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had to fight with Deliveroo

First, I would like to thank the members of the jury: Ken Ganga, Sophie Henrot-Versillé, Rémi Adam, Hélène Courtois and Laurent Derome. Thanks for all the kind words, the advises, corrections and suggestions.

Ahora te quiero agradecer a ti, Juan. Ha sido increíble compartir este viaje contigo y sentir un pedacito de Andalucía cada día, aun estando tan lejos de casa. No ha sido tan fácil llegar hasta aquí, y tú lo sabes bien, pero siempre has sabido escucharme y entenderme, has sabido ayudarme y has estado dispuesto a adaptarte a cada inconveniente, e incluso has conseguido hacer que me lo pase bien durante la tesis (y me has aguantado mucho, mucho, mucho... Ni mis padres me soportan tanto). Gracias a ti, no abandoné la tesis, cuando pensé que era la única opción. Desde que empezamos a trabajar juntos en noviembre de 2018, hasta hoy, hay una cosa que no ha cambiado: mi gratitud hacia ti. Solo repetiría este viaje, si lo volviese a compartir contigo; y para ser sinceros, nos lo hemos pasado muy bien trabajando juntos, incluso con todo el drama que conlleva una tesis. Muchas gracias, Juan; no podría haber tenido un mejor director de tesis.

Por otra parte, quiero mencionar a quien me hizo irme a Grenoble para quedarme, enseñándome tanto sobre física, como, más importante aún, tanto sobre la vida. Mar Bastero Gil, aun conociéndote de tan poco tiempo, me has dejado huella. Me encanta cada vez que nos vemos y nos ponemos a hablar durante horas. Me encanta el hecho de que después de cada conversación siempre acabo aprendiendo algo. Porque tu enseñas siempre, incluso sin quererlo. Adoro eso de ti. Bueno, y porque a dar turra no nos gana nadie (había que decirlo). Muchas gracias, Mar. I wanna thank also to Gustavo Yepes, Marco de Petris and, of course, Juan to the great opportunity I have been given to work on the Three Hundred Project and to stay at Rome for several months (grazie mille Marco). I just felt so in love with Italy. It has been a pleasure to work with you all, and to learn from you. Bueno Gustavo a ti también te lo digo en español: ¡Muchas gracias! Os toca a vosotros, las personas más importantes de mi vida: mamá y papá. El problema con vosotros no es daros las gracias, es cuándo parar de dárosla. Con tantas necesidades como ha habido en casa, jamás me ha faltado nada, incluso cuando os teníais que sacrificar vosotros, para dárnoslo a nosotros. Sois las personas más generosas que conozco, y no podría estar aquí sin vuestro apoyo incondicional. Sé que estáis orgullosos de mí, de cada sueño que he cumplido con tanto esfuerzo, pero yo estoy aún más orgulloso de vosotros, de ser vuestro hijo. Gracias, gracias y gracias. Jamás me cansaré de decirlo. Os quiero, mamá y papá. Por supuesto, tengo que agradecer a todo el resto de mi familia: a mis hermanos, mis cuñadas y a mi pequeño Raúl; mis mellis y a mis tías; y sobretodo a mi tita Mari Loli, que me ha alimentado durante mi año de máster en Granada, que me dió tanta compañía aquellos domingos cuando nos tomábamos un vargas y hablábamos sobre tantas cosas. Gracias, tita, por ayudarme a sobrevivir. Y quien también me ayuda a sobrevivir es mi madrina, mi Toñi. Gracias, tita, por tener siempre palabras de cariño y apoyo hacia mí. Al final del día, resulta ser que estoy muy bien acompañado, aunque casi siempre sea en la distancia. Os quiero, os quiero tanto a todos.

Hermana mía, sí, tú, es tu turno. ¿Cuánto significas para mí? Demasiado como para poder expresarlo con palabras, pero lo voy a intentar. Eres mi hermana, mi mejor amigo, mi psicólogo (encima de gratis), mi confidente, mi mayor apoyo... En definitiva, lo eres todo para mí. Eres quien me rescata cuando necesito ayuda, aun cuando ni yo sé que la necesito. Has estado a mi lado desde que empezamos la carrera en 2013. No recuerdo estudiar ningún examen de la carrera sin ti, ni siquiera ir a clase y no tenerte cerca de mí. Cada momento de felicidad que he tenido en mi vida desde 2013 te incluye a ti. Hemos compartido cada lágrima, pero también cada risa. No recuerdo pasar ni un día sin reírnos ni sin hacer gilipolleces, ya sea en Córdoba, San Sebastián, Roma, Madrid... En cualquier sitio me siento como en casa, si estoy contigo. Fue precisamente en San Sebastián, cuando descubrimos que yo iba a hacer un doctorado, que tenía que volver a Francia y que empezaba este viaje tan bonito; pero lo mejor de todo fue poder darte un abrazo y tenerte a mi lado cuando nos enteramos, compartir ese momento que tan feliz me hizo, y que tanto miedo me daba. A día de hoy puedo decir que te necesito en mi vida, y lo digo orgulloso. Eres imprescindible para mí; imprescindible por todo lo que nos une, que no es solo todo lo que he mencionado anteriormente, sino que por si fuera poco pertenecemos al mismo maravilloso colectivo: al LGTBIQ+. Cada día me animas a aceptarme y quererme tal y como soy, a expresarme y sentirme libre y a que viva mi vida independiente del juicio ajeno. Soy feliz siendo gay, y aún más sabiendo que puedo compartir eso contigo, con mi hermana. Solo contigo puedo cantar Crazy in Love sin camiseta, cogidas de la mano y haciendo todo un desfile por una discoteca en Milán; o gritar a pleno pulmón en la Gran Vía de Madrid: 'Y TODOS ME

MIRAN, ME MIRAN, ME MIRAN, PORQUE SÉ QUE SOY LINDA, PORQUE TODOS ME

ADMIRAN '. Y así podría seguir durante horas, porque tenemos demasiados momentos juntos, aunque queden millones más por venir. Tengo la mayor suerte del mundo por tenerte. Pero como esto va de agradecer, te quiero dar las gracias por ser el mejor de los amigos, un tesoro con un valor incalculable, el que me nutre intelectualmente, gracias no solo a tu inteligencia, sino a todos los debates que compartimos, con el que puedo hablar de introspección, de evolución personal, de deconstrucción (en lo que, por cierto, eres mi referente), de libertad, y de un infinito etcétera.

Ojalá sea como tú cuando sea mayor. Gracias infinitas, lo eres todo, y siempre lo serás. Te quiero. PD: Seis nuggets. PPD: No me puedo olvidar de ti, mamá adoptiva. Mañanas, tardes y noches de turra. Turra en la que tanto a Migui como a mi, nos ayudabas a gestionar (o intentarlo) todo lo que significa hacer una tesis, que no es poco. Y por aguantarme tantos años de ocupa en tu casa. ¿He molestado? SI. ¿Sigo molestando? TAMBIÉN. ¿Seguiré molestando? Eso no lo dudes. ¿Te quiero? Mucho mucho mucho. Gracias a ti también Mercho, aunque ya no estés enamorada de mi, yo te quiero mucho.

Let's switch to English (I know you wanted to, my people), and let's go to Grenoble. This thesis has been an amazing journey with so many personal rewards. Without question, you are the biggest one, Rolita. Our friendship started in the most random, and yet, the best way to describe us: crying with a beer, at night, and talking about drama... This is just us. From that day on, we were inseparable. My biggest luck was to be with you every single day, both at lab, and outside. Thanks to you I discovered the true meaning of regret: doing break after break and realizing I did nothing on the full day. Solution to this regret? Meeting after the lab to go to the cinema. Yes, again, this is just us. The last year of my thesis, I was missing so much your visits to my office, and your emotional support every day. But the conclusion from all of this was: OK... I need Rola, I love Rola, I want Rola on my life F-O-R-E-V-E-R. Spoiler: This continues to be the case. Our friendship could be defined by three questions that I've made myself during these years, with just one answer. The first question, which came to my mind not so long after meeting you, was: What would I do without Rola in the lab? Soon, It came the second question: What would I do without Rola in Grenoble? The last one, which still remains right now, is: What would I do without Rola in my life? Curiously the answer to the three questions is the same: I wouldn't do anything without you. Thank you, for being there for me, for being such an amazing friend, for sharing with incredible moments that are irreplaceable. I love you, 7ayete.

Of course, I couldn't speak of Grenoble, without speaking about you, bitch. The fucking Salah, which name I won't be able to pronounce, ever. My lovely little baby. I think I managed to finish the thesis thanks to our Thursday-night-sushi moment. Or our Friday-night-Vietnamese moment. Or our whatever day-night-restaurant combination moment. I think the workers of these places know everything about our life, because we were serving drama as nobody is able to do (and yes, I don't know if I'm making up this expression, but you know, perfectly, what I mean). How many calls we've done to each other just saying: I'm picking you up downstairs, let's go to take a walk, I need it ? Infinite is not even closer. You, as every other tormented PhD student, like me, needed support, and we found, together with Rolita, the best trio of friends. I miss so much, when we were together the three of us, surrounded by people, and just with a look we could, perfectly, understand each other. I love how, even waiting on a queue for getting the first shot of vaccine (not even with rendez-vous), we are able to have so much fun. Salah, I remember how, in the worst period of the PhD, when I was writing this wonderful manuscript, you were coming with me to work, to give me support, and help me not to give up. And what I still love, while I'm writing this, it is that I'm right now planning trips with both of you, Rola and Salah, and I know this friendship will last forever. I received the best gift when I decided to go to Grenoble: both of you. When I'm feeling sad or alone, I always read the cards you gave me as a present for the PhD, and I want to give you back a card. What I love the most about you? That both of you are still in my life. Thank you so much. I love you so so much. Debería de ir acabando, pero es que resulta que estoy muy bien acompañado en la vida, y tengo tanto por lo que agradecer. Así que aun queda un poco. (Important translation: I should be finishing up, but I happen to be in very good company in life, and I have so much to be thankful for. So there's still a little bit left to say).

Antes he hablado de Granada; también de Italia. Y no puedo no pensar en ti, Ruth. Nos conocimos por casualidad (no diré cómo, para mantener nuestra buena reputación) y desde entonces no hay quien te eche de mi vida. Resulta que cuando me mudo a un sitio, la primera persona que busca un vuelo para venir a verme (y acaba viniendo) eres tú; pero es que resulta que yo he cogido la misma buena costumbre contigo. Ya se me hace raro no organizar una Navidad contigo, donde casi siempre acabamos solos, comiendo bonito, chorizo, jamón, tortilla... El kit básico español, vaya. Además, siempre nos solemos hacer un regalo (sí, tú eres mejor regalando que yo, lo sé) y siempre tienes la manía de engañarme, para hacerme elegir mi propio regalo sin yo saberlo. Parece ser que no soy demasiado listo después de todo. ¿Qué nos caracteriza a nosotros como amigos? Bueno, pues nos encanta ver realities en Netflix, y nos gusta cotillear a tope con ellos. Nos encanta viajar, y nos encanta visitarnos cada dos por tres. También nos encanta visitar una página web maravillosa, en la que, por tu culpa, me suelo arruinar cada vez que entro (www.platanomelon.com). Nos encanta estar hasta las tantas, hablando y hablando y hablando... Si es que al final pensamos igual, así que es muy fácil hablar tantas horas. Nos encanta emborracharnos juntos, aunque yo creo que nos pasamos... Bueno, los dos nos hemos caído de una bici en Italia, y no una bici cualquiera no, una Mobike. Eso une mucho. Creo que mejor paro ya, ¿no? Porque podría seguir así todo el día. Muchas gracias amiga, por aguantarme tanto, pero siempre con una sonrisa. Que eso, que te quiero, que vayas buscando vuelos para venir a verme.

Let's finish ! Finally, I know. I wanna thank to the amazing people of the LPSC. Starting with Florian, because you had to share with me an office during 3 years, I'm sorry ! But we had so much fun, and you helped me a lot during my thesis, so a big thank for you. Also the rest of the COSMO ML group and DARK group: Fred, Laurence, Céline, Laurent, David. You welcomed me in the best way possible, and you always had patience when I was trying to speak french (so sorry), merci beaucoup ! Of course the PhD and Post-doc students of the lab (those who have already left, and those who still remain): Flora, Killian, Emmanuel, Calum, Carolina, Miren, Alessandro... Por cierto Miren, increible el póster que preparaste para mi defensa de tesis.

Espero que Juan no te moleste mucho. Mucha suerte, hay que tener paciencia con él (es broma, Juan. Te queremos mucho). Quiero darles las gracias también a Dilia y Carolina, mi pequeño refugio en Francia, donde podía hablar español y sentirme en casa. Después de todo, parece ser que los andaluces y los colombianos no somos tan diferentes. I wanna thank also, Raphael, for being my tea supplier at the lab and also for hosting so many dinners (in which sometimes we

INTRODUCTION

You never completely have your rights, one person, until you all have your rights.

Marsha P. Johnson

Cosmology is the science that studies the origin and evolution of the Universe. This field has grown up exponentially in the last decades thanks to the development of numerical simulations and observational surveys, both covering a significant region of the sky. The current cosmological model has been validated numerous times thanks to these observations, with galaxy clusters being a key pillar both for the development of the model and to constraint it. One of the major advantages of galaxy clusters is that they have formed late in time, and they are the most massive bounded structures in the Universe. The other great advantage is that they can be observed and studied in a wide range of the electromagnetic spectrum. For example, the ionized gas, that makes up 12% of their mass, gives us information at millimetre and X-Ray wavelengths, as demonstrated by the Planck, XMM and Chandra satellites, which have given an unprecedented view of clusters of galaxies and cluster cosmology. The most relevant current and future surveys in this domain will be eROSITA (X-Ray) and CMB-S4. In the visible and infrared part of the electromagnetic spectrum, galaxy clusters can be detected from the light emitted by their stars and galaxies, which only makes up 3% of the total mass of the clusters. Historically, clusters of galaxies were first detected at these wavelengths. Current surveys like SDSS and KiDS are producing already great results in cluster cosmology. Soon the Vera Rubin Observatory, and the Euclid satellite, will allow us to explore a wide range of the Universe with great precision, by means of its stellar and galactic component. The surveys will detect hundreds of thousands of clusters, leading to a precise cosmology with cluster member counts. One of the major challenges will be to define the selection function for these surveys. In order to define this function, it is necessary to use numerical simulations that reproduce the technical and scientific requirements of the specific survey as well as the properties of the clusters. The first numerical simulations used in the context of cosmology were developed in the 60s and included only nonbaryonic physics, called dark matter only simulations. It was not until the 90s when, thanks to the advance of computational power, it was possible to include baryonic physics in numerical simulations, called hydrodynamical simulations. Recently, The Three Hundred collaboration has developed a cluster catalogue constructed with hydrodynamical simulations with high statistics and resolution, taking into account the difficulty of generating this type of simulation.

Within this context, the Euclid satellite will make pioneer observations in the field of cosmology, thanks to the large region of the sky it will observe, the incredible precision of its measurements, and the acquisition of data in the infrared for these regions, which is impossible or very difficult to access from Earth. Prior to its launch, it is necessary to properly characterize its physical components, as well as to prepare the cosmological analysis. The work performed in my thesis focuses on cosmology with galaxy clusters and the characterization of the infrared detectors of the NISP instrument. My thesis is organized in three main parts. Part I introduces the general context:

-Chapter 1 presents the concordance cosmological model focusing in the process of formation of large scale structures.

-Chapter 2 introduces galaxy clusters and their use in cosmology. We describe the link between the number of clusters as a function of the mass and redshift with the cosmological parameters, with a brief state of the art of the latest cosmological results. We present several galaxy cluster observables and mass proxies, paying special attention to the optical/infrared domain. Finally, I explain, briefly, how to detect a cluster and compute the survey selection function.

In Part II we describe the Euclid satellite from its components to the characterization of its infrared detectors.

-Chapter 3 presents the Euclid mission. We describe the technical characteristics of the telescope and its instruments: the visible instrument (VIS) and the near infrared instrument (NISP) and its scientific goals.

-Chapter 4 describes the implication of correlated readout noise for flux measurement with the Euclid NISP instrument.

Part III describes the complex process to determine the selection function of a cluster catalogue through a cluster injection method.

-Chapter 5 characterizes two main observational properties using the Euclid Mock catalogue: the galaxy density radial distribution and the luminosity function; by fitting them with two main analytical models, a Navarro-Frenk-White (NFW) distribution and a Schechter function.

-Chapter 6 presents the construction of a synthetic cluster catalogue based on the results of Chapter 5.

-Chapter 7 describes a cluster injection method to detect clusters. We describe the PZWAV cluster finder and we studied its performance on several cluster catalogues by computing the completeness and purity. Finally, we present an attempt to estimate the Euclid cluster catalogue selection function.

-Chapter 8 presents the Three Hundred Project, a 324 cluster sample simulated with fullphysics hydrodynamical re-simulations, which could be used in the context of Euclid. We recover the same galaxy properties discussed above in a more realistic way. We discuss the impact of resolution effects in these properties as well as the impact of baryonic physics in the structure formation process.

Part I

General Context

Chapter 1

THEORETICAL FRAMEWORK

In this chapter we present the theoretical framework in which this thesis is based, starting from the standard cosmological model to the description of some cosmological probes and in particular those related to galaxy clusters.

Standard cosmological model

The theoretical framework of the concordance cosmological model describes gravity interaction through Einstein's General Relativity [START_REF] Einstein | The foundation of the general theory of relativity.[first published in 1916 as die grundlage der allgemeinen relativitätstheorie[END_REF]. Considering an isotropic and homogeneous Universe, Einstein's equations can be solved leading to the equations of dynamics1 of Friedmann-Lemaitre-Robertson-Walker (FLRW) [START_REF] Friedman | Über die krümmung des raumes[END_REF][START_REF] Friedmann | Über die möglichkeit einer welt mit konstanter negativer krümmung des raumes[END_REF]:

ȧ a 2 = 8πG 3 ρ - k a 2 , (1.1) ä a = - 4πG 3 (3p + ρ), (1.2)
where G is the Newton's gravitation constant, k is the space-time curvature, ρ and p are the density content and pressure present in the Universe, a is the scale factor and ȧ its time derivative.

Assuming three components: radiation, matter and a cosmological constant (dark energy) the total energy density of the Universe can be written as:

ρ = ρ m + ρ r + ρ Λ , (1.3)
ρ m being the matter density, ρ r the radiation and ρ Λ the dark energy density related to the cosmological constant Λ, defined as ρ Λ = Λ 8πG . The expansion rate of the Universe is given by the Hubble constant, H, defined as the logarithmic derivative of the scale factor, H = ȧ/a.

