a correlated response to other traits. Therefore, multi-trait models may be the next necessary step to improve our understanding and predictive ability of quantitative trait variation at large geographical scales (e.g. [START_REF] Csilléry | Adaptation to local climate in multi-trait space: evidence from silver r (Abies alba Mill.) populations across a heterogeneous environment[END_REF].

A last noticeable results was that rPEAs (positive-e ect alleles identi ed in speci c geographical regions, i.e. particular environments) had generally a higher predictive ability than gPEAs (positive-e ect alleles identi ed range-wide) (Fig. V.4). Interestingly, only a small proportion of rPEAs were shared among geographical regions in our study (20% shared between the Iberian and French Atlantic regions, 12% between the French Atlantic and Mediterranean regions, and 24% between the Iberian Atlantic and Mediterranean regions; Fig. XI.2), although we cannot exclude that the proportion of shared rPEAs among regions is a function of the sample size (see details in Section 2.2 of the Supplementary Information). Moreover, those that were shared among di erent regions showed consistently similar e ects across regions (e.g. positive e ects in two or more regions rather than antagonist e ects). This supports the predominance of conditional neutrality, i.e. alleles that are advantageous in some environments and neutral in others, over antagonistic pleiotropy, i.e. alleles that are advantageous in some environments and disadvantageous in others (Ti n and Ross-Ibarra 2014). Such pattern has already been reported in plants [START_REF] Anderson | Genetic trade-o s and conditional neutrality contribute to local adaptation[END_REF][START_REF] Prunier | Parallel and lineage-speci c molecular adaptation to climate in boreal black spruce[END_REF]. Our results show that, despite a high stability in the level of polygenicity for height between the Atlantic and Mediterranean regions (de [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF], height-growth variation in Mediterranean sites is unlikely to be a ected by the same loci as in the other regions, probably as a result of genetic divergence in separated southern refugia during the last glaciation. Overall, identifying positive-e ect alleles for di erent geographical regions separately has the potential to greatly improve the predictive ability of the models, but at the cost of reducing GWAS power (due to lower sample size than in global, wide-range analyses).

Finally, caution has to be taken when generalizing our results to older trees as the drivers of height growth in young trees may di er from that of adult trees. For example, G×E on tree height can be age-dependant (Gwaze et al. 2001[START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] Zas | Stability across sites of Douglas-r provenances in northern Spain[END_REF]) and the plastic component may be higher in younger trees, especially in maritime pine (Vizcaíno-Palomar et al. 2020). Nevertheless, a recent measurement in the Bordeaux common garden (2018) showed a high correlation between young saplings and 10-year old trees for height (Pearson's correlation coe cient of 0.893 based on height BLUPs; see [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] for details on BLUP estimation). Moreover, our study remains indicative of how trees respond to varying environmental conditions during establishment and early-growing stages, a critical phase where most mortality (i.e. selection) is expected to take place [START_REF] Postma | Early life stages contribute strongly to local adaptation in Arabidopsis thaliana[END_REF]. In addition to ontogenic e ects, high mortality in the Mediterranean common gardens (Cáceres and Madrid), after a marked summer drought, may have biased estimates of some parameters of interest. Indeed, if this environmental ltering was not independent of tree height, it could have resulted in an underestimation of the genetic variance. Nonetheless, height distributions in Cáceres and Madrid were only slightly right-skewed, suggesting uniform selection across height classes (Fig. XI.21), and thus no bias due to high mortality in these common gardens.

Conclusion

The present study connects climate-based population response functions that have been extensively used in predictive models for forest trees (Leites et al. 2012a[START_REF] Rehfeldt | Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models[END_REF], 1999[START_REF] Wang | Integrating environmental and genetic e ects to predict responses of tree populations to climate[END_REF] with recent genomic approaches to investigate the potential drivers behind the genetic and plastic components of height-growth variation and predict how provenances will grow when transplanted into new climates. The integration of genomic data into range-wide predictive models is in its infancy and still lacks a well-established framework, especially for non-model species such as forest trees. We showed that combining climatic and genomic information (i.e. provenance climate-of-origin, gene pool assignment and trait-associated positive-e ect allele counts) can improve model predictions for a highly polygenic adaptive trait such as height growth, despite sparse genomic sampling. Further genomic sampling may help to improve the accuracy of the estimates, notably through improved characterization of within-provenance genetic variation. Moreover, comparative studies between maritime pine and more continuously distributed species (e.g. Scots pine; Alberto et al. 2013) and/or living under stronger climatic limitations, would be highly valuable to determine whether our ndings can be generalized to species with contrasted population demographic and selective history.

Finally, our study focuses speci cally on the height-growth genetic component of standing populations, but considering evolutionary processes (e.g. genetic drift in small populations, extreme selection events, etc.) into the predictions would be necessary to anticipate the response of future forest tree generations to changing climatic conditions and thus provide a much-needed longer-term vision (Waldvogel et al. 2020).

Abstract

A major goal in evolutionary biology is to understand how populations adapt to their environment and predict how they will respond to future conditions, in particular climate change. The genomic o set approach is an increasingly popular metric aiming at identifying populations for which the gene-environment relationships will be the most disrupted under new climatic conditions, i.e. populations at risk of short-term climate maladaptation. However, this approach relies on key assumptions in need of empirical validation. We used 9,817 SNPs from 34 populations of maritime pine, a keystone forest tree from southwestern Europe and north Africa. Our results suggest that populations already experiencing mild-winter conditions (i.e. most Atlantic populations and Mediterranean populations in southeastern France and northwestern Italy) are at higher maladaptation risk under climate change. In a validation analysis based on independent height and mortality data from common gardens and natural populations (National Forest Inventories, NFI), genomic o set predictions were generally negatively associated with population performance. This con rms the genomic o set assumption that its predictions are indicative of (future) tness declines. However, genomic o set predictions were highly sensitive to how strictly the candidate SNPs were selected and the modelling approach used. Moreover, among the di erent ways tested to predict genomic o set, none was consistently accurate in the di erent validation steps. This highlights the need for further research evaluating di erent genomic o set estimation and validation approaches to produce robust and accurate predictions that can con dently be used to guide conservation and management strategies. Introduction

There is growing evidence that biodiversity is already being a ected by anthropogenic climate change [START_REF] Parmesan | A globally coherent ngerprint of climate change impacts across natural systems[END_REF]. Populations and species are experiencing range shifts or losses [START_REF] Hill | Rapid Range Shifts of Species Associated with High Levels of Climate Warming[END_REF], and changes in their genomic composition (Bradshaw andHolzapfel 2006, Jump and[START_REF] Peñuelas | Running to stand still: adaptation and the response of plants to rapid climate change[END_REF], which may result in widespread local population decline and, potentially, species extinctions (Urban 2015, Wiens 2016). Forecasting the shortterm impacts of climate change on species and populations has recently been improved by shifting from traditional distribution-based approaches, which assume that populations within species respond uniformly to climate (Guisan and Thuiller 2005), to approaches integrating intraspeci c genetic variation (Banta et al. 2012[START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF][START_REF] Jay | Forecasting changes in population genetic structure of alpine plants in response to global warming[END_REF][START_REF] Razgour | Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections[END_REF], Valladares et al. 2014a). In particular, adaptive genetic variation is a key component of population response to changing environmental conditions. Optimal phenotypes to a given environment result from the evolutionary process of local adaptation through natural selection [START_REF] Davis | Range Shifts and Adaptive Responses to Quaternary Climate Change[END_REF][START_REF] Hereford | A Quantitative Survey of Local Adaptation and Fitness Trade-O s[END_REF], Jump and Peñuelas 2005[START_REF] Kawecki | Conceptual issues in local adaptation[END_REF][START_REF] Leimu | A Meta-Analysis of Local Adaptation in Plants[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]. Malaptation is the ip side of adaptation: the process of producing suboptimal phenotypes (Brady et al. 2019b[START_REF] Crespi | The evolution of maladaptation[END_REF]. Maladaptation occurs within populations as, for selection to act on a population, not all individuals can have the optimal phenotype (Brady et al. 2019a[START_REF] Crespi | The evolution of maladaptation[END_REF]. Maladaptation is also common at the population level, with some populations deviating from the adaptive peak in their native environment, which may be due to changes in population trait distributions or in the environment, or arising from eco-evolutionary or eco-plasticity feedbacks [START_REF] Angert | What Do We Really Know About Adaptation at Range Edges? Annual Review of Ecology[END_REF], Brady et al. 2019b). Climate change is potentially one major cause of future maladaptation as it disrupts the current adaptation patterns by shifting the optimal phenotype away from current phenotypes (i.e. scenario of the moving target in Brady et al. 2019a). Populations with su cient adaptive genetic variation are likely to cope with moderate environmental changes by evolving towards the new optimum (Brady et al. 2019b). However, identifying the adaptive component of individual and population genetic variation is highly challenging [START_REF] Oetting | Validation Is Critical for Genome-Wide Association Study-Based Associations[END_REF], and whether populations will be able to adapt to the predicted rapid climate change remains uncertain [START_REF] Chevin | Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory[END_REF].

In forest trees, adaptation to abiotic and biotic gradients shapes the geographical patterns of phenotypic and genetic variation [START_REF] Aitken | Adaptation, migration or extirpation: climate change outcomes for tree populations[END_REF][START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF][START_REF] Langlet | Two Hundred Years Genecology[END_REF][START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF][START_REF] Sork | Evidence for Local Adaptation in Closely Adjacent Subpopulations of Northern Red Oak (Quercus rubra L.) Expressed as Resistance to Leaf Herbivores[END_REF]. Maladaptation is also common, one of the best documented patterns across boreal, temperate and Mediterranean tree species being that populations at the leading edge would bene t from a temperature increase, at least in the short term (Fréjaville et al. 2020[START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF], 2002[START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]. A potential explanation is that these populations may not be at equilibrium with the current climate due to adaptation lags along their post-glacial colonization routes (García-Valdés et al. 2013, Johnstone and[START_REF] Johnstone | Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine[END_REF]. Populations in the Mediterranean area are particularly prone to maladaptation as they are often small and fragmented and therefore more subject to genetic drift [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF]. Moveover, the Mediterranean area is expected to experience strong changes in precipitation and temperature in the coming decades (Hoegh-Guldberg et al. 2018), rendering the tree populations in this region particularly vulnerable. This high vulnerability is accentuated by the speci c features of forest trees: they are sessile and have long generation times, so that they may not be able to adapt or migrate fast enough to track rapid climate change [START_REF] Aitken | Adaptation, migration or extirpation: climate change outcomes for tree populations[END_REF][START_REF] Browne | Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene ow[END_REF], Dauphin et al. 2021, Jump and Peñuelas 2005). They also show high phenotypic plasticity that could help to survive climate change up to a certain threshold (Benito [START_REF] Garzón | ∆TraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF][START_REF] Nicotra | Plant phenotypic plasticity in a changing climate[END_REF], or could even promote evolutionary changes via genetic accommodation [START_REF] Wund | Assessing the Impacts of Phenotypic Plasticity on Evolution[END_REF]. For all these reasons, to what extent the short-term maladaptations caused by climate change will trigger widespread local extinctions or be o set by rapid adaptations or large plastic responses remains largely unknown in forest trees. This question requires particular attention in forest trees as they have great economic and ecological importance. Indeed, forest trees play a major role in terrestrial ecosystems as foundation species, provide wood and bre to satisfy an increasing demand of wood-based products, and are a main source of carbon sequestration [START_REF] Bonan | Forests and Climate Change: Forcings, Feedbacks, and the Climate Bene ts of Forests[END_REF][START_REF] Brockerho | Forest biodiversity, ecosystem functioning and the provision of ecosystem services[END_REF][START_REF] Gibson | Primary forests are irreplaceable for sustaining tropical biodiversity[END_REF][START_REF] Hooper | E ects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge[END_REF].

In this study, we used maritime pine (Pinus pinaster Ait.), a tree species with fragmented and highly structured populations in the Mediterranean and Atlantic regions of western Europe and North Africa [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], to identify the populations whose gene-environment relationships will be the most disrupted under climate change, i.e. populations at risk of shortterm climate maladaptation (Capblancq et al. 2020a). Based on 9,817 common (MAF> 1%) single nucleotide polymorphisms (SNPs), we modeled the turnover in allele frequencies along current environmental gradients and estimated a metric of change of the genomic composition required to maintain the current gene-environment relationships under future climates across the species range (referred as 'genomic o set' in Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF]. Then we put special emphasis in validating the key assumption that populations with high predicted genomic o set should experience a decrease in absolute tness or declining demographic trends (Capblancq et al. 2020a). A rst validation step consisted in detecting a negative association between population performance (i.e. height and mortality rates) and genomic o set predictions in common gardens (rather than in future climates), and compared it with the association between population performance and ve climatic transfer distances. A second validation step involved searching for an association between recent mortality rates in natural populations (based on National Forest Inventories data) and genomic o set predictions under future climates, assuming that populations predicted to su er from short-term climate maladaptation already experience higher mortality rates. Genomic o set predictions in common gardens and natural populations were derived for all possible combinations of four sets of SNPs (i.e. reference SNPs and three sets of more or less strictly selected candidate SNPs for adaptation to climate using two geneenvironment association analyses, GEAs), two modelling approaches (i.e. Gradient Forests, GF, and Generalised Dissimilarity Modelling, GDM) and two more or less alarming future climate scenarios (only for predictions in natural populations). As the genomic o set approach does not rely on phenotypes, such validation of genomic o set predictions with independent phenotypic data is of major importance to assess whether populations with high genomic o set are truly at risk of tness and demographic decline, and can therefore be con dently considered as vulnerable to climate change (Capblancq et al. 2020a, Rellstab et al. 2021).
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Materials & Methods

Model species

Maritime pine (Pinus pinaster Ait., Pinaceae) is a wind-pollinated, outcrossing and long-lived tree species with large economic and ecological importance in Western Europe and North Africa: largely exploited for its wood, stabilizing coastal and fossil dunes and, as a foundation species, supporting biodiversity (Viñas et al. 2016). Natural populations of maritime pine are scattered over a large range of environmental conditions, which makes the species a relevant case study for studying local adaptation. In addition, several studies have provided evidence of genetic di erentiation for adaptive traits in maritime pine (e.g. [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF][START_REF] González-Martínez | Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits[END_REF]. Maritime pine can grow in widely di erent climates: the dry climate along the northern coasts of the Mediterranean Basin (from Portugal to western Italy), the (Mediterranean) mountainous climates of south-eastern Spain and Morocco, the wetter climate of the Atlantic region (from north-western Spain and Portugal to the western part of France), and the continental climate of central Spain. Maritime pine can also grow on a wide range of substrates, from sandy and acidic soils to more calcareous ones, and can live in re-prone regions, showing intraspeci c variability in re-related traits such as early owering and serotiny [START_REF] Budde | In situ genetic association for serotiny, a re-related trait, in Mediterranean maritime pine (Pinus pinaster)[END_REF], Tapias et al. 2004). Studying local adaptation in maritime pine is challenged by its strong population genetic structure: six distinct gene pools have been identi ed [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], Jaramillo-Correa et al. 2015), presumably resulting from the expansion of as many glacial refugia [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF]).

Single-nucleotide polymorphism (SNP) genotyping

A rangewide sample of natural populations covering all known gene pools in maritime pine (454 trees from 34 populations; see Table XII.1 for the number of trees in each population and Fig. VI.1 for their location) were genotyped with the Illumina In nium assay described in Plomion et al. (2016b) and with an A ymetrix assay developed in the framework of the H2020 EU B4EST project (4Tree; https://b4est.eu). We ltered out SNPs with MAF < 1% and more than 20% missing data, which resulted in 9,817 high-quality polymorphic SNPs, of which 2,855 were genotyped by both assays to ensure sample identity and estimate genotyping errors. The percentage of missing data per tree was less than 12% for all trees, with an average of 2.5%. 

Climatic, soil, topographic and re-related data

Climatic data were extracted from the WorldClim database at 30 arc-seconds spatial resolution [START_REF] Fick | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[END_REF]. As a proxy of the climate under which the populations have evolved, we used the average of four climatic variables over the period 1970-2000, namely the maximum temperature of the warmest month (°C), the minimum temperature of the coldest month (°C), the annual precipitation (mm) and the precipitation seasonality (coe cient of variation, %). The potential future climate was described by two shared socio-economic pathways (the moderately alarming SSP3-7.0 and the strongly alarming SSP5-8.5) averaged over the period 2041-2060 at 2.5 arc-minutes spatial resolution. For each of these SSPs, the predictions of the nine global climate models available in WorldClim were averaged to account for scenarios' uncertainty (see Section 1.2 in the Supplementary Information). Topographic data were generated from NASA's Shuttle Radar Topography Mission (SRTM) at 90 m resolution. We used the SAGA v2.3.1 [START_REF] Conrad | System for Automated Geoscienti c Analyses (SAGA) v. 2.1.4[END_REF] to calculate the topographic ruggedness index (TRI; m) which quanti es the terrain heterogeneity, i.e. di erences in elevation between adjacent cells [START_REF] Riley | Index that quanti es topographic heterogeneity[END_REF]. Two soil variables were extracted from the European Soil Database at 1 km resolution: the total water content in the topsoil (0-30 cm; mm) and the depth available to roots (cm) [START_REF] Hiederer | Mapping soil properties for Europe spatial representation of soil database attributes[END_REF]. The average of the monthly burned area (in hectares) from June 1995 to December 2014 was extracted from the GFED4 database at 0.25 degrees resolution (∼28 km resolution) [START_REF] Giglio | Analysis of daily, monthly, and annual burned area using the fourth-generation global re emissions database (GFED4)[END_REF]. At the population level (i.e. one value per population location), these eight selected environmental variables had at most a correlation coe cient of 0.7 (Fig. XII.1).

Identi cation of candidate SNPs potentially involved in local adaptation

We identi ed candidate SNPs potentially involved in local adaptation using both univariate and multivariate genotype-environment association (GEA) methods following Forester et al. (2018). Univariate GEA methods perform well for loci under moderate and strong selection but not under weak selection, whereas multivariate GEA methods perform well across all levels of selection. Missing allelic values were imputed using the most common allele within the main gene pool of the genotype of concern (although we acknowledge that some genotypes had high admixture rates).

For univariate GEA analysis, we used the standard covariate model with the Importance sampling approximation implemented in the B P software [START_REF] Gautier | BayPass Genome-Wide Scan for Adaptive Di erentiation and Association Analysis with population-speci c covariables (en lien avec la publication Gautier M[END_REF]. This model explicitly accounts for the population genetic structure via a covariance matrix based on the population allele frequencies. The association between each environmental covariate and the SNPs was assessed according to the median Bayes Factor (in deciban units, db) calculated over ve independent runs. We used a threshold of 5 db (corresponding to 3:1 odds) to identify the candidate SNPs.

For multivariate GEA analysis, we used Redundancy Analysis (RDA). Forester et al. ( 2018) showed RDA to have the best ratio between a low rate of false positives and a high rate of true positives across all levels of selection. We performed a partial RDA conditioned on the ancestry coe cients obtained with nine nuSSRs and 1,745 SNPs common to our study using the S software (see details in [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. We extracted from the signi cant constrained axes the SNP loadings in the ordination space. The SNPs that are more likely to be under selection (i.e. the candidate SNPs) are in the tail of the SNP loading distribution, thus we used a three standard deviation cuto to identify them.

We grouped the candidate SNPs identi ed by B P and the RDA as follows (to represent di erent levels of con dence): 1) the common candidates between the two GEA methods, 2) the candidates under expected strong selection: RDA candidates that show a strong association with at least one covariate, i.e. with β RDA > 0.3, and all the B P candidates, and 3) the merged candidates identi ed by at least one of the methods, either B P or the RDA, this group being the less conservative.

Genomic o set estimation

We had four sets of SNPs: the three sets of candidate SNPs de ned above and a set of reference SNPs including all 9,817 SNPs. First, independence of loci within each set of SNPs was assessed by calculating pairwise linkage disequilibrium (LD) using the 'LD' function of the R package genetics v1.3.8.1.2. Then, for each set of SNPs, the relationship between current genomic composition and environmental conditions was estimated using two approaches from community-level modelling that were extended by Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF] to model genomic variation across the landscapes: Generalised Dissimilarity Modelling (GDM; [START_REF] Ferrier | Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[END_REF]) and Gradient Forests (GF; [START_REF] Ellis | Gradient forests: calculating importance gradients on physical predictors[END_REF]. These two approaches model the compositional turnover in genomic variation as a function of environmental covariates (via allele turnover functions) and e ciently accommodate nonlinear gene-environment relationships (Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF]. Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF] advise to use them in tandem as they present complementary pros and cons: GDM provides a direct means of considering the geographical distance among populations (i.e. proxy of the population genetic structure) while GF better handles both correlations and interactions among predictors.

In the GDM analysis, the response variable is a matrix of genetic distances/di erentiation between populations (a 34 × 34 matrix in our case). We estimated a pairwise F ST matrix according to [START_REF] Weir | Estimating F-Statistics for the Analysis of Population Structure[END_REF] using the R package hierfstat v0.04-22 [START_REF] Goudet | hierfstat, a package for r to compute and test hierarchical F-statistics[END_REF]). To facilitate model convergence and enable comparisons between reference and candidate SNPs (that displayed di erent ranges of observed F ST values), the F ST matrix was scaled by subtracting the minimum value and then dividing by the maximum minus the minimum value (resulting in F ST values lying between 0 and 1). The GDM models were performed with the R package gdm v1. 4.2 (Fitzpatrick et al. 2020). The model t was assessed by the percentage of deviance explained and the model generalization ability by cross-validation (100 iterations of 2, 6 and 9 folds cross-validation) using the R package sgdm v1.0 [START_REF] Leitão | sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm[END_REF]). In the GF analysis, the response variable is the population allele frequencies. To ensure regression robustness, we ltered away the SNPs that were polymorphic in only ve or less than ve populations (see Table XII.8 for the number of SNPs left). The GF models were performed with the R package gradientForest [START_REF] Ellis | Gradient forests: calculating importance gradients on physical predictors[END_REF]) and using the same parameters as in Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF]: 2000 regression trees per SNP, default values for the number of covariates randomly sampled as candidates at each split and the proportion of samples used for training and testing (∼0.63 and ∼0.37, respectively), maxLevel = log2(0.368*34/2) and a covariate correlation threshold of 0.5 (accounting for correlation between covariates by calculating conditional covariate importance). No imputation of the missing values was carried out when estimating the pairwise F ST matrix (GDM) and the provenance allele frequencies (GF). The population genetic structure, resulting from the population demographic history and other spatial processes, was partially accounting for with the geographical distance between populations in the GDM analysis and with Moran's eigenvector map variables (MEM; Borcard andLegendre 2002, Dray et al. 2006) in the GF analysis, as calculated with the R package adespatial v0. 3-8 (Dray et al. 2020).

In the GDM and GF analyses, the maximum height of each turnover function indicates the total amount of turnover in allele frequencies associated with that covariate and thereby corresponds to the covariate's relative importance in explaining changes in allele frequency while holding all other covariates constant (i.e. a partial genetic distance). In the GDM analysis, to obtain an estimate of the relative importance of the covariates between 0 and 1, we rescaled the splines by dividing by the maximum value across all covariates. In the GF models, the relative importance of the covariates is given by a weighted R 2 across all SNPs. The shape of the GDM and GF turnover functions was used to identify the regions along the covariate gradient associated with a high rate of change in allele frequencies, irrespective of the underlying allele frequencies.

The GDM and GF turnover functions were then used to transform the current and future values of the environmental covariates across the maritime pine range into genetic importance values, which allows to project the current and future genomic composition across the landscape under the two scenarios of future climates considered (i.e. SSP3-7.0 and SSP5-8.5). To aid visualization, a principal component analysis (PCA) was used to reduce the dimensionality of the transformed environmental covariates and a RGB colour palette was assigned to the rst three PCs, with resulting similar colour for similar expected patterns of genomic composition. We calculated the Euclidean distance between the current and future genetic importance values, which can be seen as the change in genomic composition required to maintain the current gene-environment relationships (referred as the 'genomic o set' in Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF].

It can be noted that the estimated changes in genomic composition between current and future environmental conditions re ect only di erences in climatic conditions as soil, topography and burned area were considered xed over time (although we acknowledge that burned area is expected to increase with climate change; Pausas and Fernández-Muñoz 2012).

Genomic o set validation

A key preliminary step before translating genomic o set values into potential population (mal)adaptation is to establish the correlation between genomic o set-based predictions and absolute tness or demographic trends. For this, we used two complementary validation methods.

First, we evaluated whether populations that perform poorly in common gardens were those with the highest predicted genomic o set in the common gardens (calculated based on the environmental di erences between the populations and the common gardens, rather than future climates), or those with the highest climatic transfer distance (i.e. absolute di erence between the climate of the population locations and the common gardens). It can be noted that genomic o set was not predicted based on climate di erences only between the population locations and the common gardens, but also accounted for soil and topographic di erences, and therefore did not only represent climate (mal)adaptation (see Section 1.3 in the Supplementary Information for more details). The performance of the 34 genotyped populations (see Section 3.2) was estimated from height and mortality measurements on trees aged 8 to 85 monthold in a network of ve common gardens planted in di erent environments: three under the favorable conditions of the Atlantic European region with mild winters, no severe cold events, high annual rainfall and relatively wet summers (trial sites of Asturias, Bordeaux and Portugal) and two in the harsh environments of the Mediterranean region with high temperatures and an intense summer drought (trial sites of Cáceres and Madrid) (Fig. VI.1). We used height measurements from all ve common gardens while mortality measurements were taken from the two Mediterranean common gardens, Cáceres and Madrid, in which a severe summer drought exacerbated by clay soils killed 92% and 72% of the trees, respectively (Table XII.2). For each of the eight combinations of SNP sets (reference SNPs and the three candidate SNP sets) and models (i.e. GDM and GF), we estimated the association between BLUPs for tree height and mortality and the predicted genomic o set (see models in Section 1.3 in the Supplementary Information). Using the same models, we also estimated the association between tree performance and ve climate transfer distances obtained independently from the four climate variables used to calculate genomic o set (see Section 3.3) and mean annual temperature (in °C), which is often used to estimate population response functions in forest trees (e.g. [START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF]McKenney 2017, Rehfeldt et al. 2002). Last, we compared the model goodness-of-t based on the proportion of variance explained by each model and the model predictive ability based on the leave-one-out cross-validation (LOOCV) procedure from the R package loo v2.2.0.

Second, we evaluated whether natural maritime pine populations in geographical regions where genomic o set was predicted to be high showed higher mortality rates. We used mortality data from the French and Spanish National Forest Inventories (NFI) estimated in [START_REF] Changenet | Occurrence but not intensity of mortality rises towards the climatic trailing edge of tree species ranges in European forests[END_REF] and covering the mortality observations between 2000 and 2014 for the French inventory and between 1986 and 2008 for the Spanish inventory. Trees diameter at breast height ranged from 10 to 263 cm, hence including sapling and adult trees [START_REF] Changenet | Occurrence but not intensity of mortality rises towards the climatic trailing edge of tree species ranges in European forests[END_REF]. We acknowledge that the predicted genomic o set, which measures a potential future climate maladaptation, cannot causally explain the recent mortality patterns. Nevertheless, a positive association between the genomic o set and recent mortality patterns could indicate that populations predicted to su er from climate maladaptation are already showing higher mortality rates. We independently estimated the association between mortality rates and the di erent genomic o set predictions obtained from the sixteen combinations of SNP sets (i.e. reference SNPs and the three candidate SNP sets), models (i.e. GDM and GF) and scenarios of future climates (i.e. SSP3-7.0 and SSP5-8.5) using the statistical model described in Section 1.4 in the Supplementary Information.

All models of the validation part were implemented in a Bayesian framework using the Stan probabilistic programming language [START_REF] Carpenter | Stan : A Probabilistic Programming Language[END_REF], based on the no-U-turn sampler algorithm. Models were run with four chains and 2,000 iterations per chain (including 1,000 warm-up samples not used for the inference). All analyses were undertaken in R version 3.6.3 (R Core Team 2020) and scripts are available at https://github.com/JulietteArchambeau/ GenomicO setPinPin.

