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Comprendre l’origine et prédire la variation génétique adaptative à large échelle à
l’ère de la génomique : une étude de cas chez le pin maritime

Résumé : Le changement climatique impacte déjà les populations d’arbres forestiers, comme en té-
moignent les évènements de mortalité de plus en plus fréquents et les migrations vers le nord et en
altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans
précédent du changement climatique. Par conséquent, à des �ns de conservation et de gestion, évaluer
le potentiel des populations d’arbres forestiers à persister face au changement climatique est néces-
saire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique a�n
d’associer la variation des traits quantitatifs à de larges gradients environnementaux, permettant ainsi
de mieux comprendre l’origine de la variation des traits quantitatifs et d’identi�er les populations qui
pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les quantités massives
de données génomiques provenant des outils de séquençage de nouvelle génération révolutionnent
actuellement notre compréhension de la composante génétique des traits quantitatifs et stimulent le
développement de nouvelles méthodes statistiques visant à anticiper les réponses des populations aux
conditions changeantes. Dans les approches basées sur les traits, la combinaison des données phéno-
typiques et climatiques des jardins communs avec les données génomiques semble être une approche
particulièrement pertinente a�n de séparer les composantes plastiques et génétiques de la variation des
traits, ainsi que les processus neutres et adaptatifs derrière la composante génétique, ce qui est promet-
teur vis-à-vis de l’amélioration des prédictions de la variation des traits à grande échelle. En génomique
du paysage, les données génomiques et environnementales peuvent être combinées a�n d’identi�er
les relations gènes-environnement actuelles, qui servent ensuite à estimer le changement génétique
nécessaire au maintien des relations gènes-environnement dans les climats futurs, une métrique appelée
‘décalage génomique’. Dans cette thèse, le pin maritime (Pinus pinaster Ait), un conifère à longue durée
de vie originaire de la partie occidentale du bassin méditerranéen, est utilisé comme étude de cas a�n
d’évaluer comment les données génomiques pourraient contribuer à anticiper les réponses des popula-
tions au changement climatique. Le premier chapitre vise à comprendre comment la variation génétique
quantitative est maintenue au sein des populations en testant trois hypothèses concurrentes, mais non
mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes présentent une variation
génétique quantitative plus élevée en raison de l’introgression en provenance d’autres pools génétiques,
(ii) la variation génétique quantitative est plus faible dans les populations provenant d’environnements
plus di�ciles (c’est-à-dire subissant une sélection plus forte), et (iii) la variation génétique quantitative
est plus élevée dans les populations provenant d’environnements spatialement hétérogènes. Le deuxième
chapitre vise à déterminer si des modèles combinant des données climatiques et génomiques pourraient
capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi améliorer les
prédictions à grande échelle, en particulier par rapport aux prédictions des fonctions de réponse des
populations basées sur le climat qui sont actuellement couramment utilisées chez les arbres forestiers. Le
troisième chapitre a pour but d’identi�er les populations dont les relations gène-environnement seront
les plus perturbées par le changement climatique (c’est-à-dire les populations à risque de maladaptation
climatique à court terme) en utilisant l’approche du décalage génomique, et à valider les prédictions qui
en résultent (c’est-à-dire que les populations avec un décalage génomique élevé devraient avoir une
valeur adaptative plus faible) à la fois dans les populations naturelles et dans des conditions de jardins
communs.

Mots-clés : Génétique quantitative et des populations, Arbres forestiers, Modélisation à grande échelle,
Génomique du paysage, Variation génétique adaptative, Plasticité phénotypique
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Understanding the origin and predicting adaptive genetic variation at large scale in
the genomic era: a case study in maritime pine

Abstract: Climate change is already a�ecting forest tree populations, as evidenced by increased forest
die-o� events, background mortality and the northward and upward migration of tree populations.
However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate
of climate change. Therefore, for conservation and breeding purposes, we have to assess the potential of
forest tree populations to persist under climate change. In forest trees, a long history of common gardens
has provided a unique framework to associate population-speci�c quantitative-trait variation with large
environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation
and the identi�cation of populations that may grow and survive better, or worse, under future climates.
The huge amount of genomic data from the next-generation sequencing tools is currently revolutioniz-
ing our understanding of the genetic component of quantitative traits and is subsequently driving the
development of new statistical methods to anticipate the population responses to changing conditions.
In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic
data appears to be a particularly relevant approach to separate the plastic and genetic components of
trait variation, as well as the neutral and adaptive processes behind the genetic component, which is
promising towards improving the predictions of trait variation across the species ranges. In landscape
genomics, genomic and environmental data can be combined to identify current gene-environment
relationships across the landscape, which are then used to estimate the genetic change required to
maintain the current gene-environment relationships under future climates, a metric often referred to
as genomic o�set. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the
western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could
contribute to anticipating population responses to climate change. The �rst chapter aims to understand
how quantitative genetic variation is maintained within populations by testing three competing, but
not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative
genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower
in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative
genetic variation is higher in populations from spatially heterogeneous environments. The second
chapter investigates whether models combining climate and genomic data could capture the underlying
drivers of height-growth variation, and thus improve predictions at large geographic scales, especially
compared to the predictions from climate-based population response functions that are currently com-
monly used in forest trees. The third chapter aims to identify the populations whose gene-environment
relationships will be the most disrupted under climate change (i.e. populations at risk of short-term
climate maladaptation) using the genomic o�set approach, and to validate the resulting predictions
(i.e. populations with high genomic o�set are expected to show a decrease in �tness) both in natural
populations and in common garden conditions. Finally, the present PhD work investigates di�erent
ways to integrate genomic information into current modeling approaches, therefore contributing to the
development of a much-needed robust framework to make reliable predictions and to determine when
and to what extent genomics can help in making decisions in conservation strategies or in anticipating
population responses to climate change.

Keywords: Population and quantitative genetics, Forest trees, Large-scale modeling, Landscape ge-
nomics, Adaptive genetic variation, Phenotypic plastiticty
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I

Résumé substantiel

1 Introduction

Les arbres forestiers sont des espèces clés de voûte essentielles au fonctionnement et au
maintien des écosystèmes, de la biodiversité et de multiples services écosystémiques. Prédire
comment les populations d’arbres forestiers s’adapteront in situ aux conditions environnemen-
tales futures, notamment celles engendrées par le changement climatique, est aujourd’hui un
enjeu critique et urgent, nécessitant une compréhension approfondie des processus évolutifs
en jeu.

En outre, certaines populations ne seront pas en mesure de s’adapter assez rapidement
face au rythme du changement climatique et sont donc susceptibles de connaître des déclins
démographiques, voire des extinctions, dans un avenir proche. Identi�er de telles populations
en amont et les classer par ordre de priorité est nécessaire a�n de mettre en œuvre des stratégies
de conservation et de gestion pertinentes. De plus, implémenter des stratégies tenant compte
des processus adaptatifs, comme le déplacement d’individus vers des environnements au sein
desquels ils sont supposés être mieux adaptés (stratégie de �ux génétique assisté) ou vers des
populations menacées en manque de variation génétique (stratégie de sauvetage évolutif),
nécessite d’anticiper la réponse des individus transplantés aux nouveaux environnements.

Chez les arbres forestiers, une longue histoire de test de provenances (désormais commu-
nément appelés jardins communs) a fourni un cadre unique pour associer la variation des
traits quantitatifs entre populations à de larges gradients environnementaux. L’estimation
de fonctions de réponse des populations (‘population response functions’) a permis d’évaluer
l’origine de la variation des traits quantitatifs (notamment en séparant la part plastique et
génétique de la variation des traits) et d’identi�er les populations présentant des risques de
lags phénotypiques face au changement climatique, et donc potentiellement à risque de ma-
ladaptation (par exemple Fréjaville et al. 2020, Pedlar et McKenney 2017, Rehfeldt et al. 2002,
Savolainen et al. 2007). Cependant, les jardins communs sont coûteux et chronophages à entre-
tenir, et limités à quelques espèces ou populations. Parallèlement, la disponibilité croissante des
données génomiques issues des nouvelles technologies de séquençage à des coûts abordables
(et en constante diminution) pour les espèces non modèles o�re de nouvelles perspectives pour
comprendre les processus adaptatifs, identi�er les populations à risque de maladaptation ou
améliorer les prédictions des traits quantitatifs à l’échelle individuelle. En conséquence, en
biologie de l’évolution et génétique quantitative, les approches de modélisation statistique
incorporant des informations génomiques se développent rapidement (par exemple Gienapp
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et al. 2017, Meuwissen et al. 2001), mais la plupart manquent encore de validations robustes et
indépendantes, et peuvent être considérablement améliorées.

Les principaux objectifs de la présente thèse visent à contribuer à deux préoccupations
majeures du domaine de la biologie évolutive : (i) la compréhension des mécanismes sous-jacents
à l’adaptation des populations à leur environnement local, et (ii) l’amélioration des prédictions
des réponses des populations aux changements environnementaux, tels que le changement
climatique. Le pin maritime (Pinus pinaster Ait), un conifère à longue durée de vie originaire de
la partie occidentale du bassin méditerranéen, est utilisé comme étude de cas. Le chapitre 1 vise à
comprendre comment la variation génétique quantitative est maintenue au sein des populations
de pin maritime en testant trois hypothèses concurrentes, mais non mutuellement exclusives,
sur plusieurs traits phénotypiques : (i) les populations à forts niveaux d’introgression entre
di�érents pools génétiques présentent une variation génétique quantitative plus élevée, (ii) la
variation génétique quantitative est plus faible dans les populations issues d’environnements
plus rudes (car subissant potentiellement une sélection plus forte ; Fisher 1930), et (iii) la
variation génétique quantitative est plus élevée dans les populations issues d’environnements
spatialement hétérogènes (McDonald et Yeaman 2018, Yeaman et Jarvis 2006). Le chapitre 1
renseigne donc sur les populations qui pourraient être en mesure de s’adapter plus rapidement
face au changement climatique puisque le potentiel adaptatif des populations est proportionnel
à leur variation génétique (‘breeder’s equation’ ; Falconer et Mackay 1996, Lush 1937). Le chapitre
2 a pour but de déterminer si des modèles combinant des données génomiques, climatiques
et phénotypiques peuvent capturer les facteurs sous-jacents de la variation de croissance
en hauteur, et ainsi améliorer les prédictions phénotypiques à large échelle, en particulier
en comparaison avec les prédictions des fonctions de réponse des populations basées sur le
climat d’origine des populations et qui sont actuellement généralement utilisées pour les arbres
forestiers (par exemple Leites et al. 2012a, Rehfeldt et al. 1999). En�n, le premier objectif du
chapitre 3 est d’identi�er les populations de pin maritime dont les relations gène-environnement
seront les plus altérées par le changement climatique (c’est-à-dire les populations à risque
de maladaptation climatique à court terme) en appliquant l’approche du décalage génomique
(‘genomic o�set’ ; Fitzpatrick et Keller 2015). Le second objectif est de tester une hypothèse clé de
l’approche du décalage génomique, à savoir que les populations pour lesquelles les prédictions
de décalage génomique sont les plus élevées présentent une diminution de leur valeur adaptative
absolue moyenne ou des tendances démographiques en déclin (Capblancq et al. 2020a). Les
chapitres 2 et 3 fournissent donc des informations précieuses à la mise en œuvre d’une gestion
des populations de pin maritime tenant compte des processus adaptatifs. De plus, en étudiant
comment combiner les données phénotypiques, génomiques et environnementales dans deux
cadres de modélisation très di�érents (respectivement basés sur les traits et la génomique
du paysage), ces deux chapitres contribuent à l’objectif ambitieux de prédire comment les
populations d’arbres forestiers répondront au changement climatique et quelles stratégies de
gestion et de conservation seront les plus e�caces pour sauver les populations en déclin.

2 Matériels & méthodes

L’espèce modèle utilisée dans cette thèse est le pin maritime (Pinus pinaster Ait., Pinaceae),
une espèce d’arbre forestier écologiquement et économiquement importante, largement ex-
ploitée pour son bois (Viñas et al. 2016), stabilisant les dunes côtières atlantiques et, en tant
qu’espèce clé de voûte, soutenant la biodiversité forestière. Originaire de la partie occidentale
du bassin méditerranéen, des montagnes de l’Atlas au Maroc et de la côte atlantique sud-ouest
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de l’Europe, sa répartition naturelle s’étend des montagnes du Haut Atlas au sud (Maroc) à la
Bretagne française au nord, et de la côte du Portugal à l’ouest à l’Italie occidentale à l’est. Il
a également été introduit à des �ns commerciales en Australie où il est désormais considéré
comme une espèce hautement invasive (Viñas et al. 2016).

Le pin maritime est une espèce d’arbre pollinisé par le vent, allogame et à longue durée de vie.
Il pousse sur une grande variété de substrats, des sols sableux et acides aux sols plus calcaires. Il
peut également tolérer des climats variés : le climat sec des côtes nord du bassin méditerranéen
(du Portugal à l’Italie occidentale), le climat montagneux du sud-est de l’Espagne et du Maroc,
le climat plus humide de la région atlantique (de la région ibérique espagnole à l’ouest de la
France) et le climat continental du centre de l’Espagne. Comme de nombreuses espèces d’arbres
méditerranéennes, le pin maritime présente une forte structure de population et des populations
très fragmentées (Alberto et al. 2013). Ses populations peuvent être regroupées en six pools
génétiques (Jaramillo-Correa et al. 2015), c’est-à-dire des groupes génétiques qui ne peuvent
être di�érenciés sur la base de marqueurs génétiques neutres et qui dérivent probablement
d’un refuge glaciaire commun (Bucci et al. 2007, Santos-del-Blanco et al. 2012).

Les données phénotypiques et génomiques utilisées dans la présente thèse proviennent
du réseau de jardins communs clonaux CLONAPIN, composé de cinq sites situés dans des
environnements di�érents. Trois sites (Bordeaux, Asturias et Portugal) se trouvent dans la
région atlantique, caractérisée par des hivers doux, des précipitations annuelles élevées et des
étés relativement humides. Les deux autres sites (Cáceres et Madrid) sont localisés dans la
région méditerranéenne continentale, caractérisée par des étés chauds et très secs et des hivers
froids. En 2010 ou 2011 selon le site, des réplicats clonaux de 34 populations ont été plantés
selon un plan expérimental en blocs aléatoires complets. Entre 2 et 28 clones (génotypes), en
moyenne 15, représentaient chaque population . Pour obtenir des clones non apparentés, des
arbres distants d’au moins 50 m ont été échantillonnés dans des peuplements naturels, et une
graine par arbre a été plantée dans une pépinière et propagée végétativement par bouturage
(voir Rodríguez-Quilón et al. 2016 pour plus de détails).

La mortalité et la hauteur des arbres ont été mesurées dans tous les jardins communs et à
di�érents âges des arbres : 10, 21 et 37 mois à Asturias, 25, 37 et 49 mois à Bordeaux (ainsi que
13 mois pour la mortalité et 85 mois pour la hauteur), 8 mois à Cáceres, 13 mois à Madrid et 11,
15, 20 et 27 mois au Portugal. La hauteur des arbres n’a été mesurée que sur les arbres vivants,
déséquilibrant considérablement les données de hauteur à Cáceres et à Madrid, où 92% et 75% des
arbres sont morts, respectivement (en partie à cause des sols argileux et d’une forte sécheresse
estivale). Deux traits liés à la phénologie, la date moyenne de débourrement et la durée moyenne
du débourrement, ont été mesurés à Bordeaux lorsque les arbres avaient 2, 3, 4 et 6 ans. Le
débourrement correspond à la date d’émergence des brachyblastes en degrés-jours cumulés
(avec une température de base de 0°C) à partir du premier jour de l’année, ce qui permet de tenir
compte de la variabilité interannuelle des températures. La durée du débourrement correspond
au nombre de degrés-jours entre le début de l’élongation des bourgeons et l’élongation totale
des aiguilles (voir Hurel et al. 2019). En�n, deux traits fonctionnels, δ 13C et la surface foliaire
spéci�que (SLA), ont été mesurés au Portugal.

Les 34 populations plantées dans les cinq jardins communs représentent un échantillon de
populations naturelles couvrant l’ensemble des pools génétiques connus du pin maritime. 523
clones collectés dans le jardin commun se trouvant à Asturias ont été génotypés avec le test
In�nium d’Illumina, ce qui a permis d’obtenir 5 165 SNPs polymorphes de haute qualité. Il
n’y avait en moyenne que 3,3 valeurs manquantes par génotype (entre 0 et 142). Des détails
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sur l’extraction de l’ADN et le génotypage peuvent être trouvés dans Plomion et al. (2016b).
Ce premier ensemble de données génomiques a été utilisé dans les chapitres 1 et 2. Dans le
chapitre 3, nous avons combiné ce premier ensemble de données génomiques avec un autre
obtenu avec le test de génotypage d’A�ymetrix et développé dans le cadre du projet H2020 EU
B4EST (4Tree ; https://b4est.eu). Les SNPs ayant une fréquence des allèles mineurs inférieure à
1% ou plus de 20% de données manquantes ont été �ltrés, ce qui a permis d’obtenir 454 clones
et 9 817 SNPs polymorphes de haute qualité. Parmi ces derniers, 2 855 étaient génotypés par
les deux tests de génotypage (In�nium d’Illumina et A�ymetrix), garantissant ainsi l’identité
de l’échantillon et permettant d’estimer les erreurs de génotypage. Le pourcentage de données
manquantes par clone était inférieur à 12% pour tous les clones, avec une moyenne de 2,5%.

3 Chapitre 1

La plupart des traits complexes présentent une variation héritable substantielle dans les
populations naturelles. Comment l’interaction des forces évolutives maintient une telle variation
reste un dilemme de longue date en biologie évolutive et en génétique quantitative, qui a fait
l’objet d’un vaste corpus de travaux théoriques mais manque de preuves empiriques à ce
jour (Johnson et Barton 2005). Alors que la mutation et la migration augmentent la variation
génétique au sein des populations, la sélection naturelle et la dérive génétique sont supposées
l’appauvrir (Walsh et Lynch 2018). Seulement, la variation génétique élevée des populations
naturelles est di�cile à expliquer sans tenir compte d’autres processus, tels que la sélection
balancée au sein d’environnements hétérogènes (Mitchell-Olds et al. 2007). Chez les arbres
forestiers, à ma connaissance, seules deux études ont examiné empiriquement comment les
forces évolutives façonnent la variation génétique au sein des populations, et suggèrent un
e�et positif de l’hétérogénéité environnementale (Yeaman et Jarvis 2006) et un e�et négatif de
la sélection induite par le climat (Ramírez-Valiente et al. 2019).

Dans ce chapitre, nous avons testé des hypothèses concurrentes sur l’origine et le maintien
de la variation génétique quantitative au sein des populations de pin maritime. Nous avons
utilisé des mesures phénotypiques de traits de croissance (hauteur), phénologiques (date et
durée du débourrement) et fonctionnels (δ 13C et surface foliaire spéci�que, SLA) issues des trois
jardins communs du réseau CLONAPIN situés dans la région Atlantique (Bordeaux, Asturias et
Portugal). Les mesures phénotypiques ont été réalisées sur 522 clones (génotypes) provenant de
33 populations, couvrant tous les pools génétiques connus de l’espèce (Jaramillo-Correa et al.
2015) et génotypés pour 5 165 SNPs (Plomion et al. 2016b). Pour chaque trait, nous avons comparé
les estimations de modèles hiérarchiques bayésiens de l’association entre variance génétique au
sein des populations et facteurs sous-jacents potentiels, à savoir la rigueur du climat sur le lieu
d’origine des populations (intensité de la sécheresse et épisodes de froid intense), l’hétérogénéité
environnementale dans les régions environnantes des populations, et le degré et origine du
mélange génétique dans les populations (estimés avec les marqueurs SNPs). Les hypothèses
concurrentes, mais non mutuellement exclusives, testées étaient les suivantes : (i) les populations
présentant les plus forts degrés d’introgression en provenance d’autres pools génétiques ont une
variation génétique quantitative plus élevée, et cette relation est proportionnelle à la divergence
entre les pools génétiques sources et puits ; (ii) la variation génétique quantitative est plus
faible dans les populations qui ont évolué dans des environnements plus rudes, en raison des
pressions de sélection plus élevées dans ces régions ; et (iii) la variation génétique quantitative
est plus élevée dans les populations qui ont évolué dans des environnements spatialement
hétérogènes.
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Le résultat le plus intéressant de ce chapitre était que les populations de pin maritime
soumises à des événements de froid intense présentaient une variation génétique plus faible
pour la hauteur dans les trois jardins communs. Ce résultat appuie l’hypothèse selon laquelle la
variation génétique quantitative des traits liés à la valeur adaptative (�tness) est plus faible dans
les populations soumises à une forte sélection (Fisher 1930), ici une sélection induite par le climat.
Ce résultat a été validé sur des données de hauteur indépendantes provenant d’un ensemble
supplémentaire de dispositifs expérimentaux (aimablement fournies par des collègues). La
robustesse de nos résultats a également été con�rmée par l’absence d’association entre le degré
d’introgression des populations et leur variation génétique quantitative, suggérant l’absence
d’in�uence du �ux génétique entre des pools de gènes distincts sur la variation génétique des
traits considérés. En revanche, nous n’avons trouvé pour aucun des traits étudiés de variation
génétique plus élevée dans les populations situées dans des environnements hétérogènes, ce
qui va à l’encontre des prédictions de certains modèles théoriques (McDonald et Yeaman 2018,
Walsh et Lynch 2018) et d’une étude empirique chez le pin tordu (Yeaman et Jarvis 2006).

En conclusion, ce chapitre contribue au débat sur le maintien de la variation génétique au
sein des populations en apportant un appui empirique au rôle de la sélection naturelle dans
la réduction de la variation génétique au sein des populations d’un arbre forestier à longue
durée de vie. Plus largement, la variation génétique étant une brique essentielle de la réponse
adaptative des populations à des changements de conditions environnementales, ce chapitre
renseigne sur le potentiel adaptatif à court terme des populations, ce qui est d’une grande utilité
pour prédire quelles populations sont en mesure de s’adapter rapidement face au changement
climatique.

4 Chapitre 2

Anticiper la croissance des individus et populations dans de nouveaux environnements
est essentiel pour guider les stratégies de conservation des arbres forestiers, notamment les
translocations d’individus visant à compenser le changement climatique rapide (Aitken et
Whitlock 2013). À ce jour, les fonctions de réponse des populations basées sur le climat d’origine
des populations restent la méthode la plus couramment utilisée a�n d’anticiper les valeurs
des traits des populations transplantées dans de nouveaux environnements (Fréjaville et al.
2020, O’Neill et al. 2008, Pedlar et McKenney 2017, Rehfeldt et al. 2003, 1999, Wang et al. 2010).
L’intégration des informations génomiques dans les modèles prédictifs des traits d’intérêts
apparaît attrayante car elle permettrait de distinguer les contributions relatives de la variation
génétique adaptative ou neutre dans les prédictions, et de prendre en compte la variabilité
intraspéci�que à une échelle plus �ne que les modèles actuels, gagnant ainsi en précision de
prédiction (Holliday et al. 2017).

L’objectif de ce chapitre était d’identi�er les facteurs sous-jacents potentiels des composantes
plastiques et génétiques de la croissance en hauteur des populations de pins maritimes et
d’étudier comment les données phénotypiques des jardins communs peuvent être combinées
avec des données génomiques a�n d’améliorer les prédictions de la variation de la croissance
en hauteur à l’échelle de l’aire de répartition de l’espèce. Nous avons comparé des modèles
hiérarchiques bayésiens inférant les variations de croissance en hauteur du pin maritime en
fonction de variables climatiques et génomiques, en utilisant les mesures de hauteur issues
de 34 populations (523 génotypes et 12 841 arbres) plantées dans les cinq jardins communs
du réseau CLONAPIN. Nous avons d’abord évalué l’importance relative des facteurs sous-
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jacents potentiels des variations de croissance en hauteur. Nous nous attendions à ce que : (i) la
composante plastique (environnementale) explique la plus grande partie de la variation des traits
et soit associée au climat des jardins communs, (ii) la composante génétique soit déterminée à
la fois par des processus adaptatifs, tels que l’adaptation au climat, et des processus neutres, tels
que l’histoire démographique des populations. Deuxièmement, nous avons comparé la capacité
de prédiction hors échantillon (sur des observations ou des populations non incluses lors du �t
des modèles) de modèles basés exclusivement sur le design expérimental des jardins communs
avec celle de modèles incluant (séparément ou conjointement) des prédicteurs potentiels de
la composante génétique de la croissance en hauteur. Ces prédicteurs potentiels incluaient le
climat d’origine des populations (un indicateur de l’adaptation au climat), l’assignement de
chaque génotype aux di�érents pools génétiques (un indicateur de l’histoire démographique
des populations et de la dérive génétique, re�étant probablement aussi les di�érentes histoires
sélectives des pools génétiques) et des comptages d’allèles spéci�ques à chaque génotype et
ayant un e�et positif sur la hauteur (‘positive-e�et alleles’, PEAs ; identi�és via des études
d’association pangénomique, ‘genome-wide association studies’, GWAS).

La composante plastique expliquait la proportion majeure des écarts à la trajectoire moyenne
de croissance en hauteur (47%), ayant probablement pour origine de multiples facteurs environ-
nementaux (confondus), dont le climat. La composante génétique expliquait 11% des déviations
de la trajectoire moyenne de croissance en hauteur et était principalement associée au climat
d’origine des populations dont l’e�et est partiellement confondu avec l’assignement à des
pools génétiques distincts. Les modèles combinant informations génomiques et climatiques
capturaient bien la composante génétique de la croissance en hauteur. De façon importante, ils
prédisaient mieux la croissance en hauteur de nouvelles populations (non incluses lors du �t des
modèles) que les modèles basés exclusivement sur le design expérimental des jardins communs
(c’est à dire uniquement sur les données phénotypiques) ou les modèles incluant séparément
informations climatiques et génomiques (comme les fonctions de réponse des populations
basées uniquement sur le climat d’origine des populations). Il est également intéressant de
relever que les PEAs qui avaient été identi�és à une échelle régionale dans les GWAS avaient
une plus grande capacité de prédiction que les PEAs identi�és globalement à l’échelle de l’aire
de répartition de l’espèce.

Ce chapitre est un pas de plus vers l’intégration des connaissances récentes apportées par
les avancées de la génomique à la modélisation de la variation des traits quantitatifs chez les
arbres forestiers. La combinaison des jardins communs avec les outils génomiques est très
prometteuse a�n d’accélérer et améliorer les prédictions de traits à grande échelle et pour un
large éventail d’espèces et de populations. Cependant, un cadre solide est nécessaire a�n de
générer des prédictions �ables et de déterminer quand et dans quelle mesure la génomique peut
aider à prendre des décisions dans les stratégies de conservation ou à anticiper les réponses
des populations au changement climatique.

5 Chapitre 3

Un objectif majeur de la biologie de l’évolution est de comprendre comment les populations
s’adaptent à leur environnement et de prédire comment elles répondront aux conditions futures,
en particulier celles découlant du changement climatique. L’approche du décalage génomique
(‘genomic o�set’) est de plus en plus populaire et vise à identi�er les populations pour lesquelles
les relations gène-environnement seront les plus perturbées face aux nouvelles conditions
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climatiques, c’est-à-dire les populations à risque de maladaptation climatique à court terme
(Fitzpatrick et Keller 2015, Rellstab et al. 2015). Elle apparaît comme une méthode prometteuse
pour guider les stratégies de conservation et de gestion, en particulier pour les espèces sessiles
et à longue durée de vie comme les arbres forestiers, pour lesquelles l’adaptation in situ ou la
migration des allèles adaptatifs peuvent ne pas être assez rapides face au rythme du changement
climatique (Fitzpatrick et Keller 2015). Cependant, cette approche repose sur un certain nombre
d’hypothèses clés nécessitant une validation empirique solide (discutées dans Capblancq et al.
2020a, Rellstab et al. 2021).

L’objectif principal de ce chapitre était double : (1) identi�er les populations de pins maritimes
à risque de maladaptation climatique à court terme, (2) véri�er l’hypothèse selon laquelle les
populations présentant les prédictions de décalage génomique les plus élevées présentent une
diminution de leur valeur adaptative absolue ou des tendances démographiques en déclin
(Capblancq et al. 2020a). Pour cela, une première étape de validation a consisté à détecter des
associations négatives entre performance des populations (hauteur et taux de mortalité) et
prédictions de décalage génomique dans des jardins communs (plutôt que dans les climats
futurs), et à les comparer aux associations entre performance des populations et cinq distances
de transfert climatique (di�érence absolue entre le climat des populations et celui des jardins
communs). Une deuxième étape de validation a consisté à estimer les associations entre les taux
de mortalité récents dans les populations naturelles (sur la base des données des inventaires
forestiers nationaux français et espagnols) et les prédictions de décalage génomique sous les
climats futurs, en supposant que les populations dont les prédictions suggèrent une maladapta-
tion climatique dans un futur proche connaissent déjà des taux de mortalité plus élevés que la
moyenne. Les prédictions de décalage génomique dans les jardins communs et les populations
naturelles ont été dérivées pour toutes les combinaisons possibles de quatre ensembles de
SNPs (un ensemble de SNPs de référence et trois ensembles de SNPs candidats plus ou moins
strictement sélectionnés à l’aide de deux analyses d’association génétique-environnement,
GEAs), deux approches de modélisation en génomique du paysage (‘Gradient Forest’, GF, et
‘Generalised Dissimilarity Modelling’, GDM) et deux scénarios climatiques futurs plus ou moins
alarmants (uniquement pour les prédictions dans les populations naturelles).

En ce qui concerne l’objectif (1), les prédictions de décalage génomique basées sur les SNPs
candidats communs aux deux méthodes GEAs (c’est-à-dire ceux qui ont été sélectionnés avec
le plus de con�ance) indiquent un risque de maladaptation plus élevé pour les populations
qui connaissent actuellement des conditions hivernales douces (la plupart des populations
atlantiques et les populations méditerranéennes du sud-est de la France et du nord-ouest
de l’Italie), mais pour lesquelles la transition vers des températures légèrement plus élevées
impliquerait une étape évolutive importante. Le risque de maladaptation climatique dans un
futur proche de ces populations pourrait s’expliquer par leur adaptation passée aux températures
hivernales froides, contraignant une croissance et une survie optimales en cas de réchau�ement
des températures. Il est également important de noter que ces populations, qui se trouvent à
l’extrémité chaude du gradient des températures froides hivernales, ne pourront pas béné�cier
de la migration d’allèles adaptatifs provenant d’autres populations. Il semble donc crucial de
suivre leur dynamique démographique et leurs trajectoires adaptatives dans les années à venir,
sachant notamment que les populations du sud-ouest de la France et du nord-est de l’Ibérie sont
celles qui ont la plus grande valeur commerciale. Ainsi, une maladaptation climatique a�ectant
leurs traits phénotypiques d’intérêt pourrait avoir un impact substantiel sur l’économie locale.

En ce qui concerne l’objectif (2), les prédictions de décalage génomique étaient généralement
négativement associées à la performance des populations dans les jardins communs et les

19



populations naturelles, suggérant ainsi que les prédictions de décalage génomique peuvent
être indicatives de déclins (futurs) de la valeur adaptative des populations, et donc validant nos
résultats chez le pin maritime. Néanmoins, les prédictions de décalage génomique étaient très
sensibles aux ensembles des SNPs considérés (c’est-à-dire à la rigueur de leur sélection en tant
que SNP candidat) et à l’approche de modélisation utilisée (GDM vs GF), alors qu’elles étaient
très similaires entre les deux scénarios de climats futurs. En particulier, aucune des modalités
testées pour prédire le décalage génomique n’avait une meilleure capacité prédictive à travers
toutes les étapes de validation.

Nos résultats con�rment donc que l’approche du décalage génomique est prometteuse, mais
suggèrent également qu’une validation plus poussée de ses prédictions, notamment basée sur
des données expérimentales et d’observations indépendantes, est nécessaire. En particulier,
déterminer quelles méthodes de modélisation et quels critères de sélection de la composante
génétique adaptative conduisent aux prédictions les plus robustes et �ables possibles est
indispensable avant que de telles prédictions soient utilisées pour guider les stratégies de
conservation et de gestion forestière.

6 Discussion

Utilisant le pin maritime comme étude de cas, la présente thèse combine de façon innovante
des approches de modélisation basées sur les traits phénotypiques (chapitres 1 et 2) avec des
approches de génomique du paysage (chapitre 3). S’appuyant sur les données phénotypiques,
environnementales et génomiques provenant d’un vaste réseau de cinq jardins communs et 34
populations, l’ensemble des résultats obtenus fournissent (i) une image globale et détaillée des
patrons d’adaptation du pin maritime à large échelle et des processus évolutifs sous-jacents, et
(ii) une évaluation du risque de maladaptation à court terme des populations de pin maritime
face au changement climatique. Les conclusions des di�érents chapitres convergent vers le rôle
clé des températures froides dans l’histoire adaptative du pin maritime, ayant un impact à la
fois sur les états adaptatifs actuels des populations, mais aussi potentiellement sur la variance
de certains traits quantitatifs au sein même des populations (par exemple la hauteur des arbres).
Les données génomiques apparaissent comme particulièrement prometteuses pour améliorer les
prédictions des réponses à court terme des populations à des changements environnementaux,
notamment climatiques. En e�et, le chapitre 2 montre que les prédictions phénotypiques pour
des individus transférés dans de nouveaux environnements sont améliorées en incorporant des
informations génomiques dans les modèles, ce qui est d’un grand intérêt pour les stratégies de
conservation ou de gestion (par exemple, �ux de gène assisté ou sauvetage évolutif). De plus, le
chapitre 3 met en évidence que l’approche du décalage génomique peut s’avérer être un outil
très pertinent dans l’identi�cation rapide des populations à risque de maladaptation climatique
dans un futur proche, nécessitant cependant une validation empirique plus poussée avant sa
généralisation. Plus généralement, la présente thèse contribue à une meilleure compréhension
des processus adaptatifs, au développement de méthodes statistiques robustes nécessaires à la
mise en œuvre de stratégies de gestion basées sur l’évolution, et à la progression vers l’objectif
ambitieux mais urgent de prédire la réponse des populations au changement climatique.
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II

Introduction

How do species and populations adapt to their environment? This question has held the
attention of countless scientists for centuries and is at the heart of this PhD work. Four cen-
turies BC, Aristotle, who believed in ’�nalism’ and ’�xism’, had already observed that species
were particularly well adapted to their habitats (Gelber 2015) and described adaptation as a
state. Mechanisms of populations’ adaptation to their environment only began to be elucidated
centuries later, after the work of Charles Darwin and Alfred Russel Wallace, who believed in
’transformism’ and saw adaptation as a process (Darwin 1859, Darwin and Wallace 1858). De-
pending on the context, the term adaptation is thus de�ned as the average phenotypic change
that enhances �tness and has a genetic basis (i.e. adaptation as a process) or any condition/trait
that enhances �tness in a given environment relative to other possible conditions/traits in
that environment (i.e. adaptation or adaptive trait as a state) (Hendry 2017). Today, new
sequencing technologies provide access to the genetic basis of adaptive traits, allowing us to
investigate past adaptations but also to follow evolution in real time. We are therefore living in
an extremely exciting time scienti�cally as these new genomic data open the way to tremendous
progress in our understanding of the evolutionary processes. Yet, reading the genome is not as
simple as reading a book and we remain far from elucidating the mechanisms underlying the
genotype-to-phenotype relationship. We are also living in worrying times, as global change
induced by humans is already causing the extinction of many species and populations around
the world (Butchart et al. 2010, Ste�en et al. 2011). Thus, the question of how species adapt to
their environment is now of primary importance and understanding the adaptive processes is
necessary to anticipate how populations will adapt in the future. This is the context of this
PhD. In the introduction, I will start by presenting the concepts and mechanisms of population
and quantitative genetics necessary to understand the work presented here. I will then discuss
in the second part the underlying mechanisms of the population responses to environmental
changes, with a particular focus on changing climatic conditions. In the third part, I will discuss
some current statistical methods integrating genomic data in predictive modelling of short-term
population response to new environments. Finally, the fourth part will be dedicated to the
speci�cities of forest trees, which are excellent models to study adaptation to the environment
but also present important challenges.
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1 Concepts and mechanisms in population and quan-
titative genetics

’There is no thing more practical than a good theory’ (Lewin 1943, McCain 2015).

1.1 From Fisher’s in�nitesimal model to the omnigenic model

In the 1900’s, a bitter debate was ongoing between the Mendelians, who were interested in
monogenic (discrete) phenotypes and thought that evolution occurred via major new mutations,
and the biometricians, who were interested in the inheritance and variation of continuous
traits and believed that evolution consisted in very small steps. Fisher’s in�nitesimal model
brilliantly settled the debate by showing that if many genes contribute to phenotypic variation,
then, according to the central limit theorem, random sampling of alleles at each gene produces
continuous and normally distributed phenotypes in the population (Fisher 1918). This model
states that quantitative traits are determined by an in�nitely large number of genes, each with
in�nitely small and additive contributions to the phenotype, and by environmental factors
(Fisher 1918). It has been highly e�ective in describing inheritance patterns, especially in plant
and animal breeding, and formed the basis for quantitative genetics in the future (Visscher and
Goddard 2019). In particular, the theory built in Fisher’s 1918 paper allows the partitioning of
phenotypic variance into genetic and environmental components, a point developed in detail
in the next section.

In the genomic era, Fisher’s in�nitesimal model has proved highly successful in the face
of accumulating empirical observations from new genomic tools, which now provide cheap
genotyping of hundreds of thousands of common allelic markers or even whole genome
sequencing for more and more species (see Section 3.1). Genome-wide association studies
(GWAS) have been widely used to statistically associate genetic variants (usually SNPs, single
nucleotide polymorphisms) with quantitative traits. They have resulted in the discovery of a
huge number of adaptive variants in humans (Sella and Barton 2019), but also in other species
(e.g. in plant model species; Brachi et al. 2011), thus con�rming that quantitative traits are
under the control of a large number of genes (i.e. polygenic), each having a small e�ect on
the phenotype (Tam et al. 2019, Visscher et al. 2017). Genetic variants with large e�ect sizes
may also in�uence quantitative traits but they are extremely rare and are often associated with
diseases that have a strong impact on �tness (Gibson 2012), such as autism and schizophrenia
(De Rubeis et al. 2014, Purcell et al. 2014).

GWAS results have also highlighted that genetic variants are generally associated with
multiple phenotypes, thus suggesting pervasive pleiotropy in quantitative traits (Gratten and
Visscher 2016). This is supported by the widespread genetic correlations among traits observed
in pedigree studies, implying that sets of genetic variants a�ect two or more traits in a consistent
direction (Visscher et al. 2017). Other noteworthy observations come from GWAS outputs: (i)
most GWAS hits are noncoding variants probably in�uencing gene regulation (Li et al. 2016);
(ii) genetic variants are spread broadly across the genome (e.g. variants signi�cantly associated
with height can be found almost every 100 kb on the genome; Boyle et al. 2017), which is
supported by the correlation between the length of a chromosome and its heritability (Shi
et al. 2016); (iii) genes with putatively relevant functions have only marginally higher genetic
contributions to phenotypes (Boyle et al. 2017); and (iv) cell type-speci�c regulatory elements
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and generically active regions contribute almost equally to genetic variance (Boyle et al. 2017).
All these observations have paved the way for the recent development of a new conceptual
framework for understanding the genetic architecture of complex traits: the omnigenic model
(Boyle et al. 2017, Liu et al. 2019; criticized in Wray et al. 2018). Under this model, genetic
contributions are partitioned into direct e�ects from core genes and indirect e�ects from
peripheral genes, which are far more numerous and drive the expression of core genes via
weak trans e�ects, thus explaining most of the genetic variance (Liu et al. 2019). Extending
the omnigenic model to the omni-environmental model has been recently proposed to consider
that some environmental factors have direct e�ects on phenotypes, which are likely to be
constant across populations, while others have more peripheral e�ects, which are likely to
vary unpredictably (Mathieson 2021).

The genetic architecture of complex traits will not be explored further in this manuscript.
However, readers may �nd it useful to bear in mind that behind the genetic component of
quantitative trait variation lie extremely interconnected gene regulatory networks, whose
functioning and organization are still very poorly understood. We will now explore in more
details how variation in quantitative traits can be partitioned.

1.2 Components of quantitative trait variation

As previously mentioned, the phenotypic variance (VP ) can be partitioned into genetic (VG)
and environmental (VE) components, plus their potential interactions (VGE) and covariances
(2covGE), such as:

VP = VG +VE +VGE + 2covGE

In practice, covariances can often be neglected in randomized experiments, which break down
potential correlations between environmental deviations and genotypic values (Falconer and
Mackay 1996). Note thatVGE should be included in the environmental variance as, although the
environmental variance is speci�c to each genotype, the source of the variation is environmental,
and not genetic (Falconer and Mackay 1996).

The genetic variance (VG) can itself be partitioned into the additive (VA), dominance (VD)
and epistatic (VI ) variances (Falconer and Mackay 1996, Lynch and Walsh 1998), such as:

VG = VA +VD +VI

The additive variance is the variance of the breeding values (i.e. the additive genetic value
of an individual based on the mean additive genetic value of its progeny), which accounts for
the in�uence of the additive e�ects of the alleles on the phenotype. This has to be di�erentiated
from VG , the variance of the genetic values, which includes non-additive e�ects, such as
dominance and epistasis. The dominance deviations stem from within-locus interactions while
the epistatic deviations come from among-locus interactions. Importantly, all these quantities
depend on the gene frequencies and therefore are properties of a given population (Falconer
and Mackay 1996).

The relative contributions of dominance and epistasis to genetic variance have been debated
in the face of the seemingly con�ict between on the one hand, estimates of genetic variance
suggesting the overall predominance of additive variance (Falconer and Mackay 1996, Lynch
and Walsh 1998) and on the other hand, the deepening understanding of gene networks and
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interactions, suggesting extensive epistasis (Carlborg and Haley 2004). However, this debate
may stem mainly from two sources of confusion: (i) statistical epistasis (i.e. interaction variance
due to deviation from additive e�ects, as coined by Fisher 1918) does not imply functional
epistasis (i.e. a biological phenomenon in which the e�ect of a particular locus depends on the
genotype at another locus, as described by Bateson 1909), and vice versa (Cordell 2002); (ii)
models estimating additive e�ects do not assume the absence of gene interactions, since by
de�nition the average e�ect of an allele is a function of both dominance and epistasis e�ects
(Hivert et al. 2021b). Recent empirical and theoretical work suggests that interactions at the
gene level are unlikely to generate much interaction variance, and, therefore, that the bulk of
genetic variance is additive (Hill et al. 2008, Hivert et al. 2021a). An exception can be noted in
the case of inbred lines with high levels of heterozygosity, which maximize the variance from
non-additive e�ects (Hivert et al. 2021b).

Based on the partitioning of the phenotypic variance, two key parameters can be estimated for
a given population: H 2, the broad-sense heritability or degree of genetic determination
(the ratio of genetic variance to total variance) and h2, the narrow-sense heritability (the
ratio of additive variance to total variance). H 2 re�ects to what extent the phenotypes of
individuals are determined by their genotypes while h2 re�ects to what extent the phenotypes
are determined by the genes passed on by their parents. h2 is therefore the major determinant
of the resemblance among relatives and a key component of the short-term population response
to selection (Falconer and Mackay 1996). A general trend across species is that h2 is higher for
morphological traits and lower for life-history traits, which are more closely related to �tness
(Charmantier and Garant 2005, Merilä and Sheldon 2000).

The environmental variance (VE) can also itself be partitioned into the special environ-
mental variance (VEs ), the general environmental variance (VEд) and the genotype-by-
environment interaction (VGE), such as:

VE = VEs +VEд +VGE

The special environmental variance refers to the within-individual variance, which originates
from two main sources: developmental noise and temporal �uctuations. Developmental
noise, also called stochastic developmental variation, refers to phenotypic variation that is not
explained by genetic or environmental factors. It results from stochastic cellular and develop-
mental process, which occur during cleavage, cell di�erentiation, patterning or morphogenesis
but also tissue regeneration and life history attributes in adulthood (Vogt 2015). The temporal
�uctuations refer to phenotypic variation of successive measurements on the same individual,
e.g. variation in phenology-related traits among years in perennial plants, variation in milk
yield or number of o�spring among litters in cattle (Falconer and Mackay 1996). In plant
and animal breeding, the special environmental variance is considered as random noise in
phenotype expression, which cannot be eliminated by experimental design and therefore inter-
feres with arti�cial trait selection by weakening the association between the genotype and the
phenotype. In contrast, this variation is of particular interest in evolutionary biology because
it could itself be the object of selection. For instance, proteins responding to environmental
changes show higher expression noise than those involved in protein synthesis, suggesting that
protein expression noise levels may be under selection (Newman et al. 2006). Similarly, higher
within-individual variation in labile traits can be selected in �uctuating environments, thus
allowing individuals to respond more �exibly to changing environmental conditions across
their lifespan (Westneat et al. 2015).
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The general environmental variance refers to the between-individual variance caused by
external variations in the environment, e.g. nutritional or climatic factors (Falconer and Mackay
1996). It typically constitutes most of the variance in natural populations and can be partially
controlled under experimental conditions. A potentially large part of the general environmental
variance comes from maternal e�ects, i.e. prenatal or postnatal causal in�uences of the mother
on the phenotypes of the o�spring (Wolf and Wade 2009).

Genotype-by-environment interaction refers to the variance in the response of individual
genotypes to general environmental variance. It may arise from changes in variance or in
the ranking of genotype performance across di�erent environments, i.e. one genotype may
perform better than other genotypes in one environment but worse in other environments
(de Jong 1990, Falconer and Mackay 1996, Lynch and Walsh 1998). Classic examples include
the genotype-speci�c changes in bristle number across changing temperatures in Drosophila
(Gupta and Lewontin 1982), the genotype-speci�c larval development of a leaf-mining insect
on two di�erent host plant species (Via 1984) and the genotype-speci�c growth of tobacco
plants in environments with varying sowing dates and plant densities (Falconer and Mackay
1996).

Individual responses of genotypes to the environment are modeled with reaction norms,
in which trait values are a function of an environmental variable. Fig. II.1 shows three possible
con�gurations. In the �rst panel, the two genotypes do not show phenotypic responses to
environmental changes and their di�erences in trait expression are purely genetic. In the
second panel, the two genotypes respond similarly to environmental changes, i.e. they do not
show genetic di�erences in trait expression along the environmental gradient. In such a case,
the phenotypic variance comes entirely from the general environmental variance and there
is no genotype-by-environment interaction variance. In the third panel, the two genotypes
respond di�erently to environmental changes, i.e. there is genetic variation in trait expression
along the environmental gradient (genotype-by-environment interaction). In this simpli�ed
example, reaction norms are linear but more realistic and informative reaction norms can be
�tted with nonlinear functions (Arnold et al. 2019).

General environmental variance, special environmental variance associated to temporal
�uctuations and the genotype-by-environment interaction are all generated by a mechanism
called phenotypic plasticity. Phenotypic plasticity is de�ned as the ability of a genotype
to express di�erent phenotypes across environments, i.e. one genotype may code for di�er-
ent environment-dependent phenotypes (DeWitt and Scheiner 2004). Fig. II.1 can thus be
interpreted as follows: genotypes show no phenotypic plasticity in the �rst panel, genotypes
show the same plastic response to the environment in the second panel, and genotypes show
a di�erent plastic response to the environment in the third panel (i.e. genetic variation in
phenotypic plasticity). In quantitative genetics, phenotypic plasticity was �rst considered as a
source of noise a�ecting the precision of genetic studies and leading to unpredictable perfor-
mance of genotypes in untested environments (Bradshaw 2006, Pigliucci 2005). In contrast, it is
now considered as a rapid-response process of major importance for individuals to cope with
changing environmental conditions, which may even constrain or boost adaptive processes
(Fox et al. 2019, Nicotra et al. 2010; see Section 2.3).
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Figure II.1. Simpli�ed example of linear reaction norms for two genotypes. Phenotypic variation comes from: genetic di�erences among
genotypes in the �rst panel, environmental di�erences in the second panel (i.e. plastic component of trait variation) and interacting genetic
and environmental di�erences in the third panel (i.e. genetic variation in the plastic response to the environment).

In the present PhD, the focus was mainly on understanding the genetic rather than the plastic
component of quantitative trait variation. That’s why I will now concentrate mainly on the
various forces and mechanisms driving the genetic component of quantitative trait variation.

1.3 Evolutionary forces underlying quantitative genetic variation

A population or a species is evolving when its genetic composition (often measured by
allele frequencies) is changing over time. Four main evolutionary processes a�ect the genetic
composition of populations, and thereby their quantitative genetic variation: mutation, genetic
drift, gene �ow and natural selection.

Mutations originate from errors in the replication process of DNA sequences and are the
only evolutionary force generating new alleles (i.e. new genetic variants). Mutations are
rare, with mutation rates about 10−5 and 10−6 per generation for most loci in most organisms
(Falconer and Mackay 1996). A mutation appearing in an individual has a high probability of
being lost (with a zero probability of survival in an in�nite population). Mutations therefore
generate tiny changes in allele frequency (and thereby tiny increases in genetic variation),
which might be important on an evolutionary scale but is di�cult to detect on a ecological
timescale (except in microorganisms). Importantly, for a mutation to be heritable, it has to be
passed to a gamete (i.e. a reproductive cell, that is a haploid cell carrying a single copy of each
chromosome).

Genetic drift is the random changes in allele frequency in �nite populations due to sampling
error between generations. For instance, the gametes of a sexually reproducing diploid organism
contain only one copy of each gene, so that only one of the two copies is transmitted to the
o�spring. This reshu�ing of the combinations of genes between parents and o�spring is
achieved through the process of recombination. In a broad sense, recombination is any genetic
mechanism (e.g. independent assortment and crossing overs during meiosis, gene conversion)
that can create new combinations of alleles or haplotypes (Templeton 2006). Importantly,
recombination (and therefore genetic drift) is neutral, as it does not change allele frequencies
in any speci�c direction over time, and results in a progressive erosion of genetic variation.
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The role of genetic drift in the allele dynamics, and therefore population and species evolution,
has been a matter of intense debate (Ohta and Gillespie 1996), which persists to date (Jensen
et al. 2019, Kern and Hahn 2018). The neutral theory of molecular evolution states that the vast
majority of new mutations are either neutral (e.g. mutations arising in non-coding regions
of the DNA) or deleterious (e.g. mutations disrupting important protein functions), and have
therefore low probability of becoming �xed in the population (Kimura 1968). Whether the
neutral theory is right or wrong will not be discussed further here, what is relevant is that it
can serve as a null model from which various hypotheses can be tested (e.g. Box 1).

Box 1. Mutation-drift balance
Here is an example of a simple null model derived from the neutral theory: the mutation-drift balance. While mutation is

generating new genetic variation, genetic drift slowly erodes neutral (and weakly selected) genetic variation, as alleles drift to high
or low frequencies until they get lost or �xed over time. In a panmictic diploid population of size N and mutation rate µ , drift
dominates whenever 4µN < 1 (i.e. resulting in the �xation of most alleles) while mutation dominates whenever 4µN > 1 (i.e.
maximizing genetic variation). The �gure below shows an example of the dynamic of the two evolutionary forces in a very small
population with high mutation rate, in which mutation-drift balance consists of a constantly evolving set of alleles maintaining an
equilibrium level of polymorphism.
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An initial population of �ve diploid individuals, each having the same black allele, evolves under 29 generations. Each transmitted
allele can mutate between generations (thereby changing colour). In this example, the mutation rate is implausibly high to counter-
balance the strong e�ect of genetic drift (as the population is very small). The bottom plot shows the allelic frequencies over time.
From the ’Population and quantitative genetics’ course of Graham Coop (University of California, Davis). Code available here.

Gene �ow (e.g. through migrating individuals or dispersal of reproductive material such as
gametes or seeds) can change the genetic composition of a population and increase its genetic
variation through alleles carried by immigrants from the surrounding populations, or decrease
its genetic variation by losing alleles carried by emigrants (Slatkin 1985). At the metapopulation
level, gene �ow homogenizes allele frequencies among populations.

The combination of the neutral (i.e. not a�ected by natural selection) evolutionary processes
presented above (i.e. mutation, genetic drift and gene �ow) and the demographic history of the
populations generates population structure across the species ranges. This is particularly
true in species with fragmented populations (reduced gene �ow and higher e�ect of genetic
drift in small populations) and has to be accounted for in studies aiming at detecting adaptation
patterns (e.g. the case study of human height di�erences across Europe; Barton et al. 2019).

Natural selection can trigger evolution when (i) there is phenotypic variation, (ii) �tness
(i.e. de�ned here as the amount of successful DNA replication of an individual; Templeton 2006)
is non-random with respect to this phenotypic variation and (iii) this phenotypic variation is
heritable. Importantly, changes in allele frequency induced by natural selection tend to increase
the average �tness of the population, resulting in adaptation (Templeton 2006).
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Unlike other evolutionary forces, the in�uence of natural selection on quantitative genetic
variation within populations is far more complex and still under debate (Pélabon et al. 2010,
Walsh and Lynch 2018). Selection is expected to deplete genetic variation when the �tness
function is concave, e.g. under stabilizing selection, but increase it when the �tness function is
convex, e.g. under disruptive selection (Layzer 1980). Linear directional selection is unlikely
to in�uence genetic variation of complex traits with near-Gaussian distributions (Barton and
Turelli 1987), except in the presence of directional epistasis (i.e. when epistasis consistently
a�ects the e�ect of an allele in a given direction; Hansen et al. 2006). Finally, how selection
can maintain genetic variation (i.e. balancing selection) remains unclear and has been the
subject of extensive theoretical work, albeit lacking empirical validation (Delph and Kelly 2014,
Johnson and Barton 2005). For example, high levels of genetic variation may be maintained
under selection pressures that �uctuate in time or space (Felsenstein 1976, McDonald and
Yeaman 2018), although some mechanisms may mitigate the expression of genetic variation
under such conditions (e.g. genetic canalization; Kawecki 2000).

2 How populations respond to environmental change

2.1 (Mal)adaptation within the adaptive landscape framework

How populations respond to their environment can be conceptualized within the framework
of the phenotype adaptive landscape, a n-dimensional surface (for n traits) describing the
relationship between mean population �tness and mean population phenotypes, assuming a
constant variance in phenotypic traits (Arnold et al. 2001, Hendry and Gonzalez 2008, Lande
1976, 1979, Schluter 2000b, Simpson 1944, Svensson and Calsbeek 2012). The direction and
steepness of the surface at a given location on the landscape re�ect the change over time in
the mean phenotype and mean �tness of a population (Hendry 2017), which is shown in Fig.
II.2 with blue vectors tangent to an hypothetical adaptive landscape. Far from the optimum
(phenotype value ZA in Fig. II.2), the selection is stronger and therefore the evolution towards
the optimum faster, especially for traits with higher additive genetic variance relative to their
phenotypic variance (i.e. higher heritability). Importantly, selection decreases as the mean
population phenotype gets closer to the optimum (phenotype value ZB in Fig. II.2), so that
evolution towards the optimum is slower and selection becomes almost undetectable once the
population have adapted to a �tness peak (selection ’erases its traces’; Estes and Arnold 2007,
Haller and Hendry 2014).
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Figure II.2. Hypothetical adaptive landscape (black curve) with two �tness peaks (a local and a global optimum). The blue vectors tangent
to the adaptive landscape represent the strength of selection for populations with mean phenotypes ZA and ZB . The strength of selection is
expected to decrease near the �tness peak, as shown by di�erent vector lengths. The average absolute �tness of a focal resident population
is represented by an orange dot, and its trait distribution is illustrated below by an orange curve. The absolute �tness (mal)adaptation of the
focal population is calculated as the distance between the population mean �tness and a threshold mean �tness value of 1 that corresponds
to the replacement rate: absolute adaptation when W ≥ 1 and absolute maladaptation when W < 1. The magnitude of the relative �tness
(mal)adaptation of the focal population can be estimated by comparing along the Y-axis (vertical red arrows) the population mean �tness
with (1) the local optimum, (2) the �tness of the most �t individual from the focal population, (3) another population (in green), or (4) the
global optimum. Trait-based measures of (mal)adaptation can be obtained by comparing along the X-axis (horizontal red arrows) the mean
trait values of the focal population with (5) the trait value at the local optimum, or (6) the trait value at the global optimum. Adapted from
Brady et al. (2019a).

The phenotypic adaptive landscape framework can help to understand the di�erent ways of
de�ning the state of adaptation or maladaptation, and both concepts are referred under the term
(mal)adaptation (Capblancq et al. 2020a). A key parameter is the mean absolute �tness
W̄ of a population, which corresponds to the mean expected lifetime reproductive success in
the population (see details in Brady et al. 2019b on how this quantity can be calculated). The
absolute (mal)adaptation of a population can be calculated by comparing its mean absolute
�tness W̄ with a thresholdW = 1, that corresponds to the absolute �tness of a population at
demographic equilibrium (i.e. each individual of the population gives on average one individual
that survives and reproduces; Brady et al. 2019b). In this case, a population is adapted to its
environment ifW̄ ≥ 1, i.e. the population is at the equilibrium or in expansion and a population
is maladapted to its environment if W̄ < 1, i.e. the population is decreasing (Fig. II.2). Estimates
of absolute (mal)adaptation are mainly used in the context of ecology and conservation biology
and suggest pervasive maladaptation in nature (Brady et al. 2019b, Hendry and Gonzalez 2008).
This conclusion follows, for example, from the observation that population declines and range
contractions, eventually leading to population or species extinction, occur continuously over
macroevolutionary time (Muscente et al. 2018, Novacek and Wheeler 1992), with increasing
rates due to human activities (Ceballos et al. 2017, Dirzo et al. 2014).

Relative (mal)adaptation can be characterized via the mean relative �tness w̄ of a
population, which is the mean absolute �tness of the population W̄ divided by the absolute
�tness of another entitywe , such as other populations (e.g. in reciprocal transplant experiments),
the individual with the highest �tness in the population (with the �ttest individual having a
relative �tness of one; Crow and Kimura 1970) or a local or global optimum (vertical red arrows
in Fig. II.2; Brady et al. 2019b). A population is then considered maladapted when w̄ < we .
Relative (mal)adaptation can also be characterized with trait-based approaches, in which the
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population mean phenotype is compared to the optimal phenotype (horizontal red arrows in
Fig. II.2). However, inferring �tness from phenotypes rather than directly may be biased by
trade-o�s among traits (Shoval et al. 2012), e.g. between reproduction and other life-history
traits (Obeso 2002).