Assuming that the Universe components behave like perfect fluids, which state equation w = p/ρ, with ρ and p the density and pressure, we can write ρ + 3H(1 + w)ρ = 0.

(1.4)
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Solving equation 1.4 for each energy density component, it is possible to obtain the dependency of the energy density with the scale factor (and thus, with time):

ρ(a) ∝            a -3
for w = 0: matter (pressureless) a -4 for w = 1/3: radiation a -3(1+w Λ ) for -1 < w Λ < -1/3: dark energy.

(1.5)

For a flat Universe, where k = 0, and using the Hubble parameter dependency with the scale factor, and equation 1.1, we can define the critical density ρ c as:

ρ c = 3H 2 8πG . (1.6)
Thus we can define the ratio of the density to the critical density, also called normalized density, Ω i , as:

Ω i = ρ i ρ crit , ( 1.7) 
where ρ i represent different density components, e.g., i = m for matter density or i = r for radiation density. In terms of this variable, the Friedmann equation 1.1 can be rewrite as:

Ω tot -1 = k a 2 H 2 , (1.8)
where Ω tot is the total normalized matter-energy content of the Universe and Ω k = k a 2 H 2 the normalized space curvature density. For different values of the space curvature k = -1, 0, 1 or, equivalently, Ω tot > 1, Ω tot = 1 and Ω tot < 1, the Universe is closed, flat or open, respectively. Equation 1.1 can be rewrite in terms of the scale factor, a, the Hubble parameter, H, and the normalized density Ω by:

H(a) = H 0 Ω Λ,0 a -3(1+w DE ) + Ω m,0 a -3 + Ω r,0 a -4 + Ω k,0 a -2 , (1.9)
where the subscript zero represents the value of any parameter at the present time. Thus H 0 is the expansion rate and Ω k,0 is the curvature density term today. The equation for the expansion rate as a function of the scale factor will be useful due to the fact of the relationship between the geometrical information within the scale factor and how to measure distances in the Universe.

We expect the Universe to expand and to be dominated by radiation at its early stage, then by matter. Current cosmological constraints [4] also show the Universe dynamics is now dominated by dark energy, compatible with a cosmological constant.

Distance Measurements

One major issue in observational cosmology is how to measure distances. It is useful to define the redshift, z, as the ratio of the light wavelength of a source at the time the light is emitted, λ emit , and at the time it is observed, λ obs :

1 + z = λ obs λ = a 0 a , ( 1.10) 
where by definition of the scale factor, a = 0 is the origin of the Universe that corresponds to high redshifts, up to nowadays, a = 1 corresponding to z = 0. Now equation 1.9 can be written in terms of z as:

H(z) = H 0 E(z), (1.11) 
where E(z) is defined by:

E(z) = Ω Λ,0 (1 + z) 3(1+w DE ) + Ω m,0 (1 + z) 3 + Ω r,0 (1 + z) 4 + Ω k,0 (1 + z) 2 .
(1.12)

A way to define the distance between an observer at z = 0 and a cosmological object at z is using the radial comoving distance, D C , defined by:

D C = dt 1 a(t) = z 0 dz ′ 1 H 0 E(z ′ ) . (1.13)
The term "comoving" refers to variables that are invariant with respect to the expansion of the Universe. To measure the "physical" or proper distance it is necessary to take into account the scale factor. Thus, the radial proper distance is defined as d(t) = aD C . The radial comoving distance is measured in the line-of-sight, but to measure two cosmological objects at the same redshift, z, it is necessary to define the transverse comoving distance, D M , which depends on the space curvature, and it is defined as follows:

D M =            L sinh (D C /L) for Ω k > 0 D C for Ω k = 0 L sin (D C /L) for Ω k < 0 (1.14)
where 1/L = H 0 |Ω k |. Again, the transverse proper distance, which accounts for the Universe's dynamics is defined as d M = aD M . The latter is the physical size of a gravitationally bound object. Now we can define the angular diameter distance of an object at redshift z, as the ratio
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between the physical size of an object and its observed angular size:

D A = D M 1 + z . (1.15)
Finally, we define also the luminosity distance that relates the intrinsic luminosity of an object, L and its flux F as D L = L 4πF , and in terms of the redshift of the object is given by:

D L = (1 + z)D M = (1 + z) 2 D A .
(1.16)

Thermal History of the Universe

The concordance cosmological model is based on the "Big Bang" theory developed by George

Lemaître [START_REF] Lemaître | Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques[END_REF][START_REF] Lemaître | The beginning of the world from the point of view of quantum theory[END_REF][START_REF] Lemaître | L'expansion de l'espace[END_REF] and Alexander Friedmann [START_REF] Friedman | Über die krümmung des raumes[END_REF] independently. The Universe is considered isotropic and homogeneous and a dynamical object where the Einstein's General Relativity applies, as discussed before. It expands with time and it was a hotter and denser at its beginning. The discovery by Edwin Hubble [START_REF] Edwin P Hubble | A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae[END_REF] that galaxies were moving away from us with increasing velocity when increasing distance to us, its electromagnetic spectrums are redshifted, constituting a fundamental observational proof for this cosmological theory. At the early universe the temperature of the Universe is high and particle interactions are important so that they are in the form of a hot plasma in equilibrium dominated by radiation [START_REF] Gamow | Expanding universe and the origin of elements[END_REF]. When the Universe expands, it cools down to the point where, protons and neutrons combine to form hydrogen, then helium and after heavier nuclei, beginning a period of matter-dominated Universe, reaching the matter-radiation equality at z ∼ 3600. This process is known as primordial nucleosynthesis and the measurement of the abundance of light elements [START_REF] Gamow | Expanding universe and the origin of elements[END_REF] [START_REF] Hinshaw | Nine-year wilkinson microwave anisotropy probe (wmap) observations: cosmological parameter results[END_REF]) or Planck [START_REF] Akrami | Planck 2018 results-iv. diffuse component separation[END_REF]. The right part of Figure 1.1 shows the CMB temperature anisotropies of rms 100 µK measured by Planck. This confirms that the Universe is homogeneous and isotropic at large angular scales. The CMB is another observational proof,

Structure Formation

CMB measurements show that the Universe is homogeneous and isotropic to 10 -5 . These anisotropies in the CMB temperature map correspond to the initial density perturbations that lead to structure formation. These initial density fluctuations are seeded by quantum fluctuations at time of inflation.

The structures in the Universe are formed from these quantum fluctuations that generates primordial density fluctuations. We can define the density contrast at a position and time, ( r, t) like:

δ( r, t) = ρ( r, t) -ρ(r, t) ρ(t) , ( 1.17) 
where ρ and ρ are the matter density and its mean value at time, t. Initial fluctuations can be derived from a primordial power spectrum P prim (k) = A s k ns-1 with n s = 0.966 [4], which makes the power spectrum quasi-scale invariant. In the linear regime, the power spectrum evolves during the history of the Universe as function of the cosmology and can be expressed as

P m (k, z) = P prim (k)D 2 (z)T 2 (k), (1.18) 
T (k) is the transfer function that describes the impact of the linear regime growth up to the recombination period z ∼ 1000, and D(z) is the growth factor and it is related to how the perturbations grows. These two quantities depend on the cosmological parameters. The r.m.s of the matter fluctuations at a mass scale, M, is related to the fluctuations power spectrum by:

σ 2 (M, a) = d 3 k (2π) 3 W (kR)P m (k, a), (1.19) 
where

W (kR) = 3 sin(kR) (kR) 3 -cos(kR) (kR) 2
is the window function for a sphere of radius, R. The largest gravitationally bound structures in the Universe are galaxy clusters whose size is the order of Mpc. For this reason, the amplitude of the matter power spectrum is normalised by the r.m.s at a distance R = 8 h -1 Mpc at redshift z = 0 (a = 1), and this normalization is known as σ 8 . As we will see in the next section, the number of clusters as a function of the redshift and mass is sensitive to the cosmological parameters, thus cluster number counts constitutes a major cosmological probe. In the case where perturbations are not in the linear regime (small scales or later times) numerical simulations are fundamental to understand the non-linear perturbations regime. As an example, Figure 1.2 shows the dark matter density field on various scales. The zoom sequence shows a region four times smaller than the previous one, centered in a galaxy cluster. As seen in the simulation, galaxies and galaxy clusters are formed in the the connections of filaments in the cosmic web. The fluctuations that have grown up and produce gravitational by

f (σ) = A 1 + σ b -α exp - c σ 2 , ( 1.21) 
where (A, a, b, c) are parameters estimated from numerical simulations (e.g., [START_REF] Tinker | Toward a halo mass function for precision cosmology: the limits of universality[END_REF]). Therefore, a cluster can be defined by its mass and redshift, and they are self-similar objects. We will see in the next chapter that the evolution of the number of halos as a function of the mass and redshift depend on the cosmological parameters, σ 8 and Ω m , thus galaxy clusters are a cosmological probe.

Numerical Simulations

The understanding of how a nearly uniform and isotropic Universe evolves to form stars, galaxies and large scale structures is a challenging problem in modern cosmology. The use of numerical simulations in the non-linear regime is fundamental, where the density fluctuations are comparable with the matter density, δρ ∼ ρ, and the gravitational evolution in a FLRW Universe can not be performed analytically. The development of numerical simulations from the 60's and their improvement and combination with observational measurements have been an achievement in modern cosmology. Now we are going to explain the different type of cosmological simulations and a bit of historical context for each one (for a more detailed review see [START_REF] Klypin | Numerical simulations in cosmology[END_REF][START_REF] Yepes | The universe in a computer: The importance of numerical simulations in cosmology[END_REF]).

N-body Simulations

N-body, dark-matter-only simulations consider generally gravity as the only interaction between particles, solving the Vlasov-Poisson equations. The first simulation of the evolution of N gravitating bodies (less than one hundred particles) was in the 60's [START_REF] Von | Die numerische integration des n-körper-problemes für sternhaufen[END_REF][START_REF] Sverre | Dynamical evolution of clusters of galaxies, i[END_REF]. In the next decade the development of computers allowed researchers to increase the number of particles for studying the formation and evolution of cluster of galaxies [START_REF] Peebles | Structure of the coma cluster of galaxies[END_REF][START_REF] Simon | The dynamics of rich clusters of galaxies[END_REF], Press and Schechter in the 70's studied the development of clustering in an expanding Universe by considering one thousand particles placed randomly in a sphere that is expanding, and compare the results of these simulations to their analytical interpretation [START_REF] William | Formation of galaxies and clusters of galaxies by self-similar gravitational condensation[END_REF]. The 70's decade ends with allowing to perform N-body simulation in expanding spheres containing up to 5000 particles [START_REF] Sverre | N-body simulations of galaxy clustering. i-initial conditions and galaxy collapse times[END_REF].

Early in the 80's it became possible to compute an arbitrary power spectrum for the density fluctuations thanks to the application of the Zeldovich approximation [START_REF] Ya | Gravitational instability: An approximate theory for large density perturbations[END_REF] in two dimensions by Doroshkevich [START_REF] Ag Doroshkevich | Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe[END_REF] and three dimensions by Klypin and Shandaring [35]. This is the standard method nowadays to set up the initial conditions in agreement with predictions from the linear theory. The previous works applied the Particle-Particle (PP) algorithm where the motion of particles is the direct summation of pairwise forces. However, they are not applicable for a large • Grid based Particle-Mesh (PM) algorithm. It utilizes a mesh to produce the density and potential and it was first applied to cosmology for the previously mentioned works of Doroshskevich [START_REF] Ag Doroshkevich | Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe[END_REF] and Klypin and Shandaring [START_REF] Aa Klypin | Three-dimensional numerical model of the formation of large-scale structure in the universe[END_REF]. The force computation scales as N log(N ), with N the number of grid cells, allowing one more order of magnitude with respect to the PP method. However, the spatial resolution is limited to the cell size. Due to the limitation of the spatial resolution, the internal part of the clustered objects is not well described, and it is necessary to add short range forces connecting the cells in the mesh. This led to the next method.

• Particle-Particle/Particle-Mesh (P 3 M). This algorithm was developed in the 80's by Efstathiou and Eeastwood [START_REF] Efstathiou | On the clustering of particles in an expanding universe[END_REF][START_REF] Efstathiou | Numerical techniques for large cosmological n-body simulations[END_REF] combining the mesh structure for the large-scale forces with small scale particle-particle forces contribution. The main disadvantage of this method comes when the clustering increases making the small scale force contribution dominates. For this reason, this method has been improved including subgrids in the strong clustering areas (high density), firstly proposed by Couchman in early 90's [START_REF] Hmp Couchman | Mesh-refined p3m-a fast adaptive n-body algorithm[END_REF].

• TREE algorithms. This algorithm developed by Barnes and Hut [39] reduces the number of particles that interact by subdividing consecutively a cube (node) in smaller cubes where each node contains a single particle or subnodes. The center of each node is the center of mass and the force is computed by walking the tree using a multipole expansion related to the relative distance of the particles and the size of the node. The main disadvantage of this method is the number of operations, the need of storage the hierarchical tree and the difficulty to parallelize it, even though it has been used to simulate cluster formation in parallel implementation [START_REF] Zurek | Large-scale structure after cobe: Peculiar velocities and correlations of cold dark matter halos[END_REF].

Forty years ago, N-body simulations started with only few thousands particle. Today, they can be done with more than 10 9 particles, in volumes of hundreds of Mpc with a really high resolution, as is the case of the Millenium Simulation [START_REF] Volker | Simulations of the formation, evolution and clustering of galaxies and quasars[END_REF], used in the Euclid Collaboration [START_REF] Laureijs | Euclid definition study report[END_REF] or the MultiDark simulation [START_REF] Klypin | Multidark simulations: the story of dark matter halo concentrations and density profiles[END_REF] for the Three Hundred Project [START_REF] Cui | The three hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications[END_REF]. Although N-body

Hydrodynamical Simulations

Computing realistic simulations is fundamental, to be able to make a direct comparison between simulations and observational data. Next step is to solve, both gravitational and gas dynamics equations at the same time because at small angular scales, baryons can modify the dynamics of the system since they are affected by other type of interactions like electromagnetic and strong interaction. This type of simulation is called Hydrodynamical simulations.

Hydrodynamical simulations appear in the late 80's and early 90's thanks to the improvement in the computing power [START_REF] Yepes | The universe in a computer: The importance of numerical simulations in cosmology[END_REF]. They solve the gravitation and gas dynamics equations at the same time. There are two types of numerical methods used, depending on if the fluid elements are considered particles or meshes.

• Smoothed Lagrangian Hydrodynamics (SPH). This is a method where the fluid elements are represented by pseudo particles. It is the most popular one in astrophysics and cosmology and it was first proposed by Lucy [START_REF] Leon | A numerical approach to the testing of the fission hypothesis[END_REF] and Gingolg and Monnaghan [START_REF] Robert | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] in 1977. The discrete fluid properties smoothed by a kernel function to reconstruct continous variables. This interpolation led to the same problem found in the TREE or P 3 M N-body methods: finding the nearest neighbors of the particle. Then, SPH is normally combined with TREE or P 3 M N-body simulations. The first cosmological code, written by Evrard in late 80's, combining P 3 M N-body with SPH [START_REF] August E Evrard | Beyond n-body-3d cosmological gas dynamics[END_REF]. Hernquist and Katz [START_REF] Hernquist | TREESPH: A Unification of SPH with the Hierarchical Tree Method[END_REF] a year after developed a combined TREE N-body with SPH and later more codes were delevoped for cosmology [START_REF] Hernquist | Treesph-a unification of sph with the hierarchical tree method[END_REF]. An example of this is the Gadget-X code developed by the Three Hundred Collaboration [START_REF] Cui | The three hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications[END_REF] that is based on the Gadget-2 TREE-SPH code [START_REF] Volker | The cosmological simulation code gadget-2[END_REF].

More details about this can be found in Chapter 8.

• Eulerian Methods. This method treats the fluid elements as meshes. Thus the fluid equations are solved in a grid by finite-differences. The first Eulerian method used in cosmology was proposed by Cen et al in 1990 [START_REF] Ry Cen | The universe in a boxthermal effects in the standard cold dark matter scenario[END_REF] combining their code with a PM/Nbody code. They used the Godunov algorithm [START_REF] Konstantinovich | Difference schemes: an introduction to the underlying theory[END_REF] that is a finite volume method. The spatial accuracy of this method can be improved when the gas dynamical quantities in a cell are not constant. When assuming a parabolic interpolation, the accuracy reaches third-order and the method is called Piecewise Parabolic Method (PPM) as proposed by Colella and Woodward [START_REF] Colella | The piecewise parabolic method (ppm) for gasdynamical simulations[END_REF] in the 80's and it is the standard method for cosmological eulerian models [START_REF] Greg L Bryan | X-ray clusters from a high-resolution hydrodynamic ppm simulation of the cold dark matter universe[END_REF][START_REF] Yepes | Hydrodynamical simulations of galaxy formation: effects of supernova feedback[END_REF][START_REF] Quilis | A Multidimensional Hydrodynamic Code for Structure Evolution in Cosmology[END_REF][START_REF] Sornborger | The structure of cosmic string wakes[END_REF]. Other Eulerian methods used in cosmology are: the Total Variation Diminishing (TVD) [START_REF] Ryu | A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme[END_REF], Flux-Corrected-Transport (FCT) [START_REF] Klypin | Galaxy formation with gravitation, hydrodynamics and active star formation[END_REF][START_REF] Maurogordato | Clustering in the universe[END_REF], ZEUS-3D [START_REF] Roettiger | When clusters collide-a numerical hydro/nbody simulation of merging galaxy clusters[END_REF][START_REF] Anninos | Hierarchical numerical cosmology with hydrodynamics: Methods and code tests[END_REF] and Eulerian methods in non-uniform meshes [START_REF] Anninos | Hierarchical Numerical Cosmology with Hydrodynamics: Methods and Code Tests[END_REF].

Chapter 2 After galaxies are formed, and due to the hierarchical nature of the growth of structures in the Universe, galaxy clusters are formed at a relatively low redshift, z < 3. They form in the intersection of filaments where there is a high concentration of dark matter. Clusters are the most massive gravitationally bound structures in the Universe. A typical galaxy cluster has a total mass between 10 14 -10 15 M ⊙ of which 85% corresponds to dark matter. A cluster is composed also of the intracluster medium (ICM) that is a hot ionised gas that comprises 12% of the cluster mass. Finally, the mass coming from the galaxy members is negligible, around 3%.

GALAXY CLUSTERS

The typical size of a cluster is the order of R 200 = 1 -3 Mpc, where R 200 is the radius from the center of the cluster at which the cluster mean density is 200 times the critical density of the Universe at the redshift of the cluster, i.e., ∆ = ρ(r < R ∆ )/ρ crit where ∆ = 200. Clusters are cosmological laboratories which can be studied at several wavelengths, and they are connected to the cosmological parameters.

