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Preface

When, in 2017, I first visited the group of Olivier Arcizet and Benjamin Pigeau, I was
greeted by an outstanding excitement for science and research that has been conveyed
also by my predecessor Laure Mercier de Lépinay who handed over to me a setup with
which the first scanning nanowire microscopy has been realized recently. At that time I
strove to work at the interface between photonics, nanomechanics and quantum effects.
In the nanowire based force detection at sensitivities where the interaction of a single
spin with the oscillating nanowire can be resolved, I found the ideal project to work
on during my PhD. We then applied for the Grenoble Quantum Engineering (GreQuE)
and the Quantum Engineering Grenoble (QuEnG) partial scholarships, which were both
granted. Originally, this thesis was to deal with repulsive Casimir forces measured with
the nanowire and the first mechanical readout of single spin states in nitrogen vacancy
centers (NV) in diamonds. However, at that point we did not know about the numerous
discoveries we would make and we were ignorant of the many side paths (some with,
some without an end) this project would go (of course, this is how science often works).
Now, we can say that the finding of this PhD project weremuchmoremanifold thanwhat
we originally expected, having advanced the field of nanowire force field measurements
by a large step.

Author’s contribution The inherited force field measurement setup with the 2D de-
tection of the nanowire Brownian motion had already been in place when this project
started. At that time, the measurement was purely based on thermal noise analysis,
which was a hindrance for fast nanowire force field microscopy since the acquisition of
full trajectories/spectra is time-consuming and requires complex post processing. One
of the first advancements implemented by the author was therefore the utilization of
a dual lock-in measurement technique with frequency tracking using two phase-locked
loops (PLLs). In particular, this meant to expand the scanning software by adding a large
amount of new functionalities to it. Beside the direct imaging and computation of force
field parameters such as the force divergence in realtime, a set of advanced scanning
options (e.g. the simultaneous measurement of the voltage parabola, force and gradient
simultaneous readout functionalities, etc.) was developed.

A second practical contribution is the implementation of the FPGA based digital signal
processing unit which allows flexible access to lock-in measurements using inexpensive
hardware. The developed dual-channel, four frequency lock-in is now regularly used
to measure the readout vector in the experiment in realtime. In addition to this appli-
cation, the FPGA module is also used for the active feedback, described in Chapter 4.

i



Preface

Even though the development was in cooperation with the electronics department of
the institute, particularly with Julien Minet, the author was still required to learn the
C-programming language as well as the basics of FPGA programming in VHDL.
The developed measurement protocols and the improvements in soft- and hardware are
now used in most of the group’s experiments (e.g. in [36]).

To explore the proximity forces above nanostructured surfaces, many samples were fab-
ricated, often with the help of the Nanofab team (in particular with J.F. Motte, G. Julie
and B. Fernandez), as well as S. Le Denmat. The measurements we realized allowed us to
acquire certain knowledge on the sample fabrication techniques and their impact on the
final surface quality, and in particular on the role of surface electric fields. For the inves-
tigations of Casimir forces at the nanoscale, we adapted specialized simulation tools and
set up a dedicated machine in the institute’s computation cluster to run Casimir force
simulations.
After a brief introduction, this thesis is structured into four chapters.

Chapter 1 In the first part, we lay the principles of nanowire force field microscopy
out, starting with fundamentals of force measurements with mechanical oscillators to
the reconstruction of a full 2D map of the force field based on the tracking of the eigen-
mode properties of the nanowire. The second part covers the experimental setup with
the two-dimensional optical position readout and a detailed description of the advanced
fast force microscopy experiment. The described advanced protocols allow to reach a
quasi realtime force sensing.

Chapter 2 In the first experimental chapter, we discuss the measurement of the elec-
trostatic force above nanostructured metallic surfaces. The forces are quadratic in the
electric field surrounding the nanowire. We first exploit the component of the force
field gradients that vary quadratically with a bias voltage applied to the sample, allow-
ing for imaging the force field topology created by the underlying nanostructures. Those
measurements are illustrated on different samples presenting positive or negative nano-
structurations, responsible for laterally trapping or anti-trapping force fields. We in-
vestigate the force contributions arising from contributions linear to the bias voltage
created by the existence of residual electrostatic fields which are independent from the
bias voltage, such as electrostatic surface patches. Those residual electric fields add up to
the electric field produced by the bias voltage and are responsible for two force contribu-
tions: one linear, and one independent in the bias voltage. In order to better understand
the measured force field, we give a description of the local physics at the nanowire’s tip
based on the Maxwell stress tensor formalism. We end the chapter with a comparison
of the force field gradients determined by the realtime routines and the gradients of the
simultaneously measured force field, using a dedicated measurement protocol.
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Chapter 3 Having discussed the quadratic and linear contributions in the bias volt-
age in chapter two, the third chapter takes a look at the residual forces that remain
when the tunable contributions of the voltage are properly cancelled, and particularly
at the Casimir force. Using again the Maxwell stress tensor formalism, we analyze how
the spatial contribution of fluctuating fields causes a measurable force on the nanowire.
We then discuss recent predictions of exotic Casimir forces above nanostructures and
present numerical simulations of the Casimir force experiences by the nanowire above
different geometries. For the discussion of the experimental results, we first present
an approximate method to determine the mean workfunction difference between the
nanowire and the surface which provides the voltage around which the linear contribu-
tions should be cancelled. This evaluation does not compensate for the quadratic contri-
bution in the residual electrostatic fields but, despite those limitations, the values of the
residual force field we obtain present a good qualitative agreement both in magnitude
and geometric profile with the numerical simulations we conducted. To obtain a more
quantitative evaluation, at the end of the chapter we describe a method to compensate
the parasitic fields in 3D making use of extra control electrodes, which should allow a
better isolation of the Casimir contribution.

Chapter 4 In the fourth part of this thesis we further use the 2D optical readout and
the realtime signal processing unit developed on the FPGA module to create a 2D active
feedback scheme allowing to generate synthetic 2D force fields, and to test their impact
on the nanowire thermal noise: since one canmeasure the nanowire position in realtime,
one can also apply a force in a chosen direction proportional to the motion readout in
another chosen direction. Here, we discuss the linear feedback regime in the parallel and
transverse cases with and without incorporating an additional delay, meaning that the
synthetic force field can be of reactive or of viscous nature. Using the different feedback
schemes, we demonstrate that we can gain a complete control over the nanowire eigen-
modes, for instance allowing for generating artificial frequency shifts, or implementing
a cold damping scheme. By fully exploiting the 2D character of the readout and actua-
tion tools, we also implemented transverse synthetic force fields, and demonstrated that
transverse force fields can be used to generate a noise squeezing of the nanowire motion
in the 2D position and velocity spaces, as well as to create circularly polarized precess-
ing eigenmodes. These manipulation tools should allow the realization of future force
sensing experiments that could be based on the realtime stabilization of the nanowire’s
mechanical properties through the application of a counter-acting force field in 2D, so
that it could operate in intense and weak force field gradients equally well.
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”Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire
plus courte.”

- Blaise Pascal, 4. Dezember 1656, Les Provinciales [85]
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Force measurements with mechanical oscillators – an
introduction

The basic concept of mechanical systems – translating an applied force into mechanical
motion or displacement – has been used to measure forces for a long time. In this chapter
we lay out a selection of the historical path the field of forcemeasurements took from the first
realizations in modern science in the 18th century before the development of microscale force
measurements, notably the development of atomic force microscopy (AFM). We finish the
chapter with a discussion of the recent advancements of more exotic force field microscopy,
in particular force field microscopy with nanowires.

5

This thesis discusses the measurements of force fields with nanomechanical oscillators.
They are possible due to the fact that a force changes the state of a movable mechanical
object, which can be read out by various probes. The probably most employed force
measurement technique in the history of humankind uses the deflection of a mechanical
lever caused by an added mass. Examining the deflection for different masses then per-
mits to have a quantitative comparison between the mass of different objects – the base
of any scale, a tool indispensable in the history of trade. While mass measurements are
the most common type of force sensing, the precise determination of forces in general
is a requirement for (modern) science. For instance, until 2019, the unit of the electric
current Ampère has been defined via the value of the force exerted between two wires
carrying a static current [3].

In this chapter we will take the opportunity to trace the path from previous scien-
tific techniques for force sensing to nanowire force field nanoscopy, the topic of this
work.

Early scientific force measurements

The earliest and most prominent dynamic force measurement is Cavendish’s experiment
to measure the mass of the earth, conducted in 1798 [17]. The difference between a static
measurement and a dynamic measurement is that static methods measure a mechanical

1



Force measurements with mechanical oscillators – an introduction

property, such as the deflection of a lever or the extension of a spring, in a non-motional
state, while dynamic measurement detect changes of an oscillating system, such as a
change of the oscillation period or the maximum deflection. Cavendish’s mechanical
system was a torsion oscillator – a stiff rod with two masses at each end, that is attached
at its center on a single string. When the rod rotates in the horizontal plane, the torsion
of the string creates a restoring force which causes a periodic oscillation. Cavendish
positioned two large masses in vicinity to the smaller masses, the gravitational force
between each mass pair then initiates the movement of the rod. When the movement
of the rod came to a rest, the experimenter placed the large masses on the other side of
the small masses, which caused a movement in the opposite direction. Each time, the
maximal deflection amplitude and the oscillation period from one maximum to the other
is measured.

Figure 1a shows the original experimental setup. The response of the rod to the instan-

Fig. 1: (a) Original drawing of Cavendish’s experiment for the determination of the earth’s density
from [17]. The torsional balance is in the center of the setup, contained in a wooden box
to isolate it from the environment. Via two view ports on the side and illumination of two
candles, the experimenter could read the displacement of the rod. (b) A recent realization
of Cavendish’s setup using a millimetric version of the original setup [115]. While the
experiment has shown the gravitational coupling between the two masses, the deducted
gravitational constant is subject to a large error.

taneously applied action from the gravitational force between the masses, is a damped
oscillation from one equilibrium point to another. From his measurements Cavendish
inferred the earth’s density and even though it has not been the primary purpose of his
work, one can also calculate the gravitational constant G from his results.

The original setup needed to be highly sensitive as the force between the two pairs of
lead balls with two and six inch diameter, respectively, is only in the range of 170 nN.
A scale with this sensitivity would be able to measure the weight difference caused by
less then a tenth of a small grain of sand. Additionally, the readout of the rod’s position
was purely manual and needed to be repeated over several days. Consequently, the
experiment was large in order to increase the oscillation period and the displacement

2



Nanomechanical sensors

amplitude. With modern equipment one can now perform a miniaturized version of
the direct measurement of the gravitational interaction between two massed, as done
in [115]. Here, the lead spheres are replaced with millimetric gold spheres and only
external mass is periodically approached to one end of the rod. The experimental design
is illustrated in Figure 1b.

Nanomechanical sensors

The advances of nanotechnology andmicro-fabrication in the last decades allows to real-
ize mechanical systems on the nanoscale in a controlled manner. Thus, modern nanome-
chanical mass sensors operate on an even smaller scale with unprecedented sensitivity
due to the small mass of the mechanical systems themselves. A common realization
of a nanomechanical resonator has a geometry similar to that of a guitar string that is
attached at its two ends and vibrates in the center. Amongst the oscillators with the
smallest mass are carbon nanotube (CNT) such as shown in Figure 2a, which in the
perfect case consist only of a single layer of carbon atoms that form a cylindric tube.
When a part of the CNT is suspended, it can vibrate at an intrinsic frequency. If a parti-
cle is adsorbed at the surface of the CNT, its vibrational frequency will change (bottom
graph in 2a), and one can infer from this frequency change how many and which kind
of molecules have been adsorbed. One future application for this kind of sensors could
be virus detection on Lab on a Chip devices [53].

Beside CNTs, other popular models are vibrating membranes, which are read out elec-
trically as presented in Figure 2b [62], or disc resonators which are at the same time me-
chanical resonators and optical cavities through circularly travelling whispering gallery
modes as shown in 2c [103].

3



Force measurements with mechanical oscillators – an introduction

Fig. 2: A carbon nanotube is suspended between two electrodes as shown in the two upper
graphics of (a). The vibration of the free part of the CNT is read out via the signal measured
on the third gate electrode. Chaste et al. used this configuration to detect the adsorption
of single naphtalene molecules (bottom graph of (a)). A similar setup that uses a sus-
pended silicon nitride (SiN) bridge is shown in (b) [62]. The vibration of the metal covered
bridge is detected electronically via the capacitive modulation imposed on a single elec-
tron transistor, which dynamically changes its conductance. While in this particular study,
the resonator has not been used for mass sensing, LaHaye et al. showed unprecedented
readout sensitivity close to the quantum limit. Figure (c) shows a realization of another
popular on-chip geometry, which consists of a circular suspended disk (blue) that hosts
a variety of mechanical modes. Additionally, light can propagate circularly in the disk,
making it an optical cavity whose parameters are coupled to the mechanical motion of
the disk. Via a waveguide (green) it is possible to couple light into the cavity and to detect
the transmitted light, which is modulated by the mechanical vibrations of the resonator
[103].

Force microscopy

An important application of force sensing is force microscopy which started around
thirty to forty years ago and soon achieved atomic resolution. Here, a mechanical oscil-
lator – typically a cantilever or a tuning fork – is scanned over a surface. At its extremity
it has an extruded tip that faces the sample and is the point closest to the sample. When
this probe is scanned over the sample, the interaction between the tip and the sample
surface changes the mechanical properties of the probe. Typically, one reads out the
vibration of the probe to detect its resonance frequency, when this changes due to the
interaction with the sample surface, the probe-sample distance is adjusted such that the
frequency remains constant. This non-contact mode of atomic force microscopy (AFM),

Atomic force
microscopy

represents a non-invasive imaging technique with sub-nanometer resolution which is
independent of the sample material. The upper graphic of Figure 3a presents a sketch
of the zoomed in tip above a sample surface.
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A previous imaging technique, the scanning tunneling microscopy (STM), measured the
tunneling current between a static conducting tip and the surface, which depends on
the distance between probe and sample. This technique, however, requires a conducting
sample surface.
The first realization of an AFM was done in 1986 by Binnig et al. [8]. They combined an
AFM cantilever – at this time an aluminum foil with a diamond tip as probe – and a STM,
whose purpose was to reliably measure the deflection of the cantilever (compare bottom
part of 3a). Via different feedback mechanisms they managed to realize noncontact mea-
surements in which the tip is moved at a static height with respect to the surface. The
vibration of modern AFMs are typically read out optically as sketched in Figure 3b. The
back of commercial AFM cantilevers, one example of which is shown in 3c, are therefore
coated with a metal to enhance their reflectivity.

Fig. 3: The basic principle of atomic force microscopy – a small tip scans over a surface and the
force between the very tip and the surface atoms deflects the supporting cantilever– is
shown in (a). In this first realization of AFM, the deflection of the cantilever (central image,
orange) due to the sample (blue) has been read out with a scanning tunneling microscopy
(brown) [8]. The Al cantilever with a diamond tip is sketched in the bottom right of (a).
The modern AFM readout method uses the reflection of a laser, which is detected on a
quadrant photodiode (b) [1]. The image in (c) shows a common cantilever from its bottom
site, with the tip visible at the right end.

Even a tip that has a single atom at its end, has a tip radius that is comparable to the
structure of the surface. AFMs therefore always measure a convolution of the surface
structure with the shape of the tip, and it has become a scientific challenge in itself to
interpret the effect of the tip’s shape.

Scanning probemicroscopy (SPM), to which AFM belongs as well, has been an important
tool in the last decades, particularly in the fields of nanotechnology where it is used
to characterize surfaces or as tool in nanofabrication [57, 69], and biology, where it is
used to observe dynamic biologic processes [31, 48]. Additionally, the probe’s tip can
be functionalized with a biomarker that binds to specific parts of a molecule, allowing
advanced biologic imaging and manipulation.

5



Force measurements with mechanical oscillators – an introduction

This work benefits from this scientific know-how, gained in the last thirty years, and cov-
ers an application of nanowires for force microscopy. While miniaturization of the exist-
ing techniques is often difficult, nanowires present one way to reduce the probe’s size.
Since sensitivity scales with mass and flexibility of the oscillating probe this presents
a possibility to achieve even higher force sensitivities in the aN/√Hz regime at room
temperature. Furthermore, nanowire based force probes provide another access to the
detection of force fields due to their mechanical characteristics.

Previous experiments with nanowire force probes

Nanowire force sensors provide an intrinsically high force sensitivity (aN/√Hz) thanks
to their low mass. They can be fabricated in high quality which leads to excellent me-
chanical properties and their large interaction with a focussed light beam make them
ideal for opto-mechanical applications. By tailoring their aspect ratio, one can engineer
nanowires for a wide range of applications. A particularity of nanowires compared to
AFM cantilevers is that they vibrate in the two dimensional transverse horizontal plane
and henceforth are susceptible to the 2D in-planar force field. By measuring their vibra-
tions in two dimensions, it is possible to reconstruct the force field they are submitted
to. How this is done will be discussed in the following chapter.

Two force field microscopy experiments which employ nanowires in a similar manner as
typical scanning probe experiments have been conducted in 2017 [29, 100] using different
measurement techniques. Rossi et al. used an one dimensional interferometric readout of
the nanowire vibrations while de Lépinay et al. employed an optical 2D detection.Force field

measurements with
nanowires

Both
experiments achieved the measurement of force fields with gradients as small as a few
fNnm−1 (see Figure 4).

With AFMs measuring forces in the vertical direction (the direction of the cantilever
vibration) and nanowires force fields in the horizontal plane, there is a third mechan-
ical system that can be used to measure force fields along three axes, consisting of a
single trapped particle. The position of the levitating particle can be controlled by the
trap parameters. A measurement of the particle’s Brownian motion in a force field then
permits to infer the force field – the same technique as nanowire force field microscopy,
with an additional dimension. In particular the group around Giorgio Gratta performed
experiments using levitating particle force sensors with sensitivities around 10 aN/√Hz
[9].

Besides scanning probemeasurements, our group also successfully employed SiC nanowire
force probes to map the optical force experienced by the nanowire in a focussed laser
beam [43] (Figure 5a) by spectral analysis of the nanowire’s random trajectories. In a
more recent work [35], we mapped the optical force in a fibred microcavity (Figure 5b)
using the new force sensing protocols that have been developed in the scope of this work
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Fig. 4: Two force field microscopy experiments that employed nanowires published in 2017. The
experiment by Rossi et al. in (a) maps the electrical force field between two concentric
structured electrodes [12, 100]. The experiment conducted in the group of the author by
his predecessor Laure Mercier de Lépinay maps the force field above a single electrode
(b) (electrostatic force field gradient (top) and field (bottom)) using a spectral analysis of
the nanowire’s Brownian motion [28, 29].

(see Chapter 1). Recent experimentsWith prospective force sensitivities of 40 aN/√Hz at mK Temperature
[37], the nanowire force sensing platform is also well suited for nano-optomechanical
experiments [36] or coupled spin-mechanical systems (Figure 5c)[87].

Fig. 5: Force field measurement experiments performed with SiC nanowires: (a) Mapping of the
force field of a focussed laser beam from [43], (b) Intra-cavity optical force field [36], (c)
Realization of a phononic Mollow-Triplet using the coupling between mechanical oscilla-
tor and a nitrogen vacancy (NV) center in diamond [87].
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How exactly one can exploit the mechanical properties of a nanowire to measure force
fields is subject of the next chapter. It lays out the physical foundations behind nanowire
based force microscopy and detailedly explains the 2d detection setup that permits to
read out the nanowiresmotion. Furthermore, we present an improved detection protocol
based on a fast resonant readout, which surpasses the precedent tools used in our group
and opens the way to realtime imaging of 2D force fields using nanowires.
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1 Fast scanning nanowire probe experiment

Nanowire force sensors can achieve a high sensitivity in force, due to their intrinsic small
mass and goodmechanical properties such as good quality factors, large linearity or efficient
optical readout, and first realizations of force microscopy experiments with nanowires [29,
100] have proven the suitability of this technique for the mapping of force fields. Compared
to standard AFM, the nanowire oscillates equivalently along its 2 transverse directions and
thus nanowire based force microscopy is a 2D force sensing technique that requires a similar
but distinct signal processing than in standard AFM: two projective measurements need to
be processed in order to access the measured 2D force field. Additionally, experimental
prototypes have to overcome some practical challenges such as the readout of the freely
suspended nanowire, which has a sub-wavelength sized diameter.

In the first part of this chapter, we present the theoretical foundations for 2D nanowire
force field microscopy and discuss the necessary mathematical concepts that are used in the
proceedings of this work. This part finishes with the formulation of the relation between
the measured perturbations of the mechanical properties of the nanowire in a force field
and the spatial structure of the surrounding force field. We then continue with a detailed
description of the experimental setup, covering the 2D optical position readout developed
[29] and focussing on the new, response based detection techniques developed in the scope
of this work. These improvements set the cornerstone of the experiments conducted in this
work and beyond its scope [36].
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1.1 Nanowires as force sensing probes

This section lays out the fundamentals of the motion of a singly clamped nanowire, first
regarding a 1D model and later the full 2D movement of the realistic nanowire. The
reconstruction of the force field in 2D, based on this description, is the core of nanowire
force field microscopy and is discussed subsequently in this section.

1.1.1 The deformation of a suspended nanowire

The vibrations of a nanowire clamped at one side without mechanical constraints at the
other side can be described by the mechanics of a stiff beam. The exact deformation of a
thin beam with fixed position at one end is given by the Euler-Bernouilli equation that
connects the amplitude of deflection 𝑟 (𝑦) with the position 𝑦 along the axis of the beam

Euler-Bernouilli
equation for a thin

beam
𝜌𝐴𝜕2𝛿𝑟

𝜕𝑡2
(𝑦 , 𝑡) + 𝐸𝐼𝜕

4𝛿𝑟
𝜕𝑦4

(𝑦 , 𝑡) = 0, (1.1)

where we introduce the volume density 𝜌, the cross section area𝐴, the materials Young’s
modulus 𝐸, and 𝐼 the second moment of inertia. The stationary state of Equation 1.1 can
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1.1 Nanowires as force sensing probes

be solved exactly [28, 104] resulting in a series of spatial mode profiles. For the 𝑛th mode
the solution writes

𝛿𝑟𝑛(𝑦) = 𝐴𝑛 cos(𝑘𝑛𝑦) + 𝐵𝑛 cosh(𝑘𝑛𝑦) + 𝐶𝑛 sin(𝑘𝑛𝑦) + 𝐷𝑛 sinh(𝑘𝑛𝑦), (1.2)

where

𝑘𝑛 = (
Ω2
𝑛𝜌𝐴
𝐸𝐼

)
1/4

. (1.3)

In order to obtain the concrete solution for a special case we need to take into account
the boundary conditions. For the fixed end (𝑦 = 0) these are

𝛿𝑟𝑛(0) = 0 and
𝜕𝛿𝑟𝑛
𝜕𝑦

(0) = 0, (1.4)

meaning that the nanowire’s displacement is zero and the nanowire itself is straight at
its anchor point. For the free end, we have the condition of zero torque whose derivative
is zero as well [22]:

𝜕2𝛿𝑟𝑛
𝜕𝑦2

(𝐿) = 0 and
𝜕3𝛿𝑟𝑛
𝜕𝑦3

(𝐿) = 0. (1.5)

Applying these boundary conditions to (1.2) one obtains the relation for the coefficients:
𝐴𝑛 = −𝐵𝑛, 𝐶𝑛 = −𝐷𝑛. And thus we obtain the simplified expression:

cos(𝑘𝑛𝐿) cosh(𝑘𝑛𝐿) = −1. (1.6)

This equation yields the possible values for the coefficient 𝑘𝑛 that also defines the me-
chanical frequency of the modes. The relation between the frequency of the first four
modes of a circular nanowire are given in Table 1.1. The spatial profile of the first flexural
modes for a singly clamped nanowire are illustrated in Figure 1.1.

Vibrational
eigenmodes of a
nanowire oscillator

Tab. 1.1: Frequencies of the first four eigenmodes of a singly, symetrically clamped nanowire in
multiples of the first eigenmode frequency.

𝑛 1 2 3 4
Ω𝑛/Ω1 1 6.267 17.548 34.393

An oscillating cylindrical nanowire beam has two motional degrees of freedom so that
each eigenmode family n has two degenerated modes. Asymmetric boundary condi-
tions or imperfections in the real nanowire usually lift this degeneracy, such that both
spatial modes are frequency separated. The measured deflection amplitude at position
𝑦 on the nanowire then is a vectorial quantity given by the sum of the individual mode
profiles:

𝛿𝐫y(𝑡, 𝑦) = ∑
𝑛
𝑎𝑛(𝑡)u𝑛(𝑦) (1.7)
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1 Fast scanning nanowire probe experiment

Fig. 1.1: First five flexural modes of a nanowire with mechanical constraints at one end.

where 𝑎𝑛(𝑡) is the oscillation time profile per mode and 𝐮𝑛(𝑦) the position dependent
modal basis vector. The equation of motion for each individual mode describes the time
profile for its oscillation:

Equation of motion
for the nth mode ̈𝑎𝑛(𝑡) = −Ω2

m,𝑛𝑎𝑛(𝑡) − Γm,𝑛 ̇𝑎𝑛(𝑡) +
1
𝑀𝑛

(𝐹𝑡ℎ,𝑛(𝑡)⟨𝐟ext(𝑟 , 𝑡), 𝐮𝑛(𝑟)⟩), (1.8)

where the index 𝑚 of Ωm,𝑛 denotes the mechanical frequency for mode n with the me-
chanical damping coefficient Γm,𝑛 and the dynamical mass per mode 𝑀𝑛 = 𝜌 ∫ d3𝐫 𝐮2𝑛(𝑦).
We also introduced a statistical Langevin force 𝐹𝑡ℎ driving a thermal Brownianmovement
of the nanowire. The fluctuation-dissipation theorem determines the spectral density of
the thermal force per mode [89]:

Spectral density of
the Brownian

motion of mode 𝑛
𝑆𝐹th,𝑛[Ω] = ℏ|ℑ( 1

𝜒𝑛[Ω]
)| coth( ℏΩ

2𝑘𝐵𝑇
), (1.9)

with the mechanical susceptibility 𝜒. Additionally to this statistical force, the term
⟨𝐟ext(𝑟 , 𝑡), 𝐮𝑛(𝑟)⟩ in (1.8) introduces an external force via its volume density 𝐟ext. The force
acting on the nanowire is given by the overlap integral between force density and each
mode profile, defined via the scalar product:

⟨𝐚, 𝐛⟩ ≡
𝐿

∫
0

d𝑟
𝐿
𝐚(𝑟)𝐛(𝑟). (1.10)

The force acting on the nanowire is thus that of a reduced force field at the free end of
the nanowire as illustrated in Figure 1.2. By probing the force at different positions and
heights, one can thus realize a cartography of the reduced force.
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Fig. 1.2: (a) The force is acting on the nanowire over its full length with different volumic profiles
depending on its position. The integrated force can be regarded as a reduced force at
the end of the nanowire and a force map can be obtained by plotting the force field in a
plane (b) and at different heights (c).

Because of the typically long nanowires (≈ 100 µm), many forces can be regarded as
local. An example is the optical force of a narrowly focused laser beam that is used in
this work to exert a modulated force on the oscillator. With a waist diameter of about
one micrometer, the region where 𝑓ext ≠ 0 is small compared to the characteristic length
of the mode profiles (distance between node and antinode) so we can approximate that
𝐟ext(𝑟) = 𝛿(𝑟−𝑟0) 𝐅ext. The overlap between force andmode profile then simplifies to

⟨𝐟ext(𝑟 , 𝑡), 𝐮𝑛(𝑟)⟩ = 𝐅ext𝐮𝑛(𝑟0). (1.11)

This leads to an external force that acts more efficiently on the oscillator if it is applied
at positions 𝑟0 where the mode’s oscillation amplitude is maximal. We can use this ob-
servation to define an effective mass 𝑀eff,𝑛:

Effective mass
definition𝑀eff,𝑛 =

𝑀𝑛

𝐮2𝑛(𝑟0)
=

𝜌 ∫ d3𝐫 𝐮2𝑛(𝑦)
𝐮2𝑛(𝑟0)

. (1.12)

Experimentally, the optical force is applied a fewmicrometers away from the end (𝑦 = 𝐿)
of the nanowire at the same position as the readout so that 𝑟0 ≈ 𝐿. In this case, the ratios
of effective mass to dynamical mass for the first four modes are provided by Table 1.2.

Tab. 1.2: The ratio between effective and dynamical mass of the first four vibrational mode fam-
ilies for a force acting close to the end of the nanowire.

𝑛 1 2 3 4
𝑀eff,𝑛/𝑀𝑛 0.2500 0.2500 0.2433 0.9646
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The fact that the effective mass of the first two mode families is identic close to the
nanowire’s end makes it easy to compare the results measured with either mode family.
For one specific mode we can then write the equation of motion

Equation of motion
for a driven mode 𝛿 ̈𝐫(𝑡) = −Ω2

m𝛿𝐫(𝑡) − Γ𝛿�̇�(𝑡) +
𝛿𝐹th(𝑡) + 𝐅ext(𝑡)

𝑀eff
, (1.13)

with an effective Langevin force 𝛿𝐹𝑡ℎ = 𝐹𝑡ℎ/𝑢𝑛(𝑟0). The first term of (1.13) describes
the intrinsic restoring force of the mechanical system with Ωm as the frequency of the
oscillation. The second term where Γ is the damping rate modelling the dissipation of
the mode, dominated by acoustic emission at large pressure, and by internal dissipation
at low pressures. The third term presents a time dependent external drive 𝛿𝐹(𝑡) acting
on the resonator’s extremity [107].

In the following paragraphs, we discuss the coupling of the nanowire to an external
bath, inherent to the existence of a dissipation channel and will then look at the effects
of external force fields on the nanowire in Equation 1.13.

1.1.1.1 Mechanical susceptibility of a harmonic oscillator

The interactions of the mechanical oscillator with its environment are modelled by
a linear viscous damping term and a stochastic random force 𝛿𝐹𝑡ℎ(𝑡). In the case of
an acoustic damping, the dissipation results from the collision of the nanowire with
molecules in the surrounding medium. The random movement of the surrounding ther-
mal bath’s molecules and their collisions with the oscillator create a stochastic random
force 𝛿𝐹𝑡ℎ(𝑡), called Langevin force, which drives the nanowire motion and is responsible
for its Brownian motion. The transposition of the equation of motion (1.13) in Fourier
space gives:

𝛿𝑟[Ω] = 1
𝑀eff

1
(Ω2

m − Ω2 − 𝑖ΓΩ)
𝛿𝐹th[Ω] ≡ 𝜒[Ω]𝛿𝐹th[Ω]], (1.14)

where Ωm is the eigenfrequency of the mechanical mode and 𝑖 is the imaginary unit
𝑖 = √−1. Here, we also introduce the frequency dependent mechanical susceptibility 𝜒
that relates force and mechanical displacement.

The Langevin force 𝛿𝐹th[Ω] is by nature a white Gaussian noise with a constant power
spectrum. The spectrum of a stochastic process is related to the autocorrelation function
via the Wiener-Khintchin theorem [116]:

𝑆𝛿𝐹th[Ω] = ℱ⟨𝐹th(𝑡)𝐹th(𝑡 + 𝜏)⟩. (1.15)

Where ℱ represents the Fourier transform with the convention ℱ 𝑓 (𝑡) = ∫ℝ 𝑓 (𝑡)𝑒
−𝑖Ω𝑡𝑑𝑡.Fourier transform

The brackets ⟨…⟩ signify the averaging on all configurations taken by the reservoir,
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which in the ergodic case is equivalent to a time average. In the case of white gaussian
noise, the auto-correlation function is equal to a delta function with a constant prefac-
tor 2𝑀effΓ𝑘B𝑇 determined by applying the fluctuation-dissipation theorem introduced in
(1.9) with the susceptibility 𝜒 of equation Equation 1.14 [13, 60, 89]:

Fluctuation-
dissipation
theorem

⟨𝛿𝐹th(𝑡)𝛿𝐹th(𝑡 + 𝜏)⟩ = 2𝑀effΓ𝑘B𝑇 𝛿(𝜏). (1.16)

Applying the Wiener-Khintchin theorem to Equation 1.14 yields the spectral density of
the mechanical displacement 𝑆𝛿𝑟

𝑆𝛿𝑟[Ω] = ℱ⟨𝛿𝑟(𝑡)𝛿𝑟(𝑡 + 𝜏)⟩
= (2𝜋)−1⟨𝛿𝑟(Ω)𝛿𝑟(Ω′)⟩𝛿(Ω + Ω′)

= |𝜒[Ω]|2𝑆𝛿𝐹th .
(1.17)

To express 𝑆𝛿𝑟 in terms of 𝑆𝛿𝐹th we used the fact that the displacement 𝛿𝑟(𝑡) are purely
random and not correlated in time.

With 𝑆𝛿𝐹th = 2𝑀effΓ𝑘B𝑇 = 𝑐𝑜𝑛𝑠𝑡, the shape of the noise spectral density 𝑆𝛿𝑟 is determined
by the susceptibility 𝜒. Figure 1.3 illustrates the amplitude and the argument of the
susceptibility 𝜒 which follows the form of a complex Lorentzian with a phase change
from 0 to 𝜋 at its central frequency Ω. A metric that describes the narrowness of such a

Ωm/2 Ωm 3Ωm/2

Γ

Ω
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g|
𝜒|
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𝜋

ar
g𝜒

Fig. 1.3: Amplitude and argument of the complex susceptibility 𝜒.

resonance is the quality factor Q that is the ratio between resonance frequency Ωm and
linewidth Γ

Q factor𝑄 =
Ω𝑚

Γ
. (1.18)
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1.1.1.2 Coherent excitation and the dynamic sensitivity limit

Additionally to the thermal Langevin force that causes the Brownian motion of the os-
cillator, an additional exciting force 𝛿𝐹pump(Ω) can be used to drive the oscillator. The
displacement spectrum of mechanical motion is then

𝛿𝑟[Ω] = 𝜒[Ω](𝛿𝐹th + 𝛿𝐹pump[Ω]). (1.19)

Here, we used that there is not temporal correlation in the Langevin force and that the
driving force can be written as a sum of monochromatic terms. The observed displace-
ment 𝛿𝑟[Ω] is the response to the thermal Langevin force and the monochromatic ex-
citation. The linear response in (1.19) implies that the displacement amplitude directly
scales with the amplitude of the driving force. It is therefore possible to increase the
measured signal 𝛿𝑟 without affecting the physics of the oscillator. This presents a prac-
tical advantage to purely noise based measurements since a higher amplitude is easier
detectable. Additionally, homodyne measurements at the frequency of excitation can be
used to measure the resonant response of the oscillator and thus its susceptibility. Re-
sponse measurements at multiple frequencies, either in parallel or as consecutive mea-
surements in a sweep, present a powerful tool to probe the oscillators susceptibility and
its dressing due to an external force field.

To get the power spectral density which is the typically measured signal on a spectrum
analyzer, we need to integrate 𝑆𝛿𝑟 over the resolution bandwidth (RBW) around the mea-
surement frequency Ω′

𝑃𝑆𝐷𝛿𝑟(Ω′) =
Ω′+𝑅𝐵𝑊

∫
Ω′−𝑅𝐵𝑊

𝑑Ω|𝜒(Ω)|2|𝛿𝐹th + 𝛿𝐹pump(Ω)|
2. (1.20)

For a monochromatic drive 𝛿𝐹pump[Ω] = 𝛿𝐹 𝛿(Ωpump − Ω) and when the resolution band-
width is sufficiently small compared the oscillator damping rate, the measured power at
the driving frequency is

Displacemnt Power
spectral density 𝑃𝑆𝐷𝛿𝑟(Ωpump) = |𝜒(Ωpump)|

2(𝑆𝛿𝐹th 𝑅𝐵𝑊 + 𝛿 𝐹 2
pump). (1.21)

In order to detect a driving force 𝛿𝐹pump in the measured power spectrum, we require a
signal to background ratio (SNB) larger than one. This implies that the second summand
in Equation 1.21 is equal or larger than the integrated noise contribution. We thus obtain
as frequency independent sensitivity limit

Force sensitivity
limit 𝛿𝐹min = √2𝑀effΓ𝑘𝐵𝑇 ⋅ 𝑅𝐵𝑊, (1.22)
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1.1 Nanowires as force sensing probes

which represents a fundamental limit for dynamic lock-in based detection. The force
field microscopy measurements in this work are usually performed with a higher mod-
ulation force 𝛿𝐹 in order to enhance the SNB and operate with higher detection speed
(larger RBW of the frequency tracking PLL). The dynamic limit can be improved by
cooling of the mechanical system passively, meaning by reducing the temperature of
the oscillator and its environment cryogenically.

1.1.1.3 Static force gradient sensing

A static but anisotropic one dimensional force field 𝐹ext(𝑥) can be linearized around the
equilibrium position of the resonator 𝑥0 as

𝐹ext(𝑟0 + 𝛿𝑟) = 𝐹ext(𝑟0) +
𝜕𝐹ext
𝜕𝑟

|
𝑟0
𝛿𝑟 (1.23)

The static force 𝐹ext(𝑟0) modifies the working point of the system, thereby potentially
bringing the oscillator to a new operating point, where the force gradient is now eval-
uated (compare box 1.a). Except this modification, the static force does not contribute
to the fast dynamics of the oscillator. The motion of the oscillator 𝛿𝑟(𝑡) in the force
field, being due to its Brownian motion or to an external drive, will create an effective
force modulation 𝛿𝐹ext that is proportional to the force field gradient as illustrated in
Figure 1.4.

𝑟

𝐹ext(𝑟)

𝑟0

𝛿𝑟

𝛿𝐹ext

Fig. 1.4: Schematic representation of the force field linearization around the rest point of the
oscillator 𝑟0. The static force 𝐹ext(𝑟0) has no effect on the oscillator’s dynamics whereas
the modulated 𝛿𝐹ext leads to a dressing of the resonators eigenmodes.

With this additional force that, similarly to the restoring force, depends on the oscillator
position we can write the equation of motion (1.13) as

𝛿 ̈𝑟 (𝑡) = −Ω2
m𝛿𝑟(𝑡) − Γ𝛿 ̇𝑟(𝑡) +

𝛿𝐹th(𝑡)
𝑀eff

+ 𝑔𝛿𝑟 , (1.24)
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1 Fast scanning nanowire probe experiment

where we introduced 𝑔 = 𝜕𝑟𝐹ext(𝑟)
𝑀eff

|
𝑟0

Force field gradient
𝑔

as measure for the force gradient in units of 𝑠−2. The

susceptibility of the resonator thus gets an additional term 𝑔:

𝜒−1 = (Ω2
m − Ω2 − 𝑖ΓΩ + 𝑔) (1.25)

= (Ω∥
2 − Ω2 − 𝑖ΓΩ). (1.26)

Note that in Equation 1.26 we combined the cold frequency of the mechanical mode
Ωm and the dressing term from the force gradient’s contribution 𝑔 to the frequency
Ω∥ = √Ω2

m + 𝑔 that is the resonant frequency of the new dressed mode. To approxi-
mate the sensitivity of the oscillator to the external force gradient, we can estimate the
force gradient at which the relative frequency shift becomes larger than the mechanical
linewidth:

Γ ≤ |Ω∥ − Ωm| = |√Ω2
m + 𝑔 − Ωm|. (1.27)

This inequality becomes at first order:

Γ ≤ 1
2
Ω−1
m 𝑔

⇒ 𝑔 ≥ 2ΓΩm, (1.28)

or

Force gradient
sensitivity limit

𝜕𝑥𝐹𝑥,ext > 2
𝑀effΩ2

m

𝑄
= 2

𝑘m
𝑄
, (1.29)

where we have introduced the stiffness of the oscillator km. The experimental realization
allows us to detect frequency shifts far smaller than the mechanical linewidth, so that
such a measurement is ultimately limited by the oscillator’s frequency noise.

Panel 1.a: Static Force Offset
In a static force field, the nanowire is displaced by the perpendicular force. The
displacement can be calculated with

Δ𝑟 =
𝐹const
𝑘m

=
𝐹const
𝑀effΩ2

m
. (1.30)

While this displacement does not change the oscillator’s dynamics, we obtain a
newworking point 𝑟1 = 𝑟0+Δ𝑟 (Figure 1.5 a). In the case that the force is unrelated
to the force field created by the sample, as for the case of a constant optical force
that is constant over a large area compared to the test force field, one can neglect
this static shift. If, however, the static shift is created by strong local forces in the
test force field, then the intended working point does not correspond to the real
working point during a measurement.

18



1.1 Nanowires as force sensing probes

Figure 1.5 b plots the expected displacement for a realistic parameter range. With
possible displacements over 100 nm, we need to consider the static shift for very
sensitive nanowires and for geometrieswhere large local forces can be expected.
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Fig. 1.5: A constant force 𝐹 displaces the nanowire by 𝛿𝑟, changing the working point from
𝐫0 to 𝐫1 (a). The displacement 𝛿𝑟 = 𝐹/𝑘m depends on the force and stiffness 𝑘m of
the nanowire. (b) presents the expected static displacement for a realistic range
of forces and stiffness coefficients.

1.1.1.4 2D nanowire system

The ideal nanowire is an axially symmetric beam with a fixed mechanical boundary at
one end. The two dimensional displacement 𝛿r(𝑦) at a position 𝑦 along its length takes
place in the transverse perpendicular (𝑥, 𝑧) plane. The resulting two degrees of freedom
allow two perpendicular eigenmodes of the resonator that are degenerated in the ideal
case, meaning that they are indistinguishable in frequency: Ω1 = Ω2. For a real nanowire
this degeneracy is typically lifted by 1%, under the influence of structural defects in the
nanowire’s crystallinity or the mechanical clamping that induces an asymmetry. The
susceptibility matrix of such a 2D oscillator in the base of its two independent eigen-
modes can be written as

Nanowire
susceptibility
matrix

𝜒−1 = 1
𝑀eff

(Ω
2
1 − Ω2 − 𝑖Γ1Ω 0

0 Ω2
2 − Ω2 − 𝑖Γ2Ω

), (1.31)

where the indices 1, 2 denote the first and second mode of the oscillator in order of in-
creasing eigenfrequency Ω1,2, with the convention of an orthonormal eigenvector basis
(𝑒1, 𝑒2). The left graphics in Figure 1.6 depicts the perpendicular polarizations of a sus-
pended nanowire. The indicated eigenvectors e1, e2 of the susceptibility correspond to
the eigenfrequencies Ω1, Ω2.
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1 Fast scanning nanowire probe experiment

The dynamics of the two dimensional system is analogue to the one dimensional oscil-
lator and we can calculate the displacement of the nanowire with:

𝛿r[Ω] = 𝜒[Ω] 𝛿F𝑡ℎ. (1.32)

Due to the lack of transverse, diagonal terms in the susceptibilitymatrix in Equation 1.31,
the dynamics of each eigenmode are completely independent from one another. The
presence of an external force field can create such transverse coupling terms in the sus-
ceptibility matrix.

In the following, we discuss how external force fields change the eigenmodes of the
nanowire and how 𝜒 can be expressed in the basis of the new eigenmodes. We further
discuss how the force field gradients can be deduced from measurements of the dressed
eigenproperties of the nanowire.

1.1.2 A nanowire in a force field

As in Section 1.1.1.3, a static inhomogeneous force field can again be linearized around
the nanowire’s rest position

Fext(r0 + 𝛿r) = Fext(r0) + ∇Fext|r0𝛿r, (1.33)

where ∇Fext is the gradient matrix of the force field that can be written as

Force field gradient
matrix ∇F = (

𝜕𝐹𝑥1
𝜕𝑥1

𝜕𝐹𝑥1
𝜕𝑥2

𝜕𝐹𝑥2
𝜕𝑥1

𝜕𝐹𝑥2
𝜕𝑥2

) = 𝑀eff(
𝑔11 𝑔21
𝑔12 𝑔22

). (1.34)

Here, we rewrote the partial derivatives as components 𝑔𝑖𝑗 = 1/𝑀eff𝜕𝑖𝐹𝑗 of the gradi-
ent matrix. In the influence of an external force field, the equation of motion in two
dimensions then reads in the basis of the cold eigenmodes (e1, e2):

2D equation of
motion for a

nanowire in a force
field

𝛿 ̈r(𝑡) = −(Ω
2
1 0
0 Ω2

2
)𝛿r − (Γ1 0

0 Γ2
)𝛿ṙ +

𝛿𝐹th
𝑀eff

+ (𝑔11 𝑔21
𝑔12 𝑔22

)𝛿r. (1.35)
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1.1 Nanowires as force sensing probes

1.1.2.1 Dressed eigenmodes

In analogy to the one dimensional oscillator ( Section 1.1.1.1), we obtain the susceptibility
matrix by using a Fourier transform of the equation of motion (1.35) and obtain, again
in the basis of the cold eigenmodes:

𝛿𝐹th = 𝜒−1[Ω]𝛿𝐫[Ω]

= 1
𝑀eff

(Ω
2
1 − Ω2 − 𝑖Γ1Ω − 𝑔11 −𝑔21

−𝑔12 Ω2
2 − Ω2 − 𝑖Γ2Ω − 𝑔22

)𝛿𝐫[Ω].
(1.36)

Performing the matrix inversion to calculate 𝜒[Ω], we get

Dressed
susceptibility
matrix

𝜒[Ω] = 1
det 𝜒−1[Ω]

(Ω
2
2 − Ω2 − 𝑖Γ2Ω − 𝑔22 𝑔21

𝑔12 Ω2
1 − Ω2 − 𝑖Γ1Ω − 𝑔11

)

= (𝜒11[Ω] 𝜒12[Ω]
𝜒21[Ω] 𝜒22[Ω]

),
(1.37)

where the determinant of inverse susceptibility is

det 𝜒−1[Ω]
𝑀eff

= (Ω2
1 − Ω2 − 𝑖Γ1Ω − 𝑔11)(Ω2

2 − Ω2 − 𝑖Γ2Ω − 𝑔22) − 𝑔12𝑔21 (1.38)

The diagonal elements of the force gradient matrix 𝑔11, 𝑔22 cause the eigenfrequencies
of the two resonances to shift spectrally, and we can define the variable for this pseudo
eigenfrequency

Ω∥
2
1 = Ω2

1 − 𝑔11; Ω∥
2
2 = Ω2

2 − 𝑔22 (1.39)

The off diagonal terms in Equation 1.36 couple both eigenvectors, and thus cause a mode
rotation. The new eigenmodes and the eigenfrequencies are the eigenvalues of 𝜒[Ω = 0].
Thanks to the symmetry1 of the eigenvalue problem, we solve
det(𝜒−1[Ω = 0] − 1𝜆±) = 0 which yields the eigenvalues 𝜆± ≡ 𝑀effΩ2

± with

Ω2
± ≡

Ω∥
2
1 + Ω∥

2
2

2
±
√
(Ω∥

2
2 − Ω∥

2
1)

2

4
+ 𝑔12𝑔21 (1.40)

as new squared eigenfrequencies of the two dimensional oscillator.

We now solve the eigenvector equation 𝜒−1(Ω = 0)𝐯 = 𝜆𝐯 which writes

| (Ω∥
2
1 − Ω2

±)𝑣1 − 𝑔21𝑣2 = 0
−𝑔12𝑣1 + (Ω∥

2
2 − Ω2

±)𝑣2 = 0|. (1.41)

1The eigenvectors of 𝜒−1[Ω = 0] are also eigenvectors of 𝜒, it is thus easier to calculate the eigenvalue
and eigenvectors for 𝜒−1[Ω = 0].
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Fig. 1.6: Sketch of the two polarizations of the nanowire modes. The direction of the eigenmodes
are labeled e1, e2. A time trace of the nanowire’s Brownian noise trajectory is plotted to
indicate the movement of the nanowire. The right graphic illustrates the two perpen-
dicular cold eigenmodes 𝐞1,2 and the dressed eigenmode orientations 𝐞+,−. The rotation
angles 𝛿𝜃+,− are indicated with respect to the corresponding cold modes.

Using Ω+ in the first and Ω− in the second equation we obtain the normalized eigenvec-
tors:

Dressed
eigenvectors

⇒ 𝐞− = 1

√𝑔
2
12 + (Ω∥

2
2 − Ω2

−)
2
(Ω∥

2
2 − Ω2

−
𝑔12

)

⇒ 𝐞+ = 1

√𝑔
2
21 + (Ω2

+ − Ω∥
2
1)

2
( −𝑔21
Ω2
+ − Ω∥

2
1
),

(1.42)

where both eigenvectors converge towards the uncoupled eigenvectors if no force field
is present.

We can introduce for each eigenvector the angle of the mode orientation with respect
to the 𝑥-axis 𝜃− = 𝜃1 + 𝛿𝜃− = and 𝜃+ = 𝜃2 + 𝛿𝜃+ and write the normalized eigenvectors in
terms of 𝛿𝜃−,+:

e− = (cos 𝛿𝜃−sin 𝛿𝜃−
), e+ = (− sin 𝛿𝜃+

cos 𝛿𝜃+
), (1.43)

in the (𝐞1, 𝐞2) basis. The change of the orientation angles then calculates:

Mode orientation tan 𝛿𝜃− =
𝑔12

Ω∥
2
2 − Ω2

−
and tan 𝛿𝜃+ =

𝑔21
Ω2
+ − Ω∥

2
1

. (1.44)
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1.1 Nanowires as force sensing probes

1.1.2.2 Calculation of the force field gradients

For the calculation of the force field gradients, we define the following identities:

Ω2
+ + Ω2

− = Ω∥
2
1 + Ω∥

2
2

Δ2Ω∥ ≡ Ω∥
2
2 − Ω∥

2
1

𝜇 ≡ tan 𝛿𝜃− tan 𝛿𝜃+

Ω2
+ − Ω2

− = √Δ2Ω∥
2 + 4𝑔12𝑔21,

(1.45)

where we used the result for the dressed eigenfrequencies (1.40) in the last identity.

Using the first two expressions we note that

Ω2
+ − Ω∥

2
1 = Ω∥

2
2 − Ω2

− = 1
2
(Δ2Ω∥ + Ω2

+ − Ω2
−) = 𝐾. (1.46)

Combining this identity with (1.44), one has

𝑔12𝑔21 = tan 𝜃− tan 𝜃+ 𝐾 2, (1.47)

and can thus rewrite the fourth expression of (1.45) as

(Ω2
+ − Ω2

−)
2 = Δ2Ω∥

2 + 4𝑔12𝑔21
= ΔΩ∥

4 + 𝜇(Δ2Ω∥ + Ω2
+ − Ω2

−)
2.

(1.48)

This quadratic equation can be solved for Δ2Ω∥ by

Δ2Ω∥ = (Ω2
+ − Ω2

−)
−𝜇 ± 1
1 + 𝜇

(1.49)

The “−” solution implies that the 𝑔12𝑔21 has to be zero in all situations which is a non-
realistic over constraint of the solution and therefore discarded. The remaining solution
then is:

Ω∥
2
2 − Ω∥

2
1 = (Ω2

+ − Ω2
−)

1 − 𝜇
1 + 𝜇

. (1.50)

By replacing Ω∥
2
2 in the first identity of (1.45) with the obtained result we can write an

expression for 𝑔11 and analogously for 𝑔22:

Force field
gradients as
function of the
eigenmode
properties

𝑔11 = Ω2
1 −

1
1 + 𝜇

(Ω2
− + 𝜇Ω2

+) (1.51)

𝑔22 = Ω2
2 −

1
1 + 𝜇

(Ω2
+ + 𝜇Ω2

−) (1.52)
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1 Fast scanning nanowire probe experiment

It is then possible to obtain the expressions for 𝑔12, 𝑔21 from equations (1.44) where
𝑔11, 𝑔22 are replaced by the above result:

𝑔12 =
tan 𝛿𝜃−
1 + 𝜇

(Ω2
+ − Ω2

−) (1.53)

𝑔21 =
tan 𝛿𝜃+
1 + 𝜇

(Ω2
+ − Ω2

−) (1.54)

These four expressions for the force gradient terms depend only on directly measurable
quantities (the frequency shifts and the eigenmode rotations) that can be obtained ex-
perimentally by a Fourier analysis of the nanowire’s trajectory in the two dimensional
oscillation plane. This requires a two dimensional detection protocol that is in the focus
of Section 1.3.

1.1.2.3 Force field signatures

Depending on the shape and orientation of the force field with respect to the nanowire
eigenmodes, it dresses them differently. As we have seen in the above equations, the
force field components 𝑔𝑖𝑗 depend on the eigenfrequency shifts and on the rotation of the
eigenmode basis. Here, we will investigate how those nanowire mechanical properties
are affected by a set of fundamental force field gradients which form a basis of the linear
2D force field gradients.

Force divergence – simultaneous eigenfrequency shift The sum of the squared
eigenfrequencies can be expressed as

−(Ω2
− + Ω2

+ − (Ω2
1 + Ω2

2)) = 𝑔11 + 𝑔22 =
1

𝑀eff
div F. (1.55)

In case of a pure divergent force field (𝑔11 = 𝑔22), at first order in the force gradients,
the eigenfrequencies shift as a block. A shift of the two frequencies together is thus a
direct measure for the divergence of the force field. The sum of the dressed frequen-
cies squared is sensitive towards force gradients along both eigenmodes. We note that
since the determination of the mechanical eigenfrequencies is in principle only weakly
affected by experimental bias, they present a very practical role in an imaging scanning
mode. A purely divergent local force field is illustrated in the first plot of Figure 1.7.

Aligned hyperbolic force field – eigenfrequency splitting The frequency split-
ting of the dressed eigenmodes (Equation 1.40) is given by

Ω2
+ − Ω2

− = √(Ω
2
2 − Ω2

1 − (𝑔22 − 𝑔11))
2 + 4𝑔12𝑔21 (1.56)
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which for small off diagonal terms can be approximated in first order as

Ω2
+ − Ω2

− = Ω2
2 − Ω2

1 − (𝑔22 − 𝑔11). (1.57)

Rotatedhyperbolic forcefield – eigenvectors basis rotation The transverse terms
𝑔12, 𝑔21 of the force gradient matrix create a coupling of the modes since for a movement
in one direction they create a force along the other. The new, rotated basis of this cou-
pled mode is a linear combination of the cold eigenmode basis. We can calculate the
difference between the mode angles (following the definition in (1.43)) with

𝜃1 − 𝜃2 = arctan
𝑔12

Ω∥
2
2 − Ω2

−
− arctan

Ω∥
2
2 − Ω2

−

−𝑔21
. (1.58)

In the case of small force gradients with
𝑔𝑖𝑗
Ω1,2

→ 0, we can approximate the mode orien-

tations by the approximations:

Ω∥1,2 → Ω1,2 and √(Ω∥
2
2 − Ω∥

2
1)

2 − 𝑔12𝑔21 → (Ω∥
2
2 − Ω∥

2
1),

so that:
𝜃− ≈ arctan

𝑔12
Ω2
2 − Ω2

1
, 𝜃+ ≈ 𝜋

2
+ arctan

𝑔21
Ω2
2 − Ω2

1
. (1.59)

For 𝑔12 = 𝑔21, the rotational of the force field is zero ∇ × F = 0 and the arguments of
the arcus tangens in (1.58) become the mutual inverse. Applying the identity arctan 𝑥 −
arctan 𝑦 = arctan 𝑥−𝑦

1−𝑥𝑦
gives that the angle difference is the limit of the arcus tanges at

𝜋
2
so the modes turn as block, resting perpendicular to each other. This is the standard

case for conservative force fields such as electrostatic fields.

A rotation as block due to a shearing force field is illustrated in the third column of
Figure 1.7.

General eigenmode rotation In a force field with nonzero rotational ∇ × F ≠ 0, the
diagonal components of the force gradient tensor 𝑔12, 𝑔21 are not equal and the mode
orientation of both modes can vary independently. The angle difference between both
modes can then be calculated via

cos(𝜃1 − 𝜃2) = e− ⋅ e+ =
(𝑔12 − 𝑔21)(Ω∥

2
2 − Ω2

−)

√
(𝑔221 + (Ω∥

2
2 − Ω2

−)
2
)(𝑔212 + (Ω2

+ − Ω∥
2
1)

2
)

(1.60)
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where we used the results from Equation 1.42 and the identity:

Ω2
+ − Ω∥

2
1 = Ω∥

2
2 − Ω2

−. (1.61)

Under the same assumptions as for Equation 1.59 we can approximate in first order

cos(𝜃1 − 𝜃2) ≈
𝑔12 − 𝑔21
Ω2
2 − Ω2

1
. (1.62)

The rotation asymmetry 𝑔12 − 𝑔21 is thus directly connected to mode shearing and can
be measured by detection of the mode’s rotation. It is important to highlight that the
shearing angle in (1.62) as well as the total rotation in (1.59) are larger the smaller the
intrinsic mode splitting Ω2

2 − Ω2
1 is, which implies higher sensitivity for resonators with

small splitting.

Table 1.3 summarizes the four base signatures. The corresponding spatial shapes of

Tab. 1.3: Force field properties and the corresponding expressions.
Signature Expression Effect on resonator

Divergent 𝑔11 = 𝑔22 Block frequency shift
Hyperbolic aligned 𝑔11 = −𝑔22 Squared eigenfrequency splitting
Hyperbolic rotated 𝑔12 = 𝑔21 Block eigenmode rotation 𝜃1 − 𝜃2 =

𝜋
2

Rotation 𝑔12 ≠ 𝑔21 Eigenmode orthogonality breaking

the local force field and their effect on eigenmode spectrum and mode orientation is
presented schematically in Figure 1.7

1.1.2.4 The noise spectrum of a dressed nanowire

A single, measurement channel provides a scalar information, which corresponds to
a projective measurement of the displacement of the nanowire extremity 𝛿𝐫 along a
measurement vector 𝐞𝜇 = (cos 𝜇, sin 𝜇) (written in the 𝐞1, 𝐞2 basis, 𝜇 being the angle
between 𝐞1 and 𝐞𝜇). In the Fourier domain, we have:

𝛿𝑟𝜇[Ω] ≡ 𝐞𝜇 ⋅ 𝛿𝐫[Ω]
= 𝐞𝜇 ⋅ 𝝌[Ω] ⋅ (𝛿𝐅th + 𝛿𝐅pump)
= (cos 𝜇𝜒11[Ω] + sin 𝜇𝜒21[Ω])𝛿𝐹1 + (cos 𝜇𝜒12[Ω] + sin 𝜇𝜒22[Ω])𝛿𝐹2.

(1.63)

𝛿𝐹1,2 are the forces’ components projected in the direction of the first and second un-
dressed eigenmode respectively.
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Fig. 1.7: Characteristical force field signatures which form a basis of any force field configuration.
The second row shows the spectral change caused by each local force field as would be
measured under a 45° projection angle between both modes, while the panels in the
third row display the spatial tomography of the eigenmodes illustrating mode rotation
and amplitude change.

For a purely stochastic Langevin force as in the case of thermal Brownian motion, the
force terms are simply the two Langevin force vectors, which are uncorrelated and
we can calculate the noise spectrum 𝑆𝛿𝑟𝜇 for a projection onto the measurement vector
𝜇:

2𝜋𝛿(Ω + Ω′)𝑆𝛿𝑟𝜇[Ω] = ⟨𝛿𝑟𝜇(Ω)𝛿𝑟𝜇(Ω′)⟩

= |cos 𝜇𝜒11[Ω] + sin 𝜇𝜒21[Ω]|
2⟨𝛿𝐹1𝛿𝐹1⟩+

|cos 𝜇𝜒12[Ω] + sin 𝜇𝜒22[Ω]|
2⟨𝛿𝐹2𝛿𝐹2⟩

(1.64)

Here, we use that the thermal fluctuations 𝛿𝐹1,2 that drive the mechanical modes are
uncorrelated and hence ⟨𝛿𝐹1𝛿𝐹2⟩ = 0. When the damping matrix is isotrope, the spectral
density for each of these forces is identical to the spectral density of the Langevin force in
Section 1.1.1.1 with 𝑆𝐹𝑡ℎ = 2𝑀effΓ𝑘𝐵𝑇. Plugging the matrix elements of 𝝌 in Equation 1.64,
we obtain the projected thermal noise spectrum as

Vibrational noise
spectrum projected
on an arbitrary
measurement
angle

𝑆𝛿𝑟𝜇[Ω] =
𝑆𝐹𝑡ℎ

|det 𝝌−1[Ω]|2
⎛
⎜
⎜
⎝

cos2 𝜇((Ω∥
2
2 − Ω2)

2 + Ω2Γ2 + 𝑔221)

+ sin2 𝜇((Ω∥
2
1 − Ω2)

2 + Ω2Γ2 + 𝑔212)
+2 cos 𝜇 sin 𝜇(𝑔12(Ω∥

2
2 − Ω2) + 𝑔21(Ω∥

2
1 − Ω2))

⎞
⎟
⎟
⎠

(1.65)

with the same 𝝌−1[Ω] as given in Equation 1.38.
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1 Fast scanning nanowire probe experiment

In the next section we discuss the effect of a resonant external force on the oscillator’s
mechanics and how the oscillator’s response can be used to obtain the dressed mechan-
ical properties and thus to infer the force field gradients.

1.1.3 The nanowire’s driven response

Classical AFM techniques include a homodyne lock-in based detection that allows a fast
low-noise measurement. The oscillation of the cantilever probe is driven at resonance
and the measured signal from the vibration detection is demodulated at the drive fre-
quency.

Applying this idea to the two dimensional nanowire oscillator, the driving force from
Equation 1.35 can be expressed as the sum of the frequency independent Langevin force
𝛿𝐹th and the resonant driving force 𝛿Fpump[Ω] as described in Section 1.1.1.2. As shown,
the physics of the oscillator in a static force field is not affected as long as the applied
force has a constant amplitude. This section takes a look on the driven trajectory in two
dimensions and discusses effects arising when the force does not represent an instanta-
neous drive but contains a delayed part as well.