The concept of relative (mal)adaptation has been mostly used in evolutionary biology and
the general view is that both adaptation and maladaptation are widespread states (Brady et
al. 2019b), though the latter has been largely less studied (Brady et al. 2019a). On the one
hand, empirical evidence of the prevalence of adaptation mainly comes from: (i) reciprocal
transplant studies showing that local individuals have generally higher �tness than foreign
ones (Hereford 2009, Leimu and Fischer 2008, Nosil et al. 2005), a pattern known as local
adaptation or home-site advantage (Kawecki and Ebert 2004), but whose prevalence may be
overestimated (Schluter 2000a), (ii) di�culties in detecting selection in the �eld, which suggest
that populations are generally close to �tness peaks (Estes and Arnold 2007, Haller and Hendry
2014, Hendry 2017), (iii) levels of additive genetic variance measured in wild populations for
most traits (Hansen et al. 2006, Houle 1998, Mousseau and Ro� 1987) and �tness (Burt 1995,
Hendry 2017), which are high enough to respond rapidly to selection, (iv) numerous examples
of rapid adaptive evolution due to selection in natural populations (Gingerich 2009, Hendry
and Kinnison 1999, Kinnison and Hendry 2001, Reznick and Ghalambor 2001, Thompson
1998), and (v) invasive species that can successfully colonize new environments through rapid
adaptation (Colautti and Barrett 2013, Phillips et al. 2006). On the other hand, the ubiquity of
maladaptation is supported by: (i) the obvious observation that, for selection to act, not all
individuals within a population can be at the �tness peak (Barton and Partridge 2000, Brady
et al. 2019b), (ii) a considerable proportion of reciprocal transplant studies that do not �nd
patterns of local adaptation (Brady et al. 2019b, Kooyers et al. 2019, Rogalski 2017, Samis et al.
2016), (iii) theoretical work suggesting that population mean phenotypes may constantly be
tracking an optimum moving within stable limits (Estes and Arnold 2007).

2.2 Global change as the main driver of contemporary maladapta-
tion?

Global change encompasses any anthropogenic environmental change that alters ecosys-
tems (Vitousek 1992), thus threatening their ability to sustainably provide goods and services,
especially for future generations (Millennium Ecosystem Assessment 2005). Global change has
�ve major components: climate change, land-use change (i.e. habitat loss and fragmentation),
overexploitation, pollution, and invasive species (Matesanz et al. 2010, Soulé 1991).

The components of global change can alter the phenotypic adaptive landscapes in multiple
ways, detailed in Svensson and Calsbeek (2012) from which the following examples are taken.
Invasive species can either induce the emergence (e.g. introduction of a new host plant
representing a new resource) or loss of a �tness peak (e.g. competition for resources leading
to resource depletion), smooth the valley between two �tness peaks (e.g. introduction of
non-native plants increasing the relative abundance of intermediate-sized seeds; Hendry et al.
2006), increase the dimensionality of the adaptive landscape by causing selection to act on a
new trait (e.g. introduction of new predators on isolated islands), and alter the phenotypes and
thus change their position on the adaptive landscape (e.g. through hybridization). Hunting,
through the removal of larger individuals, can shift the position of the �tness peak (toward
smaller body size) and sharpen the �tness peak (by reducing trait variance). Change in habitat
quality can impact the elevation of a �tness peak, thus impacting the absolute �tness of the
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population (scenario of the degraded target in Brady et al. 2019a) and may also change the
dimensionality of the landscape (e.g. new pollutants requiring new adaptations to persist in the
new habitat). Habitat loss and fragmentation can reduce the diversity in habitats and resources,
and thus the number of �tness peaks, or change the �tness peak position (e.g. selection for
lower seed dispersal in urban environments; Cheptou et al. 2008).

The components of global change may have cumulative e�ects, thus bringing species to
their adaptive capacity threshold faster than if only one of the components were involved (e.g.
Drouineau et al. 2018), or alternatively, their e�ects may counterbalance each other (e.g. Morelli
et al. 2012). In addition, components of global change may interact, e.g. the long-lasting e�ects
of land-use change and human-altered �re regimes on vegetation dynamics and biodiversity
may interact with the climate change impacts (Franklin et al. 2016, Hansen et al. 2001), which
adds considerable uncertainty to their long-term e�ects on ecosystems (Sala et al. 2000). The
Mediterranean area, a biodiversity hotspot, may experience a major change in biodiversity
due to its high sensitivity to all components of global change, especially land-use and climate
change (Bellard et al. 2014, IPCC 2018, Sala et al. 2000). Indeed, land-use change might be the
most important factor a�ecting terrestrial ecosystems in this biogeographical region, followed
by climate change, nitrogen deposition, biotic exchange and elevated carbon dioxide (Sala et al.
2000).

2.3 Maladaptation induced by climate change: tracking a moving op-
timum

Climate change is the component of global change for which the most extensive data are
available and whose e�ects on ecosystems are best documented (Foden et al. 2019, Gattuso
et al. 2015, Parmesan 2006, Urban 2015, Visser 2008, Wiens 2016). To date, the Earth’s climate
has warmed by 1.5 °C above pre-industrial levels, which results from increased greenhouse
gas emissions by human activities (IPCC 2015, 2018, 2021). Projections for mean temperatures
and heat extremes show an increase in almost all locations, both on land and oceans, while
projections for precipitation are more uncertain, predicting a likely increase in droughts in the
Mediterranean region (IPCC 2018, 2021).

Climate change primarily alters adaptive landscapes by moving the optimal phenotype (i.e.
the �tness peak) away from the population mean phenotype (scenario of the moving target
in Brady et al. 2019a), thus decreasing the mean �tness of the population (both absolute and
relative). In face of climate change, species and populations within species may migrate to
other geographical locations in which they have a higher �tness (e.g. through habitat choice
by individuals or seed dispersal; Edelaar and Bolnick 2019), thereby shifting their distribution
range to track their climatic niche (Hughes 2000, Parmesan 2006, Peñuelas et al. 2013). Shifts in
species distribution and abundance have already been observed (Chen et al. 2011, Dobrowski
et al. 2011, Hughes 2000), which notably create changes in species interactions and community
dynamics (Ockendon et al. 2014, Prober et al. 2012, Walther et al. 2002); but some species
might not be able to migrate to more favorable environments (Burrows et al. 2014, Liang et al.
2018, Rehm and Feeley 2015). Alternatively, populations may persist within their current
geographical location by responding to new climates through genetic change and phenotypic
plasticity (Hendry et al. 2017, Merilä and Hendry 2014, Parmesan 2006), two processes I will
now focus on.
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Phenotypic plasticity is an immediate phenotypic response to changing conditions that
operates at the scale of an individual’s lifetime. If adaptive, it may allow at least some individ-
uals to track a moving �tness peak by adjusting their phenotype to the altered environment
(West-Eberhard 2003), thereby increasing the population mean �tness. This process, called the
Baldwin e�ect or plastic rescue (Baldwin 1896), may be particularly bene�cial in resisting
abrupt environmental shifts (e.g. extreme drought events during which most existing pheno-
types may not be able to cope with the new environment) and has therefore a major in�uence
on the ability of populations to persist and colonize new environments (Crispo 2007, Ghalambor
et al. 2007, Hendry 2017). In face of a negative demographic trend induced by climate change,
a population may also recover and avoid extirpation through adaptive evolutionary change, a
process called evolutionary rescue (Carlson et al. 2014, Gomulkiewicz and Holt 1995, Gonza-
lez et al. 2013, Kinnison and Hairston 2007). Accumulating evidence from empirical studies
in natural populations shows that evolutionary change can be fast in natural populations in
response to strong selection pressures, e.g. during native range expansion (Lustenhouwer et al.
2018), colonization of new environments (Colautti and Barrett 2013, Losos et al. 1997, Reznick
et al. 1997), soil contamination by heavy metals (Antonovics 2006, Antonovics and Bradshaw
1970), changes in food supply (Grant and Grant 1995) and multiyear drought (Franks et al.
2007). Evolutionary rescue is facilitated by high standing genetic variation and mutation rate
(Barrett and Schluter 2008, Bell 2013, Gomulkiewicz and Holt 1995, Orr and Unckless 2008),
and also depends on the genetic architecture and the genetic correlations among �tness-related
traits (Chevin 2013, Gomulkiewicz et al. 2010). Populations that are large - and therefore less
prone to demographic stochasticity - and do not have excessive initial maladaptation are more
likely to escape extinction through adaptation (Carlson et al. 2014, Gomulkiewicz and Holt
1995). Finally, the faster the environmental change relative to the population generation time,
the shorter the time for adaptive genetic change to spread through the population and restore
positive growth (Bell 2013, Carlson et al. 2014).

Importantly, phenotypic plasticity and adaptive evolution might have interactive e�ects
on population persistence in face of climate change. First, if there is genetic variation in
plasticity (third panel of Fig. II.1) and this variation induces di�erences in �tness between
individuals, then plasticity can be under selection and, if heritable, can evolve (Pigliucci 2005,
Scheiner 1993, Tufto 2000, Via and Lande 1985). Second, phenotypic plasticity can in�uence
the adaptive trajectories of populations (Ghalambor et al. 2007, West-Eberhard 2003, Wund
2012). Indeed, it may constrain or slow the rate of adaptation by shielding genotypes from
selection (e.g. Huey et al. 2003). Conversely, by allowing some individuals to cope with novel
environments, plasticity can give time for selection to act (i.e. for adaptive mutations to appear
and spread through the population), thus promoting evolutionary change (Ghalambor et al.
2007, Pennisi 2018). In a �rst step, such evolutionary change may result in favoring the most
plastic genotypes if the latter bring phenotypes closer to the new optimum, a process know as
genetic accommodation (Crispo 2007, Kelly 2019). For instance, populations in heterogeneous
environments with reliable environmental clues are expected to evolve towards higher plasticity
(Bonamour et al. 2019, Ghalambor et al. 2007, Kleunen and Fischer 2005, Schmitt et al. 2003). In
a second step, if the environment is stable, a plastic trait (i.e. whose variation is environmentally
induced) may be converted to a genetically determined and canalized trait (either �xed or
expressed constitutively in the population), a process called genetic assimilation (Crispo
2007, Ehrenreich and Pfennig 2016, Waddington 1952, 1953, West-Eberhard 2003). Finally,
phenotypic plasticity may be maladaptive (e.g. in rare and extreme environments; Chevin
and Ho�mann 2017, Schlichting 2008), which may boost adaptive evolution by increasing
the strength of directional selection and may result in the loss of plasticity as an adaptation
to counterbalance maladaptive phenotypic change (i.e. genetic compensation; Ghalambor
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et al. 2007, Ghalambor et al. 2015, Grether 2005). However, empirical evidence of selection
on plasticity remains scarce (but see for instance Nussey et al. 2005), and a meta-analysis
found no evidence for selection on thermal phenotypic plasticity (Arnold et al. 2019). Indeed,
evolution of plasticity may be constrained by costs, i.e. reduction in �tness when a phenotype
is expressed through plastic rather than �xed development, and limits, i.e. the inability to
express the optimal phenotype (Aubret and Shine 2010, DeWitt et al. 1998, Kleunen and Fischer
2005, Murren et al. 2014). That’s why, in the face of climate change, there may be a threshold
after which plasticity is not enough for population survival and genetic change will be required.
This is expected, in particular, when the environmental change is large.

Finally, the unprecedented rate and magnitude of climate change may push populations to the
limits of their persistence ability, even with genetic adaptation. For all the reasons mentioned
above, disentangling the contribution of phenotypic plasticity and genetic changes to observed
phenotypic changes and determining the maximum rates of climate change that populations can
cope with remains very di�cult but, nevertheless, necessary to predict population responses to
future climates and risks of extinction and extirpation (Bradshaw and Holzapfel 2006, Chevin
et al. 2010, Hendry et al. 2008, Merilä and Hendry 2014).

3 Predicting short-term population responses to
climate change in the genomic era

3.1 Next-generation sequencing approaches

The development and generalization of the so-called ’next-generation sequencing’ (NGS)
approaches provide, at decreasing costs, access to thousands of markers for a number of indi-
viduals, more or less densely scattered across the genome depending on its size (Stapley et al.
2010). The gold standard high-throughput genotyping method is whole-genome sequencing,
which consists in determining nearly the entire DNA sequence and therefore o�ers the largest
number of markers and the denser genotyping. However, performing whole-genome sequenc-
ing is currently cost-prohibitive, requires high DNA quality and quantity, and involves high
computational power and data storage capacity (de Villemereuil et al. 2016, Tam et al. 2019).
Consequently, to date, this method is not appropriate for non-model species with large or
highly repetitive genomes, or in studies in which genomic sequence data for all individuals is
unnecessary (e.g. many studies in ecological and conservation genomics; Narum et al. 2013). In
such cases, reduced representation library (RRL) sequencing approaches have been extensively
used and the most popular techniques are restriction site associated DNA sequencing (RADseq;
Baird et al. 2008, Miller et al. 2007) and genotype-by-sequencing (GBS; Elshire et al. 2011).
These approaches do not involve the costly process of genome assembly and decrease the
sequencing e�ort by sequencing only restriction fragments resulting from restriction enzyme
digestion (Davey et al. 2011). In addition, the genomic regions to be sequenced can be either
randomly selected (as in RADseq or GBS), or targeted based on previous analyses or a priori
knowledge of gene function (i.e. candidate gene or targeted resequencing approaches; Stapley
et al. 2010, Tabor et al. 2002). This di�erent kind of sequencing thus provides cheaper and less
computationally heavy genotyping for huge number of markers, even in species with limited
or no previous genomic information, and, in some cases, a greater depth of coverage per locus
(and thus improved genotyping reliability) than whole-genome sequencing (Andrews et al.
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2016, Tam et al. 2019). However, as sequencing costs decline, computational and bioinformatics
methods develop, and more and more species have their whole genome sequenced, whole-
genome sequencing may become the predominant method in the future, even for non-model
species.

3.2 Predicting phenotypes based on genomic markers

Trait-based approaches that aim at predicting short-term responses of natural populations
to changing conditions (e.g. climate change) have started to integrate genome-wide molecular
markers provided by high-throughput genotyping (Gienapp et al. 2017). Genomic markers have
been used in GWAS to investigate the genetic architecture of quantitative traits (see Section
1.1). This is particularly relevant for predicting the response of populations to selection because,
for a given h2, polygenic traits are likely to have higher evolutionary potential than traits with
large e�ect alleles (Chevalet 1994, Kardos and Luikart 2021, Walsh and Lynch 2018). Genomic
markers are also more and more used to predict phenotypes based on genotypes, which is
appealing to predict trait values of populations across the species ranges and under future
climates, but remains highly challenging, as I will elaborate in this section.

In humans, GWAS outputs are increasingly used to predict the phenotype of individuals
through the use of polygenic scores (PRS). PRS are calculated by adding up the e�ects of the
alleles associated with the trait of interest, under the assumption that alleles have additive
e�ects (Lynch and Walsh 1998). They are highly promising towards identifying individuals that
are more likely to be at risk of some diseases such as breast cancer (Khera et al. 2018, Mavaddat
et al. 2019). However, GWAS have been criticized as the loci involved in signi�cant associations
often explain only a small fraction of the heritability of quantitative traits estimated from the
resemblance between relatives in classical quantitative genetics analyses, such as twin or family
studies (i.e. the missing heritability problem; Manolio et al. 2009). For instance, for height
and body mass, a GWAS meta-analysis in humans found signi�cant associations for 3,290
and 941 near-independent SNPs, respectively explaining ∼ 24.6% and ∼ 5% of the phenotypic
variance, respectively (Yengo et al. 2018). By contrast, classical quantitative genetics analyses
yield heritabilities of 80% for height and 40-60% for body mass. In reality, this apparent paradox
is in accordance with the in�nitesimal model (Walsh and Lynch 2018), or translations of it
in the genomic era, such as the omnigenic model (see Section 1.1; Boyle et al. 2017, Liu et al.
2019). Indeed, as the vast majority of alleles have tiny e�ects on quantitative traits, they do
not reach the stringent signi�cant threshold common in GWAS and are therefore excluded
from the models (Walsh and Lynch 2018). This is supported by the increased h2 explained
by GWAS as sample sizes become larger, e.g. the landmark study of Yang et al. 2015 which
showed that 45% of the additive variance in human height can be explained by including all
SNPs in h2 estimation. The remaining missing heritability may be explained by the incomplete
linkage disequilibrium between markers and causative alleles (Walsh and Lynch 2018), in�ated
heritability estimates in classical quantitative genetic studies (Mayhew and Meyre 2017, Zuk
et al. 2012) or gene–gene and gene–environment interactions (Aschard et al. 2012, Frazer et al.
2009).

In plant and animal breeding, genome-wide markers have �rst been used to estimate the
relatedness between individuals via genomic relationship matrices (GRM), which contain
the realized proportion of genome shared among all pairs of individuals in a population
(VanRaden 2008). Incorporating a GRM in an animal model (Box 2) provides more accurate
estimates of key genetic parameters (i.e. breeding values, and additive and non-additive genetic
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variance) than previous pedigree-based approaches (Bouvet et al. 2016, El-Dien et al. 2016,
Jannink et al. 2010, Muñoz et al. 2014). Further, since Meuwissen’s landmark paper (2001), plant
and animal breeders have turned to genomic selection to predict the additive genetic value
of individuals (Box 2), which is based on estimating genomic estimated breeding values
(GEBVs; conceptually equivalent to PRS; Wray et al. 2019). This has led to tremendous progress
in livestock improvement (García-Ruiz et al. 2016). Importantly, these methods do not require
to breed individuals in costly experiments and can be applied directly in natural populations
and in virtually any species (Beaulieu et al. 2014, Bérénos et al. 2014, Gienapp et al. 2019, 2017,
Robinson et al. 2013).

Box 2. From the animal model to genomic selection

The animal model (Henderson 1975) is most often used to estimate genetic parameters such as the additive genetic variance and
the narrow-sense heritability and can be written as follows:

yi = µ + ai + ei

where yi is the phenotype of the individual i , µ is the average population phenotype, ai is the breeding value of the individual
i and ei is the residual variation. ai are unknown and can be estimated from the covariance among relatives in additive genetic
e�ects, such as:

ai ∼ N(0, AVA)

where VA is the additive genetic variance and A is the relatedness matrix which can either be estimated from a pedigree or
from genomic markers. In this latter case, the relatedness matrix is called a genomic relationship matrix (GRM) and is often referred
as G.

This model has been the subject of many interesting extensions, and I will mention two here that I used during my PhD work.
Since the presence of di�erent genetic groups (e.g. genetically di�erentiated breeds) can bias the estimates of the additive genetic
variance, Wolak and Reid (2017) proposed a model that allows for di�erences in mean breeding values among individuals from
di�erent genetic groups, which can be written as follows (for r genetic groups):

yi = µ + ui + ei

ui =
r∑
j=1

qi jдj + ai

where ui replaces the breeding value ai of the basic animal model without genetic groups. More precisely, ui corresponds
to the total additive genetic e�ect of individual i , that is separated between a weighted sum of the group-speci�c means дj and a
breeding value ai that accounts for deviations from the weighted sum.

Mu� et al. (2019) further extended this model by allowing the genetic groups to have di�erent additive genetic variances, such
as:

yi = µ +
r∑
j=1

qi jдj +
r∑
j=1

ai j + ei

where ai j ∼ N(0, VAjAj). VAj is the additive genetic variance in the genetic group j and Aj is a relatedness matrix speci�c
to the genetic group j (see details in Mu� et al. 2019 on how the Aj matrices are calculated). ai j can be considered as a partial
breeding value, as it accounts for the contribution to the breeding value ai of individual i that is inherited from the genetic group
j .

In breeding, predicting individuals with the best performing progeny is mainly done within the framework of genomic selection
(Meuwissen et al. 2001). Genomic estimated breeding values (GEBVs) are estimated in a training population with the following
model:

yi = µ +
∑
(SN Pi jγj ) + ei

where SN Pi j is the genotype of the individual i at the locus j and γj is the e�ect of the SNP on the phenotype. GEBVs are
then used to estimate the additive genetic values of individuals in a candidate population of related individuals. GEBVs are generally
more accurate than the breeding values obtained from the animal model.

A major limitation of phenotypic predictions with PRS and GEBVs is that their accuracy
greatly decreases when predicting the phenotype of individuals from genetic groups only
weakly or not related to the one used to adjust the models. As such, the low transferability
of PRS has been shown when predicting the phenotype of individuals with di�erent genetic
ancestry (Martin et al. 2017, 2019), or individuals within the same ancestry but with di�erent
characteristics such as age, sex, and socio-economic status (Mostafavi et al. 2020), and their
accuracy improves when incorporating relatives in the discovery sample (Lee et al. 2017).
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Similarly, in breeding, GEBVs usually predict phenotypes well within-population (or within-
breed), as a result of the low e�ective population size (Wray et al. 2019), but very poorly across
populations or breeds (Hayes et al. 2009, Hidalgo et al. 2016, Moghaddar et al. 2014, Resende et al.
2012) or across environments (Resende Jr et al. 2012). Potential explanations include population
structure (Barton et al. 2019), variable patterns of linkage disequilibrium, inconsistent allelic
e�ects across genetic groups, genetic interactions (Dai et al. 2020) or genotype-by-environment
interaction (Resende Jr et al. 2012). Interestingly, Mathieson (2021) recently suggested that the
low transferability of PRS provides further support for the omnigenic model. Indeed, under
the assumption that the omnigenic model is true, the phenotypic e�ects of peripheral alleles
are expected to vary across populations as a result of variation among populations in the
structure and complexity of the gene networks and in the interactions with environmental
factors (Mathieson 2021). This limitation on the use of PRS and GEBVs for phenotypic prediction
across populations may therefore be hard, if not impossible, to overcome for some traits (and
we have limited clues as to which traits will be predictable or not; Mathieson 2021), which
would constrain their usefulness to be population speci�c (Resende et al. 2012).

Finally, combining multi-site common gardens (i.e. randomized controlled experiments
where populations from di�erent geographical locations are planted; also known as provenance
tests) with genomic information may prove particularly valuable for phenotypic prediction
and detection of adaptive variants/traits (de Villemereuil et al. 2016, Josephs et al. 2019). First,
common gardens are the gold standard to separate the plastic and genetic components of trait
variation and thus directly allow to control for the confounding e�ect of plasticity, which is
otherwise very hard to do in situ. Second, genomic data can be used to infer the underlying
population structure resulting from the population demographic and evolutionary history
(Luikart et al. 2003, Nicholson et al. 2002). This is particularly valuable for methods aiming at
detecting alleles under selection (e.g. genome scans, GWAS, genotype–environment association
methods discussed in the next section) as they have to account for population structure to
avoid false positives, which can be done for instance via latent factors (Frichot et al. 2013) or
a covariance matrix based on the population allele frequencies (Gautier 2015). However, as
already mentioned before, accounting for population structure is hard (Barton et al. 2019) and
available methods still show high rates of false positives (de Villemereuil et al. 2014, Lotterhos
and Whitlock 2014).

To conclude, incorporating genomic information in trait-based approaches is already largely
improving the predictions of individual phenotypes within-population (i.e. individual genetic
values) and on the way to expand to natural populations. A �rst potential application consists
in the identi�cation of pre-adapted individuals, i.e. individuals with adaptive variants or trait
values allowing them to persist under future climates, which could be potentially used in
conservation strategies based on adaptive states such as assisted migration (Derry et al. 2019).
Another application could be to identify a set of individuals maximising the diversity in trait-
associated variants and trait values, which could be potentially used to boost genetic variation
-and thus maybe evolution- in populations at risk under climate change, i.e. in conservation
strategies based on adaptive processes such as evolutionary rescue (Derry et al. 2019).

3.3 Landscape genomics

Landscape genomics is the study of the processes shaping the geographical patterns of
adaptive genetic variation across the landscape (Storfer et al. 2018), and stems from landscape
genetics, which focuses on patterns of neutral genetic variation (Manel et al. 2003, Storfer
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et al. 2007). In the same vein as trait-based approaches using GWAS, landscape genomics
approaches are widely used to detect adaptive variants through genotype-environment
association analyses (GEAs; Rellstab et al. 2015), which test for associations between genetic
variants and environmental variables measured at the sample location. GEAs assume that
genetic variants whose frequency varies along an environmental gradient (once the underlying
population structure is accounted for) are linked to �tness, and focus on the choice of the spatial
scale and the particular environmental variables that potentially create a selection pressure
(e.g. extreme cold or heat events). GEAs have the bene�t of not relying on phenotypes, thus
avoiding potential biases arising from the choice of which phenotypes to measure (and in which
ontogenic stage or environment) and the uncertain link between �tness and the phenotypes
under study (Capblancq et al. 2020a).

A space-for-time substitution approach, known as genomic o�set (Fitzpatrick and Keller
2015) or risk of nonadaptedness (Rellstab et al. 2016), has recently become popular for
identifying populations at risk of maladaptation under climate change (Capblancq et al. 2020a).
This approach aims at predicting the change in genomic composition required to maintain the
current relationships between a set of putatively adaptive alleles and the environment, and
typically consists in four main steps: (1) identifying candidate adaptive SNPs via either genome
scans, GEAs or GWAS, or a combination of methods; (2) modelling the turnover in adaptive allele
(or genotype) frequencies along current environmental gradients; (3) projecting the current
and future genomic composition across the species range, including areas where climate
data are available but no individuals or populations were genotyped (i.e. extrapolation); (4)
estimating the magnitude of genetic change required to maintain the current gene-environment
relationships (i.e. the genomic o�set metric). Importantly, this approach relies on four key
assumptions (Capblancq et al. 2020a, Rellstab et al. 2021): (1) adaptive alleles have been correctly
identi�ed, which requires validation of the GWAS and GEAs results (Ioannidis et al. 2009,
Oetting et al. 2017), for instance with gene knock-out experiments (Curtin et al. 2017, Monroe
et al. 2018, Rohde et al. 2018); (2) populations with a higher genomic o�set are expected to
experience a decrease in �tness, which may be tested by determining whether they show
decreasing demographic trends (Bay et al. 2018, Ruegg et al. 2018), or whether they have
lower �tness in common gardens (Fitzpatrick et al. 2021); (3) the populations are currently
at their �tness optimum, which can be evaluated in reciprocal transplant experiments (see
Section 2.1; Browne et al. 2019, Leimu and Fischer 2008); (4) the current gene-environment
relationships (spatial patterns) remain unchanged over space (spatial extrapolations), over
time (space-for-time approach) and in a changing climate. This latter assumption strongly
depends on the variation in genetic background across the landscape and processes such
as migration, demographic trends and admixture (Capblancq et al. 2020a, Ho�mann et al.
2021, Rellstab et al. 2021). In this line, recent studies have incorporated information related
to evolutionary processes that may mitigate future adaptive mismatch of populations, thus
rendering the genomic o�set approach more realistic and robust, e.g. by incorporating the
migration potential of adaptive alleles in the predictions (Aguirre-Liguori et al. 2019, Capblancq
et al. 2020b, Gougherty et al. 2020a). Last, climate forecasts are highly uncertain, and although
some studies have used the average of di�erent general circulation models (e.g. Gougherty
et al. 2020b), they remain a serious source of uncertainty that propagates into the predictions
(Hallingbäck et al. 2021). To conclude, the genomic o�set approach is still under development
and in need of further experimental validation (Rellstab et al. 2021). Like other phenotype-free
approaches, the links with �tness-related traits and processes such as phenotypic plasticity
are missing, which limits the assessment of the ability of populations to persist under climate
change (Capblancq et al. 2020b, Rellstab et al. 2021). Therefore, the use of genomic o�set
approaches in conservation strategies and restoration projects remains subject to caution
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(Ho�mann et al. 2021), but also holds great promise for identifying potential recipient and
donor populations or suitable future habitats (e.g. Borrell et al. 2020).

4 Investigating past, current and future adaptation in
forest trees

4.1 Forest trees are ecologically key species threatened by climate
change

Forests cover 31% of the land area worldwide (i.e. 4.06 billion ha; FAO 2020). Forest trees,
as foundation and keystone species, provide habitats for many species and thus contribute to
maintaining biodiversity (Brockerho� et al. 2017, Gibson et al. 2011), which in turn promotes
numerous ecosystem functions (e.g. primary production, decomposition, nutrient cycling,
trophic interactions) and services (e.g. water retention and puri�cation, pollination, pest
regulation, prevention of soil erosion) (Balvanera et al. 2006, Cardinale et al. 2012, Hooper
et al. 2005, Mori et al. 2017). Forests play a key role in the global carbon cycle, storing ∼ 45%
of terrestrial carbon and absorbing annually ∼ 33% of anthropogenic carbon emission from
fossil fuel and land-use change (Bonan 2008). Forests have also biophysical e�ects, such as
evapotranspiration, which tends to produce cooling, and albedo, which has a warming e�ect
(Anderson et al. 2011, Gibbard et al. 2005, Li et al. 2015, Marland et al. 2003). Forest trees are
extensively exploited for timber and �ber production, and 7% of the forested area worldwide
is planted (i.e. 290 million ha; FAO 2020). Forests also provide other economic services, such
as the provision of food and medicinal products, along with social and aesthetic services (e.g.
through recreational uses).

Global change, including climate change, is already impacting forests worldwide, and thereby
the ecosystem services they provide (Bonan 2008), e.g. the southeastern Amazonian forest now
acts as a net carbon source (due to both climate change and deforestation; Gatti et al. 2021).
Increasingly frequent and hotter droughts, often associated with pathogen and pest outbreaks
(Weed et al. 2013) and more frequent �res (Seidl et al. 2017), cause an increase in tree mortality,
through both die-backs and background mortality, across all terrestrial biomes (Allen et al.
2015, 2010, Anderegg et al. 2015, Mantgem et al. 2009). In face of climate change, tree migration
northward and in altitude is already underway (Boisvert-Marsh Laura et al. 2014, Davis and
Shaw 2001, Woodall et al. 2009). However, trees may not be able to migrate fast enough to keep
pace with the unprecedented rate of climate change (Aitken et al. 2008, Dauphin et al. 2021,
Johnstone and Chapin 2003, McLachlan et al. 2005, Sittaro et al. 2017, Zhu et al. 2012), which
may be explained by their population dynamics (i.e. slow biomass increase and long-generation
time) and interspeci�c competition, and only marginally by dispersal limitation (Scherrer et al.
2020). Determining whether forest trees will be able to persist in their current locations is
therefore particularly important and urgent, and represents an area of research with a long
history (Alberto et al. 2013), in which the contribution of new genomic data is very promising.
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4.2 A long history of common gardens

In forest trees, investigating adaptation clines has mainly relied on multi-site common
gardens, which were initially settled to identify populations with the highest values of some
commercial traits (e.g. height, diameter, straightness) in di�erent environments (Langlet 1971,
Morgenstern 1996, Savolainen et al. 2007). These large networks of common gardens have
provided a unique framework for quantitative geneticists as they are the gold standard to
separate the plastic (i.e. environment) and genetic components of quantitative trait variation.
Further, phenotypic data from common gardens have been combined with climatic data to derive
population reaction norms along climatic gradients or climatic-transfer distances (i.e. climatic
distances between the provenance and the common garden locations), often called population
response (or transfer) functions (see details in Box 3; Rehfeldt et al. 2002, 1999, Wang et al.
2010). The development of the universal response function was a step forward to jointly
evaluate, in a single step, the relative contribution of climate-driven plasticity (associated
with the climate in the common gardens) and genetic di�erentiation (associated with the
climate-of-origin of the populations) in explaining quantitative trait variation (O’Neill et al.
2008, Wang et al. 2010). This approach have been extensively used to investigate potential
climatic drivers of the genetic and plastic components of trait variation for a large variety of
traits (Benito Garzón et al. 2019, Leites et al. 2012a,b) and determine the climatic optimum of
the populations (e.g. Fréjaville et al. 2020).

Box 3. Population reaction norms and site-speci�c functions

The relative in�uence of climate-associated plasticity and genetic di�erentiation on quantitative trait variation can be modeled
with population reactions norms (also referred as population response functions; Rehfeldt et al. 2002, 1999, Wang et al. 2006) and
site-speci�c functions, which can be combined into an universal response function (O’Neill et al. 2008, Wang et al. 2010). These
functions rely on phenotypic data (e.g. height, survival) from multi-site common gardens in which populations (i.e. provenances)
from di�erent parts of the species range are included, and can be applied within the mixed model framework (Leites et al. 2012a,b).
For instance, a given trait y can be expressed as a function of a climatic variable of interest (e.g. minimum or mean temperature)
such as:

yipsb = β0 + Pp + Ss + Bs (b) + β1sPCp + β2pSCs + β3pSC2
s + β4PCpSCs + ϵipsb

• β0 is the global intercept.
• Pp are the varying intercepts of the populations, associated with the genetic component of the trait and theoretically

capturing the e�ects not accounting for by the climatic variable at the population location (PCp ).
• Ss and Bs (b) are the varying intercepts of the common gardens (i.e. sites) and blocks nested within common gardens,

associated with the plastic component of the trait and theoretically capturing the e�ects not accounting for by the climatic
variable in the common gardens.

• PCp is the value of the climatic variable at the location of the population p , and β1s are the associated regression coe�-
cients which are speci�c to each common garden.

• SCs is the value of the climatic variable at the location of the common garden s , and β2p and β3p are the associated
regression coe�cients which are speci�c to each population.

• β4 is the regression coe�cient associated with the interaction between the values of the climatic variables at the location
of the populations and the common gardens.

• ϵipsb is the residual variation.

From this model, we can derive quadratic response functions speci�c to each population along the gradient of the climate in
the common gardens, such as shown in the �gure below, where each curve corresponds to a population with a di�erent climatic
niche. According to Rehfeldt et al. (2018), the climatic optimum of each population corresponds to its physiological optimum (i.e.
the climate in which the population shows the highest trait values but is most often competitively excluded), while the climate
in which the population is found corresponds to its ecological optimum (i.e. the climate in which the population is competitively
exclusive).
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This model can also be used to derive linear functions speci�c to each common garden along the gradient of the climate in
the provenance location, as shown in the �gure below. This is useful for identifying the best performing populations in a given
common garden.

Climate in the provenance location
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Noticeably, incorporating environmental sources of variation (either at the location of the populations or the common gardens)
in quantitative genetic models can also be done with matrices of environmental similarity, either based on Euclidean distances
(e.g. Thomson et al. 2018) or on covariances (e.g. Jarquín et al. 2014). This method has the bene�t of not assuming linearity in
the relationship between environment and phenotypes, but it does rely on the assumption that the environmental components
included in the matrix have equal weight. Therefore, the choice of including climate variables directly in the model (as in the model
above) or via similarity matrices should be decided based on the goals of the study (e.g. whether the researchers are interested in a
particular environmental variable or not).

Quantitative traits in forest trees (and plants more generally) show large plastic variation and
less (but still considerable) genetic variation, with notable di�erences across traits (Anderson
et al. 2012, Benito Garzón et al. 2019, Cornelius 1994, Franks et al. 2014, Morgenstern 1996).
Reproduction and phenology traits generally show higher heritabilities than growth traits
(Caignard et al. 2018, Howe et al. 2003, Lind et al. 2018, Scotti-Saintagne et al. 2004). Population
reaction norms revealed that populations of the same species have di�erent climatic optima
and niches, the latter being narrower than the whole species climatic niche (Rehfeldt et al. 2018,
1999; but see Gömöry et al. 2012). Growth traits generally show cogradient variation, i.e. the
genetic and plastic e�ects in�uence the phenotypes in the same direction along geographical or
environmental gradients, and therefore plasticity is considered adaptive and the change in trait
mean value along the gradient is accentuated (Conover et al. 2009; e.g. Caignard et al. 2021,
Ensing and Eckert 2019, Kremer et al. 2014). A general pattern derived from population reaction
norms in temperate and boreal forests is that populations at the cold limit of the species range
would grow and survive more under warmer temperatures, while populations at the warm
limit would bene�t from colder temperatures (Fréjaville et al. 2020, Pedlar and McKenney 2017,
Rehfeldt et al. 2003, 2002, 1999, Reich and Oleksyn 2008; but see Savolainen et al. 2007 for a
di�erent response to warming temperatures for height and survival in Scots pine). This suggests
that populations at the climatic edges of the species range are currently maladapted, which may
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be explained by gene �ow from populations at the center of the distribution (García-Ramos
and Kirkpatrick 1997, Kirkpatrick and Barton 1997, Kremer et al. 2012) or, for populations
at the cold margins, by adaptation lags along post-glacial colonization routes (García-Valdés
et al. 2013, Johnstone and Chapin 2003). In contrast to latitudinal gradients, adaptation along
altitudinal gradients for growth and survival traits appears to be more variable among species,
as some species show adaptation lags (e.g. Ponderosa pine in Martínez-Berdeja et al. 2019)
while others show patterns of home-site advantage (e.g. Sakhalin �r in Ishizuka and Goto
2012; Je�rey pine in Martínez-Berdeja et al. 2019), suggesting that they will not bene�t from
increased temperatures.

Phenology traits show either cogradient or countergradient variation depending on the
species (e.g. Gauzere et al. 2020, Vitasse et al. 2009; and see the meta-analysis of Radersma et al.
2020 on plant reciprocal transplant experiments). Countergradient patterns arise when the
genetic and plastic e�ects in�uence the phenotype clines in opposite directions (Conover and
Schultz 1995), which may be an adaptation to counteract maladaptive plasticity (Crispo 2008,
Grether 2005) or can also emerge under spatially and temporally �uctuating environments
(King and Had�eld 2019, Scheiner 2013). To my knowledge, only one study derived population
reaction norms for reproduction traits in forest trees. Caignard et al. (2021) found a counter-
gradient in reproductive e�ort and a cogradient in growth along an altitudinal gradient in the
white oak Q. petraea, i.e. trees from higher elevations grew less and produced more and larger
fruits in a low-elevation common garden, whereas in �eld conditions, they still grew less but
produced smaller and fewer fruits than trees from lower elevations. This pattern suggests a
genetic trade-o� between growth and reproduction and may be related to the demographic
compensation phenomenon frequently observed in marginal natural populations (e.g. Doak
and Morris 2010, Sheth and Angert 2018). Finally, not only considering traits related to the
viability component of �tness (e.g. survival, growth), but also traits related to the reproductive
component seems necessary to get a complete picture of how natural populations will perform
over the long run under warmer temperatures.

To conclude, population reaction norms derived from multi-site common gardens have been
extremely useful for identifying genetic and plastic e�ects on phenotypes along environmental
gradients and for inferring population responses to future climates. However, they rely on
phenotypic data from common gardens, which are expensive and time-consuming to maintain.
Therefore, determining how genomic information may be combined with current modelling
approaches to facilitate monitoring of population evolution in the face of global change would
be extremely valuable and needed.

4.3 Speci�cities of forest tree genomics

Forest trees represent unique experimental systems to investigate plastic and adaptive
variation in quantitative traits because their populations remain nearly undomesticated (i.e.
their genetic variation has been little in�uenced by human-induced selection, even in species
with breeding programs), they often have large e�ective population size, and they are distributed
across wide geographical and environmental gradients (Alberto et al. 2013, Neale and Savolainen
2004). Most forest trees are outcrossing, have high lifetime reproductive output, and show
important gene �ow among populations through long-distance pollen dispersal (Kremer et
al. 2012) and slow rates of macroevolution (i.e. low nucleotide substitution rates and low
speciation rates; Petit and Hampe 2006). They are particularly challenging to study because
of their long generation times and their large and complex genomes. In particular, conifer
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genomes, apart from being large, display a rapid decay of linkage disequilibrium and contain
numerous repetitive sequences (i.e. transposable elements) and gene duplications (Ahuja
and Neale 2005, Kovach et al. 2010, Mackay et al. 2012, Morse et al. 2009, Zonneveld 2012).
Therefore, extensive and dense genotyping is required in conifers to identify most of the
relevant polymorphisms underlying (highly polygenic) quantitative traits (Jaramillo-Correa
et al. 2015, Neale and Savolainen 2004). Since the whole genome sequencing of Norway spruce
(19.6 Gbp; Nystedt et al. 2013), an increasing number of conifer reference genomes have been
released, e.g. white spruce (20.8 Gbp; Birol et al. 2013, Warren et al. 2015), loblolly pine (20.1
Gbp; Neale et al. 2014, Zimin et al. 2014), sugar pine (31 Gbp; Stevens et al. 2016), coastal
Douglas-�r (16 Gbp; Neale et al. 2017) and giant sequoia (8.1 Gbp; Scott et al. 2020). However, as
whole genome sequencing remains highly challenging in conifers and concerns only a limited
number of species and few individuals, candidate gene approaches are still mainly used to
identify adaptive genetic variants and determine the genomic architecture of local adaptation.

As previously mentioned in Section 3.2, genomic information is already broadly used in
tree breeding to predict phenotypes, but these predictions strongly depend on the relatedness
among individuals and are therefore limited to within-population (or within-family) predictions.
Recent pioneering studies in forest trees have explored how to incorporate genomic information
in trait-based approaches encompassing multiple populations. Browne et al. (2019) used GEBVs
in valley oak to identify individuals with the best performing progeny under future climates
and showed that selecting these individuals for assisted gene �ow strategies would help to
considerably mitigate the predicted negative e�ects of rising temperatures on growth rates.
In loblolly pine, Mahony et al. (2020) and MacLachlan et al. (2021) used counts of phenotype-
associated positive-e�ect alleles (i.e. number of SNPs that each individual has among the
1% top hits from a GWAS on the trait of interest; that they called PEAs) as they were more
robust to stochastic SNP sampling e�ects than PRS. Mahony et al. (2020) showed that local
adaptation patterns of several traits (growth cessation and initiation, cold injury and shoot
mass) were similarly or slightly better described by the PEAs than by climate or geographical
data. MacLachlan et al. (2021) demonstrated the usefulness of PEAs for phenotypic predictions
and to rapidly assess the e�ects of arti�cial selection on adaptive genetic variation of polygenic
traits. These �rst studies pave the way for combining phenotypic, genomic and environmental
data for predictive and monitoring purposes in forest trees, although a robust framework is
still needed to make reliable phenotype predictions across species ranges and for many species.

Landscape genomics approaches based on genomic o�set are also becoming popular in forest
trees, in part because the founding studies of these methods were conducted on trees (poplar
in Fitzpatrick and Keller 2015 and white oak species in Rellstab et al. 2016), and because these
methods, as they do not require hard-to-collect data from common gardens, are particularly
well suited to long-lived and sessile organisms. Populations at risk of short-term maladaptation
(in a scenario of persistence in the current location without evolution or migration) have
already been identi�ed in many forest tree species, e.g. in balsam poplar (Fitzpatrick et al.
2021, Gougherty et al. 2020b, Keller et al. 2018), loblolly pine (Lu et al. 2019), European aspen
(Ingvarsson and Bernhardsson 2020), yellow box (Supple et al. 2018) and cork oak (Vanhove
et al. 2021). Interestingly, Gougherty et al. (2020b) di�erentiated the local (i.e. the commonly
used metric, which assumes no gene �ow), forward (i.e. minimum genetic distance between
the focal population under current climate and all possible locations under future climates,
which will be high if the focal population is maladapted to all future climates) and reverse (i.e.
minimum genetic distance between the focal population under future climate and all possible
locations under current climates, which will be high in regions where we expect changes in the
gene-climate associations that are not found elsewhere) genomic o�sets to identify populations
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that might be maladapted to future climates and cannot bene�t from migration or gene �ow
(natural or arti�cial). Much-needed experimental support of the genomic o�set approach is
also underway. For instance, in balsam poplar, Fitzpatrick et al. (2021) validated the predictions
based on the genomic o�set with data from common gardens and showed that they were more
accurate than predictions based on climatic tranfer distances. Therefore, integrating genomic
o�set into the toolbox of forest tree conservation and management seems very promising,
however, caution and further validation are still needed (Rellstab et al. 2021).

5 Objectives

The general objectives of the present PhD are to contribute to (i) accumulating knowledge on
the mechanisms underlying population adaptation to the environment, and (ii) improving pre-
dictions of population responses to changing environments, such as climate change. Maritime
pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean
Basin and the Atlantic regions of Iberian and southern France, is used as a case study. Chapter
1 aims to understand how quantitative genetic variation is maintained within populations by
testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed
populations have higher quantitative genetic variation due to introgression from other gene
pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e.
experiencing stronger selection; Fisher 1930), and (iii) quantitative genetic variation is higher in
populations from spatially heterogeneous environments (McDonald and Yeaman 2018, Yeaman
and Jarvis 2006). Importantly, chapter 1 provides insights into which populations may be able
to adapt more quickly to climate change since the adaptive potential of populations depends
directly on their genetic variation.

In the genomic era where the new sequencing technologies are now at a�ordable (and
steadily decreasing) costs, an important part of this PhD dealt with how genomic data can
be combined with environmental and phenotypic data to obtain more robust and �ne-scale
phenotypic predictions than current approaches, or predictions of the short-term population
(mal)adaptation, without having to go through the cumbersome process of setting up common
gardens. More speci�cally, chapter 2 investigates whether models combining climatic, pheno-
typic and genomic data could capture the underlying drivers of height-growth variation, and
thus improve predictions at large geographic scales, especially compared to the predictions
from climate-based population response functions that are currently commonly used in forest
trees (e.g. Leites et al. 2012a, Rehfeldt et al. 1999). Finally, the �rst goal of chapter 3 is to
identify maritime pine populations whose gene-environment relationships will be the most
disrupted under climate change (i.e. populations at risk of short-term climate maladaptation)
using, to meet this objective, the genomic o�set approach (see Section 3.3; Fitzpatrick and
Keller 2015). The second goal is to evaluate a key assumption of the genomic o�set approach,
namely that populations with the highest predicted genomic o�set do show a decrease in
absolute �tness or declining demographic trends (Capblancq et al. 2020a). Chapters 2 and 3
provide valuable information for managing maritime pine populations while accounting for
adaptive processes: the genetic height-growth response of transferred individuals (populations)
to new environments (chapter 2) and the short-term risk of climate maladaptation in local
populations (chapter 3). Further, these two chapters investigate how to combine phenotypic,
genomic, and environmental data in two very di�erent modelling frameworks (trait-based ap-
proaches and landscape genomics, respectively), and thus contribute to the far-reaching goal of
predicting how forest tree populations will respond to climate change, and which management
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and conservation strategies will be most e�ective in rescuing declining populations.
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III

Materials & methods

1 Model species

Maritime pine (Pinus pinaster Ait., Pinaceae) is an ecologically and economically important
forest tree species, largely exploited for its wood (Viñas et al. 2016), widely used for stabilising
coastal dunes in its Atlantic distribution, and considered as keystone species supporting forest
biodiversity in large parts of its range (Fig. III.1). Native to the western part of the Mediterranean
Basin, the Atlas mountains in Morocco and the south-west Atlantic coast of Europe, its natural
distribution spans from the High Atlas mountains in the south (Morocco) to French Brittany
in the north, and from the coast of Portugal in the west to western Italy in the east. It was
also introduced for commercial purposes in Australia where it is now considered as a highly
invasive species (Viñas et al. 2016).

Figure III.1. Genetic Conservation Unit (GCU) of maritime pine located in Lacanau (southwestern France).

.
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Maritime pine is a wind-pollinated, outcrossing and long-lived tree species that can grow
on a wide range of substrates, from sandy and acidic soils to more calcareous soils. It can
also withstand many di�erent climates: the dry climate along the northern coasts of the
Mediterranean Basin (from Portugal to western Italy), the mountainous climates of south-
eastern Spain and Morocco, the wetter climate of the Atlantic region (from the Spanish Iberian
region to the western part of France) and the continental climate of central Spain.

As many Mediterranean tree species, maritime pine has a strong population genetic structure
as well as highly fragmented populations (Alberto et al. 2013). Populations can be grouped into
six gene pools (Jaramillo-Correa et al. 2015), that is, genetic clusters that cannot be di�erentiated
on the basis of neutral genetic markers and that probably derive from a common glacial refuge
(Bucci et al. 2007, Santos-del-Blanco et al. 2012).

2 CLONAPIN experiment

Phenotypic and genomic data used in the present PhD work comes from the clonal common
garden network CLONAPIN, consisting of �ve test sites located in di�erent environments (Fig.
VI.1). Three sites are located in the Atlantic region, with mild winters, high annual rainfall and
relatively wet summers: Bordeaux in the French part, and Asturias and Portugal in the Iberian
part (Figs. III.2a & III.2b), the Portugal site experiencing slightly colder winters and half the
summer precipitation than the site in Asturias. The two other sites, Cáceres and Madrid, are
located in the Mediterranean region with high temperatures and intense summer drought, as
well as large precipitation di�erences between summer and winter.

(a) Asturias site. (b) Portugal site. (c) Dead tree in Cáceres.

Figure III.2

In 2010 or 2011, depending on the test site, clonal replicates from 34 provenances were planted
in a randomized complete block design with eight blocks (Fig. III.3a). For each population,
trees represent between 2 and 28 clones (genotypes), on average about 15. To obtain unrelated
clones, trees at least 50 m apart were sampled in natural stands, and one seed per tree was
planted in a nursery and vegetatively propagated by cuttings (Fig. III.3b; see Rodríguez-Quilón
et al. 2016 for details).
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(a) Seedling plantation in Madrid. (b) Nursery where the trees were vegetatively propagated to obtain clones.

Figure III.3

Tree mortality and height were measured in all common gardens and at di�erent tree ages:
10, 21, and 37 months in Asturias, 25, 37, and 49 months in Bordeaux (plus at 13 months
for mortality, and 85 months for height), 8 months in Cáceres, 13 months in Madrid, and 11,
15, 20 and 27 months in Portugal. Noticeably, tree height was not measured on dead trees,
which resulted in a strongly unbalanced height measurements in Cáceres and Madrid in which
92% and 75% of the trees died, respectively (partly due to the clay soils and a strong summer
drought; Fig. III.2c). Two phenology-related traits, the mean bud burst date and the mean
duration of bud burst, were measured in Bordeaux when trees were 2, 3, 4 and 6 years old.
Bud burst corresponds to the date of brachyblast emergence in accumulated degree-days (with
base temperature 0°C) from the �rst day of the year to account for between-year variability in
temperature. The duration of bud burst corresponds to the number of degree-days between the
beginning of bud elongation and the total elongation of the needles (see Hurel et al. 2019). Last,
two functional traits, δ 13C and the speci�c leaf area (SLA), were measured in Portugal.

The 34 populations planted in the �ve common gardens represent a rangewide sample of
natural populations covering all known gene pools in maritime pine (Fig. V.1). A total of 523
clones collected in the Asturias common garden were genotyped with the Illumina In�nium
assay, resulting in 5,165 high-quality polymorphic SNPs. There were on average only 3.3
missing values per genotype (ranging between 0 and 142). Details about DNA extraction and
genotyping can be found in Plomion et al. (2016b). This �rst genomic dataset was used in
chapters 1 and 2. In chapter 3, we combined this �rst genomic dataset with another one
developed within the framework of the H2020 EU B4EST project (4Tree; https://b4est.eu). SNPs
with MAF < 1% or more than 20% missing data were �ltered out, which resulted in 454 clones
(i.e. genotypes) and 9,817 high-quality polymorphic SNPs, of which 2,855 were genotyped
by both assays to ensure sample identity and estimate genotyping errors. The percentage of
missing data per clone was less than 12% for all clones, with an average of 2.5%.
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3 Bayesian inference

’The search for the most reliable paths to knowledge is arguably one of the greatest joys of
being human.’ (Hoang 2020).

Most of the statistical models of this PhD work were implemented within the Bayesian
framework. The choice to use Bayesian statistics has several origins: (1) my interest in learning
how to use Bayesian statistics that have already been extensively used in quantitative genetics
(Beaumont and Rannala 2004, Shoemaker et al. 1999) and are increasingly common in evo-
lutionary biology (Holder and Lewis 2003, Huelsenbeck et al. 2001, O’hara et al. 2008) and
ecology (Clark 2005); (2) the greater �exibility, transparency, robustness and intuitiveness of
Bayesian statistics (McElreath 2016); (3) the bene�ts in my daily life experience and reasoning
that learning Bayesian philosophy, which some authors have even called a universal philosophy
of knowledge (Hoang 2020), has brought to me. I will brie�y present some key concepts of
Bayesian inference, and some of the main epistemic di�erences between Bayesian and ’classical’
frequentist statistics.

A �rst epistemic di�erence between the two approaches is that frequentist inference estimates
the probability of the data given a particular hypothesis (or event or parameter) while Bayesian
inference estimates the probability of a hypothesis being true (or the occurrence of an event,
or the value of a parameter) in light of the available data (Ellison 2004). For example, suppose
we have collected some observations y corresponding to random deviations from a normal
distribution of mean µ and variance σ 2 (i.e. the parameters to be estimated). In a frequentist
analysis, we will estimate p(y |µ,σ 2), i.e. the probability of the observed data y given the
parameters µ and σ 2, known as the likelihood and estimated with the maximum likelihood
estimation. In a Bayesian analysis, we will estimate p(µ,σ 2 |y), i.e. the conditional probability
of the parameters given the observed data. This probability is referred as the posterior
probability distribution and, according to Bayes’s Theorem, can be expressed as follows:

p(µ,σ 2 |y) = p(y |µ,σ 2)p(µ,σ 2)
p(y)

The �rst term of the numerator is the likelihood, identical to its frequentist counterpart.
The second term of the numerator is the prior probability distribution and re�ects a prior
belief about the parameters µ and σ 2 expressed as a probability distribution, i.e. what we know
before seeing the data. The denominator is often referred as the marginal likelihood and
is the marginal probability density of the data across all possible parameters (a normalizing
constant). It quickly becomes a high-dimensional integral impossible to solve as soon as several
parameters have to be estimated. Markov Chain Monte Carlo (MCMC) algorithms bypass
this problem by directly sampling the posterior distribution via probability ratios. They are both
a strength of Bayesian statistics, being extremely �exible and robust (e.g. easily accommodating
generalized linear mixed models; de Villemereuil 2019), but also a weakness as they require
large computational capacities.

A second essential conceptual di�erence between Bayesian and frequentist statistics stems
from their di�erent interpretations of probability. A frequentist probability is de�ned as the
long-term frequency of events in a sequence of trials (often hypothetical), while a Bayesian
probability quanti�es an individual’s degree of belief (i.e. uncertainty) in the likelihood of an
event (Ellison 2004). The interpretation of a frequentist con�dence interval directly derives
from this interpretation of probability, and corresponds to the range of values including the
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true value of the parameter with some minimum probability, e.g. 95%. In other words, in n
hypothetical runs of the study and analysis, 95% of the computed con�dence intervals will
cover the true parameter value. Therefore, a frequentist interval can strictly be interpreted
only with respect to a sequence of similar inferences that might be replicated in practice. In
contrast, the Bayesian interpretation of probability implies that probabilities are associated to
any possible parameter values (i.e. inferences in the form of of a full posterior distribution).
It follows that a Bayesian credibility interval is interpreted as an individual’s belief that
there is a 95% probability that the parameter of interest lies within the interval, which corre-
sponds to an intuitive interpretation of the uncertainty around estimates. As applied statistics
increasingly emphasizes interval estimation rather than hypothesis testing, Bayesian thinking
seems particularly appropriate since it provides a common-sense interpretation of statistical
conclusions (Gelman et al. 2020a).

Another major strength of Bayesian statistics comes from the di�erent bene�ts brought by the
prior probability distribution. First, state-of-the-art knowledge, expert opinion or information
from previous studies can be incorporated into prior distributions. In particular, as Bayesian
inference is iterative, a posterior probability distribution derived from a previous analysis can
then be used as prior in a subsequent analyses. Importantly, this allows uncertainty to be
propagated between di�erent subsequent analyses/studies (de Villemereuil 2019). In contrast, a
frequentist analysis is always a de novo exercise, testing a null hypothesis by assuming that
there is no relevant information available, even if the null hypothesis had been repeatedly
falsi�ed in previous experiments (Ellison 2004).

The prior probability distribution can also be used for regularization, a statistical procedure
used to reduce over�tting and give more stable posterior estimates (Gelman et al. 2020a,
McElreath 2016). For instance, ’weakly informative priors’ are regularizing priors that
contain enough information to keep the posterior distributions within plausible bounds without
aiming at fully incorporating one’s expert knowledge about the underlying parameters (Gelman
2006, Gelman et al. 2008). In other words, weakly informative priors will have only a marginal
in�uence on the posterior distribution if there is a large enough amount of data (in which case
the likelihood will dominate), whereas if there is little data, they can have a considerable e�ect
on posterior inference. Hence, such priors can prove highly useful in enabling inference of key
parameters that would otherwise be impossible to estimate, especially in very small samples
(de Villemereuil 2019, McElreath 2016). In this PhD work, I mostly used weakly informative
priors.

Historically, Bayesian inference has been criticized as ’subjective’ because of the requirement
to make a necessarily arbitrary choice of priors (McElreath 2016). However, non-Bayesian
procedures also have subjective choices to make, which are often swept under the rug, such
as the choice of estimator or likelihood penalty (McElreath 2016). The inclusion of prior
information in a completely transparent way in Bayesian procedures therefore makes them
less opaque than likelihood-based approaches. It is now easy to �nd recommendations for
the priors to use depending on the questions being asked, the likelihood and the di�erent
types of parameters (e.g. ’Prior choice recommendations’ of Andrew Gelman). Moreover, the
consistency of the chosen priors with domain knowledge can be assessed with prior predictive
checks, which simulate predictions from a model using only the prior distribution instead
of the posterior distribution (Gabry et al. 2019, McElreath 2016). Last, it is important to keep
in mind that as the amount of data increases, the in�uence of priors on posterior inference
decreases and the estimates of Bayesian or frequentist analyses converge towards the same
values.
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Finally, Bayesian inference is above all characterized by its explicit use of probability for
quantifying uncertainty, and can be de�ned as ’the process of �tting a probability model to a set
of data and summarizing the result by a probability distribution on the parameters of the model
and on unobserved quantities such as predictions for new observations’ (Gelman et al. 2020a).
It provides a very intuitive, robust and powerful framework (see the very complete Bayesian
work�ow recently proposed in Gelman et al. 2020b), with great �exibility and generality to deal
with complex problems (Gelman et al. 2020a). This applies tohierarchicalmodels (also known
as multilevel models), which have been extensively used in the present PhD work. Hierarchical
models are used when information is available on several di�erent levels of observation units
(e.g. genotype, population, test site) and exchangeable at each level of units (Gelman et al.
2020a).

In the present PhD work, I used the Stan probabilistic programming language (Carpenter
et al. 2017) and its default Hamiltonian Monte Carlo algorithm, the no-U-turn sampler (NUTS;
Ho�man and Gelman 2014). The Bayesian models of chapters 1 and 3 were implemented
through the R package rstan, the R interface of Stan. Models in chapter 2 were implemented
through the R package brms (Bürkner 2017), whose functions are passed to rstan.
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1 Abstract

How evolutionary forces interact to maintain quantitative genetic variation within popula-
tions has been a matter of extensive theoretical debates. While mutation and migration increase
genetic variation, natural selection and genetic drift are expected to deplete it. To date, levels
of genetic variation observed in natural populations are hard to predict without accounting
for other processes, such as balancing selection in heterogeneous environments. We aimed to
empirically test three hypotheses: (i) admixed populations have higher quantitative genetic
variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower
in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quan-
titative genetic variation is higher in populations from spatially heterogeneous environments.
We used phenotypic measurements of �ve growth, phenological and functional traits from
three clonal common gardens, consisting of 523 clones from 33 populations of maritime pine
(Pinus pinaster Aiton). Populations from harsher climates (mainly colder areas) showed lower
genetic variation for height in the three common gardens. Surprisingly, we did not �nd any
association between within-population genetic variation and environmental heterogeneity or
population admixture for any trait. Our results suggest a predominant role of natural selection
in driving within-population genetic variation, and therefore indirectly their adaptive potential.

