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The Painlevé II hierarchy : geometry and applications

The Painlevé II hierarchy is a sequence of nonlinear ODEs, with the Painlevé II equation as first member. Each member of the hierarchy admits a Lax pair in terms of isomonodromic deformations of a rank 2 system of linear ODEs, with polynomial coefficient for the homogeneous case. It was recently proved that the Tracy-Widom formula for the Hastings-McLeod solution of the homogeneous PII equation can be extended to analogue solutions of the homogeneous PII hierarchy using Fredholm determinants of operators acting through higher order Airy kernels. These integral operators are used in the theory of determinantal point processes with applications in statistical mechanics and random matrix theory. From this starting point, this PhD thesis explored the following directions. We found a formula of Tracy-Widom type connecting the Fredholm determinants of operators acting through matrix-valued analogues of the higher order Airy kernels with particular solution of a matrix-valued PII hierarchy. The result is achieved by using a matrix-valued Riemann-Hilbert problem to study these Fredholm determinants and by deriving a block-matrix Lax pair for the relevant hierarchy. We also found another generalization of the Tracy-Widom formula, this time relating the Fredholm determinants of finite-temperature versions of higher order Airy kernels operators to particular solutions of an integro-differential Painlevé II hierarchy. In this setting, a suitable operator-valued Riemann-Hilbert problem is used to study the relevant Fredholm determinant. The study of its solution produces in the end an operator-valued Lax pair that naturally encodes an integro-differential Painlevé II hierarchy. From a more geometrical point of view, we analyzed the Poisson-symplectic structure of the monodromy manifolds associated to a system of linear ODEs with polynomial coefficient, also known as Stokes manifolds. For the rank 2 case, we found explicit logcanonical coordinates for the symplectic 2-form, forming a cluster algebra of specific type. Moreover, the log-canonical coordinates constructed in this way provide a linearization of the Poisson structure on the Stokes manifolds, first introduced by Flaschka and Newell in their pioneering work of 1981. III essere rispettato. Prima di tutto dai bambini che hanno ancora il moccio al naso.

Insomma, abbassa il tuo naso, abbassa gli avvolgibili, ma lasciami stare. Confuso e intimidito, lo scolaro non abbassò il nove, sbagliò la divisione e si prese un brutto voto. Eh, qualche volta non è proprio il caso di essere troppo delicati. (Gianni Rodari, Favole al telefono.) It was first shown by Airault in [Air79] that for nonzero integer values and semi-integer values of α, the Painlevé II equation admits respectively rational solutions and solutions in terms of the classical Airy function (her results are written in Theorem 1.1.1, 1.1.2). Intriguingly enough, the case α " 0 does not fit in either of these classes of solutions. This special case was first handled by Hastings and McLeod in [HM80] together with specific boundary conditions. The solution of their boundary value problem,

1. In general s could be either a scalar or a finite dimensional vector of independent parameters. 2. Here independent means that the sets of essential monodromy data of the two systems are not isomorphic, thus there exist no gauge transformation that send one system into the other.

RÉSUMÉ

Introduction

Au début du XX siècle, les équations de Painlevé ont permis de répondre à un problème de classification en théorie des EDO, posé en premier par Picard ([Pic89]). Son objectif était de décrire toutes les équations différentielles ordinaires d'une forme spécifique et telles que leurs solutions n'aient pas de singularités (autres que des pôles simples) mouvables. Cette propriété, aussi appelée propriété de Painlevé, permet en effet de définir des nouvelles fonctions comme solutions générales à ces équations. Les travaux de Painlevé,Fuchs et Gambier ([Pai00,[START_REF] Fuchs | Sur quelques équations différentielles linéaires du second ordre[END_REF][START_REF] Gambier | Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes[END_REF]) ont finalement permis d'obtenir une liste de six équations avec les caractéristiques requises et pour lesquelles les solutions générales ne peuvent pas être écrites en termes de fonctions spéciales connues. Toutes les autres équations satisfaisant les conditions données par Picard ont soit des solutions écrites en termes de fonctions spéciales connues soit peuvent être transformées en une de ces six équations. Les équations différentielles ordinaires non-linéaires de cette liste sont naturellement appelées équations de Painlevé, (voir équations (1.1.1)-(1.1.6)). Leurs solutions, les transcendantes de Painlevé, sont classifiées comme nouvelles fonctions non-linéaires transcendantes et font maintenant partie de la liste de fonctions spéciales classiques (avec les fonctions de Bessel, Airy, hyper-géométrique, elliptiques, etc). L'étude de leurs propriétés a progressivement été approfondie avec leurs apparitions dans différents domaines impliquant des phénomènes non-linéaires. Dans les cinquante dernières années, les équations de Painlevé sont apparues dans de multiples sujets en mathématiques et en physique et leur étude a été stimulée par plusieurs perspectives différentes. Dans la littérature physique, on retrouve les équations de Painlevé dans divers modèles de physique statistique et de théorie quantique des champs (voici quelques exemples classiques [BMTW73, JMMS80, BK90] et quelques un plus récents [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF][START_REF] Krajenbrink | From Painlevé to Zakharov-Shabat and beyond : Fredholm determinants and integro-differential hierarchies[END_REF] reliés à cette thèse). En mathématiques, les récentes connections avec le domaine de polynômes orthogonaux (voir [START_REF] Van Assche | Orthogonal polynomials and Painlevé equations[END_REF] pour une référence classique), la théorie de matrices aléatoires ( [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF][START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF] comme exemples des premiers résultats) et les modèles de croissance aléatoires ( [START_REF] Forrester | Growth models, random matrices and Painlevé transcendents[END_REF][START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF]) sont découvertes encore dès ces jours.

Un des aspects qui avait été initialement étudié dans la théorie des équations de Painlevé était la dépendance de leurs solutions aux paramètres présents dans les coefficients des équations elles-mêmes. On remarque que ces six équations, sauf la première, ont dans leurs coefficients des paramètres complexes (de un jusqu'à quatre indépendants). Pour des valeurs particulières de ces paramètres, il est en fait possible de formuler des solutions explicites aux équations de Painlevé en terme de fonctions spéciales ou élémentaires connues. Le cas le plus simple, quand il n'y a qu'un seul paramètre, correspond à notre cas d'étude, l'équation de Painlevé II : d 2 w dz 2 " 2w 3 `wz `α, for w " wpzq, α P C.

(1)

V Airault [START_REF] Airault | Rational solutions of painlevé equations[END_REF] fut la première à montrer que lorsque le paramètre α prend des valeurs entières (resp.

semi-entières) non-nulles, l'équation de Painlevé II admet de solutions explicitement écrites en termes de fonctions rationnelles (resp. en termes de la fonction d'Airy et de ses dérivées) (les énoncés de ces résultats se trouvent dans les théorèmes 1.1.1, 1.1.2). Pourtant, le cas α " 0 n'est traité dans aucune de ces deux classes de solutions. Ce cas particulier a été analysé par Hastings et McLeod ([HM80]) avec des conditions au bord spécifiques. La solution de leur problème au bord, qui porte maintenant leurs noms (le résultat détaillé de [START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF] est écrit dans le théorème 1.1.5), est apparu quelques années plus tard en lien avec la théorie des matrices aléatoires (dans le papier cité précédemment [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF]). Ce résultat (théorème 1.1.7), connu comme la formule de Tracy-Widom, n'est qu'un parmi plusieurs exemples décrivant des relations entre les transcendentes de Painlevé et la théorie de processus déterminantaux (ayant une application dans la théorie des matrices aléatoires pour ce cas spécifique). La démonstration de leur formule se base sur l'étude des propriétés du noyau d'Airy. En particulier, ils ont prouvé que le déterminant de Fredholm de l'opérateur intégral agissant à travers le noyau d'Airy peut être écrit en termes de la solution de

Hastings-McLeod de l'équation de Painlevé II. D'un autre coté, ce déterminant de Fredholm exprime la limite au bord de la distribution de probabilité de la plus grande valeur propre dans l'ensemble de matrices aléatoires hermitiennes à entrées gaussiennes (cfr. [START_REF] Forrester | The spectrum edge of random matrix ensembles[END_REF]), fournissant ainsi le pont entre la théorie des matrices aléatoires et les transcendents de Painlevé.

Parmi les nombreux aspects intéressants de l'équation de Painlevé II, nous nous intéresserons particulièrement à deux d'entre eux : sa relation avec une EDP intégrable et sa représentation isomonodromique. D'une certaine manière, le premier définit l'objet à la base de notre étude, à savoir la hiérarchie de Painlevé II, et le second nous donne l'outil principal pour la manipuler. Le lien entre la hiérarchie de Painlevé II et la théorie des déformations isomonodromiques a été étudié en profondeur dans les deux articles de Flaschka et Newell [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF][START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF] dans les années quatre-vingts, et leur travail fournit en quelque sorte la base de notre travail, d'un point de vue analytique et géométrique.

De manière générale, les équations de Painlevé peuvent être déduites comme réductions de certaines équations aux dérivées partielles intégrables [START_REF] Ablowitz | Solitons, nonlinear evolution equations and inverse scattering[END_REF], comme par exemple l'équation de Korteg De Vries, l'équation nonlinéaire de Schroedinger ou encore l'équation de sine-Gordon pour ne citer que celles-ci. En particulier, l'équation de Painlevé II est obtenue comme réduction auto-similaire de l'équation de KdV modifiée. Cela signifie qu'en cherchant des solutions à l'équation de KdV modifiée KdV est l'exemple le plus populaire) on peut souvent construire de façon naturelle des équations d'ordre supérieur qui commutent entre elles (confère [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF] pour le cas de KdV). La suite d'équations obtenue de cette façon est nommée hiérarchie associée à l'EDP en question. En ce qui concerne notre cas d'étude, à partir de la hiérarchie de KdV modifiée (1.2.12), dont la construction est liée à la hiérarchie KdV VI (1.2.8) à travers une transformation de Miura, on peut appliquer la réduction auto-similaire (expliqué ci-dessus), non seulement à l'équation mKdV, mais aussi à tous les autres membres de sa hiérarchie.

v t `vxxx ´6v 2 v x " 0, (2) 
Cette procédure nous donne une nouvelle suite d'équations différentielles non-linéaires ordinaires, qui commence par l'équation de Painlevé II (1.1.2). Cette collection est ainsi nommée hiérarchie de Painlevé II (écrite de façon compacte ici : (1.2.22)).

La relation entre les équations de Painlevé et les déformations isomonodromiques a été étudiée pour la première fois en grande généralité par l'école japonaise dans une série de papiers [JMU81, [START_REF] Jimbo | Monodromy perserving deformation of linear ordinary differential equations with rational coefficients[END_REF][START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients[END_REF] et, presque simultanément, par Flaschka et Newell pour le cas spécifique de Pailevé II ( [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF][START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF]).

Essentiellement, les déformations isomonodromique (pour rang N quelconque) décrivent tous les systèmes linéaires d'EDO possibles dΨ dλ " ApλqΨ (4)

où Apλq est une matrice rationnelle avec un certain nombre de pôles de multiplicités fixées, qui partagent la même collection de données de monodromie essentielles. Cette collection de donnée est composée, grosso modo, de matrices qui décrivent partiellement le comportement des solutions locales Ψ au voisinage des singularités de la matrice Apλq. Cette description peut être effectuée en supposant que la matrice Apλq ne dépende pas uniquement du paramètre spectrale λ mais aussi d'autre paramètres Apλ, sq et en étudiant les variations par rapport à ces nouveaux paramètres, qui préservent la collection de données de monodromie essentielles. Un des résultats les plus importants obtenu par l'école Japonaise [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF] montre que les déformations préservant la monodromie sont équivalentes à certaines équations différentielles non-linéaires que les entrées de la matrice Apλq doivent satisfaire par rapport aux paramètres de déformation. Pour certains cas spécifiques, ces équations coïncident avec les équations de Painlevé. En langage moderne, on dit que les équations de Painlevé admettent des paires de Lax en termes de déformations isomonodromiques. Cela signifie plus précisément que pour chacune des six équations, il existe un paire de matrices Apλ, sq, Lpλ, sq telle que, l'équation de compatibilité du système dΨ dλ " Apλ, sqΨ, dΨ ds " Lpλ, sqΨ, ( En ce qui concerne spécifiquement l'équation de Painlevé II (1.1.2), ils existent au moins deux paires de Lax de rang 2 indépendantes qui décrivent respectivement les déformations isomonodromiques d'un système ayant une singularité irrégulière à l'infini et une autre régulière en zéro (la paire de Lax de Flaschka et Newell [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF]) et d'un système ayant seulement une singularité irrégulière à l'infini (la paire de Lax de Jimbo Miwa et Ueno [START_REF] Jimbo | Monodromy perserving deformation of linear ordinary differential equations with rational coefficients[END_REF]). Quelques années auparavant, le travail de Clarkson, Joshi et Mazzocco [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF] a montré que toutes les équations de la hiérarchie de Pailevé II ont une paire de Lax isomonodromique, qui généralise celle de Flaschka et Newell. Leur construction est en effet une de VII nos premières références afin de trouver des paires de Lax analogues pour les hiérarchies de Painlevé II non-commutatives qui seront considerées dans les chapitres 5 et 6.

Avec ce panorama en tête, la thèse a exploré les directions suivantes. D'une part, nous avons trouvé des généralisations de la formule de Cependant, nous remarquons que la formule originale de Tracy-Widom a été obtenue par les auteurs de [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] par une procédure totalement différente. D'autres auteurs ont par la suite re-dérivé leur formule en utilisant l'approche à la Riemann-Hilbert (par exemple [START_REF] Kapaev | A note on the Lax pairs for Painlevé equations[END_REF]) et cette approche a été utilisée pour dériver des formules analogues de Tracy-Widom pour certains transcendantes (scalaires) de Painlevé II d'ordre supérieur, dans le récent travail [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. Pour cette raison, nous avons adopté la même méthode pour nos cas traités dans les chapitres 5 et 6. D'autre part, nous avons étudié la structure symplectique et de Poisson de la variété de monodromie associé à un système d'ODEs linéaires à coefficient polynomial (ayant donc seulement une singularité irrégulière au point à l'infinie), introduite à l'origine par Flaschka et Newell dans [START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF]. Ce cas est en effet à la base de la hiérarchie de Painlevé II (du moins la hiérarchie homogène). Ce cas particulier de variété de monodromie, appelée variété de Stokes, est l'exemple le plus simple de ce qu'on appelle aujourd'hui une variété de caractères sauvage. Dans le cas de singularités régulières, la géométrie des variétés monodromies est codée par les variétés de caractères des sphères de Riemann (convenablement) épointée. Les variétés de caractères des surfaces de Riemann en général sont connues pour être des VIII variétés de Poisson, grâce aux travaux de Goldmann [START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF]. Par contre, les variétés de monodromie associées aux systèmes ayant des singularités irrégulières sont plus compliquées, à cause de la présence du phénomène de Stokes autour de chaque singularité irrégulière. Au cours des dernières décennies, elles ont été étudiées dans leur grande généralité et avec un accent particulier sur leur structure de 

Contenu du manuscrit

La thèse est essentiellement divisée en deux parties. La première est composée des chapitre de 1 à 4, qui visent les objectifs suivants : introduire les objets à la base de cette étude et la motiver, collectionner les résultats principaux qui relient ces objets entre eux et rappeler les méthodes classiques utilisées en littérature pour démontrer ces résultats. La deuxième partie contient les contributions originales prouvées dans les articles [START_REF] Tarricone | A fully noncommutative Painlevé II hierarchy : Lax pair and solutions related to Fredholm determinants[END_REF][START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF][START_REF] Bertola | Correction to : The dependence on the monodromy data of the isomonodromic tau function[END_REF], qui se trouvent respectivement du chapitre 5 au 7.

Partie I : révision de la littérature

La première partie de la thèse est organisée de la façon suivante. Le chapitre 1 a pour objectif de définir l'objet principal de notre étude : la hiérarchie de Painlevé II, alors que le chapitre 2 vise plutôt à donner la motivation principale pour laquelle on veut étudier certaines solutions de cette hiérarchie par rapport aux possibles applications dans la théorie des processus déterminantaux. Plus loin, les chapitres 3, 4 donnent une brève révision des méthodes classiques utilisées pour prouver les résultats énoncés précédemment et qui justement donnent le lien entre certaines solutions de la hiérarchie et la théorie des processus déterminantaux.

(1) Le chapitre 1 est uniquement concentré sur la construction et les propriétés de la hiérarchie de

Painlevé II. Premièrement, on revoit quelques propriétés des solutions de l'équation de (2) Le chapitre 2 contient une introduction synthétique à la théorie des processus déterminantaux.

Cependant, le but ultime n'est pas de donner une révision exhaustive du sujet, mais plutôt de fournir une motivation solide pour étudier les résultats comme le dernier cité dans le chapitre 1 et ses possibles généralisations. En particulier, comme exemple d'application de la théorie de processus déterminantaux on étudie le cas le plus simple, d'ensemble de matrices aléatoires : GUE. De cette façon, on pourra finalement voir la formule de Tracy-Widom comme exemple de connexion entre théorie des matrices aléatoires et la théorie de Painlevé.

(3) Dans le chapitre 3 on présente l'outil de travail principal de cette thèse : les problèmes de Riemann-Hilbert. Ces problèmes sont en effet utilisés dans chacun des travaux contenus dans les chapitres 5, 6, 7 (même si les situations sont différentes). En particulier, après une courte révision des propriétés de base des solutions des problèmes de Riemann-Hilbert générales à valeurs matricielles, on étudie le problème de Riemann-Hilbert associé à un opérateur intégrable du type IIKS [START_REF] Its | Differential equations for quantum correlation functions[END_REF] et leurs généralisations [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]. Les résultats énoncés ici seront directement utilisés dans le chapitre 5 et généralisés pour le cas des problèmes de Riemann-Hilbert à valeurs opératorielles dans le chapitre 6.

(4) Enfin, le chapitre 4 est dédié à la théorie des déformations isomonodromiques, en portant une attention particulière aux connexions entre l'équation de Painlevé II et sa hiérarchie. Les objectifs de ce chapitre sont deux : premièrement on veut donner les paires de Lax classiques en termes de déformations isomonodromiques associées à l'équation de Painlevé II et sa hiérarchie. Ces représentations nous seront ensuite utiles dans les chapitres 5, 6, où on utilisera justement des généralisations de ces paires de Lax afin de reconnaître les hiérarchies non-commutatives analogues. Deuxièmement, la révision du concept de données de monodromie facilitera le dernier chapitre pour la définition et la compréhension des variétés de Stokes, qui seront notre objet d'étude.

Partie II : contributions originales

Comme nous l'avons déjà souligné, les trois derniers chapitres de cette thèse sont dévoués à démontrer les principaux résultats obtenus dans les articles [Tar21, BCT21, BT21], qu'on va énonce par la suite. Les premiers deux travaux et les résultats qui s'y trouvent dedans sont de quelque façon liés : en effet, dans les deux cas, on prouve une formule à la Tracy-Widom (analogues de celle donnée dans les Théorèmes 1.1.7 et 1.2.12) qui permet d'exprimer les determinants de Fredholm de certaines généralisations des Résultats du chapitre 5 Le chapitre 5 contient les résultats obtenus dans mon premier travail [START_REF] Tarricone | A fully noncommutative Painlevé II hierarchy : Lax pair and solutions related to Fredholm determinants[END_REF].

Ici on étudie les déterminants de Fredholm d'un analogue à valeurs matricielles du noyaux d'Airy, définit de la façon suivante. Tout d'abord, on considère une version matricielle de l'n-ième fonction d'Airy définie comme Ai 2n`1 px, sq :" `cj,k Ai 2n`1 px `sj `sk q ˘r j,k"1 , c j,k P C, x, s j , s k P R,

où Ai 2n`1 px`s j `sk q est la fonction d'Airy d'ordre n. Ensuite, on considère les opérateurs d'Airy agissant sur l'espace L 2 `R`, C r ˘, de façon standard pAi 2n`1 f q pxq :" ˆR`A i 2n`1 px `y, sqf pyq dy, (8) pour tout f " pf 1 , . . . , f r q T P L 2 `R`, C r ˘. Finalement, on définit le déterminant de Fredholm F pnq ps 1 , . . . , s r q :" det `Id R`´A i 2 2n`1 ˘,

comme l'analogue du déterminant de Fredholm de l'n-ième noyau d'Airy scalaire et sur ce déterminant notre étude se concentre. En particulier, on veut estimer sa dépendance dès paramètres réels s j à travers l'opérateur d dS :"

r ÿ k"1 B Bs k . ( 10 
)
L'étude est basé sur la construction d'un problème de Riemann-Hilbert matriciel associé aux opérateurs Ai 2 2n`1 et sur les propriétés de sa solution. Cela est possible grace au fait que ce déterminant de Fredholm coïncide avec le déterminant de Fredholm d'un autre opérateur qui agit sur un autre espace, mais qui est cette fois du type intégrable. Dans ce cadre, les résultats classique sur la solutions des problèmes de Riemann-Hilbert associé à certains type d'opérateurs [START_REF] Its | Differential equations for quantum correlation functions[END_REF], [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] (revus dans le chapitre 4) peuvent être appliqués. Cela, avec la construction d'une pair de Lax isomonodromique de matrices à bloques pour la hiérarchie matricielle de Painlevé II, nous amène finalement au résultat suivant.

Théorème 1. Il existe une solution W de la n-ième équation de la hiérarchie de Painlevé II matricielle XI (5.0.6), qui est connectée au déterminant de Fredholm F pnq à travers la formule d 2 dS 2 ln `F pnq ps 1 , . . . , s r q ˘" ´Tr `W 2 p sq ˘.

En définissant s :" 1 r ř r j"1 s j , et δ j :" s j ´s cette solution W dans le régime s Ñ `8 avec |δ j | ď m pour tout j, a un comportement asymptotique du type pW q r k,l"1 " ´2pc kl Ai 2n`1 ps k `sl qq r k,l"1 .

La hiérarchie matricielle qui apparaît en (5.0.6) a une définition analogue à celle de la hiérarchie scalaire écrite en (1.2.22) en utilisant les polynômes différentiels de Lenard. En particulier, pour la version matricielle on utilisera des analogues matricielles de ces polynômes de Lenard, engendrés par une récursion (5.2.1) qui reste très similaire à la récursion dans le cas classique (1.2.6). Le type de solutions trouvé pour cette hiérarchie et utilisé dans la formule ci-dessus est en effet défini par une condition au bord à la Hastings-McLeod, et donc la formule obtenue peut être considérée comme analogue de la formule de Tracy-Widom. Pour ce qui concerne l'interprétation du déterminant de Fredholm en jeux dans ce cas-ci :

il décrit en effet la distribution de probabilité de la plus grande particule dans le processus déterminantaux défini par l'opérateur Ai 2 2n`1 . Malheureusement, et à connaissance de l'auteur, on n'a pas encore trouvé des applications en théorie des matrices aléatoires, ou physique statistique (ou autres domaines) utilisant ce déterminant de Fredholm.

Résultats du chapitre 6 Dans le chapitre 6 on démontre un des résultats principaux contenus dans le travail [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF] Ayant fixé une fonction poids de ce type, on considère l'opérateur intégral K t,n : L 2 pR `q Ñ L 2 pR `q qui agit à travers la version à température finie des noyaux d'Airy d'ordre supérieur, définie de la façon suivante K t,n px, yq :" ˆR Ai 2n`1 px `z `tqAi 2n`1 pz `y `tqwpzq dz, t P R.

En particulier, ici notre étude est concentré sur les propriétés du déterminant de Fredholm D n pt, λq :" detp1 ´λK t,n q (13) qui est bien défini pour tout pt, λ, nq P R ˆC ˆN. Plus précisément, on veut décrire sa dépendance du paramètre réel t. Pour se faire, on commence par montrer que ce déterminant de Fredholm coïncide avec le déterminant de Fredholm d'un autre opérateur, agissant sur un autre espace et à travers un noyau qui peut être vu comme une version de dimension infinie d'un opérateur de type intégrable à la IIKS. Pour étudier cet opérateur, on associe un problème de Riemann-Hilbert qui est, cette fois-ci, à valeurs opératorielles et non plus matricielles. Ce genre de problème n'a pas été beaucoup traité en littérature, et on a donc du développer dans les détails des résultats d'existence et unicité de la solution XII du problème de Riemann-Hilbert ci construit. Toutefois, les résultats obtenus ressemblent beaucoup aux résultats classiques connus pour le cas matriciel. Une fois que l'existence de la solution du problème de Riemann-Hilbert est établie, on l'utilise pour exprimer la dérivée logarithmique de D n pt, λq et pour construire une paire de Lax (à valeurs opératorielles) pour une hiérarchie de Painlevé II, cette fois en version intégro-différentielle. Le résultat final de ce procédé est énoncé ci-dessous. La hiérarchie intégro-différentielle écrite dans l'équation ci-dessus n'utilise plus des analogues des polynômes différentiels de Lenard, notamment utilisé par la définition dans le cas scalaire de la hiérarchie (1.2.6). Cette écriture est en effet plus proche au formalisme que Airault avait utilisé pour décrire les équations de Painlevé II d'ordre supérieur dans son papier [START_REF] Airault | Rational solutions of painlevé equations[END_REF] et que nous rappelons à l'équation (1.2.27). Cependant, les solutions construites ici sont toujours définies par des conditions à la Hastings-McLeod et la formule prouvée peut être considérée comme un autre analogue de la formule de Tracy et Widom. Par ailleurs, le déterminant de Fredholm D n considéré dans ce cas est encore une fois interprété comme distribution de probabilité de la plus grande particule du processus déterminanteau définit par l'opérateur λK t,n . De plus, D n (avec w le factor de Fermi) est déjà apparu en relation à différents domaines de mathématique et de physique. Récemment, il a été utilisé en [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] pour exprimer une certaine limite de la distribution de probabilité de la plus grande impulsion d'un système de fermions libres dans un potentiel non-harmonique. Précédemment, juste pour le cas n " 1 (et toujours avec w le factor de Fermi), il a été utilisé en [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF] pour la description de la distribution de probabilité de solutions de l'équation de KPZ avec valeur initial narrow wedge et il a été trouvé en relation avec certaines quantités liés à l'ensemble de Mosher-Neurberg-Shapiro par Johansson en [START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF]. Toutes ces applications ont énormément stimulé notre intérêt pour ce déterminant de Fredholm et sont en effet la principal motivation qui nous a conduit a ce travail. De plus, la tecnique à la Riemann-Hilbert développée ici, et qui a ces racines dans l'article [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF], peut être appliquée à d'autres opérateurs intégrals ayant un noyau de la même forme (6.1.32). L'extension au cas général des nos résultats sera traité dans l'article à venir [Boton]. On prévoit donc pouvoir appliquer cette técnique pour étudier les déterminants de Fredholm d'autres opérateurs en version température finie, et découvrir des nouvelles relations avec les systèmes intégrables.

Résultats du chapitre 7 Le chapitre 7 illustre les résultats contenus dans le travail [START_REF] Bertola | Stokes manifolds and cluster algebras[END_REF] en collaboration avec Marco Bertola. Dans ce travail on s'intéresse aux structures symplectique et de Poisson XIII de certaines variétés de monodromie, apellées variétés de Stokes. Elles sont les varietés de monodromie associées à un système de EDO linéaire avec matrice de coefficient de rang N polynomiale, de degré quelconque (dont la représentation isomonodromique de la hiérarchie de Painlevé II homogène fait partie pour N " 2 et pour degrés paires des polynômes coefficient). Cela est donc le type de variété de caractère sauvage la plus simple, qui compte juste une singularité irrégulière (dans ce cas le point à l'infinie). Pour le cas de rang 2, et dégré du polynome K, la variété de Stokes est définie comme la variété algébriques de dimension complexe 2K, de la forme suivante Ce résultat est en effet prouvé en plusieurs étapes, qu'on va résumer par la suite. Pour commencer, on considère sur la variété de Stokes S K la 2-forme suivante

S K " #˜1 s 1 0 1 ¸˜1 0 s 2 1 ¸. . . ˜1 s 2K`1 0 1 ¸˜1 0 s 2K`2 1 ¸λσ3 " 1 with s i P C, λ P C ˆ+ . ( 16 
)
W K :" 1 2 2K`3 ÿ "1 Tr ˆH´1 dH ^S´1 dS ˙, H :" S 1 ¨¨¨S , S 2K`3 :" e 2iπL , ( 17 
)
où S , pour " 1, . . . , 2K `2 sont les matrices triangulaires supérieures et inférieures avec diagonale unitaire qui apparaissaient dans la définition de S K et e 2iπL " λ σ3 , pour le cas de rang 2. Premièrement on montre, de deux façons différentes, que cette 2-forme est symplectique. D'une part, on prouve que (même dans le cas de rang N quelconque) cette 2-forme est obtenue à travers le push-forward de l'application de monodromie de la structure symplectique "universelle" définie sur les feuilles symplectiques de la structure de Lie-Poisson, ce qui implique que W K est symplectique aussi. D'autre part, on construit des variables y i , i " 1, . . . , 2K qui paramètrent la variété de Stokes de la façon suivante (Lemme 7.2.5) 

s 1 " ´y´2 1 , s 2k`1 " ´p1 `y2 2k`1 q ź 1ďjď2k`1 y p´1q j 2 j , k " 1, . . . , K ´1, s 2K`1 " ´ź 1ďjď2K y p´1q j 2 j , s 2k " p1 `y2 2k q ź 1ďjď2k y p´1q j`1 2 j , k " 1, . . . , K, s 2K`2 " y 2 1 `1 `y2 2 `. . . `1 `y2 2K ˘. . . ˘˘K ź j"1 y ´4 2j , λ " p´1q
) F N " δ j,l´1 ´δj,1 δ l,2K`2 λ 2 `p´1q j´l`1 s j s l , j ă l. ! s j , λ ) F N " p´1q j s j λ. ( 19 
)
Celles-là sont exactement les formules qu'on retrouve quand on calcule les parenthèse de Poisson (18) pour s j , j " 1, . . . , 2K `2 et λ en utilisant les paramètrisations au-dessus. Le résultat est résumé ici.

Théorème 4. La description des paramètres de Stokes s j , j " 1, . . . , 2K `2 et de la monodromie formale λ en termes des variables y i donnée ci-dessus, transforme la parenthèse de Poisson (19) en la parenthèse (18).
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Abbasso il nove

Uno scolaro faceva le divisioni :

-Il tre nel tredici sta quattro volte con l'avanzo di uno. Scrivo quattro al quoto. Tre per quattro dodici, al tredici uno. Abbasso il nove...

-Ah no, -gridò a questo punto il nove.

-Come ? -domandò lo scolaro.

-Tu ce l'hai con me : perché hai gridato «abbasso il nove» ? Che cosa ti ho fatto di male ? Sono forse un nemico pubblico ? -Ma io...

-Ah, lo immagino bene, avrai la scusa pronta. Ma a me non mi va giù lo stesso.

Grida «abbasso il brodo di dadi», «abbasso lo sceriffo», e magari anche «abbasso l'aria fritta», ma perché proprio «abbasso il nove» ? -Scusi, ma veramente...

-Non interrompere, è cattiva educazione. Sono una semplice cifra, e qualsiasi numero di due cifre mi può mangiare il risotto in testa, ma anch'io ho la mia dignità e voglio more recent ones particularly related to this thesis). In mathematics, new connections with orthogonal polynomials ([VA17] a classical reference), random matrices ([TW94a, TW94c] and subsequent literature) and random growth models (e.g. [START_REF] Forrester | Growth models, random matrices and Painlevé transcendents[END_REF][START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF]) are discovered still these days.

CONTENTS

Going back in time, one of the first aspects of Painlevé equations to be studied was the dependence of their solutions on the parameters appearing in the coefficients of the equations. It is worth to notice that each of the six equations, apart from the first one, actually depend on some complex parameters (and up to 4 independent ones). For particular choices of the values of these parameters, it is actually possible to construct explicit solutions of the Painlevé equations in terms of known special or elementary functions.

Take the simplest scenario, when there is only one extra parameter. This is indeed realized by our case of interest, the Painlevé II equation with z :"

d 2 w dz 2 " 2w 3 `wz `α, for w " wpzq, α P C. (1 
x p3tq 1 3 , ( 3 
)
one obtains exactly that wpzq solves the Painlevé II equation (1) with α determined as constant of integration (for more details see [START_REF] Ablowitz | Solitons, nonlinear evolution equations and inverse scattering[END_REF]). This connection is particularly relevant since it allows to define the so called higher order analogues of the Painlevé II equation. Indeed, in the study of integrable PDEs, for which the most prominent example is indeed the Korteg De Vries equation, one can often construct in natural way higher order equations that commute among themselves (see [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF] for the KdV case). The sequence of equations obtained in this way is the hierarchy associated to the relevant PDE. For what concerns the Painlevé II equation (1), there are actually two independent 2 rank two Lax pairs : one with only one irregular singularity at 8 and a regular one at 0 (the Flaschka-Newell Lax pair [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF])

and one with only one irregular singularity at 8 (the Jimbo-Miwa-Ueno Lax pair [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF]). Some years ago, the work [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF] proved that every higher order analogue of the Painlevé II equation admits an isomonodromic Lax pair, that generalizes the Flaschka-Newell one. This is indeed very useful in our studies.

With this panorama in mind, the thesis explored the following directions. On the one hand, we found generalizations of the Tracy-Widom formula for some solutions of new Painlevé II equations, in particular matrix-valued and integro-differential higher order analogues, in correspondence with the Fredholm determinants of higher order, matrix-valued and finite-temperature, generalizations of the Airy kernel.

Motivations include, but they are not limited to, the fact that these generalizations of the Airy kernel can be used in the theory of determinantal point processes (e.g. [START_REF] Betea | Multicritical random partitions[END_REF]), and also in statistical mechanics and random matrix theory (e.g. [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF][START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF][START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF]). The detailed results are stated in Corollary 5.0.2 in Chapter 5 for the matrix-valued case and in Theorem 6.0.7 in Chapter 6 for the finite-temperature case. In order to obtain both of these results, the existence of a Lax pair for the matrix-valued and the integro-differential Painlevé II hierarchies, studied in Chapter 5 and 6 respectively, is fundamental. Their Lax representations are indeed the keys to pass from the study of the relevant generalizations of the Airy kernel, via a Riemann-Hilbert approach, to the definition of some particular solutions of the Painlevé II hierarchy involved. The methodology used in both cases is very similar, even though the one in Chapter 6 is more technical than the one in Chapter 5, and it relies on the well known theory of IIKS integrable operators [START_REF] Its | Differential equations for quantum correlation functions[END_REF]. This theory can be indeed used or generalized for the study of the Fredholm determinants of the higher order, matrix-valued and finite temperature, analogues of the Airy kernel we are interested in. The fundamental idea is to associate a parametric Riemann-Hilbert problem to the prescribed operator and to study its Fredholm determinant through it. At the same time, the solution of the relevant Riemann-Hilbert problem can also be used to provide the Lax pairs, in our specific case isomonodromic ones, that will be indeed behind the Painelvé II hierarchies of interest. The most prominent difference between Chapter 5 and Chapter 6 is then on the type of Riemann-Hilbert problem that will be associated to the relevant operator : in the first case a standard matrix-valued Riemann-Hilbert problem while in the second case an operator-valued one.

However, we notice that the original Tracy-Widom formula was obtained by the authors [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] through a totally different procedure. Other authors later re-derived their formula by using the Riemann-Hilbert approach (e.g. [START_REF] Kapaev | A note on the Lax pairs for Painlevé equations[END_REF]) and this approach has been used in order to derive analogue Tracy-Widom formula for some (scalar) higher order Painlevé II transcendents, in the recent work [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. For this reason we adopted the same method for our purposes in Chapter 5 and 6.

On the other hand, we studied the Poisson-symplectic structure of the monodromy manifold associated to a system of linear ODEs with polynomial matrix coefficient (thus having only an irregular singularity at 8), originally introduced by Flaschka and Newell in [START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF]. This case is indeed underlying the In Chapter 7 we prove that this particular case of monodromy manifold, the Stokes manifold, is indeed a symplectic manifold, see Theorem 7.1.5. Moreover, in Lemma 7.2.1 we provide explicit log-canonical coordinates for the symplectic-Poisson structure, that are shown to linearize the original Flaschka-Newell

Poisson structure, as follows from Theorem 7.4.3. The log-canonical variables used in this context are related to a cluster algebra of a certain type. Relations between cluster algebras and character varieties, are known and have been largely studied by Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] but without specific reference to monodromy manifolds. Recently, their formalism was also used to find log-canonical coordinates for the Goldmann Poisson structure of character varieties of arbitrary punctured Riemann surfaces [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF]. Also, cluster algebras were already known to be connected with the Stokes phenomenon, but the one arising in WKB analysis [START_REF] Kohei | Exact WKB analysis and cluster algebras[END_REF] (not the classical one that we are going to treat here). For all these reasons, cluster algebras were in some way expected to appear also in the context of wild character varieties, such as our Stokes manifolds.

Outline

The thesis is essentially divided in two parts. The first part is composed by the first four chapters which are devoted to introduce the basic objects of the study and to motivate it, to review the fundamental results that relate these objects and to recall the classical methods used to achieve these classical results.

The second part contains instead the original contributions obtained in the works [Tar21, BCT21, BT21],

that are distributed in the last three chapters. In particular the thesis is organised as follows :

(1) In Chapter 1 we explain how the scalar Painlevé II hierarchy is constructed and we review the Tracy-Widom formula and its generalization for the higher order members of the hierarchy, concerning some Hastings-McLeod type solutions of the hierarchy. In Chapter 2 we summarise some basic facts about the theory of determinantal point processes, with particular focus on its application in random matrix theory. This will be done in order to finally explain how the Tracy-Widom formula relates some Painlevé II transcendent to random matrix theory. These two chapters together essentially introduce the objects we want to study and the main motivations.

(2) Chapters 3, 4 are focused on the classical techniques that we are going to use or generalize in the chapters thereafter in order to achieve our results. Specifically, Chapter 3 introduces Riemann-Hilbert problems with particular focus on the ones appearing in relation with integrable operators of IIKS type. Chapter 4 is instead a compact review of some results in the theory of isomonodromic deformations. The aim of the chapter is twofold : one is to explain how the Painlevé II hierarchy can be deduced as isomonodromic deformation of certain types of systems, the other is to review the concepts of monodromy data that will be used in Chapter 7 to construct the Stokes manifolds.

(3) In Chapter 5 we give the proof of the result contained in [START_REF] Tarricone | A fully noncommutative Painlevé II hierarchy : Lax pair and solutions related to Fredholm determinants[END_REF] : a generalization of the Tracy-Widom formula relating the Fredholm determinants of matrix-valued higher order Airy kernels analogues to some particular solutions of a matrix-valued Painlevé II hierarchy.

(4) In Chapter 6 we go through the proof of the main result of [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF] : this time we obtain a generalization of the Tracy-Widom formula for a finite temperature version of the higher order Airy kernels together with a particular solutions of an integro-differential Painlevé II hierarchy. Even though the results of this chapter and the previous one are comparable, the proof of the second one requires more complicated techniques. Indeed in this case, matrix-valued Riemann-Hilbert problems are replaced by operator-valued ones. Part of the work is then devoted to establish the existence, uniqueness and other properties of their solutions (well-known for the matrix-valued case).

(5) Finally in Chapter 7 we explain most of the content of [START_REF] Bertola | Stokes manifolds and cluster algebras[END_REF]. We prove that the Stokes manifold associated to a polynomial system of ODEs of generic degree K and rank 2 is indeed a symplectic manifold. In particular we find log-canonical coordinates for the induced Poisson structure, that provide a linearization of the Flaschka-Newell Poisson structure originally discovered on this manifold.

The relation with a cluster algebra of A 2K type is also discussed.

Chapter 1

THE PAINLEVÉ II HIERARCHY

T he starting point of our study is the scalar Painlevé II hierarchy, that in this chapter we are going to introduce. Indeed, the construction of the scalar Painlevé II hierarchy will inspire in Chapters 5 and 6 the one of some new Painlevé II hierarchies, analogue of the classical one described in this chapter, but in a matrix context and in an integro-differential context respectively. To start with, we first briefly recall who are the so called Painlevé equations. Then we are going to focus on the second Painlevé equation and after a brief study of its properties, we are going to see how, thanks to its relation with the modified KdV equation, the Painlevé II hierarchy is defined.

The Painlevé II equation 1.Introduction to the Painlevé equations

With Painlevé equations we refer to the following list of six nonlinear ordinary differential equations (following [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]) for a certain function w " wpzq One of the first properties of Painlevé transcendentes to be discovered, was that even though the general solutions of the Painlevé equations are transcendental, some particular solutions can be written explicitly.

PI w 2 " 6w 2 `z, (1.1.1) PII w 2 " 2w 3 `zw `α, (1.1.2) PIII w 2 " pw 1 q 2 w ´w1 z `αw 2 `β z `γw 3 `δ w , (1.1.3) PIV w 2 " pw 1 q 2 2w `3 2 w 3 `4zw 2 `2pz 2 ´αqw `β w , (1.1.4) PV w 2 " ˆ1 2w `1 w ´1 ˙pw 1 q 2 ´w1 z `pw ´1q 2 z 2 ˆαw `β w ˙`γw z `δwpw `1q w ´1 , (1.1.5) PVI w 2 " 1 2 ˆ1 w `1 w ´1 `1 w ´z ˙pw 1 q 2 ´ˆ1 z `1 z ´1 `
Notice that in every equation 

Known solutions of the Painlevé II equation

We are now going to focus on the Painlevé II equation and we start by listing its known solutions.

The Painlevé II equation admits two types of Bäcklund tranformations for integer or semi-integers values of the parameter α. These transformations generate respectively sequences of rational solutions and Airy type solutions (that are obtained as ratio of the Airy function and its derivatives). The main results, that were first proven by Airault in [START_REF] Airault | Rational solutions of painlevé equations[END_REF], are resumed in the following theorems.

For the rational solutions corresponding to integer values of the parameter α the statement is as follows.

Theorem 1.1.1 (Theorem 2 [START_REF] Airault | Rational solutions of painlevé equations[END_REF]). The Painlevé II equation (1.1.2) has rational solution if and only if α is an integer, in particular for α " 0 this solution is trivial. Then for n ě 1, equation (1.1.2) admits a solution w n with α " n that is written as

w n " ´u1 n u n `u1 n´1 u n´1 , (1.1.8)
where the functions u n are obtained through the following recursion

u n`1 u n´1 " Cp´2 d 2 dz 2 log u n `zqu 2 n , (1.1.9)
with initial conditions u 0 " 1 and u 1 pzq " z. Finally, when α " ´n then w ´n " ´wn .

For the Airy type solutions corresponding instead to semi-integers values of α, we have the following statement. Notice that here the Airy function is defined as a particular solution γpzq of the equation

γ 2 " ´z 2 γ.
Theorem 1.1.2 (Theorem 3 [START_REF] Airault | Rational solutions of painlevé equations[END_REF]). In the case where α is a semi integer, there is a solution of equation (1.1.2) that is a rational function of the Airy function γ and its derivatives. In particular ' for α " ´1 2 then w 0 " d dz log γ ;

' for α " ´1 2 `n then w n "

u 1 n´1 un´1 ´u1 n un ;
' for α " 1 2 ´n then w ´pn´1q " ´wn . Here the functions u n are obtained from the same recursive equation (1.1.9) but with initial conditions u 0 " exp ´z3 24 ¯and u 1 " γu 0 .

These results were proved again some years later through a totally different method by Flaschka and Newell in [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF]. Their new procedure is called isomonodromy method and it is perhaps the most powerful tool that has been developed in order to study Painlevé transcendents, as the monograph [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF] largely shows. This method is based on the fact that the Painlevé II equation has Lax pairs in terms of isomonodromic deformations of certain rank 2 systems of linear ODEs in the complex plane.

The precise meaning of that will be discussed in Chapter 4. Using this method, Flaschka and Newell were able to recover the rational and the Airy type solutions found by Airault and they expressed them as finite-size determinants. Their result, first proved in Sec. 3F piiiq of [START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF] for the rational solutions of the Painlevé II equation (1.1.2), can be rewritten as follows.

Chapter (1.1.16)

We will discuss again about this result at the end of Chapter 2 and there we will explain the reason why this result is so interesting from the point of view of applications.

Nevertheless, formula (1.1.15) is exactly the one we have generalized in Chapters 5 and 6 for certain solutions of a matrix and an integro-differential Painlevé II hierarchy, with prescribed asymptotic behavior in terms of generalized Airy functions.

Remark 1.1.8. We stress, again, that the procedure used by Tracy and Widom in [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] does not make use of the Lax pair representation of the Painlevé II equation at all. Nevertheless, the extension of their result to certain solutions of the Painlevé II hierarchy, that was studied in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] and that we will discuss thereafter, deeply rely on the isomonodromic representation of the hierarchy and the theory of integrable operators of IIKS type. And so also our generalizations discussed in Chapters 5 and 6 do.

However, a proof of the Tracy-Widom result based on this technique was already given in some previous papers [START_REF] Kapaev | A note on the Lax pairs for Painlevé equations[END_REF][START_REF] Harnad | Hamiltonian structure of equations appearing in random matrices[END_REF].

Chapter 1 -The Painlevé II hierarchy

Construction of the Painlevé II hierarchy

In this section we are going to define the classical scalar Painlevé II hierarchy. In order to do that, we first need to establish the relation between the Painlevé II equation and the modified KdV equation. We will see that the definition of the Painlevé II hierarchy then follows in a very natural way, once that the definition of the modified KdV hierarchy is established.

Self-similarity reduction of mKdV equation

We start by introducing the KdV equation. Given a function of two variables u " upt, xq, the KdV equation is the following nonlinear partial differential equation

u t `6uu x `uxxx " 0, (1.2.1)
where subscripts denote partial differentiation. This equation was derived from the physical description of the evolution of long, one dimensional, surface waves propagating in shallow waters with small amplitude by Korteweg and De Vries in [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. One of the scope of their work was to find wave equations admitting solitary wave solutions, i.e. waves preserving their own form and propagating with uniform velocity, first observed and then studied by Russel [START_REF] Russell | Report of the committee on waves[END_REF]. The KdV equation has been largely studied in the years after its discovery and a lot of interesting mathematical properties were proved, here we cite only few of them. The KdV equation is the prototype of PDE solvable through the Inverse Scattering Method, it admits solitonic solutions (solitary waves solutions that do not change their shape and velocity after interaction with other solitary waves), it has infinitely many commuting symmetries and it is perhaps the main example of infinite dimensional integrable Hamiltonian system.

While studying some remarkable transformation of the KdV equation in the paper [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF] 

The KdV and modified KdV hierarchy

The KdV hierarchy is an infinite set of PDEs for a function depending on infinitely-many parameters u " upx " ´t1 , t " t 2 , t 3 , t 4 , . . . q. With this notation, the first member of the hierarchy is an identity and the second one coincides with the KdV equation itself. These PDEs have the fundamental property to commute one with another, giving a system of compatible equations. We remark that this is also equivalent to say that the KdV equation admits infinitely many commuting symmetries. Even though the classical definition of the KdV hierarchy requires the introduction of the algebra of pseudo-differential operators (following the classical reference here [MJD00]), we are going to take a shortcut and give an equivalent definition that involves the Lenard recursion, as introduced in [Lax76], [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF].