Results

Genomic o set estimation

Eight candidate SNPs were identi ed by the two GEA methods (i.e. common candidates), 79 candidate SNPs showed a strong association with at least one covariate (i.e. candidates under expected strong selection) and 370 candidate SNPs were identi ed by at least one GEA method (i.e. merged candidates) (Table XII.4). LD was low for both reference SNPs and the three candidate SNP sets (Table XII.6). In the univariate GEA (B P ), the vast majority of candidate SNPs were associated with the minimum temperature of the coldest month, including seven of the eight common candidate SNPs (Table XII.4). These seven common candidate SNPs were all also associated with the minimum temperature of the coldest month in the multivariate GEA (RDA) and ve had β RDA > 0.3.

The percentage of deviance explained by the GDM models ranged from 41% for the common candidates to 64% for the reference SNPs (Table XII.7; see also the predicted vs. observed genomic distance in Fig. XII.6), while their mean predictive ability quanti ed via 100 independent samples of 9-fold cross validation ranged from 23% to 50%, respectively (Table XII.7; see also mean predictive ability for 6-fold and 2-fold cross-validations in this table). In the GF models, individual SNP R 2 averaged across all SNPs ranged from 23% for the common candidates to 37% for the candidates under expected strong selection (Table XII.8).

In both the GDM and GF analyses, covariates related to population structure (i.e. the geographical distance in the GDM models and the MEM in the GF models) were the most important predictors contributing to the genomic turnover, i.e. tted I-splines and turnover functions with the highest maximum height in the GDM ( The predicted spatial variation in current and future genomic composition varied greatly among the models used to estimate the current gene-environment relationships (i.e. GDM vs GF models) and the sets of SNPs considered (see Section 2.3 in the Supplementary Information). As a result, the predicted spatial variation in genomic o set across the species range also showed strong di erences among models and sets of SNPs but not among the two scenarios of future climate (Figs. VI.3 and XII.27). In both the GDM and GF approaches, higher predicted values of genomic o set were found for the more stringently selected sets of candidate SNPs, with the highest values being for the set of common candidate SNPs and with relatively small 

Genomic o set validation

Regression coe cients accounting for the linear association between the eight di erent predicted genomic o sets in common gardens and tree height or mortality were nearly all in the expected direction: negative in height models (Fig. XII.30), thereby suggesting that populations with higher genomic o set grow less, and positive in mortality models (Fig. XII.32), thereby suggesting that populations with higher genomic o set show higher mortality rates.

The proportion of explained variance varied widely among height models and no clear pattern emerged regarding which modelling approach (GDM or GF) or set of SNPs (reference SNPs or the three sets of candidate SNPs) provided the best performing genomic o set across all common gardens (Fig. VI.4). GF-based genomic o sets were better predictors than GDM-based genomic o sets in two of the Atlantic common gardens (Portugal and Asturias, except for reference SNPs) while the opposite was true in Bordeaux (except for the common candidate SNPs; Fig. VI.4). Indeed, for Atlantic common gardens, genomic o set predictions based on the set of common candidates with the GDM approach were not associated with height di erences q q q q q q q q q q q q q q q q q q q q Climatic transfer distance Genomic offset in any common garden while those based on the other sets of SNPs explained between 25% and 50% of the height-BLUPs variance. Conversely, with the GF approach, more than 25% of the height-BLUPs variance was explained when using any of the three sets of candidate SNPs (including the common candidate SNPs) in Asturias, the reference SNPs in Bordeaux, and all SNP sets in Portugal (Fig. VI.4). Height di erences in the Mediterranean commons gardens were poorly explained by the genomic o set predictions, except for the GDM-based predictions in Cáceres using the set of merged candidates, which explained about 40% of the height-BLUPs variance, and the GDM-based predictions in Madrid for the set of candidates under expected strong selection, which explained about 25% (Fig. VI.4). Last, in all common gardens, at least one of the genomic o set predictions showed similar, or better (e.g. in Cáceres), explanatory ability than the best performing climatic transfer distance (which were most often the minimum temperature of the coldest month and the annual precipitation; Figure VI.4). Model di erences in predictive ability evaluated with the Bayesian leave-one-out cross validation supported the model ranking obtained with the R 2 estimates, and are therefore not shown here (see Tables XII.9 to XII.16).

With respect to the mortality models in the two Mediterranean common gardens, GF-based genomic o set predictions were generally better predictors than those based on GDM, and were as good predictors as the best performing climatic transfer distances (Tables XII.17-XII.18). In Cáceres, the strength of the association between mortality rates and GF-based genomic o set predictions decreased with the stringency in the selection of SNP sets, i.e. no association for common candidates, and maximum association for reference SNPs (Fig. XII.32). In contrast, GDM and GF-based genomic o set predictions in Madrid were better predictors of the mortality rates when based on the set of candidates under expected strong selection (Fig. XII.32). q q q q q q q q Generalised Dissimilarity Modeling Gradient Forests
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A) q q q q q q q q Generalised Dissimilarity Modeling Gradient Forests Finally, when considering natural populations of maritime pine (National Forest Inventory data from France and Spain), we found a positive association between both GDM and GF-based genomic o set predictions and mortality rates for the set of common candidates (Fig. VI.5). This was also true for the sets of candidates under expected strong selection and merged candidates in the GDM approach in France (Fig. VI.5B). However, in all other cases, the association between genomic o set predictions and mortality rates was negative, suggesting lower mortality rates in populations subject to higher genomic mismatch between current and future climates (Fig. VI.5). The strength of the relationship between genomic o set predictions and mortality rates was very similar between the two scenarios of future climate (Fig. VI.5).
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Discussion

Since Fitzpatrick and [START_REF] Yang | Genetic variance estimation with imputed variants nds negligible missing heritability for human height and body mass index[END_REF] and [START_REF] Rellstab | A practical guide to environmental association analysis in landscape genomics[END_REF], the genomic o set approach has become popular for identifying populations at risk of short-term climate maladaptation. It appears as a promising method to guide conservation and management strategies, in particular for long-lived and sessile species such as forest trees, for which in situ adaptation or migration of adaptive alleles may not be fast enough to track climate change (Fitzpatrick and Keller 2015). However, this approach relies on a number of key assumptions in need of robust empirical validation (discussed in [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF]Capblancq et al. 2020b). The main objective of this study was twofold: (1) identify maritime populations at risk of short-term climate maladaptation, ( 2) verify the assumption that populations with the highest predicted genomic o set do show a decrease in absolute tness or declining demographic trends (Capblancq et al. 2020b). About (1), genomic o set predictions based on the set of common candidate SNPs (i.e. the most con dently selected) point towards a higher maladaptation risk for populations currently experiencing mild-winter conditions (i.e. most Atlantic populations and populations in southeastern France and northwestern Italy), which may be related to the past cold adaptation of these populations preventing optimal growth and survival under warming temperatures. About ( 2), we showed that the genomic o set predictions were generally negatively associated with population performance in common gardens and natural populations (i.e. height or mortality rates). This suggests that genomic o set predictions may be indicative of (future) tness declines, and thereby validate our results in maritime pine. Nevertheless, genomic o set predictions were highly sensitive to the set of SNPs considered (i.e. how strictly they were selected) and the modelling approach used (i.e. GDM or GF), while they were very similar under two di erent future climate scenarios. Noticeably, none of the di erent ways tested to predict genomic o set had better predictive ability across all the validation steps. Our results therefore con rm that the genomic o set approach is promising, but also suggest that further validation, based on both experimental and observational independent data, is needed to determine which modelling methods and ways of selecting the adaptive genetic component, are the most robust and accurate.

Past cold adaptation may trigger short-term adaptation mismatch in mild-winter regions

Our results highlighted the key role of cold temperatures in the past adaptive history of maritime pine populations, as previously suggested by studies evaluating the association between candidate-gene allele frequency and temperature gradients (Grivet et al. 2011, Jaramillo-Correa et al. 2015). Interestingly, the selection pressures resulting from severe cold events might even reduce genetic variation within maritime pine populations for some tness-related phenotypic traits (e.g. for height; [START_REF] Archambeau | Extreme climatic events but not environmental heterogeneity shape withinpopulation genetic variation in maritime pine[END_REF]. In this line, we found that the minimum temperature of the coldest month was the environmental covariate associated with the largest number of SNPs in the univariate GEA (Table XII.4) and the most important in explaining allele frequency turnover in the GF and GDM models (once accounting for geographic distance; , in particular for the common candidate SNPs. We base our interpretation on the genomic o set predictions for the set of common candidate SNPs, as they were selected most stringently (and thus with the most con dence) and were the only SNP set to show consistent spatial patterns of genomic o set between GF-and GDMbased predictions (Fig. VI.3). Populations with the highest predicted genomic o set were those at the warm edge of the cold temperature gradient: mainly Atlantic populations in the northwestern part of the Iberian Peninsula, southwestern France and Brittany, but also Mediterranean populations of Corsica, southeastern France and northwestern Italy (Figs. VI.3 & XII.3). Importantly, the warm edge of the cold temperature gradient (i.e. between 4 and 6°C) is characterized by a strong turnover in the frequency of common candidate SNPs (Figs. VI.2 and XII.7), which may be indicative of a loss of cold hardiness alleles in populations from warmer regions. Consequently, in these populations, a slight increase in minimum winter temperatures due to climate change will result in a large disruption of current gene-environment relationships. Whether this mismatch will translate into a maladaptation risk associated with declines in absolute tness remains to be con rmed, but there are good reasons to think so.

Based on height growth data from common gardens, Fréjaville et al. (2020) predicted that some maritime pine populations in southwestern France, northwestern Iberia, Corsica, and coastal areas of southeastern France and northwestern Italy will grow less under future temperatures and precipitation. These spatial patterns of potential adaptation lags in terms of growth are very similar to those obtained in our study with the genomic o set approach. This may be partly explained by the trade-o between growth and cold hardiness in forest trees [START_REF] Aitken | Genecology and Gene Resource Management Strategies for Conifer Cold Hardiness[END_REF][START_REF] Howe | From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees[END_REF][START_REF] Prada | Life-history correlations with seasonal cold hardiness in maritime pine[END_REF] in maritime pine), which may constrain cold-hardy tree populations from growing optimally in warming climates, at least in the shortterm. The higher susceptibility of populations from mild-winter regions to increasing winter minimum temperatures may also be explained by reduced winter hardening of the trees, and thus greater exposure to late frosts (e.g. [START_REF] Hänninen | Climate warming and the risk of frost damage to boreal forest trees: identi cation of critical ecophysiological traits[END_REF]). Last, the genomic o set predictions obtained with the common candidate SNPs were positively associated with mortality rates in natural forest inventory populations calculated over the last four decades, which may suggest that populations that will be at risk of climate maladaptation are already experiencing tness declines (although this conclusion has to be tempered, as discussed in the next section).

In conclusion, the populations most at risk of short-term climate maladaptation might be those already living in relatively mild-winter conditions but for which the transition to slightly higher temperatures would entail a large evolutionary step. Importantly, these populations, being at the warm margin of the cold winter temperature gradient, will not bene t from the migration of adaptive alleles from other populations. It therefore seems crucial to monitor their demographic dynamics and adaptive trajectories in the coming years, especially knowing that southwestern France and northeastern Iberia populations are the ones with the highest commercial value.

Associations between genomic o set predictions and tness declines

A key assumption of the genomic o set approach is that its predictions have to be correlated with a decrease in absolute tness (Capblancq et al. 2020b, Rellstab et al. 2021). This assumption was rst successfully demonstrated in experimental conditions by [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF], in which the authors used the GF approach to predict genomic o sets resulting from transplanting populations of balsam poplar from their home environment to a common garden environment (more recently, see a similar validation analysis in [START_REF] Capblancq | Redundancy analysis: A Swiss Army Knife for landscape genomics[END_REF]. They showed that genomic o set predictions were negatively associated with height growth in the common gardens and were better predictors of height growth variation than climate transfer distances. Interestingly, [START_REF] Borrell | Genomic assessment of local adaptation in dwarf birch to inform assisted gene ow[END_REF] found a negative association between the estimated risk of nonadaptedness (a similar measure to genomic o set; [START_REF] Rellstab | A practical guide to environmental association analysis in landscape genomics[END_REF] and catkin production in dwarf birch, thus suggesting that the reproduction-related component of tness may also be captured by the genomic o set approach. In our study, we showed that the genomic o set predictions were in most cases negatively associated with population performance: negatively associated with height in the Atlantic common gardens (but almost no association in the Mediterranean common gardens; Fig. XII.30) and positively associated with mortality for the GF approach in the Mediterranean common gardens (Fig. XII.32). However, we did not nd that genomic o set predictions outperformed predictions based on climatic transfer distances, as in each common garden at least one climatic transfer distance (of the ve tested) predicted population performance as well as the best genomic o set prediction (Figs. XII.30 & XII.32). A potential explanation of the discrepancy between Fitzpatrick et al. ( 2021) and our study is that we evaluated the association between population performance and the climatic transfer distance for each climatic variable independently, whereas Fitzpatrick et al. ( 2021) calculated a climatic transfer distance based on a PCA of the climatic variables (thus merging in a single index climatic variables more or less associated with adaptation gradients). The good performance of GF-based genomic o set predictions to predict mortality rates in the Mediterranean common gardens was particularly encouraging as genetic di erentiation in mortality patterns is not a general pattern in forest tree common gardens (e.g. [START_REF] Oddou-Muratorio | Spatial vs. temporal e ects on demographic and genetic structures: the roles of dispersal, masting and di erential mortality on patterns of recruitment in Fagus sylvatica[END_REF], Vizcaíno-Palomar et al. 2014). Moreover, genomic o set predicted mortality rates as well as a climatic variable related to severe cold events, which are known to be an important driver of adaptation in maritime pine [START_REF] Archambeau | Extreme climatic events but not environmental heterogeneity shape withinpopulation genetic variation in maritime pine[END_REF], Grivet et al. 2011, Jaramillo-Correa et al. 2015).

The assumption that populations with higher genomic o set show decreased absolute tness was also evaluated in natural populations of a North American migratory bird by [START_REF] Ruegg | Ecological genomics predicts climate vulnerability in an endangered southwestern songbird[END_REF], in which the authors found a negative relationship between GF-based genomic o set predictions under future climates and spatial extrapolations of historical population trends. The authors therefore suggested that some populations may already su er from reduced tness due to an inability to adapt. However, this study was criticized because [START_REF] Keller | In uence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes[END_REF]):

(1) historical and future climate shifts are assumed to be correlated whereas it is likely that this is not the case; (2) the relationship between historical climate and population trends was not evaluated, and (3) the genomic o set predictions were based on all SNPs with R 2 > 0 in the GF analysis (∼8,000 SNPs), which therefore probably represented mainly neutral genetic variation. In our study, for all tested combinations (i.e. combination of the two modelling approaches, the two future climate scenarios and the two countries in which the NFI plots were located, Spain and France), genomic o set predictions for the set of reference SNPs were in the opposite direction to that expected, i.e. higher genomic o set in plots experiencing lower mortality rates, probably re ecting also neutral genetic variation (Fig. VI.5). In stark contrast, as mentioned in the previous section, genomic o set predictions for the set of common candidates (i.e. the most strictly selected; Fig. VI.5) were positively correlated with mortality rates, which may indicate that populations in northwestern Iberian Peninsula, southwestern France, French Brittany and northwestern Italy are already experiencing higher mortality rates as a result of failure to adapt to climate change. However, this result has to be taken with caution for several reasons. First, it can be criticized by some of the same arguments, ( 1) and ( 2), made against Bay et al. (2018) (see above). Second, high mortality rates are not necessarily associated with tness declines as, if they are compensated by high recruitment rates, they can accelerate evolutionary processes by speeding up the generation turnover, allowing populations to escape demographic collapse [START_REF] Kuparinen | Increased mortality can promote evolutionary adaptation of forest trees to climate change[END_REF]. Last, NFI data (like observational data in general) remains highly noisy; although we corrected for some potential confounding factors (competition among trees, di erent sampling schemes across countries), we cannot assert that the observed mortality patterns are only attributed to climate (e.g. dieback events caused by storms but not recorded as such).

All in all, the di erent validation steps gave diverging results regarding which combination of SNP sets and modelling approaches best capture true patterns of decreasing tness. A potential explanation may stem from the di erent tness proxies used in the validation parts: height and mortality rates of seedlings in controlled environments vs mortality rates of saplings and adult trees in natural conditions. Indeed, these tness proxies may be under di erent selection pressures, thus shaping di erently their adaptive genetic component and thereby their gene-environment relationships. Estimating tness remains highly challenging in forest trees, which have high reproductive outputs, and long lifetime and generation times. For this reason, assessing genomic o set predictions on the basis of di erent tness proxies is particularly relevant, as they may convey a di erent picture of the spatial patterns of adaptive genetic variation. The di erent conclusions drawn by the two validation approaches may also originate from the inclusion of the topographic and soil-related variables in the genomic o set estimation in the common gardens (i.e. re ecting a wider environmental maladaptation) while only climatic variables were used to estimate the genomic o set at the NFI plots.

Limitations and promises of the genomic o set approach

A key assumption of the genomic o set approach that we did not directly tackle here is that the set of genomic markers used for genomic o set predictions does capture the adaptive genetic component required to adapt to future climates (Capblancq et al. 2020b). In our study, the adaptive genetic component was identi ed with two GEA methods, which are inherently correlative. Con rming that the selected candidate SNPs are involved in climate adaptation would therefore require further validation [START_REF] Ioannidis | Validating, augmenting and re ning genomewide association signals[END_REF][START_REF] Oetting | Validation Is Critical for Genome-Wide Association Study-Based Associations[END_REF]. For instance, this can be done by repeating the GEA analyses on independent samples [START_REF] Ruegg | Ecological genomics predicts climate vulnerability in an endangered southwestern songbird[END_REF] or along parallel climate gradients (van Boheemen and Hodgins 2020), comparing genotype tness with or without the putative adaptive alleles under experimental conditions that control for non-genetic e ects (e.g. in reciprocal transplant experiments or common gardens; Exposito-Alonso et al. 2019), or using functional validation experiments (e.g. through gene expression knockdown; [START_REF] Rohde | Functional Validation of Candidate Genes Detected by Genomic Feature Models[END_REF]. However, adaptation to climate probably involves multiple polygenic traits whose genetic component is determined by complex gene networks [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF][START_REF] Liu | Trans E ects on Gene Expression Can Drive Omnigenic Inheritance[END_REF]. Thus, similar adaptive phenotypic changes may result from di erent combinations of alleles (i.e. 'genetic redundancy'; Barghi et al. 2020). Moreover, single alleles may be associated with multiple phenotypes (i.e. pleiotropy) or could be adaptive only in particular environments (i.e. conditionally neutral). These factors render the identi cation of the genetic component of climate adaptation particularly tricky, especially in conifers with their huge genome size [START_REF] Mackay | Towards decoding the conifer giga-genome[END_REF]28 Gbp for maritime pine, Zonneveld 2012) and complexity (e.g. large number of transposable elements ;[START_REF] De | Insights into Conifer Giga-Genomes[END_REF].

Our results show that genomic o set predictions are highly sensitive to the way candidate SNPs are selected, i.e. how strict is the selection process (Fig. VI.3). The estimated geneenvironment relationships, the projections of the genomic composition and the genomic o set predictions were the most di erent between the common candidate and reference SNP sets, as similarly observed in [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF]. Importantly, results obtained for the sets of merged candidates and candidates under expected strong selection remained highly di erent from those obtained for the set of common candidates. This implies that the selection process of candidate SNPs is crucial in the genomic o set approach and further research is undoubtedly needed to determine which method best captures the genetic component of climate adaptation and thus produces the most robust genomic o set predictions.

Finally, a source of bias important to consider at each step of the genomic o set approach is the population structure, which is particularly strong in maritime pine [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], and partially covaries with environmental gradients (Archambeau et al. 2021a). First, population structure remains challenging to account for in GEA analyses and can result in high rates of false positives, i.e. alleles mistakenly identi ed as adaptive or linked to an adaptive allele [START_REF] Hoban | Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions[END_REF][START_REF] Ho Mann | Opportunities and challenges in assessing climate change vulnerability through genomics[END_REF]. We tackled this issue by using two GEA methods that account for population structure in very contrasted ways: by partialling out the ancestry coe cients in the RDA (following Forester et al. 2018) or with a covariance matrix based on the population allele frequencies in B P [START_REF] Gautier | BayPass Genome-Wide Scan for Adaptive Di erentiation and Association Analysis with population-speci c covariables (en lien avec la publication Gautier M[END_REF]. Second, to date, methods to calculate the genomic o set incorporate population structure coarsely by relying only on the geographical location of the populations: geographical distance among populations in the GDM models and Moran's eigenvector map (MEM) variables in the GF models (Fitzpatrick and Keller 2015). However, population structure might show more complex patterns than those resulting from isolation-by-distance, in particular in species with complex demographic histories or in fragmented landscapes [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF]. Interestingly, [START_REF] Gain | LEA 3: Factor models in population genetics and ecological genomics with R[END_REF] recently proposed a new approach to calculate the genomic o set that directly accounts for the neutral population genetic structure and, importantly, does not rely on the pre-selection of candidate SNPs, which seems particularly relevant given the biases that may derive from this step (see above). Third, population structure can vary in space and time, which warns against extrapolating too widely across the landscape and projecting too far into the future [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF], although for species with long generation times such as forest trees, population structure is unlikely to change signi cantly over the next few decades. Last, population structure may have also in uenced the validation step in the common gardens: BLUPs were estimated without accounting for population structure, and therefore capture height or mortality di erences among populations that both arise from adaptive and neutral genetic processes (e.g. demographic history, gene ow).

Conclusion

Our study adds to the accumulating evidence on the power of the genomic o set method to predict short-term climate maladaptation. In maritime pine, populations in regions with increasingly mild-winter conditions may be the most likely to experience adaptation lags and should therefore be kept under close scrutiny, e.g. by monitoring the joint dynamics of mortality and recruitment. Such monitoring may be particularly crucial for populations in northwestern Iberia and southwestern France, which have a major economic importance; climate maladaptation a ecting their phenotypic traits of interest might have a substantial impact on the local economy. Importantly, the validation steps highlighted the need of combining di erent genomic o set estimation and validation approaches to be con dent about the robustness of genomic o set predictions. It might also be worth remembering that the genomic o set approach is based on static gene-environment associations, assuming that current allele frequencies re ect the adaptive optimum of the populations (which is often not true in forest trees based on phenotype-environment associations; e.g. Fréjaville et al. 2020[START_REF] Pedlar | Assessing the anticipated growth response of northern conifer populations to a warming climate[END_REF][START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF][START_REF] West-Eberhard | Developmental Plasticity and Evolution[END_REF], 2002[START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]. Importantly, incorporating processes such as gene ow among populations and selection is necessary to evaluate whether a population will be able to adapt in the long run in face of changing climatic conditions (Waldvogel et al. 2020). Recent studies have investigated ways of integrating migration processes in the genomic o set approach (e.g. Gougherty et al. 2020b), while integrating selection processes remains largely unexplored, likely due to the high complexity and multifactorial nature of the selection response. For instance, pleiotropy can either boost or slow down adaptive processes depending on whether genetic correlations go in the same or opposite direction as selection, respectively [START_REF] Ho Mann | Opportunities and challenges in assessing climate change vulnerability through genomics[END_REF]. Nevertheless, although genomic o set predictions have to be interpreted with caution, they remain a major step towards integrating adaptive processes into management and conservation strategies (Waldvogel et al. 2020).

VII S

Forest trees are keystone species that are essential to ecosystem functioning, maintaining biodiversity and sustaining multiple ecosystem services. Predicting how forest tree populations will adapt in situ to future environmental conditions, especially those caused by climate change, is becoming a critical and urgent issue, which requires a deep understanding of the evolutionary processes at stake. Moreover, some populations will not be able to adapt fast enough to keep pace with climate change and will need to be accurately identi ed and prioritized to implement relevant conservation and management strategies. In strategies accounting for adaptive processes, the successful moving of individuals into environments in which they will be assumed to be more adapted (i.e. assisted gene ow) or into threatened populations in need of additional genetic variation (i.e. evolutionary rescue) will require predicting the response of transplanted individuals in the new environments, e.g. the mean absolute tness of the transplanted sample. Importantly, the increasing availability of genomic data for non-model species provides new opportunities to understand adaptive processes, identify populations at risk of maladaptation or improve individual-level predictions of quantitative traits. Genomicsbased predictive modelling approaches are developing rapidly, but most are still lacking robust validation against independent data and have considerable room for improvement.

Here I used maritime pine as a case study to investigate key questions in the eld of evolutionary biology through the use of innovative modelling approaches combining phenotypic, environmental and genomic data: do populations show di erentiation patterns along environmental gradients in terms of phenotypic and genomic variation across the species range? If yes, can the phenotypic and genomic di erentiation be attributable to adaptive processes, and more speci cally climate-driven adaptation? How does adaptation to harsh climatic conditions or heterogeneous landscapes impact the maintenance of within-population quantitative genetic variation, and therefore indirectly the adaptive potential of the populations? Answering these questions has provided a better understanding of how past adaptations have shaped current maritime pine populations and has o ered a detailed picture of the current adaptive state of the populations, a necessary rst step in predicting their future states.

The eld of evolutionary biology is indeed currently experiencing a growing interest in predicting the future evolutionary trajectories of populations. A consequential part of the present PhD work was therefore dedicated to investigate, through quantitative genetics and landscape genomics methods, the adaptive potential and the risk of short-term climate maladaptation of maritime pine populations across the species range.

Finally, the present PhD work provides an original attempt to combine phenotype, environmental and genomic data using various modelling approaches in a non-model species. To what extent the conclusions drawn from maritime pine, a Mediterranean forest tree species with highly di erentiated and fragmented populations, may be extended to other forest trees would require further investigation, but the approaches used here are undoubtedly applicable to other forest trees. Ultimately, by advancing knowledge of the evolutionary mechanisms underlying adaptive responses of populations to changing conditions and providing key population-level metrics related to population adaptive capacity, the results of this PhD work add building blocks to the development of more mechanistic modelling approaches aimed at predicting the evolutionary response of populations on medium-to long-term time scales.

1

What have we learned in maritime pine?

'Without deep biological understanding of the system under study, predictive models are not likely to o er much insight into either the past or future. ' [START_REF] Reznick | Is evolution predictable?[END_REF].

High quantitative and molecular genetic di erentiation

Due to its high economical importance, maritime pine has long been planted in provenance trials. Strong genetic di erentiation has commonly been found among populations for a wide variety of phenotypic traits, such as traits related to growth, survival, wood quality, tree form, drought resistance or reproduction [START_REF] Alía | Environmentdependent microevolution in a Mediterranean pine (Pinus pinasterAiton)[END_REF], 1997[START_REF] Chambel | Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes[END_REF][START_REF] Correia | Genotype × Environment interactions in Pinus pinaster at age 10 in a multienvironment trial in Portugal: a maximum likelihood approach[END_REF][START_REF] De La Mata | Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population[END_REF][START_REF] Gaspar | Genetic Variation of Drought Tolerance in Pinus pinaster at Three Hierarchical Levels: A Comparison of Induced Osmotic Stress and Field Testing[END_REF], Guyon and Kremer 1982, Lamy et al. 2011[START_REF] Del Blanco | Variation of early reproductive allocation in multi-site genetic trials of Maritime pine and Aleppo pine[END_REF][START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF][START_REF] Sierra-De-Grado | Biomechanical di erences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness[END_REF]. Mediterranean populations generally recover better after drought and have a more conservative strategy than Atlantic populations, e.g. they have more stable yield across di erent environments [START_REF] Alía | Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction[END_REF]. In contrast, Atlantic populations grow well under favorable conditions, show larger size at rst reproduction [START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF]) but often recover poorly after drought, thus being more prone to drought-related mortality [START_REF] Alía | Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction[END_REF][START_REF] Zas | Dendroecology in common gardens: Population di erentiation and plasticity in resistance, recovery and resilience to extreme drought events in Pinus pinaster[END_REF]. This strong interactive behavior of Atlantic populations may explain why most trait-based studies found signi cant levels of genotype-by-environment interaction in maritime pine (e.g. [START_REF] Alía | Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction[END_REF][START_REF] Corcuera | Phenotypic plasticity in Pinus pinaster δ 13C: environment modulates genetic variation[END_REF][START_REF] Correia | Genotype × Environment interactions in Pinus pinaster at age 10 in a multienvironment trial in Portugal: a maximum likelihood approach[END_REF][START_REF] De La Mata | Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population[END_REF]. As counter-examples, [START_REF] Chambel | Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes[END_REF] did not nd phenotypic di erentiation among populations under two di erent watering regimes and Santos del Blanco et al. ( 2010) reported weak genotype-by-environment both at the family and population level for traits related to reproduction strategies (i.e. threshold size for reproduction and reproductive allocation).