In this chapter we describe cluster observables at different wavelengths. We also present some cluster observational properties in the optical/infrared that we will use during the thesis. These observational properties play a key role in cluster detection using the so called cluster finders.

We introduce several cluster finders and how to compute the probability of finding a cluster at a certain mass and redshift. Finally, we describe the relationship between clusters and the cosmological parameters.

Cluster Observables

The direct information that can be obtained from a cluster is coming from its observables.

The latter are useful to estimate the cluster number counts, the selection function, and the cluster mass and redshift, among others. Depending on the wavelength range in which the clusters are observed, we find different types of observables. Some of these observables, and surveys that inferred them, are described below.

Milimetrical Observables

At milimetre wavelenghts we are sensitive to the intra-cluster medium (ICM) via the Sunyaev-Zel'dovich (SZ) effect. In this regime we find the NIKA2 camera [START_REF] Perotto | Calibration and performance of the nika2 camera at the iram 30-m telescope[END_REF], the Planck Satellite [START_REF] Peter Ar Ade | Planck 2013 results. xxviii. the planck catalogue of compact sources[END_REF],

the ACT (Atacama Cosmolohy Telescope, [74]) ot the SPT (South Pole Telescope, [START_REF] Bleem | Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500[END_REF]), among others. The thermal Sunyaev-Zel'dovich (SZ) effect is a distortion of the CMB spectrum due to inverse Compton scattering the CMB photons with the hot electrons in the ionized ICM [START_REF] Sunyaev | The observations of relic radiation as a test of the nature of x-ray radiation from the clusters of galaxies[END_REF][START_REF] Sunyaev | Microwave background radiation as a probe of the contemporary structure and history of the universe[END_REF].

For quantifying this effect we define the Compton parameter, y. It gives a measure of the electron pressure of the ICM along the line of sight. The Compton parameter integrated in an sphere of radius R 500 is defined as Y 500 . The latter can be related to the cluster mass when considering hydrostatic equilibrium. The scaling relation between M 500 and Y 500 has been measured by the Planck Collaboration [START_REF] Peter Ar Ade | Planck 2013 results. xxviii. the planck catalogue of compact sources[END_REF]:

Y 500 = 10 -4.19±0.02 E(z) 2/3 (1 -b)M 500 6x10 14 M ⊙ 1.79±0.08 D -2 A M pc -2 , ( 2.1) 
with E(z) and D A are defined by equation 1.12 and equation 1.15. Catalogues of clusters from SZ observations can be used to constraint cosmological parameters [78,[START_REF] Bocquet | Cluster Cosmology Constraints from the 2500 deg 2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope[END_REF][START_REF] Hasselfield | The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data[END_REF][START_REF] Abbott | [END_REF].

X-Ray Observables

Clusters are observed in X-Ray via bremsstrahlung emission of the ICM electrons. Main cluster observations in X-Rays come from XMM-Newton Survey [START_REF] Jansen | Xmm-newton observatory-i. the spacecraft and operations[END_REF], eROSITA [START_REF] Pillepich | Forecasts on dark energy from the X-ray cluster survey with eROSITA: constraints from counts and clustering[END_REF] or Chandra [START_REF] Weisskopf | An Overview of the Performance of the Chandra X-ray Observatory[END_REF]. The main observables at this wavelength range are the total X-Ray luminosity, L X , the X-Ray temperature, T X , the cluster gas mass, M gas or the thermal energy, Y X (equivalent to Y) that is the product of cluster temperature and the gas mass. Considering the self-similar scenario for clusters, all the previous observables can be related to the cluster mass through scaling relations [START_REF] Fabjan | X-ray mass proxies from hydrodynamic simulations of galaxy clusters-i[END_REF]:

L X = M 4/3 E(z) 7/3 , T X = M 2/3 E(z) 2/3 , M gas = M, Y X = M 5/3 E(z) 2/3 .
(2.2)

Optical/Infrared Observables

The cluster information obtained at optical/infrared wavelengths comes from the light of stars and galaxies ([86, e.g.]). Furthermore, it is possible to detect and study clusters via gravitational strong and weak lensing on background galaxies (see Chapter 3). Current optical surveys as KiDS [START_REF] Lesci | AMICO galaxy clusters in KiDS-DR3: cosmological constraints from counts and stacked weak-lensing[END_REF] and SDSS [START_REF] Costanzi | Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release[END_REF] will be followed by the Euclid Satellite [START_REF] Laureijs | Euclid definition study report[END_REF], and the Vera Rubin Observatory (LSST) [START_REF] Paul A Abell | Lsst science book, version 2.0[END_REF]. Optical/infrared surveys are used to measure the cluster redshift either spectroscopically (e.g., Euclid) or using various photometric bands (Rubin and Euclid).

From these observables various estimates of the cluster mass can be found:

• Cluster Richness: It is an estimate of the number of galaxies within a cluster radius at a certain magnitude limit, m L . It must be corrected by extracting the contamination of field galaxies. It serves as a mass proxy through scaling relations such as [START_REF] Andreon | Richness-mass relation self-calibration for galaxy clusters[END_REF]:

ln N 200 = (0.47 ± 0.12)(log M 200 -14.5) + 1.58 ± 0.04, (

where N 200 is the number of galaxies within R 200 .

• Velocity Dispersions: The line of sight radial velocity dispersions, σ ν , of cluster's galaxies are a cluster mass proxy under the assumption of dynamical equilibrium through the Jeans equation [START_REF] Binney | Galaxy dynamics[END_REF][START_REF] Carlberg | The average mass and light profiles of galaxy clusters[END_REF] or by scaling relations with other mass proxies like the richness [START_REF] Andreon | The scaling relation between richness and mass of galaxy clusters: a Bayesian approach[END_REF]:

log σ ν = (0.30 ± 0.04)(log N 200 -1.5) + 2.77 ± 0.01. ( 2.4) 
• Cluster Luminosity: It measures the total luminosity of the cluster. As a mass proxy, just the sum of the brightest galaxies could suffice. However, to compute the total cluster luminosity, an extrapolation must be done for magnitudes above a certain limit, m > m L .

This extrapolation is usually done by fitting a function to the magnitude distribution and then integration from m L . The most used function is the Schechter luminosity function [START_REF] Schechter | An analytic expression for the luminosity function for galaxies[END_REF] (see next section for more details). Generally the mass-lumiosity ratio, M/L, scales as a power-law with the cluster mass M/L ∝ M α with α ≃ 0.2 ± 0.1 [START_REF] Biviano | Galaxy systems in the optical and infrared[END_REF].

Cluster Properties in the Optical/Infrared

Luminosity Function

The Luminosity Function (LF) is defined as the number of galaxies in a volume, with a certain magnitude. Its shape depends on the galaxy types and the environment. Therefore, luminosity functions differ between background (or field) galaxies and cluster's galaxies. For this reason, luminosity functions are a key property for cluster's detection in the visible and IR surveys.

The apparent magnitude of a detected galaxy is measured through the flux at a given spectral band, Q:

m Q ∝ -2.5 log(f Q ). (2.5)
For the AB system, the apparent magnitude is m AB = -2.5 log(f µ ) + 8.9 [START_REF] Beverley | Absolute spectral energy distributions for white dwarfs[END_REF] where the flux spectral density, f µ is measured in Jansky (Jy). The absolute magnitude for a spectral band, R, is defined as

M R = m Q -µ -K QR , (2.6) 
where, m Q is the apparent magnitude, µ is the distance modulus defined as µ = -5(log ( D L 10 pc ) -1) with D L the luminosity distance, defined by equation 1.16. The K-correction, K QR , accounts for the conversion between observed and rest frame in-band photometric measurements [START_REF] Maria | K and evolutionary corrections from uv to ir[END_REF][START_REF] Hogg | The k correction[END_REF].

The distance modulus defines the magnitude of an object as it would be seen at a distance of 10 pc.

Luminosity functions have been modelled analytically through time. The most used model is called the Schechter function [START_REF] Schechter | An analytic expression for the luminosity function for galaxies[END_REF][START_REF] Driver | Dwarf galaxies at: photometry of the cluster abell 963[END_REF] given by Φ(m) = 0.4 log(10)φ * 10 0.4(m * -m)(α+1) exp (-10 0.4(m * -m) ),

(2.7) with φ * , the normalization, α, the faint-end slope, and m * the characteristic magnitude. An on-going problem in the computation of the luminosity function is that the Schechter model can not reproduce simultaneously both the bright and faint part of the luminosity profile.

Galaxy Density Radial Profile

The inner structure of clusters is sensitive to the cosmological parameters [START_REF] Macciò | Concentration, spin and shape of dark matter haloes as a function of the cosmological model: Wmap 1, wmap 3 and wmap 5 results[END_REF] and it is a key property for the performance of cluster finders. It is important for a correct estimate of the cluster masses as well as for the understanding of the evolution and formation of the cluster components [START_REF] Gao | Galaxies and subhaloes in λcdm galaxy clusters[END_REF][START_REF] Reed | Evolution of the density profiles of dark matter haloes[END_REF]. The most known galaxy number density profile model is the Navarro-Frenk-White profile [START_REF] Navarro | The structure of cold dark matter halos[END_REF], which describes clusters with a high central density. It is given by

n(r/R 200 ) = n 0 (cr/R 200 )(cr/R 200 + 1) 2 , ( 2.8) 
with c the concentration, and n 0 the normalization. The relationship between the concentration and the cluster mass can be used as a cosmological probe [START_REF] Aaron D Ludlow | The mass-concentration-redshift relation of cold dark matter haloes[END_REF]. The concentration is also a mass proxy. It has been shown that c ∝ M -β with β(z) [START_REF] Gao | The redshift dependence of the structure of massive λ cold dark matter haloes[END_REF].

Another profile model that has been proven to better fit CDM density profiles than the NFW profile is the Einasto profile [START_REF] Einasto | On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters[END_REF][START_REF] Navarro | The inner structure of λcdm haloes-iii. universality and asymptotic slopes[END_REF][START_REF] Navarro | The diversity and similarity of simulated cold dark matter haloes[END_REF]]

ρ(r) = ρ 0 exp -2 α r r 0 α -1 , ( 2.9) 
with ρ 0 , r 0 and α are the free parameters of the model. The latter depends with the mass and redshift [START_REF] Gao | The redshift dependence of the structure of massive λ cold dark matter haloes[END_REF]. Notice that these profiles describes the mass density profiles, and during our thesis we will use them to describe the galaxy radial density distribution.

Other type of profiles have been proposed through time, depending on the cluster properties. For example, when studying the galaxy rotation curves of clusters, they show a central core [START_REF] Wjg De Blok | High-resolution rotation curves and galaxy mass models from things[END_REF]. A suggested profile for this type of cluster is the Burkert profile [START_REF] Burkert | The structure of dark matter halos in dwarf galaxies[END_REF][START_REF] Arieli | Dark matter profiles in clusters of galaxies: a phenomenological approach[END_REF]. Other typical profiles are the Hernquist [START_REF] Hernquist | Treesph-a unification of sph with the hierarchical tree method[END_REF] (similar to NFW in the inner part) and the isothermal sphere profile [START_REF] Tereasa | Constraining galaxy halo shapes with weak lensing[END_REF][START_REF] Brimioulle | Dark matter halo properties from galaxy-galaxy lensing[END_REF].

The long discussion of how to model properly the galaxy distribution of clusters is still a fundamental topic, for the cluster mass determination, for galaxy formation and cluster formation and for cluster detection. Therefore, during this thesis we will use numerical simulations for modelling the galaxy density distribution within clusters.

Cluster Detection in the Optical/Infrared

To use galaxy clusters as cosmological probes we need a cluster sample, beside their mass estimation. Cluster catalogues are extracted from galaxy catalogues in which a cluster finder has been run. Therefore, the first thing is to construct a galaxy catalogue. Galaxy survey catalogues provide information about sky positions, redshift estimations via photometry or spectroscopy, luminosities, or richness estimations, among others. In the following we describe the main cluster properties that can be inferred from a galaxy catalogue that can impact the performance of a cluster finder.

CHAPTER 2. GALAXY CLUSTERS

Although clusters can be detected in several wavelengths as discussed above, historically the first cluster detections have been made via their galaxy members, in the optical and infrared domain [START_REF] Biviano | From messier to abell: 200 years of science with galaxy clusters[END_REF]. There are several ways of detecting clusters depending on the information available. The first method for identifying and classifyng clusters was developed by Abell in the late 50's [START_REF] George | The distribution of rich clusters of galaxies[END_REF], characterizing them by their richness, i.e., the number of galaxies in a cluster in a magnitude range. He used apparent magnitudes to calculate distances and physical sizes for clusters. Abell created a cluster catalogue with approximately 4000 clusters. The main problem of Abell's cluster catalogue is that it is not complete and it is contaminated. Thus, a proper computation of the selection function is crucial for understanding the properties of the detected clusters. Nowadays clusters are searched for using cluster finders. Here we present a brief review of several cluster detection algorithms by the optical/infrared properties of clusters (for a more detailed review see [START_REF] Biviano | Galaxy systems in the optical and infrared[END_REF]).

Cluster Finders

• When the redshift is not available in the galaxy sample the most used algorithm is the Matched Filter (MF [START_REF] Postman | The palomar distant cluster survey: I. the cluster catalog[END_REF]). This method filters galaxies which do not belong to clusters. However, to construct the filter, one has to assume a form for the galaxy density radial profile and the luminosity function of cluster members. The idea is to perform a maximum likelihood estimator (see Chapter 4 for details). The theoretical model has two contributions, one from the background galaxies and the other from the cluster's galaxies

D(R, m) = b(m) + λΣ(R)φ(m), (2.10) 
with b(m) the background galaxy counts, φ(m) the luminosity function, the projected density radial profile, Σ(R) and the richness λ. The likelihood will depend on the free parameters for the analytical models for Σ(R) and φ(m). After filtering, clusters are detected looking for local maxima in a box of a given size centered in each galaxy. This method has been applied to several surveys like Sloan Digital Sky Survey (SDSS) [START_REF] Bahcall | A merged catalog of clusters of galaxies from early sloan digital sky survey data[END_REF] or others (e.g., [START_REF] Lf Olsen | Eso imaging survey ii. searching for distant clusters of galaxies[END_REF][START_REF] Cs Kochanek | Clusters of galaxies in the local universe[END_REF][START_REF] Jeffrey A Willick | The stanford cluster search: Scope, method, and preliminary results[END_REF]). In these catalogues the completeness reaches 100% for clusters with a mass ∼ 10 14 M ⊙ up to intermediate redshift, decreasing to 50% when increasing the mass and redshift.

• If the redshift information is available in the galaxy catalogue the most used identification algorithm is the Friends-of-Friends (FoF) percolation algorithm [START_REF] Huchra | Groups of galaxies. i-nearby groups[END_REF][START_REF] Mj Geller | Groups of galaxies. iii-the cfa survey[END_REF]. In it, a volume is defined by two sizes, one along the sky plane, and another along the redshift (line of sight), centering the volume in a galaxy, and linking galaxies within this volume. It is crucial for this method to choose a proper size and shape for the volume, having mainly two methods: from observational characteristics of the galaxies [START_REF] Vincent R Eke | Galaxy groups in the 2dfgrs: the group-finding algorithm and the 2pigg catalogue[END_REF] or by using numerical simulations and observations [START_REF] Berlind | Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function[END_REF]. This method has been applied to several surveys: SDSS [START_REF] Manuel | Galaxy groups in the third data release of the sloan digital sky survey[END_REF], the Astrophysics Redshift Survey [START_REF] Ramella | Groups of galaxies in the northern cfa redshift survey[END_REF], among others (e.g., [START_REF] Vincent R Eke | Galaxy groups in the 2dfgrs: the group-finding algorithm and the 2pigg catalogue[END_REF][START_REF] Crook | Groups of galaxies in the two micron all sky redshift survey[END_REF]). In the output cluster catalogue, there are smaller clusters than the ones found with MF, of the order of M ∼ 10 13 M ⊙ , meaning that projected spatial distributions does not allow to find massive cluster as does the 3D ones.

• The Cluster Red Sequence (CRS) [START_REF] Michael | A new method for galaxy cluster detection. i. the algorithm[END_REF], is a method based on another galaxy property:

the color. Color is the difference between two photometric bands of the galaxy spectra, for example V-I. It has been found that cluster member galaxies are redder than the field ones, and also their morphology differs. The idea is to select a cut in the colormagnitude (V-I)-I diagram [START_REF] Michael | A new method for galaxy cluster detection. i. the algorithm[END_REF] to select galaxies whose redshift is close to the mean cluster redshift. In clusters, the oldest and brightest galaxies are placed in the center, which are also the more passive ones in terms of star formation. On the opposite hand, bluer galaxies are found in the outer part. At the same time, and paying attention to the morphology, elliptical galaxies are placed in the inner part on the clusters, while spirals in the outer part. The inner region of a cluster is denser, reason why it is possible to find more elliptical galaxies, that are formed from the accretion of the spirals ones.

The CRS method looks for overdensities when computing the surface density of a galaxy color catalogue. This method is good to reduce galaxy field contamination. For redshifts z > 1, the red sequence become redder and deep IR measurements are necessary. For this reason, spaced-based telescopes play a key role as they can measure in the mid and far infrared (MIR, FIR), wavelengths which are absorbed by the Earth atmosphere. This method has found clusters up to z ∼ 2 using the infrared Spitzer survey [START_REF] Peter Rm Eisenhardt | Clusters of galaxies in the first half of the universe from the irac shallow survey[END_REF][START_REF] Wilson | Clusters of galaxies at 1< z< 2: the spitzer adaptation of the red-sequence cluster survey[END_REF], and other surveys [START_REF] Michael | The red-sequence cluster survey. i. the survey and cluster catalogs for patches rcs 0926+ 37 and rcs 1327+ 29[END_REF][START_REF] Michael D Gladders | Cosmological constraints from the red-sequence cluster survey[END_REF]. Another method using the red sequence for clusters is maxBCG [START_REF] Benjamin P Koester | Maxbcg: A redsequence galaxy cluster finder[END_REF], which uses the brightest cluster galaxy (BCG) for finding the cluster. It looks for a red bright galaxy which lives in an overdense region of galaxies whose color dispersion is small (red sequence). Applied to SDSS [START_REF] Bp Koester | A maxbcg catalog of 13,823 galaxy clusters from the sloan digital sky survey[END_REF], the output was a catalogue with a purity of 90% and completeness of 85% for clusters with mass higher than 10 14 M ⊙ .

• The Adaptative Matched Identifier of Clustered Objects (AMICO) algorithm [START_REF] Bellagamba | Amico: optimized detection of galaxy clusters in photometric surveys[END_REF], is a matched filter based finder. The filter is defined with a cluster model with a combination of a LF and a galaxy number density profile, and the noise with a spatially uniform LF.