1.1.3.1 Driven response of a 2D oscillator

After having investigated the nanowire’s thermal noise structure in 2D in Section 1.1.1.2,
we now turn to its response to an external driving force. Wewill see that such a coherent
drive, which generates coherent trajectories in the stationary regime, can also be used
to determine the mechanical properties of the nanowire, and can thus serve to measure
external force field gradients.
We consider the situation where a modulated driving force is resonantly exciting the
nanowire at discrete frequencies Ω𝑖 (here 𝑖 = 1, 2):

Fpump(𝑡) = 𝐹0𝐞𝐹 + |𝛿𝐹|𝐞𝐹 ⋅ (cos (Ω1𝑡 + 𝜙) + cos (Ω2𝑡 + 𝜙)). (1.66)

When driven at resonance, the nanowire’s trajectory describes a narrow ellipse as illus-
trated in Figure 1.8a for excitation at the eigenmode frequency Ω = Ω1,2. In order to
drive both eigenmodes by the same unidirectional force with a comparable efficiency,
the eigenmodes should be oriented in a 45° angle to the driving force. The modulation
strength |𝐅pump[Ω]| can in principle also be adjusted for each tone, but this will complex-
ify the subsequent analysis. An external force field can rotate the nanowire’s eigenmodes
(compare Section 1.1.2.3 ), leading to perpendicular alignment of one eigenmode and the
driving force. This perpendicular mode can thus not be addressed by the driving force.
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1.1 Nanowires as force sensing probes
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Fig. 1.8: (a) Schematic trajectories followed by the nanowire extremity when driven at resonance
of both eigenmodes. The eigenmodes are perpendicular to each other and are driven
by a force in a 70° angle. The 𝜷−,+ vectors indicate two independent measurement direc-
tions. (b,c) Expected response of a theoretical nanowire driven by a coherent force in
the sketched constellation of (a) when sweeping the modulation frequency across the
two fundamental resonances. The two curves correspond to a projection of 𝛿𝐫 on the
measurement angles 𝛽− = 15°and 𝛽+ = 85°. The lighter dashed lines present the thermal
noise spectrum calculated for the same nanowire at room temperature. The amplitude
(b) and phase (c) of the projected displacement are shown, as measured by a 2-channel
network analyzer. Thus, the phase of the projected displacement can be compared to
the phase of the modulated force. When using an optical drive, this permits to infer if
the optical force follows the intensity modulation instantaneously or not.

By sweeping the frequencyΩ of the driving force 𝐅pump, and measuring the projection of
the trajectory at each frequency onto ameasurement angle 𝛽−,+, one obtains the response
curves in amplitude (Figure 1.8b) and phase (1.8c). At the modes’ resonance frequencies,
the phase increases by 𝜋. The coherent excitation of both adjacent modes at the same
time leads to characteristic dips depending on the measurement direction where the
minimum value of the response falls below the value obtained far of from resonance.
The theoretical amplitude of the displacement 𝛿𝑟𝛽 only depends on the driving strength
and can largely exceed the Brownian noise spectrum that is shown as dashed lined in
Figure 1.8b.

Having measured such a response curve at two different measurement angles 𝛽, one can
deduce the force vector 𝐅pump and the force field gradient matrix 𝑔𝑖𝑗 via a fit to Equa-
tion 1.63. Here, force and gradients form a set of eight unknowns ( 𝐹pump can be com-
plex) and the minimal measurement therefore comprises a measurement of amplitude
and phase of the response at two frequencies Ω on each measurement vector 𝛽−,+. This
holds as far as the damping coefficient is not changed by external effects as discussed
later in this work.

A useful configuration for such a measurement is the detection of the phase and am-
plitude at resonance, since the signal is strongest and an optimal SNR can be obtained.
The stable phase change at resonance and the typical high Q-factor of the nanowires
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1 Fast scanning nanowire probe experiment

also permits to lock the driving force on each resonance with high precision using two
independent phase-locked-loops (PLL) .

1.1.3.2 Driven trajectories in the position space

Having introduced the nanowire trajectories at resonance in Figure 1.8a and the vectorial
displacement measurement, we can now describe the form of a trajectory in the real
space of a suspended nanowire, driven at a single frequency, by:

𝛿𝑟(𝑡) = ℜ[(|𝛿𝑟𝑥[Ω]|𝑒𝑖𝜙𝑥[Ω]e𝑥 + |𝛿𝑟𝑧[Ω]|𝑒𝑖𝜙𝑧[Ω]e𝑧)𝑒−𝑖Ω𝑡], (1.67)

where the amplitude and phase terms are evaluated at the driving frequency as well. In
this expression, we make use of the complex projected displacements quantities 𝛿𝑟𝑥,𝑧,
measured along the 𝑥 and 𝑧 axis, following the same description as for 𝛿𝑟𝜇 given above.
We also introduced the notation 𝜙𝑥,𝑧 = arg(𝛿𝑟𝑥,𝑧). With varying time t, this parametric
2D function describes an ellipse. The ellipse at the frequency Ω has the long axis 𝛿𝑟max,
short axis 𝛿𝑟min and an inclination angle Ψ of the long axis with respect to the 𝑥-axis
given by the expressions:

𝛿𝑟max =
|𝛿𝑟𝑥|

2 + |𝛿𝑟𝑥|
2

2
+ 1
2√

(|𝛿𝑟𝑥|
2 − |𝛿𝑟𝑥|

2)
2
+ |𝛿𝑟𝑥𝛿𝑟𝑧|

2 cos(𝜙𝑧 − 𝜙𝑥)

𝛿𝑟min =
|𝛿𝑟𝑥|

2 + |𝛿𝑟𝑥|
2

2
− 1
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(|𝛿𝑟𝑥|
2 − |𝛿𝑟𝑥|

2)
2
+ |𝛿𝑟𝑥𝛿𝑟𝑧|

2 cos(𝜙𝑧 − 𝜙𝑥) (1.68)

𝜓 = 𝜋
2
+ 1
2
tan−1

2𝛿𝑟𝑥𝛿𝑟𝑧 cos(𝜙𝑧 − 𝜙𝑥)

(|𝛿𝑟𝑥|
2 − |𝛿𝑟𝑥|

2)
.

Figure 1.9a provides an example of an elliptical trajectory obtained at a single driving
frequencywith the parameters from (1.68). The set of trajectories obtained for a subset of
frequencies around the two eigenfrequencies of a driven nanowire oscillator are plotted
in Figure 1.9b. The driving force is indicated as green arrow. Since it is an asymmetric
excitation, the first mode is driven slightly more than the second.

1.1.3.3 Delayed driving force

Experimentally, different techniques are suitable to generate the excitation force 𝐅pump.
In particular, optical, electrostatic and mechanical interaction processes are prominent
techniques as they are easy to employ and permit good control of 𝐅pump. In the response
measurements, the phase of the projected displacement is measured with respect to the
phase of the force modulation signal. The interaction processes are not always instan-
taneous, meaning that there is a delay between the moment where we turn on the force
and its application on the nanowire. Such a delay in the application of the force is re-
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Fig. 1.9: Illustration of the trajectory followed by a resonantly driven nanowire. Under a
monochromatic excitation, the nanowire follows an elliptical trace (a). If we scan the
driving tone across both fundamental modes, one can plot a set of elliptical traces, one
for each driving frequency (b). The colored trajectories are those obtained when excit-
ing the nanowire at the eigenmode frequencies. The driving force is represented by the
green arrow. The trajectories are plotted in the basis of the nanowire’s perpendicular
eigenmodes. If the eigenmodes are far apart, the resonant trajectories will tend towards
single lines, but when their splitting is comparable to their mechanical linewidth, one
can obtain larger ellipses, supposing that the driving force vector is not aligned with one
eigenmode.

sponsible for an additional 𝑒𝑖Ω𝜏 term in the force’s Fourier component, and will thus be
responsible for the apparition of an imaginary contribution in 𝐅pump[Ω].

A prominent example for a delayed force is the photo-thermal forcewhere the delay orig-
inates from the time the system needs to adapt to a new temperature distribution which
is caused by a change in the absorbed optical power. When one modulates the optical
power at the mechanical resonance frequencies, the temperature profile does not have
time to reach its steady state profile and one thus faces a temperature increase in quadra-
ture with the intensity modulation. Such a temperature increase can then modulate the
nanowire’s optical cross-section via the temperature dependence of the refractive in-
dex (the thermal expansion contribution is approximately ten times smaller), which will
cause a delayed optical force, without changing its orientation. Another photo-thermal
mechanism involves a bilayer mechanism, acting as a delayed optical force, which is not
necessarily oriented along the same orientation as the optical flux, since it comes from
a geometric asymmetry in the nanowire material. The photo-thermal effect where a ra-
diation source is locally heating the nanowire that adapts to the new heat distribution
is depicted in Figure 1.10a.

Another effect, one that can lead to delayed electrostatic forces, is caused by the RC
circuit that forms when the nanowire is close to an electrode (Figure 1.10b). The de-
lay of the applied electrostatic force depends on the system capacitance and the circuit
resistivity. This RC-effect is in general rather weak.
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1 Fast scanning nanowire probe experiment

Furthermore, when using a piezo actuation, an effective delay can appear due to the
system’s internal resonances. The frequency response of the piezoelectric effect is dom-
inated by geometry and material dependent resonances (represented by the curve on
the piezos in Figure 1.10c) that can cause a delayed response of the mechanical actua-
tion.
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Fig. 1.10: Schematic presentation of the delayed photothermal force (a), an electrostatic delayed
force due to capacitive effects (b) and a mechanical actuation with non constant re-
sponse of the piezo actuation system (c).

A delayed driving force means that the phase at resonance is not equal to 𝜋
2
as the imag-

inary part of 𝛿𝐫 = 𝜒𝛿𝐅 now originates not only from the susceptibility but also from the
exciting force. In principle those delays can vary with the frequency, and furthermore
they can be different along both transverse orientations (in case of a piezo drive for ex-
ample). It is always possible to calibrate those delays, but the analysis of the response
measurement is much more simplified in absence of delays.

Forces that are typically instantaneous thanks to their short characteristic timescale 𝜏𝐹,
are the optical pressure force exerted by an intensity-modulated laser beam and the
electrostatic force caused by an inhomogeneous electric field (the dielectric nanowire
is attracted towards regions of high field). These forces establish much faster than the
mechanical vibration of the oscillator 𝜏𝐹 ≪ 1/Ωm ≈ 10 µs.

Depending on the amplitude and delay of the driving force the oscillator can become
instable. One example for such an instability is self-oscillation caused by a force with
effective negative damping.
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1.2 The SiC Nanowire force sensor

1.2 The SiC Nanowire force sensor

The nanomechanical oscillators predominantly used in the group are silicon carbide
(SiC) nanowires. Silicon carbide is a compound semiconductor with a bandgap at 385,
405 and 505 nm for themost common crystal structures 4𝐻 , 6𝐻 and 3𝐶 respectively. Since
SiC is lightweight with a density of 𝜌 = 3210 kgm−3 and has a large stiffness with a
Young’s modulus of E > 400GPa [51, 86, 118], SiC based nanomechanical systems have an
intrinsically low effective mass that allows achieving good force sensitivity without op-
erating at too small frequencies where there is lot of technical noise. They are therefore
well suited for MEMS/NEMS applications [21]. The large refractive index of 𝑛SiC = 2.6
in the visible [84] leads to the presence of multiple internal optical resonances for visi-
ble wavelengths in the employed nanowires which have diameters between 100 nm to
600 nm. These resonances are described by Mie theory [28, 74] which, together with the
optical band-gap at short wavelength, allows strong scattering of light even with diam-
eters shorter than the optical wavelength. SiC nanowires are therefore easily detectable
through optical microscopes. The large thermal conductivity 𝜅th = 360Wm−1 K−1 of
silicon carbide additionally protects the nanowires from melting at high injected opti-
cal power so they can be employed in focussed laser beams of several tens of mW at
ambient pressure and up to a few mW under vacuum. The optical microscope image in
Figure 1.11 illustrates the scattering of a selection of nanowires with different diameters.
The homogeneity of the colours is a sign of quasi uniform radius over the full nanowire
length. SiC nanowires were subject of detailed studies for what concerns their use as
field emission sources [86, 117] and their electrical properties under large electric fields
are well studied.

With diameters of 100 nm to 300 nm and length of 50 µm to 500 µm the utilized nanowires
in our group reach effective masses (𝑀eff) in the pg range with observed quality factors
of 𝑄 = 1000 − 10000. The typically achieved force sensitivity after 1.22 is in the range of
aN/Hz1/2.

The sensitivity limit for force gradient measurements (Equation 1.28) – valid for noise
based and resonant measurements – lies in the range of some aNnm−1 to pNnm−1 for
the first mechanical mode family that is typically located between 5 kHz to 50 kHz,

1.2.1 Selection of a single nanowire

A first criterion for the nanowire selection is the desired force sensitivity as this is the
quantity that determineswhich forces will bemeasurable. In general it is not appropriate
to operate with a too sensitive nanowire (long and thin) if the force field under investiga-
tion will over-dress its mechanical properties because it will generate large eigenmode
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1 Fast scanning nanowire probe experiment

Fig. 1.11: Optical microscope image of multiple SiC nanowires. Different colores are caused by
the different thicknesses of the nanowires. Abrupt transitions from one color to an-
other indicate a presence of two crystalline phases along the nanowire. The displayed
nanowires are from a different batch than those used in this work which have a much
higher homogeneity and better crystallinity.

rotations that cause experimental difficulties2. Following the rule for the force gradient
sensitivity (1.28), optimal sensitivities are achieved when using nanowires with mechan-
ical resonances Ωm at low frequency and a high quality factor. Also the force gradient
sensitivity scales linearly with the inverse of the effective mass of the nanowire. These
critreria translate into nanowires with a small cross section and sufficient length to have
both, low mass and small Ωm. For a good quality factor, choosing a nanowire of highest
uniformity and guaranteeing a good mechanical connection to its mount are impor-
tant criteria that optimize the mechanical damping Γ. Additionally, a uniform nanowire
without many geometrical and crystalline defects is less likely to present an optical vari-
ability along its length so that the optical measurement process is less sensitive to small
vertical drifts with respect to the measurement laser.

The spatial resolution attainable in an experiment is a second criterion for nanowire se-
lection. While the force gradient sensitivity increases with lower resonance frequency
Ωm, the spatial resolution of the measurement depends on the oscillation amplitude of
the nanowire tip that is immersed in the external force field. In order to keep this oscil-
lation amplitude in a reasonable range of 10 nm to 100 nm, very long nanowires with a
larger cross section are omitted for force field sensing experiments.

2This concerns for instance the lock stability of the PLLs or the blindness to one of the resonances on a
measurement channel if its modal direction is perpendicular.
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1.2 The SiC Nanowire force sensor

A third, more practical criterion is the measurability. Since nanowire based force field
sensing is a form of scanning probe microscopy, like most imaging techniques it relies
on stability and speed. In the resonant measurement performed in this work, stability
and speed can be increased by operating at higher mechanical frequencies what per-
mits working with larger mechanical damping rates. This criterion excludes the use
of nanowires with the highest sensitivity that generally oscillate at very low frequency
(few kHz). Good compromises are therefore thin nanowires measuring about 100 nm
to 200 nm in diameter with a mechanical frequency between 10 kHz to 50 kHz. These
nanowires still provide sensitivities in the range of tens of atto-newton while remaining
friendly to work with. A useful chart that provides the relation between all the mechan-
ical properties is presented in figure Figure 1.12.

Fig. 1.12: The abacus illustrates the mechanical nanowire properties – freqency, noise level and
force sensitivity – at room temperature, in dependence on the nanowire geometry. The
three nanowires with whom the results in this thesis were obtained are illustrated as
dots. Knowing the length of a nanowire and its frequency, one can deduce its force
sensitivity using this representation.
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1 Fast scanning nanowire probe experiment

We identify suitable nanowires by optical microscopy where we exploit the scattering
properties of nanowires which varies with the diameter of the nanowires. Mie theory
that describes light scattering on nanoscopic objects can be solved analytically for cylin-
drical objects and it is therefore possible to calculate the expected reflection spectrum
for a nanowire of a certain thickness, inserted in a given optical waist. For typical di-
ameters ranging between 100 nm to 400 nm the nanowires can host multiple resonant
optical modes as shown in the plot of the scattering cross section in Figure 1.13. The
scattering fromMie modes is anisotropic and each mode has a characteristic angular de-
pendence that determines its strength in the reflection channel. The blue and red lines in
Figure 1.13 show the effective scattering cross section for two different collection angles
of 60° and 90°.
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Fig. 1.13: Scattering cross section of a 300nm thick nanowire as function of the wavelength
(black line) and the reflection cross section for solid angles 60° and 90° (red and blue
curve). Each Mie resonance has a characteristic scattering as illustrated by the insets.

Based on the theoretical reflection scattering cross section we can plot the perceived
colour for nanowires of different thicknesses (Figure 1.14). By comparing the colour
of the reflected light in parallel and perpendicular polarizations with respect to the
nanowire axis, with the colour in the chart, we obtain a good estimation of the nanowire’s
thickness. This characterization relies on the knowledge of the transmission properties
of the microscope optics and on the RGB spectra of both the CCD camera employed and
the computer screen on which the image is displayed. The representation in Figure 1.14
takes into account the numerical aperture (NA) of the used 50x objective.

1.2.2 Mounting and installing the nanowire

The nanowires used in the group are mass-produced industrial grade nanowires that
come in powder form. We identify nanowire candidates that stick out of the powder
ensemble by optical microscopy. With the help of a micro-manipulation stage, we attach
a single nanowire to a sharply pointed tungsten wire with a base diameter of 400 µm
using electron microscopy conductive carbon glue as adhesion agent. The tungsten wire
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Fig. 1.14: Perceived color for nanowires with radii between 20 and 200nm in parallel and per-
pendicular polarization calculated for the 50× microscope objective used for sample
preparation (𝑁𝐴 = 0.5).

tips have been fabricated by electrochemical wet etching in KOH optimized to produce
small tip angles using a technique similar to methods employed elsewhere [49, 56, 61].
Figure 1.15 lays out the concept of the fabrication process.

In case of a perfectly attached nanowire, the tip angle is equal to the angle of the nanowire
that should be as straight as possible to avoid an inclination with respect to the sample
in the experimental setup. Sub-Figure 1.16a shows a microscope image of the tungsten
wire (left) attached to a nanowire (centre, light blue) that sticks out of the nanowire
powder (right).

The thus obtained nanowires often carry otherwires or dirt with them that are loosely at-
tached by electrostatic and Van der Waals forces. These contaminations can be removed
by immersion in a water droplet (1.16b). The glued nanowire is then further character-
ized by optical reflection as described above (1.16c) and scanning electron microscopy
(1.16d). Spectral analysis of the electrical current of the secondary electron detector of
the scanning electron microscope also provides a first measurement of the mechanical
resonant frequency. However, we found that the SEM imaging was responsible for a sig-
nificant degradation of the surfaces exposed to the beam, so we realize these electronic
measurements only at the end of a measurement sequence3. The nanowire diameter are
efficiently estimated using the color method and the frequency abacus.

For handling and mounting the nanowire, we insert the tungsten carrier in a titanium
support that can be screw-mounted in the experimental setup. Here we also set the
correct height of the nanowire with respect to the bottom of the mount (19mm).

The tungsten wire is kept in place by mechanical clamping and a small amount of super-
glue or a conductive silver based glue. Before being employed in the setup, the nanowire
is thermally annealed under vacuum in an induction oven at ~700°C for ~10min. The
curing process serves to harden the carbon glue and thus to improve the mechanical
connection between nanowire and tungsten tip. A good mechanical connection is a pre-
condition for high mechanical Q factors (up to 10 000 at room temperature) and thus

3Not all nanowires survive up to this moment.
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Fig. 1.15: Sketch of the setup for the fabrication of the pointed tungsten tips. The 400µm thick
tungsten wire is mechanically attached to a mount and fed consecutively through two
metallic rings with a few mm diameter that are connected with the poles of a current
source that operates around 100mA to 300mA. Droplets of a KOH solution (concentra-
tion 2mol L−1), posed on the rings, establish the electric connection between electrodes
andwire. The relative size of the wire is largely exagerated in order to illustrate the etch-
ing progress. During the electrochemical etching process W+ ions dissolve in the KOH
solution around the Cathode replacing K+ ions that attach to the metallic ring. This
leads to a gradial thinning of the wire, most pronounced at height of the ring cathode.
The second ring electrode serves to establish an electrical contact, When the whole di-
ameter has been etched away, the lower part of the tungsten wire falls down, opening
the electrical circuit and stopping the etch process. It can be collected in a water filled
beaker (not shown). Both ends can be used to attach nanowires to, however, the up-
per part is usually of higher quality as it has the smaller tip angle due to the asymetric
shape of the droplet.

for better force gradient sensitivity. It also guarantees a better thermalization of the
nanowires which permits to use higher optical powers for the optical position readout
without damaging the nanowire. The curing can principally improve the crystallinity of
the nanowire and thus further enhance thermal conductance and mechanical Q factor.
We note that we have observed that the curing process can also evaporate metal on the
nanowire, so that materials with an increased vapour pressure at the working temper-
ature such as copper or tin elements should not be used in the oven. After curing, we
mount the nanowire on a standardized support in the scanning force imaging setup that
is described in the following sections.
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1.3 Optical readout of the nanowire motion in 2d

Fig. 1.16: Illustration of the nanowire preparation. A nanowire is selected by its length and color
from the nanowire powder and caught with a pointed tungsten tip (a). It is then cleand
by immersion in a water droplet (b) and characterized with optical reflection measure-
ments (d) and scanning electrom microscopy (c).

1.3 Optical readout of the nanowire motion in 2d

In Section 1.1we have seen that themechanical and optical properties of nanowiresmake
them ideal probes for realizing two dimensional force field sensing via the detection
of the orientations and frequencies of the two fundamental eigenmodes. In view of
the peculiar effects induced by the rotational force fields, which can increase the noise
magnitude, it is necessary to employ a 2D readout scheme in order to distinguish the
action of a rotational force field to a normal rotation of the eigenmode, which will both
change the magnitude of the noise projection on a given measurement channel.

We have already underlined the large optical cross sections of the nanowire, that effi-
ciently interacts with focussed laser beams due to the existence of internal Mie reso-
nances. In this section we will discuss an optical readout technique that allows a mea-
surement of the nanowire’s vibration projected along two linearly independent readout
vectors (non-parallel). These measurement channels are produced at the separate out-
puts of a homemade split photodiode amplifier that measures the light reflected from a
single nanowire. auto1.17 sketches the detection of light reflected from the nanowire on
the split photodiode.

A red probe laser beam is focussed on the nanowire extremity by a microscope objective
of 0.75 NA and 100x magnification, modified for vacuum operation. After the objec-
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Fig. 1.17: Position readout based on the analysis of the nanowire back-scattered intensity fluctua-
tions. The objective focuses the laser beam to a waist. Placed in the waist the nanowire
reflects the light back in the objective that collimates the light into a beam whose in-
tensity is measured on the split photodiode. The registered intensity fluctuations on
each half depends on the position fluctuations of the nanowire in the waist area.

tive, the beam waist represents a small spot of high light intensity, with a lateral ex-
tension of approximately 500 nm which allows to increase the amount of reflected light
from the nanowire. With the objective and thus the laser beam being fixed in space, we
bring in the nanowire mounted on a translation stage which is used to piezo-position the
nanowire within a 3D volume in the waist area. The objective collects the reflected light
scattered by the nanowire and a 90/10 beam splitter allows 90% of the reflected light to
reach the split photodiode that measures the reflected intensity. The detected intensity
at the two halves of the photodiode depends on the position of the nanowire in the beam
waist such that its horizontal movement is encoded as changes of the two photocurrents
measured on left and right halves of the split-photdiode.

1.3.1 The measurement position

With the two signals from the split-photdiode we have access to two linearly indepen-
dent measurement vectors as we now explain. We calculate the sum and difference of
the intensities acquired on the two photodiode halves, which depends on the nanowire
position in the optical waist:

𝑉⊖,⊕(𝐫0 + 𝜹𝐫(𝑡)), (1.69)

where 𝐫0 is the nanowire rest position, which can be piezo scanned, and where 𝜹𝐫(𝑡) are
the vibrations of its vibrating extremity. Each measurement channel is separated into a
low frequency LF and a high frequency HF output with a typical cutoff of 1 kHz. The
low frequency channels will thus record

𝑉⊖,⊕(𝐫0),
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1.3 Optical readout of the nanowire motion in 2d

which permits to image the optical waist with the nanowire and to identify its location
in space. The HF outputs of the photodiode will record the rapid nanowire fluctuations,
which can be expressed at first order as:

𝛿𝑉⊖,⊕(𝑡) = 𝜹𝐫(𝑡) ⋅ 𝛁𝑉⊖,⊕(𝐫0). (1.70)

As such, each measurement channel realizes a projective measurement of the nanowire
deflection along a measurement vector given by:

Projective
measurement

𝜷⊖,⊕ ≡ 𝛁𝑉⊖,⊕(𝐫0) (1.71)

which are simply the spatial gradients of the signals recorded on the DC outputs of the
photodiode amplifier. From the expressions defined above, follow the projected quanti-
ties

𝛿𝑟⊖,⊕(𝑡) = 𝐞⊖,⊕ ⋅ 𝜹𝐫(𝑡) (1.72)

with a projection vector 𝐞⊖,⊕ = 𝛁𝑉⊖,⊕(𝐫0)
|𝛁𝑉⊖,⊕(𝐫0)|

.

The colormaps of the two plots in Figure 1.18 show the DC sum and difference signals
measured while scanning the nanowire in the transverse horizontal plane. The plotted
quantities represent the static reflection signals measured as voltages 𝑉⊕

𝐷𝐶 and 𝑉⊖
𝐷𝐶 af-

ter calculation and amplification of sum and difference of the signals recorded on the
photodiode halves. The quiver plots in Figure 1.18 draw the local measurement vectors
of both channels calculated as the gradient of the upper maps. Following the optical
axis along a vertical line in the centre of the image, the local intensity gradient of the
difference channel is visibly biggest perpendicular to this line, whereas for the sum chan-
nel, we can identify two positions just before and after the waist where the variation is
strongest along the optical axis. It is this spot which we choose as measurement location
for the nanowire due to the perpendicularity of the measurement vectors.

The readout vectors 𝜷⊖,⊕ can be expressed in terms of the local intensity gradient in the
x,z basis

Measurement
vectors

𝜷⊖,⊕ = (
𝜕𝑉⊖,⊕
𝜕𝑥

𝜕𝑉⊖,⊕
𝜕𝑧

). (1.73)

The lengths of the vectors |𝛽⊖,⊕| translate the projected displacement 𝛿𝑟⊖,⊕ of the nanowire
in the direction 𝐞⊖,⊕ to a change of intensity. The displacements 𝛿𝑟⊖,⊕ can then be
distorted to reconstruct the nanowire motion projected on the orthogonal (x,z) basis,
as:

(𝛿𝑟⊖𝛿𝑟⊕
) = (cos 𝛽⊖ sin 𝛽⊖

cos 𝛽⊕ sin 𝛽⊕
)(𝛿𝑟𝑥𝛿𝑟𝑧

). (1.74)
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Fig. 1.18: The difference (left) and sum (centre) signals acquired with the split photodiode dur-
ing a scan of the nanowire through the optical beam waist. The measured light is the
reflection from the nanowire as it scans through the waist. The nanowire dwell time is
in the order of 10 µs. The right plot (bottom/row) shows the according measurement
vector of the two signals. The green spot marks the location where near perpendicular
readout vectors can be obtained. This is also the measurement location.

Here, 𝛽⊖,⊕ denotes the angle between measurement vector and the x axis. To calcu-
late the projective displacement in the cartesian lab coordinate space we thus apply the
inverse transformation of (1.74)

Reconstruction of
the NW

displacement in 𝑥, 𝑧
(𝛿𝑟𝑥𝛿𝑟𝑧

) = 1
cos 𝛽⊖ sin 𝛽⊕ − cos 𝛽⊕ sin 𝛽⊖

( sin 𝛽⊕ − sin 𝛽⊖
− cos 𝛽⊕ cos 𝛽⊖

)(𝛿𝑟⊖𝛿𝑟⊕
),

which is only defined when the measurement channels are not colinear (𝜷⊖ ⋅ 𝜷⊕ ≠ 0).
The precise determination of the measurement vectors is an essential ingredient of the
signal analysis in 2D. This is the subject fo the following sections.

1.3.1.1 Static determination of the measurement vector

After a coarse positioning of the nanowire in the optical waist, assisted by the maps in
Figure 1.18, exactly knowing the local measurement vector requires a finer local estima-
tion since the DC maps can suffer from deformations induced by the system inertia and
there can be drifts in the nanowire position with respect to the optical waist. To do so,
we realize a local map around the chosen position, of the DC voltages 𝑉⊕

𝐷𝐶 and 𝑉⊖
𝐷𝐶 fol-

lowing a technique established in [28, 44]. It is based on a displacement of the nanowire
along different discrete positions on a grid around the chosen working point. Figure 1.19
illustrates the positions of the nanowire at which measurements are performed and the
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1.3 Optical readout of the nanowire motion in 2d

trajectory followed by the measurement algorithm, a square-spiral trajectory. The step
size can be adapted and is typically of the order of 10 nm to 20 nm.

To decrease uncertainty errors, the trajectory is usually repeated multiple times for av-
eraging. A third order polynomial regression of the two local maps 𝑉⊖

𝐷𝐶(𝑥𝑖, 𝑧𝑖), 𝑉
⊕
𝐷𝐶(𝑥𝑖, 𝑧𝑖)

yields the local intensity gradients ∇𝑉⊖
𝐷𝐶(𝑥0, 𝑧0) and ∇𝑉⊕

𝐷𝐶(𝑥0, 𝑧0), which are the above
introduced measurement vectors. For an improved estimation of the gradients, the in-
terpolation of 𝑉⊕,⊖

𝐷𝐶 is also performed in coordinate frame (𝑥′, 𝑧′) rotated by 45°. From
the quantities 𝜕𝑥′𝑉

⊕,⊖
𝐷𝐶 , 𝜕𝑧′𝑉

⊕,⊖
𝐷𝐶 , one can then also calculate the gradients in the unrotated

frame. The mean of both estimations is finally chosen as measurement vector [44].

When using a reliable andwell calibrated piezo positioning stage, the nanowire positions
explored during the calibration protocol are reliably known, and the residual error can
be limited to the intrinsic optical and physical measurement noises. The measurement
uncertainty is different on both measurement channels. Due to the large gradient of
the difference signal intensity in the direction perpendicular to the optical axis, this is
the signal with smallest slope uncertainty, whereas the smaller slope obtained along the
optical axis of the sum channel causes a higher uncertainty on the sum signal. As such,
the best SNR are in general obtained on the difference channel, which also presents the
interest of suppressing common technical noises.

Fig. 1.19: Illustration of the nanowire’s path around the central measurement position in the laser
beam’s waist followed during the readout sensitivity calibration protocol. A measure-
ment of 𝑉𝐷𝐶⊕ and 𝑉𝐷𝐶⊖ on a spatial grid provides the local intensity gradients from which
the measurement vectors are determined.

Several series of the low noise photodiode amplifiers were produced in Institut Néel by
Daniel Lepoittevin, with a conversion gain varying from 2000VA−1 to 2·106 VA−1, so
that we can adapt the detector to the type of power needed in the experiment. For a typ-
ical probe laser power of 10 µW to 100 µW the recorded voltages after the photodiode’s
electronics are in the order of 10mV to 1000mV with gradients |∇𝑉⊕,⊖| =1·104 Vm−1

to 1·106 Vm−1 with an error of about 10 % due to the uncertainty on the sum channel’s
measurement vector.
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1 Fast scanning nanowire probe experiment

The thermal noise of the nanowire, spreading on a few nm (rms), is thus converted into
voltage fluctuations of a 10 µV to 100 µV (rms), which can be efficiently sampled, for
instance with spectrum analyzers. When, instead, one drives the nanowire, we typically
use oscillation amplitudes spanning over 1 nm to 100 nm, which then corresponds to
voltage amplitude in the 10 µV to 10mV range.

1.3.1.2 Dynamic determination of the measurement vector

While the interpolation of the intensities measured at positions close to the measure-
ment location provides a statistically stable estimate of the local readout vectors, the
repetitions of the figure of about five times and an acquisition time per point in the or-
der of 10ms make it too slow to be used as a rapid sensitivity estimator during force
field cartography.

In order to have faster access to the local measurement vectors, we implemented a dy-
namic protocol based on homodyne modulation technique where the piezos controlling
the 𝑥 and 𝑧 axes are individually driven at two frequencies, 𝜔𝛽,x and 𝜔𝛽,z, so that the
nanowire follows a driven trajectory. 𝜔𝛽,x and 𝜔𝛽,z are at low frequencies, around 80Hz
so that they remain inside the transmission band of the photodiode’s DC channels,in
the flat response band of the piezo drive and at very low frequency compared to the
first mechanical resonances, so that the nanowire reacts without undergoing significant
deformations. Both frequencies are separated by 10Hz to 20Hz in order to spectrally
separate the effect of the two driven movements along 𝑥 and 𝑧. Figure 1.20 illustrates
the movement of the nanowire during the calibration protocol where the amplitudes
𝛿𝑟𝛽𝑥,𝑧 applied on each axis are typically set to an amplitude ranging from 10 nm to 30 nm,
where a larger value on the z axis ensures a better measurement of the slower slope
along z when using smaller light intensities. The low frequency signals recorded on the
photodiode’s sum and difference channel are each demodulated at the two driving fre-
quencies to directly obtain the local gradient of the reflection maps, which are encoded
in the amplitude of the four demodulated signals:

𝑉⊖,⊕(𝐫0 + 𝛿𝑟𝛽,𝑥 cos 𝜔𝛽,𝑥𝑡𝐞𝑥 + 𝛿𝑟𝛽,𝑧 cos 𝜔𝛽,𝑧𝑡𝐞𝑧) ≈
𝑉⊖,⊕(𝐫0) + 𝜕𝑥𝑉⊖,⊕ cos 𝜔𝛽,𝑥𝑡 + 𝜕𝑧𝑉⊖,⊕ cos 𝜔𝛽,𝑧𝑡 .

(1.75)

Due to the frequency dependence observed in the response of our piezo actuators (un-
loaded resonant frequency of approx 500 Hz), a static reference measurement taken as
described above, is used to calibrate the dynamic homodyne measurement. The four
gradients obtained from this static measurement are compared to those of the dynamic
protocol to find a calibration scale for each axis. To obtain the most reliable results, such
a calibration should be performed at a position with high signal intensities and a stable
static measurement. In addition, the acquisition time for of both calibration measure-
ment (static and dynamic) are increased to 3 s to 4 s for an improved result.
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1.3 Optical readout of the nanowire motion in 2d

Fig. 1.20: Sketch of the nanowire’s trajectory in the laser beam waist for the measurement of the
readout vector. The bretzel like shape is a result of a common divider of the driving
frequencies along 𝑥 and 𝑧 axes and a larger amplitude for the z direction. The size of
the drawn trajectory is exaggerated and not to scale.

Thanks to the efficiency of the homodyne measurement, which allows a reliable extrac-
tion of the modulated signals strength out of a noise background, the measurement time
to determine the readout vectors can be reduced from 5 s to 10 s to some hundreds of
milliseconds. The measurement time is limited by the frequency of the sinusoidal drive
and the filter bandwidth of the demodulation. Section 1.4.6.2 discusses in detail the mea-
surement and the customized FPGA-based protocol developed for that purpose.

The sinusoidal movement of the nanowire can lead to the apparition of parasitic side
peaks on the nanowire’s mechanical resonances. Due to their splitting around 100Hz
and the narrow excitation band, the mechanical resonance remains almost unaltered
during the dynamic measurement of the readout vectors. Figure 1.21 shows the ther-
mal noise spectrum of a nanowires Brownian motion zoomed on the first mechanical
resonance with dynamic readout vector measurement and without. In order to make
the side peaks visible the nanowire had to be placed in a central position in the laser
beam waist with a pronounced intensity gradient on the difference channel. However,
we try to avoid running the dynamical measurement protocol when realizing sensitive
measurements. The sensitivity calibration can be rapidly activated during long lasting
scripts.
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Fig. 1.21: Thermal noise spectrum of onemechanical nanowire resonance. The blue spectrum ex-
hibits side peaks created by the sinusoidal displacement during the dynamic readout
vector measurement. The 70Hz splitting corresponds to the frequency of the displace-
ment along the 𝑥-axis to which the difference channel is sensitive. The green curve
plots the spectrum at rest.

1.4 Experimental implementation

Beside the optical detection, the scanning forcemicroscopy setup requires a 𝑥𝑦𝑧-scanning
system to move the sample with respect to the nanowire, a reliable driving force, and
signal processing tools. The measurement should further be conducted in an isolated
environment under low pressure to protect from external influences such as acoustic
noise, temperature fluctuations and electric stray fields. Figure 1.22 outlines the experi-
ment schemewith the described optical detection path and the nanowire and experiment
positioning with respect to the laser beam (see Section 1.3) in the upper part of the fig-
ure (a). The probe laser light, focused by the microscope objective, is scattered by the
nanowire that is micro-positioned in the beam waist. The reflected light is captured and
rectified by the objective. On its way back, a beam-splitter reflects 90 % of the light onto
the split photodiode where the difference and the sum of the photocurrents detected
on both halves are calculated and amplified by the homemade photodiode amplifier. In
the signal analysis part (c), a radar like signal analysis unit computes the projected dis-
placement 𝛿𝑟𝜇(𝑡) measured along an arbitrary angle 𝜇 out of the direct signals 𝛿𝑉⊖,⊕(𝑡)
produced by the photodiode outputs. It is realized using the fast signal processing capac-
ity of a field programmable gate array (FPGA). The raw or radar-rotated signals can then
be further analysed, for instance in the frequency domain using a vector signal analyser
(VSA) or recorded on time-sampling devices and employed in a response measurements
(lock-in detectors or vector network analyzer (VNA) ). The measured signal is also used
to lock two phase locked loops (PLLs) whose frequencies are locked at the themechanical
resonance of the two nanowire eigenmodes using an external drive, which is in general
the optical force that is exerted by the green pump laser (b). The nanowire and the
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Fig. 1.22: Nanowire force nanoscopy setup with schematic representation of the scanning mi-
croscopy block (a,e), the optical drive (b), the homodyne detection and signal analysis
block (c), and the electrostatic control block (d). A versatile control software orches-
trates the ensemble of detection and control devices.

sample with their positioning systems (a, e) are located in a temperature and pressure
controlled chamber. Besides positional control, electrodes placed on the nanostructured
sample are use to generate, control and analyze the electrostatic force landscape between
sample and nanowire (d).

This section’s discussions cover the different blocks of the experimental setup starting
with the optical setup for the optical pump and probe signals (Section 1.4.1). After the
optics, Section 1.4.3 gives a description of the mechanical details of the nanowire and
sample positioning systems and stabilization measures realized to optimize scan quality.
The last three subsections cover the experiment control and data acquisition, emphasiz-
ing on the realization of automated scans andmeasurement scripts with a custom control
software (Section 1.4.4) and the technical improvements realized on the base setup dur-
ing the conduct of this work. In particular we describe the integration of a dual channel
multi-frequency lock-in amplifier for realtime force field imaging that Section 1.4.5 cov-
ers in detail. Furthermore, the extension of the setup with a flexible FPGA based digital
signal processing (DSP) module permits a wider range of measurements such as the con-
tinuous monitoring of the readout vector (Section 1.3.1.2), the radar like measurement of
𝛿𝑟𝜇(𝑡) and the generation of artificial force field gradients (see Chapter 4). The operation
principles of the FPGA instrument are subject of Section 1.4.6.
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1.4.1 Optical setup

The readout laser is a 632 nm, 15mW HeNe laser with its intensity adjusted by a half-
wave plate and a polarizing beam splitter to discard a portion of the laser power. It is
drawn at the left of the optical setup in Figure 1.23. The beam is subsequently widened
by an inverse telescope arrangement of two lenses and stray light is removed using
diaphragms. An afterwards placed 90:10 beam-splitter lets through only 10 % of the
intensity towards the experiment chamber. In the backwards direction it reflects 90 % of
the light reflected from the nanowire towards the detector and thus serves as a simple,
polarization independent circulator. On the transmitted beam, another half-wave plate
controls the probe beam polarization that is set onto the nanowire, before it passes a
dichroic mirror used to combine the force driving (pump) and readout beams (probe).
The combined beams then enter the vacuum chamber that hosts the experiment via
a transparent window with anti-reflection coatings for the visible light on both sides.
After passing another diaphragm to remove stray light, a 100×, 0.75 NA Zeiss microscope
objective modified for vacuum operation with a working distance of 4mm, focuses the
readout beam to an approximately 500 nm wide optical waist in which the nanowire is
piezo-positioned. The probe beam is focused to the same spot and we exploit the slight
chromatic dispersion of themicroscope objective, so that the optical waists’ spots of both
beams do not match perfectly along the optical axis and the green probe beam waist
is around 3 µm before the red waist. This spatial arrangement allows to position the
nanowire on the optical axis, just after the red probe waist, to benefit from a slope in the
sum channel, while having the nanowire not too close to the green waist. As such, the
green optical force is rather homoegeneous in the area an thus does not apply too large
force gradients. This remark is also true for the readout beam – one needs to minimize
its optical power so that it does not significantly perturb the nanowire eigenmodes.

Part of the reflected light (both, the pump’s and probe’s light) is collected by the micro-
scope objective and exits the vacuum chamber, counter-propagating with respect to the
readout laser. The signals are again spectrally separated by the dichroic mirror, and the
probe light again arrives at the 90:10 beam-splitter, where it is deflects at 90% towards
the detection units. Filters with a bandwidth centred around the 632 nm of the readout
beam serve to suppress the residual green light that could be detected on the photodiode
(this suppression is essential, especially when using lock-in detection that can detect a
faint fraction of residual green, time-modulated light). After the filters, a (f=200mm)
lens focuses the light onto the split photodiode (PD1 in Figure 1.23), using fine mirror
mounts to balance the intensities on the photo-diode quadrants. A flipable mirror be-
fore the filter stage can also be inserted in the optical path to direct the reflected light
to a CCD camera for visual alignment of the nanowire and the sample in the vacuum
chamber. The propagation path of the readout laser is shown in the lower part of the
setup illustration in Figure 1.23.

A second laser in the optical setup serves to exert a time-modulated, spatially homoge-
neous force to drive the nanowires eigenmodes as described in Section 1.1.3.1. We use a
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Fig. 1.23: Optical setup with the red readout laser in the lower part. The upper part illustrates
the optical path of the excitation laser that is first modulated by a double pass through
an AOM working on the first diffraction order. Readout and pump laser are then super-
posed and focussed by a 100x microscope objective inside the experiment chamber.
The reflection of the readout laser is measured on the split photodiode PD1. Optional
detection on the reflected green laser beam is possible on PD2.

100mW green laser with a wavelength of 532 nm that can again be intensity regulated
with a half-wave plate and a polarizing beam splitter. The transmitted part of the beam
is then intensity modulated to generate a time modulated optical force. To do so, we
employ a double pass acousto-optical modulator (AOM ) scheme. A first lens focuses the
light onto the AOM, next a pinhole selects the first order of the light diffracted by the
acoustic wave, followed by a second lense which collimates the beam. A final mirror
reflects the beam for the double pass configuration of the AOM in order to increase the
modulation contrast on the first diffraction order. A quarter-wave plate in front of the
mirror turns the polarization into a circular one during the first passage, while it trans-
forms it back into an orthogonal linear polarization during the second passage. As such,
the intensity modulated beam that comes back from the AOM, is now reflected by the
polarizing cube. The light’s polarization can be adjusted with a quarter- and half-wave
plates positioned before a telescope that adjusts the beam width to match the micro-
scope’s back aperture. Similar to the readout beam, a 90:10 beam splitting cube discards
90% of the beam. The transmitted arm is then combined with the readout beam on the
dichroic mirror that only reflects the green pump laser but transmits the red readout
laser (cutoff wavelength = 581 nm). The pump beam then shares the same path into
the chamber as the readout beam. An additional detection arm for the reflected green
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light is installed after the 90:10 beam splitter and allows the collection of the pump light
reflected by the nanowire, which then serves for optical alignment and can also be used
to perform an optical readout of the nanowire motion. The relative positions of the red
and green waists have to be precisely aligned, which can be achieved by adjusting their
relative position along the z axis via the divergence of the incoming beams using the
telescope lenses.

A white light source located on the right hand side of the vacuum chamber in Figure 1.23
illuminates the nanowire and the sample in the chamber from the back side as seen
by the microscope objective. Via the alternative detection path, using the flip mirror,
the CCD camera can record an image of the nanowire and the sample that is used for
alignment.

1.4.1.1 The split photodiode detector

The dual photodiode detecting the reflected light from the nanowire is a Hamamatsu
split photodiode that measures the intensity on two active areas A and B, separated
by an inactive zone of 20 µm width. The photodiode has a quantum efficiency around
85% at 632 nm. A homemade optimized electric circuit, designed and fabricated by D.
Lepoittevin, splits the photocurrent produced by each quadrant into a high frequency
and a low frequency channel using a high and a low pass filtering stage respectively. An
additional electronic amplification increases the intensity of the electric signals before
the sum and difference signals from the two active areas are created. Figure 1.24 lays
out the operational scheme of the photodiode.

In the frequency domain, the conversion from power fluctuations 𝑝𝐴,𝐵[Ω] detected on
the two halves of the photodiode to the signals 𝑉⊖

𝐷𝐶[Ω], 𝑉
⊕
𝐷𝐶[Ω] for the low frequency

and 𝑉⊖
𝐻𝐹[Ω], 𝑉

⊕
𝐻𝐹[Ω] for the high frequency channel follows the linear mapping:

(𝑉
⊖
𝐷𝐶

𝑉⊕
𝐷𝐶
) = ( 𝐺𝐴⊖

𝐷𝐶 −𝐺𝐵⊖
𝐷𝐶

−𝐺𝐴⊕
𝐷𝐶 −𝐺𝐵⊕

𝐷𝐶
)(𝑝

𝐴

𝑝𝐵), (1.76)

where 𝐺𝐴⊖
𝐷𝐶 [Ω] determines the (amplified) contribution of the power registered on area𝐴

to the difference signal. The HF signal can as well be expressed with the same map as in
(1.76), however due to different amplification gains, the conversion factors are different
and depend on the analysis frequency.

Calibration The determination of the measurement vectors, as explained before, is
performed on the DC channels ( Section 1.3.1.1), while the dynamic movement of the
nanowire is recorded using the HF signals. We thus need to calibrate the conversion
factors from HF to DC signals, which do not depend on the analysis frequency. Using
Equation 1.76 and an identical conversion matrix for the HF channels, we can connect
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Fig. 1.24: Schematic electric layout of the split photdiode’s amplification circuit. The amplifica-
tion part is shown for area A. The same circuit design is used for area B. After a signal
filtering step followed by current to voltage conversion stages (grey box) the sum and
difference signals for low frequency (DC) and high frequency (HF) channels are com-
puted.

how a given power modulation at a frequency Ω would be read out on the HF and DC
measurements channels:
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= ( 𝛼−− 𝛼+−
𝛼−++ 𝛼++

)(𝑉
⊖
𝐷𝐶

𝑉⊕
𝐷𝐶
) (1.78)

where the diagonal coefficients 𝛼++, 𝛼−− are the HF/DC conversion factors while the off-
diagonals 𝛼+−, 𝛼−+ describe systematic acquisition errors due to imperfect electronic sig-
nal processing.

The calibration of the conversion coefficients requires a frequency response measure-
ment of the photodiode using a signal of constant intensity 𝑝 for the two channels HF,
DC and the two active areas A and B. Here, the characterization of the channels in their
respective measurement range of about 0Hz to 150Hz for the DC channel (used for
static imaging, static beta measurements and dynamical beta measurements) and 1 kHz
to 100 kHz for the HF channel (used for resonant or broadband mechanical readout) is
particularly important.

We use the acousto-optical-modulator (AOM) introduced in Section 1.4.1 to modulate
the probe laser that is directed and focused on a single half of the split-photodiode. The
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employed AOM has a flat response in the frequency range of interest (as shown in [28]),
and hence the signal intensity at different frequencies can be directly compared.

Figure 1.25 shows a schematic illustration of the optical arrangement for the calibration
of the split-photodiode. The AOM is driven by a modulated electrical signal generated
by a Zurich Instruments HF2 digital lock-in amplifier, which can be used as network anal-
yser to realize frequency response scans. The HF2 is also the main acquisition device for
most of the dynamical measurements discussed in this work. It has an optional high-pass
input filter and an optional 50Ω input impedance that affect the measured transfer func-
tions. We therefore perform the calibration measurement with all possible combinations
of the input settings and all the photodiodes produced are similarly calibrated.

Split Photodiode

Network 
Analyzer

Fig. 1.25: Optical arrangement for the calibration of the split photodiode. The laser beam is mod-
ulated by the AOM and a network analyzer measures the response of the photodiode.

Iteratively measuring the response on all four output channels (𝐴⊕,𝐴⊖, 𝐵⊕, 𝐵⊖) with
the laser focused first on quadrant A, then on B, we obtain the eight transfer functions
𝐺𝐴,𝐵⊕,⊖
𝐷𝐶,𝐻𝐹 of the photodiode and the signal processing circuit with respect to the constant

optical modulation 𝑝[Ω] . Figure 1.26 compares the transfer functions for the two pho-
todiode halves measured in the ⊕ and ⊖ channels using the input high-pass and 50Ω
impedance of the HF2 for the HF channels of the photodiode.

The photodiode’s transfer functions exhibit differences between the response to irradia-
tion of areas 𝐴 and 𝐵 that are smaller than 1% in the target frequency range. This holds
for both, amplitude and phase response of the diode and the electronic circuit, and re-
flects the quality of the device. We thus regard the photodiode as symmetric and use a
single transfer function for both halves 𝐴, 𝐵 per channel ⊕,⊖.

1.4.2 Conversion of the photodiode signal to physical 2D displacement

Bringing together the photodiode response calibration and the measurement vector de-
termination (Section 1.3.1.1), we can convert the acquired voltage fluctuations recorded
on the sum and difference channels of the photodiode to a two dimensional displacement.
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Fig. 1.26: Transfer functions of the split photodiode’s output channels for a modulated optical
signal on isolated active areas. 180° have been added to the phase of one quadrant on
the ⊖ channel to take into account the sign.

In order to do so, the following equation converts the voltage fluctuation recorded on
each channel into oscillation amplitudes (in m):

Displacement
amplitude in meter𝛿𝑟⊖[Ω] =

𝛿𝑉⊖[Ω]
|∇𝑉⊖

𝐷𝐶|𝜔𝛽

𝐺⊖
𝐷𝐶(𝜔𝛽)

𝐺⊖
𝐴𝐶[Ω]

. (1.79)

Here, 𝜔𝛽 is the frequency at which themeasurement of the readout vector is realized. It is
around 80Hz to 100Hz for the dynamical protocol, and is zero for the static protocol. The
quotient 𝐻𝐹/𝐷𝐶 = 𝐺⊖,⊕

𝐴𝐶 [Ω]/𝐺⊖,⊕
𝐷𝐶 (𝜔𝛽) is the conversion factor between low frequency

DC and high frequency HF channel of the photodiode. The correction factor for the
employed photodiode is shown in Figure 1.27.

The gradient |∇𝑉𝐷𝐶| is obtained from the calibration of the measurement vector and cor-
responds to the length of the measurement vector |𝛽|. For a measurement of the thermal
noise spectrum the formula can be rewritten in terms of the power spectrum:

𝑆𝛿𝑟⊖[Ω] =
𝑆𝛿𝑉⊖[Ω]

|∇𝑉⊖
𝐷𝐶|

2 (
𝐺⊖
𝐷𝐶(𝜔𝛽)

𝐺⊖
𝐴𝐶[Ω]

)
2

. (1.80)
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Fig. 1.27: The𝐻𝐹/𝐷𝐶 calibration curve for the utilized photodiode is shown for the case of no input
AC filter on the Zurich Instruments lock-in (blue) and for the most used configuration
of 50Ω input impedance plus AC filter. The two quadrants are depicted as solid (⊖)
and dashed (⊕) lines. While the flat region with the highest response is not located
at the ideal frequency range for the nanowires employed (between 5 kHz to 100 kHz),
the photodiode is still one of the devices with the best amplification characteristics
available at the time of the measurements.

The calibrated displacements 𝛿𝑟⊖,⊕ can be converted to the experimental coordinate sys-
tem using Equation 1.74. For 𝛿𝑟𝑥 we have as complete conversion expression:

Displacement in
laboratory
coordinates 𝛿𝑟𝑥[Ω] =

sin 𝛽⊕
𝛿𝑉⊖[Ω]
|𝛽⊖|

𝐺⊖
𝐷𝐶(𝜔𝛽)
𝐺⊖
𝐴𝐶[Ω]

− sin 𝛽⊖
𝛿𝑉⊕[Ω]
|𝛽⊕|

𝐺⊕
𝐷𝐶(𝜔𝛽)
𝐺⊕
𝐴𝐶[Ω]

cos 𝛽⊖ sin 𝛽⊕ − cos 𝛽⊕ sin 𝛽⊖
, (1.81)

and a similar one for 𝛿𝑟𝑧.

The preceding paragraphs introduced how a two-channel, optical reflection measure-
ment can provide the positional displacement of a nanowire 𝛿𝐫 in two dimensions. This
technique is used to measure the oscillation trajectories 𝛿𝐫(𝑡) in the presence of external
force fields. The next section presents a mechanical setup that permits to perform these
measurements in a scanning probe microscopy operation mode.

1.4.3 Positioning system

A stable and well controlled nanowire positioning is crucial since the optimal measure-
ment location in the laser beam waist has a size of the order of some tens of nanometers.
Thus, the positioning of the nanowire with respect to the laser beam, and independently
with respect to the sample require nanometer resolved positioning systems.

The mechanical setup builds around the fixed microscope objective which focuses the
laser to a narrow waist in which the nanowire is piezo-positioned. However, the most
critical positioning is the relative position of nanowire and sample, also, they need to
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be moved together during the alignment of the nanowire in the laser beam, so that the
force sensing experiment is not altered. Additionally, the sample needs to be positioned
and scanned with respect to the nanowire, which requires a second, independent 𝑥𝑦𝑧-
positioning stage. The design of the setup is based on a large three axis piezoelectrical
positioning system (Physik Instrument 733DD) that supports the nanowire mount to-
gether with the second, smaller three axis piezoelectrical positioning system that carries
the sample holder (attocube positioning stage). The larger stage controls the position rel-
ative to the laser whereas the smaller stage can scan the sample beneath the nanowire.
When we move the sample, the static force experienced by the nanowire can vary, caus-
ing a static deformation, which is compensated by the main piezo so that the nanowire
stays at the optimal measurement position (position tracking).

In order to guarantee reproducible translations and mechanical stability over longer
measurements, thermal expansion induced by, for instance, day-night cycles needs to
be avoided. The support of the large piezo stage and all the scanning probe apparatus
is therefore temperature stabilized by four Peltier devices that support the thermalized
mounting plate of the positioning system. The Peltier devices’ cold sides are connected
to a large copper body functioning as thermal load. A PID controller acting on the tem-
perature of the positioning stage stabilizes the systems temperature and compensates
fluctuations of the room temperature by applying a controlled current on the Peltier
devices. Figure 1.28 illustrates the installation of the Peltier devices and the thermal
isolation of the scanning setup.

Thermal mass
Peltier devices

Thermalized plate

Stainless steel 
suspension

Fig. 1.28: Photograph of the thermal control elements of the experiment. The stainless steel
suspension elements are supported by two coarse, motorized, positioning stages. The
bottom copper piece acts as thermal reservoir for the four Peltier devices that are glued
with their cold sides onto it. The thermally controlled upper copper plate is added in
the right side view photograph. This plate supports the two piezoelectrical positioning
stages for nanowire and sample so that both systems are thermally stabilized.

Even though the setup is thermally stabilized, changes in temperature, pressure or the
static force on the nanowire can lead to a displacement of the nanowire in the laser
beam, causing a change of the measurement vectors. We correct for these drift effects
by applying a feedback – computed on either amplitude or gradient of the DC signal of
the photodiode 𝑉 𝐷𝐶

⊕,⊖ – on the main piezo stage to stay at a constant relative position. As
thewidth of the laserwaist in the range of 500 nm ismuch smaller than its length (<1 µm),
the readout vector along the 𝑥-axis (perpendicular to the propagation direction) is much
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steeper than along the 𝑧-axis. Hence, a small displacement in 𝑥 has a larger impact on
the measured signal in the⊕-channel than along the 𝑧-axis where the intensity gradients
measured on both channels are much flatter. It is therefore mostly sufficient to lock the
𝑥 position of the nanowire with a stable PID that only acts on the piezo stage along the
𝑥-axis.

The whole mechanical setup is shown in the photographs in Figure 1.29 where 1.29a
gives an overview of the arrangement of the experimental chamber which contains the
microscopy setup and the optical setup outside the chamber. The temperature control
stage can be seen in 1.29b where it is mounted on the coarse position control stages,
carrying the scanning setup. Panels 1.29c and 1.29d present a closer view on the scanning
setup with the nanowire support in front of the microscope objective. The dome like
nanowire support permits to correct a nanowire tilt independent of the direction of a
tilt within a range of ±15° by rotation of the tungsten tip around its own axis to get the
tilt angle in the direction perpendicular to the optical axis, and consequent inclination
of the nanowire support following the curvature of the ceramic nanowire mount. This
specialized mount has been added to the setup towards the end of this project so not all
measurements conducted in this work could benefit from its advantages.

1.4.4 Control Software

Nanowire force microscopy requires the synchronization of different scan and measure-
ment protocols. Since the two-dimensional nanowire forcemicroscopy is a non-standard
scanning probe technique, it requires an adapted control software that has been designed
and realized in previous projects ([28, 44]) and still is under continuing development.

The main key-requirements for the control program that runs under the internal name
Nano-Imaging Lab (NIL) are the 3-axis scan with realtime imaging of the acquired data.
As scan control device we use a NI USB-DAQ card (connected to a Windows host sys-
tem4) with four analog outputs, three of them controlling the three axis movement, and
ten high impedance DC input channels. Furthermore, the software should integrate per
point operations, such as spectrum acquisition or response measurements using addi-
tional devices as Spectrum and Network analyzers. The low mechanical frequency of
the nanowire’s oscillations in the kHz regime and their high Q factor often require long
acquisition times so that the measurement also needs to be actively stabilized.

Themodular program layout consists of threemain classes of modules that are organized
into three layers: interface, script and instrument layer. For each experimental setup one
can use one or multiple instances, adapted to their tasks by activation/deactivation of
the required modules. Figure 1.30 illustrates this software layout.

4
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1.4 Experimental implementation

Fig. 1.29: The experiment chamber (1) on the optical table with the detection setup (3) is shown in
panel (a). At the left, the vacuum setup (turbo pump, gauges and valve) are discernible
(2). In the center of one wall of the chamber is a transparent window (4) through which
the readout and pump laser are directed onto the experiment. In the chamber one
can see the positioning setup with the mounted nanowire holder (round kiosk with the
white top), which are shown from closer distance in the photograph in (b). In front
of the window (5), one sees a part of the microscope objective holder. The coarse
positioning setup of the experiment relative to the sample (6) consists of the symmetric
arrangement of two xyz-micro-positioning stages that carry a central copper block on
which the temperature regulating Peltier devices are located (7). The fine positioning
is done with the three axes piezo stage (8) that supports the nanowire kiosk (9) and
the sample positioning system (not visible as it is in the interior of the piezo stage (8)).
The nanowire holder and samples can be electrically biased via electrical feedthroughs
to which the cables (10) are connected. Panels (c) and (d) show a closer view of the
nanowire kiosk. The nanowire is mounted at the top and held in place by a special
ceramic mount (12) which allows to change the angle of the nanowire while keeping
the nanowire centralized and isolates the nanowire mount electrically. The nanowire
position is fixed with the big screw (11) which is electrically connected to the tungsten
tip and whose potential is controlled via the coax cable that is connected to the screw.
At the very top, a piezo is mounted which can act asmechanical drive of the nanowire as
alternative to the green pump laser. Here, the nanowire supports needs to be elevated
from the kiosk by additional spacers due to a particularly long tungsten tip. The sample
holder (13) has space for two samples that can be mounted on each side. In (d) one
can see how light that is focussed by the microscope objective (14) is reflected from the
tungsten tip beneath which the two inversely mounted AFM cantilevers are visible (15).
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Fig. 1.30: Structural illustration of the three software layers in the experiment control func-
tion. The GUI layer contains user interfaces for the main scanning functionality, direct
interaction with instruments and the execution of scripts using multiple instruments.
The script layer contains scripts for single tasks or user-scripts that can comprise com-
plex measurement protocols and have access to all available instruments and inter-
faces. The instrument layer is the interface with the devices and makes their function-
alities accessible to the interfaces and scripts. The dashed box highlights the instru-
ments that can be used for live imaging during standard scans (illustrated by arrows
connecting the scan elements). The arrows from and to the user script block demon-
strate its ability to access all available interface and instrument modules.

The interface modules contain all user interfaces amongst which the position and scan
control interfaces, and the imaging interface form a basis required for all program in-
stances. Depending on the experiment type, the interface layer also contains user in-
terfaces for the used instruments such as spectrum- or network analyser and interfaces
for measurement scripts. The scripts modules form the second layer of the software
and contains measurement scripts for protocols such as different scan types (linear, 2D
maps with additional parameter scans, realtime monitoring), the determination of the
measurement vector (compare Section 1.3.1.1) or custom user scripts. The user scripts
have access to all available interfaces and instruments and can also call other scripts,
they are therefore the ideal tool to orchestrate complex measurement protocols. The
third layer contains all instrument drivers with implementation of communication and
measurement protocols adapted to each instrument and use in the experiments.

Each experiment can require a different set of equipment. For this reason the program
configuration for a specific experiment needs to be easily adjustable. AMother program
generates configuration files that determine the available modules and their configura-
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tion for each experiment program. The idea of this modular configuration is sketched
in Figure 1.31.
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Fig. 1.31: Illustration of the creation process of an instance of the experiment control software.
The mother program writes a config file based on the available modules in the three
pools of interface, instrument and script pools. A standardized main program then
accesses the config file and creates the experiment interface.

The typical nanowire force microscopy setup uses two positioning systems as shown in
Figure 1.22, one for the positioning of the nanowire and the sample with respect to the
readout laser, and one for the actual scan of the sample itself. Two instances of the mea-
surement program control these two positioning systems independently. Figure 1.32
shows a screenshot of the sample control interface, taken after an electrostatic force
field measurement at a given bias voltage, above a sharp conical electrode. The realtime
display of the force field characteristics such as the divergence (first plot in the screen-
shot) has been a crucial achievement of this project. The key points of its realization are
discussed in the following section.

1.4.5 Flexible resonant acquisition by integration of the HF2LI-PLL

The previous program version described up to this point was limited to the imaging of
static signals acquired with the NI USB-DAQ card, all the dynamical signal had to be
acquired with separate devices, such as network or signal analyzers. During this project
we integrated a two-channel lock-in amplifier with demodulation at up to six frequencies
(Zurich Instruments HF2-LI ) into the control software, expanding largely its functional
capacities. This added a variety of new measurement possibilities such as spectrum
analysis, frequency or parameter sweeps, and frequency tracking with two independent
phase-locked loops (PLLs). The software has been modified so that live imaging is now
possible using the demodulation results as data, including arithmetical operations and
statistics on the acquired data. Together with the dual PLL, this forms the base for two-
channel lock-in measurements of the nanowire resonances and realtime imaging of the
force field structure described in Section 1.2.
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Fig. 1.32: Screenshot of the scan interface after having realized a 2D horizontal a scan of the
nanowire above a sharp electrode at a given bias voltage. Image plots show the di-
vergence and the difference of the squared eigenfrequencies of the nanowire used for
positioning in space and the determination of the eigenmode orientations.