High levels of genetic di erentiation among maritime pine populations have also been repeatedly found with molecular data, from di erent types of markers, e.g. polymorphic allozyme loci, micro-satellites and SNPs, and di erent genomes, i.e. mitochondrial, chloroplast and nuclear [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Burban | Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance[END_REF][START_REF] González-Martínez | Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits[END_REF], Jaramillo-Correa et al. 2015[START_REF] Santos-Del-Blanco | Genetic di erentiation for size at rst reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster[END_REF][START_REF] Serra-Varela | Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.)[END_REF]. Because of this strong quantitative and molecular genetic di erentiation, some authors argued to de ne two subspecies of maritime pine (splitting the Atlantic and Mediterranean populations) and ve varieties based on the geographical location: Algeria and Tunisia, Morocco, Corsica, the Mediterranean region and the Atlantic region (Barbéro et al. 1998).

In the present PhD work, spatial patterns of genetic di erentiation were investigated through both trait-based approaches ( 2) and landscape genomics approaches ( 3). In 2, clear di erences in height growth among populations were identi ed, with populations belonging to the French and Iberian Atlantic gene pools growing faster on average than populations from the central Spain gene pool (Fig. VII.1). The genetic component of height growth was strongly associated with the population structure resulting from demographic history and gene ow among populations. This was expected as population structure is known to be particularly strong in maritime pine [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF], Jaramillo-Correa et al. 2015), which may be explained by its fragmented distribution and the historical isolation of di erent glacial refugia [START_REF] Bucci | Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers[END_REF][START_REF] Burban | Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance[END_REF][START_REF] Naydenov | Range-wide genetic structure of maritime pine predates the last glacial maximum: evidence from nuclear DNA[END_REF][START_REF] Serra-Varela | Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.)[END_REF]. Interestingly, most gene pools involved population pairs with contrasted mean height growth (Fig. VII.1), thus suggesting that height growth variation among populations does not result only from neutral evolutionary processes, but also from adaptive processes. In the case of the northern African gene pool, other possible explanations include the lack of survivors from the Madisouka (MAD) population in the Cáceres common garden, which may bias the height growth estimation for that population, or that the highest growth of this population compared to the Tamrabta (TAM) population originates from its ancestry proportion (23.3%) from the south-eastern Spanish gene pool [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. A last noteworthy contribution of 2 to describing patterns of genetic di erentiation in maritime pine is the identi cation of an association between height growth and provenance-by-site interaction, although its proportion of explained variance was weak. This may suggest that most genotypeby-environment interaction is within populations or that genotype-by-environment does not explain an important part of height-growth variation in maritime pine, most genetic di erences among populations being stable across varying environments. Part of 3 was dedicated to predict spatial variation in genomic composition across the range of maritime pine based on a set of reference SNPs. Results from this chapter con rm that covariates related to the geographical distance among populations explain most of the turnover in allelic frequencies, as expected for a species with a strong population structure such as maritime pine. Therefore the projected spatial variation in genomic composition when both environmental and geographical covariates are considered was almost entirely driven by the geographical distance among populations (Fig. VII.2A). Interestingly, the most important environmental covariates to explain the turnover in reference SNPs frequency were not the same in the GDM and GF approaches, thus leading to very contrasted projections of the genomic composition when only environmental covariates were considered (Figs. VII.2B and VII.2C). This is not surprising under the assumption that the turnover in reference SNPs frequency results primarily from neutral evolutionary processes and therefore the gene-environment associations remain very marginal and hard to estimate. Nevertheless, we can note that, once the e ect of the geographical distance among populations was removed, GDM-based projections identi ed a speci c genomic composition in the mountainous areas (mainly explained by the topographic ruggedness) and in central Spain (mainly explained by the annual precipitation) while GF-based projections identi ed a speci c genomic composition in Portugal (mainly explained by the re intensity). 

Multiple evidence of climate adaptation in maritime pine

Adaptive signatures have been repeatedly observed in maritime pine, although it remains challenging to distinguish the relative importance of adaptive and neutral evolutionary processes in the genetic di erentiation observed among populations. Among studies speci cally aiming at detecting footprints of natural selection on phenotypic traits, [START_REF] González-Martínez | Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits[END_REF] and [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] showed that quantitative (Q ST ) di erentiation was higher than allozyme or SNPs (F ST ) di erentiation for a variety of traits (e.g. stem form, total height growth, survival, phenology-related traits, functional traits), thus suggesting the action of natural selection. In addition, the negative correlation between SNP e ect-size and minor allele frequency in [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] for tree height, bud burst and SLA may be an indicator of the action of negative selection, i.e. the purging of deleterious alleles [START_REF] O'connor | Extreme Polygenicity of Complex Traits Is Explained by Negative Selection[END_REF]. As an example of phenotype-genotype association studies, [START_REF] Budde | In situ genetic association for serotiny, a re-related trait, in Mediterranean maritime pine (Pinus pinaster)[END_REF] found 18 candidate SNPs associated with resistance to re and explaining ∼ 29% of a re-related trait in the eastern Iberian Peninsula. [START_REF] Serra-Varela | Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.)[END_REF] highlighted the likely major contribution of environmental adaptation in the observed patterns of genetic di erentiation across the range of maritime pine by showing that similar groups of populations are obtained based on either genetics or environment, and that environment explained a greater proportion of the variation in phylogeographic distance than geography. In gene-environment association studies, [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF] identi ed 18 candidate SNPs associated with climate, whose adaptive patterns varied between the Iberian Mediterranean and Atlantic regions, suggesting contrasted selection pressures across gene pools. Noticeably, the frequency of the 18 candidate SNPs was correlated with survival in a dry and hot environment, thus providing an experimental validation of the set of candidate SNPs. Grivet et al. (2011) identi ed two loci associated with climate, one of which was also detected in another pine (Pinus halepensis). Interestingly, both [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF] and Grivet et al. (2011) found that most geneenvironment associations were related to temperature indices, thus supporting the major role of temperature in the adaptive history of maritime pine.

In line with the above mentioned work, results from 2 showed that the genetic component of height growth in maritime pine was associated with the climatic similarity among populations, which underline the potential major role of adaptation to climate for this trait. However, the population genetic structure (included by accounting for the gene pool assignment of each clone) had a confounded association with climatic variables, so that separating their relative importance to explain the genetic component of height growth was not completely possible. Such confounded association between population structure and adaptation patterns is common in forest trees [START_REF] Aitken | Potential for evolutionary responses to climate change -evidence from tree populations[END_REF][START_REF] Latta | Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence[END_REF], Nadeau et al. 2016). However, it may also partly stem from the gene pool assignment that re ects both adaptive (di erent selective histories) and neutral processes (population demographic history and genetic drift), despite gene pools being identi ed using genetic markers considered neutral [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. This was notably supported by the di erent heritabilities estimated between some gene pools in 2 (using a method that accounts for admixture among gene pools; [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF], i.e. the Corsican gene pool, and to a lesser extent the south-eastern Spain gene pool, had higher heritabilities than the French and Iberian Atlantic gene pools.

Further, C

3 contributed signi cantly to describing and understanding patterns of climate (mal)adaptation in maritime pine, using in combination two GEAs (B P and RDA) and two recent landscape genomics approaches (GDM and GF). Di erent sets of candidate SNPs were de ned based on the stringency of the selection threshold above which they can be considered as potential candidates for environment adaptation: the common candidates (i.e. 8 candidate SNPs identi ed by the two GEA methods), the candidates under expected strong selection (79 candidate SNPs with a strong association with at least one covariate) and the merged candidates (370 candidate SNPs identi ed by at least one GEA method). Then, we compared the relative importance of environmental covariates in explaining the turnover in allele frequencies across the range of maritime pine for each SNP set and landscape genomics approach. A rst key nding was the consistent in uence of minimum temperatures on the adaptive genetic component: minimum temperature of the coldest month was involved in 25 of the 26 gene-environment associations identi ed in B P and was generally the most important environmental covariate in explaining the turnover in allele frequencies in the GDM and GF models (being even a better predictor than covariates related to population structure for the set of common candidates in the GF models; Fig. VII.3A & B). This result is well in line with previous studies discussed above that also supported a strong in uence of temperatures (and especially cold temperatures) in the selective history of maritime pine (Grivet et al. 2011, Jaramillo-Correa et al. 2015). A second key message of 3 concerns the marked di erences among the di erent sets of candidate SNPs in the relative importance of environmental covariates in explaining allelic frequency turnover. This is of concern because most current studies using the genomic o set approach do not rst validate the adaptive genetic component (sometimes even using all SNPs directly, which is certainly biased by population structure; Fitzpatrick et al. 2018) and therefore may identify di erent maladapted populations depending on the initial set of candidate SNPs.

Further, 3 goes one step further than the work of Jaramillo-Correa et al. ( 2015) by using recent landscape genomics approaches to project the predicted genomic composition of maritime pine populations across the species range. These projections were based on the gene-environment relationships after accounting for the relationship between allele frequencies and the geographical distance among populations (a proxy of the population structure), and they may thus capture the adaptive genetic component. For example, the genomic composition was relatively uniform in France, whereas it showed contrasted patterns in Galicia and Portugal for the set of common candidate SNPs (Fig. VII.3C). Nevertheless, considering the geographical distance among populations is likely insu cient to account for population structure, which might show more complex patterns than those resulting from isolation-by-distance, in particular in species with complex demographic histories or in fragmented landscapes [START_REF] Rellstab | Prospects and limitations of genomic o set in conservation management[END_REF]. Further method development is undoubtedly needed to better account for the confounded e ect of population structure, e.g. [START_REF] Gain | LEA 3: Factor models in population genetics and ecological genomics with R[END_REF]. In 1, we showed that not only do populations vary in their mean genetic values and allelic frequencies along environmental gradients, but they also exhibit di erent levels of quantitative genetic variation for height in three di erent common gardens (e.g. see Fig. VII.4 for the common garden in Bordeaux when the trees were 25 month-old). Remarkably, our results again con rmed the strong in uence of extreme minimum temperatures on adaptation gradients in maritime pine, as we showed that genetic variation in height was lower in populations subjected to severe cold events. This supports the hypothesis that quantitative genetic variation in tness-related traits is lower in populations under strong selection. Estimating withinpopulation quantitative genetic variation is particularly valuable in describing adaptation patterns because, in theory, low genetic variation may indicate a high degree of adaptation to harsh environmental conditions, at the expense of the adaptive potential under changing environmental conditions.

Another key nding of 1 was that, contrary to our expectations, quantitative genetic variation of all traits studied (i.e. growth, phenological and functional traits) was not associated with environmental heterogeneity, which goes against the predictions of some theoretical models (McDonald andYeaman 2018, Walsh andLynch 2018) and an empirical study in lodgepole pine [START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF]. Last, we did not nd any association between within-population genetic variation for height (and other traits) and population admixture, which suggests that, despite the strong population structure in maritime pine, within-population quantitative genetic variation was unlikely to be in uenced by gene ow across gene pools. In conclusion, 1 consists of an original attempt to study the imprints of natural selection on quantitative genetic variation and informs how genetic variation is maintained within populations, and therefore how populations adapt along environmental gradients. 

Genomics may help predicting short-term population responses to changing conditions

A few large-scale studies in maritime pine demonstrated the bene ts of including intraspeci c variability to predict changes in the occurrence or performance of populations under new environmental conditions. For instance, species distribution models (SDMs) accounting for intraspeci c variability yielded more realistic projections of suitable habitat under future climate scenarios, generally leading to an increase in the predicted suitable area for the species (Benito [START_REF] Garzón | Intra-speci c variability and plasticity in uence potential tree species distributions under climate change[END_REF][START_REF] Serra-Varela | Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.)[END_REF]. As another example, Fréjaville et al. ( 2020) estimated the association between height-growth performance in common gardens and the climate-oforigin of the populations and reported that maritime pine populations in the driest or hottest parts of the species range may grow less under future climates, while populations in the coldest and wettest regions may grow more. However, these studies integrate intraspeci c variability within large-scale predictions at a coarse-grained level, i.e. variability at the population level [START_REF] Garzón | Intra-speci c variability and plasticity in uence potential tree species distributions under climate change[END_REF], Fréjaville et al. 2020), or among genetically similar clusters de ned based on a combination of mitochondrial, chloroplast and nuclear molecular markers [START_REF] Serra-Varela | Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.)[END_REF]. Moreover, they do not distinguish the relative contributions of adaptive and neutral processes to genetic di erentiation among populations. Therefore, there is potentially considerable room for improvement in incorporating intraspeci c variability at a ner grain level (which might be enabled by individual-level genomic information) and di erentiating the role of local adaptation, population demographic history and gene ow in predictions.

In 2 and 3, genomic information from new genotyping technologies was incorporated within innovative statistical methods to evaluate the short-term performance of populations under new conditions. In 2, we showed that models combining genomic and climatic information (i.e. climate-of-origin of the populations, gene pool assignment and counts of trait-associated positive-e ect alleles, PEAs) predict height growth of populations not included during the model t better than models based only on the common garden design or incorporating climatic information, such as the climate-based population response functions which are currently commonly used to predict phenotypic variation of forest tree populations along climatic gradients (e.g. Leites et al. 2012a[START_REF] Rehfeldt | Role of population genetics in guiding ecological responses to climate[END_REF], 2002). A noteworthy nding of this chapter was that the regional PEAs (identi ed in speci c geographical regions; ). It may be noted that the PEA e ect on height growth was speci c to each genotype (i.e. clone), and in the case of regional PEAs, speci c also to the geographic region in which each tree was planted, thus making the genome-based predictions both individual-based and environment-dependent. Such integration of individual-based genomic information into trait-based approaches thus holds great promise for predicting how populations, and genotypes within populations, will perform when transplanted into new environments. In 3, we found that genomic o set predictions were promising to predict shortterm climate maladaptation of maritime pine populations. In particular, predictions based on the set of common SNP candidates (identi ed by the two GEA methods) were consistent between the two landscape genomic approaches (GDM and GF) and were associated with recent demographic trends in natural populations (i.e. mortality rates from National Forest Inventories). Nevertheless, it has be noted that the accuracy of genomic o set predictions in the validation analyses were highly sensitive to the set of SNPs and the modelling approach used to estimate the gene-environment relationships. Moreover, contrary to Fitzpatrick et al. ( 2021), the genomic o set predictions in common gardens did not outperform predictions based on climatic transfer distances. Finally, results from 3 imply that before con dently using the genomic o set approach in the toolkit of conservation and management strategies, the e ects of di erent choices on predictions must be clearly understood, e.g. choice of candidate SNPs, landscape genomics approach or method to control for population structure (Capblancq et al. 2020a, Rellstab et al. 2021).

2

Limitations, challenges and perspectives 'From the outset, it is important to acknowledge that predictions may often be imprecise even when they are accurate. Characterizing the magnitude of uncertainty is itself worthwhile. ' [START_REF] Shaw | From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction[END_REF] 2.1 Combining phenotypic, environment and genomic information One of the major strengths of this PhD work is the original way in which genomic, phenotypic and environmental data have been combined to (i) provide a broad picture of adaptation patterns in maritime pine and the evolutionary processes underlying them, (ii) evaluate the short-term maladaptation risk of maritime pine populations in the face of climate change.

Combining phenotypic, environmental and genomic information have been repeatedly advised to study adaptation patterns in forest trees ( [START_REF] Villemereuil | Common garden experiments in the genomic era: new perspectives and opportunities[END_REF][START_REF] Lepais | Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees[END_REF][START_REF] Sork | Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate[END_REF]. For instance, [START_REF] Kort | Landscape genomics and a common garden trial reveal adaptive di erentiation to temperature across Europe in the tree species Alnus glutinosa[END_REF] combined gene-environment and gene-phenotype association analyses to demonstrate the major role of temperature in driving adaptation patterns in Alnus glutinosa. As another example, [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF] used phenotypic data from two common gardens of seedlings and 20-year trees in Pinus contorta to validate the climatic variables identi ed by gene-environment associations. Their results suggest that genomic information could be a reliable option to identify the climatic drivers of local adaptation when no phenotypic data is available.

In the present PhD work, I combined trait-based approaches ( 1 and 2) with landscape genomics ( 3). In forest trees, trait-based approaches relying on common gardens have long been the gold standard to separate the genetic and environment component of quantitative trait variation and to determine which genotypes (populations) perform best in di erent environments through the use of genotype (population) reaction norms. This strong background in quantitative genetics in forest tree research has largely bene ted from a long history of common gardens (often called provenance trials; Langlet 1971). However, common gardens are costly and time-consuming to maintain, especially in forest trees, and therefore the number of species and populations that can be measured in common gardens is bound to be limited. In addition, landscape genomics approaches are recent methods that still require development and validation steps, but are gaining considerable popularity in forest trees (e.g. Gougherty et al. 2020b[START_REF] Ingvarsson | Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions[END_REF][START_REF] Lu | Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models[END_REF][START_REF] Martins | Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa[END_REF], Supple et al. 2018, Vanhove et al. 2021). Notably, they require only environmental and genomic information, which is becoming more and more available due to the steadily decreasing costs of new genotyping technologies. A strong assumption of these phenotype-free approaches is that populations are currently at their phenotypic optimum and that a change in environmental conditions will break the optimal gene-environment relationships, thereby reducing relative tness (Brady et al. 2019b). However, disrupted gene-environment relationships would not necessarily be associated with declining absolute tness (i.e. decreasing demographic trends) and therefore the use of landscape genomics approaches to predict future population declines is currently in need of validation [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF]. This gure is intended to illustrate how the di erent climatic, phenotypic, and genomic data were combined (and transformed into variables that could be incorporated into the models) to meet the objectives of 2.

Further, the novelty of the present PhD work lies in incorporating genomic information within trait-based approaches ( 2), and in validating landscape genomics approaches with phenotypic information ( 3). In 2, we showed that models incorporating genomic information (i.e. gene pool assignment and PEA counts) performed better (i.e. better predicted height-growth of populations not included during the model t) than those using only phenotypic or climatic information, highlighting the potential of combining all data sources in large-scale trait predictions. In forest trees, the promising predictive ability of PEA counts was rst supported by [START_REF] Mahony | Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study[END_REF]. More recently, [START_REF] Maclachlan | Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer[END_REF] showed that PEA counts were more e ective that single locus approaches to identify the adaptive climatic gradients for complex traits and were more robust to stochastic SNP sampling e ects than polygenic scores. C 2 thus follows the line of these previous works by con rming the superiority of PEAs compared to climate variables, but also goes further by suggesting the higher predictive ability of regional PEAs compared to global PEAs (Fig. VII.5). However, this improvement of the model predictive ability for regional PEAs is at the cost of reducing GWAS power (due to lower sample size than in global, wide-range analyses). Further comparison of the predictive ability of PEAs selected range-wide or regionally with denser genomic sampling will undoubtedly be of great interest to determine whether the higher predictive ability of regional PEAs observed under limited genomic sampling can be veri ed.

In 3, we combined phenotypic, climatic and genomic information in the following way: (1) we identi ed the adaptive genetic component through gene-environment associations;

(2) we conducted landscape genomics analyses relying only on environment and genomic information; and (3) we validated the outputs from landscape genomics analyses with independent phenotypic data (i.e. height and mortality rates) from both common gardens and natural populations (i.e. National Forest Inventories). The validation steps of 3 were inspired by the validation analysis based on demographic trends in natural populations from Bay et al. ( 2018) (but see critics in [START_REF] Keller | In uence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes[END_REF], and by the experimental validation based on height measurements in common gardens from [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF]. Importantly, we demonstrated that combining the validation steps in natural populations and common gardens can be particularly relevant, as they may point to very di erent conclusions about which genomic o set calculation methods work best. Finally, our work is consistent with several recent reviews calling for caution in the use of the genomic o set metric (Capblancq et al. 2020a[START_REF] Ho Mann | Opportunities and challenges in assessing climate change vulnerability through genomics[END_REF], Rellstab et al. 2021), since, among other concerns, it relies only on genomic and climatic data, and thus confronting genomic o set-based predictions with phenotypic information seems necessary.

Last, a particularly attractive avenue of research is the combination of gene-environment and gene-phenotype associations to identify potential candidate SNPs for local adaptation with gene expression analyses (i.e. transcriptomics) to validate the candidate SNPs (DeBiasse and [START_REF] Debiasse | Plastic and Evolved Responses to Global Change: What Can We Learn from Comparative Transcriptomics?[END_REF], Franks and Ho mann 2012[START_REF] Sork | Genomic Studies of Local Adaptation in Natural Plant Populations[END_REF]. In a case study in Arabidopsis, Lasky et al. ( 2014) identi ed genes with variable expression response to environmental change, thus corresponding to a genotype-by-environment interaction in the expression patterns, re ecting local adaptation. In this line, [START_REF] Depardieu | Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer[END_REF] rst selected 285 candidate SNPs with gene-environment or gene-phenotype associations and then identi ed 110 high-con dence candidate SNPs that were di erentially expressed under di erent drought treatments in white spruce, a widespread boreal conifer. Other examples in forest trees include the validation of genes involved in disease resistance in western balsam-poplar [START_REF] Muchero | Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree[END_REF] or in seedling water-stress response in valley oak (Gugger et al. 2017). Combining transcriptomic studies with population genetics remains rare in forest trees, although transcriptomics provide phenotypes that directly translate the response to the environment and thus have the potential to be a valuable tool for understanding local adaptation and for adding further evidence to the involvement of genes identi ed in association studies.

To what extent can the results for maritime pine be generalized?

In the present PhD work, I used maritime pine as a case study but the trends and patterns observed are likely to be informative about forest tree adaptation more generally. Indeed, in conifers, convergent patterns of local adaptation have been repeatedly detected, usually through the identi cation of common signatures of selection among related species in a set of orthologous genes (i.e. genes descending from a common ancestral gene by speciation). Perhaps the most striking example is the identi cation of 47 common genes involved in local adaptation between two distantly related conifers, interior spruce and lodgepole pine, separated by 140 million years of independent evolution [START_REF] Yeaman | Convergent local adaptation to climate in distantly related conifers[END_REF]. Similarly, [START_REF] Mosca | The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps[END_REF] found seven SNPs associated with an environmental gradient that were located in genes common to four cohabiting conifers of the European Alps, i.e. silver r, Swiss mountain pine, Swiss stone pine and European larch. Other evidence of convergent adaptation were found in more closely related species, e.g. two pine species from southeast China in which signals of recent selection were species-speci c while most signals of ancient selection were common between the two species [START_REF] Zhou | Climatic adaptation and ecological divergence between two closely related pine species in Southeast China[END_REF], two spruce species (Siberian spruce and Norway spruce) showing footprints of convergent adaptation in the control of growth cessation [START_REF] Chen | Clinal Variation at Phenology-Related Genes in Spruce: Parallel Evolution in FTL2 and Gigantea?[END_REF], two other spruce species (white spruce and black spruce) showing common adaptive patterns in nine gene families -a number higher than expected by chance- [START_REF] Prunier | Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[END_REF]) and two white pine species (eastern white pine and western white pine) in which three orthologous genes showed signatures of selection [START_REF] Nadeau | The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: The case of two white pines[END_REF]). In the Mediterranean pines, which have diverged recently (about 10 million years ago), Grivet et al. (2013) found two genes related to defense and stress response that showed adaptation patterns in the di erent taxon studied. In contrast, the Mediterranean pines exhibited divergent evolution in their life-history traits and di erent genetic correlations among growth-development, reproduction and re-related traits, thus re ecting diverging adaptive histories (Grivet et al. 2013).

A consistent pattern emerging from studies comparing the adaptive evolution of di erent conifer species, and more generally forest species, in the northern hemisphere is the predominant role of cold temperatures in shaping the observed adaptation gradients. Indeed, in most of the studies mentioned above, some genes suggested to be under recent or ancient selection were already known to be associated with cold response in other plants or forest trees [START_REF] Nadeau | The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: The case of two white pines[END_REF][START_REF] Prunier | Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[END_REF][START_REF] Zhou | Climatic adaptation and ecological divergence between two closely related pine species in Southeast China[END_REF]. Noticeably, the strongest phenotypic signatures of adaptation to climate found in [START_REF] Yeaman | Convergent local adaptation to climate in distantly related conifers[END_REF] were related to fall and winter cold injury traits and low-temperature stress-related environmental factors. These ndings are consistent with the strong phenotypic and genetic clines along latitudinal and temperature gradients long known in forest trees (e.g. [START_REF] Aitken | Genecology and Gene Resource Management Strategies for Conifer Cold Hardiness[END_REF][START_REF] Joyce | Climatic niche, ecological genetics, and impact of climate change on eastern white pine (Pinus strobus L.): Guidelines for land managers[END_REF][START_REF] Langlet | Two Hundred Years Genecology[END_REF][START_REF] Morgenstern | Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture[END_REF][START_REF] O'neill | Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution[END_REF][START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF]) and involving the synchronised response of multiple complex traits [START_REF] Howe | From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees[END_REF].

Results from

3 are in line with the aforementioned body of work on the prevalence of cold adaptation in conifers since we showed the major contribution of cold temperature variables in explaining allelic turnover along environmental gradients. More remarkably, the work presented in 1 is, to my knowledge, the rst to demonstrate an association between the levels of quantitative genetic variation within populations (for height in this chapter) and extreme cold events in a long-lived forest tree, thus supporting the key role of climate-induced selection in reducing genetic variation within populations. Interestingly, Ramírez-Valiente et al. ( 2019) also found a decrease in within-population genetic variation for functional and growth traits in drier and hotter conditions during the dry season in a Mesoamerican white oak, Quercus oleoides. In contrast, [START_REF] Anderegg | Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[END_REF] found no association between within-population phenotypic variance for several functional traits and aridity for eight Acacia species in Western Australia and Tasmania, regions where we would expect strong drought-related selection potentially leading to a decrease in within-population variance (however, these results would need to be con rmed by examining the additive genetic -and not phenotypic-variance). To conclude, assessing whether the association between within-population genetic variation for height and severe cold temperatures in maritime pine populations is a general pattern in conifers -and more generally in forest trees-would be particularly informative to further investigate the convergence in adaptive evolution among closely or more distantly related species. Moreover, determining whether such a decrease in within-population genetic variation can be found along other environmental gradients (e.g. [START_REF] Ramírez-Valiente | Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides[END_REF] or for other traits would inform about how this pattern is general or speci c to tree height along cold gradients.

Studying forest tree adaptation to cold temperatures is particularly important in management and conservation strategies. Indeed, within the assisted migration framework, moving trees to latitudes too far from their current location (outside their breeding zone in particular) may lead to maladaptation to new cold conditions (e.g. Grady et al. 2015). Predicting the phenotypes of translocated individuals can be done at the population level using using climatic data (i.e. climate-based population response functions; e.g. Leites et al. 2012a[START_REF] Rehfeldt | Genetic Responses to Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation[END_REF] or at the individual level using genomic data, or a combination of genomic and climatic data ( 2). Ultimately, landscape genomics approaches such as the genomic o set may also be appropriate to predict the risk of environmental maladaptation of the populations when transplanted in new environments ( 3). Furthermore, careful thought must be taken when selecting for certain traits in breeding programs (e.g. growth) since genetic correlations among traits may impede cold hardiness [START_REF] Maclachlan | Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer[END_REF].