Definition 1.2.3. The sequence of Lenard recursion operators acting on a function u is obtained through the following recursion

$ ' & ' % B Bx L n`1 rus " ˆB3 Bx 3 `4u B Bx `2u x ˙Ln rus , n ě 0 L 0 rus " 1 2 .
(1.2.6)

The quantities L n rus generated from this recursion relation are all differential polynomials in u and its x-derivatives until order 2n ´2. The proof of this fact is based on the use of the conserved quantities for the KdV equation (see Theorem 3.1 in [START_REF] Lax | Almost periodic solutions of the KdV equation[END_REF] for more details). 

n " 2 : v t3 `vxxxxx ´10v 2 v xxx ´40v x v xx ´10v 3 x `30v 4 v x " 0, (1.2.17) n " 3 : v t4 `vxxxxxxx ´14v 2 v xxxxx ´84vv x v xxxx ´140vv xx v xxx ´126v 2 x v xxx ´182v x v 2 xx `70v 4 v xxx `560v 3 v x v xx `420v 2 v 3 x ´140v 6 v x " 0 (1.2.18)

The Painlevé II hierarchy

We are now ready to define the Painlevé II hierarchy. We will first follow the construction done in [START_REF] Kudryashov | The first and second Painlevé equations of higher order and some relations between them[END_REF] and in the end we will briefly see another construction already given by [START_REF] Airault | Rational solutions of painlevé equations[END_REF]. In order to do that we will consider an appropriate self-similarity reduction for each member of the modified KdV hierarchy (1.2.12), analogue to the one we considered for the case n " 1 in (1.2.4).

For every n ě 1, we define v a solution of the n-th member of the modified KdV hierarchy, of the following form vpx, t n`1 q :" wpzq

pp2n `1qt n`1 q 1 2 with z :" x pp2n `1qt n`1 q 1 2 . (1.2.19)
We also define for every n ě 0 the quantities Ln rws, as the differential polynomials in w obtained by the same recursion relation (1.2.6) but replacing the variable x with the variable z.

One can prove by induction over n (see Proposition 2.2 in [START_REF] Kudryashov | The first and second Painlevé equations of higher order and some relations between them[END_REF]) the following equality 

L n " v x ´v2 ‰ " 1 pp2n `1qt n`1 q 2n 2n
w zz ´2w 3 " zw `α1 , (1.2.23) n " 2 : w zzzz ´10ww 2 z ´10w 2 w zz `6w 5 " zw `α2 , (1.2.24)
n " 3 :

w zzzzzz ´14w 2 w zzzz ´56ww z w zzz ´70w 2 z w zz ´42ww 2 zz `70w 4 w zz `140w 3 w 2 z ´20w 7 " wz `α3 . (1.2.25)
The definition of the Painlevé II hierarchy through equation (1.2.22) completely relies on the definitions of the KdV and modified KdV hierarchies as given in (1.2.12), (1.2.12). But the formalism given by the Lenard recursion operators is not the only one that is used to describe the KdV and consequently the modified KdV hierarchies. In the following paragraph, we are going to introduce an alternative formalism.

An alternative definition of the PII hierarchy

Here we are going to define the Painlevé II hierarchy through the formalism used by Airault in [START_REF] Airault | Rational solutions of painlevé equations[END_REF]. In this other formalism, introduced by [Olv77], [START_REF] Adler | On a class of polynomials connected with the Korteweg-de Vries equation[END_REF],

one defines the following pseudo-differential operator of order 2

S w :" 4w 2 `4w z ˆd dz ˙´1 w ´d2 dz 2 (1.2.26)
where ˆd dz ˙´1 stands for the formal z-antiderivative, such that ˆd dz ˙´1 d dz pf q " f for every function f . The Painlevé II hierarchy is then defined in [START_REF] Airault | Rational solutions of painlevé equations[END_REF] by the following sequence of equations

ˆd dz ˙´1 S n´1 w rw z s `zw `δn´1 " 0, n ě 2 (1.2.27)
where δ k are arbitrary constants of integration.

Remark 1.2.10. One can check that the first members of the Painlevé II hierarchy obtained through the definition (1.2.22) and computed in the Example 1.2.9 coincide with the ones obtained through the definition of the hierarchy (1.2.27).

The procedure followed to obtain this alternative definition of the Painlevé II hierarchy is similar to the previous one, but it starts from a different definition of the KdV hierarchy. Given a function u, define the following pseudo-differential operator

R u :" ˜2 ˜u `B Bx u ˆB Bx ˙´1 ¸´B 2 Bx 2 ¸(1.2.28)
One can then define the KdV hierarchy, as Airault did in [START_REF] Airault | Rational solutions of painlevé equations[END_REF], through the following equations to (1.2.19), one can reduce the above equation to an ODE for q. In particular, it follows that q solves R m´1 q rq z s `2q `q1 z " 0, where now R q is intended as the same operator given in (1.2.28) but replacing x by z and u by q. Finally, using the Miura transformation at this level and writing q :" w z `w2 , the function w is then shown to satisfy equation (1.2.27).

p2m ´1qu tm " R m´1 u ru x s , m ě 2. ( 1 
Remark 1.2.11. Using the operator R u one can define the following sequence

X m rus " R u X m´1 rus , m ě 2 with X 1 rus " u x .
(1.2.30)

Up to changing the sign of the term of order 3 in the differential operator H used in the Lenard recursion

(1.2.6), we actually have that the recursion for the operators X m in (1.2.30) is a sort of integrated version of (1.2.6). This follows from the bi-Hamiltonian structure of the KdV hierarchy for which the equality above can be continued into Even though the two different definitions of the Painlevé II hierarchy give rise to the same infinite set of ODEs, they are quite different in their usage. We wanted to introduce both of these formalism, since they both will inspire our constructions in the next chapters. In Chapter 5 we consider a matrix

X m rus " R u X m´1 rus " B Bx pδH m q (1.2.
Painlevé II hierarchy, that is obtained as a matrix generalization of equation (1.2.22). We introduce a noncommutative version of the Lenard recursion (1.2.6) and we use it to define the new hierarchy. In Chapter 6 instead we define an integro-differential Painlevé II hierarchy that is a generalization of equation (1.2.27). In particular, in this last definition the recursion operator is written as the composition of two pseudo-differential operators of order 1 that reduces to the operator S w in (1.2.26) in the case where all the variables commute.

Solutions of the Painlevé II hierarchy

The study of solutions of higher order Painlevé II transcendents is in general much more complicated since it requires to solve 2n-order ODEs. One can ask for instance, whether the known solutions of the Painlevé II equation, the rational, the Airy type and (1.2.32)

Their result can be thus interpreted as an extension of the Tracy-Widom result cited before in Theorem 1.1.7 to all members of the Painlevé hierarchy and it is resumed in the following statement.

Theorem 1.2.12 (Theorem 1.1 [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]). For every n ě 1 and 0 ă ρ ď 1, there is a real solution w of the n-th member of the homogeneous Painlevé II hierarchy (1.2.22) which satisfies

´w2 pz; ρq " d 2 dz 2 log det `1 ´ρK Ai2n`1 | pz,8q ˘, (1.2.33)
where K Ai2n`1 | pz,8q is considered as the integral operator acting on L 2 ppz, `8qq with kernel

K Ai2n`1 px, yq :" ˆ`8 0 Ai 2n`1 px `tqAi 2n`1 py `tqdt. (1.2.34)
Furthermore, its asymptotic behavior for z Ñ `8 is given by wpz; ρq " ? ρAi 2n`1 pzq.

As already underlined for ρ " 1, n " 1 this result recovers the one of Tracy and Widom resumed in Theorem 1.1.7. Nevertheless, the authors of [CCG19] used a completely different procedure, that essentially relies on the isomonodromic reprensentation of the Painlevé II hierarchy (1.2.22), that was first described in [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF]. This procedure, also known as the Riemann-Hilbert approach, is in principle the same procedure we will use in Chapter 5 and 6. For this reason, we resume the fundamental concepts of their proof in the following paragraph. The starting point is that the Fredholm determinants of the Airy kernels K Ai2n`1 are equal to the ones of some integral operators in Fourier spaces that are integrable, in the sense of the IIKS operators [START_REF] Deift | A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics[END_REF], [START_REF] Its | Differential equations for quantum correlation functions[END_REF]. Essentially, this implies that the existence of their resolvent operators is equivalent to the solvability of a certain Riemann-Hilbert problem. As a byproduct, their Fredholm determinants can be expressed in terms of a quantity related to the solution of the relevant Riemann-Hilbert problem. These classical facts will be reviewed with more details in Chapter 3.

Finally, the last element of the proof is provided by the fact that the solution of the Riemann-Hilbert problem, after some manipulation and rescaling operations, solves two differential equations w.r.t. the parameters involved in the Riemann-Hilbert problem itself. This system actually coincides with the isomonodromic Lax pair for the PII hierarchy (1.2.22) (the one found in [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF]).

Remark 1.2.13. Notice that, prior to [CCG19], the work [LDMS18] gave a similar formula for the Fredholm determinants of the higher order Airy kernels. In that case, the functions w in the left hand side of equation (1.2.33) are shown to solve a system of hamiltonian equations that coincide for the first values of n with the first members of the Painlevé II hierarchy. However, the precise equivalence between their system and the Painlevé II hierarchy (1.2.22) still has to be proved.

Remark 1.2.14. Theorem 1.2.12 is just a part of the results contained in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]. There the authors studied in detail also the asymptotic behavior of these solutions at ´8. As a byproduct they were able to describe the asymptotic behavior at ´8 of the corresponding Fredholm determinants of the higher order Airy kernels. This estimate is also known as large gap asymptotics, and it is in general much more
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complicated to obtain than the one at `8, since it involves a strong use of nonlinear steepest descent method.

In order to obtain the generalizations of Theorem 1.2.12 for the case of a matrix and then an integro-differential Painlevé II hierarchy, in Chapters 5 and 6, we will implement the analogue procedure of [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF], resumed in the paragraph above. Respectively, we will deal with a block-matrix and an operator-valued Riemann-Hilbert problem instead of a classical 2 ˆ2 matrix-valued Riemann-Hilbert problem. Finally, in these noncommutative contexts we did not try to study the asymptotic behavior at ´8 of the relevant solutions of these hierarchies, so this computation is left as an open problem.

Chapter 2

DETERMINANTAL POINT PROCESSES

I n this chapter we recall the notion of determinantal point processes (that we denote with the abbreviation DPP from now on). DPP appear in many different fields of mathematics and mathematical physics, such as orthogonal polynomials, number theory, random permutations, random growth models, random matrix theory and statistical mechanics. The main motivation to study DPP is given indeed by their appearance in all these fields of study. In a nutshell, DPP can be intended as spatial random processes (there is no notion of time) which can be entirely described through their correlation functions, which have the peculiarity to be written as finite dimensional determinants involving the kernel of some integral operators. The integral operators are not generic and have to satisfy certain requirements. The integral operator defined through the Airy kernel, that we already introduced in Theorem 1.2.12 at the end of the previous chapter, is an example of such operators. As a byproduct the Fredholm determinants of these operators have an interpretation in terms of relevant probabilistic quantities describing the DPP. This is perhaps the main reason why results such as Theorem 1.1.7 and Theorem 1.2.12 are highly considered : in both cases the integral operators involved actually define DPP. Furthermore, the relevant DPP appear in random matrix theory and statistical mechanics respectively. This kind of results allows to build a bridge between the probabilistic world of DPP and the integrable systems world of Painlevé equations, and this is a powerful motivation to go deeper in this study. While the Fredholm determinant in Theorem 1.1.7 was known to be connected to random matrix theory [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] since the early '90, the one in Theorem 1.2.12 has appeared recently in a model for non-interacting fermions in anharmonic potential first studied in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF]. Also, all the other integral operators studied in chapters 5, 6 of the thesis define DPP. Moreover, the finite temperature higher order Airy kernel studied in Chapter 6 has been found in relation to the finite temperature version of the same fermionic model described above and also appeared in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF].

The Chapter is organized in two section : in the first one we start with an intuitive example of DPP and then we go through the basic definitions and the main results of DPP theory. In the second section we introduce random matrices, focusing in particular on the Gaussian Unitary Ensemble. We will show how to compute the main relevant quantities such as correlation functions, distributions functions and gap probabilities for the eigenvalues of this ensemble emphasising the determinantal character of some of these quantities. In the end, we will finally introduce the Tracy-Widom distribution and we briefly re-discuss Theorem 1.1.7, that is our "model" of result, under this new point of view. The main references for the DPP theory are the classical review articles [Sos00, Bor09, Joh05], and this very nice introductory paper [START_REF] Hardy | Determinantal point processes[END_REF]. For the random matrix theory we refer essentially to the monograph [START_REF] Mehta | Random matrices[END_REF], and to the books [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF][START_REF] Baik | Combinatorics and random matrix theory[END_REF]. Finally for the Tracy-Widom result we recall that even though the original proof was first given from the authors in [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF], we found other useful explanations in [START_REF] Tracy | Airy kernel and Painlevé II[END_REF].
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1 -An example of configuration of the descent point process for n " 7 given by t3, 4, 6u.

Basic knowledge on DPP

An introductory example

Inspired by [START_REF] Hardy | Determinantal point processes[END_REF], we start our discussion on DPP by treating a very nice example of determinantal point process that is called the descent point process (for more details, we refer to Sec.1 of [START_REF] Hardy | Determinantal point processes[END_REF]). Even though it is mathematically simple, it is very useful to explain the basic ideas and concepts behind DPP.

The descent point process is defined as follows : consider a column of digits S 0 , . . . , S n independent and identically distributed on rr0, 9ss. For each line i " 1, . . . , n then consider the random variables

X i :" χ tSiăSi´1u " $ & % 1 if S i ă S i´1 , 0 otherwise. (2.1.1)
The descent point process is given by all the possible random sequences of natural numbers i for which X i " 1 in the integer segment i P rr1, nss, namely

D n :" ti P rr1, nss | X i " 1u (2.1.2)
To visualize that, we can put on the right of the column of values S i a black dot for each line i P rr1, nss for which the condition X i " 1 is satisfied. In this way the descent point process is described by all the possible configurations of the black dots in the segment rr1, nss . See Figure 2.1 for an example.

In order to know the process in exhaustive way, one should be able to compute the probability of each possible configuration of black points or sequences of numbers in rr1, nss, i.e.

Pp Ă D n q, for any Ă rr1, nss .

(2.1.3)

In general, higher is the cardinality of the subset and more complicated is to compute the correspondent probability. If k is the cardinality of then " ts 1 , . . . , s k u and we denote the probability of being in D n as ρ k p q ; in this case, it will be also the k-correlation function of the process. The distinguished character of determinantal point process is that all the correlation functions of each order are actually written in terms of a single function of two variables, that is called the kernel of the process. If we start computing the correlation function for k " 1 in the descent process, we have

ρ 1 ptsuq " Pptsu Ă D n q " PpX s " 1q " PpS s ă S s´1 q " 1 10 2 ˜9 ÿ k"1 k ¸" 1 10 2 ˜10 2 ¸" 9 20 .
Then for k " 2, the computation is a little more delicate. Indeed, if we consider " ts, s `1u, then

Ppts, s `1u Ă D n q " PpS s`1 ă S s ă S s´1 q " 1 10 3 ˜8 ÿ k"1 k ¸" 1 10 3 ˜10 3 ¸" 3 25 ă ˆ9 20 ˙2 .
Instead, if we take the generic subset " ts, tu with t ‰ s `1, then

Ppts, tu Ă D n q " PpS s`1 ă S s qPpS t`1 ă S t q " ˆ9 20 ˙2 .
Thus in the case of cardinality k " 2 the correlation function is defined by cases

ρ 2 pts, tuq " $ & % 3 25 if |t ´s| " 1, `9 20 ˘2 otherwise.
In general, we can prove that for any subset given by k ě 3 consecutive numbers in rr1, nss , then

Pp Ă D n q " 1 10 k`1 ˜10 k `1¸.
Otherwise, the computation is done by following this idea : first one can split the subset " 1 Y 2 in such a way that 1 and 2 have distance more than 1. Then one uses that ρ k p q " ρ k1 p 1 qρ k2 p 2 q where k i are the cardinalities of i respectively for i " 1, 2. A compact way to write down ρ k p q for any number k P rr1, nss and any sequence " ts 1 , . . . , s k u Ă rr1, nss (with s i ‰ s j for any i ‰ j) was found in [START_REF] Borodin | On adding a list of numbers (and other onedependent determinantal processes)[END_REF] and it is realized as follows. Consider the two variables function Kpi, jq : rr1, nss 2 Ñ R such that Kpi, jq :" κpj ´iq, with

ÿ mPZ κpmqz m " 1 1 ´p1 ´zq 10 .
Then the k-correlation function of the descent process is then given by ρ k pts 1 , . . . , s k uq " detpKps i , s j qq k i,j"1 .

For this reason the descent process is a determinantal point process on Z (actually on the segment rr1, nss of Z).

Generalities of DPP theory

With this example in mind, we can now give the general definition of point processes and then we restrict to the study of determinantal ones (for this section we mainly follow the classical references [START_REF] Soshnikov | Determinantal random point fields[END_REF][START_REF] Johansson | Random matrices and determinantal processes[END_REF]). We consider E " R (or a finite product of disjoint copies of R) and X " ConfpEq the space of all possible finite configurations of particles on E. Notice that one can replace R by Z (as we actually did in the previous section) or by another discrete space and the theory of DPP on that space similarly follows, see also [START_REF] Borodin | Determinantal point processes[END_REF]. We restrict our discussion on the case E " R just because the applications we are interested in, actually fit in this case.

A formal definition of point process is given as follows. On X one can construct a σ-algebra of measurable sets, in the following way. First construct the cylinder sets, for any Borel subset B Ă E and any n P N

C B n :" tX P X s.t. # B pXq :" |X X B| " nu, (2.1.4)
and then consider B the σ-algebra generated by these C B n on X .

Definition 2.1.1. A point process on E is given by a probability measure P on pX , Bq.

The way to construct a probability measure on the space of configurations pX , Bq was studied in particular by Lenard in a series of papers [START_REF] Lenard | Correlation functions and the uniqueness of the state in classical statistical mechanics[END_REF][START_REF] Lenard | States of classical statistical mechanical systems of infinitely many particles[END_REF][START_REF] Lenard | States of classical statistical mechanical systems of infinitely many particles. II. characterization of correlation measures[END_REF]. The main idea is that the construction can be reduced to the determination of the joint probability distributions of the random variables # D for D some simple subsets of E. This procedure allowed the author to go further and prove the relation between the existence of a probability measure on pX , Bq and the existence of the k-point correlation functions for the random variables # B , for any B Borel subset of E. It turned out that a point process is uniquely identified by its correlation functions if and only if the probability distribution of the random variables # A is determined by its moments. For more details about the construction of a point process from its correlation functions, see Theorem 1 in [START_REF] Soshnikov | Determinantal random point fields[END_REF].

In this general (continuous) context, the k-correlation functions are defined as follows.

Definition 2.1.2. For any k P N, we define the k-point correlation function of the point process pX , B, P q as the locally integrable function

ρ k : E k Ñ R `, such

that for any collection of different and disjoint

Borel subset

A i Ă E, i " 1, . . . , k then E ˜m ź j"1 # Aj ¸" ˆA1ˆ...ˆAk ρ k px 1 , . . . , x k qdx 1 . . . dx k , (2.1.5)
where E denotes the mathematical expectation.

As we saw in the introductory example, the k-point correlation function has a meaningful probabilistic interpretation : for the descent process ρ k px 1 , . . . , x k q was exactly the probability of having particles at the points x i in N. But this was because the process was defined on (a subset of) E " Z. In the continuous case (e.g. E " R) we can think to ρ k px 1 , . . . , x k qdx 1 . . . dx k as the probability to find a particle in each infinitesimal box rx i , x i `dx i s for i " 1, . . . , k. In this way, formula (2.1.5) actually gives the expectation value of finding a configuration X " tx 1 , . . . , x k u P X with x i P A i for every i " 1, . . . , k.

Remark 2.1.3. For k " 1 we have that ρ 1 pxq is the density of particles, indeed

Ep# A q " ˆA ρ 1 pxqdx, for any bounded borel subset A Ă E. Definition 2.1.4. A point process (on E " R or R d ) is called determinantal if its k-point correlation functions, for every k ě 1, is written as ρ k px 1 , . . . , x k q " det pKpx i , x j qq k i,j"1 , (2.1.6)
with K a trace-class integral operator on L 2 pRq with kernel Kpx, yq in case E " R and matrix-valued

kernel pK rs px, yqq d r,s"1 if E -R d .
By using the Lenard result about the existence of point process through their correlation functions, one can find necessary and sufficient conditions for a kernel Kpx, yq, px, yq P E 2 , to uniquely define a DPP.

The result is as follows.

Theorem 2.1.5 (Theorem 3 [START_REF] Soshnikov | Determinantal random point fields[END_REF]). Every hermitian, locally trace-class operator K on L 2 pEq uniquely defines a determinantal point process if and only if 0 ď K ď 1.

We will apply this result in Chapter 5 and 6 in order to prove that the matrix-valued Airy kernels and the finite temperature Airy kernels respectively define DPP on R r and R.

There exists also a weak convergence criteria for DPP.

Theorem 2.1.6 (Theorem 5 in [START_REF] Soshnikov | Determinantal random point fields[END_REF]). Consider P, P n probability measures on pX , Bq for some determinantal point processes with kernels respectively K, K n . Suppose that ' K n á K in the weak operator topology for n Ñ 8 ;

' Trpχ B K n χ B q Ñ Trpχ B Kχ B q
for n Ñ 8 and for any Borel subset B Ă E;

then the probability measure P n converges to P weakly on the cylinder sets.

This result will be useful in the next section, where we are going to compute some scaling limits of certain relevant quantities in DPP arising in some random matrix model.

Knowing the k-point correlation functions of a DPP is fundamental in order to compute other relevant quantities for the process. We are in particular interested in the computation of the so called gap probabilities, i.e. the probabilities that no particles lie in a certain subset of E. The computation required is based on the following result.

Proposition 2.1.7 (Proposition 2.2 of [START_REF] Johansson | Random matrices and determinantal processes[END_REF]). Consider a point process with existing k-point correlation functions and let φ be a mesurable, bounded, complex-valued function with bounded support on E. Also, supposing that supppφq Ă B for B a Borel subset of E, assume that

8 ÿ k"0 ||φ|| k 8 k! ˆBk ρ k px 1 , . . . , x k qdx 1 dx k ă 8. (2.1.7)
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E ˜#B ź j"1 p1 `φpx j qq ¸" 8 ÿ n"0 1 n! ˆEk n ź k"1 φpx k qρ k px 1 , . . . , x k qdx 1 . . . dx k . (2.1.8)
Consider now B a bounded Borel subset of E and χ B its characteristic function. Replacing φ " ´χB in the above formula we get

P pno particles in Bq " E ˜ź j p1 ´χB px j qq ¸" 8 ÿ n"0 p´1q n n! ˆBn ρ k px 1 , . . . , x n qdx 1 . . . dx n , (2.1.9)
the gap probability distribution. In particular, looking at a point process on R we can consider B " pt, 8q.

Supposing that there exist a t for which # p t,8q ă 8, then we can say that for every t the property holds (since for every finite subset it is always true). We order then the particles in the interval pt, 8q as

x 1 ă ¨¨¨ă x # pt,8q "
x max and we want to study the probability distribution of the largest particle, namely Ppx max ď tq.

Proposition 2.1.8 (Proposition 2.4 of [START_REF] Johansson | Random matrices and determinantal processes[END_REF]). Consider a point process on R for which all k-point correlation functions exist and respect the condition

8 ÿ n"0 1 n! ˆpt,8q n ρ n px 1 , . . . , x n qdx 1 . . . dx n ă 8 (2.1.10)
for any t P R. Then the process has a last particle and

Ppx max ď tq " 8 ÿ n"0 p´1q n n! ˆpt,8q n ρ n px 1 , . . . , x n qdx 1 . . . dx n . (2.1.11)
When the point process is determinantal with kernel Kpx, yq defining a trace-class integral operator on L 2 pRq, the proposition above becomes even more explicit. In fact the right hand side of equation (2.1.11) is written as Fredholm determinant of the operator K.

Corollary 2.1.9 (Proposition 2.9 of [START_REF] Johansson | Random matrices and determinantal processes[END_REF]). Consider a determinantal point process on R with hermitian kernel Kpx, yq such that : it defines a trace-class integral operator K on L 2 ppt, 8qq for any t P R and so that ˆ8 t Kpx, xqdx ă 8.

(2.1.12)

Then the process almost surely has a largest particle and

Ppx max ď tq " det `1 ´K| pt,8q ˘. (2.1.13)
This last corollary gives a first connection between the first and the second chapter of the thesis.

Indeed certain Painlevé trascendents such as the ones found in Theorem 1.1.7 and Theorem 1.2.12 for the Painlevé II equation and hierarchy, are expressed as Fredholm determinants of the Airy kernels given in equation (3.2.4). For each n, these operators actually satisfy the hypothesis of Theorem 2.1.5 and thus uniquely define some DPP. As a byproduct the relevant Painlevé trascendents can be related to the largest particle distribution of the correspondent DPP. Moreover, in the case n " 1 the DPP associated to the Airy kernel corresponds to a certain limit of the DPP describing the eigenvalue distribution of a distinguished random matrix model : the Gaussian Unitary Ensemble, that we are going to treat in the next section.

Remark 2.1.10. In analogue way, the new Painlevé trascendents that we are going to study in Chapters 5, 6 will also be related to the largest particle probability distribution of some DPP defined through a matrix-valued analogue of the Airy kernels and to a finite temperature versions of the Airy kenrels respectively.

Random matrices and DPP

This section aims to introduce some random matrix models and to see how DPP arise out in this context. In particular, we are going to focus on the Gaussian Unitary Ensemble with the ultimate goal to study the probability distribution of the eigenvalues of matrices in this ensemble in some specific large N limit, N being the size of the matrices in the model. Indeed it is in this case that the relation to the Painlevé trascendents introduced in Theorem 1.1.7 emerged first.

We start by defining the Gaussian Unitary Ensemble, GUE from now on. Recall that the vector space (over R) of hermitian matrices, namely

H N :" tH P MatpN ˆN, Cq | H " H : u has real dimension N 2 .
In particular we can take as coordinates the N diagonal entries H ii (that are real) and the real and imaginary part respectively of the upper triangular entries RH jk , IH jk (that are exactly N 2 ´N ). Now, an element of GUE is essentially an hermitian matrix H whose entries H ii for i " 1, . . . , N and RH jk , IH jk for j, k " 2, . . . , N are random variables, specifically independent identically distributed (i.i.d.) normal random variables. More precisely GUE is built as follows.

Definition 2.2.1 (Definition 2.5.1 [START_REF] Mehta | Random matrices[END_REF]). The Gaussian Unitary ensemble is defined taking the space of hermitian matrices equipped with a probability measure P pHqdH such that 1. the probability P pHqdH of being in the volume element dH :"

N ź i"1 dH ii ź jăk dRH jk dIH jk (2.2.1)
is invariant under conjugation by unitary elements, i.e.

P pHq " P pU ´1H U q (2.2.2)

for every unitary matrix U ;

2. all the linearly independent entries of an element H are also statistically independent, i.e. the function P pHq is a product of independent functions, each of them depending on one of the linearly Chapter 2 -Determinantal point processes independent coordinates

P pHq " N ź i"1 f i pH ii q ź jăk f jk pRH jk q fjk pIH jk q.
(2.2.3)

These two requirements together fix in some sense the function P pHq. In particular, we have the following result.

Theorem 2.2.2 (Theorem 2.6.3 [START_REF] Mehta | Random matrices[END_REF]). The only possibility for the form of the function P pHq is restricted to

P pHq " exp `´a Tr H 2 `b Tr H `c˘( 2.2.4)
where a P R `and b, c P R.

In particular the standard choice for GUE is to consider P pHq " exp `´Tr H 2 ˘, since up to rescaling operations and origin translation every choice of a, b, c can be reduced to this one. Now, for any given random matrix ensemble, one fundamental point to develop is to study the probabilistic behavior of the spectra of the elements of the given ensemble. For GUE the classical result is as follows.

Theorem 2.2.3 (Theorem 3.3.1 [START_REF] Mehta | Random matrices[END_REF]). The joint probability density function of the eigenvalues for GUE is given by

P px 1 , . . . , x N q " C N,2 exp ˜´N ÿ i"1 x 2 i ¸ź jăk px j ´xk q 2 (2.2.5)
where the constant C N,2 is taken in such a way that ˆR . . . ˆR P px 1 , . . . , x N qdx 1 . . . dx N " 1.

Remark 2.2.4. For the other classical ensembles : the Gaussian Orthogonal one and the Gaussian Symplectic one Theorem 2.2.2 also holds exactly with the same statement, while Theorem 2.2.3 holds with some little changements. The form of the joint probability distribution function in those cases has the same form of (2.2.5) but the constant in front of the argument of the exponential function and the power of the second factor change as well as the constant C N,2 .

We are now going to see that the probabilistic behavior of the eigenvalues of GUE is indeed a DPP on R. To do this, we need the definition of the n-point correlation functions for the eigenvalues of GUE.

Definition 2.2.5 [START_REF] Dyson | Statistical theory of the energy levels of complex systems. i[END_REF][START_REF] Mehta | Random matrices[END_REF]). The n-point correlation function for the eigenvalues of GUE is defined as

ρ n px 1 , . . . , x n q " N ! pN ´nq! ˆR . . . ˆR P px 1 , . . . , x N qdx n`1 . . . dx N , (2.2.6)
where P px 1 , . . . , x N q is given in (2.2.5).

The function ρ n px 1 , . . . , x n q indicates the probability denisity of finding n eigenvalues around x 1 , . . . , x n with the position of the remaining N ´n left unknown.

The probability density function P px 1 , . . . , x N q is a symmetric function, thus it can be associated to a point process over R. The n-point correlation functions of the relevant process can be taken exactly as (2.2.6) with P px 1 , . . . , x N q given in (2.2.5) (see also Example 2.6 of [START_REF] Johansson | Random matrices and determinantal processes[END_REF]). The process is then shown to be determinantal.

Theorem 2.2.6 ([Meh04]). For every n " 1, . . . , N ´1 the correlation functions (2.2.6) are given by

ρ n px 1 , . . . , x n q " det pK N px i , x j qq n i,j"1 (2.2.7)
where

K N px i , x j q " N ´1 ÿ k"1 φ k px i qφ k px j q, with φ k pxq " 1 a 2 k k! ? π exp ˆ´x 2 2 ˙Hk pxq (2.2.8)
and H k pxq being the k-th Hermite polynomial.

We recall that Hermite polynomials tH k pxqu kPN are a family of orthogonal polynomials over R with respect to the weight function exp `´x 2 ˘. They can be written as

H k pxq " exp `x2 ˘ˆ´d k dx k ˙exp `´x 2 ˘" k! rk{2s ÿ j"0 p´1q j p2xq k´2j j!pk ´2jq! , k P N.
(2.2.9)

A proof of Theorem 2.2.6 can be found in Section 6.2 of [START_REF] Mehta | Random matrices[END_REF]. To summarise, it essentially follows by observing that the joint probability distribution function P px 1 , . . . , x N q given in (2.2.5) contains a

Vandermonde determinant squared and then by performing row or column operations one gets

P px 1 , . . . , x N q " 1 N ! detpφ j´1 px i qq 2 " 1 N ! detpK N px i , x j qq N i,j"1
(2.2.10) with K N px i , x j q given as in (2.2.8). Then one can integrate over the N ´n required variables and apply Theorem 5.1.4 of [START_REF] Mehta | Random matrices[END_REF] to conclude. For an alternative proof see e.g. Section 3.2 of [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF].

Remark 2.2.7. We underline that in the definition of the kernel K N in equation (2.2.8) there is an explicit dependence on N the size of the random matrices we are analyzing.

Gap probabilities Doing similar computations, one can compute other interesting quantities of the process like the gap probabilities. For a given interval J Ă R we denote by Epn, Jq the probability that J contains exactly n eigenvalues, so that Ep0, Jq is the probability that there are no eigenvalues in J. As we saw in the previous section for general DPP and for J " ps, 8q, the quantity Ep0, Jq is expressed in terms of a certain Fredholm determinant

Ep0, Jq " detp1 ´KN χ J q (2.2.11)
where χ J denotes the characteristic function of the interval J and K N is the kernel written above in (2.2.8). Otherwise, one can directly compute this quantity as done in e.g. Section 3.2 of [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF] for a generic interval J. In the following, we summarise the principal ideas contained there. Indeed, one can see

Ep0, Jq " E ˜N ź i"1 p1 `f pλ i qq ¸" c N,2 ˆR . . . ˆR ź jăk px j ´xk q 2 ź i exp `´x 2 i ˘p1 `f px i qqdx 1 . . . dx N
Chapter 2 -Determinantal point processes with f pλq " ´χJ pλq. But the last integral can be explicitly computed by using the Andreief identity, namely ˆR . . . ˆR detpf i px j qq detpg i px j qqdνpx 1 q . . . dνpx N q " N ! det ˆˆR f i pxqg j pxqdνpxq ˙.

(2.2.12)

Again, in our case, by recognizing a squared Vandermonde determinant in the last integral above and by defining f i pxq " x i " g i pxq and dνpx i q " expp´x 2 i qdx i , we have that

E ˜N ź i"1 p1 `f pλ i qq ¸" CN,2 det ˆˆR x i`j p1 `f pxqq expp´x 2 qdx ˙" CN,2 det ˆδij `ˆR φ i pxqφ j pxqf pxqdx (2.2.13)
where the last identity is obtained by performing row and columns operations, in order to replace the monomials x k with the orthogonal family φ k pxq w.r.t. expp´x 2 q. Finally, one can manipulate the last determinant in (2.2.13) in the following way. Construct the two integral operators

A : L 2 pRq Ñ R N , s.t. pAf q i :" ˆR Api, xqf pxqdx " ˆR φ i pxqf pxqdx, for f P L 2 pRq (2.2.14)
and

B : R N Ñ L 2 pRq s.t. pBvqpxq :" N ÿ j"1 Bpx, jqv j " N ÿ j"1 φ j pxqv j for v P R N . (2.2.15)
In this way the last determinant in equation (2.2.13) is detp1 `ABq. By applying the Sylvester identity (see for instance equation p5.9q of Chapter VI in [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]) i.e. detp1 `ABq " detp1 `BAq, we conclude

E ˜N ź i"1 p1 `f pλ i q ¸" detp1 `KN f q,
and so for f " ´χJ the wanted result follows.

Of course, there are many other interesting quantities to study but since our focus will be on the gap probabilities and their relation with the Painlevé II trascendents, we do not go any further in this discussion.

Limiting behaviors As underlined before, the determinantal form of the n-points correlation functions ρ n as well as the one of the gap probabilities Ep0, Jq is written in terms of a kernel operator depending on the parameter N , which is the size of the matrices in the ensemble. A natural question is then to study the limiting behavior of these quantities for N Ñ 8. Thanks to their determinantal form, this essentially reduces to the study of the limiting behavior of the kernel K N px, yq themselves, in some appropriate scaling. In particular, the so called edge scaling limit (the limit at the edge of the spectra) for the kernel K N px, yq is computed as (see e.g. [START_REF] Forrester | The spectrum edge of random matrix ensembles[END_REF])

lim N Ñ8 1 2 1{2 N 1{6 K N ´?2N `x 2 1{2 N 1{6 , ? 2N `y 2 1{2 N 1{6 ¯Ñ K Airy px, yq (2.2.16)
the convergence being in trace norm on every bounded (from below) subsets of R. We highlight that the proof of this result relies on the use of the Christoffel-Darboux formula, that allows to rewrite the kernel 

K N px, yq as K N px, yq " ˆN 2 ˙1{2 φ N pxqφ N
F T W psq " exp ˆˆ8 s pt ´squ 2 ptqdt ˙, (2.2.20)
which is just the integrated version of the formula given in Theorem 1.1.7.

As previously announced in the Introduction and also in Chapter 1, it is on this type of result that we will be interested in : results that relate the integrable systems world, in this specific case Painlevé equations, with the determinantal point processes, that in this case appear in random matrix theory.

The next two chapters aim thus to introduce the two main tools that can be used to achieve this kind of results, and that will be used in Chapters 5, 6. First the Riemann-Hilbert problems for the class of integrable operators (in which the Airy kernel fit in) and second the isomonodromic representation of the Painlevé equations.

Chapter 3

INTEGRABLE OPERATORS AND

RIEMANN-HILBERT PROBLEMS

R

iemann-Hilbert problems are the protagonists of this chapter, in particular the ones connected with a class of integral operators. This class of operators is known in literature as integrable operators of IIKS type, since they were first studied using a Riemann-Hilbert approach in [START_REF] Its | Differential equations for quantum correlation functions[END_REF]. These operators have kernels of a particular form and their resolvents, whether they exist, have kernels of the same form. In particular, the expression for their resolvent is directly related to the solution of a certain Riemann-Hilbert problem. As a byproduct the Fredholm determinants of these integrable operators can be expressed in terms of quantities related to the solution of the Riemann-Hilbert problem. Many integral operators appearing in random matrix theory or statistical mechanics fit in this class of operators, or are in some way related to them, and can be thus treated with this approach. This allows to find more information about their Fredholm determinants that have in these contexts interesting probabilistic interpretation, as underlined in the previous chapter. For us, the interesting case of study will always be given by the Airy kernel and its higher order generalizations, in scalar, matrix-valued and finite temperature versions. As we already underlined in Chapter 2 and we will underline thereafter, the Fredholm determinants of these Airy kernels describe interesting quantities in random matrix models ([TW94b, [START_REF] Grünbaum | Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes[END_REF][START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF]) in the study of the KPZ universality class ([ACQ11, Cor12]) and in models for non interacting fermions ([LDMS18, LW20, DLDMS16]). Nevertheless there are other popular integrable operators involved in these applications, like the sine kernel and the Bessel kernels, studied for example in [START_REF] Forrester | The spectrum edge of random matrix ensembles[END_REF][START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF][START_REF] Girotti | Gap probabilities for the Generalized Bessel process : a Riemann-Hilbert approach[END_REF]. In conclusion, Riemann-Hilbert problems give a powerful tool to study certain integral operators defining determinantal point processes with applications in many different fields. Moreover, the Riemann-Hilbert problems build the bridge between integral operators and integrable systems. Starting from the solution of a given Riemann-Hilbert problem, one can construct Lax pairs for ordinary or partial differential equations, difference equations and hierarchies in a standard way. In our case of study, we will always be interested in recovering the isomonodromic Lax pair for the Painlevé II hierarchy, described at the end of Chapter 4, and its generalizations.

The Chapter is organized as follows : after a brief introduction on generic Riemann-Hilbert problems, we are going to review the standard results of the IIKS theory for integrable operators. Then, we are going to review as this theory can be extended to the case of matrix-valued integral operators, resuming the work [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]. The results contained in this section will be largely used in Chapter 5 in order to achieve the original results about the matrix Painlevé II hierarchy. In Chapter 6 instead, in order to study the finite-temperature version of the Airy kernels, we will need to introduce the theory of operator-Chapter 3 -Integrable operators and Riemann-Hilbert problems valued Riemann-Hilbert problems, as we did in the paper [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF]. In the last decades, examples of this kind of problems can be found in only a few papers, e.g. [START_REF] Its | Large-x analysis of an operator-valued Riemann-Hilbert problem[END_REF][START_REF] Its | On the Riemann-Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation : Interacting fermion case[END_REF]. Very recently the paper [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF] re-introduced operator-valued Riemann-Hilbert problem, with the aim to develop a rigorous and quite general theory to treat them. Following this method, we will see in section 6.2 how the operator-valued Riemann-Hilbert problem can be formulated and solved in our specific case. From that, we will recover an operator-valued isomonodromic Lax pair for the integro-differential Painlevé II hierarchy. Of course, results and methods in Chapter 6, are strongly inspired by the classical theory that we are going to review in this chapter.

Introduction to Riemann-Hilbert problems

In this section we are going to introduce the Riemann-Hilbert formalism and the main results about the existence of a solution for a given Riemann-Hilbert problem. This first section is mainly inspired from Chapter 5 of the monograph [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF] and we refer to that for further details and proofs.

A very nice introduction to this topic and its relation to integrable systems is also given in [START_REF] Its | The Riemann-Hilbert problem and integrable systems[END_REF]. The main idea of a Riemann-Hilbert problem is to reconstruct a matrix-valued function defined on the complex plane and having prescribed discontinuities. These discontinuities are given in form of jump equations along certain curves, that the boundary values of the function have to satisfy. Thus, from a practical point of view, a Riemann-Hilbert problem is essentially defined through a pair of data : a contour and a matrix-valued function defined on it. Here are the requirements that this pair has to satisfy. ' Let Σ be any oriented contour in the complex λ-plane. One can allow Σ to have a finite number of self-intersection points, even though in our cases of study in Chapter 5 and 6 there are no such points. Also, Σ can count a finite number of connected components and this is indeed the case in both our works in Chapter 5 and 6.

' Let G : Σ Ñ GLpp, Cq be a map defined all along the contour Σ and taking values in the set of p ˆp invertible matrices, p ě 1. We call G the jump matrix.

Within the orientation of the contour Σ, we denote by `and ´respectively the part of the plane that stands on the left and respectively on the right hand side of the contour. Finally, given a pair pΣ, Gq, the correspondent Riemann-Hilbert problem is settled as follows.

Riemann-Hilbert Problem 3.1.1. Find a pˆp matrix-valued function Y with the following properties.

(1) Y is analytic on CzΣ ;

(2 where I p denotes the identity matrix of dimension p.

)
Remark 3.1.1. One can add more requirements to the pair pΣ, Gq, for example asking for G to have constant determinant equal 1 and to decay along all the infinite branches of Σ exponentially fast. Further requirements can be added on the jump matrices along the connected components of Σ when there are self intersection points, around each one of them.

The solvability of Riemann-Hilbert problem 3.1.1 essentially relies on the Plemelj-Sokhotskii formula.

This formula actually gives the solution for a scalar Riemann-Hilbert problem with jump function being Hölder continuous, in terms of a contour integral of Cauchy type. Then, for matrix Riemann-Hilbert problems there are some particular case in which the Plemelj-Sokhotskii formula still describes at least some of the entries of the matrix solution. This happens in the so called abelian cases, when the jump matrix Gpλq commutes with itself when computed at different values of λ. In the general case, the solution of a matrix Riemann-Hilbert problem can be still written as a contour integral but in terms of the boundary values of the function itself. We resume all these results in the following pages, for the proofs and more details we refer to [START_REF] Plemelj | Problems in the sense of Riemann and Klein[END_REF][START_REF] Gakhov | Boundary value problems[END_REF]. just by applying the logarithm to the jump condition (3.1.1) and then applying the corollary above. The existence of this solution is guaranteed provided that Gpλq ‰ 0.

Remark 3.1.4. Theorem 3.1.2 can be extended to cases where the contour Σ and the function g are more general than in the hypothesis above. In particular one can consider Σ as a piece-wise smooth contours having endpoints and g as a generic function in some L p -space.

For p ą 1, the same formula (3.1.7) holds for the solution of a matrix Riemann-Hilbert problem (3.1.1) with a jump matrix G such that rGpλ 1 q, Gpλ 2 qs " 0, for any λ 1 , λ 2 P Σ, while seeking for a solution Y pλq in the same multiplicative subgroup. This particular case is also known as the Abelian case. Here is an explicit example.

Example 3.1.5. Consider the case of the Riemann-Hilbert problem 3.1.1 with p " 2 and the jump matrix G takes the form

Gpλq " ˜1 gpλq 0 1 ¸.
Its solution can be still written as the contour integral (3.1.7) and can be further simplified to the following form

Y pλq " ˜1 Cgpλq 0 1 ¸.
Notice that the Riemann-Hilbert problems that we are going to study in Chapters 5 and 6 will have jump matrices that have this form on every connected component of the contour Σ.

For the general case, where the jump matrix G does not satisfy the Abelian condition (3.1), the integral representation of the solution of the Riemann-Hilbert problem (3.1.1) is more complicated. The result is resumed in the following theorem. 

pC ˘f q pλq " lim ηÑλ˘1 2πi ˆΣ f pζq ζ ´η dζ (3.1.10)
where the limit is taken nontangential.

The idea of the proof is to rewrite equation (3.1.8) modifying its right hand side in this equivalent way

Y pλq " I p `1 2πi ˆΣ Y `pζ q ´Y´p ζq ζ ´λ dζ, λ P CzΣ (3.1.11)
and then use the Cauchy theorem and the asymptotic condition (3.1.2) to show that this last identity actually holds for every λ P CzΣ. Furthermore, the proof can be done for any contour Σ, once that Σ has been transformed (through orientation changes, addition of extra contours carrying the identity as jump matrix ) into a contour such that Σ " BΩ `" ´BΩ ´with Ω ˘disjoint open subsets covering CzΣ. The proof of the theorem is explained in Chapter 5 of [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF] (pages 364 -368) and recovered by steps. First the proof is given for the simple case where Σ is a closed simple contour, then for the case where Σ is an unbounded piece-wise smooth contour and finally for the general case described above.

Remark 3.1.7. Formula (3.1.8) will be used in Chapter 5 to study the asymptotic behavior of the solutions of the homogeneous matrix Painlevé II hierarchy, in a similar way of what was done in the work [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] and in many others for the same kind of question.

We are going to conclude this section by stating the so called small norm theorem for Riemann-Hilbert problems. This result is fundamental in the study of asymptotic properties, and we will use it indeed in the end of Chapter 5 to find the asymptotic behavior of the solutions of the matrix Painlevé II hierarchy studied there. The idea of this result can be resumed as follows : first, assume that the jump matrix G for the Riemann-Hilbert problem 3.1.1 depends on some extra parameter G " Gpλ, sq. This is indeed the case in every problem that we will treat in Chapter 5, 6 and 7 and generally speaking in most of the applications. The point is that, if the jump matrix G approximate the identity matrix in a certain matrix norm and for s Ñ 8, then also the norm of the quantity Y ´Ip can be estimated in the same regime for s.

Theorem 3.1.8 (Theorem 5.1.5 [START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF]). Remark 3.1.9. We largely discussed the question of finding a solution for the Riemann-Hilbert problem 3.1.1 and which form and properties this solution has. Although, the question of uniqueness of the solution was left open. One can prove that by fixing the determinant of the jump matrix det G " 1 one fixes also the solution of the Riemann-Hilbert problem. Essentially, one first proves that the function dpλq :" detpY pλqq is actually constant and equal to 1 and then show by contradiction that there is only one solution to the Riemann-Hilbert problem with such a jump matrix. If the determinant of the jump matrix is not constant, then the uniqueness of the solution should be discussed case by case.