The setup of the main instrument parameters is implemented in the instrument driver
and interface layers of the experiment program so that the typical measurements can
be quickly performed using the corresponding user interfaces and can easily be used
in user scripts. Fine tuning and access to all available instruments parameters remains
possible via the devices own web interface. Figure 1.33 shows a screenshot of the device
interface with an exemplary response measurement plus spectrum on the right hand
plot part, and the setup of the data channels that can be displayed in the imaging plots
of the main interface (1.32) on the left hand side.

The possibility of applying arbitrary mathematic operations on the demodulated sig-
nals before displaying and exploiting them allows direct imaging of the key force field
properties without a time-consuming analysis step. Compared to the previous approach
based on thermal noise analysis, the typical measurement time has thus been reduced
from the order of days to less than an hour for a regularly sized map. This is firstly
due to the faster driven measurement using dual mode tracking with two PLLs that is
at least ten times faster than the acquisition of a full spectrum around the mechanical
modes, only limited by the mechanical Q-factor and the SNR of the measurement. And
secondly, the analysis of the results does not require a complex fitting routine that needs
to be adapted for each mechanical system. Instead, the new instrument modules already
display first results during the measurement, reducing the necessary time roughly by
another factor of ten.
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Fig. 1.33: Screenshot of the Zurich Instruments HF2 instrument interface showing the definition of
the data channels for realtime imaging (left) and the plot interface for response sweeps
with synchronous spectrum acquisition.

1.4.6 Realtime DSP with the Red Pitaya

Digital signal processing provides a fast and flexible way to analyze electrical signals
in time and frequency domain. It is a technology that can be found in all recent spec-
trum and network analyzers as well as in arbitrary waveform generators. Most of these
devices are built upon the technology of field programmable gate arrays (FPGA), inte-
grated circuits that allow the user to reconfigure the logical operations on the hardware
level during runtime. The integration of logical gates and memory on the same chip
enable signal processing at the digital clock frequency that typically lies in the range
of hundreds of MHz. Also digital processing units do not add additional noise during
signal processing, even if the digitization of an analog signal ultimately determines the
resolution of the signal processing [102].

The availability of devices that integrate FPGA chips with the peripherical electron-
ics such as digital analog converters and amplifiers with open source code allows end-
consumers like the common experimentalist to implement digital signal processingmod-
ules on their own. One of these devices is the Red Pitaya [92] that comes equipped with
a Xilinx Zynq 7010 FPGA and two 14 bit DACs and ADCs at a clock rate of 125MHz.
Projects like PyRPL [80] have used this platform to realize locking of opto-mechanical
systems.

The prerequisites for application in our experiments were:
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• Integration with the existing software environment
• Components:

– 2 Input signals (high-pass filtered)
– 2 Output signals
– Demodulation at 2 frequencies (4 demodulators) in kHz regime
– best possible filtering in the Hz regime of the demodulated signal

• Synchronization with other devices, trigger processing

As none of the available softwares for the Red Pitaya supports this modus of operation
and classic laboratory instruments that fulfil the requirements quickly exceed the budget
limits we started the development of a instrument software that suites to our needs. This
approach lets us benefit from the expertise of the local electronics department to tailor
the development and to get a high level of understanding of the measurement details,
which is crucial for correct interpretation of the results. It also permits us to integrate
the savoir faire of DSP development into our group so that future experiments that rely
on rapid digital signal treatment get accessible. One of these is the creation of artificial
synthetic force fields based on realtime feedback presented in Section 4.2.

1.4.6.1 The RedPitaya FPGA

The adapted Red Pitaya device is designed around the Xilinx Zynq 7010 system on chip
(SoC) that integrates a FPGA unit with a CPU and memory on a single chip. It is adapted
to run a Linux based host system that has access to a memory block shared with the
FPGA unit. It is via this register memory that commands and data are exchanged be-
tween host system and FPGA. The FPGA also has access to the two DACs and two ADCs
that are sampled at the clock rate of 125MHz. Additionally to these main in/out chan-
nels there are slow analog and digital io-pins available for access from FPGA and host
system. The core of the FPGA is the digital signal processing unit (DSP) that can be
programmed at runtime via pre-compiled FPGA architectures called bitfiles. The core
DSP of the FPGA has been restructured by Julien Minet at Institut Néel to be easily
programmable in the laboratory environment.

The host system is a normal Linux operating system that in the supplied version is a
Ubuntu based build. It can run any communication server to allow external access for
controlling the device such as a web server or a text based communication service via
TCP. The manufacturer supplies an open source implementation of an application pro-
gramming interface (API) [92] coupled with an open source implementation of the SCPI
communication protocol that is widespread in laboratory devices. The API and server
are written in the C programming language5, guaranteeing fast interaction between host

5
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system and FPGA. For the customization we kept the SCPI functionality and the overall
structure of the API but replaced all special functionalities of the API by our own.

Beside the host system that runs the SCPI server and the FPGA that contains all digital
signal processing, a client is implemented on the lab computer. The client is a simple
add-on to the existing lab software (see Section 1.4.4). Figure 1.34 gives an overview of
the design of the Red Pitaya acquisition system.

Ubuntu OS

SCPI Data Server
- communication
- calibration
- acquisition

RedPitaya

Client System

FPGA
Xilinx 7010 DAC

 (2x)

DSP
real-time 
signal processing

Acquisition So�tware 
(Nano-Imaging Lab)

- text based communication (SCPI)
- data/parameter transfer in text/binary
- debug/development (SSH)

Parameters 
(16 bit)

Raw data
(14 bit)

ADC
 (2x)

Fig. 1.34: The system design of the Red Pitaya acquisition platform with the three main elements
client, server and DSP.

The technically most complex part is the data server that runs on the device. It handles
communication from and to the client system and from and to the FPGA and therefore
requires thorough handling of multiple communication interfaces. Since the acquired
data from the FPGA are raw binary numbers, the data server manages all necessary
calibration as well, so that the values communicated to the client correspond to physical
quantities.

The client system itself is the least complex part. It contains an implementation of the
necessary commands to control the device and to submit and accept data. Thanks to
the standard text based communication protocol, this condenses to some simple python
functions.

The technical most important unit is the DSP on the FPGA itself as here the signals are
processed in real time. The next subsection looks into the details of the DSP developed
to perform two channel lock-in measurements.

1.4.6.2 Two signals dual frequency lock-in measurements

To realize force field sensing based on driven measurement of both nanowire eigen-
modes in two dimensions, we need to perform a lock-in measurement on each signal
𝑉⊖,⊕ of the two measurement vectors for each of the two driving tones which are locked
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on the two eigenfrequencies. Similarly, the dynamic calibration of the readout vector
(Section 1.3.1.2) depends on the simultaneous lock-in measurements of both detection
channels at the two driving frequencies which move the experiment along the x and z
axis for calibration purpose.

The design for the two-signal dual-frequency lock-in comprises four independent de-
modulation stages. A schematic representation of the DSP is given in Figure 1.35. For
better illustration, the DSP block is divided into the three sections: input signal process-
ing, output signal generation and data acquisition. In the input section, two analog to
digital converters (ADC) digitize the voltage input to a 14 bits digital signal that is high-
pass filtered in order to remove any residual DC component and low frequency noise.
Each signal is then mixed with a harmonic wave at frequency 𝜔 generated by one of four
available local harmonic oscillators (LO) and the quadratures ̃𝐼 and �̃� are output as real
and imaginary part of the mixed signal. For a monochromatic input signal 𝑉 (𝑡) at fre-
quencyΩ and amplitude𝐴, ̃𝐼 and �̃� are connected to the products: 𝑉 (𝑡)⋅cos 𝜔𝑡, 𝑉 (𝑡)⋅sin 𝜔𝑡,
which are subsequently combined with a low-pass filter to remove the fast oscillating
component. The quadratures are then:

𝐼 = 𝑉 (𝑡) ⋅ cos 𝜔𝑡 ⋅ 𝐹LP(𝑡) (1.82)
𝑄 = 𝑉 (𝑡) ⋅ sin 𝜔𝑡 ⋅ 𝐹LP(𝑡), (1.83)

where 𝐹LP(𝑡) is the temporal response of the filter whose bandwidth is the so called
demodulation bandwidth. The complex demodulated signal of a monochromatic signal
at frequencyΩ (any real signal can be expressed as sum ofmonochromatic contributions)
𝑉Ω−𝜔(𝑡) is thus

𝑉Ω−𝜔(𝑡) = 𝐼 (𝑡) − 𝑄(𝑡) = 𝐴
2
𝐹LP(Ω − 𝜔)𝑒(𝑖(Ω−𝜔)𝑡+𝜙0), (1.84)

with 𝐹𝐿𝑃[Ω − 𝜔] being the filter transfer function of the low pass filter. Note that due
to the internal multiplication with the pure cosine and sine wave from the LOs, the 𝑄-
quadrature has a minus sign in order to write the signal 𝑉Ω−𝑤(𝑡) as positive exponential.
We note that this convention for the time evolution is the opposite of the one we employ
in the theoretical description of the nanowire mechanics in Section 1.1.

As illustrated in Figure 1.35, the two input channels are symmetric and the employed
demodulation frequencies are identical for both signals. The implementation of the in-
strument however allows to chose any of the two ADC signals and any of the LOs as
input for each of the four mixers. One signal could therefore also be demodulated at four
different frequencies that can be used for multifrequency response analysis. Similarly,
all filters can operate as high or low-pass filters with individually set bandwidths.

In order to be sent to the experiment control software, the demodulated signals must first
be transferred to the data server of the Red Pitaya that runs on the CPU of the device.
For communication, FPGA and CPU both share some register and memory resources.
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Fig. 1.35: DSP layout of the two channel lock-in measurement implementation on the FPGA. The
input signal processing block outlines the processing of an analog input signal that is
converted into a digital one, then any DC offsets are removed by a digital high-pass be-
fore mixing the signal with a local oscillator (LO) wave. For two frequency lock-in mea-
surements two of the four available LOs are used (red/blue). Low pass filters remove
the sum frequency signal and narrow the demodulation bandwidth of the in phase (𝐼)
and out of phase (𝑄) quadratures. The two output signals are the two generated waves
(other available signals greyed out). An amplifier with gain (𝑝1,2) and adder adjust the
amplitude and offset of the signal on the two DACs. In the data acquisition block, two
measured values (32 bit) per time are written in the shared BRAM memory where data
is accessible to the data server.

The interface for data transfer is a 128kB BRAM memory that can receive data as a sin-
gle 32 bit chunk per clock step at maximum rate. The actual write rate depends on the
bandwidth of the filters and the desired acquisition rate, and is limited by the read speed
of the program running on the CPU that is slower than the 125MHz of the FPGA. The
32 bit signal can hold two measurement values of each 14 bit length. The remaining
4 bits represent tag-bits that mark data, for instance as trigger bits that depend on the
presence of an external DIO signal. The data server can then select which data to save
and which to discard, depending on the external trigger. Due to the 32 bit length of
the transfer signal, writing all eight quadratures to the BRAM requires four clock steps
which additionally limits the acquisition rate. With the implemented DSP architecture
and the corresponding data server, rates of about 100 kHz to 200 kHz are feasible. The
bottle neck for higher rates is the data processing on the CPU side. It is therefore likely
that an optimization of the data server program could improve this rate if required. Sim-
ilar as for the inputs of the mixers, all intermittent signals are accessible for a transfer
to the BRAM.

The last part of the DSP is the output signal generation. For the dynamic detection of the
readout vector, the position of the nanowire needs to be modulated along the two axes
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𝑥 and 𝑦 at two different frequencies. The output signals are therefore chosen to be the
waves generated by the two LOs. Other options such as the sum of two harmonic waves
are possible as well. The two output signals can be scaled independently via the setting
of the two proportionals 𝑝1 and 𝑝2. Additionally, it is possible to add a static offset to
the output signal.

The frequency for the dynamic measurement of the readout vectors is typically chosen
between 60Hz to 100Hz. Firstly, this is a frequency range where the piezo actuators still
respond linearly, and which fall in the DC channel bandwidth of the photodetectors.
And secondly, the created sidebands on the mechanical peak are far enough from the
mechanics so that the measurement of the nanowire resonances is not affected strongly.
As demodulation bandwidth we typically choose 30Hz which is the lower limit at low
frequency signals before rounding issues on the FPGA distort the signal. Additional
temporal averaging ensures a bandwidth that is small enough to only measure one of
the excitation frequencies per demodulator, so that each of them provides an output
value propotional to 𝜕𝑥,𝑧𝑉DC

⊖,⊕.

1.5 Illustration of a measurement protocol

We illustrate now how to realize a complete measurement, aiming at the mapping of the
horizontal 2D force field gradients created by a nanostructured sample in an arbitrary
chosen horizontal (xz) or vertical (xy, zy, or any other vertical plane) scanning plane
above the sample surface. The electrostatic nature of the force field requires a measure-
ment of its dependence on the bias voltage 𝑉bias between nanowire probe and sample.
This force field nanoscopy is thus an iteration of individual force gradient measurements
on a subset of positions in the four dimensional scan space 𝑥, 𝑦 , 𝑧, 𝑉bias. The following
paragraphs lay out the protocol followed during a measurement.

1.5.1 Preparation

The first step in the measurement preparation is the correct alignment of sample and
nanowire to each other. We want the nanowire vertically oriented above the area to
explore. A coarse alignment is done with the help of the transmitted laser light after
the nanowire, imaged on a paper screen just behind the nanowire. The analysis of the
refraction fringes on the screen allows to rapidly bring the nanowire in the centre of
the beam’s waist. The sample can be similarly positioned, using the transmitted light
for a first coarse alignment. This is efficient for tip-like samples, but not sufficient when
exploring flat samples.
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1.5 Illustration of a measurement protocol

A finer alignment is then done with the experimental image realized with a white light
source on a CCD camera. It provides enough control to adjust the sample to the nanowire
in the µm-range using piezoelectric stepper motors. Once the coarse alignment has
been performed, we can pump the vacuum chamber and turn on the temperature con-
troller. This creates some micrometer large shifts which we compensate with the piezo
stages.

We then position the nanowire at the optimal measurement position in the laser beam
using the larger experiment stage. This position provides a good spectral signal of both
eigenmodes of the nanowire. In general, we operate with an orientation of 45° between
the nanowire eigenmodes and the optical axis, so that it also ensures a good respon-
siveness to the resonant drive via the optical pressure force of the drive laser, which is
aligned along z.

A general prerequisite is a correct calibration of the detection channel as described in
Section 1.4.1.1 and Section 1.3.1. This calibration needs to be repeated every time el-
ements in the detection channel are exchanged (including optical elements rearrange-
ments, but also electronic modifications) but remains valid otherwise.

At a position with a good readout signal, with the sample still far enough away from the
nanowire (tens of µm) in order to avoid experiencing a significant external force field, we
acquire a spectrum of the cold bare eigenmodes of the nanowire. This spectrum provides
the orientation and frequencies of the undressed eigenmodes that are used as reference
in the calculation of the force field gradients. If the alignment of the eigenmodes with
respects to the optical axis is too different from the 45° configuration, we reopen the
vacuum chamber and rotate the sample support. The PLLs of the Zurich Instruments
HF2-LI are then locked to the mechanical modes as described in Section 1.1.3.1, and we
can start measuring the variations of the force field experienced by the nanowire.

The measurement software allows recording and plotting of the demodulated signals of
both photodiode channels at the two locked resonance frequencies, either in realtime or
synchronized with the scan of the output of a NI-DAQ ADC/DAC converter that con-
trols the 𝑥, 𝑦 , 𝑧-piezo stage moving the sample and the 𝑉bias output. Additionally, we can
perform mathematical operations on the acquired signals from the demodulators be-
fore plotting them and can thus monitor for instance the sum of the squared frequencies
𝑓 2
PLL1+𝑓 2

PLL2, a value that is proportional to the force field divergence∇⋅𝐅 = 1
𝑀eff

(𝑔11 + 𝑔22).
When measuring a structured surface, this quantity reflects the topology of the sam-
ple as the largest force gradients usually appear close to edges. Therefore, imaging
𝑓 2
PLL1+𝑓 2

PLL2 provides a map of the sample under investigation, and can be used as a con-
trol signal while approaching the sample to the nanowire extremity. Since the nanowire
is never aligned perfectly perpendicular to the sample, and since the electrostatic land-
scape above the samples is never completely homogeneous (see Chapter 2), this methods
is rather safe, and we can approach the sample to the nanowire extremity without touch-
ing. In practice, in this rapid readout mode, we can detect that the nanowire “feels” the
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force exerted by the surface at a distance ranging from 500 nm to 2 µm above the nanos-
tructures.

These orientation maps can be acquired at much higher speed than detailed force mea-
surements since the detection of frequency shifts is less affected by experimental biases
compared to the amplitude measurement that provides the mode orientation. Useful im-
ages only require a measurement time 𝑡𝑝𝑝 ≈ 1

2
2𝜋
Γm

, where Γm is the mechanical damping
of the measured mode.

The first images of the force field divergence are then used to set up the scans. An
estimation of the nanowire-sample distance can be obtained by slowly approaching the
surface and observing the spectrogram of the mechanical modes. For a flat sample, some
tens of nanometer before touching the surface, rotations of the eigenmodes, frequency
shifts and RC-induced damping effects typically become so intense that the PLL stops
tracking reliably. For vertical scans this distance imposes the lower scan limit, while for
horizontal scans, the sample is retracted about 50 nm to 150 nm and the proper operation
of the PLL is verified at some random displacements in the scan area and for various
voltages 𝑉bias in the planned scan range.

Depending on the structure of the force field under investigation, the nanowire eigen-
modes can be subject of intense rotation, especially when approaching electrostatic tips
or holes. Those eigenmode rotations are problematic for locking the PLL, since the force
and thus the induced projected displacement directly depend on the (𝐞𝐹 ⋅ 𝐞𝑖)(𝐞𝑖 ⋅ 𝐞𝛽) prod-
uct. If one of those coefficients changes sign, then the PLL phase setpoint will be changed
by 180°. As such, when we realize vertical maps, we try in general to operate in one of
the two planes that contain one of the eigenmode. To do so, we employ a “tilted scan”
mode which allows us to realize force field mapping in any sub plane of the xyz sample
space.

Prior to realizing a sweep of the applied bias voltage, the scan range is adjusted around
the minimum value of the force field gradient that is proportional to 𝑉 2

bias. In order to
detect frequency “jumps” caused by PLL unlocking and to evaluate the hysteresis of the
measurement, we perform a bidirectional scan of the voltage range. Furthermore, the
demodulated data, which are sampled at a higher rate than the acquisition time per point,
are cumulated in each point/voltage, so that the software calculates and records themean
value and the standard deviation. This also helps detecting pathologic measurement
points.

Lastly, we verify that the nanowire still is in a good position for the optical readout and
apply correction if needed. The position is then locked by a PID controller acting on 𝑉 𝐷𝐶

⊖
as input and fed back on the 𝑥-axis piezo controller of the main setup stage as output as
described in Section 1.4.3. Next, the measurement can be started.

68



1.5 Illustration of a measurement protocol

In order to let the system reach its steady state, we in general stay some tens to hundreds
of ms (more than the inverse mechanical damping rate) at a given position/voltage point.
As such, a detailed map made of 100x100 points, where we sample 2 × 15 voltage values,
takes about 5 hours, during which the experimental drifts are in principle well under
control. The data are saved in a hdf5 mixed binary format of an approximate size of
400 MB. In each point, we record the demodulated signals of up to six demodulators per
HF2-lock-in (the use of multiple devices is supported) that include the central frequency,
signal quadratures (I and Q) and the signal at four auxiliary inputs. Out of this data we
can reconstruct the force field properties. Additionally to the raw demodulator data, we
also save the data as presented as live images in the scan interface where the mathemat-
ical operations (for instance the calculation of the divergence from the sum of squared
frequencies) are taken into account. The recorded dataset also includes the experimental
settings as configured in the control interface or in measurement scripts.

1.5.2 Measurement script

Following on the preparation, the measurement runs automatized by the control pro-
gram (Section 1.4.4) that follows a user script in which each measurement step is de-
fined. The flow diagram in Figure 1.36 outlines a typical measurement procedure for
electrostatic force measurements on a regularly spaced grid in a sub space of the four
dimensional (x,y,z,Vbias) space.

Readout calibration

PLL Setup Tracking NW-Positioning

Go to next line

Go to next point in line

Measure Beta

Goto next voltage

Acquisition

Read line and plot

Save data for last line

Finish measurement

Start measurement

Automated
synchronized
scan loop

repeat 
npoints 
times

repeat nlines
timesScan parameter 

adjustment 
(parabola fit,...)

Fig. 1.36: Diagram of the measurement protocol followed during an electrostatic force field mea-
surement in the (𝑥𝑖, 𝑥𝑗, 𝑉bias) space.
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The control script also provides the possibility of automatized adaptation of the mea-
surement parameters before each point/voltage. For example, we typically adapt the
voltage span of 𝑉bias to each point, so that the force field does not induce too large per-
turbations of the nanowire properties. To do so, we first use a second order polynomial
fit to the measured force divergence at the current position, and adjust the voltage span
employed for the next position. In doing so, we maintain the same magnitude of the
electrostatic force field gradients during the full map. Additionally, the drive strength of
the modulating force can be adjusted to guarantee an efficient but not too strong drive
of both nanowire eigenmodes independently from the nanowire’s location, with respect
to the force field, which can generate eigenmode rotations responsible for a variation
of the mechanical response to the drive tone. As another automatized parameter con-
trol, the central frequency of the PLL can be adjusted programmatically to improve its
performance as this allows to limit the available frequency range for each PLL to a few
tens of hertz around the resonance. Using larger ranges can lead to a lock on the wrong
mode if they are spectrally close to each other. Figure 1.37 shows the additional control
interface that is used to set up such advanced scans.

Fig. 1.37: The setup interface for a scan along four axes (spatial + voltage). The left side of the
interface serves to define the number of points and a possibly nonlinear sampling of the
range that is defined in the main interface (figure 1.32). The right side serves to select
the scan script and set options for the different parameter adjustments, parabola fit,
PLL center frequency tracking and drive amplitude adjustment.

Additionally, the intermediate processing stage in the script permits to directly calcu-
late the force field gradients if the nanowire’s mechanical parameters have been set in
the script beforehand, following the measurement principles described in section Sec-
tion 1.2.1. As such, this permits to directly image the four components of the force field
gradients on the scanning interface.
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2 Electrostatic force fields above nanostructured
surfaces

Having layed out the tools necessary to conduct nanowire based force measurements, the
present chapter covers their realizations. The focus of this chapter is on the electrostatic
forces created by the electric field above nanostructured metallic surfaces. With gradients
in the order of tens of fN nm−1, the electrostatic forces are the dominant forces at nano-
and micrometric distances. As a consequence, electrostatic forces can be created and tai-
lored almost without effort, so they present an ideal test case for the nanowire microscopy
experiment, and additionally, the inevitable presence of electrostatic forces in all kind of
nanostructures requires a good knowledge of their nature, in particular in the field of nano-
/micro-electro-mechanical-systems.

We will begin with a discussion of the expected force, felt by the nanowire, based on the
Maxwell stress tensor formalism which allows obtaining a more detailed perspective on
the electrostatic forces. From the analysis of the different components in the stress tensor,
we conclude that the relevant fields which cause the force on a dielectric nanowire are the
product of the horizontal and vertical fields at its very apex. This concept is important for
the qualitative understanding of the influence of horizontal residual fields – fields that are
present due to surface imperfections and do not depend on the sample bias voltage.

After having started the experimental part of the chapter with a presentation of the used
samples, we present force divergence measurements as an efficient tool to access the surface
topology.
Subsequently, we will discuss the dependence of the electrostatic force 𝐹(𝑉bias) with respect
to the applied bias voltage. This allows the separation of the quadratic part which only
depends on the topology of the sample surface, from the rest of the measured force. We then
discuss the measured quadratic electrostatic force above a selection of nanostructures with
particular focus on tip like elevations and holes in the sample surface.

The contributions to the electrostatic force that are linear in the bias voltage arise from
electric fields that do not depend on the sample bias voltage. They are subject of the fol-
lowing sections. Here, we discuss possible origins, such as trapped charges or electrostatic
surface patches. We obtain evidence for the latter from close distance force field mapping
and identify the SEM imaging of the sample as a source of additional contamination of the
sample.
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2 Electrostatic force fields above nanostructured surfaces

At the end of the chapter we address a combined measurement of the force and force gra-
dient which is possible thanks to the fast measurement protocols introduced in the previous
chapter. The force gradients obtained from both distinct measurements present a very good
qualitative agreement, which can be regarded as a validation of the force sensing protocols
developed in this thesis.
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2.1 Electrostatic Maxwell stress tensor

2.1 Electrostatic Maxwell stress tensor

In 1873 Maxwell formulated a general integral expression to calculate the force experi-
enced by an object O enclosed by a surface 𝑆 due to a surrounding electromagnetic field
𝐄 [71]:

𝐅 = ∮
𝑆
⟨𝐓⟩ ⋅ �̂�d𝑆. (2.1)

This Maxwell stress integral is the surface integral of the time averaged (⟨...⟩) stress
tensor 𝐓 on the closed surface 𝑆 that encloses the object O as illustrated in Figure 2.1a,
where �̂� is the outwards pointing normal vector of 𝑆.

This section discusses how the stress tensor provides a mean to understand the electro-
static force experienced by a particle immersed in an electrostatic field, and will serve
subsequently to analyze the contributions of residual electrical fields and of the vacuum
fluctuations of the electromagnetic (EM) field as the origin of the Casimir forces. The de-
scription of the force in terms of local fields (of controlled or uncontrolled origin) allows
a better understanding of the forces measured with the nanowire force probe.

2.1.1 Formulation

In the so-called Lorentz representation [27, 47] the individual elements of the 3 × 3
Maxwell tensor 𝐓 in the cartesian representation are given by:

Maxwell Stress
Tensor𝑇𝑖𝑗 = 𝜀0𝐸𝑖𝐸𝑗 +

1
𝜇0
𝐵𝑖𝐵𝑗 −

1
2
(𝜀0𝐸2 + 1

𝜇0
𝐵2)𝛿𝑖𝑗, (2.2)

where 𝐸𝑖 are the cartesian projections of the electric field vector and 𝐵𝑖 those of the
magnetic field. 𝛿𝑖𝑗 is the Kronecker delta function. In the static and non-magnetic case,
where neither currents nor magnetic dipoles are present, the force only depends on the
electric fields and the elements 𝑇𝑖𝑗 become

𝑇𝑖𝑗 = 𝜀0𝐸𝑖𝐸𝑗 −
1
2
𝜀0𝐸2𝛿𝑖𝑗. (2.3)

Following the Maxwell stress tensor formalism, we will now discuss the different con-
tributions to the electrostatic force from each face of the nanowire surface, and subse-
quently the contributions of the different electric fields surrounding the nanowire.
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2 Electrostatic force fields above nanostructured surfaces

Fig. 2.1: (a) A test object O in an electric field experiences a force that can be computed by in-
tegrating the electromagnetic stress tensor over the surface A. (b) integration surface
on the lower end of the nanowire (blue) that is immersed in the electric field (black
lines), created between the grounded NW support and an electrode. The field gradient is
strongest close to the tip of the nanowire while the field found at larger height is nearly
homogeneous. The same geometry but in 3D is depicted in (c).

2.1.2 A qualitative approach to the sources of the electrostatic force

The integration of the Maxwell stress tensor provides the force vector that acts on the
enclosed body. For nanowire based force measurements, the horizontal force is of par-
ticular interest since it directly impacts the transverse mechanical oscillations of the
nanowire, while the vertical component of the force is hardly detected. The latter may
cause a stiffening of the nanowire, but the sensitivity to the vertical force is negligible
compared to the lateral force gradients. In order to get a better understanding of the
field’s different contributions, we can decompose the stress tensor integral into the dif-
ferent contributions from each elementary surface (compare Figure 2.1b) surrounding
the nanowire:

𝐅 = 𝐅1 + 𝐅2 + 𝐅3 + 𝐅4

= ∫
𝑆1

𝐓�̂�1d𝑆 + ∫
𝑆2

𝐓�̂�2d𝑆 + ∫
𝑆3

𝐓�̂�3d𝑆 + ∫
𝑆4

𝐓�̂�4d𝑆. (2.4)

Here 𝐓 is the stress tensor in two dimensions evaluated at each surface and �̂�𝑖 is the
outward pointing normal vector of each integration surface. For simplicity, we limit the
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following discussion to the 2D xy-plane. The contributions for each boundary surface
𝑆𝑖 to the total force 𝐅𝑖 in the xy base can then be written as

𝐅1 = (
𝐹1𝑥
𝐹1𝑦

) = ∫
𝑆1

(
𝑇𝑥𝑥 𝑇𝑥𝑦
𝑇𝑦𝑥 𝑇𝑦𝑦

)( 0
−1)d𝑆 = ∫

𝑆1

𝜀0(
−𝐸𝑥𝐸𝑦

1
2
(𝐸𝑥𝐸𝑥 − 𝐸𝑦𝐸𝑦)

)d𝑆 (2.5)

𝐅2 = ∫
𝑆2

𝜀0(
1
2
(𝐸𝑥𝐸𝑥 − 𝐸𝑦𝐸𝑦)

𝐸𝑥𝐸𝑦
)d𝑆 (2.6)

𝐅3 = ∫
𝑆3

𝜀0(
𝐸𝑥𝐸𝑦

1
2
(−𝐸𝑥𝐸𝑥 + 𝐸𝑦𝐸𝑦)

)d𝑆 (2.7)

𝐅4 = ∫
𝑆4

𝜀0(
1
2
(−𝐸𝑥𝐸𝑥 + 𝐸𝑦𝐸𝑦)

−𝐸𝑥𝐸𝑦
)d𝑆. (2.8)

The contributions to 𝐅𝑥 – the first vectorial component – from the top and bottom (sur-
face 1 and 3) of the integration volume consist in the product of horizontal and vertical
fields, while for the left and right surfaces one calculates the difference of the horizon-
tal and vertical fields. If the nanowire is much thinner than the characteristical size of
the electric field variations, we can assume that, for a dielectric nanowire, the field on
both side surfaces is quasi identical and thus we have 𝐅2 = −𝐅4, so that they cancel
each other in Equation 2.4. Also, when the top integration surface is far enough from
the electrode, its contribution will be negligible. Hence, this very general reasoning sug-
gests that themain contribution to the horizontal force comes from the bottom surface of
the nanowire, where the electric fields are maximal when approaching nanostructured
surfaces.

The above qualitative analysis can be verified with numerical simulations, as explained
in box 2.a.
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2 Electrostatic force fields above nanostructured surfaces

Panel 2.a: The Maxwell Tensor at the Nanowire Extremity
The electrostatic force exerted on a nanowire, by the field produced by an elec-
trode beneath the nanowire’s free end, is purely determined by the fields around
its extremity. In order to evaluate the different contributions and to validate this
assumption, we performed an electrostatic study in COMSOL, where we placed
the nanowire above a surface which has a spherical elevation – the electrode. We
then simulate the fields around the nanowire’s extremity as we apply a voltage
(1 V) on the bottom electrode and zero potential at the top surface of the simula-
tion volume. The resulting field is therefore, as in the experimental setup, oriented
along the vertical y-direction, with the exception of the regions around the dome
and the nanowire tip.

With the calculated fields, we can then evaluate the stress tensor integrals which
for the horizontal force 𝐹𝑥 are:

𝐹𝑥 = ∫
𝑆

𝜀0
2
(𝐸𝑥𝐸𝑥 − 𝐸𝑦𝐸𝑦)𝐧 d𝑆, for vertical surfaces, and

𝐹𝑥 = ∫
𝑆

𝜀0𝐸𝑥𝐸𝑦𝐧 d𝑆, for horizontal surfaces.
(2.9)

We can then compare the force contribution by each of the lower integration sur-
faces (the horizontal field at the top boundary is negligibly small due to the ge-
ometry, so this surface can be neglected). Figure 2.2 presents the results for the
case where the nanowire is close to the dome, so that the electric field is highly
inhomogeneous, and for the case, where the nanowire is far away from the dome
but still close to the surface.

For both cases, the integrals computed along the vertical side boundaries add
up to zero (black curve), which means that the force on the nanowire is domi-
nated by the bottom surface contribution where the field product is 𝐸𝑥𝐸𝑦. Fur-
thermore, this observation illustrates the fact that the electrostatic force can be
regarded as being strongly localized at the nanowire extremity. As such, its im-
pact on the different eigenmodes can be modelled as a point like volumetric force
source. In the case of a high field variability – as close to a structured surface
–, this product can vary significantly. However, for a larger nanowire-surface
distance, the field is more homogeneous, and one can approximate the force by
𝐹𝑥 = −𝑆 𝜀0 𝐸𝑥(𝑥1, 𝑦1) 𝐸𝑦(𝑥1, 𝑦1), where (𝑥1, 𝑦1) is a point that marks the tip of the
nanowire, in order to estimate the order of magnitude of the expected force.
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Fig. 2.2: Simulations (COMSOL) of the electrostatic field around a dielectric SiC nanowire
(with diameter 𝑑 = 160 nm) positioned above a flat electrode with a spheri-
cal dome. Two situations are simulated, at small distance above the dome
(𝑥 = 250 nm, 𝑦 = 0 nm) (a), and at larger distance (𝑥 = 1000 nm, 𝑦 = 50 nm) (b).
The simulation geometry is sketched in the two small insets. The top row illus-
trates the electric field amplitude around the nanowire tip – the dome is visible
as white area in the bottom left corner of the left plot. The integration surfaces
for the Maxwell tensor are indicated by the coloured lines placed 15 nm away
from the nanowire extremity. The bottom graphs show the result of the force in-
tegral for the horizontal force component 𝐹𝑥 = ∫𝑆 𝑇𝑥𝑗𝐧𝑗𝑑𝑆, evaluated for different
heights ℎ of the side integration surfaces (x-axis). The different colors (blue, or-
ange, green) correspond to each surface indicated in the top row of plots. The
black line is the sum of the force integral on left and right side which cancel each
other out, so that in the resulting force, only the contribution of the bottom part
of the nanowire plays a role. The dotted lines show the force from an evaluation
of the Maxwell tensor in a single point 𝐹𝑥 = −𝑆 𝜀0 𝐸𝑥(𝑥1, 𝑦1) 𝐸𝑦(𝑥1, 𝑦1), for the points
indicated by the coloured dots in the top images.

Finally, when the electric fields are quasi homogeneous over the nanowire bottom sur-
face, which is the case when the nanowire is not too close to the surface under investi-
gation, the electrostatic force can be approximated by

𝐹𝑥 = −𝜀0𝑆𝐸𝑥𝐸𝑦. (2.10)

In terms of magnitude, if we position the nanowire above a microsphere with a diameter
of 500 nm, the fields at the nanowire’s extremity are in the order of 1 ⋅ 105 Vm−1, for a
bias voltage of 1 V. With a nanowire diameter of 160 nm, this yields a force in the order
of few femto-newton.
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2 Electrostatic force fields above nanostructured surfaces

2.1.3 The role of geometry

We have discussed that the fields at the very end of the nanowire are the main source of
the electrostatic force. These local fields depend strongly on the geometry of the sample
electrode as illustrated by the comparison of different surface structuration in Figure 2.3.
While in the common plate-plate capacitor, we have a constant field 𝐸𝑥 = 0, 𝐸𝑦 = 𝑉𝑏𝑖𝑎𝑠/𝑑,
the introduction of a structuration, such as a dome (2.3b) or a hole (2.3c), locally re-
shapes the field. For larger distances to the structured surface, the field perturbations
vanish and one retrieves the case of the plate-plate capacitor. At short distances, the field
strength can be approximated by the quotient of the voltage and curvature of the surface
deformation 𝑉/𝑟𝑐𝑢𝑟𝑣, which can be significantly larger than the quasi homogeneous field
found at higher altitudes, especially when approaching nanostructures.
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Fig. 2.3: Numerical simulations of the electric field (arrows) and potential found between a bi-
ased bottom surface and a grounded top electrode, for three different geometries of the
bias sample: (a) flat, or with a dome (b) and a depression (c). In the vicinity of the geo-
metric defect, the strength of the electric field does not depend anymore on the distance
to the top electrode, but only on the defect geometry. The bottom row of plots shows
the force in 𝑥-direction calculated via the approximation 𝐹𝑥 = −𝑆𝜀0𝐸𝑥𝐸𝑦 (with 𝑆 the size
of the bottom surface of a nanowire with radius 80nm), for the same three geometries
(flat d, protrusion e, depression f).

Thus, the geometric structurations of a surface shape the electric field and are therefore
encoded in the electrostatic force experienced by the nanowire. In addition, the trap-
ping or anti-trapping character of the electrostatic force field can directly be attributed
to a protrusion or to a depression in the sample potential. The measurement of the
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2.1 Electrostatic Maxwell stress tensor

electrostatic force can therefore be regarded as a microscopy tool to image the sample
topography.

2.1.4 The effect of residual parasitic electrostatic fields

In practice, the electrostatic environment is the sum of many contributions. While the
previously described effect from the electric field gradients created by geometric defor-
mations can be controlled via the applied bias voltage, other residual fields are typically
present which are independent of the bias voltage, contributing to the stress tensor in-
tegral as well. Those are caused, for instance, by the presence of domains of different
crystal orientations in the material which change the local material workfunction, or by
the presence of locally trapped charges, adsorbed molecules or surface contaminants.
Figure Figure 2.4 illustrates these different mechanisms.

GND

V

V+δV
V+δV'

Contamination Patches Topology Charges

Fig. 2.4: The figure shows an enlarged view on the sources of the electrostatic force when the
nanowire (left) is approached to a surface. From left to right these are: Trapped charges
on the nanowire. The electrostatic field gradient created by deviations from a perfectly
flat plate when a bias voltage 𝑉 is applied to the sample. Surface patches (illustrated as
grain like objects at the surface, corresponding to monocrystalline grains). Contamina-
tion of the sample.

The residual fields present a different spatial profile compared to the field created by the
electrode. One can write the electric field as a superposition of both, the electrode’s field,
which linearly depends on the bias voltage 𝑉, and the residual fields: 𝐄 = 𝐄𝑉 + 𝐄p. With
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2 Electrostatic force fields above nanostructured surfaces

the approximation from (2.10) 𝐹𝑥 ∝ 𝐸𝑥𝐸𝑦 for the horizontal force, we now obtain for the
force at the extremity of the nanowire:

𝐹𝑥 ∝ (𝐸𝑉 ,𝑥 + 𝐸p,𝑥)(𝐸𝑉 ,𝑦 + 𝐸p,𝑦)
∝ 𝐸𝑉 ,𝑥𝐸𝑉 ,𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟

∝𝑉 2

+𝐸𝑉 ,𝑦𝐸p,𝑥 + 𝐸𝑉 ,𝑥𝐸p,𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝𝑉

+𝐸p,𝑥𝐸p,𝑦 , (2.11)

so in total, the horizontal force takes a parabolic dependence of the applied voltage:

𝐹𝑥 = 𝛼𝑉 2 + 𝜆𝑉 + 𝛾 , (2.12)

where the quadratic coefficient 𝛼 is unchanged compared to the ideal case of a perfect
sample without residual fields at its surface and only depends on the shape of the field
which is created by the electrode. The constant term 𝛾 depends only on the residual field,
while the linear term 𝜆 combines both effects, and shifts the parabola as illustrated in
Figure 2.5.

𝑉0

𝛾

Quadratic

electrostatic force
(𝛼)

Linear
electrostatic force (𝜆)

M
easured

Parabola

𝑉

F

Fig. 2.5: Dissection of the parabolic force (black) in dependence of the control voltage 𝑉 into its
different contributions: The quadratic dipolar term (blue) contributes via the coefficient
𝛼 (here 𝛼 < 0). The linear force, caused by residual fields 𝐸p introduces the coefficient 𝜆
and the offset 𝛾, which displace the parabola along a line. This parabola shift holds for
any type of linear effect that causes voltage independent residual fields.

2.1.5 The electrostatic force parabola

The electrostatic force experienced by the nanowire during force microscopy measure-
ments originates from the electric field that permeates the dielectric. The sample topog-
raphy, the possible residual charge and electrostatic patch distributions, and the applied
test voltages affect the electric field that surrounds the nanowire, and thus the experi-
enced force. In the following, wewill first be interested in imaging the surfaces bymeans
of the electrostatic force their topography generates. To do so, we will bias the sample
under investigation, a metallic nanostructure, and vary the bias voltage. Based on the
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stress tensor integral, this will cause a parabolic dependence of the force on the applied
test voltage, which is described in this section, while the effects of residual electrostatic
fields will be described in the second part of the chapter.

In the simplest configuration, an electrode carrying a potential 𝑉 is positioned close to the
dielectric nanowire whose upper extremity is attached to a grounded metallic support.
This configuration is outlined in Figure 2.1b. The nanowire presents a very high aspect
ratio and thus the distance between the nanowire tip and the electrode is much smaller
than the distance between the electrode and the grounded nanowire support. Except
for region close to the support, where the mechanical mode profile presents no defor-
mation, the field profile in the upper part of the nanowire is thus quasi homogeneous,
and will not contribute to the transverse force experienced by the first eigenmodes, as
illustrated in the upper half of Figure 2.1b. This, and the fact that the mechanical motion
of the nanowire is maximal at its lower end allow choosing an integration surface that
intersects the nanowire at a certain height where the local field gradient is negligible.
This approximation would be less valid if some charges are present on the nanowire, but
we will consider in the following an electrically neutral, dielectric nanowire.

In absence of any residual electric field at any position, the electric field scales propor-
tionally with the applied voltage 𝐸 = −∇𝑉, leading to a quadratic dependence of the
stress tensor, and thus of the force on the bias voltage: 𝑇𝑖𝑗 ∝ 𝛼𝑉 2, so that the force de-
pends quadratically on the bias voltage. One can also understand this dependency by
considering the nanowire tip as a voltage biased capacitor, with a capacitance depending
on the nanowire position. The electric energy stored in the system thus depends on the
nanowire position, which is at the origin of the electrostatic force (the gradient of the
stored energy).

With its small diameter of less than 200 nm, we can assume that the nanowire is only
polarizable along its length – the 𝑦-direction. This polarization over a large part of the
nanowire’s length (multiple micrometer) causes localized charges at the nanowire ex-
tremity.

The curvature of the force parabola solely depends on the electric field structure, which
is governed by the geometry of the sample under test and the electric permittivity 𝜀
of the nanowire. While the electrostatic force on a neutral polarizable object is purely
quadratic in the bias voltage in absence of residual electric fields, there exist different
mechanisms that modify this dependency. For example, if a charge 𝑞 is present on the
nanowire, it will experience a Coulomb force 𝑞𝐄, which depends linearly on the bias
voltage.

Another deviation arises from the difference between the workfunctions of the materials
constituting electrode and nanowire. The workfunction is the potential energy differ-
ence of an infinitely far placed test charge and the surface fermi-level of a material [59]. It
depends on the surface charge distribution in a material and is thus susceptible to crystal
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2 Electrostatic force fields above nanostructured surfaces

arrangement at the surface and the chemical surface properties [5]. Variations between
different metals are in the order of few 100mV, while the exact value in semiconductors
depends on the doping level.

This workfunction difference means that there will remain some residual electric fields
between the two electrodes even at zero bias, meaning that the condition of zero electric
field will be met at a different bias value, 𝑉0. The expression of the force can be recasted
into: 𝐹 = 𝑓𝛼(𝑉 − 𝑉0)2 where the quadratic coefficient 𝑓𝛼 only contains the geometrical
aspects of the field and is not modified by the presence of residual electric fields.

Finally, the above description was restricted to static electric fields. A (slowly) time
varying electric field will contribute as a parasitic term in the tensor: when multiplied
with the static terms, it will generate a time varying force, which impacts the nanowire,
but in principle not its time averaged mechanical properties, which are at the center of
the measurement protocols described above. Their quadratic contributions may on the
contrary cause a rms static force, which cannot be simply mitigated. The specific case of
the vacuum fluctuations at the origin of the Casimir forces will be discussed in the next
chapter.

2.2 Samples

This section discussesmeasurements of the electrostatic force field above nano-structured
metal surfaces. The structuration of a flat metal substrate is either positive, meaning that
the surface has elevated structures, or negative where the metallic surface is removed or
drilled into. Electrodes with such nano-structurations create electric field gradients that
cause an electrostatic force on the polarizable nanowire.

Samples used in this study are built based on AFM cantilevers that have the advantage
to come with a well characterized probe tip that, when mounted inversely – facing the
nanowire – represents a quasi-point like electrode. They are also not too extended along
their transverse direction (20 µm to 40 µm), which prevents cutting the optical beam, and
thus they do not alter the optical readout. For a metallic surface, we either purchase
probes made for Kelvin probe force microscopy where the electrostatic force between
the AFM tip and the sample surface is measured as function of the bias voltage and
the tip itself is electrically contacted, or coat bare Si or SiN cantilevers with a metallic
layer using electron beam induced evaporation. The first tip discussed in this section is
a pointed, platinum coated tip. The second tip is a rounded tip on a silicon cantilever
with 250 nm curvature radius, coated with approximately 30 nm gold layer with a few
nanometer of chromium (Cr) as adhesion layer, using a multi angle deposition recipe
(60°: 4 nm / 30° : 4 nm / 0°: 16 nm / 30°: 4 nm / 60°: 4 nm ~ 32 nm ) realized by Simon
Le Denmat. Figure 2.6 shows a selection of scanning electron microscopy imaged of the
two tips and the processed cantilevers.
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Fig. 2.6: Scanning electron microscope (SEM) images of the sample structures of this study. (a)
The pointed cantilever probe with a sharp tip. (b) Rounded tip with 250 nm radius. (a)
and (b) have been obtained from the manufacturer [2] . (c) The round tip after gold de-
position and force measurements shows still a homogeneous undamaged surface. (d)
Cantilever with the pointed tip and the first edition of holes created by FIB. The large
image taken with the In-Lens detector of the SEM shows the back of the cantilever with
the conically edged holes. The lower inset taken with the secondary electron detector
shows the top surface with the visible tip at the cantilever’s end. The secondary elec-
tron detector has a large collection angle for the scattered electrons at the backside of
the sample where the surrounding area of the hole shows up as white halos due to its
reduced thickness. This is also visible in the magnified view in (g). (e) shows a close up
image of one of the smaller holes with about 100 nm radius. (f) Back side of the second
edition of holes in a cantilever. A cross like hole was added as reference. This sample
has not been imaged from the front side to protect the surface from electron radiation
and contamination. (h) Illustration of the successive focussed ion beam etching steps.
On the back surface, material is removed in concentric circles with stepwise reduced
diameter until the central area is only a thin layer of Si substrate plus the underlying
metal surface. A hole with the desired diameter is then etched through this remaining
layer.

The negative structures for which metal material is removes from the surface of the
cantilever have been fabricated by theNanoFab team at Institut Néel (Jean Francois Motte
and Gwenaelle Julie) with focussed ion beam etching, allowing sharp edges as small as
20 nm. The investigated shapes in this work are round holes and trenches that penetrate
through the entire cantilever, so that the physics is dominated by the missing metal and
not by the possibly underlying semiconductor.
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For the final samples, the FIB etching was realized with minimal SEM imaging since
we observed that it was responsible for contamination of the samples. To do so, the
alignment of ion and electron beams is performed in a separate region on the sample, and
SEM imaging is only realized with large field of view to select the processing area before
the FIB etching sequences are initiated. Also, the holes are realized from the bottom
part of the cantilever so that collisions between scattered ions and the upper metallic
surface where the experiments will be conducted are reduced. To dig through the 2µm
silicon cantilevers, the process starts by using a large aperture and larger currents to thin
down the material, followed by a more precisely controlled step on smaller thicknesses.
For further optimization of the fabrication process, one should conduct tests in order to
minimize the re-deposition of the etched material on the cantilever. For this work, we
realized holes with diameters ranging from 100 nm to 3000 nm.

Panel 2.b: Nanowires
The nanowires referenced in the measurements throughout this thesis have all
been mounted under an optical microscope and partly characterized further us-
ing SEM imaging. As mentioned earlier, we rather refrain from using this char-
acterization before employing the nanowires as force sensors since we observed
significant surface damage and contamination caused by SEM imaging.However,
the lifetime of a nanowire as a force probe is indeed pretty long, and we can
keep them formonths on average, without observing noticeable degradation, even
when touching the sample surface unintentionally. They can also be subjected to
many pressure cycleswithout showing appreciablemodifications of theirmechan-
ical properties. The following table gives an overview of the employed nanowires
in this work. Values in red are estimates where a proper characterization, for in-
stance by SEM imaging, has not been performed. Due to nanowire loss during
handling and operation, not all nanowires could be imaged subsequent to their
use as force probes.

Tab. 2.1: Main nanowires used in this work. The relatively low Q factor of NW3 compared
to the others originates from the fact that it has been employed mostly under
modest vacuum for the realization and analysis of artificial force fields (chapter
Chapter 4) while the others were used as force mapping probes.

NW1 NW1 NW2 NW3
2nd mode

f1 / Hz 12681 77460.71 18663 8275
f2 / Hz 12860 77922.26 26489 8341
Γ / Hz 2.1 15.1 4.8 15.9
Q 6100 5100 4700 500
Meff / pg 4.5 0.8 7.5
L / μm 170 - 130 200 (130)
d / nm 200 - 100 300
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2.3 Force field topology from force divergence

In Section 1.1.2.3 we introduced the force field’s divergence as an accessible and experi-
mentally robust quantity that reflects the geometric properties of the force field and tells
about the underlying sample structure. With the scanning probe setup described in Sec-
tion 1.4, this quantity can be directly accessed via the nanowire’s resonance frequencies,
recorded and plotted in realtime with the protocols developed in this work. Figure 2.7
shows a selection of force divergence measurements, taken either for orientation and
localization purposes (large view field) or for the refined mapping of the force field’s
shape. They are taken in a rapid imaging mode, where the full maps are acquired in
approximately 1min to 10min. All images map the force above different holes drilled in
the cantilever surface for a constant bias voltage. While the holes appear as dark spots
in most images, there are two cases where the divergence shows ring like features with
a bright spot in the hole’s center (2.7d, 2.7g).

As the electric field gradient is strongest close to sharp edges, we expect that the force
and its divergence are also strongest in vicinity to edges. This is what we see as bright
features in 2.7b. Note that the different images are not comparable quantitatively as they
are taken above different materials using different nanowires with different vibration
frequencies and experimental settings, such as height and applied bias control voltage.
However, they represent a valuable amount of information about the sample and the
physics.

The presented maps provide an essential tool for orientation and localization of nano-
structures on the sample surface so that one can easily choose the scan area for more
detailed studies. They also give an insight in the basic phenomenology. The general
observation that holes are presented as dark spots with smaller divergence (panels 2.7b,
2.7d, 2.7f and 2.7g ) shows that they create a trapping potential for the nanowire as will
be discussed later in greater detail. Additionally, the maps contain information about
the sample itself. While the sample surface in 2.7b is homogeneous with only a single
contamination at the bottom right of the cantilever, the image 2.7a shows different large
rectangular areas that do not correspond to physical structures but rather to contami-
nation of the sample surface during the fabrication and SEM imaging process.

2.3.1 Force field at different bias potential

Figure 2.8 displays the measured force field divergence above the round metallic tip at
four different applied bias voltages. The first global observation is that the divergence
above the tip is smaller than at the edges of the scan area. This demonstrates that the

1The divergence is here uncalibrated which means that the effective mass of the nanowire’s (in the order
of picogram) is not taken into account. The presented form is the typical image one gets out of a single
horizontal scan at a fixed bias voltage.
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Fig. 2.7: Maps of the uncalibrated force field divergence1measured at a fixed values of the applied
control voltage for orientation and localization purpose. (a) and (b) show the processed
areas of two nanostructured cantilever beams in which holes were etched by focussed
ion beam etching. Image (c) in the second row is a close up scan over a hole in the
top region of the cantilever in (a) and (d) represents a scan above one of the smaller
holes in the lower part of (a). (e) shows a row of holes on another sample and (f) and
(g) were taken on the structures shown in (b). The different control voltages and local
residual fields (as well as nanowire/sample properties) for each map cause a different
appearance of similar structures between the images (e.g. high divergence values at hole
edges in (b) vs dark circles in (e)).
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Fig. 2.8: Force divergence measured above the rounded tip at different voltages. While the
smaller divergence values (blue), measured above the tip, indicate a trapping force for
all applied voltages, the geometric shape of this force changes from a large trapping
area for higher positive voltages with a small point of a high divergence via the inverse
of this shape at −20mV to a sharply pronounced circular region of trapping force at the
largest negative voltage. The varying shape of the divergence can be explained by force
contributions which depend on the position above the sample and that do not scale
quadratically with the applied voltage. These contributions are associated to the exis-
tence of residual electric fields.

nanowire is attracted towards the stronger electric field above the tip, which means
that the force would tend to trap the nanowire above the tip. Figure 2.9 illustrates this
reasoning of a trapping potential.

A second observation in the results in Figure 2.8 is that the strength of the trapping (the
blueness) depends on the voltage and is stronger for higher applied voltages. This effect
is associated to the quadratic dependence of the force on the applied voltage.

The probably most important third observation is that the shape of the measured di-
vergence strongly varies with voltage and even shows artefacts such as the small bright
spot that appears in the region of small divergence above the tip at high applied voltages.
These variations cannot be ascribed to the expected quadratic electrostatic force on the
polarizable nanowire but suggests that another significant force contribution is present
which scales differently with the applied voltage. In order to access the different force
components it is therefore necessary to characterize the voltage dependence of the force
field. To do so, we implemented a stable measurement procedure that samples the force
parabola at each spatial point for progressively varied bias voltages. The technique and
its results are subject of the next section.
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2 Electrostatic force fields above nanostructured surfaces
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Fig. 2.9: Illustration of the trapping property of the force field above an electrostatic tip. When
approaching the nanowire, it feels an attraction towards the increasing field gradient
above the tip, thus a positive force 𝐹(𝑥). Directly above the tip, the horizontal force
is zero but moving towards larger x, the nanowire experiences a force pulling it back
towards the tip direction with a negative 𝐹(𝑥). Hence, the force is trapping the nanowire.
The curve of 𝜕𝑥𝐹 depicts the measured force divergence with a local minimum above the
tip.

2.4 Measuring the electrostatic force parabola

To measure the force’s dependence on the applied voltage, we add a point wise volt-
age scan to the measurement sequence (compare Section 1.5) where the applied voltage
is swept from a lower limit to an upper limit and back. This bidirectional scan allows
excluding hysteresis effects that may arise in presence of too large force gradients for
example, and avoids abrupt jumps in the applied voltage. It is possible to perform an au-
tomated fit to the acquired divergence parabola and to redefine the voltage limits based
on this fit. This is particularly useful during scans realized when approaching the sur-
face. In general, a large voltage excursion, typically in the range of 1 V, needs to be
applied in order to create a measurable force field at large distances, while a voltage in
the mV regime is sufficient at small distances to create similar force fields.

The measured divergence has the expected parabolic shape as exemplarily shown in
Figure 2.10 where the results for three locations above a pierced cantilever surface are
presented. Here, we see the three cases with positive, negative and nearly no curvature
of the parabolas. A linear shift of the parabolas is not immediately visible but one can
observe a vertical offset of the parabolas’ extrema. The curve above the hole’s center
shows a strong deviation of the parabolic shape in the regime of low voltages, which is
most likely caused by the effect of a static displacement (compare box 1.a) that becomes
significant when operating at larger fields and is characterized by a larger error of the
measured divergence due to less stable PLL operations.

Figure 2.11a shows the recorded parabolas above the round tip and Figure 2.11b the
divergence parabolas above a hole with a radius of 650 nm estimated from SEM images
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Fig. 2.10: Someof themeasured parabolas at different locations above a hole in ametallic surface
(see figure 2.11b). The shaded area presents the 2𝜎 interval of the divergence obtained
from the statistical error of the PLL. The dashed lines show the fit result of the parabo-
las. In order to achieve the good quality of the presented fits, we weight the data points
by their error and exclude data from the fit where the error is too large or where the
PLL phase is far from the lock setpoint.

of the cantilever’s back. The colorscale shows the quadratic divergence coefficient that
we will further call α. Both scans have been conducted with fixed voltage range with
𝑉 ∈ [−0.2; 0.8] V for both measurement.

The curvature of the divergence parabolas above the tip in 2.11a is negative everywhere,
indicating that the electrostatic force is indeed purely trapping with its maximum di-
rectly above the tip. In this central region, we observe a small deviation from the ideal
parabolic shape at the rightmost segment of each parabola. Since the shown data is
obtained from the unprocessed resonance frequencies, acquired with the dual PLL fre-
quency tracking, we interpret this deviation as measurement artefact that appears when
the frequency lock operates at its limits, which is the case when the forces are strong
enough to displace the nanowire statically (as mentioned above) and to rotate its eigen-
modes. In practice, the rotation of the eigenmode basis is often the origin of a loss of
the PLL lock, due to the reduction of the projected driven signal on the measurement
channel. The phase error of the PLLs, as well as the amplitude of the demodulated driven
signals – which is also recorded in realtime – represents a criterion to sort out the re-
liable data points and we typically neglect points where the phase error is larger than
an equivalent frequency shift of 15Hz (around 3 to 10 times the mechanical linewidth
Γ) in the processing of the data. Additionally, each measurement at a given position and
voltage consists of an ensemble of successive acquisitions performed during the mea-
surement time per point that is in the range between 50 and 200ms so that we can use
the statistical error of this ensemble as weights in the fit routine.

The force divergence above the hole in Figure 2.11b also shows the strongest effects
above the structure but instead of a trapping potential the quadratic force field above
the hole is anti-trapping. The nearly flat parabolas at points far away from the hole get
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Fig. 2.11: The force divergence parabolas measured at each spatial point above a tip electrode
(a) and a hole in a metal coated cantilever (b). The voltage range for the parabolas
in both cases is 𝑉 ∈ [−0.2; 0.8] V. The heights of the drawn parabolas are calibrated
to the common maximal amplitude, making the comparison between points possible.
The color of the parabola indicates the local curvature 𝛼 which is the term of the force
divergence scaling quadratic with the applied voltage.

a clearly negative curvature when approaching the hole’s perimeter before the curvature
is inverted and reaches its maximum at the hole’s center.
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2.5 Mapping of the electrostatic force

2.5 Mapping of the electrostatic force

Figure 2.12 shows the electrostatic quadratic force contribution above four different
nanostructures. The force above the tip that has been discussed above is displayed in
2.12a. Compared to the force divergencemeasured at different bias voltages in Figure 2.8,
the here presented 𝛼 does not show any structuration other than the negative, trapping
area above the tip. The map of a circular hole in Figure 2.12b shows a different pattern
with a dominant positive 𝛼 above the hole – meaning that the nanowire experiences
an anti-trapping electrostatic force field. It is surrounded by a ring of negative values
which indicates a locally trapping force field. This trapping ring is caused by the attrac-
tive electrostatic force towards the edge of the hole, where the electric field gradient is
the most intense. Seen from the center of the hole, the nanowire is therefore attracted
towards all directions since the electric field gradient increases uniformly. Thus, the
hole’s center represents an unfavourable rest position and the local force field is anti-
trapping. The stiffness of the electrostatic anti-trapping force field remains however sig-
nificantly smaller than the nanowire’s restoring force, avoiding bi-stability or so-called
lateral “jump to contact”.

Measurements above flat sample structures that do not protrudemuch above the surface,
such as the hole geometry, also allow exploration of the force fields originating from
the surrounding substrate itself. Here, this can be seen as small irregular patterns that
appear in the top part of the image, which are caused by a granular surface structure of
the metallic substrate. The fact that these patterns are only visible at one edge of the
image tells us that the sample or one of the translation axes is slightly tilted, so that
the nanowire is closer to the sample at the top of the map than at the bottom. In order
to see the effects from the intrinsic surface structuration, the nanowire-sample distance
typically needs to be below 50 nm to 100 nm.

Figure 2.12c shows a structure similar to the hole but in the form of a cross. Again, the
force field above the trenches which fully traverse the cantilever, is anti-trapping, which
is visible in all four arms. The situation at the cross’ center resembles that of a hole with
a 2D anti-trapping strength and a larger value of 𝛼 than for the anti-trapping 1D regions
on the arms. We can also identify the attractive edges of the cross as slightly negative
regions, surrounding the trenches, that are more pronounced in the right part of the
image than on the left hand side which hints to a slight tilt of the scan. As a remark,
those measurements are realized with a cross oriented along the uncoupled eigenmode
orientations: as such, the structure of the force field along each arms is quasi uniaxial
and does not lead to appreciable eigenmode rotations in those areas, which facilitates
the measurement.

The intrinsic force map measured above a metallic surface is presented in the map 2.12e.
The map, acquired around 50 nm to 100 nm above the surface shows mostly negative 𝛼
varying on typical transverse dimensions of 100 nm showing a grainy structure. This
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Fig. 2.12: Dipolar force maps above a tip (a), a hole (b), a cross like hole (c), a flat metal coated
surface (d) and a metal coated disk (e). The disk has been measured by Hugo Weltz so
the nanowire it was measured with is not in the list in box 2.b.

geometry typically recalls the grain structure observed on evaporated metallic layers
(see SEM image 2.6e).

We will next focus on the geometrical electrostatic force divergence measured above
different holes and take a look at the theoretical expectations for this type of structure
obtained from numerical simulations.

2.6 Electrostatic force above a hole nanostructure

A geometric argument predicts that there should exist a region where a vertically po-
larized dipole is repelled by a hole drilled in a metallic plate: at infinity, the interaction
strength is zero and thus the potential energy is identical with that at the position where
it is vertically centred in the opening of the hole (here, the dipole field lines are perfectly
normal to the opened plane). At distances farther away than the opening of the hole,
the plate resembles a closed surface towards which the dipole is attracted, therefore
there must be a vertically repelling region at shorter distances [64]. As such, the dipole
will experience a vertically trapping point, at the inversion of the vertical force. As a
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2.6 Electrostatic force above a hole nanostructure

consequence of the Earnshaw ’s theorem, the force should be laterally repulsive at that
location [47, 64].

While those remarks apply for a dipole and the nanowire is not completely equivalent
to a dipole, due to its elongated geometry, it still is expected that it should experience
a similar, laterally anti-trapping force field. The above observation of an anti-trapping
force field can also be simply understood with the idea that the nanowire is attracted
towards the edges of the hole, where the electric field is maximal.