2 Introduction

Most complex traits show substantial heritable variation in natural populations. How evo-
lutionary forces interact to maintain such variation remains a long-standing dilemma in evo-
lutionary biology and quantitative genetics (Johnson and Barton 2005). While mutation and
genetic drift have straightforward roles, generating and eliminating variation respectively, the
e�ect of natural selection is more complicated (Walsh and Lynch 2018). Stabilizing selection,
i.e. the selection of intermediate phenotypes, is often strong in natural populations (Hereford
et al. 2004). This type of selection is expected to deplete genetic variation (Fisher 1930), either
directly on the focal trait or indirectly via pleiotropic e�ects (Johnson and Barton 2005). Theo-
retical models based on the balance between mutation, drift and stabilizing selection support
this idea, but they suggest lower �tness heritability values than those generally observed
in empirical studies (Johnson and Barton 2005). Balancing selection encompasses various
evolutionary processes that can maintain greater than neutral genetic variation within popula-
tions (Mitchell-Olds et al. 2007). The most widely studied of these processes are heterozygote
advantage, frequency-dependent selection, e.g. in disease resistance or self-incompatibility
systems (Bergelson et al. 2001, Charlesworth et al. 2005), and temporally or spatially �uctuating
selection pressures (Felsenstein 1976). The maintenance of stable polymorphism in spatially
heterogeneous environments was �rst theorized by Levene’s archetypal model (1953), under
the assumptions of random mating within generations and soft selection. Since then, a large
corpus of single-locus and polygenic models, most often deterministic, have generally con-
cluded that genetic polymorphisms can only be maintained under restrictive conditions (Byers
2005, Spichtig and Kawecki 2004). In this line, McDonald and Yeaman (2018) showed with
stochastic individual-based simulations that substantial within-population genetic variation
can be maintained in spatially heterogeneous environments at intermediate migration rates,
regardless of population size. However, the relative importance of the di�erent evolutionary
forces driving within-population genetic variation remains largely unknown.
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Long-dating empirical work has addressed the evolutionary processes underlying the main-
tenance of genetic and discrete-trait polymorphisms (reviewed in Hedrick 1986, 2006), e.g.
plant-pathogen interactions (Karasov et al. 2014), antagonistic pleiotropy (Carter and Nguyen
2011), environmental heterogeneity (Chakraborty and Fry 2016), and temporal �uctuations
(Bergland et al. 2014). Genomics have allowed the broad application of genome-wide scans
for signatures of selection. Overall these scans suggest that many loci are under adaptive
directional selection (Barreiro et al. 2008, Fu and Akey 2013) and that the proportion of genetic
polymorphisms maintained by environmental heterogeneity tends to be low (Hedrick 2006).
However those scans typically have low power to detect signatures of balancing selection
or local adaptation (Fijarczyk and Babik 2015). Far fewer empirical studies have focused on
assessing the distribution and extent of the quantitative genetic variation within populations,
and its underlying causes (Lynch and Walsh 1998). Traits more closely related to �tness, such
as life-history traits, have generally higher additive genetic variance, but lower heritabili-
ties, than morphometric traits (Houle 1992, Kruuk et al. 2000, Price and Schluter 1991). The
hypothesis that populations evolving under strong selection pressures display lower levels
of genetic variation has been supported in experimentally evolving quail populations under
unfavorable vs favorable treatments (Marks 1978), in controlled experiments (Colautti et al.
2010; but see Merilä et al. 2004, Stock et al. 2014), in natural populations of Drosophila birchii
subject to climatic selection (but see D. bennata and D. serrata; van Heerwaarden et al. 2009)
and in some natural populations of great tits subject to varying levels of food availability
(Charmantier et al. 2004). Higher genetic variation in populations evolving under spatially
varying selection pressures is supported by experimental evolution of Drosophila populations
(Huang et al. 2015, Mackay 1981; but not Yeaman et al. 2010) and in forest trees evaluated in
common gardens (Yeaman and Jarvis 2006). The lack of general trends from these empirical
studies can be explained by method-speci�c pitfalls to accurately estimate quantitative genetic
variation, e.g. the genetic and environmental variances are hard to disentangle in the wild, and
when estimated in common gardens, their environment-dependent nature does not allow for
wide generalization of estimates (Charmantier et al. 2004, Ho�mann and Parsons 1991, Merilä
et al. 2001). In addition, gene �ow has been hypothesized to have either a positive e�ect on
the adaptive potential, by increasing standing genetic variation, or a negative e�ect via gene
swamping (Kremer et al. 2012, Tigano and Friesen 2016), which may depend on the spatial
scale considered (Bridle et al. 2009).

Forest trees have speci�c life-history traits and genomic features making them interest-
ing model species in population and quantitative genetic studies (Petit and Hampe 2006,
Savolainen et al. 2007). Compared to crop species, they remain largely undomesticated (Neale
and Savolainen 2004). Most forest trees are outcrossing, have high lifetime reproductive output
and long generation times. They often display important gene �ow among populations through
long-distance pollen dispersal (Kremer et al. 2012). They show slow rates of macroevolution
(i.e. low nucleotide substitution rates and low speciation rates; Petit and Hampe 2006), gener-
ally have large e�ective population sizes, with distributions often covering a wide range of
environmental conditions (Alberto et al. 2013). Extensive work has revealed strong clines at
large geographical scales in the population-speci�c mean values of phenotypic traits (reviewed
in Benito Garzón et al. 2019, Savolainen et al. 2007), e.g. phenological traits with latitude or
altitude (Alberto et al. 2011, Thibault et al. 2020) or height growth with cold hardiness (Leites
et al. 2012b, Rehfeldt et al. 1999). Genetic di�erentiation at microgeographic spatial scales has
also been repeatedly observed (reviewed in Jump and Peñuelas 2005, Linhart and Grant 1996,
Scotti et al. 2016), suggesting rapid rates of microevolution (Petit and Hampe 2006). Possible
explanations include the fact that forest trees have high levels of genetic diversity and that
most of their quantitative and neutral genetic variation is within populations (Hamrick 2004).
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To our knowledge, only two empirical studies investigated the potential causes underlying
the maintenance of quantitative trait variation within forest tree populations. Yeaman and
Jarvis (2006) showed that 20% of growth genetic variation in lodgepole pine populations was
attributable to regional heterogeneity, suggesting an important role of gene �ow and varying
selection pressures. In the neotropical oak Q. oleoides, Ramírez-Valiente et al. (2019) found lower
quantitative genetic variation in harsher environments, but not higher quantitative genetic
variation in temporally �uctuating environments. They also suggested only a marginal e�ect
of genetic structure and diversity on the maintenance of within-population genetic variation.

In this study, we aimed to test competing hypotheses regarding the relationship between
quantitative genetic variation within maritime pine populations and the potential underlying
drivers that maintain this variation. We used phenotypic measurements of growth (height),
phenological (bud burst and duration of bud burst) and functional (δ 13C and speci�c leaf area,
SLA) traits from three clonal common gardens, consisting of 522 clones (i.e. genotypes) from
33 populations, spanning all known gene pools in the species (Jaramillo-Correa et al. 2015)
and genotyped for 5,165 SNPs. For each trait, we compared Bayesian hierarchical models that
estimate the relationship between the total genetic variances within populations and some
potential drivers, namely climate’s harshness at the locations of origin of the populations (i.e.
drought intensity and severe cold events), environmental heterogeneity in the forested areas
surrounding the populations, and the level and origin of admixture in the populations, as
estimated with SNP markers. The competing, but not mutually exclusive, hypotheses tested are:
i) the most admixed populations have higher quantitative genetic variation due to introgression
from other gene pools, and this relationship is proportional to the divergence between sink
and source gene pools; ii) quantitative genetic variation is lower in populations that have
evolved in harsher environments, as a result of higher selection pressures in these regions;
and iii) quantitative genetic variation is higher in populations that have evolved in spatially
heterogeneous environments. Importantly, the last two hypotheses require the action of natural
selection, while the �rst does not. Therefore, we expect the last two hypotheses to be mostly
supported for �tness-related traits, while the �rst hypothesis may apply uniformly to all
traits. Determining the patterns of within-population quantitative genetic variation across
species’ ranges and the relative importance of the evolutionary forces driving the maintenance
of such variation is necessary to assess the evolutionary potential of forest tree populations.
Empirical studies tackling these questions remain extremely rare in forest trees (but see Ramírez-
Valiente et al. 2019, Yeaman and Jarvis 2006), yet they are much needed to anticipate forest
tree responses to ongoing global change and therefore develop adaptive management and
conservation strategies.

3 Materials & Methods

3.1 Maritime pine, a forest tree growing in heterogeneous environ-
ments

Maritime pine (Pinus pinaster Ait., Pinaceae) is a wind-pollinated, outcrossing and long-lived
tree species with large ecological and economical importance in western Europe and North
Africa. Maritime pine is largely appreciated for its wood, for stabilizing coastal and fossil dunes
and, as a keystone species, for supporting biodiversity (Viñas et al. 2016). The distribution
of maritime pine natural populations is scattered and covers a wide range of environmental
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conditions. Several studies have provided evidence of genetic di�erentiation for adaptive traits
in this species, suggesting local adaptation (e.g. de Miguel et al. 2020, González-Martínez et al.
2002). Maritime pine can grow in widely di�erent climates: the dry climate along the northern
coasts of the Mediterranean Basin (from Portugal to western Italy), the mountainous climates of
south-eastern Spain and Morocco, the wetter climate of the Atlantic region (from the Spanish
Iberian region to the western part of France) and the continental climate of central Spain.
Maritime pine can also grow on a wide range of substrates, from sandy and acidic soils to more
calcareous ones. Maritime pine presents a strong population genetic structure with occasional
admixture, suggesting gene �ow among gene pools. Six gene pools have been described by
previous literature, located in the French Atlantic region, Iberian Atlantic region, central Spain,
south-eastern Spain, Corsica and Northern Africa (Fig. 1; Alberto et al. 2013, Jaramillo-Correa
et al. 2015). These gene pools probably result from the expansion of di�erent glacial refugia
(Bucci et al. 2007).

3.2 Phenotypic data

Phenotypic data was obtained from three clonal common gardens (Table X.1 and Fig. IV.1),
planted in 2011 and located in environments considered favorable to maritime pine, as evidenced
by the high survival rate at these sites (Table X.1). The common gardens of Asturias (Spain,
Iberian Atlantic region) and Bordeaux (France, French Atlantic region) have very similar
climates, with mild winters, no severe cold events, high annual rainfall and relatively wet
summers (Tables X.3-X.5 and Fig. IV.1). The common garden of Portugal (planted in Fundão)
shows slightly colder winters and lower summer precipitation than in Asturias (Table X.4 and
Fig. IV.1). In each of these common gardens, trees belonging to 522 clones (i.e. genotypes) from
33 populations, including the six known gene pools in the species, were planted following a
randomized complete block design with 8 blocks, 8 trees per clone and from 2 to 28 clones per
population (with an average of 15). To obtain the clones, trees at least 50 m apart were sampled
in natural stands, and one seed per tree was planted in a nursery and vegetatively propagated
by cuttings (see Rodríguez-Quilón et al. 2016 for details). Clones were therefore considered
unrelated.

One growth trait, height, was measured in all common gardens and at di�erent tree ages
(Table X.1). Two phenology-related traits, the mean bud burst date over four years and the
mean duration of bud burst over three years, were measured in Bordeaux and were averaged
over several years to suppress di�erences across years and approximate a normal distribution
of their trait values (Table X.1). Bud burst corresponds to the date of brachyblast emergence in
accumulated degree-days (with base temperature 0°C) from the �rst day of the year to account
for between-year variability in temperature. The duration of bud burst corresponds to the
number of degree-days between the beginning of bud elongation and the total elongation of
the needles (see Hurel et al. 2019). Last, two functional traits, δ 13C and the speci�c leaf area
(SLA) were measured in Portugal (Table X.1). These traits were selected because they showed
broad-sense heritabilities that were mostly low but with credibility intervals not crossing
zero (> 0.08 in de Miguel et al. 2020). For each trait, phenotypic means and variances across
populations are shown in Section 1.1 of the Supplementary Information. Prior to analyses,
some traits were log-transformed to get closer to normality or mean-centered to help model
convergence (Table X.1).
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Figure IV.1. Location of the three common gardens and the 33 populations used in the study. The colors represent the gradients of the
extreme minimum temperature (EMT) and summer heat moisture index (SHM) over the period 1901-1950 within the maritime pine range.
The climatic gradients were obtained by performing a centered and scaled principal component analysis (shown in the inset on the bottom
right) based on EMT and SHM values. The maritime pine distribution combines the EUFORGEN distribution (http://www.euforgen.org/)
and 10-km radius areas around the National Forest Inventory plots with maritime pines. However, this remains a rough approximation of
the actual distribution of maritime pine and therefore probably includes areas experiencing more intense cold or drought episodes than the
climatic range of maritime pine.

3.3 SNP genotyping and population admixture

The 522 clones planted in the Asturias common garden were genotyped with the Illumina
In�nium assay described in Plomion et al. (2016a), resulting in 5,165 high-quality polymorphic
SNPs. There were on average only 3.3 missing values per genotype (ranging between 0 and
142). For each clone, the proportions of ancestry from each of the six known gene pools were
estimated in Jaramillo-Correa et al. (2015) using the Bayesian approach available in Structure
(Pritchard et al. 2000), and were then averaged by population. Populations were assigned to the
gene pool that contributed more than 50% ancestry and the other gene pools were considered
as ‘foreign‘ gene pools. First, we calculated a population admixture score A, as the proportion
of ancestry from foreign gene pools (Table X.6). Second, we calculated a population admixture
score D that considers both the proportion of foreign ancestries and the divergence between
the main and foreign gene pools (Table X.6). For that, we weighted the proportions of ancestry
from foreign gene pools by the sum of the allele frequency divergence of the main and foreign
gene pool from the common ancestral one (Fk , which should be numerically similar to FST ;
Falush et al. 2003). We developed D considering that some gene pools are more divergent than
others and thus may bring higher genetic diversity to an admixed population at the same level
of introgression. A was highly correlated with D (Pearson correlation coe�cient of 0.91; Table
X.6), and also with a related index that used weights based on pairwise FST (Table X.6).
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3.4 Population-speci�c environmental heterogeneity and climate
harshness indexes

To describe the climate under which the populations have evolved, we used the climatic
variables at 1-km resolution and averaged over the period 1901-1950 from the ClimateEU
database (Marchi et al. 2020). Topographic data were generated from NASA’s Shuttle Radar
Topography Mission (SRTM) at 90-m resolution and then aggregated at 1-km resolution. We
used the SAGA v 2.3.1 (Conrad et al. 2015) to calculate the topographic ruggedness index (TRI)
which quanti�es the terrain heterogeneity, i.e. di�erences in elevation between adjacent cells
(Riley et al. 1999). Soil variables were extracted from the European Soil Database at 1-km
resolution (Hiederer et al. 2013). All environmental variables used are listed in Table X.7 and
were mean-centered and divided by their standard deviation prior to analyses.

To calculate the environmental heterogeneity around each population location, we extracted
raster cell values of the climatic, topographic and soil variables within a 20-km radius around
each population location, and kept only raster cells that fell within forested areas, to avoid
including environmental data from non-suitable areas (e.g. lakes, mountain peaks; Section 1.3.2
of the Supplementary Information). We then performed a principal component analysis (PCA)
on the raster cell values and extracted the PC1 and PC2 scores of each cell, accounting for 45.2%
and 34.1% of the variance, respectively (Fig. X.10). To obtain the four indexes of environmental
heterogeneity, we calculated the variances of the PC1 and PC2 scores in a 20-km and 1.6-km
radius around each population location. The environmental heterogeneity indexes were only
very weakly correlated (Pearson correlation coe�cients lower than 0.36) with the number of
forested cells (i.e. the area considered to calculate the indexes), ensuring that the estimated
e�ects of environmental heterogeneity in further analyses were not due to the area per se
(Stein et al. 2014, Triantis et al. 2003).

To describe the climate harshness at each population location, we used a drought index
(the summer heat moisture index averaged over the period 1901-1950, SHM, Table X.7) and an
index related to severe cold events (the inverse of the extreme minimum temperature during
the period 1901-1950, invEMT, Table X.7). These two indexes were selected as maritime pine
shows local adaptation patterns associated with cold tolerance (Grivet et al. 2011) and because
detecting changes in the within-population genetic variation along a drought gradient would
be key to anticipate tree population responses to ongoing climate change.

3.5 Bayesian statistical modelling

We modeled the eight phenotypic traits with the same Bayesian statistical model, in which
we estimate the linear relationship between the within-population genetic variance and each
of the potential drivers successively (i.e. one model per driver): the two admixture scores, the
four environmental heterogeneity indexes and the two climate harshness indexes. Each trait y
followed a normal distribution (Fig. X.1), such as:

ybpcr = N(µbpc ,σ 2
r )

µbpc = β0 + Bb + Pp +Cc(p)
(3.1)

where σ 2
r is the residual variance, β0 the global intercept, and Bb , Pp and Cc(p) are the block,

population and clone (nested within population) varying intercepts, which are drawn from a
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common distribution, such as: [
Bb
Pp

]
∼ N

(
0,

[
σ 2
B

σ 2
P

] )
Cc(p) ∼ N(0,σ 2

Cp
)

(3.2)

where σ 2
B and σ 2

P are the variance among blocks and populations and σ 2
Cp

are the population-
speci�c variances among clones (i.e. the within-population genetic variation). To estimate the
association between σ 2

Cp
and its potential underlying drivers, we expressed σCp as follows:

σCp ∼ LN
(
ln(σCp ) −

σ 2
K

2 + βXXp,σ
2
K

)
(3.3)

where σCp is the mean of the population-speci�c standard deviation among clones σCp and
Xp is the potential driver considered (see Section 2 in the Supplementary Information for more
details).

To test the accuracy of the model estimates for σ 2
K and βX , we simulated data based on two

traits (height in Portugal and Bordeaux at 20 and 25-month old, respectively). For each trait,
we ran 100 simulations and extracted the mean standard error and bias error of the estimates
and the coverage of the 80% and 95% credible intervals.

Model speci�cation and �t were performed using the Stan probabilistic programming lan-
guage (Carpenter et al. 2017), based on the no-U-turn sampler algorithm. Models were run with
four chains and between 2,500 iterations per chain depending on the models (including 1,250
warm-up samples not used for the inference). All analyses were undertaken in R version 3.6.3
(R Core Team 2020) and scripts are available at https://github.com/JulietteArchambeau/H2Pinpin.

3.6 Validation step on independent data

To validate our results for height, we used an independent dataset provided by Ricardo Alía
in which 23 populations shared with the CLONAPIN network were planted in a progeny test
near Asturias (thus in a similar environment). As the progeny test is based on families, we
were able to estimate the additive genetic variance within populations. We applied the same
model as in our study (replacing clones by families) to height measurements when the trees
were 3 and 6-year old (see Section 8 of the Supplementary Information for more details).

4 Results

In the data simulation, σ 2
K (the standard deviation of the logarithm of the within-population

genetic variation) and βX (the coe�cient of the potential drivers of the within-population
genetic variation) were properly estimated by the models (Table X.9 and X.10). Across 100
simulations, the mean standard error was around 0.066 for σ 2

K and 0.054 for βX , the mean bias
error was around 0.018 for σ 2

K and -0.004 for βX , the coverage of the 80% credible interval was
around 93% for σ 2

K and 80% for βX , and the coverage of the 95% credible interval was around
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98% for σ 2
K and 96% for βX (Table X.9 and X.10). These simulations therefore showed that, under

the assumption that the statistical model re�ects the processes at work, our model displayed a
satisfactory accuracy to be used in the following analyses.

The proportion of variance explained by the models (i.e. the sum of the among-population,
among-clone and among-block variances) and the variance partitioning varied broadly across
traits (Fig. X.11 and Section 5.3 in the Supplementary Information). More speci�cally, the
models explained between 40% and 50% of the variance for phenology-related traits, between
30% and 40% for functional traits, and from 20% for height in Portugal to almost 60% for height
in Bordeaux at 85-month old (Fig. X.11). Residual variance explained most of the variance for
all traits, except for height in Bordeaux at 85-month old, where 40% of the variance came from
variation among populations, 40% from residuals and the remaining 20% from variation among
clones (Fig. X.18). Variation among populations was higher than variation among clones for
height and δ13C (Figs. X.14, X.16, X.18, X.20 and X.28), but not for SLA and phenology-related
traits (Figs. X.26, X.22 and X.24).

Environmental heterogeneity indexes and population admixture scores were not associated
with within-population genetic variation for any trait (Figs. IV.2 and X.12). In contrast, we
found a consistent negative association with the inverse of the extreme minimum temperature
across the three common gardens for height, indicating that populations undergoing severe
cold events display less genetic variation (Fig. IV.2). Interestingly, in the Bordeaux common
garden, this negative relationship was found at 25-month old, but not at 85-month old (Fig.
IV.2). A negative association with the summer heat moisture index was also detected for height
in Asturias, and less markedly but still with a high probability in Bordeaux at 25-month old (Fig.
IV.2). Holding all other parameters constant, a one-standard deviation increase in the inverse of
the extreme minimum temperature was associated, on average, with a 32.6%, 21.6% and 17.9%
decrease of σCp for height in Portugal, Bordeaux at 25-month old and Asturias, respectively.
Similarly, a one-standard deviation increase in the summer heat moisture index was associated,
on average, with 15.6% and 23.8% decrease of σCp for height in Bordeaux at 25-month old
and Asturias, respectively (see details of the calculation in Section 4 of the Supplementary
Information). Unexpectedly, populations experiencing severe cold events showed higher genetic
variation for SLA (Fig. IV.2). Within-population genetic variation was not correlated with the
number of clones per population for any trait (maximum Pearson correlation coe�cient = 0.57;
Table X.11).

Importantly, in the validation analysis, we also found a negative association between the
inverse of the extreme minimum temperature and the within-population additive genetic
variation for height at 3-year old, but not at 6-year old, and we did not �nd any association
with the other potential drivers (Fig. IV.3).

5 Discussion

How quantitative genetic variation is maintained within populations remains a long-standing
open question that has been extensively explored in theoretical work but lacks empirical evi-
dence to date (Johnson and Barton 2005). Our study suggests that genetic variation for height
in maritime pine is lower in populations exposed to severe cold events, thus supporting the
hypothesis that quantitative genetic variation in �tness-related traits is lower in populations
under strong selection (Fisher 1930). Across all traits studied, we did not �nd higher genetic
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Figure IV.2. Median and 95% credible intervals of the βX posterior distributions. βX coe�cients stand for the association between the
within-population genetic variation and its potential underlying drivers on the x-axis: the inverse of the extreme minimum temperature
during the studied period (invEMT), the summer heat moisture index (SHM), an admixture score (A), the environmental heterogeneity in
a 20-km radius around the population location (EH1[20km] and EH2[20km]) calculated based on the projection of the PC1 and PC2 scores.
Colors stand for the di�erent traits under study and the shapes for the di�erent types of traits, i.e. functional traits (squares), phenology-
related traits (triangles) and height (circles).

Figure IV.3. Validation step using independent height measurements from a common garden near Asturias. Median and 95% credible
intervals of the βX posterior distributions are shown. In the validation analysis, βX coe�cients stand for the association between the
within-population additive genetic variation and its potential underlying drivers on the x-axis. A description of the drivers can be found in
the legend of Fig. IV.2.
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variation in populations located in heterogeneous landscapes, which goes against the predic-
tions of some theoretical models (McDonald and Yeaman 2018, Walsh and Lynch 2018) and an
empirical study in lodgepole pine (Yeaman and Jarvis 2006). Admixed populations did not show
higher genetic variation, suggesting that the observed patterns are not confounded by gene
�ow between distinct gene pools increasing genetic variation. Empirically-based detection of
the footprints of natural selection on within-population genetic variation is much needed to
understand how populations are adapted to their current environments and will evolve under
changing conditions.

5.1 Severe cold events may decrease within-population genetic vari-
ation

Height genetic variation was lower in populations experiencing harsher climates, especially
severe cold events (invEMT; Fig. IV.2). This result supports the hypothesis that strong stabilizing
selection in harsh environments depletes quantitative genetic variation within populations
(Fisher 1930) and echoes similar results in another forest tree, Quercus oleoides. For this
Mesoamerican white oak species, Ramírez-Valiente et al. (2019) found lower genetic variation
averaged over functional and growth traits in populations experiencing low precipitation and
high temperatures during the dry season. The importance of severe cold events as a driver of
height genetic variation in maritime pine is supported by the association between candidate-
gene allele frequency and temperature gradients (Grivet et al. 2011, Jaramillo-Correa et al.
2015), suggesting a major role of minimum temperatures in the species adaptive evolution.
Indeed, lower genetic variation in areas subject to cold events may enhance adaptation to local
conditions, but it may also hamper the adaptive potential of populations under new climates.
Noticeably, severe cold events were highly correlated with altitude in our study (Pearson’s
correlation of 0.9), and adaptation patterns along altitudinal gradients are common in forest
trees (e.g. Kurt et al. 2012). Therefore, we cannot exclude that the association between height
genetic variation and severe cold events is triggered by more complex environmental factors
typical of high altitude conditions (e.g. reduced vapor pressure de�cit, higher maximum solar
radiation; Körner 1995).

The lower within-population genetic variation for height in populations experiencing harsher
climates was unlikely to be the result of demographic factors (i.e. processes that a�ect the
e�ective population size independently from natural selection; Lawton-Rauh 2008) given that
(i) the pattern of reduced genetic variation was only observed for height and not for the other
traits, whereas we would have expected demographic factors to impact all traits similarly; (ii)
we did not �nd any association between quantitative genetic variation and genetic diversity
estimated with molecular markers (i.e. expected heterozygosity) for any trait (see Section 7 of
the Supplementary Information; Rodríguez-Quilón et al. 2015) suggesting negligible e�ects
on trait genetic variation of di�erences in e�ective population size among populations; and
(iii) our results suggest a negligible impact of gene �ow across gene pools (as evaluated by
population admixture indexes) on within-population genetic variation for any trait (Fig. IV.2).

The di�erences in height genetic variation among populations were also unlikely to orig-
inate from the expression of hidden genetic variation in novel environments (i.e. ‘cryptic
genetic variation’; Schlichting 2008) as the lower height genetic variation in populations from
harsher climates was consistent across the three common gardens (i.e. independent of their
environmental conditions) and thus likely to be intrinsic to the populations. Last, the sampled
populations may not fully cover the climatic range of maritime pine (Fig. IV.1), which may
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reduce our ability to detect an association between some climatic drivers and within-population
genetic variation; this could explain, for example, the lack of association with the summer heat
moisture index (SHM), an important climatic factor in Mediterranean environments.

Most importantly, the validation analysis provided independent evidence that additive within-
population genetic variation for height was lower in populations experiencing extreme cold
events for young trees but not for older trees (Fig. IV.3). This supports the robustness of our
study and suggests that our results were unlikely to be biased by considering the total variance
instead of the additive one, which was somehow expected as two previous studies in maritime
pine found low non-additive e�ects for growth (Gaspar et al. 2013), and height and diameter
(Lepoittevin et al. 2011).

With respect to speci�c leaf area (SLA), where only a single common garden (i.e. a single
environment) was assessed, cryptic genetic variation (as de�ned above) may indeed underlie
the higher genetic variation found in populations experiencing severe cold events. A study
in maritime pine suggests that SLA depends strongly on environmental conditions (Alía et al.
2014), which is also supported in our study by its low genetic control (Fig. X.26). Cryptic
genetic variation is more likely to be expressed when the di�erences between original and
current environments are large (Paaby and Rockman 2014) , as it may be the case for some of
the populations planted in the Portugal common garden. However, this is not a general pattern
as we did not �nd any association between the climatic transfer distances (i.e. the absolute
di�erence between the climate in the population and the climate in the test site) and the
within-population genetic variation for SLA (see Section 6 of the Supplementary Information).

5.2 Environmental heterogeneity is not associated with higher ge-
netic variation

Populations from heterogeneous environments did not show higher genetic variation for any
trait (Fig. IV.2), which was also the case for the independent height data from the validation
analysis (Fig. IV.3). This goes against a previous estimate in lodgepole pine suggesting that up
to 20% of the genetic variation in growth within populations is explained by environmental
heterogeneity (Yeaman and Jarvis 2006). A potential explanation of this discrepancy is the
smaller experiment size in our study compared to that of Yeaman and Jarvis (103 populations
with an average of 28 planting sites per population). However, in our study, we obtained
reasonable credible intervals for most traits (allowing the detection of associations with other
drivers) and data simulations suggested that our models have adequate power, rendering this
explanation unlikely.

Another explanation is that genetic variation within populations is not a�ected by the envi-
ronmental heterogeneity at the regional scale imposed by the 1 × 1 km resolution of our climate
dataset but at �ner spatial scales (also discussed in Yeaman and Jarvis 2006). Indeed, populations
can adapt along microgeographic environmental gradients despite the homogenizing e�ect of
gene �ow (Richardson et al. 2014), even for forest tree populations with their long-generation
times and large e�ective population sizes (Scotti et al. 2016). However, a correlation between
regional and microgeographic environmental heterogeneity across the maritime pine range is
very likely: populations showing the highest environmental heterogeneity in our study were
located in mountainous areas in which we also expect higher microgeographic variation, e.g.
the Cómpeta population (COM) located in the Tejeda and Almijara mountains (southern Spain),
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the Arenas de San Pedro population (ARN) located in the Sierra de Gredos (central Spain) or
the Pineta population (PIE) located close to the Punta di Forchelli (Corsican mountains), while
populations with the lowest environmental heterogeneity were located on �at plateaus, e.g.
populations from the Landes plateau and the Atlantic coastal regions in France (HOU, MIM,
PET, VER, OLO, STJ, PLE), and populations from the central Spain plateau near to Segovia (CUE,
COC, CAR). Thus, even if genetic variation was maintained by migration-selection balance
at microgeographic scales, we would have been able to detect the e�ect of environmental
heterogeneity at the regional scale. Nevertheless, more studies characterizing adaptation at
microgeographic scales are needed to assess the spatial scale of genetic adaptation in maritime
pine.

Another explanation of the discrepancy with Yeaman and Jarvis (2006) could be that we
used young trees (between 20 and 85-month old) while they used 20-year old trees. Indeed, the
processes generating within-population genetic variation might be age-dependent, as shown
for climate harshness in Bordeaux, where the association was present when the trees were
25-month old but not in older trees. In forest trees, genetic parameters often vary with age; e.g.
heritability generally increases with age until reaching a plateau, especially for height-related
traits (Balocchi et al. 1993, Jansson et al. 2003, Johnson et al. 1997, Kroon et al. 2011, Sierra-
Lucero et al. 2002), but may also decrease in some cases (Kroon et al. 2011, Lu and Charrette
2008). In maritime pine, an increase in heritability with age was found in Costa and Durel
(2011) but not in Kusnandar et al. (1998). To our knowledge, the drivers of heritability changes
with age remain unclear. Competition among trees in common gardens might play a role in
the expression of age-dependent heritabilities for diameter growth, but not for height in Pinus
radiata (Lin et al. 2013). Replicating our analysis in older trees would be interesting to further
assess patterns of association between within-population genetic variation and environmental
heterogeneity, and their underlying causes.

Finally, a last explanation is related to the di�erent biological features between lodgepole
pine and maritime pine. Lodgepole pine has extensive gene �ow and low population structure
(FST = 0.016 in Yeaman et al. 2016) while maritime pine shows restricted gene �ow with strong
population structure (at least six distinct gene pools and FST = 0.112; Jaramillo-Correa et al.
2015; our study) and fragmented distribution (Alberto et al. 2013). Pollen dispersal kernels in
maritime pine are highly leptokurtic, as for other wind-pollinated pines (Robledo-Arnuncio
and Gil 2005, Schuster and Mitton 2000), with estimated mean dispersal distances from 78.4 to
174.4m (de-Lucas et al. 2008). Interestingly, McDonald and Yeaman (2018) showed that high
levels of quantitative genetic variance can be maintained when a trait is under stabilizing
selection only at intermediate levels of migration. Migration rates in maritime pine may
therefore not be strong enough to compensate for the purifying e�ect of natural selection in
heterogeneous environments, especially in mountainous areas which may represent barriers
to gene �ow and where populations are more isolated (see González-Martínez et al. 2007 for
maritime pine). Meanwhile, in the homogeneous plateaus of the Landes forest and central Spain,
natural selection may be low because conditions are more favorable, and these populations are
less isolated, which may maintain genetic variation at levels similar to those of populations in
heterogeneous landscapes. Investigating local adaptation and gene �ow at microgeographic
scales in natural populations of maritime pine located in both homogeneous and heterogeneous
environments would be highly valuable to understand why environmental heterogeneity does
not seem to play a major role in maintaining genetic variation in this species. Moreover,
conducting similar analyses in sister species such as Scots pine, with low population genetic
structure and continuous populations (Alberto et al. 2013), could help to determine whether
genetic variation in forest tree populations experiencing higher migration rates are more prone
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to be impacted by environmental heterogeneity.

5.3 Link to �tness and genetic constraints may explain the di�erent
patterns across traits

Height was the only trait that showed a consistent association between within-population
genetic variation and climate harshness. This pattern supports the hypothesis that natural
selection mainly depletes genetic variation of traits most directly related to �tness. Indeed,
height can be seen as the end-product of multiple ecophysiological processes (Grattapaglia
et al. 2009). Taller trees perform better in the competition for light, water and nutrients, and are
therefore more likely to have higher fecundity (Aitken and Bemmels 2015, Rehfeldt et al. 1999,
Wu and Ying 2004) and lower mortality (Wycko� and Clark 2002, Zhu et al. 2017). However,
taller trees are also more susceptible to spring and fall cold injury (Howe et al. 2003) and to
drought (Bennett et al. 2015, McDowell and Allen 2015, Stovall et al. 2019). In maritime pine,
e�ective reproductive success (i.e. the number of successfully established o�spring) is related
to tree size. Indeed, González-Martínez et al. (2006) found a signi�cant positive female selection
gradient for diameter (height was not tested, but diameter and height are strongly correlated in
conifers; see, for example, Fig. 1 in Castedo-Dorado et al. 2005 for maritime pine) and suggested
that o�spring mothered by bigger trees could have a selective advantage due to better quality
seeds favouring resilience in the face of severe summer droughts and microsite variation. This
evidence also supports the idea of height as a relevant �tness component in maritime pine.

Although less directly related to �tness than height, leaf phenology-related traits exhibit
steep adaptation gradients in forest trees and have a relatively high heritability, e.g. 0.15-0.51 for
bud burst in pedunculate oak (Scotti-Saintagne et al. 2004), 0.45-1 in Sitka spruce (Alfaro et al.
2000) and 0.54 for bud burst and 0.30 for the duration of bud burst in our study in maritime pine.
Gauzere et al. (2020) showed that both the mean and the variance of leaf phenology-related
traits varied along an altitudinal gradient in natural oak populations, with populations at high
altitude having a narrower �tness peak. We might therefore have expected lower genetic
variation for leaf phenology-related traits in populations experiencing severe cold events (and
at higher altitude), as found along an altitudinal gradient in sessile oak for bud phenology
(Alberto et al. 2011). However, such association may be hidden in common gardens with
di�erent climates from those of the populations’ location, because of the release of high levels
of cryptic genetic variation (Schlichting 2008). Moreover, phenology-related traits can show
opposite genetic clines in common gardens and natural populations (e.g. Vitasse et al. 2009).
Estimating genetic parameters of phenology-related traits directly in the �eld, which is now
technically possible by using large genomic datasets and advanced statistical methodologies
(Gienapp et al. 2017), may therefore be necessary to investigate potential associations between
within-population genetic variation and climate harshness, or other selective pressures.

Importantly, theoretical work suggests that much of the genetic variation associated with
a trait is likely maintained by pleiotropic e�ects, which are independent of the selection on
that trait, implying that stabilizing selection can only act on a reduced number of independent
dimensions in the trait space (Barton 1990, Walsh and Lynch 2018). As we used univariate
models, we cannot exclude that the likely associations with height genetic variation originate
from genetic correlation with other traits under selection, or that the lack of association
with other traits (notably functional traits such as δ 13C) does not originate from genetic
constraints (Walsh and Blows 2009). For example, in maritime pine, trait canalisation and
genetic constraints may explain low quantitative genetic di�erentiation for hydraulic traits
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(e.g. P50, the xylem pressure inducing 50% loss of hydraulic conductance; Lamy et al. 2014),
and sapling height was found to be either positively or negatively associated with disease
susceptibility depending on the pathogen (e.g. necrosis length caused by Diplodia sapinea or
Armillaria ostoyae, respectively; Hurel et al. 2019). Trade-o�s between traits may also explain
the unexpected association between minimum temperatures and high genetic variation for SLA,
as, for instance, SLA is known to be positively correlated with leaf life span, low assimilation
rates and nutrient retention, i.e. traits linked to conservation of acquired resources (Ackerly
et al. 2002).

6 Conclusion

Our manuscript contributes to the current debate on the maintenance of quantitative genetic
variation within populations by providing empirical support for the role of natural selection in
decreasing genetic variation. Indeed, our results consistently showed that genetic variation for
height is lower in maritime pine populations experiencing severe cold events (i.e. experiencing
stronger selection). Surprisingly, we found no association between environmental heterogeneity
at the regional scale and within-population genetic variation for several traits; whether for
technical reasons (e.g. sample size, spatial scale considered) or for genuine biological reasons
(e.g. too low migration), it would be worth further exploration. Indeed, understanding the
evolutionary forces shaping within-population genetic variation could shed light on how
populations adapt to their local environment, thereby providing insight into how they may
respond to future changes in environmental conditions.
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1 Abstract

Population response functions based on climatic and phenotypic data from common gardens
have long been the gold standard for predicting quantitative trait variation in new environments.
However, prediction accuracy might be enhanced by incorporating genomic information that
captures the neutral and adaptive processes behind intra-population genetic variation. We
used �ve clonal common gardens containing 34 provenances (523 genotypes) of maritime
pine (Pinus pinaster Aiton) to determine whether models combining climatic and genomic
data capture the underlying drivers of height-growth variation, and thus improve predictions
at large geographical scales. The plastic component explained most of the height-growth
variation, probably resulting from population responses to multiple environmental factors. The
genetic component stemmed mainly from climate adaptation, and the distinct demographic
and selective histories of the di�erent maritime pine gene pools. Models combining climate-of-
origin and gene pool of the provenances, and positive-e�ect height-associated alleles (PEAs)
captured most of the genetic component of height-growth and better predicted new provenances
compared to the climate-based population response functions. Regionally-selected PEAs
were better predictors than globally-selected PEAs, showing high predictive ability in some
environments, even when included alone in the models. These results are therefore promising
for the future use of genome-based prediction of quantitative traits.

2 Introduction

Global change is expected to have a profound impact on forests (Franklin et al. 2016, Seidl
et al. 2017), and whether tree populations will be able to migrate or persist across their current
range is uncertain (Aitken et al. 2008). Assessing the potential of populations to accommodate
future environmental conditions requires a thorough understanding of the origin of variation
in quantitative traits subject to natural selection (Alberto et al. 2013, Shaw and Etterson 2012).
To this aim, a necessary �rst step is to quantify the plastic and genetic components of adaptive
traits and their interaction in multiple environments (Des Marais et al. 2013, Merilä and Hendry
2014), which has been done extensively in forest trees (Franks et al. 2014). A second step consists
of identifying the underlying drivers of these components (Merilä and Hendry 2014). The
plastic component corresponds to the ability of one genotype to produce varying phenotypes
depending on the environment (Bradshaw 1965). Phenotypic plasticity can help individuals
to overcome new conditions up to a certain threshold (Nicotra et al. 2010), and can be to
some extent genetically assimilated and therefore involved in the evolutionary process of
adaptation (Pigliucci et al. 2006). The genetic component can stem from both neutral (e.g.
population demographic history and genetic drift) and adaptive processes (e.g. adaptation to
local biotic and abiotic environments), both processes implying changes in allele frequencies.
Populations are locally adapted when they have higher �tness in their own environment than
populations from other environments (Kawecki and Ebert 2004). In forest trees, a large amount
of work highlighted the importance of climate in driving the plastic and genetic responses of
quantitative traits to new environmental conditions (Savolainen et al. 2007, Valladares et al.
2014b). However, it is still unclear how multiple and interacting drivers underlying quantitative
trait variation could be combined to improve predictions of population responses to global
change. The increasing availability of genomic data opens new opportunities to boost prediction
accuracy, which is critical for breeding (i.e. genomic selection; Grattapaglia and Resende 2011),
to anticipate future distribution of natural populations (e.g. Razgour et al. 2019), or to support
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the ongoing development of assisted gene �ow strategies aiming to help populations adapt to
future environments (Browne et al. 2019, MacLachlan et al. 2021, Mahony et al. 2020).

In forest trees, a long history of common gardens (Langlet 1971) has provided a unique
framework to associate population-speci�c quantitative trait variation with large environmental
or geographical gradients, and thus identify populations at risk under climate change (Fréjaville
et al. 2020, Pedlar and McKenney 2017, Rehfeldt et al. 2018, 2003, 1999, Savolainen et al. 2007).
The development of population response functions was a step forward to evaluate the relative
contribution of plasticity -associated to current climatic conditions (i.e. the climate in the
common gardens)- and genetic adaptation -associated to the past climatic conditions under
which the populations have evolved (i.e. the climate-of-origin of the provenances tested)- in
explaining quantitative trait variation (O’Neill et al. 2008, Wang et al. 2010). These models have
now been applied to a large variety of traits (Benito Garzón et al. 2019, Leites et al. 2012a,b,
Vizcaíno-Palomar et al. 2020) and one of their main conclusions is that trait variation across
species ranges is mostly associated with the climate in the common garden (i.e. related to
the plastic component) and, only to a much lesser extent, with the climate-of-origin of the
provenances (i.e. related to the genetic component) (Benito Garzón et al. 2019, Leites et al.
2012b). Importantly, these models do not allow us to determine to what extent associations
between trait variation and provenance climate-of-origin, or the higher trait values of local
compared to foreign populations, are caused by adaptive or neutral processes (Franks et al.
2014, Hereford 2009, Leimu and Fischer 2008). This limits our understanding of the genetic
processes that led to the current patterns of quantitative trait variation, and therefore our
ability to predict trait variation of new (untested in common gardens) populations under new
environments.

The advent and generalization of genomic tools have enhanced our understanding of adaptive
and neutral genetic processes resulting in trait variation, and their relationship with climatic
gradients (Leroy et al. 2020, Savolainen et al. 2013, Sork 2018). Integrating genomic information
into quantitative trait prediction would be highly valuable to consider intraspeci�c variability
at a �ner scale than in current models (Mahony et al. 2020), thereby probably improving
model accuracy, especially for populations not previously planted in commons gardens. More
speci�cally, rapidly growing knowledge on trait-associated alleles identi�ed by Genome-Wide
Association Studies (GWAS) is promising for anticipating the genetic response of populations
to new environments (Browne et al. 2019, Exposito-Alonso et al. 2018a). For example, Mahony
et al. (2020) used counts of alleles positively associated with the traits of interest (PEAs) to
describe patterns and identify drivers of local adaptation in lodgepole pine. Recent studies
have shown that most quantitative traits are highly polygenic (see reviews in Barghi et al.
2020, Pritchard et al. 2010; and de Miguel et al. 2020 for maritime pine) and that the e�ect of
trait-associated alleles may vary across environments (Anderson et al. 2013, Ti�n and Ross-
Ibarra 2014), which complicates the use of genomic information in trait prediction. In addition,
patterns in allele frequencies induced by population demographic history are often correlated
with environmental gradients (Alberto et al. 2013, Latta 2009, Nadeau et al. 2016), which makes
di�cult to separate the signature of population structure from that of adaptive processes
(Sella and Barton 2019, Sohail et al. 2019). At the species range scale, population structure
hinders the use of genomic relationship matrices, which provide more accurate estimates of
genetic parameters (e.g. breeding values, additive and non-additive variance) within breeding
populations than previously used pedigree-based approaches (Bouvet et al. 2016, El-Dien et al.
2018). Indeed, admixed populations or distinct genetic groups may present di�erent means and
variances of their genetic values, which requires new statistical methods to estimate them (e.g.
Mu� et al. 2019). Thus, integrating genomic information into quantitative trait prediction in
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natural populations, while highly valuable, remains challenging.

Forest trees are remarkable models to study the genetic and plastic components of quantitative
trait variation. Forest tree populations often have large e�ective population size and are
distributed along a large range of environmental conditions, which makes them especially
suitable to study current and future responses to climate (Alberto et al. 2013, Savolainen et al.
2007). Moreover, forest trees remain largely undomesticated (including those species with
breeding programs) and, therefore, genetic variation in natural populations has been little
in�uenced by human-induced selection (Neale and Savolainen 2004). However, forest trees
have also large and complex genomes (especially conifers; Mackay et al. 2012), that show a rapid
decay of linkage disequilibrium (Olson et al. 2010), and extensive genotyping would be needed
to identify all (most) relevant polymorphisms underlying (highly polygenic) quantitative traits
(Jaramillo-Correa et al. 2015, Neale and Savolainen 2004). In addition, although early results
have been convincing in predicting trait variation within tree breeding populations (i.e. using
populations with relatively low e�ective population size; Jarquín et al. 2014, Resende Jr et al.
2012, Resende et al. 2012), predicting the genetic component of trait variation across populations
or geographical regions of forest trees remains poorly explored.

In the present study, we aim to identify the potential drivers of the plastic and genetic
components of height growth in distinct maritime pine gene pools (i.e. genetic clusters) and
investigate how common garden data can be combined with genomics to e�ciently predict
height-growth variation across the species range. We compared Bayesian hierarchical mixed
models that inferred height-growth variation in maritime pine as a function of climatic and
genomic-related variables, using a clonal common garden network (CLONAPIN) consisting
of �ve sites and 34 provenances (523 genotypes and 12,841 trees). First, we evaluated the
relative importance of potential drivers underlying height-growth variation. We expected that:
(i) the plastic component explains most trait variation and is associated with climate in the
common gardens, (ii) the genetic component is driven by both adaptive processes, such as
adaptation to climate, and neutral processes, such as population demographic history. Second,
we compared the out-of-sample predictive ability (on unknown observations or provenances)
of models based exclusively on the common garden design and models including (either
separately or jointly) potential predictors of the genetic component of trait variation, notably
those related to climate and positive-e�ect height-associated alleles (PEAs). We expected that
the distinct demographic history of maritime pine gene pools, the provenance climate-of-origin
and the counts of PEAs, either combined or alone, may improve height-growth predictions
of unknown provenances. We also expected that height-associated alleles selected regionally,
i.e. in particular environments, would have a better predictive ability than globally-selected
alleles. Our study is a step towards integrating the recent knowledge brought by large genomic
datasets to the modelling of quantitative trait variation in forest trees. Combining common
gardens with genomic tools hold great promise for speeding up and improving trait predictions
at large scales and for a wide range of species and populations. However, a robust framework
is needed to make reliable predictions and to determine when and to what extent genomics can
help in making decisions in conservation strategies or in anticipating population responses to
climate change.
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3 Materials & Methods

3.1 Plant material and phenotypic measurements

Maritime pine (Pinus pinaster Ait., Pinaceae) is an economically important forest tree, largely
exploited for its wood (Viñas et al. 2016). It has also an important ecological function stabilizing
coastal and fossil dunes and as keystone species supporting forest biodiversity. Native to the
western part of the Mediterranean Basin, the Atlas mountains in Morocco, and the south-
west Atlantic coast of Europe, its natural distribution spans from the High Atlas mountains
in the south (Morocco) to French Brittany in the north, and from the coast of Portugal in
the west to western Italy in the east. Maritime pine is a wind-pollinated, outcrossing and
long-lived tree species that can grow on a wide range of substrates, from sandy and acidic soils
to more calcareous ones. It can also withstand many di�erent climates: from the dry climate of
the Mediterranean Basin to the highly humid climate of the Atlantic Europe region, and the
continental climate of central Spain. Maritime pine populations are highly fragmented and can
be grouped into six gene pools (Alberto et al. 2013, Jaramillo-Correa et al. 2015; see Fig. V.1),
that is genetic clusters that cannot be di�erentiated on the basis of neutral genetic markers
and that probably derive from a common glacial refuge (Bucci et al. 2007, Santos-del-Blanco
et al. 2012).

Height growth is a key adaptive trait in forest trees, including maritime pine. Height can
be seen as the end-product of multiple ecophysiological processes that are both genetically
regulated and a�ected by multiple environmental e�ects (Grattapaglia et al. 2009). As such,
taller trees compete more e�ciently for light, water and nutrients, and are also more likely
to have high fecundity (Aitken and Bemmels 2015, Rehfeldt et al. 1999, Wu and Ying 2004).
We obtained height data from the clonal common garden network CLONAPIN, consisting
of �ve common gardens located in di�erent environments (also referred as test sites; Fig.
V.1). Three sites are located in the Atlantic Europe region, with mild winters, high annual
rainfall and relatively wet summers: Bordeaux in the French part, and Asturias and Portugal in
the Iberian part, the Portugal site experiencing slightly colder winters and half the summer
precipitation than the site in Asturias. The two other sites, Cáceres and Madrid, are located
in the Mediterranean region with high temperatures and intense summer drought, as well as
large precipitation di�erences between summer and winter. In 2010 or 2011 depending on the
test site, clonal replicates from 34 provenances were planted in a randomized complete block
design with eight blocks. For each provenance, trees represent between 2 and 28 genotypes
(clones), on average about 15 (see Rodríguez-Quilón et al. 2016 for details). Genotypes were
originally sampled from natural populations, with enough distance among trees (over 50 m)
to avoid sampling related individuals. Depending on the site, height was measured from one
to four times, when the trees were between 13 and 41 month old (Table XI.1). Only survivors
were measured for height, which resulted in a strongly unbalanced design as 92% and 75% of
the trees died in Cáceres and Madrid, respectively (partly due to the clay soils and a strong
summer drought). After removing genotypes for which we had no genomic information, we
analyzed 33,121 height observations from 12,841 trees and 523 genotypes (Table XI.2).
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Figure V.1. The �ve common gardens and 34 provenances of maritime pine (CLONAPIN common garden network) used in this study. The
distribution of maritime pine is also shown (based on EUFORGEN map, http://www.euforgen.org/). Pie charts represent the proportions
belonging to each gene pool for each provenance (see legend) as estimated in Jaramillo-Correa et al. (2015). Provenance names can be found
in Table XI.2.

.

3.2 Gene pool assignment and positive-e�ect alleles (PEAs)

DNA was extracted from leaves collected in the Asturias common garden and genotyped
with a 9k Illumina In�nium SNP assay (described in Plomion et al. (2016a)), resulting in 5,165
high-quality polymorphic SNPs scored on 523 genotypes. There were on average only 3.3
missing values per genotype (ranging between 0 and 142). For each genotype, the proportion
belonging to each gene pool was estimated in Jaramillo-Correa et al. (2015), using nine nuSSRs
as well as a subset of the same SNPs as in our study (1,745 SNPs) and the Bayesian approach
available in Structure v2.3.3 (Pritchard et al. 2000; Table XI.3). This gene pool assignment
aimed at re�ecting the neutral genetic structure in maritime pine, which results from population
demographic history and genetic drift, but may also arise from di�erent selective histories
across gene pools.

Based on the 523 genotypes for which there were both genotypic and phenotypic data, we
performed four GWAS following the Bayesian variable selection regression (BVSR) methodology
implemented in the piMASS software (Guan and Stephens 2011), correcting for population
structure and using the height BLUPs reported in de Miguel et al. (2020), that accounted for site
and block e�ects. First, a global GWAS was performed to identify SNPs that have an association
with height at range-wide geographical scales, thus using the combined phenotypic data from
the �ve common gardens. Second, three regional GWAS were performed to identify SNPs that
have a local association with height in a particular geographical region r (i.e. in a particular
environment), thus using separately data from the Iberian Atlantic common gardens (Asturias
and Portugal), the French Atlantic common garden (Bordeaux) and the Mediterranean common
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gardens (Madrid and Cáceres). For each of the four GWAS, we selected the 350 SNPs (∼7% top
associations) with the highest absolute Rao-Blackwellized estimates of the posterior e�ect size,
corresponding approximately to the estimated number of SNPs with non-zero e�ects on height
in a previous multi-trait study using the same SNP marker set (de Miguel et al. 2020). These
SNPs were used to compute the counts of global and regional positive-e�ect alleles (gPEAs and
rPEAs) for each genotype (see Section 2.1 of the Supplementary Information for more details).

3.3 Climatic data

In forest trees, large-scale patterns of allele frequencies or quantitative trait variation are
known to be associated with climatic variables related to mean temperature and precipitation
(e.g. Eckert et al. 2010, Fréjaville et al. 2020, Leites et al. 2019, Mahony et al. 2020, McLane
et al. 2011), or episodic climatic conditions, such as summer aridity or maximum temperatures
(Fréjaville et al. 2020, Grivet et al. 2011, Jaramillo-Correa et al. 2015, McLane et al. 2011, Rehfeldt
et al. 2003). As climate change will cause major changes in temperature and precipitation in the
near future, particularly in the Mediterranean basin, there is a need to understand the complex
in�uence of climatic variables on quantitative trait variation. We extracted monthly and yearly
climatic data from the EuMedClim database with 1 km resolution (Fréjaville and Benito Garzón
2018). The climatic similarity among test sites was described by a covariance matrix Ω including
six variables related to both extreme and average temperature and precipitation in the test
sites during the year preceding the measurements, and with at most a correlation coe�cient
of 0.85 among each other (see Section 3.1 in the Supplementary Information for more details).
The climatic similarity among provenances was described by a covariance matrix Φ including
four variables related to the mean temperature and precipitation in the provenance locations
over the period from 1901 to 2009 (i.e. representing the climate under which provenances have
evolved), and with at most a correlation coe�cient of 0.77 among each other (see Section 3.2 in
the Supplementary Information for more details).

3.4 Hierarchical height-growth models

Twelve height-growth models were compared. We �rst built two baseline models relying
exclusively on the common garden design and aimed at quantifying the relative contribution of
the genetic and plastic components of height-growth variation (models M1 and M2; Table V.1).
Second, we used climatic and genomic data to detect association of height-growth variation
with potential underlying drivers related to plasticity, adaptation to climate or gene pool
assignment (i.e. a proxy of the population demographic history and genetic drift experienced
by the populations), and estimated gene pool-speci�c total genetic variances (models M3 to
M6; Table V.1). Third, we built models either including separately or combining potential
drivers of the genetic component of height-growth variation to predict unknown observations
and provenances without relying on the common garden design (models M7 to M12; Table
V.1). In every model, the logarithm of height (log(h)) was used as a response variable to
stabilize the variance. Tree age at the time of measurement i was included as a covariate to
account for the average height-growth trajectory. This implies that all models shared the form
log(hi) = f (agei) +m(covariates), where m(covariates) is the rest of the model. Therefore,
all models can also be written hi = exp(f (agei)) exp(m(covariates)), which explains why
covariates in our models a�ect height growth (i.e. modulate the height-growth trajectory)
rather than simply height. We used a second-degree polynomial to account for tree age
(f (agei + age2

i )) because the logarithm of height �rst increases linearly with age and then
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reaches a threshold (Fig. XI.11). Each tree was measured between one and four times (14% of
the trees were measured only once), but we did not include a varying intercept for each tree as
it resulted in model miss-speci�cation warnings and strong over�tting. A description of each
model speci�cation follows.

Variables Baseline Explanatory models Predictive models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Site/Block × × × × × × × × × × × ×
Provenance × × × × × ×
Genotype × × × × ×
Site × Provenance ×
Climatic similarity among sites × × × ×
Proportion belonging to each gene pool × × × × × ×
Gene pool-speci�c genetic variance ×
Climatic similarity among provenances ×
Provenance climate-of-origin × × ×
Global PEAs (gPEAs) × ×
Regional PEAs (rPEAs) × ×

Table V.1. Variables included in the height-growth models. Baseline models M1 and M2 separate the genetic and plastic components of
height-growth variation via varying intercepts relying exclusively on the common garden design. Explanatory models (models M3 to M6)
test di�erent hypotheses regarding the potential drivers underlying height-growth variation. Predictive models (models M7 to M12) are used
to compare the predictions on new observations and provenances when combining or including separately genomic and climatic drivers
of height-growth variation. The provenance climate-of-origin is evaluated using the precipitation of the driest month, min.pre, and the
maximum temperature of the warmest month, max.temp. gPEAs and rPEAs correspond to the counts of height-associated positive-e�ect
alleles, selected either globally (across all common gardens) or regionally (in speci�c common gardens). The provenance climate-of-origin
and the PEAs were included in the predictive models with site-speci�c slopes. All models also contained the age e�ect, not shown in the
table.

Baselinemodels M1 andM2: separating the genetic and plastic components of height-
growth variation

In the baseline model M1, height h was modeled as a function of tree age, varying intercepts
for the sites Ss and blocks nested within sites Bb(s) (i.e. the plastic component), and varying
intercepts for the provenances Pp and genotypes within provenances Gд(p) (i.e. the genetic
component):

log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µsbpд = Ss + Bb(s) + Pp +Gд(p)

(3.1)

where X is the 3-column design matrix and β is a vector including the intercept β0 and the
coe�cients βaдe and βaдe2 of the �xed e�ect variables (aдe and aдe2, respectively). µsbpд is the
vector of varying intercepts. Model M2 was based on model M1 but including an interaction
term between provenance and site (SsPp). We also performed a model without the genetic
component (called M0) whose outputs are reported in the Supplementary Information.

Explanatorymodels M3 toM6: potential drivers underlying height-growth variation

In model M3, we hypothesized that the plastic component of height growth was in�uenced
by the climatic similarity among test sites during the year preceding the measurements. This
model can be expressed with the same likelihood as M1 but with the vector of varying intercepts
equal to:

µisbpд = Ss + Bb(s) + Pp +Gд(p) + csis

csis ∼ N(0,Ω σ 2
csis )

(3.2)
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where Ω is the covariance matrix describing the climatic similarity between test sites
s during the year i preceding the measurements (Fig. XI.6) and csis are varying intercepts
associated with the climatic conditions in each test site s during the year i . In M3, the plastic
component was partitioned between the regression on the climatic covariates (csis ) and the
deviations related to block and site e�ects due to the local environmental conditions that are
not accounted for by the selected climatic covariates.

In models M4, M5 and M6, we investigated the drivers of the genetic component of height
growth. In M4, we hypothesized that the genetic component was in�uenced by the proportion
belonging to each gene pool j . M5 extends M4 by estimating di�erent total genetic variances in
each gene pool while accounting for admixture among gene pools, following Mu� et al. (2019).
Equations for M4 and M5 can be found in Section 4 of the Supplementary Information. In M6,
we hypothesized that populations are genetically adapted to the climatic conditions in which
they evolved. Thus, we quanti�ed the association between height growth and the climatic
similarity among provenances, while still accounting for the gene pool assignment, such as:

µijsbpд = Ss + Bb(s) + Pp +Gд(p) + csis + cpp +
6∑
j=1

qдjдj

cpp ∼ N(0,Φσ 2
cpp )

(3.3)

where qдj corresponds to the proportion belonging of each genotype д to the gene pool
j, дj is the mean relative contribution of gene pool j to height growth, Φ is the covariance
matrix describing the climatic similarity between provenances p (Fig. XI.9) and cpp are varying
intercepts associated with the climate in each provenance p. Therefore, in M6, the genetic
component was partitioned among the regression on the climatic covariates (cpp), the gene
pool covariates (дj), and the deviations related to the genotype (Gд(p)) and provenance (Pp)
e�ects (resulting, for example, from adaptation to environmental variables not measured in
our study).