Riemann-Hilbert problems and IIKS integrable operators

In the previous section we introduced the Riemann-Hilbert problems in the most general setting, and we studied the basic properties of their solutions. In this section we are going to study a specific Riemann-Hilbert problem that is related to the integrable operators, first introduced in [START_REF] Its | Differential equations for quantum correlation functions[END_REF]. Here the solution of this Riemann-Hilbert problem plays a central role in the construction of the resolvents of these operators. This is particularly useful when the kernel of the relevant operator and thus the associated Riemann-Hilbert problem depend on some further parameters. Then one can express the logarithmic derivative (w.r.t. these parameters) of the Fredholm determinants of such integrable operators, in terms of the asymptotic coefficients of the solution of the Riemann-Hilbert problem. In the following we review the main results of [IIKS90, DIZ97, HI02] and we refer to these paper for their proofs.

Integrable operators : definitions and examples

To start with, we introduce the two r ˆp matrices f and g with entries that are smooth functions defined on the connected components of the contour Σ (considered as in the previous section). We also assume that these matrices f , g satisfy the diagonal condition f T pλqgpλq " 0. Remark 3.2.2. Thanks to the diagonal condition, the kernel Kpλ, µq is nonsingular along the diagonal and there it should be considered as Kpλ, λq " pf 1 q T pλqgpλq " ´f T pλqg 1 pλq.

Example 3.2.3. There are many scalar integral kernels (the case p " 1, r " 2) that appear in random matrix theory and statistical mechanics taking this integrable form. Here is a list of the most popular ones.

' The sinus kernel acts on L 2 pΣq with Σ a disjoint union of a finite number of intervals on R, through the kernel

K sinus pλ, µq :" 1 π sinpλ ´µq λ ´µ (3.2.2)
is indeed an integrable operator, with f pλq " `eiλ , e ´iλ ˘and gpλq " 1 2πi `e´iλ , ´eiλ ˘. This kernel appears in the bulk scaling limit for GUE [START_REF] Mehta | Random matrices[END_REF], and was studied by many different authors, e.g. [START_REF] Widom | Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals[END_REF][START_REF] Deift | A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics[END_REF].

' The Bessel kernels act on L 2 pRq through the kernel ´?λJ 1 α p ? λq, J α p ? λq ¯one recognizes the integrable structure of this kernel, but this is not the only way to see that. This appears in some scaling limit for the LUE or JUE and was first studied in e.g. [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF][START_REF] Forrester | The spectrum edge of random matrix ensembles[END_REF].

K Bessel pλ
' The Airy kernel acts on L 2 pR `q through the kernel

K Airy pλ, µq :" AipλqAi 1 pµq ´Ai 1 pλqAipµq λ ´µ (3.2.4)
where Ai is the Airy function, that we already met in Chapter 1 and 2. Writing the kernel in this way, one can take f pλq :" pAipλq, ´Ai 1 pλqq and gpλq :" pAi 1 pλq, Aipλqq to see the integrability structure. Althought, this is not the only way to see that. Indeed, using the alternative description given in (1.1.16) for the kernel, one can found another integrable structure for the Airy kernel by passing in Fourier coordinates (as done in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]). In Chapter 5 and 6 we will follow this second procedure for the study of both the matrix and the finite temperature generalizations of the higher order Airy kernels. Anyway, as already said in the previous chapters, the Airy kernel appears in the edge scaling limit for GUE [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF][START_REF] Mehta | Random matrices[END_REF].

Chapter 3 -Integrable operators and Riemann-Hilbert problems

All these kernels can be also found in relation to many different models in statistical mechanics that were studied for instance in [LDMS18, [START_REF] Dean | Noninteracting fermions in a trap and random matrix theory[END_REF][START_REF] Lacroix-A-Chez-Toine | Noninteracting fermions in hard-edge potentials[END_REF].

The first interesting property of the integrable operators is that their resolvents, whenever they exist, they are integrable too. This was first observed and proved in [START_REF] Its | Differential equations for quantum correlation functions[END_REF] and the result is resumed in the following lemma.

Definition 3.2.4. For an integral operator K as in Definition 3.2.1, the correspondent resolvent operator is defined as R :" p1 ´Kq ´1K, when 1 ´K is invertible.

Lemma 3.2.5 ([HI02]

). Consider K an integrable operator with kernel (3.2.1) and suppose that p1´Kq ´1 exist. Then the resolvent R is an integrable operator with kernel given by Rpλ, µq "

F T pλqGpµq λ ´µ (3.2.5)
where the matrix-valued functions F, G are recovered through

F T pλq " p1 ´Kq ´1f T , Gpλq " p1 ´KT q ´1g. (3.2.6)
In particular the diagonal condition holds also for the resolvent, i.e. F T pλqGpλq " 0.

The Riemann-Hilbert problem associated to integrable operators

Given an integrable operator K as in Definition 3.2.1, the associated Riemann-Hilbert problem of the form 3.1.1 is defined through the pair pΣ, Gq where Σ is the contour where the integral in the definition of Kf pλq is computed and the jump matrix G is defined as the r ˆr matrix Gpλq :" I r ´2πif pλqg T pλq.

(3.2.7)

The solution Y of the Riemann-Hilbert problem constructed in this way is then used to recover the kernel of the resolvent of K. The result is resumed in the following theorem. (3.2.9)

In general, the integrable operators we are interested in will have kernels dependending on some auxiliary parameters. Thus, their Fredholm determinats (whether well defined) are functions of these parameters and their dependence on them should then be studied. Moreover, for the operators satisfying Theorem 2.1.5, the Fredholm determinants are interpreted as relevant probabilistic quantities in relation to the DPP defined through the operator, as stated in Proposition 2.1.9. Finding the explicit dependence on the parameters for these Fredholm determinants becomes even more crucial. The Riemann-Hilbert approach is indeed useful in this sense : it allows to derive a formula for the logarithmic derivative of these Fredholm determinants in terms of certain quantities related to the solution of the relevant Riemann-Hilbert problem. This essentially follows from the application of the Jacobi formula, namely δ log detp1 ´Kq " ´Trpp1 ´Kq ´1 δKq, (3.2.10)

where δ denotes the variation with respect to the parameters on which K depends on, together with Theorem 3.2.6. Having explicit expression for the Fredholm determinant can be then used for example to study the asymptotic behavior of them.

Riemann-Hilbert problems and Hankel integral operators

There are cases in which we are interested in Fredholm determinants of operators that are not of integrable form but that can be proved to be equal, after some manipulations, to Fredholm determinants of operators of integrable type. For example, consider the Hankel matrix-valued operators C acting on L 2 pR `, C r q as pCφq pxq "

ˆR`C

px `yqφpyqdy, φ P L 2 pR `, C r q (3.3.1)

with C a matrix-valued function having form

Cpzq :" ´i ˆγ`e izµ rpµqdµ (3.3.2)
where rpµq is an integrable function and γ `is some curve in the upper complex plane. In [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] the authors proved that this kind of operators can be treated through a Riemann-Hilbert approach too. In this section we will go through the fundamental results obtained in that paper, and we will use them in Chapter 5 in order to relate the Fredholm determinants of a matrix-valued analogue of higher order Airy kernels to certain solutions of a matrix Painlevé II hierarchy.

The first step, is to prove that the Fredholm determinant of these Hankel operators coincides indeed with the Fredholm determinant of some operator on the space L 2 pγ `, C r q, as explained in the following statement.

Theorem 3.3.1 (Corollary 2.1 [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]). The Hankel operators C of type (3.3.1), (3.3.2), with the function rpµq :" E 1 pµqE T 2 pµq and E j P L 2 X L 8 pγ `, M atpr ˆrqq are trace class on L 2 pR `, C r q and their Fredholm determinants are such that detp1 `C| L 2 pR`,C r q q " detp1 `K| L 2 pγ`,C r q q, (3.3.3)

where K : L 2 pγ `, C r q Ñ L 2 pγ `, C r q are integral operators with kernel The proof is based on the use of the Fourier-Plancherel transform. The conjugation of C by this transform gives indeed an integral operator that shares its Fredholm determianant with C and that can be proven to be trace class on the correspondent Hardy space. This last result comes from the fact that the relevant operator can be seen as composition of Hilbert-Schmidt operators defined on appropriate functional spaces. By exchanging the order of the composition, one obtain exactly the operator K on L 2 pγ `, C r q in the statement above, that still shares its Fredholm determinant with the operator C thanks to the Sylvester identity (cfr. [START_REF] Simon | Trace ideals and their applications[END_REF][START_REF] Gohberg | Traces and determinants of linear operators[END_REF]).

Kpλ, µq " E T 1 pλqE 2 pµq λ `µ . ( 3 
Remark 3.3.3. The operator K with kernel given in (3.3.4) is not exactly of the integrable form (3.2.1), because of its denominator. Nevertheless, it was proven in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] that also these operators K and K 2 can be studied through a Riemann-Hilbert problem, extending in some way the theory of standard IIKS operators of [START_REF] Its | Differential equations for quantum correlation functions[END_REF]. Since in Chapter 5 we will be interested just into the square of some particular operator K, in the following we will focus on the results that only concerns the squared operator. ). The resolvent operator R :" K 2 p1 ´K2 q ´1 on L 2 pγ `, C r q has kernel Rpλ, µq expressed in terms of the solution Y of the Riemann-Hilbert problem pΣ, Gq defined in (3.3.5), (3.3.6), as follows Rpλ, µq "

" E T 1 pλq 0 r ı Y T pλqY ´T pµq λ ´µ « 0 r E 2 pµq ff . (3.3.7)
The solution Y of the Riemann-Hilbert problem pΣ, Gq exists if and only if 1 ´K2 is invertible. Now, suppose that the operators C and thus K depend on some auxiliary parameters. As a byproduct the jump matrix G and the solution Y of the Riemann-Hilbert problem pΣ, Gq associated to these operators also depends on these auxiliary parameters. Denoting by δ the variation with respect to these parameters, the authors of [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] expressed the variation of the Fredholm determinant of K 2 in the following way.

Theorem 3.3.5 (Theorem 4.1 [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]). We have that

δ log detp1 ´K2 q " 1 2πi ˆΣ Tr `Y ´1 ´Y 1 ´δGG ´1˘d λ, (3.3.8)
where the 1 denotes the derivative w.r.t. the parameter λ.

The main ingredient for the proof of this result is the application of the formula (3.2.10) to the relevant IIKS operator acting on L 2 pΣq » L 2 pγ `q À L 2 pγ ´q that is related to the Riemann-Hilbert problem pΣ, Gq defined through (3.3.5), (3.3.6). This operator has Fredholm determinant that coincides with the one of K 2 by the very construction, and thus the proof follows. This is exactly the result that we need in Chapter 5 in order to find the formula that express the Fredholm determinant of the matrix analogue of the higher order Airy kernels, in terms of some distinguished solutions of the matrix Painlevé II hierarchy.

Remark 3.3.6. Relation (3.3.8) allows to explicitely compute the logarithmic derivative of the relevant Fredholm determinants. Indeed, the dependence of the jump matrix G on the auxiliary parameters is explicit thus the quantity inside the integral on the right hand side δGG ´1 is explicit too and so does the entire integral. A very important example of dependence (this is indeed the case we have to deal with in Chapter 5) is when the jump matrix can be factorized as Gpλ, T q " e T pλ, T q G 0 pλqe ´T pλ, T q , where T pλ, T q " ř m j"0 T j λ j is a matrix depending on the diagonal matrices T j that are considered here as the deformation parameters. The Chapter is organized as follows : in the first section we are going to review the fundamental results on the theory of linear system of ODEs in the complex plane and we are going to define the main concepts of monodromy data and monodromy map. In the second section we are going to give the definition of isomonodromic deformation and finally in the third section we will see the isomonodromic Lax pairs for the Painlevé II equation and hierarchy.

System of ODEs with rational coefficients

In the following two sections we are going to resume the main concepts and results of the theory of linear ODEs in the complex plane, contained in Chapters 1 -4 of [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]. For more details and for the proofs of the statements, we refer thus to them (and references therein). 

Description of local solutions

For a given λ 0 P CP1 , the behavior of a local solution Ψ in a neighborhood of λ 0 is essentially determined by the behavior of the coefficient matrix M pλq at the given point λ 0 . Given that M pλq is rational in λ we only have three possibilities : λ 0 is a regular point for the differential M pλqdλ, or it is a simple pole or it is a pole of greater order (we say that it has Poincaré rank r ą 0 at λ 0 , meaning that the Laurent series of M pλqdλ at λ 0 has nonzero coefficient up to the power ´r ´1 in the local coordinate near λ 0 ). In each of these possible configurations we have different local behaviors of Ψ, as described by the following results.

Theorem 4.1.1 ([FIKN06]). Consider λ 0 P CP 1 and a given N ˆN invertible matrix Ψ 0 . If the matrix coefficient M pλq 1 is holomorphic in a disk B λ0 centered in λ 0 , then there is a unique solution of the ODE (4.1.1) holomorphic in the same disk and satisfying the initial condition Ψpλ 0 q " Ψ 0 .

Thus, as far as we look for solutions of the equation (4.1.1) near points that are regular for the matrix coefficient M pλq, we get local solutions that are smooth too.

Consider now the case where M pλqdλ has an isolated simple pole at the given point λ 0 P CP 1 . For ζ being the local parameter near λ 0 (ζ " λ ´λ0 in case λ 0 is finite, ζ " 1 λ in case λ 0 is 8), we can then write in a punctured disk centered at λ 0 , B λ0 ztλ 0 u, the following representation

M pλqdλ " 8 ÿ k"´1 M k`1 ζ k dζ, M 0 ‰ 0. (4.1.2)
The behavior of Ψ near λ 0 is then uniquely determined, up to the spectral properties of the matrix M 0 , as follows.

Theorem 4.1.2 [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]). Given the previous hypothesis on M pλqdλ, suppose that the coefficient M 0 is diagonalizable, namely M 0 " P T 0 P ´1 with T 0 a diagonal matrix (called the formal monodromy exponent). Also, suppose that M 0 has nonresonant eigenvalues2 (i.e. the difference of each couple of distinct eigenvalues is not an integer). Then the ODE (4.1.1) has a fundamental solution Ψ near λ 0 of the form

Ψpλq " Ψpλqζ T0 , (4.1.3)
with Ψpλq holomorphic and invertible in B λ0 and uniquely determined by the value of Ψpλ 0 q " P.

Notice that it is equivalent to say that in the disk B λ0 the solution Ψ is in the form

Ψpλq " P ˜8 ÿ k"0 Ψ k ζ k ¸ζT0 , Ψ 0 " I N (4.1.4)
where the power series is convergent. This is indeed the main difference between the behavior of a local solution near a simple pole and near a higher order pole of M pλqdλ, as we are going to explain. Consider now the case where λ 0 P CP 1 is a pole of Poincaré rank r ą 0 for the differential M pλqdλ, namely we can write in the punctured disk B λ0 ztλ 0 u, using the local coordinate ζ near λ 0 , the following representation

M pλqdλ " 8 ÿ k"´r´1 M k`1 ζ k dζ, M ´r ‰ 0. (4.1.5)
Assume again that the leading coefficient M ´r is diagonalizable, namely

M ´r " P T ´r P ´1 (4.1.6)
with T ´r a diagonal matrix, that has all distinct nonzero eigenvalues α i , i " 1, . . . , N .

Theorem 4.1.3 ([FIKN06]

). In the above hypothesis for the differential M pλqdλ, there is a unique formal fundamental solution of the ODE (4.1.1) in the punctured disk B λ0 ztλ 0 u and it is written in the form

Ψ f pλq " P ˜8 ÿ k"0 Ψ k ζ k ¸exp ˆT´r ´r ζ ´r `¨¨¨`T ´1 ´1 ζ ´1 `T0 ln ζ ˙, Ψ 0 " I N (4.1.7)
with T k all diagonal matrices for k " ´r, . . . , 0. Both the coefficients Ψ j , j ě 0, and the exponents T k , k " ´r, . . . , 0 are determined recursively as polynomials of the coefficients M k in (4.1.5).

Chapter 4 -Isomonodromic deformations as Lax pairs

The solution Ψ is called formal since typically the series in (4.1.7) does not converge. It turns out that Ψ as in (4.1.7) is actually only the asymptotics (for λ approaching the irregular singularity λ 0 ) of a genuine fundamental solution of (4.1.1) uniquely defined in a certain sector of the punctured disk B λ0 ztλ 0 u.

These sectors are also known as Stokes sectors, and they are defined as the sectors of the disk B λ0 containing exactly one of the lines defined as pi,jq m

:" tζ| |ζ| ă ρ, arg ζ " 1 r argpα i ´αj q `π r `m `1 2 ˘u, m " 0, . . . , 2r ´1 and i, j " 1, . . . , N with i ă j. 3 More precisely the result reads as follows.

Theorem 4.1.4 ( [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]). In the hypothesis above, inside any Stokes sector contained in the disk B λ0 there exists a unique fundamental solution Ψpλq of the ODE (4.1.1) such that

Ψpλq " Ψ f pλq for λ Ñ λ 0 , (4.1.8)
where Ψ f pλq is given as in (4.1.7) and the branch of the logarithm in that formula is chosen.

Notice that the Stokes sectors can be defined in a canonical way, so that B λ0 ztλ 0 u is always covered by 2r of them. For δ ą 0 sufficiently small, consider the sector

S :" tζ P C| 0 ă |ζ| ă ρ, θ 1 ă arg ζ ă θ 1 `π r `δu. (4.1.9)
Then S is a Stokes sector. With that in mind, one constructs 

Monodromy data of ODEs

We are now going to describe two sets of data : the global monodromy data and the essential mono- These data describe the local behavior of solutions Ψ pνq near all the simple poles tm ν u p ν"1 of M pλqdλ, and solutions tΨ pνq l u 2rν l"1 in the canonical Stokes sectors near its higher order poles tm ν u n ν"p`1 . Consider now a generic fundamental solution of (4.1.1) at a point m 0 P CP 1 ztm i u n i"1 , determined by initial condition Ψpm 0 q " Ψ 0 , for Ψ 0 any invertible matrix. Each local solution Ψ, Ψ pνq , Ψ Remark 4.1.6. The monodromy manifold for a given linear system of ODEs can be defined as the space of its Stokes / connection matrices together with eventual constraints among them. The constraints will change from case to case. In Chapter 7 we will study a specific example of monodromy manifold, called

Stokes manifold, that is associated to a polynomial linear ODE. As we will see, in this case the monodromy manifold is simply given by the collection of some Stokes matrices. Although they are not independent, they should satisfy an algebraic equation (corresponding to the canonical relation in the fundamental group of CP 1 ztpolesu).

Isomonodromic deformations

The study of isomonodromic deformations can be formalised as follows : suppose that the coefficient matrix of the ODE (4.1.1) now depends holomorphically on some extra complex parameters t 1 , . . . , t K , namely M pλq " M pλ, t 1 , . . . , t K q " M pλ, tq. (4.2.1) Definition 4.2.1. An isomonodromy deformation is given by a holomorphic family of rational matrices as in (4.2.1) which is an admissible deformation and preserves the set of essential monodromy data of M pλ, t " 0q. More specifically the family (4.2.1) has to satisfy the following requirements :

1. the number n of poles does not depend on t i , i " 1, . . . , K. Moreover there exist some disks B ν , ν " 1, . . . , n such that each pole m ν P B ν for all values of the parameters t i and B ν X B µ is the empty set for all ν ‰ µ; The list of requirements in the definition above can actually be translated into the fact that the entries of the matrix coefficient M pλq should solve some further system of nonlinear differential equations (w.r.t.

the deformation parameters t i ). This result is obtained by looking at the following differential Ξpλ, tq :" dΨΨ ´1 "

K ÿ j"1 BΨ Bt j dt j Ψ ´1, (4.2.2)
that, thanks to the last requirement in the above definition, is actually a single-valued analytic function in CP 1 ztm ν u n ν"1 . Studying its behavior near the poles m ν , using the formulae (4.1.4), (4.1.7) for the local solutions of the ODE (4.1.1) near these points and the fact that the essential monodromy data are t-independent, more can be said about Ξpλ, tq. This study was first done in [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF] and in the following we cite one of their main results.

Main assumption Assume that the pole m n ptq " 8 for all t and that the leading coefficient of the Laurent series of M pλqdλ at 8 is already diagonal. Also, assume that the essential monodromy data of (4.1.1) are defined by taking as basic fundamental solution Ψ the local solution near m n " 8 (the canonical solution Ψ pnq if m n " 8 is a simple pole, the canonical solution in the first Stokes sector Ψ pnq 1 if m n " 8 is of higher order).

Theorem 4.2.2 ([JMU81]

). The differential Ξpλ, tq is a rational matrix-valued function in λ with poles coinciding with m 1 , . . . , m n´1 , m ν " 8 and with the same Poincaré rank r ν , ν " 1, . . . , n of M pλq. In particular, Ξpλq can be explicitly and uniquely determined in terms of the coefficients of the Laurent series of M pλq near each one of its singular points. Namely Remark 4.2.3. Notice that there is also a converse of the previous result, meaning that equation (4.2.7) is also a sufficient condition to describe an isomonodromic deformation of a rational matrix-valued function M pλ, tq with fixed number of poles and Poincaré ranks, described as in (4.2.4). For more details we refer to Theorem 4.1 in [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF] (see also [START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF]).

Ξpλq " Ξpλ, tM pνq k u,

Isomonodromic representations of the Painlevé II equation and hierarchy

In this last section we are only going to collect well known results about the isomonodromic Lax pair representation of the Painlevé II equation and hierarchy. These representations were indeed fundamental in the papers [START_REF] Kapaev | A note on the Lax pairs for Painlevé equations[END_REF] and [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] in order to re-prove and extend to the all Painlevé II hierarchy the 

`pupλ ´yqq σ `´2 u pλz `yz ´α `1 2 qσ BΨ Bt " V Ψ, with V pλ, tq " λ 2 σ 3 `u 2 σ `´z u σ ´, (4.3.2)
describing isomonodromic deformations of a rank 2 ODE with a degree 2 polynomial matrix coefficient.

Notice that the Jimbo-Miwa Lax pair was already known by Garnier [START_REF] Garnier | Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes[END_REF] in an equivalent form.

Also, the Lax pairs written above in equations (4.3.1) and (4.3.2) are really independent since their respective set of essential monodromy data are not isomorphic. Therefore, there is no gauge transformation that allows to pass from one to the other. Notice that there exists a third rank 2 Lax pair for the Painlevé II equation, known as the Harnad-Tracy-Widom Lax pair, but it is shown to be gauge equivalent to the Flaschka-Newell Lax pair (for more details see Proposition 5.2 of [START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]). Actually, there exists also another Lax pair for the Painlevé II equation, of rank 3, and we refer to the article [START_REF] Joshi | On the linearization of the first and second Painlevé equations[END_REF] for more details about that. In the same work the authors also describe the relation between the Jimbo-Miwa Lax pair and the Harnad-Tracy-Widom one in terms of the generalized Laplace transform.

In the paper [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF] the authors extended the Flaschka-Newell isomonodromic Lax pair for the entire Painlevé II hierarchy as defined in equation (1.2.22). In particular, the n-th member of the hierarchy has a Lax pair representation given by the isomonodromic deformations of a rank 2 linear ODE having a pole at 8 of Poincaré rank 2n `1 and a simple pole at 0. A j piλq j ´it ¸σ3 `˜2n´1 ÿ j"0

B j piλq j ¸σ``˜2 n´1 ÿ j"0 C j piλq j ¸σ´`α n λ σ 1 BΨ Bt " LΨ, with L " ´iλσ 3 `uσ 1 (4.3.3)
where the coefficients A j , B j , C j for every j are differential polynomials in u, described by closed formulae involving the Lenard recursion operators (1.2.6). For their precise form see equations ( 17a)-(17g) in [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF].

This Lax pair is the one used in the paper [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] in order to achieve the proof of Theorem 1.2.12. In Chapter 5 we are going to construct a Lax pair for a rˆr matrix Painlevé II hierarchy, that can be thought as a block-matrix generalization of the above Lax pair.

Chapter 5

THE MATRIX PAINLEVÉ II HIERARCHY

T he results contained in the article [START_REF] Tarricone | A fully noncommutative Painlevé II hierarchy : Lax pair and solutions related to Fredholm determinants[END_REF] will be discussed in this chapter. The aim of this paper is to relate a family of solutions of a noncommutative version of the Painlevé II hierarchy to Fredholm determinants of a matrix version of the n-th higher order Airy kernels. The scalar versions of these operators have been recently studied in [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF], in relation with non-interacting fermionic models (as already discussed in the previous chapters).

In order to construct our matrix analogue, we first define a matrix-valued version of the n-th Airy function, in the following way Ai 2n`1 px, sq :" `cj,k Ai 2n`1 px `sj `sk q ˘r j,k"1 , c j,k P C, x P R, (5.0.1)

where Ai 2n`1 px`s j `sk q is a shift of the n-th scalar Airy function, for some real parameters s l , l " 1, . . . , r.

We recall that the n-th scalar Airy function, Ai 2n`1 pxq, is defined as a particular solution of the n-th generalized Airy equation, written in (1.2.32) in Chapter 1, for every n ě 1. In this paper we will consider these functions Ai 2n`1 pxq as contour integrals Ai 2n`1 pxq :"

ˆγn `1 2π exp ˆiµ 2n`1 2n `1 `ixµ ˙dµ, x P R,
for γ n `an appropriate curve, which we will specify later on. With the matrix-valued Airy functions Ai 2n`1 px, sq defined in (5.0.1), the matrix Airy Hankel operators Ai 2n`1 are defined in the standard way pAi 2n`1 f q pxq :" ˆR`A i 2n`1 px `y, sqf pyq dy, (5.0.2) for any f " pf 1 , . . . , f r q T P L 2 `R`, C r ˘. It is actually on the square of this sequence of operators that we focused our study, and in particular on the Fredholm determinants defined as F pnq ps 1 , . . . , s r q :" det `Id R`´A i 2 2n`1 ˘, (5.0.3) that are well defined since the operators Ai 2n`1 are trace-class on L 2 `R`, C r ˘(as follows from Proposition 3.3.1, i.e. Corollary 2.1 in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]).

The core of this work is devoted to establish a relation between the Fredholm determinants (5.0.3) and some solution of a noncommutative Painlevé II hierarchy. In particular, the results resumed in Section 3.3 and originally obtained in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF], where the authors extend the theory of integrable operators of Chapter 5 -The matrix Painlevé II hierarchy Its-Izergin-Korepin-Slavnov [START_REF] Its | Differential equations for quantum correlation functions[END_REF], can be directly applied to the matrix operators Ai 2n`1 defined in (5.0.2). As byproduct, an equality between the Fredholm determinants F pnq ps 1 , . . . , s r q and those of certain integrable operators can be established. Following the Riemann-Hilbert approach introduced in Section 3.3 we will study these integrable operators through Riemann-Hilbert Problem 5.1.5, from which we will deduce the isomonodromic Lax pair of the noncommutative Painlevé II hierarchy, that we are going to define as follows.

We start defining a matrix-valued analogue of the standard Lenard recursion, through the relations written below. In the following, U , W are functions depending on all the parameters s l , l " 1, . . . , r with values in Matpr ˆr, Rq. The symbols r , s and r , s `indicate respectively the standard commutator and anti-commutator between two matrices, since differential polynomials in U are noncommutative quantities.

Then each differential polynomial L n rU s is defined by the following recursive relation ˆd dS `rW, ¨s`˙Ln rU s " p´1q n`1 4 n rS, W s `, (5.0.6)

L 0 rU s " 1 2 I r , d dS L n rU s "
where U :" d dS W ´W 2 is the Miura transform of W and the variable S is the diagonal matrix S :" diagps 1 , . . . , s r q so that the anti-commutator in the right hand side is needed (also notice that d dS S " I r ). For this reason we refer to our hierarchy as a fully noncommutative one, since in its definition (5.0.6) also the independent variable S is noncommutative. A matrix Painlevé II hierarchy, constructed by using a noncommutative version of Lenard operators as in (5.0.4), was recently studied in [START_REF] Gordoa | On matrix Painlevé hierarchies[END_REF] but in this paper the independent variable is a scalar.

In this work, first of all, we found out that the hierarchy (5.0.6) admits an isomonodromic Lax pair with Lax matrices that are block-matrices of dimension 2r. Furthermore, they are explicitly written in terms of the matrix-valued Lenard operators defined in (5.0.4). The result proved in Section 5.3 is summarized in the following proposition.

Proposition 5.0.1. For each fixed n there exist two polynomial matrices in λ, namely L pnq , M pnq , respectively of degree 1 and 2n, such that the following system d dS Ψ pnq pλ, sq " L pnq pλ, sqΨ pnq pλ, sq, B Bλ Ψ pnq pλ, sq " M pnq pλ, sqΨ pnq pλ, sq (5.0.7) is an isomonodromic Lax pair for the n-th equation of the matrix Painlevé II hierarchy (5.0.6).

In particular the matrices L pnq , M pnq have the following forms 

L
ÿ k"0 i 2 λ 2n´2k A 2n´2k p sq, with A 2n " I r , Gpλ, sq " n ÿ k"1 i 2 λ 2n´2k G 2n´2k p sq, Epλ, sq " n ÿ k"1 i 2 λ 2n´2k`1 E 2n´2k`1 p sq, F pλ, sq " n ÿ k"1 i 2 λ 2n´2k`1 F 2n´2k`1 p sq.
All the coefficients A 2n´2k , G 2n´2k , E 2n´2k`1 , F 2n´2k`1 are expressed in terms of the Lenard operators through the formulae (5.3.4).

This result can be thought as the noncommutative analogue of the well known isomonodromic Lax pair for the scalar Painlevé II hierarchy studied in [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF], and resulting from a self-similarity reduction of the Lax pair for the modified KdV hierarchy.

A solution Ψ pnq for the Lax pair (5.0.7) is constructed, by using the solution of the Riemann-Hilbert Problem 5.1.5 involved in the study of the integrable operators associated to the matrix operators squared

Ai 2 2n`1 .
As a byproduct, we obtain the following relation between some solutions of the hierarchy (5.0.6) and the Fredholm determinants (5.0.3). This is indeed the final result of this work and it is proved at the end of Section 5.3.

Corollary 5.0.2. There exists a solution W of the n-th member of the matrix PII hierarchy (5.0.6), that is connected to the Fredholm determinant of the n-th Airy matrix Hankel operator through the following formula ´Tr `W 2 p sq ˘" d 2 dS 2 ln `F pnq ps 1 , . . . , s r q ˘.
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Chapter 5 -The matrix Painlevé II hierarchy Defining s :" 1 r ř r j"1 s j , and δ j :" s j ´s, this solution W in the regime s Ñ `8 with |δ j | ď m for every j, has asymptotic behavior pW q r k,l"1 " ´2pc kl Ai 2n`1 ps k `sl qq r k,l"1 .

We remark that in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] the above result was actually proved for the first equation of the hierarchy, i.e., for the case n " 1. The result above is a generalization of Theorem 1.1.7 (for n " 1) and Theorem 1.2.12 (for the generic n case) to the matrix-valued case. We recall that the scalar Airy kernels involved in the Theorem 1.1.7 and 1.2.12 define DPP on R with applications in random matrix theory (n " 1) and statistichal mechanics (generic n). In this work, we see that the matrix Airy Hankel operators squared Ai 2 2n`1 can actually be interpreted as kernels for determinantal point processes on the space of configuration t1, . . . , ru ˆR (under certain assumptions on the matrix C " pc j,k q r j,k"1 ), and it would be interesting to study whether they describe phenomena in random matrix theory or statistical mechanics.

Here is a more precise list of what it is done in this work.

' In Section 5.1 the general theory developed in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF], and recalled in Section 3.3, is applied to the operators Ai 2 2n`1 , in order to associate the Fredholm determinants (5.0.3) to the ones of certain integrable operators. The most important consequence of this study is indeed Theorem 5.1.9, that establishes a relation between Fredholm determinant (5.0.3) and the solution of Riemann-Hilbert Problem 5.1.5. Furthermore, in this section it is provided in which hypothesis the solution exists (Theorem (5.1.11)), and so the relation for the Fredholm determinants found in Theorem 5.1.9 holds.

' In Section 5.2 the fully noncommutative Painlevé II hierarchy is introduced and the first equations are explicitly written.

' In the first part of Section 5.3, the proof of Proposition 5.0.1 is given and the construction of the solution Ψ pnq of the isomonodromic Lax pair (5.0.7) for the hierarchy (5.0.6) is implemented. Finally in the end of Section 5.3, Corollary 5.0.2 is proved, by using Theorem 5.1.9 and the properties of the solution Ψ pnq of the isomonodromic Lax pair (5.0.7).

Riemann Hilbert problems associated to the matrix Airy operators

To start with, we recall some basic fact about the scalar generalized Airy functions Ai 2n`1 . As already anticipated in the introduction, for each n P N, we consider these functions Ai 2n`1 as the contour integrals Ai 2n`1 pxq :"

ˆγn `1 2π exp ˆiµ 2n`1 2n `1 `ixµ ˙dµ, x P R, (5.1.1)
where γ n ˘are curves in the upper (lower) complex plane with asymptotic rays at ˘8 that are φ n ˘:" π 2 ˘πn 2n`1 , and such that γ n

´" ´γn `. An example of these curves for n " 1 is given in Fig. 5.1 (but there are also other possible choices for the curve, as we will see in Chapter 6). Definition 5.1.1. Recall that as we saw in the introduction, the n-th matrix-valued Airy function is defined as Ai 2n`1 px, sq :" `cj,k Ai 2n`1 px `sj `sk q ˘r j,k"1 , x P R.

Here C " pc j,k q r j,k"1 P Matpr ˆr, Cq and the parameters s l P R, l " 1, . . . , r.

With these functions we construct the matrix-valued operators we are going to study in the following.

Definition 5.1.2. We consider tAi 2n`1 u nPN the sequence of matrix Hankel operators acting on any f " pf 1 , . . . , f r q T P L 2 `R`, C r ˘s.t.

pAi 2n`1 f qpxq :" ˆR`A i 2n`1 px `y, sqf pyq dy.

(5.1.2)

Component wise the n-th Hankel operator Ai 2n`1 , reads as pAi 2n`1 f q j pxq "

r ÿ k"1 c j,k
ˆR`A i 2n`1 px `y `sj `sk qf k pyq dy, j " 1, . . . , r.

(5.1.3) Remark 5.1.3. One can equivalently define the matrix-valued generalized Airy functions as contours integrals, in the following way. For each n P N ' we take s 1 , . . . , s r real parameters and S :" diagps 1 , . . . , s r q and we define the matrix-valued complex function

θ 2n`1 pµ, sq :" iµ 2n`1 2p2n `1q I r `iµS, (5.1.4) 
where I r is the identity matrix of dimension r.

' Then, we take the matrix C " pc j,k q r j,k"1 P Matpr ˆr, Cq we define the matrix-valued function r pnq pλ, µ, sq :" 1 2πi exppθ 2n`1 pλ, sqqC exppθ 2n`1 pµ, sqq.

(5.1.5)

' Finally, we can define the generalized matrix Airy function as Ai 2n`1 px, sq " ˆγn `ir pnq pµ, µ, sq exppixµq dµ, where the integral is computed entry by entry.

We are now going to define a sequence of Riemann-Hilbert problems related to the matrix-valued analogue of the higher order Airy kernels, obtained as Ai 2 2n`1 . From the solution of these Riemann-Hilbert problems we will deduce the relation between Fredholm determinants of operators Ai 2 2n`1 and our noncommutative Painlevé II hierarchy. Remark 5.1.4. From now on, in order to simplify the notation, the dependence on s in the quantities (5.1.4), (5.1.5) will be omitted and we will use the abbreviation r pnq pλ, λ, sq " r pnq pλq. (5.1.7)

Riemann-Hilbert

Remark 5.1.6. In the following we are going to use the Pauli's tensorized matrices, that have the same property as the ones in the usual Clifford algebra. In particular we denote the tensorized matrices by

σ1 " σ 1 b I 2r , σ2 " σ 2 b I 2r , σ3 " σ 3 b I 2r ,
where

σ 1 " ˜0 1 1 0 ¸, σ 2 " ˜0 i ´i 0 ¸, σ 3 " ˜1 0 0 ´1¸.
Then the standard relations hold also in this case :

rσ 1 , σ2 s " ´2iσ 3 , rσ 1 , σ3 s " 2iσ 2 , rσ 2 , σ3 s " ´2iσ 1 , σ2 i " I 2r , @ i.
The following symmetry property will be useful in the next computations. Proof. We first prove the symmetry condition for the asymptotic coefficients of Ξ pnq . We start observing that the jump matrix J pnq for λ P γ n `Y γ n ´has the following symmetry σ1 J pnq pλ, sqσ 1 " J pnq p´λ, sq, just using the definition of γ n

´" ´γn `. This directly implies that also the solution of the Riemann-Hilbert Problem 5.1.5 has the same symmetry property. Thus for any λ we have that Ξ pnq p´λq " σ1 Ξ pnq pλqσ 1 .

Computing the asymptotic expansion at 8 of both sides of this equation, we have that p´1q k Ξ pnq k " σ1 Ξ pnq k σ1 . This directly implies the two equations (5.1.8) for k " 2j or k " 2j ´1. Concerning the statement for the asymptotic coefficients of the inverse of Ξ pnq , namely Θ pnq , the proof follows by the fact that Θ pnq solves another Riemann-Hilbert problem, with same symmetry for the jump matrix. Indeed, consider the following problem for a function Θ pnq : ' it has the asymptotic condition for |λ| Ñ 8

' Θ pnq is a (λ-)
Θ pnq pλq " I 2r `ÿ jě1 Θ pnq j λ j .
The function Θ pnq with these properties is the inverse of the solution of Problem 5.1.5. Indeed : the functions Θ pnq Ξ pnq pλq, and Ξ pnq Θ pnq have no jumps along γ n `Y γ n ´and they both behave like the identity matrix at 8. Thus by the generalized Liouville theorem, they both have to coincide with the identity matrix.

We then observe that the jump matrix H pnq here has the same symmetry property of J pnq , i.e., σ1 H pnq pλ, sqσ 1 " H pnq p´λ, sq, for each λ P γ n `Y γ n

´. Thus, exactly as before, even the function Θ pnq has the same property : σ1 Θ pnq pλ, sqσ 1 " Θ pnq p´λ, sq.

We conclude then that the asymptotic coefficients of Θ pnq have the same form of the Ξ k , i.e., We are now ready to state the fundamental result that connects the matrix Airy Hankel operators to these Riemann-Hilbert problems.

Supposing that the solutions of the Riemann-Hilbert Problem 5.1.5 and its inverse exist, we have the following result.

Remark 5.1.8. Existence conditions for Ξ pnq (and thus Θ pnq ) are given at the end of the section (see Theorem 5.1.11).

Theorem 5.1.9. For each n P N, consider Ξ pnq the solution of the Riemann-Hilbert Problem 5.1.5 and its inverse Θ pnq :" `Ξpnq ˘´1 . Then the following identities hold where in the integral in the middle we indicate with 1 the derivation w.r.t. the complex parameter λ and the differential operator d dS is defined as in (5.0.5).

d
Proof. The proof follows as an application to this very specific case of some general results obtained in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] (and written in Section 3.3). We split the proof in two parts, one for each equality in (5.1.10).

In order to obtain the first equality we need essentially two results. The first one establishes the relation between Fredholm determinant of the Airy matrix operator and Fredholm determinant of certain integral kernel operator, thanks to Theorem 3.3.1. In particular, we first get that the Fredholm determinants of tAi 2n`1 u nPN are equal to the ones of the integral operators acting on L 2 `γpnq `, C r ˘with kernels K pnq pλ, µq " r pnq pλ, µq λ `µ , (5.1.11) with r pnq pλ, µq defined as in (5.1.5).

As by product we then have that F pnq ps 1 , . . . , s r q " det `Id γ pnq `´`K pnq ˘2˘.

The second result needed comes from the study of matrix integral kernels of type (5.1.11), through

Riemann-Hilbert problems. Indeed, it allows to compute the Fredholm determinants of these integrable operators in terms of the solution of Riemann-Hilbert Problem 5.1.5. In particular, by applying Thorem 3.3.5, we have that

ˆγn `Yγ n ´Tr ˆΘpnq ´`Ξ pnq ´˘1 d dS J pnq `Jpnq ˘´1 ˙dλ 2πi " d dS ln det `Iγ pnq `´`K pnq ˘2˘.
Thus the first identity in the statement holds.

For what concerns the second identity of the statement, we proceed by direct computation of the integral ˆγn `Yγ n ´Tr

`Θpnq

´`Ξ pnq ´˘1 d dS J pnq `Jpnq ˘´1 ˘dλ 2πi .

(5.1.12)

First of all, we observe that the jump matrix J pnq pλ, sq that appears in the jump condition (5.1.6), admits the factorization

J pnq pλ, sq " exp `θpnq pλ, sq b σ 3 ˘Jpnq 0 exp `´θ pnq pλ, sq b σ 3 ˘,
with J pnq 0 the constant matrix given by

J pnq 0 " ˜Ir C C I r ¸.
Thus we can easily compute the second factor appearing under the trace in the integral (5.1.12) :

ˆd dS J pnq ˙`J pnq ˘´1 " iλσ 3 ´Jpnq `iλσ 3 ˘`J pnq ˘´1 .

(5.1.13)

We are now going to show that the integral in (5.1.12) is actually just the formal residue at 8 of a certain function. Furthermore in this particular case, due to the form of the matrix J pnq , the residue can be explicitly computed using equation (5.1.13).

To start with, we consider the following function Thus replacing it in the first integral above we get ˆγn

`Yγ n ´Tr ``´Θ pnq ``Ξ pnq `˘1 `Θpnq ´`Ξ pnq ´˘1 ˘iλ σ3 ˘dλ 2πi " ´ˆγ n `Yγ n ´Tr ```J pnq ˘´1 Θ pnq ´``Ξ pnq ´˘1 J pnq `Ξpnq ´`J pnq ˘1˘´Θ pnq ´`Ξ pnq ´˘1 iλσ 3 ˘˘dλ 2πi " ´ˆγ n `Yγ n ´Tr ```J pnq ˘´1 Θ pnq ´`Ξ pnq ´˘1 J pnq ``J pnq ˘´1 J 1 ´Θpnq ´`Ξ pnq ´˘1 ˘iλσ 3 ˘dλ 2πi " ´ˆγ n `Yγ n ´Tr `Θpnq ´`Ξ pnq ´˘1 `Jpnq iλσ 3 `Jpnq ˘´1 ´iλσ 3 ˘˘dλ 2πi " ˆγn `Yγ n ´Tr ˆΘpnq ´`Ξ pnq ´˘1 d dS J pnq `Jpnq ˘´1 ˙dλ 2πi ,
where in the last passages we used the invariance of the trace by conjugation and the fact that the quantity `Jpnq ˘´1 `Jpnq ˘1iλσ 3 is trace free.

Finally, using the asymptotic expansion at 8 given in (5.1.7), we get that This notion was first introduced in [JMU81], and then generalized for example in [START_REF] Bertola | The dependence on the monodromy data of the isomonodromic tau function[END_REF]. With Theorem 5.1.9 we recover for any Airy matrix Hankel operator (5.1.2) the relation between the Fredholm determinant F pnq ps 1 , . . . , s r q and the isomonodromic tau function associated to the Riemann-Hilbert Problem 5.1.5, that was proved in Theorem 4.1 of [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] for Fredholm determinants of generic matrix Hankel operators.

Finally, in order to use the formula (5.1.10) for the logarithmic derivative of F pnq ps 1 , . . . , s r q, we need to find out whether the solution Ξ pnq of the Riemann-Hilbert Problem 5.1.5 exists or not. In particular, we are going to see that under certain assumptions on the constant matrix C, the existence of Ξ pnq is assured. The following result is indeed a generalization of Theorem 5.1 in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF], for the generalized Airy matrix operators defined in (5.1.2), i.e. the case n ą 1.

Theorem 5.1.11. Let the matrix C be Hermitian, then the solution Ξ pnq of the Riemann-Hilbert Problem 5.1.5 exists if and only if the eigenvalues of C lay in the interval r´1, 1s.

Before starting the proof of Theorem 5.1.11, we state the following lemma. For n " 1 the result is known from [START_REF] Basor | Determinants of Airy operators and applications to random matrices[END_REF][START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF]. In the following we adapted the proof to the case of generic n. For finite z P R, we introduce the operator

`Φz Ai2n`1 f ˘pxq " ˆ`8 z Ai 2n`1 px `yqf pyq dy, f P L 2 pRq.
Lemma 5.1.12. For any n P N we consider the Airy transform Φ Ai2n`1 acting on f P L 2 pRq X L 1 pRq as Proof. We consider Φ Ai2n`1 the Airy transform acting as defined in (5.1.15), where inside the integral we have the scalar Airy function Ai 2n`1 defined in (5.1.1), without any shift and for real values of x. We introduce the Fourier transform F and its inverse F ´1 defined on L 2 pRq X L 1 pRq (and extended to L 2 pRq by continuity and density argument), in the standard way as

pΦ Ai2n`1 f qpxq " lim zÑ´8 `Φz Ai2n`1 f ˘pxq " lim
pFhqpxq :" 1 ? 2π ˆR hpλq expp´ixλq dλ, F ´1 :" FI " IF,
where pIhqpxq " hp´xq, and the multiplication operator by exp `ix 2n`1 2n`1 ˘, denoted by M n . Then we observe that the Airy transform Φ Ai2n`1 can be rewritten as the composition of these operators, in such a way that

Φ Ai2n`1 " F ´1M n F ´1 " FIM n IF " FM ´1 n F " Φ ´1 Ai2n`1 . This implies that lim zÑ´8 ˇˇˇˇΦ z Ai2n`1 f ˇˇˇˇ" lim zÑ´8 ˆˆR ˇˇΦ z Ai2n`1 f pyq ˇˇ2 dy ˙1 2 " ˜ˆR ˇˇˇˆR Ai 2n`1 py `uqf puqdu ˇˇˇ2 dy ¸1 2 " ||f ||, (5.1.16)
the norms being in L 2 pRq.

Now we prove by contradiction the last inequality ˇˇˇˇˇˇΦ z

Ai2n`1 ˇˇˇˇˇˇď 1 for the L 2 ppz, `8qq operator norm.