A 3D galaxy distribution is convolved with the filter and it generates a 3D amplitude map where each peak represents a detection. It has been applied to the synthetic galaxy catalogue used for the Euclid Collaboration [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] and they have found a completeness of

Clusters as cosmological probes 2.4.1 Cluster Number Counts

The number of clusters as a function of mass and redshift is a major cosmological probe.

As an example, Figure 2 The fact that clusters are formed from small early fluctuations, makes the number of clusters depending mainly on σ 8 , and Ω m [START_REF] Borgani | X-ray clusters of galaxies as tracers of structure in the universe[END_REF]. However, clusters can also be used to constrain [START_REF] Steven W Allen | Cosmological parameters from observations of galaxy clusters[END_REF] the equation of state of dark energy, w DE , and the growth factor, D(z) [START_REF] Bolliet | Dark energy constraints from the thermal Sunyaev-Zeldovich power spectrum[END_REF]. The most challenging issues in cluster cosmology are the estimation of the mass, which is not a direct observable, and the estimation and improvement of the selection function.

The cluster mass can be inferred through several methods, for example: through the Jeans equation [START_REF] Binney | Galaxy dynamics[END_REF][START_REF] Carlberg | The average mass and light profiles of galaxy clusters[END_REF] that uses the number of galaxies and velocity dispersions; through the consider-ation of hydrostatic equilibrium with X-ray or SZ effect (explained below) measurements [START_REF] Ettori | Mass profiles of galaxy clusters from x-ray analysis[END_REF] ; through lensing effects [START_REF] Umetsu | Cluster-galaxy weak lensing[END_REF] (gravitational lensing effect explained in Section 3.2); through scaling relations, where the mass is estimated by establishing a relation with a cluster observable such as, for example, the number of galaxies in a cluster (or richness) [START_REF] Rozo | Improvement of the richness estimates of maxbcg clusters[END_REF].

Other Cluster Comoslogical Probes

There are other ways of constraining cosmological parameters using cluster properties. In the following we review some of them.

• Baryon Fraction: The expected mass fraction of gas for a given cosmology of a halo at a redshift z depends of cosmology through D A (z) 3/2 , and therefore, Ω m and Ω Λ . By combining the observations with the theoretical prediction for a given cosmology it is possible to constrain Ω m and Ω Λ [START_REF] Sw Allen | Improved constraints on dark energy from chandra x-ray observations of the largest relaxed galaxy clusters[END_REF][START_REF] Ettori | The cluster gas mass fraction as a cosmological probe: a revised study[END_REF].

• Cluster Clustering: The clustering of clusters can be used to measure baryonic acoustic oscillation via the correlation function or the power spectrum [START_REF] Estrada | The correlation function of optically selected galaxy clusters in the sloan digital sky survey[END_REF]. This probe by itself is not competitive with the others but combining with the cluster number counts leads to tighter constraints of the cosmological parameters [START_REF] Schuecker | The reflex galaxy cluster survey-vii. and from cluster abundance and large-scale clustering[END_REF] • Nature of Dark Matter: Galaxy clusters have been one of the first cosmological objects from which it was inferred the existence of dark matter [START_REF] Zwicky | Die rotverschiebung von extragalaktischen nebeln[END_REF]. Numerical simulations predict that the dark matter distribution for relaxed clusters (spherical) can be expressed as a Navarro-Frenk-White (NFW) profile [START_REF] Navarro | The structure of cold dark matter halos[END_REF], whose inner density slope is ρ DM ∝ r -1 .

For non-relaxed clusters this does not apply, neither when baryon physics is included, or for high resolution dark matter only simulations [START_REF] Navarro | The diversity and similarity of simulated cold dark matter haloes[END_REF], finding that the inner cluster distribution follows a Einasto profile [START_REF] Einasto | On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters[END_REF][START_REF] Navarro | The inner structure of λcdm haloes-iii. universality and asymptotic slopes[END_REF]. Thus, dark matter has effects in galaxy cluster's internal structure, and they can constraint the nature of dark matter [START_REF] Peter | Dark-matter decays and self-gravitating halos[END_REF].

Current Cosmological Results

In current cosmological constraints the amplitude of the matter power spectrum, σ 8 , and the matter density, Ω m , are degenerate. Thus, they are usually expressed as a combination defined The single vertical solid line represents the weighted mean over the low redshift cosmology, i.e., cluster counts and galaxy clustering. With respect to the CMB cosmology, there is a clear shift in the actual cosmological constraints. This can be due to new physics that changes the evolution of the Universe at high and low redshift or to observational and/or modelling systematics effects.

as S 8 ≡ σ 8 Ω m /0.3.
For example in the case of clusters it could be related to uncertainties in the computation of the halo mass function, bias in the estimate of the cluster mass, misestimation of the selection

Part II

The Euclid Mission In this chapter we present the Euclid mission. We start describing in general the satellite, then we focus on its instruments: the visible instrument, VIS, and the near infrared instrument, NISP. The latter is responsible for photometry and spectroscopy measurements that allow redshift estimations. These estimations will be done in a near infrared wavelength range that is difficult or impossible to access from ground based telescopes. Hence, Euclid is a key mission in the infrared domain. For this reason, we pay special attention to the NISP instrument, more precisely we describe its observing sequence and its infrared detectors. Next, we present the main scientific goals of the mission via the cosmological probes for which Euclid has been optimised.

To conclude, we present the Euclid survey.

The Instruments

Euclid is a Medium Class mission of the European Space Agency's (ESA) Cosmic Vision 2015-2025 programme [START_REF] Laureijs | Euclid definition study report[END_REF]. It is expected to be launched in 2023 on a Soyuz ST-2.1B rocket for its later insertion at the Second Sun-Earth Lagrangian Point, L2, 1.5 million kilometres away from the Earth. It will operate for 6 years. An artistic representation of the satellite is shown in Figure 3.1. The satellite is composed by a 1.2 meters Korsch telescope, with a field of view of 1.25x0.727 deg 2 . The Euclid telescope is composed by three mirrors, the first one will collect the light to send it to the second mirror. The latter has a mechanism with three degrees of freedom that allows focus and tilt corrections. After the second mirror, the light will pass through several optical filters until the third and last mirror, that will direct the light flux to the [START_REF] Laureijs | Euclid definition study report[END_REF].

In this chapter we will detail different aspects from this summary.

the NI-GWA and NI-FWA mechanical system.

• NISP Detector system (NI-DS): It is the focal plane, with a FoV of 0.763x0.722 deg 2 and composed of 16 arrays of near-infrared H2RG detectors with 2kx2k pixels each, with a pixel resolution of 0.3 arcsec. More information about these detectors can be found in the following sections.

H2RG Infrared detectors

The NISP detector system, NI-DS, contains the detector chain or Sensor Chip System (SCS).

There the photons are captured and converted to electrons and to digital signal through the detectors in the Sensor Chip Array (SCA) and the electronics in the Sensor Chip Electronics (SCE).

Both components are connected through the Cold Flex Circuit (CFC), as shown in Figure 3.5.

The Euclid focal plane is composed of 16 H2RG detectors and their associated 16 SIDECARS ASIC.

In the SCA is located the chosen detector technology for Euclid, that are H2RG (Hawaii 2kx2k with Reference Pixels and Guide mode) detectors provided by Teledyne [START_REF] James W Beletic | Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space[END_REF]. These detectors consist of HgCdTe pixel arrays with 2048x2048 pixels (see Figure 3.6), that collects the photons. Each array is composed of 32 sub-arrays of 64x2048 pixels with 32 parallel lecture channels. The Hg 1-x Cd x Te material has a tunable bandgap [START_REF] Hansen | Energy gap versus alloy composition and temperature in hg1-x cd x te[END_REF] that allows measurements in the NIR range for the right element proportion, x. The HgCdTe array is connected to a multiplexer that allows one to choose which pixels we want to read, or which ones we want to reset (set their value to zero). Therefore, the main advantages of the H2RG detectors for Euclid are:

1) high sensitivity in the NIR band (0.9µm < λ < 2µm), and, 2) being able to choose the pixels, and therefore the data, we want to process.

To control the readout electronics (multiplexer) of the SCA, Teledyne has developed an application specific integrated circuit (ASIC), the so-called SIDECAR (System for Image Digitization, Enhancement, Control and Retrieval) ASIC. One of the advantages of these circuits is that their noise is negligible when comparing with the H2RG readout noise, which dominates the system H2RG-SIDECAR. In the NISP context, this system is configured to have 32 channels that allow us to read in parallel the 32 arrays of 64x2048 pixels each one with a final output of an image of all the pixels. The total exposition time per frame is 1.445s where each pixel is measured in parallel. The SCE then is the responsible of the image readout and transfer (or not) to the Data Processing Unit of the NISP (NI-DPU). For each pixel the measured signal is obtained in a non-destructive way, that means we obtain the integrated signal per pixel.

In the next chapter, we are going to study the H2RG readout noise implication in the photon tions as shown in Figure 3.7, before the problems with one of the red grisms. Currently only two red grisms of the four grisms are working in the wide field observations. To our understanding the current whole spectro-photometric cycle is done as follows:

• First three spectrometric modes are used:

1. GWA1 with position at 0 • and FWA open, observing for the duration of 574s.

GWA2 with position at 184

• and FWA open, observing for the duration of 574s.

GWA3 with position at 4

• and FWA open, observing for the duration of 574s.

GWA4 with position at 180

• and FWA open, observing for the duration of 574s.

• Then the three photometric modes:

4

. GWA with open position and FWA with filter Y , observing for the duration of 121s.

5.

GWA with open position and FWA with filter J, observing for the duration of 116s.

6

. GWA with open position and FWA with filter H, observing for the duration of 81s.

• For each spectro-photometric cycle, a region of 0.54 deg 2 is covered. Then the satellite is pointing to another sky region and a new cycle is started. During this time the last measure is done:

7. FWA in close position. This is done for account on the sky background noise.

Main Scientific Goals

The Euclid satellite is mainly devoted to cosmology and intends to unveil the nature of Dark Energy, and Dark Matter. The goal is to measure the 3-dimensional distribution of matter of the Universe, for tracking the formation of structures, and having a better understanding of the expansion of the Universe and its acceleration. Euclid will focus mainly in the redshift range 0 < z < 2 where the Large Scale Structures are formed. For this purpose, there are two primary cosmological probes that Euclid has been optimised for, the Weak Gravitational Lensing (WL)

and Baryonic Acoustic Oscillations (BAO), and other secondary ones, such as Galaxy Clusters.

Weak Gravitational Lensing

The path of the light that travels through the Universe can deviate due to the gravitation effects of massive objects, a phenomenon known as Gravitational Lensing. This phenomenon induces an effect of distortion in the shapes and size of the galaxies, known as cosmic shear [START_REF] Kilbinger | Cosmology with cosmic shear observations: a review[END_REF],

which has been first proved in 2000 by different groups simultaneously [START_REF] David J Bacon | Detection of weak gravitational lensing by large-scale structure[END_REF][START_REF] Kaiser | Large-scale cosmic shear measurements[END_REF][START_REF] Van Waerbeke | Detection of correlated galaxy ellipticities on cfht data: first evidence for gravitational lensing by large-scale structures[END_REF][START_REF] David M Wittman | Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales[END_REF]. The cosmic shear is related to the gravitational field of large-scale structures, thus to their formation and evolution through time. Therefore, also to the cosmological ΛCDM model, and in particular, to the matter density and the amplitude of the matter fluctuations, Ω M and σ 8 , respectively.

In general this effect is small, of the order of 1%, thus the importance of acquiring high quality images for this small distortion is essential. For this Euclid will detect billions of images of expressed as follows:

ψ(r) =< δ(x)δ(x + r) >, ( 3.1) 
where δ is the density contrast.

The 2PCF gives us the space correlation between two galaxies one at position, x, and the other displaced a distance, r. As an example, in Figure 3.9 from [START_REF] Daniel J Eisenstein | Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies[END_REF], we can see the two point correlation function (2PCF) over the comoving distance 1 . The magenta line shows a pure CDM model without BAO, showing a significant bias. This Figure tell us that the distribution of galaxies is correlated, then BAO are related to the space distribution of galaxies through time, and their position give us valuable information. These acoustic perturbations are small, affecting mainly large-scale physics. From the 2PCF we can see that the computation of the distance between objects is crucial, and therefore, the estimation of the position of each one.

Since the signal is small, high accuracy in the determination of the distance is fundamental, for that Euclid will estimate galaxy redshifts between 0.7 < z < 2.1 perfomig spectroscopy. The BAO as cosmological probe is then mainly related to the expansion of the Universe (Hubble constance h), the matter density Ω m h 2 and the baryon density Ω b h 2 [START_REF] Aghanim | Planck 2018 results-i. overview and the cosmological legacy of planck[END_REF].

Galaxy Clusters

Euclid will be particularly well-adapted to detect cluster of galaxies. The number of clusters as a function of mass and redshift as their spatial distribution constitute major cosmological 1. Comoving distances are defined as the physical parameter divided by the scale factor a(t), hence comoving distances are constant in time in an expanding Universe. ∆Ω m = 0.0011 and with respect to dark energy, ∆ω 0 = 0.03 and ∆ω a = 0.2. For Ω m and σ 8 we expect an improvement in a factor of five in the uncertainties with respect to the Planck 2018 combined CMB results [4]. We expect an improvement of a factor of nine and three for ω 0 and ω a , respectively. The optical/infrared survey KiDS, has detected 7899 clusters up to redshift 0.8 for a threshold SNR > 3.5 [START_REF] Maturi | AMICO galaxy clusters in KiDS-DR3: sample properties and selection function[END_REF]. In compare with future surveys in the optical/infrared, LSST will detect about 10 5 clusters up to redshift 1.4, and it will help to constraint the cosmological parameters with a similar precision to Euclid [START_REF] Salvati | Impact of systematics on cosmological parameters from future galaxy cluster surveys[END_REF]. Thus, Euclid will represent a key experiment for cluster cosmology and cluster physics in the next decades.

Survey

After its launch, Euclid will orbit the L2 Sun-Earth lagrangian point during 6 years while performing its survey. It will observe billions of galaxies mainly in the range 0 < z < 2. For these redshifts, 30% of the light is invisible from ground, and for the remaining light, bright night sky lines dominate the background. Therefore, Euclid provides a pioneering contribution thanks to its photometry and spectroscopy in the NIR wavelength for this redshift range.

The coverage by the Euclid survey is illustrated in galactic coordinates map in the upper part of Figure 3.12. The center of the map corresponds to the Milky Way, this galactic plane region is avoided as galactic emission will contaminate distant galaxies. Moreover, the blue regions are the wide survey that covers 15000 deg 2 up to a magnitude of 24.5 for VIS and 24 for NISP. In In this chapter we are going to introduce the implication of correlations in the readout noise of the H2RG detectors, presented in Section 3.1.2, when the NISP instrument performs photon flux measurements in flight.

Readout Modes

As explained in Section 3.1.2 the infrared detectors used for Euclid perform non-destructive measurements of the photon flux in a pixel, for every pixel. We are going to describe briefly the different methods for the readout mode of the detector.

Up the Ramp (UTR)

In this mode the data is acquired in a non-destructive way, that means that the signal is accumulated through the different measurements. The acquisition starts by a reset that removes any previously accumulated signal. Then, the image from the detectors is read and transferred to acquisition system in a regular time steps. In Figure 4.1, the red lines are the reset values, where the signal is set to zero, and the blue ones are where the signal is acquired. Every single measure, represented in the figure by a vertical coloured line, is called frame. We define t f rame as the acquisition time for a frame. The total exposure time is expressed as

t expo = M • t f rame

Flux estimation in MACC readout mode

Due to on-board CPU limitations, the flux is determine from the slope from a linear fit to the ramps of the MACC readout mode. As a consequence to obtain an accurate flux estimate it is necessary to have an accurate description of the photon and readout noise. In the current Euclid baseline both the readout noise is described by a white noise approximation [START_REF] Fowler | Demonstration of an algorithm for read-noise reduction in infrared arrays[END_REF][START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF].

The main properties of the readout noise assuming white noise are characterized during ground calibration and used in-flight. However, it has been found that individual H2RGs may present some level of correlated noise in the form of (1/f ) α -like noise [START_REF] Smadja | Frequency analysis of the noise in the fowler(n) sampling of a h2rg(2k ×2k) near-ir detector[END_REF][START_REF] Kubik | Predictive model of the temporal noise correlations in hgcdte array[END_REF]. Such noise correlation might bias Euclid in-flight flux estimates.

Here we concentrate on the MACC readout mode, used in-flight. Following [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF] we estimate the total flux from the group differences, ∆G k = G k+1 -G k since the uncertainties in the process are lower than the estimation from the single groups. For one group G 1 , the signal of consecutive frames is given by:

S (1) 1 = ρ (1) 1 + f 0 S (1) 2 = ρ (1) 2 + f 0 + f (1) 1 S (1) 3 = ρ (1) 3 + f 0 + f (1) 1 + f (1) 2 ... S (1) m = ρ (1) m + f 0 + ... + f (1) m-1 (4.1)
where S

(1) m represents the total signal at the last frame of the first group, f m-1 is the photon flux signal that is accumulating over all the group frames 1 , and ρ [START_REF] Einstein | The foundation of the general theory of relativity.[first published in 1916 as die grundlage der allgemeinen relativitätstheorie[END_REF] m is the readout noise of the last frame. In the second group we have:

S (2) 1 = ρ (2) 1 + f 0 + ... + f (1) m-1 + D (1) S (2) 2 = ρ (2) 2 + f 0 + ... + f (1) m-1 + D (1) + f (2) 1 S (2) 3 = ρ (2) 3 + f 0 + ... + f (1) m-1 + D (1) + f (2) 1 + f (2) 2 ... S (2) m = ρ (2) m + f 0 + ... + f (1) m-1 + D (1) + f (2) 1 + ... + f (2) m-1 (4.2)
where a new term is added, D (1) , representing the non-acquired accumulated signal of the drops between the groups G 1 and G 2 . Accounting for signal and readout noise contributions, G k , the
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averaged measured signal for group k, is given by:

G k = 1 m m i=1 S (k) i = 1 m m i=1 ρ (k) i + 1 m m-1 i=1 (m -i)f (k) i + f 0 + k-1 j=1 m-1 i=1 f (j) i + D (j) , ( 4.3) 
and then the signal for the group differences is:

G k+1 -G k = D (k) + 1 m m-1 i=1 if (k) i + (m -i)f (k+1) i + 1 m m i=1 ρ (k+1) i -ρ (k) i . (4.4)

Maximum Likelihood Estimator

Using the group differences, we can then derive the total flux, g, by a linear fit. In [START_REF] Rachel | Optimal cosmic-ray detection for nondestructive read ramps[END_REF] was noticed that the slope estimation by the typical Least Squares Fitting (LSF) fit method with equally weighted errors can be improved when considering correlated and uncorrelated errors.