Even though the nanowire probe is not sensitive to vertical forces, a vertically repulsive
region implies a detectable non-equilibrium in 3D due to Earnshaw’s theorem [47]. The
example for a simple dipole indicates that geometrically more advanced sample struc-
tures come with more complex phenomena that can be probed with high sensitivity,
using nanowire force field microscopy.

In previous setups it has been very difficult to approach surfaces in a safe and controlled
manner but the employment of the quasi realtime force field measurement protocols
now allows performing scans close to the surface of flat structures such as holes. With
their characteristic variation from locally trapping to anti-trapping areas, they present
an interesting test case.

Figure 2.13a and Figure 2.13b display the horizontal maps (parallel to the surface) above
two holes of different sizes. Both show the same features of an anti-trapping 𝛼 in the
center and a ring with a trapping negative 𝛼 at the holes’ perimeter. This ring is wider for
the larger hole (2.13a) which can be also seen in the line cuts shown in panels 2.13c and
2.13d. The first map has been taken at a larger height of about 300 nm, compared to the
second map of the smaller hole, which was measured close to the surface between ap-
proximately 50 nm to 150 nm. A consequence of the larger distance is that small distinct
features smear out.
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Fig. 2.13: The electrostatic quadratic force measured above two larger holes with ≈ 500 nm diam-
eter (a,c) and ≈ 400 nm diameter (b,d) is shown as horizontal map and line cut through
the hole (bottom). The white dashed lines in the top plot row represents the orientation
of the line cuts, the shaded area covers the data points that were averaged in order to
reduce the noise in the line cut. The first map has been measured at a height around
300nm and the second closer to the surface around 50nm to 150 nm. In both maps the
blue colored regions represent the trapping force field around the edges of the holes
and the positive 𝛼 are created by the anti-trapping field in the center of the hole.

Panel 2.c: Measuring with different mode families
In Section 1.1 we discussed the properties of nanowires as force sensors and saw
that the second family of eigenmodes, which has one node in its longitudinal os-
cillation pattern, can be found at about six times higher frequency than the first
eigenmode family. Since the force sensitivity scales inversely with the frequency
of the oscillator, it is beneficial to work with the first eigenmode family if the max-
imum force sensitivity is desired. Additionally, the resonant mechanical response
of the first mode is six times larger, so that the driven signal is slightly enhanced
as well.

However, there are cases that benefit from the use of the secondmode since, firstly,
it is less sensitive to strong local force gradients and can thus be used to measure
at smaller height above the sample where a frequency tracking of the first mode
would already fail due to the large eigenmode rotations induced by the force field.
Secondly, the higher frequency and the generally larger linewidth of the second
mode family allows faster measurements as one can work with a larger bandwidth
of the PLL’s phase detection. Thirdly, the higher frequencies are also generally
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2.6 Electrostatic force above a hole nanostructure

associated to a larger frequency splitting Ω2
2 −Ω2

1, reducing the eigenmodes’ rota-
tions which scale with the ratio of transverse components 𝑔𝑖𝑗 (𝑖 ≠ 𝑗) to the mode
splitting.

In the case of measurements on nanostructured surfaces, one can often benefit
from the higher frequencies of the second mode family due to the advantages
stated above. The reduced force sensitivity is only a minor drawback since the
force gradients measured close (< 500 nm) to the sample are rather strong (in
the fN nm−1 regime). Therefore, some of the presented results in this section
are realized with the first mode family and others with the second mode fam-
ily. While, conceptually, there are no differences in the mathematical description
of the dressed modes of the first or second mode family, an experimental confir-
mation can underline this point.

Figure 2.14 shows the same vertical force divergencemap above a small ((280±10) nm
diameter, measured with SEM) hole, measured with the first and second mode
family. Notably, the quality of the second mode family scan is better in terms
of noisiness close to the surface, while the first mode family scan shows large
amounts of noise close to the surface in the lower area of the maps. Still, both
maps reveal the same structure of the force field divergence with similar ampli-
tudes.
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Fig. 2.14: Vertical force divergencemap above the same holemeasured with the first mode
family (12 648Hz and 12 832Hz) (a) and the second mode family (77 460Hz and
77 922Hz) (b). The scans were conducted separately. The mode orientations of
the eigenmodes of both families that are indicated by the two insets are roughly
identical during the measurement. The plotted 𝛼 are adjusted so that the value
measured at the largest height (3.4 µm, out of the shown plot limits) is zero in
both measurements.
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2 Electrostatic force fields above nanostructured surfaces

This comparison between first and second mode family shows that both can be
used to measure the force gradient and that one can adapt the used mode family to
the measured sample in order to either boost the sensitivity using the first mode
or to increase measurement speed and stability with the higher frequency second
mode family.

The vertical dependence of 𝛼 measured above a hole is shown in Figure 2.15a for the
first micrometer above the surface. Those vertical maps were taken along the orienta-
tion of an uncoupled eigenmode to minimize the eigenmode rotation. The nanowire to
sample distance can be determined much easier in such vertical maps since the last few
tens of nanometers above the cantilever often carry strong lateral electrical fields that
create large force gradients in which the resonance tracking with the PLL becomes in-
stable during scanning. The bottom region in the plot shows such a region of instability,
which is not necessarily a sign of a contact between nanowire and sample, as often, the
mechanical noise spectra can still be observed in such regions. However, in the right
side of the image, the nanowire is probably in contact with the sample. Due to the un-
stable PLL lock under large eigenmode rotations and the possibility of a contact between
nanowire and sample, the scan is performed by progressively approaching the sample
in the vertical y-direction for each horizontal point. Thus each line starts at a stable
reference height far away from the surface.

We again find the characteristic transition from negative to positive values of 𝛼 when
approaching the hole’s center. The negative regions over the attractive edges of the hole
vanishmore rapidlywith distance than the positive central region that at distances above
500 nm is the only remaining sign of the hole. The line cuts in panel 2.15c obtained at
two different heights above the surface confirm this observation.

Comparing the two negative regions in the short distance line cut, one can see that the
left hand side reaches only one third of the minimum 𝛼 of the right hand side. This is an
effect that can be attributed to the 2.5° inclination of the sample. It is not visible for the
larger distance line cut.

The right hand side panels 2.15b and 2.15d show the results of a numeric finite ele-
ment simulation that we have conducted using the COMSOL Multiphysics electrostatics
module. The simulation geometry is outlined in Figure 2.16 and consists of a nanowire
domain and a model of the cantilever with a circular hole that has a conically increas-
ing diameter from top to back surface. This represents the ion beam etch profile of the
hole in the sample, when drilling the hole from the bottom side. The nanowire length
is reduced by a factor of ten in order restrict the simulation time to a feasible duration
since it scales with simulation volume. While the force calculation is not affected by this
approximation since the electric field gradients are strongest at the end of the nanowire,
the electric field intensity of the experiment cannot be reproduced exactly. However, the
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Fig. 2.15: The vertical map of the dipolar force divergence measured above a hole in a cantilever
is shown in (a) and compared to a simulation (b). The lower plots show a linecut at
the height of the dashed lines for the experimental (c) and simulated (d) results. The
linecuts for simulation also include the case of a tilted nanowire (calculated based on
the projected force simulated for the straight nanowire). While the amplitude fo the
force divergence does notmatch between simulation and experiment, most likely due to
the reduced length of the nanowire in the simulation, the curves show good quantitative
agreement. Particularly the simulation for the tilted nanowire reproduces the deeper
dip on the right of the central positive domain that is observed in the experiment. The
tilt in the map in (a) is probably caused by two effects, a small tilt of the nanowire with
respect to the sample and a tilt of one of the piezo scanning axes.

simulation gives a reliable indication of the shape of the force field and, in general, also
an estimation of the expected order of magnitude of the force gradients.

The results in 2.15b show the same shape as for the experimentally measured hole, again
with a positive region that extends further into the vertical direction than the two sur-
rounding negative areas. Panel 2.15d presents a horizontal line cut of the simulation
results at a distance of 150 nm. The shape of the curve is similar to the experimental re-
sults at small height. Adding a 5° clockwise tilt2 to the nanowire, one obtains the dashed
curve that agrees even better with the experimental results. Caused by the setup de-
sign, it is only possible to adjust the nanowire’s angle to a small degree by mechanically
bending the supporting tungsten wire. With the recently implemented improved sample

2Here we just calculate the horizontal force gradient in the tilted nanowire’s coordinates using the sim-
ulation results of the straight nanowire, by combining the vertical and horizontal forces simulated in
the vertical geometry. Simulation with truly tilted nanowires have shown that up to an inclination of
10°, the measured force can be safely approximated by a linear combination of the force vector simu-
lated in the vertical configuration along the projection of the measured force on the tilted nanowire
axis.
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2 Electrostatic force fields above nanostructured surfaces

Fig. 2.16: COMSOL Simulation geometry for a 3D electrostatic study with force calculation on the
10 µm long nanowire (green) above a hole in a metal coated Si substrate (brown). The
electrodes are depicted in blue. The mesh is refined at boundaries with sharp cur-
vatures and at the end of the nanowire. The right image presents an example of the
simulated electric potential and field (red arrows).

holder it is now possible to adjust the tilt angle of the nanowire so that measurements
will not be affected by this geometric imperfection.
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2.7 Electrostatic force above a metallic tip

Figure 2.17a presents the quadratic coefficient of the force gradient obtained from fits
to the acquired parabolas. The panels 2.17b and 2.17c show vertical measurements con-
ducted along the black and white dotted lines. The horizontal map has been measured
about 200 nm above the tip, indicated by the respective dotted lines in the vertical maps.
The horizontal scan direction of the vertical maps follows the eigenmode orientation of
the nanowire that is the direction with the least mode rotation. Little rotation means
stable readout, orienting the scan direction along the eigenmodes therefore ensures the
best measurement conditions. While the divergence coefficient for the horizontal map
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Fig. 2.17: The quadratic force divergence 𝛼 above a rounded metallic tip (tip curvature radius
250 nm) is measured in the horizontal plane (a) and for two vertical cuts along the eigen-
mode orientation of the nanowire (b,c) in the rotated coordinates (𝑥′, 𝑧′).

and the yz’-scan have similar maximal intensities, the absolute divergence measured in
the yx’-scan is smaller and the map shows artefacts at small y close to the tip. These
are the effects from measurement instabilities at small sample-nanowire spacings. The
smaller amplitude is likely caused by a small offset of the scan with respect to the center
of the tip electrode.

2.7.1 Comparison with simulations of the electrostatic force

In order to have an estimate of the expected electrostatic force gradient, we perform a
finite elements simulation using the electrostatic module of the COMSOL Multiphysics
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2 Electrostatic force fields above nanostructured surfaces

simulation software. The electrostatic simulation provides access to the electric fields
at each point of the evaluation grid of the simulation and implements the integration
of the Maxwell stress tensor over domain surfaces to calculate the electrostatic force on
objects. Figure 2.18 outlines the simulation geometry. We model the nanowire with the
material properties for SiC that are provided with the software, and the electrostatic tip
with the properties of gold. However, since we apply a fixed potential to the tip’s surface,
its material properties do not affect the simulation result3. The blue shade highlights the
electrodes in the illustrationwith the ground electrode being the upper boundary surface
of the simulation geometry. An optional charge can be added at the place indicated by
the greenmarker at the end of the nanowire. The simulation space represents one half of
the full geometry due to its symmetry, in the simulation we vary the nanowire’s position
along the x and y directions.

d L

V

x 

z
y 

Fig. 2.18: The meshed geometry used in the electrostatic simulation of the force on a nanowire
in the electric field created by a conical tip electrode with 250 nm curvature. The simu-
lation axes are different from the experimental axes (y and z are swapped). Simulations
are typically performed for a number of coordinated in the xz plane.

Panel 2.d: Gradient 𝜕𝑥𝐹𝑥 vs divergence divF

In order to reduce the time needed for simulations, we typically perform linescans
of the nanowire above the 3D simulation geometry in the vertical plane. Thus, the
measured horizontal force acts only along one axis with the perpendicular force
component being zero due to symmetry. From such a measured force 𝐹𝑥, one can
easily deduce the force gradient 𝜕𝑥𝐹𝑥 along the scan axis. However, the gradient
only compares with the force divergence divF up to a certain degree as one can see
in Figure 2.19 for the simulated force field above an electrostatic tip electrode. In
particular, one can make the false assumption that the measured force divergence
should inhibit positive regions at the sides of the tip if one only looks at the force
gradient. Also, as logical consequence of the symmetry, the maximum divergence
is about a factor of two larger than the gradient.

3Indeed, the material properties matter if one wants to calculate the field in a body. The properties for
all metallic objects (where the internal fields are zero), are therefore irrelevant.
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Fig. 2.19: The force gradient and force divergence for a nanowire of 10 µm length and
160nm length at a distance of 𝑑 = 100 nm above a round tip with 250 nm cur-
vature radius. Both curves show similar features, however, the force divergence
does not show positive values, while the gradient does. Even a qualitative com-
parison of the measured force divergence to the simulated gradient can there-
fore be misleading.

The force divergence is the most accessible and informative quantity from a force
field measurement and one typically wants to compare the experimental results
to the simulated force divergence. In order to do so, the divergence can be cal-
culated from the simulated gradient. Exploiting the circular symmetry of most of
the regarded nanostructures, one can regard 𝐹𝑥 as centric radial force 𝐹𝑟 and thus
construct a 2D map 𝐹𝑟(𝑥, 𝑧) from which one then infers the 2D force field

𝐹𝑥(𝑥, 𝑧) = 𝐹𝑟(𝑥, 𝑧) cos(𝜃(𝑥, 𝑧)), 𝐹𝑧(𝑥, 𝑧) = 𝐹𝑟(𝑥, 𝑧) sin(𝜃(𝑥, 𝑧))

with 𝜃 = tan 𝑧
𝑥
. Having calculated 𝐹𝑥 and 𝐹𝑧 one now has access to the force

gradients in 2D and to the force divergence divF = 𝜕𝑥𝐹𝑥 + 𝜕𝑧𝐹𝑧.

Figure 2.20 compares the measured force divergence in the vertical maps of Figure 2.17
with simulation results. Figures 2.20a and 2.20b present linecuts at different heights
through the yz’ and yx’ vertical measurements, where x’ and z’ are approximately the
direction of each eigenmode4. While all curves of the yz’ map are centralized around
the same z’, the curves in the yx’ map are shifting towards the left for larger heights.
This can either be a result of a non-perpendicular constellation between nanowire and
sample, or a misaligned movement of the piezo axis. Figure 2.20d therefore shows the
simulated force divergence for an inclined nanowire above a tip. While the shift to the
left is basically not visible, the divergence at positive x’ becomes slightly positive for
small distances. This is contrary to the curve in 2.13b, where the divergence on the
left side is increasing for decreasing distances. It is therefore likely that a movement of

4Performing scans along the direction of an eigenmode minimizes the mode rotation and therefore pre-
vents the case where the one of the mode is not detected by one of the measurement channels.
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2 Electrostatic force fields above nanostructured surfaces

the piezo stage in y also displaces the sample along x’. A reason for this could be the
mechanical constrains imposed by the electrical connection of the sample.

Comparing experiment with simulation, one makes the general observation that the
horizontal span does not agree. In order to match the simulation to the experimental
results, the horizontal size needs to be doubled. We do not have an explication for this
difference. One possible, but unlikely explanation is that we conducted themeasurement
on the wrong electrostatic tip as we worked with two types of samples, having both, tips
with a 250 nm and 500 nm curvature radius. However, despite this disagreement in the
horizontal size, one can make some qualitative observations.
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Fig. 2.20: Linecuts through the vertical measurement above the round tip in Figure 2.17 (a,b) are
compared to the simulation of a straight wire (c) and a 10° tilted wire (d). The horizontal
axis of the simulations is stretched by a factor of two in order tomatch the experimental
data, possibly due to amistake in themeasurement (ameasurement on a tip with larger
tip radius). We retrieve similar shape and amplitude of the simulated data when adding
a vertical correction of 180 nm to the simulated results. The measurement in the yx’
plane is subject to a non-perfect scan aligment as one observes a shift of the data to
the left when increasing the measurement height (highlighted by the orange line).

Firstly, the experimental data is decreasing more strongly when approaching the center
from either side, than the simulated curves. This is possibly caused by the cantilever
beneath the tip which adds a background field. One would not expect such an effect
to appear along two perpendicular axes, but due to the rotation of the measurement
coordinates (𝑥, 𝑧 → 𝑥′, 𝑧′) in order to match the eigenmode orientation of the nanowire,
the force field created by the cantilever can affect both measurements. However, the
fact that the decrease towards the center is equally strong for both scans, and the fact
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2.8 Contribution from parasitic fields

that the horizontal map in Figure 2.17a does not show any asymmetry suggest that the
difference between simulation and experiment is another one.

Secondly, we point out that, in order to retrieve a similar form of the simulated shape,
we need to shift the vertical zero by 180 nm with respect to the measurement. This is
an effect of the uncertainty in the experimental vertical zero, which we can only deter-
mine as the height where the measurement fails (the PLLs loose track due to extreme
frequency shifts). However, this height can still be quite far above the surface. The cri-
teria at which the force gradient get too large fore a linear operation is given by their
value compared to the mechanical stiffness 𝑘𝑚 = 𝑀effΩ2

𝑚of the nanowire. For the two
modes of the nanowire this amounts to 11 fN and 22 fN respectively, which is about one
order of magnitude larger than the measured force gradients. Still, the stability of the
PLL can fail before 𝜕𝑥𝐹𝑥 = 𝑘𝑚, so that we can assume that the closest curves suffer exactly
from this effect and that the real distance to the tip is about > 100 nm larger than the
estimation based on the measurement.

More generally, this effect determines a fundamental limit of nanowire forcemicroscopy:
If the overall force field is large enough that the force gradient is comparable to the
stiffness at small NW-sample separations, it becomes difficult to impossible to resolve
smaller, fast decaying forces such as the Casimir force, or small scale local variations of
the force field for which the nanowire needs to be very close to the sample.

2.8 Contribution from parasitic fields

We have already seen above, in the stress tensor discussion, that the residual electro-
static fields, which do not depend on the bias voltage, are responsible for both, a linear
contribution in the bias voltage to the electrostatic force, and for an additional force, in-
dependent on the bias voltage. The first contribution causes measurable effects as they
shift the force parabola, so that this offers a possibility to explore them experimentally.
This section deals with possible origins of the residual electrostatic fields and of the lin-
ear force contributions. Since those residual fields cannot be compensated simply by
biasing the sample, they will have an impact in the Casimir force measurements.

Figure 2.21 picks up the force fields measured above the nanostructures presented above
in Figure 2.12 and shows the 𝑉0 of the electrostatic force divergence. Here, one observes
a variance of up to two volts for measurements close to the sample surface. At the
regions where the quadratic contribution 𝛼 transitions between negative and positive,
the 𝑉0 which is calculated as 𝑉0 = 𝛽/2𝛼, becomes infinite. In Figure 2.21 they are marked
as abrupt transition from blue to red.
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Fig. 2.21: The 𝑉0 measured above the nanostructures presented in Figure 2.12. At those regions
where a large positive 𝑉0 changes to a large negative value, the divergence parabolas
are nearly flat (𝛼 is small). This is the case at the edges of the hole structures in (b) and
(c), as well as for the disk in (e). Above the substrate in (b) and (c), one observes the
variations of the measured 𝑉0 that is caused by the surface patches.

2.8.1 Patch effects in the experiment

A first phenomenon that is responsible for force contributions scaling linearly with the
applied voltage are surface patches as introduced in Section 2.1.4. A characteristic of
surfaces, beside their topography, is their electrostatic contact potential that depends on
the crystallinity, surface ligands and impurities of the metallic coating. We call areas
that have a homogeneous electrostatic contact potential electrostatic patches. However,
on a real surface, they are of finite size, which causes spatial fluctuations in the contact
potential. Also, since the metallic support tip and the sample are not made of the same
material, even when the bias voltage is zero, there will always remain a residual electric
field. Above a perfect metallic sample, the former would be spatially homogeneous, so
in the following, we will discuss variations around this mean residual field. The method
to estimate this mean residual field will be discussed in the next chapter.

The deposition method of the metal influences both parameters, topography and contact
potential, up to a certain degree. The samples discussed in this project were partly pur-
chased already coated with a metallic layer or coated by thermal evaporation without
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2.8 Contribution from parasitic fields

special measures to minimize the surface roughness. With the deposited layer measur-
ing only about 20 nm in thickness, we expect variations of a few nanometer around the
mean thickness, based on the experience with the local evaporation setup. The spatial
extension of these irregularities on the surface is typically in the order of tens to hun-
dreds of nanometers. A better estimate of their topographic variations could be obtained
by atomic force microscope cartography of the surface which has not been done on the
samples employed in this work at the moment in order to avoid sample contamination.
Other studies, using Kelvin probe force microscopy (KPFM), have found that a correla-
tion between topography and contact potential does not necessarily exist [39], hinting
towards a contribution from contaminants.

While the quadratic electrostatic force contribution (𝛼) is caused entirely by the topog-
raphy of the electric field, the linear term (𝛽) presents a mixture of the parasitic fields 𝐸𝑝
and the fields created by the sample electrode 𝐸𝑉. The most important origin of parasitic
fields are differences in the local contact potential 𝑉patch on the sample (see Section 2.1.4),
unlike other experimental techniques as Kelvin probe force microscopy (KPFM) we can-
not measure this workfunction difference directly, but we can define a similar quantity.
Therefore, we rewrite the quadratic expression for the force field divergence in polyno-
mial form

div 𝐅 = 𝛼𝑉 2 + 𝜆𝑉 + 𝛾 , (2.13)

as factorized expression
div 𝐅 = 𝛼 (𝑉 − 𝑉0)

2 + 𝛾 ′. (2.14)

Here we we can define a local offset potential 𝑉0 based on the measured coefficients 𝛼
and 𝜆5.

The first two plots in Figure 2.22 show the quadratic coefficient and the offset poten-
tial for the force field’s divergence above surface areas at different altitudes. The slices
shown in 2.22a and 2.22b map an area of the platinum coated surface of one of the pur-
chased AFM cantilevers, in which the holes are drilled. Both, the quadratic coefficient
and the local offset potential show a grainy structure that smoothens with increasing
distance. A similar grain structure has been observed in AFM measurements performed
on a gold covered sample (2.22c). The offset potential in 2.22b loses its visible struc-
turation less rapidly with increasing distance than 𝛼. The size of the visible domains is
similar for 𝛼 and 𝑉0, their spatial correlation is not clearly evident from the maps. We
did not perform a quantitative study to compare the spatial distributions of the different
force components due to the difficulty to acquire highly resolved large maps at small
nanowire-sample separations. Still, Figure 2.23 presents a linecut through the medium
height map, showing the quadratic, linear and static force gradient. Here, a one can see
a clear similarity between the three terms with some distinct differences, which is nor-

5This potential 𝑉0 is a theoretical value which minimizes the measured 2D force divergence. It does not
have physical counterpart like the contact potential in classic KPFM which is basically the difference
of the workfunctions in the involved materials. This is due to the fact that the nanowire measures the
force perpendicular to the electric surface fields. In simulations we have seen that the 𝑉0 measured
with a metallic nanowire approaches the contact potential.
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2 Electrostatic force fields above nanostructured surfaces

mal as the linear term is also related to the voltage dependent fields which determine
the 𝛼 coefficient. The constant term 𝛾, which is about twice as large in amplitude as
the other terms, shows that the large part of the measured force originates from linear
effects (geometrical, quadratic effects do not affect the constant term).
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Fig. 2.22: (a) The quadratic coefficient of the force field’s divergence above a planar metal surface
without structuration is shown at five different measurement heigths. (b) shows the
offset potential 𝑉0 above the same 5 by 5 µm area with 51 by 51 px resolution. Both
maps show pattern with a size of a few hundreds of nanometers at small height 𝑦 that
become less distinctive with larger distance. The AFM images in (c) were measured
above a similarly prepared gold surface and show a characteristic size around 100nm
of the surface grains with a structuration in height up to 10 nm.

In Figure 2.24, the panels 2.24a and 2.24b show the same quantities for another area on
the surface. The increasing resolution from lower to upper half of the images is due to a
slight tilt of the sample. Again, the size of the features in both images is comparable and
one observes that the offset potential shows a clearer structuration in the lower half of
the image while the variations in 𝛼 are less pronounced. The sort of vertical line separa-
tion, visible on the left third of the image, represents the boundary between two domains,
such as those illustrated in 2.24c. Here, we see the force divergence measured at a fixed
potential above the section of the cantilever on which holes were etched with focussed
ion beam etching. At the lower and upper regions of the map, the edges of the cantilever
are visible. The drilled holes are discernible as four holes arranged equidistantly along a
line in the lower part of the large dark square. The dark rectangular regions correspond
to the areas that have been imaged in scanning electron microscopy after the structur-
ing of the cantilever. During electron beam imaging the bombardment of electrons can
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Fig. 2.23: The linecuts through the thirdmeasurement in Figure 2.22 (z=0.8 µm) show the quadratic
𝛼, linear 𝜆 and constant 𝛾 force divergence, at a bias voltage of 1 V.

damage the existing surface structure leading to a change of the local offset potential,
but they could also start etching the surface, which would increase rugosity.

Another probable cause of surface destructuration is electron beam induced deposition
(EBID) of carbon during the imaging. In this process, carbon from evaporated organic
molecules binds to the surface at the position of the electron beam [77]. Even in clean
environments, organic residues that are the source of the carbon, are present in the
vacuum chamber of the microscope or on sample and sample holder. The measurement
shown in panel 2.24a and 2.24b has been conducted on the transition from a clean area
that had no visible surface contamination due to electron beam imaging on the left hand
side, to a contaminated region on the right hand side. While both sides show a similar
structuration of quadratic coefficient 𝛼 and 𝑉0, the contaminated region has a larger
amount of areas with positive 𝑉0 than the left hand side.

This potential difference can be caused by a modification of the work function of the
material, or by dissimilar contact potentials on neighbouring patches, which is hardly
quantifiable using the presented results from the 2D force field measurement due to the
absence of external control of those surface fields (see Section 3.5). The only tuning op-
tion is, by experimental design, the control voltage 𝑉𝑐 applied on the sample which cre-
ates a field along the vertical axis between the sample and the grounded nanowire sup-
port as illustrated in 2.24d. Horizontal fields, like those between neighbouring patches,
can therefore not be compensated directly, so that the measured 𝑉0 is a result of the com-
bined linear effect from the local patch landscape. We also observed that the local offset
potential that needs to be applied to get to the parabola’s extremum, increases signifi-
cantly as we approach the surface with the nanowire, even over the values presented in
Figure 2.22 up to the order of a few volts. Due to the strong spatial variations, no stable
operation of the force measurement scanning setup is possible in this regime and we
restricted our use of detailed large area scans to larger sample-nanowire distances.
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Fig. 2.24: (a) and (b) present 𝛼 and 𝑉0 above the boundary between a clean surface area (left
part of each plot) and an area that has been exposed to electron irradiation during
SEM imaging (right part of each plot) which led to a change in the measured offset po-
tential. A larger spatial overview of the effect of electron beam irradiation is shown in
panel (c) that plots the force divergence for a fixed applied voltage above the area in
which the cantilever surface has been structured. The cantilever traverses the image
from left to right with its edges visible in the top and bottom of the image. The dark
rectangular areas are correspond to regions imaged in the SEM while the yellow areas
have not been exposed to the electron beam. (d) outlines the electrostatic field above
two patches with the field created by the control voltage 𝑉𝑐 that creates a vertical com-
ponent, while the difference of the patches contact potential 𝛿𝑉1 − 𝛿𝑉2 creates a field
which is independent of 𝑉𝑐.

Panel 2.e: Sample degradation
Despite the nanowire force measurement being a principally non destructive mea-
surement technique since contact between sample and nanowire is avoided, other
effects can occur during measurements which can degrade the sample. Two im-
portant mechanisms are:

1. Induced deposition of particles attracted by the high intensity laser waist
2. Change of the material structure at zones of high electrostatic field

In the first effect, small particles still present in the vacuum environment can pass
the laser beam and are accelerated towards the sample where they stick to the
surface. In the SEM images in Figure 2.25 they are visible as white spots. When
imaging the full cantilever their concentration is larger at the side facing the laser
beam which confirms our interpretation of their presence.
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2.8 Contribution from parasitic fields

Fig. 2.25: A SEM image of the measured area after force measurements. The top left image
shows an overview of the structured area with small debris scattered over the
surface whose concentration is larger close to the imaged area. The right im-
ages present two different closely studied holes that show some deposition of
unclear origin at their perimeters. The cross in the bottom left image presents
similar structuration at its edges.

The second effect is more difficult to explain and a detailed investigation is re-
quired to understand it better. On the post-measurement SEM images, we ob-
serve an additional deposition at the holes that were measured with the nanowire
and see similar formations at the edges of the cross. The degradation of holes
has already been observed during force measurements but only on some, exten-
sively measured structures. This is confirmed with the SEM images. While only
superficially studies holes were not affected those where multiple detailed mea-
surements were performed are most strongly degraded. Comparing the hole sizes
pre- and post-measurement, we observe that the holes became smaller due to the
degrading effects.

The explanation of the observations remains guesswork up to this point. It is
possible that additional material deposits at the regions of strongly confined elec-
trostatic field when the nanowire scans closely above the hole edges. Another
explanation would be that a tunneling current can occur when the nanowire is
very close to the edges of the hole. Here, the electrostatic field is strong enough
to extract charge carriers from the nanowire in which free charges can be created
by the green pump laser which has an energy above the estimated bandgap of the
SiC nanowires. The resulting current can heat the metal strong enough to trans-
form the surface. A measurement that will provide additional information about
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2 Electrostatic force fields above nanostructured surfaces

the degradation is energy-dispersive X-ray spectroscopy providing its material
composition.

2.8.2 Simulation of an electrostatic patch

The interplay between horizontal and vertical electric fields makes it difficult to access
the structure of the electrostatic force intuitively. We therefore modelled a single elec-
trostatic patch in a COMSOL simulation to get a better understanding of the contribution
created by patch effects in a simple geometry. Figure 2.26a outlines the simulation ge-
ometry.

We found that, while stable simulations can be run reliably in 3D geometries for the
purely dipolar case where no charge or voltage offset is present, the case of a patch that
carries the additional potential offset 𝑉𝑝 = 0.05 V requires very fine meshing around
the tip of the nanowire, starting at sizes of 3 nm that rendered 3D simulation unfeasible
with respect to time andmemory consumption. We therefore changed to a 2D geometry,
illustrated in panel 2.26a, where the nanowire is highlighted by a blue circumference and
the patch that lies on the bottom boundary is depicted as green line. The entire upper
boundary acts as electronic ground while the control voltage 𝑉𝑐 is applied to the lower
boundary. The potential at the patch electrode is the sum of the applied voltage and the
patch potential 𝑉𝑐 + 𝑉𝑝. We conduct the simulation in the vertical plane and iterate for
at least three different control voltages at each point. This allows computing the force
gradient for each value of the bias voltage, and thus computing the quadratic term and
the offset voltage in each position above the patch.

Panels 2.26b and 2.26c show the quadratic coefficient of the force divergence and the
measured offset potential, respectively. The two vertical black lines indicate the lim-
its of the simulated patch which has a length of 400 nm. The nanowire has a diameter
of 160 nm which is a realistic representation of the nanowires employed in the experi-
ments. In order to keep the runtime feasible, we restricted its length to 8 µm. This has
the side effect that the quantitative comparison of simulation and measurement is less
meaningful since the experimental conditions are not mimicked adequately.

The offset potential shows rapid transition frompositive to negative valueswhen transvers-
ing from surface to patch. The magnitude, more than 25 kV directly above the surface,
is much higher than any experimentally measured value, due to the quasi null value of
𝛼 which displaces the factorized 𝑉1 further apart. It decays rapidly when moving away
from the surface and approaches zero for large distances, which is expected as the hori-
zontal field components are strongest directly above the surface.
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Fig. 2.26: Results of the 2D simulation of the electrostatic force on a nanowire above a patch
with the simulation geometry outlined in (a). The blue trace highlights the nanowire
domain. The green line at the bottom presents the patch modeled by a region to which
an additional voltage 𝑉𝑝 is applied. The terminal for the control voltage is the entire
bottom boundary of the simulation space while the top boundary acts as ground elec-
trode. (b) and (c) present the quadratic coefficient 𝛼 and the offset potential of the of
the electrostatic force divergence. The vertical black lines indicate the border of the
patch and the horizontal grey line at 𝑦 = 50 nm marks the horizontal cut for 𝑉𝑂 (d). The
line plots in (d) compare results from simulations of a patch with 400nm and 700nm
radius with the patch borders indicated by the respectively colored lines.

Panel 2.26d displays a horizontal line cut through the 𝑉0 map at the height of 50 nm
indicated by the grey dashed line and compare the results of the 200 nm radius patch
with a larger one at 𝑟 = 350 nm. The offset potential in 2.26d is positive outside of
the patches and negative on the patch which corresponds to the opposite sign of the
additional applied potential 𝑉𝑝 = 50mV. Another difference between the two patch sizes
is that the minimum of 𝑉0 does not fall together with the border of the big patch while it
does so for the smaller. Centrally above the patch, 𝑉0 achieves a local maximum that is
flatter above the big patch. This is due to the fact that the measured force convolutes the
size of the sample geometry with the size of the nanowire. In the case of the small patch,
both length scales are comparable so that 𝑉0 varies constantly. For even larger patches
with a size of multiple nanowire diameters, the measured 𝑉0 would form a plateau.

The quadratic coefficient in Figure 2.26b varies continuously over the whole simulation
area without visible features at the patch borders. The variations are of the order of
100 fN/nm/V2 which is one order of magnitude larger compared to the measurements.
However, it is not intuitive that the flat surface should cause a variation in the dipolar
force and we attribute the apparition of a non-zero quadratic term to the finite simula-
tion size and the dynamically adapted meshing. In order to mitigate this effect, we also
performed simulations over slightly curved surface (𝑟 = 5.2 µm) on whose center the
patch is positioned. We now have a real quadratic contribution and we can dissect the
different contributions further. Figure 2.27 presents the coefficients of the fitted parabola
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to force and divergence. Here, we present both, the coefficients of the polynomial form
𝐹/divF = 𝛼𝑉 2 + 𝛽𝑉 + 𝛾 and the coefficients of the form 𝐹/divF = 𝛼(𝑉 − 𝑉0)2 + 𝜂.
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Fig. 2.27: Results from the electrostatic simulation of a single patch with 𝑉𝑝 = 50mV of 200nm
diameter on a curved surface (𝑟 = 5.2µm). The plots show the different contribution to
the horizontal force and force divergence experienced by a 8µm long and 160nm thick
nanowire. On the left side, the contributions for the horizontal force are given. The
right side shows the different terms of the corresponding force divergence.

Comparing the amplitudes of the terms 𝛼, 𝜆 and 𝛾, one notes that the strongest contribu-
tion (at 1 V) comes from the linear term, followed by the constant term, both only caused
by the presence of the patch. Indeed, one can clearly see the patch’s effect in these terms,
but the quadratic coefficient is free from it (same holds for the divergence plots). An ob-
servation that can also be made in measurements, is that the linear contribution decays
less fast with increasing distance than the other terms, a fact that is transferred to 𝑉0.
The larger 𝛼 in this simulation compared to that on a flat substrate decreases the result-
ing 𝑉0 to maximal values around 20V, which is close to experimentally obtained valued
for close distances. Interestingly, the 𝑉0 for force and divergence are similar, which is a
consequence of the quasi-flat geometric curvature employed.

Figure 2.28 presents cuts through the above maps for the force divergence shown in
Figure 2.27 and for simulations with a smaller (𝑑 = 100 nm) and a larger (𝑑 = 700 nm)
patch, taken at a height of 75 nm. Again, we present the coefficients of both parabola
expressions. The quadratic term is identical for both expansions since it is created by the
curvature of the surface that is the same for all simulations. When looking at the other
terms, the signature of the features caused by the smaller patches are almost similar
as long as the patch dimension remains smaller than the nanowire diameter. When
simulating a larger patch, one can identify the correct characteristic size in the curves.
Due to the size of the larger patch, the linear and residual terms are small at the patch
center, causing a contribution 𝜂, that approaches a value much smaller that at the edges
and much smaller than for smaller patches.
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Fig. 2.28: Linecuts through the simulation for three patches of different sizes on a surface with
5.2 µm radius of curvature. Beside the patch size the parameters are identical to Fig-
ure 2.27. The inset in the bottom right plot illustrates the size of the nanowire (grey)
with respect to the size of the patches (colored).

The simulations, even though their quantitative value is uncertain, show that the nanowire
represents a sensitive probe, suitable to investigate the parasitic surface fields, with a
resolution largely determined by the size of the nanowire. The facts that the linear and
residual terms can be easily separated from the quadratic term and penetrate farther into
the space above the surface, while roughly keeping their horizontal extension, clears the
road to the exploration of residual surface fields.

We also note that, while the fitting procedure is more intuitive with a 𝛼(𝑣 −𝑣0)2+𝛾 curve,
the connection to the tensor discussion introduced above are more easily done with the
𝛼𝑉 2 + 𝜆𝑉 + 𝜂 representation. This can be seen in Figure 2.28: the residual contribution
presents an attractive quadratic pattern with a negative divergence, as expected for a
50mV patch offset, while the 𝜂 term presents an erroneous higher divergence above the
patch. Then, the large sample curvature makes that 𝜆 and 𝑉0 present identical variations,
but this would not be the case for smaller geometric structures (𝑉0 = 𝜆/2𝛼).

The large effect caused by the electrostatic patch originates from the presence of hori-
zontal surface fields to which the nanowire is particularly sensitive. This was no hin-
drance in previous experiments as it has not been possible to approach surfaces close
enough [29] to be bothered by this effect. Also, the effects are less pronounced above
structures where sharp geometric features dominate over flat surface. The challenge
in performing experiments under the presence of strong patch effects is the decreased
measurement stability caused by high local force gradients that can shift the nanowire’s
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2 Electrostatic force fields above nanostructured surfaces

mode frequencies and rotate the eigenmode orientations. Additionally, the interpreta-
tion of the results with respect to underlying force contributions such as Casimir forces
gets more complicated if local patch effects cover them.

A measure to mitigate the contribution of strong patch-created horizontal fields can be
the employment ofmetallic nanowires that convey the electric ground to the extremity of
the nanowire. The applied control voltage would thus compensate the local electrostatic
field close to the nanowire tip and not only by the vertical field between sample and
nanowire support in the case of the dielectric nanowire. This has the advantage that
the force parabola is shifted less strongly by the linear patch effects. We simulated this
case and found that the offset voltage is reduced by a factor of 1000 as presented in
2.29a compared to the dielectric nanowire while both curves show the same qualitative
features.
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Fig. 2.29: Plot (a) compares the offset potential simulated 50nm above a patch with 𝑉patch = 0.05V
via the horizontal force divergence 𝜕𝑥𝐹𝑥 + 𝜕𝑧𝐹𝑧, felt by a dielectric (blue) nanowire
(𝐿 = 8µm, 𝑑 = 160 nm) to that simulated for a metallic nanowire with same dimensions
(orange). Note that the 𝑉0 for the dielectric nanowire is scaled by a factor of 1/1000 and
is therefore about 500 times larger than that measured with the electrostatic nanowire
due to the much more localized electric field in that case. In (b), the contact poten-
tial 𝑉contact – the potential measured based on the vertical force gradient 𝜕𝑦𝐹𝑦, similar
to standard KPFM measurements, but here purely conceptual – is compared for both
cases. While the metallic nanowire measures the correct patch potential, the dielectric
nanowire measures a value ten times larger and the simulated shape of 𝑉contact is dif-
ferent due to the different shape of the electric field in both cases.

The measured variations of 𝑉0 that we retrieve from the force divergence measurements
is mostly caused by lateral residual fields, which do not present the same geometry as
the bias field. In simulations, we can also access the vertical force gradient 𝜕𝑦𝐹𝑦 that is
not measurable experimentally and that is dominantly – but in the case of a dielectric
nanowire not entirely – caused by vertical fields. This configuration is analog to standard
KPFM [81], where a metal coated AFM cantilever is used to measure the vertical force
minimizing potential. Figure 2.29b compares the contact potential obtained from the
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2.8 Contribution from parasitic fields

vertical force gradient for both types of nanowires. While, in the metallic case, we obtain
the correct contact potential that was applied on the patch region, the dielectric case is
still a factor of ten too large and its shape differs significantly, showing the same jump
at the patch border also observable in 2.29a. We explain this with the field changing
properties of the dielectric which is now placed between the two electrodes. Also, we
have noted in Section 2.1, that the electric fields perpendicular to the measured force
have an important contribution to it. This has a larger impact on the dielectric case
since the field penetrates the nanowire, while in the metallic case the field is confined
between the wire’s extremity and the surface.

2.8.3 Multiple patches around geometry

Another possibility to use electrostatic simulations to evaluate the effect of patches is
to take a look at the electrostatic field above a structured surface on which patches are
present. Applying the methods from Section 2.1, we then estimate the expected forces
on the nanowire. Figure 2.30 presents the simulated fields above a 2D geometry with a
centred hole in a conducting plate. The surface of the plate is structured into different
regions resembling surface patches. They are still modelled with a conductive material,
but each single one carries an additional potential 𝑉𝑝 ∈ [−10mV, 10mV] in addition to
the applied bias potential 𝑉 on the plate. The height of the patch grains is exaggerated
compared to the real surface structurations which we found to be in the range of 5 nm
to 10 nm.

Fig. 2.30: Simulation of the electrostatic fields above a metallic plate with a hole in the center.
The plate’s surface is structured with oval patches that each have an additional poten-
tial to the bias potential applied to the plate itself. The ground level is fixed at the top
border of the plot.

One observes that the horizontal fields 𝐸𝑥 induce a component that changes sign on
the center of the patch grains while the vertical fields change close to the boundaries
between patches. This means that the horizontal force which is a result of the prod-
uct 𝐸𝑥𝐸𝑦 will show domains smaller than the physical domains. This effect is visible in
Figure 2.31, where the quadratic, linear and constant terms of the horizontal force are
shown above the same structure. The quadratic term contains a significant contribution
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2 Electrostatic force fields above nanostructured surfaces

of the geometric structuration of the surface which is much smaller in the experimen-
tally investigated samples, still, the hole dominated the effect, in particular at distances
> 200 nm. In the linear and residual forces the patches dominate the force field both
at close and at larger distance. While the linear force is a mix between the constant
residual fields and those created via the applied bias voltage, the constant term 𝛾 permits
to isolate the effect of the surface patches. Here we observe that the domains with the
same sign of the force seem to happen over smaller regions than in the quadratic and
residual force terms. Looking at the geometry beneath, one can discern one region of
positive and negative sign per grain which is what we expect from the product of fields.
The constant force is also much more localized at the surface than the other terms as
here, there is no far reaching vertical field that amplifies the structuration of the force
field.

Fig. 2.31: The electrostatic force terms (𝛼-quadratic, 𝜆-linear, 𝛾-constant) obtained from the fields
simulated above a grainy surface with a central hole ((2.30)) show the effect granular
surface patches have on the overall shape of the force field.

2.8.4 Charges

The probably most direct explanation for a residual electric field leading to a supplemen-
tary linear electrostatic force is that the nanowire could carry an electrostatic charge.
Since SiC is a wide-bandgap material [14] and the nanowires are additionally covered by
a 2 nm to 5 nm oxide layer which makes charge cancellation at the surface and within
the wire inefficient, they are easily capable to trap electric charges at their surface.

The force experienced by a charge on the wire that is immersed in an electric field de-
pends on the sample geometry. It is proportional to the electric field and, for a spherical
electrode, varies with the inverse square of the distance. In order to estimate the effect
from a charge placed at the extremity of the nanowire, we conducted finite elements
simulation in Comsol Multiphysics where the electrostatic force on a nanowire is cal-
culated 100 nm above a tip electrode with an end curvature of 250 nm. The nanowire
carries a single positive electric charge in the center of its extremity. For a positive bias
voltage, it is thus expected to be repelled from the tip. Figure 2.32 shows the results for
two nanowires of 10 and 50 µm length, respectively. The shorter nanowire in the upper
panel experiences a force gradient more than ten times as high as the long nanowire due
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2.8 Contribution from parasitic fields

to the proximity of the electrodes6. While the quadratic coefficient (the dipolar force)
presents the same trapping characteristics as in absence of charges, the linear coefficient
is anti-trapping due to the positive sign of the charge. Comparing both force gradients
at a voltage of one volt, the linear contribution is about one sixth of the quadratic contri-
bution in case of the short nanowire. For the longer nanowire, the ratio is about one half
and thus about three times as large. Since this is the more realistic case, we can expect
a major linear contribution in the usual voltage range of ±1V if a full charge is present.
In experiments, the linear contribution is typically at least a factor of ten smaller than
the quadratic term.
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Fig. 2.32: Finite element simulation of the quadratic 𝛼 and linear 𝜆 terms of force divergence as
experienced by a 160 nm thick nanowire with a single positive charge at its extremity at
a distance (𝑑 = 100 nm) above a rounded tip (𝑟 = 250 nm) electrode. Panel (a) shows the
force divergence terms for a short (𝐿 = 10µm) wire and (b) the same simulation with a
longer (𝐿 = 50µm) wire. The nanowire length directly affects the distance between the
tip and ground electrodes and therefore changes the electric fields at a given distance
from the tip but does not affect the characteristic trapping 𝛼, seen directly above the
tip’s center with an antitrapping 𝜆 for both nanowires. The antitrapping potential is
caused by the positive sign of the charge.

The consideration of a single trapped charge at the extremity of the nanowire in simu-
lation leads to force divergences that fall into the range of experimentally measured val-
ues. However, during the time our group has experience with SiC nanowires, we only
rarely observed discrete jumps during force measurements which could be attributed
to charges attaching or liberating from the nanowire. We also performed experiments
where we measured the frequency of the nanowire while sweeping the voltage applied
to a sharp electrode in the proximity of the nanowire between ±10 V but did not observe
a change caused by the emission or collection of electrons. From this experience we as-
sume only little to no effect from changes of the nanowire’s charge during experiments.

6As mentioned before the length and height of the nanowire also determine the distance between elec-
trode and grounded nanowire mount. Simulations for longer nanowires therefore yield the more
realistic quantitative results. The nature of the observed effects however does not depend on the
nanowire’s length in simulation up to the limit where the field close to the ground plate is not homo-
geneous anymore (the nanowire length is in the order of its diameter).
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2 Electrostatic force fields above nanostructured surfaces

However, to better evaluate the effect, studies need to be conducted investigating in de-
tail the charges present on the nanowire. These would include a force measurement in
a homogeneous horizontal electric field to directly measure the linear force created by a
charge distribution in the electric field [78], as well as field emission measurements.

2.8.5 Mixed electro-optical forces

In most experiments, we use a combination of an optical driving force and an electro-
static control of the test force field, which both have static contributions. Hence, there
exists a static force that is caused by the combination of the optical electromagnetic field
gradient and the electrostatic field gradient and scales with intensity |𝐸opt𝐸elec(𝑉bias)|. We
typically assume that this force presents a constant offset due to the homogeneity of the
laser beam. However, if gradients of this mixed force are present they will vary linearly
with the applied bias voltage.

Panel 2.f: The effect of large oscillation amplitudes

Nonlinear effects

Nonlinear effects present a cause that perturb the harmonic oscillator approach.
The approximation of linearly varying force field gradients at the displacement 𝛿𝐫
of the nanowire ( Equation 1.33 ) is only valid if the oscillation amplitude is much
smaller than the typical length scale 𝑙FF over which the force field varies 𝛿𝑟 ≪ 𝑙FF.
For large 𝛿𝑟 this approximation is not valid anymore and the higher order force
gradient terms would need to be taken into account. At the typical oscillation
amplitude of the nanowire of some tens of nanometers the observed force fields
can be linearized within good approximation. However, with strong modulation
forces, one can reach the regime of nonlinear response which can be avoided by
appropriate regulation of the power of the optical drive.

Spatial resolution

The question of the ultimate lateral spatial resolution has not really been discussed
up to now, since we have only observed rather “large” geometric defects of min-
imum transverse dimensions around 50 nm to 100 nm. For a nanowire at rest, it
depends on the reach of the force field, and how its equivalent volumetric force
spreads in the nanowire’s volume. The smallest lateral features we have observed
so far, without optimizing for maximal resolution, are around 50 nm. However,
beyond this intrinsic limitation on the transverse resolution, one needs to inves-
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tigate how the nanowire motion impacts the resolution. The nanowire’s random
thermal noise spreads over 1 nm to 10 nm depending on the nanowire employed,
but this always remains small compared to their diameters. Due to the random
character of the thermal motion, it is difficult to extract time-resolved informa-
tions, so that the main consequence will be a blurring of the force field under in-
vestigation. In the case of a force measurement realized using driven trajectories,
advanced force sensing techniques based on time-resolved measurements can be
implemented, such as measuring the driven displacement at harmonic frequencies
of the driving tone, which will allow obtaining informations on the higher order
spatial derivatives of the force, and thus amore refined lateral resolution. We have
not investigated those types of measurements, but one can estimate the impact of
the oscillation amplitude on the measurement employed in this work.

Due to the non-zero oscillation amplitude of the nanowire, the force field mea-
surement is never a singular pointwise measurement but should be though of as
a motionally averaged measurement over the oscillation area in 2D. In order to
achieve high spatial resolution in the horizontal plane, it is therefore beneficial to
choose thin nanowires with small displacement amplitudes (at close distances, the
force gradients are sufficiently strong to employ stiffer nanowires) or to thermally
cool the nanowire so that its vibrational thermal motion is reduced, which further
increases the force sensitivity [36].

For the force sensing measurement based on the driven nanowire trajectories, the
most direct parameter to tune in order to reduce the nanowire’s oscillation ampli-
tude is the strength of the driving force. At small amplitudes the response to the
drive becomes difficult to detect on top of the nanowire thermal noise, while at
larger oscillation amplitudes, the system may become non-linear and smooth out
the details of the force field. If we reduce the drive too ambitiously, we loose the
benefits of a large detection signal strength, which allows determining the oscilla-
tion phase more precisely, a prerequisite to ensure a proper operation of the PLLs.
For most of our experiments, the stable operation and a large signal are the more
valuable criteria while the spatial resolution is only of secondary importance, par-
ticularly in the case of “large” sample structures with a characteristic lengthscale
𝜌 larger than the maximum employed nanowire displacement amplitude, which
can reach around 100 nm under strong modulation. In practice, we do not over-
pass such a value, otherwise the optical readout cannot be considered as linear
anymore, and one observes some vertical foldings of the response signals.

We now evaluate the motional averaging effect caused by a large oscillation am-
plitude. We model the spatial variations of the electrostatic force gradient as the
one experienced by a polarizable particle in the field of a point charge placed at
the origin. The spatial variations of the force gradient 𝜕𝑥𝐹𝑥 are illustrated in the
inset of figure 2.33. The oscillating nanowire would measure a gradient motion-
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2 Electrostatic force fields above nanostructured surfaces

ally averaged over its driven trajectory. Given an oscillation amplitude Δ𝑟 we can
calculate this averaged force gradient 𝑔av via

𝑔av =
1

𝜋Δ𝑟 ∫
2𝜋

0
d𝑢 𝐹𝑥(𝑥 + Δ𝑟 cos(𝑢), 𝑦) cos(𝑢).

This formula converges towards 𝑔av = 𝜕𝑥𝐹𝑥 for small oscillation amplitudes, as
can be verified by realizing an expansion at first order in Δ𝑟 of 𝐹, prior to realizing
the integration. Figure 2.33 compares the effect of different Δ𝑟 on the measured
force divergence.
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Fig. 2.33: The 1d force gradient created by the electric field of a single charge at the origin
measuredwith different oscillation amplitudes Δ𝑟 is shown in (a). All coordinates
are in relation to the characteristic lengthscale 𝜌 of the measured gradient at
proximity to the charge. Inset (b) plots a vertical force gradient map as mea-
sured by a theoretical probe with Δ𝑟 = 0. The white line at 𝑦 = 2𝜌 indicates
the height at which the curves in (a) are calculated. With increasing size of the
nanowire’s oscillation amplitude, the measured shape of the gradient flattens
out, with stronger effect for the minima in the beginning, and the present fea-
tures widen. The black curves shows the theoretical gradient for Δ𝑟 = 0.

A practical estimation of the effect from a larger oscillation amplitude can be done
by measuring the force above the same nanostructure with different modulation
amplitudes of the optical drive and therefore leading to different oscillation am-
plitudes. Comparing the measured divergence pattern along the same horizontal
line measured above an electrostatic tip, we observe that the averaging effect is
only present at small separations. For measurement heights typically interesting
for horizontal scans, only small effects are visible in the quadratic electrostatic
force as illustrated in Figure 2.34.
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Fig. 2.34: The oscillation amplitudesmeasured for a horizontal scan approximately 150 nm
above an electrostatic tip are plotted for the first mode (a) and the secondmode
(b) at different modulation strengths. For each mode and modulation strength
we obtain a mean amplitude (b) with values up to 250 nm for the first mode
that is driven more efficiently. In (d) we show the measured force field diver-
gence extracted from the eigenfrequency shifts along the horizontal lines for
each modulation amplitude. The curves are barely different, which probably
shows that for the measurement height and sample, the characteristic size of
the force field variations is larger than the oscillation amplitude of the nanowire.
Measurements at closer distance show indeed an effect for larger oscillation
amplitudes. The colours in all plots relate data with the same modulation am-
plitude.

We note that the resolution with which topographic features in the force field map
can be imaged correctly depends on the size of the nanowire trajectories. If the
spatial features are smaller than the trajectories, they will appear less pronounced
in the resulting maps but still show upwith slightly increased size. Features larger
than the spreading of the nanowire’s trajectories can be imaged without a loss of
resolution. This means that in practice, if one wants to measure the force above
nanostructures smaller than 200 nm, one should verify that the oscillation ampli-
tude is not blurring the measured force pattern.

2.9 Comparison of force and force gradient measurement

In the foregoing sections, most of the measurements of the force field gradients were
realized by measuring the perturbation of the mechanical properties of the nanowire
under the action of the electrostatic fields. To do so, we used a time modulated opti-
cal driving force, which was constantly driving the nanowire’s motion independently
of the measured force field. Like this, the 2D force field cannot be measured directly
but only via the reconstruction based on the spatial integration of the measured force
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2 Electrostatic force fields above nanostructured surfaces

gradients [29]. A different method that permits to measure the force field directly makes
uses of a small modulation 𝛿𝑉 around the tunable sample voltage bias 𝑉. By doing so,
we directly modulate the electrostatic force, both its quadratic and linear contribution
in 𝑉. Reproducing such a resonant response measurements at different points above a
sample of interest, thus allows to directly image the electrostatic force vectors and rep-
resents an interesting complementary analysis of the force field gradients derived from
the perturbation of the nanowire eigenmodes. Naturally, this methods cannot be used
to obtain direct information on the residual surface forces, but permits to obtain a better
understanding of the electrostatic forces which have to be subtracted in order to observe
the Casimir forces.

By simultaneously measuring the optical and electrostatic responses at resonance one
can reconstruct both, force fields and force gradients. However, the electrostatic forces
are rapidly changing in orientation and strength above a sample surface, which causes
large mechanical perturbations and also makes it impossible to use them as a reference
force in a PLL. We will thus still rely on the optical force to maintain the driving fre-
quencies at resonance, but will alternate between optical and electrical driving tones to
preserve the resonant driving condition for both driving tones.

In order to probe the electrostatic force, the electrostatic bias voltage is modulated by a
small oscillating voltage so the total voltage that creates the electric field is 𝑉 (𝑡) = 𝑉𝑏𝑖𝑎𝑠+
𝛿𝑉(𝑡). If the modulation is sufficiently small, we can linearize the quadratic electrostatic
force 𝐅el around the applied bias voltage 𝑉bias as

𝐅el = 𝜶𝑉 2 + 𝜷𝑉 + 𝜸 (2.15)
⇒ 𝛿𝐅el[Ω]|𝑉bias = 2𝜶𝑉bias 𝛿𝑉[Ω] + 𝜷 𝛿𝑉[Ω]. (2.16)

Figure 2.35 illustrates the idea of this procedure.

The response of the nanowire is then directly related to the driving force via 𝛿𝐅 = 𝛿𝑉 𝜕𝐅
𝜕𝑉

=
𝝌−1𝛿𝐫, where

𝜕𝐅
𝜕𝑉

= 2𝜶𝑉bias + 𝜷

is the local dependence of the electrostatic force on the bias voltage modulation. When
using the phase-locked frequency tracking at the eigenmode frequencies Ω−, Ω+, one
obtains the following equations for the signals measured along the detection vectors
𝜷⊕,⊖:

𝛿𝐹 𝐞𝐹 ⋅ 𝐞± 𝐞± ⋅ 𝐞𝛽⊕,⊖ = −𝑖ΓΩ±𝛿𝑟±𝛽⊕,⊖ , (2.17)

where 𝛿𝑟−𝛽⊖ is the complex driven displacement amplitude measured at the first reso-
nance frequency on the difference channel of the photodiode, with the other constel-
lations referring to the second eigenmode frequency and the photodiodes sum channel
respectively. The above expression permits to reconstruct the driven electrostatic force
vector in amplitude and orientation for each measurement point and each voltage bias.
Using the signal acquired on both detection channels, one obtains the direction of each
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Fig. 2.35: Principle of the direct measurement of the electrostatic force. The small modulation
𝛿𝑉 around an offset 𝑉bias generates a time-modulated electrostatic force, which can be
directly detected by using it as a driving tone in a response measurement. Instead of
sweeping the drive frequency across the two mechanical resonances, it is possible to
only drive the nanowire at its two resonant frequencies, at the condition to ensure that
the drive frequency remains at resonance. The modulated force with amplitude 𝛿𝑉 𝜕𝐹𝜕𝑉
drives the nanowire’s oscillation. It presents a linear dependency with the bias voltage,
and changes sign accross the parabola extrema.

mode with the definition 𝜃± = arctan 𝛿𝑟±𝑧
𝛿𝑟±𝑥

7. Subsequently, one can calculate the force
vector 𝛿𝐅:

(𝛿𝐹𝑥𝛿𝐹𝑧
) = Γ

cos 𝜃− sin 𝜃+ − cos 𝜃+ sin 𝜃−
( sin 𝜃+ − sin 𝜃−
− cos 𝜃+ cos 𝜃−

)(Ω−𝛿𝑟−
Ω+𝛿𝑟+

). (2.18)

In theory, we usually assume that the measured force gradient directly derives from the
local force and vice versa, that the force field can be reconstructed from the force gradi-
ents via integration. Since it is always wise to challenge one’s assumptions experimen-
tally – especially if one is convinced of them – a simultaneous measurement of force and
force gradient would be an important evidence for this basic operation principle.

Using the modulation of the electrostatic force to measure both, force and gradients has
two disadvantages. Firstly, the electrostatic force can be perpendicular to one of the
nanowire’s modes so that the signal for this mode would be small and one would lose
the benefits of resonant detection. Secondly, a change in orientation of the electrostatic
force represents a sign change of its phase in the projective measurement, so that a

7Here, the displacement in the cartesian laboratory coordinates 𝑥, 𝑧 are obtained using the reversed
projection on the measurement channels:

(𝛿𝑟𝑥𝛿𝑟𝑧
) = 1

cos 𝛽− sin 𝛽+ − cos 𝛽+ sin 𝛽−
( sin 𝛽+ − sin 𝛽−
− cos 𝛽+ cos 𝛽−

)(𝛿𝑟𝛽−𝛿𝑟𝛽+
).
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2 Electrostatic force fields above nanostructured surfaces

resonance lock using the dual PLL technique would not work for most of the geometries
that we explore, which leads to rapidly varying electrostatic forces.

A first approach to circumvent these drawbacks consists in acquiring full response sweeps,
for which no PLL must be set up. With typically hundreds of frequencies and a mea-
surement time per frequency8 of 300ms such a measurement quickly takes minutes per
point, so that maps with 50 × 50 points spatial resolution and 25 different bias voltage
values would take several days to complete. In this section we present a technique that
performs the electrostatic response measurement as a complementary step to the above
described protocols and makes use of the strengths of PLL based, resonant detection
described above and flexible scripted measurements. The additional measurement of
the force leads to a measurement only about 2.5 times longer than a pure force gradient
measurement (caused by additional settling times when switching the driving force). For
smaller maps with about 900 spatial points one measurement takes about 10 h to 16 h, a
duration over which the experiment can be fully stabilized without suffering too much
from spatial drifts.

2.9.1 Protocol

The combined measurement of force field and force gradient had been included in the
force field cartography routine by modifying the automated protocol discussed in Sec-
tion 1.5, so that one can easily change the measurement mode using the graphical inter-
face of our scan control program. With the PLL’s locked on the nanowire’s resonance
frequencies using the optical force as pump, we add for each spatial coordinate the fol-
lowing steps:

1. Set the first value of 𝑉bias and wait Δ𝑡1 ≈ 1/𝐵𝑊PLL until the mechanical system is
adapted to the new conditions (the mechanical damping rate is always larger than
the measurement bandwidth)

2. Measure the response to the optical force: the complex amplitudes of 𝛿𝑟𝛽 at the 2
driving frequencies Ω−, Ω+, on both measurement channels ⊖,⊕

3. Fetch the measured data and calculate the sample averaged resonant frequencies
4. Disable the PLL tracking and set the mean frequencies as demodulation frequen-

cies9

5. Turn off the optical modulated force, but keep the same mean optical power in
order not to perturb the nanowire mechanical properties caused by the green laser.

8This is given by the desired resolution of the sweep which is usually smaller than the linewidth of the
resonance.

9One could also just turn off the PLL and use the last locked frequency. This has the disadvantage that
the last value would be affected by any noise in the PLL detection. The averaged frequencies were
found to be the better option and the detection sequence, first readout on the optical force, then on
the electrostatic force, was thus fixed.
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2.9 Comparison of force and force gradient measurement

6. Change to the electrostatic driving force with an adapted modulation strength 𝛿𝑉
based on the previouslymeasured point or initial parameters. Since the driven elec-
trostatic force varies with the sample position, one needs to adapt the electric drive
strength. We adapted the two driving amplitudes differently, since the electrostatic
force rapidly changes in space and thus in its projection on both eigenmodes.

7. Wait Δ𝑡2 ≈ 1/Γm for the system to respond to the new electric drives (2 driving
frequencies simultaneously) and measure the resonant driven response to the op-
tical force. In practice, we used a set of three driving tones on each mechanical
modes, at frequencies Ω±, Ω± ± Δ, with Δ/2𝜋 = 20Hz. This leads to a combina-
tion of 12 demodulated signals that were recorded on two different ZI-HF2 lock
ins. Such multiple measurements per peak was used to detect variations in the
mechanical quality factors (that cannot be detected using a single driving tone), as
well as errors in the resonant frequency driving conditions.