Suppose that there exist a scalar µ and an eigenfunction g z P L 2 ppz, `8qq such that Φ z Ai2n`1 g z " µg z

Chapter 5 -The matrix Painlevé II hierarchy and |µ| ą 1. Then we can define g P L 2 pRq as gpyq "

$ & % g z pyq, for y ě z, 0, for y ă z, and we obtain for z ď z that Φ z Ai2n`1 gpyq " Φ z Ai2n`1 g z pyq " µg z pyq " µgpyq for y ě z. Finally, since |µ| ą 1, we have

ˇˇˇˇΦ z Ai2n`1 g ˇˇˇˇL 2 pRq ě ˇˇˇˇΦ z Ai2n`1 g ˇˇˇˇL 2 ppz,`8qq " |µ|||g|| L 2 ppz,`8qq ą ||g|| L 2 pRq
and this is in contradiction with equation (5.1.16).

We can finally provide a complete proof of Theorem 5.1.11.

Proof. By applying Theorem 3.3.4 (i.e. Theorem 3.1 of [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF], which generalizes the fundamental result obtained first in [START_REF] Its | Differential equations for quantum correlation functions[END_REF]) to the sequence of operators `Kpnq ˘2, n ě 1, we have that the solution Ξ pnq of the Riemann-Hilbert Problem 5.1.5 exists if and only if the operator Id ´`K pnq ˘2 is invertible. This is guaranteed by the non vanishing condition of the quantity det `Id ´`K pnq ˘2˘" det `Id ´Ai 2 2n`1 ˘(the equality follows as before from Theorem 3.3.1 i.e. Corollary 2.1 of [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF]) that is verified if the operators Ai 2n`1 are such that |||Ai 2n`1 ||| ă 1. Here and in the following, ||| ¨||| stands for the operator norm induced from the L 2 -norms on the domain and codomain of the relevant operator.

Supposing that the eigenvalues of C are in the interval r´1, 1s, we are going to show that the inequality for the operator norm of Ai 2n`1 holds. Since the operators Ai 2n`1 defined in (5.1.2), are constructed by shifting by some component of s the Airy function, we first observe that :

|||Ai 2n`1 ||| " ˇˇˇˇˇˇP s Ai 0 2n`1 P s ˇˇˇˇˇˇ,
where Ai 0 2n`1 is the operator without any shift, namely Ai 0 2n`1 f pxq :" ˆR`A i 2n`1 px `y, 0qf pyq dy.

considered from and to the space À r k"1 L 2 prs k , `8q, Cq and P s is the orthogonal projection

P s : L 2 `R, C r ˘ÝÑ r à k"1 L 2 prs k , `8q, Cq
acting diagonally as P s :" diagpχ rs k ,`8q q r k"1 . From equation (5.1.3), we can see the matrix operators Ai 2n`1 written in terms of the scalar operators Φ z Ai2n`1 through tensor product. In particular, when there is no shift we simply have

Ai 0 2n`1 " C b Φ 0 Ai2n`1 .
Finally, using the property of the scalar operator Φ z Ai2n`1 proved in Lemma 5.1.12, we conclude that

ˇˇˇˇˇˇA i 0 2n`1 ˇˇˇˇˇˇ" |||C||| ˇˇˇˇˇˇΦ 0 Ai2n`1 ˇˇˇˇˇˇď |||C|||,
where the matrix norm of C above is induced by the 2-norm on C r , i.e., it corresponds to the spectral radius of C. Then we have

|||Ai 2n`1 ||| ď |||P s ||| ˇˇˇˇˇˇA i 0 2n`1 ˇˇˇˇˇˇ| ||P s ||| ă |||C||| ď 1,
and this concludes the proof of one of the implications in the statement.

In order to prove the other implication, we suppose that there exists λ 0 eigenvalue of C such that |λ 0 | ą 1, with corresponding eigenvector v 0 P C r . In this case, we will be able to construct a nonzero function f s pxq such that there exist a value s 0 for which Ai 2 2n`1 f s0 pxq " f s0 pxq, so we have that the operator Id ´Ai 2 2n`1 is not invertible and thus the solution of the Riemann-Hilbert Problem 5.1.5 does not exist. Indeed, consider f pxq :" v 0 f pxq, for any scalar function f P L 2 pRq. Then applying the operator Ai 2 2n`1 with a shift s " ps, . . . , sq for a certain s P R we have

Ai 2 2n`1 f pxq " λ 2 0 v 0 ˆR`K Ai2n`1 px `s, y `sqf pyq dy,
where K Ai2n`1 is the n-th generalized scalar Airy kernel (cfr. equation (1.2.34)). The corresponding kernel operator is self-adjoint, trace-class and in particular compact, acting on L 2 prs, 8qq (see e.g. [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF]).

We consider its maximum eigenvalue µpsq and the corresponding eigenfunction f s pxq. Finally by taking f s pxq " v 0 f s pxq we get

Ai 2 2n`1 f s pxq " λ 2 0 µpsqf s pxq.

Since λ 2 0 ą 1 and µpsq is a continuous function such that µpsq Ñ 1 for s Ñ ´8 and µpsq Ñ 0 for s Ñ `8, there exist a value s 0 P R for which the above equation reads as Ai 2 2n`1 f s0 px, s 0 q " f s0 pxq.

And this completes the proof.

Remark 5.1.13. As a byproduct of the theorem above, we have that the operator Ai 2 2n`1 is bounded from above by the identity. We can actually show that Ai 2 2n`1 is also limited from below : indeed they are all totally positive on C :" t1, . . . , ru ˆR (for n " 1 [BC12] already proved it, and here we extend the proof for all n). The main idea to show this is to interpret Ai 2 2n`1 as a scalar function on C ˆC, in this way : for any couple pξ 1 , ξ 2 q " ppj 1 , x 1 q, pj 2 , x 2 qq P C ˆC we have

Ai 2 2n`1 pξ 1 , ξ 2 q " r ÿ k"1 c j1,k c k,j2 ˆR`A i 2n`1 px 1 `z `sj1 `sk qAi 2n`1 px 2 `z `sj2 `sk q dz.
In this way the claim is proved if we prove that for any natural L, the quantity det `Ai 2 2n`1 pξ a , ξ b q ˘a,bďL is positive.

In order to do this, we first rewrite Ai 2 2n`1 pξ 1 , ξ 2 q using the product measure dµpξq on C given by the product of the counting measure on t1, . . . , ru and the Lebesgue measure on R. Thus Ai 2 2n`1 pξ a , ξ b q " ˆC`F

2n`1 pξ a , ζqF 2n`1 pζ, ξ b q dµpξq, (5.1.17)

where we defined the function F 2n`1 pξ a , ζq " c ja,k Ai 2n`1 px 1 `z `sja `sk q. In this way we can determine the sign of the determinant, indeed det `Ai 2 2n`1 pξ a , ξ b q ˘a,bďL " det ˜ˆC`F 2n`1 pξ a , ζqF 2n`1 pζ, ξ b q dµpξq ¸a,bďL

" 1 L! ˆCL `detpF 2n`1 pξ a , ξ c qq detpF 2n`1 pξ c , ξ a qq L ź c"1 dµpξ c q " 1 L! ˆCL `| detpF 2n`1 pξ a , ξ c qq| 2 L ź c"1 dµpξ c q ą 0,
where in the first passage we used a general property in measure theory, the Andreief identity (see here [START_REF] Baik | Combinatorics and random matrix theory[END_REF] for details), and in the last one we used the fact that C is hermitian.

In conclusion, by taking C an hermitian matrix with eigenvalues laying in the interval r´1, 1s, any

Ai 2 2n`1 is hermitian and thanks to Theorem 5.1.11 and the previous remark, we can say that any Ai 2 2n`1 defines a determinantal point processes on that space of configuration C (directly by applying Theorem 2.1.5). In particular this implies that the Fredholm determinants F pnq ps 1 , . . . , s r q are the joint probability of the last points for some multi-process on R (by Corollary 2.1.9), namely F pnq ps 1 , . . . , s r q " P `xmax i ă s i , i " 1, . . . , r ˘.

Matrix Painlevé II hierarchy

In this section, we are finally going to define our noncommutative Painlevé II hierarchy. In the following, we will consider U p sq, W p sq as functions depending on the parameters s 1 , . . . , s r with values in Matpr ˆr, Cq.

In this context we will use the standard notation for the commutator and anticommutator between two matrices : rA, ¨s " A ¨´¨A and rA, ¨s`" A ¨`¨A.

In order to define a fully noncommutative version of the PII hierarchy, as already anticipated in the introduction, we first define a sequence of differential polynomials L n rU s through a matrix version of the

Matrix Painlevé II hierarchy

Lenard operators. Following [START_REF] Gordoa | On matrix Painlevé hierarchies[END_REF] : denotes the corresponding formal antiderivative. The locality of these operators computed in U follows from Theorem 6.2 in [START_REF] Olver | Classification of integrable one-component systems on associative algebras[END_REF].

L 0 rU
Example 5.2.1. The first of the differential polynomials in U given by the recursive formula (5.2.1) read as follows :

L 1 rU s " U, L 2 rU s " U 2S `3U 2 , L 3 rU s " U 4S `5rU, U 2S s ``5U 2 S `10U 3 .
From n ě 3 the "noncommutative" character of these operators appears in form of anticommutators.

Remark 5.2.2. In the example above and in the following we use the shorter notation `d dS ˘nU " U nS for any n P N.

Definition 5.2.3. We define a matrix PII hierarchy as follows PII pnq NC rα n s : ˆd dS `rW, ¨s`˙Ln rU s " p´1q n`1 4 n rS, W s ``a n I r , (5.2.2)

where U is as in the scalar case, the Miura transform of the function W , i.e., U :" d dS W ´W 2 , and a n are scalar constants.

In particular we will study the homogeneous hierarchy, setting a n " 0 for each n. 

t l ˆd dS `rW, ¨s`˙Ll rU s " p´1q n`1 4 n rS, W s ``a n I r ,
for some scalars t 1 , . . . , t n´1 . We recover the hierarchy (5.2.2) setting up these scalars to 0. Another matrix hierarchy was introduced in [GPZ16], but there the time variable is a scalar.

Example 5.2.5. Here are the first three equations of the homogeneous hierarchy (5.2.2).

' For n " 1 we obtain the noncommutative analogue of the homogeneous PII equation :

PII NC : W 2S " 2W 3 `4rS, W s `.
(5.2.3)

This coincides with the homogeneus version of the fully noncommutative PII equation studied in [START_REF] Retakh | Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation[END_REF], in a more general context of any noncommutative algebra with derivation.

' For n " 2 we have the 4-th order equation :

PII p2q NC : W 4S " 6W 5 `4" W 2 , W 2S ‰ ``2W W 2S W `2" W 2 S , W ‰ 6W S W W S ´42 rS, W s `.
' For n " 3 we have the 6-th order equation :

PII p3q NC : W 6S " 20W 7 ´15 " W 2S , W 4 ‰ ´20W 2 W 2S W 2 ´10 " W W 2S W, W 2 ‰ 10 " W 2 S , W 3 ‰ `´15 " W W 2 S W, W ‰ `´20W S W 3 W S ´25 " W S W W S , W 2 ‰ `´5 " W S W 2 W S , W ‰ `´10W W S W W S W `6" W 4S , W 2 ‰ `2W W 4S W `4pW S W 3S W ``W W 3S W S q `9pW W S W 3S `W3S W S W q `15pW S W W 3S `W3S W W S q `25 " W 2S , W 2 S ‰ ``20W S W 2S W S `11 " W 2 2S , W ‰ ``20W 2S W W 2S `43 rS, W s `.
A fundamental property of matrix Lenard operators (that we are going to use in the next section in order to find the Lax pair for the hierarchy (5.2.2)) is given by the following formula (see [START_REF] Gordoa | On matrix Painlevé hierarchies[END_REF]). This formula is achieved by the direct computation of the recursive formula for the noncommutative Lenard operators computed in the Miura transform U " W S ´W 2 . It is exactly the analogue of the factorization formula (1.2.14) that we described in the scalar case treated in Chapter 1.

The isomonodromic Lax pair

In this section we are finally going to find out a Lax pair for the noncommutative hierarchy (5.2.2), making use of the Riemann-Hilbert Problem 5.1.5 introduced in Section 5.1.

To start with, we consider a new sequence of functions, defined using the solution of the Riemann-Hilbert Problem 5.1.5. Definition 5.3.1. For each n P N, we construct Ψ pnq pλ, sq :" Ξ pnq pλq exp `θpnq pλq b σ 3 ˘.

It is easy to check that these functions Ψ pnq ( nPN actually solve a new sequence of Riemann-Hilbert problems, with constant jump conditions. Namely, the following problems. ' the asymptotic condition for |λ| Ñ 8

Riemann

Ψ pnq pλq " ˜I2r `ÿ jě1 Ξ pnq j λ j ¸exp `θpnq pλq b σ 3 ˘.
As it is standard in the theory of isomonodromic deformations, we deduce the Lax pair for the noncommutative PII hierarchy (5.2.2) from the Riemann-Hilbert problems with piecewise constant jumps solved by Ψ pnq . The main idea is the following : using the fact that each Ψ pnq has constant jump condition (i.e., the jump matrix K pnq does not explicitly depend on the spectral parameter λ or the deformations parameters s i , i " 1, . . . , r), we can thus conclude that the quantities d dS Ψ pnq `Ψpnq ˘´1 ": L pnq and B Bλ Ψ pnq `Ψpnq ˘´1 ": M pnq (5.3.1) are matrix-valued polynomials in λ.

Remark 5.3.3. Here the inverse of Ψ pnq is simply given by `Ψpnq ˘´1 pλq " exp `´θ pnq pλq b σ 3 ˘Θpnq pλq.

Furthermore, by using the symmetries of the Riemann-Hilbert Problem 5.1.5, we can compute the exact form of the coefficients of these polynomials L pnq , M pnq .

The final result is summarized in the proposition below.

Proposition 5.3.4. There exist two polynomial matrices in λ, which we denote with L pnq and M pnq , respectively of degree 1 and 2n, such that the following system of differential equations is satisfied : 

d dS Ψ pnq pλ
n ÿ k"0 i 2 λ 2n´2k A 2n´2k p sq, with A 2n " I r , Gpλ, sq " n ÿ k"1 i 2 λ 2n´2k G 2n´2k p sq, Epλ, sq " n ÿ k"1 i 2 λ 2n´2k`1 E 2n´2k`1 p sq, F pλ, sq " n ÿ k"1 i 2 λ 2n´2k`1 F 2n´2k`1 p sq.
Proof. We start computing the logarithmic derivative of Ψ pnq w.r.t. S, namely the quantity that we defined in (5.3.1) as d dS Ψ pnq `Ψpnq ˘´1 :" L pnq .

The matrix-valued function L pnq is entire in λ, since it has no jumps along γ n `Y γ n

´. Furthermore, its asymptotic behavior at infinity is given by a matrix polynomial of degree 1 in λ. Thus, by the generalized Liouville theorem, we conclude that L pnq is exactly a matrix polynomial of degree 1 in λ.

In particular from the asymptotic expansion at 8, we find an explicit form of its matrix coefficients.

Here and in the following series expansions in powers of λ we will use the notation r s ě0 to indicate that we are taking only the powers λ r with r ě 0.

L pnq pλq " d dS Ψ pnq `Ψpnq ˘´1 " «˜I 2r `ÿ jě1 Ξ pnq j λ j ¸iλσ 3 ˜I2r `ÿ jě1 Θ pnq j λ j ¸ffě0 " iλσ 3 `i`Ξ pnq 1 σ3 `σ 3 Θ pnq 1 ˘" iλσ 3 `i" Ξ pnq 1 , σ3 ‰ " iλσ 3 `2β pnq 1 b σ 1 ,
where in the last two passages we used the fact that Θ pnq 1 " ´Ξpnq 1 and then the symmetry (5.1.8).

We can then consider the second quantity defined in (5.3.1), namely

B Bλ Ψ pnq `Ψpnq ˘´1 ": M pnq .
We use the same argument as for L pnq . Indeed, also M pnq is entire in λ, since it has no jumps along

γ n `Y γ n ´.
Its asymptotic behavior at infinity is given by a matrix polynomial of degree 2n in λ. We thus conclude, by the generalized Liouville theorem, that M pnq is exactly a matrix polynomial in λ of degree 2n. In particular from the asymptotic expansion at 8 we can find an explicit form of this matrix :

M pnq pλq " B λ Ψ pnq `Ψpnq ˘´1 " «˜I 2r `ÿ jě1 Ξ pnq j λ j ¸ˆˆi λ 2n I r 2 `iS ˙b σ 3 ˙˜I 2r `ÿ jě1 Θ pnq j λ j ¸ffě0 " iλ 2n 2 σ3 `iS b σ 3 `2n ÿ l"1 iλ 2n´l 2 ˜Ξpnq l σ3 `σ 3 Θ pnq l `ÿ j : j`k"l Ξ pnq j σ3 ˜l´1 ÿ k"1 Θ pnq k ¸"M pnq 2n´l
.

In order to obtain the remaining part of the statement, we use the following lemma.

Lemma 5.3.5. The coefficient of the term λ 2n´l in the matrix M pnq is such that :

' if l " 2m, then M pnq 2n´2m " A 2n´2m p sqσ 3 `G2n´2m p sqσ 2 ; ' if instead l " 2m ´1, then M pnq 2n´2m`1 " E 2n´2m`1 p sq b I 2r `F2n´2m`1 p sqσ 1 .
Proof. The proof is a direct consequence of the symmetry property that the asymptotics coefficients of Ξ pnq , Θ pnq have. We start with the even case l " 2m. The coefficient of the term λ 2n´2m in the matrix M pnq is given by the following sum :

M pnq 2n´2m " ˜Ξpnq 2m σ3 `σ 3 Θ pnq 2m `ÿ j : j`k"2m Ξ pnq j σ3 ˜2m´1 ÿ k"1 Θ pnq k ¸¸,
where in the last sum all the terms are of type

Ξ pnq 2s σ3 Θ pnq 2pm´sq or Ξ pnq 2s´1 σ3 Θ pnq 2pm´sq`1 .
Using the symmetries (5.1.8) and (5.1.9), a direct computation shows that these terms are always linear combinations of the Pauli's matrices σ2 , σ3 .

So we can conclude that

M pnq 2n´2m " A 2n´2m p sqσ 3 `G2n´2m p sqσ 2 .
where the functions A 2n´2m p sq, G 2n´2m p sq depend on the asymptotic coefficients of Ξ pnq , Θ pnq .

We work in the same way for the odd case, l " 2m ´1. The coefficient of λ 2n´2m`1 is given by the same formula

M pnq 2n´2m`1 " ˜Ξpnq 2m´1 σ3 `σ 3 Θ pnq 2m´1 `ÿ j : j`k"2m´1 Ξ pnq j σ3 ˜2m´2 ÿ k"1 Θ pnq k ¸¸,
where in the last sum there are just terms of the two following types

Ξ pnq 2s σ3 Θ pnq 2pm´sq´1 or Ξ pnq 2s´1 σ3 Θ pnq 2pm´sq .
In both of the cases, always replacing the symmetries (5.1.8) and (5.1.9), they result to be linear combinations of I 2r , σ1 . Thus we can finally conclude that

M pnq 2n´2m`1 " E 2n´2m`1 p sq b I 2r `F2n´2m`1 p sqσ 1 .
Thanks to this lemma, the form of the matrix M pnq is exactly the one of the statement and the proposition is completely proved.

Remark 5.3.6. 2 rW, A 0 p sqs `for k " 1, . . . , n.

(5.3.5)

In order to prove the statement, we are going to prove by induction over l " 2n ´j that each coefficient

A 2n´2k , E 2n´2k`1 , G 2n´2k , F 2n´2k`
1 is given by the formulae (5.3.4) and that this implies that the last equation in the system (5.3.5) is exactly the n-th member of the PII hierarchy (5.2.2).

We first check that for l " 2n ´1, 2n ´2 the formulae (5.3.4) are solutions of the equations (5.3.5),

i.e., the coefficients F 2n´1 , E 2n´1 , G 2n´2 , A 2n´2 , are given by these formulae.

Since A 2n " I r , the equation d dS A 2n " 0 is satisfied. Then, the equation for F 2n´1 will be satisfied for

F 2n´1 " ´iW,
that is exactly the result of the formula in (5.3.4) for k " 1, since ´i ˆ´1 4 ˙0 ˆˆrW, ¨s``d dS ˙L0 rU s ˙" ´iW.

As a consequence, the equation for the coefficient E 2n´1 in the system (5.3.5) becomes d dS E 2n´1 p sq " 0, thus E 2n´1 is constant w.r.t. the variable S and it is in particular E 2n´1 " 0, because of the asymptotics of Ψ pnq . This is also what is given by the formula for k " 1 :

´i ˆ´1 4 ˙0 d dS ´1 ˆrW, ¨s ˆrW, ¨s``d dS ˙L0 rU s ˙" 0.
We can then compute the term G 2n´2 for which the equation in (5.3.5) is now

G 2n´2 " ´1 2 d dS p´iW q " i 2 W S ,
that coincides with the formula i 2

ˆ´1 4 ˙0 ˆˆd dS ´rW, ¨s d dS ´1rW, ¨s˙ˆd dS `rW, ¨s`˙L0 rU s ˙" i 2 d dS W.
Finally, we can compute the term A 2n´2 . It is supposed to satisfy, from the system (5.3.5), the equation

d dS A 2n´2 " ´irW, G 2n´2 s `" 1 2 rW, W S s `.
Integrating and taking the constant of integration another time equal 0 (for the same reason used above)

we get

A 2n´2 " 1 2 W 2 .
The same that is given by the formula

´1 2 ˆ´1 4 ˙0 ˆL1 rU s ´ˆd dS ´rW, ¨s d dS ´1rW, ¨s˙ˆd dS `rW, ¨s`˙L0 rU s " ´1 2 `WS ´W 2 ´WS ˘.
Thus for k " 1 the formulas in (5.3.4) gives solutions of the system (5.3.5).

Now we proceed by induction : supposing that for l " 2n ´2k `1 the coefficients E 2n´2k`1 , F 2n´2k`1 are given by the formulas (5.3.4), we will find that then also the coefficients for l " 2n ´2k and l " 2n ´2k ´1 have the form given by the formulas (5.3.4). Indeed, from the equations in (5.3.5), we have where in the last line we used another time property (5.2.4) of the matrix Lenard operators. Finally, the formula for E 2n´2k´1 directly follows from the equation above and taking the integration contant equal 0, while integrating the equation (5.3.5).

G 2n´2k p sq " 1 2 ˆ´d dS F 2n´2k`1 p sq `rW, E 2n´2k`1 p sqs ˙" ´1 2 ˜´i ˆ´1 4 
In the end, when we replace the formulas for G 0 , A 0 in the last equation of the system (5. Also, the proof by induction previously done, it is inspired by the technique used in [START_REF] Clarkson | The Lax pair for the mKdV hierarchy[END_REF].

We can then state and prove the final result of this study, that links solutions of the homogeneus matrix Painlevé II hierarchy (5.2.2) to Fredholm determinants of the matrix Airy operators.

Corollary 5.3.9. There exists a solution W of the n-th member of the PII hierarchy (5.2.2) connected to Fredholm determinant of the n-th Airy matrix operator (5.0.3) through the following formula ´Tr `W 2 p sq ˘" d 2 dS 2 ln `F pnq ps 1 , . . . , s r q ˘.

(5.3.6)

This solution W has boundary behavior pW q r k,l"1 " ´2pc kl Ai 2n`1 ps k `sl qq r k,l"1 in the regime s Ñ `8 with |δ j | ď m for every j, where s :"1 r ř r j"1 s j is the baricenter of the variables s j , and δ j :" s j ´s.

Proof. We first prove the formula (5.3.6). The statement is achieved by Theorem 5.1.9 and the relation between

α pnq 1 , β pnq 1
given by d dS α pnq 1

" ´2i

`βpnq 1 ˘2.

(5.3.7)

This relation holds for each n and it is obtained by looking at the coefficient of the term λ ´1 in the asymptotic expansion at 8 of d dS Ψ pnq `Ψpnq ˘´1 , and recalling that it must be 0. Indeed, from the asymptotic expansion of Ψ pnq we have that the power

λ ´1 coming from the formal asymptotic expansion of d dS Ψ pnq `Ψpnq ˘´1 is 1 " d dS Ψ pnq `Ψpnq ˘´1  ´1 " «˜I 2r `ÿ jě1 Ξ pnq j λ j ¸iλσ 3 ˜I2r `ÿ jě1 Θ pnq j λ j ¸ff´1 " i λ ˆΞpnq 2 σ3 `σ 3 Θ pnq 2 `Ξpnq 1 σ 3 Θ pnq 1 `d dS Ξ 1 ˙.
And replacing in the coefficient of λ ´1 the relations between the asymptotic coefficients of Θ pnq and the ones of Ξ pnq , namely

Θ pnq 1 " ´Ξpnq 1 , Θ pnq 2 "
`Ξpnq 1 ˘2 ´Ξpnq 2 the result is exactly the relation (5.3.7). Now we are going to prove the second part of the statement. We define the scalar variables s :" 1 r ř r j"1 s j and δ j :" s j ´s for any j " 1, . . . , r.

We are now going to study the behavior of the solution W for s Ñ `8 and |δ j | ď m @ j.

(5.3.8)

First, we rewrite the jump matrix J pnq pλ, sq of Riemann-Hilbert Problem 5.1.5 in terms of the rescaled complex parameter zs 1 2n " λ.

In particular we obtain that the jump matrices along γ n `and along γ n

´, are factorized in a product of commuting matrices, written in terms of the rescaled parameter z and the variables s, δ j . Namely,

I 2r ´2πir pnq `˘zs 1 2n ˘b σ ˘χγ n ˘`zs 1 2n " r ź k,l"1 ˆI2r `ckl e ˘is 2n`1 2n ´z2n`1 2n`1 `z´2 `δk `δl s ¯¯E k,l b σ ˘χγ n ˘pzq ˙, (5.3.9) 
where E k,l are the elementary matrices and σ `" p 0 1 0 0 q, σ ´" p 0 0 1 0 q and γn ˘are the transformed contours under the scaling λ " zs 1 2n . Now, we are going to show that each matrix in the factorization (5.3.9), that we denote by F kl , is close to the identity matrix I 2r in the regime fixed in (5.3.8). Remark that every F kl has 2n critical points, corresponding to

z h 0 " d 1 2n
kl e i π 2n p2h`1q , h " 0, . . . , 2n ´1, where d kl " 2 `δk `δl s is real, positive and bounded, while looking at the regime (5.3.8).

We can then split the curves γn ˘respectively in the curves γn ˘,kl one for each factor F kl appearing in the factorization (5.3.9). The curves γn ˘,kl pass respectively through the points z h 0 with h " 0, . . . , n ´1 (in the upper plane) and h " n, . . . , 2n ´1 (in the lower plane).

In this way, we can then evaluate the 8-norm of each term F kl ´I2r and we have

ˇˇˇˇF kl ´I2r ˇˇˇˇ8 " |c kl | sup zPγ n ˘,kl e ¯s 2n`1 2n ´z2n`1 2n`1 `zd kl ¯" |c kl |e ¯2n 2n`1 psd kl q 2n`1
2n sinp˘π 2n q Ñ 0 for s Ñ `8 and |δ j | ď m @ j.

We can conclude that the rescaled jump matrix itself J pnq `s 1 2n z ˘is close to the identity matrix in the regime (5.3.8), since each factor F kl in its factorization shares this property.

Consider now the rescaled function X pnq pzq :" Ξ pnq `zs 1 2n ˘. By using Riemann-Hilbert Problem 5.1.5 solved by Ξ pnq , we have that ' X pnq is analytic on Czγ n `Y γn ´and it admits continuous extension to these curves from either side ; ' its boundary values X ˘pzq while approaching γn `Y γn ´from the left and respectively from the right, are related through the jump condition (5.1.6) but with the rescaled jump matrix computed in (5.3.9) ; ' for |z| Ñ `8 we have X pnq " I 2r `řjě1

X pnq j z j . Remark that we have X pnq 1 " s ´1 2n Ξ pnq 1 .
By applying the small norm theorem (one version was stated in Theorem 3.1.8, i.e. Theorem 1.5.1 in [START_REF] Its | Large n asymptotics in random matrices[END_REF]), we conclude that the function X pnq pzq behaves as Finally, by recalling the definition of W and using (5.3.10) we conclude that

X pnq pzq " I 2r `O`z ´1e ´Cs 2n`1 2n ˘, s Ñ `8, |δ j | ď m @ j, ( 5 
W " ´2i `Ξpnq 1 ˘1,2 " ´2is 1 2n
ˆγ n `X pnq ´pwqr pnq `ws

1 2n ˘dw " ´2pc kl Ai 2n`1 ps k `sl qq r k,l"1 ,
in the regime (5.3.8).

Remark 5.3.10. Relation (5.3.6) can be thought as the noncommutative analogue of the results proved in [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF] for the Painlevé II equation and in [START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF][START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] for the scalar Painlevé II hierarchy, connecting the theory of Painlevé trascendents to the determinantal point processes theory. For the noncommutative Painlevé II equation (5.2.3), i.e n " 1, this link was already established in [START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF] and here we actually extended that result to the noncommutative hierarchy (5.2.2). For any fixed weight function with the above properties, we construct the following operators.

Definition 6.0.2. The finite temperature higher order Airy kernels are integral operators K t,n : L 2 pR `q Ñ L 2 pR `q acting through the kernel K t,n px, yq :" ˆR Ai 2n`1 px `z `tqAi 2n`1 pz `y `tqwpzq dz, t P R. (6.0.2)

These operators K t,n are proved to be trace class on L 2 pR `q so that their Fredholm determinants D n pt, λq :" detp1 ´λK t,n q (6.0.3) are well defined for any pt, λ, nq P R ˆC ˆN. As it happens in the scalar case for the Airy kernels (1.2.34), and in the matrix-valued generalization for the square of the Hankel Airy operators defined in (5.1.2), also in this finite temperature case the operators λK t,n define uniquely a determinantal point process for every pt, λ, nq P R ˆr0, 1s ˆN, so that the Fredholm determinants D n pt, λq are the distribution functions of the last particle in this process. In this specific case, the interest in the study of the Fredholm determinants D n pt, λq is moreover given by the applications that they have in statistical mechanics. Indeed, they were used in the paper [START_REF] Le Doussal | Multicritical edge statistics for the momenta of fermions in nonharmonic traps[END_REF] to describe some statistical quantities related to a model of free fermions in anharmonic traps at finite temperature. More specifically, in this paper the authors explained how D n pt, 1q, when the weight function w is chosen to be the Fermi factor, is equal to the edge scaling limit of the probability distribution of the largest momenta in this specific fermionic model. This was indeed the main motivation for us to study the Fredholm determinants D n pt, λq. For other occurences of these Fredholm determinants see for instance [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF][START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF]. In particular, our first aim was to find a Definition 6.0.3. Given a function R 2 Q pt, xq Þ Ñ f pt|xq, we denote by D t the ordinary t-derivative and by D ´1 t the t-antiderivative, so that pD ´1 t D t f qpt|xq " f pt|xq. Now define, for given u " upt|xq,

pL u `f qpt|xq :" ipD t f qpt|xq ´i@ pD ´1 t tu, f uqpt|x, ¨q, u D ´2i `D´1 t xu, f y ˘upt|xq, pL u ´f qpt|xq :" ipD t f qpt|xq `i@ pD ´1 t ru, f sqpt|x, ¨q, u D ,
where the rank two integral operators rα, βs :" α b β ´β b α and tα, βu :" α b β `β b α have kernels rα, βspt|x, yq " αpt|xqβpt|yq ´βpt|xqαpt|yq, tα, βupt|x, yq " αpt|xqβpt|yq `βpt|xqαpt|yq, and x¨, ¨y denotes the weighted bilinear form xf, gy :" ˆR f pt|xqgpt|xqw 1 pxq dx, w 1 pxq " dw dx pxq.

The relevant integro-differential Painlevé II hierarchy is then defined as a sequence of integro-differential equations through the recursion operators L u ˘in the following way. Definition 6.0.4. For each n P N, the n-th member of the integro-differential Painlevé II hierarchy is defined, for a function u " upt|xq, as ´pt `xqupt|xq " `pL u `Lu ´qn u ˘pt|xq (6.0.4)

In particular, using the shorthand u " upt|xq, u 1 " pD t uqpt|xq, u 2 " pD 2 t uqpt|xq, u 3 " pD 3 t uqpt|xq, . . . the first three members read as n " 1 : pt `xqu " u 2 ´2uxu, uy, (6.0.5)

n " 2 : ´pt `xqu " u 4 ´4u 2 xu, uy ´8u 1 xu 1 , uy ´6uxu, u 2 y ´2uxu 1 , u 1 y `6uxu, uy 2 , (6.0.6)

n " 3 : pt `xqu " u 42 ´6u 4 xu, uy ´8uxu 4 , uy ´24u 3 xu 1 , uy ´19u 1 xu, u 3 y ´13uxu 3 , u 1 y ´31u 2 xu 2 , uy ´11uxu 2 , u 2 y ´25u 2 xu 1 , u 1 y ´45u 1 xu 2 , u 1 y `15u 2 xu, uy 2
`55uxu, uyxu 2 , uy `60u 1 xu 1 , uyxu, uy `25uxu 1 , u 1 yxu, uy `55uxu 1 , uy 2 ´20uxu, uy 3 . (6.0.7)

We observe that for the choice of the weight function w 1 pxq " δ 0 pxq (the delta function at x " 0) the classical equations (1.2.23), (1.2.24) and (1.2.25) are recovered from the above ones, at least formally.

Remark 6.0.5. Even though the operators L u ˘involves t-antiderivatives, the members of the hierarchy (6.0.4) are always local. Indeed all the terms involving D ´1 t , are shown to be local.

Remark 6.0.6. The choice of the weight function w enters in the definition of the recursion operators L u ˘and thus of the hierarchy (6.0.4) and its solution upt|xq. But the dependence on w of upt|xq is not underlined in our notation.

Even though the definition of this integro-differential Painlevé II hierarchy is new, equations (6.0.5) and (6.0.6) already appeared in different papers. With w being the Fermi factor, equation (6.0.5) appeared in [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF], while both equations (6.0.5), (6.0.6) appeared in this recent work [START_REF] Krajenbrink | From Painlevé to Zakharov-Shabat and beyond : Fredholm determinants and integro-differential hierarchies[END_REF] where the author was studying the Fredholm determinants D n pt, 1q in relation to some Painlevé II trascendents but without the underlying Lax pairs. The main statement of this chapter, Theorem 1.2 of [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF], is as follows.

Theorem 6.0.7. For every pt, λ, nq P R ˆD1 p0q ˆN, with the closed unit disk D 1 p0q :" tλ P C : |λ| ď 1u,

D n pt, λq " exp " ´ˆ8 t ps ´tq ˆˆR u 2 ps|xqw 1 pxq dx ˙ds  , (6.0.8)
where upt|xq " upt|x; n, λq is the unique solution of the boundary value problem ´pt `xqupt|xq " `pL u `Lu ´qn u ˘pt|xq, upt|xq " λ 1 2 Ai 2n`1 pt `xq, t Ñ `8. (6.0.9)

The mapping t Þ Ñ upt|x; n, λq is smooth for any px, λ, nq P R ˆD1 p0q ˆN, the asymptotic expansion in (6.0.9) holds pointwise in x P R and we choose an arbitrary fixed branch for λ 1 2 .

Remark 6.0.8. Our Theorem 6.0.7 recovers for n " 1, λ " 1 Proposition 1.2 of [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF]. Although the method used in that paper is completely different from the method we are going to use here. The same result for that particular choice of the parameters was proved again in [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF] using operator-valued Riemann-Hilbert technique, and this is indeed the paper that mostly inspired our methodology here.

However, we notice that the Riemann-Hilbert problem used in [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF], for the case n " 1, λ " 1, is different from the one used here.

The rest of the Chapter is devoted to the proof of Theorem 6.0.7. This requires essentially four steps, each one treated in the following sections.

' In Section 6.1 we prove the main properties of the finite temperature higher order Airy kernels on L 2 pR `q. After that, by using a Fourier technique we prove that the Fredholm determinants D n pt, λq are equals to the ones of some new integral operators acting on a bigger space L 2 pΣq, with Σ the contour introduced in (6.1.27). In particular these new operators can be considered as an infinite dimensional versions of the standard integrable operators. This kind of operators can be studied through operator-valued Riemann-Hilbert problems, and this is done in Section 6.2.

' In Section 6.3 we deduce an operator-valued system of differential equations, w.r.t. the complex parameter ζ and the deformation parameter t, starting from the solution Xpζq of the Riemann-Hilbert problem 6.2.1. The main ingredient in this computation is the relation proved in Corollary 6.2.13. Moreover, we prove that this system is an operator-valued Lax pair for a coupled system of Painlevé II type equations, involving the operators U, V defined in (6.2.40) in Section 6.2.

' Finally in Section 6.4 we prove that the Lax pair deduced in the previous section, yields the integrodifferential Painlevé II hierarchy (6.0.4). This is obtained from the reduction of the coupled systems of differential equations for the operators U, V , by looking at their kernels.

Remark 6.0.9. In the work [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF] we also derived an expression for the Fredholm determinants D n pt, λq similar to equation (6.0.8) but involving instead of upt|xq another function vpt 1 , t 2n`1 |xq that turns out to be a distinguished solution of an integro-differential modified KdV hierarchy. The result is obtained exactly in the same way as Theorem 6.0.7, but in the case where the weight function w actually depends on a positive real parameter α. Defining the new variables depending on α, n, t as t 1 :" αt P R, t 2n`1 :" α 2n`1 2n `1 P R `, (6.0.10) this new integro-differential modified KdV hierarchy is then defined as

Bv Bt 2n`1 pt 1 , t 2n`1 |xq " ˆpL v ´Lv `qn Bv Bt 1 ˙pt 1 , t 2n`1 |xq, pt 1 , t 2n`1 , xq P R ˆR`ˆR . (6.0.11)
The first equation of the hierarchy is written as

Bv Bt 3 " ´B3 v Bt 3 1 `3 Bv Bt 1 xv, vy `3v B Bv Bt 1 , v F , (6.0.12)
where x¨, ¨y denotes the weighted bilinear form as defined previously in Definition 6.0.3. For the exact statement and its proof we refer to Section 7 of [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF].

Manipulating the finite temperature Airy kernels

First of all, we verify that the Fredholm determinant of the higher order finite temperature Airy kernels defined in (6.0.8) are well defined on L 2 pR `q. This is obtained through a classical argument : we prove that the operator K t, is obtained as a composition of Hilbert-Schmidt operators on L 2 pR `q for every pt, nq P R ˆN. Lemma 6.1.1. The operator K t,n is trace-class on L 2 pR `q for every pt, nq P R ˆN.

Proof. Recall the definition of the kernel of the operator K t,n given in (6.0.3). We can directly see that the composition of the two operators M t,n : L 2 pRq Ñ L 2 pR `q and N t,n : L 2 pR `q Ñ L 2 pRq acting as pM t,n f q pxq " ˆR`a wpxqAi 2n`1 px `y `tqf pyqdy and pN t,n gq pxq " ˆR Ai 2n`1 px `y `tqgpyq a wpyqdy (6.1.1)

gives exactly the operator K t,n " N t,n M t,n . It remains then to prove that the operators N t,n , M t,n are both Hilbert-Schmidt. In both cases, we need the following condition to hold ˆR ˆR`| Ai 2n`1 px `y `tq| 2 wpxqdydx ă 8. (6.1.2)

The estimate above is essentially obtained by splitting the external integral along R and by using the asymptotic properties of the n-th Airy function (see for instance equation p30q in [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF]). Also, recall the properties of the weight function wpxq given in Definition 6.0.1. In particular, we use here the fact that wpxq ď 1 for every x P R and the exponential decay wpxq ď ĉe ωx for all p´xq ě x 0 ą 0, with ĉ ą 0.

We Remark that the constant c appearing in the passages above changes from line to line and also it depends on the parameters t, n.

Some properties of K t,n

We are now going to prove a couple of properties of the operator K t,n that will be useful in the following. Notice that these properties were proved also in the previous chapter for the matrix-valued analogue of higher order Airy kernels. In particular we have that 1. the operator K t,n is self-adjoint and such that 0 ă K t,n ď 1 ;

2. 1 ´λK t,n is invertible on L 2 pR `q for every λ P D 1 p0q.

The first property yields a probabilistic interpretation for the Fredholm determinants D n pt, λq. Indeed, it directly implies (always by applying Theorem 2.1.5 and then Corollary 2.1.9) that for every λ P r0, 1s the operators λK t,n uniquely defines a determinantal point process and the Fredholm determinant D n pt, λq describes the probability distribution of the last particle in this determinantal point process. The second property is instead fundamental from a technical point view. Indeed, it assures the solvability of the Riemann-Hilbert problem 6.2.1, as we discuss in Section 6.2. Lemma 6.1.2. For every pt, nq P R ˆN the operator K t,n is self-adjoint and it satisfies 0 ă K t,n ď 1. Moreover, 1 ´λK t,n is invertible on L 2 pR `q for all λ P D 1 p0q.

Proof. The self-adjointness directly follows from the definition of the kernel of K t,n in (6.0.3). We have then to prove the chain of inequality satisfied by K t,n . To do that, we start by rewriting the kernel of K t,n , using the following trick.

From the properties of the weight function wpzq in Definition 6.0.1 and the asymptotic properties of the n-th Airy function again, we get

dK t,n dt px, yq " ´ˆR Ai 2n`1 px `z `tqAi 2n`1 py `z `tqdσpzq, (6.1.4) 
where we just integrated by parts and used the properties recalled above. Here dσpzq " w 1 pzqdz and it is a probability measure. With this in mind, by applying first dominated convergence theorem and then

Fubini's theorem we can finally express K t,n px, yq in this new fashion

K t,n px, yq " ´ˆ8 t dK s,n ds px, yqds " ˆR ˆR`A i 2n`1 py `z `t `sqAi 2n`1 px `z `t `sqdsdσpzq. (6.1.5)
Using this formulation we see that for every f P L 2 pR `q, by denoting

f `pxq " f pxqχ R`p xq then xf, K t,n f y L 2 pR`q "
ˆR « ˆ8 z`t ˇˇˇˆR Ai 2n`1 px `sqf `pxq dx ˇˇˇ2 ds ff dσpzq ě 0, (6.1.6) thus the first inequality for K t,n holds. For the other one, we start by replacing in the computation above the integral representation of the n-th Airy function with R as domain of integration. Then by denoting with f`p yq :" 1 ?

2π ´R e ´ixy f `pxqdx and by gpyq " e i y 2n`1 2n`1 f`p ´yq we get

ˆR Ai 2n`1 px `sqf `pxqdx " 1 ? 2π ˆR exp ˆi ˆy2n`1 2n 
`1 `sy ˙˙f p´yqdy " ǧp´sq. (6.1.7)

Thus we can replace this computation inside the integral in (6.1.6) and then

xf, K t,n f y L 2 pR`q " ˆR "ˆ8 z`t |ǧp´sq| 2 ds  dσpzq ď ˆR "ˆR |ǧp´sq| 2 ds  dσpzq " ||ǧ|| 2 L 2 pRq " ||g|| 2 L 2 pRq " || f`| | 2 L 2 pRq " ||f `|| 2 L 2 pRq " xf, f y L 2 pRq , (6.1.8)
where we used multiple times the Plancharel's theorem and that dσ is a probability measure. Therefore, also the second inequality for K t,n holds. Furthermore, this implies that in the L 2 pR `q operator norm we also have that ||K t,n || ď 1. This last condition also assures the invertibility on L 2 pR `q of 1 ´λK t,n for any λ having |λ| ă 1.

For the case in which |λ| " 1, we proceed by contradiction. Suppose that there exists a nonzero function f P L 2 pR `q such that λK t,n f " f for λ " e iθ and some θ P r0, 2πq . In turn we have e ´iθ xf, K t,n f y L 2 pR`q " xf, e iθ K t,n f y L 2 pR`q " ||f || L 2 pR`q ą 0 (6.1.9) thus θ is forced to be zero. Furthermore, the equations above imply that all the sequence in (6.1.8) is actually composed by identities. In particular ˆR "ˆ8 Since the integral in the left hand side of the above equation is a continuous function in y and as a byprouduct an entire function. Hence we conclude that ǧpzq " 0 for every z P C and this implies that f " 0 in L 2 pRq. This contradicts the initial assumption, and thus we have that 1 ´λK t,n is injective for λ with unitary norm. By Fredholm alternative then 1 ´λK t,n is invertible in the same range of the parameter λ.

Corollary 6.1.3. For every pt, λ, nq P Rˆr0, 1sˆN there exists a unique determinantal point process with correlation kernel λK t,n and the distribution function of the last particle in this process equals D n pt, λq.

As underlined before, this follows directly from Lemma 6.1.2, together with the classical results recalled in Chapter 2, namely Theorem 2.1.5 and Corollary 2.1.9.

From

L 2 pR `q to L 2 pΣq
This last subsection is perhaps the core of the entire section, since we are going to explain how to associate an operator-valued Riemann-Hilbert problem to the higher order finite temperature Airy kernels K t,n . The main idea is to manipulate the kernel of K t,n through the conjugation of bounded invertible operators, in order to obtain a new integral operator on an enlarged space L 2 pΣq that has the same Fredholm determinant D n pt, λq of K t,n .

Here are resumed the fundamental steps of this procedure 1. First, we consider the operator λK t,n χ R`o n L 2 pRq, which has Fredholm determinant D n pt, λq.

Moreover, this operator is shown to be equal, up to conjugation by the Fourier transform and a multiplication operator, to another trace-class operator called λJ t,n on L 2 pRq. Thus we also have that the Fredholm determinant of this new operator J t,n is expressed by D n pt, λq.

2. The operator J t,n is explicitly factorized in two Hilbert-Schmidt operators A t,n , B n on L 2 pRq.

z z π 2n`1 2nπ 2n`1 Γ α Γ β Figure 6
.1 -An admissible (and very simple) choice for the integration paths Γ α and Γ β in (6.1.15), ensuring throughout 0 ă pα ´βq ă ω 2 and β ă 0 for pα, βq P Γ α ˆΓβ .

3. We can then consider J t,n as an operator J t,n on L 2 pΓ α q for Γ α some line in the complex plane parallel to the real line and sufficiently closed to it. The factorization of J t,n is in some way preserved for J t,n on L 2 pΓ α q, through operators A t,n , B n properly redefining domain and codomain of the operators A t,n , B n . Again, λJ t,n is trace-class and its Fredholm determinant coincides with D n pt, λq.

4. Finally all these operators J t,n , A t,n , B n can be extended on a bigger space L 2 pΣq for Σ a prescribed contour on the complex plane containing the line Γ α , as

J ext t,n , A ext t,n , B ext n .
On L 2 pΣq the operator J ext t,n is still trace-class and factorized through the Hilber-Schmidt operators A ext t,n , B ext n . But now these last two operator are trace-class too on L 2 pΣq with zero operator trace and they are also nilpotent.

With these properties of A ext

t,n , B ext n , we can directly conclude the aimed relation

D n pt, λq " detp1 ´λ 1 2 C t,n q, (6.1.14) for C t,n " A ext t,n `Bext n .
The operator C t,n obtained in this way has kernel explicitly written in equation (6.1.32), in an infinite dimensional integrable form.