For that reason the method we will use from now on for the estimation of the accumulated flux is the Maximum Likelihood Estimator.

Let's consider a random variable x, that it is associated to a measurement as a way of describe it, that can take different possible numerical values x 1 , x 2 , x 3 ..., corresponding to different possible outcomes. The corresponding probabilities P (x 1 ), P (x 2 ), P (x 3 )... form a probability distribution, and P (x) is called the Probability Density Function (PDF). Now, we consider a probability function that depends on a parameter a (a particular realization) and the set of N independent random variables x, f a (x i ) = f (x i ; a). The full PDF is given by:

f a (x) = N i=i f a (x i ), (4.5) 
and the function that actually depends on the parameter a is called the Likelihood Function [START_REF] Protassov | Analyse statistique de données expérimentales[END_REF], L(a). As an example, equation 4.6, defines the probability of the outcome value x 1 to be observed when the true value of the parameter is a. This parameter a, can be multidimensional.

L(a|x 1 ) = f a (x = x 1 ). (4.6)
Under the hypothesis of the parameter a being close to the true value, we expect a maximum FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT probability of finding it, then the likelihood function should be maximal for this parameter:

∂ ∂a L(a) = 0, (4.7) 
and this condition is used to find the parameter, a. Let's consider now the case where the probability function is a Gaussian distribution, and we want to estimate its mean value, µ. For practical reasons we consider the logarithmic of the likelihood. Then, the Gaussian PDF for a variable x i (supposing that the PDF is the same for every x i , like the uncertainties, σ), is given by:

f (x i ) = 1 √ 2πσ exp - (x i -µ) 2 2σ 2 , ( 4.8) 
and the logarithmical likelihood of the whole set of random variables is expressed as:

L(µ) = - 1 2 N i=1 (x i -µ) 2 σ 2 + N ln 1 √ 2πσ . ( 4.9) 
From this expression we can define the so known chi-square, χ 2 , function: As explained before, for estimating the mean value, µ, the derivative of the likelihood should be ∂ ∂µ L(µ) = 0. Now, let's consider the 2D Gaussian PDF for two set of random variables, x, y, each one with its uncertainties, σ x , σ y , and mean values, µ x ,µ y , given by:

χ 2 = N i=1 (x i -µ) 2 σ 2 . ( 4 
f (x, y) = f x •f y = 1 2π 1 -ρ 2 σ x σ y exp - 1 2 1 1 -ρ 2 (x -µ x ) 2 σ 2 x + (y -µ y ) 2 σ 2 y + 2ρ (x -µ x )(y -µ y ) σ x σ y . (4.11)
Another way of writing this expression is using the error matrix, M, that contains the information about the uncertainties, σ x and σ y and the discrepancy vector, X. This matrices can be written as follows:

M = σ 2 x ρσ x σ y ρσ y σ x σ 2 y .
(4.12)
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X = x -µ x y -µ y . (4.13)
The final 2D Gaussian PDF can be written as:

f (x, y) = 1 2π|M | 1/2 exp - 1 2 X T M -1 X = 1 2π|M | 1/2 exp - 1 2 χ 2 , ( 4.14) 
where χ 2 = X T M -1 X and |M| is the determinant of the error matrix. This matrix is also called the covariance matrix and it can be written in a general way as:

M = cov(x, x) cov(x, y) cov(y, x) cov(y, y) , ( 4.15) 
defining the covariance cov(x, y) as the expectation value between the two random variables (x, y), and given by:

cov(x, y) = E[(x -µ x )(y -µ y )] =< x, y >, ( 4.16) 
µ x being the expectation value of the variable x, also written as E[x]. This matrix give us information about the correlation between these two random variables. Now we can generalize to multi-dimensional Gaussian distribution in matrix notation as follows:

f (x 1 , x 2 , ..., x N ) = 1 2π|M | 1/2 exp - 1 2 X T M -1 X , ( 4.17) 
being the covariance matrix:

M =        cov(x 1 , x 1 ) cov(x 1 , x 2 ) ... cov(x 1 , x N ) cov(x 2 , x 1 ) cov(x 2 , x 2 ) ... cov(x 2 , x N ) ... ... ... ... cov(x N , x 1 ) cov(x N , x 2 ) ... cov(x N , x N )        , ( 4.18) 
or

M =        < x 1 , x 1 > < x 1 , x 2 > ... < x 1 , x N > < x 2 , x 1 > < x 2 , x 2 > ... < x 2 , x N > ... ... ... ... < x N , x 1 > < x N , x 2 > ... < x N , x N >        . (4.19)
Coming back to the flux estimation for group differences explained in section 4.2, we want to FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT fit the slope of the MACC readout mode signal, given by ∆G, to estimate the flux g, using the previous maximum likelihood estimator. We use the following Gaussian approximation for the likelihood function:

L = 1 2π|M | exp - 1 2 (∆G -g)M -1 (∆G -g) T , ( 4.20) 
where ∆G = {∆G k , k = 1, n -1} is a vector gathering all group differences. M is the covariance matrix for the group differences, and |M | is its determinant. Next step is to determine the covariance matrix for the group differences in order to be able to use the Maximum Likelihood Estimator.

Analytical Covariance Matrix

As explained in the sections 4.1 and 4.2, the estimation of the flux is coming from the fit of the slope of the MACC readout mode. This fit will be done by using the so called Maximum Likelihood Estimator, but previously the covariance matrix should be computed. We discuss here the computation of the group noise covariance matrix, C, and the group difference noise covariance matrix, D, in the case of white readout noise (see [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF]) and in the case of correlated readout noise. With respect to the photon noise, the flux integrated over a frame is Poisson distributed and stochastically independent between frames. This applies both to fluxes of frames within a group and within a drop. We can then write the covariance as:

< δf k i δf l j > = f δ ij δ kl , < δD k δD l > = D δ kl .
(4.21)

White Noise Case

The white readout noise is assumed to be Gaussian distributed with a constant width σ R and zero mean as explained in [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF]. Thus, we can write:

< δρ k i δρ l j >= σ R δ ij δ kl . (4.22)
Using the definition of a group in 4.3, the stochastic fluctuation that is associated are:

δG k = 1 m m i=1 δρ (k) i + 1 m m-1 i=1 (m -i)δf (k) i + δf 0 + k-1 j=1 m-1 i=1 δf (j) i + k-1 j=1 δD (j) . (4.23)
Then, the group noise covariance matrix using the definition of covariance matrix 4.19 is given
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by:

C white kk =< δG k δG k > C white kl =< δG k δG l >, ( 4.24) 
where C white kk and C white kl are the white noise approximation group noise covariance matrices for the diagonal and off-diagonal terms, respectively, and δG k the stochastic fluctuations of the k group. From the group fluctuations we obtain:

C kk =< δG k δG k >=   k-1 p=1 m-1 i=1 δf (p) i + k-1 p=1 δD (p) + 1 m m i=1 δρ (k) i + 1 m m-1 i=1 (m -i)δf (k) i + δf 0   ×   k-1 q=1 m-1 j=1 δf (q) j + k-1 q=1 δD (q) + 1 m m j=1 δρ (k) j + 1 m m-1 j=1 (m -j)δf (k) j + δf 0   (4.25) C kl =< δG k δG l >=   k-1 p=1 m-1 i=1 δf (p) i + k-1 p=1 δD (p) + 1 m m i=1 δρ (k) i + 1 m m-1 i=1 (m -i)δf (k) i + δf 0   ×   l-1 q=1 m-1 j=1 δf (q) j + l-1 q=1 δD (q) + 1 m m j=1 δρ (l) j + 1 m m-1 j=1 (m -j)δf (l) j + δf 0   (4.26)
That after some algebra gives [see 168, for details]:

C white kk = (k -1)D + (k -1)(m -1)f + f (m + 1)(2m + 1) 6m + σ 2 R m , C white kl = (k -1)D + (k -1)(m -1)f + f (m + 1) 2 . (4.27)
We can repeat this process to compute the group differences covariance matrices:

δG k+1 -δG k = δD (k) + 1 m m-1 i=1 iδf (k) i + (m -i)δf (k+1) i + 1 m m i=1 δρ (k+1) i -δρ (k) i . (4.28)
and so the group difference noise covariance matrix, D, is given by: the diagonal and off-diagonal terms, respectively. We repeat the same process as for the group noise covariance matrix (further details in Appendix A of [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF]), and we obtain:

D white kk =< δ(G k+1 -G k )δ(G k+1 -G k ) > D white kl =< δ(G k+1 -G k )δ(G l+1 -G l ) >, ( 4 
D white kk = D + f (m -1)(2m -1) 3m + 2σ R m , D white kl = f 6m (m 2 -1)δ (k+1)l - σ 2 R m .
(4.30)

Correlated Readout Noise Case

In this section we consider the case of a correlated readout noise for the covariance matrices computation. The correlated readout noise is assumed to be Gaussian distributed with a (1/f ) αlike spectrum (that will be explained in Section 4.4) in Fourier domain as in [START_REF] Kubik | Predictive model of the temporal noise correlations in hgcdte array[END_REF]. In the time domain this is equivalent to Gaussian distributed noise described by a correlation function, since the correlation function is the inverse Fourier transform of the spectrum, of the form:

C [|δ t |],
where δ t is the time interval between two given frames. For computing this time interval, let's suppose that we have group G l , in which the notation of each frame is j. If we have a number of frames per group, m, and a number of drops d, the total exposure time at a frame, j of the group G l , is t exp = ((l -1) * (m + d) + j) * t f rame , where t f rame is the frame integration time. If now we have a group G k , with the frames denoted as i, the total exposure time for a frame of this group is t exp = ((k -1) * (m + d) + i) * t f rame . Hence, the time interval for two frames, j and i, belonging to the groups l and k, respectively, would be:

δ t = [(l -k) * (m + d) + (j -i)] * t f rame .
Therefore, the covariance for the correlated readout noise can be written as: 

< δρ k i δρ l j >= C[|(l -k) * (m + d) + (j -i)| * t f rame ]. ( 4 
C kk = (k -1) D + (k -1)(m -1)f + f (m + 1)(2m + 1) 6m + 1 m 2 mC(0) + 2 m-1 i=1 (m -i)C(i t frame ) , (4.32)
for the diagonal terms and

C kl = (k -1) D + (k -1)(m -1)f + f (m + 1) 2 + 1 m C ((l -k)(m + d) t frame ) + 1 m 2 m i=1 m j=1,j =i C (|(l -k)(m + d) + (j -i)| t frame ) , (4.33) 
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for the off-diagonal ones. By constrast to the white noise case described by equations 4.27, we find in the latter expression a contribution from the readout noise.

We also derive the group difference covariance matrix (see Appendix A for more details).

The diagonal terms are given by:

D kk = D + (m -1)(2m -1) 3m f + 2 m 2 m i=1 m j=1 C (|j -i| t frame ) - 1 m 2 m i=1 m j=1 C (|j -i -m -d| t frame ) - 1 m 2 m i=1 m j=1 C (|j -i + m + d| t frame ) , (4.34)
and the off-diagonal terms are:

D kl = m 2 -1 6m f δ l(k+1) + 2 m 2 m i=1 m j=1 C (|(l -k)(m + d) + (j -i)| t frame ) - 1 m 2 m i=1 m j=1 C (|(l -k -1)(m + d) + (j -i)| t frame ) - 1 m 2 m i=1 m j=1 C (|(l -k + 1)(m + d) + (j -i)| t frame ) , (4.35) 
for k < l. By contrast to the white noise readout noise case equations 4.30, we observe that the contribution of the readout noise to the group difference covariance is not constant in the diagonal terms and it adds extra correlation in the off-diagonal ones. In the diagonal case, comparing with the equation 4.30, the first two terms of the equation remain the same since it is the Poisson noise contribution. The main difference is the last terms related to the readout noise. As we can see, the function correlation replace the constant term proportional to σ R which comes from the white noise consideration. For the off-diagonal the Poisson noise only affects to the consecutive groups in the white noise case, whereas the correlation related to the readout noise can affect to frames belonging to non-consecutive groups. Now the covariance matrices are computed, the next step is to characterize the previously mentioned (1/f ) α -like readout noise.

Characterization of the readout noise of the NISP detectors

In this section we use ground calibration data to characterize the readout noise of the NISP detectors in terms of correlated (1/f ) α -like noise.

Readout noise measurements

The readout noise of infrared detectors can be characterized from long exposure ramps in dark conditions. Here, we use dark test data obtained during the Euclid NISP detector characterization performed at the CPPM laboratory. We focus on one of the sixteen NISP H2RG detectors, which was cooled down to a nominal temperature of 85 K. The testing facility was designed to achieve best possible dark conditions and special care was taken to achieve expected in-flight readout noise.

For proper dark measurement, long integration UTR ramps were acquired, typically, ramps of 8000 frames with a total exposure time of 3.21 hours corresponding to a frame exposure time of t f = 1.445 s. For each frame and for each of the 2040x2040 photosensitive pixels we use the reference pixels to remove correlations in the readout noise induced by background variations [START_REF] Moseley | Reducing the read noise of H2RG detector arrays: eliminating correlated noise with efficient use of reference signals[END_REF][START_REF] Rauscher | Reducing the Read Noise of the James Webb Near Infrared Spectrograph by Improved Reference Sampling & Subtraction (IRS-square)[END_REF]. First, we remove the first and last 4 pixels in a group of 9 lines. Second, we remove the average of the first and last 64x4 pixels contained in each channel. Furthermore, we compute the dark for each ramp using the Fowler-M algorithm [START_REF] Fowler | Demonstration of an algorithm for read-noise reduction in infrared arrays[END_REF], for which the slope of the ramp (in this case the dark contribution) is computed from the difference of the average of blocks of frames at the end and the beginning of the ramp, as explained in Section 4.1.3. In our case we have considered blocks of 32 frames to reduce the uncertainties in the dark measurements.

Every ramp is corrected for the dark by subtracting the median dark value of all of the pixels in a given detector. For the data used in this section the median dark for all pixels in the array was about 0.006 ± 0.002 e -/s.

The left panel of Figure 4.5 shows the measured raw data for one of these ramps for one of the inner pixels in the array after correcting for the reference pixels (raw data, red line) and after subtraction of the dark contribution (dark corrected, blue line). As the dark is very low, the contribution of photon noise is negligible for the ramp. Then, after dark subtraction, we are left with the contribution of the readout noise. We have used a conversion gain factor of f e = 0.5 ADU/e -. We can observe in the figure that the readout noise is not fully white. This can be better seen in the right panel of the figure, where we show the power spectrum of the dark corrected data as a function of the time frequency in Hz. FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT second fit are stored for further analysis. Using Monte Carlo simulations, we have observed that this two-step procedure leads to non biased estimates of the best-fit parameters for the(1/f ) αlike model. In Figure 4.5 we show the best-fit (1/f ) α -like model (black line) to the noise power spectrum (blue line) obtained from the second fit. The best fit-parameters and their uncertainties for this pixel are σ = 20.50 ± 0.23 e -/ √ Hz, f knee = 0.0055 ± 0.0008 Hz and α = 1.17 ± 0.15. We observe in the figure that the best-fit model is consistent with the data with a reduced χ 2 of 1.57.

Readout noise properties

We present in the left column of Figure 4.6 four maps representing the best-fit parameters and the reduced chi-square, χ 2 /N d.o.f. values for all the 2040x2040 photosensitive pixels for one of the ramps of one of the tested detectors. The white dots in the maps correspond to either hot pixels (pixels that are saturated) or pixels for which we obtain a bad fit to the data. These pixels represent less than 0.1% of the total pixels and are uniformly distributed in the maps.

We can observe in the maps vertical bands which are related to the 32 readout channels in the detector array, for which we expect some correlations in the noise properties. We can also isolate some particular regions as the one in the f knee map for pixels around (2000,1400), which are also found when computing other characteristic quantities of the detectors as for instance the CDS noise, computed as the standard deviation of the CDS signal, explained in Section 4.1. 

Verification via simulations

In order to validate our analytical expressions for the group and group difference covariance matrices in the case of correlated readout noise we have performed Monte Carlo simulations.

We have generated a large number of realizations of fake NISP readout noise using the (1/f ) αlike model discussed in Section 4.4. The correlated readout noise simulations are obtained via three steps: 1) we produce realizations of Gaussian white noise in real space, 2) we take the Fourier transform of those and multiply each fourier component by the square root of the value of the power spectrum model at the same frequency, and 3) we compute the inverse Fourier transform of the modified Fourier components of the readout noise simulation. From these simulations of readout noise we have constructed fake NISP ramps by adding a cumulative flux contribution as well as the corresponding photon noise assuming a Poisson distribution. We assume M ACC [START_REF] Starobinsky | A new type of isotropic cosmological models without singularity[END_REF][START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF][START_REF] Boggess | The cobe mission-its design and performance two years after launch[END_REF] readout mode as expected for the Euclid spectrospy in-flight operations, also called, NISP-S mode. As an example, we present in Figure 4.7 the group difference covariance matrix as obtained from equations 4.34 and 4.35 (left panel), and from Monte Carlo simulations (right panel) for the values of σ, f knee , α found in Section 4.4 for the NISP detector data. The incident flux is set to 1e -/s. We observe very good agreement between the two estimates. We have repeated this comparison for various values of the parameters σ , f knee and α, and for different input fluxes, and obtained the same results. We therefore validate our analytical expressions.

White and Correlated readout noise covariance matrices

In this chapter, we are interested in studying how using a white noise approximation in the case of a correlated readout noise can impact the on-board estimation of the total flux measured by the Euclid detectors. Therefore, it is interesting to compare the covariance matrix one would obtain for the same correlated input noise in the white and correlated readout noise approximations discussed in Section 4.3.2.

The correlated readout noise is obtained via Monte Carlo simulations. We generate mock timelines using the (1/f ) α -like model discussed above with the set of averaged best-fit parameters presented in Section 4.4. The covariance matrix for the correlated noise approximation is computed as described in Section 4.3.2. For the white noise approximation we start by computing the effective rms of the readout noise. In practice we deduce it from the CDS noise (Section 4.1.2) estimated from the simulated timelines of correlated readout noise and impose σ white = CDS √ 2 . The covariance matrix in the white noise approximation is computed following the theoretical equations 4.30. In terms of the signal contribution we have considered two extreme cases: 1) FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT instrument, NISP-S and NISP-P, respectively.