Predictive models M7 to M12: combining climatic and genomic information to im-
prove predictions

In this last set of models, we replaced the provenance and genotype intercepts with di�erent
potential drivers of height-growth variation that do not rely directly on the common garden
design, namely the gene pool assignment (as in M4), two variables describing the climate in
the provenance locations (min.pre the precipitation of the driest month and max.temp the
maximum temperature of the warmest month) and either global or regional PEAs. This allowed
us to determine whether these potential drivers were able to predict the height-growth genetic
component as accurately as the provenance and genotype intercepts (i.e. the variables relying
directly on the common garden design). In models M7 and M8, the potential predictors were all
included together in the models to quantify their predictive performance conditionally to the
other predictors, and were expressed as follows (here for M7 ):

µjsbpд = Ss + Bb(s) +
6∑
j=1

qдjдj + βmin.pre,smin.prep

+ βmax .temp,smax .tempp + βдPEA,sдPEAд

(3.4)

where min.prep and max .tempp are the climatic variables in the provenance locations,
βmin.pre,s and βmax .temp,s their site-speci�c slopes, дPEAд the counts of global PEAs and βдPEA,s
its site-speci�c slopes. M8 is identical to M7, except that the counts of gPEAs were replaced by
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counts of rPEAs (i.e. regionally-selected alleles, with positive e�ects in speci�c geographical
regions/environments). We also performed models in which the potential predictors were
included individually to determine their speci�c predictive performance: the gene pool assign-
ment in M9, the provenance climate-of-origin in M10 and the counts of gPEAs and rPEAs, in
M11 and M12, respectively.

All models were inferred in a Bayesian framework as this approach better handles unbalanced
and multilevel designs (Clark 2005) and also to better propagate sources of uncertainty from
data and parameter values into the estimates (de Villemereuil 2019). Priors used in the models
were weakly informative and are provided in Section 4.2 of the Supplementary Information. To
build the models, we used the R package brms (Bürkner 2017), based on the no-U-turn sampler
algorithm. Models were run with four chains and between 2,000 and 3,000 iterations per chain
depending on the models (including 1,000 warm-up samples not used for the inference). All
analyses were undertaken in R version 3.6.3 (R Core Team 2020) and scripts are available at
https://github.com/JulietteArchambeau/HeightPinpinClonapin.

3.5 Comparing model goodness-of-�t and predictive ability

Three partitions of the data (P1, P2 and P3) were used to evaluate model goodness-of-�t
(i.e. in-sample explanatory power, using training datasets) and predictive ability (out-of-
sample predictive power, using test datasets). In P1, we aimed to predict new observations,
an observation being a height-growth measurement in a given year on one individual. P1
corresponds to a random split of the data between 75% of observations used to �t the models
(the training dataset of 24,840 observations) and 25% of observations used to evaluate model
predictions (the test dataset of 8,281 observations). Notice that the test dataset of the P1
partition was not totally independent from the training dataset as it belongs to the same
genotypes/provenances and blocks/sites. In P2 and P3, we aimed to predict new provenances.
P2 corresponds to a random split between a training dataset of 28 provenances and a test dataset
containing the remaining 6 provenances. P3 corresponds to a non-random split between a
training dataset of 28 provenances and a test dataset containing 6 provenances with at least
one provenance from each under-represented gene pool (i.e. northern Africa, south-eastern
Spain and Corsican gene pools; see Section 6.3 of the Supplementary Information for details).
Therefore, the test datasets of the P2 and P3 partitions represent fully independent sets of
provenances.

To evaluate the model goodness-of-�t, we calculated the in-sample (in the training dataset)
proportion of the variance explained by each modelm in each common garden s , conditional on
the age e�ect, such as: R2

ms |aдe = (Vpredms
−Vage2s )/(Vys −Vage2s ), where Vpredms

is the variance
of the modeled predictive means from model m in site s , Vys the phenotypic variance in the
site s and Vage2s the variance explained by the age e�ect in the model M2 in site s . We used
Vage2 of model M2 and not of model m because the variance predicted by the di�erent �xed
e�ects of some of the models (M7 to M12) could not be properly separated. Moreover, as
M2 is the model with the highest predictive ability among the models relying only on the
common garden design (Table XI.4), it constitutes an adequate baseline for model comparison.
In addition, for baseline models M1 and M2, we also calculated the in-sample proportion of
the variance explained by the di�erent model components (i.e. genetic, environment and
genetic × environment) conditional on the age e�ect, e.g. for the genetic component in M1:
R2

1,дen |aдe = (Vpred1,дen − Vage1)/(Vy − Vage1) where Vpred1,дen is the variance explained by the
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genetic component (including the provenance and clone e�ects) in M1, Vy the phenotypic
variance and Vage1 the variance explained by the age e�ect in M1.

Finally, to evaluate the model predictive ability, we calculated the out-of-sample (in the
test dataset) proportion of the variance predicted by each model m in each common garden
s conditional on the age e�ect, that we called prediction R2

ms |aдe . Details about calculating
prediction R2

ms |aдe and some supplementary indexes used for model comparison are presented
in Section 5 of the Supplementary Information.

4 Results

4.1 Underlying drivers of height-growth variation

In this part, we disentangled the di�erent components of height-growth variation and
provided insights on their underlying drivers. Baseline and explanatory models (i.e. models
M1 to M6) explained ∼81.5% of height-growth variation, including 57% due to the age e�ect
(Table XI.4). Based on M1, ∼47% (45-48% CIs) of the variation that was not explained by the
age e�ect (i.e. deviating from the growth trajectory) came from the plastic component, ∼11%
(11-12% CIs) from the genetic component and ∼43% (42-44% CIs) remained unexplained (Fig.
V.2A & Table XI.5). In M2 (same model as M1 but adding the provenance-by-site interaction),
the proportion of variance explained by the provenance-by-site interaction was not di�erent
from zero (Table XI.5). Therefore, we mostly interpret parameter estimates of M1 (Fig. V.3),
whose results are very similar to M2, but with smaller credible intervals (Tables XI.15 & XI.18).
The plastic component was largely driven by the variance among sites (σ 2

S ), with very little
contribution of the variance among blocks (σ 2

B ; XI.15). Trees grew the least in Madrid and the
most in Asturias (Fig. V.3 & Table XI.16). The genetic component was equally attributed to the
variance among provenances (σ 2

P ) and genotypes (σ 2
G ; Table XI.15), with the average height of

the provenances appearing to be in�uenced by their belonging to particular gene pools (Fig.
V.3; and more details in Section 6.1.1 of the Supplementary Information).

Based onM3, the plastic component of height-growth came only marginally from the variance
associated with climate similarity among sites, which was more than �ve times lower than
the variance associated with site intercepts (Fig. V.2B & Table XI.19). However, M3 may be
unable to separate the e�ect of these two components (see Section 6.1.2 in the Supplementary
Information). Indeed, when estimating the e�ect of the climate similarity among sites in a
model that did not include varying intercepts for the sites, we found that height growth was
positively associated with the climatic conditions in Bordeaux and Asturias, and negatively
with those in Madrid and Cáceres, the two Mediterranean sites, and to a lesser extent also in
Portugal (Table XI.24).

Based on M6, the genetic component of height growth was mostly determined by the climatic
similarity among provenances and to a lesser extent by the gene pool assignment (Fig. V.2C &
Table XI.29). However, the e�ects of the gene pools and climatic similarity among provenances
were partially confounded, so that the association between height growth and the gene pools
was stronger when the climatic similarity among provenances was not included in the models
(i.e. model M4; Table XI.25). Populations from climatic regions neighboring the Atlantic
Ocean, and mainly belonging to the French and Iberian Atlantic gene pools, were generally
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Figure V.2. Understanding the genetic and plastic bases of height-growth variation and their potential underlying drivers. A) shows the
variance partitioning conditional on age from model M1 in the P1 partition. B) displays the partitioning of the plastic (i.e. environment)
component in model M3 among the intercepts of the sites (common gardens) (Ss ) and the intercepts associated with the climatic similarity
among sites during the year preceding the measurements (csis ). C) displays the partitioning of the genetic component in model M6 among
the intercepts of the provenances (Pp ), the intercepts associated with the climatic similarity among provenances (cpp ) and the intercepts of
the the gene pools (дj ). The median and 0.95 credible intervals shown in B) and C) were obtained by �tting the models M3 and M6 on the P1
partition. Provenance names can be found in Table XI.2.

the tallest (e.g. CAD, SIE, PUE, LAM and CAS in northwestern Spain; all provenances along
the French Atlantic coast; Figs. V.2 & V.3). Interestingly, the Leiria (LEI) provenance, which
has a strong Iberian Atlantic component (Table XI.3) and had the highest climate intercept
estimate (similar to that of the French Atlantic provenances; Fig. V.2C), was not among the
tallest provenances (Fig. V.3), probably due to its mixed ancestry with the central Spain gene
pool (Table XI.3). Also, the Corsican provenances showed contrasted climate intercepts (Fig.
V.2), with a positive in�uence on height growth for Pinia (PIA) but not for Pineta (PIE), located
under more Mediterranean conditions, which could explain their large di�erences in height
growth (Fig. V.3). Finally, the four provenances from south-eastern Spain and northern Africa
gene pools, under harsh Mediterranean climates, showed all negative climate intercepts (Fig.
V.2). Noticeably, the total genetic variance of the Iberian and French Atlantic gene pools were
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Figure V.3. Posterior distributions of the site and provenance intercepts (Ss and Pp ) in model M1 on a map representation. Provenances are
colored according to the main gene pool they belong to. The exact values of the median, standard deviation and 0.95 credible interval of the
posterior distributions of the site and provenance intercepts are shown in Tables XI.16 and XI.17, respectively. The top right picture shows
the height di�erence in 2019 between one tree from Coca in central Spain (COC) and another from Puerto de Vega in the Iberian Atlantic
region (PUE) growing next to each other in the Bordeaux common garden. The bottom picture shows the height di�erence between the trees
growing in Madrid and Asturias, under highly contrasted environments, three years after plantation (2013). Provenance names can be found
in Table XI.2.

likely to be lower than that of the Corsican and south-eastern Spain gene pools, and to a lesser
extent the central Spain gene pool, thus resulting in gene pool-speci�c heritabilities (model M5;
Table XI.28 and Fig. XI.13A).

4.2 Improvedprediction of newobservations andprovenances by com-
bining climatic and genomic data

In this part, we compared the baseline model M2 (relying exclusively on the common garden
design) to the predictive models that either combine genomic and climatic drivers of height-
growth variation (i.e. models M7 and M8) or include each driver separately (i.e. models M9 to
M12). Models combining genomic and climatic data generally explained in-sample variation
almost as well as M2, and sometimes even better; e.g. model M8 (which includes regional
PEAs, rPEAs) in the Mediterranean sites (Madrid and Cáceres) (Fig. XI.10). Models including
each driver of height-growth variation separately had a lower goodness-of-�t (for all common
gardens) than both M2 and the models combining the genomic and climatic data, except for
M12 (the model including only rPEAs), which explained in-sample variation almost as well as
M2 and even better than M7 in Madrid (Fig. XI.10).

Model di�erences in their predictive ability on new observations (observations not used to
�t the models; test dataset of the P1 partition) showed similar patterns than for the goodness-
of-�t (Table V.4), which was expected as the new observations were sampled among the same
provenances and genotypes. However, importantly, models combining genomic and climatic
data provided much better predictions of height-growth on new provenances (provenances not
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used to �t the models; test datasets of the P2 and P3 partitions) than did M2, with M8 having
a better predictive ability than M7 in the Mediterranean sites in the P2 partition and in the
Atlantic sites in the P3 partition (Fig. V.4). Models including each driver of height-growth
variation separately had also a higher predictive ability on new provenances than M2, albeit
lower than models combining genomic and climatic data, except model M12 that showed a
higher predictive ability than M7 in the Mediterranean sites in the P2 partition (Fig. V.4). In
model M12, one standard deviation increase in rPEAs was associated, on average, with 19.0%
increase in height in Madrid, 12.7% in Cáceres, 13.0% in Portugal, 10.4% in Asturias and 9.6% in
Bordeaux (section 6.4 of the Supplementary Information). More details on model comparisons
are given in Section 5 of the Supplementary Information.

Figure V.4. Model predictive ability on new observations (P1 partition) or new provenances (P2 and P3 partitions) based on the out-of-sample
proportion of predicted variance conditional on the age e�ect (prediction R2

ms |aдe ) in the test datasets (data not used to �t the models). In the
P1 partition, the training dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25%
observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances and the test dataset contains the
remaining 6 provenances. The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset
containing 6 provenances with at least one provenance from each under-represented gene pool. The exact values of the prediction R2

ms |aдe
estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9 (P2 partition) and XI.12 (P3 partition).

80



5 Discussion

We combined genomic, climatic and phenotypic data from �ve common gardens and 34
provenances of maritime pine (over 30,000 observations) to predict range-wide variation in
height growth, a key adaptive trait in forest trees. The plastic component explained the
largest part of the deviation from the mean height-growth trajectory (∼47%), probably due
to multiple (confounded) environmental factors, including climate. The genetic component
explained ∼11% of the deviation from the mean height-growth trajectory and was mainly
associated with the provenance climate-of-origin (a proxy of adaptation to climate), whose
e�ect was partially confounded with the proportion belonging to distinct gene pools (a proxy
for population demographic history and genetic drift, probably re�ecting also the di�erent
selective histories of the gene pools). Importantly, we showed that models combining climatic
drivers of adaptation, gene pool assignment and counts of height-associated positive-e�ect
alleles (PEAs) captured well the genetic component underlying height-growth variation. They
also better predicted height growth of new provenances than models relying exclusively on
the common garden design or models including separately climatic and genomic information
(e.g. the widely used climate-based population response functions). Interestingly, PEAs that
show a regional association with height growth (rPEAs) had a higher predictive ability than
PEAs identi�ed globally across the species range (gPEAs). These results pave the way towards
integrating genomics into large-scale predictive models of quantitative trait variation.

5.1 Predominant role of height-growth plasticity

Plants are known for their remarkable phenotypic plasticity to changing environments
(Bradshaw 1965). In long-lived forest trees, the plastic component of quantitative trait variation
estimated based on the common garden design is generally higher than the genetic component
(Benito Garzón et al. 2019, Franks et al. 2014), e.g. in maritime pine (Chambel et al. 2007,
Corcuera et al. 2010, de la Mata et al. 2012, Vizcaíno-Palomar et al. 2020). This plastic component
is also generally associated with the climatic conditions experienced by the trees (Benito Garzón
et al. 2019, Franks et al. 2014), allowing them to overcome changing climate up to a certain
threshold (Matesanz et al. 2010, Nicotra et al. 2010, Valladares et al. 2014a). In our study, the
plastic component of height growth was largely higher than the genetic component (Fig. V.2)
and, although climate plays a role, was likely to be driven by multiple and interacting drivers
including the biotic environment, soil quality, and other factors not considered in our study.

Plants also present an important genetic variation in plasticity (i.e. the genotype-by-
environment interaction, G×E; Des Marais et al. 2013, Sork 2018), often approximated by
the family or provenance-by-site interaction in forest tree common gardens, as is the case in
our study. G×E is particularly prevalent for growth traits in trees (Li et al. 2017), as already
shown in maritime pine (Alía et al. 1997, Corcuera et al. 2010, Correia et al. 2010, de la Mata
et al. 2012; but see Chambel et al. (2007) where no provenance-speci�c responses were observed
under two di�erent watering regimes). In our study, provenance-by-site interaction was only
weakly associated with height growth and the proportion of variance it explained was not
di�erent from zero (model M2; Table XI.5). Previous work in the context of tree breeding
argued that G×E may hinder model transferability across sites and populations (Resende Jr et al.
2012, Resende et al. 2012). In maritime pine, our results suggest that large-scale predictions of
height-growth variation will be only marginally impacted by not accounting for provenance-
by-environment interaction. However, further work is necessary to assess the importance of
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the genetic variation of plasticity at the genotype level.

5.2 Potential drivers underlying height-growth genetic component

Our study shows that the height-growth genetic component in maritime pine is mostly
associated with adaptation to climate, whose e�ect is partially confounded with the e�ect
of gene pool assignment, re�ecting both adaptive (di�erent selective histories) and neutral
processes (population demographic history and genetic drift) (Fig. V.2; see also Jaramillo-Correa
et al. 2015). For example, the higher growth of most provenances from the French Atlantic gene
pool (known for their high growth under a wide range of conditions, including Mediterranean
sites in our study; see also Alía et al. 1997, Corcuera et al. 2010, de la Mata et al. 2012) was both
associated with the provenance climate-of-origin and the gene pool assignment. As another
example, in the northern Africa gene pool, the Madisouka (MAD) provenance was taller than
the Tamrabta (TAM) provenance, which could be both explained by its noticeable ancestry
proportion (23.3%) from the south-eastern Spanish gene pool (Jaramillo-Correa et al. 2015)
or its adaptation to lower elevation (300 m lower than TAM). As a last example, the Leiria
(LEI) provenance grew well in Asturias and Bordeaux as was the case for French Atlantic
provenances (that share similar climates) but unlike them, it did not maintain growth in drier
and warmer sites, probably due to a di�erent genetic background (this provenance has a strong
central Spain gene pool component; Table XI.3). Nevertheless, in contrast to the three examples
above, for some provenances, the e�ects of the gene pool assignment and adaptation to climate
on height growth could be clearly separated. This was the case, for example, for the Corsican
provenances: the higher growth of Pinia (PIA) than Pineta (PIE) can only be explained by
adaptation to di�erent environmental conditions (and in particular climate), as both belong to
the same gene pool. Indeed PIA is at the sea level under a climate similar to that of provenances
from Central and south-eastern Spain whereas PIE is located at an altitude of 750 m a.s.l. in
the mountains under a climate similar to that of the Atlantic provenances (Fig. XI.9). These
di�erent adaptations within a same gene pool calls for a more targeted investigation of the
Corsican gene pool. More generally, a QST − FST analysis supported adaptive di�erentiation of
height growth in maritime pine (see details in Section 7 of the Supplementary Information).

The entanglement of the e�ect of climate adaptation and gene pool assignment to explain
the genetic component of height-growth variation may partly stem from the distinct selective
histories experienced in di�erent parts of maritime pine range, despite gene pools being
identi�ed using genetic markers considered neutral (Jaramillo-Correa et al. 2015). This is
supported by the estimation of gene pool-speci�c heritabilities in our study (model M5): the
Corsican gene pool, and to a lesser extent the south-eastern Spain gene pool, have higher
heritabilities than the French and Iberian Atlantic gene pools (Fig. XI.13; and see Section 6.1.3
for a potential explanation of this pattern).

Overall, maritime pine proved to be a particularly suitable model species to study the joint
in�uence of genetic neutral (population demographic history, genetic drift) and adaptive
(climate adaptation) processes on quantitative traits. Further work on provenances that have
di�erent demographic histories but are exposed to similar climates (e.g. the LEI provenance and
provenances from the Atlantic gene pools) would be relevant for understanding how a given
genetic background guides population adaptation. Conversely, targeting provenances that
have a similar demographic history but are found in highly contrasted environments (e.g. the
Corsican provenances) would be valuable to identify signatures of adaptation while avoiding
common issues due to confounding population structure (Berg et al. 2019, Sella and Barton
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2019, Sohail et al. 2019). Likewise, investigating trait genetic architecture will also help better
understand how adaptive and neutral processes have shaped the genotype-phenotype map
and how this will in�uence future responses to selection (e.g. Kardos and Luikart 2021; see
de Miguel et al. 2020 for maritime pine). Finally, it would also be critical to consider drivers of
adaptation other than climate, such as resistance to pathogens or other biotic-related traits.

5.3 Towards integrating genomics into population response functions

Anticipating how provenances will grow in new environments is key to guide forest con-
servation strategies and population translocations to compensate for rapid climate change
(Aitken and Whitlock 2013). To date, population response functions based on the climate in the
provenance location have been the most widely used method for anticipating trait values when
transplanting provenances in new environments (Fréjaville et al. 2020, O’Neill et al. 2008, Pedlar
and McKenney 2017, Rehfeldt et al. 2018, 2003, 1999, Wang et al. 2010). Genome-informed
predictive modelling of key adaptive traits is highly promising as it may provide a means
to further integrate adaptive or neutral genetic variation in the predictions, and to consider
intraspeci�c variability at a �ner scale than current models, thus gaining in prediction accuracy
(Holliday et al. 2017). In valley oak, Browne et al. (2019) used genomic estimated breeding
values (GEBVs; sum of the marker predicted e�ects, also known as polygenic scores) to identify
genotypes that will grow faster under future climates. In lodgepole pine, Mahony et al. (2020)
showed that phenotype-associated positive-e�ect alleles (PEAs, as used in our study) can predict
phenotypic traits (e.g. cold injury) as well as climatic or geographical variables. In our study, we
investigated whether including genomic information related to past demographic and selective
processes resulting in distinct gene pools and counts of trait-associated alleles could improve
range-wide height-growth predictions in maritime pine. Models combining climatic conditions
in the provenance location, gene pool assignment, and PEAs captured most of the genetic
component of height-growth variation (see Fig. XI.10) and better predicted height growth
of new provenances, compared to models relying exclusively on the common garden design
or models including separately climatic or genomic information (see Fig. V.4). This suggests
that range-wide trait prediction would bene�t from jointly considering di�erent sources of
information (i.e. climatic and genomic), even though they may have overlapping e�ects (e.g.
confounded e�ects of provenance climate-of-origin and gene pool assignment), as it may help
to embrace the complexity and multidimensionality of the genetic component underlying
quantitative traits. Noticeably, regional PEAs were generally better predictors of height growth
in new provenances than gene pool assignment or provenance climate-of-origin as, when they
were included alone in the models, they made better predictions in the driest common gardens
(Madrid, Cáceres and Portugal) and similar ones to models combining multiple drivers of height
growth variation in all common gardens except Bordeaux (P2 partition in Fig. V.4). Although
this highlights the major role that trait-associated alleles identi�ed using GWAS may play in
predictive modelling, predicting traits of new provenances depends also on the number of
provenances used to �t the models and the strength of the genetic relationship among them
(Hidalgo et al. 2016, Jarquín et al. 2014, Moghaddar et al. 2014, Resende et al. 2012). This
was re�ected in our study by better predictive ability on new provenances in the P2 partition
(random) compared to the P3 partition (containing provenances from underrepresented gene
pools) for models including climatic and genomic information separately but not for models
considering both jointly (Fig. V.4). Thus combining multiple sources of information may also
be particularly relevant for predicting traits in marginal or di�cult-to-access populations, as
they normally belong to underrepresented geographical areas/gene pools in ecological and
genetic studies.
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The high predictive ability of PEAs, both alone and combined with climatic and gene pool
information, was somehow unexpected given the sparse genomic sampling in our study: 5,165
SNPs to cover the 28 Gbp maritime pine genome (Zonneveld 2012). Indeed, conifers have
particularly huge genomes, generally ranging from 18 to 35 Gbp (Mackay et al. 2012) and
thus rendering the current cost of whole-genome resequencing prohibitive (Holliday et al.
2017). Targeted genotyping approaches, such as the one used in the present study, select
candidate genes based on previous population and functional studies, thus allowing to include
potential targets of selection and climate adaptation, but probably inducing an ascertainment
bias (Jaramillo-Correa et al. 2015). However, as height is a particularly polygenic trait (degree of
polygenicity estimated at ∼7% in de Miguel et al. 2020), we were able to identify a considerable
number of PEAs despite the weak genome coverage of our study. Further genomic sampling
would be highly valuable to capture the polygenic architecture of height more broadly, turning
PEAs into much better predictors than the provenance climate-of-origin or the gene pool
assignment, and ultimately making climatic data redundant, at least for main range populations
(see above for marginal populations). This would also allow to characterize the genetic variation
within provenances more precisely, thereby increasing the estimation accuracy and reducing the
residual variance. Similar to Mahony et al. (2020) and MacLachlan et al. (2021) who selected the
positive-e�ect alleles as the 1% of SNPs that showed the strongest association with phenotypes
(estimated via a GWAS performed on 18,525 SNPs), we used PEA counts instead of the more
commonly used polygenic scores (Browne et al. 2019, Fuller et al. 2020, Pritchard et al. 2010).
Unlike polygenic scores, PEAs do not account for allele e�ect sizes, thus minimizing the
circularity of the analysis (i.e. e�ect sizes that are estimated based on the same dataset as the
one used for the models, only serve for PEAs identi�cation) and potentially enhancing the
prediction accuracy across genetic groups compared to polygenic scores. Indeed, low observed
transferability of polygenic scores across genetic groups (Barton et al. 2019, Martin et al. 2017,
2019) may stem from varying e�ect sizes of "peripheral" alleles (i.e. alleles indirectly a�ecting
the phenotype), as suggested in Mathieson 2021).

Although combining climatic and genomic information allowed us to capture most of the
genetic component of height-growth variation (Fig. XI.10), the residual variance remained
high in our study. As already mentioned, this may be partly related to the models’ di�culty
in accounting for genetic variation within provenances, which might be improved by denser
genomic sampling. However, this unexplained variance may also originate from developmental
stochasticity, which can play an important role in explaining di�erences between individuals
with the same genotype (Ballouz et al. 2019, Vogt 2015). Height growth may also be in�uenced
by the correlative e�ects of other traits. For example, Stern et al. (2020) recently showed that
variation in some human traits (hair color and educational attainment), previously thought
to be under selection, can instead be explained by indirect selection via a correlated response
to other traits. Therefore, multi-trait models may be the next necessary step to improve our
understanding and predictive ability of quantitative trait variation at large geographical scales
(e.g. Csilléry et al. 2020).

A last noticeable results was that rPEAs (positive-e�ect alleles identi�ed in speci�c geograph-
ical regions, i.e. particular environments) had generally a higher predictive ability than gPEAs
(positive-e�ect alleles identi�ed range-wide) (Fig. V.4). Interestingly, only a small proportion of
rPEAs were shared among geographical regions in our study (20% shared between the Iberian
and French Atlantic regions, 12% between the French Atlantic and Mediterranean regions, and
24% between the Iberian Atlantic and Mediterranean regions; Fig. XI.2), although we cannot
exclude that the proportion of shared rPEAs among regions is a function of the sample size
(see details in Section 2.2 of the Supplementary Information). Moreover, those that were shared
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among di�erent regions showed consistently similar e�ects across regions (e.g. positive e�ects
in two or more regions rather than antagonist e�ects). This supports the predominance of
conditional neutrality, i.e. alleles that are advantageous in some environments and neutral in
others, over antagonistic pleiotropy, i.e. alleles that are advantageous in some environments
and disadvantageous in others (Ti�n and Ross-Ibarra 2014). Such pattern has already been
reported in plants (Anderson et al. 2013, Prunier et al. 2012). Our results show that, despite a
high stability in the level of polygenicity for height between the Atlantic and Mediterranean
regions (de Miguel et al. 2020), height-growth variation in Mediterranean sites is unlikely to be
a�ected by the same loci as in the other regions, probably as a result of genetic divergence in
separated southern refugia during the last glaciation. Overall, identifying positive-e�ect alleles
for di�erent geographical regions separately has the potential to greatly improve the predictive
ability of the models, but at the cost of reducing GWAS power (due to lower sample size than
in global, wide-range analyses).

Finally, caution has to be taken when generalizing our results to older trees as the drivers
of height growth in young trees may di�er from that of adult trees. For example, G×E on
tree height can be age-dependant (Gwaze et al. 2001, Rehfeldt et al. 2018, Zas et al. 2003) and
the plastic component may be higher in younger trees, especially in maritime pine (Vizcaíno-
Palomar et al. 2020). Nevertheless, a recent measurement in the Bordeaux common garden
(2018) showed a high correlation between young saplings and 10-year old trees for height
(Pearson’s correlation coe�cient of 0.893 based on height BLUPs; see de Miguel et al. 2020 for
details on BLUP estimation). Moreover, our study remains indicative of how trees respond to
varying environmental conditions during establishment and early-growing stages, a critical
phase where most mortality (i.e. selection) is expected to take place (Postma and Ågren 2016).
In addition to ontogenic e�ects, high mortality in the Mediterranean common gardens (Cáceres
and Madrid), after a marked summer drought, may have biased estimates of some parameters
of interest. Indeed, if this environmental �ltering was not independent of tree height, it could
have resulted in an underestimation of the genetic variance. Nonetheless, height distributions
in Cáceres and Madrid were only slightly right-skewed, suggesting uniform selection across
height classes (Fig. XI.21), and thus no bias due to high mortality in these common gardens.

6 Conclusion

The present study connects climate-based population response functions that have been
extensively used in predictive models for forest trees (Leites et al. 2012a, Rehfeldt et al. 2003, 1999,
Wang et al. 2010) with recent genomic approaches to investigate the potential drivers behind the
genetic and plastic components of height-growth variation and predict how provenances will
grow when transplanted into new climates. The integration of genomic data into range-wide
predictive models is in its infancy and still lacks a well-established framework, especially for
non-model species such as forest trees. We showed that combining climatic and genomic
information (i.e. provenance climate-of-origin, gene pool assignment and trait-associated
positive-e�ect allele counts) can improve model predictions for a highly polygenic adaptive
trait such as height growth, despite sparse genomic sampling. Further genomic sampling may
help to improve the accuracy of the estimates, notably through improved characterization of
within-provenance genetic variation. Moreover, comparative studies between maritime pine
and more continuously distributed species (e.g. Scots pine; Alberto et al. 2013) and/or living
under stronger climatic limitations, would be highly valuable to determine whether our �ndings
can be generalized to species with contrasted population demographic and selective history.
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Finally, our study focuses speci�cally on the height-growth genetic component of standing
populations, but considering evolutionary processes (e.g. genetic drift in small populations,
extreme selection events, etc.) into the predictions would be necessary to anticipate the
response of future forest tree generations to changing climatic conditions and thus provide a
much-needed longer-term vision (Waldvogel et al. 2020).
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1 Abstract

A major goal in evolutionary biology is to understand how populations adapt to their
environment and predict how they will respond to future conditions, in particular climate
change. The genomic o�set approach is an increasingly popular metric aiming at identifying
populations for which the gene-environment relationships will be the most disrupted under new
climatic conditions, i.e. populations at risk of short-term climate maladaptation. However, this
approach relies on key assumptions in need of empirical validation. We used 9,817 SNPs from 34
populations of maritime pine, a keystone forest tree from southwestern Europe and north Africa.
Our results suggest that populations already experiencing mild-winter conditions (i.e. most
Atlantic populations and Mediterranean populations in southeastern France and northwestern
Italy) are at higher maladaptation risk under climate change. In a validation analysis based on
independent height and mortality data from common gardens and natural populations (National
Forest Inventories, NFI), genomic o�set predictions were generally negatively associated with
population performance. This con�rms the genomic o�set assumption that its predictions are
indicative of (future) �tness declines. However, genomic o�set predictions were highly sensitive
to how strictly the candidate SNPs were selected and the modelling approach used. Moreover,
among the di�erent ways tested to predict genomic o�set, none was consistently accurate in
the di�erent validation steps. This highlights the need for further research evaluating di�erent
genomic o�set estimation and validation approaches to produce robust and accurate predictions
that can con�dently be used to guide conservation and management strategies.

2 Introduction

There is growing evidence that biodiversity is already being a�ected by anthropogenic
climate change (Parmesan and Yohe 2003). Populations and species are experiencing range
shifts or losses (Chen et al. 2011), and changes in their genomic composition (Bradshaw and
Holzapfel 2006, Jump and Peñuelas 2005), which may result in widespread local population
decline and, potentially, species extinctions (Urban 2015, Wiens 2016). Forecasting the short-
term impacts of climate change on species and populations has recently been improved by
shifting from traditional distribution-based approaches, which assume that populations within
species respond uniformly to climate (Guisan and Thuiller 2005), to approaches integrating
intraspeci�c genetic variation (Banta et al. 2012, Benito Garzón et al. 2019, Jay et al. 2012,
Razgour et al. 2019, Valladares et al. 2014a). In particular, adaptive genetic variation is a key
component of population response to changing environmental conditions. Optimal phenotypes
to a given environment result from the evolutionary process of local adaptation through
natural selection (Davis and Shaw 2001, Hereford 2009, Jump and Peñuelas 2005, Kawecki
and Ebert 2004, Leimu and Fischer 2008, Savolainen et al. 2007). Malaptation is the �ip side
of adaptation: the process of producing suboptimal phenotypes (Brady et al. 2019b, Crespi
2000). Maladaptation occurs within populations as, for selection to act on a population, not all
individuals can have the optimal phenotype (Brady et al. 2019a, Crespi 2000). Maladaptation is
also common at the population level, with some populations deviating from the adaptive peak
in their native environment, which may be due to changes in population trait distributions or
in the environment, or arising from eco-evolutionary or eco-plasticity feedbacks (Angert et al.
2020, Brady et al. 2019b). Climate change is potentially one major cause of future maladaptation
as it disrupts the current adaptation patterns by shifting the optimal phenotype away from
current phenotypes (i.e. scenario of the moving target in Brady et al. 2019a). Populations with
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su�cient adaptive genetic variation are likely to cope with moderate environmental changes
by evolving towards the new optimum (Brady et al. 2019b). However, identifying the adaptive
component of individual and population genetic variation is highly challenging (Oetting et al.
2017), and whether populations will be able to adapt to the predicted rapid climate change
remains uncertain (Chevin et al. 2010).

In forest trees, adaptation to abiotic and biotic gradients shapes the geographical patterns of
phenotypic and genetic variation (Aitken et al. 2008, Alberto et al. 2013, Langlet 1971, Savolainen
et al. 2007, Sork et al. 1993). Maladaptation is also common, one of the best documented patterns
across boreal, temperate and Mediterranean tree species being that populations at the leading
edge would bene�t from a temperature increase, at least in the short term (Fréjaville et al.
2020, Pedlar and McKenney 2017, Rehfeldt et al. 2018, 2003, 2002, Savolainen et al. 2007). A
potential explanation is that these populations may not be at equilibrium with the current
climate due to adaptation lags along their post-glacial colonization routes (García-Valdés et al.
2013, Johnstone and Chapin 2003). Populations in the Mediterranean area are particularly
prone to maladaptation as they are often small and fragmented and therefore more subject to
genetic drift (Alberto et al. 2013). Moveover, the Mediterranean area is expected to experience
strong changes in precipitation and temperature in the coming decades (Hoegh-Guldberg
et al. 2018), rendering the tree populations in this region particularly vulnerable. This high
vulnerability is accentuated by the speci�c features of forest trees: they are sessile and have
long generation times, so that they may not be able to adapt or migrate fast enough to track
rapid climate change (Aitken et al. 2008, Browne et al. 2019, Dauphin et al. 2021, Jump and
Peñuelas 2005). They also show high phenotypic plasticity that could help to survive climate
change up to a certain threshold (Benito Garzón et al. 2019, Nicotra et al. 2010), or could even
promote evolutionary changes via genetic accommodation (Wund 2012). For all these reasons,
to what extent the short-term maladaptations caused by climate change will trigger widespread
local extinctions or be o�set by rapid adaptations or large plastic responses remains largely
unknown in forest trees. This question requires particular attention in forest trees as they have
great economic and ecological importance. Indeed, forest trees play a major role in terrestrial
ecosystems as foundation species, provide wood and �bre to satisfy an increasing demand of
wood-based products, and are a main source of carbon sequestration (Bonan 2008, Brockerho�
et al. 2017, Gibson et al. 2011, Hooper et al. 2005).

In this study, we used maritime pine (Pinus pinaster Ait.), a tree species with fragmented and
highly structured populations in the Mediterranean and Atlantic regions of western Europe and
North Africa (Jaramillo-Correa et al. 2015), to identify the populations whose gene-environment
relationships will be the most disrupted under climate change, i.e. populations at risk of short-
term climate maladaptation (Capblancq et al. 2020a). Based on 9,817 common (MAF> 1%) single
nucleotide polymorphisms (SNPs), we modeled the turnover in allele frequencies along current
environmental gradients and estimated a metric of change of the genomic composition required
to maintain the current gene-environment relationships under future climates across the species
range (referred as ’genomic o�set’ in Fitzpatrick and Keller 2015). Then we put special emphasis
in validating the key assumption that populations with high predicted genomic o�set should
experience a decrease in absolute �tness or declining demographic trends (Capblancq et al.
2020a). A �rst validation step consisted in detecting a negative association between population
performance (i.e. height and mortality rates) and genomic o�set predictions in common gardens
(rather than in future climates), and compared it with the association between population
performance and �ve climatic transfer distances. A second validation step involved searching
for an association between recent mortality rates in natural populations (based on National
Forest Inventories data) and genomic o�set predictions under future climates, assuming that
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populations predicted to su�er from short-term climate maladaptation already experience
higher mortality rates. Genomic o�set predictions in common gardens and natural populations
were derived for all possible combinations of four sets of SNPs (i.e. reference SNPs and three
sets of more or less strictly selected candidate SNPs for adaptation to climate using two gene-
environment association analyses, GEAs), two modelling approaches (i.e. Gradient Forests,
GF, and Generalised Dissimilarity Modelling, GDM) and two more or less alarming future
climate scenarios (only for predictions in natural populations). As the genomic o�set approach
does not rely on phenotypes, such validation of genomic o�set predictions with independent
phenotypic data is of major importance to assess whether populations with high genomic
o�set are truly at risk of �tness and demographic decline, and can therefore be con�dently
considered as vulnerable to climate change (Capblancq et al. 2020a, Rellstab et al. 2021).

3 Materials & Methods

3.1 Model species

Maritime pine (Pinus pinaster Ait., Pinaceae) is a wind-pollinated, outcrossing and long-lived
tree species with large economic and ecological importance in Western Europe and North
Africa: largely exploited for its wood, stabilizing coastal and fossil dunes and, as a foundation
species, supporting biodiversity (Viñas et al. 2016). Natural populations of maritime pine are
scattered over a large range of environmental conditions, which makes the species a relevant
case study for studying local adaptation. In addition, several studies have provided evidence of
genetic di�erentiation for adaptive traits in maritime pine (e.g. de Miguel et al. 2020, González-
Martínez et al. 2002). Maritime pine can grow in widely di�erent climates: the dry climate
along the northern coasts of the Mediterranean Basin (from Portugal to western Italy), the
(Mediterranean) mountainous climates of south-eastern Spain and Morocco, the wetter climate
of the Atlantic region (from north-western Spain and Portugal to the western part of France),
and the continental climate of central Spain. Maritime pine can also grow on a wide range
of substrates, from sandy and acidic soils to more calcareous ones, and can live in �re-prone
regions, showing intraspeci�c variability in �re-related traits such as early �owering and
serotiny (Budde et al. 2014, Tapias et al. 2004). Studying local adaptation in maritime pine
is challenged by its strong population genetic structure: six distinct gene pools have been
identi�ed (Alberto et al. 2013, Jaramillo-Correa et al. 2015), presumably resulting from the
expansion of as many glacial refugia (Bucci et al. 2007, Santos-del-Blanco et al. 2012).

3.2 Single-nucleotide polymorphism (SNP) genotyping

A rangewide sample of natural populations covering all known gene pools in maritime pine
(454 trees from 34 populations; see Table XII.1 for the number of trees in each population and
Fig. VI.1 for their location) were genotyped with the Illumina In�nium assay described in
Plomion et al. (2016b) and with an A�ymetrix assay developed in the framework of the H2020
EU B4EST project (4Tree; https://b4est.eu). We �ltered out SNPs with MAF < 1% and more
than 20% missing data, which resulted in 9,817 high-quality polymorphic SNPs, of which 2,855
were genotyped by both assays to ensure sample identity and estimate genotyping errors. The
percentage of missing data per tree was less than 12% for all trees, with an average of 2.5%.
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Figure VI.1. Location of the 34 genotyped populations and the �ve common gardens used in the validation steps and in which the same
34 populations were planted (CLONAPIN network). The environment strati�cation from Metzger (2018) shows the variety of environments
inhabited by maritime pine. The maritime pine distribution combines the EUFORGEN distribution, based on natural populations (http:
//www.euforgen.org/), and 10-km radius areas around the French and Spanish National Forest Inventory plots with maritime pine occurrence.

3.3 Climatic, soil, topographic and �re-related data

Climatic data were extracted from the WorldClim database at 30 arc-seconds spatial resolution
(Fick and Hijmans 2017). As a proxy of the climate under which the populations have evolved,
we used the average of four climatic variables over the period 1970-2000, namely the maximum
temperature of the warmest month (°C), the minimum temperature of the coldest month (°C),
the annual precipitation (mm) and the precipitation seasonality (coe�cient of variation, %). The
potential future climate was described by two shared socio-economic pathways (the moderately
alarming SSP3-7.0 and the strongly alarming SSP5-8.5) averaged over the period 2041-2060 at
2.5 arc-minutes spatial resolution. For each of these SSPs, the predictions of the nine global
climate models available in WorldClim were averaged to account for scenarios’ uncertainty (see
Section 1.2 in the Supplementary Information). Topographic data were generated from NASA’s
Shuttle Radar Topography Mission (SRTM) at 90 m resolution. We used the SAGA v2.3.1
(Conrad et al. 2015) to calculate the topographic ruggedness index (TRI; m) which quanti�es
the terrain heterogeneity, i.e. di�erences in elevation between adjacent cells (Riley et al. 1999).
Two soil variables were extracted from the European Soil Database at 1 km resolution: the total
water content in the topsoil (0-30 cm; mm) and the depth available to roots (cm) (Hiederer et al.
2013). The average of the monthly burned area (in hectares) from June 1995 to December 2014
was extracted from the GFED4 database at 0.25 degrees resolution (∼28 km resolution) (Giglio
et al. 2013). At the population level (i.e. one value per population location), these eight selected
environmental variables had at most a correlation coe�cient of 0.7 (Fig. XII.1).
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3.4 Identi�cation of candidate SNPs potentially involved in local adap-
tation

We identi�ed candidate SNPs potentially involved in local adaptation using both univariate
and multivariate genotype–environment association (GEA) methods following Forester et al.
(2018). Univariate GEA methods perform well for loci under moderate and strong selection but
not under weak selection, whereas multivariate GEA methods perform well across all levels of
selection. Missing allelic values were imputed using the most common allele within the main
gene pool of the genotype of concern (although we acknowledge that some genotypes had
high admixture rates).

For univariate GEA analysis, we used the standard covariate model with the Importance
sampling approximation implemented in the BayPass software (Gautier 2015). This model
explicitly accounts for the population genetic structure via a covariance matrix based on the
population allele frequencies. The association between each environmental covariate and the
SNPs was assessed according to the median Bayes Factor (in deciban units, db) calculated over
�ve independent runs. We used a threshold of 5 db (corresponding to 3:1 odds) to identify the
candidate SNPs.

For multivariate GEA analysis, we used Redundancy Analysis (RDA). Forester et al. (2018)
showed RDA to have the best ratio between a low rate of false positives and a high rate of
true positives across all levels of selection. We performed a partial RDA conditioned on the
ancestry coe�cients obtained with nine nuSSRs and 1,745 SNPs common to our study using
the Structure software (see details in Jaramillo-Correa et al. 2015). We extracted from the
signi�cant constrained axes the SNP loadings in the ordination space. The SNPs that are
more likely to be under selection (i.e. the candidate SNPs) are in the tail of the SNP loading
distribution, thus we used a three standard deviation cuto� to identify them.

We grouped the candidate SNPs identi�ed by BayPass and the RDA as follows (to represent
di�erent levels of con�dence): 1) the common candidates between the two GEA methods, 2)
the candidates under expected strong selection: RDA candidates that show a strong association
with at least one covariate, i.e. with βRDA > 0.3, and all the BayPass candidates, and 3) the
merged candidates identi�ed by at least one of the methods, either BayPass or the RDA, this
group being the less conservative.

3.5 Genomic o�set estimation

We had four sets of SNPs: the three sets of candidate SNPs de�ned above and a set of
reference SNPs including all 9,817 SNPs. First, independence of loci within each set of SNPs
was assessed by calculating pairwise linkage disequilibrium (LD) using the ’LD’ function of
the R package genetics v1.3.8.1.2. Then, for each set of SNPs, the relationship between current
genomic composition and environmental conditions was estimated using two approaches
from community-level modelling that were extended by Fitzpatrick and Keller (2015) to model
genomic variation across the landscapes: Generalised Dissimilarity Modelling (GDM; Ferrier
et al. 2007) and Gradient Forests (GF; Ellis et al. 2012). These two approaches model the
compositional turnover in genomic variation as a function of environmental covariates (via allele
turnover functions) and e�ciently accommodate nonlinear gene–environment relationships
(Fitzpatrick and Keller 2015). Fitzpatrick and Keller (2015) advise to use them in tandem as
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they present complementary pros and cons: GDM provides a direct means of considering the
geographical distance among populations (i.e. proxy of the population genetic structure) while
GF better handles both correlations and interactions among predictors.

In the GDM analysis, the response variable is a matrix of genetic distances/di�erentiation
between populations (a 34 × 34 matrix in our case). We estimated a pairwise FST matrix
according to Weir and Cockerham (1984) using the R package hierfstat v0.04-22 (Goudet 2005).
To facilitate model convergence and enable comparisons between reference and candidate SNPs
(that displayed di�erent ranges of observed FST values), the FST matrix was scaled by subtracting
the minimum value and then dividing by the maximum minus the minimum value (resulting
in FST values lying between 0 and 1). The GDM models were performed with the R package
gdm v1.4.2 (Fitzpatrick et al. 2020). The model �t was assessed by the percentage of deviance
explained and the model generalization ability by cross-validation (100 iterations of 2, 6 and 9
folds cross-validation) using the R package sgdm v1.0 (Leitão et al. 2017). In the GF analysis,
the response variable is the population allele frequencies. To ensure regression robustness, we
�ltered away the SNPs that were polymorphic in only �ve or less than �ve populations (see
Table XII.8 for the number of SNPs left). The GF models were performed with the R package
gradientForest (Ellis et al. 2012) and using the same parameters as in Fitzpatrick and Keller (2015):
2000 regression trees per SNP, default values for the number of covariates randomly sampled as
candidates at each split and the proportion of samples used for training and testing (∼0.63 and
∼0.37, respectively), maxLevel = log2(0.368*34/2) and a covariate correlation threshold of 0.5
(accounting for correlation between covariates by calculating conditional covariate importance).
No imputation of the missing values was carried out when estimating the pairwise FST matrix
(GDM) and the provenance allele frequencies (GF). The population genetic structure, resulting
from the population demographic history and other spatial processes, was partially accounting
for with the geographical distance between populations in the GDM analysis and with Moran’s
eigenvector map variables (MEM; Borcard and Legendre 2002, Dray et al. 2006) in the GF
analysis, as calculated with the R package adespatial v0.3-8 (Dray et al. 2020).

In the GDM and GF analyses, the maximum height of each turnover function indicates
the total amount of turnover in allele frequencies associated with that covariate and thereby
corresponds to the covariate’s relative importance in explaining changes in allele frequency
while holding all other covariates constant (i.e. a partial genetic distance). In the GDM analysis,
to obtain an estimate of the relative importance of the covariates between 0 and 1, we rescaled
the splines by dividing by the maximum value across all covariates. In the GF models, the
relative importance of the covariates is given by a weighted R2 across all SNPs. The shape of the
GDM and GF turnover functions was used to identify the regions along the covariate gradient
associated with a high rate of change in allele frequencies, irrespective of the underlying allele
frequencies.

The GDM and GF turnover functions were then used to transform the current and future
values of the environmental covariates across the maritime pine range into genetic importance
values, which allows to project the current and future genomic composition across the landscape
under the two scenarios of future climates considered (i.e. SSP3-7.0 and SSP5-8.5). To aid
visualization, a principal component analysis (PCA) was used to reduce the dimensionality of
the transformed environmental covariates and a RGB colour palette was assigned to the �rst
three PCs, with resulting similar colour for similar expected patterns of genomic composition.
We calculated the Euclidean distance between the current and future genetic importance values,
which can be seen as the change in genomic composition required to maintain the current
gene-environment relationships (referred as the ’genomic o�set’ in Fitzpatrick and Keller 2015).
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It can be noted that the estimated changes in genomic composition between current and future
environmental conditions re�ect only di�erences in climatic conditions as soil, topography
and burned area were considered �xed over time (although we acknowledge that burned area
is expected to increase with climate change; Pausas and Fernández-Muñoz 2012).

3.6 Genomic o�set validation

A key preliminary step before translating genomic o�set values into potential population
(mal)adaptation is to establish the correlation between genomic o�set-based predictions and
absolute �tness or demographic trends. For this, we used two complementary validation
methods.

First, we evaluated whether populations that perform poorly in common gardens were those
with the highest predicted genomic o�set in the common gardens (calculated based on the
environmental di�erences between the populations and the common gardens, rather than
future climates), or those with the highest climatic transfer distance (i.e. absolute di�erence
between the climate of the population locations and the common gardens). It can be noted that
genomic o�set was not predicted based on climate di�erences only between the population
locations and the common gardens, but also accounted for soil and topographic di�erences, and
therefore did not only represent climate (mal)adaptation (see Section 1.3 in the Supplementary
Information for more details). The performance of the 34 genotyped populations (see Section
3.2) was estimated from height and mortality measurements on trees aged 8 to 85 month-
old in a network of �ve common gardens planted in di�erent environments: three under
the favorable conditions of the Atlantic European region with mild winters, no severe cold
events, high annual rainfall and relatively wet summers (trial sites of Asturias, Bordeaux
and Portugal) and two in the harsh environments of the Mediterranean region with high
temperatures and an intense summer drought (trial sites of Cáceres and Madrid) (Fig. VI.1).
We used height measurements from all �ve common gardens while mortality measurements
were taken from the two Mediterranean common gardens, Cáceres and Madrid, in which a
severe summer drought exacerbated by clay soils killed 92% and 72% of the trees, respectively
(Table XII.2). For each of the eight combinations of SNP sets (reference SNPs and the three
candidate SNP sets) and models (i.e. GDM and GF), we estimated the association between
BLUPs for tree height and mortality and the predicted genomic o�set (see models in Section 1.3
in the Supplementary Information). Using the same models, we also estimated the association
between tree performance and �ve climate transfer distances obtained independently from
the four climate variables used to calculate genomic o�set (see Section 3.3) and mean annual
temperature (in °C), which is often used to estimate population response functions in forest
trees (e.g. Pedlar and McKenney 2017, Rehfeldt et al. 2002). Last, we compared the model
goodness-of-�t based on the proportion of variance explained by each model and the model
predictive ability based on the leave-one-out cross-validation (LOOCV) procedure from the R
package loo v2.2.0.

Second, we evaluated whether natural maritime pine populations in geographical regions
where genomic o�set was predicted to be high showed higher mortality rates. We used mortality
data from the French and Spanish National Forest Inventories (NFI) estimated in Changenet
et al. (2021) and covering the mortality observations between 2000 and 2014 for the French
inventory and between 1986 and 2008 for the Spanish inventory. Trees diameter at breast
height ranged from 10 to 263 cm, hence including sapling and adult trees (Changenet et al.
2021). We acknowledge that the predicted genomic o�set, which measures a potential future
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climate maladaptation, cannot causally explain the recent mortality patterns. Nevertheless, a
positive association between the genomic o�set and recent mortality patterns could indicate
that populations predicted to su�er from climate maladaptation are already showing higher
mortality rates. We independently estimated the association between mortality rates and the
di�erent genomic o�set predictions obtained from the sixteen combinations of SNP sets (i.e.
reference SNPs and the three candidate SNP sets), models (i.e. GDM and GF) and scenarios of
future climates (i.e. SSP3-7.0 and SSP5-8.5) using the statistical model described in Section 1.4
in the Supplementary Information.

All models of the validation part were implemented in a Bayesian framework using the Stan
probabilistic programming language (Carpenter et al. 2017), based on the no-U-turn sampler
algorithm. Models were run with four chains and 2,000 iterations per chain (including 1,000
warm-up samples not used for the inference). All analyses were undertaken in R version
3.6.3 (R Core Team 2020) and scripts are available at https://github.com/JulietteArchambeau/
GenomicO�setPinPin.

4 Results

4.1 Genomic o�set estimation

Eight candidate SNPs were identi�ed by the two GEA methods (i.e. common candidates),
79 candidate SNPs showed a strong association with at least one covariate (i.e. candidates
under expected strong selection) and 370 candidate SNPs were identi�ed by at least one GEA
method (i.e. merged candidates) (Table XII.4). LD was low for both reference SNPs and the
three candidate SNP sets (Table XII.6). In the univariate GEA (BayPass), the vast majority of
candidate SNPs were associated with the minimum temperature of the coldest month, including
seven of the eight common candidate SNPs (Table XII.4). These seven common candidate SNPs
were all also associated with the minimum temperature of the coldest month in the multivariate
GEA (RDA) and �ve had βRDA > 0.3.

The percentage of deviance explained by the GDM models ranged from 41% for the common
candidates to 64% for the reference SNPs (Table XII.7; see also the predicted vs. observed ge-
nomic distance in Fig. XII.6), while their mean predictive ability quanti�ed via 100 independent
samples of 9-fold cross validation ranged from 23% to 50%, respectively (Table XII.7; see also
mean predictive ability for 6-fold and 2-fold cross-validations in this table). In the GF models,
individual SNP R2 averaged across all SNPs ranged from 23% for the common candidates to
37% for the candidates under expected strong selection (Table XII.8).

In both the GDM and GF analyses, covariates related to population structure (i.e. the
geographical distance in the GDM models and the MEM in the GF models) were the most
important predictors contributing to the genomic turnover, i.e. �tted I-splines and turnover
functions with the highest maximum height in the GDM (Fig. VI.2 & Table XII.7) and GF models
(Figs. XII.7-XII.10), respectively. A noteworthy exception was the set of common candidate
SNPs in the GF model for which the most important covariate was by far the minimum
temperature of the coldest month (Fig. XII.7). In the GDM analyses, the �tted I-splines of the
reference SNPs and merged candidates were similar and indicated a very strong contribution
of the geographical distance, a mid-contribution of the topographic ruggedness index (and
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Figure VI.2. Fitted I-splines for the geographical distance and each environmental covariate in the GDM analyses performed with the four
sets of SNPs.

the minimum temperature of the coldest month for the merged candidates only), a small
contribution of the annual precipitation and precipitation seasonality, and a null (or almost
null) contribution of the other covariates (Fig. VI.2 & Table XII.7). In comparison, for the
common candidates and the candidates under expected strong selection, the importance of
the geographical distance was smaller, while the importance of the minimum temperature of
the coldest month was about 80% of the geographical distance’s importance and that of the
maximum temperature of the warmest month was between 12% and 20% (Fig. VI.2 & Table XII.7).
Fitted I-splines of the common candidates also indicated a mid-contribution of the topographic
ruggedness index, while those of the candidates under expected strong selection indicated
a mid-contribution of the annual precipitation (Fig. VI.2). In the GF models, the minimum
temperature of the coldest month was the most important environmental covariate for the three
sets of candidate SNPs, but not for the reference SNPs, for which the environmental covariates
had a minor relative importance compared to the MEM covariates (Figs. XII.7-XII.10). Burned
area had also a slight importance in the genomic turnover of the set of common candidates
(Fig. XII.7), and the annual precipitation and the maximum temperature of the warmest month
noticeably contributed to the turnover of the set of candidates under expected strong selection
(Fig. XII.8). Noticeably, for the common candidate SNPs, both the GDM �tted I-spline and the
GF turnover function of the minimum temperature of the coldest month show a steep slope
between 4 and 6°C (Figs. VI.2 & XII.7), indicative of a rapid turnover in allele frequency.

The predicted spatial variation in current and future genomic composition varied greatly
among the models used to estimate the current gene-environment relationships (i.e. GDM vs
GF models) and the sets of SNPs considered (see Section 2.3 in the Supplementary Information).
As a result, the predicted spatial variation in genomic o�set across the species range also
showed strong di�erences among models and sets of SNPs but not among the two scenarios of
future climate (Figs. VI.3 and XII.27). In both the GDM and GF approaches, higher predicted
values of genomic o�set were found for the more stringently selected sets of candidate SNPs,
with the highest values being for the set of common candidate SNPs and with relatively small
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Figure VI.3. Predicted spatial variation in genomic o�set for each combination of modelling approaches (i.e. Gradient Forests or Generalised
Dissimilarity modelling) and sets of SNPs (i.e. three sets of candidate SNPs and the reference SNPs) under the future climate scenario SSP3-7.0
(moderately alarming). See Fig. XII.27 for predictions under the future climate scenario SSP5-8.5 (strongly alarming), and see Figure XII.28
for the same predictions but visualized with di�erent scales so that the spatial variation in genomic o�set for the merged candidates and
reference SNPs are visible.

values for the sets of merged candidates and reference SNPs (Figs. VI.3 and XII.27). For the
set of common candidates, GDM and GF-based predictions were very similar and the highest
genomic o�set values were found in French Brittany, the coasts of north-western Italy and
south-eastern France, the southern part of the Landes forest in south-western France, and
some inland parts of Galicia and Portugal (Figs. VI.3 and XII.27). For the set of candidates
under expected strong selection, both GDM and GF-based genomic o�set predictions were
higher in the mountain foothills of south-eastern France and north-western Italy, and some
parts of Galicia and northern Portugal, but only GF-based predictions were higher in a large
part of western France (except Brittany) and the southern part of Central Spain, while only
GDM-based predictions were higher in French Brittany, the south of the Landes forest and the
southern part of Central Spain (Figs VI.3 and XII.27).

4.2 Genomic o�set validation

Regression coe�cients accounting for the linear association between the eight di�erent
predicted genomic o�sets in common gardens and tree height or mortality were nearly all in the
expected direction: negative in height models (Fig. XII.30), thereby suggesting that populations
with higher genomic o�set grow less, and positive in mortality models (Fig. XII.32), thereby
suggesting that populations with higher genomic o�set show higher mortality rates.

The proportion of explained variance varied widely among height models and no clear
pattern emerged regarding which modelling approach (GDM or GF) or set of SNPs (reference
SNPs or the three sets of candidate SNPs) provided the best performing genomic o�set across all
common gardens (Fig. VI.4). GF-based genomic o�sets were better predictors than GDM-based
genomic o�sets in two of the Atlantic common gardens (Portugal and Asturias, except for
reference SNPs) while the opposite was true in Bordeaux (except for the common candidate
SNPs; Fig. VI.4). Indeed, for Atlantic common gardens, genomic o�set predictions based on the
set of common candidates with the GDM approach were not associated with height di�erences

97



●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

Climatic transfer distance Genomic offset

Asturias

Bordeaux

Cáceres

Madrid

Portugal

bio1 bio5 bio6 bio12 bio15 Com Mid Mer Ref

−0.25

0.00

0.25

0.50

0.75

−0.25

0.00

0.25

0.50

0.75

−0.25

0.00

0.25

0.50

0.75

−0.25

0.00

0.25

0.50

0.75

−0.25

0.00

0.25

0.50

0.75

G
oo

dn
es

s 
of

 fi
t (

R
2  e

st
im

at
e)

Genomic offset approach: ●GF GDM

Figure VI.4. Proportion of variance explained (R2 estimate) of the models estimating the association between BLUPs for height in �ve
common gardens and the climatic transfer distances (left panels) or the predicted genomic o�set (right panels). The climatic transfer distances
were calculated based on �ve climatic variables: the annual daily mean temperature (bio1; °C), the maximum temperature of the warmest
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old in Cáceres, 13-month old in Madrid and 27-month old in Portugal (see Figure XII.31 for Asturias at 10-month old, Bordeaux at 25-month
old and Portugal at 11-month old).

in any common garden while those based on the other sets of SNPs explained between 25%
and 50% of the height-BLUPs variance. Conversely, with the GF approach, more than 25% of
the height-BLUPs variance was explained when using any of the three sets of candidate SNPs
(including the common candidate SNPs) in Asturias, the reference SNPs in Bordeaux, and all
SNP sets in Portugal (Fig. VI.4). Height di�erences in the Mediterranean commons gardens
were poorly explained by the genomic o�set predictions, except for the GDM-based predictions
in Cáceres using the set of merged candidates, which explained about 40% of the height-BLUPs
variance, and the GDM-based predictions in Madrid for the set of candidates under expected
strong selection, which explained about 25% (Fig. VI.4). Last, in all common gardens, at least
one of the genomic o�set predictions showed similar, or better (e.g. in Cáceres), explanatory
ability than the best performing climatic transfer distance (which were most often the minimum
temperature of the coldest month and the annual precipitation; Figure VI.4). Model di�erences
in predictive ability evaluated with the Bayesian leave-one-out cross validation supported the
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model ranking obtained with the R2 estimates, and are therefore not shown here (see Tables
XII.9 to XII.16).