Besides their convergent patterns of adaptive evolution, conifers show highly di erent patterns of neutral genetic variation across their ranges. In Europe for instance, a clear distinction can be made between populations in the Mediterranean region, which are often fragmented and have a high population genetic structure (e.g. populations of black pine and maritime pine), and populations in central and northern Europe, which are often continuously distributed and have a low population structure (e.g. populations of silver r, Norway spruce and Scots pine) [START_REF] Bou | Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient[END_REF]. Population genetic structure, induced by population demographic history and gene ow among populations, may be considered as a nuisance parameter to be controlled when searching for selection footprints, but also as a key factor shaping the nature, direction and e ciency of natural selection [START_REF] Siol | The population genomics of plant adaptation[END_REF]. Therefore, to what extent the results from the present PhD work in maritime pine, a Mediterranean pine species with fragmented populations and a strong population genetic structure [START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF], can be transferred to other conifer species (with di erent population structure) remains to be tested. For example, similar modelling approaches as the one used in 1 could be applied to Scots pine populations, which show low levels of genetic di erentiation and are distributed almost continuously from southern Spain to eastern Asia. Similarly to the results obtained in maritime pine, we may hypothesize to detect a decrease in within-population genetic variation subjected to severe cold events, because the distribution of Scots pine covers a broad latitudinal gradient and populations have been repeatedly shown to follow steep adaptive clines along temperature gradients [START_REF] Savolainen | Gene Flow and Local Adaptation in Trees[END_REF]). However, unlike maritime pine, which has reduced gene ow among fragmented populations, strong gene ow among Scots pine populations might counteract the negative e ect of natural selection on within-population genetic variation. Thus, the extension of the work in this PhD to other forest tree species remains highly desirable.

Another interesting perspective would be to focus on maritime pine populations with very low levels of di erentiation but located in highly di erent environments, and assess whether the results obtained in this PhD work are robust in these populations. Corsican populations of maritime pine may be used for this purpose as they show almost no genetic structure and are located in highly contrasted environments, ranging from Mediterranean beaches on the seashore to populations at high altitude a few kilometers away. Extension of the work in this PhD in that direction is also desirable.

Towards predicting the response of populations to future environmental conditions

C

1 and 3 present a rst step towards predicting the response of maritime pine populations to future environmental conditions (e.g. climate change) by assessing which populations may be able to adapt quickly ( 1) and which populations may have to evolve the most to maintain current gene-environment relationships ( 3). In 1, quantitative genetic variation estimated within populations informs about their adaptive potential. According to the breeder's equation, R = h 2 S (univariate form, [START_REF] Falconer | Introduction to quantitative genetics[END_REF]Mackay 1996, Lush 1937; see [START_REF] Lande | The Measurement of Selection on Correlated Characters[END_REF] for the multivariate form), the per generation response (i.e. evolutionary change) of a quantitative trait under selection (R) is the product of the trait heritability (h 2 ) and the selection di erential (S), which is the di erence between the population mean before and after selection, and more generally, the phenotypic covariance between the relative tness and the trait. Therefore, 1 provides half the puzzle for determining which populations may adapt more rapidly to changing conditions on short time scales, as we showed that genetic variation for height varies among populations, in particular being lower in populations experiencing severe cold events. C 3 revealed that the risk of short-term climate maladaptation, i.e. the genomic o set, also varies among populations, with populations currently experiencing mild-winter conditions (i.e. most Atlantic populations and populations in southeastern France and northwestern Italy) being at higher risk. Importantly, the genomic o set informs about the magnitude of genetic change required to maintain the current gene-environment relationships, and thus in theory to maintain the optimal phenotype under changing environmental conditions (i.e. scenario of the 'moving target' in Brady et al. 2019a). However, it does not account for the ability of populations to evolve towards the new optimum, either through shifts in allele frequencies caused by selection, the migration of adaptive alleles, or at a lesser extent through the onset of new mutations (but see Gougherty et al. 2020b). Considering these evolutionary processes may lower the estimates of maladaptation risk (Exposito-Alonso et al. 2018b), but for that, other approaches are needed as the genomic o set approach is limited to estimating maladaptation of populations before evolution happens.

Predicting the fate of populations in the face of climate change involves predicting their short-, medium-, and if possible long-term evolutionary trajectories. Here I use 'predict' in the sense of forecasting future attributes of a population (e.g. trait values, mean tness or allele frequencies) based on theory and the current attributes of the population. But, is evolution predictable? This question has been the subject of long-standing debate attempting to determine whether evolution acts primarily via deterministic or stochastic processes (Grant and Grant 2002[START_REF] Lässig | Predicting evolution[END_REF][START_REF] Reznick | Is evolution predictable?[END_REF]. Stochastic processes include the individual-level processes of mutation and stochastic developmental variation and the population-level processes of recombination and genetic drift (Fig. VII.7). Although the in uence of new mutations on the tness of a given individual may be negligible most of the time, long-term experimental evolution studies of short-lived microorganisms (i.e. over thousands of generations) have revealed the importance of rare but large-e ect random mutations on evolutionary trajectories [START_REF] Blount | Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli[END_REF]. In forest trees with long generation times and in which most adaptations derive from standing genetic variation, the contribution of new mutations to the evolutionary trajectories of populations in the face of climate change is likely to be very marginal, if not absent. Gene ow may also be considered as a random process acting at the metapopulation level, although it has also a deterministic component [START_REF] Edelaar | Appreciating the Multiple Processes Increasing Individual or Population Fitness[END_REF]Bolnick 2012, Rice and[START_REF] Rice | Evolution with Stochastic Fitness and Stochastic Migration[END_REF]. Importantly, the relative importance of random processes on evolutionary trajectories xes an upper bound to the degree to which evolution is in theory predictable, i.e. the 'random limit' hypothesis in [START_REF] Nosil | Increasing our ability to predict contemporary evolution[END_REF] Figure VII.7. Diagram representing di erent sources of uncertainty in predicting evolution, originating from stochastic evolutionary processes (i.e. random limits), limited understanding (and thereby accurate modelling) of the deterministic evolutionary processes (i.e. model limits) and the lack of genomic, phenotypic, and environmental data (i.e. data limits). The underlying rationale of the model and data limits (gathered under the term 'data limits' in [START_REF] Nosil | Increasing our ability to predict contemporary evolution[END_REF]) is that with su cient data, and theoretical and mathematical models accurately capturing the processes at play, we would be able to predict the evolutionary trajectories of populations. Modi ed from [START_REF] Ovaskainen | Quantitative Ecology and Evolutionary Biology: Integrating models with data[END_REF] and [START_REF] Nosil | Increasing our ability to predict contemporary evolution[END_REF].

Our ability to predict evolution may also, if not more, be constrained by our understanding of the deterministic processes underlying the evolutionary trajectories of the populations (referred as 'model limits' in Fig. VII.7). At the individual level, deterministic processes encompass the molecular mechanisms generating the phenotypes based on the environment-mediated expression of the genotypes, e.g. epigenetic mechanisms behind phenotypic plasticity, cis/trans e ects or pleiotropic e ects that underlie the genetic architecture of most quantitative traits. At the population level, phenotype frequencies are determined by the action of natural selection and inheritance rules based on the initial allele and genotype frequencies. A deep understanding of such processes is required to build robust theoretical and mathematical models aiming at predicting the future adaptive states of natural populations. I will brie y present three major modelling approaches that have been developed so far. First, quantitative genetics theory o ers key models for predicting the adaptive potential of populations over short time scales. The breeder's equation (see above) or the Robertson's secondary theorem of selection [START_REF] Price | Selection and Covariance[END_REF][START_REF] Robertson | A mathematical model of the culling process in dairy cattle[END_REF]) can be used to predict the adaptive evolution of phenotypic traits under selection [START_REF] Walsh | Evolution and Selection of Quantitative Traits[END_REF]. However, a crucial limitation is that these equations require choosing which phenotypic traits to consider among the large number of traits potentially subject to selection [START_REF] Shaw | From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction[END_REF]. According to Shaw (2018), Fisher's Fundamental Theorem provides a direct and potentially more robust alternative to predict the rate of adaptation, i.e. the change in mean absolute tness, of populations (Fisher 1930). Second, prediction of population evolutionary trajectories over medium time scales can be achieved using long-term series of observational data from natural populations, i.e. by determining whether trends at the beginning of the time series can predict subsequent temporal trends (e.g. Grant andGrant 2002, Nosil et al. 2018). Third, predicting evolution over long time scales (i.e. across many generations) requires to directly incorporate the evolutionary processes within the models, which can be achieved via mechanistic individual-based evolutionary dynamics models. Such models are particularly relevant for predicting the evolutionary trajectories of populations as they can simulate how the di erent deterministic and stochastic evolutionary forces (selection, gene ow, mutation and genetic drift) interact by explicitly integrating the underlying mechanisms, i.e. inheritance rules [START_REF] Oddou-Muratorio | Integrating evolutionary, demographic and ecophysiologicalprocesses to predict the adaptive dynamics of forest tree populations under globalchange[END_REF]. In particular, they can be calibrated with quantitative genetic models which provide an e cient and robust framework to infer the genetic architecture of polygenic traits (e.g. [START_REF] Coulson | Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change[END_REF]. Ultimately, evolutionary dynamics models may be combined with ecophysiological and forest dynamics models to improve our understanding and the predictions of the eco-evolutionary dynamics of forests under changing environmental conditions [START_REF] Oddou-Muratorio | Integrating evolutionary, demographic and ecophysiologicalprocesses to predict the adaptive dynamics of forest tree populations under globalchange[END_REF].

A common limitation of the modelling approaches presented above stems from the insufcient empirical data to both calibrate and validate the models, i.e. 'data limits' in Fig. VII.7. For example, the evolutionary trajectories of beak size in Darwin's nches on Daphne Major Island were not predictable, primarily due to rare and large-e ect climate events that were not predicted by climate models (Grant and Grant 2002). Similarly, large databases of quantitative genetic parameters for performance (e.g. survival or reproduction) or functional traits are lacking to robustly calibrating evolutionary dynamics models [START_REF] Oddou-Muratorio | Integrating evolutionary, demographic and ecophysiologicalprocesses to predict the adaptive dynamics of forest tree populations under globalchange[END_REF]. Moreover, in forest trees, most quantitative genetic parameters come from controlled experiments (e.g. common gardens) of young trees, thus covering only a limited range of environments and under growth conditions far di erent from those experienced in situ (e.g. relaxed competition among trees).

Our ability to make accurate predictions of future evolutionary trajectories of populations, in particular under climate change, is therefore constrained by a combination of random limits caused by unpredictable stochastic processes, and model and data limits, originating from insu cient knowledge of the deterministic processes at stake [START_REF] Nosil | Increasing our ability to predict contemporary evolution[END_REF]. Noticeably, our current insu cient knowledge on how the phenotypes are generated based on the genotypes at the individual level (i.e. the genotype-phenotype map) explains why using genomic data to predict multi-generational evolution is at present out of reach [START_REF] Shaw | From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction[END_REF]. Indeed, a robust conceptual framework on how genes interact among them and with the environment to generate the phenotype is still lacking. The omnigenic model is so far the most complete theoretical model of genetic architecture, suggesting that phenotypes are determined by a minority of direct-e ect genes and a majority of indirect-e ect genes. Interestingly, [START_REF] Mathieson | The omnigenic model and polygenic prediction of complex traits[END_REF] argues that direct-e ect genes are likely to have a stable e ect across populations while indirect-e ect genes are more likely to show population-dependent e ects, and that the omnigenic model can be extended to the 'omni-environmental' model in which some 'core' environmental e ects would be consistent across populations while 'peripheral' environmental e ects would be unpredictable. Importantly, this would imply that genomic-based predictions of individual phenotypes will be inherently environment and population-speci c, and therefore inappropriate for predicting adaptation of populations across many generations under changing environments [START_REF] Shaw | From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction[END_REF]. Other arguments in this direction include (i) the highly challenging (if not impossible) task of capturing most genetic variants under weak selection with genome scans, (ii) the mismatch between the temporal scale of adaptation signals detectable in genomic studies and that of the necessary short-term adaptation to climate change and, more importantly, (iii) the inability of genomic studies to estimate the mean absolute tness of populations, which corresponds to their degree of adaptation [START_REF] Shaw | From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction[END_REF]. Therefore, predicting the evolution of populations under future conditions using quantitative genetic theory, whose predictions are based on the aggregate e ects of multiple polymorphic loci, seems much more promising than using genomic and molecular tools, which necessitate understanding the e ect of each adaptive loci in isolation. Conversely, although genomic data cannot be used directly in the prediction of evolutionary trajectories, they are particularly useful for estimating genetic parameters of interest in natural populations in situ, which is of great value for the calibration of mechanistic evolutionary dynamics models.

VIII C

Using maritime pine as a case study, the present PhD work originally combined trait-based approaches with landscape genomics, thereby bringing together phenotypic, environmental and genomic data from a large network of ve common gardens and 34 populations. Results from the di erent chapters converge on the key role of cold temperatures in the adaptive history of maritime pine, impacting both the current adaptive states of populations, but potentially also the within-population variance of some quantitative traits (e.g. tree height). Genomic data showed particular promise for improving predictions of short-term population responses to environmental changes. Indeed, quantitative trait predictions for individuals translocated to new environments may be improved by incorporating genomic information within the models, which would be of great interest in conservation or management strategies (e.g. assisted migration or evolutionary rescue). Moreover, genome-based predictions of the extent to which gene-environment relationships will be disrupted by climate change may prove to be a highly relevant tool for rapidly identifying populations at risk of short-term climate maladaptation. More broadly, this work contributes to a better understanding of adaptive processes, and to the accumulation of knowledge and robust statistical methods necessary for the implementation of evolution-based management strategies, and to progress towards the ambitious but urgent goal of predicting the response of populations to climate change.

X S

C 1 The prior of β 0 was weakly informative and centered around the mean of the observed values for the trait under considered, as follows:

β 0 ∼ N (µ ,
2) The population and block intercepts, P p and B b were considered normally-distributed with variances σ 2 P and σ 2 B , such as:

B b P p ∼ N 0, σ 2 B σ 2 P
The clone intercepts C c(p) were considered to follow some population-speci c normal distributions, such as:

C c(p) ∼ N (0, σ 2 C p ) where σ 2
C p are the population-speci c variances among clones. To partition the total variance, we parameterize our model so that only the total variance, σ 2 tot has a prior, such that:

σ 2 tot = σ 2 r + σ 2 B + σ 2 C p + σ 2 P σ r = σ tot × (π r ) σ B = σ tot × (π B ) σ P = σ tot × (π P ) σ C p = σ tot × (π C ) σ tot ∼ S * (0, 1 , 3) 
where σ C p and σ 2 C p are the mean of the population-speci c among-clones standard deviations (σ C p ) and variances (σ 2 C p ), respectively, and 4 l π l = 1 (using the s i m p l e x function in S t a n ). The population-speci c among-clones standard deviations σ C p follow a log-normal distribution with mean σ C p and variance σ 2 K , such as: 1) with X p the potential driver considered and β x its associated coe cient.

σ C p ∼ LN ln(σ C p ) - σ 2 K 2 + β X X p , σ 2 K σ K ∼ exp(
Here we provide further explanation regarding the use of the log-normal distribution for σ C p in the model:

σ C p ∼ LN (µ, σ 2 K ) ⇔ ln(σ C p ) ∼ N (µ, σ 2 K ) with µ the median of σ C p By de nition: E(σ C p ) = exp µ + σ 2 K 2
We want:

E(σ C p ) = exp µ + σ 2 K 2 = σ tot × (π 4 ) Therefore: µ = ln σ tot × (π 4 ) - σ 2 K 2 3 
Model accuracy on simulated data

We simulated data based on the real experimental design of two traits (height in Portugal at 20-month old and height in Bordeaux at 25-month old), which means that there were the same number of blocks, populations, clones per population and trees per clone as in the real experimental design. We ran 100 simulations, which are summarized in the tables below: 

β X interpretation

We have:

σ C p ∼ LN ln(σ C p ) - σ 2 K 2 + β X Xp , σ 2 K
with Xp = (X pµ X p )/σ X p (the explanatory variables were scaled before the analyses; µ X p is the mean of X p and σ X p is its standard deviation).

By de nition:

ln(σ C p ) ∼ N ln(σ C p ) - σ 2 K 2 + β X Xp , σ 2 K
We want to calculate the percent of change in σ C p associated with a one-unit increase in Xp , that is a one-standard deviation increase in X p . For that, we call σ new the value of σ C p after increasing Xp by one unit, and we have:

ln(σ new ) = ln(σ C p ) - σ 2 K 2 + β X ( Xp + 1) = ln(σ C p ) + β X Therefore: ln(σ new ) -ln(σ C p ) = β X σ new σ C p = exp(β X ) 100 × σ new σ C p -1 = 100 × (exp(β X ) -1) 100 × σ new -σ C p σ C p = 100 × (exp(β X ) -1)
is the percent change in σ C p associated with a one-unit increase in Xp (that is, a one-standard deviation increase in X p ). For instance, a one-standard deviation increase in the inverse of the extreme minimum temperature is associated, on average, with 100 × (exp(-0.395) -1) = -32.6% change in σ C p for height in Portugal, with 100 × (exp(-0.243) -1) = -21.6% change in σ C p for height in Bordeaux at 25-month old and with 100 × (exp(-0.197) -1) = -17.9% change in σ C p for height in Asturias. Similarly, a one-standard deviation increase in the summer heat moisture index is associated, on average, with 100 × (exp(-0.17 

Model equation and priors

We used the same mathematical model as the one used on CLONAPIN data (see section 2 in the Supplementary Information) but replacing clones by families. We modeled each trait bp f r such as:

bp f r ∼ N (µ bpc f , σ 2 r ) µ bp f = β 0 + B b + P p + F f (p) (8.1)
where β 0 is the global intercept, B b the block intercepts, P p the population intercepts, F f (p) the family intercepts and σ 2 r the residual variance. The prior of β 0 was weakly informative and centered around the mean of the observed values for the trait under considered, as follows:

β 0 ∼ N (µ , 2)
The population and block intercepts, P p and B b were considered normally-distributed with variances σ 2 P and σ 2 B , such as:

B b P p ∼ N 0, σ 2 B σ 2 P
The family intercepts F f (p) were considered to follow some population-speci c normal distributions, such as:

F f (p) ∼ N (0, σ 2 F p ) where σ 2
F p are the population-speci c variances among families. To partition the total variance, we parameterize our model so that only the total variance, σ 2 tot has a prior, such that:

σ 2 tot = σ 2 r + σ 2 B + σ 2 F p + σ 2 P σ r = σ tot × (π r ) σ B = σ tot × (π B ) σ P = σ tot × (π P ) σ F p = σ tot × (π F ) σ tot ∼ S * (0, 1 , 3) (8.2) 
where σ F p and σ 2 F p are the mean of the population-speci c among-families standard deviations (σ F p ) and variances (σ 2 F p ), respectively, and 4 l π l = 1 (using the s i m p l e x function in S t a n ). The population-speci c among-families standard deviations σ F p follow a log-normal distribution with mean σ F p and variance σ 2 K , such as:

σ F p ∼ LN ln(σ F p ) - σ 2 K 2 + β X X p , σ 2 K σ K ∼ exp(1) (8.3)
with X p the potential driver considered and β x its associated coe cient. 
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Changes since preregistration

This study was pre-registered at the Center for Open Science (https://osf.io/knx6z/?view_ only=41bb7b5cbf7241d0856e8b9e393cc795). Some changes have been made in the nal manuscript compared to what was indicated in the pre-registration. There are listed below:

• There was a mistake in Table 2 of the pre-registration: we did not have the soil moisture index (SMI). Moreover, the notation for the summer heat moisture index has changed: instead of SumHMI, it is now noted as SHM.

• The initial number of clones and populations were 523 and 34 respectively. However, calculating the genetic variation in one population (from Madisouka) was impossible as there was only one clone in that population. That's why there are 522 clones and 33 populations in the nal manuscript.

• In the part Statistical models of the pre-registration, we speci ed: 'We will test three di erent models, from the simplest to the most complex, and we will keep the complex model if it converges and if the credible intervals are not too wide compared to the simpler models. ' As the most complex worked well, we did not run the simpler models and we directly used the most complex model in the manuscript. In addition, there was a mistake in the pre-registration formula regarding the estimation of σ C P with the log-normal distribution, which was corrected in the nal manuscript (see section Model equation and priors of the Supplementary Information).

• In the part EnvironmentIndices of the pre-registration, we indicated that we would calculate EHW, the environmental heterogeneity in a 20-km around each population location, as the variance of the PC1 scores weighted by the relative probability of gene ow from the surrounding region. However, the pollen dispersal kernels we used (from [START_REF] De-Lucas | Mating system and pollen gene ow in Mediterranean maritime pine[END_REF] are highly leptokurtic, which means that the probability of gene ow among trees located more than 200m from the GPS coordinates of the population is very low. Since the resolution of the climatic variables was only 1 × 1 km, we obtained implausible values for EHW and therefore decided not to use it. Instead, we calculated the variance of PC1 scores within a 1.6 km radius of the population locations. Furthermore, as the rst two components of the PCA both explained a large part of the environmental variation (45.2% and 34.1%, respectively; X.10), we decided to calculate the environmental heterogeneity indices based on the PC1 and PC2 scores, resulting in four indices in the end: EH1[20km], EH2[20km], EH1 [1.6km] and EH2 [1.6km]. Last, we indicated that we would use the soil moisture index (SMI) as a measure of climate harshness but that was a mistake, we used the summer heat moisture index (SHM).

XI S

C 2 3 Climatic data

In the test sites

We extracted monthly climatic data from the EuMedClim database at 1-km resolution (Fréjaville and Benito Garzón 2018). We calculated six variables that describe both extreme and average temperature and precipitation conditions in the test sites during the year preceding the measurements: the mean of monthly precipitation (mean.pre, mm), minimum of monthly minimum temperatures (min.tmn, °C), minimum of monthly precipitation during summer -June to September-(min.presummer, °C), the mean of monthly maximum temperatures (mean.tmax, °C), maximum of monthly precipitation (max.pre, mm), maximum of monthly maximum temperatures (max.tmx, °C). These variables had at most a correlation coe cient of 0.85 among each other (Fig. XI.4). Due to the unbalanced number of measurements among test sites (trees were measured only once in the hottest and driest sites, Cáceres and Madrid, as survival was very low), some of these variables were slightly correlated with tree age (at most with a correlation coe cient of 0.56 for the mean of the monthly precipitation; Fig. XI.4). We decided not to include soil variables (from the European Soil Database: https://esdac.jrc.ec.europa.eu/) in the analyses as they were highly correlated to some of the climatic variables. Likewise, we did not include variables related to water balance or evapotranspiration potential as they were highly correlated with temperature and precipitation variables. The climatic similarity among test sites during the year preceding the measurements was described by the covariance matrix Ω. This covariance matrix was used to estimate the association between height-growth variation and the climatic similarity between test sites in models M3 to M6 (Table V.1), following [START_REF] Jarquín | A reaction norm model for genomic selection using high-dimensional genomic and environmental data[END_REF]; see also a similar approach but using Euclidean distance matrices in Thomson et al. (2018). 

In the provenances

We extracted yearly data from the EuMedClim database at 1-km resolution (Fréjaville and Benito Garzón 2018). We calculated four variables that describe the mean temperature and precipitation in the provenance locations over the period from 1901 to 2009, representing the climate under which provenances have evolved: the average of the annual daily mean temperature (mean.temp, °C), the average of the maximum temperature of the warmest month (max.temp, °C), the average of the annual precipitation (mean.pre, mm) and the average of the precipitation of the driest month (min.pre, mm). These variables had at most a correlation coe cient of 0.77 among each other (Fig. XI.7), and three of them were correlated to the population genetic structure, i.e. the gene pool assignment (|ρ|≥ 0.6). Indeed, the provenance proportion belonging to the French Atlantic gene pool was positively correlated (ρ=0.83) to the average of the precipitation during the driest month, whereas the proportion belonging to the Central Spain gene pool was negatively correlated (ρ=-0.68) to the average of the annual precipitation and positively correlated (ρ=0.6) to the average of the maximum temperature of the warmest month (Fig. XI.7). However, the confounding e ect introduced by these correlations was mitigated by some provenances belonging to di erent gene pools but occurring in similar climates (i.e. French and Iberian Atlantic provenances), and some provenances occurring in di erent climates but belonging to the same gene pool (i.e. Corsican provenances). Soil variables from the European Soil Database (https://esdac.jrc.ec.europa.eu/) were not included in our study as they were highly correlated to some of the selected climatic variables. log(h isbp ) ∼ N (Xβ + µ sbp , σ 2 ) Xβ = β 0 + β a e age i + β a e2 age 2 i µ ijsbp = S s + B b(s) + P p + G (p) + cs is + 6 j=1 q j j j ∼ N (0, σ 2 j ) where q j corresponds to the proportion of each genotype belonging to the gene pool j (as estimated in Jaramillo-Correa et al. 2015) and j is the mean relative contribution of gene pool j on height growth. In this model, trees from the same gene pool are considered to be unrelated, which is a reasonable assumption given the sampling scheme (see Materials & Methods).

M5 extends M4 by allowing gene pools j to vary in their total genetic variance σ 2 A j , following [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF]. This involves replacing the genotype varying intercepts G (p) in M4 by partial genetic values a j standing for the relative contribution of gene pool j to the genetic value a of genotype (approximated in M4 by the genotype intercepts G (p) ). Thus, M5 can be expressed as M4 but with µ ijsbp equal to:

log(h isbp ) ∼ N (Xβ + µ sbp , σ 2 ) Xβ = β 0 + β a e age i + β a e2 age 2 i µ ijsbp = S s + B b(s) + P p + cs is + 6 j=1 q j j + 6 j=1 a j a j = (a 1j , ..., a nj ) ∼ N (0, σ 2
A j A j ) with A j the genomic relationship matrix speci c to the gene pool j and σ 2

A j , the total genetic variance in gene pool j. A j matrices were calculated based on SNPs that did not show any association with height at range-wide geographical scales (see [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF] for details on A j calculation). Using the modeled residual variance σ 2 and gene-pool speci c total genetic variances σ 2

A j , we calculated the gene-pool speci c broad-sense heritability as:

H 2 j = σ 2 A j /(σ 2 A j + σ 2 ).
In model M6, we hypothesized that populations are genetically adapted to the climatic conditions in which they evolved. Thus, we aimed to quantify the association between height growth and the climatic similarity among provenances, while accounting also for the proportion belonging to each gene pool. We kept the genotype varying intercepts (like in M1 to M4) but not the gene pool-speci c total genetic variances (unlike M5). Thus, M6 extends M4 as:

log(h isbp ) ∼ N (Xβ + µ sbp , σ 2 ) Xβ = β 0 + β a e age i + β a e2 age 2 i µ ijsbp = S s + B b(s) + P p + G (p) + cs is + cp p + 6 j=1 q j j cp p ∼ N (0, Φ σ 2 cp p )
where Φ is the covariance matrix describing the climatic similarity between provenances p (Fig. XI.9) and cp p are varying intercepts associated with each provenance p. In M6, the genetic component was partitioned among the regression on the climatic covariates (cp p ), the gene pool covariates ( j ), and the deviations related to the genotype (G (p) ) and provenance (P p )

Model priors

In all models:

          S s B b(s) P p G (p) S s P p           ∼ N 0,           σ S σ B σ P σ G σ Inter           (σ , σ S , σ B , σ P , σ G , σ Inter , σ cs is , σ j , σ A j , σ cp p ) ∼ StudentT(3, 0, 10) β 0 ∼ N (0, 5) β a e β a e2
∼ N (0, 1)

In model M7:

        S s β min.pre,s β max .temp,s β PEA,s         ∼ MVNormal 0 0 , S S = σ S 0 0 0 0 σ β min.pr e,s 0 0 0 0 σ β max .t emp,s 0 0 0 0 σ β P EA,s 1 1 1 ρ 1 1 ρ 1 1 ρ 1 1 ρ 1 1 1 σ S 0 0 0 0 σ β min.pr e,s 0 0 0 0 σ β max .t emp,s 0 0 0 0 σ β P EA,s         σ S σ β min.pr e,s σ β max .t emp,s σ β P EA,s         ∼ StudentT(3, 0, 10) 1 1 1 ρ 1 1 ρ 1 1 ρ 1 1 ρ 1 1 1 ∼ LKJcorr(4)
where β x,s corresponds to β min.pre,s in M7 and β max .temp,s in M8.