The starting point of all these manipulations is, again, the integral representation of the n-th Airy function, that we already used during some proofs in the previous chapter. In this case we are going to use both its integral representations Ai 2n`1 pxq " 1 2π ˆΓα e iψnpxq " 1 2π ˆΓβ e ´iψnpxq , with ψ n pxq "

λ 2n`1 2n `1 `λx (6.1.15)
where Γ α , resp. Γ β , denotes any smooth contour oriented from 8e ia to 8e ib , resp. 8e ic to 8e id , with

a P ˆ2nπ 2n `1 , π  and b P " 0, π 2n `1 ˙, resp. c P ˆπ, p2n `2qπ 2n `1 ˙and d P ˆp4n `1qπ 2n `1 , 2π ˙,
such that 0 ă pα ´βq ă ω 2 and β ă 0 is satisfied for α P Γ α and β P Γ β with ω ą 0 as in (6.0.1), see Figure 6.1 below for a possible choice. These constraints for the contours implies in turn from (6.0.1) that @ pα, βq P Γ α ˆΓβ : lim zÑ`8 zPR e izpα´βq wpzq " 0, lim zÑ´8 zPR e izpα´βq wpzq " 0.

We now replace the integral representation of the n-th Airy function inside the definition (6.0.3) of the kernel of K t,n .

K t,n px, yq " 1 p2πq 2 ˆΓα ˆΓβ e ipψnpα,x`tq´ψnpβ,y`tqq

"ˆR e izpα´βq wpzq dz

 dβdα " i p2πq 2 ˆR «
ˆΓα ˆΓβ e iψnpα,x`z`tq e ´iψnpβ,z`y`tq dβ dα α ´β ff dσpzq where in the last passage we integrated by parts and we used the asymptotic behaviors of the n-th Airy function. Now, as previously explained we are going to consider the operator K t,n χ R`o n L 2 pRq, keeping in mind that just by using Fubini's theorem. Thus we conclude that FK t,n χ R`F ´1 " L t,n where L t,n is the integral operator on L 2 pRq with kernel L t,n denoted above and F is the standard Fourier transform extended unitarly to L 2 pRq.

D n pt, λq " detp1 ´λK t,n χ R`|L 2 pRq q. ( 6 
Remark 6.1.4. The operator L t,n is trace-class on L 2 pRq through general trace ideal properties. Definition 6.1.5. We consider the multiplication operator P n : L 2 pRq Ñ L 2 pRq that acts by multiplying by the function e ´i 2 ψnpα,0q .

This multiplication operator is used in order to construct another integral operator from L t,n as follows.

Definition 6.1.6. We consider the integral operator J t,n : L 2 pRq Ñ L 2 pRq defined by conjugation for

P n of L t,n , namely J t,n :" P n L t,n P ´1 n (6.1.19)
By abstract trace ideal reasoning, since the operator P n is bounded in L 2 pRq we can conclude that the operator J t,n is trace-class on L 2 pRq. We can then state and prove the following proposition about the Fredholm determinant D n pt, λq. Proposition 6.1.7. For every pt, λ, nq P R ˆC ˆN, on L 2 pRq,

1 ´λK t,n χ R`" F ´1P ´1 n p1 ´λJ t,n qP n F, 89 
Chapter 6 -The integro-differential Painlevé II hierarchy with the bounded linear operators F, P n and J t,n on L 2 pRq defined as above. In particular we record the determinant identity

D n pt, λq " detp1 ´λJ t,n | L 2 pRq q. (6.1.20)
Proof. The operator identity as been proved with the reasoning above. The determinant identity (6.1.20) is obtained by using the operator identity and by applying the Sylvester's identity (see for instance equation (5.9) of Chapter IV in [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]).

Before to go ahead, we need some other property of the integral operator J t,n . In particular, we see that this operator is explicitly factored in two Hilbert-Schmidt operators. We are now ready to construct the extension of the operator J t,n on some bigger space L 2 pΣq. To start with, we first look at the operator J t,n as an operator on L 2 pΓ α q, for Γ α some line in the upper complex plane parallel to the real line. This leaves untouched the Fredholm determinant.

Proposition 6.1.9. Let Γ α denote the reflection of Γ β across the real axis fixing Γ β :" R ´i∆ with 0 ă ∆ ă ω 2 . Now define J t,n : L 2 pΓ α q Ñ L 2 pΓ α q as pJ t,n f qpξq :" ˆΓα J t,n pξ, ηqf pηq dη, f P L 2 pΓ α q, with kernel J t,n pξ, ηq given in (6.1.23). Then J t,n is trace class on L 2 pΓ α q and we have the equality D n pt, λq " detpI ´λJ t,n | L 2 pΓαq q, pt, λ, nq P R ˆC ˆN. (6.1.24)

Proof. First notice that the operator J t,n is well defined on L 2 pΓ α q since Γ α X Γ β " H. Moreover, we can re-define operators A t,n : L 2 pΓ β q Ñ L 2 pΓ α q and B n : L 2 pΓ α q Ñ L 2 pΓ β q having the same kernels (6.1.21) and they are still Hilbert-Schmidt operators. We also have J t,n " A t,n B n so that J t,n is still trace-class 6.1. Manipulating the finite temperature Airy kernels

z z Γ α Γ β 2ω Figure 6.2 -Our choice for Γ α,β with 0 ă ∆ " distpΓ α , Rq " distpΓ β , Rq ă ω 2 .
on L 2 pΓ α q.

Finally in order to obtain the identity for the Fredholm determinant D n pt, λq, we observe that for every we can recursively replace Γ α instead of R in each one of the integrals above and conclude (6.1.25). By using the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II of [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]) the identity (6.1.24) then holds.

m P N Tr L 2 pRq J m t,
We now fix the contour Σ in the complex plane as the disjoint union of the horizontal lines, namely

Σ :" R \ Γ β \ Γ α (6.1.27)
where Γ β :" R ´i∆, with 0 ă ∆ ă ω 2 , and Γ α is the reflection of Γ β upon the real line, as in Figure 6.2. Since Σ contains in particular the line Γ α , we can extend the operator J t,n to the bigger space L 2 pΣq. We define and with ψ n pζ, zq :" ζ 2n`1 2n`1 `zζ, as before.

J ext t,n : L 2 pΣq Ñ L 2 pΣq,
Proof. First of all, notice that C t,n is trace-class on L 2 pΣq since it is the sum of two trace-class operators on the same space. Then, by using properties 1, 2 of Lemma 6.1.10 and the Plemelj-Smithies formula we compute the following determinant

detp1 `λA ext t,n | L 2 pΣq q " exp ˜´8 ÿ k"1 p´1q k λ k k Tr L 2 pΣq pA ext t,n q k ¸" 1. (6.1.34)
With the same reasoning, we obtain also detp1 `λB n | L 2 pΣq q " 1. Finally, by using the factorization identity (p3.10q in [START_REF] Simon | Trace ideals and their applications[END_REF]) and recalling (6.1.29), identity (6.1.31) is obtained.

We finally proved the relation between the Fredholm determinant of the finite temperature n-th order Airy kernel D n pt, λq and the Fredholm determinant of the operator C t,n , that can be thought as an infinite dimensional version of an integrable operator. Indeed, compare the equation describing the kernel of C t,n (6.1.32) with the classical one for IIKS integrable operators (3.2.1) : the structure is the same but an integral now replaces the symbol of summation in the right hand side.

Finite temperature operators and operator-valued Riemann-

Hilbert problems

In this section we introduce the main tool to handle the Fredholm determinant of operators as C t,n :

the operator-valued Riemann-Hilbert problems. In the present literature there are just a few examples of studies involving operator-valued Riemann-Hilbert problems. They can be found in the two papers [START_REF] Its | Large-x analysis of an operator-valued Riemann-Hilbert problem[END_REF][START_REF] Its | On the Riemann-Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation : Interacting fermion case[END_REF] and then they were used very recently in the review [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF], where the author recovered, through a Riemann-Hilbert approach, the Tracy-Widom formula for the finite temperature Airy kernel with n " 1, previously discovered in [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions[END_REF]. Following this approach, we define and study some operator-valued

Riemann-Hilbert problems that are now related to the operators C t,n .

First definitions and statement of the relevant operator-valued Riemann-Hilbert problem

Essentially, an operator-valued Riemann-Hilbert problem is determined as before by a pair pΣ, Gq where now the jump matrix Gpζq is a matrix whose entries take values in a particular operator space for any value ζ P Σ. To start with, we are going to define the operator space that is relevant in this case, thus we first have to introduce the following functional space. Recall that we fixed a weight function w as in Definition 6.0.1, so that dσpxq " w 1 pxqdx, is a probability measure on the real line.

In the following definition we adopt the same notation of [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF].

Definition 6.2.1. Let p ě 1. We use the below abbreviations for the relevant functional and operator spaces.

1. The Hilbert space

H p :" p à j"1
L 2 pR, dσq " f " pf 1 , . . . , f p q J P C pˆ1 : f j P L 2 pR, dσq ( equipped with its standard inner product and associated norm.

2. The space L 2 pR, dσ; C pˆp q of pˆp matrix-valued functions with entries in L 2 pR, dσq, equipped with the induced Frobenius integral norm.

3. The space IpH p q of Hilbert-Schmidt integral operators on H p of the form pKf qpxq " ˆR Kpx, yqf pyq dσpyq, with kernel Kpx, yq P L 2 pR 2 , dσ b dσ; C pˆp q.

The operator space of interest for our Riemann-Hilbert problem is the space of integral operators IpH 2 q. This means that we can also see both the jump matrix and the solution of this Riemann-Hilbert problem as 2 ˆ2 matrices with entries that are integral operators acting on H 1 with kernels in the functional space L 2 pR 2 , dσ b dσq.

We are now going to state the operator-valued Riemann-Hilbert problem that is related to our infinite dimensional integrable operator, i.e. the operator C t,n acting on L 2 pΣq with kernel of the form (6.1.32), (6.1.33).

Remark 6.2.2. The structure of the Riemann-Hilbert problem stated below, i.e. its jump condition and its asymptotic condition could be used also in order to study other integral operators having kernel of the same form of C t,n but with different functions k i , m i and different contour Σ. Moreover, in the forthcoming work [Boton], the author intends to show that there is an entire class of suitable weighted Hankel composition operators (in which K t,n fits) that can be studied through Riemann-Hilbert problems of the same type of the following. This "canonical" association to Riemann-Hilbert problems will no longer depend on the "integrable" shape that the kernel of the operator should have (even after proper manipulation as conjugation by bounded invertible operators, as we did for K t,n in the previous section).

We first construct the operator-valued jump matrix that will be used in the Riemann-Hilbert problem, building it up entry by entry.

Definition 6.2.3. For i, j " 1, 2 let M i pζq b K j pζq P IpH 1 q, denote the Σ Q ζ-parametric family of rank one integral operators with kernels `Mi pζq b K j pζq ˘px, yq :" m i pζ|xqk j pζ|yq, x, y P R, defined in terms of the Σ Q ζ-parametric family of functions k i , m i defined in (6.1.33).

Remark 6.2.4. We underline the following three facts, that will be used later on.

' All the operators M i pζq b K j pζq also depend on the parameters pt, nq P R ˆN, but we do not highlight this in our notation.

' These integral operators acts on some function f P H 1 as follows : by multiplying by the correspondent functions m i pη|xq and by integrating f pyq against the kernel k j pζ|yq.

' Since the contours Γ α and Γ β are disjoint, it follows by (6.1.33) that the kernels

M 1 pζq b K 1 pζqpx, yq " 0 " M 2 pζq b K 2 pζqpx, yq, (6.2.1)
thus the correspondent operators are zero too.

The analogue of the jump matrix G involved in the standard Riemann-Hilbert problem 3.1.1 is replaced here by the following operator G. Definition 6.2.5. The integral operator Gpζq acting on H 2 is defined for every ζ P Σ as

Gpζq " I 2 `2πiλ 1 2 « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff " I 2 `G0 pζq, (6.2.2)
where I 2 denotes the identity operator on H 2 , and the branch of λ Moreover for ζ P Σ we actually have that Y `pζ q " Y ´pζ q, meaning that the kernel of this operator Ypζq is actually an entire function in ζ. Finally, by using that Ypζq Ñ I 2 for ζ Ñ 8, again thanks to the Liouville theorem we conclude that Ypζq " I 2 , i.e. X 1 pζq " X 2 pζq identically in ζ.

We are now going to prove that a solution for the Riemann-Hilbert problem 6.2.1 exists and it admits a convenient contour integral representation. As it arose out in Theorem 3.2.6 for the matrix-valued case, also in this operator-valued case the existence of the solutions Xpζq completely relies on the invertibility of the operator 1 ´λ 1 2 C t,n on L 2 pΣq. This last condition indeed holds for any pt, λ, nq P R ˆD1 p0q ˆN and the proof follows from Lemma 6.1.2 together with Proposition 6.1.12 both proved in the previous section. Theorem 6.2.9. For every pt, λ, nq P R ˆD1 p0q ˆN consider the integral operator on H 2

Xpζq " I 2 `λ 1 2 ˆΣ « N 1 pηq b K 1 pηq N 1 pηq b K 2 pηq N 2 pηq b K 1 pηq N 2 pηq b K 2 pηq ff dη η ´ζ , ζ P CzΣ, (6.2.11) 
where N i pηq are the operators on H 1 which multiply by the functions n i pη|xq determined via the integral equation on L 2 pΣq `I ´λ 1 2 C t,n ˘ni p¨|xq " m i p¨|xq, i " 1, 2, (6.2.12) with x P R and the real adjoint C t,n of C t,n .

Then (6.2.11) solves the Riemann-Hilbert problem 6.2.1.

Proof. As noticed before, the right hand side of (6.2.11) exists if and only if the solution of the integral equation (6.2.12) exists. This is indeed the case as it follows from Lemma 6.1.2 together with Proposition 6.1.12. With this in mind, we prove that the right hand side of (6.2.11) actually satisfies the three requests in the Riemann-Hilbert problem 6.2.1.

For the first request : we start by observing that each entry of the operator X 0 pζq in the right hand side of (6.2.11) is an integral operator with nontrivial kernel

X ij 0 pζ|x, yq " λ 1 2 ˆΣ n i pη|xqk j pη|yq dη η ´ζ , px, yq P R 2 , ζ R Σ. (6.2.13)
In order to prove the first condition of the Riemann-Hilbert problem 6.2.1, we have to prove that these kernels are analytic for ζ R Σ and that px, yq Ñ X ij 0 pζ|x, yq is in L 2 pR 2 , dσ b dσq (following Definition 6.2.6).

For the second part, remark that }n i p¨|xq} L 2 pΣq ď c}m i p¨|xq} L 2 pΣq , c " cpn, tq ą 0, i " 1, 2, (6.2.14) thanks to the fact that the resolvent operator is bounded. Thus, by using the definition of the functions m i , k j in (6.1.33), the definition of the contour Σ and the Cauchy-Schwartz inequality we estimate

ˇˇX ij 0 pζ|x, yq ˇˇď c a |λ| distpζ, Σq ∆ ´1 4n e ´p´1q n ∆ 2p2n`1q ∆ 2n
e ∆p|x|`|y|`|t|q , c " cpn, tq ą 0, i, j " 1, 2. (6.2.15) Therefore px, yq Ñ X ij 0 pζ|x, yq is indeed in the space L 2 pR 2 , dσ b dσq for every ζ R Σ. For what concerns the analyticity property : we first observe that for every px, yq the function η Ñ n i pη|xqk j pη|yq is Holder continuous and thus its Cauchy transform, by the Plemelji-Sokhotoski theorem, is analytic for ζ R Σ and so it is X ij 0 pζq for each i, j " 1, 2. Thus the first condition of Riemann-Hilbert problem 6.2.1 is satisfied by the right hand side of formula (6.2.11). Thanks to estimate (6.2.15) also the asymptotic condition (6.2.4) is satisfied by the right hand side of formula (6.2.11).

We only have to prove that the jump condition (6.2.3) is satisfied by the right hand side of formula (6.2.11). First of all, remark that the boundary values X ˘pζ q exist and are Holder-continuous for ζ P Σ, thanks to the properties of the Cauchy transforms, and they are both in the space I 2 `IpH 2 q. In order to check that X ˘pζ q satisfies the jump condition (6.2.3), we start by applying the property of the Cauchy transform ( C `´C ´" Id ) to (6.2.11) and we deduce X `pζ q ´X´p ζq " 2πiλ

1 2 « N 1 pζq b K 1 pζq N 1 pζq b K 2 pζq N 2 pζq b K 1 pζq N 2 pζq b K 2 pζq ff , ζ P Σ. (6.2.16)
We then compute the composition of operators X ´pζ qGpζq by using their definitions (6.2.11), (6.2.2) X ´pζ qGpζq " X ´pζ q ˜I2 `2πiλ

1 2 « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff" X ´pζ q `2πiλ 1 2 ˜I2 `λ 1 2 ˆΣ « N 1 pηq b K 1 pηq N 1 pηq b K 2 pηq N 2 pηq b K 1 pηq N 2 pηq b K 2 pηq ff dη η ´ζ´« M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff .
(6.2.17)

Now, looking at the definition of the kernel of the operator C t,n in equation (6.1.32) and using general theory of rank 1 integral operators we have that 

« N 1 pηq b K 1 pηq N 1 pηq b K 2 pηq N 2 pηq b K 1 pηq N 2 pηq b K 2 pηq ff « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff " pη ´ζqC t,n pη, ζq « N 1 pηq b K 1 pζq N 1 pηq b K 2 pζq N 2 pηq b K 1 pζq N 2 pηq b K 2 pζq ff ,
X ´pζ qG ´pζ q " X ´pζ q `2πiλ 1 2 « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff `2πiλ ˆΣ C t,n pζ, ηq « N 1 pηq b K 1 pηq N 1 pηq b K 2 pηq N 2 pηq b K 1 pηq N 2 pηq b K 2 pηq ff dη. (6.2.19)
Now notice that the integral equation (6.2.12) for the operators N i pζq, M i pζq reads as

N i pζq ´λ 1 2 ˆΣ C t,n pη, ζqN i pηq dη " M i pζq, ζ P Σ, (6.2.20)
and thus by replacing it above and by using equation (6.2.16) we finally obtain that

X ´pζ qGpζq " X ´pζ q `2πiλ 1 2 « N 1 pζq b K 1 pζq N 1 pζq b K 2 pζq N 2 pζq b K 1 pζq N 2 pζq b K 2 pζq ff " X `pζ q. (6.2.21)
This means that also the jump condition (6.2.3) is satisfied by the right hand side of formula (6.2.11) and thus the proof is completed.

So far, we proved that the solution of the Riemann-Hilbert problem 6.2.1 exists and it is unique.

Moreover, we explicitly constructed an integral contour representation for the solution Xpζq for any ζ R Σ and we know that the solution Xpζq is invertible on H 2 from Theorem 6.2.8. As a byproduct, it follows that the operator Xpζq ´1 has an analogue integral representation.

Corollary 6.2.10. For every pt, λ, nq P R ˆD1 p0q ˆN the inverse on H 2 of the solution Xpζq of the Riemann-Hilbert problem 6.2.1 has the following integral representation where we denoted by Xpζq, Ypζq the finite rank integrand appearing in the right hand side of (6.2.11) and (6.2.22) respectively. The aim is now to prove that the sum of the last two terms in the equation 100 6.2. Finite temperature operators and operator-valued Riemann-Hilbert problems above is zero (the zero operator on H 2 ).

pXpζqq ´1 " I 2 ´λ 1 2 ˆΣ « M 1 pζq b L 1 pζq M 1 pζq b L 2 pζq M 2 pζq b L 1 pζq M 2 pζq
To start with, notice that by the definition of the kernel of the operator C t,n we have that Xpη 1 qYpη 2 q " pη 1 ´η2 qC t,n pη 1 , η 2 q

« N 1 pη 1 q b L 1 pη 2 q N 1 pη 1 q b L 2 pη 2 q N 2 pη 1 q b L 1 pη 2 q N 2 pη 1 q b L 2 pη 2 q ff . (6.2.25)
Replacing this equation in the double integral term appearing above, we can compute it as

ˆΣ ˆΣ Xpη 1 qYpη 2 q dη 1 η 1 ´ζ dη 2 η 2 ´ζ " ˆΣ ˆΣ C t,n pη 1 , η 2 q « N 1 pη 1 q b L 1 pη 2 q N 1 pη 1 q b L 2 pη 2 q N 2 pη 1 q b L 1 pη 2 q N 2 pη 1 q b L 2 pη 2 q ff dη 1 dη 2 η 2 ´ζ ´ˆΣ ˆΣ C t,n pη 1 , η 2 q « N 1 pη 1 q b L 1 pη 2 q N 1 pη 1 q b L 2 pη 2 q N 2 pη 1 q b L 1 pη 2 q N 2 pη 1 q b L 2 pη 2 q ff dη 2 dη 1 η 1 ´ζ " ´ˆΣ Ypη 2 q dη 2 η 2 ´ζ `ˆΣ Xpη 1 q dη 1 η 1 ´ζ (6.2.26)
where in the last passage we used both the integral equations (6.2.12), (6.2.23). This concludes the proof.

Remark 6.2.12. The main ideas in the construction of the Riemann-Hilbert problem 6.2.1 and the proofs of the theorems for its solution have been already developed in [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF], and they are indeed due to the work of Thomas Bothner.

From the construction of the integral representation of Xpζq and its inverse given in Theorem 6.2.9 and Corollary 6.2.10 one can deduce a relation among the multiplication operators on H 1 called N i pζq, M i pζq for i " 1, 2, the integral operators L i pζq, K i pζq for i " 1, 2 and the solution Xpζq of the Riemann-Hilbert problem 6.2.1. The derivation of a Lax pair from the solution Xpζq, that will be treated in the following section, completely relies on this relation. In order to express it in a compact form, we define the following vector-valued operators on H 2 Npζq :" Proof. Here we are going to prove only the first equation, since it is the only one that is actually needed in the derivation of the Lax pair. The second one is obtained in a similar way and we refer to the proof of Corollary 4.11 in [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF] for the details.

" N 1 pζq, N 2 pζq ‰ J , Mpζq :" " M 1 pζq, M 2 pζq ‰ J , Lpζq :" " L 1 pζq, L 2 pζq ‰ , Kpζq :" " K 1 pζq, K 2 pζq ‰ . ( 6 
Recall that we proved in the last passages of proof of Theorem 6.2.9 the following identity

X ´pζ qGpζq " X ´pζ q `2πiλ 1 2 « N 1 pζq b K 1 pζq N 1 pζq b K 2 pζq N 2 pζq b K 1 pζq N 2 pζq b K 2 pζq ff . (6.2.29)
On the other hand, since Gpζq is invertible on H 2 with inverse

`Gpζq ˘´1 " I 2 ´2πiλ 1 2 « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff , ζ P Σ, (6.2.30)
we can then compute in a similar way the quantity X `pζ q `Gpζq ˘´1 and it follows that

X `pζ q `Gpζq ˘´1 " X `pζ q ´2πiλ 1 2 « N 1 pζq b K 1 pζq N 1 pζq b K 2 pζq N 2 pζq b K 1 pζq N 2 pζq b K 2 pζq ff . (6.2.31)
Finally, combining (6.2.29), (6.2.31), the definitions of Gpζq and its inverse yields

X ˘pζ q « M 1 pζq b K 1 pζq M 1 pζq b K 2 pζq M 2 pζq b K 1 pζq M 2 pζq b K 2 pζq ff " « N 1 pζq b K 1 pζq N 1 pζq b K 2 pζq N 2 pζq b K 1 pζq N 2 pζq b K 2 pζq ff , ζ P Σ, (6.2.32)
from which Npζq " XpζqMpζq directly follows.

On the asymptotic expansion of the solution Xpζq

In this paragraph we are going to discuss some technicalities about the asymptotic representation of Xpζq and pXpζqq ´1. In particular we prove two symmetry properties and an estimate on the operator norm of the asymptotic coefficients. These results are technical, but they are crucial in order to explicitly recover the Lax pair from relation (6.2.28).

Nevertheless, while the statement of the Riemann-Hilbert problem 6.2.1 and the results about its solution Xpζq contained in the previous section can be extended to an arbitrary operator of the same kind of C t,n , the statements in this paragraph strictly depend on the exact definition of C t,n .

To start with, we recall for every k ě 1 the following formula

1 η ´ζ " ´1 ζ k´1 ÿ j"0 ˆη ζ ˙j `ηk ζ k pη ´ζq for ζ ‰ η. (6.2.33)
By replacing this formula in the integral representation of the solution Xpζq and its inverse, for |ζ| Ñ 8, we obtain their asymptotic representation. In particular we have respectively

Xpζq " I 2 ´k´1 ÿ j"1 X j ζ j `Opζ k q, and pXpζqq ´1 " I 2 `k´1 ÿ j"1 Y j ζ j `Opζ k q, for ζ P CzΣ (6.2.34)
with X j " tX ml j u m,l"1,2 , Y j " tY ml j u m,l"1,2 that are integral operators on H 2 not depending any more on the complex parameter ζ, given by Equivalently the asymptotic coefficients of Xpζq and pXpζqq ´1 are related in the following way

X ml j " ˆΣ N m pηq b K l pηqη j´1 dη, Y ml j " ˆΣ M m pηq b L l pηqη j´1 dη j ě 1,
Y ml 1 " X ml 1 , Y ml 2 " X ml 2 ``X ml 1 ˘2
, m, l P t1, 2u. (6.2.39) Remark 6.2.15. One could in principle replace formula (6.2.33) for k ą 2 and obtain more complicated relations for the higher order asymptotic coefficients X ml i , Y ml j . But for our future scopes the two relations above are sufficient.

We are now going to prove another important symmetry relation, this time at the level of the kernels of some operators on H 1 . In particular, we are going to consider the operators filling the off-diagonal entries of the first asymptotic coefficient of Xpζq, and we denote them as follows with Npζq, Mpζq some vector-valued multiplication operators on H 2 , defined in (6.2.27). This equation above, together with all the other properties of the solution Xpζq of Riemann-Hilbert problem 6.2.1 will be largely used in the following section, in order to deduce a Lax pair.

U :" λ 1 2 ˆΣ N 1 pηq b K 2 pηqdη " X 12 1 , V :" λ 1 2 ˆΣ N 2 pηq b K 1 pηqdη "

The Lax pair for an operator-valued Painlevé II hierarchy

The main ingredient, in order to deduce the Lax pair, is the relation between Npζq, Mpζq, Xpζq in (6.2.47). We recall the definition of the vector-valued operators Mpζq, Npζq

Npζq :" " N 1 pζq, N 2 pζq ‰ J , Mpζq :" " M 1 pζq, M 2 pζq ‰ J ,
where M i pζq, N i pζq are multiplication operators on H 1 , that multiply respectively by the functions m i pζ|xq defined in (6.1.33) and n i pζ|xq defined through the integral equation (6.2.12). Given that, we can also interpret these operators M i , N i as integral operators on H 1 with distributional kernels given by

m i pζ|xq Þ Ñ m i pζ|x, yq :" m i pζ|xqδpx ´yqpw 1 pyqq ´1, n i pζ|xq Þ Ñ n i pζ|x, yq :" n i pζ|xqδpx ´yqpw 1 pyqq ´1, (6.3.1) 
for any px, yq P R 2 . Remark 6.3.1. We recall that by definition,

ˆ8

´8 δpx ´yqpw 1 pyqq ´1f pyq dσpyq :" f pxq, f P H 1 , so that pM i f qpxq " m i pζ|xqf pxq and pN i f qpxq " n i pζ|xqf pxq for any f P H 1 .

The aim is to prove that the vector-valued operator Npζq satisfies a couple of operator-valued differential equations w.r. 

ÿ k"1 BA k Bt ζ 2n´k " " B 1 , A 2n `p A 2n ‰ `2n´1 ÿ k"0 ´"B 0 , A k`1 ‰ `"B 1 , A k ‰ ¯ζ2n´k , ζ P C,
and therefore, after matching powers in ζ, first to order Opζ 2n q,

A 12 1 " ´iU, A 21 1 " iV, (6.3.15) followed by all orders Opζ 2n´k q for k " 1, . . . , 2n ´1,

$ ' ' ' & ' ' ' % BA 11 k Bt " ´ipU A 21 k `A12 k V q, BA 12 k Bt " ´ipA 12 k`1 `U A 22 k ´A11 k U q BA 22 k Bt " ipV A 12 k `A21 k U q, BA 21 k Bt " ipA 21 k`1 `V A 11 k ´A22 k V q , (6.3.16)
and finally the order Opζ 0 q,

$ ' ' ' & ' ' ' % BA 11 2n Bt " ´ipU A 21 2n `A12 2n V q, BA 12 2n Bt " ´ipU A 22 2n ´A11 2n U `iM t U q BA 22 2n Bt " ipV A 12 2n `A21 2n U q, BA 21 2n Bt " ipV A 11 2n ´A22 2n V ´iV M t q . (6.3.17)
This completes our proof of the Lemma.

Notice that equations (6.3.16) together with the initial condition (6.3.15), allows to compute recursively the entries A ij k for k " 1, . . . , 2n (or 2n ´1 for the diagonal entries). For each k, first t-integrating the equations for the diagonal entries A ii k from the equations on the left and then using them to compute the off-diagonal entries A ij k`1 with i ‰ j from the equations on the right of (6.3.16). The first system in (6.3.17) is used to determine the last diagonal entries A ii 2n . Instead, the second system in (6.3.17) gives a further condition that A ij 2n , U, V should satisfy.

Remark 6.3.5. As explained above, the diagonal entries A ii k are obtained by t-integrating some equations. The constant of integration in this procedure is fixed to zero thanks to Lemma 6.3.4 and Corollary 6.2.17. The fact that the integration gives always local terms is shown through the following lemma, for which the proof relies on a technique used in [START_REF] Warren | The vector nonlinear Schrödinger hierarchy[END_REF]. Lemma 6.3.6. We have on H 1 for k " 1, 2, . . . , 2n,

A 11 k " ´i k´1 ÿ j"1 `A11 j A 11 k´j `A12 j A 21 k´j ˘and A 22 k " i k´1 ÿ j"1 `A22 j A 22 k´j `A21 j A 12 k´j ˘,
and thus in particular A 11 1 " A 22 1 " 0. where the curly brackets indicate the anticommutator. Matching powers Opζ 4n´k q for k " 0, . . . , 2n ´1 in (6.3.19) while using (6.3.18) and (6.3.12) yields at once Indeed, using (6.3.15),(6.3.16) and Corollary 6.2.17 we find that A 11 1 " A 22 1 " 0 on H 1 and so by direct computation from (6.3.20),

$ ' ' ' & ' ' ' % BC 11 k Bt " ´ipU C 21 k `C12 k V q, BC 12 k Bt " ´ipC 12 k`1 `U C 22 k ´C11 k U q BC 22 k Bt " ipV C 12 k `C21 k U q, BC 21 k Bt " ipC 21 k`1 `V C 11 k ´C22 k V q , k " 0, . . . ,
C 1 " 1 ÿ j"0 A j A 1´j " 0 on H 2 ,
where we just replaced equations (6.3.3) and (6.3.17). Hence, proceeding inductively and assuming C j " 0 for all j " 1, . . . , k with arbitrary k P t1, . . . , 2n ´2u we first use the off-diagonal equations in (6.3.20) to conclude that

C 12 j`1 " i BC 12 j Bt ´U C 22 j `C11 j U " 0, C 21 j`1 " ´i BC 21 j Bt ´V C 11 j `C22 j V " 0,
by induction hypothesis. Hence, again by (6.3.20), this time through the diagonal equations, ff and hence after t-integration and an application of Corollary 6.2.17 indeed the stated identity for A 11 2n . This concludes our proof of the Lemma.

BC 11 j`1 Bt " ´ipU C 21 j `C12 j V q " 0, BC 22 j`1 Bt " ipV C 12 j `C21 j U q " 0, yielding C 11 j`1 " C 22 j`1 " 0 on
A j A 2n´j `A0 pA 2n `p A 2n q `pA 2n `p A 2n qA 0 , C k " k´1 ÿ j"1 A j A k´j `A0 A k `Ak A 0 , k " 2, . . . ,
We can finally resume all the results found until now in the following corollary, that gives a recursive recipe to find all the coefficients A k for k " 1, . . . , 2n in terms of U, V and their t-derivatives and to write in a compact fashion the last two differential equations of the compatibility condition at the level ζ 0 . Corollary 6.3.7. On H 2 , `A12 2n V q " iA 11 2n . Hence, iterating (6.3.27),(6.3.28) with the initial data (6.3.23) we arrive at the desired system (6.3.26) which does not contain any antiderivative terms because of the iterative formulae for A 11 k and A 22 k written in (6.3.24).

A 1 " « 0 ´iU iV 0 ff , A k`1 " « A 11 k`1 A 12 k`1 A 21 k`1 A 22 k`1 ff , k " 1, . . . , 2n ´1, (6.3.23) where $ ' & ' % A 12 k`1 " i BA 12 k Bt ´U A 22 k `A11 k V A 21 k`1 " ´i BA 21 k Bt ´V A 11 k `A22 k V , $ ' ' ' ' ' & ' ' ' ' ' % A 11 k`1 " ´i k ÿ j"1 pA 11 j A 11 k`1´j `A12 j A 21 k`1´j q A 22 k`1 " i k ÿ j"1 pA 22 j A 22 k`1´j `A21 j A 12 k`1´j q . ( 6 
In this section we proved that the system solved by Npζq given in (6.3.6) can be seen as the Lax pair for a coupled system of differential equations of order 2n for the operators U, V . These equations can be seen as a noncommutative (operator-valued) coupled analogue of the Painlevé II hierarchy. We write the equations for the first values of n in the example below.

Example 6.3.8. For n " 1 the coupled system of differential equations for the operators U, V on H 1 we see that A 12 k`1 px, yq is y-independent by the induction hypothesis and base case. Moreover, using explicitly the induction hypothesis in the form A 12 k px, yq " p´1q and thus A 21 k`1 px, yq is x-independent by the induction hypothesis and base case. Finally, relabelling the integration variables z Ø w in the last equality and using the induction base case six times in the form U px, yq " V py, xq we see at once that with (6.4.2),

A 21 k`1 px, yq " p´1q k`1 A 12 k`1 py, xq, px, yq P R 2 .
This Lemma is the key to simplify the equations given from the compatibility condition and resumed Proof. We start by computing the first t-derivative of the logarithm of D n pt, λq. To do that, we recall equation (6.1.31) and we apply the Jacobi formula ˆR "ˆΣ `N1 pξq b K 1 pξq ˘pz, zq dξ

B Bt ln D n pt, λq " B Bt ln detpI ´λ 1 2 C t,n | L 2 pΣq q " ´λ 1 2 Tr L 2 pΣq " pI ´λ 1 2 C t,n | L 2 pΣq q ´1 B Bt C t,n  . ( 6 
 dσpzq " ´iλ 1 2 Tr H1 ˆΣ N 1 pξq b K 1 pξq dξ,
where in the second passage we just used the integral equation (6.2.23). Thus the first identity in the statement holds. We notice that in its right hand side we actually have a multiple of the H 1 -trace of the p1, 1q-entry of the first asymptotic coefficient of the solution of the Riemann-Hilbert problem 6.2.1 Xpζq.

For the second identity in the statement we need then the t-derivative of this quantity. This is obtained in a classical way, revisiting our proof of Proposition 6.3.3 and explicitly computing the Opζ ´1q correction when inserting the asymptotic representations of Xpζq and pXpζqq ´1 into the defining equation of Bpζq in (6.3.10). The same Opζ ´1q correction has to vanish identically by generalized Liouville's theorem and this yields the operator commutator identity pX 1 q t " rB 0 , X 2 s ´X1 rB 0 , X 1 s, where B 0 is written in (6.3.5). Taking the entry p1, 1q of the above identity and using the symmetries proved in Corollary 6.2.14 yields in particular

B Bt ˆλ 1 2 ˆΣ N 1 pξq b K 1 pξq dξ ˙" ´iλ ˆΣ ˆΣ `N1 pηq b K 2 pηq ˘`N 2 pξq b K 1 pξq ˘dη dξ " ´iU V
where in the last passage we just split the double integral and recognize the definition of U, V as in (6.2.40).

Therefore the second identity holds once derived the first one and replaced the above relation. where we used the symmetry condition given in Proposition 6.2.16, the definition of upt|xq and its yindependence and the fact that dσ is a probability measure. However,

upt|xq " λ 1 2 ˆΣ n 1 pη|xqk 2 pη|xq dη " λ 1 2 2π ˆΓβ e ´iψnpη,t`xq dη `λ ˆΣ `Ct ,n m 1 p¨|xq ˘pηqk 2 pη|xq dη `λ 1 2 ˆΣ " n 1 pη|xq ´m1 pη|xq ´λ 1 2 `Ct ,n m 1 p¨|xq ˘pηq ı k 2 pη|xq dη,
so by using the integral representation of the n-th Airy function, indeed upt|xq " λ 1 2 Ai 2n`1 pt `xq as t Ñ `8 once we estimate the two remaining integrals involving m 1 p¨|xq as in our proof of Corollary 6.2.17 (cfr. [START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF]). All together, (6.4.7) follows from (6.4.8) after integration since upt|xq " λ 1 2 Ai 2n`1 pt `xq yields ´R u 2 pt|xqdσpxq Ñ 0 exponentially fast as t Ñ `8 because of the asymptotic properties of the n-th Airy function and of the weight function w. This completes our proof of the Lemma. Theorem 6.0.7 is finally proved.

Chapter 7 -Stokes manifolds and cluster algebras

For us, the Stokes manifold of interest S K , is the following algebraic variety

S K " #˜1 s 1 0 1 ¸˜1 0 s 2 1 ¸. . . ˜1 s 2K`1 0 1 ¸˜1 0 s 2K`2 1
¸λσ3 " 1 with s i P C, λ P C ˆ+ (7.0.1) of complex dimension 2K, for every K ě 1. We proved in two different ways that S K is indeed a symplectic manifold, with symplectic 2-form given by

W K :" 1 2 2K`3 ÿ "1
Tr ˆH´1 dH ^S´1 dS ˙, H :" S 1 ¨¨¨S , S 2K`3 :" e 2iπL , (7.0.2)

where S , for " 1, . . . , 2K `2 denote the upper and lower triangular matrices with unit diagonal, appearing in equation (7.0.1), and e 2iπL " λ σ3 , for the rank 2 case. In one way, we proved that the 2-form (7.0.2) has pull-back (via the monodromy map) that coincides with the "universal symplectic structure" of Krichever and Phong [KP00], [START_REF] Krichever | Vector bundles and Lax equations on algebraic curves[END_REF], (induced by the Poisson-Lie structure on the space of coefficient matrices over its symplectic leafs) thus providing that W K is symplectic. In the other one way we built, for the case of rank N " 2, explicit coordinates y i , i " 1, . . . , 2K that parametrize the Stokes manifolds S K as (see Lemma 7.2.5)

s 1 " ´y´2 1 , s 2k`1 " ´p1 `y2 2k`1 q ź 1ďjď2k`1 y p´1q j 2 j , k " 1, . . . , K ´1, s 2K`1 " ´ź 1ďjď2K y p´1q j 2 j , s 2k " p1 `y2 2k q ź 1ďjď2k y p´1q j`1 2 j , k " 1, . . . , K, s 2K`2 " y 2 1 `1 `y2 2 `. . . `1 `y2 2K ˘. . . ˘˘K ź j"1 y ´4 2j , λ " p´1q K K ź j"1 y 2 2j .
As a byproduct the form W K is expressed in log-canonical form within these variables and it is in particular non-degenerate. Moreover, its associated Poisson bracket (Lemma 7.2.1) is described by this constant coefficient matrix (for the logarithms of the coordinates y i )

P K " 1 4 ¨0 1 0 0 0 . . . 0 ´1 0 1 0 0 . . . 0 0 ´1 0 1 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . ´1 0 1 0 0 . . . 0 ´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . (7.0.3)
The construction of the log-canonical variables y i is based on the choice of a certain triangulation of a 2pK `1q regular polygon, in a way similar to the one used for the Grasmannian of 2-planes (in [START_REF] Michael Gekhtman | Cluster algebras and Poisson geometry[END_REF],

Chapter II). The explicit computation of the 2-form W K follows instead the techniques developed in the recent work [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF], relying on the theory of standard 2-forms associated to oriented graph with connec-tion. The connection with cluster algebras comes from the simple observation that the matrix P K is (up to a constant factor) the matrix representing the simple quiver of type A 2K (with prescribed orientation) ; this means that the variables y 2 j form a seed for the cluster algebra of type A 2K . To complete the picture we need to show that different choices of triangulations of the regular p2K `2q-gon yield parametrizations of the Stokes' data that are obtained from the initial seed by applying a suitable sequence of mutations, i.e. simple birational maps from one chart to another (see the subsection 7.3.1). The appearance of cluster algebras in this kind of context is not surprising : in the last decades the works of Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] already shown the deep connection between cluster algebras and the geometry of character varieties. Thus similar connections should be expected to appear also in the context of wild character varieties.

Finally, the Flaschka-Newell Poisson bracket defined for the original monodromy parameters describing S K , namely The Chapter is organized as follows : in the first section we describe the symplectic structure on the space of rational polynomial matrices, and we prove its relation with the symplectic structure on the Stokes manifolds. In the second section we analyze the rank 2 case and we construct the log canonical coordinates for the symplectic 2-form on the Stokes manifolds. In the third section we study the connection between these log-canonical coordinates and cluster algebras. Finally the last section is devoted to recover the original Flaschka-Newell Poisson structure from the linearized one in the coordinates y i for the Stokes manifold.

! s j , s l ) F N " δ j,l´1 ´δj,1 δ l,2K`2 λ 2 `p´1q j´l`1 s j s l , j ă l. ! s j , λ ) F N " p´1q j s j λ. ( 7 

Symplectic structure on the Stokes matrices

Consider a polynomial ODE of the form dΨ dλ " ApλqΨ, Apλq :"

K ÿ j"1 A j λ j . (7.1.1)
For the sake of this discussion we can consider the case of N ˆN matrices (without real loss of generality, we consider the sl N case with TrpApλqq " 0). Keeping in mind that all the results can be extended to an arbitrary semisimple Lie algebra. We assume that A K has simple eigenvalues (i.e. it is regular where G 0 is a chosen diagonalizing matrix for A K and L, T pλq are diagonal traceless matrices. In this case, the entries of L are the formal monodromy exponents and the matrix T is a polynomial of the form T pλq " T K`1 λ K`1 K `1 `¨¨¨`T 1 λ, T j P h, (7.1.3)

where h denotes the Cartan subalgebra of sl N , namely diagonal traceless matrices. The coefficients of T pλq are the (higher formal) Birkhoff invariants. The matrix T K`1 is the diagonal form of the leading coefficient A K , so that It can be explicitly written as Π " ř n k,j"1 E k,j b E j,k , with E ij the elementary matrices. In our case Apλq is a polynomial ; the matrix A K is easily seen to consist entirely of Casimir functions for this Poisson structure. The symplectic leaves are thus described ; let Gpλq be the matrix of eigenvectors for Apλq of the form Gpλq " G 0 ˆ1 `ÿ jě1 B j λ j ˙.

A K " G 0 T K`1 G ´1 0 . ( 7 
(7.1.7) (The Laurent series has a finite radius of convergence). Then

Apλq " GpλqDpλqGpλq ´1, Dpλq " T K`1 λ K `¨¨¨`T 1 ´L λ `. . . (7.1.8)

where the matrices T j are all diagonal traceless matrices ; as the choice of letters suggests, they coincide (a simple exercise) with the Birkhoff invariants and the exponents of formal monodromy, while the rest of the Laurent tail plays no role in our present considerations. Then the Casimir functions are T 1 , . . . , T K`1

and A K " G 0 T K`1 G ´1 0 (see also [START_REF] Babelon | Introduction to classical integrable systems[END_REF], Ch. III).

On the symplectic leaves, the Poisson structure (7.1.5) has the form of the "universal symplectic structure" of Krichever and Phong [KP00], [START_REF] Krichever | Vector bundles and Lax equations on algebraic curves[END_REF] :

ω KK " ´res λ"8
Tr ˆDpλqGpλq ´1δGpλq ^Gpλq ´1δGpλq ˙dλ " ´res λ"8

Tr ˆApλqδGpλqGpλq ´1 ^δGpλqGpλq ´1˙d λ (7.1.9)

The two-form is invariant under gauge action of right multiplication of G by diagonal matrices of the form F pλq " 1 `ÿ jě1 F j λ j P hrrλ ´1ss. Tr ˆDpλqF ´1pλqδF pλq ˙dλ.

(7.1.12)

In the latter term, since F pλq " 1 `Opλ ´1q only the non-negative powers of Dpλq contribute (since F ´1pλqδF pλq " Opλ ´1q). Given that the parameters T 1 , . . . , T K`1 in (7.1.8) are constants, we can express the last term in (7.1.12) as the total derivative of the function res λ"8

Tr ˆDpλqF ´1pλqδF pλq ˙dλ " δ res λ"8

Tr ˆDpλq ln F pλq ˙dλ, (7.1.13) which implies that ω KK " δθ is indeed invariant. It is also invariant under left multiplication Gpλq Þ Ñ

HGpλq with H a constant (in λ) : indeed, the left multiplication by a constant matrix H leaves θ completely invariant :

θ Þ Ñ θ `res λ"8
Tr ˆGpλqDpλqG ´1pλqH ´1δH ˙dλ " θ (7.1.14)

where we have used that GpλqDpλqG ´1pλq " Apλq is a polynomial.

The core of the idea of the "extended coadjoint orbit" of [B `07] is the following : while A K " G 0 T K`1 G ´1 0 is a Casimir for the KKS symplectic structure, G 0 itself is not because right multiplications by a constant diagonal matrix do not leave the symplectic form invariant.

Thus we allow G 0 to be kinematical variables : fix the Birkhoff invariants T pλq " ř K`1 j"1 T j λ j {j (i.e. the diagonal traceless matrices T 1 , . . . , T K`1 ) and consider the set where we abbreviated with 1 the derivation w.r.t. λ. Since p Y 1 pλq " Opλ ´2q, the matrices T pλq, L are diagonal and since the degree of A is K we deduce that p Y matches the Laurent expansion of the eigenvector matrix Gpλq up to the indicated order. with Ψ f orm given in (7.1.2). In these asymptotics, the determination of the matrix of formal exponents λ L is the same, -say-the principal one. In this setting, we have then 2K `2 Stokes' matrices S µ as defined in (4.1.11) ; if the entries t 1 , . . . , t n of T K`1 are arranged in increasing order of pt j e θ0 q (for a generic θ 0 so that this order is unique), then the Stokes' matrices are all triangular matrices with unit diagonal, namely they belong to N ˘Ă SL n . Specifically, they alternate the triangularity as we move counterclockwise.