With respect to the mortality models in the two Mediterranean common gardens, GF-based
genomic o�set predictions were generally better predictors than those based on GDM, and
were as good predictors as the best performing climatic transfer distances (Tables XII.17-XII.18).
In Cáceres, the strength of the association between mortality rates and GF-based genomic
o�set predictions decreased with the stringency in the selection of SNP sets, i.e. no association
for common candidates, and maximum association for reference SNPs (Fig. XII.32). In contrast,
GDM and GF-based genomic o�set predictions in Madrid were better predictors of the mortality
rates when based on the set of candidates under expected strong selection (Fig. XII.32).
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Figure VI.5. Regression coe�cients describing the linear association between tree mortality rates in natural populations of maritime pine
extracted from the Spanish (A) and French (B) National Forest Inventories and the genomic o�set predictions under two scenarios of future
climate (see equation 1.7 in the Supplementary Information).

Finally, when considering natural populations of maritime pine (National Forest Inventory
data from France and Spain), we found a positive association between both GDM and GF-based
genomic o�set predictions and mortality rates for the set of common candidates (Fig. VI.5). This
was also true for the sets of candidates under expected strong selection and merged candidates
in the GDM approach in France (Fig. VI.5B). However, in all other cases, the association between
genomic o�set predictions and mortality rates was negative, suggesting lower mortality rates
in populations subject to higher genomic mismatch between current and future climates (Fig.
VI.5). The strength of the relationship between genomic o�set predictions and mortality rates
was very similar between the two scenarios of future climate (Fig. VI.5).

99



5 Discussion

Since Fitzpatrick and Keller (2015) and Rellstab et al. (2015), the genomic o�set approach
has become popular for identifying populations at risk of short-term climate maladaptation. It
appears as a promising method to guide conservation and management strategies, in particular
for long-lived and sessile species such as forest trees, for which in situ adaptation or migration
of adaptive alleles may not be fast enough to track climate change (Fitzpatrick and Keller 2015).
However, this approach relies on a number of key assumptions in need of robust empirical
validation (discussed in Rellstab et al. 2021 and Capblancq et al. 2020b). The main objective
of this study was twofold: (1) identify maritime populations at risk of short-term climate
maladaptation, (2) verify the assumption that populations with the highest predicted genomic
o�set do show a decrease in absolute �tness or declining demographic trends (Capblancq et al.
2020b). About (1), genomic o�set predictions based on the set of common candidate SNPs
(i.e. the most con�dently selected) point towards a higher maladaptation risk for populations
currently experiencing mild-winter conditions (i.e. most Atlantic populations and populations
in southeastern France and northwestern Italy), which may be related to the past cold adaptation
of these populations preventing optimal growth and survival under warming temperatures.
About (2), we showed that the genomic o�set predictions were generally negatively associated
with population performance in common gardens and natural populations (i.e. height or
mortality rates). This suggests that genomic o�set predictions may be indicative of (future)
�tness declines, and thereby validate our results in maritime pine. Nevertheless, genomic o�set
predictions were highly sensitive to the set of SNPs considered (i.e. how strictly they were
selected) and the modelling approach used (i.e. GDM or GF), while they were very similar under
two di�erent future climate scenarios. Noticeably, none of the di�erent ways tested to predict
genomic o�set had better predictive ability across all the validation steps. Our results therefore
con�rm that the genomic o�set approach is promising, but also suggest that further validation,
based on both experimental and observational independent data, is needed to determine which
modelling methods and ways of selecting the adaptive genetic component, are the most robust
and accurate.

5.1 Past cold adaptationmay trigger short-termadaptationmismatch
in mild-winter regions

Our results highlighted the key role of cold temperatures in the past adaptive history of
maritime pine populations, as previously suggested by studies evaluating the association
between candidate-gene allele frequency and temperature gradients (Grivet et al. 2011, Jaramillo-
Correa et al. 2015). Interestingly, the selection pressures resulting from severe cold events
might even reduce genetic variation within maritime pine populations for some �tness-related
phenotypic traits (e.g. for height; Archambeau et al. 2021b). In this line, we found that the
minimum temperature of the coldest month was the environmental covariate associated with
the largest number of SNPs in the univariate GEA (Table XII.4) and the most important in
explaining allele frequency turnover in the GF and GDM models (once accounting for geographic
distance; Table XII.7 & Figs. VI.2 & XII.7-XII.10), in particular for the common candidate SNPs.
We base our interpretation on the genomic o�set predictions for the set of common candidate
SNPs, as they were selected most stringently (and thus with the most con�dence) and were
the only SNP set to show consistent spatial patterns of genomic o�set between GF- and GDM-
based predictions (Fig. VI.3). Populations with the highest predicted genomic o�set were
those at the warm edge of the cold temperature gradient: mainly Atlantic populations in
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the northwestern part of the Iberian Peninsula, southwestern France and Brittany, but also
Mediterranean populations of Corsica, southeastern France and northwestern Italy (Figs. VI.3 &
XII.3). Importantly, the warm edge of the cold temperature gradient (i.e. between 4 and 6°C) is
characterized by a strong turnover in the frequency of common candidate SNPs (Figs. VI.2 and
XII.7), which may be indicative of a loss of cold hardiness alleles in populations from warmer
regions. Consequently, in these populations, a slight increase in minimum winter temperatures
due to climate change will result in a large disruption of current gene-environment relationships.
Whether this mismatch will translate into a maladaptation risk associated with declines in
absolute �tness remains to be con�rmed, but there are good reasons to think so.

Based on height growth data from common gardens, Fréjaville et al. (2020) predicted that some
maritime pine populations in southwestern France, northwestern Iberia, Corsica, and coastal
areas of southeastern France and northwestern Italy will grow less under future temperatures
and precipitation. These spatial patterns of potential adaptation lags in terms of growth are
very similar to those obtained in our study with the genomic o�set approach. This may be
partly explained by the trade-o� between growth and cold hardiness in forest trees (Aitken and
Hannerz 2001, Howe et al. 2003 and Prada et al. 2016 in maritime pine), which may constrain
cold-hardy tree populations from growing optimally in warming climates, at least in the short-
term. The higher susceptibility of populations from mild-winter regions to increasing winter
minimum temperatures may also be explained by reduced winter hardening of the trees, and
thus greater exposure to late frosts (e.g. Hänninen 2006). Last, the genomic o�set predictions
obtained with the common candidate SNPs were positively associated with mortality rates in
natural forest inventory populations calculated over the last four decades, which may suggest
that populations that will be at risk of climate maladaptation are already experiencing �tness
declines (although this conclusion has to be tempered, as discussed in the next section).

In conclusion, the populations most at risk of short-term climate maladaptation might be
those already living in relatively mild-winter conditions but for which the transition to slightly
higher temperatures would entail a large evolutionary step. Importantly, these populations,
being at the warm margin of the cold winter temperature gradient, will not bene�t from the
migration of adaptive alleles from other populations. It therefore seems crucial to monitor
their demographic dynamics and adaptive trajectories in the coming years, especially knowing
that southwestern France and northeastern Iberia populations are the ones with the highest
commercial value.

5.2 Associations between genomic o�set predictions and �tness de-
clines

A key assumption of the genomic o�set approach is that its predictions have to be correlated
with a decrease in absolute �tness (Capblancq et al. 2020b, Rellstab et al. 2021). This assumption
was �rst successfully demonstrated in experimental conditions by Fitzpatrick et al. (2021), in
which the authors used the GF approach to predict genomic o�sets resulting from transplanting
populations of balsam poplar from their home environment to a common garden environment
(more recently, see a similar validation analysis in Capblancq and Forester 2021). They showed
that genomic o�set predictions were negatively associated with height growth in the common
gardens and were better predictors of height growth variation than climate transfer distances.
Interestingly, Borrell et al. (2020) found a negative association between the estimated risk of
nonadaptedness (a similar measure to genomic o�set; Rellstab et al. 2015) and catkin production
in dwarf birch, thus suggesting that the reproduction-related component of �tness may also
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be captured by the genomic o�set approach. In our study, we showed that the genomic o�set
predictions were in most cases negatively associated with population performance: negatively
associated with height in the Atlantic common gardens (but almost no association in the
Mediterranean common gardens; Fig. XII.30) and positively associated with mortality for the
GF approach in the Mediterranean common gardens (Fig. XII.32). However, we did not �nd
that genomic o�set predictions outperformed predictions based on climatic transfer distances,
as in each common garden at least one climatic transfer distance (of the �ve tested) predicted
population performance as well as the best genomic o�set prediction (Figs. XII.30 & XII.32). A
potential explanation of the discrepancy between Fitzpatrick et al. (2021) and our study is that
we evaluated the association between population performance and the climatic transfer distance
for each climatic variable independently, whereas Fitzpatrick et al. (2021) calculated a climatic
transfer distance based on a PCA of the climatic variables (thus merging in a single index
climatic variables more or less associated with adaptation gradients). The good performance of
GF-based genomic o�set predictions to predict mortality rates in the Mediterranean common
gardens was particularly encouraging as genetic di�erentiation in mortality patterns is not
a general pattern in forest tree common gardens (e.g. Oddou-Muratorio et al. 2011, Vizcaíno-
Palomar et al. 2014). Moreover, genomic o�set predicted mortality rates as well as a climatic
variable related to severe cold events, which are known to be an important driver of adaptation
in maritime pine (Archambeau et al. 2021b, Grivet et al. 2011, Jaramillo-Correa et al. 2015).

The assumption that populations with higher genomic o�set show decreased absolute �tness
was also evaluated in natural populations of a North American migratory bird by Bay et al.
(2018), in which the authors found a negative relationship between GF-based genomic o�set
predictions under future climates and spatial extrapolations of historical population trends.
The authors therefore suggested that some populations may already su�er from reduced �tness
due to an inability to adapt. However, this study was criticized because (Fitzpatrick et al. 2018):
(1) historical and future climate shifts are assumed to be correlated whereas it is likely that this
is not the case; (2) the relationship between historical climate and population trends was not
evaluated, and (3) the genomic o�set predictions were based on all SNPs with R2 > 0 in the GF
analysis (∼8,000 SNPs), which therefore probably represented mainly neutral genetic variation.
In our study, for all tested combinations (i.e. combination of the two modelling approaches,
the two future climate scenarios and the two countries in which the NFI plots were located,
Spain and France), genomic o�set predictions for the set of reference SNPs were in the opposite
direction to that expected, i.e. higher genomic o�set in plots experiencing lower mortality rates,
probably re�ecting also neutral genetic variation (Fig. VI.5). In stark contrast, as mentioned in
the previous section, genomic o�set predictions for the set of common candidates (i.e. the most
strictly selected; Fig. VI.5) were positively correlated with mortality rates, which may indicate
that populations in northwestern Iberian Peninsula, southwestern France, French Brittany and
northwestern Italy are already experiencing higher mortality rates as a result of failure to adapt
to climate change. However, this result has to be taken with caution for several reasons. First,
it can be criticized by some of the same arguments, (1) and (2), made against Bay et al. (2018)
(see above). Second, high mortality rates are not necessarily associated with �tness declines as,
if they are compensated by high recruitment rates, they can accelerate evolutionary processes
by speeding up the generation turnover, allowing populations to escape demographic collapse
(Kuparinen et al. 2010). Last, NFI data (like observational data in general) remains highly
noisy; although we corrected for some potential confounding factors (competition among trees,
di�erent sampling schemes across countries), we cannot assert that the observed mortality
patterns are only attributed to climate (e.g. dieback events caused by storms but not recorded
as such).
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All in all, the di�erent validation steps gave diverging results regarding which combination
of SNP sets and modelling approaches best capture true patterns of decreasing �tness. A
potential explanation may stem from the di�erent �tness proxies used in the validation parts:
height and mortality rates of seedlings in controlled environments vs mortality rates of saplings
and adult trees in natural conditions. Indeed, these �tness proxies may be under di�erent
selection pressures, thus shaping di�erently their adaptive genetic component and thereby
their gene-environment relationships. Estimating �tness remains highly challenging in forest
trees, which have high reproductive outputs, and long lifetime and generation times. For
this reason, assessing genomic o�set predictions on the basis of di�erent �tness proxies is
particularly relevant, as they may convey a di�erent picture of the spatial patterns of adaptive
genetic variation. The di�erent conclusions drawn by the two validation approaches may also
originate from the inclusion of the topographic and soil-related variables in the genomic o�set
estimation in the common gardens (i.e. re�ecting a wider environmental maladaptation) while
only climatic variables were used to estimate the genomic o�set at the NFI plots.

5.3 Limitations and promises of the genomic o�set approach

A key assumption of the genomic o�set approach that we did not directly tackle here is
that the set of genomic markers used for genomic o�set predictions does capture the adaptive
genetic component required to adapt to future climates (Capblancq et al. 2020b). In our study,
the adaptive genetic component was identi�ed with two GEA methods, which are inherently
correlative. Con�rming that the selected candidate SNPs are involved in climate adaptation
would therefore require further validation (Ioannidis et al. 2009, Oetting et al. 2017). For instance,
this can be done by repeating the GEA analyses on independent samples (Bay et al. 2018) or
along parallel climate gradients (van Boheemen and Hodgins 2020), comparing genotype �tness
with or without the putative adaptive alleles under experimental conditions that control for
non-genetic e�ects (e.g. in reciprocal transplant experiments or common gardens; Exposito-
Alonso et al. 2019), or using functional validation experiments (e.g. through gene expression
knockdown; Rohde et al. 2018). However, adaptation to climate probably involves multiple
polygenic traits whose genetic component is determined by complex gene networks (Boyle
et al. 2017, Liu et al. 2019). Thus, similar adaptive phenotypic changes may result from di�erent
combinations of alleles (i.e. ’genetic redundancy’; Barghi et al. 2020). Moreover, single alleles
may be associated with multiple phenotypes (i.e. pleiotropy) or could be adaptive only in
particular environments (i.e. conditionally neutral). These factors render the identi�cation of
the genetic component of climate adaptation particularly tricky, especially in conifers with
their huge genome size (Mackay et al. 2012; 28 Gbp for maritime pine, Zonneveld 2012) and
complexity (e.g. large number of transposable elements; De La Torre et al. 2014).

Our results show that genomic o�set predictions are highly sensitive to the way candidate
SNPs are selected, i.e. how strict is the selection process (Fig. VI.3). The estimated gene-
environment relationships, the projections of the genomic composition and the genomic o�set
predictions were the most di�erent between the common candidate and reference SNP sets,
as similarly observed in Fitzpatrick et al. (2021). Importantly, results obtained for the sets of
merged candidates and candidates under expected strong selection remained highly di�erent
from those obtained for the set of common candidates. This implies that the selection process
of candidate SNPs is crucial in the genomic o�set approach and further research is undoubtedly
needed to determine which method best captures the genetic component of climate adaptation
and thus produces the most robust genomic o�set predictions.
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Finally, a source of bias important to consider at each step of the genomic o�set approach
is the population structure, which is particularly strong in maritime pine (Jaramillo-Correa
et al. 2015), and partially covaries with environmental gradients (Archambeau et al. 2021a).
First, population structure remains challenging to account for in GEA analyses and can result
in high rates of false positives, i.e. alleles mistakenly identi�ed as adaptive or linked to an
adaptive allele (Hoban et al. 2016, Ho�mann et al. 2021). We tackled this issue by using two
GEA methods that account for population structure in very contrasted ways: by partialling
out the ancestry coe�cients in the RDA (following Forester et al. 2018) or with a covariance
matrix based on the population allele frequencies in BayPass (Gautier 2015). Second, to
date, methods to calculate the genomic o�set incorporate population structure coarsely by
relying only on the geographical location of the populations: geographical distance among
populations in the GDM models and Moran’s eigenvector map (MEM) variables in the GF
models (Fitzpatrick and Keller 2015). However, population structure might show more complex
patterns than those resulting from isolation-by-distance, in particular in species with complex
demographic histories or in fragmented landscapes (Rellstab et al. 2021). Interestingly, Gain
and François (2021) recently proposed a new approach to calculate the genomic o�set that
directly accounts for the neutral population genetic structure and, importantly, does not rely
on the pre-selection of candidate SNPs, which seems particularly relevant given the biases
that may derive from this step (see above). Third, population structure can vary in space and
time, which warns against extrapolating too widely across the landscape and projecting too far
into the future (Rellstab et al. 2021), although for species with long generation times such as
forest trees, population structure is unlikely to change signi�cantly over the next few decades.
Last, population structure may have also in�uenced the validation step in the common gardens:
BLUPs were estimated without accounting for population structure, and therefore capture
height or mortality di�erences among populations that both arise from adaptive and neutral
genetic processes (e.g. demographic history, gene �ow).

6 Conclusion

Our study adds to the accumulating evidence on the power of the genomic o�set method
to predict short-term climate maladaptation. In maritime pine, populations in regions with
increasingly mild-winter conditions may be the most likely to experience adaptation lags and
should therefore be kept under close scrutiny, e.g. by monitoring the joint dynamics of mortality
and recruitment. Such monitoring may be particularly crucial for populations in northwestern
Iberia and southwestern France, which have a major economic importance; climate maladapta-
tion a�ecting their phenotypic traits of interest might have a substantial impact on the local
economy. Importantly, the validation steps highlighted the need of combining di�erent genomic
o�set estimation and validation approaches to be con�dent about the robustness of genomic
o�set predictions. It might also be worth remembering that the genomic o�set approach is
based on static gene-environment associations, assuming that current allele frequencies re�ect
the adaptive optimum of the populations (which is often not true in forest trees based on
phenotype-environment associations; e.g. Fréjaville et al. 2020, Pedlar and McKenney 2017,
Rehfeldt et al. 2018, 2003, 2002, Savolainen et al. 2007). Importantly, incorporating processes
such as gene �ow among populations and selection is necessary to evaluate whether a popula-
tion will be able to adapt in the long run in face of changing climatic conditions (Waldvogel
et al. 2020). Recent studies have investigated ways of integrating migration processes in the
genomic o�set approach (e.g. Gougherty et al. 2020b), while integrating selection processes
remains largely unexplored, likely due to the high complexity and multifactorial nature of the
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selection response. For instance, pleiotropy can either boost or slow down adaptive processes
depending on whether genetic correlations go in the same or opposite direction as selection,
respectively (Ho�mann et al. 2021). Nevertheless, although genomic o�set predictions have to
be interpreted with caution, they remain a major step towards integrating adaptive processes
into management and conservation strategies (Waldvogel et al. 2020).
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VII

Synthesis & discussion

Forest trees are keystone species that are essential to ecosystem functioning, maintaining
biodiversity and sustaining multiple ecosystem services. Predicting how forest tree populations
will adapt in situ to future environmental conditions, especially those caused by climate change,
is becoming a critical and urgent issue, which requires a deep understanding of the evolutionary
processes at stake. Moreover, some populations will not be able to adapt fast enough to
keep pace with climate change and will need to be accurately identi�ed and prioritized to
implement relevant conservation and management strategies. In strategies accounting for
adaptive processes, the successful moving of individuals into environments in which they will
be assumed to be more adapted (i.e. assisted gene �ow) or into threatened populations in need
of additional genetic variation (i.e. evolutionary rescue) will require predicting the response
of transplanted individuals in the new environments, e.g. the mean absolute �tness of the
transplanted sample. Importantly, the increasing availability of genomic data for non-model
species provides new opportunities to understand adaptive processes, identify populations at
risk of maladaptation or improve individual-level predictions of quantitative traits. Genomics-
based predictive modelling approaches are developing rapidly, but most are still lacking robust
validation against independent data and have considerable room for improvement.

Here I used maritime pine as a case study to investigate key questions in the �eld of evolu-
tionary biology through the use of innovative modelling approaches combining phenotypic,
environmental and genomic data: do populations show di�erentiation patterns along environ-
mental gradients in terms of phenotypic and genomic variation across the species range? If yes,
can the phenotypic and genomic di�erentiation be attributable to adaptive processes, and more
speci�cally climate-driven adaptation? How does adaptation to harsh climatic conditions or
heterogeneous landscapes impact the maintenance of within-population quantitative genetic
variation, and therefore indirectly the adaptive potential of the populations? Answering these
questions has provided a better understanding of how past adaptations have shaped current
maritime pine populations and has o�ered a detailed picture of the current adaptive state of
the populations, a necessary �rst step in predicting their future states.

The �eld of evolutionary biology is indeed currently experiencing a growing interest in pre-
dicting the future evolutionary trajectories of populations. A consequential part of the present
PhD work was therefore dedicated to investigate, through quantitative genetics and landscape
genomics methods, the adaptive potential and the risk of short-term climate maladaptation of
maritime pine populations across the species range.
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Finally, the present PhD work provides an original attempt to combine phenotype, environ-
mental and genomic data using various modelling approaches in a non-model species. To what
extent the conclusions drawn from maritime pine, a Mediterranean forest tree species with
highly di�erentiated and fragmented populations, may be extended to other forest trees would
require further investigation, but the approaches used here are undoubtedly applicable to other
forest trees. Ultimately, by advancing knowledge of the evolutionary mechanisms underlying
adaptive responses of populations to changing conditions and providing key population-level
metrics related to population adaptive capacity, the results of this PhD work add building
blocks to the development of more mechanistic modelling approaches aimed at predicting the
evolutionary response of populations on medium- to long-term time scales.

1 What have we learned in maritime pine?

’Without deep biological understanding of the system under study, predictive models are not
likely to o�er much insight into either the past or future.’ (Reznick and Travis 2018).

1.1 High quantitative and molecular genetic di�erentiation

Due to its high economical importance, maritime pine has long been planted in provenance
trials. Strong genetic di�erentiation has commonly been found among populations for a wide
variety of phenotypic traits, such as traits related to growth, survival, wood quality, tree form,
drought resistance or reproduction (Alía et al. 2014, 1997, Chambel et al. 2007, Correia et al.
2010, de la Mata et al. 2012, Gaspar et al. 2013, Guyon and Kremer 1982, Lamy et al. 2011, Santos
del Blanco et al. 2010, Santos-del-Blanco et al. 2012, Sierra-de-Grado et al. 2008). Mediterranean
populations generally recover better after drought and have a more conservative strategy than
Atlantic populations, e.g. they have more stable yield across di�erent environments (Alía et al.
1997). In contrast, Atlantic populations grow well under favorable conditions, show larger size
at �rst reproduction (Santos-del-Blanco et al. 2012) but often recover poorly after drought, thus
being more prone to drought-related mortality (Alía et al. 1997, Zas et al. 2020). This strong
interactive behavior of Atlantic populations may explain why most trait-based studies found
signi�cant levels of genotype-by-environment interaction in maritime pine (e.g. Alía et al. 1997,
Corcuera et al. 2010, Correia et al. 2010, de la Mata et al. 2012). As counter-examples, Chambel
et al. (2007) did not �nd phenotypic di�erentiation among populations under two di�erent
watering regimes and Santos del Blanco et al. (2010) reported weak genotype-by-environment
both at the family and population level for traits related to reproduction strategies (i.e. threshold
size for reproduction and reproductive allocation).

High levels of genetic di�erentiation among maritime pine populations have also been
repeatedly found with molecular data, from di�erent types of markers, e.g. polymorphic
allozyme loci, micro-satellites and SNPs, and di�erent genomes, i.e. mitochondrial, chloroplast
and nuclear (Bucci et al. 2007, Burban and Petit 2003, González-Martínez et al. 2002, Jaramillo-
Correa et al. 2015, Santos-del-Blanco et al. 2012, Serra-Varela et al. 2015). Because of this strong
quantitative and molecular genetic di�erentiation, some authors argued to de�ne two subspecies
of maritime pine (splitting the Atlantic and Mediterranean populations) and �ve varieties based
on the geographical location: Algeria and Tunisia, Morocco, Corsica, the Mediterranean region
and the Atlantic region (Barbéro et al. 1998).
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In the present PhD work, spatial patterns of genetic di�erentiation were investigated through
both trait-based approaches (chapter 2) and landscape genomics approaches (chapter 3).
In chapter 2, clear di�erences in height growth among populations were identi�ed, with
populations belonging to the French and Iberian Atlantic gene pools growing faster on average
than populations from the central Spain gene pool (Fig. VII.1). The genetic component of height
growth was strongly associated with the population structure resulting from demographic
history and gene �ow among populations. This was expected as population structure is known
to be particularly strong in maritime pine (Alberto et al. 2013, Jaramillo-Correa et al. 2015),
which may be explained by its fragmented distribution and the historical isolation of di�erent
glacial refugia (Bucci et al. 2007, Burban and Petit 2003, Naydenov et al. 2014, Serra-Varela et al.
2015). Interestingly, most gene pools involved population pairs with contrasted mean height
growth (Fig. VII.1), thus suggesting that height growth variation among populations does not
result only from neutral evolutionary processes, but also from adaptive processes. In the case
of the northern African gene pool, other possible explanations include the lack of survivors
from the Madisouka (MAD) population in the Cáceres common garden, which may bias the
height growth estimation for that population, or that the highest growth of this population
compared to the Tamrabta (TAM) population originates from its ancestry proportion (23.3%)
from the south-eastern Spanish gene pool (Jaramillo-Correa et al. 2015). A last noteworthy
contribution of chapter 2 to describing patterns of genetic di�erentiation in maritime pine is
the identi�cation of an association between height growth and provenance-by-site interaction,
although its proportion of explained variance was weak. This may suggest that most genotype-
by-environment interaction is within populations or that genotype-by-environment does not
explain an important part of height-growth variation in maritime pine, most genetic di�erences
among populations being stable across varying environments.

Figure VII.1. Population (i.e. provenance) varying intercepts in the height-growth model M1 from chapter 2, in which only the population
and clone (i.e. genotype) intercepts were included in the model to account for the genetic component of height-growth variation.

Part of chapter 3 was dedicated to predict spatial variation in genomic composition across
the range of maritime pine based on a set of reference SNPs. Results from this chapter con�rm
that covariates related to the geographical distance among populations explain most of the
turnover in allelic frequencies, as expected for a species with a strong population structure
such as maritime pine. Therefore the projected spatial variation in genomic composition when
both environmental and geographical covariates are considered was almost entirely driven by
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the geographical distance among populations (Fig. VII.2A). Interestingly, the most important
environmental covariates to explain the turnover in reference SNPs frequency were not the
same in the GDM and GF approaches, thus leading to very contrasted projections of the genomic
composition when only environmental covariates were considered (Figs. VII.2B and VII.2C).
This is not surprising under the assumption that the turnover in reference SNPs frequency
results primarily from neutral evolutionary processes and therefore the gene-environment
associations remain very marginal and hard to estimate. Nevertheless, we can note that, once
the e�ect of the geographical distance among populations was removed, GDM-based projections
identi�ed a speci�c genomic composition in the mountainous areas (mainly explained by the
topographic ruggedness) and in central Spain (mainly explained by the annual precipitation)
while GF-based projections identi�ed a speci�c genomic composition in Portugal (mainly
explained by the �re intensity).

Figure VII.2. Predicted spatial variation in genomic composition under current climates for the set of reference SNPs. A) Projection based
on the GDM modelling approach and using both environmental and geographical covariates. B) Projection based on the GDM modelling
approach and using only the environmental covariates. C) Projection based on the GF modelling approach and using only the environmental
covariates. Similar colors correspond to expected similar genomic composition. In the bottom right corner of each �gure are the associated
principal coordinate analyses, which inform on the contribution of the geographical and environmental covariates to the predicted variation
in genomic composition, with the arrows indicating the direction and magnitude of each covariate. Only labels of the most important
covariates to explain the turnover in allele frequency are shown. Figures from chapter 3.

1.2 Multiple evidence of climate adaptation in maritime pine

Adaptive signatures have been repeatedly observed in maritime pine, although it remains
challenging to distinguish the relative importance of adaptive and neutral evolutionary pro-
cesses in the genetic di�erentiation observed among populations. Among studies speci�cally
aiming at detecting footprints of natural selection on phenotypic traits, González-Martínez
et al. (2002) and de Miguel et al. (2020) showed that quantitative (QST ) di�erentiation was
higher than allozyme or SNPs (FST ) di�erentiation for a variety of traits (e.g. stem form, total
height growth, survival, phenology-related traits, functional traits), thus suggesting the action
of natural selection. In addition, the negative correlation between SNP e�ect-size and minor
allele frequency in de Miguel et al. (2020) for tree height, bud burst and SLA may be an indica-
tor of the action of negative selection, i.e. the purging of deleterious alleles (O’Connor et al.
2019). As an example of phenotype-genotype association studies, Budde et al. (2014) found
18 candidate SNPs associated with resistance to �re and explaining ∼ 29% of a �re-related
trait in the eastern Iberian Peninsula. Serra-Varela et al. (2015) highlighted the likely major
contribution of environmental adaptation in the observed patterns of genetic di�erentiation
across the range of maritime pine by showing that similar groups of populations are obtained
based on either genetics or environment, and that environment explained a greater proportion
of the variation in phylogeographic distance than geography. In gene-environment association
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studies, Jaramillo-Correa et al. (2015) identi�ed 18 candidate SNPs associated with climate,
whose adaptive patterns varied between the Iberian Mediterranean and Atlantic regions, sug-
gesting contrasted selection pressures across gene pools. Noticeably, the frequency of the 18
candidate SNPs was correlated with survival in a dry and hot environment, thus providing an
experimental validation of the set of candidate SNPs. Grivet et al. (2011) identi�ed two loci
associated with climate, one of which was also detected in another pine (Pinus halepensis).
Interestingly, both Jaramillo-Correa et al. (2015) and Grivet et al. (2011) found that most gene-
environment associations were related to temperature indices, thus supporting the major role
of temperature in the adaptive history of maritime pine.

In line with the above mentioned work, results from chapter 2 showed that the genetic
component of height growth in maritime pine was associated with the climatic similarity
among populations, which underline the potential major role of adaptation to climate for
this trait. However, the population genetic structure (included by accounting for the gene
pool assignment of each clone) had a confounded association with climatic variables, so that
separating their relative importance to explain the genetic component of height growth was not
completely possible. Such confounded association between population structure and adaptation
patterns is common in forest trees (Alberto et al. 2013, Latta 2009, Nadeau et al. 2016). However,
it may also partly stem from the gene pool assignment that re�ects both adaptive (di�erent
selective histories) and neutral processes (population demographic history and genetic drift),
despite gene pools being identi�ed using genetic markers considered neutral (Jaramillo-Correa
et al. 2015). This was notably supported by the di�erent heritabilities estimated between some
gene pools in chapter 2 (using a method that accounts for admixture among gene pools; Mu�
et al. 2019), i.e. the Corsican gene pool, and to a lesser extent the south-eastern Spain gene
pool, had higher heritabilities than the French and Iberian Atlantic gene pools.

Further, Chapter 3 contributed signi�cantly to describing and understanding patterns of
climate (mal)adaptation in maritime pine, using in combination two GEAs (BayPass and RDA)
and two recent landscape genomics approaches (GDM and GF). Di�erent sets of candidate
SNPs were de�ned based on the stringency of the selection threshold above which they can
be considered as potential candidates for environment adaptation: the common candidates
(i.e. 8 candidate SNPs identi�ed by the two GEA methods), the candidates under expected
strong selection (79 candidate SNPs with a strong association with at least one covariate) and
the merged candidates (370 candidate SNPs identi�ed by at least one GEA method). Then, we
compared the relative importance of environmental covariates in explaining the turnover in
allele frequencies across the range of maritime pine for each SNP set and landscape genomics
approach. A �rst key �nding was the consistent in�uence of minimum temperatures on the
adaptive genetic component: minimum temperature of the coldest month was involved in 25
of the 26 gene-environment associations identi�ed in BayPass and was generally the most
important environmental covariate in explaining the turnover in allele frequencies in the
GDM and GF models (being even a better predictor than covariates related to population
structure for the set of common candidates in the GF models; Fig. VII.3A & B). This result
is well in line with previous studies discussed above that also supported a strong in�uence
of temperatures (and especially cold temperatures) in the selective history of maritime pine
(Grivet et al. 2011, Jaramillo-Correa et al. 2015). A second key message of chapter 3 concerns
the marked di�erences among the di�erent sets of candidate SNPs in the relative importance of
environmental covariates in explaining allelic frequency turnover. This is of concern because
most current studies using the genomic o�set approach do not �rst validate the adaptive genetic
component (sometimes even using all SNPs directly, which is certainly biased by population
structure; Fitzpatrick et al. 2018) and therefore may identify di�erent maladapted populations
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depending on the initial set of candidate SNPs.

Further, chapter 3 goes one step further than the work of Jaramillo-Correa et al. (2015) by
using recent landscape genomics approaches to project the predicted genomic composition
of maritime pine populations across the species range. These projections were based on the
gene-environment relationships after accounting for the relationship between allele frequencies
and the geographical distance among populations (a proxy of the population structure), and
they may thus capture the adaptive genetic component. For example, the genomic composition
was relatively uniform in France, whereas it showed contrasted patterns in Galicia and Portugal
for the set of common candidate SNPs (Fig. VII.3C). Nevertheless, considering the geographical
distance among populations is likely insu�cient to account for population structure, which
might show more complex patterns than those resulting from isolation-by-distance, in particular
in species with complex demographic histories or in fragmented landscapes (Rellstab et al. 2021).
Further method development is undoubtedly needed to better account for the confounded
e�ect of population structure, e.g. Gain and François (2021).

Figure VII.3. Figures from chapter 3 generated based on the Gradient Forest estimations of the gene-environment relationships for the
set of common candidate SNPs (i.e. SNPs identi�ed by both BayPass and RDA). A) Principal coordinate analysis of the predicted variation
in genomic composition across the maritime pine range. Only labels of the two most important environmental covariates explaining the
turnover in allele frequency are shown: the minimum temperature of the coldest month (C°) and the burned area (hectares). B) Turnover
function of the minimum temperature of the coldest month (C°). C) Predicted spatial variation in genomic composition under current climates.

In chapter 1, we showed that not only do populations vary in their mean genetic values
and allelic frequencies along environmental gradients, but they also exhibit di�erent levels of
quantitative genetic variation for height in three di�erent common gardens (e.g. see Fig. VII.4
for the common garden in Bordeaux when the trees were 25 month-old). Remarkably, our results
again con�rmed the strong in�uence of extreme minimum temperatures on adaptation gradients
in maritime pine, as we showed that genetic variation in height was lower in populations
subjected to severe cold events. This supports the hypothesis that quantitative genetic variation
in �tness-related traits is lower in populations under strong selection. Estimating within-
population quantitative genetic variation is particularly valuable in describing adaptation
patterns because, in theory, low genetic variation may indicate a high degree of adaptation
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to harsh environmental conditions, at the expense of the adaptive potential under changing
environmental conditions.

Another key �nding of chapter 1 was that, contrary to our expectations, quantitative
genetic variation of all traits studied (i.e. growth, phenological and functional traits) was not
associated with environmental heterogeneity, which goes against the predictions of some
theoretical models (McDonald and Yeaman 2018, Walsh and Lynch 2018) and an empirical study
in lodgepole pine (Yeaman and Jarvis 2006). Last, we did not �nd any association between
within-population genetic variation for height (and other traits) and population admixture,
which suggests that, despite the strong population structure in maritime pine, within-population
quantitative genetic variation was unlikely to be in�uenced by gene �ow across gene pools. In
conclusion, chapter 1 consists of an original attempt to study the imprints of natural selection
on quantitative genetic variation and informs how genetic variation is maintained within
populations, and therefore how populations adapt along environmental gradients.

Figure VII.4. Median and 95% intervals of the posterior distributions of σ 2
Cp

(i.e. standing for the within-population genetic variation) in
the model for height at 25 month-old in the Bordeaux common garden. The potential drivers are: two admixture scores (A and D), four in-
dexes representing the environmental heterogeneity in a 1.6-km and 20-km radius around the population location (EH1[1.6km], EH2[1.6km],
EH1[20km] and EH2[20km]), the inverse of the extreme minimum temperature during the studied period (invEMT) and the summer heat
moisture index (SHM). Figure from the Supplementary Information of chapter 1.

1.3 Genomics may help predicting short-term population responses
to changing conditions

A few large-scale studies in maritime pine demonstrated the bene�ts of including intraspeci�c
variability to predict changes in the occurrence or performance of populations under new
environmental conditions. For instance, species distribution models (SDMs) accounting for
intraspeci�c variability yielded more realistic projections of suitable habitat under future climate
scenarios, generally leading to an increase in the predicted suitable area for the species (Benito
Garzón et al. 2011, Serra-Varela et al. 2015). As another example, Fréjaville et al. (2020) estimated
the association between height-growth performance in common gardens and the climate-of-
origin of the populations and reported that maritime pine populations in the driest or hottest
parts of the species range may grow less under future climates, while populations in the coldest
and wettest regions may grow more. However, these studies integrate intraspeci�c variability
within large-scale predictions at a coarse-grained level, i.e. variability at the population level
(Benito Garzón et al. 2011, Fréjaville et al. 2020), or among genetically similar clusters de�ned
based on a combination of mitochondrial, chloroplast and nuclear molecular markers (Serra-
Varela et al. 2015). Moreover, they do not distinguish the relative contributions of adaptive and
neutral processes to genetic di�erentiation among populations. Therefore, there is potentially
considerable room for improvement in incorporating intraspeci�c variability at a �ner grain
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level (which might be enabled by individual-level genomic information) and di�erentiating the
role of local adaptation, population demographic history and gene �ow in predictions.

In chapters 2 and 3, genomic information from new genotyping technologies was in-
corporated within innovative statistical methods to evaluate the short-term performance of
populations under new conditions. In chapter 2, we showed that models combining genomic
and climatic information (i.e. climate-of-origin of the populations, gene pool assignment and
counts of trait-associated positive-e�ect alleles, PEAs) predict height growth of populations
not included during the model �t better than models based only on the common garden design
or incorporating climatic information, such as the climate-based population response functions
which are currently commonly used to predict phenotypic variation of forest tree populations
along climatic gradients (e.g. Leites et al. 2012a, Rehfeldt et al. 2018, 2002). A noteworthy �nding
of this chapter was that the regional PEAs (identi�ed in speci�c geographical regions; Fig.
VII.5) had a better predictive ability than global PEAs (identi�ed range-wide; Fig. VII.5). It may
be noted that the PEA e�ect on height growth was speci�c to each genotype (i.e. clone), and in
the case of regional PEAs, speci�c also to the geographic region in which each tree was planted,
thus making the genome-based predictions both individual-based and environment-dependent.
Such integration of individual-based genomic information into trait-based approaches thus
holds great promise for predicting how populations, and genotypes within populations, will
perform when transplanted into new environments.

Figure VII.5. Schematic representation of the calculation of the global PEA counts (i.e. SNPs selected range-wide) and regional PEA counts
(i.e. SNPs selected in a speci�c geographical region). Figure from Section 2.1 in the Supplementary Information of chapter 2, in which more
details are given on PEA calculation.

In chapter 3, we found that genomic o�set predictions were promising to predict short-
term climate maladaptation of maritime pine populations. In particular, predictions based
on the set of common SNP candidates (identi�ed by the two GEA methods) were consistent
between the two landscape genomic approaches (GDM and GF) and were associated with
recent demographic trends in natural populations (i.e. mortality rates from National Forest
Inventories). Nevertheless, it has be noted that the accuracy of genomic o�set predictions in the
validation analyses were highly sensitive to the set of SNPs and the modelling approach used
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to estimate the gene-environment relationships. Moreover, contrary to Fitzpatrick et al. (2021),
the genomic o�set predictions in common gardens did not outperform predictions based on
climatic transfer distances. Finally, results from chapter 3 imply that before con�dently using
the genomic o�set approach in the toolkit of conservation and management strategies, the
e�ects of di�erent choices on predictions must be clearly understood, e.g. choice of candidate
SNPs, landscape genomics approach or method to control for population structure (Capblancq
et al. 2020a, Rellstab et al. 2021).

2 Limitations, challenges and perspectives

’From the outset, it is important to acknowledge that predictions may often be imprecise even
when they are accurate. Characterizing the magnitude of uncertainty is itself worthwhile.’ (Shaw
2018)

2.1 Combining phenotypic, environment and genomic information

One of the major strengths of this PhD work is the original way in which genomic, phenotypic
and environmental data have been combined to (i) provide a broad picture of adaptation patterns
in maritime pine and the evolutionary processes underlying them, (ii) evaluate the short-term
maladaptation risk of maritime pine populations in the face of climate change.

Combining phenotypic, environmental and genomic information have been repeatedly
advised to study adaptation patterns in forest trees (de Villemereuil et al. 2016, Lepais and
Bacles 2014, Sork et al. 2013). For instance, Kort et al. (2014) combined gene-environment
and gene-phenotype association analyses to demonstrate the major role of temperature in
driving adaptation patterns in Alnus glutinosa. As another example, Mahony et al. (2020) used
phenotypic data from two common gardens of seedlings and 20-year trees in Pinus contorta
to validate the climatic variables identi�ed by gene-environment associations. Their results
suggest that genomic information could be a reliable option to identify the climatic drivers of
local adaptation when no phenotypic data is available.

In the present PhD work, I combined trait-based approaches (chapters 1 and 2) with
landscape genomics (chapter 3). In forest trees, trait-based approaches relying on common
gardens have long been the gold standard to separate the genetic and environment component
of quantitative trait variation and to determine which genotypes (populations) perform best in
di�erent environments through the use of genotype (population) reaction norms. This strong
background in quantitative genetics in forest tree research has largely bene�ted from a long
history of common gardens (often called provenance trials; Langlet 1971). However, common
gardens are costly and time-consuming to maintain, especially in forest trees, and therefore
the number of species and populations that can be measured in common gardens is bound to
be limited. In addition, landscape genomics approaches are recent methods that still require
development and validation steps, but are gaining considerable popularity in forest trees (e.g.
Gougherty et al. 2020b, Ingvarsson and Bernhardsson 2020, Lu et al. 2019, Martins et al. 2018,
Supple et al. 2018, Vanhove et al. 2021). Notably, they require only environmental and genomic
information, which is becoming more and more available due to the steadily decreasing costs of
new genotyping technologies. A strong assumption of these phenotype-free approaches is that
populations are currently at their phenotypic optimum and that a change in environmental
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conditions will break the optimal gene-environment relationships, thereby reducing relative
�tness (Brady et al. 2019b). However, disrupted gene-environment relationships would not
necessarily be associated with declining absolute �tness (i.e. decreasing demographic trends)
and therefore the use of landscape genomics approaches to predict future population declines
is currently in need of validation (Láruson et al. 2021).

DATA
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Figure VII.6. Schematic representation of the modelling framework used in chapter 2. This �gure is intended to illustrate how the di�erent
climatic, phenotypic, and genomic data were combined (and transformed into variables that could be incorporated into the models) to meet
the objectives of chapter 2.

Further, the novelty of the present PhD work lies in incorporating genomic information
within trait-based approaches (chapter 2), and in validating landscape genomics approaches
with phenotypic information (chapter 3). In chapter 2, we showed that models incorporating
genomic information (i.e. gene pool assignment and PEA counts) performed better (i.e. better
predicted height-growth of populations not included during the model �t) than those using only
phenotypic or climatic information, highlighting the potential of combining all data sources in
large-scale trait predictions. In forest trees, the promising predictive ability of PEA counts was
�rst supported by Mahony et al. (2020). More recently, MacLachlan et al. (2021) showed that
PEA counts were more e�ective that single locus approaches to identify the adaptive climatic
gradients for complex traits and were more robust to stochastic SNP sampling e�ects than
polygenic scores. Chapter 2 thus follows the line of these previous works by con�rming the
superiority of PEAs compared to climate variables, but also goes further by suggesting the
higher predictive ability of regional PEAs compared to global PEAs (Fig. VII.5). However, this
improvement of the model predictive ability for regional PEAs is at the cost of reducing GWAS
power (due to lower sample size than in global, wide-range analyses). Further comparison of
the predictive ability of PEAs selected range-wide or regionally with denser genomic sampling
will undoubtedly be of great interest to determine whether the higher predictive ability of
regional PEAs observed under limited genomic sampling can be veri�ed.

In chapter 3, we combined phenotypic, climatic and genomic information in the following
way: (1) we identi�ed the adaptive genetic component through gene-environment associations;
(2) we conducted landscape genomics analyses relying only on environment and genomic
information; and (3) we validated the outputs from landscape genomics analyses with inde-
pendent phenotypic data (i.e. height and mortality rates) from both common gardens and
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natural populations (i.e. National Forest Inventories). The validation steps of chapter 3 were
inspired by the validation analysis based on demographic trends in natural populations from
Bay et al. (2018) (but see critics in Fitzpatrick et al. 2018), and by the experimental validation
based on height measurements in common gardens from Fitzpatrick et al. (2021). Importantly,
we demonstrated that combining the validation steps in natural populations and common
gardens can be particularly relevant, as they may point to very di�erent conclusions about
which genomic o�set calculation methods work best. Finally, our work is consistent with
several recent reviews calling for caution in the use of the genomic o�set metric (Capblancq
et al. 2020a, Ho�mann et al. 2021, Rellstab et al. 2021), since, among other concerns, it relies
only on genomic and climatic data, and thus confronting genomic o�set-based predictions with
phenotypic information seems necessary.

Last, a particularly attractive avenue of research is the combination of gene-environment
and gene-phenotype associations to identify potential candidate SNPs for local adaptation
with gene expression analyses (i.e. transcriptomics) to validate the candidate SNPs (DeBiasse
and Kelly 2016, Franks and Ho�mann 2012, Sork 2018). In a case study in Arabidopsis, Lasky
et al. (2014) identi�ed genes with variable expression response to environmental change, thus
corresponding to a genotype-by-environment interaction in the expression patterns, re�ecting
local adaptation. In this line, Depardieu et al. (2021) �rst selected 285 candidate SNPs with
gene-environment or gene-phenotype associations and then identi�ed 110 high-con�dence
candidate SNPs that were di�erentially expressed under di�erent drought treatments in white
spruce, a widespread boreal conifer. Other examples in forest trees include the validation
of genes involved in disease resistance in western balsam-poplar (Muchero et al. 2018) or in
seedling water-stress response in valley oak (Gugger et al. 2017). Combining transcriptomic
studies with population genetics remains rare in forest trees, although transcriptomics provide
phenotypes that directly translate the response to the environment and thus have the potential
to be a valuable tool for understanding local adaptation and for adding further evidence to the
involvement of genes identi�ed in association studies.

2.2 To what extent can the results for maritime pine be generalized?

In the present PhD work, I used maritime pine as a case study but the trends and patterns
observed are likely to be informative about forest tree adaptation more generally. Indeed,
in conifers, convergent patterns of local adaptation have been repeatedly detected, usually
through the identi�cation of common signatures of selection among related species in a set of
orthologous genes (i.e. genes descending from a common ancestral gene by speciation). Perhaps
the most striking example is the identi�cation of 47 common genes involved in local adaptation
between two distantly related conifers, interior spruce and lodgepole pine, separated by 140
million years of independent evolution (Yeaman et al. 2016). Similarly, Mosca et al. (2012) found
seven SNPs associated with an environmental gradient that were located in genes common to
four cohabiting conifers of the European Alps, i.e. silver �r, Swiss mountain pine, Swiss stone
pine and European larch. Other evidence of convergent adaptation were found in more closely
related species, e.g. two pine species from southeast China in which signals of recent selection
were species-speci�c while most signals of ancient selection were common between the two
species (Zhou et al. 2014), two spruce species (Siberian spruce and Norway spruce) showing
footprints of convergent adaptation in the control of growth cessation (Chen et al. 2014), two
other spruce species (white spruce and black spruce) showing common adaptive patterns in
nine gene families -a number higher than expected by chance- (Prunier et al. 2011) and two
white pine species (eastern white pine and western white pine) in which three orthologous
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genes showed signatures of selection (Nadeau et al. 2016). In the Mediterranean pines, which
have diverged recently (about 10 million years ago), Grivet et al. (2013) found two genes related
to defense and stress response that showed adaptation patterns in the di�erent taxon studied.
In contrast, the Mediterranean pines exhibited divergent evolution in their life-history traits
and di�erent genetic correlations among growth-development, reproduction and �re-related
traits, thus re�ecting diverging adaptive histories (Grivet et al. 2013).

A consistent pattern emerging from studies comparing the adaptive evolution of di�erent
conifer species, and more generally forest species, in the northern hemisphere is the predomi-
nant role of cold temperatures in shaping the observed adaptation gradients. Indeed, in most
of the studies mentioned above, some genes suggested to be under recent or ancient selection
were already known to be associated with cold response in other plants or forest trees (Nadeau
et al. 2016, Prunier et al. 2011, Zhou et al. 2014). Noticeably, the strongest phenotypic signatures
of adaptation to climate found in Yeaman et al. (2016) were related to fall and winter cold injury
traits and low-temperature stress–related environmental factors. These �ndings are consistent
with the strong phenotypic and genetic clines along latitudinal and temperature gradients long
known in forest trees (e.g. Aitken and Hannerz 2001, Joyce and Rehfeldt 2013, Langlet 1971,
Morgenstern 1996, O’Neill et al. 2008, Rehfeldt et al. 1999) and involving the synchronised
response of multiple complex traits (Howe et al. 2003).

Results from chapter 3 are in line with the aforementioned body of work on the prevalence
of cold adaptation in conifers since we showed the major contribution of cold temperature
variables in explaining allelic turnover along environmental gradients. More remarkably, the
work presented in chapter 1 is, to my knowledge, the �rst to demonstrate an association
between the levels of quantitative genetic variation within populations (for height in this
chapter) and extreme cold events in a long-lived forest tree, thus supporting the key role
of climate-induced selection in reducing genetic variation within populations. Interestingly,
Ramírez-Valiente et al. (2019) also found a decrease in within-population genetic variation
for functional and growth traits in drier and hotter conditions during the dry season in a
Mesoamerican white oak, Quercus oleoides. In contrast, Anderegg et al. (2021) found no
association between within-population phenotypic variance for several functional traits and
aridity for eight Acacia species in Western Australia and Tasmania, regions where we would
expect strong drought-related selection potentially leading to a decrease in within-population
variance (however, these results would need to be con�rmed by examining the additive genetic
-and not phenotypic- variance). To conclude, assessing whether the association between
within-population genetic variation for height and severe cold temperatures in maritime pine
populations is a general pattern in conifers -and more generally in forest trees- would be
particularly informative to further investigate the convergence in adaptive evolution among
closely or more distantly related species. Moreover, determining whether such a decrease in
within-population genetic variation can be found along other environmental gradients (e.g.
Ramírez-Valiente et al. 2019) or for other traits would inform about how this pattern is general
or speci�c to tree height along cold gradients.

Studying forest tree adaptation to cold temperatures is particularly important in management
and conservation strategies. Indeed, within the assisted migration framework, moving trees to
latitudes too far from their current location (outside their breeding zone in particular) may lead
to maladaptation to new cold conditions (e.g. Grady et al. 2015). Predicting the phenotypes
of translocated individuals can be done at the population level using using climatic data (i.e.
climate-based population response functions; e.g. Leites et al. 2012a, Rehfeldt et al. 1999) or
at the individual level using genomic data, or a combination of genomic and climatic data
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(chapter 2). Ultimately, landscape genomics approaches such as the genomic o�set may also
be appropriate to predict the risk of environmental maladaptation of the populations when
transplanted in new environments (chapter 3). Furthermore, careful thought must be taken
when selecting for certain traits in breeding programs (e.g. growth) since genetic correlations
among traits may impede cold hardiness (MacLachlan et al. 2021).

Besides their convergent patterns of adaptive evolution, conifers show highly di�erent
patterns of neutral genetic variation across their ranges. In Europe for instance, a clear
distinction can be made between populations in the Mediterranean region, which are often
fragmented and have a high population genetic structure (e.g. populations of black pine and
maritime pine), and populations in central and northern Europe, which are often continuously
distributed and have a low population structure (e.g. populations of silver �r, Norway spruce
and Scots pine) (Alberto et al. 2011). Population genetic structure, induced by population
demographic history and gene �ow among populations, may be considered as a nuisance
parameter to be controlled when searching for selection footprints, but also as a key factor
shaping the nature, direction and e�ciency of natural selection (Siol et al. 2010). Therefore, to
what extent the results from the present PhD work in maritime pine, a Mediterranean pine
species with fragmented populations and a strong population genetic structure (Jaramillo-
Correa et al. 2015), can be transferred to other conifer species (with di�erent population
structure) remains to be tested. For example, similar modelling approaches as the one used
in chapter 1 could be applied to Scots pine populations, which show low levels of genetic
di�erentiation and are distributed almost continuously from southern Spain to eastern Asia.
Similarly to the results obtained in maritime pine, we may hypothesize to detect a decrease in
within-population genetic variation subjected to severe cold events, because the distribution of
Scots pine covers a broad latitudinal gradient and populations have been repeatedly shown to
follow steep adaptive clines along temperature gradients (Savolainen et al. 2007). However,
unlike maritime pine, which has reduced gene �ow among fragmented populations, strong gene
�ow among Scots pine populations might counteract the negative e�ect of natural selection
on within-population genetic variation. Thus, the extension of the work in this PhD to other
forest tree species remains highly desirable.

Another interesting perspective would be to focus on maritime pine populations with very
low levels of di�erentiation but located in highly di�erent environments, and assess whether
the results obtained in this PhD work are robust in these populations. Corsican populations
of maritime pine may be used for this purpose as they show almost no genetic structure and
are located in highly contrasted environments, ranging from Mediterranean beaches on the
seashore to populations at high altitude a few kilometers away. Extension of the work in this
PhD in that direction is also desirable.

2.3 Towards predicting the response of populations to future envi-
ronmental conditions

Chapters 1 and 3 present a �rst step towards predicting the response of maritime pine
populations to future environmental conditions (e.g. climate change) by assessing which
populations may be able to adapt quickly (chapter 1) and which populations may have to
evolve the most to maintain current gene-environment relationships (chapter 3). In chapter
1, quantitative genetic variation estimated within populations informs about their adaptive
potential. According to the breeder’s equation, R = h2S (univariate form, Falconer and Mackay
1996, Lush 1937; see Lande and Arnold 1983 for the multivariate form), the per generation
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response (i.e. evolutionary change) of a quantitative trait under selection (R) is the product of
the trait heritability (h2) and the selection di�erential (S), which is the di�erence between the
population mean before and after selection, and more generally, the phenotypic covariance
between the relative �tness and the trait. Therefore, chapter 1 provides half the puzzle for
determining which populations may adapt more rapidly to changing conditions on short time
scales, as we showed that genetic variation for height varies among populations, in particular
being lower in populations experiencing severe cold events. Chapter 3 revealed that the risk of
short-term climate maladaptation, i.e. the genomic o�set, also varies among populations, with
populations currently experiencing mild-winter conditions (i.e. most Atlantic populations and
populations in southeastern France and northwestern Italy) being at higher risk. Importantly,
the genomic o�set informs about the magnitude of genetic change required to maintain the
current gene-environment relationships, and thus in theory to maintain the optimal phenotype
under changing environmental conditions (i.e. scenario of the ’moving target’ in Brady et al.
2019a). However, it does not account for the ability of populations to evolve towards the
new optimum, either through shifts in allele frequencies caused by selection, the migration of
adaptive alleles, or at a lesser extent through the onset of new mutations (but see Gougherty et
al. 2020b). Considering these evolutionary processes may lower the estimates of maladaptation
risk (Exposito-Alonso et al. 2018b), but for that, other approaches are needed as the genomic
o�set approach is limited to estimating maladaptation of populations before evolution happens.

Predicting the fate of populations in the face of climate change involves predicting their short-,
medium-, and if possible long-term evolutionary trajectories. Here I use ’predict’ in the sense of
forecasting future attributes of a population (e.g. trait values, mean �tness or allele frequencies)
based on theory and the current attributes of the population. But, is evolution predictable?
This question has been the subject of long-standing debate attempting to determine whether
evolution acts primarily via deterministic or stochastic processes (Grant and Grant 2002, Lässig
et al. 2017, Reznick and Travis 2018). Stochastic processes include the individual-level processes
of mutation and stochastic developmental variation and the population-level processes of
recombination and genetic drift (Fig. VII.7). Although the in�uence of new mutations on
the �tness of a given individual may be negligible most of the time, long-term experimental
evolution studies of short-lived microorganisms (i.e. over thousands of generations) have
revealed the importance of rare but large-e�ect random mutations on evolutionary trajectories
(Blount et al. 2008). In forest trees with long generation times and in which most adaptations
derive from standing genetic variation, the contribution of new mutations to the evolutionary
trajectories of populations in the face of climate change is likely to be very marginal, if not
absent. Gene �ow may also be considered as a random process acting at the metapopulation
level, although it has also a deterministic component (Edelaar and Bolnick 2012, Rice and
Papadopoulos 2009). Importantly, the relative importance of random processes on evolutionary
trajectories �xes an upper bound to the degree to which evolution is in theory predictable, i.e.
the ’random limit’ hypothesis in Nosil et al. (2020) (see Fig. VII.7).
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Figure VII.7. Diagram representing di�erent sources of uncertainty in predicting evolution, originating from stochastic evolutionary pro-
cesses (i.e. random limits), limited understanding (and thereby accurate modelling) of the deterministic evolutionary processes (i.e. model
limits) and the lack of genomic, phenotypic, and environmental data (i.e. data limits). The underlying rationale of the model and data limits
(gathered under the term ’data limits’ in Nosil et al. 2020) is that with su�cient data, and theoretical and mathematical models accurately
capturing the processes at play, we would be able to predict the evolutionary trajectories of populations. Modi�ed from Ovaskainen et al.
(2016) and Nosil et al. (2020).

Our ability to predict evolution may also, if not more, be constrained by our understanding of
the deterministic processes underlying the evolutionary trajectories of the populations (referred
as ’model limits’ in Fig. VII.7). At the individual level, deterministic processes encompass
the molecular mechanisms generating the phenotypes based on the environment-mediated
expression of the genotypes, e.g. epigenetic mechanisms behind phenotypic plasticity, cis/trans
e�ects or pleiotropic e�ects that underlie the genetic architecture of most quantitative traits. At
the population level, phenotype frequencies are determined by the action of natural selection
and inheritance rules based on the initial allele and genotype frequencies. A deep understanding
of such processes is required to build robust theoretical and mathematical models aiming at
predicting the future adaptive states of natural populations. I will brie�y present three major
modelling approaches that have been developed so far. First, quantitative genetics theory
o�ers key models for predicting the adaptive potential of populations over short time scales.
The breeder’s equation (see above) or the Robertson’s secondary theorem of selection (Price
1970, Robertson 1966) can be used to predict the adaptive evolution of phenotypic traits under
selection (Walsh and Lynch 2018). However, a crucial limitation is that these equations require
choosing which phenotypic traits to consider among the large number of traits potentially
subject to selection (Shaw 2018). According to Shaw (2018), Fisher’s Fundamental Theorem
provides a direct and potentially more robust alternative to predict the rate of adaptation,
i.e. the change in mean absolute �tness, of populations (Fisher 1930). Second, prediction of
population evolutionary trajectories over medium time scales can be achieved using long-term
series of observational data from natural populations, i.e. by determining whether trends at the
beginning of the time series can predict subsequent temporal trends (e.g. Grant and Grant 2002,
Nosil et al. 2018). Third, predicting evolution over long time scales (i.e. across many generations)
requires to directly incorporate the evolutionary processes within the models, which can be
achieved via mechanistic individual-based evolutionary dynamics models. Such models are
particularly relevant for predicting the evolutionary trajectories of populations as they can
simulate how the di�erent deterministic and stochastic evolutionary forces (selection, gene
�ow, mutation and genetic drift) interact by explicitly integrating the underlying mechanisms,
i.e. inheritance rules (Oddou-Muratorio et al. 2020). In particular, they can be calibrated with
quantitative genetic models which provide an e�cient and robust framework to infer the
genetic architecture of polygenic traits (e.g. Coulson et al. 2017). Ultimately, evolutionary
dynamics models may be combined with ecophysiological and forest dynamics models to
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improve our understanding and the predictions of the eco-evolutionary dynamics of forests
under changing environmental conditions (Oddou-Muratorio et al. 2020).