8. Switch off the electric driving forces and turn on the optical driving force
9. Wait Δ𝑡2 ≈ 1/Γm for the system to respond to the new drive, and enable the two

PLLs
10. Use the results to adjust the amplitude 𝛿𝑉 of the electrostatic drive and repeat for

the remaining values of 𝑉bias, then move to next spatial coordinate and start over

Figure 2.36 illustrates this procedure.

Set 𝑉bias
Measure 1
Optical drive

PLL off
Set 𝑓

Switch
drive

Measure 2
Electrostatic

Switch
drive PLL on

calc mean

Δ𝑡1 Δ𝑡2 Δ𝑡2

fetch
results send

𝑓mean
Resonance is tracked with PLL
Frequency is fixed

Adjusted
modulation amplitudes

Fig. 2.36: Diagramatic representation of the measurement protocol for the combined force and
force gradient measurement for a single spatial point and a single voltage. The ele-
ment colors indicate if the PLL frequency lock is activated (blue) or disactivated and
the demodulation frequencies are fixed (orange). The delay time Δ𝑡1 is used to let the
system adapt to the new force gradient matrix created with a new 𝑉bias and the time Δ𝑡2
ensures that the measured response is that of the present driving force. The electro-
static drive amplitude is calculated based on the measurement results at the previous
position, assuming a smooth and sufficiently slow spatial variation of the force field.

The measurements were performed with a nanowire presenting a rather large frequency
splitting, which helps preventing the eigenmode basis from rotating under the action of a
too strong external optical or electrostatic force field. During the measurement, the data
is acquired in a buffered mode: by ramping up and down the bias voltage. As mentioned
earlier, we conduct a bi-directional voltage scan in order to detect possible hysteresis
effects possibly caused by a too slow PLL tracking and to ensure that no abrupt jumps
occur in the applied voltage.
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2 Electrostatic force fields above nanostructured surfaces

We will now dissect the combined force/gradient measurement at a given spatial point.
Figure 2.37 shows the data for one resonant drive acquired on a single measurement
channel (here 𝛽⊖) for one voltage scan. The top panel 2.37a presents the measured fre-
quency of the first mode that is tracked with one PLL. The horizontal axis corresponds
to a (uncalibrated) timeline with the labels indicating the currently applied 𝑉bias that
increases towards the center of the plot and then decreased in the second half. The
frequency curve 𝑓1 shows a parabolic dependence of 𝑉bias for each scan direction that
reflects the dependence of the force field gradients 𝑔𝑖𝑗(𝑉bias) on the bias voltage. The two
wide plateaus in the frequency curve correspond to the values measured during opti-
cal and electrostatic drives that are indicated by blue and orange dots respectively. The
frequency values are identical since the mean frequency measured via the PLL lock on
the response to the optical drive is used as demodulation frequency for the electrostatic
measurement.

Similarly, the panel 2.37b displays the detected amplitude of the first mode projected on
the measurement vector 𝛽⊖. Each line contains the alternating response to the optical
and electrostatic force. The response to the constant optical drive is, in the presented
case, nearly constant, which indicates that at this particular measurement point no sig-
nificant rotation of the first mode occurs, as expected from the large frequency split of
the employed nanowire. Opposed to that, the response to the electrostatic force (or-
ange dots) varies strongly with the applied bias voltage, showing a linear decrease for
increasing bias voltage (and the reversed behaviour in the backward voltage scan). This
lineshape corresponds to the affine relation expected from Figure 2.9 with a slope that is
determined by the prefactor 2𝜶 𝛿𝑉 projected on the eigenmode direction and along the
measurement vector orientation. The amplitude of the measured signal is directly pro-
portional to the applied force in the direction of the mode (here mode 1). The phase of
the projected displacement in 2.37c is stable for the data obtained with the optical drive
that is locked by the PLL and varying for the response to the electric signal that is more
susceptible to delays caused by electrostatic retardations and by phase inversion due to
a orientation change of the total driven force.

In addition to the demodulated signals at resonance, we also modulate at two sidebands
at±20Hz on each side of the resonant tones. Thismulti-frequencymeasurement permits
to measure delayed effects which could change the damping coefficient of the nanowire.
Furthermore, an imperfect lock of the PLL can easily be corrected for based on the phase
difference between the three measurement tones around each mechanical resonance.
Since we need to demodulate 6 frequencies on 2 measurement channels, this measure-
ment requires 12 demodulators that are read out simultaneously at each measurement
step.

Analogously to the curves in Figure 2.37, the response signals of both modes on both
readout channels are acquired and tangled into two separate sets for the optical and
electrostatic drive after the measurement. Using the dataset of the electrostatic drive,
one can obtain the electrostatic force field and from the optical drive the electrostatic

126



2.9 Comparison of force and force gradient measurement

60

65

70

75

f 
/ 

Hz

+1.8500000000e4

Increasing V Decreasing V
a Frequency mode 1

0.0

0.1

0.2

0.3

 /
 m

V 

b Amplitude mode 1
F
F

-0.40 -0.23 -0.06 0.11 0.29 -0.40-0.23-0.060.110.29

V  / V

-2

0

2
c

Phase mode 1

0 10 20 30 40 50 60

Measurement sequence

Fig. 2.37: Simultaneousmeasurement of electrostatic force and gradient for a single spatial point.
In (a), the measured frequency of the first mode is shown as the applied bias voltage
is swept from its minimum (−0.4 V) to its maximum value (0.3 V). Here the x-axis repre-
sens a timeline where the voltage is changed periodically and a single point in voltage
corresponds to a pair of measured points (blue and orange) since the gradient and the
force measurement are performed alternately, with a change of the driving force from
optical to electric between blue and orange points (and back between orange and blue)
as presented in figure 2.36. The grey vertical line represents the change of the sweep
direction from increasing 𝑉bias (left) to decreasing (right). (b) plots the measured dis-
placement amplitude of the first mode projected onto the ⊖measurement channel, and
(c) the phase. The stable value for the phase on the optical drive proves that the PLL
lock operates consistently. During the measurement sequence, 12 similar signals were
acquired simultaneously (6 frequencies and 2 measurement channels), while the dy-
namical measurements of the measurement vectors was also activated and measured
at each line.

force field gradients. The following section presents the exemplary comparison of both
results, realized in a horizontal scan above the rounded electrostatic tip.
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2 Electrostatic force fields above nanostructured surfaces

2.9.2 Force/Gradient above an electrostatic tip

The central force field of an electrostatic tip is a good test case for the comparison of
simultaneously measured force and gradient. The results discussed in this section were
obtained from a map with 30 × 35 spatial points taken around 150 nm above a metallized
tip, using the first mode family of nanowire 2 (compare box 2.b). At each point, we
follow the procedure described above, which consists in scanning the bias voltage from
−0.25 V to 0.05 V in 15 steps (and back), leading to 31500 individual force and gradient
measurements, each acquiring the data of twelve lock in measurements10.

Figure 2.38 presents the results obtained in one single position. Here, the modulated
forces 𝐹𝑥, 𝐹𝑧 are obtained from the amplitude of the nanowire displacement, while the
divergence follows directly from its frequency shift. One can clearly identify the linear
slope of the force with 𝐅 = 2𝜶𝛿𝑉𝑉𝑏𝑖𝑎𝑠 + 𝜷𝛿𝑉 and the quadratic shape of the force diver-
gence div𝐅 = div𝜶𝑉 2 + div𝜷𝑉 + div𝜸. Notably, the forces do not share a common zero
crossing, nor falls the extremum of the gradient parabola together with the zero crossing
of one of the forces. This is expected behaviour as the vectorial forces depend differently
on the bias voltage and on the quadratic and linear contributions than the scalar force
divergence.

Fig. 2.38: The measured force (a) and force divergence (b) at a single point of the 2D horizontal
map (the middle point in the gray shaded area of Figure 2.40a). The vertical lines mark
the point of zero bias voltage (solid black line), and the zero force, respectively diver-
gence extremum (colored dotted lines), which do not fall together. The data has been
cleaned by excluding points at which the PLL did not track the peaks reliably due to
a reduction in the signal strength possibly caused by an unfavorable projection of the
driving force on the eigenmodes or by a problem in the PLL setpoint.

10We use three frequencies per peak, the central frequency plus a sideband of ±20Hz in order to detect
changes in the quality factor. This makes for six lock-in measurements per measurement channel.
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2.9 Comparison of force and force gradient measurement

From the measured driven force at each spatial point, we have a direct access to the
driven force field at each voltage. The driven force field obtained for three different bias
voltages is shown in Figure 2.39. For the smaller and larger voltages, the central nature
of the force field is evident with all flashes pointing away from (towards) the electrostatic
tip for a small (large) voltage, respectively. This again shows the linear shape of 𝐹𝑥,𝑧(𝑉𝑏𝑖𝑎𝑠)
as in Figure 2.38, where the data for a point in the upper left quadrant (𝐹𝑥 has a positive,
𝐹𝑧 a negative slope) is shown.

Fig. 2.39: Vector plot of the force field measured at three different voltages above the electro-
static tip. The force is obtained via the modulation of the electrostatic field. The col-
ored lines indicate the orientation of the nanowire eigenmodes (blue: mode 1, red:
mode 2), and their crossing the position of the electrostatic tip (minimum divergence
point). For the smallest bias voltage (a), the field’s divergence is positive (all arrows are
pointing away from the tip’s center), while at the largest voltage (c) the inverse is true.
The medium voltage (b) corresponds to minimal force, where one is not dominated by
the quadratic contribution of the electrostatic force.

In order to eliminate bad data points, we clean the acquired data with a criterion based
on the phase deviation which indicates failure of the PLL lock. This typically affects the
points measured at large bias voltages at which the strong local force becomes compara-
ble to the nanowire stiffness and causes large frequency shifts. As shown in Figure 2.38,
we then fit the driven forces at each point with a linear relation and thus extract the lin-
ear term 𝛿𝐹𝑥,𝑧/𝛿𝑉/𝑉 and the residual term 𝛿𝐹𝑥,𝑧/𝛿𝑉. Figure 2.40a presents both terms as
vector fields while plots of the measured driven force contributions are shown in 2.40b.
Both terms globally show the same characteristics, with the linear term being about ten
times larger at 𝑉𝑏𝑖𝑎𝑠 = 1V. In the presentation as vector fields, one can observe that the
central point of the arrow plot is slightly different (in the linear contribution it is shifted
slightly to the left). Such a difference in spatial shapes is the origin of the non standard
force images that can be obtained at a single voltage (as shown in Figure 2.8)

The combinedmeasurement of force and force gradient permits us to validate the equiva-
lence of bothmeasurements and presents a confirmation of the standard approachwhich
measures the force gradients in order to reconstruct the local force field. To compare
the divergence measurements and the force measurements, we now compute the local

129



2 Electrostatic force fields above nanostructured surfaces

Fig. 2.40: The linear and quadratic contributions obtained with a fit to each local measurement
provide the force fields shown in (a). The shaded area illustrates the point of the ex-
ample in Figure 2.41. Using the nearest neighbours to fit the local slope, one obtains
the local forces 𝛿𝐹𝑥,𝑧/𝛿𝑉 (b).

derivative of the measured driven force fields. To do so, we take into account the nearest
surrounding points. This provides a 3 × 3 map, where at each point we determine the
linear slope 𝛿𝐹𝑥,𝑧/𝑉𝑏𝑖𝑎𝑠 and the residual offset 𝛿𝐹𝑥,𝑧 of the driven force contribution by a
linear fit. Taking the grey shaded area in Figure 2.40 as example, one obtains the local
force field shown in Figure 2.41a. We can then fit the linear and residual components at
nine points for each force direction with a plane 𝑓𝑥,𝑧 = 𝑎1𝑥 + 𝑎2𝑧 + 𝑏, where 𝑎1,2 are the
local gradients along x and z (see Figure 2.41b and 2.41c) of the driven force field.

Note, that due to the linearization 𝛿𝐅 = 2𝜶𝛿𝑉 𝑉 + 𝜷𝛿𝑉, the linear term that we derive
with this method is twice the quadratic force gradient obtained from the frequency based
measurement, while the residual term from the above method directly compares to the
linear force gradient from the frequency based measurement. The gradients 𝜕𝑖𝐹𝑗 (𝑖, 𝑗 =
𝑥, 𝑧) obtained in Figure 2.41 are:

(−1.46 −0.40
−0.72 −1.32) µNm−1 V−2

for the quadratic contribution, so that the half divergence of the quadratic term is:
0.5(𝑑𝑥𝐹𝑥 + 𝑓 𝑧𝐹𝑧) = −1.39 µNm−1 V−2, which is in good agreement with the divergence
obtained from the parabola fit of Figure 2.38: div𝛼 = −1.32 µNm−1 V−2. The same agree-
ment is obtained on the divergence of the linear term div𝜷 (−0.34 µNm−1 V−1) at that
given position.
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2.9 Comparison of force and force gradient measurement

Fig. 2.41: In order to calculate the local gradient of a two dimensional forcemap, we take themea-
surements at the nearest neighbours into account. This gives an ensemble of 9 mea-
surements (a), for which we individually perform a line fit to obtain the linear (slope)
and residual (offset) contribution. We then plot the fitted linear (b) and residual (c)
force in 3D and fit each set of nine points with a plane 𝑓(𝑥, 𝑧) = 𝑎1𝑥 + 𝑎2𝑧 + 𝑐. The slope
of this plane in x (𝑎1) and z (𝑎2) direction are the local force field gradients. The insets
in (b,c) are an image of the vector flow derived from the fits of the bare measurements
shown in (a). The central point of (a) is identical to the measurement shown in Fig-
ure 2.38.

Figure 2.42 presents the complete map of the linear and residual force gradients calcu-
lated via the driven force. In both cased 𝜕𝑥𝐹𝑧 ≈ 𝜕𝑧𝐹𝑥, which demonstrates that the mea-
sured electrostatic force field is conservative. We also observe the same central shape of
the linear and residual contributions. We note that the sign of the maps in both cases has
not necessarily to agree since the sign of the residual force depends largely on the di-
rection of the parasitic field 𝐸𝑝 which can be inversed when the workfunction difference
between nanowire and sample is different. However, in the present case, both terms
present a trapping force above the tip.

In Figure 2.43, we compare the force divergence from bothmeasurements. Themeasured
𝛼 in both cases agrees in amplitude and size, with the only difference of a higher noise
floor on the amplitude based force measurement. We expect this to be the case since the
amplitude measurement is limited by the determination of the detection vector and is
thus affected much more by noise than the frequency measurement.

The linear term 𝛽 of the force divergence is compared in Figure 2.44 and in plot 2.43c.
Again, both datasets match in shape and amplitudes, with noisier results from the force
measurement (2.44b).

This proof of principlemeasurement thus represents amethod to validate the entiremea-
surement chain. For what concerns the electrostatic force measurements, it represents a
powerful tool to determine the quadratic and linear contributions of the force on the bias
voltage. The greater knowledge acquired on those contributions will, in future, help to
properly substract them to observe small residual forces such as the Casimir forces.
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2 Electrostatic force fields above nanostructured surfaces

Fig. 2.42: The four force gradients
𝜕 (𝛿𝐹𝑥,𝑧/𝛿𝑉)

𝜕𝑥,𝑧 of the linear (left) and residual (right) driven force
components denoted by the indices x and z (e.g. xz for 𝜕𝑧(𝛿𝐹𝑥/𝛿𝑉)) are shown for
the results from the direct force measurement. The linear term gives access to 𝛼 (the
quadratic term from the frequency based measurement) and the residual term com-
prises the linear term of the frequency based measurement.

Fig. 2.43: The quadratic part 𝛼 of the force divergence is obtained from the linearized force (with
its slope as 2𝛼) (a) and compared to the frequency based measurement of the diver-
gence (b). In (c), line cuts through both maps are compared, showing a high degree of
agreement. The green curve shows the linear contribution to the divergence 𝛽, as a
result from a cut through the two maps in Figure 2.44. The cross marks the orientation
of first (blue) and second (red) nanowire eigenmodes

132
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Fig. 2.44: The linear term of the force divergence is compared for the two measurements: The
direct, amplitude based force measurement (a) and the frequency based measurement
of the divergence (b). Both measurements give a linear force gradient in the order of
400nNm−1 V−1 at the tip’s central position.
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While the electrostatic forces that have been the subject of Chapter 2 are dominant for
nanowire-sample separations of hundred nanometers and more, proximity forces start to
play a role at smaller distances. The measurement of proximity forces, in particular the
Casimir force which originates from vacuum field fluctuations, is the motivation of the
present chapter, as well as the description of the experimental limitations which originate
from residual electrostatic fields. The latter should be understood and if possible compen-
sated as to operate in a true electromagnetic vacuum. The chapter starts with a brief intro-
duction to proximity forces and the Casimir force in Section 3.1.

In Section 3.2 we adapt the discussion of the Maxwell stress tensor from Section 2.1, in-
troducing the fluctuating fields as origin of the Casimir force. The static, residual electric
fields are responsible for two contributions in the force field, linear and independent on the
sample bias voltage. We introduce a method that allows for compensating, under certain
assumptions, their linear contribution so that the remaining force field can be restricted to
the Casimir force field and to the quadratic contribution of the residual electrostatic fields.
The linear contribution of the parasitic surface fields are responsible for a large scattering
in the electrostatic parabola extrema, which prevents a proper definition of the sample work
function, around which the effect of parasitic fields should be evaluated. We introduced a
statistical analysis, which allows to retrieve a mean 𝑉0 value around which the effects of the
surface patches can be developed. This method permits to suppress the linear contributions
arising from the parasitic fields, so that one can determine the residual force, which do not
depend on the bias voltage. It then contains the Casimir forces, as well as the quadratic
contributions from the parasitic fields.

In order to compare the extracted residual force to the expected Casimir force, one needs to
estimate the strength of the Casimir force using numeric simulation techniques, which have
been adapted in the frame of this work. Section 3.3 picks up the simulations performed in
order to better understand the characteristics of the Casimir force in such a non-analytical
geometry. We investigate the effects of different geometries and materials. For the geometry
of a hole in ametallic surface beneath a SiC nanowire, we obtain estimations for the Casimir
force field gradients in the range of tens of aN nm−1, which is within the detection range of
the nanowires.

In Section 3.4, we apply the developed method to extract the residual force from a measure-
ment for the geometry of two crossing trenches, which comes with a reduced dimensionality
compared to a measurement above a circular hole. While the magnitude of the thus mea-
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sured residual forces are in the same order as the predicted Casimir force and show similar
features, they present a different distance dependency. We trace this back to the limitations
of the method to extract the residual force, as it cannot remove terms that are quadratic in
the parasitic residual fields.

We then finish the chapter by presenting a technique based on the employment of two addi-
tional pairs of electrodes positioned in the sample plane, which would allow compensating
the parasitic fields along the three directions in space, and hence isolating the Casimir con-
tribution from the parasitic field contribution (Section 3.5). This technique will be subject
to future studies and is already tested in our group.
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5

3.1 Beyond electrostatics – Proximity forces

In the previous chapter, we have considered electrostatic forces between two objects –
the nanowire and a nano-structured electrode – which are at a distance of a fewmicrom-
eters or less. At shorter lengthscale, other effects than the electrostatic force, which is
long ranging in comparison to those proximity effects, come into play. Contrary to the
electrostatic effects discussed above, those forces originate from dynamical interactions,
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3.1 Beyond electrostatics – Proximity forces

which can be understood either from a material point of view: an interaction between
fluctuating dipoles, or from a field point of view: the action of fluctuating electric fields
𝛿𝐸. This class of interactions can be divided into three historically grown groups, the
Van der Waals force, the Casimir-Polder force and the Casimir force.

The Van der Waals effect is a combination of the interaction between different dipole
types (permanent or induced) in matter. The combined effect of all interactions (perma-
nent with induced, permanent with permanent, … ) is the resulting Van der Waals force.
Figure 3.1a illustrates the example between a fluctuating permanent dipole 𝑝1 that in-
duces a polarization 𝑝2 in a second particle which causes an interaction between both
particles.

Fig. 3.1: Illustration of the different types of dipole fluctuation induced forces: Van der Waals
force (a), Casimir-Polder force (b) and the Casimir force (c). Taken from [98].

In 1948, Hendrik Casimir and Dirk Polder integrated a delay in this interaction, origi-
nating from the finite speed of light in the description of the Van der Waals force [15].
When solving the problem for a neutral atom in front of a flat metallic mirror, and for
two neutral atoms, they found that the delay causes the force to decay more rapidly
at large distances than the London-Van der Waals description suggested. This adds a
monotonously decreasing prefactor to the static Van der Waals force. The interaction
between atoms and neutral objects is therefore often referenced to as Casimir-Polder
force, however, the physical mechanism – the interaction between fluctuating dipoles –
is the same. Figure 3.1b schematically illustrates how delayed effects between dipoles
come into play.

In the same year, Casimir also first presented his calculation for an attractive force be-
tween two parallel, perfectly conducting plates [16]:

𝐹 = ℏ𝑐 𝜋
2

240
1
𝑎4
, (3.1)

where 𝑎 is the distance between the plates. While Casimir based his calculations on the
change in zero point energy when one introduces the metallic plates in vacuum, more
general approaches [32, 66] are based on the fluctuation of the vacuum field. The Casimir
force is non-additive and one needs to take into account the combined fluctuation of the
dipoles contained in the macroscopic bodies (Figure 3.1c).
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In order to precisely predict the outcome of measurements of the Casimir force, more
recent works took into account the properties of the real mirrors [40, 63, 96]. These are
in particular a finite temperature and the optical properties of the metallic plates which
deviate significantly from a perfect metal descriptions at the part of the spectrum which
plays a dominant role in the calculation of the Casimir force. With deviations from the
theory for ideal mirrors due to a realistic Drude model of the materials, Lambrecht and
Reynaud achieved to reduce the deviation between theoretic prediction and experimen-
tal results to about 10% [63]. The correct modelling of the material parameters is thus a
critical and complex problem in the calculation of Casimir forces, and a correct theoret-
ical model requires experimental data to be tested against, which, however, is rare and
difficult to be obtained.

Due to the intrinsic complexity of the calculation of the Casimir force, the original ge-
ometry of Casimir, and a few – highly symmetric – other geometries, still represent the
standard configurations of Casimir experiments. Already a few years after its prediction,
the Casimir force has been detected and other experiments followed up to the current
date [26]. However, the increasing calculation efficiency of modern computers and new
theoretical approaches [94, 95], allow to take a look at problems without analytic solu-
tions. In particular, vertically repulsive Casimir forces were predicted to be experienced
by a finite needle, positioned above a circular hole drilled in a metallic plane. The magni-
tude of the predicted effect is significantly smaller than the forcesmeasured in traditional
experiments, and has not been detected for the moment. The geometrical analogy with
our experiment lead us to investigate the possibility to detect Casimir forces above a
hole.

3.1.1 Measurements of Casimir forces on the microscale

The traditional Casimir pressure between two parallel plates at a distance of 1 µm is of
1.3 nNmm−2, a force well detectable with modern force measurement techniques. Due
to the easier alignment, measurements often use a spherical surface with large radius
compared to the object separation, that in theory can be approximated by a superposi-
tion of flat rings with successively increasing diameter – the so called proximity force
approximation (PFA) [10] –, as illustrated in Figure 3.2a from reference [50].

For these measurements, a spherical, micrometer sized particle which is attached to a
vibrating force probe such as an AFM cantilever [50, 79] or a torsion pendulum [54], is
approached to a surface and the Casimir force gradient along the oscillator trajectory is
measured up to a few percent accuracy via the change of the probe’s frequency. These
measurements of the gradients of the uniform uniaxial Casimir force permitted exploring
the effect of surface patches [38, 39, 58], surface structuration [54] (see example in Fig-
ure 3.2b), or the influence of the dielectric surrounding of the bodies [55, 79, 106], which
allows repulsive Casimir interactions. However, the requirement of a perfect alignment
and the small force per surface area has made it difficult to investigate Casimir forces on
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a smaller scale. With the growing field of micro- and nano-electro-mechanical systems
(MEMS / NEMS), the Casimir force will become important when systemsminiaturize [98]
as the Casimir force is one origin of irreversible adhesion. First experiments [110, 119]
already realized on-chip Casimir experiments that exploit the high accuracy of modern
nanofabrication (Figure 3.2c). This technique has the advantage that one can measure a
large ensemble of the same repeating nanostructures at the same time, thus dealing with
higher absolute forces.

Fig. 3.2: The Casimir force between a plate and a sphere can be traced back to the force between
two parallel plates via the proximity force approximation (PFA), and measured via a vi-
brating cantilever whose position is read optically (a) (from Harris et al. [50]). Similar
experiments with structured surfaces have been conducted by Intravaia et al., using a
more microscopic approach (b) (from [54]). Recently, nanomechanical on-chip experi-
ments have been realized to measure non-monotonic Casimir forces (c) (from Tang et
al. [110]). Here, the repetition of identical nanostructures that cause a certain Casimir
interaction allows to enhance the total measured force.

In this chapter, we will discuss how two-dimensional nanowire force field nanoscopy
can be used to explore proximity effects above nanostructured surfaces. Dissimilar to
themeasurements mentioned above, the horizontal force field sensing techniques, devel-
opped with the nanowire, allows to measure the lateral Casimir force on a small body,
something that has only been done for large, structured parallel plates [19, 34] or for
larger cantilevers at separations where the PFA is still valid (the separation is small com-
pared to the radius of the sphere), in order to investigate the effect of non-contact friction
in AFM [20, 109]. Additionally, the employment of small probes, such as the nanowire,
permits to investigate novel forms of the Casimir effect like a repulsive Casimir force [64,
65, 76, 112], that has been modelled to be in the order of several aN for systems of com-
parable size to our nanowire (see below). The high sensitivity of the nanowire makes
it an ideal candidate for first measurements of Casimir forces on the nanoscale. Also,
the quantitative evaluation of the Casimir forces requires to properly take into account
the physics of the electrostatic patches. This measurement is however rarely done with
the same probe as for the one employed for the Casimir measurements (in particular be-
cause one wants to access patch sizes far smaller than the sphere radius). Interestingly,
the nanowire can in principle also serve to explore the structuration of the electrostatic
patches, as illustrated in the above chapter.
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3 Proximity and Casimir forces

3.2 Detecting the Casimir force with a nanowire

The measurement of Casimir forces requires a sensitive force detection whose principles
we layed out in the previous sections. Furthermore, the small magnitude of the Casimir
force compared to the electrostatic force requires a good knowledge of the involved
materials. We have already mentioned the presence of electrostatic patches in the last
chapter, which makes that the nanowire is always surrounded by a residual electric field
so that the measurement conditions deviate from the vacuum field required to measure
only the Casimir forces. Here, we will first present a basic interpretation of the contribu-
tions of fluctuating fields to the electrostatic Maxwell Tensor introduced in Section 2.1,
which permits to formalize the nanowire based Casimir measurement. Then, we will
discuss an analysis technique accounting for the linear contribution arising from the
surface patches. We also briefly discuss the numerical recipes used for simulation of the
Casimir force above nanostructures.

3.2.1 The effect of fluctuating field in the Maxwell formalism

In Section 2.1, we have introduced theMaxwell stress tensor to calculate the electrostatic
force acting on a nanowire above a structured surface. For the purely electrostatic case,
the field around the nanowire’s extremity is a sum of the field 𝐄𝑉, which is controlled by
the electrode, and parasitic residual fields 𝐄p, caused by effects like electrostatic patches
or charges, which do not depend on the bias voltage. In order to take the fluctuating
fields that cause the proximity interaction into account, we add a fluctuating field 𝛿𝐄,
which has a zero time-averaged value, but a non-zero rms value and is the origin of the
Casimir force:

𝐄 = 𝐄𝑉 + 𝐄p + 𝛿𝐄. (3.2)

The investigation of the fields close to the nanowire’s tip in box 2.a has shown that the
force on a thin nanowire is solely caused by the fields at the bottom integration surface.
There, the stress tensor component that gives the force in the horizontal direction is
given by 𝑇𝑥𝑦 = −𝜀0𝐸𝑥𝐸𝑦 which, similar to (2.11), yields:

𝑇𝑥𝑦 = −𝜀0(𝐸𝑉 ,𝑥 + 𝐸p,𝑥 + 𝛿𝐸𝑥)(𝐸𝑉 ,𝑦 + 𝐸p,𝑦 + 𝛿𝐸𝑦) (3.3)

Since the force is the integral of the time averaged stress tensor, the first order contri-
butions in 𝛿𝐸 vanish and only the second order fluctuating term 𝛿𝐸𝑥 𝛿𝐸𝑦 remains, so we
obtain for the force:

𝐹𝑥 ∝ 𝐸𝑉 ,𝑥𝐸𝑉 ,𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝𝑉 2

bias

+𝐸𝑉 ,𝑥𝐸p,𝑦 + 𝐸𝑉 ,𝑦𝐸p,𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝𝑉bias

+𝐸p,𝑥𝐸p,𝑦 + ⟨𝛿𝐸𝑥𝛿𝐸𝑦⟩. (3.4)
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3.2 Detecting the Casimir force with a nanowire

The quadratic electrostatic term remains again unchanged, as well as the linear term,
but the fluctuating forces add a new contribution 𝜂 to the offset force:

𝐹𝑥 = 𝛼𝑉 2
bias + 𝜆𝑉bias + 𝛾 + 𝜂. (3.5)

We retrieve the same parabolic form for the electrostatic force as before, but now with
an offset caused by the linear contribution from the parasitic residual fields plus the
quadratic contribution from the fluctuating fields. Figure 3.3 illustrates this shift and the
corresponding terms at play.

𝑉0

𝛾 + 𝜂

Quadratic

electrostatic

force
(𝛼)

Linear
electrostatic force (𝜆)

Background (𝜂)

𝛼𝑉 2𝑐 + 𝜆𝑉
𝑐 + 𝛾

M
easured

Parabola
𝑉𝑐

F

Fig. 3.3: A force measurement at a fixed position in an ideal environment without stray fields
would give a force parabola 𝐹(𝑉) that is only determined by the quadratic electrostatic
coefficient 𝛼 (blue), whereas parasitic residual fields cause a linear contribution (orange),
which creates a shift of the parabola extrema, as well as a modification of the force
extremum force. Field fluctuations cause a constant, voltage independent, offset 𝜂 so
that the measured parabola (black) is further displaced vertically. The grey parabola
does only show the quadratic and linear contributions. It has the same apex position
𝑉0 as the black curve since the background force does not add a horizontal shift of the
parabola.

3.2.2 Extraction of the Casimir contribution

In order to measure the Casimir force, one would ideally measure the voltage depen-
dent quadratic and linear electrostatic forces to try to isolate the voltage independent
Casimir effect. From a voltage varying measurement one can infer the terms 𝛼 and 𝜆
without ambiguity, but it is not possible to compensate for the quadratic contribution
from the parasitic residual fields, since the products of the fields 𝐸𝑉 ,𝑥/𝑦𝐸p,𝑦/𝑥 and 𝐸p,𝑥𝐸p,𝑦
have a different spatial dependence. To suppress the residual electrostatic fields, we will
propose, at the end of this chapter, a method based on the use of external electrodes
to compensate the residual horizontal electric field contributions. We believe that, with
such a method we could reach a better estimation of the Casimir forces. In the following,
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3 Proximity and Casimir forces

we will present a method to partially compensate for the linear voltage contribution in
the force, caused by the parasitic fields.

With force gradients expected at the level of a few tens of aN nm−1 (see below), the
Casimir force is much smaller than the contribution of the electrostatic fields fN nm−1,
which are maximal when the nanowire is positioned close to the surface. Above an
unstructured, flat area, surface patches present the main source of force field variability
above the surface, leading to spatially dependent terms 𝜆(𝐫) and 𝛾 (𝐫). In presence of a
Casimir term 𝜂 whose transverse spatial variations are supposed to be small compared
to that of the linear terms, which are caused by statistically distributed variations of
the surface fields, the parabolas will, on average over the area, have a common crossing
point. If the statistic is sufficient, such an averaging process should in principle lead us to
an estimate of the averageworkfunction difference between the twomaterials. From this
point we can infer a statistical value for 𝑉0, which can be used in the subsequent analysis
to suppress the linear contributions of the surface terms for the rest of the map. It is
important to note that this 𝑉0 does not represent the workfunction difference as one would
measure in KPFM, due to the intrinsic difference to the horizontal force measurement.

𝖵𝟢

F

V

Fig. 3.4: The measured force parabolas on a flat surface, or at sufficient distance from the surface
show little to no variations in the quadratic term 𝛼 and without the presence of residual
constant electrostatic fields one would measure the blue parabola whose vertical offset
is only due to the Casimir force. The voltage independent residual fields 𝐸𝑝 cause a
linear contribution due to the product of the fields 𝐸𝑉𝐸𝑝 and a constant term 𝐸2𝑝 that
adds an additional offset to the Casimir contribution 𝜂. When the local workfunction on
the surface fluctuates around a mean value, the measured parabolas (grey, orange) all
cross at a common, mean 𝑉0.

The above principle is based on the fact that for a given 𝛼, variations of the parasitic fields
will lead to a displaced parabola, but the force at the offset potential 𝑉0, will remain un-
changed (see Figure 3.4). Even if the presence of the quadratic parasitic terms (𝐸res,𝑥𝐸res,𝑦)
may falsify this assertion, they contribute generally only weakly, and finding the “sta-
ble” point in the force divergence measurements thus represents a reasonable method
to estimate 𝑉0. At this potential, the variations of the force divergence can be supposed
to be caused only by the terms 𝐸res,𝑥𝐸res,𝑦 + ⟨𝛿𝐸𝑥𝛿𝐸𝑦⟩. The principle of the estimation of
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3.2 Detecting the Casimir force with a nanowire

𝑉0, and of the linear contribution due to surface fields is illustrated in Figure 3.5, using
experimental data.

To obtain the common crossing from the measurements, we fit all the curves div𝐹(𝑉bias)
acquired at varying positions, and create a 2D histogram of all fitted parabolas measured
on a reference area (i.e. far away from the surface structuration), such as shown as Fig-
ure 3.5. We then determine the point where most parabolas overlap by fitting a Gaussian
distribution for each line 𝑃𝑉𝑖(div𝐹) at each voltage 𝑉𝑖. The common crossing is found at
the voltage 𝑉bias = 𝑉0, where the spreading of the fitted Gaussian is the smallest.
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Fig. 3.5: In order to find the common crossing of the force divergence parabolas in the voltage
plane, we create a histogram based on the fitted parabolas (a,b). In (a), we take only
neutral points, which means points where the nanowire is far from the test structure (as
indicated by the red shaded area in the inset), into account. In (b), the area close to
the cross is investigated. In the 2D maps, presented in (e,f) the quadratic term 𝛼 (e) is
relatively constant in the neutral region but the parabolas are shifted by a varying linear
term 𝛽 (f). The common crossing is then determined by fitting a Gaussian distribution to
each vertical line of the histogram (the orange line marks the center of the distribution,
the dotted lines show the standard deviation 𝜎 which is also shown in the plots (c,d))
and determining the point where this distribution has the smallest width (orange cross),
which gives the point of common crossing.
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3 Proximity and Casimir forces

We have found that, for all measurements of better quality (long averaging times, small
error in the frequency estimations, …), the parabolas tend indeed to have a common
crossing point, and the assumption of statistically distributed variations of the linear
term is therefore plausible. Also, after subtraction of the linear contribution of the para-
sitic fields, the remaining Casimir contribution 𝜂 is in the order of magnitude we would
expect for the geometries we work with. In the following section we discuss numeric
tools used to estimate the Casimir force we can expect and will then present some of the
maps of the residual force measured above nanostructures.

3.3 Simulating the Casimir force

3.3.1 Methodology

Since the analytic calculation of the Casimir force is only possible in highly symmetric
geometries with nearly ideal material properties, we can not rely on analytic methods
to estimate the Casimir force experienced by a nanowire above a structured sample.
However, with the increase of nanofabrication craftmanship in the last decades, the de-
mand for numeric methods to calculate the Casimir force increased as well. Due to the
similarity between fluctuation induced effects and classical electromagnetic (EM) prob-
lems, it has been possible to adapt standard computation methods for EM to calculate
the Casimir force for more complex geometries and materials (see Dalvit et al. [26, Chapter
6]). All methods have in common, that one needs to integrate the Maxwell stress ten-
sor on a surface surrounding the nanowire, as introduced above, but by integrating the
contribution of all frequencies 𝜔, corresponding to a sum of the vacuum energy for all
possible modes. We remember that the Stress tensor (in Minkowski representation) is
defined as [26, 27]:

⟨𝑇𝑖𝑗(𝐫)⟩𝜔 = 𝜀(𝐫, 𝜔)[⟨𝐸𝑖(𝐫)𝐸𝑗(𝐫)⟩𝜔 − 𝛿𝑖𝑗/2∑
𝑘
⟨𝐸𝑘(𝐫)2⟩]

+ 𝜇(𝐫, 𝜔)[⟨𝐻𝑖(𝐫)𝐻𝑗(𝐫)⟩𝜔 − 𝛿𝑖𝑗/2∑
𝑘
⟨𝐻𝑘(𝐫)2⟩]

(3.6)

The field correlations are given by theGreen’s function𝒢(𝐫, 𝐫′, 𝜔) that comprisesmaterial
and geometric properties [26, 67]:

⟨𝐸𝑖(𝐫)𝐸𝑗(𝐫)⟩𝜔 = ℏ𝜔2

𝜋
ℑ𝒢𝑖𝑗(𝜔; 𝐫, 𝐫′) coth(

ℏ𝜔
2𝑘𝐵𝑇

), (3.7)

for 𝑇 > 0, and similar for the magnetic field with the corresponding magnetic Green’s
function. Here, the fluctuation-dissipation theorem relates fields to vacuum fluctuations.
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The Green’s function represents the electrical response to a localized current source, and
thus relates the electric fields to harmonically oscillating source currents 𝐉(𝐫, 𝜔).

Due tomaterial and geometric resonances, the field shows a very complicated, oscillating
behaviour for real valued frequencies with most frequency contributions cancelling each
other out in the Casimir integral, and only a small resulting value that finally gives the
Casimir force. One can, however, rotate the integral to the positive imaginary axis where
the integrand is usually well-behaved. This is possible since, after Cauchy’s integral
theorem, the integral along a closed path in the complex plane always values zero if
it does not contain poles of the integrand. Since the poles of the Green’s functions
are only in the negative imaginary plane, the path integral between two points in the
positive plane is identical. Instead of integrating over the real 𝜔-axis (the orange curve
in Figure 3.6), one is free to chose a path along the imaginary 𝜉-axis that rejoins the real
axis at 𝜔 ≫ 0 (blue curve). Since 𝒢 decays exponentially with 𝜔 + 𝑖𝜉, the integral in
this region is zero and one obtains the equality between a path integral along the real
and imaginary axis. Such a rotation from real to imaginary frequencies with 𝜔 = 𝑖𝜉 is
calledWick rotation [26], and the stress tensor integral over the closed surface 𝑆 becomes
[99]:

𝐹𝑖 = ℑ
∞

∫
0

𝑖 d𝜉 ∯
𝑆

∑
𝑗
⟨𝑇𝑖𝑗(𝐫; 𝜉 )⟩ d𝐧𝑗. (3.8)

Poles only at 𝜉 < 0

No poles in closed path
⇒ closed integral = 0

= 0 for 𝜔 + 𝑖𝜉 ≫ 0

=
𝜔

𝜉

Fig. 3.6: Illustration of theWick rotation that follows from Cauchy’s integral theorem. The integral
along the closed curve illustrated by the blue and orange line equals zero as all poles
are located at the negative imaginary half space. Since the integrand is zero at large
𝜔 + 𝑖𝜉, the integral along the real 𝜔 and imaginary 𝜉 axes are equivalent.

At finite temperature, the integral in (3.8) becomes a sum over the so called Matsubara
frequencies [26, 32, 67]:

Matsubara
frequencies

𝜉𝑛 =
2𝑛𝜋𝑘𝐵𝑇

ℏ
, (3.9)
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which are a consequence of the poles of the Bose-Einstein occupation factor coth(ℏ𝜔/2𝑘𝐵𝑇 )
in the fluctuation-dissipation theorem in Equation 3.7, and of the application of the
residue theorem to the integral.

In this work we have used two calculation methods for the Casimir force. The first
one makes use of the scattered field in the time domain [72, 99], so that finite-difference
time-domain (FDTD) simulation methods can be used to solve the stress tensor integral
numerically. A free FDTD simulation software developed by some of the authors of
the methods, coming with means to calculate Casimir forces, is MEEP [83]. Due to the
complexity of the computation, this approach is effectively limited to simulations of the
Casimir force in 2D. After having reproduced some of the predictions for systems similar
to our nanowire [65], we switched to a more versatile technique that describes the elec-
tromagnetic field in terms of fluctuating surface currents [94, 95]. In this approach, the
integral over the Maxwell tensor reduces to a sum over the discretized interaction of sur-
face currents at each imaginary frequency 𝜉 on the test object, which can be solved with
less numerical effort (see reference [95] for a detailed theoretic derivation). In contrast to
the FDTD approach, this method does not rely on a meshing of the entire geometry, but
only of the object surfaces, which reduces the number of calculation steps. Additionally,
the force contribution is increasingly small for large 𝜉𝑛, so that one only needs to cal-
culate for the first few tens of values of 𝑛. We use an implementation of the boundary
element method developed for Casimir simulations called SCUFF-EM [93].

3.3.2 Implementation

The geometry we are interested in, is in particular that of the nanowire above a hole in a
metallic plate since a repulsive force has been predicted for the case of a vertical dipole
above a hole [33, 65, 112], as illustrated in Figure 3.7a.

The experimental geometry is different from the ideal proposed cases, in the aspect
that we do not have an infinitely thin metallic plate, but a metal layer on a dielectric
substrate. Additionally, the nanowire is not an ideal uni-directional dipole as it has a
non-zero polarizability in the horizontal plane. We therefore picked up the calculation
approach using SCUFF-EM and designed a geometry that reproduces the experimental
case. Figure 3.7b illustrates a typical simulation geometry. Similarly to the electrostatic
simulation we reduce the nanowire’s length in order to save computation time, however,
we now do not suffer from accuracy losses since the top part of the nanowire does not
add much to the scattering properties of the field confined between the objects. This as-
sumption is confirmed by a comparative study with different nanowire lengths, shown
in Figure 3.8. The variations in the Casimir force do not seem to be linked systematically
to the nanowire lengths, so that they most likely emerge from small differences in the
simulation geometries (the meshing). It is hence important to assure a fine meshing at
the opposing faces of the objects with a good resolution at curved regions and edges.
The objects and meshes are scripted and then created with the free software GMSH [41].
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3.3 Simulating the Casimir force

Fig. 3.7: (a) An elliptical, vertically polarizable particle is erxpected to be vertically repelled close
to a hole drilled in a metallic plate (a-a) from [65]. This follows from the argument that,
when the particle is positioned centrally in the hole (a-b), its field lines are perpendicular
to the plate, so that no interaction is present between the dipole and the rest of the
plane, since the latter cannot be polarized by the perpendicular field due to symmetry.
At infinite distance, the particle also experience a vanishing force, however it must be
attracted by its image dipole for 𝑧 ≫ 𝑊, so one obtains a typical potential interaction
energy as shown in (a-c), which is repulsive at small z. (b) Sketch of the simulation
geometry for the nanowire-hole geometry. The sample represents a conical hole in a
silicon cantilever (blue), that is covered by a metallic plate (orange). All surfaces and
interfaces between materials need to be meshed for the surface current method. We
chose a particular fine mesh on the opposing faces of nanowire and sample (close to
the hole), as these faces are the main determinants of the scattering properties.

The above simulations also allows to give an estimate for the Casimir force properties:
its magnitude is around some tens of aN, varying on a transverse dimension of hun-
dreds of nm, so that the horizontal force field gradients can be expected at the level of
𝜕𝑥𝐹𝑥 ≈ 0.3 aN nm−1. This magnitude is rather weak but other geometries studied below
will predict force gradients well within the force sensing capacities of the nanowire.

Since the Casimir force strongly depends on the optical properties of the materials, we
model all domainswith experimental data from optical measurements [84],which is eval-
uated at imaginary frequencies using the Kramers-Kronig relation following the princi-
ples layed out by Reynaud et al. [26, 63]:

Kramers-Kronig
relation𝜀 (𝑖𝜉) = 1 + 2

𝜋

∞

∫
0

d𝜔
𝜔𝜀′′(𝜔)
𝜔2 + 𝜉 2

. (3.10)
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Fig. 3.8: Comparison of the Casimir force between a sharp metallic tip with a curvature radius
of 30 nm and a nanowire with diameter 𝑑 = 200 nm for different nanowire lengths at a
height of 𝑦 = 70 nm. (a) presents the horizontal force (parallel to x) and (b) the vertical
force (in y direction), for a horizontal scan of the nanowire tip with the tip apex located at
𝑥 = 0. The Casimir force is found to be attractive vertically and horizontally, towards the
tip extremity. The nanowire length does not have a systematic effect on the calculated
force, and the present differences are likely to originate from different meshing (each
nanowire is meshed seperately). The variations can therefore provide an error estimate
for the conducted simulations.

3.3.3 The nanowire-hole geometry

We will now discuss the simulated results for the realistic nanowire-hole geometry.
While the predictions of a vertically repulsive Casimir force have been obtained for a
comparably small object [64, 65], there are no detailed studies of what happens if the
particle above the hole is a relatively large object such as our nanowire with a diameter
in the order of 1/2 of the hole size. Also, it has been unclear which effect the presence of
a dielectric substrate would have on the Casimir force, and what one could expect from
a quasi infinite object in contrast to the finite particles employed.

Indeed, in the conducted simulations, we do not find a vertically repulsive force, most
likely due to the non-uniaxial polarizability of the realistic nanowire. Figure 3.9a shows
the vertical force 𝐹𝑦 which is strongly attractive above the surface and goes towards zero
in the center of the hole. As the distance between nanowire and sample increases, the
force rapidly decreases. Figure 3.9b shows the simulated lateral (parallel to the surface)
Casimir force 𝐹𝑥 and panel 3.9c the force gradient 𝜕𝑥𝐹𝑥 above a 370 nm large hole, experi-
enced by a 4 µm long and 160 nm thick nanowire scanned at an altitude of 200 nm above
the hole. In plot 3.9d, the force field divergence 𝜕𝑥𝐹𝑥 + 𝜕𝑧𝐹𝑧 is presented as calculated
from the simulated forces. It resembles the gradient, due to the symmetry of 𝜕𝑧𝐹𝑧. The
lateral force shows a clear antitrapping profile, corresponding to a pronounced attrac-
tion towards the perimeter of the hole, notably, with a the force extrema slightly shifted
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to the inner side of the hole. This observation is similar to the findings in reference [73],
where the vertical, repulsive Casimir force on a cylinder with a diameter much smaller
than the hole’s is maximal close to the hole’s edge. This case is similar to the geome-
try of a polarizable particle and a single wedge (the hole’s border in this case), which is
discussed in reference [75]. In a certain way – if the nanowire is small with respect to
the hole – one can describe the hole’s perimeter as single wedge, assuming the nanowire
is blind to the effect of the opposite boundary. The corresponding gradient 𝜕𝑥𝐹𝑥 shows
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Fig. 3.9: The simulated vertical force 𝐹𝑦 on a SiC nanowire with diameter 𝑑 = 160 nm and length
𝑙 = 4µm above a hole in a gold coated Si cantilever with diameter 𝑊 = 370 nm is shown
in (a). The other panels show the lateral Casimir force (b) and force gradient 𝜕𝑥𝐹𝑥(c),
as well as the 2D divergence divF in the horizontal plane (d). The latter is calculated
by assuming a radial symmetry for the Casimir force field. While for the nanowire-hole
geometry we do not obtain a vertically repulsive force above the hole, the nanowire
experiences an anti-trapping Casimir potential which is strongest close to the edges.
The simulation results (points) are connected by a spline for visual guidance.

five local extrema in the horizontal cut for large holes: two are found above the metal
surface just before the hole, and two inside. Between the two central maxima, the curve
has a dip which is present when the nanowire is close to the surface (blue curve), but
disappears for larger distances (𝑦 > 100 nm) where it forms a flat region.
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From these results, we can note three important observations. Firstly, there is the ab-
sence of a vertical repulsive force while an antitrapping horizontal force is present. Since
we were not able to find a repulsive force with other realistic nanowire-hole geometries,
a more thorough study would be needed, which should investigate the limit between the
ideal case of a finite metallic plate with a hole and a very thin uniaxially polarizable nee-
dle and our realistic case. However, the lateral antitrapping is a particular case lacking
experimental investigation.
Secondly, the expected gradient has a highly structured shape, with trapping extrema
outside the hole and two antitrapping regions within the hole, which can merge when
the nanowire is retracted towards larger distance, or when the hole diameter shrinks.
And thirdly, the Casimir force decays quickly in the vertical direction, and compared
to close distances, disappears for distances larger than 150 nm, however, with gradients
of tens of aN nm−1 and more at distances shorter than 150 nm, they fall well within the
sensitivity range of the experiment.

Next, we take a look at the influence of different hole sizes and the role of the underlying
substrate. In Figure 3.10a, we compare the force gradient above a hole that is etched
cylindrically through the cantilever with one of a conical shape. The force gradient for
both cases is nearly identical, with slightly smaller extrema for the straight, cylindrical
hole. Thus, the theoretical contribution of the substrate to the Casimir force is rather
small. Still, experimentally we may benefit from the conical hole shape, as the dielectric
substrate is prone to contaminations and surface effects that can be amplified by the
etching process. These parasitic effects could cover the Casimir force, so keeping them
away by removing more of the substrate close to the hole is one way to mitigate them.
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Fig. 3.10: The comparison between a straight, cylindrical hole and a conical one (angle≈24°) in
the sample substrate (a) shows that the hole shape only plays a minor role for the
Casimir force. The objects have the same extents as in 3.9, with 𝑙 = 4µm, 𝐷 = 160 nm, 𝑊 =
370 nm and a vertical nanowire-hole distance 𝑦 = 200 nm. Plot (b) compares the gradient
measured above three differently sized conical holes at 𝑦 = 200 nm.
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3.3 Simulating the Casimir force

Panel 3.10b gives a comparison between different hole sizes. The smallest size corre-
sponds to the hole in the previous plots. For increasing hole diameter, one observes that
the central peak quickly becomes the double peak that we have already observed for
close distances in 3.9. The maximum value of the force divergence in the antitrapping
region decreases (the maxima decline) with larger hole size. A change in hole size does
not affect the spatial extent of the individual features above the hole edges, which ap-
pear to only depend on the nanowire diameter and the scanning altitude. However in
the central area, the maximum antitrapping strength saturates for small holes.

Influence of a tilt

In Section 2.6 we have already discussed that a nanowire tilt changes the force field
experienced by the nanowire. It is rather natural to try to predict the influence of such a
tilt on the force field experienced by the nanowire, by applying a rotation matrix to the
horizontal and vertical forces experienced by a vertically positioned nanowire. However,
this approach may fail in a Casimir simulation, so we wanted to verify if and up to which
tilt angle such an approximation remains valid. We first describe the projection of the
force field calculated in the 𝑥, 𝑦 coordinates onto the coordinates of the rotated nanowire
𝑥′, 𝑦 ′. Such a counter-clockwise rotation, by an angle 𝛼 with respect to the x axis is
expressed by:

(𝑥
′

𝑦 ′) = ( cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼)(

𝑥
𝑦), and (𝑥𝑦) = (cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 )(𝑥
′

𝑦 ′). (3.11)

The projected force 𝐹𝑥′ , which is perpendicular to the nanowire, would be given by:

𝐹𝑥′ = 𝐹𝑥 cos 𝛼 + 𝐹𝑦 sin 𝛼, (3.12)

and we obtain the projected force gradient in the tilted nanowire base by:

𝜕𝐹𝑥′
𝜕𝑥′

=
𝜕𝐹𝑥
𝜕𝑥

cos2 𝛼 +
𝜕𝐹𝑧
𝜕𝑧

sin2 𝛼 + (
𝜕𝐹𝑥
𝜕𝑧

+
𝜕𝐹𝑧
𝜕𝑥

) cos 𝛼 sin 𝛼 (3.13)

At small separations, where the vertical force gradient 𝜕𝑧𝐹𝑧 is large, this effect plays
an important role. Beyond such a simple evaluation, the tilted nanowire changes the
Green’s functions and can therefore alter the Casimir force field. In order to estimate
the effect of the tilt, we performed simulations in the same geometry as in Figure 3.9,
but with a nanowire rotated by 𝛼 around its extremity, keeping the same scan coordi-
nates.

Figure 3.11a presents the result for a rotation around the 𝑧 axis – the nanowire is tilted
in the scan plane. In order to discriminate between the effect of the projection and the
different Casimir force on a tilted nanowire, we plot the approximated force gradient
obtained with Equation 3.13, using the force values simulated for a perfectly perpendic-
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3 Proximity and Casimir forces

ular nanowire. The agreement between approximated tilt and real tilt shows the validity
of the approximation. The rotation of the nanowire’s eigenmode axis in the 𝑥, 𝑦 plane
is the crucial factor. For the previous simulations, it has been enough to simulate the
space from the holes center towards positive 𝑥 (due to symmetry), the case of the tilted
nanowire requires a simulation of the negative and positive 𝑥. With the observation that
the projection is the main contributor, we can stick to the faster simulation of a straight
nanowire on half the scan range and still obtain meaningful results for a tilted nanowire
up to a tilt angle around 20°. At this value, we observed stronger deviations between the
approximation and real tilted estimations, which start to be visible as a small offset to
the left of the extrema for the real tilt in Figure 3.11a.
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Fig. 3.11: Simulation of the Casimir force for a 10° tilted nanowire above a hole (𝑙 = 4µm,
𝐷 = 160 nm, 𝑊 = 370 nm) at different nanowire-hole separations 𝑦 = 80nm, 100 nm and
150nm. In (a), the nanowire is tilted within the scan plane which leads to a asymmetric
force divergence, and one observes a slight shift of the x-position of the extrema in
the direction of the tilt. The solid lines present the simulation of the tilted nanowire,
while the dotted lines show an approximation of the tilt by a projection of the simulated
force on a straight nanowire along a tilted measurement direction. In (b), the nanowire
is tilted perpendicular to the scan direction (to the paper-plane), which does not sig-
nificantly change the force gradient measured along x in comparison to the straight
nanowire (dotted lines).

The 10° tilt alters the shape of the force divergence significantly. It adds a constant
positive force divergence above the surface, which originates from the fact, that the ver-
tical force 𝐹𝑧 is attracting the nanowire – it is negative with a negativity that increases
when approaching the surface. When the nanowire displacement 𝛿𝑥′ is positive – the
nanowire moves further away from the surface –, 𝐹𝑧 has gained in total value, still re-
maining negative. The gradient 𝜕𝐹𝑧

𝜕𝑥′
is hence positive above the surface. It is also the

contribution of this gradient that causes the asymmetry of the gradient at opposing hole
borders. Here, it is the displacement in 𝑥 which significantly increases the negative
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3.3 Simulating the Casimir force

force 𝐹𝑧 when changing from substrate to hole, while on the opposite side, 𝐹𝑧 rapidly
decreases.

The second tilt configuration is the nanowire tilted out of the scan plane. In that sit-
uation, the tilt effect is not impacting the force field measured in the scan plane: the
symmetry of the untilted case is preserved as can be seen in the results in 3.11b. Thus,
the force gradient experienced by the tilted nanowire is only slightly different from the
straight nanowire.

Since the tilt effect is dominated by the projection of the vertical force on the perpendic-
ular direction of the tilted nanowire, we can use the results from the simulation with the
straight nanowire to calculate 2D divergence maps for the horizontal plane. Figure 3.12a
shows the map for the tilted nanowire, a cut through the center of the hole along the x
direction corresponds to the cuts in 3.11a (not that the 2D map shows the divergence,
the line cuts the gradient), one along the z direction to those in 3.11b. With respect to 2D
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Fig. 3.12: Simulated horizontal divergence from the simulation of the Casimir force for the straight
nanowire 80nm above an underetched hole. In (a), a 10° tilt of the nanowire towards
the -x direction is presented, (b) shows the divergence of the untilted nanowire. The
dashed circle marks the edge of the hole and the white circles in the top right corner
illustrate the size of the nanowire in the simulation.

measurements of small, rotational symmetric structures, the effect of a tilt can introduce
large disturbances in the measured force field, due to the symmetry breaking effect. A
2D map of the force divergence – this also holds for electrostatic forces, as the projec-
tion of the force (3.13) is independent from its source – can therefore look very different
if the nanowire is tilted and does not necessary reflect the geometry of the horizontal
force field. Experimentally, we have introduced the possibility to fine tune the nanowire
tilt, by using a home made gimbal nanowire mount, which allows to manually ensure
its verticality within a few degrees (see Section 1.4.3).
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3 Proximity and Casimir forces

3.4 Measured residual force on crossing trenches

We will now discuss the results of the analysis described above on the example of the
cross like hole. From the determination of the common crossing point we estimate 𝑉0 =
−0.12 V. This permits to identify the voltage value which compensates for the work
function difference from the two electrodes. In a sense, this voltage allows to compensate
the average vertical parasitic field (which itself does not depend of the bias voltage).
𝑉0 then represents the value around which one should investigate the impact of the
variability observed in the parasitic electric fields.

The parabolas, which were initially fitted with the expression

𝛼𝑉 2 + 𝛽𝑉 + 𝛾 (= 𝛼(𝑉 − 𝑉1)2 + 𝛾 ′),

can now be expressed as:

divF = 𝛼(𝑉 − 𝑉0)2 + 2(𝑉1 − 𝑉0)(𝑉 − 𝑉0) + 𝐴(𝑉1 − 𝑉0)2 + 𝜂, (3.14)

with 𝑉0 obtained via the technique presented in Section 3.2.2. This expression allows
to make connections with the expression arising from the tensor analysis given above,
divF = 𝛼(𝑉 − 𝑉0)2 + 𝛽(𝑉 − 𝑉0) + 𝜂. The two first terms now represent the quadratic
and linear contributions, while the sum of the last two terms now contains the quadratic
parasitic and the Casimir contributions. As stated above, in the present stage, in the
measurements we cannot fully discriminate Casimir from quadratic parasitic contribu-
tions, but we will describe in greater details the spatial properties of the total residual
contributions (𝜂).

Figure 3.13 presents the coefficients of the offset corrected force parabola on a horizontal
xz-map. Here, 𝛼 remains unchanged, but we obtain new linear and constant terms 𝛽, 𝜂.
We first note that the quadratic and linear terms are of opposite signs with a comparable
amplitude (at 𝑉bias = 1V) but have a different spatial dependence, as can be seen in
the central area where 𝛼 has its maximum, and 𝛽 is close to zero. Also, the linear force
divergence coefficient has a larger spatial extension than the quadratic part. The residual
force divergence 𝜂 has an even larger extension with overall negative values around the
cross, and thinner positive regions directly above the trenches of the cross.

We also note that the background of the residual term shows a clear slope from the left to
right side. This is likely due to the tilt of the sample surface with respect to the sample
stage’s xyz-piezo motional axes, which causes the surface to be further away on the
left side than on the right side of the plots. As shown in Figure 3.11, an angle between
the nanowire and the sample causes a positive, anti-trapping residual force above the
surface. This positive offset is comprised in the residual force reference 𝜂0 which is here
37 aNnm−1 and has been substracted from the plotted 𝜂. It is given by the mean value
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Fig. 3.13: Different components of the electrostatic force divergence above the cross structure
assuming a mean 𝑉0 = −120mV from the common crossing analysis. The horizontal map
has been acquired at a height around 200nm above the surface. The quadratic term (a)
does not depend on the choice of 𝑉0. The linear term (b) shows a trapping force field
in the center of the trenches. The residual force divergence (c) shows the characteristic
transition from trapping at the trench edges to anti-trapping in the center ofthe hole.
The gradient in the background on the surface indicates either a tilt of the sample, or a
slight tilt of the horizontal scan axes. The line in (a) indicates the location of the vertical
measurement in figure 3.15.

apart from the cross at the top and bottom of the scan area. This value agrees with the
residual force divergence at the common crossing of the parabolas.

Figure 3.14 compares the residual force for the obtained 𝑉0 of −0.12 V and a variation of
0.04 V in each direction. This 40mV value represents the width of the minimum found
in the offset voltage analysis discussed above. While for higher 𝑉0 (3.14c), the positive
areas nearly disappear, and both, negative and positive areas, are more pronounced for
the smaller 𝑉0. These differences demonstrate the importance of a good estimation of
the 𝑉0 and represent the limits of the method. Especially, the choice of 𝑉0 impacts the
residual force divergencemeasured at higher altitudes, wherewe assume that it vanishes.
This analysis thus requires a complete vertical measurement. However, we can still state
that, despite the difficulty to fix a 𝑉0 in a horizontal map, we observe an anti-trapping
region above the trenches for realistic values of 𝑉0. Furthermore, the magnitude of the
measured forces is in good agreement with the simulated values for a nanowire at about
100 nm to 150 nm distance1 (compare Figure 3.11).

A better estimate for 𝑉0 can be given in the case of a vertical map, since at larger dis-
tances, the surface forces become negligible which allows calibrating the reference value
of the unperturbedΩ2

1+Ω2
2. There, the Casimir forces are negligible, so that the parabola

shift is purely determined by the parasitic fields. Due to the large distance, they show

1Note that the simulations have been done for the circular holes, the force divergence is therefore ex-
pected to be larger above the hole (as 𝜕𝑥𝐹𝑥 and 𝜕𝑧𝐹𝑧 contribute) than that above the cross. For the
Casimir force divergence above a trench one can take div𝐅 ≈ 𝜕𝑥𝐹𝑥 from the hole simulation (with
𝐞𝑥 perpendicular to the trench), which has the same amplitude at 100 nm to 150 nm distance as the
measured force
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Fig. 3.14: Comparison of the residual forces for different 𝑉0. The central panel (b) corresponds
to the results in 3.13b. The variation of ±40mV is larger than the uncertainty of the
common crossing technique, however, this technique is only an approximation. In all
three cases we observe regions with the expected shape of the residual (Casimir) force
divergence.

smooth variations with the sample position. Figure 3.15 presents the results obtained for
a vertical cut above one of the cross’ trenches, which is indicated as blue line in panel
3.13a. Due to the different scan orientation and a delay of a one and a half months be-
tween the measurements, the determined 𝑉0 can not necessarily be compared to each
other2. The vertical map of the quadratic force divergence in 3.15a shows the same fea-
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Fig. 3.15: A vertical map, perpendicular to one of the cross’ branches is shown for 𝑉0 = −0.39V.
The line in Figure 3.13a indicates the location of the vertical map. The common crossing
analysis is performed using the data at large distance from the surface. The asymmetric
dependence on the distance (regions with larger values seem to move to the left as one
looks at larger distances) can be explained by a deviation from the perpendicular align-
ment between nanowire and sample. Here, a nanowire tilt towards the right explains
the observed shift.

tures as the horizontal map, but with more details in the regions close to the surface
thanks to the more stable vertical approach of the nanowire. The scans are performed
from the top to the bottom, so that the most critical moments (PLL unlocking, touching
the surface…) occur at the end of the measurement sequence, such that stable operation

2We already observed changes of the surface properties over longer times, especially if several air evac-
uation cycles of the vacuum chamber were performed in the meanwhile.
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3.4 Measured residual force on crossing trenches

is guaranteed for as many vertical points as possible. The trapping force component
at the edges of the hole is clearly visible in the vertical maps, while it is only slightly
pronounced in the horizontal ones, due to its faster decay compared to the anti-trapping
force divergence at the trenches center and due to the finer spatial resolution of the map.
We also note, that the quadratic divergence is constant above the flat surface on the side
of the trench. At these areas, the linear term shows a clear spatial structuration, caused
by the horizontal forces due to surface patches. The residual force component for the
best fitting 𝑉0 crossing value (−0.39mV) shows the expected transition from trapping to
anti-trapping divergence when going from the surface towards the trench center.