In model M8: same as M7 but replacing β PEA,s and σ β P EA,s by β rPEA,s and σ β r P EA,s , respectively.

In models M9, M10, M11 and M12, same as M7 and M8.

To both evaluate the model goodness-of-t and predictive ability, we also calculated the model mean predictive error of each model m (mean of observed minus predicted responses, PE m ) on the training and test datasets of the three partitions.

R 2 m , R 2 m ( x) , R 2 
m |a e, PE m and their predictive equivalents are presented in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition).

To assess the model predictive ability, we also calculated the ELPD loo , which is the Bayesian leave-one-out estimate of the expected log pointwise predictive density (equation 4 in Vehtari et al. 2017). This is a method for estimating out-of-sample prediction accuracy of Bayesian models, which is asymptotically equal to WAIC (Vehtari et al. 2017) and has the great advantage that it can be estimated without re tting the model. ELPD loo estimates can be found in Table XI.6 for the P1 partition and its pairwise comparisons between models in Tables XI.7 (P1 partition) and XI.10 (P2 partition). ELPD loo , like WAIC, provides various advantages over AIC and DIC, especially that it is not a point estimate and, on the contrary, has an entire posterior distribution (Vehtari et al. 2017). Moreover, calculating ELPD loo using Pareto-smoothed importance sampling as we did in the present study using the loo R package, leads to more robust estimates than with WAIC (e.g. in cases with weak priors or in uential observations). Models with higher ELPD loo are expected to have a higher predictive ability for new observations. In other words, ELPD loo indicates which model best captures each left-out data point. Therefore, ELPD loo indicates whether models have good predictive ability for new observations, but not for new groups (e.g., new provenances in our case). To estimate to predictive ability on new provenances with the ELPD loo , we would have had to divide the dataset into k partitions (e.g. 34 partitions and leaving one provenance out each time, 34 being the number of provenances; or 6 partitions and leaving ∼6 provenances out each time) and run the models k times, which would have been very computationally heavy and was not feasible in our case given the computation time of some models (almost a week for M5). This is why we used the prediction R 2

ms |a e instead of the ELPD loo to compare the models as it allowed us to calculate the variance explained and predicted by the models conditional on the age e ect, and also to compare their predictive ability on new provenances without running the models again. ms |a e estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition). M0 explained less variance (lower R 2 m and R 2 m |a e) than the other models as it did not account for the genetic component of height growth (Table XI.4). The models that accounted for the genetic component with varying intercepts for the provenances explained 81.5% of the variance (Table XI.4). The models combining genomic (PEAs and gene pools) and climatic drivers (M7 and M8) explained more variance (higher R 2 m and R 2 m |a e) than models including separately each driver (M9 to M12). R 2 m and prediction R 2 m were similar for all models, meaning that the models predicted well new observations (i.e. new observations but from the same sites and same provenances).

Variance partitioning conditional on the age e ect

We examine here the partitioning of the variance conditional on the age e ect, which provides insight into the genetic and plastic components of deviations from the mean height-growth trajectory (Table XI.5). It was not possible to extract the variance explained by the di erent drivers of the genetic and plastic components (i.e. for the plastic component, the variance associated with site intercepts and the intercepts associated with climatic similarity between sites) as they were confounded, and thus their explained variance could not be disentangled. Table XI.7. ELPD l oo di erences among models tted on the training dataset of the P1 partition. The ELPD l oo di erence among models corresponds to the ELPD l oo of the row model minus the ELPD l oo of the column model. Thus, a negative di erence in ELPD l oo means that the row model has a lower ELPD l oo than the column model, and therefore a lower predictive ability on new observations. The standard error of the model di erences is indicated between brackets. Two models are considered signi cantly di erent when their absolute ELPD l oo di erence is higher than four times the standard error (in bold). The ELPD l oo di erence among models corresponds to the ELPD l oo of the row model minus the ELPD l oo of the column model. Thus, a negative di erence in ELPD l oo means that the row model has a lower ELPD l oo than the column model, and therefore a lower predictive ability on new observations. The standard error of the model di erences is indicated between brackets. Two models are considered signi cantly di erent when their absolute ELPD l oo di erence is higher than four times the standard error (in bold). Detail about interpretation of ELPD l oo di erences can be found in section 5.3.3. In the baseline model M0, only the plastic component is included (via the site and block intercepts). The genetic component is not considered (no intercepts for the provenances and the genotypes). M0 was performed to compare the gain in explanatory and predictive power of models that account for the genetic component, compared to the model M0 that does not. ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ) in M0. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

Site

MODEL M0

MODEL M1

In M1, the plastic component was mainly attributed to the variance σ 2 S between sites (median of 0.108), while the variance σ 2 B between blocks was almost null (median of 0.002) (Table XI.15). Some sites showed heights deviating strongly from the global mean: Madrid, where trees grew the least (median of -0.376), and Asturias where they grew particularly well (median of 0.272) (Fig. V.3 & Table XI.16). The genetic component was equally attributed to the variance between provenances σ 2 P and genotypes σ 2 G , with a median of 0.013 and 0.012, respectively ( 

MODEL M2

In M2, parameter estimates were similar to M1. The variance σ 2

Inter of the provenance-by-site interaction was much smaller than the variances among provenances or genotypes (median of 0.004 and 95% CIs: 0.003-0.006; I nt e r ), the global variance σ , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval. In contrast, most provenances from the Central Spain gene pool were among the shortest, especially in Asturias and Bordeaux. The two provenances from the Corsican gene pool showed highly contrasted intercepts. The provenance Pinia (PIA) was taller than other provenances on average, especially in Asturias and Bordeaux. In contrast, the second Corsican provenance (Pineta, PIE), was shorter than other provenances on average but grew particularly well in Portugal. Provenances belonging to the south-eastern Spain gene pool (i.e. ORI and COM) also showed contrasted intercepts (trees from ORI were shorter than those from COM on average), but did not show strong di erences between sites. Lastly, regarding provenances belonging to the northern African gene pool, the TAM provenance had the lowest growth in our dataset and was more likely to be taller in Cáceres and Madrid (the harsh Mediterranean sites) than in the other sites.

6.1.2 Models M3 and M3bis: potential drivers underlying the plastic component of height-growth variation

The plastic component of height-growth in M3 (but also in all subsequent models until M6; Table V.1) was only marginally associated with the climatic similarity among sites (σ 2 cs is with a median of 0.023 in M3), compared to the variance associated with site intercepts (σ 2 S with a median of 0.126 in M3; To check this, we ran a supplementary model identical to M3 but without the site intercepts S s (see model M3bis below). In this model, the variance related to the climatic similarity among sites was nearly equal and as uncertain as in M3, suggesting that our variance estimation of the plastic component in M3 was robust (Table XI.23). However, the posterior distributions of the intercepts in M3bis were di erent from M3: height growth was positively associated with the climatic conditions in Bordeaux and Asturias, and negatively with the climatic conditions in Madrid and Cáceres, the two Mediterranean sites, and to a lesser extent in Portugal (Table XI.24). 6.1.3 Models M4 to M6: potential drivers underlying the genetic component of height-growth variation

MODEL M3

In M4, the variance σ 2 j between gene pools was as important as the variance σ 2 G between genotypes, but had a very wide posterior distribution (Table XI.25). From M3 to M4, adding the gene pool intercepts j resulted in a decreased variance between provenances (from a median of 0.013 to a median of 0.006, Tables XI.19 & XI.25). This indicates redundant information between gene pools and provenances. Genotypes belonging to the French Atlantic gene pool, and to a lesser extent to the Iberian Atlantic gene pool, were on average taller than genotypes belonging to the northern Africa gene pool, and to a lesser extent to the Central Spain gene pool (Fig. XI.14). ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

MODEL M4

MODEL M5: gene pool-speci c heritabilities, the telltale of distinct adaptive histories Heritability variation across populations or gene pools can inform on di erences in the drivers underlying their adaptive histories, such as evolutionary mechanisms (e.g. capacity of dispersion, selection strength, migration) and local environmental constraints (e.g. environmental heterogeneity). Using CLONAPIN data from all sites except Bordeaux, [START_REF] Rodríguez-Quilón | Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species[END_REF] showed that populations from the Mediterranean gene pools had a higher heritability than those from the Atlantic gene pools. Nonetheless, their heritability estimates did not consider population admixture, a notable feature in maritime pine (Fig. V.1). In our study, we applied the recent methodology proposed by [START_REF] Mu | Animal models with group-speci c additive genetic variances: extending genetic group models[END_REF] to calculate gene pool-speci c total genetic variance and broad-sense heritabilities in a single model that accounts for population admixture. We showed that the total genetic variance of the Iberian Atlantic gene pool had a probability higher than 0.95 of being lower than that of the Corsican and south-eastern Spain gene pools, and a probability higher than 0.90 of being lower than that of the Central Spain gene pool (Table XI.27; see also Fig. XI.13), despite their geographical proximity. The total genetic variance of the French Atlantic gene pool had a probability higher than 0.90 of being lower than that of the Corsican and south-eastern Spain gene pools (Table XI.27; see also Fig. XI.13). However, this should be taken with caution as the total variance of the gene pools from south-eastern Spain, Corsica and northern Africa had wide posterior distributions, which is probably due to the small number of genotypes from these gene pools (see Table XI.3). In line with the genetic variance estimates, the medians of the gene-pool speci c estimates of heritability H 2 j varied between 0.104 in the Iberian Atlantic gene-pool (95% CIs: 0.065-0.146) and 0.223 in the south-eastern Spain gene pool (95% CIs: 0.093-0.363) (Table XI.28 and Fig. XI.13A). Interestingly, provenances that showed the highest broad-sense heritabilities (i.e. provenances from the Corsican, south-eastern Spain, and central Spain gene pools) are also the ones facing more contrasted climates. Indeed, Corsica and south-eastern Spain are mountainous areas, with strong environmental heterogeneity at small spatial scales. Central Spain is less contrasted spatially but experiences a high continentality, and thus strong daily and annually climatic variation. Noticeably, genotypes displayed genetic values mostly determined by the dominant gene pool from which they belong to, but also, to a lesser extent, by other gene pools (Fig. XI.13B). Taken together, these results may suggest that gene pools from regions with high environmental heterogeneity (in space and/or time) have also higher heritability. Indeed, theoretical and empirical works have proposed that high levels of adaptive genetic variance can be maintained in regions of high environmental heterogeneity (mainly spatial, but to a lesser extent also temporal) and some degree of gene ow between populations (McDonald and Yeaman 2018, Yeaman and[START_REF] Yeaman | Regional heterogeneity and gene ow maintain variance in a quantitative trait within populations of lodgepole pine[END_REF][START_REF] Yeaman | Establishment and Maintenance of Adaptive Genetic Divergence Under Migration, Selection, and Drift[END_REF]. Further research involving multiple adaptive traits and more detailed environmental data would be needed to con rm this hypothesis. One-sided hypothesis testing on the probability that the gene pool-speci c total genetic variances in M5 are di erent, using the function 'hypothesis' from the 'brms' package [START_REF] Bürkner | brms: An R Package for Bayesian Multilevel Models Using Stan[END_REF]. 'Est.Error' is the standard deviation of the estimated di erence between two genetic variances ('Estimate'). The 'CI.Lower' and 'CI.Upper' are the lower and upper bounds of the 95% credible interval, respectively. 'Evid.Ratio' is the evidence ratio of each hypothesis, i.e. the posterior probability ('Post.Prob') under the hypothesis against its alternative. For instance, the evidence ratio of the hypothesis σ 2

A N A -σ 2 A C
< 0 is the ratio of the posterior probability of σ 2

A N A -σ 2 A C
< 0 and the posterior probability of σ 2

A N A -σ 2 A C
> 0. The * and ** in the 'Star' column indicate hypotheses with a posterior probability higher than 0.90 and 0.95, respectively. speci c heritabilities were calculated such as:

H 2 j = σ 2
A j σ 2 A j + σ 2 where σ 2 is the modeled residual variance and σ 2

A j the gene-pool speci c total genetic variances.

Figure XI.13. Posterior distribution of H 2 j , the gene pool-speci c heritabilities obtained from model M5 (A). Boxplot of he gene pool partial genetic values for genotypes grouped according to the main gene pool to which they belong (B). The colors represent the gene pool from which the partial genetic values were estimated. The lower, middle and upper parts of the hinges correspond to the 25%, 50% and 75% quantiles, respectively. The lower/upper whiskers extend from the hinge to the smallest/largest value no further than 1.5 time the IQR from the hinge (where IQR is the distance between the rst and third quartiles). Posterior distributions of parameters from models M9 and M12 tted on P2. For M9, the parameter estimates j correspond to the e ect of the gene pools j. For M10, the parameter estimates correspond to the site-speci c e ects of the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp, s ). For M11, the parameter estimates correspond to the site-speci c e ect of the gPEAs (β P EA,s ). For M12, parameter estimates correspond to the site-speci c e ects of the rPEAs (β r P EA, s ).

6.3 P3 partition (non-random split of the provenances)

Evaluation of model performance on new provenances was replicated on six other provenances to assess the robustness of the results. In the P3 partition, the new provenances were not totally randomly selected to ensure that each under-represented gene pool in our study was represented by at least one provenance. Thus, one provenance was randomly selected from the two provenances belonging mainly to the northern Africa gene pool. The same was done for the gene pools from south-eastern Spain and Corsica. The last three provenances were randomly selected from the three remaining gene pools. Posterior distributions of parameters from models M9 and M12 t on P3. For M9, the parameter estimates j correspond to the e ect of the gene pools j. For M10, the parameter estimates correspond to the site-speci c e ects of the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp, s ). For M11, the parameter estimates correspond to the site-speci c e ect of the gPEAs (β P EA,s ). For M12, parameter estimates correspond to the site-speci c e ects of the rPEAs (β r P EA, s ).

Interpretation of the PEAs coe cients

Let's take model M12 as an example. Here is the equation of M12 (see equation 4.1.3 in the Supplementary Information): log(h isbr ) ∼ N (Xβ + S s + B b(s) + β rPEA,s rPEA r , σ 2 ) with rPEA r is the scaled explanatory variable (i.e. the counts of regionally-selected positivee ect alleles). Let's call rPEA r the explanatory variable before being scaled, that is rPEA r = ( rPEA rµ rPEA r )/σ rPEA r , where µ rPEA r is the mean of rPEA r and σ rPEA r is its standard deviation.

We want to calculate the percent of change in height associated with a one-unit increase in rPEA r , that is a one-standard deviation increase in rPEA r . For that, we call h new the value of h isbr after increasing rPEA r by one unit, and we have: is the percent change in h isbr associated with a one-unit increase in rPEA r (that is, a one-standard deviation increase in rPEA r ). For instance, a one-standard deviation increase in the counts of rPEAs is associated, on average, with 100 × (exp(0.174) -1) = 19% change in height in Madrid, with 100 × (exp(0.120) -1) = 12.7% change in height in Cáceres, with 100 × (exp(0.092) -1) = 9.6% change in height in Bordeaux, with 100 × (exp(0.099) -1) = 10.4% change in height in Asturias and with 100 × (exp(0.122) -1) = 13.0% change in height in Portugal.

7

Q ST -F ST analysis

To determine whether height growth shows footprints of adaptive di erentiation, we performed a Q ST -F ST analysis. We used the global F ST estimate calculated in [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] on the same data as our study (i.e. the 5,165 SNPs from the Illumina In nium SNP array). [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF] used the diveRsity R package and 1,000 bootstrap iterations across loci to estimate the 95% con dence interval of the global F ST . They obtained a F ST of 0.112 (95% con dence interval: 0.090 -0.141).

To calculate the Q ST , we used the following formula from [START_REF] Spitze | Population structure in Daphnia obtusa: quantitative genetic and allozymic variation[END_REF]:

Q ST = σ 2 P σ 2 P + 2σ 2 G
where σ 2 P is the variance among provenances, and σ 2 G is the variance among clones (.i.e. genotypes) within provenances.

The median estimate of the Q ST was 0.358 (95% con dence interval: 0.251-0.506). Quantitative (Q ST ) and molecular (F ST ) genetic di erentiation among provenances were considered signi cantly di erent as their posterior distributions had non-overlapping 95% con dence intervals, which therefore suggests that there is adaptive di erentiation in height growth in our study. 1.2 Climatic, soil, topographic and re-related data

The eight environmental variables used in this study are:

• Climatic variables, which correspond to mean values over the period 1970-2000: We extracted the mean mP p of the posterior distributions of P p (i.e. the BLUPs) to estimate the association between mP p and the genomic o set or the climatic transfer distance, as follows:

mP p ∼ N (µ p , σ 2 r ) µ p = β 0 + β X 1 X p + β X 2 X 2 p (1.3)
with β 0 the global intercept, σ 2 r the residual variance and X p the value of the genomic o set or climatic transfer distance for the population p. We included a quadratic term for X p to allow for potential nonlinearity in the response, following [START_REF] Láruson | Seeing the Forest for the trees: Assessing genetic o set predictions with Gradient Forest[END_REF]. We used the following weakly informative priors:

      β 0 β X 1 β X 2       ∼ N (0, 1) σ r ∼ Exponential(1) (1.4)
Secondly, we evaluated whether populations that died more in common gardens were those with the highest predicted genomic o set (or the highest climatic transfer distance) with the following model: a p ∼ Binomial(N p , p p ) logit(p p ) = β 0 + β H H p + β X 1 X p (1.5) with a p the count of individual that died in the population p, N p the total number of individuals in the population p (=number of individuals that were initially planted in the common garden), p p is the estimated probability of mortality in the population p, X p is the genomic o set or climatic transfer distance for the population p and H p is the BLUPs for height of the population p (population varying intercepts calculated across all common gardens in the model 1 of Archambeau et al. 2021a). We included H p as a covariate in the model to account for height di erences before planting, as smaller trees had a higher mortality probability than taller trees. We used the following weakly informative priors:

      β 0 β H β X 1       ∼ N (0, 5) (1.6)
We compared the proportion of variance explained (i.e. R 2 , a measure of the model goodnessof-t) of the height models and the predictive ability of both mortality and height models was evaluated with the leave-one-out cross-validation (LOOCV) procedure from the R package loo.

Validating genomic o set predictions in natural populations

In this part, we aimed to estimate the relationship between predicted genomic o set and mortality rates in natural populations across maritime pine range. We used mortality data from the French and Spanish National Forest Inventories (NFI) harmonized in [START_REF] Changenet | Occurrence but not intensity of mortality rises towards the climatic trailing edge of tree species ranges in European forests[END_REF].

The French data relies on temporary plots sampled between 2005 and 2014 while the Spanish data relies on permanent plots sampled during the second (from 1986(from to 1996(from ) and third NFIs (from 1997(from to 2008)). A tree was recorded as dead if its death was dated less than 5 years ago in the French NFI, or if it was alive in the second inventory but dead in the third one in the Spanish NFI. We modeled the proportion p i of maritime pines that died in the plot i during the census interval ∆ i with a complementary log-log link as follows:

m i ∼ Binomial(N i , p i ) log(-log (1 -p i )) = β 0,c + β C,c C i + β GO,c GO i + log(∆ i ) (1.7)
with N i the total number of maritime pines in the plot i, m i the number of maritime pines that died during the census interval ∆ i in the plot i, C i the basal area of all tree species confounded in the plot i (to account for the competition between trees) and GO i the genomic o set predicted in the plot i. As the French and Spanish inventories present noticeable methodological di erences that may bias the estimations, we estimated country-speci c coe cients: the country-speci c intercepts β 0,c and the country-speci c slopes β C,c and β GO,c . We used the complementary log-log link jointly with the logarithm of the census interval ∆ i for the plot i to account for the di erent census intervals between inventories. We used the following weakly informative priors:

      β 0,c β C,c β GO,c       ∼ N (0, 1) (1.8) 
The present model was performed for each of the sixteen combinations of the four allele sets (i.e. reference SNPs and the three candidate SNP sets), the two models used to estimate the current gene-environment relationships (i.e. GDM and GF) and the two scenarios of future climates (i.e. SSP3-7.0 and SSP5-8.5).

Results

Candidate SNPs identi cation

In B P , the candidate SNPs were selected based on a 5 dB threshold for the median Bayes Factor calculated over 5 independent runs, resulting in the identi cation of 26 candidates (1 associated with the maximum temperature of the warmest month, and 25 with the minimum temperature of the coldest month). For RDA, candidate SNPs were selected using a threshold of three standard deviations to identify outliers in the distribution of the SNP loadings on each signi cant RDA axis. The common candidates are the candidate SNPs selected by both GEA methods. The candidates under expected strong selection are the RDA candidates that show a strong association with at least one covariate, i.e. with β RDA > 0.3, and all the B P candidates. The merged candidates are candidates selected by at least one of the two GEA methods. 

GDM and GF performance and covariate importance

In both the GDM and GF analyses, the maximum height of each tted I-spline (GDM) or turnover function (GF) informs on the magnitude of genomic change along the gradient of the covariate considered, and therefore on the relative importance of that covariate in contributing to the genomic turnover while holding all other covariates constant. CV 2 are the mean and standard deviation in brackets of the coe cient of determination of 9-fold, 6-fold and 2-fold cross-validations repeated across 100 independent samples. The other columns correspond to the relative importance (scaled between 0 and 1) of the covariates in the GDM models. The names and units of the environmental covariates are given in section 1.2 of the Supplementary Information. For each GF model performed on the four sets of SNPs, the gures below correspond to (a) the turnover functions for each environmental covariate and the rst four Moran's eigen vectors (presented in order of importance), and (b) the overall importance of each covariate (i.e. mean accuracy importance and mean importance weighted by SNP R 2 ). The names and units of the environmental covariates are given in section 1.2 of the Supplementary Information. 

GDM models

Validation in common gardens

In the validation part in the common gardens, we compared thirteen height and mortality models: ve with a climatic transfer distance as covariate, four with a GDM-based predicted genomic o set and four with a GF-based predicted genomic o set. The ve climatic variables used to calculated the climatic transfer distance tested were: the annual daily mean temperature (bio1; in °C), the maximum temperature of the warmest month (bio5; C°), the minimum temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the precipitation seasonality (bio15; coe cient of variation). The GDM and GF-based genomic o set correspond to the genomic o set predicted for each set of SNPs: the common candidates (Com), the candidates under expected strong selection (Mid), the merged candidates (Mer) and the reference SNPs (Ref).
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Figure II. 1 .

 1 Figure II.1. Simpli ed example of linear reaction norms for two genotypes. Phenotypic variation comes from: genetic di erences among genotypes in the rst panel, environmental di erences in the second panel (i.e. plastic component of trait variation) and interacting genetic and environmental di erences in the third panel (i.e. genetic variation in the plastic response to the environment).

Figure II. 2 .

 2 Figure II.2. Hypothetical adaptive landscape (black curve) with two tness peaks (a local and a global optimum). The blue vectors tangent to the adaptive landscape represent the strength of selection for populations with mean phenotypes Z A and Z B . The strength of selection is expected to decrease near the tness peak, as shown by di erent vector lengths. The average absolute tness of a focal resident population is represented by an orange dot, and its trait distribution is illustrated below by an orange curve. The absolute tness (mal)adaptation of the focal population is calculated as the distance between the population mean tness and a threshold mean tness value of 1 that corresponds to the replacement rate: absolute adaptation when W ≥ 1 and absolute maladaptation when W < 1. The magnitude of the relative tness (mal)adaptation of the focal population can be estimated by comparing along the Y-axis (vertical red arrows) the population mean tness with (1) the local optimum, (2) the tness of the most t individual from the focal population, (3) another population (in green), or (4) the global optimum. Trait-based measures of (mal)adaptation can be obtained by comparing along the X-axis (horizontal red arrows) the mean trait values of the focal population with(5) the trait value at the local optimum, or[START_REF]GF-based genomic o set Merged candidates -19[END_REF] the trait value at the global optimum. Adapted fromBrady et al. (2019a).

  Maritime pine (Pinus pinaster Ait., Pinaceae) is an ecologically and economically important forest tree species, largely exploited for its wood(Viñas et al. 2016), widely used for stabilising coastal dunes in its Atlantic distribution, and considered as keystone species supporting forest biodiversity in large parts of its range (Fig.III.1). Native to the western part of the Mediterranean Basin, the Atlas mountains in Morocco and the south-west Atlantic coast of Europe, its natural distribution spans from the High Atlas mountains in the south (Morocco) to French Brittany in the north, and from the coast of Portugal in the west to western Italy in the east. It was also introduced for commercial purposes in Australia where it is now considered as a highly invasive species(Viñas et al. 2016).

Figure III. 1 .

 1 Figure III.1. Genetic Conservation Unit (GCU) of maritime pine located in Lacanau (southwestern France).

  Phenotypic and genomic data used in the present PhD work comes from the clonal common garden network CLONAPIN, consisting of ve test sites located in di erent environments (Fig. VI.1). Three sites are located in the Atlantic region, with mild winters, high annual rainfall and relatively wet summers: Bordeaux in the French part, and Asturias and Portugal in the Iberian part (Figs. III.2a & III.2b), the Portugal site experiencing slightly colder winters and half the summer precipitation than the site in Asturias. The two other sites, Cáceres and Madrid, are located in the Mediterranean region with high temperatures and intense summer drought, as well as large precipitation di erences between summer and winter.

( a )

 a Asturias site. (b) Portugal site.(c) Dead tree in Cáceres.

Figure III. 2

 2 Figure III.2

( a )

 a Seedling plantation in Madrid. (b) Nursery where the trees were vegetatively propagated to obtain clones.

Figure III. 3

 3 Figure III.3

Figure IV. 1 .

 1 Figure IV.1. Location of the three common gardens and the 33 populations used in the study. The colors represent the gradients of the extreme minimum temperature (EMT) and summer heat moisture index (SHM) over the period 1901-1950 within the maritime pine range. The climatic gradients were obtained by performing a centered and scaled principal component analysis (shown in the inset on the bottom right) based on EMT and SHM values. The maritime pine distribution combines the EUFORGEN distribution (http://www.euforgen.org/) and 10-km radius areas around the National Forest Inventory plots with maritime pines. However, this remains a rough approximation of the actual distribution of maritime pine and therefore probably includes areas experiencing more intense cold or drought episodes than the climatic range of maritime pine.

Figure IV. 2 .

 2 Figure IV.2. Median and 95% credible intervals of the β X posterior distributions. β X coe cients stand for the association between the within-population genetic variation and its potential underlying drivers on the x-axis: the inverse of the extreme minimum temperature during the studied period (invEMT), the summer heat moisture index (SHM), an admixture score (A), the environmental heterogeneity in a 20-km radius around the population location (EH1[20km] and EH2[20km]) calculated based on the projection of the PC1 and PC2 scores. Colors stand for the di erent traits under study and the shapes for the di erent types of traits, i.e. functional traits (squares), phenologyrelated traits (triangles) and height (circles).

Figure IV. 3 .

 3 Figure IV.3. Validation step using independent height measurements from a common garden near Asturias. Median and 95% credible intervals of the β X posterior distributions are shown. In the validation analysis, β X coe cients stand for the association between the within-population additive genetic variation and its potential underlying drivers on the x-axis. A description of the drivers can be found in the legend of Fig. IV.2.