Description of the

The entries of these matrices are not independent ; they must satisfy the monodromy relation S 1 S 2 ¨¨¨S 2K`2 e 2iπL " 1 (7.1.21) which is a consequence of the fact that the ODE has no singularities in the finite part of the plane and therefore each of the solutions Ψ µ extends uniquely to an entire matrix-valued function. We thus define the Stokes' manifold as the set of these data : where N ˘denote the solvable subgroups of upper/lower triangular matrices with ones on the diagonal and h denotes the subalgebra of diagonal traceless matrices. The dimension of this manifold is dim C pS K q " KN pN ´1q.

(7.1.23)

It is apparent that the dimension is even ; in fact Boalch [B `07] shows that these type of manifolds are symplectic. We are going to give a self-contained description, adapted to this case, of this structure.

In particular, in the next paragraph we are going to prove that for the general N case, the 2-form W K defined in (7.0.2) has (up to a constant factor) pull-back that coincides with the symplectic form ω KK written in (7.1.9). Thus implying that S K equipped with W K is a symplectic manifold. Then in the next sections, we will treat the case N " 2 finding explicit log-canonical coordinates in which W K is in nondegenerate form and proving that the induced Poisson bracket indeed coincide with the Flaschka-Newell one, written in equation (7.0.4).

The Malgrange form associated to an analytic family of Riemann Hilbert problems. We describe here the gist of [START_REF] Bertola | The dependence on the monodromy data of the isomonodromic tau function[END_REF][START_REF] Bertola | Correction to : The dependence on the monodromy data of the isomonodromic tau function[END_REF]. Suppose that Σ Ă C is a collection of oriented smooth arcs (intersecting transversally) and J : Σ Ñ SL N a smooth matrix-valued function (the "jump matrix") depending analytically on parameters that we denote collectively by s. As discussed in Section 3.1, this pair of data defines a family of Riemann-Hilbert problems (s depending). In case the contours Σ has some self-intersections, the matrix Jpz; sq must satisfy suitable assumptions (see [START_REF] Bertola | Correction to : The dependence on the monodromy data of the isomonodromic tau function[END_REF] for details). The most important one for the description here is the "local monodromy free" condition : let v be a "vertex" of the graph, namely, a point of intersection of the smooth arcs of Σ. Let e 1 , . . . e n be the sub-arcs of Σ entering a small disk D v centered at v and enumerated counterclockwise from an arbitrarily chosen one.

We denote by J pv; sq " lim Since the expansion at 8 of Γ coincides with that of the eigenvectors up to order λ ´K´1 (included), the second term in the residue yields (recall that res λ"8 extracts the coefficient of λ ´1 with a minus sign)

´res λ"8
Tr ˆˆT 1 ´L λ ˙δT p1q ˙dλ " ´TrpLδT p1qq.

(7.1.36)

The first term in (7.1.35) is a formal residue and can be realized as the following limit of an actual integral lim rÑ8 ˛|λ|"r dλ 2iπ Tr ˆApλqδΓΓ ´1˙(

7.1.37)

where the contour runs counterclockwise. Note that the integrand is actually an analytic function defined piecewisely for each sector. Applying Cauchy's theorem, we can reduce the integration along the support of the jumps of Γ and we obtain This means that the Kirillov-Kostant form θ coincides with the Malgrange form up to an exact differential.

We now compute the exterior derivative of θ using Theorem 7.1.4. It is clear that the last term in (7.1.45)

does not contribute to the exterior differentiation because it is an exact form. The integral in (7.1.28) has no contribution because -on the rays the integrand is traceless (given the triangularity of the jump matrices (7.1.31)) ;

-on the segment issuing from λ " 1 and directed to the disk, the matrix Ξ is constant in λ ;

-on the boundary of the disk Ξ 1 pλq ^Ξpλq " ln λ λ δL ^δL " 0 since L is diagonal. Thus we are left only with the contributions from the two vertices of the graph in Fig. 7.1, which are v 0 " β and v " 1. At v 0 we have three incident edges and the matrices J 1 , J 2 , J 3 are J 1 " e 2πL , J 2 " β L , J 3 " β ´Le ´2iπL . Since they commute, it is easy to see that there is no contribution (each term contains δL ^δL, which vanishes identically since L is diagonal).

Thus the only contribution comes from v " 1 ; here the jumps are : J pvq " S , " 1, . . . , 2K `2 (7.1.46) and J 2K`3 " e ´2iπL . Then the Theorem 7.1.4 gives precisely (7.0.2) divided by ´2iπ. Thus we conclude that W K in (7.0.2) is a symplectic form.

Remark 7.1.6. To be explicit, the coordinates on the quotient of the extended orbit (7.1.15) are as follows ; one writes G " G 0 exp ˆH1 z `H2 z 2 `¨¨¨`H K z K `Opz ´K´1 q ˙(7.1.47)

where H 1 , . . . , H K can be chosen diagonal free (i.e. with zeros on the diagonal), using the gauge freedom (7.1.12). Then the KN pN ´1q entries of H 1 , . . . , H K are the coordinates.

Stokes manifolds for n " 2

Our goal now is twofold :

1. provide explicit parametrization in terms of patches of free coordinates for the complex manifold S K (7.1.22) ; 2. show that the coordinates introduced above are log-canonical for the two-form (7.0.2).

We recall here the terminology ; a coordinate system px 1 , . . . , x 2n q on a symplectic manifold pM, ωq is called log-canonical if the symplectic form is expressed as follows in the coordinate system ωpxq "

ÿ iăj ω ij dx i x i ^dx j x j (7.2.1)
with ω ij constants. If P ij denotes the inverse transposed of the matrix ω ij then the Poisson brackets read tx i , x j u " P ij x i x j (no summation), (7. We are going to carry out the two steps above in the case of SL 2 , which corresponds to the historically first case ever studied in [START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF]. The higher case can be handled in a similar way but we defer the computation to a later work since it would unnecessarily obfuscate the computation behind a plethora of indices.

As anticipated in the introduction, the Stokes' manifold (7.1.22) specializes for any K ě 1 and N " 2 to the following

S K " #˜1 s 1 0 1 ¸˜1 0 s 2 1 ¸. . . ˜1 s 2K`1 0 1 ¸˜1 0 s 2K`2 1
¸λσ3 " I 2 with s i P C, λ P C ˆ+ . (7.2.3)

We will denote by S 2l´1 the upper triangular matrices and by S 2l the lower triangular matrices appearing in the equation above for l " 1, . . . , K `1.

Remark 7.2.1. The matrix equation in (7.2.3) is equivalent to three algebraically independent scalar equations for the Stokes parameters s j and the formal monodromy exponent α so that dim pS K q " 2pK `1q `1 ´3 " 2K, as it follows from (7.1.23) for N " 2. can actually merge the last two rays and corresponding jump matrices to obtain a simpler star-graph Σ pKq indicated by the way of example in Fig. 7.2 for K " 2. This is not quite one of the generally allowed moves listed in [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF] but we now verify directly that it leaves the form invariant. Let thus r J " J , " 1, . . . , 2K `1 and r J 2K`2 :" J 2K`2 J 2K`3 " S 2K`2 Λ. Recall that S 2K`2 P N ´and Λ is diagonal. Note that H " r H up to " 2K `1, while r H 2K`2 " H 2K`2 Λ " 1. Then the difference between the two-forms is ΩpΣ ‹ q ´ΩpΣ pKq q " Tr `H´1

2K`2 dH 2K`2 ^S´1 2K`2 dS 2K`2 ˘. (7.2.7) Since H 2K`3 " H 2K`2 Λ " 1 we must have that H 2K`2 " Λ ´1, namely, it is diagonal. But S 2K`2 is unipotent triangular and hence S ´1 2K`2 dS 2K`2 is strictly lower triangular, so that the matrix in (7.2.7) is diagonal-free and the trace gives zero. Thus, in conclusion, we only need to analyze the two-form associated to the graphs of the form Σ pKq depicted in Fig. 7.2, since we proved that 2W K " ΩpΣ pKq q.

(7.2.8)

The idea is to realize the simple graph Σ pKq as the complete contraction of all the (finite length) edges of another graph with explicit, simple jump matrices that depend on free parameters (contrary to the Stokes' parameter that are subject to algebraic relations).

Consider the graph Σ pKq 0 , exemplified in Figure 7.3 for K " 2 : then it is apparent that Σ pKq is the total contraction of Σ pKq 0 . The jump matrices for this graph are described in the following paragraph. The key fact is that the computation of the symplectic form associated to Σ pKq 0 is then a straightforward exercise.

Since the graphs Σ pKq 0 and Σ pKq are related by the "moves" hinted before and described in [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF], the corresponding associated forms coincide : Ω ´ΣpKq 0 ¯" Ω `ΣpKq ˘. Then, by using the definition of the 2-form associated to a graph, we will compute explicitly the Stokes form, showing directly that it is indeed symplectic. Here we take the triangulation T 0 of the hexagon that connects any of its vertices to v 6 .

The graph Σ

gon. The polygon is subdivided into triangles with a common vertex v 2K`2 . We denote by T 0 this precise triangulation of the polygon. Inside each triangle we have a vertex z j and three edges from the three vertices bounding the triangle to the vertex z j . We describe the jump matrices for T 0 with the understanding that, mutatis mutandis, the same matrices are defined for an arbitrary triangulation. To each oriented edge of Σ pKq 0 we associate a matrix that is constant or depends on complex parameters y j P C ˚, j " 1, . . . , 2K. The orientation is defined as follows : the perimeter of the polygon is oriented counterclockwise and as for the vertices z j , each edge is oriented towards the vertex z j . The internal diagonals of the triangulation are oriented in such a way that for every even perimetric vertex the internal diagonal is exiting from the vertex v 2K`2 and for every odd vertex the internal diagonal is instead entering in the vertex v 2K`2 . The Stokes rays are kept with the same orientation as in the Stokes graph. The matrices for each edge are defined as follows :

' on the perimetric edges connecting v 2k Ñ v 2k`1 for k " 1, . . . K and v 2K`2 Ñ v 1 " v 2K`3 (the blue edges in Figure 7.3), we take diagonal matrices of the form D px 2k q :"

˜x´1 2k 0 0 x 2k
¸, (7.2.9) where x l is the following product of y j 's variables ' on the perimetric edges connecting v 2k`1 Ñ v 2k`2 (the green edges in Figure 7.3), we take off-the internal diagonals (as in Figure 7.3 for the case K " 2). Then the Stokes matrices are given by S 1 " `V py ´1 1 qADpy 1 q ´1˘´1 S 2 " `Dpx 2 qAV py 2 q ´1AV py ´1 1 q ´1˘´1 , S 2k " `Dpx 2k qAV py 2k q ´1AV px ´1 2k´1 q ´1˘´1 , k " 2, . . . , K S 2k`1 " `V px ´1 2k`1 qAV py 2k`1 qqADpx 2k q ´1˘´1 , k " 1, . . . , K ´1 S 2K`1 " `V px ´1 2K`1 qADpx 2K q ´1˘´1 S 2K`2 Λ " ˜Dpy 1 q 2K ź j"2

´AV py j q p´1q j ¯AV px ´1 2K`1 q ´1¸´1 . (7.2.14)

The choice of the triangulation of the polygon also defines the variables x l . According to the general rule (7.2.10) with the triangulation T 0 fixed here, this definition reduces to

x l :" l ź j"1 y p´1q Proof. Just computing explicitly the parametrizations given from equations (7.2.14) and using the definition of the variables x 2k , x 2k`1 given in (7.2.15).

With this parametrization of the Stokes matrices we can then proceed to the computation of the Stokes form.

Computation of the Poisson brackets for the original monodromy parameters

In the previous sections we have parametrized the Stokes manifold S K of dimension 2K, by using the variables y j for j " 1, . . . , 2K of the A 2K cluster algebra type. Using this parametrization, explicitly computed in Lemma 7.2.5, we also proved that the two-form W K defined on S K is symplectic and that the variables y j are log-canonical for this two-form. We also computed the Poisson brackets P K induced by the symplectic structure W K on S K . Now, we want to compute these Poisson brackets P K on the parametrization of the original monodromy parameters s j , for j " 1, . . . , 2K `2 and λ describing S K . In particular, we are going to show that the Poisson brackets P K for the y j defined in (7. (2) The unique Casimir function for the bracket (7.0.4) is C " TrpF q ;

(3) The sub-varieties S K " tF K " 1u are Poisson sub-varieties.

We defer the proof to the Appendix of the paper [START_REF] Bertola | Stokes manifolds and cluster algebras[END_REF]. 

  la fonction wpzq résout l'équation de Painlevé II, où α est une constante déterminée comme constante d'intégration. Ce fait est particulièrement important puisqu'il nous permet de définir les équations de Painlevé II d'ordre supérieur. En effet, dans l'étude d'EDP intégrables (dont l'équation de

  .e. l'équation obtenue par dérivation croisée dA ds ´dL dλ `rA, Ls " 0, (6) soit équivalente à l'équation de Pailevé concernée. Parmi les autres avantages que cette représentation des équations de Pailevé leur donne, l'existence d'un paire de Lax permet, d'un certain point de vue, d'insérer les équations de Painlevé dans le contexte des systèmes intégrables.

  Tracy-Widom pour certaines solutions de nouvelles équations de Painlevé II, en particulier des analogues d'ordre supérieur à valeur matricielle et intégro-différentielle, en correspondance avec les déterminants de Fredholm de généralisations d'ordre supérieur, à valeur matricielle et à température finie, du noyau d'Airy. Les motivations incluent, mais ne sont pas limitées au fait que ces généralisations du noyau d'Airy peuvent être utilisées dans la théorie des processus ponctuels déterminantaux (cfr [BBW21]) ainsi que dans la mécanique statistique et la théorie des matrices aléatoires (par exemple [LDMS18, ACQ11, Joh07]). Les résultats détaillés sont énoncés dans le Corollaire 5.0.2 du chapitre 5 pour le cas à valeur matricielle et dans le Théorème 6.0.7 du chapitre 6 pour le cas à température finie. Pour obtenir ces deux résultats, l'existence d'une paire de Lax pour la hiérarchie de Painlevé II à valeurs matricielles et les hiérarchie de Painlevé II intégro-différentielle, étudiées respectivement dans les chapitres 5 et 6, est fondamentale. Leurs représentations de Lax sont en effet les clés pour passer de l'étude des généralisations du noyau d'Airy, via une approche de Riemann-Hilbert, à la définition de quelques solutions particulières de la hiérarchie de Painlevé II concernée. La méthodologie utilisée dans les deux cas est très similaire, même si celle du chapitre 6 est plus technique que celle du chapitre 5, et elle s'appuie sur la théorie bien connue des opérateurs intégrables IIKS [IIKS90]. Cette théorie peut en effet être utilisée ou généralisée pour l'étude des déterminants de Fredholm des analogues d'ordre supérieur, à valeur matricielles et à température finie, du noyau d'Airy qui nous intéressent. L'idée fondamentale est d'associer un problème paramétrique de Riemann-Hilbert à l'opérateur prescrit et d'étudier son déterminant de Fredholm à travers celui-ci. En même temps, la solution du problème de Riemann-Hilbert peut également être utilisée pour fournir les paires de Lax, dans notre cas spécifique isomonodromiques, qui seront associées aux hiérarchies de Painlevé II qui nous intéressent. La différence la plus importante entre les chapitres 5 et 6 concerne le type de problème de Riemann-Hilbert qui sera associé à l'opérateur concerné : dans le premier cas, il s'agit d'un problème de Riemann-Hilbert standard à valeur matricielle, alors que dans le second cas, il s'agit d'un problème à valeur d'opérateur.

  Painlevé II, pour certaines valeurs du paramètre α. En particulier, pour le cas α " 0, le résultat de Tracy et Widom est expliqué. Ensuite, on introduit la hiérarchie de KdV et de KdV modifiée puis on IX explique comme, à partir de celles là, la hiérarchie de Painlevé II est obtenue par réduction autosimilaire. Pour conclure, on énonce le résultat obtenu dans [CCG19] qui généralise la formule de Tracy-Widom en prenant en compte d'un coté des noyaux d'Airy d'ordre supérieur et de l'autre, des solutions à la Hastings-McLeod des membres successifs de la hiérarchie de Painlevé II.

  noyaux d'Airy d'ordre supérieur en termes de certains solutions (à la Hastings-McLeod) de hiérarchies non-commutatives de Painlevé II. En particulier, dans le premier cas un analogue à valeurs matricielles des noyaux d'Airy sera lié à une hiérarchie matricielle de Painlevé II. Dans le deuxième cas le lien sera établi entre des versions à température finie des noyaux d'Airy et certaines solutions (toujours à la Hastings-McLeod) d'un hiérarchie integro-différentielle. La méthode utilisée sera aussi similaire : on analysera les déterminant de Fredholm en utilisant leur invariance par conjugaison par transformé de Fourier d'abord X et ensuite en y associant un problème de Riemann-Hilbert. La différence principale entre les deux travaux se pose à ce moment-là : dans le premier cas, le problème de Riemann-Hilbert est à valeur matricielles alors que dans le deuxième cas il est à valeurs opératoriels. Par conséquence, pour traiter le premier type de problème on pourra utiliser les résultats classiques [IIKS90, BC12], alors que pour la tractation du deuxième type, il nous faudra prouver des résultats d'existence et unicité de la solution et établir ses propriétés. Dans les deux cas, une fois que la solution du problème de Riemann-Hilbert est établie, on l'utilise pour déduire une paire de Lax, qui sera en effet l'analogue représentation isomonodromique des hiérarchie de Painlevé II matricielle ou intégro-differentielle. Le troisième travail concerne plutôt la géométrie symplectique d'un type très simple parmi les variétés de caractères sauvages, les variétés de Stokes, et leurs connexions avec les algèbres amassées.

  en collaboration avec Thomas Bothner et Mattia Cafasso. Dans ce cas on est plutôt intéressé à l'étude d'une version à température finie des noyaux d'Airy d'ordre supérieur. Pour la construire, on considère d'abord une fonction poids w : R Ñ R `étant une quelconque fonction différentiable, positive, et strictement croissante, qui pour quelque ω, x 0 ą 0 respect les conditions suivantes lim xÑ`8 wpxq " 1, lim xÑ´8 wpxq " 0 and 0 ă w 1 pxq ď e ´ω|x| @ |x| ě x 0 . (11)

INTRODUCTIONP

  ainlevé equations arose more than one century ago as the solution of a classification problem in ODE theory first posed byPicard ([Pic89]). His aim was to describe all second order ordinary differential equations of a certain prescribed form, for which the solutions have no movable critical points. This property, also known as the Painlevé property, allows indeed to define new functions as the general solutions of these differential equations. The subsequent studies of Painlevé, Fuchs and Gambier ([Pai00, Fuc05, Gam10]) finally produced a compact list with only six equations satisfying the required properties and for which the general solutions cannot be written in terms of known special functions. All the other equations fulfilling Picard's requirements were shown to be either solvable in terms of known special functions or reduced to one among the six in the list. Nowadays, we call this list of second order nonlinear ordinary differential equations the Painlevé equations, see equations (1.1.1)-(1.1.6). Their solutions, called Painlevé transcendents, are classified as new nonlinear transcendental functions and added to the list of the classical special functions (together with the Bessel, Airy, hypergeometric, elliptic functions etc.). The study of their properties increased together with their appearance in different domains involving nonlinear phenomena. During the last fifty years Painlevé equations have been found in connection with many different areas of mathematics and physics thus stimulating their study from many different points of view. Among the physical literature, Painlevé equations appeared in different models of statistical mechanics and quantum field theory ([BMTW73, JMMS80, BK90] some classical examples and [LDMS18, Kra20]

)

  Introductionknown as the Hastings-McLeod solution (details are written in Theorem 1.1.5), appeared some years later in relation with random matrix theory (in the same paper[START_REF] Tracy | Fredholm determinants, differential equations and matrix models[END_REF] cited above). This result (stated in Theorem 1.1.7), that goes under the name of the Tracy-Widom formula, is just one example among many others describing connections between Painlevé transcendents and the theory of determinantal point processes (that in this specific case applies to random matrix theory). The proof of their formula followed from a study of the properties of the well known Airy kernel. In particular, they proved that the Fredholm determinant of the integral operator acting through the Airy kernel is expressed in terms of the Hastings-McLeod solution of the Painlevé II equation. This Fredholm determinant was already known to express the edge scaling limit of the probability distribution of the largest eigenvalue for the Gaussian Unitary Ensamble (e.g.[START_REF] Forrester | The spectrum edge of random matrix ensembles[END_REF]), thus providing the bridge between random matrix theory and Painlevé transcendents.Among the many interesting aspects of the Painlevé II equation, in this work we will be particularly interested in these two : its relation with the modified Korteg-De Vries equation and its isomonodromic representation. In a certain way, the first one defines the object at the basis of our study, namely the Painlevé II hierarchy, and the second one gives us the main tool to handle it. The link between the Painlevé II hierarchy and isomonodromic deformations theory was deeply studied in the two subsequent papers of Flaschka and Newell[START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF][START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF] in the eighties, and their work provides in some sense the basis of our work, from both an analytical and a geometrical point of view.Painlevé equations in general are known to be reduction of integrable (and non) PDEs [AC91] such as the Korteg De Vries equation, the nonlinear Schroedinger equation and the sine-Gordon equation just to cite some of them. As for the Painlevé II equation, it is obtained as self-similarity reduction of the modified Korteg De Vries equation. This means that while seeking for solutions of the modified KdV equation v t `vxxx ´6v 2 v x "

  (1.1.2)-(1.1.6) there is at least one parameter. Choosing particular values for these parameters it is possible to find rational solutions, or other solutions in terms of known special functions for all the Painlevé equations from II to VI. The presence of these parameters in the Painlevé equations is actually even more relevant. Given a solution of a Painlevé equation for fixed values of the parameters, one can generate other solutions of the same equation with different values of the parameters, or even solutions of a different Painlevé equation, starting from the given one. This phenomenon is usually referred as the Bäcklund transformations of the Painlevé equations, and it is a very useful tool to generate sequences of solutions. These transformations were already discovered by Painlevé and Gambier in the first works on Painlevé equations ([Inc27, Gam10]) and then studied in the following years. We refer to [FIKN06] (Part I, Chapter 6) for a compact review on the subject using the formalism of Lax pairs of Painlevé equations and Schlesinger transformations.

1. 1 .

 1 ThePainlevé II equation 

  31) and where δH m are the Hamiltonian functionals of the KdV hierarchy and they are (up to the sign) the Lenard differential polynomials. The equivalence between the two definitions of the Painlevé II hierarchy (1.2.22) and (1.2.27) is then explained.

the Hastings -

 Hastings McLeod ones extend in some way to solutions of the entire Painlevé II hierarchy (1.2.22). One answer was recently given in the papers [LDMS18, CCG19] concerning the Hastings-McLeod type solutions. In particular, in the last paper the authors explicitely construct solutions for each member of the homogeneous Painlevé II hierarchy (1.2.22) in relation to the Fredholm determinants of the generalized Airy kernels. The explicit formula describing these solutions recovers the Tracy-Widom formula(1.1.15) for the first member of the hierarchy. Furthermore, the authors of[START_REF] Cafasso | Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes[END_REF] were able to compute the asymptotic behavior of these solutions at ˘8, in terms of the generalized Airy function Ai 2n`1 pzq, Chapter 1 -The Painlevé II hierarchy defined as the real solution with rapid decaying at `8 of the 2n-order ODE d 2n dz 2n φ " p´1q n`1 zφ.

  For any λ P Σ, the function Y has continuous boundary values Y ˘, denoting respectively the boundary value of Y for λ P Σ while approaching Σ respectively from the left p`q or from the right p´q nontangentially. Moreover Y ˘satisfy the following jump condition Y `pλq " Y ´pλqGpλq λ P Σ; (3.1.1) (3) The funtion Y satisfies the asymptotic condition Y pλq " I p for |λ| Ñ 8, (3.1.2)

Theorem 3 .

 3 2.6 ([HI02]). Given the integrable operator K, the operator p1 ´Kq ´1 exists if and only if the Riemann-Hilbert problem 3.1.1 defined through the pair pΣ, Gq related to K (described just above) is solvable. In particular, the functions F, G defining the kernel of the resolvent R are obtained in terms of the solution Y of the Riemann-Hilbert problem as Fpλq " Y pλqf pλq, Gpλq " pY T pλqq ´1gpλq (3.2.8) and the solution Y of the Riemann-Hilbert probelm 3.1.1 for the pair pΣ, Gq has integral reprensentation given by Y pλq " I r ´ˆΣ Y ´pζ q f pζqg T pζq ζ ´λ dζ.

  The relevant Riemann-Hilbert problem pΣ, Gq of the form 3.1.1 for a function Y pλq with values in GLp2rq is built by taking as contour Σ the union of the two disjoint contours Σ :" γ `Y γ ´(3.3.5) where γ ´:" ´γ`, and as jump matrix Gpλq :" « I r ´2πirpλqχ γ`p λq ´2πirp´λqχ γ´p λq I r ff . (3.3.6) Based on the IIKS theorem, the authors of [BC12] proved the following result about relating the solution of the Riemann-Hilbert problem for Y pλq and the operator 1 ´K2 . Theorem 3.3.4 (Theorem 3.1 [BC12]

T

  Remark 3.3.7. For every parametric family of Riemann-Hilbert problems 3.1.1 depending in a sufficiently smooth way on the auxiliary parameters and having Σ with no self-intersections, one can always define the integral in the right hand side of equation (3.3.8). Over the space of deformations of these Riemann-Hilbert problems this quantity is interpreted as a 2is closed, one can defined up to a constant, its correspondent tau function in such a way that δτ Y " Θ Y M pδq. For more details on this topic we refer to[START_REF] Bertola | Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation[END_REF][START_REF] Bertola | The dependence on the monodromy data of the isomonodromic tau function[END_REF] and to the previous series of works of the Japanese school[START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF][START_REF] Jimbo | Monodromy perserving deformation of linear ordinary differential equations with rational coefficients[END_REF][START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients[END_REF]. We will use this 2-form (for another specific Riemann-Hilbert problem) in Chapter 7. he aim of this chapter is to introduce the theory of isomonodromic deformations focusing in particular on its relation with the Painlevé II equation (1.1.2). All the six equations (1.1.1) -(1.1.6), indeed, admit (at least) a Lax pair representation given by the isomonodromic deformations of a specific 2 ˆ2 linear ODEs system with rational coefficients. This general result was first proven in the works [JMU81, JM81a, JM81b]. For the Painlevé II equation specifically the works of Flaschka and Newell [FN80, FN82] investigated alternative connections between the Painlevé II equation and the theory of isomonodromic deformations. The Flaschka-Newell Lax pair for the Painlevé II equation, given by equations p3.2a,bq, p3.3a,bq in [FN80], was then generalized to a Lax pair for the all members of the Painlevé II hierarchy (1.2.22) in [CJM06]. The construction of analogue Lax pairs for the matrix and then integro-differential Painlevé II hierarchy, that we are going to study respectively in Chapters 5, 6, will be a fundamental element in the proof of our results generalizing the Tracy-Widom formula. Generally speaking, the existence of isomonodromic Lax pairs for the Painlevé equations has been very useful to study remarkable properties, asymptotics in particular, of certain Painlevé trascendents. Many results have been collected and proved in details in the monograph [FIKN06], that will be indeed the main reference for this chapter. From another point of view, the isomonodromic representation of Painlevé equations opened the way to a new, more geometrical, field of study : the Painlevé monodromy manifolds (see e.g. [CMR17] and references therein). Given a linear system of ODEs with rational coefficients, its monodromy manifold is the space of its monodromy data considered together with eventual algebraic relations between them. For the case of regular singularities (as for the isomonodromic Lax pair for the PVI equation (1.1.6)) the monodromy manifold is related to some character variety of the Riemann sphere with prescribed punctures (for PVI, the SL 2 pCq character variety of the Riemann sphere with 4 punctures). For systems carrying irregular singularities (as all the isomonodromic Lax pairs for the remaining Painlevé equations, including PII), as we will see, the set of monodromy data is more complicated mainly because of the presence of Stokes phenomena. Thus the geometrical description of the corresponding monodromy manifolds cannot simply be done in terms of character varieties. Their corresponding generalizations are now known under the name of wild character varieties, terminology born in [MR91] and consolidated by Boalch. One of the major aspects in the study of monodromy manifolds is their Poisson (symplectic) structure, in relation with the Poisson-Lie structure on the rational matrices (coefficients of the relevant ODEs) through the monodromy map. The first papers that studied this problem are [FN82, Uga99] where the authors focused on monodromy manifolds for some specific systems of ODEs. Some years later, the series of papers [Boa01a, Boa01b, B `07] by Boalch investigated the problem in greater generality. In Chapter 7 we are going to study the symplectic structure of the monodromy manifolds of a rank 2 polynomial equation, i.e. with only one irregular singularity of arbitrary Poincaré rank at 8 (which underlies for odd Poincaré ranks the case of the Lax pair for the homogeneous Painlevé II hierarchy [CJM06]), the case studied by Flaschka and Newell [FN82].

  Let us consider M pλq a N ˆN matrix-valued rational function, with N ą 1 and λ P C. We are interested in finding a N ˆN matrix-valued solution Ψpλq of the linear ODE dΨ dλ " M pλqΨ. (4.1.1)

SΨ

  n :" e i π r pn´1q S, n " 1, . . . , 2r.(4.1.10)All S n defined in this way are Stokes sectors ; moreover, they cover the punctured disk and they are such that S 1 " S " S 2r`1 . It follows from Theorem 4.1.4 that we can define 2r canonical solutions Ψ n pλq near λ 0 a higher order pole of M pλqdλ, each one of them uniquely defined by the asymptotic condition (4.1.7) in the correspondent Stokes sector S n .From this construction follows the definition of the Stokes matrices S n :" Ψ ´1 n pλqΨ n`1 pλq, λ P S n X S n`1 , n " 1, . . . , 2r. (4.1.11)These matrices can be shown to be constant upper or lower triangular matrices, with unit diagonals. Together with the exponents T k , k " ´r, . . . , 0 the Stokes matrices uniquely determine, up to gauge transformations, the system (4.1.1) having at λ 0 an irregular singular point (for more details on this topic, also known as the Stokes phenomena, see Theorem 5.1 of[START_REF] Fokas | Painlevé transcendents : the Riemann-Hilbert approach[END_REF]).From local to globalWith these four results in mind, one can construct a local solution of the ODE (4.1.1) starting at any point of the punctured Riemann sphere. But what about global solutions ? The answer to this question is given by the following Monodromy Theorem. Theorem 4.1.5 ([FIKN06]). Let m i P CP 1 , i " 1, . . . , n be the isolated poles of the coefficient matrix M pλq of the ODE (4.1.1) and let γ : r0, 1s Ñ CP 1 ztm i u n i"1 a curve. Consider the germ of a solution of (4.1.1) at the (regular) point γp0q, namely Ψpλq " k ζ k , ζ the local coordinate near γp0q. (4.1.12) Then Ψpλq admits analytic continuation all along the path γ to the point γp1q. Furthermore, its analytic continuation only depends on the homotopy class of γ. This result gives the recipe to construct global solutions of the ODE (4.1.1) starting from any point of the punctured Riemann sphere : just consider any local solution and then perform analytic continuation. In a certain way, the construction of global solutions essentially relies on the representation of local solutions. The behavior of local solutions was given by formulae (4.1.4), (4.1.7), in which the main ingredients are the formal monodromy exponent T 0 and the exponents T k , k " ´r, . . . , 0, together with the Stokes matrices (4.1.11) respectively. This set of data, should be then completed with the description of the passage from one local representation to the other : all together they form a set of global monodromy data that allows us to completely determine the ODE (4.1.1).

  dromy data. Suppose that among the poles m ν of M pλqdλ we have simple poles for ν " 1, . . . , p ď m and then for ν " p `1, . . . , m we have higher order poles, of Poincaré rank r ν , ν " p `1, . . . , m. From the previous discussion, we first collect the following data ' T pνq 0 for ν " 1, . . . , p ; ' T pνq k with k " ´rν , . . . , 0 for ν " p `1, . . . , m, together with S pνq l for l " 1, . . . , 2r ν and ν in the same range.

  pνq l , thanks to Theorem 4.1.5, can be analytically continued along every path contained in the punctured Riemann sphere, giving back global solution of the same ODE (4.1.1). Thus, every two of these solutions can only differ by right multiplication by a constant matrix, called the connection matrix. In particular, one defines Ψpλq " Ψ pνq pλqE ν , and Ψpλq " Ψ pνq 1 pλqE ν , (4.1.13) for ν " 1, . . . , p and ν " p `1, . . . , m respectively. The matrices E ν exactly describe the passage from a local solution to the other, and thus conclude the global picture we needed for the complete description of the solutions of the ODEs (4.1.1). The global monodromy data set is then defined as the following collection M :" tm 1 , . . . , m n , T p1q 0 , . . . , T ppq 0 , pT pνq k , S pνq l q ν"p`1,...,m k"´rν ,...,0, l"1,...,2rν , E 1 , . . . , E m u. (4.1.14) As shown in Proposition 2.2 of [FIKN06], this collection of data uniquely defines the ODE (4.1.1) with M pλqdλ having exactly m poles with fixed Poincaré rank r ν , ν " 1, . . . , m (meaning r ν " 0 for ν " 1 . . . , p). This is no longer true when we restrict the set of global monodromy data to the essential monodromy data, i.e. we eliminate from M the positions of the poles and the coefficients T pνq k for k " ´rν , . . . , 1 and ν " p `1, . . . , m. This restricted subset, defined as the set of essential monodromy data, it is explicitly given by the collection m :" tT pνq 0 , S pµq l , E ν u ν"1,...,m l"1,...,2rν ,µ"p`1,...,m . (4.1.15) In particular, we have that the monodromy map tM pλqdλ with m poles of fixed multiplicities r ν u Ñ tm, sets of essential monodromy datau is no longer one-to-one. The problem of describing the subset of rational matrices M pλq, coefficient of (4.1.1), sharing the same set of essential monodromy data m is exactly what isomonodromy deformations are about.
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  . the spectral properties of the leading coefficients of the Laurent series of M pλqdλ at each singular point do not depend on t i ; 3. for all the poles m ν ptq with Poincaré rank r ν ą 0 the Stokes sectors in the punctured disk centered at the corresponding pole m ν ptq are t-independent under translation λ Ñ λ ´mν ptq ; 50 4.2. Isomonodromic deformations 4. canonical solutions of the ODE (4.1.1) are holomorphic w.r.t. t and for local solutions near irregular points, their asymptotic behavior (4.1.7) holds uniformly in t ; 5. (isomonodromic condition) all the formal monodromy exponents T pνq 0 , the Stokes matrices S pµq land the connection matrices E ν , ν " 1, . . . , n, µ " p `1, . . . , m, l " 1, . . . , r ν are t-independent.

Theorem 4.3. 3 .

 3 [Section 3, [CJM06]] The n-th member of the Painlevé II hierarchy (1.1.2) for the Chapter 4 -Isomonodromic deformations as Lax pairs function uptq follows from the compatibility condition of the 2 ˆ2 system BΨ Bλ " M pnq Ψ, with M pnq "

ˆd3 dS 3

 3 `rU, ¨s`d dS `d dS rU, ¨s``r U, ´1 in intended as the corresponding formal antiderivative. The recursive relation for the noncommutative version of the Lenard operators L n , n ě 1, is related to the recursion operator for the noncommutative KdV equation, introduced in [OS98]. There the authors already conjectured about the locality of these operators computed in U , but the formal proof of that was done some years later in [OW00] (Theorem 6.2 in this last paper). Finally we define our noncommutative Painlevé II hierarchy as follows PII pnq NC :

'

  Figure

605. 1 .

 1 Riemann Hilbert problems associated to the matrix Airy operators Corollary 5.1.7. The asymptotic coefficients appearing in equation (5.1.7) have the following form every l ě 1 correspond to the r ˆr matrices in the entries p1, 1q and p1, 2q of the block matrix Ξ pnq l . An analogue statement is true for the asymptotic coefficients of the inverse of the solution of the Riemann-Hilbert Problem 5.1.5, namely Θ pnq :" `Ξpnq ˘´1 .

  l ě 1 correspond to the r ˆr matrices in the entries p1, 1q and p1, 2q of the block matrix Θ pnq l .

Tr ˆΘpnq `Ξpnq ˘1 d dS `θpnq b σ 3 Chapter 5 -

 35 ˘˙" Tr `Θpnq `Ξpnq ˘1iλσ 3 ˘. (5.1.14) Its formal residue at 8 can be computed as ´Res λ"8 Tr `Θpnq `Ξpnq ˘1iλ σ3 ˘" lim RÑ8 ˆ|λ|"R Tr `Θpnq `Ξpnq ˘1iλ σ3 ˘dλ 2πi . Now, this counterclockwise circle for R Ñ 8, can be deformed like γ pnq `Y γ pnq ´. As a byproduct, the formal residue of (5.1.14) can be rewritten, taking into account the boundary values of Θ pnq and `Ξpnq ˘1 along the curves γ pnq ˘, as follows ˆγn The matrix Painlevé II hierarchy Now, from the jump condition (5.1.6), by deriving w.r.t. λ, we deduce that all along the curves γ

Res λ" 8

 8 Tr `Θpnq `Ξpnq ˘1iλσ 3 ˘" ´2i Tr `αpnq 1 ˘, and this concludes the proof. Remark 5.1.10. In the study of isomonodromy deformations, the quantity ˆγn `Yγ n ´Tr ˆΘ´Ξ 1 ´d dS J pnq `Jpnq ˘´1 ˙dλ 2πi is associated to the isomonodromic tau function τ Ξ pnq related to the Riemann-Hilbert Problem 5.1.5 depending on the parameters ts k u r k"1 , through the formula d dS ln τ Ξ pnq "

zÑ´8 ˆˆ` 8 z

 8 Ai 2n`1 px `yqf pyq dy ˙. || for the L 2 pRq-norm, and thus for any finite z the inequality ˇˇˇˇˇˇΦ z Ai2n`1 ˇˇˇˇˇˇď 1 holds for the L 2 ppz, `8qq operator norm.

Remark 5.2. 4 .

 4 It is also possible to define a more general hierarchy, in the following way PII pnq NC rα n s : ˆd dS `rW, ¨s`˙Ln rU s `n´1 ÿ l"1

  sq " ´rS, W s `´1 2 rW, A 0 p sqs `, using another time the property (5.2.4) we get the n-th member of the Painlevé II hierarchy : ˆrW, ¨s``d dS ˙Ln rU s " p´1q n`1 4 n rS, W s `. Remark 5.3.8. The matrices L pnq , M pnq obtained here, are the analogue of the Lax pair for the scalar homogeneous Painlevé II hierarchy obtained in [CJM06], written in Theorem 4.3.3, with W p sq given by 2β pnq 1 p sq " ´2i lim |λ|Ñ8 `λΞ pnq p sq ˘1,2 :" W p sq.

  .3.10) for a certain value C ą 0. Now, using the integral formula[START_REF] Its | Differential equations for quantum correlation functions[END_REF] for the rescaled solution of the Riemann-Hilbert Pro-Chapter 5 -The matrix Painlevé II hierarchy blem 5.1.5, namely X pnq pzq, we have that X pnq pzq " I 2r´ˆγ n

T

  he aim of this chapter is to prove the main result contained in the joint work with Thomas Bothner and Mattia Cafasso[START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF]. This paper is devoted to study the Fredholm determinants of a finite temperature version of the Airy kernels previously introduced in Chapter 1, through equation (1.2.34). Specifically, their finite temperature version is defined for any n P N and for a given weight function w satisfying the requirements written below. Definition 6.0.1. We consider a weight function w : R Ñ R `as any positive, strictly increasing and differentiable function, such that for some ω, x 0 ą 01 pxq ď e ´ω|x| @ |x| ě x 0 . (6.0.1)

Tracy-

  Widom type formula relating the Fredholm determinants D n pt, λq to some distinguished Painlevé II trascendents of some kind, generalizing the classical result of Tracy and Widom [TW94a]. The process that allowed us to achieve this result has two new remarkable features : the usage of operator-valued Riemann-Hilbert problems to study the Fredholm determinants D n pt, λq and the definition of an integrodifferential Painlevé II hierarchy. The definition of this new hierarchy though, does not use any more the Lenard recursion as in the scalar classical case and in the matrix-valued generalization treated in the previous chapter. It uses instead some recursion operators L u ˘that remind of the Airault's construction [Air79] of the Painlevé II hierarchy that we saw in equation (1.2.27).

12

  is fixed. Finally we consider the below IpH 2 q-valued Riemann-Hilbert problem, the central operator-valued Riemann-Hilbert problem of this work. then consider the following integral operator on H 2 Ypζq :" X 1 pζqpX 2 pζqq ´1, ζ P CzΣ. (6.2.10) For ζ in this domain the operator is analytic and for ζ P Σ it admits continuous boundary values Y ˘pζ q.

  .0.4) is showed to coincide with the Poisson bracket described above in Theorem 7.4.3, under the parametrization given in (7.0.3). All these results can be resumed in the following compact statement Theorem 7.0.1. The wild character variety of an sl 2 polynomial connection of degree K on the Riemann sphere is a cluster manifold of type A 2K with one frozen variable. The log-canonical Poisson (symplectic) structure on this cluster variety coincides with the push-forward by the monodromy map of the Lie-Poisson structure.

Chapter 7 -

 7 Stokes manifolds and cluster algebras semisimple). Under this hypothesis, using Theorem 4.1.3, one can find a solution in the class of formal series of the form Ψ f orm pλq " p Y pλqλ ´Le T pλq , p Y pλq :" G 0 ˆ1 `ÿ jě1 Y j λ j ˙P SL N rrλ ´1ss, (7.1.2)

  .1.4) Poisson structure on the space of matrices Apλq. The Lie-Poisson structure on the set of rational matrices can be expressed as (for a review see [BBT03]) tApλq b , Apµqu " where A 1 pλq :" Apλq b 1, A 2 pµq :" 1 b Apµq and Π : C n b C n Ñ C n b C n is the tensor effecting the flip : Πpv b f q " f b v, v, f P C n . (7.1.6)

  (7.1.10) To see this we introduce the symplectic potential θ :" res λ"8 Tr ˆDpλqGpλq ´1δGpλq ˙(7.1.11) which has the property that δθ " ω KK . Now observe that under the gauge transformation Gpλq Þ Ñ GpλqF pλq we have θ Þ Ñ θ `res λ"8

  p O T :" " pG 0 , Apλqq P SL N ˆAK : G ´1 0 A K G 0 " T K`1 , pGpλq ´1ApλqGpλqq `" T 1 pλq * , (7.1.15) where pq `denotes the Taylor part of a Laurent series (here is a polynomial part). The dimension of p O T is dim C ´p O T ¯" pK `1qpN 2 ´1q `pN ´1q ´pK `1qpN ´1q " KN pN ´1q `N 2 ´1 (7.1.16) The extended orbit p O T carries the following SL N -action : pG 0 , Apλqq Þ Ñ pHG 0 , HApλqH ´1q, H P SL N . (7.1.17) Then the quotient x O T {SL N is a symplectic manifold of dimension KN pN ´1q " dim C S K . In order to connect the Lie-Poisson structure with the Flaschka-Newell structure on the Stokes' matrices we need first a lemma and to justify the definition of Stokes manifolds given in (7.0.1). Lemma 7.1.1. The first K `1 coefficient matrices Y 1 , . . . , Y K`1 in the expansion of the formal solution Ψ f orm (7.1.2) coincide with the expansion of the eigenvector matrix, to wit p Y pλq :" G 0 ˜1 `ÿ jě1 Y j λ j ¸" Gpλq `Opλ ´K´2 q. (7.1.18) Proof. The formal series p Y satisfies the ODE p Y 1 pλq `p Y pλq ˆT 1 pλq ´L λ ˙" Apλq p Y pλq, (7.1.19)

  Stokes manifolds. Recall the results stated in Section 4.1 about the behavior of local solutions of linear ODEs near singular points, in particular Theorem 4.1.4. In our case of study, namely equation (7.1.1), there is only one pole at 8 of Poincaré rank K `1 for each K ě 1. Thus the complex plane can be partitioned into 2K `2 canonical Stokes sectors of equal angular width S µ , arranged in counterclockwise order. Within each such sector, Theorem 4.1.4 assures that there exists a unique analytic solution Ψ µ pλq to the ODE (7.1.1) such that Ψ µ pλq » Ψ f orm pλq, |λ| Ñ 8, arg λ P S µ , (7.1.20)

Figure 7 . 1 - 8 2

 718 Figure 7.1 -An example of Stokes' graph Σ used in Theorem 7.1.5.

  2.2) namely the logarithms of the coordinates have constant Poisson brackets amongst themselves (whence the terminology). At this point the problem of finding Darboux coordinates reduces to a simple problem of linear transformation in the logarithmic coordinates to find the canonical symplectic matrix for the Poisson brackets.