Regarding the spatial dependence, one has the impression that the residual term decays
more slowly with distance than the linear term and the quadratic term, which decays
fastest. This can be explained by the parasitic fields 𝐄p which extent farther from the
sample than the field 𝐄𝑉(𝑉bias) created by the electrode. Since the parasitic fields do not
contribute to the quadratic term, but to the linear term by a product with 𝐄𝑉 and to the
residual term as squared expression, their large extension with height would be reflected
most in the residual force field divergence.

In all plots, we observe a tilt towards the left of the vertical evolution of the different
terms caused by a physical tilt of the nanowire with respect to the sample. As discussed
above, the tilt causes a positive residual force divergence above the surface which means
that the nanowire is tilted towards the left3.

Again, we take a look at the effect of different voltages 𝑉0 on the residual force diver-
gence. Figure 3.16 presents the evolution of 𝜂 as we vary 𝑉0 by steps of 50mV. In all cases
𝜂 keeps its negativity around the edges of the hole whereas smaller values of 𝑉0 cause
the positive, anti-trapping region at the trench center to decrease until its barely distin-
guishable from the background fluctuations. However, these values are largely outside
the possible area for a common parabola crossing.

In Figure 3.17, we show cuts at different heights above the sample4 for the residual term
𝜂 (3.17a) and the quadratic term 𝛼 (3.17b). As one can expect, the spatial structuration
above the surface averages out at larger distances. The quadratic term in 3.17b is decay-
ing more rapidly with the negative regions disappearing faster than the positive. This
can be explained by the same effect as the flattening of the residual divergence above the
surface, since the fields at larger distance are an evolution of those present at the surface.
A measurement at a larger height thus detects the combined positive and negative areas
which sum up to an effective positive divergence at larger distances.

3The variations of 𝜕𝑥𝐹𝑥 in the untilted laboratory coordinates are small compared to 𝜕𝑧𝐹𝑧 > 0, so that
with a left tilted nanowire, the gradient 𝜕𝑥′𝐹𝑥′ is positive.

4The zero height is estimated from the height where the PLL lost the lock. The real position of the sample
surface is probably 50 nm to 100 nm beneath this level.
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Fig. 3.16: Comparison of the residual force for variations around the 𝑉0 = −0.39V from figure
3.15. For variations of up to +100mV the trapping (negative) force divergence at the
trench’s edges remains visible, but the anti-trapping (positive) area at the centre nearly
disappears. For smaller 𝑉0, anti-trapping and trapping regions are more pronounces.
For all voltages one retrieves a positive residual divergence above the substrate which
is caused by a small tilt of the nanowire towards the left side.

Comparing the size of the central feature of the residual and quadratic force divergence
in Figure 3.17a and Figure 3.17b, one can observe that the horizontal size of the residual
force divergence is slightly larger than the quadratic term. This difference also appears
when regarding simulations of residual (Figure 3.9d) and quadratic (Figure 2.15d) force
divergence where the residual is zero at the hole boundary whereas the quadratic term
has the zero crossing inside the hole.
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Fig. 3.17: Cuts through the vertical map of Figure 3.15 at different heights for 𝑉0 = −0.39V. (a)
presents the residual force divergence and (b) the quadratic term of the electrostatic
force divergence. In both terms the offset is corrected by the value at the largest
nanowire distance to the sample. The shaded area illustrates the approximate width
of the trench.
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3.5 Outlook: 2D force field compensation

Assuming that the surface around the cross is perfectly flat, one has no reason to expect a
variation of the residual force at those regions, opposed to the residual terms presented in
Figure 3.17a. We interpret the presence of these variations as artefacts from the imperfect
compensation of the horizontal fields by the common crossing technique. Since we are
only trying to compensate the statistical mean shift of the force parabolas in order to
extract the residual force component, the method ceases to correctly account for the
local variations close to the surface. In order to take these variations into account, one
would need to compensate the local horizontal fields at each point, the only remaining
residual force contribution would then come from the Casimir effect.

In this section we presented a method to estimate the residual force – the force that
remains after elimination of the known quadratic and linear electrostatic contributions
– from the voltage dependent force field image, by using an average estimate of the
offset potential, that allows to estimate and compensate for the work function difference
(in other terms, the vertical parasitic residual field). The inferred residual force field,
measured on the crossing trenches has a similar shape and magnitude as the Casimir
force simulated above a hole of similar dimensions. However, the dependence of the
residual force on the vertical distance and the presence of residual variations above a flat
surface (as indicated by the homogeneous value of alpha measured on the sides of the
trench) show the limits of the mean compensation method. This is expected, since one
cannot compensate the effect of a 3D parasitic field with a single electrode. In the next
sectionwewill discuss amore advancedmeasurement, based on the direct compensation
of the horizontal fields with additional electrodes, which we plan to conduct in future
studies in order to better isolate the horizontal Casimir force field.

3.5 Outlook: 2D force field compensation

As explained above, the existence of parasitic electric fields makes us loose a lot in terms
of quantitativeness (uncertain dependence of the residual fields on the distance, varia-
tions of the residual force depending on the chosen 𝑉0,…) of the measurement. In prin-
ciple, they can be compensated using a homogeneous external electric field, which does
not create a force directly but serves to partially compensate for the local parasitic field
experienced by the nanowire. In a sense, if one wants to measure 2D force fields, it is
necessary to control the field in all directions. To do so, we will simply add a set of
electrodes at “large” distance from the sample, typically tens of microns, as shown in
Figure 3.18. Even with the idea being simple, its interpretation in term of force measure-
ments is not so direct, and is described here.
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3 Proximity and Casimir forces

Fig. 3.18: Schematic illustration of the sample design with control electrodes that can create an
arbitray, homogeneous field in the horizontal plane. The sample beneath the nanowire
is etches into a central electrode that can be used to create a vertical field, analogue
to the samples presented in this thesis. The whole structure is positioned on the edge
of a Si substrate in oder to avoid a blocking of the readout laser by the sample.

We recall the expression for the horizontal force dependence on the fields at the bottom
of the nanowire:

𝐹𝑥 ∝ 𝐸𝑥𝐸𝑦 = (𝐸𝑉 ,𝑥 + 𝐸res,𝑥)(𝐸𝑉 ,𝑦 + 𝐸res,𝑦)
= 𝐸𝑉 ,𝑥𝐸𝑉 ,𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟

∝𝑉 2
bias

+𝐸𝑉 ,𝑥𝐸res,𝑦 + 𝐸𝑉 ,𝑦𝐸res,𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝𝑉bias

+𝐸res,𝑥𝐸res,𝑦 (3.15)

where the parasitic fields 𝐸res cause a shift of the parabola. While it is possible to de-
termine the linear component with measurements of the force’s dependence on 𝐸𝑉, one
can not directly infer the last term which is independent of the applied voltage. An ap-
proach to mitigate this problem is to introduce an additional control field 𝐸𝑐,𝑥 in the x
direction, that is adjusted such that the force is optimized and the parasitic field 𝐸res,𝑥
can be compensated:

𝐹𝑥 ∝ (𝐸𝑉 ,𝑥 + 𝐸res,𝑥 + 𝐸𝑐,𝑥)(𝐸𝑉 ,𝑦 + 𝐸res,𝑦)
= 𝐸𝑉 ,𝑥𝐸𝑉 ,𝑦 + 𝐸𝑉 ,𝑥(𝐸res,𝑦 + 𝐸𝑐,𝑦) + 𝐸𝑉 ,𝑦(𝐸res,𝑥 + 𝐸𝑐,𝑥) + (𝐸res,𝑥 + 𝐸𝑐,𝑥)(𝐸res,𝑦 + 𝐸𝑐,𝑦).

(3.16)

The resulting force, as well as the force divergence, is still quadratic in 𝐸𝑉 ∝ 𝑉bias but the
position of its extremum is now controlled by the additional field 𝐸𝑐. When 𝐸𝑐 is var-
ied, one measures the displaced parabolas div𝐅(𝑉bias) as presented in Figure 3.19a. The
extrema of the parabolas form another parabola (the points in 3.19a) with its extrema
localized at the common crossing of the individual parabolas. Without surprise, this
phenomenology is exactly the one expected from a parasitic electric field contribution,
similar to that produced by the control electrode. When one has to account for and com-
pensate for the three orientations of the parasitic field, the single axis analysis exposed
just above is slightly modified: now, one has to find the extremum in a three dimensional
space (𝐸𝑐,𝑥, 𝐸𝑐,𝑦, 𝐸𝑐,𝑧). In that situation, the location of compensation will always corre-
spond to a saddle point or to the maximum of an hyperboloid (depending on the signs of
the voltage dependent terms 𝐸𝑉𝑥,𝑦). The force divergence expected in the case where one
only needs to compensate for the horizontal parasitic fields with two lateral electrodes
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3.5 Outlook: 2D force field compensation

(𝐸𝑐,𝑥, 𝐸𝑐,𝑧) is illustrated in Figure 3.19b. Here, the point indicating the best compensation
situation is the saddle point. There, the parasitic fields would be compensated best, and
one would measure the Casimir force divergence.

a

,

,  
,  

b

Fig. 3.19: The homogeneous field of an additional control electrode 𝐸𝑐,𝑥 is shifting the measured
parabolas div𝐅(𝑉𝑏𝑖𝑎𝑠) (a). The extrema of each parabola again follow a parabolic curve
at whose extremum one finds the Casimir force. Figure (b) plots the extrema of each
parabola for two independent control fields 𝐸𝑐,𝑥, 𝐸𝑐,𝑧. Depending on the direction of the
fields (thus its sign), the curve either is a hyperboloid (as shown) or a paraboloid. Thus
the point where div𝐅opt = div𝐅casimir is the saddle point, or extrema respectively, here
indicated by the grey dot.

While the measurement and analysis protocol presented in this work try to find a mean
compensation of the parasitic fields, the control fields should permit to compensate the
parasitic field in three dimensions (a symmetric bias voltage applied on all control elec-
trodes can be used to generate a vertical control field). Therefore, in a 2D experimental
geometry, one needs to apply two homogeneous, linear independent fields, created for
instance by two pairs of electrodes with individually controllable bias voltages such as
presented in Figure 3.18. Here, the electrodes are designed to be large enough and re-
mote enough, so that the field created around the nanowire tip and the sample area is
uniform. By sweeping the horizontal fields 𝐸𝑐,𝑥, 𝐸𝑐,𝑧 and the bias voltage (thus the verti-
cal field 𝐸𝑐,𝑦), one can acquire the hyperbolic surface of Figure 3.19b and thus infer the
isolated Casimir component of the force field. For a perfect patch compensation, one
would need to produce a control field presenting the exact same spatial profile as the
field at the nanowire extremity which has to be compensated. This is beyond experi-
mental capacities, so that the above described compensation method will only suppress
mean field contributions.

We are currently performing the first investigations with samples of this geometry as
part of the PhD project of HugoWeltz. Besides the compensation of the horizontal forces
in order to get better results for the horizontal Casimir force on the nanowire, the exper-
iments also help to investigate the forces on the nanowire under the presence of strong,
homogeneous fields which show non-trivial behaviour due to the modified electronic
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3 Proximity and Casimir forces

properties of the nanowire. Additionally, the dual electrode pair configuration permits
to apply an arbitrary directional force, that with some adjustments can be used as source
for a complete 2D force feedback5, similar to that realized in Chapter 4.

5In order to apply a feedback using the electrostatic quadratic force, the applied fields should be inhomo-
geneous, so that the field gradient creates a force on the nanowire. This is not the case in the center
of the field correction electrodes.
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4 Creating artificial 2D force fields using realtime
active feedback

Up to now, the nanowire was used to investigate external force fields through the modifica-
tion they induce on its mechanical properties. However this extreme sensitivity can create
some practical problems if the force fields under investigation are too large, since they may
lead to a rotation of the nanowire eigenmodes with respect to the test force or to the mea-
surements vectors, so that the PLL gets out of lock. It could thus be desirable to have an
artificial force field at hand that could help compensating the external force fields, so that
the nanowire properties remain unchanged. This idea would be similar to a mechanical bal-
ance – which compensates the unknown mass by a known one so that the balance remains
at its rest position – at the force field gradient level in our case. To do so, we have developed
a method, which allows us to produce artificial force fields, using a realtime feedback in
2D. It is based on the instrumental developments realized on the FPGA card exposed above.
By combining the realtime signals from the two measurements channels, it is possible to
reconstruct the motion projected along an artificial readout direction, and to generate an
artificial force proportional to these voltage fluctuations by feeding them back onto the bias
voltage of an electrostatic tip positioned in the proximity of the nanowire extremity. The
position of the tip defines the direction along which the artificial force is exerted.

In this chapter, we describe those artificial force fields, the developments realized to ensure
their proper implementation and finally their impact on the nanowire movement. We will
first discuss the case of uniaxial artificial force fields, where the measurement and feedback
force orientations are aligned, and then the transverse case, where the feedback force vector
is set perpendicular to the measurement direction. We will also investigate the delayed
artificial force fields, where the force is now proportional to the nanowire’s velocity projected
along one orientation, which is derived from the position fluctuations.

Those artificial force fields also allow generating force fields presenting a pure shear char-
acter, for instance with 𝛿𝐹𝑧 ∝ 𝛿𝑟𝑥, which fall in the class of non-reciprocal (or rotational)
force fields. We will show that those synthetic non-reciprocal force fields allow the compres-
sion of the nanowire thermal noise in the position and real spaces, and are also responsible
for the apparition of a circulation in the noise trajectories. Then, the transverse delayed
force fields are shown to bring the nanowire in a non-trivial situation, where the nanowire
eigenvectors can become imaginary, traducing a circularly polarized eigenmode. Those ar-
tificial force fields thus present an important simulation interest, which will be exposed in
the chapter.
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4 Creating artificial 2D force fields using realtime active feedback
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4.1 Principle of linear feedback in a two dimensional system

When a single actuation channel is employed, the vectorial feedback force can only be
aligned in one direction, with an amplitude that depends on the oscillator position in
2D. In order to mimick any force field in 2D, one should necessarily use 2 actuation
channels, with 2 non-parallel feedback force orientations. In the present work we limit
ourselves to a single channel feedback force, but the extension to a second orientation
is, in principle, straightforward. The four electrode design introduced at the end of the
previous chapter could indeed be used for that purpose.
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4.1 Principle of linear feedback in a two dimensional system

A single directional feedback makes use of an external force acting along 𝐞𝜑 with a tun-
able magnitude that depends on the nanowire position in 2D. It can be formally written
as:

𝛿𝐅𝑓 𝑏(𝑡) = −𝑀eff 𝑓(𝛿𝐫(𝑡)) ⋅ 𝐞𝜑. (4.1)

Here, 𝑓 is a scalar function, with the dimension of an acceleration depending on the
nanowire position in realtime. It governs the amplitude of the feedback force that, in the
most general case, is a function of the two dimensional resonator position. The angle
𝜑 defines the angle of the applied force relative to the direction of the first mechanical
mode 𝐞1.

In the case of linear feedback, the function 𝑓(𝛿𝐫(𝑡)) is a linear function of the displace-
ments 𝛿𝑟𝜇 measured along the direction of measurement 𝐞𝜇. Again 𝜇 denotes the angle
between readout vector and the first mechanical mode. The convention for the naming
of the different components is illustrated in Figure 4.1a.

We can write 𝑓 for an instantaneous linear feedback as

𝑓(𝑡) = 𝑔𝑓 𝑏 𝛿𝑟𝜇(𝑡) (4.2)

or expressed in Fourier space
𝑓[Ω] = 𝑔𝑓 𝑏 𝛿𝑟𝜇[Ω], (4.3)

where 𝑔 is the feedback gain proportionality factor with the units Hz2 that is controlled
by the experimenter.

One can also make use of a feedback force depending on the velocity (𝛿𝑣𝜇 = 𝛿 ̇𝑟𝜇) of the
nanowire – we then speak of a delayed feedback. It can similarly be written in the linear
case 𝑓 (𝑡) = ℎ𝛿𝑣𝜇 so that, since 𝛿�̇� = −𝑖Ω 𝛿𝐫, we can express the feedback force processed
in the Fourier domain as:

𝑓[Ω] = −𝑖Ω ℎ𝑓 𝑏 𝛿𝑟𝜇[Ω]. (4.4)

Such a delayed feedback represents a situation that enables cold damping or heating
of the resonator, as often employed in optomechanics, but with the novelty that the
force does not necessarily take an uniaxial form. Accounting for the general case of a
mixed feedback, 𝑝 = 𝑔𝑓 𝑏 + 𝑖Ω ℎ𝑓 𝑏 can be regarded as a complex gain factor1. Rewriting
Equation 4.1 for such a linear feedback yields:

𝛿𝐅𝑓 𝑏 = 𝑀eff 𝑝𝐞𝜑𝐞𝜇⏟
𝐟

⋅𝛿𝐫, (4.5)

1We presume that instantaneous and delayed force make use of the same measurement vector and act in
the same direction. This is a limiting assumption since instantaneous and delayed force are generally
caused by different physical effects that do not necessarily act in the same direction, for instance
photon backscattering and local thermal heating in the case of an optical force. The realized feedback
is of artificial nature where the experimenter can add an arbitrary delay to the instantaneous force, so
that the simplified model of a single complex feedback is valid.
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4 Creating artificial 2D force fields using realtime active feedback

where 𝐟 is the feedback coupling matrix, expressed as a tensorial form comprising the
measurement and actuation vectors. In the basis of eigenmodes 𝐞1,2 the readout and
force vectors are

𝐞𝜑 = (cos 𝜑sin 𝜑) and 𝐞𝜇 = (cos 𝜇, sin 𝜇). (4.6)

And we can define the feedback’s coupling matrix 𝐟:

𝐟 = 𝑝𝐞𝜑𝐞𝜇 = 𝑝(cos 𝜑 cos 𝜇 cos 𝜑 sin 𝜇
sin 𝜑 cos 𝜇 sin 𝜑 sin 𝜇) (4.7)

=
𝑝
2
(cos(𝜑 + 𝜇) + cos(𝜑 − 𝜇) sin(𝜑 + 𝜇) − sin(𝜑 − 𝜇)
sin(𝜑 + 𝜇) + sin(𝜑 − 𝜇) − cos(𝜑 + 𝜇) + cos(𝜑 − 𝜇) ). (4.8)

The elements of this feedback matrix have the same unit of Hz2 as 𝑝 and the 𝑔𝑖𝑗 force field
gradient terms in Section 1.1.2 and we can interpret them similarly. The diagonal terms
represent an independent feedback on the individual modes resulting in a shift of fre-
quencies or a change in individual damping rates whereas the off-diagonal terms cause a
cross-coupling between both modes generating a rotation of eigenvectors or a damping
matrix that is not aligned with the eigenmodes. Note that with a single feedback force,
leading to three tunable parameters 𝑝, 𝜑 and 𝜇, it is not possible to generate any arbitrary
coupling matrix (as mentioned earlier, one would need two actuation channels).

From Equation 4.8 we can define two special cases, namely the uniaxial case where 𝜑 = 𝜇
and the transverse case with |𝜑 − 𝜇| = 𝜋/2, which we now describe in greater details..

4.1.1 Uniaxial feedback

In the case of uniaxial feedback where 𝜑 = 𝜇 (or 𝜑 = −𝜇 since one can invert the feedback
coefficient without loss of generality), the coupling matrix 𝐟 simplifies and we can write
the force as

𝛿𝐅 = −𝑀eff
𝑝
2
(1 + cos 2𝜑 sin 2𝜑

sin 2𝜑 1 − cos 2𝜑)𝛿𝐫. (4.9)

A uniaxial feedback where the force vector and the readout vector are identical thus
always has a symmetric coupling matrix with equal off-diagonal terms and can only
cause a rotation of the modes as a block in the case of an instantaneous feedback. For the
special case where the feedback vectors 𝐞𝜇, 𝐞𝜑 are aligned with one of the eigenmodes,
the off diagonal terms vanish and no cross coupling nor rotation appears. Assuming
alignment of the readout vector with the first eigenmode (𝜇 = 0), the coupling matrix
simplifies further:

𝛿𝐅 = −𝑀eff 𝑝(
1 0
0 0). (4.10)
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4.1 Principle of linear feedback in a two dimensional system

Compared to the 𝑔𝑖𝑗 force field gradient matrix in Section 1.1.2 an uniaxial aligned feed-
back represents a single 𝑔11 term that shifts the frequency of the first mode as Ω∥

2
1 =

Ω2
1 − 𝑔11.

The local force field generated by such a feedback is divergent along one axis as illus-
trated by sub-figure Figure 4.1b.

uniaxial aligned transverse aligneda b

Fig. 4.1: (a) Illustration of the conventions used to name vectors and angles. (b) Plot of the two
dimensional local force field for the uniaxial aligned and the transverse aligned case.

4.1.2 Transverse feedback

For transverse feedback defined by a difference of 90° between the readout and force
vector, the coupling matrix 𝐟 simplifies as well, and for 𝜇 − 𝜑 = 𝜋/2 the force writes

𝛿𝐅 = 𝑀eff
𝑝
2
(

cos(𝜋
2
+ 2𝜑) sin(𝜋

2
+ 2𝜑) + 1

sin(𝜋
2
+ 2𝜑) − 1 − cos(𝜋

2
+ 2𝜑)

)𝛿𝐫 (4.11)

= 𝑀eff
𝑝
2
( − sin(2𝜑) cos(2𝜑) + 1
cos(2𝜑) − 1 sin(2𝜑) )𝛿𝐫. (4.12)

The second equation shows that the off-diagonal elements can not be equal for any
choice of 𝜑. We also note that with a single feedback force it is not possible to generate
a purely rotational force (𝑔12 = −𝑔21), because it would require two actuation channels.
The feedback induced coupling between the two modes is therefore non-reciprocal (∇ ×
𝐹/𝑀eff = 𝑔21−𝑔12 ≠ 0) in the case of transverse feedback. In the aligned case, where the
readout is oriented along one mode, while the feedback force acts parallel to the other
mode, the expression simplifies to

𝛿𝐅 = 𝑀eff 𝑝(
0 1
0 0)𝛿𝐫. (4.13)

Here, we assume a force acting along the first mode 𝜑 = 0 and a readout in the direction
of the second mode 𝜇 = 𝜋/2.
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4 Creating artificial 2D force fields using realtime active feedback

A transverse aligned feedback represents a pure shear force causing a rotation of one
mode while leaving the second mode unaffected. Figure 4.1b illustrates the local force
field generated by the transverse aligned feedback.

From (4.14) above, we can obtain an estimate for the necessary gain that needs to be
applied for a mode rotation of Δ𝜃1

cos(Δ𝜃1) ≈
𝑔21

Ω2
2 − Ω2

1
≈

𝑔21
2Ω𝑚ΔΩ

, (4.14)

where, in the second approximation, Ω𝑚 denotes the mean mechanical frequency and
ΔΩ the mode splitting.

4.1.3 Delayed feedback force

In the above discussed uniaxial and transverse feedbacks, we assumed an instantaneous
feedback which only depends on the position 𝛿𝐫 of the nanowire. It is also possible to
apply a feedback that depends on the nanowire’s velocity 𝛿�̇�, computing the derivative
of the position signal prior to feeding it back onto the actuation force. We will come
back later on its implementation in the experiment.

The complete equation of motion that takes into account the retarded forces acting as
viscous damping is then

𝛿 ̈𝐫(𝑡) = −𝜴2 ⋅ 𝛿𝐫(𝑡) − 𝜞 ⋅ 𝛿�̇�(𝑡) + 𝐡 ⋅ �̇�(𝑡) + 𝐠 ⋅ 𝛿𝐫(𝑡) + 1
𝑀eff

𝛿𝐅𝑡ℎ(𝑡), (4.15)

where 𝜴2, 𝜞 are the restoring force and (isotrop) damping matrices of the unperturbed
nanowire and 𝐠, 𝐡 are the instantaneous and delayed feedback matrices:

𝜴2 ≡ (Ω
2
1 0
0 Ω2

2
), 𝜞 ≡ (Γ 0

0 Γ), 𝐠 ≡ (𝑔11 𝑔21
𝑔12 𝑔22

) and 𝐡 ≡ (ℎ11 ℎ21
ℎ12 ℎ22

). (4.16)

The 𝑔𝑖𝑗 in the above equation can be regarded analogously to the force field gradients in
the other experimental chapters of this thesis. Their intrinsic difference is that here we
speak of artificial force gradients created by an active feedback. The force field gradients
native to the nanowire’s environment can still be preset as well. Both contributions add
up linearly, so 𝑔𝑖𝑗 can be regarded as the sum of feedback created artificial force gradient
and physical force gradient at any point, in order to account for the effects of an external
background field that is independent of the applied feedback.
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4.1 Principle of linear feedback in a two dimensional system

The Fourier transform of (4.15) gives the equation ofmotion in the frequency domain:

−𝜴2 ⋅ 𝛿𝐫[Ω] = −(𝜴2 − 𝐠) ⋅ 𝛿𝐫[Ω] − 𝑖(𝜞 − 𝐡)Ω𝛿𝐫 + 1
𝑀eff

𝛿𝐅𝑡ℎ[Ω] (4.17)

⇔ 𝛿𝐫[Ω] = 1
𝑀eff

(Ω
2
1 − 𝑔11 − Ω2 − 𝑖(Γ − ℎ11)Ω 𝑔21 − 𝑖Ωℎ21

𝑔12 − 𝑖Ωℎ12 Ω2
2 − 𝑔22 − Ω2 − 𝑖(Γ − ℎ22)Ω

)
−1

⋅ 𝛿𝐅𝑡ℎ

(4.18)

= 𝝌𝑓 𝑏 ⋅ 𝛿𝐅𝑡ℎ

Combining the undressed eigenfrequencies with the diagonal feedback terms Ω∥
2
1,2 =

Ω2
1,2 − 𝑔11,22, the susceptibility matrix is then

𝝌𝑓 𝑏 =
1

det 𝝌−1
𝑓 𝑏

(Ω∥
2
2 − Ω2 − 𝑖(Γ + ℎ22)Ω −𝑔21 + 𝑖ℎ21Ω

−𝑔12 + 𝑖ℎ12Ω Ω∥
2
1 − Ω2 − 𝑖(Γ + ℎ11)Ω

) (4.19)

with

𝑀−1
eff det 𝝌

−1
𝑓 𝑏 =(Ω∥

2
1 − Ω2 − 𝑖(Γ1 + ℎ11)Ω)(Ω∥

2
2 − Ω2 − 𝑖(Γ2 + ℎ22)Ω)

− (𝑔12 − 𝑖ℎ12Ω)(𝑔21 − 𝑖ℎ21Ω)
(4.20)

=𝑌−[Ω]𝑌+[Ω], (4.21)

where we have introduced the complex admittances 𝑌±[Ω], whose expression are

𝑌±[Ω] ≡
Ω2
1 + Ω2

2 − 𝑓11 − 𝑓22
2

− Ω2 − 𝑖ΩΓ + 1
2√

(Ω2
2 − Ω2

1 − 𝑓22 + 𝑓11)2 + 4𝑓12𝑓21

using 𝐟 ≡ 𝐠 − 𝑖Ω𝐡.

4.1.4 Dressed eigenmodes for a single linear feedback

With the general form for 𝐟 in Equation 4.8 we can write 𝝌𝑓 𝑏 in the eigenmode basis 𝐞1,2
as

𝝌−1
𝑓 𝑏 [Ω] =

1
det 𝝌−1

𝑓 𝑏 [Ω]

(Ω
2
2 − Ω2 − 𝑖ΓΩ + 𝑝 sin 𝜑 sin 𝜇 −𝑝 cos 𝜑 sin 𝜇

−𝑝 sin 𝜑 cos 𝜇 Ω2
1 − Ω2 − 𝑖ΓΩ + 𝑝 cos 𝜑 cos 𝜇),

(4.22)

with

det 𝜒−1[Ω] =(Ω2
1 − Ω2 − 𝑖ΓΩ + 𝑝 cos 𝜑 cos 𝜇)

(Ω2
2 − Ω2 − 𝑖ΓΩ + 𝑝 sin 𝜑 sin 𝜇)−

𝑝2 cos 𝜑 sin 𝜑 cos 𝜇 sin 𝜇.
(4.23)
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4 Creating artificial 2D force fields using realtime active feedback

Using the following analogy to the 𝑔𝑖𝑗 matrix from Section 1.1.2

𝑔11 → −𝑝 cos 𝜑 cos 𝜇
𝑔12 → −𝑝 sin 𝜑 cos 𝜇

𝑔21 → −𝑝 cos 𝜑 sin 𝜇
𝑔22 → −𝑝 sin 𝜑 sin 𝜇

(4.24)

we can use Equation 1.40 to obtain the dressed eigenfrequencies of the nanowire with
active feedback:

Ω2
± =

Ω2
1 + Ω2

2 + 𝑝 cos(𝜑𝑓 𝑏 − 𝜇)
2

± 1
2√

(Ω2
2 − Ω2

1 − 𝑝 cos(𝜑 + 𝜇))2 + 𝑝2 sin 2𝜑 sin 2𝜇.
(4.25)

And similar to (1.42) the dressed eigenvectors are

𝐞− = 1

√𝑝 sin
2 𝜑 cos2 𝜇 + (ΔΩ2

⟂)
2
( ΔΩ2

⟂
−𝑝 sin 𝜑 cos 𝜇)

and

𝐞+ = 1

√𝑝 cos
2 𝜑 sin2 𝜇 + (ΔΩ2

⟂)
2
(𝑝 cos 𝜑 sin 𝜇ΔΩ2

⟂
).

(4.26)

Here, we introduced for visual simplicity the quantity

ΔΩ2
⟂ ≡ 1

2
(Ω2

2 − Ω2
1 − 𝑝 cos(𝜑 + 𝜇)+

√(Ω
2
2 − Ω2

1 − 𝑝 cos(𝜑 + 𝜇))2 + 𝑝2 sin 2𝜑 sin 2𝜇).
(4.27)

4.1.5 The projected thermal noise spectrum

Following the proceeding described in Section 1.1.2.4, we can calculate the projected
thermal noise spectrum for an arbitrary linear feedback. Equation 1.65 becomes the
more general expression

𝑆𝛿𝑟𝜇[Ω] =
𝑆𝐹𝑡ℎ

|det 𝜒−1|2
(

cos2 𝜇 (|𝜒11|
2 + |𝜒12|

2)
+ sin2 𝜇 (|𝜒22|

2 + |𝜒21|
2)

+2 cos 𝜇 sin 𝜇 (ℜ(𝜒∗
11𝜒21) + ℜ(𝜒∗

12𝜒22))
) (4.28)

Where the asterisk is the complex conjugate and ℜ is the real part of a complex quan-
tity.
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4.1 Principle of linear feedback in a two dimensional system

4.1.6 The parasitic role of the measurement noise

The experimental realization is never an ideal replica of the theory, here, the readout
channels add additional noise 𝛿𝜌noise⊖,⊕ to the measured displacement noise 𝛿𝑟⊖,⊕ of the
nanowire. This parasitic noise is then injected into the feedback loop and causes an
excess of force noise. This section gives a more detailed description of the feedback
process, taking these additional noise into account.

Writing the measured positional estimator as 𝛿𝜌 and the real position of the nanowire
as 𝛿𝐫, the measured signal along the detection vectors 𝐞⊖, 𝐞⊕ is:

𝛿𝜌⊖ = 𝛿𝐫 ⋅ 𝐞⊖ + 𝛿𝜌noise⊖

𝛿𝜌⊕ = 𝛿𝐫 ⋅ 𝐞⊕ + 𝛿𝜌noise⊕ .
(4.29)

As before, those projective measurements are used for the signal reconstruction in the
x,z coordinates, so we reconstruct the noise contaminated trajectories (𝛿𝜌𝑥, 𝛿𝜌𝑧) from
the projected signals:

(𝛿𝜌𝑥𝛿𝜌𝑧
) = 1

sin(𝜃⊕ − 𝜃⊖)
( sin 𝜃⊕ − sin 𝜃⊖
− cos 𝜃⊕ cos 𝜃⊖

) ⋅ (𝛿𝜌⊖𝛿𝜌⊕
). (4.30)

The projected trajectory along a measurement vector 𝝁 with the angle 𝜇 to the 𝑥-axis is
then given by

𝛿𝜌𝜇 = cos 𝜇 𝛿𝜌𝑥 + sin 𝜇 𝛿𝜌𝑧, (4.31)

and we can separate the projected real displacement 𝛿𝑟𝜇 from the projected noise 𝛿𝜌noise
as

𝛿𝜌𝜇 = 𝛿𝑟𝜇 + cos 𝜇 𝛿𝜌noise𝑥 + sin 𝜇 𝛿𝜌noise𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝛿𝜌noise𝜇

. (4.32)

Inserting the expressions for 𝛿𝜌𝑥,𝑧 from (4.30), we obtain 𝛿𝜌noise𝜇 in terms of the measure-
ment noise 𝛿𝜌⊖,⊕ as

𝛿𝜌noise𝜇 = 1
sin(𝜃⊕ − 𝜃⊖)

(sin(𝜃⊕ − 𝜇)𝛿𝜌noise⊖ + sin(𝜇 − 𝜃⊖)𝛿𝜌noise⊕ ) (4.33)

The uniaxial active feedback applies an artificial force that is thus proportional to the
projected actual displacement 𝛿𝑟𝜇 and the projected noise:

𝛿𝐅fb[Ω] = 𝑀eff𝑝fb(𝛿𝑟𝜇[Ω] + 𝛿𝜌𝜇)𝐞fb, (4.34)

so that the equation describing the dressed nanowire trajectory becomes:

𝛿𝐫[Ω] = 𝝌[Ω] ⋅ (𝛿𝐹th + 𝑀𝑝fb𝛿𝜌noise𝜇 𝐞fb), (4.35)
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4 Creating artificial 2D force fields using realtime active feedback

where the dressed susceptibility matrix 𝝌[Ω] in the 𝐞1,2 basis is defined as in Equa-
tion 4.22. From this equation, we see that the measurement noise acts as an artificial
noise source, oriented along the feedback force direction. When we now measure the
nanowire trajectory along another measurement vector 𝛽, we get:

𝛿𝜌𝛽 = 𝐞𝛽 ⋅ 𝛿𝐫 + 𝛿𝜌noise𝛽 (4.36)

= 𝐞𝛽 ⋅ 𝝌 [Ω] ⋅ 𝛿𝐅th + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb 𝛿𝜌noise𝜇 + 𝛿𝜌noise𝛽 , (4.37)

where 𝜒𝛽𝐹 = 𝐞𝛽 ⋅ 𝝌 ⋅ 𝐞𝐹. The last two terms in (4.37) contain only readout noise for
the two involved detection vectors. The first term is enhanced by the mechanical sus-
ceptibility, while the second one represents the readout noise along the measurement
direction (which is generally spectrally flat). Both noise terms are linear combinations
of the readout noises (𝛿𝜌noise⊖,⊕ ). Since all noise sources in this equations (Langevin and
readout noises on each measurement channel) are uncorrelated, they will add up inco-
herently in the noise spectra. We can write 𝛿𝜌noise𝛽 (the last two terms) in terms of the
noises seen on each readout channel:

𝛿𝜌noise𝛽 = 1
sin(𝜃⊕ − 𝜃⊖)

((
sin(𝜃⊕ − 𝛽) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb sin(𝜃⊕ − 𝜇))𝛿𝜌noise⊖

+(sin(𝛽 − 𝜃⊖) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb sin(𝜇 − 𝜃⊖))𝛿𝜌noise⊕
). (4.38)

The measured noise spectrum is then

𝑆𝛿𝜌𝛽 = 𝑆𝛿𝑟𝛽 +
1

sin2(𝜃⊕ − 𝜃⊖)
(
|sin(𝜃⊕ − 𝛽) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb sin(𝜃⊕ − 𝜇)|2𝑆𝛿𝜌noise⊖

+|sin(𝛽 − 𝜃⊖) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb sin(𝜇 − 𝜃⊖)|
2
𝑆𝛿𝜌noise⊕

),

(4.39)
which can be simplified if the readout vectors are perpendicular (𝜃⊕ = 𝜃⊖ + 𝜋/2):

𝑆𝛿𝜌𝛽 = 𝑆𝛿𝑟𝛽 + |cos(𝛽 − 𝜃⊖) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb cos(𝜇 − 𝜃⊕)|
2𝑆𝛿𝜌noise⊖

+ |sin(𝛽 − 𝜃⊖) + 𝜒𝛽𝐹[Ω]𝑀eff𝑝fb sin(𝜇 − 𝜃⊖)|
2
𝑆𝛿𝜌noise⊕

.
(4.40)

As a first criterion for a proper measurement of the mechanical displacement noise, we
require a good signal noise to background noise (SNB) ratio 𝑆𝛿𝑟𝛽 ≫ 𝑆𝛿𝜌noise⊖,⊕

for the fre-
quency range of interest. Themain noise contribution then comes from themechanically
enhanced noise and we obtain as a second criterion:

𝑝2fb𝑀
2
eff|𝜒𝛽𝐹|

2𝑆𝛿𝜌noise⊖,⊕
≪ 𝑆𝛿𝑟𝛽 (4.41)

⇒ 𝑝2 ≪ Ω2
𝑚Γ2𝑚

𝑆𝛿𝑟𝛽
𝑆𝛿𝜌noise⊖,⊕

, (4.42)

where we evaluated the susceptibility close to the mechanical resonance. We note that
the noise level at frequencies far from resonance remains almost constant.
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4.2 Implementation of a tunable linear 2D force feedback

One objective of the active feedback is to compensate themode rotations of the nanowire
using the transversal configuration. If we want to compensate a rotation of 𝜋/4, we need
to apply a feedback gain of 𝑝fb > Ω𝑚ΔΩ𝑚 with the mode splitting ΔΩ𝑚. This imposes a
minimum SNB of:

𝑆𝛿𝑟𝛽
𝑆𝛿𝜌noise⊖,⊕

≫
ΔΩ2

𝑚

Γ2𝑚
. (4.43)

Thus, for an eigenmode splitting of 100Hzwith 10Hzmechanical linewidth, the required
SNB is 20 dB while for a high Q nanowire with 1Hz linewidth, it is 40 dB. The higher
required SNB originates from the fact that the mechanical response increases when Γ
decreases, but the mode rotation is not affected. Since in practice, the SNB scales with
𝑄, this should not be a too critical criterion, but it sets an upper bound for the gain of
the feedback architecture. We note that we have assumed that the driving force does not
add any additional noise, but it could be treated using the same formalism.

4.2 Implementation of a tunable linear 2D force feedback

In order to realize a linear force feedback scheme in two dimensions as described in
the previous section, two criteria must be fulfilled. Firstly, the position 𝛿𝑟𝜇 needs to
be measured and fed back in realtime, meaning with a computation time significantly
faster than the evolution of the oscillator position. This requires a signal processing
protocol that converts the projected signals along the two readout directions (compare
Section 1.3 ) into a feedback measurement signal, proportional to the motion projected
along an artificial direction vector 𝐞𝜇. Secondly, the direction of the feedback force must
be tunable in order to adapt 𝜑while the feedback force should be efficient enough so that
the feedback mechanism can act sufficiently on the nanowire dynamics. This tunability
criterion makes it difficult to use the optical force which drives the nanowire in order
to lock the PLL on the mechanical response, since the direction of this force cannot be
sufficiently tuned due to the static optical montage. Instead, by using one of the metal-
coated AFM tips used for force measurements, we have a movable point source of an
electrostatic force with good controllability in term of orientation as the nanowire is
attracted by the tip, and an extremely efficient actuation: a biased tip located at 100 nm
generates a typical force of 100 fN for 𝑉bias = 1V, a value that largely overwhelms all
other forces at play in the nanowire dynamics.

4.2.1 Linear electrostatic force

A single electrode creates a central attractive force field in absence of parasitic electro-
static field. By positioning it correctly with respect to the nanowire extremity, the direc-
tion of the force can be finely tuned. Since the electrostatic force on a polarizable object
is quadratic in voltage, we can get a working point where 𝛿𝐹(𝛿𝑉 ) is linear if we add a
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4 Creating artificial 2D force fields using realtime active feedback

static bias voltage and the feedback voltage fluctuations. A metal coated AFM cantilever
electrode has already been investigated in the previously conducted forcemeasurements,
we naturally chose such a tunable force for our feedback purpose.

4.2.1.1 Linearity

We recall that the electrostatic force exerted on a dielectric nanowire generated by an
electrode follows

𝐅𝑒𝑙(𝑉 ) = 𝛼(𝑉 − 𝑉0)2𝐞𝐹, (4.44)

where 𝐞𝐹 is oriented towards the electrostatic tip and 𝛼, 𝑉0 are the position dependent
quadratic force coefficient and offset potential. We here neglect any contribution of a
constant background force that does not contribute to the feedback. In the experiment
we will apply a voltage fluctuation 𝛿𝑉 to modulate the force added to a static bias poten-
tial 𝑉1, then the electrostatic force can be expanded as

𝐹𝑒𝑙(𝑉1 + 𝛿𝑉 ) = 𝛼(𝑉1 − 𝑉0)2 + 2𝛼(𝑉1 − 𝑉0)𝛿𝑉 + 2𝛼𝛿𝑉 2. (4.45)

The first static contribution can displace the nanowire rest position and is responsible
for a dressing of the nanowire’s mechanical properties. When the bias voltage is large
enough, the nanowire eigenmodes will naturally get aligned with the electrostatic tip
direction.

Equation 4.45 tells that the linear term dominates the voltage fluctuations if |𝑉1 − 𝑉0| ≫
|𝛿𝑉 | and we can hence approach a linear regime by operating at a working point 𝑉1
far enough from 𝑉0. Experimentally, too large 𝑉1 will create static force field gradients
that are too extreme for the nanowire to remain in the linear regime: if it moves away
from its rest position, the actuation force will not remain identical. This practically
imposes an upper limit for |𝑉1 − 𝑉0| of about 1 V, a value which depends as well on the
distance between the nanowire and the electrode. This distance is chosen not to small to
accomplish that the nanowire evolves in a spatially homogeneous actuation force (the
nanowire thermal noise trajectories typically spread over 1 nm to 10 nm). With typical
amplitudes of 𝛿𝑉 ranging from a few mV to tens of mV, sufficient to produce fluctuating
electrostatic forces which significantly dominate the nanowire dynamics, we verified
that the force modulation remains linear with 𝛿𝑉 by realizing response measurements
without detecting any deviation from the linear response regime.

4.2.1.2 Feedback force orientation

The electrostatic force created by a biased tip is radially symmetric. It thus suffices to
know the direction of the eigenmodes and to position the tip accordingly in order to
have the force direction acting in a well determined direction 𝜑. In practice the direction
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4.2 Implementation of a tunable linear 2D force feedback

of the eigenmodes can be obtained either from a fit of the acquired spectra along two
measurement directions or by measuring 𝛿𝑟𝜇 in a radar like measurement for multiple
angles 𝜇.

In order to determine the correct position of the electrode, one needs to take into ac-
count that the obligation to work around an offset 𝑉1 adds a static force field with non-
negligible gradients. This central force induces a rotation of the eigenmodes as a block
due to the conservative nature of the electrostatic force (Section 1.1.2.3), up to the limit
that the lower frequency eigenmode will align towards the electrostatic tip. This obser-
vation is an advantage since it allows the electrostatic force to be directly aligned with
the dressed lower eigenmode (𝐞− → 𝐞𝜑).

We could therefore use a high 𝑉1 to create a bias force field that aligns the first fundamen-
tal eigenmode basis with the force field. Due to the mentioned experimental difficulties
at large offset potentials, where one loses the spatial homogeneity of the feedback force.
We adopted a compromise where the electrostatic tip is already oriented in direction of
the undressed low frequency mode and the static electrostatic force field improves the
force alignment.

Another effect that influences the choice of the force angle 𝜑 is the tilt of the nanowire
with respect to the cantilever/tip which breaks the isotropic symmetry of the force and
the force gradients, the latter being responsible for eigenmode rotations. For a straight
nanowire, the only parameter that determines which eigenmode is affected by the ap-
plied force is the relative alignment between the nanowire and the electrode. For a
nanowire tilted along the x-axis for example, the electrostatic force will not be sym-
metric when moving the electrode around the nanowire, and will present a force field
pattern with a large bias of the vector flow along the x coordinate. The force gradients
can also be biased along that orientation. In such a situation, it is important to position
the tip in the x direction (along the tilt direction), and to use a bias voltage strong enough
in order to align the eigenmodes along the x axis.

4.2.2 Feedback architecture on an arbitrary measurement direction

With the first prerequisite for a two dimensional linear feedback being fulfilled by the
use of a mobile single electrode, one still needs to modulate the feedback voltage signal
proportionally to the projected displacement amplitude 𝛿𝑟𝜇 measured along 𝐞𝜇. Since
the latter does not necessarily coincides with one of the two initial measurement vec-
tors (𝑒⊖,⊕), this requires a realtime projection of the measured signal 𝛿𝐫 that first must
be reconstructed from the measured signals 𝛿𝑉⊖,⊕ on the two linearly independent mea-
surement vectors 𝜷⊖,⊕.

In order to achieve a realtime signal processing condition while keeping a high degree
of flexibility we use the customized Red Pitaya FPGA device that was introduced in Sec-
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tion 1.4.6 to create the feedback signal. To do so, the functionalities of DSP and data
server have been adapted as will be discussed in the remainder of this section.

4.2.2.1 Realtime digital signal processing

The feedback FPGA unit needs to be able to rebuild the signal 𝛿𝐫 from the measured
signals along two measurement vectors that are not necessarily perpendicular, nor of
equal sensitivity, and project this signal onto the chosen measurement vector 𝐞𝜇. The
device should therefore be fed with the three parameters 𝜷⊖, 𝜷⊕ and 𝜇which are the two
readout vectors and the projection angle as inputs.

Breaking down the conversion from measured signals 𝛿𝑉⊖,⊕ to projected displacement
amplitude 𝛿𝑟𝜇, we first start with the signals projected on the two readout channels
⊖,⊕

𝛿𝑟⊖,⊕ = 𝐞𝛽⊖,⊕(
𝛿𝑟𝑥
𝛿𝑟𝑧

). (4.46)

Since both measurement channels have an individual sensitivity, the measured voltages
at the detector are

𝑉⊖,⊕ = |𝛽⊖,⊕|𝛿𝑟⊖,⊕. (4.47)

To obtain the projected displacements from the measured signal we can therefore just
divide by the lenghts of the measurement vectors:

(𝛿𝑟⊖𝛿𝑟⊕
) = (

𝛿𝑉⊖/|𝜷⊖|
𝛿𝑉⊕/|𝜷⊕|

). (4.48)

For the reconstruction of 𝛿𝐫𝑥𝑧 = (𝛿𝑟𝑥, 𝛿𝑟𝑧)𝑇 from (𝛿𝑟⊖, 𝛿𝑟⊕)𝑇 we use the transformation
from Equation 1.3.1. The product 𝐞𝜇 ⋅ 𝛿𝐫 then yields the projected signal 𝛿𝑟𝜇 that is pro-
portional to the displacement 𝛿𝐫 of the nanowire in direction of 𝐞𝜇. We can combine
these steps into one equation:

𝛿𝑟𝜇 = 𝑠(
cos 𝜇 sin 𝛽⊖ − sin 𝜇 cos 𝛽⊖

|𝜷⊖| det 𝜷
𝛿𝑟⊖ +

sin 𝜇 cos 𝛽⊕ − cos 𝜇 sin 𝛽⊕
|𝜷⊕| det 𝜷

𝛿𝑟⊕)

= 𝑝1𝛿𝑟⊖ + 𝑝2𝛿𝑟⊕

(4.49)

where
det 𝜷 = cos 𝛽⊖ sin 𝛽⊕ − cos 𝛽⊕ sin 𝛽⊖, (4.50)

and where we have also introduced the scaling factor 𝑠 that ensures that the digital
multiplications on the FPGA use large numbers (without digital saturation) in order to
make use of the highest digital resolution we can achieve. This will also scale up the
output signal in amplitude that can be subsequently attenuated electronically without
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loss of resolution. The two coefficients 𝑝1 and 𝑝2 do not depend on the measured signal
and result only from the input parameters 𝜷⊖, 𝜷⊕ and 𝜇. They do not require realtime
arithmetics and are therefore calculated on the data server of the FPGA device before
being used in the realtime process. As a last operation, the gain of the feedback loop is
adjusted by a multiplication with a tunable factor 𝑝 that can be positive or negative.

Figure 4.2 outlines the DSP configuration of the FPGA. Before any of the above arith-
metics is performed, the input signals are filtered by two consecutive first order filters
(low and high pass). In combination, they allow to restrict the signal to a frequency
range around the mechanical resonances. In practice, the filters also serve the purpose
of phase adjustment of the feedback signal. This is necessary because the electrical am-
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Fig. 4.2: Internal signal processing circuit of the Red Pitaya feedback module. The input signals
from the photodiode’s channels are filtered by two first order filters 𝐹𝑖1,2 that can operate
as high or low pass filter. A multiplication of the filtered input signals 𝐴1𝐹𝐹, 𝐴2𝐹𝐹 with the
proportionals 𝑝1, 𝑝2, �̃�1, �̃�2 creats a readout singal 𝐴𝜇1,2 for arbitrary readout angles. The
proportionals are calculated based on the photodiode channels’ readout vectors 𝜷⊖,⊕
and a digital scaling factor 𝑠. The calculation is performed at runtime in the C controlling
module that runs on the operating system of the device. Each block represents amodule
in the FPGA. A variable gain on the feedback output 𝐷𝐴𝐶1 allows to programatically
change the feedback strength.

plification and filtering steps of the recorded signal realized by the photodiode amplifier
add a significant artificial delay to the signal due to the frequency splitting between the
DC and HF outputs. It is necessary to compensate this artificial delay in order to create a
truly instantaneous feedback signal. In the first versions of the DSP architecture, we did
not implement a dedicated delay block and therefore use the digital filters to adjust the
phase of the output signal, while relying on external electronic filters for data cleaning.
Figure 4.3 shows the amplitude and phase response of a theoretical first order low-pass
filter. The phase transition from 0 to −𝜋/2 allows to correct a phase delay on the input
signal by choosing a cut-off frequency 𝜔𝑐 such that the filter has the proper phase delay
at the frequency of the mechanical resonances. These are in general very close to each
other so that the residual slope does not play a significant role. The downside of this
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method is that the signal is necessarily attenuated which comes with a loss of digital
resolution that can neither be compensated by subsequent amplification nor the signal
can be amplified before, given that the signal already fluctuates on the entire sampling
range. In order to correct a phase of opposite sign, this delay module can be configured
as a high-pass filter that produces a phase change of opposite sign. Instead of utiliz-
ing the module to correct a previously existing dephasing, we can also apply it in order
to create a retarded signal required for the creation of delayed feedback introduced in
Section 4.1.3.
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Fig. 4.3: Amplitude and phase for a low-pass filter of first order with a cut-off frequency 𝜔𝑐.

After both filters, the input signal (𝐴1𝐹𝐹, 𝐴2𝐹𝐹 in 4.2) is split and the signal projection
of Equation 4.49 is performed on two separate channels with the coefficients 𝑝1,2 on
one and ̃𝑝1,2 on the other channel. The first output serves as the feedback channel, and
is subsequently amplified by a controllable gain factor while the second output serves
as a monitor channel to realize vibration signal analysis in any desired orientation. It
measures the signal at an arbitrary angle 𝜇2 that is different from the projection angle of
the feedback channel with 𝜇1 = 𝜇. Those numerical channels, are then converted into
analog voltages on a ±1V rangewith 14 bit resolution at a sampling rate of 125MHz.

The FPGAmodule is the core element of the experimental setup that combines feedback
creation with different measurement protocols. Therefore, all parameters employed in
the feedback architecture can be modified via the server installed on the RedPitaya (com-
pare Section 1.4.6.1), for example when realizing radar like measurements via the mon-
itoring channel, the measurement angle can be adjusted and rotated step by step using
automated protocols.

While the presented architecture only supports linear feedback operations it is easily
feasible to extent the range of arithmetics in order to create nearly arbitrary non-linear
force fields in 2D (where the force can become any function of the oscillator position),
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being only limited by the computation capacities of the FPGA. The presented linear
feedbacks create oscillator responses that represent interesting applications and that can
bemodelled using the standard linear descriptions of our nanowire system. It is therefore
an ideal test case.

4.2.2.2 Experimental implementation

The experimental setup that implements the two dimensional linear feedback measure-
ments resembles the force measurement experiment with the addition of the feedback
architecture and of the corresponding analysis tools. The setup’s main components are
schematically laid out in Figure 4.4. The optical and scanning probe setup are similar to
the ones described above. We employ a nanowire of dimensions 300 nm by 200 µm, oscil-
lating around 8277Hz and 8337Hz, with quality factors up to 8000 in vacuum, oriented
along a direction 𝜃1 = −20°. The effective mass is measured at the level of 7·10−15 kg.
The quality factor of the nanowire can be lowered by increasing the air pressure, as we
will do in some of the following experiments.

On the signal processing side, the raw signal from the split-photodiode is sent to the HF2
two channel lock-in amplifier that records data such as the nanowire’s Brownian trajec-
tories and the position noise spectra on both measurement channels. It is also used to
lock the dual PLL on the mechanical resonances that are always present in the raw mea-
surement signals 𝑉⊖,⊕, but not necessarily in the radar signal 𝑉𝜇 when the measurement
orientation becomes perpendicular to one of the eigenmode. Additionally, the instru-
ment can perform response sweeps using the same drive channel as the feedback signal,
measuring amplitude and phase responses of the nanowire, that allow to determine the
electrostatic force vector as described above, and to precisely align it with one of the
eigenmodes orientations as used later in Section 4.2.3.

On the feedback generating part, the raw signal is band-pass filtered between 0.3 kHz to
100 kHz by a second order filter and amplified by a factor of 200 using two SRS SR560
low-noise preamplifiers. The amplification ensures that the signal is large enough to fill
the whole span of the two analog to digital converters on the Red Pitaya (±1 V). Monitor-
ing the amplified signals on an oscilloscope prevents saturation of the inputs. A Zurich
Instruments MF single channel lock-in amplifier reads the signal on the monitor output
(DAC2 in Figure 4.2) of the feedback FPGA, the radar output, that permits to measure the
nanowire trajectory projected along any orientation. Sweeping the projection angle 𝜇2
on this monitor channel, we can thus realize radar like measurements, acquiring either a
full spectrum at each 𝜇2 or using a resonant measurement by adjusting the demodulation
frequencies of theMF device to the frequencies of the eigenmodes (or any other), which
can be determined by the 2 PLLs of the HF2 while driving the nanowire with either op-
tical or piezoelectric actuation. The measurement at an arbitrary angle also allows to
monitor the effect of the feedback force along a given direction.
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4 Creating artificial 2D force fields using realtime active feedback

Fig. 4.4: Experimental configuration scheme for artificial force feedback generation. On the right
signal processing side, the reflection signals on the ⊖, ⊕-channels of the split photodiode
are realtime processed by the RedPitaya Feedback/Radar module. Analog band-pass
filters and amplifiers on the photodiode signals ensure that the whole dynamic range
(±1 V) of the RedPitaya’s ADCs is used. The two output signals produced by the FPGA
correspond to two independent readout directions e𝜇1 and e𝜇2

where the feedback sig-
nal has a tunable proportional gain. Raw signal and radar signal are monitored on the
HF2 and MF2 instruments, respectively. The feedback signal 𝛿𝑉fb is filtered to remove
low or high frequency noises and optionally amplified before being added to the offset
potential 𝑉off. The left part of the figure outlines the generation of an electrostatic force
in direction eF proportional to the nanowire’s position fluctuations measured along e𝜇.
The vectors e1,2 denote the direction of the mechanical eigenmodes in absence of feed-
back. The green laser (not shown) or a piezo stack can be used to drive the nanowire to
independently probe its mechanical susceptibility dressed by the 2D feedback loop.

The feedback signal passes a combined electronic filter/amplification device that has
been manufactured in house by Kevin Chighine and Daniel Lepoittevin at Institut Néel.
Here, a band-pass filter at 1 kHz to 300 kHz removes a possible AC offset and high fre-
quency noise that may have been added by the RedPitaya’s electronics. The amplifier
can be used in the case where the force modulation achieved with the ±1V output span
of the Red Pitaya does not create a sufficient mechanical drive. An active homemade
adder adds up the feedback signal to the output signal of the HF2 lock-in and to an ad-
justable voltage offset that displaces the working point in the force parabola as described
in Section 4.2.1. The offset can be used as a sort of amplifier, while its value with respect
to 𝑉0 determines the sign of the feedback force.

The electrode’s tip that generates the electrostatic field and thus the driving force field is
freely positionable in the horizontal 𝑥, 𝑧 plane and along the vertical 𝑦 axis. It is depicted
by the yellow cone in the sketch of the experimental configuration in the upper part of
Figure 4.4. The cut in the 𝑥, 𝑧 plane highlighted by the circle illustrates the arrangement
of the electrode and the nanowire, here presented as black dot in the centre. The di-
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4.2 Implementation of a tunable linear 2D force feedback

rection of the unperturbed nanowire’s eigenmodes are shown as blue and red arrows.
The force vector follows a straight line between electrode and nanowire, following the
direction of the electric field. The projected signal onto the measurement vectors 𝐞⊖,⊕
is detected at the two photodiode channels ⊕,⊖. The two readout vectors 𝐞𝑓 𝑏, 𝐞𝜇 cor-
respond to the two output channels of the FPGA module and can be freely rotated in a
radar like way. The illustrated configuration corresponds to a nearly ideal arrangement
for the generation of a pure shearing force that is topic of Section 4.3.3.

4.2.3 Force alignment

The orientation of the cold nanowire eigenmodes does not affect the generation of the
feedback force field that only depends on the measurement and the force vectors’ geo-
metrical arrangements. However, the equations simplify and the interpretation of the
results becomes easier if the feedback force is aligned to a mechanical mode. In partic-
ular, this configuration is necessary if one wants to generate a pure shear force field in
the uncoupled eigenmode basis. Aligning the first mechanical mode with the feedback
vector mitigates also the induced mode rotation due to a static external field mentioned
in Section 4.2.2.2.

The first step of the measurement preparation is the precise determination of the un-
dressed eigenmode orientations. Even if thermal noise measurements always allow
determining such an orientation, they are less precise in practice than methods based
on the use of external forces. One possibility is to perform a force field gradient mea-
surement above a sharp electrode by monitoring the frequency shifts of the two eigen-
modes. As described in the section on electrostatic force fields, the electrode’s central
force field affects the frequencies of both modes differently depending of the postition of
the nanowire. When the nanowire is positioned along a straight line from the tip, in the
direction of an eigenmode, only the frequency of this mode will shift while the second
mode remains stable. This creates a characteristic pattern in the plot of 𝑓1,2 that can be
used to determine the uncoupled mode orientations.

Another technique to define the mode orientations is the radar measurement realized
using the second output of the feedback FPGA module. It can be employed to analyse
either the resonant response of the nanowire, or its thermal noise. In the resonant case,
we measure the mechanical response 𝛿𝑟𝜇 of a nanowire along the vector 𝐞𝜇, whereas in
the noise based case, we acquire a spectrum 𝑆𝛿𝑟𝜇 for multiple angles of measurements.
The two PLLs of the HF2 locked on the nanowire’s response to the piezoelectric drive
(compare Figure 4.4) ensure that the modulation follows the nanowire resonances. Since
the lock signal is independent from the detection vector 𝐞𝜇, we do not risk to loose the
PLL’s lock when detecting at a direction where the projected displacement for a mode
𝛿𝑟𝜇(Ω1,2) is zero. TheMF lock-in amplifier performs the demodulation readout of the pro-
jected signal, with its demodulation frequencies synchronized to the ones determined by
the PLLs of the HF2 device (via the auxiliary inputs and outputs). Due to the large sig-
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4 Creating artificial 2D force fields using realtime active feedback

nal intensities, a full radar measurement as shown in Figure 4.5, made of 180 angles,
only takes about ten to twenty seconds. The main requirement here is to let the mea-
surement proceed for a duration larger than a few inverse filter bandwidths of the final
demodulator, all the other time scales in the signal processing chain being faster than
that.

For the noise based measurement, the active drive used to frequency lock the PLLs is
deactivated and the MF lock-in amplifier operates as spectrum analyzer, registering a
spectrum for each projection angle 𝜇. This technique is slower than the resonant mea-
surement but does not require an active drive and additionally provides a better overview
of the full mechanical mode spectrum.

0°

45°

90°

135°

180°

225°

270°

315°

-3.5-3.0-2.5-2.0-1.5

Realtime amplitude radar 
 ( )/

First mode
Second mode

Fig. 4.5: Amplitude radar measurement 𝛿𝑟𝜇[Ω±] of the two mechanical modes obtained by scan-
ning the projection angle 𝜇. Two PLLs lock the driven tone at resonance using a piezo-
electric actuation on the raw signals 𝑉⊕,⊖ of the photodiode. The amplitudes are acquired
at modulation frequencies on the rotating signal 𝑉𝜇 on the second output of the Red-
Pitaya feedback module, they are shown in volts, integrated over the filter resolution
badwidth (in log scale)..

Compared to the method based on a test force map, the radar measurements have the
advantage that the raw mode orientation can be determined without suffering from the
effects from interaction with the electrodes and can hence be realized at any offset volt-
age. The effect of the latter on the mode orientations at a given electrode position can
thus be finely evaluated. Both techniques together are important to ensure good force-
mode alignment for the feedback measurements.