A common limitation of the modelling approaches presented above stems from the insuf-
�cient empirical data to both calibrate and validate the models, i.e. ’data limits’ in Fig. VII.7.
For example, the evolutionary trajectories of beak size in Darwin’s �nches on Daphne Major
Island were not predictable, primarily due to rare and large-e�ect climate events that were
not predicted by climate models (Grant and Grant 2002). Similarly, large databases of quanti-
tative genetic parameters for performance (e.g. survival or reproduction) or functional traits
are lacking to robustly calibrating evolutionary dynamics models (Oddou-Muratorio et al.
2020). Moreover, in forest trees, most quantitative genetic parameters come from controlled
experiments (e.g. common gardens) of young trees, thus covering only a limited range of
environments and under growth conditions far di�erent from those experienced in situ (e.g.
relaxed competition among trees).

Our ability to make accurate predictions of future evolutionary trajectories of populations,
in particular under climate change, is therefore constrained by a combination of random limits
caused by unpredictable stochastic processes, and model and data limits, originating from
insu�cient knowledge of the deterministic processes at stake (Nosil et al. 2020). Noticeably, our
current insu�cient knowledge on how the phenotypes are generated based on the genotypes
at the individual level (i.e. the genotype-phenotype map) explains why using genomic data
to predict multi-generational evolution is at present out of reach (Shaw 2018). Indeed, a
robust conceptual framework on how genes interact among them and with the environment
to generate the phenotype is still lacking. The omnigenic model is so far the most complete
theoretical model of genetic architecture, suggesting that phenotypes are determined by a
minority of direct-e�ect genes and a majority of indirect-e�ect genes. Interestingly, Mathieson
(2021) argues that direct-e�ect genes are likely to have a stable e�ect across populations
while indirect-e�ect genes are more likely to show population-dependent e�ects, and that the
omnigenic model can be extended to the ’omni-environmental’ model in which some ’core’
environmental e�ects would be consistent across populations while ’peripheral’ environmental
e�ects would be unpredictable. Importantly, this would imply that genomic-based predictions
of individual phenotypes will be inherently environment and population-speci�c, and therefore
inappropriate for predicting adaptation of populations across many generations under changing
environments (Shaw 2018). Other arguments in this direction include (i) the highly challenging
(if not impossible) task of capturing most genetic variants under weak selection with genome
scans, (ii) the mismatch between the temporal scale of adaptation signals detectable in genomic
studies and that of the necessary short-term adaptation to climate change and, more importantly,
(iii) the inability of genomic studies to estimate the mean absolute �tness of populations, which
corresponds to their degree of adaptation (Shaw 2018). Therefore, predicting the evolution of
populations under future conditions using quantitative genetic theory, whose predictions are
based on the aggregate e�ects of multiple polymorphic loci, seems much more promising than
using genomic and molecular tools, which necessitate understanding the e�ect of each adaptive
loci in isolation. Conversely, although genomic data cannot be used directly in the prediction
of evolutionary trajectories, they are particularly useful for estimating genetic parameters of
interest in natural populations in situ, which is of great value for the calibration of mechanistic
evolutionary dynamics models.
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VIII

Conclusion

Using maritime pine as a case study, the present PhD work originally combined trait-based
approaches with landscape genomics, thereby bringing together phenotypic, environmental
and genomic data from a large network of �ve common gardens and 34 populations. Results
from the di�erent chapters converge on the key role of cold temperatures in the adaptive history
of maritime pine, impacting both the current adaptive states of populations, but potentially
also the within-population variance of some quantitative traits (e.g. tree height). Genomic data
showed particular promise for improving predictions of short-term population responses to
environmental changes. Indeed, quantitative trait predictions for individuals translocated to
new environments may be improved by incorporating genomic information within the models,
which would be of great interest in conservation or management strategies (e.g. assisted
migration or evolutionary rescue). Moreover, genome-based predictions of the extent to which
gene-environment relationships will be disrupted by climate change may prove to be a highly
relevant tool for rapidly identifying populations at risk of short-term climate maladaptation.
More broadly, this work contributes to a better understanding of adaptive processes, and to the
accumulation of knowledge and robust statistical methods necessary for the implementation
of evolution-based management strategies, and to progress towards the ambitious but urgent
goal of predicting the response of populations to climate change.
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1 The data

1.1 Phenotypic data

1.1.1 Details of the eight phenotypic traits

Traits Common gardens Dates of measurement Tree age Survival Units Trees Populations Clones Transf.
Height Portugal October 2012 20 0.66 mm 2746 33 521 -
Height Bordeaux November 2013 25 0.97 mm 3238 33 430 -
Height Bordeaux November 2018 85 0.96 mm 3209 33 430 -
Height Asturias November 2012 21 0.96 mm 3973 33 522 -
Mean bud burst date Bordeaux 2013, 2014, 2015, 2017 - - °C-day 3175 33 430 center
Mean duration of bud burst Bordeaux 2014, 2015, 2017 - - °C-day 3187 33 430 center
Speci�c Leaf Area Portugal - - - m2/kg 2642 33 520 log
δ 13C Portugal - - - ‰ 1939 33 517 center

Table X.1. Information about the phenotypic traits. Tree age is in months. Survival is the proportion of survival in the common gardens
at the measurement date. Some variables were log-transformed (log) or mean-centered (center) prior to analyses, which is indicated in the
Transf. column.

Figure X.1. Distribution of the phenotypic traits used in the study.
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1.1.2 Population-speci�c distributions, means and variances

Pop. Trait means Trait variances

Ht (Portugal) Ht (Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) SLA δ 13C meanBB meanDBB Ht (Portugal) Ht (Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) SLA δ 13C meanBB meanDBB
gray!6 ALT 525.56 760.19 4275.38 764.43 5.08 -25.94 1333.05 883.19 25044.03 25994.08 518190.0 43958.36 0.56 1.26 10179.89 11621.08

ARM 505.48 793.33 4450.16 818.89 5.19 -26.01 1282.95 859.95 14693.67 30154.84 416420.9 27155.20 0.53 0.75 5787.12 10512.04
gray!6 ARN 423.44 651.87 3302.00 652.35 5.19 -26.83 1309.37 861.13 20251.08 26534.21 487704.6 21763.14 0.96 1.68 1199.55 5285.84

BAY 394.29 618.36 3054.03 592.79 5.18 -26.49 1299.02 829.97 15606.98 24433.97 461502.5 20475.10 0.96 1.91 5347.63 7758.00
gray!6 BON 421.33 600.43 3273.83 702.61 5.37 -26.84 1197.00 752.85 15994.80 30225.90 1159572.0 26013.68 1.08 1.12 3843.38 7596.92

CAD 481.58 847.76 4631.79 781.60 5.34 -25.79 1342.52 898.14 32160.59 55641.88 894272.5 42048.76 0.85 1.11 13379.00 8728.85
gray!6 CAR 405.52 505.32 2321.30 584.58 4.81 -26.74 1282.36 813.30 18268.47 18912.40 396287.2 11029.61 0.58 1.22 9461.82 8783.43

CAS 501.67 753.01 4202.78 769.32 5.07 -25.90 1310.38 877.46 28617.67 35004.68 554102.0 30359.25 1.00 1.01 6072.29 12050.36
gray!6 CEN 484.82 663.51 3348.65 723.14 4.91 -26.32 1272.32 849.04 25174.51 31090.09 648606.5 26016.07 0.58 1.36 7633.28 15793.70

COC 406.47 587.13 2735.71 588.77 5.22 -26.47 1320.11 848.06 17647.00 25181.40 573367.0 25089.71 0.89 1.39 6714.06 7676.71
gray!6 COM 516.92 809.33 3220.71 756.13 4.86 -26.14 1260.71 836.87 22918.15 35020.23 342303.2 57311.18 0.53 0.83 4511.64 11303.29

CUE 402.29 587.38 2793.39 582.10 5.06 -26.35 1313.72 851.46 15749.06 29948.47 745261.0 19274.90 1.02 1.76 7290.54 8915.74
gray!6 HOU 549.58 841.95 4578.18 831.13 5.32 -25.79 1287.73 832.88 30575.88 36168.73 683021.5 37114.18 0.80 1.09 3998.32 8832.28

LAM 443.56 706.79 3824.82 736.38 5.37 -26.25 1322.51 893.70 18614.34 28385.84 503323.6 35455.80 0.90 1.44 4263.94 6633.86
gray!6 LEI 467.30 765.64 4156.02 743.20 5.12 -26.34 1317.84 880.28 23362.76 44161.14 799974.2 41372.76 0.81 1.29 8737.24 11448.55

MIM 447.76 783.87 4182.64 718.20 5.34 -26.05 1283.85 832.76 22395.23 51903.59 755436.3 33853.99 0.91 1.94 6008.16 8888.56
gray!6 OLB 445.60 700.35 3410.89 712.97 5.24 -26.43 1285.80 817.56 15336.79 23496.30 487763.2 24782.38 0.92 1.28 5575.52 9353.93

OLO 549.10 803.57 4390.16 828.55 5.41 -25.63 1287.50 829.00 22867.78 47499.69 534286.6 29013.66 0.84 1.08 4316.43 9240.09
gray!6 ORI 375.58 667.40 2935.64 639.17 5.40 -26.92 1239.57 797.85 15107.03 21736.00 391840.3 25020.48 1.10 0.94 4685.37 7988.44

PET 525.13 829.51 4471.39 781.10 5.29 -25.81 1306.26 864.40 24369.26 38187.87 665897.4 41792.11 0.67 1.53 3723.47 10308.61
gray!6 PIA 494.60 838.62 4163.58 783.88 5.22 -26.51 1201.04 793.13 28122.80 44180.50 558897.3 35430.62 0.84 1.39 3697.91 9221.80

PIE 435.18 630.77 3318.63 620.29 5.43 -26.26 1278.11 847.36 19269.41 23336.65 472940.1 30191.09 1.02 1.37 3240.16 7546.22
gray!6 PLE 468.99 770.15 4044.84 683.62 5.42 -25.92 1306.42 870.85 25399.24 46364.32 868825.2 33619.27 1.12 1.23 5312.36 7901.84

PUE 520.26 865.10 4460.59 775.65 4.98 -26.10 1353.32 902.72 33564.79 45797.49 841781.7 37674.17 0.72 1.11 5397.23 8249.97
gray!6 QUA 458.63 706.61 3265.79 689.08 4.92 -26.74 1304.61 862.73 20764.43 25415.59 679962.7 27766.85 0.61 1.53 5845.11 8570.03

SAC 436.84 779.80 4317.55 699.71 5.17 -25.69 1333.98 882.42 10276.24 26602.00 665431.4 40020.50 0.56 0.57 10387.92 11888.99
gray!6 SAL 396.90 582.90 2915.65 592.48 5.33 -26.74 1253.29 802.65 20116.52 15944.42 339030.8 19588.04 0.95 1.01 5040.26 6804.81

SEG 453.87 819.44 4484.53 728.92 5.12 -26.06 1320.39 878.22 19458.77 47514.06 767773.7 26366.13 0.81 1.07 6328.79 10553.06
gray!6 SIE 445.13 860.65 4266.96 755.56 5.42 -26.11 1337.77 887.32 28151.96 49975.12 431452.8 29270.25 0.88 1.34 5703.93 7581.65

STJ 535.06 893.84 4559.44 794.76 5.43 -25.92 1296.49 838.08 23677.59 45913.57 632962.2 37600.18 0.81 1.60 6258.52 10697.50
gray!6 TAM 339.09 570.29 2250.45 555.13 5.76 -27.82 1261.34 813.01 12214.55 16014.62 365171.0 23907.35 0.79 0.89 3427.87 7982.86

VAL 431.30 672.13 3393.73 656.09 5.13 -26.56 1258.81 825.76 16849.74 43523.72 860272.1 23268.04 0.92 1.06 6513.53 10003.81
gray!6 VER 503.62 813.65 4401.61 780.73 5.46 -25.75 1325.48 864.43 22141.52 44992.37 680372.1 34422.39 0.73 1.57 4422.45 8800.61

Table X.2. Population-speci�c means and variances of the eight phenotypic traits (from left to right): height in Portugal (October 2012),
height in Bordeaux (France, November 2013), height in Bordeaux (France, November 2018), height in Asturias (Spain, November 2012), mean
bud burst date in Bordeaux (over the years 2013, 2014, 2015 and 2017), mean duration of bud burst in Bordeaux (over the years 2014, 2015
and 2017), speci�c leaf area in Portugal and δ 13C in Portugal.

Figure X.2. Population-speci�c height distributions in Portugal (October 2012). The color gradient corresponds to the extreme minimum
temperature in the population location over the period 1901-1950.
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Figure X.3. Population-speci�c height distributions in Bordeaux (France, November 2013). The color gradient corresponds to the extreme
minimum temperature in the population location over the period 1901-1950.

Figure X.4. Population-speci�c height distributions in Bordeaux (France, November 2018). The color gradient corresponds to the extreme
minimum temperature in the population location over the period 1901-1950.
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Figure X.5. Population-speci�c height distributions in Asturias (Spain, November 2012). The color gradient corresponds to the extreme
minimum temperature in the population location over the period 1901-1950.

Figure X.6. Population-speci�c distributions of the mean bud burst date in Bordeaux (France) averaged over the years 2013, 2014, 2015 and
2017. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.
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Figure X.7. Population-speci�c distributions of the mean duration of the bud burst date in Pieroton (France) averaged over the years 2014,
2015 and 2017. The color gradient corresponds to the extreme minimum temperature in the population location over the period 1901-1950.

Figure X.8. Population-speci�c distributions of the speci�c leaf area (SLA) in Portugal. The color gradient corresponds to the extreme
minimum temperature in the population location over the period 1901-1950.
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Figure X.9. Population-speci�c distributions of the isotope discrimination (δ 13C ) in Portugal. The color gradient corresponds to the extreme
minimum temperature in the population location over the period 1901-1950.

1.2 Environment of the common gardens

Coordinates, soil and topographic variables Units Asturias Bordeaux Portugal
Latitude degrees 43.42 44.75 40.11

Longitude degrees -6.54 -0.78 -7.48
Topographic ruggedness index unitless 17.18 0.81 19.76

Depth available to roots cm 30.00 70.00 70.00
Clay content in the topsoil (0-30 cm) % 20.00 4.00 10.00
Sand content in the topsoil (0-30 cm) % 49.00 87.00 75.00
Silt content in the topsoil (0-30 cm) % 31.00 9.00 15.00

Table X.3. Values of the geographical coordinates, soil and topographic variables of the three common gardens.

Annual climatic variables Units Asturias Bordeaux Portugal
Mean Coldest Month Temperature (MCMT) °C 5.80 5.60 4.70

Mean Warmest Month Temperature (MWMT) °C 17.75 19.70 19.75
Temperature di�erence (MWMT-MCMT) °C 11.95 14.10 15.05
Extreme minimum temperature (EMT) °C -12.50 -13.30 -14.30

Mean summer precipitation mm 423.00 496.00 370.00
Mean spring precipitation mm 242.00 226.00 271.00

Summer heat moisture index (SHM) °C/mm 134.47 105.91 274.31

Table X.4. Values of the annual climatic variables in the three common gardens.
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Monthly climatic variables Units Asturias Bordeaux Portugal
Minimum temperature - January °C 2.50 2.00 1.50
Minimum temperature - February °C 3.00 2.50 1.60

Minimum temperature - March °C 4.20 3.80 3.10
Minimum temperature - April °C 5.40 6.30 4.70
Minimum temperature - May °C 7.70 9.20 7.30
Minimum temperature - June °C 10.50 12.10 10.90
Minimum temperature - July °C 12.30 13.90 13.10

Minimum temperature - August °C 12.70 13.80 13.40
Minimum temperature - September °C 11.30 11.80 11.30

Minimum temperature - October °C 8.30 8.60 8.20
Minimum temperature - November °C 5.40 4.80 4.20
Minimum temperature - December °C 3.50 2.80 2.20
Maximum temperature - January °C 9.10 9.20 7.90
Maximum temperature - February °C 10.40 11.10 8.80

Maximum temperature - March °C 12.30 13.90 11.10
Maximum temperature - April °C 14.10 16.60 13.90
Maximum temperature - May °C 16.70 20.00 17.20
Maximum temperature - June °C 20.20 23.30 22.10
Maximum temperature - July °C 22.50 25.50 25.70

Maximum temperature - August °C 22.80 25.60 26.10
Maximum temperature - September °C 20.90 23.30 22.00

Maximum temperature - October °C 16.70 18.30 16.60
Maximum temperature - November °C 12.20 12.80 11.20
Maximum temperature - December °C 9.70 9.50 8.40

Total precipitation - January mm 88.00 83.00 112.00
Total precipitation - February mm 79.00 74.00 122.00

Total precipitation - March mm 93.00 76.00 120.00
Total precipitation - April mm 72.00 70.00 78.00
Total precipitation - May mm 77.00 80.00 73.00
Total precipitation - June mm 50.00 63.00 45.00
Total precipitation - July mm 34.00 50.00 11.00

Total precipitation - August mm 37.00 54.00 9.00
Total precipitation - September mm 61.00 82.00 52.00

Total precipitation - October mm 92.00 97.00 102.00
Total precipitation - November mm 100.00 98.00 122.00
Total precipitation - December mm 113.00 103.00 124.00

Hargreaves climatic moisture de�cit - January mm 17.68 17.88 18.17
Hargreaves climatic moisture de�cit - February mm 26.56 29.31 25.17

Hargreaves climatic moisture de�cit - March mm 46.40 57.06 44.75
Hargreaves climatic moisture de�cit - April mm 68.38 82.97 72.07
Hargreaves climatic moisture de�cit - May mm 92.24 115.64 101.41
Hargreaves climatic moisture de�cit - June mm 115.38 137.41 134.79
Hargreaves climatic moisture de�cit - July mm 130.36 151.65 166.13

Hargreaves climatic moisture de�cit - August mm 115.21 134.58 151.93
Hargreaves climatic moisture de�cit - September mm 79.08 92.08 92.73

Hargreaves climatic moisture de�cit - October mm 45.16 50.68 48.35
Hargreaves climatic moisture de�cit - November mm 21.58 23.63 23.31
Hargreaves climatic moisture de�cit - December mm 14.70 14.68 16.03

Table X.5. Values of the monthly climatic variables in the three common gardens.
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1.3 Potential drivers of the within-population genetic variation

1.3.1 Population admixtures scores

Population Longitude Latitude gpNA gpC gpCS gpFA gpIA gpSES mainGP A D Df st

CEN -4.491 40.278 0.012 0.002 0.884 0.003 0.048 0.051 gpCS 0.116 0.031 0.011
ARN -5.116 40.195 0.010 0.002 0.955 0.008 0.010 0.014 gpCS 0.045 0.014 0.005
ALT -6.494 43.283 0.003 0.000 0.109 0.092 0.793 0.002 gpIA 0.207 0.061 0.019
SAL -3.063 41.835 0.010 0.004 0.944 0.027 0.008 0.007 gpCS 0.056 0.016 0.006
COM -3.954 36.834 0.240 0.028 0.126 0.011 0.039 0.557 gpSES 0.443 0.218 0.061
CAD -6.418 43.540 0.002 0.001 0.050 0.010 0.935 0.002 gpIA 0.065 0.018 0.005
VAL -4.311 40.516 0.012 0.003 0.940 0.007 0.013 0.025 gpCS 0.060 0.018 0.007
MIM -1.303 44.134 0.004 0.002 0.025 0.951 0.012 0.006 gpFA 0.049 0.014 0.006
LEI -8.957 39.783 0.004 0.003 0.511 0.007 0.473 0.002 gpCS 0.489 0.125 0.031
BAY -2.877 41.523 0.003 0.004 0.967 0.013 0.009 0.004 gpCS 0.033 0.009 0.003
SIE -6.493 43.528 0.003 0.001 0.076 0.015 0.903 0.001 gpIA 0.097 0.028 0.008

LAM -6.219 43.559 0.002 0.001 0.004 0.051 0.942 0.000 gpIA 0.058 0.020 0.007
TAM -5.017 33.600 0.932 0.000 0.027 0.000 0.039 0.001 gpNA 0.068 0.045 0.020
COC -4.498 41.255 0.017 0.005 0.831 0.060 0.044 0.044 gpCS 0.169 0.044 0.015
OLO -1.831 46.566 0.003 0.001 0.007 0.979 0.006 0.003 gpFA 0.021 0.007 0.003
STJ -2.029 46.764 0.003 0.002 0.028 0.946 0.017 0.004 gpFA 0.054 0.015 0.006
CUE -4.484 41.375 0.003 0.001 0.872 0.063 0.058 0.002 gpCS 0.128 0.030 0.009
PET -1.300 44.064 0.003 0.001 0.021 0.966 0.004 0.004 gpFA 0.034 0.009 0.004
ORI -2.351 37.531 0.248 0.005 0.028 0.001 0.010 0.708 gpSES 0.292 0.180 0.044
SEG -8.450 42.817 0.003 0.001 0.149 0.013 0.831 0.003 gpIA 0.169 0.046 0.012
OLB -0.623 40.173 0.080 0.009 0.777 0.006 0.003 0.125 gpCS 0.223 0.078 0.032
QUA -0.359 38.972 0.092 0.006 0.499 0.005 0.015 0.382 gpCS 0.501 0.142 0.056
CAS -6.983 43.501 0.001 0.000 0.005 0.001 0.992 0.001 gpIA 0.008 0.003 0.001
PLE -2.344 47.781 0.005 0.001 0.064 0.920 0.005 0.005 gpFA 0.080 0.020 0.008
BON -1.661 39.986 0.164 0.010 0.640 0.003 0.002 0.181 gpCS 0.360 0.139 0.057
HOU -1.150 45.183 0.004 0.001 0.026 0.960 0.007 0.002 gpFA 0.040 0.011 0.004
VER -1.091 45.552 0.003 0.002 0.018 0.972 0.004 0.001 gpFA 0.028 0.008 0.003
ARM -6.458 43.305 0.005 0.007 0.022 0.006 0.959 0.001 gpIA 0.041 0.015 0.005
CAR -4.277 41.172 0.001 0.001 0.904 0.060 0.023 0.011 gpCS 0.096 0.021 0.007
PIE 9.038 41.973 0.007 0.969 0.023 0.000 0.001 0.001 gpC 0.031 0.014 0.005
PUE -6.631 43.548 0.002 0.000 0.021 0.001 0.973 0.002 gpIA 0.027 0.008 0.003
PIA 9.465 42.021 0.004 0.974 0.010 0.001 0.008 0.003 gpC 0.026 0.012 0.005
SAC -8.364 42.118 0.004 0.001 0.291 0.003 0.699 0.002 gpIA 0.301 0.079 0.020

TableX.6. Population admixture scores for the 33 provenances. The columns gpNA, gpC, gpCS, gpFA, gpIA and gpSES contain the proportion
of belonging to the gene pools of Northern Africa, Corsica, Central Spain, French Atlantic region, Iberian Atlantic region and south-eastern
Spain, respectively. A and D are the two population admixture scores used in the study. Df st is similar to D, as it was calculated by weighting
the proportions of ancestry from foreign gene pools by the pairwise FST between the main and foreign gene pools, while D was calculated
by weighting the proportions of ancestry from foreign gene pools by the sum of the allele frequency divergence of the main and foreign gene
pool from the common ancestral one (obtained from Jaramillo-Correa et al. 2015). As D and Df st were highly correlated, we did not keep
Df st in the following analyses.
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1.3.2 Climate harshness and environmental heterogeneity indexes

Environmental variables Units
Monthly minimum temperature (12 variables) °C
Monthly maximum temperature (12 variables) °C
Monthly total precipitation (12 variables) mm
Monthly Hargreaves climatic moisture de�cit (12 variables) mm
Mean Warmest Month Temperature (MWMT) °C
Mean Coldest Month Temperature (MCMT) °C
Temperature di�erence (MWMT-MCMT) °C
Mean summer precipitation mm
Mean spring precipitation mm
Extreme minimum temperature (EMT) °C
Summer heat moisture index (SHM) °C/mm
Topographic ruggedness index unitless
Depth available to roots cm
Clay content in the topsoil (0-30 cm) %
Sand content in the topsoil (0-30 cm) %
Silt content in the topsoil (0-30 cm) %

Table X.7. Climatic, topographic and soil variables used to describe the environmental heterogeneity around the population location (all
variables) and the climate harshness at the population location (SHM and EMT). The climatic variables were averaged over the period 1901-
1950, except the extreme minimum temperature (EMT) which corresponds to the minimum temperature over the same period.

Forested areas: In Europe, the forested areas were extracted from Copernicus ("Forest Type
2015" at 100-m resolution), which describes the land cover in 2015. We kept raster cells attributed
to either broadleaved forests (1), coniferous forests (2) or mixed forests (3). The other raster
cells were considered as non-forested areas. In Morocco, the forested areas were extracted
from the GeoNetwork: Land cover of Morocco - Globcover Regional, which describes the land
cover in 2005. Raster cells with the following LCCCode were considered as forested areas:

• 0003 / 0004 (Mosaic cropland vegetation)
• 0004 // 0003 (Mosaic vegetation / cropland)
• 21446 // 21450-121340 / 21454 (Mosaic forest or shrubland/grassland)
• 21450 (Closed to open shrubland)
• 21454 // 21446 // 21450 (Mosaic grassland/forest or shrubland)
• 21496 // 21497-15048 (Closed to open broadleaved evergreen or semidecidous forest)
• 21496-121340 // 21497-129401 (Closed (>40%) broadleaved evergreen or semidecidous

forest)
• 21497-121340 (Closed (>40%) broadleaved decidous forest)
• 21497-15045 (Closed to open (>15%) mixed broadleaved decidous and needleaved ever-

green forest)
• 21499-121340 (Closed (>40%) needeleaved evergreen forest)
• 21518 (Closed to open broadleaved decidous shrubland)
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Figure X.10. Principal component analysis of all the climatic, topographic and soil variables in Table X.7.

1.3.3 Correlation among the potential drivers

A D EH1[20km] EH2[20km] EH1[1.6km] EH2[1.6km] SHM invEMT
A - - - - - - - -
D 0.914 - - - - - - -
EH1[20km] -0.071 -0.013 - - - - - -
EH2[20km] 0.197 0.349 0.778 - - - - -
EH1[1.6km] 0.375 0.400 0.561 0.698 - - - -
EH2[1.6km] 0.420 0.565 0.333 0.799 0.686 - - -
SHM 0.381 0.536 0.335 0.541 0.275 0.519 - -
invEMT -0.009 0.126 0.197 0.082 0.218 0.044 0.406 -

Table X.8. Correlations among the potential underlying drivers of the within-population genetic variation. Correlations higher than 0.7 are
in bold.

2 Model equation and priors

We modeled each trait ybpcr such as:

ybpcr ∼ N(µbpc ,σ 2
r )

µbpc = β0 + Bb + Pp +Cc(p)

where β0 is the global intercept, Bb the block intercepts, Pp the population intercepts, Cc(p)
the clone intercepts and σ 2

r the residual variance.
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The prior of β0 was weakly informative and centered around the mean of the observed values
for the trait under considered, as follows:

β0 ∼ N(µy, 2)
The population and block intercepts, Pp and Bb were considered normally-distributed with

variances σ 2
P and σ 2

B , such as: [
Bb
Pp

]
∼ N

(
0,

[
σ 2
B

σ 2
P

] )
The clone intercepts Cc(p) were considered to follow some population-speci�c normal

distributions, such as:
Cc(p) ∼ N(0,σ 2

Cp
)

where σ 2
Cp

are the population-speci�c variances among clones.
To partition the total variance, we parameterize our model so that only the total variance, σ 2

tot

has a prior, such that:
σ 2
tot = σ

2
r + σ

2
B + σ

2
Cp
+ σ 2

P

σr = σtot ×
√
(πr )

σB = σtot ×
√
(πB)

σP = σtot ×
√
(πP )

σCp = σtot ×
√
(πC)

σtot ∼ S∗(0, 1, 3)

where σCp and σ 2
Cp

are the mean of the population-speci�c among-clones standard deviations
(σCp ) and variances (σ 2

Cp
), respectively, and

∑4
l πl = 1 (using the s i m p l e x function in S tan ).

The population-speci�c among-clones standard deviations σCp follow a log-normal distribution
with mean σCp and variance σ 2

K , such as:

σCp ∼ LN
(
ln(σCp ) −

σ 2
K

2 + βXXp,σ
2
K

)
σK ∼ exp(1)

with Xp the potential driver considered and βx its associated coe�cient.

Here we provide further explanation regarding the use of the log-normal distribution for σCp
in the model:

σCp ∼ LN(µ,σ 2
K ) ⇔ ln(σCp ) ∼ N(µ,σ 2

K ) with µ the median of σCp

By de�nition: E(σCp ) = exp
(
µ +

σ 2
K

2

)
We want: E(σCp ) = exp

(
µ +

σ 2
K

2

)
= σtot ×

√
(π4)

Therefore: µ = ln
(
σtot ×

√
(π4)

)
−
σ 2
K

2

172



3 Model accuracy on simulated data

We simulated data based on the real experimental design of two traits (height in Portugal
at 20-month old and height in Bordeaux at 25-month old), which means that there were the
same number of blocks, populations, clones per population and trees per clone as in the real
experimental design. We ran 100 simulations, which are summarized in the tables below:

Parameter True value Mean standard error Mean bias of the mean Mean bias of the median 80% conf. int. coverage 95% conf. int. coverage
βX 0.1 0.055 -0.002 -0.003 83 97
σK 0.1 0.067 0.020 0.014 92 99

Table X.9. Summary of the 100 model outputs ran on simulated data based on height in Bordeaux at 25-month old.

Parameter True value Mean standard error Mean bias of the mean Mean bias of the median 80% conf. int. coverage 95% conf. int. coverage
βX 0.1 0.052 -0.005 -0.005 78 96
σK 0.1 0.065 0.015 0.009 95 98

Table X.10. Summary of the 100 model outputs ran on simulated data based on height in Portugal at 20-month old.

4 βX interpretation

We have:

σCp ∼ LN
(
ln(σCp ) −

σ 2
K

2 + βX X̃p,σ
2
K

)
with X̃p = (Xp − µXp )/σXp (the explanatory variables were scaled before the analyses; µXp is

the mean of Xp and σXp is its standard deviation).
By de�nition:

ln(σCp ) ∼ N
(
ln(σCp ) −

σ 2
K

2 + βX X̃p,σ
2
K

)
We want to calculate the percent of change in σCp associated with a one-unit increase in

X̃p , that is a one-standard deviation increase in Xp . For that, we call σnew the value of σCp after
increasing X̃p by one unit, and we have:

ln(σnew ) = ln(σCp ) −
σ 2
K

2 + βX (X̃p + 1)

= ln(σCp ) + βX

Therefore:
ln(σnew ) − ln(σCp ) = βX

σnew
σCp
= exp(βX )

100 ×
(
σnew
σCp
− 1

)
= 100 × (exp(βX ) − 1)

100 ×
(
σnew − σCp

σCp

)
= 100 × (exp(βX ) − 1)

173



is the percent change in σCp associated with a one-unit increase in X̃p (that is, a one-standard
deviation increase in Xp). For instance, a one-standard deviation increase in the inverse of the
extreme minimum temperature is associated, on average, with 100×(exp(−0.395)−1) = −32.6%
change in σCp for height in Portugal, with 100 × (exp(−0.243) − 1) = −21.6% change in σCp
for height in Bordeaux at 25-month old and with 100 × (exp(−0.197) − 1) = −17.9% change in
σCp for height in Asturias. Similarly, a one-standard deviation increase in the summer heat
moisture index is associated, on average, with 100 × (exp(−0.17) − 1) = −15.6% change in σCp
for height in Bordeaux at 25-month old and with 100 × (exp(−0.272) − 1) = −23.8% change in
σCp for height in Asturias.

5 Model outputs

5.1 R2 estimates

Figure X.11. Median and 95% intervals of the posterior distributions of the total variance explained by the models (R2).
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5.2 βX estimates for the eight potential drivers

Figure X.12. Median and 95% intervals of the posterior distributions of βX , the coe�cient corresponding to the potential drivers of the
within-population genetic variation.

5.3 σCp estimates and variance partitioning

5.3.1 Height (Portugal, 20 months)

Figure X.13. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).
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Figure X.14. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

5.3.2 Height (Bordeaux, 25 months)

Figure X.15. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.16. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).
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5.3.3 Height (Bordeaux, 85 months)

Figure X.17. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.18. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

5.3.4 Height (Asturias, 21 months)

Figure X.19. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).
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Figure X.20. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

5.3.5 Mean bud burst date (Bordeaux)

Figure X.21. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.22. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).
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5.3.6 Mean duration of bud burst (Bordeaux)

Figure X.23. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.24. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

5.3.7 Speci�c Leaf Area (Portugal)

Figure X.25. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).
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Figure X.26. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

5.3.8 δ 13C (Portugal)

Figure X.27. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.28. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).
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5.4 Correlation between the number of clones per population
and σCp

Drivers Ht (Portugal) Ht (Bordeaux 2013) Ht (Bordeaux 2018) Ht (Asturias) meanBB meanDBB SLA δ 13C
A 0.035 0.047 0.119 0.105 -0.217 -0.161 -0.119 0.152
D 0.038 0.068 0.149 0.122 -0.238 -0.189 -0.107 0.147

EH1[1.6km] 0.423 0.024 -0.283 0.317 -0.276 -0.381 -0.364 0.519
EH2[1.6km] 0.480 -0.166 0.087 0.066 -0.285 -0.262 -0.399 0.564
EH1[20km] 0.272 -0.042 0.350 0.321 -0.080 -0.093 -0.245 0.440
EH2[20km] 0.404 -0.035 0.497 0.433 -0.110 -0.006 -0.424 0.567

invEMT 0.109 0.185 0.230 0.126 -0.153 -0.131 -0.086 0.198
SHM 0.080 0.156 0.203 0.162 -0.186 -0.115 -0.208 -0.042

Table X.11. Pearson correlation coe�cients between the estimates of the within-population genetic variation (i.e. σCp ) and the number of
clones per population, for each combination of trait and potential driver of the within-population genetic variation. The eight phenotypic
traits are (from left to right): height in Portugal (October 2012), height in Bordeaux (France, November 2013), height in Bordeaux (France,
November 2018), height in Asturias (Spain, November 2012), mean bud burst date in Bordeaux (over the years 2013, 2014, 2015 and 2017),
mean duration of bud burst in Bordeaux (over the years 2014, 2015 and 2017), speci�c leaf area in Portugal and the isotope discrimination of
δ 13C in Portugal.
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6 Climatic transfer distances

We estimated the association between climatic transfer distances for both EMT and SHM
and the within-population genetic variation. The climatic transfer distances were calculated
as the absolute di�erence between the climate in the location of origin of each population
and the climate in the test site, for instance the climatic transfer distance for EMT between
the population p and the common garden s was: equal to abs(CTDEMT ,s,p) with CTDEMT ,s,p =

EMTp − EMTs .

Figure X.29. Median and 95% intervals of the posterior distributions of βX , the coe�cient corresponding to the potential drivers (here the
climatic transfer distances) of the within-population genetic variation.

We did not detect an association between climatic transfer distance and within-population
genetic variation for SLA, as hypothesized in the discussion.
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7 Genetic diversity

We estimated the association between genetic diversity (i.e. expected heterozygosity He )
and within-population genetic variation. The expected heterozygosity He was extracted from
Rodríguez-Quilón et al. (2016), in whichHe was calculated either on 12 nuclear microsatellites or
on 266 SNP markers from the same populations as in our study (see Appendix S1 of Rodríguez-
Quilón et al. 2016).

Figure X.30. Median and 95% intervals of the posterior distributions of βX , the coe�cient corresponding to the relationship between within-
population quantitative genetic variation and genetic diversity, measured as the expected heretozygosity He estimated from either 12 nuclear
microsatellites (He.nuSSRs) or 266 SNP markers (He.SNPs).

We did not detect an association between genetic diversity and within-population genetic
variation for any trait, suggesting no in�uence of demographic processes a�ecting e�ective
population size on within-population genetic variation.

8 Validation step

In the validation step, we performed exactly the same analyses (i.e. using the same model
formula and code) as for the CLONAPIN height data, but on independent height data kindly
provided by Ricardo Alia. This independent height data comes from a progeny test near
Asturias, planted in 2005, and in which 23 provenances are shared with the CLONAPIN data
(see Tables X.12 and X.13).
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8.1 Experimental design and exploratory analyses

Populations Mean Variance Number of families Number of individuals
ALT 116.42373 1,697.8691 7 59
ARM 127.13793 2,275.1203 8 87
ARN 115.44615 1,723.3808 12 130
BAY 99.32948 1,503.3269 16 173
CAD 132.54000 2,112.1499 10 100
CAR 92.02128 1,415.1952 4 47
CAS 110.46970 2,974.8683 6 66
CEN 108.35000 1,003.4641 4 40
COC 109.85714 1,847.6504 8 77
CUE 98.58389 908.6635 14 149
LAM 118.09459 2,725.6211 7 74
LEI 114.00862 3,988.9825 12 116

MIM 115.20000 1,388.7236 9 90
ORI 91.91156 1,777.4784 15 147
PIA 123.42553 1,373.9454 4 47
PIE 106.27778 828.5654 2 18
PLE 122.73077 2,050.5288 9 104
PUE 119.90000 1,735.9694 5 50
SAL 97.21250 1,034.1695 8 80
SEG 117.18354 1,917.2846 16 158
SIE 116.38596 2,180.2412 5 57

TAM 86.90728 1,139.1780 16 151
VAL 106.48352 1,632.6747 8 91

Table X.12. Mean, variance, number of families and number of individuals in each population for the height measurements in the progeny
test near Asturias when the trees were 3-year old.

Populations Mean Variance Number of families Number of individuals
ALT 343.4138 14,256.949 7 58
ARM 346.8605 15,262.263 8 86
ARN 315.4656 8,490.866 12 131
BAY 275.3810 9,417.399 16 168
CAD 372.6667 10,699.909 10 96
CAR 255.5778 8,827.659 4 45
CAS 312.1746 16,498.792 6 63
CEN 297.4250 9,311.892 4 40
COC 308.0789 9,849.060 8 76
CUE 277.6667 8,059.922 14 147
LAM 318.2676 16,332.885 7 71
LEI 331.9057 18,746.258 12 106

MIM 327.0444 8,190.200 9 90
ORI 262.3333 9,773.510 15 144
PIA 349.7234 6,867.813 4 47
PIE 295.5000 5,594.618 2 18
PLE 356.3010 11,389.154 9 103
PUE 336.8269 11,972.773 5 52
SAL 280.4872 6,440.773 8 78
SEG 338.6382 11,798.934 16 152
SIE 330.2500 12,265.718 5 56

TAM 272.7919 6,791.801 16 149
VAL 293.1000 10,550.788 8 90

Table X.13. Mean, variance, number of families and number of individuals in each population for the height measurements in the progeny
test near Asturias when the trees were 6-year old.
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Figure X.31. Distribution of height measurements at 3-year old in the progeny test near Asturias (independent dataset used for the validation
analysis).

Figure X.32. Distribution of height measurements at 6-year old in the progeny test near Asturias (independent dataset used for the validation
analysis).
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Figure X.33. Height distribution at 3-year old for the 23 populations shared between the CLONAPIN dataset and the independent dataset
used in the validation analysis, i.e. a progeny test near Asturias.

Figure X.34. Height distribution at 6-year old for the 23 populations shared between the CLONAPIN dataset and the independent dataset
used in the validation analysis, i.e. a progeny test near Asturias.

8.2 Model equation and priors

We used the same mathematical model as the one used on CLONAPIN data (see section 2 in
the Supplementary Information) but replacing clones by families.

We modeled each trait ybp f r such as:

ybp f r ∼ N(µbpc f ,σ 2
r )

µbp f = β0 + Bb + Pp + F f (p)
(8.1)
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where β0 is the global intercept, Bb the block intercepts, Pp the population intercepts, F f (p)
the family intercepts and σ 2

r the residual variance.
The prior of β0 was weakly informative and centered around the mean of the observed values
for the trait under considered, as follows:

β0 ∼ N(µy, 2)
The population and block intercepts, Pp and Bb were considered normally-distributed with

variances σ 2
P and σ 2

B , such as: [
Bb
Pp

]
∼ N

(
0,

[
σ 2
B

σ 2
P

] )
The family intercepts F f (p) were considered to follow some population-speci�c normal

distributions, such as:
F f (p) ∼ N(0,σ 2

Fp
)

where σ 2
Fp

are the population-speci�c variances among families.
To partition the total variance, we parameterize our model so that only the total variance, σ 2

tot

has a prior, such that:

σ 2
tot = σ

2
r + σ

2
B + σ

2
Fp
+ σ 2

P

σr = σtot ×
√
(πr )

σB = σtot ×
√
(πB)

σP = σtot ×
√
(πP )

σFp = σtot ×
√
(πF )

σtot ∼ S∗(0, 1, 3)

(8.2)

where σFp and σ 2
Fp

are the mean of the population-speci�c among-families standard devi-
ations (σFp ) and variances (σ 2

Fp
), respectively, and

∑4
l πl = 1 (using the s i m p l e x function in

S tan ).
The population-speci�c among-families standard deviationsσFp follow a log-normal distribution
with mean σFp and variance σ 2

K , such as:

σFp ∼ LN
(
ln(σFp ) −

σ 2
K

2 + βXXp,σ
2
K

)
σK ∼ exp(1)

(8.3)

with Xp the potential driver considered and βx its associated coe�cient.
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8.3 βX estimates for the eight potential drivers

Figure X.35. Median and 95% intervals of the posterior distributions of βX , the coe�cient corresponding to the association between the
eight potential drivers and the within-population additive genetic variation.

8.4 σCp estimates and variance partitioning

8.4.1 Height at 3-year old

Figure X.36. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the association between the within-population
additive genetic variance (i.e. population-speci�c among families variance) and the eight potential drivers.
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Figure X.37. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

8.4.2 Height at 6-year old

Figure X.38. Median and 95% intervals of the posterior distributions of σ 2
Cp

, corresponding to the within-population total genetic variance
(i.e. population-speci�c among clones variance).

Figure X.39. Proportion of variance explained by the di�erent components, namely the clones (πC ), the blocks (πB ), the populations (πP )
and the residuals (πr ).

9 Changes since preregistration

This study was pre-registered at the Center for Open Science (https://osf.io/knx6z/?view_
only=41bb7b5cbf7241d0856e8b9e393cc795). Some changes have been made in the �nal manuscript
compared to what was indicated in the pre-registration. There are listed below:

• There was a mistake in Table 2 of the pre-registration: we did not have the soil moisture
index (SMI). Moreover, the notation for the summer heat moisture index has changed:
instead of SumHMI, it is now noted as SHM.

• The initial number of clones and populations were 523 and 34 respectively. However,
calculating the genetic variation in one population (from Madisouka) was impossible
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as there was only one clone in that population. That’s why there are 522 clones and 33
populations in the �nal manuscript.

• In the part Statistical models of the pre-registration, we speci�ed: ’We will test three
di�erent models, from the simplest to the most complex, and we will keep the complex
model if it converges and if the credible intervals are not too wide compared to the
simpler models.’ As the most complex worked well, we did not run the simpler models
and we directly used the most complex model in the manuscript. In addition, there
was a mistake in the pre-registration formula regarding the estimation of σCP with the
log-normal distribution, which was corrected in the �nal manuscript (see section Model
equation and priors of the Supplementary Information).

• In the part EnvironmentIndices of the pre-registration, we indicated that we would calcu-
late EHW, the environmental heterogeneity in a 20-km around each population location,
as the variance of the PC1 scores weighted by the relative probability of gene �ow from
the surrounding region. However, the pollen dispersal kernels we used (from de-Lucas
et al. 2008) are highly leptokurtic, which means that the probability of gene �ow among
trees located more than 200m from the GPS coordinates of the population is very low.
Since the resolution of the climatic variables was only 1 × 1 km, we obtained implausible
values for EHW and therefore decided not to use it. Instead, we calculated the variance
of PC1 scores within a 1.6 km radius of the population locations. Furthermore, as the
�rst two components of the PCA both explained a large part of the environmental vari-
ation (45.2% and 34.1%, respectively; X.10), we decided to calculate the environmental
heterogeneity indices based on the PC1 and PC2 scores, resulting in four indices in the
end: EH1[20km], EH2[20km], EH1[1.6km] and EH2[1.6km]. Last, we indicated that we
would use the soil moisture index (SMI) as a measure of climate harshness but that was a
mistake, we used the summer heat moisture index (SHM).
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1 Details about the experimental design

All Training P1 Test P1 Training P2 Test P2 Training P3 Test P3
All sites 33,121 24,840 8,281 27,349 5,772 26,172 6,949
Asturias 11,920 8,934 2,986 9,813 2,107 9,420 2,500
Bordeaux 6,473 4,836 1,637 5,285 1,188 5,063 1,410
Cáceres 340 249 91 297 43 272 68
Madrid 1,046 807 239 876 170 855 191
Portugal 13,342 10,014 3,328 11,078 2,264 10,562 2,780

Asturias - 10 months old 3,967 2,949 1,018 3,268 699 3133 834
Asturias - 21 months old 3,979 3,022 957 3,275 704 3,143 836
Asturias - 37 months old 3,974 2,963 1,011 3,270 704 3,144 830
Bordeaux - 25 months old 3,237 2,420 817 2,643 594 2,532 705
Bordeaux - 37 months old 3,236 2,416 820 2,642 594 2,531 705
Cáceres - 8 months old 340 249 91 297 43 272 68
Madrid - 13 months old 1,046 807 239 876 170 855 191
Portugal - 11 months old 4,152 3,102 1,050 3,442 710 3,266 886
Portugal - 15 months old 3,773 2,833 940 3,134 639 2,980 793
Portugal - 20 months old 2,752 2,078 674 2,288 464 2,192 560
Portugal - 27 months old 2,665 2,001 664 2,214 451 2,124 541

Table XI.1. Number of observations in the entire dataset (after �ltering) and in each of the three partitions. In the P1 partition, the training
dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25% observations. In the P2
partition, the training dataset was obtained by randomly sampling 28 provenances and the test dataset contains the remaining 6 provenances.
The P3 partition corresponds to a non-random split between a training dataset of 28 provenances and a test dataset containing 6 provenances
with at least one provenance from each under-represented gene pool (i.e. northern Africa, south-eastern Spain and Corsican gene pools).
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Code Name Number of genotypes Number of trees Number of observations
ALT Alto de la Llama 9 216 580
ARM Armayán 8 213 547
ARN Arenas de San Pedro 17 412 1083
BAY Bayubas de Abajo 18 462 1181
BON Boniches 9 221 594
CAD Cadavedo 10 245 658
CAR Carbonero el Mayor 6 156 398
CAS Castropol 10 246 642
CEN Cenicientos 9 207 561
COC Coca 18 424 1114
COM Cómpeta 4 109 272
CUE Cuellar 28 680 1750
HOU Hourtin 26 645 1669
LAM Lamuño 9 216 563
LEI Leiria 23 549 1439

MAD Madisouka 1 19 54
MIM Mimizan 18 445 1111
OLB Olba 22 552 1476
OLO Olonne sur Mer 24 563 1441
ORI Oria 26 651 1720
PET Petrocq 24 594 1496
PIA Pinia 16 413 1046
PIE Pineta 9 220 582
PLE Pleucadec 20 480 1234
PUE Puerto de Vega 8 198 497
QUA Quatretonda 17 448 1156
SAC San Cipriano de Ribaterme 9 208 499
SAL San Leonardo 14 323 804
SEG Sergude (Huerto Semillero) 21 536 1340
SIE Sierra de Barcia 8 203 506
STJ St-Jean des Monts 28 718 1824

TAM Tamrabta 15 320 839
VAL Valdemaqueda 12 286 750
VER Le Verdon 27 663 1695

Table XI.2. Provenance information: provenance codes used in the study, provenance names, number of genotypes, trees and observations
(an observation being a height-growth measurement in a given year on one individual) per provenance.
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Provenance NA C CS FA IA SES
ALT 0.003 0.000 0.119 0.096 0.780 0.003
ARM 0.005 0.007 0.021 0.006 0.959 0.001
ARN 0.010 0.002 0.958 0.007 0.010 0.013
BAY 0.003 0.004 0.966 0.013 0.010 0.004
BON 0.152 0.010 0.654 0.003 0.002 0.179
CAD 0.002 0.001 0.053 0.010 0.933 0.002
CAR 0.001 0.001 0.904 0.060 0.022 0.011
CAS 0.001 0.000 0.005 0.001 0.991 0.001
CEN 0.013 0.002 0.892 0.003 0.041 0.050
COC 0.017 0.005 0.826 0.061 0.043 0.047
COM 0.239 0.028 0.127 0.011 0.039 0.556
CUE 0.003 0.001 0.874 0.063 0.056 0.002
HOU 0.004 0.001 0.026 0.960 0.007 0.002
LAM 0.002 0.001 0.003 0.050 0.943 0.000
LEI 0.004 0.003 0.512 0.007 0.472 0.002
MAD 0.764 0.001 0.000 0.002 0.000 0.233
MIM 0.004 0.002 0.024 0.952 0.013 0.005
OLB 0.080 0.010 0.776 0.006 0.003 0.126
OLO 0.004 0.001 0.007 0.980 0.006 0.003
ORI 0.249 0.005 0.027 0.001 0.009 0.709
PET 0.003 0.001 0.021 0.966 0.004 0.004
PIA 0.004 0.974 0.010 0.001 0.008 0.003
PIE 0.007 0.970 0.022 0.000 0.000 0.001
PLE 0.005 0.001 0.060 0.924 0.005 0.004
PUE 0.002 0.000 0.021 0.001 0.974 0.002
QUA 0.092 0.006 0.499 0.005 0.015 0.383
SAC 0.004 0.001 0.268 0.002 0.723 0.002
SAL 0.010 0.004 0.944 0.027 0.008 0.008
SEG 0.003 0.001 0.151 0.013 0.829 0.003
SIE 0.003 0.001 0.089 0.015 0.891 0.001
STJ 0.003 0.002 0.027 0.947 0.017 0.004
TAM 0.937 0.000 0.025 0.000 0.037 0.001
VAL 0.012 0.003 0.943 0.006 0.011 0.025
VER 0.003 0.002 0.019 0.972 0.003 0.001

Table XI.3. Mean proportion belonging to each gene pool for each provenance. For each provenance, the highest proportion belonging to
a given gene pool is in bold. The gene pools come from: northern Africa (NA), Corsica (C), central Spain (CS), French Atlantic region (FA),
Iberian Atlantic region (IA) and south-eastern Spain (SES).
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2 Height-associated positive-e�ect alleles (PEAs)

2.1 Calculation of the counts of height-associated positive-e�ect al-
leles

This section complements the section 3.2 in the manuscript and we explain here in more
details how we calculated the counts of global and regional height-associated positive-e�ect
alleles. As already explained in the manuscript, for each of the four GWAS (a global GWAS
and three regional GWAS), we selected the 350 SNPs with the highest absolute estimates of
the posterior e�ect size (i.e. Rao-Blackwellized estimates), corresponding approximately to
the estimated number of SNPs with non-zero e�ects on height in a previous study (i.e. the
level of polygenicity; de Miguel et al. 2020). Then, for each selected allele, if the posterior e�ect
size was negative, it was converted to positive values and the reference allele �ipped to select
only alleles that have a positive e�ect on height (positive-e�ect alleles; PEAs). Thus, we ended
up with four groups of PEAs. One group had a global positive e�ect (i.e. range-wide e�ect)
on height and was used to calculate the count of global PEAs that each sapling has (дPEAд
variable). Trees with the same genotype had the same дPEAд, such as дPEAд =

∑350
l=1Glд ,

where Glд = {0, 1, 2} is the number of global PEAs that the genotype д has at the locus l . The
three other groups of PEAs had a regional positive-e�ect on height (i.e. speci�c e�ect in a
given geographical region/in a particular environment) and were used to calculate the number
of regional PEAs that each tree has (rPEAдr variable). rPEAдr was calculated based on both
the tree genotype д and the region r of its planting site, such as rPEAдr =

∑350
l=1Glдr , where

Glдr = {0, 1, 2} is the number of PEAs speci�c to the geographical region r that the genotype д
has at the locus l (see Fig. XI.1 below for a summary diagram of how the counts of global and
regional PEAs were obtained).

Figure XI.1. Schematic representation of the calculation of the global PEA counts (дPEAд variable) and regional PEA counts (r PEAдr
variable).
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2.2 Shared proportion of globally and regionally selected
height-associated SNPs

A small proportion of regionally-selected height-associated SNPs was shared among the
di�erent regions: 20% (69 SNPs) shared between the French Atlantic (Bordeaux) and the Iberian
Atlantic region (Asturias and Portugal), 12% (41 SNPs) shared between the Mediterranean
(Cáceres and Madrid) and the French Atlantic region and 24% (83 SNPs) shared between the
Iberian Atlantic and the Mediterranean region (Fig. XI.2). Interestingly, height-associated SNPs
that were shared among di�erent regions show consistently similar e�ects across regions (e.g.
positive e�ects in two or more regions rather than antagonist e�ects): we did not detect a
single SNP with an antagonistic e�ect (Fig. XI.2).

Figure XI.2. Number and proportion of height-associated alleles shared among regions: the French Atlantic region (Bordeaux), the Iberian
Atlantic region (Asturias and Portugal) and the Mediterranean region (Cáceres and Madrid). This �gure was obtained before transforming
the height-associated negative-e�ect alleles in positive-e�ect alleles by �ipping their reference allele.

82.9% of the globally-selected SNPs were at least selected once in a regional GWAS too (Fig.
XI.3). Height-associated SNPs that were selected both globally and regionally (at least in one
region) show consistently similar e�ects (i.e. either positive or negative, but not antagonistic
e�ects): we did not �nd a single SNP with an antagonist e�ect when selected globally or
regionally.

Figure XI.3. Number and proportion of alleles shared among the sets of 350 height-associated alleles selected globally and those selected
regionally.

Importantly, we cannot exclude that the proportion of SNPs shared among regions or shared
among globally-selected and regionally-selected SNPs is a function of the sample size. Indeed,
the two regions with the lowest sample size (French Atlantic and Mediterranean regions) are
also the ones that share the lowest number of height-associated SNPs (Fig. XI.2). Similarly, the
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globally-selected height-associated SNPs share the highest proportion with regionally-selected
height-associated SNPs from the Iberian Atlantic region (the region with the highest sample
size) and the lowest proportion with regionally-selected height-associated SNPs from the
Mediterranean region (the region with the lowest sample size) (Fig. XI.3).
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3 Climatic data

3.1 In the test sites

We extracted monthly climatic data from the EuMedClim database at 1-km resolution (Fré-
javille and Benito Garzón 2018). We calculated six variables that describe both extreme and
average temperature and precipitation conditions in the test sites during the year preceding
the measurements: the mean of monthly precipitation (mean.pre, mm), minimum of monthly
minimum temperatures (min.tmn, °C), minimum of monthly precipitation during summer -June
to September- (min.presummer, °C), the mean of monthly maximum temperatures (mean.tmax,
°C), maximum of monthly precipitation (max.pre, mm), maximum of monthly maximum temper-
atures (max.tmx, °C). These variables had at most a correlation coe�cient of 0.85 among each
other (Fig. XI.4). Due to the unbalanced number of measurements among test sites (trees were
measured only once in the hottest and driest sites, Cáceres and Madrid, as survival was very
low), some of these variables were slightly correlated with tree age (at most with a correlation
coe�cient of 0.56 for the mean of the monthly precipitation; Fig. XI.4). We decided not to
include soil variables (from the European Soil Database: https://esdac.jrc.ec.europa.eu/) in the
analyses as they were highly correlated to some of the climatic variables. Likewise, we did not
include variables related to water balance or evapotranspiration potential as they were highly
correlated with temperature and precipitation variables.

Figure XI.4. Correlation matrix between variables related to the climatic conditions in the test sites and tree age at the time of the mea-
surements. The climatic variables, calculated over the year preceding the measurements, are: the mean of monthly precipitation (mean.pre,
mm), minimum of monthly minimum temperatures (min.tmn, °C), minimum of monthly precipitation during summer -June to September-
(min.presummer, °C), the mean of monthly maximum temperatures (mean.tmax, °C), maximum of monthly precipitation (max.pre, mm), max-
imum of monthly maximum temperatures (max.tmx, °C).
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Figure XI.5. Principal component analysis of the variables related to the climatic conditions in the test sites and tree age at the time of the
measurements. See Fig. XI.4 for the meaning of variable abbreviations.

The climatic similarity among test sites during the year preceding the measurements was
described by the covariance matrix Ω. This covariance matrix was used to estimate the
association between height-growth variation and the climatic similarity between test sites in
models M3 to M6 (Table V.1), following Jarquín et al. (2014); see also a similar approach but
using Euclidean distance matrices in Thomson et al. (2018).

Figure XI.6. Heatmap of the covariance matrix Ω describing the climatic similarity among test sites during the year preceding the measure-
ments. The labels correspond to the name of the test sites followed by the age of the trees at the date of the measurement (in months).

3.2 In the provenances

We extracted yearly data from the EuMedClim database at 1-km resolution (Fréjaville and
Benito Garzón 2018). We calculated four variables that describe the mean temperature and
precipitation in the provenance locations over the period from 1901 to 2009, representing
the climate under which provenances have evolved: the average of the annual daily mean
temperature (mean.temp, °C), the average of the maximum temperature of the warmest month
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(max.temp, °C), the average of the annual precipitation (mean.pre, mm) and the average of the
precipitation of the driest month (min.pre, mm). These variables had at most a correlation
coe�cient of 0.77 among each other (Fig. XI.7), and three of them were correlated to the
population genetic structure, i.e. the gene pool assignment (|ρ |≥ 0.6). Indeed, the provenance
proportion belonging to the French Atlantic gene pool was positively correlated (ρ=0.83) to
the average of the precipitation during the driest month, whereas the proportion belonging to
the Central Spain gene pool was negatively correlated (ρ=-0.68) to the average of the annual
precipitation and positively correlated (ρ=0.6) to the average of the maximum temperature of the
warmest month (Fig. XI.7). However, the confounding e�ect introduced by these correlations
was mitigated by some provenances belonging to di�erent gene pools but occurring in similar
climates (i.e. French and Iberian Atlantic provenances), and some provenances occurring
in di�erent climates but belonging to the same gene pool (i.e. Corsican provenances). Soil
variables from the European Soil Database (https://esdac.jrc.ec.europa.eu/) were not included
in our study as they were highly correlated to some of the selected climatic variables.