Figure 7

 7 Figure 7.2 -The Stokes graph Σ p2q .

Figure 7

 7 Figure 7.3 -The modified graph Σ p2q 0 .Here we take the triangulation T 0 of the hexagon that connects any of its vertices to v 6 .

x l :" y 1 ź 2ďkďl ź

 2ďkďl dj Kv k y p´1q k`1 j , l " 2, . . . , 2K `1, x 2K`2 :" y 1

Titre:

  La hiérarchie de Painlevé II : géométrie et applications. Mot clés : Équations de Painlevé, Problémes de Riemann-Hilbert, operateurs integrables, variétés de Stokes, algèbres ammasées, déterminants de Fredholm. Résumé : La hiérarchie de Painlevé II est une séquence d'équations différentielles ordinaires non linéaires, dont la première correspond à l'équation de Painlevé II. Chaque membre de la hiérarchie admet une paire de Lax en terme des déformations isomonodromiques d'un système linéaire d'EDO de rang 2, avec coefficient polynomial dans le cas homogène. Récemment, il a été prouvé que la formule de Tracy-Widom pour la solution Hastings-McLeod de l'équation de PII homogène peut être généralisé pour des solutions analogues de la hiérarchie de Painlevé II homogène, en utilisant le déterminant de Fredholm des noyaux d'Airy d'ordre supérieur. Leurs opérateurs intégrales sont utilisés en théorie des processus déterminantaux et ils ont des applications en physique statistique et en théorie des matrices aléatoires. En partant de ces considérations, cette thèse a exploré les directions suivantes. On a trouvé une formule à la Tracy-Widom qui relit des analogues à valeurs matricielles des noyaux d'Airy d'ordre supérieur à certaines solutions d'une hiérarchie de Painlevé II matricielle. Pour ce-là on a utilisé un problème de Riemann-Hilbert à valeurs matriciels et en utilisant sa solution on a dérivé une paire de Lax pour la hiérarchie. On a aussi trouvé une autre généralisation de la formule de Tracy-Widom, où cette fois ci le déterminant de Fredholm d'une version à température finie des noyaux d'Airy d'ordre supérieur est liée à certaines solutions d'une hiérarchie de PII intégro-différentielle. Dans ce cas, on a plutôt utilisé un problème de Riemann-Hilbert à valeurs opératoriels. Sa solution permet de construire une paire de Lax pour cette nouvelle hiérarchie. D'un point de vue plus géométrique, on a étudié la structure de Poisson-symplectique des variétés de Stokes associées à un système de équations différentielles ordinaires linéaires avec coefficient polinomial. Dans le cas de rang 2, on a trouvé des coordonnés log-canoniques explicites pour la 2-form symplectique, formant une algèbre ammassées d'un type précis. Cette construction permet de linéariser la structure de Poisson introduite par Flaschka et Newell dans leur travail fondateur en 1981. Title: The Painlevé II hierarchy: geometry and applications. Keywords: Painlevé equations, Riemann-Hilbert problems, integrable operators, Stokes manifolds, cluster algebras, Fredholm determinants.Abstract:The Painlevé II hierarchy is a sequence of nonlinear ODEs, with the Painlevé II equation as first member. Each member of the hierarchy admits a Lax pair in terms of isomonodromic deformations of a rank 2 system of linear ODEs, with polynomial coefficient for the homogeneous case. It was recently proved that the Tracy-Widom formula for the Hastings-McLeod solution of the homogeneous PII equation can be extended to analogue solutions of the homogeneous PII hierarchy using Fredholm determinants of operators acting through higher order Airy kernels. These integral operators are used in the theory of determinantal point processes with applications in statistical mechanics and random matrix theory. From this starting point, this PhD thesis explored the following directions. We found a formula of Tracy-Widom type connecting the Fredholm determinants of operators acting through matrixvalued analogues of the higher order Airy kernels with particular solution of a matrix-valued PII hierarchy. The result is achieved by using a matrix-valued Riemann-Hilbert problem to study these Fredholm determinants and by deriving a block-matrix Lax pair for the relevant hierarchy. We also found another generalization of the Tracy-Widom formula, this time relating the Fredholm determinants of finite-temperature versions of higher order Airy kernels operators to particular solutions of an integro-differential PII hierarchy. In this setting, a suitable operator-valued Riemann-Hilbert problem is used to study the relevant Fredholm determinant. The study of its solution produces in the end an operator-valued Lax pair that naturally encodes an integro-differential Painlevé II hierarchy. From a more geometrical point of view, we analyzed the Poisson-symplectic structure of the monodromy manifolds associated to a system of linear ODEs with polynomial coefficient, also known as Stokes manifolds. For the rank 2 case, we found explicit log-canonical coordinates for the symplectic 2form, forming a cluster algebra of specific type. Moreover, the log-canonical coordinates constructed in this way provide a linearization of the Poisson structure on the Stokes manifolds, first introduced by Flaschka and Newell in their pioneering work of 1981.

  Poisson par Boalch [Boa01a, Boa01b, B `07]. Dans le chapitre 7, nous prouvons que ce cas particulier de variété de monodromie a effectivement une structure symplectique, voir le théorème 7.1.5. De plus, dans le lemme 7.2.1, nous fournissons des coordonnées log-canoniques explicites pour la structure de Poisson induite. On montre aussi que ces coordonnées linéarisent la structure de Poisson originale de Flaschka-Newell, grace au théorème 7.4.3. Les variables log-canoniques utilisées dans ce contexte sont liées à une algèbre amassée d'un certain type. Les relations entre les algèbres amassées et les variétés de caractères sont connues et ont été largement étudiées par Fock et Goncharov [FG06] mais sans référence spécifique aux variétés de monodromie. Récemment, leur formalisme a également été utilisé pour trouver des coordonnées log-

canoniques pour la structure de Poissons de Goldmann des variétés de caractères de surfaces de Riemann épointées arbitraires

[START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF]

. En outre, certaines algèbres amassées avaient déjà été liées au phénomène de Stokes, mais celui qui apparaît dans l'analyse WKB

[START_REF] Kohei | Exact WKB analysis and cluster algebras[END_REF] 

(et non le phénomène classique que nous allons traiter ici). Pour toutes ces raisons, on s'attendait d'une certaine manière à ce que les algèbres amassées apparaissent également dans le contexte des variétés de caractères sauvages, telles que nos variétés de Stokes.

  Théorème 2. Pour tout pt, λ, nq P R ˆD1 p0q ˆN, avec le disque fermé de rayon unitaire D 1 p0q :" tλ P

	C : |λ| ď 1u,			
	B 2 Bt 2 ln D n pt, λq "	´ˆR	u 2 pt|xq pw 1 pxqdxq,	(14)

où upt|xq " upt|x; n, λq est l'unique solution du problème au bord ´pt `xqupt|xq " `pL u `Lu ´qn u ˘pt|xq, upt|xq " λ 1 2 Ai 2n`1 pt `xq, t Ñ `8, (15) et les opérators de récursion L u `, L u ´sont définis dans la Définition 6.0.3. De plus, l'application t Þ Ñ upt|x; n, λq est lisse pour tout px, λ, nq P R ˆD1 p0q ˆN, et l'expansion asymptotique en (6.0.9) est satisfaite ponctuellement en x P R et la détermination pour λ 1 2 est fixé arbitrariement.

  En utilisant la théorie des formes de degré deux standard associées aux graphes avec connexions développée récemment dans[START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF], on trouve que W K est écrite avec ces variables y i en forme log-canonique, en particulier de rang maximale. Par conséquence, la parenthèse de Poisson induite par W K est écrite dans ces variables en forme ty i , y j u " pP K q ij y i y j (pas de somme),(18)avec P K une matrice constante inversible de taille 2K (raison pour laquelle on dénote les variables y 2K . Pour conclure, on prouve que en échangent le choix de triangulation du polygone de 2K `2 cotés, le parametrisations des données de Stokes sont obtenues à partir du germe initial et en appliquant des mutations (i.e. des applications birationnelles d'une carte à l'autre). Comme déjà souligné dans l'Introduction, Flaschka et Newell s'étaient intéressés en premiers à ce cas spécial de variété de caractère sauvage en relation avec la hiérarchie de Painlevé II. Ils avaient trouvé, à travers l'application de monodromie, que cette variété était équipée avec la parenthèse de Poisson

		K	
	K	ź	y 2 2j .
		j"1	

XIV

La construction de ces variables y i est fondée sur le choix d'une certaine triangulation d'un polygone régulier de dimension 2K `2, et elle est très similaire à celle utilisée pour les Grassmaniennes de 2-plans ([GSV10], Chapter II). i comme log-canoniques). De plus, la matrice 4P K corresponde à la matrice d'adjacence pour un carquois de type A 2K ; ce-là implique que les variables y 2 i forment un germe de l'algèbre amassée du type A ! s j , s l
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  Apλq a rational matrix with fixed number of poles each one with fixed multiplicity, sharing the same set of essential monodromy data. This set of data is composed by some matrices that partially describes the local behaviors of the solution Ψ near the singularities of the matrix coefficient Apλq. It turned out that this description can be made by looking at the coefficient matrix Apλq as depending on certain extra parameters Apλ, sq 1 , and studying the variations w.r.t. these parameters that preserve the required set

			dΨ dλ	" ApλqΨ	(4)
	with dΨ dλ	" Apλ, sqΨ,	dΨ ds	" Lpλ, sqΨ,	(5)
	i.e. the equation obtained by cross-differentiation		
		dA ds	´dL dλ	`rA, Ls " 0,	(6)
						In our case of
	interest, starting from the modified KdV hierarchy (1.2.12), which construction is induced by the one of
	the KdV hierarchy (1.2.8) via a Miura transformation, one can apply a self-similarity reduction (similar
	to the one defining the reduction of the modified KdV equation to the Painlevé II equation) to all the
	other members of the modified KdV hierarchy. This procedure results in a sequence of nonlinear ordinary
	differential equations of increasing order, the first being the Painlevé II equation (1). Their collection is

called the Painlevé II hierarchy (and it is compactly written in equation (1.2.22)).

The relation between Painlevé equations and isomonodromic deformations was first investigated in great generality by the Japanese school in a series of papers [JMU81, JM81a, JM81b] and, almost simultaneously, but with specific focus on the Painlevé II case by Flaschka and Newell in

[START_REF] Flaschka | Monodromy and spectrum-preserving deformations I[END_REF][START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF]

. Essentially, isomonodromic deformations describes (for generic rank N ) all possible linear system of ODEs of data. One of the main results proved in

[START_REF] Jimbo | Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : I. General theory and τ -function[END_REF] 

was that these monodromy preserving deformations are equivalent to some nonlinear equations that the entries of the matrix coefficient Apλq should solve, w.r.t. the deformation parameters. For certain specific cases (choosing number and type of poles), these nonlinear equations coincide with the Painlevé equations. In the modern language, this result is usually stated as the fact that Painlevé equations admit Lax pair representations in terms of isomonodromic deformations. This means that for each of them there exist a pair of matrices Apλ, sq, Lpλ, sq such that the compatibility condition of the system is equivalent to the relevant Painlevé equation. The existence of Lax pairs for the Painlevé equations allows from a certain perspective to put them into the wide framework of Integrable Systems.

Example 1.2.4. Here

  is a list of the differential polynomials L n rus for the first few values of n, setting Here is a list of the first members of the KdV hierarchy. For n " 0 we have a trivial identity, with t 1 " ´x, and for n " 1 we recover the KdV equation, with t 2 " t.

	Chapter 1 -The Painlevé II hierarchy					
	all the constants of integration to zero.				
	n " 1 :	L 1 rus " u,	
	n " 2 :	L 2 rus " u xx `3u 2 ,	(1.2.7)
	n " 3 :	L 3 rus " u xxxx `10uu xx `5u 2 x `10u 3 ,
	Using Definition 1.2.3 we can finally construct the KdV hierarchy as follows
		u tn`1	`B Bx	L n`1 rus " 0, n ě 0,	(1.2.8)
	where the subscript t n`1 indicates the partial derivation w.r.t. t n`1 .
	Example 1.2.5. n " 0 :	u t1 `ux " 0,			(1.2.9)
	n " 1 :	u t2 `6uu x `uxxx " 0,	(1.2.10)
	n " 2 :	u t3 `uxxxxx `20u x u xx `10uu xxx `30u 2 u x " 0.	(1.2.11)
	The modified KdV hierarchy is then constructed from the KdV hierarchy through the same Miura
	transformation introduced before, i.e. by taking u " v x	´v2 , and looking at the equation for v. Indeed,
	the modified KdV hierarchy is defined as follows	
	v tn`1	`B Bx ˆB Bx	`2v ˙Ln	" v x	´v2 ‰	" 0, n ě 1,	(1.2.12)
	where for n " 1 the modified KdV equation (1.2.2) is recovered.

Remark 1.2.6. Consider the Miura transformation u " v x ´v2 and replace it into the definition of the differential operator of order 3 appearing in the Lenard recursion

  

										1.2. Construction of the Painlevé II hierarchy
	but the converse, again, is in general not true.	
	Example 1.2.7. The first members of the modified KdV hierarchy are as follows
	n " 1 :	v t2 `vxxx ´6v 2 v x " 0,				(1.2.16)
										(1.2.6), namely
			H :"	B 3 Bx 3 `4u	B Bx	`2u x .	(1.2.13)
	By direct computation, one can check that under the Miura transformation, H is factorized in the
	following way								
			H "	ˆB Bx	´2v	˙B Bx ˆB Bx	`2v ˙.	(1.2.14)
	Thus, when we replace the Miura transformation in the definition of the KdV hierarchy (1.2.8) we
	obtain, generalizing what was observed in Remark 1.2.1, that the n-th member of the KdV hierarchy is
	transformed into	ˆB Bx	´2v ˙ˆv tn`1	`B Bx ˆB Bx	`2v ˙Ln	" v x	´v2 ‰	˙" 0,	(1.2.15)
	where we only used the property (1.2.14). As a byproduct we conclude that, given a solution v of the n-th
	member of the modified KdV hierarchy then u " v x	´v2 solves the n-th member of the KdV hierarchy,

  large-N asymptotics for the Hermite polynomials which enters in the wave functions φ N as defined in (2.2.8). Notice that in this context the Airy kernel K Airy is considered as

						´1pyq ´φN pyqφ N ´1pxq x ´y	(2.2.17)
	and then the K Airy px, yq :"	AipxqAi 1 pyq ´Ai 1 pxqAipyq x ´y	(2.2.18)
	N Ñ8	P ´λmax ď	?	2N	`s 2

which is, by the way, equivalent to the definition given in (1.1.16). As a byproduct one can write the edge scaling limit of the probability distribution of the largest eigenvalue in GUE as lim 1{2 N 1{6 ¯" detp1 ´KAiry χ ps,8q q :" F T W psq (2.2.19) that is also known as the Tracy-widom distribution.

Remark 2.2.8. Notice that Theorem 2.1.6 applied to this case says that the probability measures P N of the DPP describing the positions of the eigenvalues of GUE with size N through correlation functions (2.2.6), converges for N Ñ 8 to the probability measure of the DPP on R with kernel the Airy kernel. The Tracy-Widom distribution and the Painlevé II transcendent Theorem 1.1.7 assumes now new significance, since the Fredholm determinant of the Airy kernel is interpreted as the edge scaling limit of the probability distribution of the largest eigenvalue in GUE, as shown above in equation (2.2.19). In particular, one can express the Tracy-Widom distribution in terms of the Hastings-McLeod Painlevé II transcendents uptq as

  It directly follows that the classical Riemann-Hilbert problem defined in 3.1.1 in the scalar case (for p " 1) and for pΣ, Gq satisfying the hypothesis of Theorem 3.1.2, admits the explicit solution

	Cauchy type	ypλq :"	1 2πi	ˆΣ gpζq ζ ´λ dζ " pCgq pλq,	(3.1.3)
		y ˘pλq "	˘1 2	gpλq	`1 2πi	P	ˆΣ gpζq ζ ´λ dζ, for λ P Σ	(3.1.4)
			P	ˆΣ gpζq ζ ´λ dζ :" lim Ñ0	ˆΣ	gpζq ζ ´λ dζ	(3.1.5)

Theorem 3.1.2 (Theorem 5.1.3

[START_REF] Harnad | Random matrices, random processes and integrable systems[END_REF]

). Let Σ be an oriented smooth and closed contour and let gpλq be a Hölder continuous function defined on Σ. Define the function ypλq defined as the contour integral of where we denoted by C the Cauchy transform.

The function ypλq has the following properties.

1. It is analytic in CzΣ and its boundary values y ˘pλq are continuous up to the boundary Σ.

2. lim λÑ`8 ypλq " 0.

3. The boundary values y ˘pλq satisfy the following formulae (Plemelj-Sokhotskii)

where P stand for the principal value of the integral that follows, i.e.

where the contour Σ is taken as Σ " ΣztΣ X |ζ ´λ| ă u, for any λ P Σ. From equation (3.1.4) directly follows that the boundary values of y satisfy for every λ P Σ the following relation y `pλq " y ´pλq `gpλq (3.1.6) that can be thought as an additive jump relation. Thus one concludes that the Cauchy transform of gpzq actually gives a solution solution for an additive Riemann-Hilbert problem, as follows. Corollary 3.1.3 (Corollary 5.1.5 [Har11]). Let Σ and g being as in Theorem 3.1.2. Then the Cauchy transform of g, namely ypλq " pCgq pλq defined in (3.1.3), solves the additive Riemann-Hilbert problem for a function defined through the three conditions 1. ypλq is analytic for λ P CzΣ ; 2. the boundary values of y satisfies y `pλq " y ´pλq `gpλq for any λ P Σ ; 3. ypλq Ñ 0 for λ Ñ 8. Y pλq " exp pC ln Gq pλq, (3.1.7)

  Notice that the last estimate can be improved if the estimate on the jump matrix G is improved (for example if G decays exponentially in s we expect Y to decay at the same way). The proof of this result strongly rely on the formula given in Theorem 5.1.11 for the solution of the Riemann-Hilbert problem

	Riemann-Hilbert problem 3.1.1 with the above jump matrix G, and it is such that	
	||Y pλ, sq ´Ip || L 2 pΣqXL 1 pΣq ď	C p1 `|λ|	1 2 qs	, for λ P K, s ě s 0	(3.1.13)
	where K is a closed subset of CzΣ satisying distpλ,Σq 1`|λ| ě cpKq for every λ P K.	

Suppose that we have the following estimate on the jump matrix G ||G ´Ip || L 2 pΣqXL 1 pΣq ă C s , for s ě s 0 , ą 0. (3.1.12) Chapter 3 -Integrable operators and Riemann-Hilbert problems for C some positive constant. Then, for s sufficiently large there is a unique solution Y " Y pλ, sq of the 3.1.1 and on the fact that the Cauchy transform, appearing in that formula, is L 2 -bounded. This and some other useful properties of the Cauchy transform are stated in Thoerem 5.1.4 of [Har11] (proofs can be found in [CG13, L `13]).

  Integral operators with kernels of type (3.3.4) for some specific choice of the functions E i pλq acting on L 2 pp0, 8qq were previously studied by Tracy and Widom in[START_REF] Tracy | Fredholm determinants and the mKdV/sinh-Gordon hierarchies[END_REF], in relation with some integrable hierarchies.

	.3.4)
	Remark 3.3.2.

  The above system is known as the Flaschka-Newell Lax pair for the Painlevé II equation. This Lax

		4.3. Isomonodromic representations of the Painlevé II equation and hierarchy
	from the compatibility condition of the 2 ˆ2 system			
	BΨ Bλ Bt BΨ	" M Ψ, with M pλ, tq " ´ip4λ 2 `t `2u 2 qσ 3 `´4λu " LΨ, with Lpλ, tq " ´iλσ 3 `uσ 1 ,	`α λ	¯σ1 ´2u t σ 2	(4.3.1)
	describing isomonodromic deformations of a rank 2 ODE with one irregular singularity of Poincaré rank
	3 at 8 and a simple pole at 0.			
	Tracy-Widom result (given in Theorems 1.1.7, 1.2.12 respectively) about the Hastings-McLeod solutions	
	of the Painlevé II equation. For the same reason, it will be fundamental in Chapter 5, 6 to construct	
	an analogue Lax pair for the matrix and integro-differential Painlevé II hierarchies. In the following	
	σ i , i " 1, 2, 3 denotes the standard Pauli's matrices, while σ ˘are 2 ˆ2 matrices having as unique nonzero	
	entry 1 at p1, 2q and p2, 1q respectively.			

Theorem 4.3.1 (Appendix I, [FN80]). The Painlevé II equation (1.1.2) for the function uptq follows pair is the one used in [KH99], in order to recover the Tracy-Widom result (Theorem 1.1.7) for the Hastings-McLeod solution of the Painlevé II equation through the Riemann-Hilbert approach. Another Lax pair was discovered by Jimbo and Miwa and it is reported in the following. Theorem 4.3.2 (Appendix C, [JM81a]). The Painlevé II equation (1.1.2) for the function yptq follows from the compatibility condition of the 2 ˆ2 system 4 BΨ Bλ " U Ψ, with U pλ, tq " ˆλ2 `t 2 `z˙σ 3

  Furthermore, the coefficients of the matrix M pnq are written in terms of the matrix Lenard operators in

	Proof. We first rewrite the compatibility condition (5.3.3) as the following system of differential equations
	for the coefficients A, F , G, E :
											d dS	Epλ, sq " rW, F pλ, sqs,
											d dS	Apλ, sq " ´irW, Gpλ, sqs	`,
											d dS	F pλ, sq " ´2λGpλ, sq `rW, Epλ, sqs,
									d dS	Gpλ, sq " 2λF pλ, sq `irW, Apλ, sqs `´rS, W s `.
											d dS	A 2n " 0,
											d dS	A 2n´2k p sq " ´irW, G 2n´2k p sqs `,
							G 2n´2k p sq "	2 1	dS ˆ´d	F 2n´2k`1 p sq `rW, E 2n´2k`1 p sqs ˙,
											F 2n´1 p sq "	´i 2	rW, A 2n s `,
							F 2n´2k´1 p sq "	1 2 ˆd dS	G 2n´2k p sq ´irW, A 2n´2k p sqs `˙,
					i 2	d dS	G 0 p sq " ´rS, W s `´1	‰	" 0	(5.3.3)
	is equivalent to the following equation
							ˆd dS	`rW, ¨s`˙Ln rU s " p´1q n`1 4 n rS, W s `,
	the following way									
	A 2n´2k p sq "	´1 2	ˆ´1 4	˙k´1 ˆLk rU s	´ˆd dS	´rW,	dS ¨s d	´1rW,	¨s˙ˆd dS	`rW, ¨s`˙Lk´1 rU s ˙,
	G 2n´2k p sq "	i 2	ˆ´1 4	˙k´1 ˆˆd dS	´rW,	dS ¨s d	´1rW,	¨s˙ˆd dS	`rW, ¨s`˙Lk´1 rU s ˙,
	E 2n´2k`1 p sq "	´i ˆ´1 4	˙k´1 d dS	´1 ˆrW,	¨s ˆrW, ¨s``d dS	˙Lk´1 rU s ˙,
	F 2n´2k`1 p sq "	´i ˆ´1 4	˙k´1 ˆˆrW, ¨s``d dS	˙Lk´1 rU s ˙,

The system (5.3.2) for Ψ pnq describes the isomonodromic deformations w.r.t. the deformation parameters s i , i " 1, . . . , r, of the linear differential equation

B Bλ

Ψ pnq pλ, sq " M pnq pλ, sqΨ pnq pλ, sq, that has only one irregular singular point at 8 of Poincaré rank r " 2n `1, and in the special case of symmetry ´σ 1 M pnq pλ, sqσ 1 " M pnq p´λ, sq.

We can finally state that the system (5.3.2) is an isomonodromic Lax pair for the matrix PII hierarchy (5.2.2).

Proposition 5.3.7. For each fixed n, the compatibility condition of the system (5.3.2), i.e., the equation B Bλ L pnq pλ, sq ´d dS M pnq pλ, sq `"L pnq pλ, sq, M pnq pλ, sq for k " 1, . . . , n.

(5.3.4)

In other words the system (5.3.2) is a Lax pair for the matrix Painlevé II hierarchy (5.2.2).

These equations must be satisfied identically in λ. Thus, by the polinomiality of the coefficients A, F , G, E, this system is equivalent to the following one d dS E 2n´2k`1 p sq " rW, F 2n´2k`1 p sqs,

  " A t,n B n with A t,n , B n having kernels as in (6.1.21).

	A t,n pα, βq :"	1 2π	e	i 2 ψnpα,2tq´i 2 ψnpβ,2tq α ´β	"ˆR	e izpα´βq dσpzq		,	B n pβ, γq :"	1 2π	e ´i 2 ψnpβ,0q`i 2 ψnpγ,0q β ´γ	.
													(6.1.21)
								1 p2πq 2	ˆR	ˆΓβ	e iψnpα,z`tq e ´iψnpβ,z`tq pα ´βqpβ ´γq	dβ dσpzq.	(6.1.22)
	Thus we can write down the kernel of J t,n as
	J t,n pα, γq "	1 p2πq 2	ˆΓβ	e	i 2 ψnpα,2tq´i 2 ψnpβ,2tq α ´β	"ˆR	e izpα´βq dσpzq 	e ´i 2 ψnpβ,0q`i 2 ψnpγ,0q β ´γ	dβ,	(6.1.23)
	so that J t,n											

Proposition 6.1.8. The integral operator J t,n is factored as J t,n " A t,n B n where A t,n : L 2 pΓ β q Ñ L 2 pRq, and B n : L 2 pRq Ñ L 2 pΓ β q have kernels Proof. Recall that J t,n " P n L t,n P ´1 n and that L t,n has kernel L t,n pα, γq "

  n " Tr Since J t,n pα, γq is analytic in a neighborhood of pα, γq P Γ α ˆΓα , and ˆR ¨¨¨ˆR J t,n pζ 1 , ζ 2 q ¨. . . ¨Jt,n pζ m´1 , ζ m qJ t pζ m , ζ 1 q dζ 1 ¨¨¨dζ m (6.1.26)

		L 2 pΓαq	J m t,n .	(6.1.25)
	Tr L 2 pRq	J m t,n "	

  pJ ext t,n f qpξq " ˆΣ J ext t,n pξ, ηqf pηq dη, J ext t,n pξ, ηq :" J t,n pξ, ηqχ Γα pξqχ Γα pηq, (6.1.28) Remark that, again, the extension leaves D n pt, λq invariant, so that we have ˆΣ A ext t,n pξ, ηqf pηq dη, A ext t,n pξ, ηq :" A t,n pξ, ηqχ Γα pξqχ Γ β pηq, B ext n : L 2 pΣq Ñ L 2 pΣq, pB ext n gqpηq " ˆΣ B ext n pη, ζqgpζq dζ, B ext n pη, ζq :" B n pη, ζqχ Γ β pηqχ Γα pζq. We prove the first property first. To see that A ext t,n , B ext n are both trace-class on L 2 pΣq we find for both a factorization in terms of Hilbert-Schmidt operators. For what concerns B n , we use the following trick. By residue theorem, for every pγ, βq P Γ α ˆΓβ , we have ψnpβ,2tq e izpα´βq wpzq dz χ Γα pαqχ Γ β pβq Γα pαqχ R pzq, A ext t,n,2 pz, βq :" e ´i 2 ψnpβ,2tq´izβ a wpzq χ R pzqχ Γ β pβq. Finally the last two properties directly comes from the fact that Γ α X Γ β " H. Indeed, the operator ˘2 pξ, ζq " A t,n pξ, ηqχ Γα pξqχ Γ β pηqA t,n pη, ζqχ Γα pηqχ Γ β pζq " 0 thus `Aext t,n ˘2 " 0 on L 2 pΣq, and the same is true for B ext n . For every pt, λ, nq P R ˆC ˆN, we have on L 2 pΣq, With this operator identity in mind, we can finally prove the final result of this section. We are going to express D n pt, λq as the Fredholm determinant of a suitable operator on L 2 pΣq, that is the operator C t,n with kernel written in equations (6.1.32), (6.1.33). L 2 pΣq Ñ L 2 pΣq is trace class and has kernel of the form pξ ´ηqC t,n pξ, ηq " ˆR ´k1 pξ|zqm 1 pη|zq `k2 pξ|zqm 2 pη|zq ¯dσpzq,

	D n pt, λq " detp1 ´λJ ext t,n | L 2 pΣq q. t,n can be factored in a similar way as before J ext Also remark that J ext t,n " A ext t,n B ext n , where now A ext t,n : L 2 pΣq Ñ L 2 pΣq, pA ext t,n f qpξq " Moreover, thanks to their construction the operators A ext t,n , B ext n on L 2 pΣq gain many properties, listed (6.1.29) below, with respect to their previous versions. Lemma 6.1.10. The operators A ext t,n , B ext n : L 2 pΣq Ñ L 2 pΣq have the following properties 1. they are trace class on L 2 pΣq for every pt, nq P R ˆN ; 2. they have zero operator trace ; 3. they are nilpotent. Proof. ´1 2πi ˆR dδ pγ ´δqpδ ´βq " 1 γ ´β . Replacing it in the kernel of B n using (6.1.21) we get B ext n pβ, γq " ´i p2πq 2 ˆR e ´i 2 ψnpβ,0q`i 2 ψnpγ,0q pγ ´δqpδ ´βq dδ χ Γ β pβqχ Γα pγq. (6.1.30) and this can seen as the composition B ext n " B ext n,1 B ext n,2 where B ext n,j : L 2 pΣq Ñ L 2 pΣq have Hilbert-Schmidt kernels B ext n,1 pβ, δq :" ´i 2π e ´i 2 ψnpβ,0q β ´δ χ Γ β pβqχ R pδq, B ext n,2 pδ, γq :" 1 2π e i 2 ψnpγ,0q δ ´γ χ R pδqχ Γα pγq. For what concerns A ext t,n instead, just integrating by parts (6.1.21) we get A ext t,n pα, βq " ´i 2π ˆR e i 2 ψnpα,2tq´i 2 and thus A ext t,n " A ext t,n,1 A ext t,n,2 where A ext t,n,j : L 2 pΣq Ñ L 2 pΣq have Hilbert-Schmidt kernels A ext t,n,1 pα, zq :" ´i 2π e i 2 ψnpα,2tq`izα a wpzq χ traces are computed as Tr L 2 pΣq A ext t,n " ˆΣ A ext t,n pz, zq dz " 0, Tr L 2 pΣq B ext n " ˆΣ B ext n pz, zq dz " 0. And we have that for every pξ, ζq P Σ ˆΣ `Aext `λ 1 2 A ext t,n ˘`I ´λ 1 2 pA ext t,n `Bext n q ˘`I `λ 1 2 B ext n ˘" I ´λA ext t,n B ext n " I ´λJ ext t,n , with an arbitrary, but throughout fixed, branch for λ 1 2 . Proof. By direct computation, using the nilpotency of the operators A ext t,n , B ext n . Proposition 6.1.12. For every pt, λ, nq P R ˆC ˆN, D n pt, λq " detpI ´λ 1 2 C t,n | L 2 pΣq q, (6.1.31) where C t,n :" A ext t,n `Bext (6.1.32) where k i , m i for i " 1, 2 are the functions parametrically depending on ζ P Σ, defined as k 1 pζ|yq :" 1 2π e i 2 ψnpζ,2t`2yq χ Γα pζq, k 2 pζ|yq :" 1 2π e ´i 2 ψnpζ,0q χ Γ β pζq, m 1 pζ|xq :" e ´i 2 ψnpζ,2t`2xq χ Γ β pζq, m 2 pζ|xq :" e i 2 ψnpζ,0q χ Γα pζq, t,n Lemma 6.1.11. `I (6.1.33)

n :

  pη, ζq P Σ ˆΣ, The integro-differential Painlevé II hierarchy thus we can rewrite the quantity above describing X ´pζ qGpζq as follows
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  where L i pηq are integral operators on H 1 with kernel i pt|yq determined from the L 2 pΣq integral equation

						ff	
						b L 2 pζq	η	dη ´ζ , ζ P CzΣ,	(6.2.22)
			pI	´λ 1 2 C t,n q i p¨|yq " k i p¨|yq, i " 1, 2.	(6.2.23)
	Remark 6.2.11. Notice again that the right hand side of equation (6.2.22) exists because the integral
	equation (6.2.23) admits solution, for the same reason explained before.
	Proof. It is enough to prove that the right hand side of equation (6.2.22), that we will denote by Ypζq in
	the following, it is the actual right inverse of Xpζq. We start by computing
	XpζqYpζq " I 2	`λ 1 2	ˆΣ `Xpηq ´Ypηq ˘dη η ´ζ	´λ ˆΣ	ˆΣ Xpη 1 qYpη 2 q	dη 1 η 1 ´ζ dη 2 η 2 ´ζ , ζ R Σ,	(6.2.24)

  For every ζ P Σ, independently on the choice of the boundary values of Xpζq we have that

		.2.27)
	Corollary 6.2.13. Npζq " XpζqMpζq, Lpζq " KpζqpXpζqq ´1.	(6.2.28)

  For every i, j P t1, 2u we have on H 1 the following identitiesˆΣ M i pηq b L j pηqdη " ˆΣ N i pηq b K j pηqdη,

	and also							
	ˆΣ M i pηq b L j pηqηdη " ˆΣ N i pηq b K j pηqηdη	`λ 1 2	ˆˆΣ	N i pηq b K j pηqdη ˙2 .	(6.2.37)
	Proof. During the proof of Corollary 6.2.10 we proved the following identity
	λ	1 2	ˆΣ `Xpηq ´Ypηq ˘dη η ´ζ	´λ ˆΣ	ˆΣ Xpη 1 qYpη 2 q	dη 1 η 1 ´ζ dη 2 η 2 ´ζ " 0,	ζ R Σ.	(6.2.38)
	Replacing in both terms formula (6.2.33) for k " 2, and collecting the powers 1, 2 of ζ ´1 as |ζ| Ñ 8 gives
	exactly the two identity stated.					
									m, l P t1, 2u. (6.2.35)
	Corollary 6.2.14. (6.2.36)

  For every pt, λ, nq P R ˆD1 p0q ˆN and for every px, yq P R 2 , we have that In order to prove this statement, we need to review some of the properties of the operator C t,n , defined in (6.1.32), (6.1.33). Recall that the operator C t,n on L 2 pΣq is defined as the sum of two operators on the same space acting with the following kernels pζ ´ηqA ext t,n pζ, ηq " ˆR k 1 pζ|zqm 1 pη|zqdσpzq, pξ ´ηqB ext n pξ, ηq " ˆR k 2 pξ|zqm 2 pη|zqdσpzq.Also, thanks to the symmetry Γ β " Γ α and to the fact that λ Ñ ψ n pλ, ¨q is odd, we have thatB ext n p´ξ,´ηq " B ext n pη, ξq for every pξ, ηq P Γ α ˆΓβ and A ext t,n p´η, ´ζq " A ext t,n pζ, ηq for every pη, ζq P Γ β ˆΓα . Using the nilpotency of the operators A ext t,n , B ext n the powers of the operator C t,n are computed as pη, ξq, for every pξ, ηq P Γ α ˆΓα . Having this property of the operator C t,n in mind, we can finally give the proof of the above proposition.Proof. In order to prove the proposition, we start by computing the left hand side of equation (6.2.41).ˆΣ `N1 pηq b K 2 pηq ˘px, yq dη " ˆΣ n 1 pη|xqk 2 pη|yq dη For the proof, we refer to the proof of Corollary 4.14 in[START_REF] Bothner | Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel[END_REF].The machinery of operator-valued Riemann-Hilbert problem 6.2.1 associated to the operator C t,n can then be used to study properties of D n pt, λq, and this is what we are going to do. Let summarise what we have proved until now : the unique solution of the Riemann-Hilbert problem 6.2.1 is denoted by Xpζq, ζ P C and it is an integral operator acting on the space H 2 with kernel being in the functional space L 2 pR 2 , dσ b dσ; C 2ˆ2 q. Moreover, Xpζq admits the integral representation (6.2.11) for every ζ R Σ, with continuos boundary values from both sides of Σ. Finally, from Corollary 6.2.13, this solution Xpζq

	Finally, using the properties of the kernels of A t,n , B n we conclude that
	C 2m`1 t,n	p´ξ, ´ηq " 0, C 2m t,n p´ξ, ´ηq " C 2m t,n pη, ξq, for any pξ, ηq P Γ α ˆΓα ,	(6.2.44)
	thus for any k P N we have that C k t,n p´ξ, ´ηq " C k 1 t,n U px, yq " λ 2
		"	1 2π ˆΓβ	« ˆΓβ	pI	´λ 1 2 C t,n q ´1pξ, ηq e ´i 2 ψnpξ,2t`2xq dξ	ff	e ´i 2 ψnpη,0q dη
		"	1 2π ˆΓα	"ˆΓ α	pI	´λ 1 2 C t,n q ´1p´ξ, ´ηq e	i 2 ψnpξ,2t`2xq dξ		e	i 2 ψnpη,0q dη,
	where we used equations (6.1.33), (6.2.12) and the conjugation symmetry Γ β " Γ α . Now, by rewriting the
	operator pI 2 C t,n q U px, yq " ´λ 1 1 "ˆΓ 2π ˆΓα α " ˆΣ 1 pη|xqm 2 pη|yq dη " pI ´λ 1 2 C t,n | L 2 pΣq q ´1pη, ξq e ˆΣ `M2 pηq b L 1 pηq ˘py, xq " i 2 ψnpξ,2t`2xq dξ ˆΣ `N2 pηq b K 1 pηq ˘py, xq dη,  e i 2 ψnpη,0q dη	(6.2.45)
	X 21 1 . where in the last passages we used the integral equation (6.2.23) and the symmetry condition (6.2.36).	(6.2.40)
	Proposition 6.2.16. U px, yq " V py, xq.	(6.2.41)
										(6.2.42)
	These operators are both nilpotent on L 2 pΣq, thanks to equation (6.1.33), as proved in Lemma 6.1.10.
					$		
			C k t,n "	% &	pA ext t,n B ext q m `pB ext A ext t,n q m , pA ext t,n B ext n q m A ext t,n `pB ext A ext t,n q m B ext , k " 2m k " 2m	`1	.	(6.2.43)

´1 with its Neumann series expansion, and by using that for all k P N C k t,n p´ξ, ´ηq " C k t,n pη, ξq for every pξ, ηq P Γ α ˆΓα we can conclude that

The last technical property of the asymptotic coefficients of the solution Xpζq is given in the following statement.

Corollary 6.2.17. Let i, j P t1, 2u and m P Z ě0 . Then

ˆΣ N i pηq b K j pηq η m dη Ñ 0 and ˆΣ M i pηq b L j pηq η m dη Ñ 0 (6.2.46)

exponentially fast as t Ñ `8 in operator norm on H 1 .

satisfies for every ζ P Σ and independently on the choice of its boundary value, the following identity Npζq " XpζqMpζq, (6.2.47)

  t. the complex parameter ζ and the real parameter t, by using relation (6.2.47). Thus we are going to need the computation of the derivative w.r.t ζ and t of Mpζq, written below. Recalling the definition of the functions m i pζ|xq given in (6.1.33), we find the kernel identity Npζq solves linear differential equations w.r.t. both ζ and t with operator-valued coefficients Apζq, Bpζq that are analytic operator-valued functions in ζ ; Apζq is an integral operator acting on H 2 by Theorem 6.2.9, Corollary 6.2.10, and Apζq is analytic for ζ P CzΣ with continuous boundary values A ˘pζ q on Σ by the same reasoning. Recalling (6.2.3) we Notice that the last kernel identity is equivalent to the operator commutator identity Apζq extends analytically across Σ. In turn, Apζq is analytic for every ζ P C given that px, yq Þ Ñ Apζ|x, yq is in L 2 pR 2 , dσ b dσ; C 2ˆ2 q for every ζ P C by construction. This proves our first identity and the reasoning for the second one is analogous : first differentiate (6.2.28) using (6.3.4), This concludes our proof. The next step is to prove that the coefficient operators Apζq, Bpζq introduced in Proposition 6.3.2 are actually polynomials in ζ and to express their coefficients in terms of quantities related to the solution of Riemann-Hilbert problem 6.2.1.

	Similarly,		
	where B 0 : H 2 Ñ H 2 has kernel	B Bt BG Bζ pζq " Mpζq " `ζB 0 ˘Mpζq, ζ P Σ, " ζ 2n A 0 `p A 2n , Gpζq ‰ P IpH 2 q, ζ P Σ.	(6.3.4)	(6.3.9)
		« ´i 0 ff 0 0 `X´p ζq `ζ2n A 0 `p A 2n ˘`X ´pζ q Inserting (6.3.9) into (6.3.8) we find at once `w1 pyq ˘´1 . B 0 px, yq :" δpx ´yq A `pζ q " BX Bζ pζq `X´p ζq ˘´1 ˘´1	(6.3.5) " A ´pζ q, ζ P Σ,
	With this in mind, we now proceed through the following steps
	i.e. BN Bt Bt Gpζq `X´p ζq pζq " But from (6.2.3), (6.3.5), 1. we first prove that BN Bζ pζq " ApζqNpζq, ˆBX Bt pζq `Xpζq ˘´1 BG Bt pζq  `Gpζq ˘´1 `X´p ζq `Xpζq `ζB 0 ˘`Xpζq ˘´1 ˘´1 `X´p ζqGpζq `ζB 0 ˘`Gpζq ":Bpζq Npζq. ˘´1 `X´p ζq (6.3.10) ˘´1 . (6.3.11) BN Bt pζq " BpζqNpζq. (6.3.6) BG Bt pζ|x, yq " ˆ8 ´8 ! `ζB 0 px, zq ˘G0 pζ|z, yq ´G0 pζ|x, zq `ζB 0 pz, yq ˘) dσpzq,
	Proof. We ζ-differentiate the first identity in (6.2.47) leading to the following operator commutator identity
		BN Bζ	pζq "	ˆBX Bζ	":Apζq Npζq. (6.3.7) P IpH 2 q, ζ P Σ. `Xpζq `ζ2n A 0 `p A 2n ˘`Xpζq ˘´1 pζq " ˘´1 pζq `Xpζq BG Bt " ζB 0 , Gpζq ‰
	B Bζ A `pζ q " Here, then compute on Σ, " or equivalently the operator identity Mpζ|x, yq " « ´ip 1 2 ζ 2n `t `xq 0 BX Bζ pζqGpζq`X ´pζ q  BG Bζ pζq `Gpζq 0 i 2 ζ 2n ˘´1 `X´p ζq ff Mpζ|x, yq, pζ, x, yq P Σ ˆR2 , ˘´1 `X´p ζqGpζq `ζ2n A 0 `p A 2n ˘`Gpζq ˘´1 `X´p ζq ˘´1 , Proposition 6.3.3. We have B Bζ Mpζq " `ζ2n A 0 `p A 2n ˘Mpζq, ζ P Σ, and with (6.2.2),(6.3.3) we derive for ζ P Σ, Bpζq " ζB 0 `B1 , Apζq " ζ 2n A 0 `2n ÿ A k ζ 2n´k `p A 2n ,	(6.3.8) (6.3.12) (6.3.2)
	BG Bζ	where the operators A 0 , p A 2n : H 2 Ñ H 2 are ζ-independent and have kernels A 0 px, yq :" δpx ´yq 1 2 « ´i 0 0 i ff `w1 pyq ˘´1 , p 0 A 2n px, yq :" δpx ´yq « ´ipt `xq 0 0 ff k"1 ˆ8 pζ|x, yq " where B	`w1 pyq ˘´1 . (6.3.3)

2. we prove then that Apζq, Bpζq are actually polynomials in ζ of degree 2n and 1 with operator-valued coefficients ;

3. by exploiting the compatibility condition of the system for Npζq, we prove that all the coefficients of the operator-valued polynomials Apζq, Bpζq are determined in terms of U, V the integral operators on H 1 defined in (6.2.40) and their t-derivatives ; 4. we finally conclude that the system of differential equations for Npζq is a Lax pair for a coupled operator-valued PII hierarchy involving the operators U and V. Proposition 6.3.2. There exist pt, λ, nq-dependent, analytic in ζ P C integral operators Apζq, Bpζq on H 2 such that for every ζ P Σ and pt, λ, nq P R ˆD1 p0q ˆN, ´8 ! `ζ2n A 0 px, zq `p A 2n px, zq ˘G0 pζ|z, yq ´G0 pζ|x, zq `ζ2n A 0 pz, yq `p A 2n pz, yq ˘) dσpzq.

Here we abbreviate, as in the definition of Gpζq given in (6.2.2), Gpζq " I 2 `G0 pζq.

Since Bpζq is an integral operator on H 2 and Bpζq is analytic for ζ P CzΣ with continuous boundary values B ˘pζ q on Σ, again from Theorem 6.2.9 and Corollary 6.2.10, we simply compute for ζ P Σ B `pζ q " " BX Once substituted back into (6.3.11) we find at once B `pζ q " B ´pζ q for ζ P Σ, i.e. Bpζq is analytic for ζ P C. j : H 2 Ñ H 2 are the ζ-independent integral operators with kernels written in (6.3.5) and (6.3.13) below. Likewise, A j : H 2 Ñ H 2 are ζ-independent, the kernels of A 0 and p A 2n are written in (6.3.3) and the entries of A k are polynomials in the asymptotic coefficients of Xpζq introduced in (6.2.35), namely commute) 2n

  The integro-differential Painlevé II hierarchy Proof. We start by computing the composition operator Cpζq " ApζqApζq on H 2 from (6.3.12),

	Chapter 6 -Cpζq " 4n ÿ	ˆk ÿ	A j A k´j	˙ζ4n´k `2n ÿ	`Ak p A 2n `p A 2n A k	˘ζ2n´k `p A 2n p A 2n "	4n ÿ	C k ζ 4n´k , (6.3.18)
	k"0	j"0			k"0				k"0
	and then use the compatibility constraint (6.3.14),		
				BC Bt	pζq " Apζq, B 0	(	`"Bpζq, Cpζq	‰ ,	(6.3.19)
								109

  H 1 by Corollary 6.2.17 and Proposition 6.3.3 since C k " A j A k´j for k " 1, . . . , 2n ´1 by (6.3.18) vanishes uniformly as t Ñ `8. Moving ahead the proclaimed vanishing of

	in (6.3.21). We are now prepared to prove the stated formulae for A 11 k and A 22 k . First, from (6.3.18),
	2n´1
	ÿ
	C 2n "
	j"1
	ř k
	j"0 C 12 2n , C 21 2n and C 22 2n follows now from the off-diagonal equations in (6.3.20) as well as the second equation

  and replacing the initial condition for a 1 pt|xq, the last equation of the compatibility condition is exactly pt `xqupt|xq " ´`pL u `Lu ´qn u ˘pt|xq that is the n-th member of the integro-differential Painlevé II hierarchy.We are now ready to prove the formula that expresses the Fredholm determinant D n pt, λq in terms of distinguished solution of the integro-differential Painlevé II hierarchy (6.0.4). We are going to prove it in two steps : first we have this lemma.

	Lemma 6.4.2. For every pt, λ, nq P R ˆD1 p0q ˆN,
		B Bt	ln D n pt, λq " ´iλ	1 2 Tr
						(6.4.3)
	for all pt, xq P R 2 , the recursion for the operators A 12 k given in (6.3.16) becomes
		$			
	a k`1 pt|xq "	& pL u `ak qpt|xq, k " 0 mod 2	,	k " 1, 2 . . . , 2n ´1;	a 1 pt|xq :" ´iupt|xq (6.4.4)
		% pL u ´ak qpt|xq, k " 1 mod 2		
	where the recursion operators L ȗ are given in Definition 6.0.3. Furthermore, the coupled system of
	differential equations for U, V , that was given in (6.3.26), actually coincides with a unique equation that
	is now rewritten as			
		´pt `xqa 1 pt|xq " pL u `a2n qpt|xq.	(6.4.5)

in Corollary 6.3.7. Indeed, by defining the following functions upt|xq :" U px, xq " U px, yq " V py, xq " V px, xq, a k pt|xq :" A 12 k px, xq " p´1q k A 21 k px, xq, Thus iterating backward the right hand side through (6.4.4) we get ´pt `xqa 1 pt|xq " `pL u `Lu ´qn a 1 ˘pt|xq H1 ˆΣ N 1 pξq b K 1 pξq dξ, followed by B 2 Bt 2 ln D n pt, λq " ´Tr H1 pU V q

  Γα pξqχ Γ β pηq dσpzq " i ˆR k 1 pξ|zqm 1 pη|zq dσpzq,

									.4.6)
	Then by using the definition of the operator C t,n given in (6.1.32) we get the kernel derivative
	B Bt 2 pψnpξ,2t`2zq´ψnpη,2t`2zqq χ where in the last passage we just replaced (6.1.33). Hence back in (6.4.6), C t,n pξ, ηq " i 2π ˆR e i
	B Bt	ln D n pt, λq "	´λ 1 2	ˆΣ	ˆΣpI	´λ 1 2 C t,n q ´1pη, ξq	B Bt	C t,n pξ, ηq dξ dη
				1				
		" ´iλ	2				

  The last step essentially just require to actually compute the operator trace appearing in the second equation of the above lemma and to compute the asymptotic behavior of the solution upt|xq of the n-th member of the integro-differential Painlevé II hierarchy (6.0.4). Bt 2 ln D n pt, λq " ´Tr

	Lemma 6.4.3. For every pt, λ, nq P R ˆD1 p0q ˆN,		
		D n pt, λq " exp	"	´ˆ8	ps ´tq	ˆˆR	 u 2 ps|xqdσpxq ˙ds	.	(6.4.7)
					t			
	Proof. By Lemma 6.4.2,						
	B 2							
	"	´ˆR	ˆR U 2 px, xq dσpxqdσpyq "	´ˆR	u 2 pt|xq dσpxq,	(6.4.8)

where upt|xq " upt|x; n, λq solves the dynamical system (6.0.4) and it is such that upt|xq " λ 1 2 Ai 2n`1 pt`xq as t Ñ `8, pointwise in x P R.