Once the orientation of themodes is known, the electrode is positioned in the direction of
the first eigenmode. To ensure that the electrostatic force only drives a single eigenmode,
we measure the electrostatic force response to determine the force’s magnitude and its
orientation. To do so, the Hf2 lock-in modulates the electric bias voltage around the
chosen static offset and detects the mechanical response of the nanowire. Ideally, when
perfectly aligned, the response curve would only show a mechanical response from the
first mechanical mode. The upper plots in Figure 4.7 present the response curves for
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Fig. 4.6: Spectro-angular tomography 𝑆𝛿𝑟𝜇[Ω] obtained by recording noise spectra while sweep-
ing the measurement angle 𝜇 on of the RedPitaya feedback module (a,c). The data is
acquired using the second output of the FPGA module, for which the calibration factor
from volt tometer has not been determined as the finalmeasurements will be conducted
using the known output from the photodiodes. The top polar plot (b) shows the angular
dependency of the two resonance amplitudes 𝑆𝛿𝑟𝜇[Ω±] obtained by sampling the noise
value along the line cuts indicated by the dashed lines in the left graph. The bottom 2D
polar plot (c) reproduces the measurement of panel (a) in a spectro-angular represen-
tation, which permits to visualise the orientation and frequency of the two modes. The
radial axis corresponds to the frequencies plotted in the left image. Both 2D plots share
the same colorscale.

an aligned configuration (left) and a slightly off positioned electrode (right). In the non-
ideal plot, the second resonance clearly shows a response to the electrostatic drive which
is not the case for the aligned configuration. The typical distances between the nanowire
and the electrode are in the order of micrometers. Such a large distance is chosen so that
the local electrostatic force field gradients remain small (≈ 1 ⋅ 10−8Nm−1 V−2) compared
to the artificial force field gradients (≈ 1 ⋅ 10−6Nm−1 V−2) generated by the position de-
pendent feedback. In a such a position, the artificial force field gradient can bemodulated
efficiently with small modulation voltages in the range of a few millivolts (modulation
efficiency around 1 ⋅ 10−4Nm−1 V−1).

If the electrostatic force is not well aligned with the eigenmode direction or if the cold
eigenmodes are not perpendicular (due to a light induced warping of the basis), both
mechanical resonances will appear in the response measurement. To further investigate
the effect of a small misalignment we use the fact that if the feedback force is sufficiently
homogeneous and is well aligned with one mode, it cannot perturb the seconde mode.
To verify that this is the case, we performed a sweep of the feedback readout angle 𝐞𝜇
from 0° to 360° with the feedback gain constantly activated, and acquire a spectrum along
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Fig. 4.7: Measurements realized to adjust and verify the force alignment with the first mechanical
mode. The top row shows the response of the nanowire to a modulation of the electro-
static bias voltage, with well aligned (left) and slightly misaligned electrical force. The
misaligned case shows a response of the second mode in addition to the stronger re-
sponse of the first mode. The bottom plot row displays noise spectra 𝑆𝛿𝑟𝛽[Ω], measured
at an angle 𝛽 = 50°, with the active feedback loop turned on (instantaneous feedback)
working at a constant gain value, acuired for different feeback measurement angles (𝐞𝜇).
In the misaligned case, the frequency of the second resonance is also affected by the
feedback, showing that the feedback force is not properly aligned with the first eigen-
mode. On the contrary, in the well aligned situation, the feedback force cannot act on
the second mode (if 𝐞𝐹 ⋅ 𝐞2 = 0 and if the electrostatic force field is homogeneous, then
𝑔12 = 0 and g22=0), neither by rotating its orientation nor shifting its frequency.

a given direction for each feedback readout angle. The resulting spectra are shown in
the lower plot row of Figure 4.7. When perfectly aligned (left plots), as expected, only
the first peak is affected by the feedback, with a maximum frequency deviation observed
when the measurement angle is parallel to the first mode, while the second is stable. In
the misaligned case, both peaks change their frequencies (and their amplitude as well,
traducing a rotation induced by the artificial force field).

The detection angle sweep also allows to investigate if the force is instantaneous or
delayed. In the case of a delayed force contribution, feedback gains of different sign (i.e.
two angles separated by 180°) will cause a damping for negative force 𝑔 ∝ −𝑖𝛿𝑟𝜇 and
an antidamping for 𝑔 ∝ 𝑖𝛿𝑟𝜇, which can lead to a dynamical instability if it is strong
enough to compensate the intrinsic damping of the nanowire. If the overall delay is
not properly tuned to zero, then the force will not be perfectly instantaneous and then
the peaks’ amplitudes and linewidths would not be symmetric for positive and negative
gains (i.e. for opposite feedback measurement vector orientations). If it is the case, the
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4.2 Implementation of a tunable linear 2D force feedback

bandwidth of the FPGA filters which control the overall delays in the loop needs to be
adjusted as described above.

4.2.4 Trajectory acquisition

The trajectories were initially recorded using a fast sampling, multichannel acquisition
card (GagePro), saving the direct outputs of the HF channels of the photodiode. How-
ever this method produced a large amount of data, since it was necessary to sufficiently
sample the mean oscillation period while simultaneously acquiring many mechanical
decoherence times to record a sufficient amount of thermal noise realizations. We then
turned to a demodulation technique which allows to only sample the slow variations
of the oscillations envelopes. To do so, we record the quadrature signals (𝑋 and 𝑌) on
both measurement channels ⊖,⊕ named 𝑋⊖,⊕ and 𝑌⊖,⊕ measured with respect to the
same internal clock. The sampling times 𝑡𝑠 are also recorded. The data is converted from
voltage quadratures (𝛿𝑉 (𝑡)) to projected position quadratures of (𝛿𝑟𝛽(𝑡)) via

𝑋⊖,𝑟 = 𝑋⊖,𝑉/HFDC⊖/|𝜷⊖|
𝑌⊖,𝑟 = 𝑌⊖,𝑉/HFDC⊖/|𝜷⊖|
𝑋⊕,𝑟 = 𝑋⊕,𝑉/HFDC⊕/|𝜷⊕|
𝑌⊕,𝑟 = 𝑌⊕,𝑉/HFDC⊕/|𝜷⊕|,

(4.51)

where we make use of the measurement slopes (𝛽𝑖) and of the dynamics vs static con-
version factors associated to the photo-amplifier (𝐻𝐹𝐷𝐶𝑖).

4.2.4.1 Plain Trajectory

The recorded trajectory is recorded in terms of quadratures of the demodulated input
signal 𝑉𝑡2 From the two quadratures calibrated to units of meters, the measured absolute
displacement is obtained with

𝛿𝑟⊖ = √2(cos(𝑡𝑠𝜔𝑟)𝑋⊖,𝑟 − sin(𝑡𝑠𝜔𝑟)𝑌⊖,𝑟)

𝛿𝑟⊕ = √2(cos(𝑡𝑠𝜔𝑟)𝑋⊕,𝑟 − sin(𝑡𝑠𝜔𝑟)𝑌⊕,𝑟)
(4.52)

where the multiplication with √2 transforms the root-mean-square (RMS) value that is
saved to the ZI device to an amplitude. We note that this definition of the quadratures is

2For a monochromatic test signal 𝑉𝑡 = 𝑉0 cos(𝜔𝑡) that is multiplied with the reference signal 𝑉𝑟 =
√⊕exp(−𝑖𝜔𝑟𝑡) the quadratures are

𝑋 =
𝑉0
√2

cos((𝜔𝑠 − 𝜔𝑟)𝑡), 𝑌 =
𝑉0
√2

sin((𝜔𝑠 − 𝜔𝑟)𝑡).
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associated to a time evolution of 𝑒+𝑖Ω𝑡, which is the opposite convention of the formulas
employed before, but they follow the measuring device conventions.

The velocity can similarly be expressed as:

𝛿𝑣⊖ = √2𝑓𝑟(− sin(𝑡𝑠𝜔𝑟)𝑋⊖,𝑟 − cos(𝑡𝑠𝜔𝑟)𝑌⊖,𝑟)

𝛿𝑣⊕ = √2𝑓𝑟(− sin(𝑡𝑠𝜔𝑟)𝑋⊕,𝑟 − cos(𝑡𝑠𝜔𝑟)𝑌⊕,𝑟)
(4.53)

where 𝑓𝑟 is the reference frequency in hertz. And the conversion to the lab coordinates
is done by

𝛿𝑟𝑥 = 𝛿𝑟⊖
sin 𝛽⊕
det 𝛽

+ 𝛿𝑟⊕
− sin 𝛽⊖
det 𝛽

𝛿𝑟𝑧 = 𝛿𝑟⊖
− cos 𝛽⊕
det 𝛽

+ 𝛿𝑟⊕
cos 𝛽⊖
det 𝛽

, with

det 𝛽 = cos 𝛽⊖ sin 𝛽⊕ − cos 𝛽⊕ sin 𝛽⊖,

(4.54)

where the measurement angles 𝛽𝑖 are defined with respect to the x-axis. For the velocity,
a set of similar relations is used.

Figure 4.8 shows the recorded trajectory along the x and z directions during a short
fraction of the total acquisition time. The magnified section to the left shows the thermal
noise of the nanowire oscillating around its mean eigenfrequency around 8340Hz. On
larger timescales, one can see a beating pattern at the frequency difference of the two
eigenmodes around 60Hz, as well as the mechanical coherence time of the nanowire
(15Hz here), reflected by the slowly evolving envelope of the thermal motion.

Fig. 4.8: A subset of the recorded nanowire trajectory in the laboratory xz coordinates. On
short timescales (left) one observes an oscillation at the eigenmode frequency, on
longer timescales this oscillation is modulated by the frequency difference between
both nanowire eigenmodes which leads to a beating patter, while the nanowire coher-
ence time appears as a longer amplitude modulation.
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We will use analyses of the recorded trajectory in time and Fourier space. The de-
tails of the conversion from time sampled data to a frequency spectrum is given in Ap-
pendix B.

4.2.4.2 Spectrally filtered trajectory

The selected demodulator bandwidth is quite large (hundreds to thousands of hertz)
and the trajectory therefore contains a large amount of readout noise, which is larger
on the ⊕-channel compared to the ⊖ one due to common noise rejection. As a visible
consequence, for small SNR, this can lead to an asymmetric shape of the displacement
histograms in the 2D space. Since the motion signal is mainly encoded at the mechanical
resonance, it is possible to spectrally filter the data in Fourier space, in order to remove
the out of resonance readout noise, and to thus obtain 2D histograms in better agreement
with the theoretical description. We note that this filtering does not suppress the readout
contribution “below” the mechanical peaks.

We perform a discrete Fourier transform (DFT) on the demodulated complex data. Since,
after filtering, we also apply the inverse DFT:

𝛿r𝑡𝑛 =
1
𝑁

𝑁−1

∑
𝑘=0

𝛿r𝑘𝑒
𝑖2𝜋 𝑛𝑘

𝑁 , (4.55)

we do not need to take sample spacing into account. This holds because both transfor-
mations are the mutual inverse to each other.

The filtering itself is achieved by setting all 𝛿r𝑘 = 0 outside of rectangular window that
is defined by frequency 𝑓𝑐 − Δ𝑓 /2 < 𝑓𝑘 < 𝑓𝑐 + Δ𝑓 /2 with 𝑓𝑐 as central frequency that is
chosen to be the mean frequency of the mechanical modes at zero feedback, and Δ𝑓 the
width of the spectral filter.

From the back transformed data we obtain the trajectory in realtime by multiplication
with the cosine and sine of 𝑓demod 𝑡𝑠 as in Equation 4.52 in Appendix B.

4.2.4.3 Spectrum analysis

In order to fit the spectrum we first identify the resonance peaks on the spectra read
out along the x and z axes, using a peak search algorithm. The angular tomography of
the resonance noise power 𝑆𝛿𝑟𝛽[Ω±] follows a squared cosine law with the measurement
angle 𝛽. We use the recorded and calculated complex displacement spectra 𝛿𝑟𝑥,𝑧[Ω] to
calculate the noise power spectrum |𝛿𝑟𝛽[Ω]|

2
for 𝛽 varying from 0 to 2𝜋. Selecting the

data points lying close to the identified peaks and calculating the mean as a smoothed
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value for the resonance height, we obtain the amplitude tomography and the mode ori-
entations 𝜃1,2 by fitting a squared cosine function:

𝐴(𝛽) = 𝐴0(cos(𝛽 − 𝜃1,2))
2 + 𝐴background. (4.56)

Knowing the mode orientations, we calculate the amplitude spectra

𝑆𝛿𝑟1,2 =
|𝛿𝑟𝜃1,2[Ω]|

2

2𝜋
(4.57)

and fit a single lorentzian to each resonance, using the frequency from peak detection
as first guess for Ω1,2 and the peak heights as guess for 𝑎1,2:

𝐴1,2[Ω] =
𝑎21,2Γ21,2Ω2

1,2

(Ω2
1,2 − Ω2)2 + Γ21,2Ω2

(4.58)

Since for a normal lorentzian oscillator we have

𝑆𝛿𝑟1,2[Ω] =
2Γ1,2𝑘𝐵𝑇𝑀−1

eff

(Ω2
1,2 − Ω2)2 + Γ21,2Ω2

, (4.59)

the fit thus provides the preliminary guess for the damping coefficients Γ1,2 and the ef-
fective mass 𝑀eff that can be calculated

𝑀eff =
2𝑘𝐵𝑇

𝑎21,2Ω2
1,2Γ1,2

(4.60)

Also, the lorentzian fit provides a better determination of the resonance frequencies.
Once the above steps are performed, we in general have a good starting point to realize
a final fit using the complete fitting function in Equation 4.28.

4.3 Measurements

We now turn to the experimental analysis of the impact of artificial force fields on the
nanowire dynamics. We operate using a single feedback force actuator, exerted in a
direction 𝐞𝐹, in the particular case where it is aligned with one of the nanowire eigen-
mode (in our case 𝐞𝐹 = 𝐞−). This choice permits to simplify the theoretical analysis since
the artificial force gradient matrix presents the natural symmetries of the nanowire’s
restoring force matrix. Having set the tip position, ensuring that the electrical force is
aligned with the first mechanical mode, we now start the measurements by adjusting
the detection angle 𝜇 of the feedback.
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This section presents two cases, the uniaxial feedback case with detection and force vec-
tors oriented along the same axis, and the transverse feedback casewith a detection angle
perpendicular to the feedback force orientation. The uniaxial feedback configuration is
expected to create a conservative force field with a nonzero force gradient only in the 𝑔11
component of the gradient matrix when the uniaxial feedback configuration is aligned
with mode 1. The transverse feedback configuration presents a feedback force oriented
along the first mode, proportional to the displacement measured along the second. This
corresponds to a pure shearing force field where only 𝑔21 ≠ 0.

The calibration of the detection angle which is used for the feedback signal requires a
good optical readout and a precisely determined readout vector for the feedback. The
effects of readout noise associated to the probe laser should be negligible compared to
motional signals so that we work with increased injection laser power of around 200 µW
for which the SNR reaches at least 15 dBm on each measurement channel. This lower
SNR is also due to the fact that, compared to force field microscopy experiments, we
increased the pressure of the vacuum chamber to decrease the eigenmodes’ mechanical
quality factors and reduce their coherence times. This largely reduces the time needed
to acquire a certain number of independent oscillation cycles of the nanowire’s thermal
noise. Another advantage is that a smaller quality factor pushes the dynamical instability
thresholds towards a larger force gradients of artificial or physical origin. In particular
this concerns topological instabilities as investigated in [44, p. 119][43] that occur when
the force field has a nonzero rotational, which is the case when the measurement, eigen-
modes and force vectors are not properly aligned. Lowering the Q factor also increases
the power needed to generate a self oscillation of the nanowire, in presence of an anti-
damping caused by delayed force fields gradients (similar to anti-damping). We now
summarize the different results obtained in the different canonical cases.

We first investigated the uniaxial feedback mechanism where the feedback measure-
ment and force vectors are aligned with the first mechanical mode. In this situation,
when the feedback force is instantaneous, the artificial force field causes a shift of the
resonance frequency of the first mode, and the artificial force gradient matrix only has a
𝑔11 component. Its effect is therefore easily observable on a spectrum analyser, allowing
a good test system for an artificial linear feedback. Then we will investigate the case of
a delayed uniaxial feedback, which allows control of the damping rates of the nanowire
eigenmodes.

The second type of feedback discussed in this work is the transverse feedback case de-
scribed in Section 4.1.2. It is a more involved test case as the off diagonal component
𝑔21 of the susceptibility matrix couples both mechanical modes. It can therefore not be
realized in one dimensional systems, and represents a key ingredient of active feedback
techniques in 2D. In the last two parts of this section we will explore both, the instanta-
neous and the delayed configurations of the transverse feedback.
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4 Creating artificial 2D force fields using realtime active feedback

4.3.1 Instantaneous uniaxial feedback - adjusting the nanowire’s asymmetry

With the force direction alignedwith the first mechanical mode, the feedback’s detection
angle 𝜇 is chosen to have the same orientation as the exerted force. The radar measure-
ments (Figure 4.5) provide a good orientation analysis to find the best angular settings.
Additionally, we use the second output of the FPGA module as a monitor signal with
the same detection angle as the one employed for the feedback. By setting the detection
angle such that only the first mode’s peak appears in the signals frequency spectrum
we thus ensure the correct alignment, presuming that the modes are perpendicular at
the beginning of the measurement. Perpendicular eigenmodes imply that no rotational
background force should be present. This excludes unwanted parasitic effect caused by
the constant electrostatic field offset, which produces a residual force field of conserva-
tive nature. However, the optical field of the readout laser has regions with a non-zero
rotational [43], whose effects can be reduced by choosing a readout position on the op-
tical axis where the Poynting vector of the electromagnetic field is homogeneous and
parallel to the optical axis.

Starting at zero feedback gain we record the demodulated signal of the two raw mea-
surement channels ⊖,⊕ at a frequency of 𝜔𝑑 = 8300Hz during a measurement time
of one minute using the HF2 and its Python API. The sampling rate of the acquisition
is 57.6 kHz and the demodulators fourth order low-pass filter is set to a bandwidth of
500Hz, sufficient to capture both transverse modes (initial splitting around 70 Hz).

As explained above, we reconstruct the nanowire trajectories in realtime from the recorded
quadratures measured on both measurement channels. Additionally, we compute the
noise spectrum of the projected spectrum of the nanowire displacement. After the ac-
quisition, the gain is increased stepwise and the measurement is repeated. The measure-
ments are automatized by a collection of Python scripts that control the FPGA module
and manage the acquisition. Having finished the measurements for positive gains, we
invert the sign of the feedback proportional and perform the measurements for nega-
tive gains. Splitting the measurement in two parts has two advantages. Firstly, a re-
peated measurement of the zero feedback setting permits to identify drift effects and
other changes that could appear during the scan of positive gains. Secondly, it is possible
that instabilities occur at large positive or negative gains, and it is thus more comfortable
to progressively increase the gain strength starting from zero for both directions.

The left subplot 4.9a shows the spectrum measured at an angle of 20° for the combined
negative and positive feedback gains. As expected from theory, since we produce a
uniaxial force field gradient (a pure 𝑔11), the first mode is shifting in frequency while the
second mode remains unaffected by the artificial force field. We observe that positive
gains generate a negative frequency shift for mode one Ω∥

2
1 = Ω2

1 − 𝑔11 (Ω2
− = Ω2

1 − 𝑔11)
corresponding to positive 𝑔11. For negative feedback proportionals, the first resonance
frequency approaches the second until it comes to a crossing before the former low-
frequency mode becomes the high-frequency mode at sufficient feedback strength.
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Fig. 4.9: Implementation of the instantaneous uniaxial feedback. Panel (a) shows the measured
spectrum for the different applied gains at a readout angle of 20° for which both modes
are visible. Bare mode orientations are -20°, 70° respectively. The mode resonances are
visible as dark lines (high amplitude) and a mode crossing can be observed around a
gain of 𝑝 = −0.3. The coloured lines depict the four cases of no gain (green), high posi-
tive gain (orange), high negative gain (purple) and frequency crossing (red). The subplots
shown at the right rowwise present for each case: Spectro-angular tomography 𝑆𝛿𝑟𝛽[Ω]
(b), resonant angular tomography 𝑆𝛿𝑟𝛽[Ω±] allowing to determine the mode orientation
(c) and spectra measured along the mode direction 𝑆𝛿𝑟𝜃±[Ω] (d). The spectro-angular to-
mography draws the spectra measured along 180 readout angles 𝜇 sampled between 0
and 2𝜋 on a polar axes whose radial axis takes the frequency values around themechan-
ical resonances and the orthoradial axis takes the angular values of the measurement
vector. The four plots in (b) share the same scales and their colorscale is identical to
panel (a). The polar representation of the modes’ amplitudes in (c), with redish colour
representing the first and blueish color the second mode, reveals their orientations 𝐞−,+.
Themode orientations marked as lightly couloured bars at the plot’s perimeter only vary
slightly from the orientation of the bare eigenmodes 𝐞1,2 indicated by heavily coloured
marks, especially when the modes remain sufficiently split in frequency. The spectra in
(d) thus show a smoothed linecut along the directions 𝐞−,+ through the spectro-angular
tomography. From top to bottom one observes the transit of the first mode’s resonance
across the higher frequency mode while keeping the same amplitude.

The four coloured lines mark four gain values of special interest, high positive gain
(𝑝 = 0.19), zero gain (𝑝 = 0), the frequency crossing (𝑝 = −0.3) and a high negative
gain (𝑝 = −0.39). Here, we show exemplary the analysis that is done for each gain
value at each of these four particular gains. The first column of plots 4.9b connects
the mode’s frequency crossing with their spatial orientation. The polar density plots
of Figure 4.9b present the spectra measured for readout angles 𝜇 between 0 and 2𝜋 on
a polar axis with frequencies on the radial axis and readout angle on the orthoradial
axis. This spectro-angular tomography permits to observe the mode’s behaviour in fre-
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4 Creating artificial 2D force fields using realtime active feedback

quency and orientation at the same time. The following column 4.9c presents a polar
plot of the noise spectral densities at each resonance, presenting the expected squared
cosine dependence of the measurement angles. These two representations demonstrate
that the mode orientation remains stable, while the eigenfrequency is shifted, except for
the crossing situation where the two modes become indistinguishable, which biases the
angular analysis. The next column 4.9d presents the spectra measured along the two
eigenmode orientations for each gain. The fact that only one peak appears in each spec-
trum, again shows that the modes remain nearly perpendicular for the different feedback
gains employed.

Using the full equation of the theoretical noise spectrum in presence of a force field
(1.65), we fit the acquired data and thus obtain the properties of each mode as well as the
equivalent force gradient matrix created by the feedback. The plot 4.10a in Figure 4.10
presents the mode frequencies of the dressed modes 𝑓− and 𝑓+, showing a shift of the
first mode, linear with the artificial feedback strength, and a mode crossing at a gain of
approximately 𝑝fb = −0.3. The plot also demonstrates that the second mode’s frequency
𝑓+ is unaffected by the feedback.

Figure 4.10b reports the relative variations of the mode orientations Δ𝜃−,+ with respect
to the undressed orientations. The plot confirms the observed trend that both modes re-
main stable in their orientation for varying proportional gain until the frequency cross-
ing. There, the determination of the mode orientations is difficult because the signals are
not discriminant on that parameter, even with a full model fit. Furthermore, the deter-
mination of the eigenvectors has a larger error as when the frequencies are wide apart.
Still, the first eigenmode appears to slightly change its orientation when approaching
the crossing which can be attributed to a non-perfect alignment of the detection angle
that causes a non-zero 𝑔21. In particular, these transverse components of the force fields
that are responsible for the eigenmode rotations have an impact on the eigenvectors
that scales with the ratio 𝑔21/(Ω2

2 − Ω2
1). It is hence clear that any residual transverse

component will have a larger impact when the partially dressed eigenmodes are quasi
frequency-degenerated (the denominator approaches zero).

The fit also allows deduction of the local force field gradients 𝑔𝑖𝑗 created by the feedback
mechanism shown in panel 4.10c. In agreement with the theoretical model, only the
component 𝑔11 shows a systematic dependence on the feedback gain. Again, the more
difficult fit of the data around the crossing causes larger uncertainties in this region.
However, except for the gain 𝑝 = −0.3 corresponding to the exact mode crossing, the
force field gradients correspond to a uniaxial linear feedback which acts on the first
mechanical mode.

From the fitted force field gradients shown in Figure 4.9, we can now reconstruct the
local map of the force field variations, evaluated over the size of the nanowire’s Brownian
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Fig. 4.10: Results of the fit of the dressed 2D oscillator model to the acquired trajectories for
each feedback gain. Panel (a) shows the resonance frequencies of the two modes −
and + with the mode crossing clearly visible at 𝑝fb = −0.3. The relative mode rotations
Δ𝜃−,+ are drawn in (b). Panel (d) displays the force field gradients responsible for the
observed frequency shifts andmode rotations with all term except 𝑔11 centered around
zero.

motion3. It corresponds to the vector field 𝐠 ⋅ 𝛿𝐫. Figure 4.11 shows the local force field
mapped over the recorded trajectory for each of the cuts in Figure 4.9. The colorscale
represents the actual force acting on the nanowire at each position while the arrows
indicate the direction of the local force field gradient.
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Fig. 4.11: Local force field for the four cuts from figure 4.9. The plots show the whole trajectory
acquired for one minute, the 2𝜎 region of the Gaussian distributed position is about
half the size of the shown trajectory.

As a conclusion, a purely instantaneous feedback, aligned with one eigenmode permits
to adjust the nanowire frequency splitting and in particular to cancel it entirely. This
can be of importance when the exploration of weak shear force fields or when a purely
two dimensional central force field is desired.

3We recall here that all the above measurements are done while analysing the thermal noise of the
nanowire.
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4 Creating artificial 2D force fields using realtime active feedback

4.3.2 Delayed uniaxial feedback - cold damping

Delayed uniaxial feedback makes use of a force 𝛿𝐅 = 𝑀eff ℎ ̇𝑥𝐞𝑥 which introduces an ad-
ditional damping −ℎ in the direction of interest. If the latter is aligned with one eigen-
mode, than its effective damping becomes Γ = Γ𝑚 − ℎ. One speaks of cold damping as
the damping can be enhanced without adding additional fluctuations, so that the effec-
tive temperature of the oscillator can be reduced artificially. Such a delayed feedback
has been proposed in 1998 [70] as a technique to reduce the mechanical noise of cav-
ity mirrors in ultrasensitive experiments such as the gravitational wave detectors LIGO
and VIRGO. Afterwards multiple groups realized the concept on macroscopic [24, 88,
108] and microscopic [4] cavity mirrors, cantilevers [90], and trapped levitating particles
[111]. A very recent, conceptual similar experiment [11] realizes cold damping of SiN
membranes using electrostatic feedback in 1d. In this section we will discuss the real-
ization of a cold damping feedback on a single mode of the nanowire, using the same
experimental configuration as in the uniaxial and aligned architecture covered by the
previous section.

As an introductory remark, we note that the artificial damping matrix created by the de-
layed feedback creates a non-isotropic damping. If the eigenmodes also get coupled by
the artificial feedback, then they will partly rotate and find a non homogeneous damp-
ing along their oscillation trajectory. This situation of non homogeneous damping has
been studied in our group before [105], in the case of a graphen membrane deposited
on a vibrating SiN support. We observed that the normal mode expansion is not valid
anymore, the Lorentzian shapes can become asymmetric, however the fluctuation dis-
sipation relation was preserved. Here, we first restrict ourselves to the simple situation
where only one mode is affected by the cold damping mechanism, and will later study
the case of a pure traverse delayed feedback.

After having adjusted the nanowire position and the readout vector as described above,
the realization of an uniaxial delayed feedback on the first mechanical mode requires
to add a phase delay of 𝜋/2 to the signal employed in the direct feedback case since
̇𝑥[Ω] = −𝑖Ω𝑥[Ω]. Such a phase is adjusted via the digital filters at the inputs of the

Red Pitaya (see Section 4.2.2.1 ). In the previous Section 4.3.1, we have compensated
the phase added by the photodiode’s high-pass filters via the cut-off frequency of the
digital low-pass filters in the FPGA. We now adapt this cut-off frequency accordingly
to create the desired phase delay in the signal. We note that these delays are defined
with respect to the mechanical oscillation period and thus remain small compared to the
inverse mechanical damping Γ−1m of the oscillator. Monitoring the frequency spectrum
during the phase adjustment steps helps to find the correct filter settings: If, under active
feedback, the first mode’s frequency does not deviate from its value at zero feedback,
we do not apply an instantaneous feedback anymore, and have reached the 𝜋/2 delay
configuration. In presence of a correctly delayed feedback force, one should observe a
change in the peak’s amplitude but not in frequency.
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4.3 Measurements

Once the phase is adjusted properly, we acquire the demodulated quadratures of the lock-
ins on the two detection channels as it was done for the instantaneous feedback case.
The recording time for each measurement point is 30 s at a sampling rate of 57.6 kHz and
a demodulation frequency of 8320Hz. The fourth order demodulation low-pass filter has
a bandwidth of 500Hz. Again, the sign of the overall feedback gain splits the measure-
ment into two parts where the gain is increased stepwise and a trajectory is recorded
for each gain before we switch the proportional’s sign and repeat the measurement in
the opposite direction. Due to the fact that one direction of the feedback is increasing
the effective noise temperature while anti-damping the mechanical dynamics [24], we
restrict the number of points in this direction that corresponds to a negative gain in the
experimental setup.

We realize the Fourier analysis of the temporal trajectories as described in Section 4.2.4.3
and fit the noise spectra with the full model of the noise spectrum (4.28). By doing
so, we can determine the properties of the mechanical modes, which are displayed in
Figure 4.12a. They don’t show large deviations for the applied feedback gains. Only
the frequency of the first mode is shifting over ≈ 10Hz due to a remaining nonzero
instantaneous feedback contribution, while themode alignment is stable and only suffers
from the measurement uncertainty of about ±5° to ±10°.

For a moderate feedback gain, we obtain a noise reduction of the first mode larger than
20 dB in peak height. With increasing gain, the damping coefficient Γ1 linearly grows
while the effective mode temperature, calculated from the area of the Lorentzian fit to
the first mode, is decreasing from 300K to below 50K. The noise spectra restricted to
mode 1 are adjusted with Γ𝑓 𝑏 = Γ0 − ℎ11 [24]:

𝑆𝛿𝑟1[Ω] =
1

𝑀eff

2Γfb𝑘𝐵𝑇fb
(Ω2

1 − Ω2)2 + Ω2(Γ0 − ℎ11)2
(4.61)

This corresponds to the mechanical noise spectrum of an oscillator at thermal equilib-
rium at the effective temperature 𝑇fb:

𝑇fb = 𝑇0
Γ0

Γ0 − ℎ11
, (4.62)

which can be enhanced or decreased, depending on the sign of the delayed feedback
strength ℎ11. Figure 4.12b plots the damping coefficient and the effective temperature
as function of the feedback gain for both mechanical modes. While the damping co-
efficient and temperature for the second mode (blue) only show statistical fluctuations
around a constant mean value, the increasing feedback proportional enhances the damp-
ing roughly linearly and decreases the effective temperature inverse proportionally.

The inconsistency at 𝑝fb = 0.16 where the frequency suddenly jumps up 10Hz and the
damping coefficient Γ jumps from 70Hz to less than 10Hz is a fit artefact that origi-
nates from asymmetric noise squashing where the feedback is not only acting on the
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Fig. 4.12: Results for cold damping by a delayed uniaxial electrostatic force field on the nanowire.
(a) Dependence of the eigenfrequencies (dots) and the deviation from the cold mode
orientations on the feedback gain for both mechanical modes. (b) The damping coeffi-
cient Γ for the first mode increases nearly linearly while the effective mode temperature
decreases. The mechanical noise of the second mode is not affected. The grey shaded
area in (a,b) marks points where noise squashing has been observed. In (c), the effective
mode temperature is drawn as function of the damping coefficient. The experimental
values follow the 1/Γ dependency 4.62 drawn as black line. Inset (d) shows the spectra
measured along the eigenmode direction (red: first, blue: secondmode) for deactivated
feedback (light lines), and a proportional of 0.08 (saturated lines). The grey line shows
the asymmetric noise squashing at a gain of 0.15.

Brownian noise of the nanowire but searches as well to compensate the detection noise
[90]. While in the perfectly aligned case noise squashing appears after the mechanical
noise has been fully damped, a non-perfectly adjusted phase delay can cause a slightly
asymmetric damping and background squashing. This is visible in inset 4.12d where
the spectra measured in direction of the two eigenmodes are compared for no feedback
(lightly colored lines), active cold damping (colored dots) and the noise squashing (grey
line). The simple fit model of two Lorentzians which is employed to retrieve frequencies
and mechanical linewidths does not account for this effect, but by using the previously
appliedmodel that contains the complex force gradients (4.28) it is possible to account for
the underlying causes. We restrain from showing the detailed fit results at this point in
order to keep the comparability of the data with common representation of cold damping
in literature. Also, the affected data only presents a small subset of the results and does
not change the validity of the experimental principle, but it highlights the importance
to correctly align and adjust the feedback architecture in the case of a quasi frequency
degenerated resonator.
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The good agreement of the above relation between the effective temperature and the
mechanical linewidth in Equation 4.62 in Figure 4.12c with the experimental data con-
firms that the experiments operates in the regime of cold damping. With this simple
realtime feedback mechanism, we decreased the mode temperature by a factor of six
from 300K to less than 40K. Improving the retardation and alignment of the feedback
signal, while increasing the SNB by increasing the readout power, it should be possible
to avoid the asymmetric noise squashing and thus to achieve larger cooling factors at
higher gains.

Figure 4.13 illustrates the two dimensional Brownian trajectory of the nanowire in the
real space measured for different feedback gains. We note that the initial trajectory is
not perfectly circular due to the force field background created by optical forces from the
readout laser, whose power was intentionally increased to obtain a sufficient signal to
background ratio. The arrows illustrating the strength of the additional damping vector
field show the increasing viscous feedback with increasing proportional that decreases
the spatial extension of the Brownian motion in the direction of the feedback while its
extension in the direction of the second mode remains constant.

p = -0.01
T  = 396.67K

r,=,3 ×
m

/s
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T  = 238.64K
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T  = 84.72K
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1 N

p = 0.15
T  = 24.35K

Fig. 4.13: The speed distribution of the Brownian trajectory recorded for five different feedback
gains 𝑝 is shown in the velocity space (𝑣𝑥, 𝑣𝑧). The transparency of the distribution
encodes the probability density for each plot so that the displayed size represents the
actual distribution size (not showing the extreme trajectories with largest velocities).
The nanowire’s movement at zero feedback gain is slightly dressed by the optical force
of the probe laser and the noise distribution is therefore not perfectly circularly shaped.
The arrows indicate the damping force caused by a nonzero ℎ11. With increasing gain
the extension of the distribution spreading is reduced in the direction of the first mode
(the axis of the arrows) while remaining constant in the perpendicular direction. The
distribution for the negative gaine (left) increased in size, caused by a heating of the
nanowire.

Up to now, we have used the artificial feedback architecture in its simplest uniaxial form,
and we have shown that it can be used to control and adjust some of the nanowire prop-
erties (frequencies, damping rates, effective temperatures) without altering the eigen-
vectors. The uniaxial mode was used in an aligned configuration, where the feedback
force was aligned with one eigenmode for simplicity. The situation would be different
if the feedback force was not aligned with the eigenmode basis: in the case of an in-
stantaneous uniaxial feedback, the artificial force field could also generate a rotation of
the eigenmode basis, if placed at 45° of the mode for example, but it will always behave
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4 Creating artificial 2D force fields using realtime active feedback

as a conservative force field (𝑔12 = 𝑔21). We will now turn to the more exotic situa-
tion, where the artificial force field generates a non-reciprocal interaction between the
eigenmodes.

4.3.3 An instantaneous pure shearing force field

The force orientation is aligned with the slow mechanical mode, in a similar manner
as in the above described parallel feedback case, but now the measurement vector em-
ployed for the feedback is turned by +90° by the FPGA card, so that it is aligned with
the orientation of the second mode in absence of an external force field. Like before, the
measurement direction is optimized by monitoring the spectrum measured along this
direction via the second output of the FPGA module. To verify that the measurement
vector is properly oriented, it is also possible to vary it while applying a weak feed-
back, similar to Figure 4.7c. When one generates a pure shear force field (𝑔12 = 0), that
means the measurement vector is well aligned with the second mode, then the nanowire
frequencies are not modified compared to the situation in absence of feedback.

4.3.3.1 Realization and measurement

For the following measurements, we also wanted to record the nanowire trajectories in
realtime, in order to subsequently analyse them in real space (discussed later). To do
so, we progressively increase the feedback’s gain starting at zero and record one minute
of the nanowires trajectory at each gain value. The acquisition is then repeated for
gain values of opposite signs. We choose the maximum gain such that the nanowire’s
movement does not become instable, which can arise when the feedback architecture is
not perfectly aligned, or when there exists a residual delay in the force application.

From the fit of the noise tomography with Equation 4.28, we deduce the resonance fre-
quencies and the mode orientations in 4.14a as well as the feedback created force gra-
dients 𝑔𝑖𝑗, drawn in subfigure 4.14b. The constant value around zero for all components
other than 𝑔12 and the linear slope of it confirm that we operate in a quasi purely trans-
verse feedback configuration, emulating a pure shear force field. In this situation, we
recall from the last part of Section 1.1.2.3 that the eigenfrequencies are not modified, as
well as the orientation the mode 1 is not modified, and the angular separation between
of the modes is given by

cos(𝜃+ − 𝜃−) ≈
−𝑔21

Ω2
+ − Ω2

−
. (4.63)
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Fig. 4.14: Figure (a) presents the resonance frequencies and mode orientations obtained from
the fit of the theoretical oscillator model to the recorded trajectories for different gains
(𝑝fb). The force gradients real 𝑔𝑖𝑗 and imaginary parts ℎ𝑖𝑗 are plotted in panel (b) and
inset (c) respectively.

Here, the rotation is only determined by the ratio of 𝑔21 to the squared frequency split-
ting and we can define a dimensionless force rotational parameter 𝜉 that allows a better
quantitative comparison between the measurements:

𝜉 ≡
𝑔21

Ω2
2 − Ω2

1
. (4.64)

Figure 4.15 maps the rotational parameter to the applied feedback gain for two measure-
ment series performed in the configuration of the transverse feedback. Both series have
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Fig. 4.15: The connection between applied feedback gain and the force rotational parameter 𝜉
for the two measurement series discussed in this section. The difference between the
two measurements resides in a different positioning of the electrostatic force, so that
the electronic gain does not has the same efficiency, and a different ambient pressure
which affects the intrinsic mechanical damping of the nanowire.
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been conducted on the same nanowire but under different vacuum levels. The Q-factor
of the nanowire’s resonances in series B is thus about four times higher than that in
series A, which increases the sensitivity of the oscillator to destabilizing effects, such as
delayed force contributions or noise in the readout channels employed for the feedback
(see Section 4.2.2.2). The measurement results for series A can in principle be realized
up to larger feedback strength, due to their improved dynamical stability. Most of the
results in this section are obtained from series A if not stated differently.
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Fig. 4.16: The representations in the first row (a) illustrate the thermal movement of the nanowire
in artificial force fields created by the active feedback mechanism for different rotation
parameters 𝜉. The transparency of the trajectory represents the positional probability
density so that the perceptual size of the Brownian cloud is a good estimation of the
effective spatial extension of the nanowire’s oscillation. The arrows show the force field
calculated for the represented area. Their length is proportional to the applied gain and
thus to the rotation parameter, while their direction is inversed with the sign change of
𝜉. The noise maps in (b) show the displacement noise in the 𝑣𝑥, 𝑣𝑧 coordinates.

The first row in Figure 4.16a represents the 2D histogram of themeasured trajectories for
five different feedback amplitudes (positive and negative) and the created local force field
for each case. In the central case of zero feedback, no feedback force is present and the
noise distributions is quasi circular. Larger gains generate a shearing force field (𝑔21 like)
where the force is oriented towards the first eigenvector. It distorts the circular shape
of the thermal cloud of the Brownian motion in positional and velocity space (shown in
4.16b) as it drives a rotational movement of the nanowire.

In Figure 4.17, the map of the locally averaged angular momentum 𝐞𝑦 ⋅ ⟨𝐫 × 𝐯⟩ of the
recorded trajectory visualizes the circular movement. At zero feedback, there are is
as much clockwise (blue) as anticlockwise (red) rotation as the movement is driven by
the purely statistical Langevin force vector. When increasing the feedback gain, the
nanowire experiences a shearing force that biases the orthoradial speed distribution and
favours the counter-clockwise rotation while a negative gain enhances anticlockwise
rotation.
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Fig. 4.17: The transverse feedback causes an acceleration with a preferential directionality de-
pending on the sign of the gain. The plots present the mean value of the angular mo-
mentum 𝐞𝑦 ⋅ ⟨𝐫 × 𝐯⟩ with clockwise rotation (red) for negative 𝜉 and counter-clockwise
rotations (blue) for positive values.

From the Fourier analysis of the recorded trajectory we obtain the spectral density 𝑆𝛿𝑟𝛽
that is shown for five different feedback gains in Figure 4.18a. These spectro-angular
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Fig. 4.18: (a) Spectro-angular tomography of the trajectories measured around the mechanical
mode frequencies for five different rotation parameters 𝜉. The frequency increases
with the radius while the ortho-radial direction corresponds to the measurement angle
𝜇. Compared to the central plot where 𝜉 = 0, the outer mode turns in anti-clockwise
(clockwise) direction for negative (positive) 𝜉. The bright S-shaped (inverse S-shaped)
regions that appear at large |𝜉| are caused by anti-resonant contributions from both
mechanical modes. The visible rings are artefacts from the smoothing of the spectrum.
The bottom line in b shows the amplitude (in logarithmic scale) of the resonances from
(a) plotted against the measurement angle. The direction of maximum amplitude per
mode defines the mode orientation 𝐞−,+and is indicated as tick on the perimeter of
plots. The marks for 𝐞1,2 indicate the directions of the eigenmodes without external
force field.

tomographic maps provide a visual access to the mode orientation that can be identified
in the different noise spectra, obtained for each measurement direction. In the central
plot, without feedback, the first mode (the inner resonance oscillating at a lower fre-
quency) has its intensity maximum at about -20° where no signal can be measured at
the frequency of the second, outer mode. For increasing gain, we observe that the sec-
ond mechanical mode turns clockwise. The visualization of the amplitudes of first (red)
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4 Creating artificial 2D force fields using realtime active feedback

and second (blue) mechanical modes in Figure 4.18b shows that the first mechanical
mode keeps its initial alignment. For a negative proportional, we observe the inverse
behaviour – the second mode is turning clockwise until it becomes nearly aligned with
the first mode. While the orientation of the second mode turns over more than 90°,
considering negative and positive feedback gains, the resonant frequencies, depicted in
Figure 4.14a, only change by less than ten hertz. We thus reproduce with the artificial
feedback scheme, what was realized with the rotational force field of a focussed laser
beam.

Even though a pure shearing force does, in theory, not induce additional noise in the
system, we observe that the maximum amplitudes of the lobes in Figure 4.18a increase
in presence of active feedback. This signal increase can be explained by two principal
mechanisms. First, there is the injection of readout noise by the feedback loop by which
noise, created during the detection process enters the feedback loop together with the
signal that encodes the nanowire’s position. The second mechanism that increases the
system’s noise amplitude is the delayed feedback originating from imperfect phase ad-
justment, which is able to add energy to the oscillation. The fact that the shearing force
field induces correlations between both modes, can be seen at large gains (see for exam-
ple at 𝜉 = −1.02) in the spectro-angular tomography plot where an anti-resonance dip
appears showing a dark inversed-S like shape. From the theoretical description, this is a
direct consequence that the unperturbed Langevin force is now driving both eigenmodes
of the nanowire, thus causing the typical cancellation profiles observed in the response
measurements to a coherent force drive.

4.3.3.2 Noise squeezing

In the trajectory plots shown in Figure 4.16a, we observe that the Brownian cloud’s
diameter is reduced along a measurement angle of roughly 45° for negative and 90°for
positive gains. Perpendicular to this noise reduction, the spreading of the thermal cloud
elongates, the 2D oscillator is hence squeezed in the plane of motion. Furthermore, the
same noise reduction appears in the velocity space in Figure 4.16b, where similar noise
compression and enhancement is observed along the same orientations.

Compared to the uniaxial cold damping case discussed in the previous section, where
the noise along the direction of the feedback is reduced in the position and speed spaces
but the transverse noise is unaffected, we observe a noise increase in both spaces, in
the perpendicular direction. We also note that, here, the damping rate of the nanowire
is unchanged. This phenomenon can be easier visualized by comparing the width of
the position histograms without feedback and with strong feedback in Figure 4.19. The
axes correspond to the directions of strongest squeezing and anti-squeezing so that the
lateral cuts illustrate a reduction/increase of the variance of the noise trajectory when
projected along the transverse directions.
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Fig. 4.19: Squeezing and anti-squeezing illustrated on the spatial distribution of the Brownian
noise. (a) displays the spatial trajectory’s histogram without active feedback, (b) a case
of strong feedback. The distributions are rotated in the horizontal x,y plane to align
the direction of largest (𝑥1) and smallest (𝑥2) extension. The distribution’s height is
normalized independently for better comparison of the spatial extension. The grey
dashed lines in (b) re-display the projected distribution of (a) in order to highlight the
squeezing (on the 𝑥1,N-plane) and anti-squeezing (𝑥2,N-plane).

Theoretical description We point out that the above plots (Figure 4.16, 4.17) repre-
sent the histograms of the trajectories followed by the nanowire extremity in the posi-
tion or speed spaces. In the following, we will investigate the noise in the measurement
channels 𝛿𝑟𝜇 or 𝛿𝑣𝜇, and in particular their variances 𝜎2𝛿𝑟𝜇 and 𝜎2𝛿𝑣𝜇 and their evolution
with the measurement angle, which is not identical to what can be seen in the complete
histograms shown above (for a Gaussian distribution, both quantities will match along
the main orientations of the ellipse but not in between). However, the recording of the
complete realtime trajectories, 𝜹𝐫(𝑡) allows reconstruction of the projected signals along
any direction and thus to estimate the corresponding variances.

A measure to quantify the squeezing and anti-squeezing of the position noise is the vari-
ance 𝜎2𝛿𝑟𝜇 of the gaussian distributed noise trajectory. Experimentally, we can calculate
the variance from the recorded trajectory and compare them to the theoretical defini-
tion

𝜎2𝛿𝑟𝜇 = ∫
𝑑Ω
2𝜋

𝑆𝛿𝑟𝜇[Ω] (4.65)

Note that denominator of 𝑆𝛿𝑟𝜇 in Equation 4.28 is a complex fraction with poles at fre-

quencies Ω/2𝜋 where |det 𝜒[Ω]|2 = 0. The integration therefore requires the application
of the residual theorem and is rather lengthy. Appendix Appendix C discusses this cal-
culation in more detail. For an instantaneous force field the solution of the integral
is

𝜎2𝛿𝑟𝜇 = 𝜎 2𝛿𝑟 ,𝑐𝑐 cos
2 𝜇 + 𝜎2𝛿𝑟 ,𝑠𝑠 sin

2 𝜇 + 2𝜎2𝛿𝑟 ,𝑐𝑠 sin 𝜇 cos 𝜇, (4.66)
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4 Creating artificial 2D force fields using realtime active feedback

where 𝜇 is the angle between the measurement vector 𝐞𝜇 and 𝐞1, and with the three
coefficients

𝜎2𝛿𝑟 ,𝑐𝑐 = 𝐴
(Ω∥

4
2 + Ω2

−Ω2
+ + 𝑔221)(Ω2

+ + Ω2
− + 2Γ2) − 4Ω∥

2
2Ω

2
+Ω2

−

Ω2
+Ω2

−

𝜎2𝛿𝑟 ,𝑠𝑠 = 𝐴
(Ω∥

4
1 + Ω2

−Ω2
+ + 𝑔212)(Ω2

+ + Ω2
− + 2Γ2) − 4Ω∥

2
1Ω

2
+Ω2

−

Ω2
+Ω2

−

𝜎2𝛿𝑟 ,𝑐𝑠 = 𝐴
(𝑔12Ω∥

2
2 + 𝑔21Ω∥

2
1)(Ω

2
+ + Ω2

− + 2Γ2) − 2Ω2
+Ω2

−(𝑔12 + 𝑔21)

Ω2
+Ω2

−
,

where

𝐴 =
𝑘𝐵𝑇/𝑀eff

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

.

(4.67)

Again, the names 𝑔𝑖𝑗 and 𝑓𝑖𝑗 can be used interchangably as real and artificial force field
gradients are physically equivalent. Without external force field where 𝑔𝑖𝑗 = 0 for all
𝑖, 𝑗, the first two terms correspond to the thermal noise variance for the two eigen-
modes:

𝜎2𝛿𝑟 ,𝑐𝑐 =
2𝑘𝐵𝑇
𝑀effΩ2

1
, 𝜎2𝛿𝑟 ,𝑠𝑠 =

2𝑘𝐵𝑇
𝑀effΩ2

2
, 𝜎2𝛿𝑟 ,𝑐𝑠 = 0 (4.68)

When themeasured variance falls below this limit, we speak of noise squeezing. We note
that the initial variances are not completely isotropic but this is nearly the case when
the nanowire is quasi frequency degenerated. The situation is simpler in the velocity
space.

A similar calculation can be done to obtain the variance of the velocity 𝜎2𝑣𝜇 using that
𝑆𝛿𝑣𝛽[Ω] = Ω2𝑆𝛿𝑟𝛽[Ω]. With a similar application of the residues theorem, the speed vari-
ance obtained from spectral integration writes

𝜎2𝛿𝑣𝜇 = 𝜎 2𝛿𝑣 ,𝑐𝑐 cos
2 𝜇 + 𝜎2𝛿𝑣 ,𝑠𝑠 sin

2 𝜇 + 2𝜎2𝛿𝑣 ,𝑐𝑠 sin 𝜇 cos 𝜇, (4.69)

with the three coefficients

𝜎2𝛿𝑣 ,𝑐𝑐 =
𝑘𝐵𝑇
𝑀eff

(1 −
2𝑔21(𝑔12 − 𝑔21)

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

)

𝜎2𝛿𝑣 ,𝑠𝑠 =
𝑘𝐵𝑇
𝑀eff

(1 +
2𝑔12(𝑔12 − 𝑔21)

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

)

𝜎2𝛿𝑣 ,𝑐𝑠 =
𝑘𝐵𝑇
𝑀eff

(𝑔12 − 𝑔21)(Ω∥
2
2 − Ω∥

2
1)

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

.

(4.70)

In absence of external force field gradients, the two first expressions converge towards
the isotropic case: 𝜎2𝛿𝑣 = 𝑘𝐵𝑇/𝑀eff .
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4.3 Measurements

We have shown experimentally, that the transverse feedback is indeed creating a purely
shearing force field with the only nonzero force field gradient being 𝑔21. In this case, the
above equations simplify and we can write the coefficients of (4.67) as

𝜎2𝛿𝑟 ,𝑐𝑐 =
𝑘𝐵𝑇

𝑀effΩ2
1
(1 +

𝑔221
Ω2
2

Ω2
1 + Ω2

2 + 2Γ2

(Ω2
2 − Ω2

1)
2 + 2Γ2(Ω2

2 + Ω2
1)
)

𝜎2𝛿𝑟 ,𝑠𝑠 =
𝑘𝐵𝑇

𝑀effΩ2
2

𝜎2𝛿𝑟 ,𝑐𝑠 =
𝑘𝐵𝑇

𝑀effΩ2
2

−𝑔21(Ω2
2 − Ω2

1 − 2Γ2)

(Ω2
2 − Ω2

1)
2 + 2Γ2(Ω2

2 + Ω2
1)

(4.71)

and those of (4.70) as

𝜎2𝛿𝑣 ,𝑐𝑐 =
𝑘𝐵𝑇
𝑀eff

(1 +
2𝑔221

(Ω2
2 − Ω2

1)
2 + 2Γ2(Ω2

2 + Ω2
1)
)

𝜎2𝛿𝑣 ,𝑠𝑠 =
𝑘𝐵𝑇
𝑀eff

𝜎2𝛿𝑣 ,𝑐𝑠 =
𝑘𝐵𝑇
𝑀eff

−𝑔21(Ω2
2 − Ω2

1)

(Ω2
2 − Ω2

1)
2 + 2Γ2(Ω2

2 + Ω2
1)
.

(4.72)

When one varies the measurement angle, one can determine the extrema of 𝜎2𝛿𝑟𝜇 , as well
as the extremum angle 𝜇extr which is given by:

tan 2𝜇extr𝑟 =
2𝜎2𝑐𝑠

𝜎2𝑐𝑐 − 𝜎2𝑠𝑠
(4.73)

Notably, the noise in direction of the second eigenmode, here corresponding to the sine
coefficient, is not squeezed in the case of a pure transverse feedback of the 𝑔21 type, since
the force is oriented along the first mode and has no impact on the nanowire dynamics
projected along 𝐞2 despite the alteration of the eigenvector. Since the rotation of the sec-
ond eigenmode depends on how 𝑔21 compares to the splitting of the modes’ frequencies
squared, we use the dimensionless rotation parameter 𝜉 (introduced in Equation 4.64),
which we also call the circulation strength:

𝜉 ≡
𝑔21

Ω2
2 − Ω2

1
(4.74)

and the dimensionless dissipation coefficient 𝛾 :

𝛾 =
2Γ2(Ω2

2 + Ω2
1)

(Ω2
2 − Ω2

1)
2 . (4.75)
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This permits to express the extreme speed variances in a rather simple expression:

𝜎2𝛿𝑣 ,min =
𝑘𝐵𝑇
𝑀eff

(1 +
𝜉 2 − 𝜉√1 + 𝜉 2

1 + 𝛾
)

𝜎2𝛿𝑣 ,max =
𝑘𝐵𝑇
𝑀eff

(1 −
𝜉 2 − 𝜉√1 + 𝜉 2

1 + 𝛾
).

(4.76)

If the force field coefficient 𝑔21 is much larger than the splitting of the squared frequen-
cies, thus 𝜉 → ∞ the minimum speed variance approaches the limit

lim
𝜉→∞

𝜎2𝛿𝑣 ,min =
𝑘𝐵𝑇
𝑀eff

1 + 2𝛾
2 + 2𝛾

, (4.77)

while the maximum variance continuously increases with 𝜉 2. The optimum squeezing
of a factor of 1/2 or 3dB can be obtained for an oscillator with spectrally well resolved
mechanical peaks in absence of a force field.

Position and speed noise squeezing in the motion plane The orientation depen-
dent variance 𝜎2𝑟𝜇 is directly obtained from the recorded trajectory 𝛿𝐫 = (𝛿𝑟𝑥, 𝛿𝑟𝑧), sampled
over N points, via:

𝜎2𝛿𝑟𝜇 =
1
𝑁

𝑁

∑
𝑘=1

|𝛿𝑟𝜇,𝑘 − 𝛿𝑟𝜇|2, (4.78)

with 𝛿𝑟𝜇,𝑘 = 𝛿𝑟𝑥,𝑘 cos 𝜇 + 𝛿𝑟𝑧,𝑘 sin 𝜇.

where 𝛿𝑟𝜇 is the ensemble average of the projected points 𝛿𝑟𝜇,𝑘, and k being the sampled
points (𝛿𝑟𝜇 should ideally always remain very small since we use a spectrally filtered
readout, which, however, can suffer from residual offsets in the measurement). Using
similar expressions, one obtains the variance for the projected velocity distribution. The
projected displacement variances computed from the recorded trajectories are shown
as continuous lines in Figure 4.20a and the projected velocity variances are shown in
Figure 4.20b. The blue curves represents the variances of the Brownian trajectory with-
out feedback, while the orange curves are the ones obtained in presence of active feed-
back.

The curves for no feedback are, in both cases, not perfectly circular which can be caused
by two effects. Firstly, the readout laser’s optical force creates a background force field
that can couple the eigenmodes by its off-diagonal terms. Secondly, the sensitivity of the
two readout channels differs by a factor of about ten which translate into an asymmetric
numerical amplification of the readout noise creating a small asymmetry in themeasured
displacement variances. We attempt to reduce this latter effect by applying a 160Hz
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wide filter in the Fourier space of the trajectory before we calculate the variance (see
Section 4.2.4.2).

The dashed lines present the variance as calculated from the theoretical expressions
given above, when using the 𝑔𝑖𝑗 parameters extracted from the perturbed mechanical
properties of the nanowire. Their deviation from the variance calculated directly from
data is likely caused by the asymmetric readout noise as well. In case of active feedback

0°

45°

90°

135°

180°

225°

270°

315°

1 2 3 4 5

1e-16a

=
= .

0°

45°

90°

135°

180°

225°

270°

315°

0.20.40.60.81.01.21.4

1e-6b

Fig. 4.20: Variance measured and theoretically predicted as a function of the measurement di-
rection, in the position (a) and speed spaces (b), with and without feedbback (greens,
reds). The directions of maximum squeezing are the same in both cases.

(green curve), the variance is reduced below the orange equilibrium curve by about one
third along a specific direction which is the force feedback dependent angle of maximal
squeezing. Along the perpendicular axis, the variance is increased to about three times
the equilibrium value. The velocity’s variances are squeezed (anti-squeezed) by about
the same amount in the same directions. This squeezing in the position and velocity
planes is one of the main differences to other mechanical noise squeezing experiments
where the noise is squeezed in quadrature space [91, 101].

Maximumnoise reduction Figure 4.21 summarizes the squeezing and anti-squeezing
strengths achieved with the transverse feedback method for the same measurement set
as presented above. The continuous lines again correspond to the variance obtained
directly from the recorded displacement while the dashed line is the variance calcu-
lated using the fit results, which serve to determine the 𝑔𝑖𝑗 parameters. The data points
correspond to the angle of minimal variance for both methods. Graph 4.21a shows good
agreement between the two approaches. We first note that the symmetry of the variance
changes as a function of the feedback gain. The squeezing efficiency does not depend
on the sign of the shearing force term 𝑓21. The maximum variance is increasing with a
power law dependence while the minimum approaches a limit of about three quarters
of the initial variance. The gap between minimum and maximum variance at 𝑝 = 0
originate from the asymmetry of the recorded trajectory discussed above. The angle of
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minimal variance jumps by 90° when changing from negative to positive proportional.
The velocity’s variance in subplot 4.21b exhibits the same properties as the positional
variance.

-1.0 -0.5 0.0 0.5 1.0

10 16

10 15

 /
 

a

/

/

/

 /
 °

,

, ,

-1.0 -0.5 0.0 0.5 1.0

10 6

 /
 

/

b

/

/

/

 /
 °

,

, ,

Fig. 4.21: The line plots show the minimum (blue) and maximum (orange) squeezing for posi-
tion (a) and speed (b). The dashed lines are obtained from the variance calculation
via the spectral noise integration while the continuous lines represents the variance
calculated directly from the spatial trajectories. The crosses trace the angles of mini-
mum variance (maximum variance at ±90° of this angle) calculated from data (+) and
theory (𝑥). The grey lines highlight mark the variances of zero squeezing and maximal
achievable squeezing values.

The maximal achieved squeezing is relatively far from the theoretically possible squeez-
ing of 3 dB (Equation 4.77) for a resonator with high Q factor and small mode splitting,
which is indicated by the dashed lines in Figure 4.21. A measurement that comes closer
to this limit is that of series B (see Figure 4.15) with a Q factor about three to four times
larger. Figure 4.22 presents the results of this measurement. The squeezing of the po-
sitional variance shown in 4.22a is close to the limit which even seems to be surpassed
by the variance obtained directly from the noise trajectory. In this interpretation one
must be careful, since the higher Q factor also requires a larger acquisition time in order
to record multiple realizations of the oscillation trajectory. Here, this is not guaranteed
with the measurement time of one minute. The variance obtained from the fitted 𝑔𝑖𝑗
(dashed lines) presents a more realistic estimate. The achieved damping is still smaller
than the 3 dB, but approaches this limit for small 𝜉.
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Fig. 4.22: The experiment realized with a higher Q resonance (series B) and a larger gain gener-
ates a larger squeezing efficiency. Using the same conventions as Figure 4.21, panel (a)
shows for both, the variance of the recorded noise trajectory and the variance calcu-
lated based on the fit to the noise spectrum. The agreement between both is reduced
compared to the low Q case, probably due to too short sampling of the mechanical
motion with respect to the timeconstant 1/Γm = 0.2 s during the acquisition time of one
minute. This is also the reason why the variance of the noise trajectory surpasses the
3dB theoretical limit (shaded area). The polar plot in (b) presents the positional vari-
ance in dependence of the measurement angle of the cases with smallest rotational
parameter and at a feedback with strong squeezing, which has a visibly smaller vari-
ance 𝜎𝑟,min. The change of the angle of minimum squeezing is depicted in (c).

The polar representation of the variance obtained from the noise trajectory in 4.22b
shows a small rotation of the angle of minimal variance and a clear reduction of 𝜎𝑟 below
the value of 𝜉 → 0 (|𝜉 |min = 0.73 ). Similar to the low Q series in 4.21, the angles of
minimal squeezing obtained from noise trajectory and via the theory and the fitted 𝑔𝑖𝑗’s
are in good agreement with each other but match better for a negative sign of the applied
feedback gain.

Orthoradial velocity The squeezing of the nanowire’s Brownian noise in 2D posi-
tional and velocity space is caused by a nonzero orthoradial acceleration of the nanowire.
As a consequence, this modifies the distribution of the orthoradial speed, as opposed
to the case of a conservative force field. One can illustrate this effect by plotting the
trajectory-averaged angular velocity 𝑣𝜃(𝐫) at each spatial point as in Figure 4.23. At zero
feedback, in each position, one records as many positively and negatively circulating
trajectories so that the locally averaged orthoradial speed is almost zero. This can be
seen almost everywhere in the 2D plot, except at the most distant positions, but there
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Fig. 4.23: The transverse feedback causes an acceleration with a preferential directionality de-
pending on the sign of the gain. The plots present the mean value of the orthoradial
velocity 𝑣𝜃(𝑥, 𝑧) at each position of the recorded trajectory with clockwise rotation (pos-
itive, red) for negative 𝜉 and counter-clockwise rotations (negative, blue) for positive
values. When no feedback is present (central plot), there are an equal number of clock-
wise and counter-clockwise rotating trajectories and the mean 𝑣𝜃 is zero.

one lacks of statistics since it represents rare cases. With applied feedback, the locally
averaged 𝑣𝜃 gets a clear preferential direction that depends on the sign of the applied
feedback. In all cases the nanowire has a larger orthoradial velocity at larger distances
|𝛿𝐫| to the center and for larger 𝜉, one observes two zones of particular large velocity
values in the direction of maximum squeezing (the smallest width of the noise distribu-
tion).