Spectroscopic NISP Mode, NISP-S

All the previous section showed results for the M ACC [START_REF] Starobinsky | A new type of isotropic cosmological models without singularity[END_REF][START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF][START_REF] Boggess | The cobe mission-its design and performance two years after launch[END_REF] configuration, being this one the NISP-S mode. We present in Figure 4.10 the relative bias Fout-F in F in in percent for both the CNA (red line and dots) and the WNA (green line and dots) cases as a function of the background flux F in . Uncertainties in the measured bias are given by the filled red (CNA) and green (WNA) areas as computed from the Monte Carlo simulations.

For low background flux values (below 1e -/s) we find that the maximum bias for CNA is under 1% and about four times smaller than the WNA one. For fluxes above 1e -/s the bias in both cases are equivalent and below 0.1 %. For sky observations we expect a background flux of about 1-2e -/s, in the region where the bias is expected to be small. However, we have observed using the dispersion over the set of Monte Carlo simulations that the WNA systematically underestimates the uncertainties by a factor ranging from 2 to 5. However for CNA the dispersion on the simulations and the measured uncertainties are consistent.

Photometric NISP Mode, NISP-P

For the NISP photometric mode, NISP-P, the configuration for the multiple accumulative readout mode is M ACC (4,[START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF]4). Repeting all the process explained before in all the previous sections, we present in Figure 4.11 the relative bias Fout-F in F in in percent for both the CNA (red line and dots) and the WNA (green line and dots) cases as a function of the background flux F in . Uncertainties in the measured bias are given by the filled red (CNA) and green (WNA) areas as computed from the Monte Carlo simulations.

For fluxes above 1e -/s the bias in both cases are equivalent and below 0.5 %. For sky observations we expect a background flux of about 1 -2e -/s, in the region where the bias is expected to be small. However, we have observed using the dispersion over the set of Monte Carlo simulations that the WNA systematically underestimates the uncertainties by a factor ranging from 2 to 5. However for CNA the dispersion on the simulations and the measured uncertainties are consistent. For low background flux values (below 1e -/s) we find that the maximum bias for CNA is not possible to compute. This can be explained with the Nyquist theorem, that says that for a high sampling rate, the relationship between the frequency and the time is given by: t = 1/2f . If we consider that the knee frequency for the NISP detectors readout noise is f knee = 0.0052 +0.0018 -0.0013 Hz, the associated time will be t = 100s. That means that, the correlation contribution (that is below the knee frequency as we can see in the power spectrum of the right panel of Figure 4.5) will be associated with times higher than 100s. For the photometric bands Y, J, H for which the observation times are 121s, 116s and 81s, respectively (see Figure 3.7), the correlated noise is negligible (since its associated time is close or below t = 100s), then we are dominated by white noise. Therefore, for the readout noise estimation in the NISP-P mode, the white noise approximation has to be considered.

Conclusion

Infrared instruments, and in particular the NISP, acquire data using the MACC readout mode, which consists of a series of non-destructive exposures averaged into groups that form a ramp. The input flux in the detectors can then be obtained from the slope of the ramp using maximum likehood estimators, which generally assume white readout noise [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF][START_REF] Kubik | A New Signal Estimator from the NIR Detectors of the Euclid Mission[END_REF]. Here, we have extended these estimators to the case of correlated readout noise. Analytical expressions for the group and group difference covariance matrices are presented for the case of (1/f ) α -like correlated readout noise. These have been validated via Monte Carlo simulations.

In this chapter we have studied the readout noise associated to the NISP detectors taking advantage of long exposure (few hours) performed during laboratory dark tests at the CPPM cryogenic facilities. We have found that the NISP readout noise is correlated and can be well characterized by (1/f ) α -like model with a typical knee frequency of f knee = 0.0052 +0.0018 -0.0013 Hz and a low frequency component with slope α = 1.24 +0. 26 -0.21 . From this we conclude that the readout noise of the NISP detectors has non-negligible correlation at the typical in-flight NISP exposure time scales (574 seconds for spectroscopy mode) Finally, we have performed Monte Carlo simulations of the in-flight expected NISP detector signal and noise, including a realistic background signal and correlated readout noise as measured on the ground calibration tests. From these simulations we have been able to estimate the expected bias in the on-board flux estimates during in-flight operations for which white readout noise is assumed. We find that for the spectroscopic mode of the NISP instrument, NISP-S, low background the flux bias can be up to four times larger than when accounting for the correlation in the readout noise. Nevertheless, this bias is negligible for typical sky background signals. Therefore, we expect no significant bias in the on-board fluxes measured by Euclid . On the other hand, for the photometric mode, NISP-P, the white noise approximation is the one that should be taking into account since the exposure time of the NISP-P mode corresponds to a frequency domain where the power spectrum is dominated by a white noise. In this chapter we present the main optical cluster properties from the Euclid Galaxy Mock catalogue. Our goal is to reproduce and extend the analysis done in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] with some variations, since our final goal is different. Our final goal is to construct analytically a cluster catalogue from observational cluster properties to test cluster finder properties as discuss in In this chapter, first, we present how the Euclid Galaxy Mock and Euclid Cluster's Galaxy Mock catalogue are constructed. We present some cluster properties such as: cluster distribution in mass and redshift, number of cluster galaxy members as a function of cluster mass, the radial distribution of galaxies within the cluster and the distribution of galaxies as a function of their magnitude (known as Luminosity Function). Next, as proposed in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], we fit analytically the galaxy density radial distribution and the luminosity function with a Navarro-Frenk-White (NFW) profile and a Schechter model, respectively.

Part III

Towards the Selection Function for the Euclid Survey

Euclid Mock Catalogue

Construction of the Euclid Mock Catalogue

The Euclid Mock catalogue used for this thesis is extracted from Ascaso et al. [START_REF] Ascaso | Apples to apples a2-i. realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys[END_REF]. It was based on Merson et al. [START_REF] Alexander I Merson | Lightcone mock catalogues from semi-analytic models of galaxy formation-i. construction and application to the bzk colour selection[END_REF], which combines a GALFORM [START_REF] Cole | Hierarchical galaxy formation[END_REF] semi-analytical model (SAM)

with N-body simulations. Ascaso et al. [START_REF] Ascaso | Apples to apples a2-i. realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys[END_REF] includes a reprocess of the galaxy catalog to limit the Y,J,H photometry to magnitudes up to 24 at 5σ, and re-estimate photometric redshifts using this photometry cut, for reproducing Euclid-like data. In the following we explain how Merson et al. [START_REF] Alexander I Merson | Lightcone mock catalogues from semi-analytic models of galaxy formation-i. construction and application to the bzk colour selection[END_REF] construct the simulations, for which Ascaso et al. [START_REF] Ascaso | Apples to apples a2-i. realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys[END_REF] produced photometry and photometric redshift estimates. The Merson et al. [START_REF] Alexander I Merson | Lightcone mock catalogues from semi-analytic models of galaxy formation-i. construction and application to the bzk colour selection[END_REF] simulations are constructed from a N-body dark-matter-only simulations, called Millenium [START_REF] Volker | Simulations of the formation, evolution and clustering of galaxies and quasars[END_REF], for which only gravitation is accounted for the track of dark matter particles. In particular, in the Millenium simulation, there are 2160 3 mass particles tracked from z = 127 until today in a cubic region of 500 h -1 Mpc size per side.

The resolution of the dark mater haloes takes into account a detection threshold of 20 particles, meaning that the lowest available mass resolution for a halo is 1.7 x 10 10 h -1 M ⊙ . The N-body simulations were populated with galaxies following a GALFORM [START_REF] Cole | Hierarchical galaxy formation[END_REF] semi-analytical model (in particular the version of Bower et al. [START_REF] Bower | Breaking the hierarchy of galaxy formation[END_REF]). The semi-analytical approach incorporates galaxy properties to the N-body simulations based on theoretical and observational studies that allow one to parameterized analytical models. Some of these galaxy properties are: star formation and feedback, stellar population, chemical evolution, dust extinction, halo velocity rotation, halo density profile, etc. These properties are matched with observational data to improve the SAM simulations, for example: metallicities, galaxy colours, luminosity functions, gas fractions, and mass-to-light ratios.

The Euclid galaxy mock catalogue that we will use for this thesis has been constructed by the Euclid Cluster Finder Challenge (CFC) group as explained in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], extracting from the original Ascaso et al. [START_REF] Ascaso | Apples to apples a2-i. realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys[END_REF] galaxy mock catalogue, a portion of 300 deg 2 . This catalogue includes photometric redshifts, galaxy magnitudes and galaxy positions.

One main disadvantage of this approach using SAM simulations is that some physical processes that govern galaxy formation are not still well understood. Thus, the catalogue may not be realistic. However, this approach allows us to simulate large regions of the Universe with much less computational cost than simulations that include baryonic physics in the structure formation, called hydrodynamical simulations [START_REF] Leon | A numerical approach to the testing of the fission hypothesis[END_REF] (see Chapter 1 and Chapter 8).

The Cluster's Galaxy Mock Catalogue

From the galaxy catalogue, a cluster mock catalogue is created by identifying group of galaxies using the Dhalo algorithm defined in Jiang et al. [START_REF] Jiang | N-body dark matter haloes with simple hierarchical histories[END_REF]. The galaxies of a group are marked with an identifier as well as the central galaxy. Then the cluster catalogue is formed by galaxies of the same group (selected by their identifiers). The cluster position and redshift are set to those of the central galaxy. The difference between using the central galaxy and the barycenter of the cluster are commented in [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], which finds a negligible effect in cluster detection. For each of the mock cluster galaxy members the maximum and minimum right ascension and declination were computed for designing a rectangular area including all the galaxies of each cluster. Also the virial mass of the clusters, M 200 , were computed using the Dhalo algorithm defined in [START_REF] Jiang | N-body dark matter haloes with simple hierarchical histories[END_REF] up to a 90% C.L., and then the cluster radius, R 200 , having a maximum bias of 17% at 95 C.L. The final Euclid Cluster Mock catalogue is composed of photometric redshifts, galaxy magnitudes, galaxy positions, and cluster masses.

Properties of Galaxies and Galaxy Clusters in the Mocks

We present the main properties of the 300 deg 2 galaxy and cluster's galaxy mock catalogues (for more details see [START_REF] Ascaso | Apples to apples a2-i. realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys[END_REF][START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]). The Euclid Cluster Galaxy Catalogue includes clusters with a mass in the range 10 13 M ⊙ -10 15.6 M ⊙ up to a redshift of z = 3. Richness of galaxy clusters serves as a primary mass proxy and it is derived from optical or NIR surveys. It is a fundamental parameter in cluster finder detection performance, at a given mass. Here, we define the richness as the number of galaxies associated with a cluster without any other requirement, unlike Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. They estimate the richness as the galaxy cluster luminosity function. We have chosen an analytical model to fit each of these quantities, and estimate each model's parameters. Repeating this parameter estimation for several bins in mass and redshift, we will be able to construct a cluster catalogue from analytical cluster models that reproduce Euclid -like data.

Galaxy density radial distribution

The radial distribution of cluster galaxy members is a key property for cluster finders. The cluster finders used in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] depend on photometric data with photometric redshift uncertainties larger than the cluster size along the line of sight. Therefore, cluster finders are more sensitive to the projected radial distribution rather than to the 3D one. For this reason we compute and fit the 2D radial distribution profiles.

To compute the galaxy density profiles, we divide the 300 deg 2 Euclid Galaxy Mock catalogue in bins of mass and redshift. We identify cluster galaxy members by their identifiers, which repeat themselves when they are associated with the same cluster. The galaxy cluster sky position and redshift are chosen to be the same as the Bright Central Galaxy (BCG). Next, we compute the angular distance, and later the radial distance, r, between each galaxy member and the BCG.

The galaxy cluster size, R 200 is estimated from the clusters' redshift and mass. In the bin in mass and redshift, there are several clusters, thus to determine the radial distribution we perform a stack of each profile. These profiles depend on the cluster size, therefore, the radial distance will be normalized to R 200 , i.e., R = r/R 200 . The distance to the cluster center, R, is divided in equally spaced bins. For each bin, we calculate the number of galaxies for which the radial distance to the center is inside the bin, and we sum it and normalize it by the bin area and the number of clusters. We repeat the process until we are out of the cluster size and the number of cluster galaxy members drop to zero. An example of a projected stacked galaxy density profile for a bin in redshift 0 < z < 0.33 and mass 10 14.8 M ⊙ < M < 10 15 M ⊙ is shown in Figure 5.4.

The black points represent the sum of the number of galaxies, N, normalized by the bin area and the number of clusters, what we will denote, from now on, as Σ(R). The uncertainties (black error bars in the figure) are a Poisson distributed error over the number of galaxies, i.e., √ N . These uncertainties are then normalized by the number of clusters and the bin area. As shown in the figure, the density of galaxies decreases at greater distance from the cluster center. However, there is a deficit of galaxies in the outskirts of the profiles, where the slope of the profile drops rapidly to zero.

Modeling and Fitting Procedure

Analytical models allow us to reproduce Mock properties with just few parameters. To fit the galaxy density profile, the model we have chosen, following Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], is a truncated Navarro-Frenk-White (NFW) distribution [START_REF] Navarro | The structure of cold dark matter halos[END_REF]. The 3D distribution of radial galaxy density can be written as

n(r/R 200 ) = n 0 (cr/R 200 )(cr/R 200 + 1) 2 H(r max -r), (5.1)
where c is the concentration, n 0 the normalization and H(r max -r) is the Heaviside step function with r max the truncation radius. The latter, forces the profile to drop in the cluster outskirts, and it is not included in the original NFW distribution.

This profile is a 3D distribution, however, we want to fit to the 2D projected galaxy density.

Thus we use the relationship between the projected and space number densities, Σ(R) and n(r), respectively, defined in Mamon et al. [START_REF] Gary A Mamon | The universal distribution of halo interlopers in projected phase space-bias in galaxy cluster concentration and velocity anisotropy[END_REF] as

Σ(R) = 2 ∞ R n(r) rdr √ r 2 -R 2 , ( 5.2) 
where r and R are the space and projected radial distances. The model parameters, n 0 , c and r max are sampled using a Monte Carlo Markov Chain (MCMC) algorithm. In particular we use the Goodman & Weare's Affine Invariant MCMC Ensemble sampling [START_REF] Goodman | Ensemble samplers with affine invariance[END_REF]. The implementation of this method in Python is called emcee 1 [START_REF] Foreman-Mackey | emcee: The MCMC Hammer[END_REF].

The MCMC algorithms are based on the Bayes Theorem that states P (theory|data) = P (data|theory) • P (theory) P (data) , (

where P (data|theory) is the likelihood function i.e., the probability of the data given the model (as explained in Chapter 4), P (theory) is known as the prior and it is the probability of our model, which is generally transformed into allowed parameter space and P (data) is the probability of the data. Finally, P (theory|data) is called the posterior, that is the probability of our model given the data, and the function that want to be sampled by the MCMC algorithm. The method is applied as follows:

1. We define the prior as an uniform distribution for: 10 < n 0 < 5 x 10 4 , 0 < c < 50 and 0.1 < r max < 10, and zero otherwise.

1. An example of how this method is applied can be found in https://emcee.readthedocs.io/en/stable/tutorials/line/ 2. Our likelihood function is assumed to be Gaussian and defined as ln

P (data|n 0 , c, r max ) = - 1 2 (data -Σ(R)) 2 σ 2 data + log σ 2 data , ( 5.4) 
where data and σ data are the Euclid projected galaxy density distribution data and its uncertainties (black points with error bars of Figure 5.4). Σ(R) is the projected NFW model, as given by Equation 5.2.

3. The data probability, P(data), is set to one. No particular weighting is applied. values of the chain are discarded for burn-in. After few steps the walkers starts to explore the full parameter space and the posterior distribution.

5. The one and two dimensional projections of the posterior probability distribution of the parameters for the data in Figure 5.4 are shown in the corner plot of Figure 5.5. This is called a corner plot. This plot shows the covariances between the parameters. As we can see, the concentration and normalization parameters are degenerate, meaning that the parameters are not independent of each other. We observe a similar behaviour between r max with both concentration and normalization. Thus, none of the three parameters are independent. The degeneracy between parameters explains why there are more than one peak on the histograms, i.e., there are more than one combination of parameters that can fit our data. For the bin we are considering, the concentration varies between 9 and 12, which is in agreement with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF].

6. Using the full parameters' probability distributions, we calculate the best-fit value with its uncertainties based on the 16th, 50th and 84th percentiles.

The results of the fit are shown in Figure 5.4, where the blue dashed line represents the best-fit value and the red and green shaded areas the 1σ and 2σ uncertainties. In this case the NFW model is a good fit to the data.

We repeat the process of computing the 2D galaxy density profiles and fitting them by a truncated NFW, for the full redshift and mass range: Overall, we observe that for clusters with masses below 10 14 M ⊙ (upper left, and bottom right panels of the figures) the truncated NFW does not fit properly the data, as well as for redshifts above z > 2. We will consider clusters with M > 10 14 M ⊙ and z < 2 for the results in the next chapters. In the corner plots we observe the same dependency behaviour between the parameters the concentration increases with redshift, not remaining constant as we observe at high mass.

Luminosity Function

The distribution of galaxies as a function of their magnitude, or Luminosity Function (LF), of cluster galaxy members is also a key property for cluster finders. To compute the LF, we follow a similar procedure as for the galaxy density profiles, explained in Section 5.2. We divide the 300 deg 2 Euclid Galaxy Mock catalogue in bins of mass and redshift. We identify cluster galaxy members by their identifiers, which repeat themselves when they are associated to the same cluster. The galaxy cluster sky position and redshift are chosen to be the same as the Bright Central Galaxy (BCG). Next, we compute the angular distance, and later the radial distance, r, between each galaxy member and the BCG. The galaxy cluster size, R 200 is estimated from the clusters' redshift and mass. We select galaxies within R 200 . If in the bin in mass and redshift, there are several clusters, to determine the LF we perform a stack of each cluster distribution.

We compute the total area defined by all the clusters in the bin, i.e., A = π R 2 i,200 where i, is an index for each cluster. From the galaxy catalogue we extract the apparent magnitude in the H-band for each cluster galaxy member. The magnitude distribution is divided in equally spaced bins. For each bin, we calculate the number of galaxies with magnitude inside the bin, and we sum it and normalize it by the total area, A, and the magnitude difference in the bin, i.e., ∆m H . We repeat the process until we are out of the magnitude bin. An example of a LF for a bin in redshift 0 < z < 0.3 and mass 10 14.8 M ⊙ < M < 10 15 M ⊙ is shown in Figure 5.10. The black points represent the LF, as defined above, denoted Φ(m). The uncertainties (black error bars in the figure) are a Poisson distributed error computed from the number of galaxies N, i.e., √ N . These uncertainties are then normalized by the bin magnitude difference, ∆m H and the total clusters area, A. As shown in the Figure, most of the galaxies are in the faint part of the LF, represented by high apparent magnitudes. However, the bright ones, a priori, are the easiest to detect.