Figure XI.7. Correlation matrix of the variables related to the climatic conditions in the provenance locations and variables related to
the population genetic structure (genotype proportion belonging to each gene pool). The genotypes belong to 6 distinct gene pools from:
Northern Africa, Corsica, Central Spain, French Atlantic region, Iberian Atlantic region and south-eastern Spain. The climatic variables,
calculated over the period from 1901 to 2009, are: the average of the annual daily mean temperature (mean.temp, °C), the average of the
maximum temperature of the warmest month (max.temp, °C), the average of the annual precipitation (mean.pre, mm) and the average of the
precipitation of the driest month (min.pre, mm).
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Figure XI.8. Principal component analysis of the variables related to the climatic conditions in the provenance locations and variables
related to the population genetic structure (genotype proportion belonging to each gene pool). See Fig. XI.7 for the meaning of variable
abbreviations.

The climatic similarity among provenances was described by the covariance matrix Φ. This
covariance matrix was used to estimate the association between height-growth variation and
the climatic similarity between provenances in model M6, following Jarquín et al. (2014); see
also a similar approach but using Euclidean distance matrices in Thomson et al. (2018).

Figure XI.9. Heatmap of the covariance matrix Φ of the climatic variables in the provenances. Labels correspond to the provenance names.
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4 Model equations and priors

4.1 Model equations

In this section, the complete equations of each model are speci�ed. The priors are indicated
in the next section.

4.1.1 Baseline models M1 and M2: separating the genetic and plastic
components

Model M0:

log(hisb) ∼ N(Xβ + µsb , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µsb = Ss + Bb(s)

Model M1:
log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µsbpд = Ss + Bb(s) + Pp +Gд(p)

Model M2:
log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µsbpд = Ss + Bb(s) + Pp +Gд(p) + SsPp

where X is the 3-column design matrix and β is a vector including the intercept β0 and
the coe�cients βaдe and βaдe2 of the �xed e�ect variables (aдe and aдe2, respectively). µsbpд is
the vector of varying intercepts with the provenance intercepts Pp , the genotype intercepts
Gд(p), the site intercepts Ss , the block intercepts Bb(s) and the interaction between the site and
provenance intercepts SsPp .

4.1.2 ExplanatorymodelsM3 toM6: potential drivers underlyingheight-
growth variation

Model M3:
log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µisbpд = Ss + Bb(s) + Pp +Gд(p) + csis

csis ∼ N(0,Ωσ 2
csis )

Models M4, M5 and M6:

In models M4 and M5, we hypothesized that the genetic component of height growth was
in�uenced by the proportion belonging to each gene pool (proxy of the population demographic
history and genetic drift). In M4, following Wolak and Reid (2017), gene pools j were allowed
to vary in their mean relative contribution дj on height growth as follows:
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log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µijsbpд = Ss + Bb(s) + Pp +Gд(p) + csis +
6∑
j=1

qдjдj

дj ∼ N(0,σ 2
дj )

where qдj corresponds to the proportion of each genotype д belonging to the gene pool j (as
estimated in Jaramillo-Correa et al. 2015) and дj is the mean relative contribution of gene pool j
on height growth. In this model, trees from the same gene pool are considered to be unrelated,
which is a reasonable assumption given the sampling scheme (see Materials & Methods).

M5 extends M4 by allowing gene pools j to vary in their total genetic variance σ 2
Aj

, following
Mu� et al. (2019). This involves replacing the genotype varying interceptsGд(p) in M4 by partial
genetic values aдj standing for the relative contribution of gene pool j to the genetic value aд of
genotype д (approximated in M4 by the genotype intercepts Gд(p)). Thus, M5 can be expressed
as M4 but with µijsbpд equal to:

log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µijsbpд = Ss + Bb(s) + Pp + csis +
6∑
j=1

qдjдj +
6∑
j=1

aдj

aᵀj = (a1j , ...,anj)ᵀ ∼ N(0,σ 2
Aj
Aj)

with Aj the genomic relationship matrix speci�c to the gene pool j and σ 2
Aj

, the total
genetic variance in gene pool j. Aj matrices were calculated based on SNPs that did not
show any association with height at range-wide geographical scales (see Mu� et al. 2019 for
details on Aj calculation). Using the modeled residual variance σ 2 and gene-pool speci�c
total genetic variances σ 2

Aj
, we calculated the gene-pool speci�c broad-sense heritability as:

H 2
j = σ

2
Aj
/(σ 2

Aj
+ σ 2).

In model M6, we hypothesized that populations are genetically adapted to the climatic
conditions in which they evolved. Thus, we aimed to quantify the association between height
growth and the climatic similarity among provenances, while accounting also for the proportion
belonging to each gene pool. We kept the genotype varying intercepts (like in M1 to M4) but
not the gene pool-speci�c total genetic variances (unlike M5). Thus, M6 extends M4 as:

log(hisbpд) ∼ N(Xβ + µsbpд , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µijsbpд = Ss + Bb(s) + Pp +Gд(p) + csis + cpp +
6∑
j=1

qдjдj

cpp ∼ N(0,Φσ 2
cpp )

where Φ is the covariance matrix describing the climatic similarity between provenances p
(Fig. XI.9) and cpp are varying intercepts associated with each provenance p. In M6, the genetic
component was partitioned among the regression on the climatic covariates (cpp), the gene
pool covariates (дj), and the deviations related to the genotype (Gд(p)) and provenance (Pp)
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e�ects (resulting, for instance, from adaptation to environmental variables not measured in our
study).

4.1.3 Predictive models M7 to M12: combining climatic and genomic
information to improve predictions

Model M7:

log(hisb) ∼ N(Xβ + µjsbpд , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µjsbpд = Ss + Bb(s) +
6∑
j=1

qдjдj + βmin.pre,smin.prep + βmax .temp,smax .tempp + βдPEA,sдPEAд

Model M8:

log(hisbr ) ∼ N(Xβ + µjsbpдr , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µjsbpдr = Ss + Bb(s) +
6∑
j=1

qдjдj + βmin.pre,smin.prep + βmax .temp,smax .tempp + βrPEA,srPEAдr

Model M9:
log(hisb) ∼ N(Xβ + µjsb , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µjsb = Ss + Bb(s) +
6∑
j=1

qдjдj

Model M10:

log(hisb) ∼ N(Xβ + µjsbp , σ 2)
Xβ = β0 + βaдeagei + βaдe2age2

i

µjsbp = Ss + Bb(s) + βmin.pre,smin.prep + βmax .temp,smax .tempp

Model M11:
log(hisbд) ∼ N(Xβ + µsbд , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µsbд = Ss + Bb(s) + βдPEA,sдPEAд

Model M12:
log(hisbдr ) ∼ N(Xβ + µsbдr , σ 2)

Xβ = β0 + βaдeagei + βaдe2age2
i

µsbдr = Ss + Bb(s) + βrPEA,srPEAдr

where min.prep and max .tempp are the climatic variables in the provenance locations,
βmin.pre,s and βmax .temp,s their site-speci�c slopes, дPEAд and rPEAдr the counts of global and
regional PEAs and βдPEA,s and βrPEA,s their site-speci�c slopes.
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4.2 Model priors

In all models: 
Ss
Bb(s)
Pp

Gд(p)
SsPp


∼ N

©«
0,


σS
σB
σP
σG
σInter


ª®®®®®¬

(σ ,σS ,σB,σP ,σG ,σInter ,σcsis ,σдj ,σAj ,σcpp )ᵀ ∼ StudentT(3, 0, 10)

β0 ∼ N(0, 5)[
βaдe
βaдe2

]
∼ N(0, 1)

In model M7: 
Ss

βmin.pre,s

βmax .temp,s

βдPEA,s

 ∼ MVNormal
( [

0
0

]
, S

)

S =
©«
σS 0 0 0
0 σβmin .pre,s 0 0
0 0 σβmax .temp,s 0
0 0 0 σβдPEA,s

ª®®®¬
©«
1 1 1 ρ
1 1 ρ 1
1 ρ 1 1
ρ 1 1 1

ª®®®¬
©«
σS 0 0 0
0 σβmin .pre,s 0 0
0 0 σβmax .temp,s 0
0 0 0 σβдPEA,s

ª®®®¬
σS

σβmin .pre,s

σβmax .temp,s

σβдPEA,s

 ∼ StudentT(3, 0, 10)

©«
1 1 1 ρ
1 1 ρ 1
1 ρ 1 1
ρ 1 1 1

ª®®®¬ ∼ LKJcorr(4)

where βx ,s corresponds to βmin.pre,s in M7 and βmax .temp,s in M8.

In model M8: same as M7 but replacing βдPEA,s and σβдPEA,s by βrPEA,s and σβr PEA,s , respec-
tively.

In models M9, M10, M11 and M12, same as M7 and M8.
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5 Model comparison

5.1 Description of the di�erent indices used to compare the models

Similarly to the in-sample proportion of the variance explained by each model m in each
site s (R2

ms |aдe), we calculated the out-of-sample proportion of the variance predicted by each
modelm in each site s conditional on the age e�ect as follows:

prediction R2
ms |aдe =

Vpredms
−Vage2s

Vys −Vage2s

whereVpredms
is the variance of the modeled predictive means from modelm in site s of the

test dataset,Vage2s is the variance predicted by the age e�ect in the model M2 in site s andVys is
the phenotypic variance in the site s of the test dataset. Estimates of prediction R2

ms |aдe in the
three partitions are reported in Table V.4.

We then calculated other indices that are not presented in the main manuscript as they are not
necessary to support the main objectives of the paper, especially whether the models combining
the climatic and genomic drivers of the genetic component can improve the prediction on
new provenances. However, they are still useful to compare the goodness-of-�t and predictive
ability of the models, that’s why we report them here.

We calculated the total in-sample proportion of the variance explained by each model m
such as:

R2
m =

Vpredm
Vy

where Vpredm is the variance of the modeled predictive means from modelm in the training
dataset and Vy is the phenotypic variance in the training dataset. Similarly, we calculated
the prediction R2

m on the test dataset, that is the total out-of-sample proportion of variance
predicted by each modelm in the test dataset.

We calculated the in-sample proportion of the variance explained by the �xed e�ects of each
modelm such as:

R2
m (�x) =

Vpredm (�x)

Vy

where Vpredm (�x) is the variance explained by the �xed e�ects of model m in the training
dataset and Vy is the phenotypic variance in the training dataset. Similarly, we calculated
the prediction R2

m(f ix) on the test dataset, that is the out-of-sample proportion of variance
predicted by the �xed e�ects of each modelm in the test dataset.

Last, we calculated the total in-sample proportion of the variance explained by each model
m conditional on the age e�ect, such as:

R2
m |aдe =

Vpredm −Vage2

Vy −Vage2

whereVage2 is the variance explained by the age e�ect in model M2. Similarly, we calculated
the prediction R2

m |aдe on the test dataset, that is the total out-of-sample proportion of variance
predicted by each modelm conditional on the age e�ect in the test dataset.
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To both evaluate the model goodness-of-�t and predictive ability, we also calculated the
model mean predictive error of each modelm (mean of observed minus predicted responses,
PEm) on the training and test datasets of the three partitions.

R2
m, R2

m (�x), R
2
m |aдe , PEm and their predictive equivalents are presented in Tables XI.4 (P1

partition), XI.9 (P2 partition) and XI.12 (P3 partition).

To assess the model predictive ability, we also calculated the ELPDloo , which is the Bayesian
leave-one-out estimate of the expected log pointwise predictive density (equation 4 in Vehtari et
al. 2017). This is a method for estimating out-of-sample prediction accuracy of Bayesian models,
which is asymptotically equal to WAIC (Vehtari et al. 2017) and has the great advantage that
it can be estimated without re�tting the model. ELPDloo estimates can be found in Table XI.6
for the P1 partition and its pairwise comparisons between models in Tables XI.7 (P1 partition)
and XI.10 (P2 partition). ELPDloo , like WAIC, provides various advantages over AIC and DIC,
especially that it is not a point estimate and, on the contrary, has an entire posterior distribution
(Vehtari et al. 2017). Moreover, calculating ELPDloo using Pareto-smoothed importance sampling
as we did in the present study using the loo R package, leads to more robust estimates than with
WAIC (e.g. in cases with weak priors or in�uential observations). Models with higher ELPDloo

are expected to have a higher predictive ability for new observations. In other words, ELPDloo

indicates which model best captures each left-out data point. Therefore, ELPDloo indicates
whether models have good predictive ability for new observations, but not for new groups
(e.g., new provenances in our case). To estimate to predictive ability on new provenances with
the ELPDloo , we would have had to divide the dataset into k partitions (e.g. 34 partitions and
leaving one provenance out each time, 34 being the number of provenances; or 6 partitions and
leaving ∼6 provenances out each time) and run the models k times, which would have been
very computationally heavy and was not feasible in our case given the computation time of
some models (almost a week for M5). This is why we used the prediction R2

ms |aдe instead of
the ELPDloo to compare the models as it allowed us to calculate the variance explained and
predicted by the models conditional on the age e�ect, and also to compare their predictive
ability on new provenances without running the models again.
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5.2 In-sample proportion of variance explained conditional on age

FigureXI.10. In-sample proportion of explained variance conditional on the age e�ect (R2
ms |aдe ) in the training datasets (data used to �t the

models) of the P1, P2 and P3 partitions. In the P1 partition, the training dataset was obtained by randomly sampling 75% of the observations
and the test dataset contains the remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling
28 provenances and the test data set contains the remaining 6 provenances. The P3 partition corresponds to a non-random split between a
training dataset of 28 provenances and a test dataset containing 6 provenances with at least one provenance from each under-represented
gene pool. The exact values of the R2

ms |aдe estimates and their associated credible intervals can be found in Tables XI.4 (P1 partition), XI.9
(P2 partition) and XI.12 (P3 partition).
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5.3 P1 partition (random split of the observations)

5.3.1 Variance explained and predicted

Models Explanatory part: training P1 Predictive part: test P1

R2
m |aдe R2

m R2
m (f ix ) PEm prediction R2

m |aдe prediction R2
m prediction R2

m (f ix ) PEm
M0 0.463 [0.439-0.487] 0.768 [0.758-0.779] 0.575 [0.564-0.586] 0.267 [0.010-0.84] 0.462 [0.437-0.487] 0.773 [0.762-0.784] 0.584 [0.573-0.596] 0.269 [0.010-0.851]
M1 0.571 [0.548-0.594] 0.815 [0.805-0.825] 0.569 [0.559-0.578] 0.231 [0.008-0.754] 0.559 [0.535-0.583] 0.814 [0.804-0.824] 0.578 [0.568-0.588] 0.236 [0.008-0.769]
M2 0.578 [0.556-0.601] 0.818 [0.808-0.828] 0.568 [0.559-0.578] 0.229 [0.009-0.752] 0.567 [0.543-0.591] 0.817 [0.807-0.827] 0.577 [0.568-0.587] 0.235 [0.008-0.763]
M3 0.574 [0.552-0.597] 0.816 [0.807-0.826] 0.566 [0.506-0.621] 0.231 [0.009-0.747] 0.563 [0.538-0.587] 0.815 [0.805-0.825] 0.575 [0.514-0.631] 0.235 [0.009-0.763]
M4 0.575 [0.553-0.597] 0.817 [0.807-0.826] 0.568 [0.507-0.623] 0.230 [0.008-0.747] 0.563 [0.54-0.587] 0.815 [0.806-0.826] 0.577 [0.516-0.634] 0.235 [0.009-0.763]
M5 0.573 [0.551-0.595] 0.816 [0.806-0.825] 0.568 [0.508-0.622] 0.231 [0.008-0.751] 0.562 [0.539-0.585] 0.815 [0.805-0.825] 0.577 [0.516-0.632] 0.236 [0.009-0.767]
M6 0.575 [0.553-0.598] 0.817 [0.807-0.826] 0.567 [0.504-0.624] 0.230 [0.009-0.748] 0.563 [0.539-0.587] 0.816 [0.805-0.826] 0.576 [0.512-0.635] 0.235 [0.009-0.763]
M7 0.546 [0.523-0.569] 0.804 [0.794-0.814] 0.570 [0.560-0.58] 0.241 [0.009-0.788] 0.529 [0.506-0.553] 0.801 [0.792-0.811] 0.580 [0.570-0.590] 0.243 [0.008-0.790]
M8 0.554 [0.532-0.577] 0.807 [0.798-0.817] 0.570 [0.560-0.580] 0.238 [0.008-0.780] 0.535 [0.512-0.558] 0.804 [0.794-0.814] 0.580 [0.569-0.590] 0.239 [0.009-0.783]
M9 0.502 [0.478-0.525] 0.785 [0.775-0.795] 0.574 [0.564-0.585] 0.253 [0.010-0.822] 0.491 [0.467-0.516] 0.785 [0.775-0.796] 0.584 [0.573-0.595] 0.255 [0.009-0.826]
M10 0.497 [0.473-0.520] 0.783 [0.773-0.793] 0.574 [0.564-0.585] 0.255 [0.009-0.821] 0.485 [0.460-0.509] 0.783 [0.772-0.793] 0.584 [0.573-0.594] 0.257 [0.010-0.828]
M11 0.500 [0.477-0.523] 0.784 [0.774-0.794] 0.571 [0.561-0.581] 0.257 [0.010-0.812] 0.495 [0.471-0.519] 0.787 [0.777-0.797] 0.580 [0.570-0.591] 0.259 [0.009-0.831]
M12 0.506 [0.482-0.530] 0.787 [0.776-0.797] 0.571 [0.560-0.581] 0.255 [0.009-0.804] 0.498 [0.473-0.523] 0.788 [0.778-0.799] 0.580 [0.570-0.591] 0.257 [0.011-0.825]

Table XI.4. Summary of model performance in the P1 partition, in which the training dataset was obtained by randomly sampling 75% of the
observations and the test dataset contains the remaining 25% observations. R2

m |aдe and prediction R2
m |aдe correspond to the proportion

of variance explained and predicted by the models conditional on the age e�ect in the training (in-sample) and test (out-of-sample) datasets,
respectively. R2

m and R2
m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire model and by the

�xed variables only, respectively. Prediction R2
m and R2

m (f ix ) correspond to the proportion of variance in the test dataset predicted by
the entire model or by the �xed e�ects, respectively. PEm corresponds to the mean predictive error (mean of observed minus predicted
responses). For R2 and PE, the mean (over all iterations for R2 or over all observations for PE) and the 95% credible intervals are given. For
more details on the calculation of each index, see section 5.1 of the Supplementary Information. See Table V.1 and main text for description
of model the components.

M0 explained less variance (lower R2
m andR2

m |aдe) than the other models as it did not account
for the genetic component of height growth (Table XI.4). The models that accounted for the
genetic component with varying intercepts for the provenances explained 81.5% of the variance
(Table XI.4). The models combining genomic (PEAs and gene pools) and climatic drivers (M7
and M8) explained more variance (higher R2

m and R2
m |aдe) than models including separately

each driver (M9 to M12). R2
m and prediction R2

m were similar for all models, meaning that the
models predicted well new observations (i.e. new observations but from the same sites and
same provenances).

5.3.2 Variance partitioning conditional on the age e�ect
We examine here the partitioning of the variance conditional on the age e�ect, which provides

insight into the genetic and plastic components of deviations from the mean height-growth
trajectory (Table XI.5). It was not possible to extract the variance explained by the di�erent
drivers of the genetic and plastic components (i.e. for the plastic component, the variance
associated with site intercepts and the intercepts associated with climatic similarity between
sites) as they were confounded, and thus their explained variance could not be disentangled.

Models Environment Genetic Genetic x Environment Residuals
M0 45.5% [43.7 - 47.2] - - 54.6% [53.2 - 56.0]
M1 46.5% [44.9 - 48.0] 11.4% [10.7 - 12.1] - 42.9% [41.9 - 43.9]
M2 46.8% [42.5 - 51.2] 11.0% [9.6 - 12.5] 1.5% [-1.0 - 4.3] 42.2% [41.3 - 43.1]

Table XI.5. Partitioning of the variance explained on the data used for sampling conditional on the age e�ect (i.e. the variance of the
deviations from the mean height-growth trajectory).
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5.3.3 Bayesian LOO estimate of the expected log predictive density
(ELPDloo)

Models ELPDloo
M0 -9216 [165]
M1 -6652 [182]
M2 -6487 [182]
M3 -6551 [184]
M4 -6549 [184]
M5 -6591 [184]
M6 -6550 [184]
M7 -7135 [179]
M8 -6926 [180]
M9 -8276 [172]

M10 -8405 [173]
M11 -8334 [169]
M12 -8171 [169]

Table XI.6. ELPDloo of models �tted on the training dataset of the P1 partition. The mean and the standard deviation (in brackets) are given.

M1 M10 M11 M12 M2 M3 M4 M5 M6 M7 M8 M9
M0 -2563.62 [71.79] -810.25 [39.04] -881.82 [41.73] -1044.94 [45.56] -2728.44 [73.82] -2665.02 [73.19] -2666.62 [73.22] -2624.87 [73.01] -2665.94 [73.18] -2080.78 [63.39] -2289.82 [66.96] -939.27 [42.76]
M1 1753.37 [61.78] 1681.8 [61.36] 1518.68 [62.97] -164.82 [18.35] -101.4 [14.94] -103 [14.96] -61.24 [17.18] -102.32 [14.92] 482.84 [40.42] 273.8 [45.04] 1624.35 [59.03]

M10 -71.57 [58.87] -234.69 [61.4] -1918.19 [64.12] -1854.77 [63.52] -1856.37 [63.39] -1814.61 [63.14] -1855.68 [63.31] -1270.53 [51.27] -1479.56 [55.64] -129.01 [21.51]
M11 -163.12 [31.09] -1846.62 [63.88] -1783.2 [62.89] -1784.8 [63.1] -1743.04 [62.64] -1784.12 [63.05] -1198.96 [47.55] -1408 [58.33] -57.45 [62.64]
M12 -1683.5 [63.52] -1620.08 [64.65] -1621.68 [64.92] -1579.93 [64.43] -1621 [64.89] -1035.84 [56.61] -1244.88 [48.18] 105.67 [64.94]
M2 63.42 [24.36] 61.82 [24.4] 103.58 [25.8] 62.51 [24.39] 647.66 [44.45] 438.63 [45.28] 1789.18 [61.98]
M3 -1.6 [1.24] 40.16 [8.61] -0.91 [1.09] 584.24 [43.19] 375.21 [47.81] 1725.76 [61.02]
M4 41.76 [8.52] 0.68 [0.78] 585.84 [43.06] 376.8 [47.78] 1727.35 [60.75]
M5 -41.07 [8.54] 544.09 [42.25] 335.05 [47] 1685.6 [60.47]
M6 585.16 [43.02] 376.12 [47.77] 1726.67 [60.72]
M7 -209.04 [35] 1141.51 [48.56]
M8 1350.55 [52.98]

Table XI.7. ELPDloo di�erences among models �tted on the training dataset of the P1 partition. The ELPDloo di�erence among models
corresponds to the ELPDloo of the row model minus the ELPDloo of the column model. Thus, a negative di�erence in ELPDloo means that
the row model has a lower ELPDloo than the column model, and therefore a lower predictive ability on new observations. The standard
error of the model di�erences is indicated between brackets. Two models are considered signi�cantly di�erent when their absolute ELPDloo
di�erence is higher than four times the standard error (in bold).

5.3.4 Site-speci�c predicted variance conditional on the age e�ect

Models Asturias Bordeaux Cáceres Madrid Portugal
M0 0.064 [-0.027-0.155] 0.002 [-0.02-0.024] 0.017 [0.004-0.043] 0.035 [0.015-0.063] 0.029 [0.007-0.051]
M1 0.341 [0.257-0.43] 0.215 [0.192-0.239] 0.227 [0.196-0.263] 0.204 [0.18-0.231] 0.161 [0.139-0.184]
M2 0.349 [0.264-0.436] 0.259 [0.229-0.289] 0.266 [0.201-0.342] 0.25 [0.208-0.297] 0.171 [0.148-0.194]
M3 0.242 [0.142-0.341] 0.362 [0.324-0.401] 0.227 [0.197-0.262] 0.203 [0.18-0.23] 0.168 [0.141-0.198]
M4 0.244 [0.144-0.346] 0.363 [0.324-0.403] 0.228 [0.197-0.265] 0.203 [0.179-0.23] 0.169 [0.14-0.198]
M5 0.246 [0.15-0.344] 0.357 [0.32-0.397] 0.227 [0.195-0.263] 0.2 [0.176-0.228] 0.166 [0.138-0.195]
M6 0.243 [0.144-0.342] 0.363 [0.324-0.402] 0.228 [0.197-0.265] 0.203 [0.179-0.231] 0.169 [0.14-0.199]
M7 0.251 [0.168-0.336] 0.186 [0.157-0.215] 0.184 [0.112-0.276] 0.158 [0.117-0.205] 0.122 [0.101-0.145]
M8 0.248 [0.163-0.332] 0.2 [0.171-0.23] 0.235 [0.147-0.344] 0.337 [0.269-0.414] 0.137 [0.114-0.159]
M9 0.167 [0.082-0.256] 0.071 [0.05-0.092] 0.093 [0.079-0.116] 0.093 [0.075-0.117] 0.063 [0.042-0.084]
M10 0.124 [0.037-0.211] 0.093 [0.067-0.12] 0.08 [0.029-0.148] 0.086 [0.052-0.126] 0.052 [0.031-0.074]
M11 0.129 [0.045-0.215] 0.074 [0.049-0.098] 0.071 [0.024-0.138] 0.102 [0.066-0.143] 0.087 [0.064-0.109]
M12 0.124 [0.04-0.21] 0.063 [0.038-0.088] 0.128 [0.061-0.219] 0.262 [0.196-0.335] 0.102 [0.079-0.124]

Table XI.8. Summary table of site-speci�c proportion of predicted variance conditional on the age e�ect (prediction R2
ms |aдe ) in the test

datasets (data not used to �t the models) of the P1 partition. The numbers shown are the mean and the 95% credible intervals.
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5.4 P2 partition (random split of the provenances)

5.4.1 Variance explained and predicted

Models Explanatory part: training P2 Predictive part: test P2

R2
m |aдe R2

m R2
m (f ix ) PEm prediction R2

m |aдe prediction R2
m prediction R2

m (f ix ) PEm
M0 0.454 [0.431-0.478] 0.766 [0.756-0.776] 0.577 [0.567-0.587] 0.268 [0.011-0.839] 0.425 [0.403-0.447] 0.745 [0.736-0.755] 0.563 [0.553-0.573] 0.263 [0.010-0.881]
M1 0.571 [0.550-0.592] 0.816 [0.807-0.825] 0.571 [0.562-0.581] 0.230 [0.008-0.746] 0.428 [0.409-0.448] 0.747 [0.738-0.755] 0.557 [0.548-0.566] 0.264 [0.010-0.877]
M2 0.578 [0.558-0.599] 0.819 [0.810-0.828] 0.571 [0.562-0.58] 0.228 [0.009-0.743] 0.426 [0.374-0.482] 0.746 [0.723-0.770] 0.556 [0.548-0.565] 0.264 [0.010-0.870]
M7 0.546 [0.524-0.567] 0.805 [0.796-0.814] 0.574 [0.564-0.583] 0.239 [0.008-0.779] 0.502 [0.481-0.522] 0.779 [0.770-0.788] 0.559 [0.550-0.568] 0.247 [0.008-0.861]
M8 0.554 [0.532-0.575] 0.809 [0.799-0.818] 0.574 [0.564-0.583] 0.237 [0.009-0.771] 0.540 [0.518-0.562] 0.796 [0.786-0.806] 0.559 [0.550-0.569] 0.246 [0.008-0.844]
M9 0.505 [0.483-0.528] 0.788 [0.778-0.798] 0.578 [0.568-0.587] 0.251 [0.009-0.805] 0.479 [0.458-0.501] 0.769 [0.760-0.779] 0.563 [0.554-0.573] 0.264 [0.009-0.906]
M10 0.499 [0.476-0.522] 0.785 [0.775-0.795] 0.577 [0.567-0.587] 0.252 [0.009-0.808] 0.492 [0.470-0.514] 0.775 [0.765-0.785] 0.563 [0.553-0.573] 0.265 [0.009-0.905]
M11 0.493 [0.470-0.516] 0.783 [0.773-0.793] 0.573 [0.563-0.583] 0.257 [0.009-0.813] 0.471 [0.449-0.493] 0.766 [0.756-0.776] 0.559 [0.549-0.569] 0.258 [0.010-0.856]
M12 0.503 [0.480-0.526] 0.787 [0.777-0.797] 0.573 [0.563-0.583] 0.254 [0.010-0.802] 0.522 [0.499-0.545] 0.788 [0.778-0.798] 0.559 [0.549-0.568] 0.263 [0.010-0.833]

Table XI.9. Summary of model performance in the P2 partition, in which the training dataset was obtained by randomly sampling 28
provenances and the test data set contains the remaining 6 provenances. R2

m |aдe and prediction R2
m |aдe correspond to the proportion of

variance explained and predicted by the models conditional on the age e�ect in the training (in-sample) and test (out-of-sample) datasets,
respectively. R2

m and R2
m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire model and by the

�xed variables only, respectively. Prediction R2
m and R2

m (f ix ) correspond to the proportion of variance in the test dataset predicted by
the entire model or by the �xed e�ects, respectively. PEm corresponds to the mean predictive error (mean of observed minus predicted
responses). For R2 and PE, the mean (over all iterations for R2 or over all observations for PE) and the 95% credible intervals are given. For
more details on the calculation of each index, see section 5 of the Supplementary Information. See Table V.1 and main text for description of
model the components.

5.4.2 Bayesian LOO estimate of the expected log predictive density
(ELPDloo)

M1 M10 M11 M12 M2 M7 M8 M9
M0 -3097.43 [80.4] -1180.71 [47.7] -1001.98 [45.13] -1293 [50.8] -3307.11 [82.58] -2503.89 [70.49] -2740.39 [74.19] -1339.65 [50.55]
M1 1916.72 [66.85] 2095.45 [68.57] 1804.43 [69.11] -209.68 [20.62] 593.55 [43.39] 357.04 [49.06] 1757.78 [63.01]

M10 178.73 [65.95] -112.29 [67.87] -2126.4 [69.47] -1323.17 [54.04] -1559.68 [58.5] -158.94 [25.24]
M11 -291.02 [34.88] b -1501.91 [53.72] -1738.41 [64.64] -337.67 [69]
M12 -2014.11 [69.7] -1210.89 [60.93] -1447.39 [52.32] -46.65 [70.45]
M2 803.22 [48.2] 566.72 [49.33] 1967.46 [66.09]
M7 -236.51 [35.87] 1164.23 [50.25]
M8 1400.74 [54.56]

Table XI.10. ELPDloo di�erences among models �tted on the training dataset of the P2 partition. The ELPDloo di�erence among models
corresponds to the ELPDloo of the row model minus the ELPDloo of the column model. Thus, a negative di�erence in ELPDloo means that
the row model has a lower ELPDloo than the column model, and therefore a lower predictive ability on new observations. The standard
error of the model di�erences is indicated between brackets. Two models are considered signi�cantly di�erent when their absolute ELPDloo
di�erence is higher than four times the standard error (in bold). Detail about interpretation of ELPDloo di�erences can be found in section
5.3.3.

5.4.3 Site-speci�c predicted variance conditional on the age e�ect

Models Asturias Bordeaux Cáceres Madrid Portugal
M0 0.052 [-0.024-0.128] -0.001 [-0.022-0.021] 0.035 [0.007-0.088] 0.042 [0.017-0.076] 0.033 [0.013-0.053]
M2 0.005 [-0.061-0.074] 0.004 [-0.016-0.024] 0.035 [0.008-0.086] 0.034 [0.015-0.062] 0.017 [0.000-0.035]
M1 0.011 [-0.056-0.079] 0.004 [-0.015-0.023] 0.035 [0.008-0.082] 0.036 [0.016-0.063] 0.019 [0.002-0.036]
M7 0.149 [0.079-0.219] 0.140 [0.114-0.167] 0.247 [0.150-0.371] 0.229 [0.170-0.299] 0.111 [0.092-0.131]
M8 0.124 [0.054-0.196] 0.166 [0.137-0.195] 0.290 [0.182-0.422] 0.356 [0.281-0.439] 0.101 [0.082-0.121]
M9 0.166 [0.093-0.240] 0.101 [0.078-0.123] 0.162 [0.132-0.212] 0.139 [0.115-0.169] 0.076 [0.056-0.095]
M10 0.178 [0.100-0.252] 0.152 [0.120-0.185] 0.204 [0.090-0.358] 0.131 [0.085-0.187] 0.081 [0.061-0.101]
M11 0.100 [0.025-0.177] 0.100 [0.072-0.129] 0.189 [0.081-0.330] 0.209 [0.138-0.292] 0.103 [0.082-0.125]
M12 0.141 [0.065-0.217] 0.070 [0.044-0.095] 0.274 [0.150-0.434] 0.329 [0.253-0.413] 0.131 [0.109-0.152]

Table XI.11. Summary table of site-speci�c proportion of predicted variance conditional on the age e�ect (prediction R2
ms |aдe ) in the test

datasets (data not used to �t the models) of the P2 partition. The numbers shown are the mean and the 95% credible intervals.
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5.5 P3 partition (non-random split of the provenances)

5.5.1 Variance explained and predicted

Models Explanatory part: training P3 Predictive part: test P3

R2
m |aдe R2

m R2
m (f ix ) PEm prediction R2

m |aдe prediction R2
m prediction R2

m (f ix ) PEm
M0 0.448 [0.425-0.472] 0.765 [0.755-0.775] 0.58 [0.569-0.591] 0.266 [0.01-0.842] 0.382 [0.362-0.402] 0.716 [0.706-0.725] 0.545 [0.535-0.555] 0.27 [0.009-0.853]
M1 0.557 [0.535-0.579] 0.811 [0.802-0.821] 0.575 [0.565-0.584] 0.232 [0.008-0.759] 0.383 [0.365-0.402] 0.716 [0.708-0.725] 0.54 [0.531-0.549] 0.271 [0.011-0.841]
M2 0.563 [0.54-0.584] 0.814 [0.804-0.823] 0.574 [0.564-0.584] 0.23 [0.008-0.753] 0.388 [0.343-0.438] 0.719 [0.698-0.741] 0.539 [0.531-0.549] 0.271 [0.011-0.842]
M7 0.53 [0.507-0.553] 0.8 [0.79-0.81] 0.577 [0.566-0.587] 0.241 [0.009-0.792] 0.439 [0.415-0.464] 0.742 [0.731-0.753] 0.542 [0.532-0.551] 0.242 [0.008-0.81]
M8 0.537 [0.514-0.56] 0.803 [0.793-0.813] 0.577 [0.567-0.587] 0.24 [0.009-0.784] 0.504 [0.478-0.532] 0.772 [0.76-0.785] 0.542 [0.533-0.551] 0.237 [0.009-0.78]
M9 0.487 [0.464-0.511] 0.782 [0.772-0.792] 0.58 [0.57-0.591] 0.253 [0.01-0.825] 0.406 [0.385-0.428] 0.727 [0.717-0.737] 0.546 [0.536-0.555] 0.286 [0.011-0.905]
M10 0.48 [0.457-0.503] 0.779 [0.769-0.789] 0.581 [0.571-0.591] 0.256 [0.01-0.827] 0.394 [0.373-0.414] 0.721 [0.712-0.731] 0.546 [0.536-0.555] 0.257 [0.01-0.807]
M11 0.484 [0.46-0.508] 0.781 [0.77-0.791] 0.576 [0.566-0.587] 0.257 [0.009-0.818] 0.404 [0.384-0.425] 0.726 [0.717-0.735] 0.542 [0.532-0.551] 0.258 [0.01-0.825]
M12 0.49 [0.466-0.513] 0.783 [0.773-0.793] 0.576 [0.566-0.587] 0.255 [0.01-0.809] 0.442 [0.421-0.462] 0.743 [0.734-0.753] 0.542 [0.532-0.552] 0.255 [0.009-0.819]

Table XI.12. Summary of model performance in the P3 partition, in which the training dataset contains 28 provenances and the test dataset
contains the remaining 6 provenances. R2

m |aдe and prediction R2
m |aдe correspond to the proportion of variance explained and predicted

by the models conditional on the age e�ect in the training (in-sample) and test (out-of-sample) datasets, respectively. R2
m and R2

m (f ix )
correspond to the proportion of explained variance in the training dataset by the entire model and by the �xed variables only, respectively.
Prediction R2

m and R2
m (f ix ) correspond to the proportion of variance in the test dataset predicted by the entire model or by the �xed e�ects,

respectively. PEm corresponds to the mean predictive error (mean of observed minus predicted responses). For R2 and PE, the mean (over all
iterations for R2 or over all observations for PE) and the 95% credible intervals are given. For more details on the calculation of each index,
see section 5 of the Supplementary Information. See Table V.1 and main text for description of model the components.

5.5.2 Site-speci�c predicted variance conditional on the age e�ect

Models Asturias Bordeaux Cáceres Madrid Portugal
M0 0.045 [-0.028-0.117] 0.000 [-0.024-0.025] 0.021 [0.005-0.048] 0.033 [0.014-0.059] 0.029 [0.010-0.048]
M1 0.010 [-0.054-0.074] 0.004 [-0.017-0.025] 0.018 [0.004-0.044] 0.024 [0.010-0.044] 0.016 [-0.001-0.034]
M2 0.006 [-0.057-0.071] 0.004 [-0.017-0.026] 0.019 [0.004-0.046] 0.023 [0.009-0.043] 0.015 [-0.002-0.032]
M7 0.188 [0.110-0.266] 0.246 [0.193-0.305] 0.271 [0.160-0.409] 0.205 [0.145-0.271] 0.124 [0.097-0.152]
M8 0.277 [0.197-0.360] 0.310 [0.254-0.371] 0.250 [0.152-0.369] 0.223 [0.176-0.276] 0.164 [0.134-0.197]
M9 0.107 [0.035-0.180] 0.061 [0.032-0.092] 0.105 [0.074-0.148] 0.096 [0.068-0.129] 0.062 [0.041-0.084]
M10 0.125 [0.056-0.195] 0.146 [0.113-0.18] 0.111 [0.040-0.209] 0.075 [0.043-0.114] 0.053 [0.034-0.073]
M11 0.061 [-0.010-0.130] 0.066 [0.04-0.092] 0.080 [0.033-0.146] 0.096 [0.063-0.134] 0.062 [0.042-0.081]
M12 0.061 [-0.007-0.132] 0.095 [0.066-0.126] 0.061 [0.032-0.102] 0.121 [0.091-0.154] 0.060 [0.041-0.080]

Table XI.13. Summary table of site-speci�c proportion of predicted variance conditional on the age e�ect (prediction R2
ms |aдe ) in the test

datasets (data not used to �t the models) of the P3 partition. The numbers shown are the mean and the 95% credible intervals.
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6 Posterior distributions andparameter interpretation

6.1 P1 partition (random split of the observations)

6.1.1 Baselinemodels M0,M1 andM2: separating the genetic and plas-
tic components

In the baseline model M0, only the plastic component is included (via the site and block
intercepts). The genetic component is not considered (no intercepts for the provenances and
the genotypes). M0 was performed to compare the gain in explanatory and predictive power of
models that account for the genetic component, compared to the model M0 that does not.

MODEL M0

Parameter Median SD InfCI SupCI
σ 2
S 0.105 0.370 0.027 0.979
σ 2
B 0.002 0.001 0.001 0.004
σ 2 0.123 0.001 0.121 0.125
β0 6.273 0.176 5.942 6.664
βaдe 0.601 0.003 0.596 0.607
βaдe2 -0.153 0.003 -0.159 -0.147

Table XI.14. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B ), the global variance σ 2, the global intercept β0 and the slopes
associated with the age e�ect (βaдe and βaдe2) in M0. SD corresponds to the standard deviation and InfCI and SupCI correspond to the
lower and upper bounds of the 0.95 credible interval.

MODEL M1

In M1, the plastic component was mainly attributed to the variance σ 2
S between sites (median

of 0.108), while the variance σ 2
B between blocks was almost null (median of 0.002) (Table XI.15).

Some sites showed heights deviating strongly from the global mean: Madrid, where trees grew
the least (median of -0.376), and Asturias where they grew particularly well (median of 0.272)
(Fig. V.3 & Table XI.16). The genetic component was equally attributed to the variance between
provenances σ 2

P and genotypes σ 2
G , with a median of 0.013 and 0.012, respectively (Table XI.15).

Parameter Median SD InfCI SupCI
σ 2
P 0.013 0.004 0.008 0.023
σ 2
G 0.012 0.001 0.010 0.013
σ 2
S 0.108 0.444 0.028 1.046
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.098 0.001 0.096 0.100
β0 6.247 0.193 5.842 6.643
βaдe 0.598 0.003 0.592 0.603
βaдe2 -0.150 0.003 -0.155 -0.145

Table XI.15. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P and σ 2

G ), the global variance σ 2, the global intercept β0
and the slopes associated with the age e�ect (βaдe and βaдe2) in M1.
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Parameter Median SD InfCI SupCI
SAstur ias 0.292 0.193 -0.103 0.690
SBordeaux 0.151 0.193 -0.254 0.555
SCaceres 0.041 0.194 -0.366 0.443
SMadrid -0.376 0.193 -0.780 0.019
SPor tuдal -0.110 0.193 -0.513 0.288

Table XI.16. Parameter estimates of the site intercepts Ss in M1. SD corresponds to the standard deviation and InfCI and SupCI correspond
to the lower and upper bounds of the 0.95 credible interval.

Parameter Median SD InfCI SupCI
PALT 0.089 0.041 0.009 0.168
PARM 0.121 0.043 0.039 0.205
PARN -0.093 0.032 -0.158 -0.031
PBAY -0.135 0.033 -0.196 -0.072
PBON -0.040 0.042 -0.121 0.041
PCAD 0.061 0.040 -0.016 0.142
PCAR -0.162 0.047 -0.254 -0.071
PCAS 0.054 0.041 -0.026 0.132
PCEN 0.011 0.042 -0.073 0.093
PCOC -0.154 0.034 -0.222 -0.088
PCOM 0.076 0.054 -0.033 0.181
PCU E -0.171 0.030 -0.233 -0.113
PHOU 0.162 0.030 0.102 0.220
PLAM 0.014 0.040 -0.064 0.093
PLEI 0.038 0.032 -0.023 0.101
PMAD 0.021 0.083 -0.146 0.181
PMIM 0.005 0.034 -0.061 0.071
POLB 0.047 0.031 -0.013 0.108
POLO 0.141 0.032 0.078 0.204
PORI -0.121 0.030 -0.180 -0.062
PPET 0.123 0.030 0.065 0.182
PP IA 0.089 0.034 0.023 0.154
PP I E -0.078 0.042 -0.163 0.002
PPLE 0.000 0.032 -0.062 0.063
PPU E 0.073 0.044 -0.011 0.161
PQUA 0.020 0.034 -0.046 0.089
PSAC -0.034 0.042 -0.115 0.047
PSAL -0.171 0.036 -0.244 -0.100
PSEG 0.007 0.031 -0.052 0.070
PSI E 0.002 0.042 -0.078 0.086
PST J 0.172 0.029 0.117 0.231
PTAM -0.226 0.036 -0.297 -0.153
PVAL -0.047 0.038 -0.120 0.027
PV ER 0.106 0.030 0.047 0.165

Table XI.17. Parameter estimates of the provenance intercepts Pp in M1. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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Figure XI.11. Relationship between mean-centered age and height on the log scale in M1.

MODEL M2

In M2, parameter estimates were similar to M1. The variance σ 2
Inter of the provenance-by-site

interaction was much smaller than the variances among provenances or genotypes (median of
0.004 and 95% CIs: 0.003-0.006; Table XI.18).

Parameter Median SD InfCI SupCI
σ 2
P 0.011 0.004 0.007 0.022
σ 2
G 0.012 0.001 0.010 0.014
σ 2
Inter 0.004 0.001 0.003 0.006
σ 2
S 0.113 1.525 0.030 1.423
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.096 0.001 0.095 0.098
β0 6.231 0.285 5.753 6.670
βaдe 0.597 0.003 0.592 0.602
βaдe2 -0.150 0.002 -0.155 -0.145

Table XI.18. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P , σ 2

G and σ 2
Inter ), the global variance σ , the global intercept

β0 and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds to the standard deviation and InfCI and SupCI correspond
to the lower and upper bounds of the 0.95 credible interval.
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Figure XI.12. Posterior distributions of the provenance intercepts across all sites (Pp ) and the site-speci�c intercepts of each provenance
(Pp,s ) from model M2. The colors correspond to the gene pool from which each population mainly belongs: gene pool in Northern Africa in
orange, gene pool in Corsica in yellow, gene pool in Central Spain in purple, gene pool in the French Atlantic region in marine blue, gene
pool in the Iberian Atlantic region in sky blue and gene pool in South-Eastern Spain in green.

Provenance varying intercepts are shown in Fig. V.3 (global intercepts across all sites from
M1) and Fig. XI.12 (site-speci�c intercepts from M2). Most provenances from the French
Atlantic gene pool (e.g. STJ, HOU, PET, OLO and VER) were taller on average than other
provenances in all sites. Most provenances from the Iberian Atlantic gene pool (e.g. ARM or
PUE) were among the tallest in Asturias and Bordeaux but the shortest in Madrid and Cáceres.
In contrast, most provenances from the Central Spain gene pool were among the shortest,
especially in Asturias and Bordeaux. The two provenances from the Corsican gene pool showed
highly contrasted intercepts. The provenance Pinia (PIA) was taller than other provenances
on average, especially in Asturias and Bordeaux. In contrast, the second Corsican provenance
(Pineta, PIE), was shorter than other provenances on average but grew particularly well in
Portugal. Provenances belonging to the south-eastern Spain gene pool (i.e. ORI and COM) also
showed contrasted intercepts (trees from ORI were shorter than those from COM on average),
but did not show strong di�erences between sites. Lastly, regarding provenances belonging to
the northern African gene pool, the TAM provenance had the lowest growth in our dataset
and was more likely to be taller in Cáceres and Madrid (the harsh Mediterranean sites) than in
the other sites.
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6.1.2 Models M3 and M3bis: potential drivers underlying the plastic
component of height-growth variation

The plastic component of height-growth in M3 (but also in all subsequent models until M6;
Table V.1) was only marginally associated with the climatic similarity among sites (σ 2

csis with
a median of 0.023 in M3), compared to the variance associated with site intercepts (σ 2

S with
a median of 0.126 in M3; Table XI.19). However, estimates of the intercepts (Ss and csis ) and
variances (σ 2

S and σ 2
csis ) were uncertain (Tables XI.19 to XI.21), and the median and the credible

interval of σ 2
S increased from M1 to M3, suggesting that M3 may hardly separate between σ 2

S
and σ 2

csis (Tables XI.15 & XI.19). To check this, we ran a supplementary model identical to M3
but without the site intercepts Ss (see model M3bis below). In this model, the variance related to
the climatic similarity among sites was nearly equal and as uncertain as in M3, suggesting that
our variance estimation of the plastic component in M3 was robust (Table XI.23). However, the
posterior distributions of the intercepts in M3bis were di�erent from M3: height growth was
positively associated with the climatic conditions in Bordeaux and Asturias, and negatively
with the climatic conditions in Madrid and Cáceres, the two Mediterranean sites, and to a lesser
extent in Portugal (Table XI.24).

MODEL M3

Parameter Median SD InfCI SupCI
σ 2
G 0.012 0.001 0.010 0.013
σ 2
P 0.013 0.004 0.008 0.023
σ 2
S 0.126 1.694 0.027 1.895
σ 2
csis 0.023 0.314 0.003 0.274
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.097 0.001 0.096 0.099
β0 6.295 0.315 5.825 6.808
βaдe 0.604 0.013 0.577 0.625
βaдe2 -0.186 0.016 -0.223 -0.157

Table XI.19. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P , σ 2

G and σ 2
csis ), the global variance σ 2, the global intercept

β0 and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds to the standard deviation and InfCI and SupCI correspond
to the lower and upper bounds of the 0.95 credible interval.

Parameter Median SD InfCI SupCI
SAstur ias 0.283 0.326 -0.248 0.809
SBordeaux 0.164 0.341 -0.382 0.726
SCaceres 0.086 0.341 -0.520 0.596
SMadrid -0.349 0.321 -0.902 0.092
SPor tuдal -0.162 0.320 -0.717 0.291

Table XI.20. Parameter estimates of the site intercepts Ss in model M3. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

MODEL M3bis
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Parameter Median SD InfCI SupCI
cs1,Astur ias 0.012 0.076 -0.139 0.168
cs2,Astur ias -0.027 0.085 -0.198 0.141
cs3,Astur ias 0.010 0.040 -0.047 0.114
cs1,Bordeaux -0.109 0.126 -0.353 0.160
cs2,Bordeaux 0.043 0.084 -0.096 0.246
cs1,Caceres -0.001 0.145 -0.347 0.242
cs1,Madrid -0.035 0.064 -0.166 0.095
cs1,Por tuдal 0.028 0.055 -0.089 0.132
cs2,Por tuдal 0.065 0.051 -0.040 0.165
cs3,Por tuдal 0.033 0.048 -0.072 0.123
cs4,Por tuдal -0.019 0.061 -0.142 0.103

Table XI.21. Parameter estimates of the csis intercepts related to climatic similarity between test sites during the year preceding the
measurements. As the saplings were measured 2 to 4 times in Asturias, Bordeaux and Portugal, the numbers 1 to 4 correspond to each
measurement, in the temporal order in which they were done. For example, the intercept cs1,Astur ias corresponds to the �rst measurement
taken in Asturias, when the saplings were 10 month old. See the table XI.1 for the sapling age at each measurement. SD corresponds to the
standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.

Models Explanatory part: training P1 Predictive part: test P1

R2
m |aдe R2

m R2
m (f ix ) PEm prediction R2

m |aдe prediction R2
m prediction R2

m (f ix ) PEm
M3 0.574 [0.552-0.597] 0.816 [0.807-0.826] 0.566 [0.506-0.621] 0.231 [0.009-0.747] 0.563 [0.538-0.587] 0.815 [0.805-0.825] 0.575 [0.514-0.631] 0.235 [0.009-0.763]
M13 0.575 [0.553-0.597] 0.816 [0.807-0.826] 0.634 [0.594-0.673] 0.23 [0.009-0.746] 0.563 [0.54-0.587] 0.816 [0.806-0.825] 0.644 [0.604-0.685] 0.235 [0.009-0.767]

Table XI.22. Comparing the performance of M3 and M3bis in the P1 partition, in which the training dataset was obtained by randomly
sampling 75% of the observations and the test dataset contains the remaining 25% observations. R2

m |aдe and prediction R2
m |aдe correspond

to the proportion of variance explained and predicted by the models conditional on the age e�ect in the training (in-sample) and test (out-
of-sample) datasets, respectively. R2

m and R2
m (f ix ) correspond to the proportion of explained variance in the training dataset by the entire

model and by the �xed variables only, respectively. Prediction R2
m and R2

m (f ix ) correspond to the proportion of variance in the test dataset
predicted by the entire model or by the �xed e�ects, respectively. PEm corresponds to the mean predictive error (mean of observed minus
predicted responses). For R2 and PE, the mean (over all iterations for R2 or over all observations for PE) and the 95% credible intervals are
given. For more details on the calculation of each index, see section 5 of the Supplementary Information.

Parameter Median SD InfCI SupCI
σ 2
B 0.029 0.009 0.017 0.053
σ 2
P 0.013 0.004 0.008 0.022
σ 2
G 0.012 0.001 0.010 0.013
σ 2
csis 0.025 0.083 0.006 0.229
σ 2 0.097 0.001 0.096 0.099
β0 6.284 0.036 6.213 6.356
βaдe 0.630 0.008 0.614 0.645
βaдe2 -0.153 0.010 -0.172 -0.134

Table XI.23. Parameter estimates of the varying-intercept variances (σ 2
B , σ 2

P , σ 2
G and σ 2

csis ), the global variance σ 2, the global intercept β0
and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds to the standard deviation and InfCI and SupCI correspond
to the lower and upper bounds of the 0.95 credible interval.
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Parameter Median SD InfCI SupCI
cs1,Astur ias 0.133 0.026 0.080 0.180
cs2,Astur ias 0.117 0.030 0.054 0.172
cs3,Astur ias 0.026 0.020 -0.009 0.069
cs1,Bordeaux 0.085 0.042 -0.003 0.162
cs2,Bordeaux 0.134 0.031 0.076 0.195
cs1,Caceres -0.158 0.053 -0.264 -0.057
cs1,Madrid -0.140 0.030 -0.198 -0.082
cs1,Por tuдal -0.047 0.022 -0.088 -0.004
cs2,Por tuдal -0.007 0.023 -0.051 0.041
cs3,Por tuдal -0.028 0.020 -0.066 0.011
cs4,Por tuдal -0.114 0.028 -0.168 -0.056

Table XI.24. Parameter estimates of the csis intercepts related to climatic similarity between test sites during the year preceding the
measurements. SD corresponds to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible
interval.
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6.1.3 Models M4 to M6: potential drivers underlying the genetic com-
ponent of height-growth variation

In M4, the variance σ 2
дj between gene pools was as important as the variance σ 2

G between
genotypes, but had a very wide posterior distribution (Table XI.25). From M3 to M4, adding the
gene pool intercepts дj resulted in a decreased variance between provenances (from a median
of 0.013 to a median of 0.006, Tables XI.19 & XI.25). This indicates redundant information
between gene pools and provenances. Genotypes belonging to the French Atlantic gene pool,
and to a lesser extent to the Iberian Atlantic gene pool, were on average taller than genotypes
belonging to the northern Africa gene pool, and to a lesser extent to the Central Spain gene
pool (Fig. XI.14).

MODEL M4

Parameter Median SD InfCI SupCI
σ 2
дj 0.013 0.044 0.002 0.093
σ 2
P 0.006 0.003 0.003 0.013
σ 2
G 0.012 0.001 0.010 0.013
σ 2
S 0.127 1.365 0.026 2.125
σ 2
csis 0.022 0.187 0.003 0.267
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.097 0.001 0.095 0.099
β0 6.280 0.269 5.704 6.811
βaдe 0.605 0.012 0.577 0.626
βaдe2 -0.185 0.016 -0.221 -0.156

Table XI.25. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P , σ 2

G , σ 2
csis and σ 2

дj ), the global variance σ 2, the global
intercept β0 and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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MODEL M5: gene pool-speci�c heritabilities, the telltale of distinct adaptive histo-
ries

Heritability variation across populations or gene pools can inform on di�erences in the
drivers underlying their adaptive histories, such as evolutionary mechanisms (e.g. capacity of
dispersion, selection strength, migration) and local environmental constraints (e.g. environmen-
tal heterogeneity). Using CLONAPIN data from all sites except Bordeaux, Rodríguez-Quilón
et al. (2016) showed that populations from the Mediterranean gene pools had a higher her-
itability than those from the Atlantic gene pools. Nonetheless, their heritability estimates
did not consider population admixture, a notable feature in maritime pine (Fig. V.1). In our
study, we applied the recent methodology proposed by Mu� et al. (2019) to calculate gene
pool-speci�c total genetic variance and broad-sense heritabilities in a single model that ac-
counts for population admixture. We showed that the total genetic variance of the Iberian
Atlantic gene pool had a probability higher than 0.95 of being lower than that of the Corsican
and south-eastern Spain gene pools, and a probability higher than 0.90 of being lower than
that of the Central Spain gene pool (Table XI.27; see also Fig. XI.13), despite their geographical
proximity. The total genetic variance of the French Atlantic gene pool had a probability higher
than 0.90 of being lower than that of the Corsican and south-eastern Spain gene pools (Table
XI.27; see also Fig. XI.13). However, this should be taken with caution as the total variance
of the gene pools from south-eastern Spain, Corsica and northern Africa had wide posterior
distributions, which is probably due to the small number of genotypes from these gene pools
(see Table XI.3). In line with the genetic variance estimates, the medians of the gene-pool
speci�c estimates of heritability H 2

j varied between 0.104 in the Iberian Atlantic gene-pool
(95% CIs: 0.065-0.146) and 0.223 in the south-eastern Spain gene pool (95% CIs: 0.093-0.363)
(Table XI.28 and Fig. XI.13A). Interestingly, provenances that showed the highest broad-sense
heritabilities (i.e. provenances from the Corsican, south-eastern Spain, and central Spain gene
pools) are also the ones facing more contrasted climates. Indeed, Corsica and south-eastern
Spain are mountainous areas, with strong environmental heterogeneity at small spatial scales.
Central Spain is less contrasted spatially but experiences a high continentality, and thus strong
daily and annually climatic variation. Noticeably, genotypes displayed genetic values mostly
determined by the dominant gene pool from which they belong to, but also, to a lesser extent,
by other gene pools (Fig. XI.13B). Taken together, these results may suggest that gene pools
from regions with high environmental heterogeneity (in space and/or time) have also higher
heritability. Indeed, theoretical and empirical works have proposed that high levels of adaptive
genetic variance can be maintained in regions of high environmental heterogeneity (mainly
spatial, but to a lesser extent also temporal) and some degree of gene �ow between populations
(McDonald and Yeaman 2018, Yeaman and Jarvis 2006, Yeaman and Otto 2011). Further research
involving multiple adaptive traits and more detailed environmental data would be needed to
con�rm this hypothesis.
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Parameter Median SD InfCI SupCI
σ 2
ANA

0.015 0.010 0.005 0.041
σ 2
AC

0.025 0.010 0.013 0.050
σ 2
ACS

0.017 0.003 0.013 0.024
σ 2
AFA

0.015 0.002 0.012 0.020
σ 2
AIA

0.011 0.003 0.007 0.017
σ 2
ASES

0.027 0.012 0.011 0.059
σ 2
дj 0.004 0.031 0.000 0.064
σ 2
P 0.011 0.004 0.006 0.021
σ 2
S 0.121 0.565 0.026 1.259
σ 2
csis 0.024 0.157 0.003 0.262
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.098 0.001 0.096 0.099
β0 6.289 0.220 5.819 6.708
βaдe 0.605 0.012 0.578 0.626
βaдe2 -0.185 0.016 -0.221 -0.158

Table XI.26. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P , σ 2

G , σ 2
csis and σAj ), the gene-pool speci�c total genetic

variances (σAj ), the global variance σ 2, the global intercept β0 and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds
to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.
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Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
σ 2
ANA
− σ 2

AC
< 0 -0.035 0.043 -0.104 0.035 4.291 0.811

σ 2
ANA
− σ 2

ACS
< 0 -0.007 0.035 -0.057 0.056 1.656 0.623

σ 2
ANA
− σ 2

AFA
< 0 0.001 0.035 -0.049 0.065 1.127 0.530

σ 2
ANA
− σ 2

AIA
< 0 0.019 0.036 -0.033 0.084 0.450 0.310

σ 2
ANA
− σ 2

ASES
< 0 -0.042 0.052 -0.121 0.046 4.396 0.815

σ 2
AC
− σ 2

ANA
< 0 0.035 0.043 -0.035 0.104 0.233 0.189

σ 2
AC
− σ 2

ACS
< 0 0.029 0.030 -0.015 0.081 0.183 0.155

σ 2
AC
− σ 2

AFA
< 0 0.037 0.029 -0.006 0.089 0.091 0.084

σ 2
AC
− σ 2

AIA
< 0 0.055 0.030 0.009 0.109 0.022 0.022

σ 2
AC
− σ 2

ASES
< 0 -0.006 0.044 -0.080 0.065 1.239 0.553

σ 2
ACS
− σ 2

ANA
< 0 0.007 0.035 -0.056 0.057 0.604 0.377

σ 2
ACS
− σ 2

AC
< 0 -0.029 0.030 -0.081 0.015 5.459 0.845

σ 2
ACS
− σ 2

AFA
< 0 0.008 0.013 -0.013 0.030 0.384 0.277

σ 2
ACS
− σ 2

AIA
< 0 0.026 0.017 -0.001 0.053 0.064 0.060

σ 2
ACS
− σ 2

ASES
< 0 -0.035 0.038 -0.103 0.022 4.859 0.829

σ 2
AFA
− σ 2

ANA
< 0 -0.001 0.035 -0.065 0.049 0.887 0.470

σ 2
AFA
− σ 2

AC
< 0 -0.037 0.029 -0.089 0.006 10.952 0.916 *

σ 2
AFA
− σ 2

ACS
< 0 -0.008 0.013 -0.030 0.013 2.606 0.723

σ 2
AFA
− σ 2

AIA
< 0 0.018 0.014 -0.006 0.041 0.117 0.105

σ 2
AFA
− σ 2

ASES
< 0 -0.043 0.035 -0.107 0.010 9.435 0.904 *

σ 2
AIA
− σ 2

ANA
< 0 -0.019 0.036 -0.084 0.033 2.221 0.690

σ 2
AIA
− σ 2

AC
< 0 -0.055 0.030 -0.109 -0.009 44.455 0.978 **

σ 2
AIA
− σ 2

ACS
< 0 -0.026 0.017 -0.053 0.001 15.667 0.940 *

σ 2
AIA
− σ 2

AFA
< 0 -0.018 0.014 -0.041 0.006 8.524 0.895

σ 2
AIA
− σ 2

ASES
< 0 -0.061 0.036 -0.125 -0.006 29.928 0.968 **

σ 2
ASES
− σ 2

ANA
< 0 0.042 0.052 -0.046 0.121 0.227 0.185

σ 2
ASES
− σ 2

AC
< 0 0.006 0.044 -0.065 0.080 0.807 0.447

σ 2
ASES
− σ 2

ACS
< 0 0.035 0.038 -0.022 0.103 0.206 0.171

σ 2
ASES
− σ 2

AFA
< 0 0.043 0.035 -0.010 0.107 0.106 0.096

σ 2
ASES
− σ 2

AIA
< 0 0.061 0.036 0.006 0.125 0.033 0.032

Table XI.27. One-sided hypothesis testing on the probability that the gene pool-speci�c total genetic variances in M5 are di�erent, using
the function ‘hypothesis‘ from the ‘brms‘ package (Bürkner 2017). ‘Est.Error‘ is the standard deviation of the estimated di�erence between
two genetic variances (‘Estimate‘). The ‘CI.Lower‘ and ‘CI.Upper‘ are the lower and upper bounds of the 95% credible interval, respectively.
‘Evid.Ratio‘ is the evidence ratio of each hypothesis, i.e. the posterior probability (‘Post.Prob‘) under the hypothesis against its alternative.
For instance, the evidence ratio of the hypothesis σ 2

ANA
− σ 2

AC
< 0 is the ratio of the posterior probability of σ 2

ANA
− σ 2

AC
< 0 and the

posterior probability of σ 2
ANA

− σ 2
AC

> 0. The * and ** in the ’Star’ column indicate hypotheses with a posterior probability higher than
0.90 and 0.95, respectively.
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Using the estimates of the gene-pool speci�c total genetic variances from M5, the gene-pool
speci�c heritabilities were calculated such as:

H 2
j =

σ 2
Aj

σ 2
Aj
+ σ 2

where σ 2 is the modeled residual variance and σ 2
Aj

the gene-pool speci�c total genetic variances.