H1 pU V q " ´ˆR ˆR U px,

yqV py, xq dσpyq dσpxq " ´ˆR ˆR U 2 px, yq dσpxqdσpyq

  Definition 7.1.2. The Stokes' manifold is the following set S K :" " pS 1 , . . . , S 2K`2 , Lq P pN `ˆN ´qK`1 ˆh : S 1 ¨¨¨S 2K`2 e 2iπL " 1.

*

(7.1.22)

  The above expression suggest a relationship with the Malgrange form Θ M in Def. 7.1.3 which we now investigate. Using the definition Γpλq " Ψpλqe T p1q´T pλq λ L (piecewise sectorially), we find thatApλqΓpλq " Ψ 1 pλqe T p1q´T pλq λ L " Γ 1 pλq `Γ ˆT 1 pλq ´L λThe integrand in the second integral is zero on each of the Stokes' rays because the matrices δJ J ´1 are strictly triangular (upper or lower), with zeros on the diagonal and L, T 1 are diagonal, so that the product is diagonal-free. Thus the second integral reduces to

	Thus the expression (7.1.41) is recast into :
	θ "	ˆΣ dλ 2iπ	Tr ˆΓ´1 ´Γ1 ´δJ J	´1˙`ˆΣ dλ 2iπ	Tr ˆˆT 1 pλq	´L λ	˙δJJ	´1˙´T r `LδT p1q ˘(7.1.43)
	ˆΣ dλ 2iπ	Tr ˆˆT 1 pλq	´L λ	˙δJJ	´1˙"
	"	ˆβe 2iπ β	dλ 2iπ	Tr ˆˆT 1 pλq	´L λ	˙´´δT p1q ´δL ln λ ¯˙`ˆβ 1	ˆˆT 1 pλq	´L λ	˙δL ˙dλ "
	"	´K`1 ÿ j"1	TrpT j δLq 2iπ	ˆln λ j ´1 j 2	˙λj ˇˇˇβ β	e 2iπ	`δ TrpL 2 q 4iπ	pln zq 2 2	β ˇˇˇβ	e 2iπ	`Tr ´LδT p1q Tr
			ˆ`T pβq ´T p1q ˘δL	´δ ˆL2 2	˙ln β	˙"
	" ´Tr `T p1qδL ˘´iπ 2	δ Tr `L2 ˘.	(7.1.44)
	Thus we have shown that						
									θ "		ˆΣ dλ 2iπ	Tr ˆApλq∆ ñ	δΓ `Γ´1 `" δΓ ´Γ´1 ´`Γ ´δJ J ´1Γ ´1 ´. p1qL `iπ 2 L 2 ˙. (7.1.45) (7.1.39)
	and hence we have						
												∆ Σ pδΓΓ ´1q " Γ ´δJ J ´1Γ ´1 ´.	(7.1.40)
	Plugging (7.1.40) into (7.1.38) gives
									θ "	ˆΣ dλ 2iπ	Tr ˆΓ´1 ´AΓ ´δJ J	´1˙´T r `LδT p1q ˘.	(7.1.41)
												˙.
												(7.1.42)

Σ pδΓΓ ´1q ˙´Tr `LδT p1q ˘(7.1.38) where ∆ Σ is the jump operator ∆ Σ F pλq " F `pλq ´F´p λq, λ P Σ. Now observe that Γ `" Γ ´J ñ δΓ `" δΓ ´J `Γ´δ J θ " Θ M ´Tr `T p1qδL ˘´2iπδ Tr `L2 ˘´Tr `LδT p1q ˘" Θ M ´δ Tr ˆT

  The Stokes parameters are written in terms of the y j variables, w.r.t. the fixed triangulation T 0 described above, as follows

	s 1 " ´y´2 1				
	s 2k " p1 `y2 2k q	ź	y j p´1q j`1 2	, k " 1, . . . , K
					1ďjď2k
	s 2k`1 " ´p1 `y2 2k`1 q	ź	y	p´1q j 2 j	, k " 1, . . . , K	´1
							1ďjď2k`1
	s 2K`1 "	´ź 1ďjď2K	y	p´1q j 2 j	,
	s 2K`2 " y 2 1 `1 `y2 2 `. . . `1 `y2 2K ˘. . .	˘˘K ź	y ´4 2j ,
							j"1
			K			
	λ " p´1q K	ź	y 2 2j .		(7.2.16)
			j"1			

j`1 j l " 2, . . . , 2K, x 2K`1 " x 2K , x 2K`2 :" y 1 . (7.2.15)

These considerations are summarized in the following lemma.

Proposition 7.2.5.

  2.29) are a log-canonical formulation of the following bracket, called Flaschka-Newell Poisson bracket in the introduction. Consider the nonlinear Poisson bracket on C 2K`2 ˆC˚w ith coordinates ps 1 , . . . , s 2K`2 , λq given by ! s j , s l Let σ 3 , σ `, s ´be the matrices

	Definition 7.4.1. ) F N	" δ j,l´1	´δj,1 δ l,2K`2 λ 2	`p´1q j´l`1 s j s l ,	j ă l.
							(7.4.1)
	! s j , λ )	" p´1q j s j λ.	
	F N					
	These Poisson structure first appeared in [FN82] (see section 3, 5).
	Proposition 7.4.2. Let					
	F " F K "	˜1 s 1 0 1	¸˜1 0 s 2 1 ¸. . .	˜1 s 2K`1 0 1	¸˜1 s 2K`2 1 0 ¸λσ3 .	(7.4.2)
	σ 3 "	˜1 0 0 ´1¸,	σ `" ˜0 1 0 0	1 0 ¸, σ ´" ˜0 0	¸(7.4.3)
	(1) The matrix F satisfies					
		ts 1 , F u F N "	s 1 2	rσ 3 , F s `rσ ´, F s
	ts 2K`2 , F u F N "	s 2K`2 2	rF, σ 3 s	`1 λ 2 rσ `, F s
		ts , F u F N " p´1q rF, σ 3 s, 2 ď ď 2k	`1
			tλ, F u F N "	1 2	rσ 3 , F s.	(7.4.4)

2.2. Random matrices and DPP

or equivalently the differential M pλqdλ is holomorphic in the same disk.

In the cases where M 0 is not diagonalizible or it is so but it does have resonant eigenvalues the statement is adapted with a slightly different behavior of Ψ.

This condition follows while looking for the uniqueness of a fundamental solution of (4.1.1) near a higher order pole, with asymptotics given by (4.1.7).

The compatibility condition actually gives a system of three differential equations of first order, for u, z, y that are all functions of t. Differentiating again the equation for u and eliminating the variables y, z and their derivatives one obtains equation (1.1.2), with actually a minus sign in front of the constant term α.

Here the notation r s ´1 indicates that we only take the term λ ´1 in the relevant formal series.
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Riemann-Hilbert Problem 6.2.1. Given pt, λ, nq P R ˆD1 p0q ˆN, determine an integral operator Xpζq " Xpζ; t, λ, nq such that (1) Xpζq " I 2 `X0 pζq and X 0 pζq P IpH 2 q with kernel X 0 pζ|x, yq analytic in CzΣ.

(2) X 0 pζq admits continuous boundary values X 0˘p ζq P IpH 2 q on Σ, oriented as shown in Figure 6.2, such that X ˘pζ q " I 2 `X0˘p ζq satisfy X `pζ q " X ´pζ qGpζq.

(6.2.3)

(3) There exists c " cpn, tq ą 0 such that for ζ P CzΣ,

e ∆p|x|`|y|`|t|q , ∆ :" distpΓ α , Rq " distpΓ β , Rq ą 0, (6.2.4) uniformly in px, yq P R 2 and λ P D 1 p0q.

We notice that the structure of the Riemann-Hilbert problems 3.1.1 and 6.2.1 are exactly the same, with the only difference that in the last one we specified the asymptotic condition Xpζq " I 2 for |ζ| Ñ 8

by requiring a particular condition on the operator norm of the operator X 0 .

While for the standard matrix-valued Riemann-Hilbert problems 3.1.1 the request of finding a matrixvalued function analytic outside the prescribed contour and with continuous boundary values along the contour itself does not need further explanation, for the operator-valued Riemann-Hilbert problem 6.2.1 the same requests are demanded now for an operator-valued function Xpζq P IpH 2 q and we need to revise their precise meaning. In the following definitions we adopt the same notation of [START_REF] Bothner | On the origins of Riemann-Hilbert problems in mathematics[END_REF].

Definition 6.2.6. We say that an operator Kpζq P IpH 2 q with kernel Kpζ|x, yq is analytic in ζ P Ω a subset of C, if 1. for any px, yq P R 2 , the map ζ Þ Ñ Kpζ|x, yq is analytic in Ω.

2. for any ζ P Ω, the map px, yq Þ Ñ Kpζ|x, yq is in L 2 pR 2 , dσ b dσ; C 2ˆ2 q.

Furthermore, if Σ Ă Ω Ă C is an oriented contour consisting of a finite union of smooth oriented curves in CP 1 with finitely many self-intersections (as it is indeed the case for us), then the continuity of the boundary values of Kpζq along Σ is defined as follows.

Definition 6.2.7. We say that an analytic in ζ P ΩzΣ operator Kpζq P IpH p q admits continuous boundary values K ˘pζ q P IpH p q on Σ with kernels K ˘pζ |x, yq if

(1) for any px, yq P R 2 , the map ζ Þ Ñ K ˘pζ |x, yq is continuous on Σ.

(2) for any px, yq P R 2 , the non-tangential limits lim λÑζ Kpλ|x, yq " K ˘pζ |x, yq, λ P ˘side of Σ at ζ exist.

With these two last definitions in mind, the statement of the Riemann-Hilbert problem 6.2.1 is now clarified and the next step is to find out whether a solutions exists and whether it is unique.

Existence and uniqueness of the solution of the Riemann-Hilbert problem

In the following we are going to prove that the solution of the Riemann-Hilbert problem 6.2.1 exists and is unique. Furthermore, we are going to prove that it has an integral representation very similar to the one that is known for the generic matrix-valued Riemann-Hilbert problem 3.1.1 from Theorem 3.2.6. We start with the proof of uniqueness of the solution of the Riemann-Hilbert problem 6.2.1. We anticipate that the technique used reminds of the one used in the standard matrix case. Also, notice that the third point in Remark 6.2.4 will be fundamental in the proof.

Theorem 6.2.8. Whether the solution of the Riemann-Hilbert problem 6.2.1 exists, it is unique.

Proof. Suppose that a solution Xpζq " I 2 `X0 pζq P I 2 `IpH 2 q of the Riemann-Hilbert problem 6.2.1 exists. We start by proving that the solution is invertible. To do that, consider on the space H 2 the following Fredholm determinant dpζq :" detpI 2 `X0 pζqq, ζ P CzΣ. (6.2.5)

For ζ in this domain the Fredholm determinant is well-defined (thanks to the asymptotic condition (6.2.4))

and also analytic in ζ, since we required X 0 pζq to be analytic away from Σ. We can do the same construction for the operator-valued jump matrix Gpζq " I 2 `G0 pζq, defined for ζ P Σ. Indeed, G 0 pζq P IpH 2 q is trace class and its operator norm can be estimated as follows

e ∆p|x|`|y|`|t|q , c " cpnq ą 0. (6.2.7)

Thus by the Hadamard's inequality, the Fredholm determinant gpζq :" detpI 2 `G0 pζqq exists for ζ P Σ.

Moreover, by using Remark 6.2.4 we conclude that Tr H2 G 0 pζq " 0 and pG 0 pζqq 2 " 0. (6.2.8) Thus, expressing gpζq through the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II of [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]) we conclude that gpζq " 1 for all ζ P Σ. Finally, the multiplicativity of Fredholm determinants applied on the jump condition (6.2.3) yields d `pζ q " d ´pζ q, ζ P Σ. (6.2.9) that assures that the function dpζq is actually entire. Moreover, since dpζq Ñ 1 for ζ Ñ 8 from the asymptotic condition (6.2.4), we conclude by the generalized Liouville theorem that dpζq " 1. In particular Xpζq is invertible for ζ P CzΣ and so are their boundary values X ˘pζ q for ζ P Σ. Suppose now that there are two solutions X 1 pζq, X 2 pζq of the Riemann-Hilbert problem 6.2.1. We can Proof. Recall the definition of the operator-valued function Apζq, Bpζq given during the previous proof.

The main idea is to replace in them the asymptotic representations of Xpζq and Xpζq ´1 that we gave in equations (6.2.34), (6.2.35) for k " 2n. In particular we have

Replacing these formulae in the definition of Bpζq given in (6.3.10) and applying the generalized Liouville theorem, we conclude that

with B 0 the integral operator on H 2 with distributional kernel (6.3.5) and B 1 the integral operator on where we U px, yq and V px, yq are the kernels of U " λ

´Σ N 2 pηq b K 1 pηqdη, as defined in (6.2.40). In the same way, we replace the asymptotic representations of Xpζq, pXpζqq ´1 in the definition of Apζq given in (6.3.7) and we apply the generalized Liouville theorem, concluding that

with A 0 , Â2n operators on H 2 with kernels as in (6.3.3).

This last result does not determine explicitly the coefficients A k for k " 1, . . . , 2n. Nevertheless, by looking at the compatibility condition of the system (6. given in (6.3.26) reads as

In order to see that the system (6.3.6) is actually the Lax pair for the integro-differential Painlevé II hierarchy, we still have some work to do.

The derivation of the integro-differential Painlevé II hierarchy

In this last section we are first going to show that the Lax pair (6.3.6) naturally encodes the integrodifferential Painlevé II hierarchy introduced at the beginning of the chapter in (6.0.4). After that, we finally complete the proof of Theorem 6.0.7.

In order to recognize the integro-differential Painlevé II hierarchy behind the compatibility condition (6.3.14), the idea is simply to look at the compatibility condition (6.3.14) at the level of the kernels of the operators involved U, V, A ij k , instead of the operators themselves. In doing so, we can prove a fundamental symmetry property of the kernels of the off-diagonal operators A ij k .

Lemma 6.4. 

STOKES MANIFOLDS AND CLUSTER

ALGEBRAS

I n this last chapter we discuss some of the original results contained in the joint work with Marco Bertola [START_REF] Bertola | Stokes manifolds and cluster algebras[END_REF]. The aim of this work is to study the symplectic-Poisson structure of certain Stokes manifolds defined as the monodromy manifolds of a linear system of ODEs with polynomial (sl N -valued) coefficient of generic degree. In particular, for the case N " 2 we found explicit log-canonical coordinates for the symplectic two from, and we studied their relation with the emergent field of cluster algebras. The induced Poisson structure in these coordinates turns out to be the linearization of the Flaschka-Newell

Poisson structure, defined almost 40 years ago in their paper [START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF], where the first concrete example of wild character variety was introduced.

The adjective wild here is used to underline the difference with the classical character varieties, involved in the study of the monodromy map for ODEs having only simple poles. Indeed, the monodromy map connects the space of rational matrices, giving the coefficient of a linear system of ODEs, to some representations of the fundamental group of the punctured Riemann sphere. Looking at ODEs with only simple poles, this connection is explained in terms of character varieties of the punctured Riemann sphere.

Instead, if the ODEs matrix coefficient has higher order poles, the Stokes phenomena makes the set of monodromy data more complicated, thus complicating the studying of the monodromy map. The new geometrical object arising in this study goes under the name of wild character variety. The interest in its

Poisson structure comes naturally from the following fact. On the side of the ODEs, there is a well known Lie-Poisson structure defined on the space of coefficient matrices. It seems natural to ask whether and how the monodromy map "transfers" this structure on the relevant monodromy manifold. The pioneering works addressing this question were first the already cited [START_REF] Flaschka | The inverse monodromy transform is a canonical transformation[END_REF] and then the one of Ugaglia The normalization condition at λ " 8 is usually taken to be the identity, but it will be convenient to consider a more general one. Then we recall the definition anticipated at the end of Chapter 3. where Ξpλ; sq :" δJpλ; sqJ ´1pλ; sq is the Maurer-Cartan form, the prime denotes the differentiation w.r.t.

λ and δ is the total differential in the deformation parameters s.

We observe that the Malgrange form Θ M is independent of the normalization at λ " 8, which corresponds to a left multiplication of Γ by a λ-independent matrix. Then one has Theorem 7.1.4 (Thm. 2.1 in [START_REF] Bertola | Correction to : The dependence on the monodromy data of the isomonodromic tau function[END_REF]). The exterior derivative of the Malgrange form

Tr ˆH´1 pvqδH pvq ^J´1 pvqδJ pvq ˙(7.1.28)

where H pvq " J 1 pvq ¨¨¨J pvq and the matrices J pvq are defined prior to (7.1.25). 2

We now come to the main statement of the section.

Theorem 7.1.5. The following two-form is a (complex) symplectic structure on S K :

Its pull-back by the (extended) monodromy map coincides with the Lie-Poisson structure (7.1.9) times ´2iπ.

Before discussing the proof, we point out that this form is written in a different way from [B `07]

(Thm 5, formula (7)) and rather reflects the general theory of "canonical form associated to a graph" developed in [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF]. The two expressions (a posteriori) can be verified to give the same two-form when 1. To simplify the mental picture, the reader may assume here that Σ is compact : if some rays extend to infinity, the assumption is that Jpλq tends to the identity matrix faster than any power of λ ´1 as λ Ñ 8, λ P Σ, so that the RHP can be posed consistently. Details are in [START_REF] Bertola | Correction to : The dependence on the monodromy data of the isomonodromic tau function[END_REF].

2. In loc. cit. the form is presented in a different, but equivalent, way.

restricted to the constraint (7.1.21). In principle, in our explicit computation in Section 7.2 for the SL 2 case, this theorem is verified ex post facto.

Proof. We show that the symplectic form (7.1.9) coincides with the pull-back by the monodromy map of the form W K in (7.0.2) and hence showing that the latter is also symplectic (or, to put it more plainly, we write (7.1.9) in the coordinates provided by the Stokes' matrices). The proof here is completely different from [B `07] ; rather than computing the two-form W K in the coordinates of the Stokes' matrices, we directly compute the symplectic potential (7.1.11).

Let Σ be graph indicated in Fig. 7.1 : the vertex of the star is at λ " 1 and the small circle is centered at the origin λ " 0. The Stokes' rays are the lines 1 , . . . 2K`2 issuing from λ " 1 and extending to infinity along the Stokes' directions. In the Fig. 7.1 we have drawn them for the case K " 3 under the assumption that the real parts pit j q are ordered increasingly, so that the Stokes' rays have asymptotic

`iπ K`1 p ´1q and the Stokes' matrix S 1 is then upper triangular. We now define a piecewise analytic function Γ in each of the connected components of CzΣ ; in the sector S 1 , Γ is given by Γpλq " Γ 1 pλq :" Ψ 1 pλqe ´T pλq`T p1q λ L , (7.1.30)

where the determination of λ L is the principal one. In the other unbounded components (including the one that contains the disk D r ) the matrix Γ is defined by multiplying Γ 1 pλq by the jump matrices J pλq :" e T pλq´T p1q λ ´LS λ L e ´T pλq`T p1q , λ P . (7.1.31)

The triangularity of S is such that J pλq " 1 `Opλ ´8q as |λ| Ñ 8, λ P . Within the disk D r we define Γpλq " Γ 0 pλq :" Γ j0 pλqλ ´L " Ψ j0 pλqe T p1q´T pλq , (7.1.32)

where j 0 is the index of the sector containing D β . Note that Γ 0 is locally analytic near λ " 0.

In the sector containing the disk D β the matrix Γ does not have a jump on the ray p´8, ´βs because of the monodromy relation (7.1.21) and combined with the monodromy of the factor λ L . There is, however the jump Λ " e 2iπL on the segment rβ, 1s. A straightforward exercise shows that the piecewise analytic matrix function Γ satisfies a RHP on the graph Σ shown in Fig. 7.1 :

where » denotes the asymptotic equivalence in the Poincaré sense, p Y pλq is the formal series as in Lemma 7.1.1 and the jump matrix Jpλq is given by Jpλq "

The jump matrix on BD β is the function λ ´L and the determination is (recall that β P R `) with arg λ P

Construction of the log-canonical coordinates

We consider on S K the 2-form (7.0.2). Following [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF] we introduce some basic definitions and properties of the 2-form associated to a graph embedded in a surface, and we will see that the Stokes 2-form can be conveniently interpreted within that formalism. This is indeed the key in order to compute it explicitly and find the log-canonical coordinates.

Graph theory

We briefly recall the definition of the standard 2-form associated to an oriented graph on a surface (we refer to Section 2 of [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF] for more details). Let Σ be an oriented graph on a surface, we denote with VpΣq the set of its vertices, EpΣq the set of its edges and FpΣq the set of its faces. A "jump matrix" J is a map from EpΣq to SL n with the properties that :

1. for any edge e P EpΣq we have

with ´e denoting the same edge e with opposite orientation ;

2. for any vertex v P VpΣq of valence n v we have that the ordered counterclockwise product of the matrices associated to each edge oriented away from v is the identity. Namely :

where we ordered the edges e 1 , . . . , e nv incident at v then counting them counterclockwise.

To the pair pΣ, Jq, we can then associate the standard 2-form ΩpΣq defined hereafter. where in this formula for any vertex v P VpΣq we have taken the incident edges e 1 , . . . , e nv oriented away from v and enumerated in counterclockwise order, starting from any of them. Here H pvq r1: s " J 1 . . . J with J i " Jpe i q for i " 1, . . . , n v . Thanks to the property (7.2.5), this 2-form is well defined, namely, independent of the choice of first edge in the cyclic order at each vertex.

The form ΩpΣq in Def. 7.2.2 is shown to be invariant under certain transformations pΣ, Jq Þ Ñ pΣ 1 , J 1 q (called moves, see Section 2 of [START_REF] Bertola | Extended Goldman symplectic structure in Fock-Goncharov coordinates[END_REF]) ; these moves consist in the self-describing titles of 1. edge contractions ; 2. merging edges ;

attaching edges to vertices (and the converse)

The star-graph for the Stokes' phenomenon. Given the formula (7.0.2) we surmise that the form W K can be represented as 2W K " ΩpΣ ‹ q where Σ ‹ (the "star-graph") is simply the collection of 2K `3 rays, each carrying the matrices J 1 :" S 1 , . . . , J 2K`2 :" S 2K`2 , J 2K`3 :" Λ " e 2iπL as jumps. We diagonal matrices of the form

and along the edge v 1 Ñ v 2 we impose the jump matrix V py ´1 1 q ;

' on the three edges incident to z j (each of the dashed lines in Figure 7.3) we associate the constant matrix

that has the property A 3 " 1.

Remark 7.2.3. In the SL n case, the matrix A would be replaced by matrices A 1,2,3 that depend on pn ´1qpn ´2q{2 additional parameters for each triangle.

' on each internal diagonal edge d j for j " 2, . . . , 2K defining the original triangulation T 0 , we associate off-diagonal matrices of the form V py j q given by V py j q :" ˜0 ´yj y ´1 j 0 ¸(7.2.13) for j " 2, . . . , 2K (these are the red edges of Figure 7.3). In this way each internal diagonal d j is uniquely associated to the free variable y j , for j " 2, . . . , 2K.

Remark 7.2.4. In this construction one among the boundary edges plays a distinguished role, namely, the one laying to the left of the first Stokes ray. Indeed, the matrix associated to this edge is of the same type of the matrices associated to the internal diagonal edges of the triangulation T 0 and it depends only on y 1 . It would be possible to choose an arbitrary distinguished boundary edge for our variable y 1 , while retaining the same triangulation. Then one may verify (but we do not report the details here) that the new distiguished variable r y 1 is a monomial containing y 1 , while the other variables are unchanged.

Computation of W K

The Stokes' matrices S j on the unbounded rays are then uniquely determined in terms of the remaining ones by the condition (7.2.5) at the corresponding vertex v j . In this way each S j is expressed in terms of the y j variables. Of course, for each triangulation, we will obtain different parametrization of the Stokes parameters and the transformation of coordinates will be investigated later. In particular it is symplectic.

The initial triangulation

Proof. The fact that the form is symplectic follows from Theorem 7.1.5 and the fact that the contraction of Σ pKq 0 coincides with the graph Σ K (see Fig. 7.2) ; however the explicit expression (7.2.17) is manifestly a nondegenerate form and so it could be used directly as a proof. By using the definition of the 2-form (7.2.6), we have to compute the contributions coming from each vertex v j , j " 1, . . . 2K `2 in the graph Σ pKq 0 . The vertices z j , j " 1, . . . , 2K do not give any contribution since all their incident edges carry constant matrices.

We start with the vertex v 1 . Since the valence of v 1 is 4 and A is a constant matrix, there is only one contribution to take into account from v 1 , and it is

that turns out to be also zero, thanks to the form of the Stokes matrices given in (7.2.14). Thus the total contribution of the vertex v 1 is actually zero.

Since the vertex v 2K`1 is in the same configuration of v 1 , but replacing Dpy 1 q by Dpx 2K q, by the same reasoning we can conclude that its contribution is also zero. ^`V py 2k`1 q ´1dpV py 2k`1 qq "´d

d log y 2j ^d log y 2k`1 .

(7.2.20)

It only remains to compute the contribution of the vertex v 2K`2 . The internal diagonals carrying the variables y 2k for k " 1, . . . , K give the contribution

Tr ¨`V py 2k q ´1dpV py 2k qq ˘^˜D py 1 q 2k ź j"2

A pV py j qq

A pV py j qq

pd log y 2k ^d log y 2j `d log y 2k ^d log y 2j´1 q .

(7.2.21)

The internal diagonals carrying on the variables y 2k`1 give instead the contribution

A pV py j qq

A pV py j qq p´1q j ¸^`V py 2k`1 qdpV py 2k`1 q ´1q ˘' "

pd log y 2k`1 ^d log y 2j `d log y 2k`1 ^d log y 2j´1 q .

(7.2.22)

Finally the last edge on the right of the Stokes ray of v 2K`2 also gives a nonzero contribution, that is

where in the last equality we used the skew-symmetry of the wedge product. Now we can sum up all the nonzero contributions coming from v l , l " 2, . . . , 2K `2 and we obtain Ω Figure 7.4 -The Dynkin diagram associated to the 4 ˆ4 matrix B 2 . This quiver can also be obtained following the construction described in the paragraph below with the triangulation of the hexagon fixed to be T 0 .

The Poisson structure induced by the the symplectic structure in the same variables will be then written as ty i , y j u " P ij K y i y j (7.2.29)

where P K " Ω ´t K and Ω K is the matrix of coefficient of the Stokes 2-form w.r.t. the logarithmic variables log y l .

Lemma 7.2.1. The matrix P K is the 2K ˆ2K tridiagonal matrix given by

Comparison between P K and Poisson structure on Y -cluster manifold

Let focus our attention on the matrix B K :" 4P K .

Definition 7.3.1. Given a quiver Q with labeled vertices q i , i " 1, . . . , #VpQq, we call B its adjacency matrix the skew-symmetric, integer-valued square matrix, of dimension #VpQq, given by B kl :" # tedges oriented from q k to q l u ´# t edges oriented from q l to q k u (7.3.1) for k, l " 1, . . . , #VpQq.

Then the matrix B K can be identified as the directed adjacency matrix of a Dynkin graph of type A 2K with specified orientation. An example for K " 2 is given in Figure 7.4. There is a classical way to associate a directed graph to a triangulation of a given polygon (see for instance paragraph 2.1 of [START_REF] Michael Gekhtman | Cluster algebras and Poisson geometry[END_REF]). We slightly modify this construction, taking into account the fact that there is an edge along the perimeter of the polygon (the edge at the left of the first Stokes ray) that has a distinguished role in our case. We end up with the following graph QpT q for a given triangulation T of the polygon :

' the vertices of QpT q are defined one for each of the following edges of T : the edge along the perimeter at the left of the first Stokes ray and every internal diagonal edge of the triangulation T ; ' the edges of QpT q are are build between each pair of vertices that lies on edges of the triangulation T that share one of the endpoints and are immediately adjacent ;

' the orientation of the edges of QpT q is defined as follows : an edge connecting the vertices q i and q j on the adjacent edges of T d i and d j is oriented q i Ñ q j if the edge d i immediately precedes d j counting counterclockwise the edges incident to their common endpoint. Otherwise it is oriented in the opposite way. For the vertex y 1 along the edge on the right of the first Stokes ray (since on this edge we actually used the variable y ´1

1

) we reverse the orientation of all the edges of QpT q that have y 1 as endpoint.

With this construction, we obtain that for the initial triangulation T 0 underlying Σ p0q K the quiver QpT 0 q is a Dynkin graph of type A 2K with the orientation induced from T 0 (but each orientation of the same type of Dynkin graph is mutation equivalent, see Theorem 3.29 of [START_REF] Michael Gekhtman | Cluster algebras and Poisson geometry[END_REF]).

The matrix B K gives a compatible Poisson structure on the Y -cluster manifold which is defined by the ring of functions that are polynomials in all of the seeds obtained by subsequent mutations (of Y -type), defined below. Definition 7.3.2. A mutation µ k pQq w.r.t. a vertex q k P VpQq of the quiver Q is a new quiver defined by ' the same set of vertices, namely VpQq " Vpµ k pQqq ; ' the set of edges constructed as follows 1. for any sequence q i Ñ q k Ñ q l add an edge q i Ñ q l , 2. reverse any edge having source or end in the vertex q k , 3. remove every 2-cycle if any.

Equivalently we can define the mutation µ k pQq of Q through its adjacency matrix µ k pBq that is given 139 Chapter 7 -Stokes manifolds and cluster algebras by the following equations

for s " k or s " t, otherwise.

(7.3.2)

In our case of study, a set of variables y i P C ˚one of each vertex q i is associated to the quiver, for i " 1, . . . , 2K. To each mutation µ k pQq of the quiver is then associated a new set of variables µ k p yq following the equations in the definitions that we recall below (see also (1.30) in e.g. [START_REF] Michael Gekhtman | Cluster algebras and Poisson geometry[END_REF]).

Definition 7.3.3. A Y -mutation for the variables y i of the couple pQ, yq is a new set of variables pµ k p yqq 2K i"1 , for i " 1, . . . 2K defined as rational functions of the y i in the following way

otherwise.

(7.3.3)

Every new pair µ k p y, Qq " p y 1 , Q 1 q obtained by an allowed mutation is called a seed. In our case, we have that the initial quiver QpT q is the Dynkin graph of A 2K -type (for every n ě 1) that is related to the triangulation T of the polygon in Σ pKq 0 . The allowed mutations in this case are with respect to all the vertices with variables y 2 , . . . , y 2K (the ones associated to the internal diagonals of the triangulation T of the polygon). Definition 7.3.4. Given a pair p y, Qq where Q is a quiver with labeled vertices q i , i " 1, . . . , #VpQq and the variables y i P C ˚are associated to each q i , we call the Y -cluster algebra A Y pQq the sub-ring of all polynomials in y i and all their possible seeds µ k p y, Qq where µ k is a mutation w.r.t. the vertex q k with assigned variable y k . Definition 7.3.5. Given a Y -cluster algebra, its correspondent Y -cluster manifold is defined as the smooth part of SpecpA Y pQqq.

Denoting by A Y,i‰1 pA 2K q the Y -cluster algebra described above for our case, then on its correspondent Y -cluster manifold M :" SpecpA Y,i‰1 pA 2K qq there is a compatible Poisson structure having the form ty i , y j u " B K y i y j .

(7.3.4)

Therefore we reach the conclusion that the Poisson structure (induced by the symplectic 2-form W K ) on the Stokes manifold pS K , P K q coincides with the Poisson structure of pM, B K q, up to a constant multiplicative factor.

Flipping the edges

In the previous section we have established how to define the matrices and the variables y j , x l associated to each edge of a given triangulation, in order to get a parametrization of the Stokes matrices.

We also computed the Stokes matrices and the Stokes 2-form for a fixed triangulation, seeing that its matrix coefficient is related to the matrix coefficient of the Poisson structure of the Y -cluster manifold of A 2K -type.

We are now going to show that the y-variables associated to two triangulations T and T that are related by a single flip of one of their internal diagonal edges d j , are related by the rules of the mutation of seed variables (Def. 7.3.3). Subsequent flips give different systems of equations for the variables, so we are going to study separately all the possible cases of flip. The equations between the old and the new y variables are obtained by requiring that the Stokes matrices remain the same, independently of the triangulation.

Consider a generic triangulation of the 2pK `1q-gon, and consider any quadrilateral inside the triangulation consisting of two triangles sharing an edge. For the case K ě 2 we have the following possibilities for the sides of the quadrilateral :

1. three sides lie along the perimeter of the polygon, one side is an internal diagonal ;

2. two sides lie along the perimeter of the polygon and two sides are internal diagonals ;

3. one side is along the perimeter and the three others are internal diagonals ;

4. all the four sides are internal diagonals.

With the two last cases only occurring for K ą 2. Moreover, the number of y j variables directly and nontrivially involved in the flip is equal to the number of sides of the quadrilateral that are internal diagonals. We are going to analyze the flip for each case. After the flip, we define some new variables associated to each edge of the new triangulation and we find the corresponding parametrizations of the Stokes matrices in these new variables denoted ỹj . Finally, by imposing the equality between these Stokes matrices, the ones parametrized w.r.t. the first triangulation and the other ones, we obtain an overdetermined but compatible system of equations for the old variables and the new ones, y j and ỹj . Indeed, notice that the y j variables are always 2K and we have an equation for each Stokes matrix, thus we have a system of 2K `2 equations in 2K variables. We will see that this system is equivalent to the y-mutation correspondent to the vertex on the flipped edge, in the quiver QpT q associated with the triangulation T .

Case 1. This is the case where three edges of the quadrilateral are along the perimeter. This means that we have only two variables y that are directly and nontrivially involved in the flip. We can suppose that the first vertex, denoted by v 2i (in even position, the odd case is analogous) have valence only 6 and that the last one have valence 9, see Figure 7.6. Every other case can be reduced to this one after an appropriate simplification in the equations we are going to obtain. We denote by S j the Stokes matrices obtained through the triangulation T and by Sj the ones obtained by the flip of T .

First, we observe that for every j ď 2i the Stokes matrices are parametrized exactly in the same way w.r.t. the y j variables and the ỹj . Thus the equations S j py k q " Sj pỹ k q tell us that y k " ỹk for every k that is not incident to v 2i , v 2i`1 , v 2i`2 . As a byproduct also the variables x l " xl for every l ď 2i they remain invariant.

We focus on the equations S j py k q " Sj pỹ k q for k " 2i, 2i `1, 2i `2, 2i `3. We obtain an over-determined

.6 -A flip of a quadrilateral inside the triangulation T with 3 sides along the perimeter of the polygon and the new triangulation T obtained in this way.

system of four equations from the following four matrix equations

V px ´1 2i`3 qAV py j´1 q ´1AV py j qAV py j`1 q ´1ADpx 2i`2 q ´1 " V px ´1 2i`3 qAV pỹ j´1 qAV pỹ j qADpx 2i`2 q ´1 (7.3.5)

It follows then the following relations between the old and the new variables must hold ỹ2 j " p1 `y2 j`1 qy 2 j , ỹ2 j`1 "

where y j is the variable on the diagonal v 2i ´v2i`3 and y j`1 is the one on the diagonal v 2i`1 ´v2i`3 as show in Figure 7.6. One obtains these results from the second and third equation directly, then the other equations are automatically satisfied replacing these relations.

Case 2. Now we consider the case where there are two edges of the quadrilateral on the perimeter of the polygon, and the other two edges are internal diagonals. We can suppose as before that the first vertex is even v 2i . Also, we can assume that v 2i , v 2i`4 both have valence 8 and v 2i`3 has valence 4. Then all the other cases (when the valences of these vertices are higher) can be reduced to this one, after appropriate simplification. In this case three variables y are directly involved in the flip. Indeed, by the fact that S j py k q " Sj pỹ k q for every j, we obtain that y l " ỹl for any index l that is not incident to v 2i , v 2i`1 , v 2i`2 , v 2i`3 and also for all the variables that stay on the right of the y j diagonal, see Figure 7.7. Furthermore, by looking at j " 2i, 2i`1, 2i`2, 2i`3 we obtain the following over-determined system of four equations, from the four matrix equations Dpx 2i qAV py j`1 qAV py j q ´1AV px ´1 2i´1 q ´1 " Dpx 2i qAV pỹ j qAV px ´1 2i´1 q ´1 V px ´1 2i`1 qAV py j`2 qADpx 2i q ´1 " V px ´1 2i`1 qAV pỹ j`2 qAV pỹ j`1 qADpx 2i q ´1 Dpx 2i`2 qAV px 2i`1 q ´1 " Dpx 2i`2 qAV px 2i`1 q ´1 V px ´1 2i`3 qAV py j`1 q ´1AV py j`2 q ´1ADpx 2i`2 q ´1 " V px ´1 2i`3 qAV pỹ j`2 qADpx 2i`2 q ´1. (7.3.7)

In particular, from the first three equations we obtain the following relations between the old and the new variables

j`2 " y 2 j`2 p1 `y2 j`1 q, (7.3.8) and all the other equations are then satisfied by replacing these quantities (included the equation for j " 2i `4).

Case 3. Here we consider the case where three edges of the quadrilateral are internal diagonals of the polygon and only one edge is on its perimeter. Notice that this means that there are four variables y that are nontrivially involved in the flip. We suppose as before that the first edge considered is even v 2i and that all the vertices involved in the quadrilateral and their adjacent vertices have minimal valence, as in Figure 7.8. As in the previous cases, the equations S l py k q " Sl pỹkq for the indices l ‰ 2i, . . . , 2i `4 give that the variables y k " ỹk for the k that are not incident to the vertices v 2i , . . . , v 2i`4 . Then looking at the matrix equations for l " 2i, . . . 2i `3 we have the four matrix equations Dpx 2i qAV pỹ j qAV px ´1 2i´1 q " Dpx 2i qAV py j`1 qAV py j q ´1AV px ´1 2i´1 q V px 2i`1 qAV pỹ j`2 qAV pỹ j`1 qADpx 2i q ´1 " V px ´1 2i`1 qAV py j`2 qADpx 2i q ´1 Dpx 2i`2 qAV px ´1 2i`1 q ´1 " Dpx 2i`2 qAV px ´1 2i`1 q ´1 V px ´1 2i`3 qAV pỹ j`3 q ´1AV pỹ j`2 q ´1ADpx 2i`2 q ´1 " V px ´1 2i`3 qAV py j`3 q ´1AV py j`1 q ´1AV py j`2 q ´1ADpx 2i`2 q ´1.

(7.3.9)

From these equations we obtain that the old variables and the new variables are related through the following relations

, ỹ2 j`3 " y 2 j`3 p1 `y2 j`1 q (7.3.10) and all the other equations (included for the vertices v 2i`4 , v 2i`5 ) are identically satisfied once we replace the relations above.

Case 4. Here we consider the case where all the sides of the quadrilateral are internal diagonals. We suppose, as always, to have the first vertex that is even v 2i and that each vertex has minimal valence, as in Figure 7.9. Every other case, with higher order valence for the vertices involved, can be reduced to this one after appropriate simplification. In this case, we have five variables y directly involved in the flip, thus we will have one more equation than in the other cases.

By looking at the equations S l py k q " Sl pỹ k q for l ‰ 2i, . . . , 2i `5, we get that y k " ỹk for every index k that is not adjacent to the flipped edge with coordinate y j`4 . Then by looking at the equations for

Figure 7.9 -A flip of a quadrilateral inside the triangulation T with no sides along the perimeter of the polygon and the new triangulation T obtained in this way.

l " 2i, . . . , 2i `4 we have the following matrix-valued system Dpx 2i qAV py j qAV py j`1 q ´1AV py j`3 qAV px 2i´1 q ´1 " Dpx 2i qAV pỹ j qAV pỹ j`3 qAV px 2i´1 q ´1 V px 2i`1 qADpx 2i q ´1 " V px 2i`1 qADpx 2i q ´1 Dpx 2i`2 qAV py j`1 qAV py j q ´1AV px 2i`1 q ´1 " Dpx 2i`2 qAV pỹ j`1 qAV pỹ j`4 qAV pỹ j q ´1AV px 2i´1 q ´1 V px 2i`3 qADpx 2i`2 q ´1 " V px 2i`3 qADpx 2i`2 q ´1 Dpx 2i`4 qAV py j`2 q ´1AV py j`4 qAV py j`1 q ´1AV px 2i`3 q ´1 " Dpx 2i`2 qAV pỹ j`2 qAV pỹ j`1 q ´1AV px 2i`3 q ´1.

(7.3.11)

This system is solved through the following relations between the old and the new variables ỹ2 j " y 2 j p1 `y2 j`4 q, ỹ2 j`1 " y 2 j`1

, ỹ2 j`2 " y 2 j`2 p1 `y2 j`4 q, ỹ2 j`3 " y 2 j`3

(7.3.12) and they also satisfy the equations for l " 2i `5, 2i `6.

Notice that in each case we obtained that the system of equations for the old and new y variables obtained from the matrix equations S l py k q " Sl pỹ k q is solved by some y-mutation relations of the Dynkin diagram of A 2K -type, as in equation (7.3.3). In particular, every set of equations (7.3.6), (7.3.8), (7.3.10), (7.3.12) coincide with the y-mutation w.r.t. the vertex y l associated to the flipped edge of the triangulation T of the polygon, of the Dynkin diagram of A 2K -type associated to the triangulation T for the square of its variables. Remark 7.3.6. For what concerns the flip of the internal diagonal of the triangulation T 0 associated to the variable y 2 , analogue considerations hold. In particular, by looking at the equations S l py k q " Sl pỹ k q for l " 1, 2, 3, one obtains that the squares of the variables y k and ỹk for k " 1, 2, 3 3 are related by the 3. The correct Y -mutation formula is actually obtained for y ´1 1 , y 2 , y 3 and ỹ´1 1 , ỹ2 , ỹ3 , but this is just a matter of Y -mutation relations for the mutation of the quiver QpT 0 q of type A 2K with respect to the vertex y 2 . The other equations S l py k q " Sl pỹ k q, l ą 3 directly implies that all the other variables y k , k ‰ 1, 2, 3 do not change under this flip.

Example : the case K " 2

We work out on the case K " 2, i.e. the case of the hexagon. In particular, we are going to take the fixed triangulation T 0 of the hexagon (e.g. the one in Figure 7.5), and we consider the variables and the matrices associated to each edge of the graph in the common way explained before. We compute then the Stokes matrices and the Stokes 2-form W 2 in these variables.

Then, we consider all the possible flip of this triangulation, w.r.t. the edges with variables y 2 , y 3 , y 4 as in Figure 7.10, and we perform the same computations above with the new variables associated to each new triangulation obtained in that way. We will see that in each case, the inverse of the matrix coefficient of the Stokes 2-form is, up to the same factor 1 4 the adjacency matrix of a certain mutation of the A 4 Dynkin diagram, the one given in Figure 7.4.

' For the triangulation T 1 the variables x l are x 2 " y 1 y ´1 2 , x 3 " y 1 y ´1 2 y 3 , x 4 " y 1 y ´1 2 y 3 y ´1 4 , x 5 " x 4 , x 6 " y 1 . (7.3.13) notation, due to the fact that we associated the matrix V py ´1 1 q to the edge v 1 Ñ v 2 in the graph Σ pKq 0 .

Comparison between PK and Poisson structure on Y -cluster manifold

The 2-form W 2 T1 is log-canonical in the variables y i and such that its matrix coefficient has inverse

' For the triangulation T 2 the variables x l are

The 2-form W 2 T2 is log-canonical in the variables y i and such that the inverse of its coefficient matrix, namely P T2 2 gives

' For the triangulation T 3 the variables x l are

The 2-form W 2 T3 is such that the inverse of its coefficient matrix, namely P T3 2 gives

' For the triangulation T 4 the variables x l are

The 2-form W 2 T4 is such that the inverse of its coefficient matrix, namely P T4 2 gives

Furthermore the equations S i p yq " Si p uq that impose the Stokes equations parametrized in the 2 triangulations T 1 and T j to be equal, give exactly that u 2 i , w 2 i or t 2 i respectively for j " 2, 3, 4 are y-mutation of y 2 i related to A 4 w.r.t. the vertices y 2 , y 3 , y 4 .

Computation of the Poisson brackets for the original monodromy parameters

Theorem 7.4.3. The parametrization given in Lemma 7.2.5 for the Stokes parameters s j , j " 1, . . . , 2K2 and the formal monodromy exponent λ transforms the Poisson bracket (7.4.1) in the bracket (7.2.29).

Proof. We start by observing that the bracket (7.2.29) is such that all even-indexed variables commute amongst themselves, and so do the odd ones. We now verify that the bracket (7.2.29) yields the bracket (7.4.1) under the map (7.2.16). We will verify some of the brackets explicitly and leave the rest of the verification to the reader. Let us start with the case ts 2k`1 , λu for k ă K : since λ is a function of only the even variables it commutes with the even ones and we can write where we have used the same telescopic-sum argument. Again, the case ts 2K`2 , λu is handled similarly observing that s 2K`2 " y 2 1 times a function of only even variables. Let us now consider the bracket ts a , s b u ; suppose both a " 2k, b " 2l are even. (7.4.9)

Now let k ď l ´1 : then the second bracket in (7.4.8) is zero and the first yields back s 2k s 2l which is consistent with (7.4.1). The odd-odd case is similarly handled.
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We still have to check the case even-odd. For that, consider the case ts 2k , s 2l`1 u for k ď l : In the second sum only the term l " 1 contributes and the result of this is 1 λ 2 ; the first sum instead contributes ´s1 s 2K`2 and in total we find ts 1 , s 2K`2 u " ´1 λ 2 `s1 s 2K`2 . (7.4.15)

The verification is thus complete.