Modeling and Fitting Procedure

To fit the LF, we have chosen, following Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], a Schechter model [START_REF] Schechter | An analytic expression for the luminosity function for galaxies[END_REF][START_REF] Driver | Dwarf galaxies at: photometry of the cluster abell 963[END_REF], written as Φ(m) = 0.4 ln(10)φ * 10 0.4(m * -m)(α+1) exp (-10 0.4(m * -m) )

(5.5)

with φ * the normalization, m * the characteristic magnitude and α the faint-end slope. The parameters are sampled using a Monte Carlo Markov Chain (MCMC) method, as explained in Section 5.2.1. The method, in this case, is applied as follows:

1. We define the prior as an uniform distribution between: 0 < φ * < 100, 10 < m * < 30 and -3 < α < 0. Otherwise the function is set to zero. The main difference with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] is that we do not set an upper limit in magnitude to fit the model in m * + 2.

Our main goal is different to theirs, because we want to reproduce the cluster properties analytically, while they wanted to analyze the physical cluster properties. So we need to fit the Schechter function in all the photometric range, up to m = 24.

2. Our likelihood function is assumed to be Gaussian and defined as ln

P (data|φ * , m * , α) = - 1 2 (data -Φ(m)) 2 σ 2 data + log σ 2 data , ( 5.6) 
where data and σ data are the luminosity function and its uncertainties (black points with error bars of Figure 5.10) and Φ(m) is the Schechter model, as in Equation 5.5.

3. The data probability, P(data), is set to one. No particular weighting scheme is used.

4. We run 500 steps of MCMC for 500 walkers. We obtain chains of 250000 samples in total.

The first 50 values of the chain are discarded for burning. After a few steps the walkers start to explore the full parameter space and the posterior distribution. 

Luminosity Function Variation with Mass and Redshift

Our goal is to be able to reproduce the Euclid Cluster's Galaxy Mock Catalogue properties, and construct a Mock Catalogue from analytical models. For this we record the best-fit value of the model parameters, φ * , m * , and α, for each LF profile fit at every bin in mass and redshift.

Figure 5.14 shows in upper left the best-fit parameter φ * , color coded, as a function of mass and redshift. The colorbar represents the value of the parameter. We observe that mostly it remains constant for values under 20. However, at medium redshifts, between 1 and 2, the normalization increases. In this region we find most of the clusters, as observed in Figure 5.1. Therefore, the total number of galaxies per bin is different and this can explain the behaviour of the parameter.

On the other hand, the Schechter model does not fit the bright part of the LF for several bins in mass and redshift, as seen for example in Figure 5.10. This drop in the total number of galaxies can affect the normalization parameter probability distribution. Therefore, there is not a clear physical explanation on the behaviour of φ * with mass and redshift. These values are shifted with respect to Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] (see Figure 5), where m * varies from 13 to 22. This is due to the lack of bright galaxies when performing the LF fit. However, the parameter evolution with mass and redshift is in agreement with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. It does not evolve with mass. A priori, the size of the cluster does not affect the photon flux we observe from galaxies. Therefore, the magnitude should not be affected by the cluster's mass, as observed in the Figure . On the other hand, there is an evolution with redshift.

At higher redshift, greater is the apparent characteristic magnitude. If the cluster is farther, the flux we observe is lower, resulting in fainter galaxies, in other words, higher apparent magnitude.

Figure 5.14 shows in the bottom row the best fit amplitude parameter α, color coded, as a function of mass and redshift. The colorbar represents the actual value of the parameter. The faint-end slope varies from 0 to -3.5. This is in agreement with literature [START_REF] Ricci | The xxl survey-xxviii. galaxy luminosity functions of the xxl-n clusters[END_REF], where for redshifts below 0.7 the LF for the XXL survey [START_REF] Pierre | The xxl survey-i. scientific motivations-xmmnewton observing plan-follow-up observations and simulation programme[END_REF] the faint-end slope varies from -1 to -1.5, as our case.

As observed with the characteristic magnitude, there is an evolution with redshift but not with mass.

Conclusion

In this chapter we have studied two properties of cluster that are fundamental for the performance of the cluster detection algorithms, the galaxy radial distribution and the luminosity function. The goal is to reproduce analytically these properties to produce a cluster catalogue

CHAPTER 5. THE EUCLID GALAXY MOCK CATALOGUE

for its later injection in the Euclid Cluster's Galaxy Mock catalogue. Then, applying cluster finders on the cluster injected mock catalogue.

In the galaxy density radial distribution, we have found that the profiles are well described by a NFW model when adding a truncation radius due to the lack of galaxies in the outskirts of the clusters. The evolution of the concentration parameter with mass and redshift show that more massive clusters have less concentration. On the other hand, far clusters (high redshift) and low mass clusters present higher concentrations. These results are in agreement with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. The normalization and concentration parameters are highly degenerated. We conclude that although there are caveats some the NFW represents sufficiently well the Euclid Mock for our purpose.

For the luminosity function, we chose a Schechter model to fit the data, as done in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] We observe, as expected, a clear evolution with the redshift, presenting fainter galaxies at higher redshift. The characteristic magnitude and faint-end slope are degenerate with the normalization. We find that the In this chapter we construct a synthetic cluster catalogue based on the Euclid Mock catalogue properties. First, we present the methodology followed to construct the synthetic catalogue from analytical models, in particular: the galaxy density distribution, and the luminosity function.

Second, we recover the cluster properties once the catalogue is constructed. Finally, we compare some of these properties with the Euclid mock catalogue.

Methodology

The cluster injection method requires a catalogue with simulated synthetic clusters that is constructed from the main properties of the reconstructed cluster catalogue. In the case of Euclid, there is no real data, so we work with galaxy mock catalogues. Using the galaxy mock catalogue and the results obtained in Chapter 5, we simulate galaxy clusters with a NFW [START_REF] Navarro | The structure of cold dark matter halos[END_REF] radial galaxy density distribution and a Schechter model [START_REF] Schechter | An analytic expression for the luminosity function for galaxies[END_REF] for the luminosity function (LF).

Figure 6.1 shows a diagram of the process for constructing the synthetic cluster catalogue.

The computational cost to construct a catalogue of 300 deg 2 is high (size of the Euclid Mock the distance are computed in a differential way, thus the projected radius is separated in bins. We then integrate the 2D projection over the projected radius to compute the total number of member galaxies.

2. We compute the LF with a Schechter model for the corresponding bin in mass and redshift using the best-fit parameters obtained in Chapter 5. The number of cluster member galaxies is calculated by integrating the LF.

The number of cluster member galaxies can differ between the first and the second method, because the results depend on the quality of the fits discussed in Chapter 5. Therefore, we decide to choose the minimum value of cluster members between the two methods.

For each bin in mass and redshift we have computed the number of clusters for a region of 36 deg 2 and then we simulate each cluster as follows. We first assign to each cluster in the bin, a mass and a redshift randomly with a uniform distribution within the bin limits. Then, we compute the number of galaxy members in the cluster and assign to each of them sky positions, redshifts and magnitudes as explained bellow:

• Cluster Sky Position: The position of the cluster on the sky is draw randomly following an uniform distribution. Notice that in this way the spatial correlation between clusters is not preserved.

• Sky Position of Cluster's Member Galaxies: We generate the 3D galaxy density distribution following a NFW model using the parameters corresponding to the cluster bin in mass and redshift. This distribution is projected to obtain a radial 2D profile as explained in Chapter 5. For each radial bin in the obtained 2D profile, we compute the number of galaxy members as discussed above. Thus, we simulate those galaxies distributing randomly in a spherical shell at that radius. Notice that in our methodology all the clusters in the same bin in mass and redshift will have the same number of galaxy members. In reality this should not be the case as the clusters have different masses and redshift. The final position of each galaxy is obtained by adding the cluster position.

• Redshift of Cluster's Member Galaxies: The cluster member galaxies' redshifts are assigned from the cluster redshift adding gaussian uncertainties, i.e., z gal = z cl ± σ z .

The standard deviation of the photometric redshifts with respect to the true redshifts in the context of Euclid is required to be σ z /(1 + z) < 0.05. Thus we select σ z = (1 + z cl )

x 0.05. The redshift distribution of the cluster members is a Gaussian distribution with mean z cl and dispersion σ z .

• Magnitudes of Cluster's Member Galaxies: To assign a magnitude distribution to the galaxies we should use the Schechter model using the best-fit parameters. However, in Chapter 5 we observed that the Schechter model can not reproduce the brightest part of the luminosity function. This can affect significantly the performance of cluster finders.

Therefore we have decided to use the luminosity function of the Euclid Mock Catalogue for sampling the luminosity function of the synthetic catalogue. For each magnitude bin in the obtained LF, we compute the number of galaxy members as discussed above.

Thus, we draw randomly the magnitude for each member galaxy from the binned LF. All the clusters in the same bin in mass and redshift will have the same number of galaxy members.

• Brightest Central Galaxy (BCG): The brightest galaxy of a cluster is located approximately in its center. Therefore, we assign the central sky position (RA,DEC) in degrees to the brightest galaxy (brightest magnitude draw from the distribution).

To finish the construction of the synthetic cluster catalogue we assign to each cluster member two identification numbers: an individual galaxy ID, and a cluster ID, which is the same for each galaxy belonging to the same cluster. Because we extract the data from the Euclid Mock Catalogue we have access to the true cluster mass, which is not an observable and it will not be used when performing a cluster finder in the synthetic catalogue. This is the reason why the mass does not appear in Figure 6.1. Finally we obtain a synthetic cluster catalogue containing the cluster IDs, the galaxy IDs, sky coordinates (RA,DEC) in degrees, redshift, magnitude, and cluster mass.

From the synthetic catalogue we extract a halo synthetic catalogue with information only on the clusters. This catalogue has one row per cluster and the information is the one corresponding the BCG. This catalogue will be used in Chapter 7 for matching the clusters to the ones detected by the cluster finder algorithm. M ⊙ and a redshift of z = 0.7. We observe a higher concentration of galaxies in the center of the cluster. In terms of the magnitude distribution, most of the galaxies are faint. These results are in agreement with what is shown in Chapter 5.

Cluster's in the Synthetic Catalogue

We have simulated a total of 2580 synthetic clusters of galaxies in the mass and redshift bins: These distribution is in agreement with Figure 5.1 of Chapter 5. However, we observe clusters

Comparing Observational Properties with the Euclid Mock Catalogue

To compare the synthetic cluster catalogue to the Euclid Mock Catalogue we selected a portion of 36 deg 2 with the same limits of the synthetic cluster catalogue. Figure 6.5 shows a 2D histogram in mass and redshift of the number of clusters of the Euclid Cluster's Mock

Catalogue. We observe that clusters are concentrated at low mass at around redshift one, as we observed for the synthetic cluster catalogue in figure 6.3. We present several examples of clusters of galaxies in figure 6.6 as we did in figure 6.2. The left column corresponds to clusters of the Euclid Mock catalogue and the right column shows simulated clusters of the synthetic cluster catalogue. The cluster of galaxies presented in each row present similar mass and redshift for both catalogues:

• First Row: Clusters of galaxies of mass M = 10 15.1 M ⊙ at redshift z = 0.3 and z = 0.2 for the Euclid Mock catalogue and synthetic cluster catalogue, respectively.

• Second Row: Clusters of galaxies of mass M = 10 15.3 M ⊙ and M = 10 15.2 M ⊙ at redshift z = 0.9 and z = 1 for the Euclid Mock catalogue and synthetic cluster catalogue, respectively.

• Third Row: Clusters of galaxies of mass M = 10 14.1 M ⊙ at redshift z = 1.4 and z = 1.3

for the Euclid Mock catalogue and synthetic cluster catalogue, respectively.

• Fourth Row: Clusters of galaxies of mass M = 10 14.1 M ⊙ at redshift z = 0.3 for the Euclid Mock catalogue and synthetic cluster catalogue, respectively.

We observe a general agreement in terms of the galaxy magnitude distribution. However, for the second row and for fourth row, the magnitude distribution is different for both catalogues.

In the second row, there are brighter galaxies for the Euclid case. In the fourth row, the cluster presents fainter galaxies. Nevertheless, following the color code, it looks like the number of these extreme cases of bright galaxies is negligible. This is in agreement with the results in Figure 6.8, which will be presented later. For the number of galaxies, massive clusters have more cluster members, as we expected. The synthetic galaxy clusters tend to be more relaxed (spherical) than the Euclid ones, because we distributed the galaxies circularly. At low redshift clusters present more galaxies than at high redshift, as one would expect. In general, galaxy clusters of the synthetic catalogue are in agreement in number of galaxies with those of the Euclid Mock catalogue. These results are in agreement with the richness distribution presented in figure 6.7.

Each dot represents a cluster, in red in the case of the synthetic cluster catalogue and in blue for the Euclid Mock catalogue. The top panel corresponds to the richness (number of cluster members) as a function of the cluster mass, while the bottom panel corresponds to the richness as a function of the cluster redshift. The top panel is consistent with figure 5.2 from Chapter 5.

We observe horizontal lines in the figure corresponding to cluster of the same bin in mass and

Conclusions

In this chapter we presented the construction of a synthetic cluster catalogue based on the Euclid Cluster's Mock catalogue properties as discussed in Chapter 5.

Overall we see that the cluster properties of the synthetic cluster catalogue are consistent with the Euclid Mock catalogue. However, there are some aspects that can be improved when simulating the synthetic clusters. First, the number of cluster's galaxies in a bin in mass and redshift is taken as constant. We could have considered a measurement of the dispersion across the bin accounting for a Poisonnian uncertainty. Second, the bins in mass and redshift should probably be narrower to ensure similar cluster properties for each cluster in the bin. Third, we draw magnitudes and galaxy positions from discretized functions, and this leads to some kind of bias as we observed for the luminosity function. Fourth, we consider a spherical shape for clusters, while we observe that clusters in the Euclid Mock catalogue present different types of morphologies. We could try to consider a triaxial modelling of clusters that takes into account ellipticity.

Finally, we must notice that for generating synthetic cluster we have used the properties of the Euclid Mock catalogue for which we have the "true" mass, redshift, LF and galaxy distribution.

In a more realistic case we will only have access to the properties of detected for which will only have estimates of the mass and redshift from the cluster finders and a limited number of galaxy members to derive the LF and the galaxy density distribution. How to go from detected cluster observational properties to "realistic" properties of the synthetic clusters need to be investigated further.

Chapter 7

CLUSTER INJECTION FOR COMPUTING

THE SELECTION FUNCTION The cluster abundance is related to the parameters of the ΛCDM cosmological model. But to be able to recover the total number of clusters in a solid angle region, Ω, it is necessary to account for the probability of finding a cluster at a certain mass and redshift in this solid angle (see Chapter 2). This probability is known as the Selection Function and it is an intrinsic characteristic of the studied cluster catalogue and would depend on the cluster finder selected, the observational and quality cuts, and the survey. In this chapter we study the performance of the PZWAV cluster finder on several catalogues constructed using the synthetic cluster catalogue presented in Chapter 6. For reference we will also use the 36 deg 2 Euclid Mock catalogue. First, we present the catalogues we will use during the chapter. Second, we introduce the PZWAV cluster finder, which is officially accepted by the Euclid Consortium. Third, we apply the PZWAV algorithm individually on each catalogue, and we match the input cluster (catalogues) with the output ones (PZWAV) by a geometrical matching method. From this, we compute the completeness and purity and we study the dependency with the geometrical parameters of the matching procedure. Finally, we compare the completeness and purity for the fourth catalogues and the richness estimates from the PZWAV algorithm.

Galaxy Catalogues

To compute the selection function of the Euclid Mock catalogue we have decided to use four catalogues: the 36 deg 2 Euclid Mock catalogue, the synthetic cluster catalogue discussed in chapter 6 with field galaxies, and two injection catalogues which combine properties of the previous two.

Synthetic Galaxy Catalogue

To have a full independent galaxy catalogue, we add field galaxies to the synthetic cluster catalogue constructed in Chapter 6. For computing the number of galaxies to be added, we have counted the number of galaxies in the 300 deg 2 Euclid mock catalogue, and we extrapolated to the 36 deg 2 region. We need to distribute the field galaxies in sky coordinates, redshift and magnitude. The field galaxies have been spatially distributed uniformly within the limits of the 36 deg 2 catalogue. For the redshift distribution we use the below probability distribution function [START_REF] Chang | The effective number density of galaxies for weak lensing measurements in the lsst project[END_REF]:

P (z) = z α exp - z z 0 β , ( 7.1) 
with α = 1.24 and β = 1.01 and z 0 = 0.51. As for the synthetic cluster catalogue the magnitude for each galaxy has been draw from the LF of the Euclid Mock catalogue. However, we have sampled the luminosity function coming from the Schechter fit done in Chapter 5, instead of directly the LF of the Euclid Mock Catalogue, as done in Chapter 6. From now on this catalogue will be called synthetic catalogue.

Injection Galaxy Catalogues

To compute the selection function using the cluster injection method (see Chapter 2), we have to construct an injected galaxy catalogue. To do this, we propose two methods in the following.

Euclid Mock Catalogue + Synthetic Cluster Catalogue

In the first method, we add the galaxies of synthetic clusters directly in the Euclid Mock catalogue, without any other requirement. This creates a catalogue that keeps the environment spatial correlations, but add an excess of clusters with respect to the Euclid Mock catalogue.

The synthetic cluster can overlap with the existing ones. This catalogue allows us to check the performance of cluster finders when there are clusters with different nature (simulated in a different way), and the effects of cluster's overlapping. From now on this catalogue will be called Injection Catalogue.

Euclid Mock Galaxies + Synthetic Cluster Catalogue

In the second method, we randomized the galaxy positions and redshifts in the Euclid Mock catalogue. This removes the mock galaxy clusters and the spatial correlations for both the environment and the clusters. We add galaxies of the synthetic clusters directly in this catalogue.

With this method we preserve the number of galaxies and remove the cluster. Notice that in practice, the galaxies from the clusters in the Euclid Mock catalogue will add to the field galaxies.

It would be better to try to "remove" the clusters and so preserve both the distribution of field galaxies and their spatial distribution. This catalogue allows to check the performance of cluster finders with respect to the environment. From now on this catalogue will be called Synthetic Catalogue with Euclid 's randomized galaxies.

Euclid Cluster Finders: PZWAV

In the context of Euclid the test of several cluster finders has been done in four Cluster Finder Challenges (CFC) between 2013 and 2017. In Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] they concluded that two cluster finders give best results and can be implemented in the Euclid pipeline: the Adaptative Matched Identifier of Clustered Objects (AMICO) code [START_REF] Bellagamba | Amico: optimized detection of galaxy clusters in photometric surveys[END_REF] (see Chapter 1) and the PZWAV code [START_REF] Gonzalez | Cluster detection via wavelets[END_REF] (the one we use in this thesis).