Figure V. 1 .

 1 Figure V.1. The ve common gardens and 34 provenances of maritime pine (CLONAPIN common garden network) used in this study. The distribution of maritime pine is also shown (based on EUFORGEN map, http://www.euforgen.org/). Pie charts represent the proportions belonging to each gene pool for each provenance (see legend) as estimated in Jaramillo-Correa et al. (2015). Provenance names can be found in Table XI.2..

  V.3), whose results are very similar to M2, but with smaller credible intervals (Tables XI.15 & XI.18). The plastic component was largely driven by the variance among sites (σ 2 S ), with very little contribution of the variance among blocks (σ 2 B ; XI.15). Trees grew the least in Madrid and the most in Asturias (Fig. V.3 & Table

Figure V. 2 .

 2 Figure V.2. Understanding the genetic and plastic bases of height-growth variation and their potential underlying drivers. A) shows the variance partitioning conditional on age from model M1 in the P1 partition. B) displays the partitioning of the plastic (i.e. environment) component in model M3 among the intercepts of the sites (common gardens) (S s ) and the intercepts associated with the climatic similarity among sites during the year preceding the measurements (cs is ). C) displays the partitioning of the genetic component in model M6 among the intercepts of the provenances (P p ), the intercepts associated with the climatic similarity among provenances (cp p ) and the intercepts of the the gene pools ( j ). The median and 0.95 credible intervals shown in B) and C) were obtained by tting the models M3 and M6 on the P1 partition. Provenance names can be found inTable XI.2.

Figure V. 3 .

 3 Figure V.3. Posterior distributions of the site and provenance intercepts (S s and P p ) in model M1 on a map representation. Provenances are colored according to the main gene pool they belong to. The exact values of the median, standard deviation and 0.95 credible interval of the posterior distributions of the site and provenance intercepts are shown in Tables XI.16 and XI.17, respectively. The top right picture shows the height di erence in 2019 between one tree from Coca in central Spain (COC) and another from Puerto de Vega in the Iberian Atlantic region (PUE) growing next to each other in the Bordeaux common garden. The bottom picture shows the height di erence between the trees growing in Madrid and Asturias, under highly contrasted environments, three years after plantation (2013). Provenance names can be found in Table XI.2.

  Figure V.3. Posterior distributions of the site and provenance intercepts (S s and P p ) in model M1 on a map representation. Provenances are colored according to the main gene pool they belong to. The exact values of the median, standard deviation and 0.95 credible interval of the posterior distributions of the site and provenance intercepts are shown in Tables XI.16 and XI.17, respectively. The top right picture shows the height di erence in 2019 between one tree from Coca in central Spain (COC) and another from Puerto de Vega in the Iberian Atlantic region (PUE) growing next to each other in the Bordeaux common garden. The bottom picture shows the height di erence between the trees growing in Madrid and Asturias, under highly contrasted environments, three years after plantation (2013). Provenance names can be found in Table XI.2.

Figure V. 4 .

 4 Figure V.4. Model predictive ability on new observations (P1 partition) or new provenances (P2 and P3 partitions) based on the out-of-sample proportion of predicted variance conditional on the age e ect (prediction R 2ms |a e) in the test datasets (data not used to t the models). In the P1 partition, the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances and the test dataset contains the remaining 6 provenances. The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented gene pool. The exact values of the prediction R 2 ms |a e estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition).

Figure VI. 1 .

 1 Figure VI.1. Location of the 34 genotyped populations and the ve common gardens used in the validation steps and in which the same 34 populations were planted (CLONAPIN network). The environment strati cation from Metzger (2018) shows the variety of environments inhabited by maritime pine. The maritime pine distribution combines the EUFORGEN distribution, based on natural populations (http: //www.euforgen.org/), and 10-km radius areas around the French and Spanish National Forest Inventory plots with maritime pine occurrence.

Figure VI. 2 .

 2 Figure VI.2. Fitted I-splines for the geographical distance and each environmental covariate in the GDM analyses performed with the four sets of SNPs.

Figure VI. 3 .

 3 Figure VI.3. Predicted spatial variation in genomic o set for each combination of modelling approaches (i.e. Gradient Forests or Generalised Dissimilarity modelling) and sets of SNPs (i.e. three sets of candidate SNPs and the reference SNPs) under the future climate scenario SSP3-7.0 (moderately alarming). See Fig. XII.27 for predictions under the future climate scenario SSP5-8.5 (strongly alarming), and see Figure XII.28 for the same predictions but visualized with di erent scales so that the spatial variation in genomic o set for the merged candidates and reference SNPs are visible.

Figure VI. 4 .

 4 FigureVI.4. Proportion of variance explained (R 2 estimate) of the models estimating the association between BLUPs for height in ve common gardens and the climatic transfer distances (left panels) or the predicted genomic o set (right panels). The climatic transfer distances were calculated based on ve climatic variables: the annual daily mean temperature (bio1; °C), the maximum temperature of the warmest month (bio5; C°), the minimum temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the precipitation seasonality (bio15; %). Genomic o set predictions were obtained for each combination of two modelling approaches (GDM or GF) and four sets of SNPs, i.e. the common candidates (Com), the candidates under expected strong selection (Mid), the merged candidates (Mer) and the reference SNPs (Ref). Tree height in the common gardens was measured at 37-month old in Asturias, 85-month old in Bordeaux, 8-month old in Cáceres, 13-month old in Madrid and 27-month old in Portugal (see Figure XII.31 for Asturias at 10-month old, Bordeaux at 25-month old and Portugal at 11-month old).

Figure VI. 5 .

 5 FigureVI.5. Regression coe cients describing the linear association between tree mortality rates in natural populations of maritime pine extracted from the Spanish (A) and French (B) National Forest Inventories and the genomic o set predictions under two scenarios of future climate (see equation 1.7 in the Supplementary Information).

Figure VII. 1 .

 1 Figure VII.1. Population (i.e. provenance) varying intercepts in the height-growth model M1 from 2, in which only the population and clone (i.e. genotype) intercepts were included in the model to account for the genetic component of height-growth variation.

Figure VII. 2 .

 2 Figure VII.2. Predicted spatial variation in genomic composition under current climates for the set of reference SNPs. A) Projection based on the GDM modelling approach and using both environmental and geographical covariates. B) Projection based on the GDM modelling approach and using only the environmental covariates. C) Projection based on the GF modelling approach and using only the environmental covariates. Similar colors correspond to expected similar genomic composition. In the bottom right corner of each gure are the associated principal coordinate analyses, which inform on the contribution of the geographical and environmental covariates to the predicted variation in genomic composition, with the arrows indicating the direction and magnitude of each covariate. Only labels of the most important covariates to explain the turnover in allele frequency are shown. Figures from 3.

Figure VII. 3 .

 3 Figure VII.3. Figures from 3 generated based on the Gradient Forest estimations of the gene-environment relationships for the set of common candidate SNPs (i.e. SNPs identi ed by both B P and RDA). A) Principal coordinate analysis of the predicted variation in genomic composition across the maritime pine range. Only labels of the two most important environmental covariates explaining the turnover in allele frequency are shown: the minimum temperature of the coldest month (C°) and the burned area (hectares). B) Turnover function of the minimum temperature of the coldest month (C°). C) Predicted spatial variation in genomic composition under current climates.

Figure VII. 4 .

 4 Figure VII.4. Median and 95% intervals of the posterior distributions of σ 2 Cp (i.e. standing for the within-population genetic variation) in the model for height at 25 month-old in the Bordeaux common garden. The potential drivers are: two admixture scores (A and D), four indexes representing the environmental heterogeneity in a 1.6-km and 20-km radius around the population location (EH1[1.6km], EH2[1.6km], EH1[20km] and EH2[20km]), the inverse of the extreme minimum temperature during the studied period (invEMT) and the summer heat moisture index (SHM). Figure from the Supplementary Information of 1.

  Fig. VII.5) had a better predictive ability than global PEAs (identi ed range-wide; Fig. VII.5

Figure VII. 5 .

 5 Figure VII.5. Schematic representation of the calculation of the global PEA counts (i.e. SNPs selected range-wide) and regional PEA counts (i.e. SNPs selected in a speci c geographical region).Figure from Section 2.1 in the Supplementary Information of 2, in which more details are given on PEA calculation.

  Figure VII.5. Schematic representation of the calculation of the global PEA counts (i.e. SNPs selected range-wide) and regional PEA counts (i.e. SNPs selected in a speci c geographical region).Figure from Section 2.1 in the Supplementary Information of 2, in which more details are given on PEA calculation.

Figure VII. 6 .

 6 FigureVII.6. Schematic representation of the modelling framework used in 2. This gure is intended to illustrate how the di erent climatic, phenotypic, and genomic data were combined (and transformed into variables that could be incorporated into the models) to meet the objectives of 2.

Figure X. 1 .

 1 Figure X.1. Distribution of the phenotypic traits used in the study.

2 .

 2 Population-speci c means and variances of the eight phenotypic traits (from left to right): height in Portugal (October 2012), height in Bordeaux (France, November 2013), height in Bordeaux (France, November 2018), height in Asturias (Spain, November 2012), mean bud burst date in Bordeaux (over the years 2013, 2014, 2015 and 2017), mean duration of bud burst in Bordeaux (over the years 2014, 2015 and 2017), speci c leaf area in Portugal and δ 13 C in Portugal.

Figure X. 2 .

 2 Figure X.2. Population-speci c height distributions in Portugal (October 2012). The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X. 5 .

 5 Figure X.5. Population-speci c height distributions in Asturias (Spain, November 2012). The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X. 6 .

 6 Figure X.6. Population-speci c distributions of the mean bud burst date in Bordeaux (France) averaged over the years 2013, 2014, 2015 and 2017. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X. 7 .

 7 Figure X.7. Population-speci c distributions of the mean duration of the bud burst date in Pieroton (France) averaged over the years 2014, 2015 and 2017. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X. 8 .

 8 Figure X.8. Population-speci c distributions of the speci c leaf area (SLA) in Portugal. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X. 9 .

 9 Figure X.9. Population-speci c distributions of the isotope discrimination (δ 13 C) in Portugal. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

  ) -1) = -15.6% change in σ C p for height in Bordeaux at 25-month old and with 100 × (exp(-0.272) -1) = -23.8% change in σ C p for height in Asturias.

  Figure X.11. Median and 95% intervals of the posterior distributions of the total variance explained by the models (R 2 ).

Figure X. 12 .

 12 Figure X.12. Median and 95% intervals of the posterior distributions of β X , the coe cient corresponding to the potential drivers of the within-population genetic variation.

Figure X. 14 .

 14 Figure X.14. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).
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 32 Figure X.15. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 16 .

 16 Figure X.16. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).

Figure X. 17 .

 17 Figure X.17. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 18 .

 18 Figure X.18. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).
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 34 Figure X.19. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 20 .

 20 Figure X.20. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).
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 35 Figure X.21. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 22 .

 22 Figure X.22. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).
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 36 Figure X.23. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 24 .

 24 Figure X.24. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).

5. 3 . 7

 37 Figure X.25. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 26 .

 26 Figure X.26. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).

5. 3 .

 3 Figure X.27. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 28 .

 28 Figure X.28. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).

Figure X. 31 .

 31 Figure X.31. Distribution of height measurements at 3-year old in the progeny test near Asturias (independent dataset used for the validation analysis).

Figure X. 32 .

 32 Figure X.32. Distribution of height measurements at 6-year old in the progeny test near Asturias (independent dataset used for the validation analysis).

Figure X. 33 .

 33 Figure X.33. Height distribution at 3-year old for the 23 populations shared between the CLONAPIN dataset and the independent dataset used in the validation analysis, i.e. a progeny test near Asturias.

Figure X. 34 .

 34 Figure X.34. Height distribution at 6-year old for the 23 populations shared between the CLONAPIN dataset and the independent dataset used in the validation analysis, i.e. a progeny test near Asturias.

Figure X. 35 .

 35 Figure X.35. Median and 95% intervals of the posterior distributions of β X , the coe cient corresponding to the association between the eight potential drivers and the within-population additive genetic variation.

Figure X. 37 .

 37 Figure X.37. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).
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 42 Figure X.38. Median and 95% intervals of the posterior distributions of σ 2Cp , corresponding to the within-population total genetic variance (i.e. population-speci c among clones variance).

Figure X. 39 .

 39 Figure X.39. Proportion of variance explained by the di erent components, namely the clones (π C ), the blocks (π B ), the populations (π P ) and the residuals (π r ).

Figure XI. 4 .

 4 FigureXI.4. Correlation matrix between variables related to the climatic conditions in the test sites and tree age at the time of the measurements. The climatic variables, calculated over the year preceding the measurements, are: the mean of monthly precipitation (mean.pre, mm), minimum of monthly minimum temperatures (min.tmn, °C), minimum of monthly precipitation during summer -June to September-(min.presummer, °C), the mean of monthly maximum temperatures (mean.tmax, °C), maximum of monthly precipitation (max.pre, mm), maximum of monthly maximum temperatures (max.tmx, °C).

Figure XI. 5 .

 5 Figure XI.5. Principal component analysis of the variables related to the climatic conditions in the test sites and tree age at the time of the measurements. See Fig. XI.4 for the meaning of variable abbreviations.

Figure XI. 6 .

 6 Figure XI.6. Heatmap of the covariance matrix Ω describing the climatic similarity among test sites during the year preceding the measurements. The labels correspond to the name of the test sites followed by the age of the trees at the date of the measurement (in months).

Figure XI. 7 .

 7 Figure XI.7. Correlation matrix of the variables related to the climatic conditions in the provenance locations and variables related to the population genetic structure (genotype proportion belonging to each gene pool). The genotypes belong to 6 distinct gene pools from: Northern Africa, Corsica, Central Spain, French Atlantic region, Iberian Atlantic region and south-eastern Spain. The climatic variables, calculated over the period from 1901 to 2009, are: the average of the annual daily mean temperature (mean.temp, °C), the average of the maximum temperature of the warmest month (max.temp, °C), the average of the annual precipitation (mean.pre, mm) and the average of the precipitation of the driest month (min.pre, mm).

Figure XI. 8 .

 8 Figure XI.8. Principal component analysis of the variables related to the climatic conditions in the provenance locations and variables related to the population genetic structure (genotype proportion belonging to each gene pool). See Fig. XI.7 for the meaning of variable abbreviations.

Figure XI. 9 .

 9 Figure XI.9. Heatmap of the covariance matrix Φ of the climatic variables in the provenances. Labels correspond to the provenance names.

5. 2

 2 Figure XI.10. In-sample proportion of explained variance conditional on the age e ect (R 2 ms |a e) in the training datasets (data used to t the models) of the P1, P2 and P3 partitions. In the P1 partition, the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances and the test data set contains the remaining 6 provenances. The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented gene pool. The exact values of the R 2ms |a e estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition).

  partition (random split of the observations) 6.1.1 Baseline models M0, M1 and M2: separating the genetic and plastic components

Figure

  Figure XI.11. Relationship between mean-centered age and height on the log scale in M1.

Figure

  Figure XI.12. Posterior distributions of the provenance intercepts across all sites (P p ) and the site-speci c intercepts of each provenance (P p, s ) from model M2. The colors correspond to the gene pool from which each population mainly belongs: gene pool in Northern Africa in orange, gene pool in Corsica in yellow, gene pool in Central Spain in purple, gene pool in the French Atlantic region in marine blue, gene pool in the Iberian Atlantic region in sky blue and gene pool in South-Eastern Spain in green.

  Parameter estimates from model M8 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

Figure XI. 17 .

 17 Figure XI.17. Posterior distributions of parameters from models M7 and M8 t on P2. In panels a), the parameter estimates j correspond to the e ect of the gene pools j. In panels b), the parameter estimates correspond to the site-speci c e ects of the PEAs (β P EA,s for the global PEAs in M7 and β r P EA,s for the regional PEAs in M8), the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp,s ). Parameters speci c to the same test site are colored the same to aid visualization.

Figure

  FigureXI.18. Posterior distributions of parameters from models M9 and M12 tted on P2. For M9, the parameter estimates j correspond to the e ect of the gene pools j. For M10, the parameter estimates correspond to the site-speci c e ects of the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp, s ). For M11, the parameter estimates correspond to the site-speci c e ect of the gPEAs (β P EA,s ). For M12, parameter estimates correspond to the site-speci c e ects of the rPEAs (β r P EA, s ).

Figure

  Figure XI.19. Posterior distributions of parameters from models M7 and M8 t on P3. In panels a), the parameter estimates j correspond to the e ect of the gene pools j. In panels b), the parameter estimates correspond to the site-speci c e ects of gPEAs in M7 (β P EA,s , rPEAs in M8 β r P EA, s , the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp,s ). Parameters speci c to the same site are colored the same to aid visualization.

Figure

  FigureXI.20. Posterior distributions of parameters from models M9 and M12 t on P3. For M9, the parameter estimates j correspond to the e ect of the gene pools j. For M10, the parameter estimates correspond to the site-speci c e ects of the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp, s ). For M11, the parameter estimates correspond to the site-speci c e ect of the gPEAs (β P EA,s ). For M12, parameter estimates correspond to the site-speci c e ects of the rPEAs (β r P EA, s ).

  Future climate (scenario SSP3-7.0).

Figure XII. 2 .

 2 Figure XII.2. Spatial variation in bio5, the maximum temperature of the warmest month (°C).

  Future climate (scenario SSP3-7.0).

Figure XII. 3 .

 3 Figure XII.3. Spatial variation bio6, the minimum temperature of the coldest month (°C).

Figure XII. 6 .

 6 Figure XII.6. Predicted genomic distance versus observed genomic distance. The dots represent the population pairs and the line indicates where observations and predictions match.

  Overall importance of the covariates.

Figure XII. 7 .

 7 Figure XII.7. Common SNP candidates.

  Overall importance of the covariates.

Figure XII. 8 .

 8 Figure XII.8. Candidates under expected strong selection.

Figure

  Figure XII.9. Merged candidates.

Figure

  Figure XII.10. Reference SNPs.

2. 3 . 1

 31 Figure XII.11. Genomic composition under current climates from GDM models.

Figure XII. 28 .

 28 Figure XII.28. Same spatial predictions in genomic o set as in Figure VI.3 (future climate scenario SSP3-7.0) but visualized with di erent scales for each combination of modelling approaches (i.e. Gradient Forests or Generalised Dissimilarity Modelling) and sets of SNPs (i.e. three sets of candidate SNPs and the reference SNPs).

Figure XII. 29 .

 29 Figure XII.29. Same spatial predictions in genomic o set as in Figure XII.27 (future climate scenario SSP5-8.5) but visualized with di erent scales for each combination of modelling approaches (i.e. Gradient Forests or Generalised Dissimilarity Modelling) and sets of SNPs (i.e. three sets of candidate SNPs and the reference SNPs).

  FigureXII.30. Regression coe cients corresponding to the linear association between tree height in ve common gardens and the climatic transfer distances (left panels) or the predicted genomic o set (right panels). The climatic transfer distances were calculated based on ve climatic variables: the annual daily mean temperature (bio1; in °C), the maximum temperature of the warmest month (bio5; C°), the minimum temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the precipitation seasonality (bio15; coe cient of variation). Genomic o set predictions were obtained for each combination of two modelling approaches (GDM or GF) and four sets of SNPs, i.e. the common candidates (Com), the candidates under expected strong selection (Mid), the merged candidates (Mer) and the reference SNPs (Ref). Tree height in the common gardens was measured at 10 and 37-month old in Asturias, 25 and 85-month old in Bordeaux, 8-month old in Cáceres, 13-month old in Madrid and 11 and 27-month old in Portugal. Regression coe cients correspond to β X 1 estimates in equation 1.3 in the Supplementary Information.

Figure

  Figure XII.32. Regression coe cients corresponding to the linear association between tree mortality in two common gardens (under harsh conditions) and the climatic transfer distances (left panels) or the predicted genomic o set (right panels). See legend of Figure VI.4 for more details. Tree mortality was measured at 8-month old in Cáceres and 13-month old in Madrid. Regression coe cients correspond to β X 1 estimates in equation 1.5 in the Supplementary Information.

Figure

  FigureXII.33. Regression coe cients describing the linear association between tree mortality in two common gardens (under harsh conditions) and the mean population height across all common gardens (i.e. BLUPs used as a proxy of tree height at the planting date) for each model considered (same models as in Figure XII.32). These regression coe cients correspond to the β H estimates in equation 1.5 of the Supplementary Information.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  (see Fig. VII.7).

	Individual level	Population level	Metapopulation level
	Mutation	Recombination	Genetic dri
	Genotype	Allele/genotype frequencies	Gene Flow
	Developmental noise	Genetic architecture	Heritability	Limitations on predicting evolution: Random limits Data limits
	Phenotype	Phenotype frequencies	Model limits
				Mean absolute/
				relative tness
	Plasticity	Selection
		Environment		

Table X . 1 .

 X1 Information about the phenotypic traits. Tree age is in months. Survival is the proportion of survival in the common gardens at the measurement date. Some variables were log-transformed (log) or mean-centered (center) prior to analyses, which is indicated in the Transf. column.

  Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) SLA δ 13 C meanBB meanDBB Ht (Portugal) Ht (Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) SLA δ 13 C meanBB meanDBB

	1.1.2 Population-speci c distributions, means and variances
	Pop. Ht (Portugal) Ht (gray!6 ALT 525.56 ARM 505.48 gray!6 ARN 423.44 BAY 394.29 gray!6 BON 421.33 CAD 481.58 gray!6 CAR 405.52 CAS 501.67 gray!6 CEN 484.82 COC 406.47 gray!6 COM 516.92 CUE 402.29 gray!6 HOU 549.58 LAM 443.56 gray!6 LEI 467.30 MIM 447.76 gray!6 OLB 445.60 OLO 549.10 gray!6 ORI 375.58 PET 525.13 gray!6 PIA 494.60 PIE 435.18 gray!6 PLE 468.99 PUE 520.26 gray!6 QUA 458.63 SAC 436.84 gray!6 SAL 396.90 SEG 453.87 gray!6 SIE 445.13 STJ 535.06 gray!6 TAM 339.09 VAL 431.30 gray!6 VER 503.62	760.19 793.33 651.87 618.36 600.43 847.76 505.32 753.01 663.51 587.13 809.33 587.38 841.95 706.79 765.64 783.87 700.35 803.57 667.40 829.51 838.62 630.77 770.15 865.10 706.61 779.80 582.90 819.44 860.65 893.84 570.29 672.13 813.65	Trait means 4275.38 4450.16 3302.00 3054.03 3273.83 4631.79 2321.30 4202.78 3348.65 2735.71 3220.71 2793.39 4578.18 3824.82 4156.02 4182.64 3410.89 4390.16 2935.64 4471.39 4163.58 3318.63 4044.84 4460.59 3265.79 4317.55 2915.65 4484.53 4266.96 4559.44 2250.45 3393.73 4401.61	764.43 818.89 652.35 592.79 702.61 781.60 584.58 769.32 723.14 588.77 756.13 582.10 831.13 736.38 743.20 718.20 712.97 828.55 639.17 781.10 783.88 620.29 683.62 775.65 689.08 699.71 592.48 728.92 755.56 794.76 555.13 656.09 780.73	5.08 -25.94 1333.05 5.19 -26.01 1282.95 5.19 -26.83 1309.37 5.18 -26.49 1299.02 5.37 -26.84 1197.00 5.34 -25.79 1342.52 4.81 -26.74 1282.36 5.07 -25.90 1310.38 4.91 -26.32 1272.32 5.22 -26.47 1320.11 4.86 -26.14 1260.71 5.06 -26.35 1313.72 5.32 -25.79 1287.73 5.37 -26.25 1322.51 5.12 -26.34 1317.84 5.34 -26.05 1283.85 5.24 -26.43 1285.80 5.41 -25.63 1287.50 5.40 -26.92 1239.57 5.29 -25.81 1306.26 5.22 -26.51 1201.04 5.43 -26.26 1278.11 5.42 -25.92 1306.42 4.98 -26.10 1353.32 4.92 -26.74 1304.61 5.17 -25.69 1333.98 5.33 -26.74 1253.29 5.12 -26.06 1320.39 5.42 -26.11 1337.77 5.43 -25.92 1296.49 5.76 -27.82 1261.34 5.13 -26.56 1258.81 5.46 -25.75 1325.48	883.19 859.95 861.13 829.97 752.85 898.14 813.30 877.46 849.04 848.06 836.87 851.46 832.88 893.70 880.28 832.76 817.56 829.00 797.85 864.40 793.13 847.36 870.85 902.72 862.73 882.42 802.65 878.22 887.32 838.08 813.01 825.76 864.43	25044.03 14693.67 20251.08 15606.98 15994.80 32160.59 18268.47 28617.67 25174.51 17647.00 22918.15 15749.06 30575.88 18614.34 23362.76 22395.23 15336.79 22867.78 15107.03 24369.26 28122.80 19269.41 25399.24 33564.79 20764.43 10276.24 20116.52 19458.77 28151.96 23677.59 12214.55 16849.74 22141.52	25994.08 30154.84 26534.21 24433.97 30225.90 55641.88 18912.40 35004.68 31090.09 25181.40 35020.23 29948.47 36168.73 28385.84 44161.14 51903.59 23496.30 47499.69 21736.00 38187.87 44180.50 23336.65 46364.32 45797.49 25415.59 26602.00 15944.42 47514.06 49975.12 45913.57 16014.62 43523.72 44992.37	Trait variances 518190.0 43958.36 416420.9 27155.20 487704.6 21763.14 461502.5 20475.10 1159572.0 26013.68 894272.5 42048.76 396287.2 11029.61 554102.0 30359.25 648606.5 26016.07 573367.0 25089.71 342303.2 57311.18 745261.0 19274.90 683021.5 37114.18 503323.6 35455.80 799974.2 41372.76 755436.3 33853.99 487763.2 24782.38 534286.6 29013.66 391840.3 25020.48 665897.4 41792.11 558897.3 35430.62 472940.1 30191.09 868825.2 33619.27 841781.7 37674.17 679962.7 27766.85 665431.4 40020.50 339030.8 19588.04 767773.7 26366.13 431452.8 29270.25 632962.2 37600.18 365171.0 23907.35 860272.1 23268.04 680372.1 34422.39	0.56 1.26 10179.89 11621.08 0.53 0.75 5787.12 10512.04 0.96 1.68 1199.55 5285.84 0.96 1.91 5347.63 7758.00 1.08 1.12 3843.38 7596.92 0.85 1.11 13379.00 8728.85 0.58 1.22 9461.82 8783.43 1.00 1.01 6072.29 12050.36 0.58 1.36 7633.28 15793.70 0.89 1.39 6714.06 7676.71 0.53 0.83 4511.64 11303.29 1.02 1.76 7290.54 8915.74 0.80 1.09 3998.32 8832.28 0.90 1.44 4263.94 6633.86 0.81 1.29 8737.24 11448.55 0.91 1.94 6008.16 8888.56 0.92 1.28 5575.52 9353.93 0.84 1.08 4316.43 9240.09 1.10 0.94 4685.37 7988.44 0.67 1.53 3723.47 10308.61 0.84 1.39 3697.91 9221.80 1.02 1.37 3240.16 7546.22 1.12 1.23 5312.36 7901.84 0.72 1.11 5397.23 8249.97 0.61 1.53 5845.11 8570.03 0.56 0.57 10387.92 11888.99 0.95 1.01 5040.26 6804.81 0.81 1.07 6328.79 10553.06 0.88 1.34 5703.93 7581.65 0.81 1.60 6258.52 10697.50 0.79 0.89 3427.87 7982.86 0.92 1.06 6513.53 10003.81 0.73 1.57 4422.45 8800.61

Table X .

 X 

Table X . 3 .

 X3 Values of the geographical coordinates, soil and topographic variables of the three common gardens.