Panel 4.a: Fokker Planck
The probability density of stochastical Brownian process in phase space (x =
(𝑟𝑥, 𝑣𝑥, 𝑟𝑧, 𝑣𝑧) is determined by the Fokker-Planck equation [113]:

−𝐵𝑖𝑘 𝜕𝑥𝑖(𝑥𝑘 𝑝s𝑡(x, 𝑡)) +
𝐷𝑖𝑗

2
𝜕2𝑥𝑖𝑥𝑗𝑝s𝑡(x, 𝑡) = 0. (4.79)

with the following definitions:
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. (4.80)

It has a solution 𝑝𝑠𝑡(x) of Gaussian shape [113]:

𝑝s𝑡(x) =
1
𝑁
e𝑥𝑝[ −∑

𝑖,𝑗
𝐴𝑖𝑗 𝑥𝑖 𝑥𝑗], A ≡ 1

2

⎛
⎜
⎜
⎝

2𝑎𝑟1𝑟1 𝑎𝑟1𝑟2 𝑎𝑟1𝑣1 𝑎𝑟1𝑣2
𝑎𝑟1𝑟2 2𝑎𝑟2𝑟2 𝑎𝑟2𝑣1 𝑎𝑟2𝑣2
𝑎𝑟1𝑣1 𝑎𝑟2𝑣1 2𝑎𝑣1𝑣1 𝑎𝑣1𝑣2
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⎞
⎟
⎟
⎠

, (4.81)

210



4.3 Measurements

with the normalization coefficient 𝑁 −1 obtained from integration over the entire
phase space:

𝑁 = ∫
ℝ4

d4x exp[ −∑
𝑖,𝑗

𝐴𝑖𝑗 𝑥𝑖 𝑥𝑗]. (4.82)

The coefficients of the matrix solution A of this equation for the 2D nanowire
oscillator are given in Appendix D.

In order to find the probability density in the space (𝑟 , 𝑣𝜃) as shown in Figure 4.24,
we apply the substitution from cartesian coordinates to polar coordinates:

𝑟𝑥 = 𝑟 cos 𝜃, 𝑧 = 𝑟 sin 𝜃, 𝑣𝑥 = 𝑣𝑟 cos 𝜃 − 𝑣𝜃 sin 𝜃, 𝑣𝑧 = 𝑣𝑟 sin 𝜃 + 𝑣𝜃 cos 𝜃. (4.83)

Fig. 4.24: The convention for the transformation fromcartesian laboratory coordinates to
a polar coordinate system in which the probability density 𝑃(𝑟, 𝑣𝜃) is calculated
from the Fokker-Planck equation.

In order to obtain the probability density in the space (𝑟 , 𝑣𝜃), one needs to inte-
grate the resulting expression over 𝜃 and 𝑣𝑟. The integration over 𝑣𝑟 can be done
analytically and yields an expression that contains first order Bessel functions.
The integration over 𝜃 then needs to be done numerically. We therefore perform
a combined numerical integration over both variables. The results discussed in
this section are obtained from such a numeric integration of the Fokker-Planck
equation in the polar phase space.
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4 Creating artificial 2D force fields using realtime active feedback

Fig. 4.25: Comparison of Fokker Planck predictions to numerical simulations for a theo-
retical nanowire. The dependence of the mean orthoradial speed 𝑣𝜃(𝑟) with the
radial distance is calculated after numerical integration of the analytic solution
of the Fokker Planck equation (circles), and from the fits of the (𝑣𝜃, 𝑟) histograms
such as the one shown in Figure 4.26.

Then, we also realized numerical simulations of the nanowire trajectories using a
dual random Langevin force vector and a Runge Kutta 4 propagation algorithm.
In both cases, the undressed mechanical properties of the nanowire are obtained
from experimental parameters (frequencies, damping rate, mass, eigenmode ori-
entation), while the force field parameters are deduced from the dressed mechan-
ical properties. Both numerical methods give results in very good agreement,
and furthermore they perfectly reproduce the experimental results obtained. Fig-
ure 4.25 represents a typical result of the simulations. The good agreement be-
tween both methods allows to validate the numerical simulations, which are less
time-consuming.
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Fig. 4.26: The distribution 𝑃(𝑟, 𝑣𝜃) of the orthoradial velocity vs the radius without (left) and with
(right) a circulating force field. The solid black line represents 𝑣𝜃(𝑟), the mean orthora-
dial speed at a distance r ,while the dashed lines indicate the width of the distribution.
The lower plots represent 𝑃(𝑟, 𝑣𝜃(𝑟)). The inset (e) shows the case of a feeback as strong
as in (b,d) but with opposite sign.
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One can prolongate this analysis of the orthoradial speed by inspecting its dependence
with the radial distance 𝑟 towards the center of the distribution. To do so, one can first
represents all the recorded data points in the (𝑣𝜃, 𝑟) space, see Figure 4.26, where the
density of probability 𝑃(𝑟 , 𝑣𝜃) is shown. The distribution is symmetric in 𝑣𝜃 in absence
of a circulating force field, while it becomes biased when the feedback is activated. The
black lines represent the mean orthoradial speed 𝑣𝜃(𝑟) as well as the distribution width,
for each radial distance. The maximum of the distribution 𝑃(𝑟 , 𝑣𝜃(𝑟)) is plotted in the
lower panels. One notices that the mean orthoradial speed increases monotonously with
𝑟, while following a non-standard evolution, which is linear at short distances, and is
followed by a sort of plateau at larger distances.

As described in box 4.a, we also performed numerical simulations of the noise distri-
bution at the presence of a force field that corresponds to the experimental case. The
results shown in Figure 4.27 show very good agreement with the measurements in Fig-
ure 4.26.

Fig. 4.27: Results from numerical simulations of the distribution of the orthoradial velocity 𝑣𝜃 
with respect ot the radial distance 𝑟, without (left) and with an pure 𝑔21 shear force
field. The gray dashed lines represent the rms spreading in the position and velocity
spaces: √𝑘𝐵𝑇/𝑀Ω2m and ±√𝑘𝐵𝑇/𝑀. The black lines mark the center value of 𝑣𝜃(𝑟)  (solid
line) and the width of the distribution (dashed line). The numerical simulations are
recorded during 10 s with a time step of 3 µs, for an oscillator with eigenfrequencies
Ω1,2/2𝜋 = 8277Hz, 8337Hz and a damping rate of Γ = 123Hz, and 𝑔21 = −5 × 10

8rad2.

We can then reproduce a similar analysis for all feedback gains employed and plot the
integrated probability density as function of the radius (Figure 4.28). The dependence of
the mean orthoradial speed profiles 𝑣𝜃(𝑟) are shown in Figure 4.29. We observe that the
circulating force field is responsible for a bias of the orthoradial speed, which increases
with the distance towards the center of the distribution. Similar effects are observed
with rotational force fields produced by a focused laser beam, but they are absent when
using conservative force fields.

As a concluding remark of this section, one can draw a connection to the orthoradial
speed anomaly found in galaxies when investigating the dependence of the orthoradial
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Fig. 4.28: The radial probability density 𝑃(𝑟) obtained from the distribution in Figure 4.26 after
integration along the 𝑣𝜃axis. Inset 4.28b shows the density function on a logarithmic
scale. The colorcode corresponds to the absolute value of the force rotation parameter
ξ (4.64) .
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Fig. 4.29: The mean orthoradial velocity 𝑣𝜃 obtained from gaussian fits to the histogram slices as
in 4.26 for all measurements. The colorscale encodes the force rotational parameter
whose amplitude is larger for stronger feedback.

speedwith respect to the distance towards the galactic center. When pointing a telescope
towards a certain position in a galaxy, one can infer via doppler spectroscopy on the
21 cm−1 hydrogen line, the local speed distribution and report the maximum orthoradial
velocity as a function of the distance. One would expect to measure a reduction of
the orthoradial velocity at large distances, but instead the measurements show that it
converges towards a non-zero value at large distances. To ensure a stable trajectory, one
would need to increase the radial acceleration experienced by the most distant stars, but
themeasurements show that the visible mass cannot explain the observed increase of the
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orthoradial speed. Those observations on the orthoradial speed anomaly are also called
missingmass curves and are at the origin of the darkmatter hypothesis. Our observations
show that an orthoradial acceleration are also responsible for an increase of the mean
orthoradial speed with the distance towards the distribution center. The question that
naturally arises is whether such amechanism could be present on a galactic scale (such as
a rotational flow in an “extragalatic wind”…). There are obviously many open questions
here.

4.3.4 Delayed transverse feedback

We now finish the description of artificial force fields, by describing the situation of a
transverse delayed force field, which adds non-diagonal terms in the damping matrix.
We use the artificial feedback scheme to generate a damping term along 𝐞1, proportional
to the speed measured along 𝐞2 so that we add a dissipation force: 𝛿𝐅 = ℎ𝛿𝑣2𝐞1.

Again, for the adjustment of the force delay, we use the filter settings of the FPGAmodule
as described in Section 4.3.2. From the configuration of the delayed uniaxial feedback,
we get to the delayed transverse configuration by rotating the readout vector by 90°. In
the ideal case, this feedback corresponds to a pure ℎ21 term in the susceptibility matrix.
Supposing a purely delayed feedback, we replace 𝑔21 → −𝑖ℎ21Ω in the dressed suscepti-
bility matrix and calculate its eigenvector with Equation 1.42. They now depend on the
frequency, and 𝐞+ (𝐞− remains unchanged with a pure feedback in the 21-term) is given
by:

𝐞+ = 1

√−𝑖ℎ
2
21Ω2 + (Ω2

+ − Ω∥
2
1)

2
( 𝑖ℎ21Ω
Ω2
+ − Ω∥

2
1
), (4.84)

which is now a complex vector in ℂ2, representing a rotating eigenvector. It looses its
linear character when ℎ21Ω ≫ Ω2

+ − Ω2
1 + 𝑔11 ≈ Ω2

2 − Ω2
1. With the current nanowire

(Ω1,2/2𝜋 = 8270Hz, 8340Hz), a value ℎ21 > 830Hz is required to achieve a regime where
the eigenmode acquires an elliptical character.

The measurement is then conducted analogously to other cases, starting with small
feedback gains and successively increasing the gain towards negative and positive val-
ues. The limits of the feedback intensity is given by the appearance of an instabil-
ity or auto-oscillation of the nanowire. We again record the temporal trajectories of
the nanowire’s Brownian motion in 2D and perform a spectral analysis. Figure 4.30a
presents the spectro-angular tomography for some positive gain values. The constant
frequency splitting shows the proper alignment of feedback force and readout vectors.
With increasing feedback gain, the second mode becomes a ring in the spectro-angular
tomographic representation and while there are angles where it is not detectable at zero
gain, traducing its linear character, it is now measurable for any measurement angle for
gains larger than 0.3.
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Fig. 4.30: The spectro-angular tomography of a perpendicular delayed feedback with positive
gains (a) shows the transition of the second mode from a purely linear eigenvector to
a quasi-circular structure which leads to a circular pattern in the tomographic plot for
larger gains. The angular plots of the resonances’ amplitudes in (b) shows the same
trend. While the second mode (blue) has initially clear preferential orientations, the
signal strength grows in the perpendicular direction for larger gains. One also observes
a slight rotation of themode similar to the case of direct perpendicular feedback, which
is caused by an imperfect calibration of the feedback delay.

An angular analysis of the modes’ amplitudes is given in 4.30b. Here, one observes that
the second mode loses its linear character as can be seen in the strongly reduced angular
contrast and preserves a significant amplitude along the angle perpendicular to its initial
orientation.

In Figure 4.30b, one can also observe a small rotation of the second mode, caused by
a nonzero instantaneous component 𝑔21 of the feedback, as well as an increase of both
modes amplitudes, which is more pronounced for the second mode. The fit of the feed-
back force gradients 𝑔𝑖𝑗, ℎ𝑖𝑗 in Figure 4.31 confirms this assumption. However, the am-
plitude of 𝑔21 is not large enough to rotate the second mode significantly so that the
dominating effect is caused by the delayed component that reaches about half the mag-
nitude required for the second mode to become purely circular.

This situation illustrates one of the signatures that can be obtained using a delayed ar-
tificial force field, which adds non-diagonal terms to the damping matrix. In such a
situation, the damping matrix and the restoring force matrix cannot be diagonalized in
the same basis, meaning that we expect the system to break the normal mode expansion.
Furthermore, we also expect the system to deviate from the fluctuation-dissipation re-
lation, as observed in the instantaneous rotational force field, meaning that one cannot
define a temperature for each mode.
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Fig. 4.31: The 𝑔𝑖𝑗’s fitted with the full complex model of the susceptibility are drawn in (a). The
linearly increasing amplitude of 𝑔21 is caused by an imperfect setting of the FPGA filters
that are used to regulate the delay of the feedback. While its change is measurable, its
value remains about two times smaller than the splitting of the squared frequencies
Ω2+ − Ω

2
1, so that the rotation of the second mode does not surpass 30°. Subfigure (b)

presents the delayed feedback components. Here, the only significantly varying term
is again the ℎ-component that decreases roughly linear with an increasing gain.

217





5 Conclusions and perspectives

5

Rapid force microscopy

When this project started, the first successful experiments of nanowire force microscopy
had already been realized in our group but they relied on spectro-angular analysis of
the nanowire’s thermal noise which was time consuming to execute and analyse. The
first step in this project was therefore the integration of a dual channel lock-in mea-
surement with eigenmode tracking done by two independent PLLs using the ZI-HF2LI.
The integration of this measurement into the control software and standard measure-
ment protocols reduced the time necessary to acquire a full map of the force field from
days to several hours. It also provided critical information at rapid pace such as the
resonators mode properties, from which the force field gradients can be determined, in
quasi-realtime (10 measurements per second), allowing direct imaging of the 2D force
field experienced by the nanowire, a feature that is crucial when it approaches a surface
with rapidly varying force field gradients, or when determining orientation and align-
ment of the measurement window on the sample.

The second technical improvement of the experiment was the development of a custom
FPGA module based on a low cost hardware, for the continuous lock-in measurement
of the readout vectors. The adapted FPGA code and server module can perspectively
be used to perform measurements at more than two frequencies simultaneously. The
methods and programs developed for this part of the thesis are now used standardly in
our experiments, which comprise beside room-temperature force field microscopy also
cryogenic nanomechanics [37] and cavity opto-mechanics [36].

Thanks to the fast measurement protocols we could realize force field microscopy mea-
surements at much smaller sample separations than before, without fearing to touch the
surface due to the realtime readout of the force field structure, and perform a complete
map while sweeping the bias voltage that is applied between the sample and nanowire.
This permits the differentiation of the quadratic, linear and residual force field contribu-
tions. While the quadratic force is caused by the sample’s topology only, the linear and
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Fig. 5.1: The cavity nano-optomechanical experiment: The insertion of the nanowire in a high fi-
nesse microcavity allowed to measure and map the opto-mechanical coupling strength
by  scanning the nanowire in the cavity mode. Some of the protocols developed in this
manuscript were implemented during the PhD of Francesco Foligano [35] to map the
opto-mechanical force field experienced by the nanowire (right). The extreme coupling
strength achieved allowed to measure the optomechanical force exerted by an intraca-
vity field populated by less than a single mean photon.

residual terms contain constant surface fields that can for example be caused by electro-
static patches. Using an interpretation based on the Maxwell stress tensor formalism,
we could acquire a more quantitative description of the forces acting on the nanowire’s
apex and their dependence on the electric field structure.

We experimentally investigated the effects from the surface fields in this model and ex-
tracted in particular the local offset potential 𝑉0 similar to the one obtained in KPFM
measurements. In maps of the force field divergence and 𝑉0, one can observe the pres-
ence of large scale surface contaminations and surface patches scaling around 100 nm,
which both contribute to the measured linear and residual force field gradients. This
shows that the surface fields play an important role when working with mechanical
systems at a separation of a few hundreds of nanometers, and that a good knowledge
of the surface fields is needed when realizing the measurement of proximity forces with
nanometric resolution. With its high sensitivity and its intrinsic 2D susceptibility, the
nanowire represents a very sensitive probe for the investigation of the electrostatic prop-
erties of nanofabricated samples.

A combined measurement of electrostatic force and electrostatic force gradient exper-
imentally validated the protocols developed for of the force gradient measurements. It
relies on the direct modulation of the electrostatic force which cannot be used to lock
the PLLs, as the resonant response to the force depends on its orientation with respect
to the nanowire’s eigenmodes and thus rapidly varies with the position of the nanowire
above the sample of interest. The alternation between an optical driving force and the
electrostatic modulation provides access to both the force field gradients and the force
vector respectively by only increasing the measurement time by a factor of two. This
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type of measurement presents a novel method which has not been possible to imple-
ment before due to the large number of points that need to be sampled, requiring good
stability even using the fast measurement protocols.

Perspectives The methods developed for the electrostatic force measurements can be
employed equally well in other experiments such as in force microscopy with function-
alized nanowires to image magnetic force fields or currents, or in cryogenic conditions
[37]. The measurement protocols employed here can directly be transposed to ultralow
temperature measurements, where the nanowire force sensitivity has been shown to im-
prove by four orders of magnitude, down to 40 zN/√Hz, with a theoretical sensitivity to
force field gradients at the level of a few fNm−1 in ten seconds.

In this and previous works [29, 43] we have shown that two dimensional force field mi-
croscopy is possible using the two degenerated eigenmodes of a vibrating nanowire. The
extreme linearity of the system permits a resonant measurement at multiple frequencies
simultaneously, as it is done in the combined force and gradient measurement for ex-
ample. We have already tested measurements where we do not track the modes of the
nanowire but measure the response at several frequencies [36]. The advantage is that
the measurement is not affected by the eigenmode rotations induced by the force field
under investigation or by sign changes of the projected force and that one would gain
direct access to the modulated force vector as in the combined measurement. To do so,
we estimated that a simultaneous detection of about 20 frequencies should be sufficient
for most force field measurements. Such measurements could be realized building onto
the FPGA module developed in this work.
While the simultaneous measurement at the fundamental and at higher order modes is
widely applied in atomic force microscopy, we have not yet exploited this possibility.
Also, the measurement of non-linear interactions between the sample and nanowire via
the detection at higher harmonics can be an option for future experiments.

Fig. 5.2: Adding four additional control electrodes around the sample, one can control the field
at the nanowire apex in 3D (a). The electron pairs are created by lithography on a Si chip
using the geometry shown in (b). The round sample area can then be nano-structured or
a sample can be positioned there. In (c), the installed sample in the microscope setup
can be seen.
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A next step for nanowire force field microscopy, that is already being tested experi-
mentally, is to control the electromagnetic field at the nanowire apex along all three
axes which requires additional degrees of freedom. To do so, two additional perpen-
dicular pairs of electrodes were lithographied around the sample (with the help of B.
Fernandez, J.F. Motte and G. Julie), as shown in Figure 5.2 that helps generate homoge-
nous electrostatic control fields which will serve to compensate the local electric surface
fields experienced by the nanowire. Controlling the electrostatic field along three direc-
tions permits a better understanding and characterization of the residual surface fields
which is crucial for quantitative measurements of the Casimir force. In first tests of the
electrodes we observed a dependence of the optically modulated force on the electro-
static field whose origins are not yet fully understood, but are believed to arise from
a electron-hole pair creation within the nanowire, which are subsequently affected by
the surrounding electric fields. The current investigation of this additional force, which
is linear in the lateral electric field is likely to play a similar role as a residual electro-
static field which generates a force field linear in the bias voltage, will be another step
forward in nanowire force microscopy. A mitigation of this effect would be to use a
non-optical drive of the nanowire such as piezo-actuation or to turn towards metallic
nanowires.

Casimir forces

Themeasured force does not only contain the contributions of the static electromagnetic
fields but also the time-averaged contribution fromfluctuating fields and in particular the
vacuum fluctuations which are at the origin of the Casimir force. It is, like the quadratic
contribution of the surface fields, voltage independent. We developed an approximate
method to evaluate the mean offset potential 𝑉0 that accounts for the average effect of
the residual surface fields. From this evaluation, one can extract a residual force field
that contains only the quadratic contributions from the residual electrostatic fields and
the Casimir force. By putting this value in relation with the simulated Casimir force
above nanostructures, we found that the obtained residual force is similar to the simu-
lations in shape and amplitude. However, for a quantitative assessment of the Casimir
contribution, we need to fully control the surface fields, for instance using the control
electrode method described above.

Perspectives Exploring the proximity forces above nanostructures provides interest-
ing perspectives in Casimir physics as one would for instance be able to measure the
shape of the force field above chiral structures. Nanowire force microscopy can be a
valuable tool since it allows to measure the Casimir interaction between single nanos-
tructures, not relying on the measurement of ensembles of nanostructures, which is
done in only few, if any, experiments. The small size of the probe also permits better
characterizing the effect patches play in Casimir physics, as common experiments of-
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ten use large surfaces compared to the average patch size, whereas the nanowire is of
comparable size.

Experimentally speaking, the Casimir measurements will benefit from the compensation
of the residual surface fields in 3D, taking a step towards quantitative results. Addition-
ally, we saw in this work that the use of metallic nanowires can increase the Casimir
contribution and the fact that the fields are concentrated between nanowire apex and
sample can simplify the compensation of the surface fields.

Also, the electrostatic force above nanostructures can be large compared to the nanowire’s
stiffness, even though the separation is still larger than hundreds of nanometers, ren-
dering force measurements impossible. The sample geometry for Casimir forces must
therefore be selected carefully. Regarding the sample’s material, one could probably test
different annealing and surface treatments after the nano-structuration. This would ide-
ally go alongwith a detailed study of the surface fields so that the nanowire based surface
force microscopy is likely to bring useful information in such sample analyses.

Two-dimensional realtime force feedback

The last part of the thesis discussed the implementation of realtime active feedback
schemes on the nanowires Brownian motion in 2D. We used the fast signal process-
ing capacity of the customized FPGA module and adapted its functionality so that it
measures the nanowire displacement along an arbitrary direction and creates a force
feedback signal proportional to this displacement or to its time derivative. Here, we
investigated the linear regime of the feedback scheme, but it can be changed to more
complicated functions easily. In particular there exists some theoretical interest to gen-
erate a circulating force field with a non-linear radial dependence [6, 7] to investigate
non-hamiltonian dynamics.
With the feedback being exerted via the electrostatic force of a single electrode, we cre-
ate a uniaxial feedback which, in the case that feedback force and readout are parallel to
one of the modes, causes a shift of that mode’s frequency without affecting the second
mode.

In the transverse case, where the force is perpendicular to the readout direction but
alignedwith onemode, one can vary themode’s orientation, which causes a 3 dB squeez-
ing of the nanowire’s noise in position and velocity spaces. An interesting perspective of
this effect is that one can in principle apply a similar feedback scheme in ultracold sys-
tems to investigate how nanowires with a low phonon number react to further squeez-
ing.

We also realized feedback schemes using a retarded force, by adding a temporal phase
shift of 90° to the measured displacements. With such a delayed force it was possible
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to cold-damp the oscillator in the parallel configuration and to create a single elliptical
eigenmode in the transverse case.

Perspectives Adding a second feedback force vector to the setup, the FPGA mod-
ule would already allow to output two arbitrary feedback forces acting along different
orientations. Then, by combining the instantaneous parallel and transverse feedback
algorithms, one would have a tool to create a feedback force on the nanowire that could
compensate any external local force field. Like this, it should be possible to correct for
the rotation and the frequency shift caused by the external force – the nanowire would
then operate at a stable point where its mechanical properties remain linear even un-
der strong external forces. This would allow to perform measurements even closer to
nanostructures where Casimir forces or surface forces are stronger. Such an approach
would be essential to assert the true spatial resolution of those ultrasensitive force field
sensors.

Beside presenting a potential improvement of the measurement, the reaction of the 2D
oscillator to the feedback itself is an interesting research subject. Since the FPGA al-
lows to create basically any shape of force field (at least when the desired force field is
an analytic function of the nanowire’s position), we could investigate the nanowire dy-
namics in more exotic force fields such as quadratic or double well potentials, or purely
rotational but non-linear force fields (such as a vortex like patterns).

Furthermore, one should further investigate the ultimate limits of the studies realized in
Chapter 4, especially when implemented on cold oscillators close to their fundamental
ground state. If the existence of a squeezing in the position-speed space is preserved,
its observability should be studied in greater detail, in particular if one attributes one
interferometric per mechanical mode, conveying two independent readouts.

Global perspectives

Some of the above perspectives have already been pursued. We fabricated a chip that
supports a sample area surrounded by four electrodes which create a homogeneous elec-
trical field at the sample position (see Figure 5.2). By applying four control voltages one
can create an arbitrary field in 2D. Adding an additional voltage bias to all control elec-
trodes and to the sample area, the electrostatic field could be controlled in 3D. First tests
have shown that this method works, and can potentially be used to perform a full elec-
trostatic analysis of the force created by the sample field and by the residual surface
fields.
During the tests we also observed that the homogeneous electrical field caused a rota-
tion of the optical force via a combined electro-optical interaction, with causes not yet
fully understood. To mitigate this effect for the measurements of Casimir forces and the
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Global perspectives

effect of the surface fields, we could employ a piezoelectric drive that is not negatively
affected by an interaction with the electric control field.

The current state of the nanowire force field microscope that is presented in this thesis
can already be used to realize novel measurements. As such, the measurement of mag-
netic fields could be realized by employing functionalized nanowires with a magnetic
apex.
Another functionalization with an NV center could be used to realize an experiment
where the magnetic field is measured via the luminescence of the NV center [52] and
the electric field is measured using the nanowire force probe. Such a nanowire can also
be used to realize a mechanical readout of the NV spin state using the measurement
protocols developed in this work.

Lastly, all methods and protocols presented in this thesis are also applicable under low
temperatures, where the sensitivity of the nanowire is much higher than at room tem-
perature, opening the road towards scanning force microscopy above ultracold samples.
Among other applications, the possibility to isolate and manipulate single electrons in
quantum electronics devices will provide an interesting perspective.
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A The customized digital signal processing unit on
a RedPitaya FPGA

The costumized Red Pitaya FPGA platform was introduced in Section 1.4.6, since the
use as digital lock-in has been explained in detail, this appendix will just list the key
components of the unit that have been realized. For the adapted feedback unit some
additional information are added to what has been discussed in Chapter 4.

Due to an unclear situation regarding the licensing of the developed software and scripts
at the point of the publishing of this thesis, we can not point the reader towards a public
repository containing the full software with documentation at this moment.

A.1 Dual signal acquisition

For the 2 signal 2 frequency analysis we implemented:

A digital signal processing unit (DSP) with:

• 2 first order HP input filters
• 2 local oscillators
• 4 demodulators
• 2 second order LP filters
• data acquisition and transfer control
• downsampling

The server with:

• device control
• data management module

– trigger processing
– data compression (statistics)
– buffering

• communication

Client tools:
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A The customized digital signal processing unit on a RedPitaya FPGA

• pythonmodule combining SCPI commands to set up demodulators in a single com-
mand

• integration of python module in high level UI for dynamic beta measurement

A.2 Adapted feedback

The realtime feedback/radar realization contains

A DSP with:

• 2 high pass input filters
• fast multiplication
• scaling

The server for:

• device control
• input signal correction
• rotation coefficient calculation

Client

• Direct communication via SCPI commands in Jupyter notebook

A.2.1 Objective

The digital signal processing of the FPGA is fast enough to process the measured voltage
of the photodiode and to generate a feedback based on the processed signal at a rate
much higher (125MHz) than the frequency of the mechanical oscillation of a nanowire
(10 kHz). Since the bare signals on the two linearly independent photodiode channels
⊕ and ⊖ are not aligned with the laboratory frame the DSP needs to apply the correct
orientation matrix on the signal in order to apply a feedback based on the position of the
nanowire in the lab coordinates . Based on the rotated signal a force could be applied
either by using a lookup table or by applying a mathematic operation on the raw signal.
A simple case of such an operation is the application of a feedback proportional to a
signal read out along the vector e𝜇1 in the direction of a perpendicular vector e𝜇2 . This
case reflects a purely shearing force field.
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A.2 Adapted feedback

A.2.2 Rotation

The two input signals are read out along two independent vectors 𝜷⊖ = ‖𝛽⊖‖e⊖ rotated
anticlockwise by an angle 𝛽∠⊖ from the x-axis and 𝜷⊕ = ‖𝛽⊕‖e⊕ rotated anticlockwise by
an angle 𝛽∠⊕ . The values of 𝜷⊖,⊕ can be measured as described in Section 1.3.1.1. The
measured projected signal on the channel is

𝛿𝑆𝛽⊖ = 𝛿r ⋅ e⊖
= ‖𝛽⊖‖(cos 𝛽∠⊖𝛿𝑟𝑥 + sin 𝛽∠⊖𝑟𝑧) (A.1)

with 𝑟⊖ =
𝛿𝑆𝛽⊖
‖𝛽⊖‖

and similar for channel ⊕ we have

(𝛿𝑟⊖𝛿𝑟⊕
) = (cos 𝛽

∠
⊖ sin 𝛽∠⊖

cos 𝛽∠⊕ sin 𝛽∠⊕
)(𝛿𝑟𝑥𝛿𝑟𝑧

) = ℛ(𝛿𝑟𝑥𝛿𝑟𝑧
) (A.2)

and inversely:

(𝛿𝑟𝑥𝛿𝑟𝑧
) = (cos 𝛽

∠
⊖ sin 𝛽∠⊖

cos 𝛽∠⊕ sin 𝛽∠⊕
)
−1

(𝛿𝑟⊖𝛿𝑟⊕
) (A.3)

So we can calculate the calibrated projections of the oscillation trajectory

𝛿𝑟𝑥 =
sin 𝛽∠⊕
detℛ

𝛿𝑆𝛽⊖
‖𝛽⊖‖

−
sin 𝛽∠⊖
detℛ

𝛿𝑆𝛽⊕
‖𝛽⊕‖

= 𝑐11𝛿𝑆⊖ + 𝑐21𝛿𝑆⊕ (A.4)

𝛿𝑟𝑧 = −
cos 𝛽∠⊕
detℛ

𝛿𝑆𝛽⊖
‖𝛽⊖‖

+
cos 𝛽∠⊖
detℛ

𝛿𝑆𝛽⊕
‖𝛽⊕‖

= 𝑐12𝛿𝑆⊖ + 𝑐22𝛿𝑆⊕ (A.5)

For the projection of the trajectory on an arbitrary read out vector e𝜇 we calculate

𝛿𝑟𝜇 = cos 𝜇𝛿𝑟𝑥 + sin 𝜇𝛿𝑟𝑧 (A.6)

= (
cos 𝜇 sin 𝛽∠⊕
‖𝛽⊖‖ detℛ

−
sin 𝜇 cos 𝛽∠⊕
‖𝛽⊖‖ detℛ

)𝛿𝑆𝛽⊖ + (
sin 𝜇 cos 𝛽∠⊖
‖𝛽⊕‖ detℛ

−
cos 𝜇 sin 𝛽∠⊖
‖𝛽⊕‖ detℛ

)𝛿𝑆𝛽⊕ (A.7)

= 𝑐′1𝛿𝑆𝛽⊖ + 𝑐′2𝛿𝑆𝛽⊕ (A.8)
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A The customized digital signal processing unit on a RedPitaya FPGA

The last operation is the only step that needs to be executed in real time and therefore
the coefficients 𝑐′1,2 are the values that have to be provided to the FPGA while the rest
are unique operations that can be performed on the software level.

Additionally, a feedback gain 𝑔𝑓 𝑏 can be applied as a proportional on the value 𝛿𝑟𝜇 to
control the output amplitude of the generated signal.
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B Fourier analysis of nanowire trajectory recorded
as demodulated data

For the calculation of the spectrum, we first reconstruct the complex displacement quadra-
tures 𝛿𝑟⊖,⊕, using the positional quadratures 𝑋𝑖,𝑟, 𝑌𝑖,𝑟:

𝛿𝑟⊖ = √2(𝑋⊖,𝑟 + 𝑖𝑌⊖,𝑟), 𝛿𝑟⊕ = √2(𝑋⊕,𝑟 + 𝑖𝑌⊕,𝑟), (B.1)

and derive their projections in the 𝑥, 𝑧 basis via Equation 4.54.

We then calculate the coefficients of the discrete Fourier transform (DFT) with

𝛿𝑟 ′𝑘 =
𝑁−1

∑
𝑛=0

𝛿𝑟𝑡𝑛𝑒
−𝑖2𝜋 𝑛𝑘

𝑁 (B.2)

for each displacement 𝛿𝑟𝑥,𝑧. Each coefficient 𝑘 corresponds to a frequency

𝑓 ′
𝑘 = [−𝑁

2
; 𝑁
2
] ⋅ Δ𝑡 ⋅ 𝑁 (B.3)

Since the DFT is performed on the demodulated data, the Fourier frequencies are cen-
tered around the demodulation frequency and not around zero and we get the correct
frequency values via

𝑓𝑘 = 𝑓 ′
𝑘 + 𝑓demod (B.4)

To get physical Fourier coefficients in mHz−1 we need to multiply 𝛿𝑟𝑘 with the sample
spacing Δ𝑡:

𝛿𝑟𝑘 = 𝛿𝑟 ′𝑘Δ𝑡 (B.5)

Since we define the Fourier transformation as

𝐴[Ω] =
∞

∫
−∞

d𝑡𝑒𝑖Ω𝑡𝐴(𝑡), 𝐴(𝑡) =
∞

∫
−∞

dΩ
2𝜋

𝑒−𝑖Ω𝑡𝐴[Ω], (B.6)

with a different sign for forward and backward transformation compared to the DFT, the
phase of the calculated Fourier coefficients is wrong by 𝜋 which needs to be taken into
account when analysing the data.
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B Fourier analysis of nanowire trajectory recorded as demodulated data

The demodulated data is low-pass filtered, and we need to correct the calculated 𝛿𝑟𝑘 by
the filter response 𝐹[𝑓𝑘] = 𝐹𝑘:

𝛿 ̃𝑟𝑘 =
𝛿𝑟𝑘
𝐹𝑘

(B.7)

Following the definition for the

• Fourier transform in [23, p. 54] , the Fourier

transform needs to be calibrated with 1/√𝑇 where 𝑇 is the total acquisition time (thus
the inverse of the equivalent RBW in a DFT). Thus we have

𝛿𝑟𝑘 =
1
√𝑇

𝛿 ̃𝑟𝑘 (B.8)

in the units of m/√Hz.
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C Calculation of the noise variance via spectral
density integration

C.1 Position variance

The variance of the displacement noise is given by the integral from Equation 4.65, which
writes:

𝜎2𝛿𝑟𝜇 ≡ ∫
𝑑Ω
2𝜋

𝑆𝛿𝑟𝜇[Ω]. (C.1)

Where 𝑆𝛿𝑟𝜇[Ω] is the projected thermal noise spectrum with

𝑆𝛿𝑟𝜇[Ω] =
𝑆𝐹𝑡ℎ

|det 𝜒−1|2
(

cos2 𝜇(|𝜒11|
2 + |𝜒12|

2)
+ sin2 𝜇(|𝜒22|

2 + |𝜒21|
2)

+2 cos 𝜇 sin 𝜇(ℜ(𝜒∗
11𝜒21) + ℜ(𝜒∗

12𝜒22))
). (C.2)

We can integrate each summand separately and write (C.1) as:

Δ𝑟2𝜇 = Δ𝑟2𝑐𝑐 cos2 𝜇 + Δ𝑟2𝑠𝑠 sin2 𝜇 + Δ𝑟2𝑐𝑠 cos 𝜇 sin 𝜇, (C.3)

with the coefficients

Δ𝑟2# ≡ 𝑆𝐹 ∫
𝑑Ω
2𝜋

𝑓#
|det 𝜒−1[Ω]|2

. (C.4)

Here 𝑓# expresses the coefficients of the sine and cosine products in (C.2) for each cor-
responding subscript. Since the nominator in the integral is a complex term, we apply
the residue theorem. The poles of the integrand area then given by the solution of

|det 𝜒−1[Ω]|2 = |(Ω2
+ − Ω2 − 𝑖ΩΓ)(Ω2

− − Ω2 − 𝑖ΩΓ)|
!= 0, (C.5)

which is solved by the eight quantities ±𝐴, ±𝐵, ±𝐴∗, ±𝐵∗, where the asterisk denotes the
complex conjugate. They are obtained from the expressions:

𝐴 ≡ 𝑖 Γ
2
+ √Ω2

− − Γ2/4 and 𝐵 ≡ 𝑖 Γ
2
+ √Ω

2
+ − Γ2/4. (C.6)
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C Calculation of the noise variance via spectral density integration

We choose the half space with positive imaginary part for the application of the residue
theorem, so that we need to calculate the residues at the poles 𝐴,−𝐴∗, 𝐵, −𝐵∗ (which
have a positive imaginary part). Applying the residue theorem, we thus obtain:

Δ𝑟2# ≡
𝑆𝐹
2𝜋

2𝑖𝜋 ∑
𝐴,−𝐴∗,𝐵,−𝐵∗

Res𝑖(
𝑓#

|det 𝜒−1[Ω]|2
) = 𝑖𝑆𝐹 ∑

𝑃=𝐴,−𝐴∗,𝐵,−𝐵∗

𝑓#[𝑃]
𝑧[𝑃]

, (C.7)

where 𝑧[𝑃] = lim
Ω→𝑃

|det 𝜒−1[Ω]|
2

Ω−𝑃
. One can show the following properties for 𝑧 and 𝑓#:

𝑧(𝑃) = −𝑧(−𝑃∗)
𝑓#(−𝑃∗) = 𝑓#(𝑃)∗,

(C.8)

so that the sum of the residues simplifies to:

∑
𝑃=𝐴,−𝐴∗,𝐵,−𝐵∗

𝑓#(𝑃)
𝑧(𝑃)

= 2𝑖ℑ
𝑓#(𝐴)
𝑧(𝐴)

+ 2𝑖ℑ
𝑓#(𝐵)
𝑧(𝐵)

(C.9)

and we obtain for the remaining residues:

𝑓#(𝐴)
𝑧(𝐴)

=
𝑓#(𝐴)

2𝐴2𝑖ℑ(𝐴)2ℜ(𝐴)((Ω2
+ − 𝐴2)2 + Γ2𝐴2)

, (C.10)

Where we can replace 2ℑ(𝐴) and |ℜ(𝐴)|2 by their expressions and then get:

𝑓#(𝐴)
𝑧(𝐴)

= −𝑖
4Γ(Ω2

+Ω2
−)

𝑓#(𝐴)𝐴∗(Ω2
+ − 𝑂𝑚𝑒𝑔𝑎2− + Γ2 − 2𝑖Γℜ(𝐴))

Ω2
−ℜ(𝐴)((Ω2

+ − Ω2
−)

2 + 2Γ2(Ω2
+ + Ω2

−))
. (C.11)

In order to get the corresponding intermediate result for 𝐵, one replaces + with − and
vice versa. Thus we obtain for Δ𝑟2# :

Δ𝑟2# =
𝑘𝐵𝑇/𝑀eff

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

× { 1
Ω2
−
(
ℜ(𝑓#(𝐴)𝐴∗)

ℜ(𝐴)
+ Γ2

Ω2
+ − Ω2

−
(
ℜ(𝑓#(𝐴)𝐴∗)

ℜ(𝐴)
−
ℑ(𝑓#(𝐴)𝐴∗)

Γ/2
))

+ 1
Ω2
+
(
ℜ(𝑓#(𝐵)𝐵∗)

ℜ(𝐵)
− Γ2

Ω2
+ − Ω2

−
(
ℜ(𝑓#(𝐵)𝐵∗)

ℜ(𝐵)
−
ℑ(𝑓#(𝐴)𝐴∗)

Γ/2
))}

(C.12)

We can now insert the tree coefficients 𝑓𝑐𝑐,𝑠𝑠,𝑐𝑠 from (C.2), replacing the 𝜒𝑖𝑗 as:

𝑓𝑐𝑐[Ω] = (Ω∥
2
2 − Ω2)2 + Ω2Γ2 + 𝑔21

𝑓𝑠𝑠[Ω] = (Ω∥
2
1 − Ω2)2 + Ω2Γ2 + 𝑔12

𝑓𝑠𝑐[Ω] = 𝑔12(Ω∥
2
2 − Ω2) + 𝑔21(Ω∥

2
1 − Ω2)

(C.13)
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C.2 Speed variances

and obtain the position variance :

Δ𝑟2𝜇 = Δ𝑟2𝑐𝑐 cos2 𝜇 + Δ𝑟2𝑠𝑠 sin2 𝜇 + Δ𝑟2𝑐𝑠 sin cos 𝜇, (C.14)

with

Δ𝑟𝑐𝑐 = Θ
(Ω∥

4
2 + Ω2

+Ω2
− + 𝑔221)(Ω2

+ + Ω2
− + 2Γ2) − 4Ω∥

2
2Ω

2
+Ω2

−

Ω2
+Ω2

−

Δ𝑟𝑠𝑠 = Θ
(Ω∥

4
1 + Ω2

+Ω2
− + 𝑔212)(Ω2

+ + Ω2
− + 2Γ2) − 4Ω∥

2
1Ω

2
+Ω2

−

Ω2
+Ω2

−

Δ𝑟𝑐𝑠 = Θ
(𝑔12Ω∥

2
2 + 𝑔21Ω∥

2
1)(Ω

2
+ + Ω2

− + 2Γ2) − 2Ω2
+Ω2

−(𝑔12 + 𝑔21)

Ω2
+Ω2

−

(C.15)

where the prefactor Θ is:

Θ =
𝑘𝐵𝑇/𝑀eff

(Ω2
+ − Ω2

−)2 + 2Γ(Ω2
+ + Ω2

−)
. (C.16)

This reduces to the variances of the Langevin driven noise trajectory when no force field
is present:

Δ𝑟2𝑐𝑐 →
𝑘𝐵𝑇

𝑀effΩ2
1
, Δ𝑟2𝑠𝑠 →

𝑘𝐵𝑇
𝑀effΩ2

2
, Δ𝑟2𝑐𝑠 → 0, (C.17)

which do not depend on the mechanical damping Γ.

C.2 Speed variances

The speed variance is defined by a similar integral as the position variance:

𝜎2𝛿𝑣𝜇 ≡ ∫
𝑑Ω
2𝜋

𝑆𝛿𝑣𝜇[Ω] = ∫
𝑑Ω
2𝜋

Ω2𝑆𝛿𝑟𝜇[Ω]. (C.18)

The evaluation of this integral is analog to the position variance and similar to Equa-
tion C.4 we obtain the coefficients of the sine/cosine terms:

Δ𝑣2# ≡ 𝑆𝐹 ∫
𝑑Ω
2𝜋

Ω2𝑓#
|det 𝜒−1[Ω]|2

, (C.19)
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C Calculation of the noise variance via spectral density integration

with the same poles as the position variance. With the new numerator 𝑓#[Ω] → Ω2𝑓#[Ω],
the coefficients Δ𝑣2# become:

Δ𝑣2# =
𝑘𝐵𝑇/𝑀eff

(Ω2
+ − Ω2

−)
2 + 2Γ2(Ω2

+ + Ω2
−)

× {
ℜ(𝑓#(𝐴)𝐴)

ℜ(𝐴)
+
ℜ(𝑓#(𝐵)𝐵)

ℜ(𝐵)

+ Γ2

Ω2
+ − Ω2

−
(
ℜ(𝑓#(𝐴)𝐴)

ℜ(𝐴)
−
ℑ(𝑓#(𝐴)𝐴)

Γ/2
−
ℜ(𝑓#(𝐵)𝐵)

ℜ(𝐵)
+
ℑ(𝑓#(𝐵)𝐵)

Γ/2
)}

(C.20)

And after insertion of𝐴, 𝐵 and the functions 𝑓#[Ω], we calculate the speed variance:

Δ𝑣2𝜇 = Δ𝑣2𝑐𝑐 cos2 𝜇 + Δ𝑣2𝑠𝑠 sin2 𝜇 + Δ𝑣2𝑐𝑠 sin cos 𝜇, (C.21)

with

Δ𝑣𝑐𝑐 =
𝑘𝐵𝑇
𝑀eff

(1 −
2𝑔21(𝑔12 − 𝑔21)

(Ω2
+ − Ω2

+)2 + 2Γ2(Ω2
+ + Ω2

+)
)

Δ𝑣𝑠𝑠 =
𝑘𝐵𝑇
𝑀eff

(1 +
2𝑔12(𝑔12 − 𝑔21)

(Ω2
+ − Ω2

+)2 + 2Γ2(Ω2
+ + Ω2

+)
)

Δ𝑣𝑐𝑠 =
𝑘𝐵𝑇
𝑀eff

(𝑔12 − 𝑔21)(Ω∥
2
2 − Ω∥

2
1)

(Ω2
+ − Ω2

+)2 + 2Γ2(Ω2
+ + Ω2

+)

(C.22)
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D Solution of the Fokker-Planck equation for the
2D Nanowire

In Chapter 4, we have used the Fokker-Planck equation to calculate the probability den-
sity function of the orthoradial velocity for a pure shearing feedback. Here, we provide
the solution of the Fokker-Planck equation, based on which the calculation was done.
The presented solution has been part of previous works in our group [28].

The Fokker-Planck equation [113] is defined by:

−𝐵𝑖𝑘 𝜕𝑥𝑖(𝑥𝑘 𝑝s𝑡(x, 𝑡)) +
𝐷𝑖𝑗

2
𝜕2𝑥𝑖𝑥𝑗𝑝s𝑡(x, 𝑡) = 0, (D.1)

with the following definitions

B =
⎛
⎜
⎜
⎝

0 0 1 0
0 0 0 1

−Ω2
1|| 𝑔21 −Γ 0

𝑔12 −Ω2
2|| 0 −Γ

⎞
⎟
⎟
⎠

et D =
2Γ𝑘𝐵𝑇
𝑀

⎛
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎠

. (D.2)

The solution, which is Gaussian, to this equation is given as general form in [113]:

𝑝s𝑡(x) =
1
𝑁
e𝑥𝑝[ −∑

𝑖,𝑗
𝐴𝑖𝑗 𝑥𝑖 𝑥𝑗], A ≡ 1

2

⎛
⎜
⎜
⎝

2𝑎𝑟1𝑟1 𝑎𝑟1𝑟2 𝑎𝑟1𝑣1 𝑎𝑟1𝑣2
𝑎𝑟1𝑟2 2𝑎𝑟2𝑟2 𝑎𝑟2𝑣1 𝑎𝑟2𝑣2
𝑎𝑟1𝑣1 𝑎𝑟2𝑣1 2𝑎𝑣1𝑣1 𝑎𝑣1𝑣2
𝑎𝑟1𝑣2 𝑎𝑟2𝑣2 𝑎𝑣1𝑣2 2𝑎𝑣2𝑣2

⎞
⎟
⎟
⎠

, (D.3)

with the normalization coefficient𝑁 −1 obtained from integration over the entire space:

𝑁 = ∫
ℝ4

dx exp[ −∑
𝑖,𝑗

𝐴𝑖𝑗 𝑥𝑖 𝑥𝑗]. (D.4)
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D Solution of the Fokker-Planck equation for the 2D Nanowire

For the 2D nanowire oscillator, the formal expressions (see [113]) become:

𝑎𝑟1𝑟1 =𝐾{Ω
2
1||[2Γ

2(Ω2
1|| + Ω2

2||) + (𝑔12 + 𝑔21)
2 + (Ω2

1|| − Ω2
2||)

2
]
2
− Γ2(𝑔12 + 𝑔21)(𝑔12 − 𝑔21)

3

− 1
2
(𝑔212 − 𝑔221)(2Γ2 + Ω2

1|| + Ω2
2||)[2Γ

2(Ω2
1|| + Ω2

2||) + (𝑔12 + 𝑔21)
2 + (Ω2

1|| − Ω2
2||)

2
]

+ 1
2
(𝑔12 − 𝑔21)

2[4Γ4(Ω2
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2||) + 4Γ2(Ω2
1|| − Ω2

2||)
2

+ (𝑔12 + 𝑔21)
2(4Γ2 − Ω2

1|| + Ω2
2||) − (Ω2

1|| − Ω2
2||)

3
]}

𝑎𝑟1𝑟2 =𝐾{ − (𝑔12 + 𝑔21)[2Γ2(Ω2
1|| + Ω2

2||) + (𝑔12 + 𝑔21)
2 + (Ω2

1|| − Ω2
2||)

2
]
2

− 2Γ2(𝑔12 − 𝑔21)
3(Ω2
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2[(𝑔12 + 𝑔21)
2 + (Ω2

1|| − Ω2
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2
]
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2||)(2Γ
2 + Ω2
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× [2Γ2(Ω2
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2 + (Ω2
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2||)

2
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2||)}
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where 𝐾 ≡
𝑀/2𝑘𝐵𝑇

4Γ4(𝑔12 − 𝑔21)2 + [2Γ2(Ω2
1|| + Ω2

2||) + (𝑔12 + 𝑔21)
2 + (Ω2

1|| − Ω2
2||)

2
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The 4 last coefficients (𝑎𝑟2𝑟2 , 𝑎𝑣2𝑣2 , 𝑎𝑟2𝑣2 and 𝑎𝑟2𝑣1) are obtained by exchanging 1 and 2 in
these expressions.

In the case of a large quality factor, the coefficients matrix is block-diagonal, that is,
the principal directions of the elliptical Gaussian distribution are pure speeds and pure
positions and not combinations of speeds and positions. This mixing of positions and
speeds is therefore only a consequence of dissipation, which justifies the focus on the
pure-position and pure-speed variances Δ𝑟2𝛽 and Δ𝑣2𝛽 . The remaining non-zero coeffi-
cients are then:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑎𝑟1𝑟1 = 𝐾[(Ω2
1|| + Ω2
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2
21 + 𝑔12𝑔21(3Ω2

1|| − Ω2
2||) + (Ω3

1|| − Ω1||Ω2
2||)

2
]

𝑎𝑟2𝑟2 = 𝐾[(Ω2
1|| + Ω2
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2
12 + 𝑔12𝑔21(3Ω2

2|| − Ω2
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2|| − Ω2
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2
]

𝑎𝑟1𝑟2 = 𝐾[−2𝑔21Ω4
2|| − 2𝑔12Ω4

1|| + 2(𝑔12 + 𝑔21)Ω2
1||Ω

2
2|| − 4𝑔12𝑔21(𝑔12 + 𝑔21)]

𝑎𝑣1𝑣1 = 𝐾[(Ω2
1|| − Ω2

2||)
2
+ 2𝑔21(𝑔12 + 𝑔21)]

𝑎𝑣2𝑣2 = 𝐾[(Ω2
1|| − Ω2

2||)
2
+ 2𝑔12(𝑔12 + 𝑔21)]

𝑎𝑣1𝑣2 = 𝐾[2(𝑔12 − 𝑔21)(Ω2
2|| − Ω2
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(D.5)

with 𝐾 ≡ 𝑀/2𝑘𝐵𝑇
(𝑔12+𝑔21)2+(Ω2

2||−Ω
2
1||)

2 .

For no present force field the coefficients are

𝑎𝑟1𝑟1 =𝐾{Ω
2
1||[2Γ

2(Ω2
1|| + Ω2

2||) + +(Ω2
1|| − Ω2

2||)
2
]
2
}

𝑎𝑟1𝑟2 =0

𝑎𝑣1𝑣1 =𝐾{[2Γ
2(Ω2

1|| + Ω2
2||) + (Ω2

1|| − Ω2
2||)

2
]
2
}

𝑎𝑣1𝑣2 =0
𝑎𝑟1𝑣1 =0
𝑎𝑟1𝑣2 =0
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Acronyms

AFM Atomic Force Microscopy
CCD Charge-coupled Device
CNT Carbon Nanotube
DFT Discrete Fourier Transform
DSP Digital Signal Processing
EM Electromagnetic
FPGA Field Programmable Gate Array
KPFM Kelvin Probe Force Microscopy
NA Numerical Aperture
NV Nitrogen Vacancy
NW Nanowire
PFA Proximity Force Approximation
PLL Phase-locked Loop
PSD Power Spectral Density
QPD Quadrant Photodiode
RBW Resolution Bandwidth
SEM Scanning Electron Microscopy
SiC Silicon Carbide
SiN Silicon Nitride
SNB Signal Noise to Background Noise Ratio
SNR Signal to Noise Ratio
SPM Scanning Probe Microscopy
STM Scanning Tunneling Microscopy
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Glossary

𝑘𝐵 Boltzmann constant
Γ𝑚 Mechanical damping
𝛿𝐫 Displacement of the nanowire
𝑂𝑚𝑒𝑔𝑎1,2 Eigenfrequency of the higher (+), lower (−) frequency

mode
𝑂𝑚𝑒𝑔𝑎+,− Eigenfrequency of the higher (+), lower (−) frequency

mode
𝐞1,2 Eigenvector of the higher (+), lower (−) frequency un-

dressed mode
𝐞+,− Eigenvector of the higher (+), lower (−) frequency dressed

mode
𝐅ext External force (field) (measurable)
𝛾 Constant force divergence coefficient
𝜆 Linear force divergence coefficient 𝜆𝑉
𝛼 Quadratic force divergence coefficient 𝛼𝑉 2

ℱ Fourier transform with ℱ 𝑓 (𝑡) = ∫ℝ 𝑓 (𝑡)𝑒
−𝑖Ω𝑡𝑑𝑡

𝑔𝑓 𝑔 Gain of the applied feedback (Chapter 4)
𝑔𝑖𝑗 Real part of the mass independent force field gradients in

units of 𝐻𝑧2
ℎ𝑖𝑗 Imaginary part of the mass independent force field gradi-

ents in units of 𝐻𝑧2 (chapter 4)
HF2LI Zurich Instruments dual channel lock in amplifier with two

independent PLLs
HFDC⊕,⊖ Calibration factor of the high and low frequency response

per channel of the photodiodes
𝑀eff Effective Mass Equation 1.12
𝜉𝑛 Matsubara frequencies Equation 3.9
𝑇 , 𝑇𝑖𝑗 Maxwell Stress tensor and its components
𝜷⊕,⊖ Measurement vector of the sum ⊕ and difference 𝑜𝑚𝑖𝑛𝑢𝑠

channel of the photodiodes
𝑃𝑆𝐷 Power spectral density
𝑋, 𝑌 Measured signal quadratures (lock-in measurement)
𝑄 (Mechanical) Quality factor 𝑄 = Ω𝑚/Γ

rms Root mean square, defined by
√

1
𝑛

𝑛
∑
𝑖=1

𝑥2𝑖 .

𝜉 Rotational parameter for the transverse immediate feed-
back
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Glossary

𝑆𝛿𝑟𝜇 Brownian motion spectrum of the nanowire measured
along the vector 𝐞𝜇

𝜒 Mechanical Susceptibility Matrix of an Oscillator
𝐹𝑡ℎ Thermal Langevin force
𝜎𝛿𝑟𝜇 Variance of the brownian motion along the direction 𝐞𝜇
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General summary

Over the last decades, nanotechnology became a flourishing field of discoveries in sci-
ence, enabled by the constant progressmade inmicrofabrication and characterization ca-
pabilities. Following the original developments of the atomic force microscope, the field
of nanomechanical force microscopy significantly evolved, offering a new approach for
imaging on the nanoscale complementary to direct optical or electronic microscopy. It
now represents a standard tool for the characterization of structures with sub-nanometer
resolution. In this thesis, we employ an ultrasensitive force sensor in the form of a sus-
pended vibrating nanowire to image force fields above nanostructures in the vicinity of
the vibrating extremity of the nanowire.

While an AFM probe is sensitive to forces perpendicular to the surface, the nanowire
probe measures forces in the horizontal plane. Its ability to vibrate equally along both
transverse directions allows to realisemeasurement of 2D force fields. An optical readout
serves to probe the mechanical vibrations of the subwavelength-sized nanowires, which
function as a force transducer.

While former experimentswere based on time-consumingmeasurements of the nanowire’s
random, thermal noise trajectories in 2D, followed by a large analysis effort, the meth-
ods and protocols developed in this thesis allow the realization of force field imaging in
quasi-realtime (10 measurements per second). This is achieved by recording resonantly
driven trajectories in the 2D space, whose frequency shifts are tracked by a double phase
lock loop and multiple lock-in demodulators, which allow determining the nanowire’s
eigenmode orientations. The 2D force field under investigation can then be determined
by analyzing the perturbation of the nanowire’s eigenmodes.

With these achievements we extended the use cases towards the measurement of prox-
imity forces which requires good controllability and stability of the experiment due to
the both the small separations between the nanowire extremity and the sample, and the
large force gradients found above nanostructured surfaces.

We present measurements of the electrostatic force fields above nanostructured surfaces
that are caused by electric field gradients generated by the sample’s geometric structura-
tion as well as by residual surface fields. The former cause a quadratic dependence on
an externally applied voltage, while the surface fields are independent of the applied
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sample bias voltage. The different field contributions are analyzed using the Maxwell
stress tensor formalism which allows compensating the linear contribution of the resid-
ual electrostatic field, and estimating the residual force field gradient. The latter is found
in good qualitative agreement with the numerical estimation of the Casimir force we re-
alized, both in magnitude and shape. For a quantitative comparison of the experimental
results with the theoretical expectations, we subsequently propose a method to com-
pensate the residual surface fields in all three directions, which is already being tested
experimentally.

The last topic of this thesis concerns the control and analysis of the nanowire’s dy-
namics by an artificial force field produced by a realtime feedback in 2D that allows to
create any structure of force field. We realized a proof of concept, applying a control
force in an arbitrary direction, whose magnitude is proportional to the vibrations of the
nanowire along a chosen arbitrary direction. We explored different configurations of
the application of an uniaxial parallel and a transverse feedback. Additionally, we show
that a delayed feedback scheme can be used to realize cold-damping of a single nanowire
mode. Furthermore, we use a single transverse feedback to squeeze the nanowire’s noise
if position and velocity space up to values close to the theoretical limit.

Résumé

Au cours des dernières décennies, le développement des nanotechnologies a permis des
avancées conséquentes dans le domaine des sciences appliquées et fondamentales, grâce
à la maîtrise croissante des techniques de micro-fabrication et des progrès réalisés dans
les domaines de la caractérisation.

En particulier, les sondes de force nano-mécaniques, héritières de l’emblématique mi-
croscope à force atomique, ont réalisé des progrès importants et permettent d’explorer
des surfaces via les forces qu’elles exercent sur le nano-résonateur, fournissant une mi-
croscopie complémentaire des mesures optiques ou électroniques.

Dans ce manuscrit, nous présentons les développements effectués afin de réaliser une
sonde de force ultrasensible basée sur la lecture optique des vibrations d’un nanofil sus-
pendu de carbure de silicium, dont l’extrémité vibrante est balayée au dessus de la nano-
structure d’intérêt. Cette dernière produit un champ de force qui perturbe les propriétés
mécaniques du nanofil, en générant des décalages en fréquence, des changements de
son amortissement ainsi qu’une rotation des modes propres, dont la mesure permet de
déterminer à la structure bidimensionelle du champ de force. Les nanofils mesurent es-
sentiellement les forces parallèles à la surface, avec une sensibilité de quelques aN/√Hz
à température ambiante.
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Alors que les expériences précédentes étaient basées sur une analyse spectro-angulaire
du bruit thermique des nanofils, requérant des temps d’acquisition et d’analyse relative-
ment longs, les protocoles développés dans cette thèse permettent d’imager les champs
de force quasiment en temps réel (10 mesures par seconde) tout en préservant la sen-
sitilité de la mesure ainsi que son caractère bidimensionnel. Les protocoles de mesure
sont basés sur des trajectoire cohérentes, produites en excitant le nanofil simultanément
à ses deux fréquences de vibration transverse, tandis que l’analyse des perturbations de
ses propriétés mécaniques est réalisée à l’aide de deux boucles à verrouillage de phase
et de détections synchrones.

Ces développements nous ont permis d’approcher plus finement des surfaces afin d’étudier
les forces de proximité. Nous présentons une étude des champs de force électrostatiques
au-dessus des surfaces nanostructurées créées par la topologie de surface, mais aussi des
forces crées par les champs électriques résiduels. Les premiers présentant une dépen-
dance en la tension d’échantillon, contrairement aux champs de surface. Ces différentes
contributions sont analysées à l’aide du tenseur de Maxwell ce qui permet en particulier
de compenser la contribution linéaire en tension générée par les champs de surface et
d’identifier leur contribution intrinsèque. Cette dernière contient également les forces de
Casimir générées par les fluctuations du vide électromagnétique, et les champs de force
obtenus sont en bon accord, tant en amplitude qu’en profil spatial avec les simulations
numériques réalisées.

Enfin, nous proposons une méthode permettant de compenser les champs de surface par
un champ de contrôle extérieur, ce qui devrait permettre de rendre la mesure des forces
de proximité plus quantitative.

Le dernier volet du manuscrit concerne la mesure et le contrôle de la dynamique des
nanofils sous l’action d’un champ de force artificiel permettant de générer n’importe
quelle structure de champ de force. Ces derniers sont produits grâce à une force ajustable
en orientation, dont l’amplitude est proportionelle aux vibrations du fil mesurées dans
une direction arbitraire. Nous démontrons qu’ils permettent de contrôler complètement
les propriétés mécaniques du nanofil et nous explorons en particulier sa dynamique sous
l’action d’un champ de force circulant. Ce dernier est en particulier capable de com-
primer le bruit thermique du nanofil, en position et en vitesse, et crée une circulation de
son bruit thermique.

Popular summary

This thesis presents recent developments in nanowire-based force field microscopy, a
scanning probe technique aiming at a better understanding of the fundamental proper-
ties of nanostructures at short distances. It is based on the optical readout of the vibra-
tions of a singly clamped nanowire as long as a hair is thick and about 100 times thin-
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ner. By contactlessly moving the nanowire over a nanostructured sample surface, the
changes of the vibration properties can be measured and used to learn about the forces
acting on the nanowire. In doing so, we obtain information about the surface topology
and its electrostatic properties. We apply this force microscopy to probe electrostatic
surface fields, a step towards the detection of the fundamental Casimir force. In a last
part, we present a technique to generate arbitrary force fields to gain control over the
mechanical properties of the nanowire, opening perspectives for force field microscopy
and the investigation of fundamental physics.

Résumé populaire

Ce manuscrit présente les développements réalisés dans le domaine de la microscopie
de force à base de nano-résonateurs mécaniques, dans le but d’étudier les propriétés des
nanostructures à courtes distances. Pour ce faire les vibrations d’un nanofil suspendu
de carbure de silicium sont lues optiquement, tandis que son extrémité vibrante est ap-
prochée d’une nanostructure. Les modifications de ses propriétés mécaniques permet-
tent de déterminer le champ de force exercé par la surface sur le nanofil. Ces mesures
permettent d’étudier la topographie des nanostructures, ainsi que les champs électriques
de surface. Ces derniers devront être compensés afin de détecter les forces de Casimir
ressentis au-dessus de la nanostructure. Dans une dernière partie, on étudie des champs
de force artificiels et on démontre que l’on peut contrôler les propriétés mécaniques du
nanofil, et en partie changer ses directions de vibration sous l’action d’un champ de force
circulant.
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