Figure XI.13. Posterior distribution of H 2
j , the gene pool-speci�c heritabilities obtained from model M5 (A). Boxplot of he gene pool partial

genetic values for genotypes grouped according to the main gene pool to which they belong (B). The colors represent the gene pool from
which the partial genetic values were estimated. The lower, middle and upper parts of the hinges correspond to the 25%, 50% and 75%
quantiles, respectively. The lower/upper whiskers extend from the hinge to the smallest/largest value no further than 1.5 time the IQR from
the hinge (where IQR is the distance between the �rst and third quartiles).

Parameter Median SD InfCI SupCI
H 2
NA 0.141 0.064 0.034 0.266

H 2
C 0.210 0.057 0.107 0.322

H 2
CS 0.152 0.020 0.114 0.190

H 2
FA 0.136 0.017 0.105 0.169

H 2
IA 0.104 0.021 0.065 0.146

H 2
SES 0.223 0.070 0.093 0.363

Table XI.28. Gene pool-speci�c heritability estimates H 2
j . The gene pools come from: Northern Africa (NA), Corsica (C), Central Spain (CS),

French Atlantic region (FA), Iberian Atlantic region (IA) and south-eastern Spain (SES). SD corresponds to the standard deviation and InfCI
and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.
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MODEL M6

In M6, the variance σ 2
cpp associated with the provenance climate-of-origin had a higher

median than the variances attributed to either gene pools or provenances (σ 2
дj and σ 2

P ; Table
XI.29). Including the provenance climate-of-origin in M6 resulted in a decreased variance of
the provenances and gene pools, suggesting confounded e�ects (Tables XI.25 & XI.29). Once
these confounded e�ects are taking into account, trees from climatic regions neighboring the
Atlantic Ocean were generally the tallest (e.g. CAD, SIE, PUE, LAM and CAS in northwestern
Spain; all provenances along the French Atlantic coast; Fig. XI.14). Interestingly, the Leiria (LEI)
provenance, which has a strong Iberian Atlantic component (Table XI.3) and had the highest
climate intercept estimate (similar to that of the French Atlantic provenances), was not among
the tallest provenances (Fig. XI.14). Also, the Corsican provenances showed contrasted climate
intercepts, with a positive in�uence on height growth for Pinia (PIA) but not for Pineta (PIE),
which could explain their striking di�erences in height-growth patterns (Fig. V.3). Finally, the
four provenances from south-eastern Spain and northern Africa gene pools showed all negative
climate intercepts (Fig. XI.14).

Parameter Median SD InfCI SupCI
σ 2
дj 0.003 0.018 0.000 0.050
σ 2
P 0.005 0.002 0.003 0.011
σ 2
cpp 0.009 0.291 0.000 0.244
σ 2
G 0.012 0.001 0.010 0.014
σ 2
S 0.128 0.761 0.026 1.436
σ 2
csis 0.023 0.111 0.003 0.297
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.097 0.001 0.096 0.099
β0 6.280 0.235 5.777 6.723
βaдe 0.605 0.013 0.576 0.627
βaдe2 -0.185 0.018 -0.224 -0.156

Table XI.29. Parameter estimates of the varying-intercept variances (σ 2
S , σ 2

B , σ 2
P , σ 2

G , σ 2
csis and σ 2

cpp ), the gene-pool speci�c total genetic
variances (σAj ), the global variance σ 2, the global intercept β0 and the slopes associated with the age e�ect (βaдe and βaдe2). SD corresponds
to the standard deviation and InfCI and SupCI correspond to the lower and upper bounds of the 0.95 credible interval.
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Summary �gure of modelsmodels M3, M5 andM6

Figure XI.14. Posterior distributions of the provenance intercepts Pp , gene pool intercepts дj and the cpp intercepts related to the prove-
nance climate. The �rst row corresponds to M3 including only Pp . The second row corresponds to M4 including both Pp and дj . The third
row corresponds to M6 including Pp , дj and cpp . In M3, M4 and M6, the plastic component is included in the same way via the intercepts SS
and csis . Only the genetic component changes between these models. Provenances were colored based on the main gene pool they belong
to.
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6.1.4 Predictive models M7 and M8: combining climatic and genomic
drivers

MODEL M7

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
дj 0.027 0.100 0.008 0.192
σ 2
S 0.172 0.992 0.036 2.252
σ 2
βmax .temp,s

0.001 0.005 0.000 0.009
σ 2
βmin .pre,s

0.001 0.003 0.000 0.007
σ 2
βдPEA,s

0.018 0.048 0.005 0.135
σ 2 0.104 0.001 0.102 0.106
β0 6.303 0.403 5.518 7.147
βaдe 0.599 0.003 0.593 0.604
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.30. Parameter estimates from model M7 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

MODEL M8

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
дj 0.033 0.078 0.009 0.228
σ 2
S 0.185 1.548 0.041 2.349
σ 2
βmax .temp,s

0.003 0.009 0.001 0.020
σ 2
βmin .pre,s

0.002 0.005 0.000 0.014
σ 2
βr PEA,s

0.032 0.133 0.010 0.202
σ 2 0.102 0.001 0.100 0.104
β0 6.333 0.353 5.631 7.034
βaдe 0.599 0.003 0.593 0.604
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.31. Parameter estimates from model M8 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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Summary �gure of models M7 and M8

Figure XI.15. Posterior distributions of parameters from models M7 and M8 �tted on the P1 partition. In panels a), the parameter estimates
дj correspond to the e�ect of the gene pools j . In panels b), the parameter estimates correspond to the site-speci�c e�ects of gPEAs in M7
(βдPEA,s ), rPEAs in M8 (βr PEA,s ), the minimum precipitation during the driest month (βmin .pre,s ) and the maximum temperature of the
warmest month (βmax .temp,s ). Parameters speci�c to the same site are colored the same to aid visualization.
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6.1.5 Predictive models M9 to M12: including separately climatic and
genomic drivers

MODEL M9

Parameter Median SD InfCI SupCI
σдj 0.024 0.077 0.007 0.170
σ 2
S 0.107 0.921 0.027 1.346
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.114 0.001 0.112 0.116
β0 6.233 0.237 5.708 6.637
βaдe 0.601 0.003 0.596 0.607
βaдe2 -0.153 0.003 -0.158 -0.148

Table XI.32. Parameter estimates from model M9 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

MODEL M10

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
S 0.173 0.909 0.034 2.404
σ 2
βmax .temp,s

0.005 0.032 0.001 0.033
σ 2
βmin .pre,s

0.006 0.063 0.001 0.046
σ 2 0.115 0.001 0.113 0.117
β0 6.202 0.399 5.237 6.869
βaдe 0.601 0.003 0.596 0.607
βaдe2 -0.153 0.003 -0.159 -0.148

Table XI.33. Parameter estimates from model M10 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

MODEL M11

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
S 0.249 4.243 0.040 7.779
σ 2
βдPEA,s

0.013 0.056 0.004 0.092
σ 2 0.114 0.001 0.112 0.117
β0 6.322 0.763 4.768 7.742
βaдe 0.599 0.003 0.593 0.604
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.34. Parameter estimates from model M11 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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MODEL M12

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
S 0.332 1.572 0.044 4.542
σ 2
βr PEA,s

0.023 0.047 0.007 0.152
σ 2 0.113 0.001 0.111 0.115
β0 6.597 0.499 5.735 7.663
βaдe 0.599 0.003 0.593 0.604
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.35. Parameter estimates from model M12 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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Summary �gure of models M9 toM12

Figure XI.16. Posterior distributions of parameters from models M9 and M12 �tted on P1. For M9, the parameter estimates дj correspond to
the e�ect of the gene pools j . For M10, the parameter estimates correspond to the site-speci�c e�ects of the minimum precipitation during
the driest month (βmin .pre,s ) and the maximum temperature of the warmest month (βmax .temp,s ). For M11, the parameter estimates
correspond to the site-speci�c e�ect of the gPEAs (βдPEA,s ). For M12, parameter estimates correspond to the site-speci�c e�ects of the
rPEAs (βr PEA,s ).

6.2 P2 partition (random split of the provenances)

The unknown provenances of the P2 test dataset were chosen randomly among the 34
provenances of our study.

6.2.1 M0,M1 andM2

Parameter Median SD InfCI SupCI
σ 2
S 0.101 0.527 0.025 1.165
σ 2
B 0.002 0.001 0.001 0.004
σ 2 0.124 0.001 0.121 0.126
β0 6.278 0.210 5.840 6.631
βaдe 0.602 0.003 0.597 0.607
βaдe2 -0.153 0.003 -0.158 -0.148

Table XI.36. Parameter estimates from model M0 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

231



Parameter Median SD InfCI SupCI
σ 2
P 0.016 0.005 0.009 0.029
σ 2
G 0.011 0.001 0.010 0.013
σ 2
S 0.110 0.540 0.028 1.032
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.097 0.001 0.095 0.099
β0 6.240 0.190 5.866 6.627
βaдe 0.599 0.002 0.594 0.603
βaдe2 -0.150 0.002 -0.155 -0.146

Table XI.37. Parameter estimates from model M1 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

Parameter Median SD InfCI SupCI
σ 2
P 0.014 0.005 0.008 0.027
σ 2
G 0.011 0.001 0.010 0.013
σ 2
Inter 0.005 0.001 0.003 0.007
σ 2
S 0.123 0.584 0.030 1.532
σ 2
B 0.002 0.001 0.001 0.003
σ 2 0.095 0.001 0.094 0.097
β0 6.229 0.226 5.777 6.686
βaдe 0.598 0.002 0.593 0.603
βaдe2 -0.150 0.002 -0.155 -0.145

Table XI.38. Parameter estimates from model M2 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

6.2.2 Predictive models M7 and M8: combining climatic and genomic
drivers

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.004
σ 2
дj 0.027 0.076 0.008 0.195
σ 2
S 0.157 0.837 0.036 1.926
σ 2
βmax .temp,s

0.001 0.004 0.000 0.007
σ 2
βmin .pre,s

0.001 0.004 0.000 0.007
σ 2
βдPEA,s

0.019 0.055 0.005 0.136
σ 2 0.103 0.001 0.101 0.104
β0 6.310 0.345 5.624 7.068
βaдe 0.600 0.003 0.595 0.605
βaдe2 -0.151 0.002 -0.156 -0.147

Table XI.39. Parameter estimates from model M7 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
дj 0.032 0.075 0.010 0.224
σ 2
S 0.190 1.195 0.041 2.366
σ 2
βmax .temp,s

0.003 0.006 0.001 0.019
σ 2
βmin .pre,s

0.002 0.004 0.000 0.014
σ 2
βr PEA,s

0.032 0.085 0.010 0.241
σ 2 0.101 0.001 0.099 0.103
β0 6.337 0.366 5.602 7.106
βaдe 0.600 0.003 0.595 0.605
βaдe2 -0.151 0.002 -0.156 -0.147

Table XI.40. Parameter estimates from model M8 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

Figure XI.17. Posterior distributions of parameters from models M7 and M8 �t on P2. In panels a), the parameter estimates дj correspond to
the e�ect of the gene pools j . In panels b), the parameter estimates correspond to the site-speci�c e�ects of the PEAs (βдPEA,s for the global
PEAs in M7 and βr PEA,s for the regional PEAs in M8), the minimum precipitation during the driest month (βmin .pre,s ) and the maximum
temperature of the warmest month (βmax .temp,s ). Parameters speci�c to the same test site are colored the same to aid visualization.
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6.2.3 Predictive models M9 to M12: including separately climatic and
genomic drivers

Parameter Median SD InfCI SupCI
σ 2
дj 0.027 0.083 0.008 0.199
σ 2
S 0.108 0.622 0.027 1.019
σ 2
B 0.002 0.001 0.001 0.004
σ 2 0.112 0.001 0.110 0.114
β0 6.230 0.217 5.802 6.647
βaдe 0.602 0.003 0.597 0.608
βaдe2 -0.153 0.003 -0.158 -0.148

Table XI.41. Parameter estimates from model M9 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

Parameter Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.004
σ 2
S 0.183 1.789 0.036 3.006
σ 2
βmax .temp,s

0.005 0.011 0.002 0.035
σ 2
βmin .pre,s

0.006 0.018 0.002 0.041
σ 2 0.113 0.001 0.111 0.115
β0 6.239 0.456 5.194 7.075
βaдe 0.602 0.003 0.597 0.607
βaдe2 -0.153 0.003 -0.158 -0.148

Table XI.42. Parameter estimates from model M10 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.004
σ 2
S 0.265 2.482 0.038 5.597
σ 2
βдPEA,s

0.013 0.031 0.004 0.085
σ 2 0.115 0.001 0.113 0.117
β0 6.374 0.677 5.164 7.956
βaдe 0.600 0.003 0.594 0.605
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.43. Parameter estimates from model M11 �tted on the P2 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.

Term Median SD InfCI SupCI
σ 2
B 0.002 0.001 0.001 0.003
σ 2
S 0.332 2.743 0.042 4.656
σ 2
βr PEA,s

0.026 0.083 0.008 0.177
σ 2 0.112 0.001 0.110 0.114
β0 6.556 0.532 5.620 7.714
βaдe 0.599 0.003 0.594 0.605
βaдe2 -0.151 0.003 -0.156 -0.146

Table XI.44. Parameter estimates from model M12 �tted on the P1 partition. SD corresponds to the standard deviation and InfCI and SupCI
correspond to the lower and upper bounds of the 0.95 credible interval.
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Figure XI.18. Posterior distributions of parameters from models M9 and M12 �tted on P2. For M9, the parameter estimates дj correspond to
the e�ect of the gene pools j . For M10, the parameter estimates correspond to the site-speci�c e�ects of the minimum precipitation during
the driest month (βmin .pre,s ) and the maximum temperature of the warmest month (βmax .temp,s ). For M11, the parameter estimates
correspond to the site-speci�c e�ect of the gPEAs (βдPEA,s ). For M12, parameter estimates correspond to the site-speci�c e�ects of the
rPEAs (βr PEA,s ).
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6.3 P3 partition (non-random split of the provenances)

Evaluation of model performance on new provenances was replicated on six other prove-
nances to assess the robustness of the results. In the P3 partition, the new provenances were
not totally randomly selected to ensure that each under-represented gene pool in our study
was represented by at least one provenance. Thus, one provenance was randomly selected
from the two provenances belonging mainly to the northern Africa gene pool. The same was
done for the gene pools from south-eastern Spain and Corsica. The last three provenances
were randomly selected from the three remaining gene pools.

Figure XI.19. Posterior distributions of parameters from models M7 and M8 �t on P3. In panels a), the parameter estimates дj correspond
to the e�ect of the gene pools j . In panels b), the parameter estimates correspond to the site-speci�c e�ects of gPEAs in M7 (βдPEA,s , rPEAs
in M8 βr PEA,s , the minimum precipitation during the driest month (βmin .pre,s ) and the maximum temperature of the warmest month
(βmax .temp,s ). Parameters speci�c to the same site are colored the same to aid visualization.
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Figure XI.20. Posterior distributions of parameters from models M9 and M12 �t on P3. For M9, the parameter estimates дj correspond to
the e�ect of the gene pools j . For M10, the parameter estimates correspond to the site-speci�c e�ects of the minimum precipitation during
the driest month (βmin .pre,s ) and the maximum temperature of the warmest month (βmax .temp,s ). For M11, the parameter estimates
correspond to the site-speci�c e�ect of the gPEAs (βдPEA,s ). For M12, parameter estimates correspond to the site-speci�c e�ects of the
rPEAs (βr PEA,s ).

6.4 Interpretation of the PEAs coe�cients

Let’s take model M12 as an example. Here is the equation of M12 (see equation 4.1.3 in the
Supplementary Information):

log(hisbr ) ∼ N(Xβ + Ss + Bb(s) + βrPEA,srPEAдr , σ 2)

with rPEAдr is the scaled explanatory variable (i.e. the counts of regionally-selected positive-
e�ect alleles). Let’s call ˜rPEAдr the explanatory variable before being scaled, that is rPEAдr =
( ˜rPEAдr − µ ˜rPEAдr

)/σ ˜rPEAдr
, where µ ˜rPEAдr

is the mean of ˜rPEAдr and σ ˜rPEAдr
is its standard

deviation.
We want to calculate the percent of change in height associated with a one-unit increase in

rPEAдr , that is a one-standard deviation increase in ˜rPEAдr . For that, we call hnew the value of
hisbr after increasing rPEAдr by one unit, and we have:

log(hnew ) = log(Xβ + Ss + Bb(s) + βrPEA,s(rPEAдr + 1)
= log(hisbr ) + βrPEA,s

Therefore:
log(hnew ) − log(hisbr ) = βrPEA,s

hnew
hisbr

= exp(βrPEA,s)

100 ×
(
hnew
hisbr

− 1
)
= 100 ×

(
exp(βrPEA,s) − 1

)
100 ×

(
hnew − hisbr

hisbr

)
= 100 × (exp(βrPEA,s) − 1)
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is the percent change in hisbr associated with a one-unit increase in rPEAдr (that is, a
one-standard deviation increase in ˜rPEAдr ). For instance, a one-standard deviation increase
in the counts of rPEAs is associated, on average, with 100 × (exp(0.174) − 1) = 19% change
in height in Madrid, with 100 × (exp(0.120) − 1) = 12.7% change in height in Cáceres, with
100×(exp(0.092)− 1) = 9.6% change in height in Bordeaux, with 100×(exp(0.099)− 1) = 10.4%
change in height in Asturias and with 100 × (exp(0.122) − 1) = 13.0% change in height in
Portugal.

7 QST − FST analysis

To determine whether height growth shows footprints of adaptive di�erentiation, we per-
formed a QST − FST analysis. We used the global FST estimate calculated in de Miguel et al.
(2020) on the same data as our study (i.e. the 5,165 SNPs from the Illumina In�nium SNP array).
de Miguel et al. (2020) used the diveRsity R package and 1,000 bootstrap iterations across loci
to estimate the 95% con�dence interval of the global FST . They obtained a FST of 0.112 (95%
con�dence interval: 0.090 - 0.141).

To calculate the QST , we used the following formula from Spitze (1993):

QST =
σ 2
P

σ 2
P + 2σ 2

G

where σ 2
P is the variance among provenances, and σ 2

G is the variance among clones (.i.e.
genotypes) within provenances.

The median estimate of the QST was 0.358 (95% con�dence interval: 0.251-0.506). Quanti-
tative (QST ) and molecular (FST ) genetic di�erentiation among provenances were considered
signi�cantly di�erent as their posterior distributions had non-overlapping 95% con�dence
intervals, which therefore suggests that there is adaptive di�erentiation in height growth in
our study.
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8 Distribution of heights in Cáceres and Madrid.

Figure XI.21. Distribution of height measurements (in mm) in Cáceres and Madrid.
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Supplementary information - Chapter 3
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1 Materials & methods

1.1 Population information

Code Population Number of trees

ALT Alto de la Llama 8
ARM Armayán 7
ARN Arenas de San Pedro 14
BAY Bayubas de Abajo 13
BON Boniches 8
CAD Cadavedo 8
CAR Carbonero el Mayor 5
CAS Castropol 8
CEN Cenicientos 9
COC Coca 15
COM Cómpeta 3
CUE Cuellar 23
HOU Hourtin 25
LAM Lamuño 9

LEI Leiria 20
MAD Madisouka 1
MIM Mimizan 17
OLB Olba 20
OLO Olonne sur Mer 23
ORI Oria 22
PET Petrocq 22
PIA Pinia 12
PIE Pineta 9
PLE Pleucadec 16
PUE Puerto de Vega 7
QUA Quatretonda 16
SAC San Cipriano de Ribaterme 8
SAL San Leonardo 10
SEG Sergude (Huerto Semillero) 19
SIE Sierra de Barcia 7
STJ St-Jean des Monts 24

TAM Tamrabta 12
VAL Valdemaqueda 10
VER Le Verdon 24

Table XII.1. Population information: population codes used in the study, population names and number of trees sampled in each population.

1.2 Climatic, soil, topographic and �re-related data

The eight environmental variables used in this study are:

• Climatic variables, which correspond to mean values over the period 1970-2000:
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– bio5, the maximum temperature of the warmest month (°C)
– bio6, the minimum temperature of the coldest month (°C)
– bio12, the annual precipitation (mm)
– bio15, the precipitation seasonality (coe�cient of variation)

• Soil-related variable:

– depth_roots, the depth available to roots (cm)
– water_top, the total available water content (mm)

• One topographic variable: TRI the topographic ruggedness index

• One �re-related variable: BurnedArea the average of the monthly burned area from June
1995 to December 2014 (hectares)

Figure XII.1. Distribution and correlation of the environmental covariates. This plot was generated with the function pairs.panels of the R
package psych. Bivariate scatter plots are shown below the diagonal, histograms on the diagonal, and Pearson correlation coe�cients above
the diagonal.
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Figure XII.2. Spatial variation in bio5, the maximum temperature of the warmest month (°C).
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Figure XII.3. Spatial variation bio6, the minimum temperature of the coldest month (°C).
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Figure XII.4. Spatial variation in bio12, the annual precipitation (mm).
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Figure XII.5. Spatial variation in bio15, the precipitation seasonality (coe�cient of variation).

To describe the potential future climate, we used the averaged predictions (over the period
2041-2060 at 2.5 arc-minutes spatial resolution) of nine global climate models (GCMs) from the
WorldClim database (Fick and Hijmans 2017): BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1,
CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MRI-ESM2-0. For the shared
socio-economic pathway SSP3-7.0 (moderately alarming), the nine GCMs were used. For the
shared socio-economic pathway SSP5-8.5 (strongly alarming), all GCMs except GFDL-ESM4
were used.

1.3 Validating genomic o�set predictions in common gardens

In this part, we aimed to estimate the association of population performance in common
gardens with (i) the predicted genomic o�set of the populations in the new environmental
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conditions of the common gardens and (ii) the climatic transfer distance of the populations (i.e.
absolute di�erence between the climate in the location of origin of each population and the
climate in the common garden).

As a measure of population performance in the common gardens, we used height data
from �ve common gardens and mortality data from two common gardens. Commons gardens
where height was measured were planted in di�erent environments, i.e three under favorable
conditions (i.e. the Atlantic region with mild winters, no severe cold events, high annual rainfall
and relatively wet summers) and two in harsh environments (i.e. the Mediterranean region
with high temperatures and an intense summer drought). Mortality was measured in the two
common gardens under harsh environments in which a severe summer drought exacerbated
by clay soils killed 92% and 72% of the trees. Details about the number of height and mortality
observations per population in each common garden are given in Tables XII.2 and XII.3.

Pop. Cáceres (8 months) Madrid (13 months)
Nb of dead trees Total nb of trees Dead proportion Nb of dead trees Total nb of trees Dead proportion

ALT 69 72 95.83 52 72 72.22
ARM 56 64 87.50 49 64 76.56
ARN 129 136 94.85 107 136 78.68
BAY 132 144 91.67 113 144 78.47
BON 62 72 86.11 48 72 66.67
CAD 74 80 92.50 62 80 77.50
CAR 44 48 91.67 36 48 75.00
CAS 78 80 97.50 66 80 82.50
CEN 66 72 91.67 50 72 69.44
COC 137 144 95.14 118 144 81.94
COM 28 32 87.50 21 32 65.62
CUE 211 224 94.20 186 224 83.04
HOU 186 208 89.42 145 208 69.71
LAM 68 72 94.44 57 72 79.17
LEI 162 184 88.04 147 184 79.89
MAD 8 8 100.00 5 8 62.50
MIM 135 144 93.75 116 144 80.56
OLB 149 176 84.66 113 176 64.20
OLO 173 192 90.10 145 192 75.52
ORI 196 208 94.23 162 208 77.88
PET 171 192 89.06 136 192 70.83
PIA 111 128 86.72 91 128 71.09
PIE 67 72 93.06 50 72 69.44
PLE 155 160 96.88 131 160 81.88
PUE 58 64 90.62 50 64 78.12
QUA 123 136 90.44 83 136 61.03
SAC 65 72 90.28 56 72 77.78
SAL 104 112 92.86 85 112 75.89
SEG 154 168 91.67 135 168 80.36
SIE 59 64 92.19 40 64 62.50
STJ 190 224 84.82 154 224 68.75
TAM 114 120 95.00 107 120 89.17
VAL 87 96 90.62 69 96 71.88
VER 197 216 91.20 153 216 70.83

Table XII.2. Number of dead trees, total number of trees and proportion of dead trees in the 34 populations used in the validation step in
two common gardens: Cáceres at 8-month old and Madrid at 13-month old.
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Pop. Asturias (10 months) Asturias (37 months) Bordeaux (25 months) Bordeaux (85 months) Cáceres (8 months) Madrid (13 months) Portugal (11 months) Portugal (27 months)
Count Height Count Height Count Height Count Height Count Height Count Height Count Height Count Height

ALT 70 310.43 69 1366.09 52 760.19 52 4275.38 3 180.00 20 175.75 72 242.71 53 709.62
ARM 63 353.33 63 1491.59 63 793.33 63 4450.16 8 157.50 15 172.00 64 239.92 41 710.98
ARN 131 251.37 131 1150.69 107 651.87 105 3302.00 7 154.29 29 171.90 136 189.34 90 601.56
BAY 134 239.85 136 1059.56 140 618.36 139 3054.03 10 147.00 31 180.32 144 183.96 88 553.64
BON 67 287.01 69 1217.39 47 600.43 47 3273.83 9 184.44 24 211.04 72 201.94 58 613.79
CAD 75 306.40 75 1310.93 67 847.76 67 4631.79 5 142.00 18 180.56 80 228.38 58 687.07
CAR 48 240.62 48 1015.62 47 505.32 46 2321.30 3 146.67 12 156.67 48 194.17 27 581.85
CAS 76 307.76 76 1329.61 73 753.01 72 4202.78 2 165.00 14 156.43 80 218.00 49 716.12
CEN 68 282.35 70 1268.86 37 663.51 37 3348.65 6 155.00 22 167.27 72 235.49 54 686.85
COC 137 229.85 138 1063.70 108 587.13 105 2735.71 7 165.71 26 165.77 143 180.45 90 556.11
COM 28 341.43 32 1260.62 30 809.33 28 3220.71 4 182.50 11 249.09 32 223.28 22 703.18
CUE 216 229.68 215 991.07 187 587.38 183 2793.39 12 170.83 38 164.61 223 186.64 122 556.31
HOU 197 338.43 197 1444.92 154 841.95 154 4578.18 20 216.50 63 223.57 208 257.19 142 740.35
LAM 68 308.97 69 1328.26 56 706.79 56 3824.82 3 133.33 15 178.00 72 209.79 45 620.22
LEI 175 314.80 170 1318.06 133 765.64 133 4156.02 18 177.78 37 177.57 184 217.09 120 661.83
MAD 8 322.50 8 1242.50 8 572.50 8 2687.50 - - 3 316.67 8 285.00 6 576.67
MIM 137 288.32 137 1299.20 124 783.87 121 4182.64 9 164.44 28 215.71 144 198.26 77 624.55
OLB 174 293.05 173 1228.15 113 700.35 112 3410.89 24 227.08 63 241.35 176 248.07 149 615.70
OLO 175 331.60 169 1401.95 129 803.57 128 4390.16 18 224.44 47 223.94 192 262.97 119 743.28
ORI 202 238.17 204 1150.34 181 667.40 181 2935.64 11 166.36 46 177.93 208 178.29 141 547.09
PET 178 325.56 181 1345.64 144 829.51 144 4471.39 20 213.50 56 233.66 191 235.34 117 713.76
PIA 121 325.21 120 1430.58 109 838.62 109 4163.58 17 189.41 37 180.68 127 212.20 85 712.00
PIE 68 250.74 69 1136.38 52 630.77 51 3318.63 5 154.00 22 160.91 71 194.58 55 629.27
PLE 152 281.71 152 1231.64 130 770.15 128 4044.84 5 228.00 29 193.45 160 201.22 89 646.29
PUE 62 312.90 63 1396.51 51 865.10 51 4460.59 5 142.00 14 150.00 64 209.38 34 770.00
QUA 131 286.34 131 1221.60 115 706.61 114 3265.79 12 189.17 53 201.04 136 225.96 100 637.40
SAC 67 300.30 71 1238.31 50 779.80 49 4317.55 5 206.00 16 156.88 47 173.94 37 622.43
SAL 107 241.96 105 1066.00 69 582.90 69 2915.65 8 151.25 27 177.96 112 158.93 57 559.47
SEG 159 289.75 156 1289.49 161 819.44 161 4484.53 13 151.54 33 151.82 168 187.62 91 651.65
SIE 64 293.91 62 1302.90 46 860.65 46 4266.96 5 174.00 24 181.04 64 193.12 35 643.71
STJ 205 329.66 209 1394.11 177 893.84 177 4559.44 32 232.81 70 241.64 224 261.58 154 732.01
TAM 109 225.69 112 991.61 69 570.29 67 2250.45 6 151.67 13 177.69 119 165.34 60 502.00
VAL 92 260.65 91 1179.57 61 672.13 59 3393.73 9 180.00 27 163.52 96 200.89 67 612.54
VER 205 331.12 205 1361.05 156 813.65 155 4401.61 19 221.58 63 233.97 215 244.33 133 668.12

Table XII.3. Number of trees and mean height of the 34 populations used in the validation step in �ve common gardens. Height measure-
ments were taken in Asturias at 10 and 37-month old, in Bordeaux at 25 and 85-month old, Cáceres at 8-month old, Madrid at 13-month old
and Portugal at 11 and 27-month old.

For each of the eight combinations of the four allele sets (reference SNPs and the three candi-
date SNP sets) and the two models used to estimate the current gene-environment relationships
(i.e. GDM and GF), we predicted genomic o�set of the 34 populations when transplanted in the
common gardens based on the environmental di�erences (i.e. climatic, soil and topographic
di�erences) between the location of the population and the common garden. Di�erences
in burned area were not accounted for in genomic o�set calculation as �re could not have
in�uenced the population performance (i.e. height and mortality) in the common gardens, and
therefore the burned area value was �xed to its value at the population location.

We also calculated the climatic transfer distance of each pair of population and common
garden for �ve climatic covariates: bio1 (the annual daily mean temperature, °C), bio5 (the
maximum temperature of the warmest month, °C), bio6 (the minimum temperature of the
coldest month, °C), bio12 (the annual precipitation, mm) and bio15 (the precipitation seasonality,
coe�cient of variation).

We �rst evaluated whether populations that grow the less in common gardens were those
with the highest predicted genomic o�set (or the highest climatic transfer distance). For that,
in each of the �ve common gardens independently, we �rst estimated BLUPs for height with
the following model:

Hip ∼ N(µp,σ 2
r )

µp = β0 + Pp + Bb
(1.1)

with Hip the height in the individual i in the population p, β0 the global intercept, σ 2
r the

residual variance, Pp and Bb the population and block varying intercepts, respectively. This
model was performed with the R package brms and we used to following priors:
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β0 ∼ N(0, 10)[
Pp
Bb

]
∼ N

(
0,

[
σ 2
B
σ 2
P

] )
(σr ,σB,σP )ᵀ ∼ Cauchy(0, 10)

(1.2)

We extracted the meanmPp of the posterior distributions of Pp (i.e. the BLUPs) to estimate
the association betweenmPp and the genomic o�set or the climatic transfer distance, as follows:

mPp ∼ N(µp,σ 2
r )

µp = β0 + βX1Xp + βX2X
2
p

(1.3)

with β0 the global intercept, σ 2
r the residual variance and Xp the value of the genomic o�set

or climatic transfer distance for the population p. We included a quadratic term for Xp to
allow for potential nonlinearity in the response, following Fitzpatrick et al. (2021). We used the
following weakly informative priors:

β0
βX1
βX2

 ∼ N(0, 1)
σr ∼ Exponential(1)

(1.4)

Secondly, we evaluated whether populations that died more in common gardens were those
with the highest predicted genomic o�set (or the highest climatic transfer distance) with the
following model:

ap ∼ Binomial(Np,pp)
logit(pp) = β0 + βHHp + βX1Xp

(1.5)

with ap the count of individual that died in the population p, Np the total number of
individuals in the population p (=number of individuals that were initially planted in the
common garden), pp is the estimated probability of mortality in the population p, Xp is the
genomic o�set or climatic transfer distance for the population p and Hp is the BLUPs for height
of the population p (population varying intercepts calculated across all common gardens in the
model 1 of Archambeau et al. 2021a). We included Hp as a covariate in the model to account
for height di�erences before planting, as smaller trees had a higher mortality probability than
taller trees. We used the following weakly informative priors:

β0
βH
βX1

 ∼ N(0, 5) (1.6)

We compared the proportion of variance explained (i.e. R2, a measure of the model goodness-
of-�t) of the height models and the predictive ability of both mortality and height models was
evaluated with the leave-one-out cross-validation (LOOCV) procedure from the R package loo.

1.4 Validating genomic o�set predictions in natural populations

In this part, we aimed to estimate the relationship between predicted genomic o�set and
mortality rates in natural populations across maritime pine range. We used mortality data from
the French and Spanish National Forest Inventories (NFI) harmonized in Changenet et al. 2021.
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The French data relies on temporary plots sampled between 2005 and 2014 while the Spanish
data relies on permanent plots sampled during the second (from 1986 to 1996) and third NFIs
(from 1997 to 2008). A tree was recorded as dead if its death was dated less than 5 years ago
in the French NFI, or if it was alive in the second inventory but dead in the third one in the
Spanish NFI.

We modeled the proportion pi of maritime pines that died in the plot i during the census
interval ∆i with a complementary log-log link as follows:

mi ∼ Binomial(Ni ,pi)
log(−log (1 − pi)) = β0,c + βC,cCi + βGO,cGOi + log(∆i)

(1.7)

withNi the total number of maritime pines in the plot i ,mi the number of maritime pines that
died during the census interval ∆i in the plot i ,Ci the basal area of all tree species confounded in
the plot i (to account for the competition between trees) andGOi the genomic o�set predicted in
the plot i . As the French and Spanish inventories present noticeable methodological di�erences
that may bias the estimations, we estimated country-speci�c coe�cients: the country-speci�c
intercepts β0,c and the country-speci�c slopes βC,c and βGO,c . We used the complementary
log-log link jointly with the logarithm of the census interval ∆i for the plot i to account for
the di�erent census intervals between inventories. We used the following weakly informative
priors: 

β0,c
βC,c
βGO,c

 ∼ N(0, 1) (1.8)

The present model was performed for each of the sixteen combinations of the four allele
sets (i.e. reference SNPs and the three candidate SNP sets), the two models used to estimate the
current gene-environment relationships (i.e. GDM and GF) and the two scenarios of future
climates (i.e. SSP3-7.0 and SSP5-8.5).

2 Results

2.1 Candidate SNPs identi�cation

In BayPass, the candidate SNPs were selected based on a 5 dB threshold for the median Bayes
Factor calculated over 5 independent runs, resulting in the identi�cation of 26 candidates (1
associated with the maximum temperature of the warmest month, and 25 with the minimum
temperature of the coldest month). For RDA, candidate SNPs were selected using a threshold
of three standard deviations to identify outliers in the distribution of the SNP loadings on each
signi�cant RDA axis. The common candidates are the candidate SNPs selected by both GEA
methods. The candidates under expected strong selection are the RDA candidates that
show a strong association with at least one covariate, i.e. with βRDA > 0.3, and all the BayPass
candidates. The merged candidates are candidates selected by at least one of the two GEA
methods.
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BayPass RDA TOTAL

bio5 bio6 bio12 bio15 depth_roots water_top TRI BurnedArea
Common candidates 1 7 0 0 0 0 0 0 8 8
Candidates under expected strong selection 1 25 0 0 0 0 0 0 61 79
Merged candidates 1 25 0 0 0 0 0 0 352 370

Table XII.4. Candidate SNPs identi�ed by each genotype–environment association (GEA) method.

βRDAβRDAβRDA threshold bio5 bio6 bio12 bio15 water_top depth_roots TRI BurnedArea
0.10 190 175 154 202 153 136 179 118
0.30 17 11 19 10 13 3 4 6

Table XII.5. Number of candidate SNPs with βRDA > 0.1 or 0.3 for each environmental covariate.

SNP sets Mean Median
Common candidates 0.07 0.01

Candidates under expected strong selection 0.03 0.01
Merged candidates 0.01 0.00

Reference SNPs 0.01 0.00

Table XII.6. Mean and median linkage disequilibrium in each SNP set.

2.2 GDM and GF performance and covariate importance

In both the GDM and GF analyses, the maximum height of each �tted I-spline (GDM) or
turnover function (GF) informs on the magnitude of genomic change along the gradient of the
covariate considered, and therefore on the relative importance of that covariate in contributing
to the genomic turnover while holding all other covariates constant.

2.2.1 GDMmodels

Model performance Covariate relative importance

Nb SNPs DevExp R2
CV 9 R2

CV 6 R2
CV 2 Geographic bio5 bio6 bio12 bio15 water_top depth_roots TRI BurnedArea

Common candidates 8 41.34 23.43 [3.00] 22.30 [3.70] 19.36 [6.15] 1.00 0.12 0.80 0.00 0.00 0.05 0.05 0.57 0.00
Candidates under expected strong selection 79 50.43 37.98 [2.59] 37.37 [2.98] 32.88 [5.95] 1.00 0.20 0.78 0.36 0.00 0.07 0.05 0.06 0.00
Merged candidates 370 62.56 50.02 [3.01] 49.09 [3.76] 40.18 [8.30] 1.00 0.02 0.27 0.10 0.09 0.04 0.02 0.40 0.00
Reference SNPs 9,817 63.58 50.45 [2.74] 48.21 [5.03] 43.09 [8.84] 1.00 0.00 0.05 0.08 0.10 0.03 0.00 0.30 0.00

Table XII.7. Number of SNPs in each set, model performance and covariate relative importance in the GDM analysis. DevExp is the
percentage of deviance explained by the model. R2

CV 9, R2
CV 6 and R2

CV 2 are the mean and standard deviation in brackets of the coe�cient of
determination of 9-fold, 6-fold and 2-fold cross-validations repeated across 100 independent samples. The other columns correspond to the
relative importance (scaled between 0 and 1) of the covariates in the GDM models. The names and units of the environmental covariates are
given in section 1.2 of the Supplementary Information.
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(b) Candidates under expected
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(c) Merged candidates.
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(d) Reference SNPs.

Figure XII.6. Predicted genomic distance versus observed genomic distance. The dots represent the population pairs and the line indicates
where observations and predictions match.
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2.2.2 GF models

Nb SNPs poly > 5 mean R2 minimum R2 maximum R2

Common candidates 8 0.23 0.00 0.51
Candidates under expected strong selection 78 0.37 0.02 0.69

Merged candidates 348 0.25 0.01 0.70
Reference SNPs 9650 0.29 0.00 0.88

Table XII.8. Number of SNPs that were polymorphic in more than �ve populations and were thus used in the GF analysis, and mean,
minimum and maximum R2 across all SNPs in the GF models.

For each GF model performed on the four sets of SNPs, the �gures below correspond to
(a) the turnover functions for each environmental covariate and the �rst four Moran’s eigen
vectors (presented in order of importance), and (b) the overall importance of each covariate (i.e.
mean accuracy importance and mean importance weighted by SNP R2). The names and units
of the environmental covariates are given in section 1.2 of the Supplementary Information.
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Figure XII.7. Common SNP candidates.
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Figure XII.8. Candidates under expected strong selection.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

MEM2

−1 0 1 2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

MEM1

−2 0 2 4 6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

bio6

400 600 800 1000 1200 1400 1600

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

bio12

−2 −1 0 1 2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

MEM4

22 24 26 28 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

bio5

35 40 45 50 55

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

water_top

0 5 10 15 20 25 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

TRI

−2 −1 0 1

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

MEM3

30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

bio15

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

BurnedArea

40 60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

depth_roots

C
um

ul
at

iv
e 

im
po

rt
an

ce

(a) Turnover functions.

depth_roots

bio15

BurnedArea

MEM3

TRI

water_top

bio5

bio12

MEM4

bio6

MEM1

MEM2

Accuracy importance

0.0000 0.0010 0.0020 0.0030

depth_roots

BurnedArea

bio15

MEM3

TRI

water_top

bio5

MEM4

bio12

bio6

MEM1

MEM2

R2 weighted importance

0.00 0.01 0.02 0.03 0.04 0.05

(b) Overall importance of the covariates.

Figure XII.9. Merged candidates.
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Figure XII.10. Reference SNPs.

2.3 Predicted spatial variation in current and future genomic compo-
sition

For the projections of the genomic composition under future climates, only projections
based on the moderately alarming scenario SSP3-7.0 are shown as those based on the strongly
alarming scenario SSP5-8.5 are very similar.

2.3.1 Common candidates

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.11. Genomic composition under current climates from GDMmodels.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.12. Genomic composition under future climates (scenario SSP3-7.0) from GDMmodels.

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.13. Genomic composition under current climates from GF models.

253



(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.14. Genomic composition under future climates (scenario SSP3-7.0) from GF models.

2.3.2 Candidates under expected strong selection

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.15. Genomic composition under current climates from GDMmodels.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.16. Genomic composition under future climates (scenario SSP3-7.0) from GDMmodels.

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.17. Genomic composition under current climates from GF models.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.18. Genomic composition under future climates (scenario SSP3-7.0) from GF models.

2.3.3 Merged candidates

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.19. Genomic composition under current climates from GDMmodels.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.20. Genomic composition under future climates (scenario SSP3-7.0) from GDMmodels.

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.21. Genomic composition under current climates from GF models.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.22. Genomic composition under future climates (scenario SSP3-7.0) from GF models.

2.3.4 Reference SNPs

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.23. Genomic composition under current climates from GDMmodels.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.24. Genomic composition under future climates (scenario SSP3-7.0) from GDMmodels.

(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.25. Genomic composition under current climates from GF models.
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(a) Predicted spatial variation in genomic composition. (b) PCA of the predicted variation in genomic composition

Figure XII.26. Genomic composition under future climates (scenario SSP3-7.0) from GF models.

2.4 Predicted spatial variation in genomic o�set

Figure XII.27. Predicted spatial variation in genomic o�set for each combination of modelling approaches (i.e. Gradient Forests or Gener-
alised Dissimilarity Modelling) and sets of SNPs (i.e. three sets of candidate SNPs and the reference SNPs) under the future climate scenario
SSP5-8.5 (strongly alarming). See Figure XII.29 for the same predictions but visualized with di�erent scales so that the spatial variation in
genomic o�set for the merged candidates and reference SNPs are visible.
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Figure XII.28. Same spatial predictions in genomic o�set as in Figure VI.3 (future climate scenario SSP3-7.0) but visualized with di�erent
scales for each combination of modelling approaches (i.e. Gradient Forests or Generalised Dissimilarity Modelling) and sets of SNPs (i.e. three
sets of candidate SNPs and the reference SNPs).

Figure XII.29. Same spatial predictions in genomic o�set as in Figure XII.27 (future climate scenario SSP5-8.5) but visualized with di�erent
scales for each combination of modelling approaches (i.e. Gradient Forests or Generalised Dissimilarity Modelling) and sets of SNPs (i.e. three
sets of candidate SNPs and the reference SNPs).

2.5 Validation in common gardens

In the validation part in the common gardens, we compared thirteen height and mortality
models: �ve with a climatic transfer distance as covariate, four with a GDM-based predicted
genomic o�set and four with a GF-based predicted genomic o�set. The �ve climatic variables
used to calculated the climatic transfer distance tested were: the annual daily mean tempera-
ture (bio1; in °C), the maximum temperature of the warmest month (bio5; C°), the minimum
temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the
precipitation seasonality (bio15; coe�cient of variation). The GDM and GF-based genomic
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o�set correspond to the genomic o�set predicted for each set of SNPs: the common candidates
(Com), the candidates under expected strong selection (Mid), the merged candidates (Mer) and
the reference SNPs (Ref).

2.5.1 Height models in �ve common gardens
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Genomic offset approach: ●GF GDM

Figure XII.30. Regression coe�cients corresponding to the linear association between tree height in �ve common gardens and the climatic
transfer distances (left panels) or the predicted genomic o�set (right panels). The climatic transfer distances were calculated based on �ve
climatic variables: the annual daily mean temperature (bio1; in °C), the maximum temperature of the warmest month (bio5; C°), the minimum
temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the precipitation seasonality (bio15; coe�cient of
variation). Genomic o�set predictions were obtained for each combination of two modelling approaches (GDM or GF) and four sets of SNPs,
i.e. the common candidates (Com), the candidates under expected strong selection (Mid), the merged candidates (Mer) and the reference SNPs
(Ref). Tree height in the common gardens was measured at 10 and 37-month old in Asturias, 25 and 85-month old in Bordeaux, 8-month old
in Cáceres, 13-month old in Madrid and 11 and 27-month old in Portugal. Regression coe�cients correspond to βX 1 estimates in equation
1.3 in the Supplementary Information.
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Genomic offset approach: ●GF GDM

Figure XII.31. Proportion of variance explained (R2 estimate) of the models estimating the association between tree height in �ve common
gardens and the climatic transfer distances (left panels) or the predicted genomic o�set (right panels). The climatic transfer distances were
calculated based on �ve climatic variables: the annual daily mean temperature (bio1; in °C), the maximum temperature of the warmest month
(bio5; C°), the minimum temperature of the coldest month (bio6; °C), the annual precipitation (bio12; mm) and the precipitation seasonality
(bio15; coe�cient of variation). Genomic o�set predictions were obtained for each combination of two modelling approaches (GDM or GF)
and four sets of SNPs, i.e. the common candidates (Com), the candidates under expected strong selection (Mid), the merged candidates (Mer)
and the reference SNPs (Ref). Tree height in the common gardens was measured at 10 and 37-month old in Asturias, 25 and 85-month old in
Bordeaux, 8-month old in Cáceres, 13-month old in Madrid and 11 and 27-month old in Portugal.
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Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio12 - Annual precipitation (mm) 0.00 0.00
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -1.08 3.87
GF-based genomic o�set Candidates under expected strong selection -1.48 2.33
GF-based genomic o�set Common candidates -2.57 3.37
GDM-based genomic o�set Reference candidates -3.42 2.86
GDM-based genomic o�set Candidates under expected strong selection -4.24 3.01
GF-based genomic o�set Merged candidates -5.15 2.95
Climatic transfer distance bio1 - Annual daily mean T° (°C) -6.17 4.77
GDM-based genomic o�set Merged candidates -6.49 3.81
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -7.87 2.13
GF-based genomic o�set Reference candidates -8.34 3.56
GDM-based genomic o�set Common candidates -10.32 3.68
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -11.52 3.94

Table XII.9. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Asturias at 10-month old,
estimated by making pairwise comparisons between each model and the model with the largest ELPD (model in the �rst row). The ELPD is
the theoretical expected log pointwise predictive density for a new dataset (see equation 1 of Vehtari et al. 2017) and is estimated with the
R package loo, which gives the Bayesian LOO estimate of the expected log pointwise predictive density (equation 4 of Vehtari et al. 2017).
The predictive accuracy of two models can be robustly considered di�erent if their ELPD di�erence is higher than 4 and is higher than four
standard errors of the di�erence (‘SE di�erence‘).

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio6 - Min T° of the coldest month (°C) 0.00 0.00
Climatic transfer distance bio12 - Annual precipitation (mm) -0.35 4.35
GF-based genomic o�set Candidates under expected strong selection -0.45 3.23
GDM-based genomic o�set Reference candidates -0.94 3.71
GF-based genomic o�set Common candidates -1.99 3.88
GF-based genomic o�set Merged candidates -2.99 3.63
GDM-based genomic o�set Candidates under expected strong selection -4.10 4.25
GDM-based genomic o�set Merged candidates -5.43 4.41
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -6.68 4.14
GF-based genomic o�set Reference candidates -6.88 4.17
Climatic transfer distance bio1 - Annual daily mean T° (°C) -7.43 2.78
GDM-based genomic o�set Common candidates -11.90 3.41
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -12.65 3.47

Table XII.10. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Asturias at 37-month old.
See legend of Table XII.9.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio6 - Min T° of the coldest month (°C) 0.00 0.00
GDM-based genomic o�set Reference candidates -6.26 6.80
Climatic transfer distance bio12 - Annual precipitation (mm) -7.29 5.10
Climatic transfer distance bio1 - Annual daily mean T° (°C) -9.19 4.11
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -9.90 4.40
GDM-based genomic o�set Merged candidates -10.14 5.24
GDM-based genomic o�set Candidates under expected strong selection -11.94 3.97
GF-based genomic o�set Common candidates -14.66 3.75
GF-based genomic o�set Reference candidates -15.34 4.41
GF-based genomic o�set Candidates under expected strong selection -16.41 4.18
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -17.50 4.15
GDM-based genomic o�set Common candidates -17.55 4.21
GF-based genomic o�set Merged candidates -17.92 4.46

Table XII.11. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Bordeaux at 25-month old.
See legend of Table XII.9.
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Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
GDM-based genomic o�set Reference candidates 0.00 0.00
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -3.06 6.24
Climatic transfer distance bio12 - Annual precipitation (mm) -6.61 8.27
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -8.94 6.55
GDM-based genomic o�set Merged candidates -10.69 3.11
GDM-based genomic o�set Candidates under expected strong selection -14.47 5.15
GF-based genomic o�set Reference candidates -15.12 5.85
Climatic transfer distance bio1 - Annual daily mean T° (°C) -16.45 5.95
GF-based genomic o�set Common candidates -18.75 6.11
GF-based genomic o�set Merged candidates -19.43 5.31
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -21.20 5.54
GF-based genomic o�set Candidates under expected strong selection -21.36 5.82
GDM-based genomic o�set Common candidates -21.90 5.75

Table XII.12. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Bordeaux at 85-month old.
See legend of Table XII.9.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
GDM-based genomic o�set Merged candidates 0.00 0.00
GF-based genomic o�set Merged candidates -5.80 4.25
GF-based genomic o�set Common candidates -5.94 3.14
GDM-based genomic o�set Common candidates -6.71 3.23
GF-based genomic o�set Reference candidates -6.90 4.32
GDM-based genomic o�set Candidates under expected strong selection -7.15 3.37
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -7.28 4.20
Climatic transfer distance bio12 - Annual precipitation (mm) -7.31 3.51
GF-based genomic o�set Candidates under expected strong selection -7.35 4.31
Climatic transfer distance bio1 - Annual daily mean T° (°C) -7.77 3.75
GDM-based genomic o�set Reference candidates -7.88 3.95
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -7.90 3.53
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -8.57 3.84

Table XII.13. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Cáceres at 8-month old. See
legend of Table XII.9.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) 0.00 0.00
GDM-based genomic o�set Candidates under expected strong selection -0.96 2.72
GF-based genomic o�set Reference candidates -2.93 2.76
GF-based genomic o�set Common candidates -3.35 3.53
Climatic transfer distance bio12 - Annual precipitation (mm) -3.54 2.59
GDM-based genomic o�set Reference candidates -3.69 2.18
GDM-based genomic o�set Merged candidates -4.27 1.85
GF-based genomic o�set Candidates under expected strong selection -5.17 2.30
Climatic transfer distance bio1 - Annual daily mean T° (°C) -5.68 2.44
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -5.71 2.38
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -6.12 2.35
GF-based genomic o�set Merged candidates -6.16 2.27
GDM-based genomic o�set Common candidates -6.48 2.96

Table XII.14. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Madrid at 13-month old. See
legend of Table XII.9.
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Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio12 - Annual precipitation (mm) 0.00 0.00
GF-based genomic o�set Candidates under expected strong selection -0.57 3.20
GDM-based genomic o�set Merged candidates -1.74 2.26
GDM-based genomic o�set Candidates under expected strong selection -2.00 3.28
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -2.42 2.86
Climatic transfer distance bio1 - Annual daily mean T° (°C) -2.54 2.66
GF-based genomic o�set Common candidates -2.71 3.40
GDM-based genomic o�set Reference candidates -2.81 2.01
GF-based genomic o�set Merged candidates -3.30 2.61
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -4.12 1.89
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -4.14 2.88
GDM-based genomic o�set Common candidates -5.11 2.81
GF-based genomic o�set Reference candidates -5.30 3.31

Table XII.15. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Portugal at 11-month old.
See legend of Table XII.9.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
GF-based genomic o�set Candidates under expected strong selection 0.00 0.00
GF-based genomic o�set Merged candidates -0.55 1.68
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -2.25 2.24
GF-based genomic o�set Reference candidates -5.81 2.50
Climatic transfer distance bio12 - Annual precipitation (mm) -6.52 3.16
GDM-based genomic o�set Reference candidates -6.98 3.23
GDM-based genomic o�set Merged candidates -7.07 3.06
GF-based genomic o�set Common candidates -7.16 3.35
GDM-based genomic o�set Candidates under expected strong selection -9.11 2.92
Climatic transfer distance bio1 - Annual daily mean T° (°C) -10.26 3.79
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -10.60 4.50
GDM-based genomic o�set Common candidates -15.19 3.96
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -15.77 4.19

Table XII.16. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Portugal at 27-month old.
See legend of Table XII.9.
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Figure XII.32. Regression coe�cients corresponding to the linear association between tree mortality in two common gardens (under harsh
conditions) and the climatic transfer distances (left panels) or the predicted genomic o�set (right panels). See legend of Figure VI.4 for more
details. Tree mortality was measured at 8-month old in Cáceres and 13-month old in Madrid. Regression coe�cients correspond to βX 1
estimates in equation 1.5 in the Supplementary Information.
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Figure XII.33. Regression coe�cients describing the linear association between tree mortality in two common gardens (under harsh condi-
tions) and the mean population height across all common gardens (i.e. BLUPs used as a proxy of tree height at the planting date) for each
model considered (same models as in Figure XII.32). These regression coe�cients correspond to the βH estimates in equation 1.5 of the
Supplementary Information.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
GF-based genomic o�set Candidates under expected strong selection 0.00 0.00
GF-based genomic o�set Merged candidates -0.95 0.88
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -2.04 5.06
Climatic transfer distance bio5 - Max T° of the warmest month (°C) -2.51 2.57
GF-based genomic o�set Reference candidates -2.53 2.00
Climatic transfer distance bio12 - Annual precipitation (mm) -6.42 4.54
GF-based genomic o�set Common candidates -7.64 4.94
GDM-based genomic o�set Candidates under expected strong selection -7.98 4.62
GDM-based genomic o�set Common candidates -10.63 5.75
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -12.52 7.98
Climatic transfer distance bio1 - Annual daily mean T° (°C) -13.53 9.39
GDM-based genomic o�set Reference candidates -14.03 7.62
GDM-based genomic o�set Merged candidates -14.10 8.99

Table XII.17. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Madrid. See legend of Table
XII.9.

Modelling approach Climatic covariate/ set of SNPs ELPD di�erence SE di�erence
Climatic transfer distance bio5 - Max T° of the warmest month (°C) 0.00 0.00
GF-based genomic o�set Reference candidates -0.23 2.02
GF-based genomic o�set Merged candidates -2.05 2.77
GF-based genomic o�set Candidates under expected strong selection -2.19 2.94
Climatic transfer distance bio6 - Min T° of the coldest month (°C) -2.58 2.89
Climatic transfer distance bio12 - Annual precipitation (mm) -2.64 3.36
GDM-based genomic o�set Merged candidates -2.95 2.88
Climatic transfer distance bio15 - Precipitation seasonality (coe� of variation) -3.87 3.44
GDM-based genomic o�set Reference candidates -4.00 3.45
GDM-based genomic o�set Common candidates -4.10 3.55
GDM-based genomic o�set Candidates under expected strong selection -4.55 3.50
GF-based genomic o�set Common candidates -4.64 3.49
Climatic transfer distance bio1 - Annual daily mean T° (°C) -5.01 3.69

Table XII.18. Di�erences in expected predictive accuracy among the di�erent models in the common garden in Cáceres. See legend of Table
XII.9.
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