	Annual climatic variables Mean Coldest Month Temperature (MCMT) Mean Warmest Month Temperature (MWMT) Temperature di erence (MWMT-MCMT) Extreme minimum temperature (EMT) Mean summer precipitation Mean spring precipitation Summer heat moisture index (SHM)	Units Asturias Bordeaux Portugal °C 5.80 5.60 4.70 °C 17.75 19.70 19.75 °C 11.95 14.10 15.05 °C -12.50 -13.30 -14.30 mm 423.00 496.00 370.00 mm 242.00 226.00 271.00 °C/mm 134.47 105.91 274.31

Table X . 4 .

 X4 Values of the annual climatic variables in the three common gardens.

	Monthly climatic variables Minimum temperature -January Minimum temperature -February Minimum temperature -March Minimum temperature -April Minimum temperature -May Minimum temperature -June Minimum temperature -July Minimum temperature -August Minimum temperature -September Minimum temperature -October Minimum temperature -November Minimum temperature -December Maximum temperature -January Maximum temperature -February Maximum temperature -March Maximum temperature -April Maximum temperature -May Maximum temperature -June Maximum temperature -July Maximum temperature -August Maximum temperature -September Maximum temperature -October Maximum temperature -November Maximum temperature -December Total precipitation -January Total precipitation -February Total precipitation -March Total precipitation -April Total precipitation -May Total precipitation -June Total precipitation -July Total precipitation -August Total precipitation -September Total precipitation -October Total precipitation -November Total precipitation -December Hargreaves climatic moisture de cit -January Hargreaves climatic moisture de cit -February Hargreaves climatic moisture de cit -March Hargreaves climatic moisture de cit -April Hargreaves climatic moisture de cit -May Hargreaves climatic moisture de cit -June Hargreaves climatic moisture de cit -July Hargreaves climatic moisture de cit -August Hargreaves climatic moisture de cit -September mm Units Asturias Bordeaux Portugal °C 2.50 2.00 1.50 °C 3.00 2.50 1.60 °C 4.20 3.80 3.10 °C 5.40 6.30 4.70 °C 7.70 9.20 7.30 °C 10.50 12.10 10.90 °C 12.30 13.90 13.10 °C 12.70 13.80 13.40 °C 11.30 11.80 11.30 °C 8.30 8.60 8.20 °C 5.40 4.80 4.20 °C 3.50 2.80 2.20 °C 9.10 9.20 7.90 °C 10.40 11.10 8.80 °C 12.30 13.90 11.10 °C 14.10 16.60 13.90 °C 16.70 20.00 17.20 °C 20.20 23.30 22.10 °C 22.50 25.50 25.70 °C 22.80 25.60 26.10 °C 20.90 23.30 22.00 °C 16.70 18.30 16.60 °C 12.20 12.80 11.20 °C 9.70 9.50 8.40 mm 88.00 83.00 112.00 mm 79.00 74.00 122.00 mm 93.00 76.00 120.00 mm 72.00 70.00 78.00 mm 77.00 80.00 73.00 mm 50.00 63.00 45.00 mm 34.00 50.00 11.00 mm 37.00 54.00 9.00 mm 61.00 82.00 52.00 mm 92.00 97.00 102.00 mm 100.00 98.00 122.00 mm 113.00 103.00 124.00 mm 17.68 17.88 18.17 mm 26.56 29.31 25.17 mm 46.40 57.06 44.75 mm 68.38 82.97 72.07 mm 92.24 115.64 101.41 mm 115.38 137.41 134.79 mm 130.36 151.65 166.13 mm 115.21 134.58 151.93 79.08 92.08 92.73 Hargreaves climatic moisture de cit -October mm 45.16 50.68 48.35 Hargreaves climatic moisture de cit -November mm 21.58 23.63 23.31 Hargreaves climatic moisture de cit -December mm 14.70 14.68 16.03

Table X . 5 .

 X5 Values of the monthly climatic variables in the three common gardens.

	1.3 Potential drivers of the within-population genetic variation
	1.3.1 Population admixtures scores	
	Population Longitude Latitude gpNA gpC gpCS gpFA gpIA gpSES mainGP	A	D	D f st
	CEN ARN ALT SAL COM CAD VAL MIM LEI BAY SIE LAM TAM COC OLO STJ CUE PET ORI SEG OLB QUA CAS PLE BON HOU VER ARM CAR PIE PUE PIA SAC	-4.491 -5.116 -6.494 -3.063 -3.954 -6.418 -4.311 -1.303 -8.957 -2.877 -6.493 -6.219 -5.017 -4.498 -1.831 -2.029 -4.484 -1.300 -2.351 -8.450 -0.623 -0.359 -6.983 -2.344 -1.661 -1.150 -1.091 -6.458 -4.277 9.038 -6.631 9.465 -8.364	40.278 40.195 43.283 41.835 36.834 43.540 40.516 44.134 39.783 41.523 43.528 43.559 33.600 41.255 46.566 46.764 41.375 44.064 37.531 42.817 40.173 38.972 43.501 47.781 39.986 45.183 45.552 43.305 41.172 41.973 43.548 42.021 42.118	0.012 0.002 0.884 0.003 0.048 0.051 0.010 0.002 0.955 0.008 0.010 0.014 0.003 0.000 0.109 0.092 0.793 0.002 0.010 0.004 0.944 0.027 0.008 0.007 0.240 0.028 0.126 0.011 0.039 0.557 0.002 0.001 0.050 0.010 0.935 0.002 0.012 0.003 0.940 0.007 0.013 0.025 0.004 0.002 0.025 0.951 0.012 0.006 0.004 0.003 0.511 0.007 0.473 0.002 0.003 0.004 0.967 0.013 0.009 0.004 0.003 0.001 0.076 0.015 0.903 0.001 0.002 0.001 0.004 0.051 0.942 0.000 0.932 0.000 0.027 0.000 0.039 0.001 0.017 0.005 0.831 0.060 0.044 0.044 0.003 0.001 0.007 0.979 0.006 0.003 0.003 0.002 0.028 0.946 0.017 0.004 0.003 0.001 0.872 0.063 0.058 0.002 0.003 0.001 0.021 0.966 0.004 0.004 0.248 0.005 0.028 0.001 0.010 0.708 0.003 0.001 0.149 0.013 0.831 0.003 0.080 0.009 0.777 0.006 0.003 0.125 0.092 0.006 0.499 0.005 0.015 0.382 0.001 0.000 0.005 0.001 0.992 0.001 0.005 0.001 0.064 0.920 0.005 0.005 0.164 0.010 0.640 0.003 0.002 0.181 0.004 0.001 0.026 0.960 0.007 0.002 0.003 0.002 0.018 0.972 0.004 0.001 0.005 0.007 0.022 0.006 0.959 0.001 0.001 0.001 0.904 0.060 0.023 0.011 0.007 0.969 0.023 0.000 0.001 0.001 0.002 0.000 0.021 0.001 0.973 0.002 0.004 0.974 0.010 0.001 0.008 0.003 0.004 0.001 0.291 0.003 0.699 0.002	gpCS gpCS gpIA gpCS gpSES 0.443 0.218 0.061 0.116 0.031 0.011 0.045 0.014 0.005 0.207 0.061 0.019 0.056 0.016 0.006 gpIA 0.065 0.018 0.005 gpCS 0.060 0.018 0.007 gpFA 0.049 0.014 0.006 gpCS 0.489 0.125 0.031 gpCS 0.033 0.009 0.003 gpIA 0.097 0.028 0.008 gpIA 0.058 0.020 0.007 gpNA 0.068 0.045 0.020 gpCS 0.169 0.044 0.015 gpFA 0.021 0.007 0.003 gpFA 0.054 0.015 0.006 gpCS 0.128 0.030 0.009 gpFA 0.034 0.009 0.004 gpSES 0.292 0.180 0.044 gpIA 0.169 0.046 0.012 gpCS 0.223 0.078 0.032 gpCS 0.501 0.142 0.056 gpIA 0.008 0.003 0.001 gpFA 0.080 0.020 0.008 gpCS 0.360 0.139 0.057 gpFA 0.040 0.011 0.004 gpFA 0.028 0.008 0.003 gpIA 0.041 0.015 0.005 gpCS 0.096 0.021 0.007 gpC 0.031 0.014 0.005 gpIA 0.027 0.008 0.003 gpC 0.026 0.012 0.005 gpIA 0.301 0.079 0.020

Table X . 6 .

 X6 Population admixture scores for the 33 provenances. The columns gpNA, gpC, gpCS, gpFA, gpIA and gpSES contain the proportion of belonging to the gene pools of Northern Africa, Corsica, Central Spain, French Atlantic region, Iberian Atlantic region and south-eastern Spain, respectively. A and D are the two population admixture scores used in the study. D f s t is similar to D, as it was calculated by weighting the proportions of ancestry from foreign gene pools by the pairwise F ST between the main and foreign gene pools, while D was calculated by weighting the proportions of ancestry from foreign gene pools by the sum of the allele frequency divergence of the main and foreign gene pool from the common ancestral one (obtained from[START_REF] Jaramillo-Correa | Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)[END_REF]. As D and D f s t were highly correlated, we did not keep D f s t in the following analyses.

Table X .

 X Parameter True value Mean standard error Mean bias of the mean Mean bias of the median 80% conf. int. coverage 95% conf. int. coverage TableX.9. Summary of the 100 model outputs ran on simulated data based on height in Bordeaux at 25-month old.Parameter True value Mean standard error Mean bias of the mean Mean bias of the median 80% conf. int. coverage 95% conf. int. coverage 10. Summary of the 100 model outputs ran on simulated data based on height in Portugal at 20-month old.

	β X σ K	0.1 0.1	0.055 0.067	-0.002 0.020	-0.003 0.014	83 92	97 99
	β X σ K	0.1 0.1	0.052 0.065	-0.005 0.015	-0.005 0.009	78 95	96 98

  Table X.11. Pearson correlation coe cients between the estimates of the within-population genetic variation (i.e. σ Cp) and the number of clones per population, for each combination of trait and potential driver of the within-population genetic variation. The eight phenotypic traits are (from left to right): height in Portugal (October 2012), height in Bordeaux (France, November 2013), height in Bordeaux (France, November 2018), height in Asturias (Spain, November 2012), mean bud burst date in Bordeaux (over the years 2013, 2014, 2015 and 2017), mean duration of bud burst in Bordeaux (over the years 2014, 2015 and 2017), speci c leaf area in Portugal and the isotope discrimination of δ 13 C in Portugal.

	5.4 Correlation between the number of clones per population
	and σ C p	
	Drivers A D EH1[1.6km] EH2[1.6km] EH1[20km] EH2[20km] invEMT SHM	Ht (Portugal) Ht (Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) meanBB meanDBB SLA 0.035 0.047 0.119 0.105 -0.217 -0.161 -0.119 0.152 δ 13 C 0.038 0.068 0.149 0.122 -0.238 -0.189 -0.107 0.147 0.423 0.024 -0.283 0.317 -0.276 -0.381 -0.364 0.519 0.480 -0.166 0.087 0.066 -0.285 -0.262 -0.399 0.564 0.272 -0.042 0.350 0.321 -0.080 -0.093 -0.245 0.440 0.404 -0.035 0.497 0.433 -0.110 -0.006 -0.424 0.567 0.109 0.185 0.230 0.126 -0.153 -0.131 -0.086 0.198 0.080 0.156 0.203 0.162 -0.186 -0.115 -0.208 -0.042

Table XI .

 XI 1. Number of observations in the entire dataset (after ltering) and in each of the three partitions. In the P1 partition, the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances and the test dataset contains the remaining 6 provenances. The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented gene pool (i.e. northern Africa, south-eastern Spain and Corsican gene pools).

	Code ALT ARM ARN BAY BON CAD CAR CAS CEN COC COM CUE HOU LAM LEI MAD MIM OLB OLO ORI PET PIA PIE PLE PUE QUA SAC San Cipriano de Ribaterme Name Number of genotypes Number of trees Number of observations Alto de la Llama 9 216 Armayán 8 213 Arenas de San Pedro 17 412 Bayubas de Abajo 18 462 Boniches 9 221 Cadavedo 10 245 Carbonero el Mayor 6 156 Castropol 10 246 Cenicientos 9 207 Coca 18 424 Cómpeta 4 109 Cuellar 28 680 Hourtin 26 645 Lamuño 9 216 Leiria 23 549 Madisouka 1 19 Mimizan 18 445 Olba 22 552 Olonne sur Mer 24 563 Oria 26 651 Petrocq 24 594 Pinia 16 413 Pineta 9 220 Pleucadec 20 480 Puerto de Vega 8 198 Quatretonda 17 448 9 208 SAL San Leonardo 14 323 SEG Sergude (Huerto Semillero) 21 536 SIE Sierra de Barcia 8 203 STJ St-Jean des Monts 28 718 TAM Tamrabta 15 320 VAL Valdemaqueda 12 286 VER Le Verdon 27 663

Table XI . 2 .

 XI2 Provenance information: provenance codes used in the study, provenance names, number of genotypes, trees and observations (an observation being a height-growth measurement in a given year on one individual) per provenance.

	Provenance NA ALT 0.003 0.000 0.119 0.096 0.780 0.003 C CS FA IA SES ARM 0.005 0.007 0.021 0.006 0.959 0.001 ARN 0.010 0.002 0.958 0.007 0.010 0.013 BAY 0.003 0.004 0.966 0.013 0.010 0.004 BON 0.152 0.010 0.654 0.003 0.002 0.179 CAD 0.002 0.001 0.053 0.010 0.933 0.002 CAR 0.001 0.001 0.904 0.060 0.022 0.011 CAS 0.001 0.000 0.005 0.001 0.991 0.001 CEN 0.013 0.002 0.892 0.003 0.041 0.050 COC 0.017 0.005 0.826 0.061 0.043 0.047 COM 0.239 0.028 0.127 0.011 0.039 0.556 CUE 0.003 0.001 0.874 0.063 0.056 0.002 HOU 0.004 0.001 0.026 0.960 0.007 0.002 LAM 0.002 0.001 0.003 0.050 0.943 0.000 LEI 0.004 0.003 0.512 0.007 0.472 0.002 MAD 0.764 0.001 0.000 0.002 0.000 0.233 MIM 0.004 0.002 0.024 0.952 0.013 0.005 OLB 0.080 0.010 0.776 0.006 0.003 0.126 OLO 0.004 0.001 0.007 0.980 0.006 0.003 ORI 0.249 0.005 0.027 0.001 0.009 0.709 PET 0.003 0.001 0.021 0.966 0.004 0.004 PIA 0.004 0.974 0.010 0.001 0.008 0.003 PIE 0.007 0.970 0.022 0.000 0.000 0.001 PLE 0.005 0.001 0.060 0.924 0.005 0.004 PUE 0.002 0.000 0.021 0.001 0.974 0.002 QUA 0.092 0.006 0.499 0.005 0.015 0.383 SAC 0.004 0.001 0.268 0.002 0.723 0.002 SAL 0.010 0.004 0.944 0.027 0.008 0.008 SEG 0.003 0.001 0.151 0.013 0.829 0.003 SIE 0.003 0.001 0.089 0.015 0.891 0.001 STJ 0.003 0.002 0.027 0.947 0.017 0.004 TAM 0.937 0.000 0.025 0.000 0.037 0.001 VAL 0.012 0.003 0.943 0.006 0.011 0.025 VER 0.003 0.002 0.019 0.972 0.003 0.001

Table XI .

 XI 3. Mean proportion belonging to each gene pool for each provenance. For each provenance, the highest proportion belonging to a given gene pool is in bold. The gene pools come from: northern Africa (NA), Corsica (C), central Spain (CS), French Atlantic region (FA), Iberian Atlantic region (IA) and south-eastern Spain (SES).globally-selected height-associated SNPs share the highest proportion with regionally-selected height-associated SNPs from the Iberian Atlantic region (the region with the highest sample size) and the lowest proportion with regionally-selected height-associated SNPs from the Mediterranean region (the region with the lowest sample size) (Fig.XI.3).

  Table XI.4. Summary of model performance in the P1 partition, in which the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. R 2 m |a e and prediction R 2 m |a e correspond to the proportion of variance explained and predicted by the models conditional on the age e ect in the training (in-sample) and test (out-of-sample) datasets, respectively. R 2 m and R 2 m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire model and by the xed variables only, respectively. Prediction R 2m and R 2 m (f ix ) correspond to the proportion of variance in the test dataset predicted by the entire model or by the xed e ects, respectively. PE m corresponds to the mean predictive error (mean of observed minus predicted responses). For R 2 and PE, the mean (over all iterations for R 2 or over all observations for PE) and the 95% credible intervals are given. For more details on the calculation of each index, see section 5.1 of the Supplementary Information. See TableV.1 and main text for description of model the components.

Table XI . 5 .

 XI5 Partitioning of the variance explained on the data used for sampling conditional on the age e ect (i.e. the variance of the deviations from the mean height-growth trajectory).

	5.3.3 Bayesian LOO estimate of the expected log predictive density (ELPD loo )
	Models M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12	ELPD l oo -9216 [165] -6652 [182] -6487 [182] -6551 [184] -6549 [184] -6591 [184] -6550 [184] -7135 [179] -6926 [180] -8276 [172] -8405 [173] -8334 [169] -8171 [169]

  Table XI.6. ELPD l oo of models tted on the training dataset of the P1 partition. The mean and the standard deviation (in brackets) are given.

Table XI .

 XI 8. Summary table of site-speci c proportion of predicted variance conditional on the age e ect (prediction R 2 ms |a e) in the test datasets (data not used to t the models) of the P1 partition. The numbers shown are the mean and the 95% credible intervals.

	5.4 P2 partition (random split of the provenances)	
	5.4.1 Variance explained and predicted		
	Models M0 M1 M2 M7 M8 M9 M10 M11 M12	Explanatory part: training P2 R 2 m R 2 m (f ix ) 0.454 [0.431-0.478] 0.766 [0.756-0.776] 0.577 [0.567-0.587] R 2 m |a e 0.571 [0.550-0.592] 0.816 [0.807-0.825] 0.571 [0.562-0.581] 0.578 [0.558-0.599] 0.819 [0.810-0.828] 0.571 [0.562-0.58] 0.546 [0.524-0.567] 0.805 [0.796-0.814] 0.574 [0.564-0.583] 0.554 [0.532-0.575] 0.809 [0.799-0.818] 0.574 [0.564-0.583] 0.505 [0.483-0.528] 0.788 [0.778-0.798] 0.578 [0.568-0.587] 0.499 [0.476-0.522] 0.785 [0.775-0.795] 0.577 [0.567-0.587] 0.493 [0.470-0.516] 0.783 [0.773-0.793] 0.573 [0.563-0.583] 0.503 [0.480-0.526] 0.787 [0.777-0.797] 0.573 [0.563-0.583]	PEm 0.268 [0.011-0.839] 0.230 [0.008-0.746] 0.228 [0.009-0.743] 0.239 [0.008-0.779] 0.237 [0.009-0.771] 0.251 [0.009-0.805] 0.252 [0.009-0.808] 0.257 [0.009-0.813] 0.254 [0.010-0.802]	prediction R 2 m |a e 0.425 [0.403-0.447] 0.428 [0.409-0.448] 0.426 [0.374-0.482] 0.502 [0.481-0.522] 0.540 [0.518-0.562] 0.479 [0.458-0.501] 0.492 [0.470-0.514] 0.471 [0.449-0.493] 0.522 [0.499-0.545]	Predictive part: test P2 prediction R 2 m prediction R 2 m (f ix ) 0.745 [0.736-0.755] 0.563 [0.553-0.573] 0.747 [0.738-0.755] 0.557 [0.548-0.566] 0.746 [0.723-0.770] 0.556 [0.548-0.565] 0.779 [0.770-0.788] 0.559 [0.550-0.568] 0.796 [0.786-0.806] 0.559 [0.550-0.569] 0.769 [0.760-0.779] 0.563 [0.554-0.573] 0.775 [0.765-0.785] 0.563 [0.553-0.573] 0.766 [0.756-0.776] 0.559 [0.549-0.569] 0.788 [0.778-0.798] 0.559 [0.549-0.568]	PEm 0.263 [0.010-0.881] 0.264 [0.010-0.877] 0.264 [0.010-0.870] 0.247 [0.008-0.861] 0.246 [0.008-0.844] 0.264 [0.009-0.906] 0.265 [0.009-0.905] 0.258 [0.010-0.856] 0.263 [0.010-0.833]

  Table XI.9. Summary of model performance in the P2 partition, in which the training dataset was obtained by randomly sampling 28 provenances and the test data set contains the remaining 6 provenances. R 2 m |a e and prediction R 2 m |a e correspond to the proportion of variance explained and predicted by the models conditional on the age e ect in the training (in-sample) and test (out-of-sample) datasets, respectively. R 2 m and R 2 m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire model and by the xed variables only, respectively. Prediction R 2m and R 2 m (f ix ) correspond to the proportion of variance in the test dataset predicted by the entire model or by the xed e ects, respectively. PE m corresponds to the mean predictive error (mean of observed minus predicted responses). For R 2 and PE, the mean (over all iterations for R 2 or over all observations for PE) and the 95% credible intervals are given. For more details on the calculation of each index, see section 5 of the Supplementary Information. See TableV.1 and main text for description of model the components.

	5.4.2 Bayesian LOO estimate of the expected log predictive density (ELPD loo )
	M1 M0 -3097.43 [80.4] -1180.71 [47.7] -1001.98 [45.13] -1293 [50.8] M10 M11 M12 M1 1916.72 [66.85] 2095.45 [68.57] 1804.43 [69.11] -209.68 [20.62] M2 -3307.11 [82.58] -2503.89 [70.49] -2740.39 [74.19] -1339.65 [50.55] M7 M8 M9 593.55 [43.39] 357.04 [49.06] 1757.78 [63.01] M10 178.73 [65.95] -112.29 [67.87] -2126.4 [69.47] -1323.17 [54.04] -1559.68 [58.5] -158.94 [25.24] M11 -291.02 [34.88] b -1501.91 [53.72] -1738.41 [64.64] -337.67 [69] M12 -2014.11 [69.7] -1210.89 [60.93] -1447.39 [52.32] -46.65 [70.45] M2 803.22 [48.2] 566.72 [49.33] 1967.46 [66.09] M7 -236.51 [35.87] 1164.23 [50.25] M8 1400.74 [54.56]

Table XI .

 XI 10. ELPD l oo di erences among models tted on the training dataset of the P2 partition.

  -speci c predicted variance conditional on the age e ect

	Models M0 M2 M1 M7 M8 M9 M10 M11 M12	Asturias 0.052 [-0.024-0.128] -0.001 [-0.022-0.021] 0.035 [0.007-0.088] 0.042 [0.017-0.076] 0.033 [0.013-0.053] Bordeaux Cáceres Madrid Portugal 0.005 [-0.061-0.074] 0.004 [-0.016-0.024] 0.035 [0.008-0.086] 0.034 [0.015-0.062] 0.017 [0.000-0.035] 0.011 [-0.056-0.079] 0.004 [-0.015-0.023] 0.035 [0.008-0.082] 0.036 [0.016-0.063] 0.019 [0.002-0.036] 0.149 [0.079-0.219] 0.140 [0.114-0.167] 0.247 [0.150-0.371] 0.229 [0.170-0.299] 0.111 [0.092-0.131] 0.124 [0.054-0.196] 0.166 [0.137-0.195] 0.290 [0.182-0.422] 0.356 [0.281-0.439] 0.101 [0.082-0.121] 0.166 [0.093-0.240] 0.101 [0.078-0.123] 0.162 [0.132-0.212] 0.139 [0.115-0.169] 0.076 [0.056-0.095] 0.178 [0.100-0.252] 0.152 [0.120-0.185] 0.204 [0.090-0.358] 0.131 [0.085-0.187] 0.081 [0.061-0.101] 0.100 [0.025-0.177] 0.100 [0.072-0.129] 0.189 [0.081-0.330] 0.209 [0.138-0.292] 0.103 [0.082-0.125] 0.141 [0.065-0.217] 0.070 [0.044-0.095] 0.274 [0.150-0.434] 0.329 [0.253-0.413] 0.131 [0.109-0.152]

Table XI .

 XI 11. Summary table of site-speci c proportion of predicted variance conditional on the age e ect (prediction R 2 ms |a e) in the test datasets (data not used to t the models) of the P2 partition. The numbers shown are the mean and the 95% credible intervals.

Table XI .

 XI 14. Parameter estimates of the varying-intercept variances (σ 2 S , σ 2 B

  Table XI.15).

	Parameter Median σ 2 P 0.013 0.004 0.008 0.023 SD InfCI SupCI σ 2 G 0.012 0.001 0.010 0.013 σ 2 S 0.108 0.444 0.028 1.046 σ 2 B 0.002 0.001 0.001 0.003 σ 2 0.098 0.001 0.096 0.100 β 0 6.247 0.193 5.842 6.643 β a e 0.598 0.003 0.592 0.603 β a e2 -0.150 0.003 -0.155 -0.145

Table XI .

 XI 15. Parameter estimates of the varying-intercept variances (σ 2 S , σ 2 B , σ 2 P and σ 2 G ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ) in M1.

Table XI .

 XI 18).

	Parameter Median σ 2 P 0.011 0.004 0.007 0.022 SD InfCI SupCI σ 2 G 0.012 0.001 0.010 0.014 σ 2 I nt er 0.004 0.001 0.003 0.006 σ 2 S 0.113 1.525 0.030 1.423 σ 2 B 0.002 0.001 0.001 0.003 σ 2 0.096 0.001 0.095 0.098 β 0 6.231 0.285 5.753 6.670 β a e 0.597 0.003 0.592 0.602 β a e2 -0.150 0.002 -0.155 -0.145

  Table XI.19). However, estimates of the intercepts (S s and cs is ) and variances (σ 2 S and σ 2 cs is ) were uncertain (Tables XI.19 to XI.21), and the median and the credible interval of σ 2 S increased from M1 to M3, suggesting that M3 may hardly separate between σ 2

	and σ 2 cs is (Tables XI.15 & XI.19).	S

Table XI .

 XI 19. Parameter estimates of the varying-intercept variances (σ 2 S , σ 2 B , σ 2 P , σ 2 G and σ 2 c s is ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter Median S Astur ias 0.283 0.326 -0.248 0.809 SD InfCI SupCI S Bor deaux 0.164 0.341 -0.382 0.726 S Cacer es 0.086 0.341 -0.520 0.596 S Madr id -0.349 0.321 -0.902 0.092 S P or tu al -0.162 0.320 -0.717 0.291

Table XI .

 XI 20. Parameter estimates of the site intercepts S s in model M3. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter cs 1,Astur ias cs 2,Astur ias cs 3,Astur ias cs 1, Bor deaux cs 2, Bor deaux cs 1,Cacer es cs 1, Madr id cs 1, P or tu al cs 2, P or tu al cs 3, P or tu al cs 4, P or tu al	Median 0.012 0.076 -0.139 0.168 SD InfCI SupCI -0.027 0.085 -0.198 0.141 0.010 0.040 -0.047 0.114 -0.109 0.126 -0.353 0.160 0.043 0.084 -0.096 0.246 -0.001 0.145 -0.347 0.242 -0.035 0.064 -0.166 0.095 0.028 0.055 -0.089 0.132 0.065 0.051 -0.040 0.165 0.033 0.048 -0.072 0.123 -0.019 0.061 -0.142 0.103
	MODEL M3bis	

Table XI .

 XI 21. Parameter estimates of the cs is intercepts related to climatic similarity between test sites during the year preceding the measurements. As the saplings were measured 2 to 4 times in Asturias, Bordeaux and Portugal, the numbers 1 to 4 correspond to each measurement, in the temporal order in which they were done. For example, the intercept cs 1, As t ur i as corresponds to the rst measurement taken in Asturias, when the saplings were 10 month old. See the table XI.1 for the sapling age at each measurement. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Models M3 M13	Explanatory part: training P1 R 2 m R 2 m (f ix ) 0.574 [0.552-0.597] 0.816 [0.807-0.826] 0.566 [0.506-0.621] R 2 m |a e 0.575 [0.553-0.597] 0.816 [0.807-0.826] 0.634 [0.594-0.673]	PEm 0.231 [0.009-0.747] 0.23 [0.009-0.746]	prediction R 2 m |a e 0.563 [0.538-0.587] 0.563 [0.54-0.587]	Predictive part: test P1 prediction R 2 m prediction R 2 m (f ix ) 0.815 [0.805-0.825] 0.575 [0.514-0.631] 0.816 [0.806-0.825] 0.644 [0.604-0.685]	PEm 0.235 [0.009-0.763] 0.235 [0.009-0.767]

Table XI .

 XI 22. Comparing the performance of M3 and M3bis in the P1 partition, in which the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. R 2 m |a e and prediction R 2 m |a e correspond to the proportion of variance explained and predicted by the models conditional on the age e ect in the training (in-sample) and test (outof-sample) datasets, respectively. R 2 m and R 2 m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire model and by the xed variables only, respectively. Prediction R 2m and R 2 m (f ix ) correspond to the proportion of variance in the test dataset predicted by the entire model or by the xed e ects, respectively. PE m corresponds to the mean predictive error (mean of observed minus predicted responses). For R 2 and PE, the mean (over all iterations for R 2 or over all observations for PE) and the 95% credible intervals are given. For more details on the calculation of each index, see section 5 of the Supplementary Information.

	Parameter Median σ 2 B 0.029 0.009 0.017 0.053 SD InfCI SupCI σ 2 P 0.013 0.004 0.008 0.022 σ 2 G 0.012 0.001 0.010 0.013 σ 2 cs is 0.025 0.083 0.006 0.229 σ 2 0.097 0.001 0.096 0.099 β 0 6.284 0.036 6.213 6.356 β a e 0.630 0.008 0.614 0.645 β a e2 -0.153 0.010 -0.172 -0.134

Table XI .

 XI 23. Parameter estimates of the varying-intercept variances (σ 2 B , σ 2 P , σ 2 G and σ 2 c s is ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter cs 1,Astur ias cs 2,Astur ias cs 3,Astur ias cs 1, Bor deaux cs 2, Bor deaux cs 1,Cacer es cs 1, Madr id cs 1, P or tu al cs 2, P or tu al cs 3, P or tu al cs 4, P or tu al	Median 0.133 0.026 0.080 0.180 SD InfCI SupCI 0.117 0.030 0.054 0.172 0.026 0.020 -0.009 0.069 0.085 0.042 -0.003 0.162 0.134 0.031 0.076 0.195 -0.158 0.053 -0.264 -0.057 -0.140 0.030 -0.198 -0.082 -0.047 0.022 -0.088 -0.004 -0.007 0.023 -0.051 0.041 -0.028 0.020 -0.066 0.011 -0.114 0.028 -0.168 -0.056

Table XI .

 XI 24. Parameter estimates of the cs is intercepts related to climatic similarity between test sites during the year preceding the measurements. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

Table XI .

 XI 25. Parameter estimates of the varying-intercept variances (σ 2 S , σ 2 B , σ 2 P , σ 2 G , σ 2 c s is and σ 2 j

Table XI .

 XI 26. Parameter estimates of the varying-intercept variances (σ 2 S , σ 2 B , σ 2 P , σ 2 G , σ 2 c s is and σ A j ), the gene-pool speci c total genetic variances (σ A j ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Hypothesis σ 2 A N A -σ 2 A C < 0 σ 2 A N A -σ 2 A C S < 0 σ 2 A N A -σ 2 A F A < 0 σ 2 A N A -σ 2 A I A < σ 2 A N A -σ 2 A S ES < 0 σ 2 A C -σ 2 A N A < 0 σ 2 A C -σ 2 A C S < σ 2 A C -σ 2 A F A < σ 2 A C -σ 2 A I A < σ 2 A C -σ 2 A S ES < σ 2 A C S -σ 2 A N A < 0 σ 2 A C S -σ 2 A C < σ 2 A C S -σ 2 A F A < σ 2 A C S -σ 2 A I A < 0 σ 2 A C S -σ 2 A S ES < 0 σ 2 A F A -σ 2 A N A < 0 σ 2 A F A -σ 2 A C < σ 2 A F A -σ 2 A C S < σ 2 A F A -σ 2 A I A < 0 σ 2 A F A -σ 2 A S ES < 0 σ 2 A I A -σ 2 A N A < σ 2 A I A -σ 2 A C < σ 2 A I A -σ 2 A C S < 0 σ 2 A I A -σ 2 A F A < 0 σ 2 A I A -σ 2 A S ES < 0 σ 2 A S ES -σ 2 A N A < 0 σ 2 A S ES -σ 2 A C < σ 2 A S ES -σ 2 A C S < 0 σ 2 A S ES -σ 2 A F A < 0 σ 2 A S ES -σ 2 A I A < 0	Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star -0.035 0.043 -0.104 0.035 4.291 0.811 -0.007 0.035 -0.057 0.056 1.656 0.623 0.001 0.035 -0.049 0.065 1.127 0.530 0.019 0.036 -0.033 0.084 0.450 0.310 -0.042 0.052 -0.121 0.046 4.396 0.815 0.035 0.043 -0.035 0.104 0.233 0.189 0.029 0.030 -0.015 0.081 0.183 0.155 0.037 0.029 -0.006 0.089 0.091 0.084 0.055 0.030 0.009 0.109 0.022 0.022 -0.006 0.044 -0.080 0.065 1.239 0.553 0.007 0.035 -0.056 0.057 0.604 0.377 -0.029 0.030 -0.081 0.015 5.459 0.845 0.008 0.013 -0.013 0.030 0.384 0.277 0.026 0.017 -0.001 0.053 0.064 0.060 -0.035 0.038 -0.103 0.022 4.859 0.829 -0.001 0.035 -0.065 0.049 0.887 0.470 -0.037 0.029 -0.089 0.006 10.952 0.916 * -0.008 0.013 -0.030 0.013 2.606 0.723 0.018 0.014 -0.006 0.041 0.117 0.105 -0.043 0.035 -0.107 0.010 9.435 0.904 * -0.019 0.036 -0.084 0.033 2.221 0.690 -0.055 0.030 -0.109 -0.009 44.455 0.978 ** -0.026 0.017 -0.053 0.001 15.667 0.940 * -0.018 0.014 -0.041 0.006 8.524 0.895 -0.061 0.036 -0.125 -0.006 29.928 0.968 ** 0.042 0.052 -0.046 0.121 0.227 0.185 0.006 0.044 -0.065 0.080 0.807 0.447 0.035 0.038 -0.022 0.103 0.206 0.171 0.043 0.035 -0.010 0.107 0.106 0.096 0.061 0.036 0.006 0.125 0.033 0.032

Table XI .

 XI 27.

  TableXI.[START_REF] Angert | What Do We Really Know About Adaptation at Range Edges? Annual Review of Ecology[END_REF]. Gene pool-speci c heritability estimates H 2 j . The gene pools come from: Northern Africa (NA), Corsica (C), Central Spain (CS), French Atlantic region (FA), Iberian Atlantic region (IA) and south-eastern Spain (SES). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.6.1.4 Predictive models M7 and M8: combining climatic and genomic drivers

	MODEL M7	
	Term σ 2 B σ 2 j σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.027 0.100 0.008 0.192 0.172 0.992 0.036 2.252 0.001 0.005 0.000 0.009 0.001 0.003 0.000 0.007 0.018 0.048 0.005 0.135 0.104 0.001 0.102 0.106 6.303 0.403 5.518 7.147 0.599 0.003 0.593 0.604 -0.151 0.003 -0.156 -0.146
	Parameter Median H 2 N A 0.141 0.064 0.034 0.266 SD InfCI SupCI H 2 C 0.210 0.057 0.107 0.322 H 2 CS 0.152 0.020 0.114 0.190 H 2 FA 0.136 0.017 0.105 0.169 H 2 IA 0.104 0.021 0.065 0.146 H 2 SES 0.223 0.070 0.093 0.363

  Table XI.30. Parameter estimates from model M7 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	MODEL M8	
	Term σ 2 B σ 2 j σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β r P EA,s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.033 0.078 0.009 0.228 0.185 1.548 0.041 2.349 0.003 0.009 0.001 0.020 0.002 0.005 0.000 0.014 0.032 0.133 0.010 0.202 0.102 0.001 0.100 0.104 6.333 0.353 5.631 7.034 0.599 0.003 0.593 0.604 -0.151 0.003 -0.156 -0.146

Table XI .

 XI 31. Parameter estimates from model M8 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.6.1.5 Predictive models M9 to M12: including separately climatic and genomic drivers

	MODEL M9
	Parameter Median σ j 0.024 0.077 0.007 0.170 SD InfCI SupCI σ 2 S 0.107 0.921 0.027 1.346 σ 2 B 0.002 0.001 0.001 0.003 σ 2 0.114 0.001 0.112 0.116 β 0 6.233 0.237 5.708 6.637 β a e 0.601 0.003 0.596 0.607 β a e2 -0.153 0.003 -0.158 -0.148

  Table XI.32. Parameter estimates from model M9 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	MODEL M10	
	Term σ 2 B σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β 0 β a e β a e 2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.173 0.909 0.034 2.404 0.005 0.032 0.001 0.033 0.006 0.063 0.001 0.046 0.115 0.001 0.113 0.117 6.202 0.399 5.237 6.869 0.601 0.003 0.596 0.607 -0.153 0.003 -0.159 -0.148

Table XI .

 XI 33. Parameter estimates from model M10 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	MODEL M11	
	Term σ 2 B σ 2 S σ 2 β P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.249 4.243 0.040 7.779 0.013 0.056 0.004 0.092 0.114 0.001 0.112 0.117 6.322 0.763 4.768 7.742 0.599 0.003 0.593 0.604 -0.151 0.003 -0.156 -0.146

  Table XI.34. Parameter estimates from model M11 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	MODEL M12	
	Term σ 2 B σ 2 S σ 2 β r P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.332 1.572 0.044 4.542 0.023 0.047 0.007 0.152 0.113 0.001 0.111 0.115 6.597 0.499 5.735 7.663 0.599 0.003 0.593 0.604 -0.151 0.003 -0.156 -0.146

  Table XI.35. Parameter estimates from model M12 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter Median σ 2 P 0.016 0.005 0.009 0.029 SD InfCI SupCI σ 2 G 0.011 0.001 0.010 0.013 σ 2 S 0.110 0.540 0.028 1.032 σ 2 B 0.002 0.001 0.001 0.003 σ 2 0.097 0.001 0.095 0.099 β 0 6.240 0.190 5.866 6.627 β a e 0.599 0.002 0.594 0.603 β a e2 -0.150 0.002 -0.155 -0.146

  TableXI.37. Parameter estimates from model M1 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter Median σ 2 P 0.014 0.005 0.008 0.027 SD InfCI SupCI σ 2 G 0.011 0.001 0.010 0.013 σ 2 I nt er 0.005 0.001 0.003 0.007 σ 2 S 0.123 0.584 0.030 1.532 σ 2 B 0.002 0.001 0.001 0.003 σ 2 0.095 0.001 0.094 0.097 β 0 6.229 0.226 5.777 6.686 β a e 0.598 0.002 0.593 0.603 β a e2 -0.150 0.002 -0.155 -0.145

  Table XI.38. Parameter estimates from model M2 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval. 6.2.2 Predictive models M7 and M8: combining climatic and genomic drivers

	Term σ 2 B σ 2 j σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.004 SD InfCI SupCI 0.027 0.076 0.008 0.195 0.157 0.837 0.036 1.926 0.001 0.004 0.000 0.007 0.001 0.004 0.000 0.007 0.019 0.055 0.005 0.136 0.103 0.001 0.101 0.104 6.310 0.345 5.624 7.068 0.600 0.003 0.595 0.605 -0.151 0.002 -0.156 -0.147

  Table XI.39. Parameter estimates from model M7 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Term σ 2 B σ 2 j σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β r P EA,s σ 2 β 0	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.032 0.075 0.010 0.224 0.190 1.195 0.041 2.366 0.003 0.006 0.001 0.019 0.002 0.004 0.000 0.014 0.032 0.085 0.010 0.241 0.101 0.001 0.099 0.103 6.337 0.366 5.602 7.106

  6.2.3 Predictive models M9 to M12: including separately climatic and genomic drivers

	Parameter Median σ 2 j 0.027 0.083 0.008 0.199 SD InfCI SupCI σ 2 S 0.108 0.622 0.027 1.019 σ 2 B 0.002 0.001 0.001 0.004 σ 2 0.112 0.001 0.110 0.114 β 0 6.230 0.217 5.802 6.647 β a e 0.602 0.003 0.597 0.608 β a e2 -0.153 0.003 -0.158 -0.148

  Table XI.41. Parameter estimates from model M9 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Parameter σ 2 B σ 2 S σ 2 β max .t emp, s σ 2 β min .pr e, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.004 SD InfCI SupCI 0.183 1.789 0.036 3.006 0.005 0.011 0.002 0.035 0.006 0.018 0.002 0.041 0.113 0.001 0.111 0.115 6.239 0.456 5.194 7.075 0.602 0.003 0.597 0.607 -0.153 0.003 -0.158 -0.148

  TableXI.42. Parameter estimates from model M10 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Term σ 2 B σ 2 S σ 2 β P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.004 SD InfCI SupCI 0.265 2.482 0.038 5.597 0.013 0.031 0.004 0.085 0.115 0.001 0.113 0.117 6.374 0.677 5.164 7.956 0.600 0.003 0.594 0.605 -0.151 0.003 -0.156 -0.146

Table XI .

 XI 43. Parameter estimates from model M11 tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

	Term σ 2 B σ 2 S σ 2 β r P EA, s σ 2 β 0 β a e β a e2	Median 0.002 0.001 0.001 0.003 SD InfCI SupCI 0.332 2.743 0.042 4.656 0.026 0.083 0.008 0.177 0.112 0.001 0.110 0.114 6.556 0.532 5.620 7.714 0.599 0.003 0.594 0.605 -0.151 0.003 -0.156 -0.146

  Table XI.44. Parameter estimates from model M12 tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

  log(h new ) = log(Xβ + S s + B b(s) + β rPEA,s (rPEA r + 1) = log(h isbr ) + β rPEA,s

	Therefore:	log(h new ) -log(h isbr ) = β rPEA,s
			h new h isbr	= exp(β rPEA,s )
		100 ×	h new h

isbr -1 = 100 × exp(β rPEA,s ) -1 100 × h newh isbr h isbr = 100 × (exp(β rPEA,s ) -1)

  Table XII.1. Population information: population codes used in the study, population names and number of trees sampled in each population.

Table XII .

 XII 4. Candidate SNPs identi ed by each genotype-environment association (GEA) method. Table XII.5. Number of candidate SNPs with β R DA > 0.1 or 0.3 for each environmental covariate.

						B P				RDA TOTAL
	Common candidates Candidates under expected strong selection Merged candidates	bio5 1 1 1	bio6 7 25 25	bio12 0 0 0	bio15 0 0 0	depth_roots 0 0 0	water_top 0 0 0	TRI 0 0 0	BurnedArea 0 0 0	8 61 352	8 79 370
	β RDA β RDA β RDA threshold bio5 bio6 bio12 bio15 water_top depth_roots TRI BurnedArea 0.10 190 175 154 202 153 136 179 118 0.30 17 11 19 10 13 3 4 6		
	SNP sets Mean Median Common candidates 0.07 0.01 Candidates under expected strong selection 0.03 0.01 Merged candidates 0.01 0.00 Reference SNPs 0.01 0.00			

  Table XII.6. Mean and median linkage disequilibrium in each SNP set.

  Table XII.7. Number of SNPs in each set, model performance and covariate relative importance in the GDM analysis. DevExp is the percentage of deviance explained by the model. R 2 CV 9 , R 2 CV 6 and R 2

  2.2.2 GF modelsNb SNPs poly > 5 mean R 2 minimum R 2 maximum R 2Table XII.8. Number of SNPs that were polymorphic in more than ve populations and were thus used in the GF analysis, and mean, minimum and maximum R 2 across all SNPs in the GF models.

	Common candidates Candidates under expected strong selection Merged candidates Reference SNPs	8 78 348 9650	0.23 0.37 0.25 0.29	0.00 0.02 0.01 0.00	0.51 0.69 0.70 0.88

Table XII .

 XII 16. Di erences in expected predictive accuracy among the di erent models in the common garden in Portugal at 27-month old. See legend of TableXII.9.
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Correlation among the potential drivers

Model equation and priors

We modeled each trait bpcr such as:

where β 0 is the global intercept, B b the block intercepts, P p the population intercepts, C c(p) the clone intercepts and σ 2 r the residual variance.

Climatic transfer distances

We estimated the association between climatic transfer distances for both EMT and SHM and the within-population genetic variation. The climatic transfer distances were calculated as the absolute di erence between the climate in the location of origin of each population and the climate in the test site, for instance the climatic transfer distance for EMT between the population p and the common garden s was: equal to abs(CT D EMT ,s,p ) with CT D EMT ,s,p = EMT p -EMT s . We did not detect an association between climatic transfer distance and within-population genetic variation for SLA, as hypothesized in the discussion.

Genetic diversity

We estimated the association between genetic diversity (i.e. expected heterozygosity H e ) and within-population genetic variation. The expected heterozygosity H e was extracted from [START_REF] Rodríguez-Quilón | Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species[END_REF], in which H e was calculated either on 12 nuclear microsatellites or on 266 SNP markers from the same populations as in our study (see Appendix S1 of Rodríguez-Quilón et al. 2016). We did not detect an association between genetic diversity and within-population genetic variation for any trait, suggesting no in uence of demographic processes a ecting e ective population size on within-population genetic variation.
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Validation step

In the validation step, we performed exactly the same analyses (i.e. using the same model formula and code) as for the CLONAPIN height data, but on independent height data kindly provided by Ricardo Alia. This independent height data comes from a progeny test near Asturias, planted in 2005, and in which 23 provenances are shared with the CLONAPIN data (see Tables X.12 and X.13).

2 Height-associated positive-e ect alleles (PEAs)

Calculation of the counts of height-associated positive-e ect alleles

This section complements the section 3.2 in the manuscript and we explain here in more details how we calculated the counts of global and regional height-associated positive-e ect alleles. As already explained in the manuscript, for each of the four GWAS (a global GWAS and three regional GWAS), we selected the 350 SNPs with the highest absolute estimates of the posterior e ect size (i.e. Rao-Blackwellized estimates), corresponding approximately to the estimated number of SNPs with non-zero e ects on height in a previous study (i.e. the level of polygenicity; de [START_REF] Miguel | Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait[END_REF]. Then, for each selected allele, if the posterior e ect size was negative, it was converted to positive values and the reference allele ipped to select only alleles that have a positive e ect on height (positive-e ect alleles; PEAs). Thus, we ended up with four groups of PEAs. One group had a global positive e ect (i.e. range-wide e ect) on height and was used to calculate the count of global PEAs that each sapling has ( PEA variable). Trees with the same genotype had the same PEA , such as PEA = 350 l=1 G l , where G l = {0, 1, 2} is the number of global PEAs that the genotype has at the locus l. The three other groups of PEAs had a regional positive-e ect on height (i.e. speci c e ect in a given geographical region/in a particular environment) and were used to calculate the number of regional PEAs that each tree has (rPEA r variable). rPEA r was calculated based on both the tree genotype and the region r of its planting site, such as rPEA r = 350 l=1 G l r , where G l r = {0, 1, 2} is the number of PEAs speci c to the geographical region r that the genotype has at the locus l (see Fig. 82.9% of the globally-selected SNPs were at least selected once in a regional GWAS too (Fig. XI.3). Height-associated SNPs that were selected both globally and regionally (at least in one region) show consistently similar e ects (i.e. either positive or negative, but not antagonistic e ects): we did not nd a single SNP with an antagonist e ect when selected globally or regionally. where X is the 3-column design matrix and β is a vector including the intercept β 0 and the coe cients β a e and β a e2 of the xed e ect variables (a e and a e 2 , respectively). µ sbp is the vector of varying intercepts with the provenance intercepts P p , the genotype intercepts G (p) , the site intercepts S s , the block intercepts B b(s) and the interaction between the site and provenance intercepts S s P p .

Explanatory models M3 to M6: potential drivers underlying heightgrowth variation

Model M3:

Models M4, M5 and M6:

In models M4 and M5, we hypothesized that the genetic component of height growth was in uenced by the proportion belonging to each gene pool (proxy of the population demographic history and genetic drift). In M4, following [START_REF] Wolak | Accounting for genetic di erences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models[END_REF], gene pools j were allowed to vary in their mean relative contribution j on height growth as follows: e ects (resulting, for instance, from adaptation to environmental variables not measured in our study).

Predictive models M7 to M12: combining climatic and genomic information to improve predictions

Model M7: where min.pre p and max .temp p are the climatic variables in the provenance locations, β min.pre,s and β max .temp,s their site-speci c slopes, PEA and rPEA r the counts of global and regional PEAs and β PEA,s and β rPEA,s their site-speci c slopes. V pred ms -V age 2s V y s -V age 2s where V pred ms is the variance of the modeled predictive means from model m in site s of the test dataset, V age 2s is the variance predicted by the age e ect in the model M2 in site s and V y s is the phenotypic variance in the site s of the test dataset. Estimates of prediction R 2 ms |a e in the three partitions are reported in Table V.4.

We then calculated other indices that are not presented in the main manuscript as they are not necessary to support the main objectives of the paper, especially whether the models combining the climatic and genomic drivers of the genetic component can improve the prediction on new provenances. However, they are still useful to compare the goodness-of-t and predictive ability of the models, that's why we report them here.

We calculated the total in-sample proportion of the variance explained by each model m such as:

V pred m V y where V pred m is the variance of the modeled predictive means from model m in the training dataset and V y is the phenotypic variance in the training dataset. Similarly, we calculated the prediction R 2 m on the test dataset, that is the total out-of-sample proportion of variance predicted by each model m in the test dataset.

We calculated the in-sample proportion of the variance explained by the xed e ects of each model m such as:

V y where V pred m ( x) is the variance explained by the xed e ects of model m in the training dataset and V y is the phenotypic variance in the training dataset. Similarly, we calculated the prediction R 2 m (f ix) on the test dataset, that is the out-of-sample proportion of variance predicted by the xed e ects of each model m in the test dataset.

Last, we calculated the total in-sample proportion of the variance explained by each model m conditional on the age e ect, such as: 

MODEL M6

In M6, the variance σ 2 cp p associated with the provenance climate-of-origin had a higher median than the variances attributed to either gene pools or provenances (σ 2 j and σ 2 P ; Table XI.29). Including the provenance climate-of-origin in M6 resulted in a decreased variance of the provenances and gene pools, suggesting confounded e ects (Tables XI.25 & XI.29). Once these confounded e ects are taking into account, trees from climatic regions neighboring the Atlantic Ocean were generally the tallest (e.g. CAD, SIE, PUE, LAM and CAS in northwestern Spain; all provenances along the French Atlantic coast; Fig. XI.14). Interestingly, the Leiria (LEI) provenance, which has a strong Iberian Atlantic component (Table XI.3) and had the highest climate intercept estimate (similar to that of the French Atlantic provenances), was not among the tallest provenances (Fig. XI.14). Also, the Corsican provenances showed contrasted climate intercepts, with a positive in uence on height growth for Pinia (PIA) but not for Pineta (PIE), which could explain their striking di erences in height-growth patterns (Fig. V.3). Finally, the four provenances from south-eastern Spain and northern Africa gene pools showed all negative climate intercepts (Fig. ), the gene-pool speci c total genetic variances (σ A j ), the global variance σ 2 , the global intercept β 0 and the slopes associated with the age e ect (β a e and β a e 2 ). SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

Summary gure of models models M3, M5 and M6 Figure XI.14. Posterior distributions of the provenance intercepts P p , gene pool intercepts j and the cp p intercepts related to the provenance climate. The rst row corresponds to M3 including only P p . The second row corresponds to M4 including both P p and j . The third row corresponds to M6 including P p , j and cp p . In M3, M4 and M6, the plastic component is included in the same way via the intercepts S S and cs is . Only the genetic component changes between these models. Provenances were colored based on the main gene pool they belong to.

Summary gure of models M7 and M8 Posterior distributions of parameters from models M9 and M12 tted on P1. For M9, the parameter estimates j correspond to the e ect of the gene pools j. For M10, the parameter estimates correspond to the site-speci c e ects of the minimum precipitation during the driest month (β min .pr e,s ) and the maximum temperature of the warmest month (β max .t emp, s ). For M11, the parameter estimates correspond to the site-speci c e ect of the gPEAs (β P EA,s ). For M12, parameter estimates correspond to the site-speci c e ects of the rPEAs (β r P EA, s ).

P2 partition (random split of the provenances)

The unknown provenances of the P2 test dataset were chosen randomly among the 34 provenances of our study. -bio12, the annual precipitation (mm) -bio15, the precipitation seasonality (coe cient of variation)

M0, M1 and M2

• Soil-related variable:

-depth_roots, the depth available to roots (cm)

-water_top, the total available water content (mm)

• One topographic variable: TRI the topographic ruggedness index

• One re-related variable: BurnedArea the average of the monthly burned area from June 1995 to December 2014 (hectares) To describe the potential future climate, we used the averaged predictions (over the period 2041-2060 at 2.5 arc-minutes spatial resolution) of nine global climate models (GCMs) from the WorldClim database [START_REF] Fick | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[END_REF]: BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MRI-ESM2-0. For the shared socio-economic pathway SSP3-7.0 (moderately alarming), the nine GCMs were used. For the shared socio-economic pathway SSP5-8.5 (strongly alarming), all GCMs except GFDL-ESM4 were used.

Validating genomic o set predictions in common gardens

In this part, we aimed to estimate the association of population performance in common gardens with (i) the predicted genomic o set of the populations in the new environmental conditions of the common gardens and (ii) the climatic transfer distance of the populations (i.e. absolute di erence between the climate in the location of origin of each population and the climate in the common garden). As a measure of population performance in the common gardens, we used height data from ve common gardens and mortality data from two common gardens. Commons gardens where height was measured were planted in di erent environments, i.e three under favorable conditions (i.e. the Atlantic region with mild winters, no severe cold events, high annual rainfall and relatively wet summers) and two in harsh environments (i.e. the Mediterranean region with high temperatures and an intense summer drought). Mortality was measured in the two common gardens under harsh environments in which a severe summer drought exacerbated by clay soils killed 92% and 72% of the trees. Details about the number of height and mortality observations per population in each common garden are given in Tables XII.2 andXII For each of the eight combinations of the four allele sets (reference SNPs and the three candidate SNP sets) and the two models used to estimate the current gene-environment relationships (i.e. GDM and GF), we predicted genomic o set of the 34 populations when transplanted in the common gardens based on the environmental di erences (i.e. climatic, soil and topographic di erences) between the location of the population and the common garden. Di erences in burned area were not accounted for in genomic o set calculation as re could not have in uenced the population performance (i.e. height and mortality) in the common gardens, and therefore the burned area value was xed to its value at the population location.

We also calculated the climatic transfer distance of each pair of population and common garden for ve climatic covariates: bio1 (the annual daily mean temperature, °C), bio5 (the maximum temperature of the warmest month, °C), bio6 (the minimum temperature of the coldest month, °C), bio12 (the annual precipitation, mm) and bio15 (the precipitation seasonality, coe cient of variation).

We rst evaluated whether populations that grow the less in common gardens were those with the highest predicted genomic o set (or the highest climatic transfer distance). For that, in each of the ve common gardens independently, we rst estimated BLUPs for height with the following model:

with H ip the height in the individual i in the population p, β 0 the global intercept, σ 2 r the residual variance, P p and B b the population and block varying intercepts, respectively. This model was performed with the R package brms and we used to following priors: q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Climatic transfer distance Genomic offset