PZWAV searches for overdensities in galaxy density maps using a wavelet approach [START_REF] Peter Rm Eisenhardt | Clusters of galaxies in the first half of the universe from the irac shallow survey[END_REF] that has been optimized for Euclid-like data. The steps to follow are:

• Prepare a galaxy catalogue with photometric redshifts, sky coordinates, magnitudes and the probability distribution associated with each photometric redshift, P(z), that gives us the probability of the galaxy to be found at a redshift z.

• The algorithm constructs galaxy density maps placing the galaxies in redshift slices weighted by P(z), that cover the Euclid redshift range.

• The galaxy density maps are then convolved with a difference-of-Gaussians smoothing kernel of a fixed physical size, which is comparable with the cluster cores' physical size.

• Then, clusters are detected as peaks in the wavelet smoothed galaxy density maps for each redshift slice. The detections are merged across the redshift slices.

• The density peaks is the direct observable of the search and it can be taken as a proxy of the richness. PZWAV also computes the SNR of the detection. The cluster redshift is estimated from the median and the standard deviation of the distribution of photometric redshifts for all the galaxies that lies at 30 ′′ from the cluster core and inside ∆z = 0.12 of the redshift slice where the cluster is.

• PZWAV produces a cluster catalogue with estimates of the photometric redshift, sky coordinates, richness and SNR for each of the detected clusters.

In the following we decided not to use the SNR but the percentage in detections after ordering them by decreasing SNR. Because we have different types of catalogues, a cut in SNR does not include the same amount of clusters for both catalogues. A cut in the percentage of detections will ensure a more homogeneous selection. As proposed in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] the cuts in percentages of detections that we will use are: 1%, 5%, 10%, 20%, 40%, 80% and 99%, where 1% considers only the highest SNR detections and 99%, considers almost every detection.

Completeness and Purity of the Simulated Catalogues

The performance of a detection algorithm depends on the quality of the cluster catalogue that it produces. We need to know how many of the existing clusters it detects, called completeness, and how many of them are real, called purity.

Applying the algorithm to a known sample of clusters we define the completeness as the number of clusters that can be associated with a real cluster by the cluster finder, N true det , with respect to the ones in the Mock catalogue, i.e.,:

C = N true det N mock . (7.2)
In the case of simulated catalogues, the association between the detected cluster and the mock cluster can be one-way or two-way, meaning that, if we compare the number of cluster that are in the finder's cluster catalogue with the number of clusters in the cluster mock catalogue we have a one-way association. If we check how many clusters in the cluster mock catalogue are found in the finder's one, we have another one-way direction. If we compute the common matches for both one-way directions we have what we will call two-way or bijection matches.

The purity, defined as the number of detected "true" clusters as a function of the overall detection number:

P = N true det N f inder , (7.3)
where N f inder is the total number of detections of the cluster finder. Again we can perform the one-way or two-ways purity matches.

In each of the one-way direction matches we can find several cases:

• If a cluster is found more than once in the finder's catalogue, i.e., one single cluster in the cluster mock catalogue is matched with several detections, we say that we have fragmentation.

• If a cluster is found more than once in the cluster mock catalogue, i.e., one single detected cluster is matched with several "true" clusters, we say that we have overmerging.

If the completeness and purity of the bijections is close to the completeness and purity of the one-way matches we can conclude that fragmentations and overmergings are not significant.

Geometrical Matching Procedure

For performing the one-way or two-way matching from the input catalogue (the cluster mock catalogue) and the PZWAV detected cluster catalogue, we need to define a procedure to determine when a cluster is matched or not. Following Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], we will use what is called "Geometrical Matching" (that can be applied to any cluster finder):

• A volume around the mock cluster is defined with a depth D = kσ 0 (1 + z). The mean photometric uncertainty for Euclid is σ zphot = 0.05(1 + z), thus σ 0 = 0.05. To account for the photometric uncertainties in the matching, in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] they consider k = 4.

We will study the behaviour of the completeness and purity varying this parameter using ∆z = kσ 0 . To ensure that every cluster galaxy member is included, and the cluster is well defined, the volume is restricted to the extent of the galaxies belonging to the cluster:

RA min , RA max , DEC min and DEC max . Also, as an additional criteria to the latter, the volume is limited to a distance of θ 200 computed, using the catalogue cosmology, from R 200 of the cluster. The clusters detected inside this volume will be considered matches. However, we will use a fixed value of R 200 to compute θ 200 , as discussed below.

• In case of finding more than one match, the closest detected cluster in projected sky coordinates is selected as the main match, but all the possibilities are recorded to study fragmentation.

• We repeat the last two processes but using the PZWAV detected clusters as a reference.

The only difference is that we can not compute θ 200 for the PZWAV detected clusters since in general we have no information of the radius R 200 . Therefore, a mock cluster is matched to a PZWAV one if the distance between the two is inside a general fixed θ M P computed from a given fixed R M P in Mpc, using the catalogue cosmology. Again the excess of matches are recorded as a way of counting for the overmergings.

This method allows us to have a bijection matching since there is the possibility of comparing the matches from both ways associations.

Results on the considered catalogues

Euclid Mock Catalogue

Although Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] already presented results on the PZWAV performance for the 300 deg 2 Euclid Mock catalogue, we have decided to run the cluster finder on the Euclid 36 deg 2 catalogue to have a more direct comparison with the results on the synthetic catalogue.

In this section we present the completeness and purity for the PZWAV cluster finder in the 36 deg 2 Euclid Mock Catalogue. We limit to clusters with M > 10 14 M ⊙ and z < 2. From now we will show purity versus completeness as computed for 1%, 5%, 10%, 20%, 40%, 80% and 99% of the detections (ordered in SNR). In addition, we will check the dependency of the purity and completeness with the parameters of the geometrical matching procedure: ∆z and R M P . We observe that both parameters do not affect significantly the matching. Nevertheless, a deeper volume in redshift and θ increase both purity and completeness. We reached completeness of 70% for a purity of 70% for 5% of the detections. In Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] for the same percentage of detections they reached a completeness of 60% and a purity of 90%. Furthermore, they presented greater values than us for completeness and purity for several cuts in detection's percentage.

This can be due to the fact that the parameters we have chosen to run PZWAV differs from the ones used in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. Another possible explanation could be that the catalogue we are using is slightly different that the one used in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] as explained in Chapter 5, or to differences between the 36 deg 2 region and the 300 deg 2 region.

Synthetic Catalogue

In this section we repeat the previous analysis in the synthetic catalogue. We restrict the analysis to clusters with M > 10 14 M ⊙ and z < 2.

Figure 7.2 shows the purity versus completeness for the several cuts in detection percentages.

See caption of Figure 7.2 for a detailed description. We observe that both parameters affect the matching. In this case, a deeper volume in terms of redshift does not ensure a better matching.

The ∆z value for which we obtain the best results for purity and completeness is ∆z = 0.1. As we will see in the following results, this can be due to how the clusters are defined and to the differences in the environment. We use as a reference ∆z = 0.2 as did in Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. We reached completeness of 85% for a purity of 85% for 10% of the detections. This result is more consistent with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. In terms of R M P , the completeness and purity are greater for a value of 2 Mpc.

The fact that the matching depends on ∆z and R M P for the synthetic catalogue but not for the Euclid one, can be due to the fact that our clusters are spherical and the redshift dispersion is the instrumental one except for Euclid. Our clusters tend to be larger in size, and thus a larger volume is needed to detect them.

Injection Catalogue

In this section we repeat the previous analysis in the injection catalogue. We restrict to clusters with M > 10 14 M ⊙ and z < 2.

Figure 7.3 shows the purity versus completeness for the several cuts in detection percentage.

See the caption of Figure 7.3 for more details. In this case, a deeper volume in terms of redshift improve the completeness and purity. We use as a reference ∆z = 0.2. With respect to R M P there is a significant different between 1 Mpc and 2 Mpc. We choose R M P = 2 Mpc as reference.

We reached completeness of 40% for a purity of 80% for 5% of the detections. Both purity and completeness decrease significantly when increasing percentage of detections.

Comparing with the results of the synthetic catalogue we observe that the choice of parameter ∆z is affecting less the matching procedure. This can be due to the contribution from the Euclid clusters. However, the choice of the parameter R M P changes significantly the results on the completeness and purity. This may be due to the fact that we have an overlapping of the synthetic and Euclid Mock clusters.

In addition, clusters are different from both catalogues, thus how clusters are simulated affect cluster finders. PZWAV shows a better performance separately for the Euclid catalogue and the synthetic catalogue. Therefore, combining different type of clusters makes difficult to detect clusters.

Synthetic Catalogue with Euclid 's randomized galaxies

In this section we repeat the previous analysis in the catalogue created combining the synthetic clusters with the Euclid Mock galaxy catalogue for which the position and redshift of the galaxies were randomized. We restrict clusters with M > 10 14 M ⊙ and z < 2.

Figure 7.4 shows the purity versus completeness for the several cuts in detection percentage.

See caption of figure 7.4 for more details.

We observe that the choice of ∆z does not affect the matching while R M P does. With respect to the results for the synthetic catalogue, the behaviour with ∆z tells us that the environment plays a key role in the redshift definition of the cluster from PZWAV. On the other hand, the choice of R M P affects the matching of the same type of clusters when we are changing the environment. Thus, it depends exclusively on the cluster properties. We choose R M P = 2 Mpc as reference. We reached completeness of 50% for a purity of 90% for 5% of the detections. The parameter ∆z affects the performance of the matching for the synthetic catalogue, Figure 7.2, whereas when changing the environment, this dependence disappears.

Comparison of Results

Completeness and Purity

Completeness and purity have been computed in the previous section for four cases: the Euclid Mock catalogue, the synthetic catalogue, and two injection catalogues: one including both Euclid-type clusters and synthetic clusters, and the other including the Euclid randomized galaxies and synthetic clusters. We have checked the performance of the matching procedure by studying the dependency of its parameters, ∆z and R M P , with the completeness and purity. We decided to take as reference R M P = 2 Mpc and ∆z = 0.02. The first is because it improves the matchings, and the second to be consistent with Adam et al. [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF].

Figure 7.5 shows the purity versus the completeness for several cuts in detection's percentages, represented as dots, in increasing order from left to right, i.e., 1% of detections correspond to low completeness and high purity, and 99% of detections refers to high completeness and low purity. The blue, orange, red and green curves correspond to the Euclid Mock catalogue, the synthetic catalogue, the injection catalogue, and the synthetic catalogue with Euclid 's randomized galaxies, respectively. We can compare the results for several cases:

• Euclid Mock catalogue vs Synthetic catalogue: The performance of PZWAV is significantly different for both catalogues. In the case of synthetic clusters with a simple background where there is no spatial correlation, PZWAV shows better performance in completeness and purity, than in the case of a more complex catalogue. This can be due partly to the difference in shape and size of our clusters, but also to much simpler environmental condition in the synthetic catalogue.

• Injection Catalogue vs Synthetic Cluster Catalogue: The worst performance of PZWAV is found for the injection catalogue. The latter conserves the background of the Euclid Mock catalogue, but it has an overlapping of clusters. This suggests us that the possible overmerging of clusters with two different natures affects significantly the way of detecting clusters.

• Synthetic Catalogue with Euclid's randomized galaxies vs Synthetic Catalogue: In this case we compare two catalogues with the same clusters in the same positions, but changing the environment. We observe how the performance of PZWAV worsens for the overdense environment of the Synthetic Catalogue with Euclid 's randomized galaxies. However, the differences in the completeness and purity between these two catalogues are not as significant as in the rest of the cases. For two flat environments the difference in number density of galaxies do not affect the cluster finder.

• Euclid Mock catalogue vs Synthetic Catalogue with Euclid's randomized galaxies: In this case we compare results for a similar environment in terms of mean den-CHAPTER 7. CLUSTER INJECTION 139

First Attempt to Estimate the Selection Function

For computing the SF we need to compute the probability of finding a cluster of a given true mass and redshift for a particular observational cut. Here, we perform a first attempt towards this final purpose.

We have started by selecting the 5% of detections with largest SNR, so that we have a large enough purity and completeness for the four used catalogues as represented in Figure 7.5. For each of those catalogues we have, first, estimated a simple log-linear scaling relation relating the true mass of the detected cluster to the PZWAV estimated richness, λ obs . For computing this relation we perform a robust least-square fit. With this, we are able to convert the true masses of the simulated clusters (synthetic or Euclid Mock clusters) into an expected observed richness.

Then, we compute the probability of finding a cluster of a given true mass or an equivalent extrapolated observed richness at a given redshift from the ratio of the number of detected clusters with respect to the total number of simulated clusters. This probability is shown in Figure 7.7 from top to bottom for the four catalogues considered: Euclid Mock catalogue, the synthetic catalogue, the injection catalogue, and the synthetic catalogue with Euclid 's Mock randomized galaxies.

First of all, we notice that the richness estimates, as discussed before, are very different between the different simulated catalogues. The expected observed richness for catalogues including Euclid Mock clusters shows lower dispersion that the ones including only synthetic clusters. Second, we observe that in general the probability of detecting a cluster is larger for catalogues for which the environment is featureless (synthetic catalogue and synthetic catalogue with Euclid 's Mock randomized galaxies) as we already observed previously. This may be just related to the fact that the richness estimates are very similar for this two catalogues. Furthermore, we find that the detection probabilities are consistent between these two catalogues. So we conclude that if the environment is featureless the results do not depend on properties of the field galaxies. Finally, The difference between the results for the Euclid Mock catalogue and the injection catalogue could be due to various aspects: (i) the difference in the properties in the clusters (synthetic vs Euclid Mock clusters), (ii) the fact that there is an overdensity of clusters in the injection catalogue and (iii) the difference of purity between the two cases.

This simplified analysis illustrates the complexity of selecting a methodology to estimate the selection function in a real case. We conclude that it is very important to be able to either reproduce or preserve the properties of the field galaxies in terms of the spatial correlation to ensure that the richness estimates in the true survey clusters and the simulated ones (those used for estimating the selection function) are consistent. This is true for both injection and full
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simulation methods. We have also found that if using an injection method it is important to reproduce as accurately as possible the properties of the true survey clusters. Furthermore, in this case, it will be important to find a correct way to remove the detected true clusters prior to the injection of synthetic clusters.

The purpose of this analysis has been to better understand the difficulties in the construction of the selection function but more work is needed:

• Extend the analysis to a significant sky region (we have only considered 36 deg 2 ).

• Understanding the differences in the richness estimates.

• Find a suitable way to correctly remove already detected clusters prior to injection.

• Introduce a realistic scaling relation for simulating the synthetic clusters, rather than using the true mock mass as we did.

• Investigate how to estimate the properties of real clusters: luminosity function and galaxy density distribution, which are needed to simulate the synthetic ones.

• Repeat the analysis using a different cluster finder (e.g., Amico [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF][START_REF] Bellagamba | Amico: optimized detection of galaxy clusters in photometric surveys[END_REF]).

Conclusions

In this chapter we have studied the perfomance of the cluster finder PZWAV for clusters more massives than M > 10 14 M ⊙ and redshifts below z < 2 for four cases: the Euclid Mock catalogue, the synthetic catalogue, the injection catalogue and the synthetic catalogue with Euclid 's randomized galaxies.

We computed the dependency of the completeness and purity with the parameters ∆z and R M P of the geometrical procedure to match the clusters between the catalogues. We conclude that ∆z is mainly affected by the environment while R M P is more related to the cluster nature.

To compare the performance for the four catalogues we computed the completeness and purity for ∆z = 0.02 and R M P = 2 Mpc, which we take as reference values. We observe better matching for the clusters simulated analytically. However, when the environment changes, the results are slightly different, worsen for a more complex environment which takes into account spatial correlations. The worst performance occurs with the injection catalogue. This can be due to the overlapping of the Euclid Mock clusters with the synthetic ones, which could produce overmergings and reduce the number of detected clusters. The best performance is for the synthetic catalogue with featureless environment and synthetic clusters. To explore more the PZWAV performance we would like to construct a catalogue that keeps both environment and spatial correlations, and adding more complex properties on the clusters.

Understanding variations on the PZWAV estimates of the richness of the detected clusters, which serves as a proxy of the mass, is essential for the determination of the selection function. We checked that for the synthetic clusters the richness estimates are significantly lower with respect to the catalogues that includes Euclid Mock clusters. However, the matching performance is worse for the latter. For this reason, it is important to make realistic simulations of galaxy clusters in order to improve the accuracy of the selection function.

Finally, in this chapter we have illustrated the complexity of constructing a selection function either using a mock catalogue or an injection catalogue methodology. We have shown that the properties of the field galaxies in terms of the spatial correlation plays a key role and need to be reproduce accurately in both methodologies. Further work is needed to better define how to go from the properties of the real survey detected clusters to a simulation of synthetic clusters. In this chapter we introduce the Three Hundred Project, a sample of 324 cluster regions constructed from hydrodynamical simulations. These regions have in their center a massive galaxy cluster, but other smaller clusters can be found around. Our main goal is to reproduce the analysis performed for the Euclid cluster galaxies' Mock catalogue in Chapter 5 by using more realistic cosmological simulations. We will study optical cluster properties: the luminosity function (LF) and the galaxy density radial distribution. We computed the LF for two different resolutions of the simulations, and we observed that at low resolution there is a significant lack of galaxies. This lead us to do an analysis of resolution effects in cluster properties for three different types of simulations: N-body at low and high resolution, and hydrodynamical at low resolution. We computed a resolution mass cut where the cluster properties are no longer affected by resolution. The latter allows us to compute the galaxy density distribution, fit it by an analytical model, and study the evolution of its parameters with mass and redshift, as done in Chapter 5.

The Three Hundred Project

The 300th Cluster Catalogue

Large volumes are needed to find massive objects like galaxy clusters which entails the difficulty of modelling and simulating dark matter and baryonic physics with enough resolution for these large volumes. A solution to this are 'zoom' simulations, as adopted by the Three Hundred Project. For these large volumes are simulated by N-body dark-matter-only simulations, and only in the regions where a galaxy cluster is found, full-physics simulations are performed.

The main disadvantage of 'zoom' simulations is that for having enough statistics it is necessary to run at least hundreds of independent simulations.

The N-body simulations for the Three Hundred Project are the MDPL2 MultiDark Simulations [START_REF] Giocoli | Multidarklens simulations: weak lensing light-cones and data base presentation[END_REF]. The latter constructs a 1 h -1 Gpc cube containing 3840 3 dark matter (DM) particles with a mass of 1.5 x 10 9 h -1 M ⊙ each. Once the dark-matter-only simulations are performed, a cluster finder algorithm is ran. In this case the ROCKSTAR halo finder [START_REF] Peter S Behroozi | The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores[END_REF], which will look for dark matter haloes. A total of 324 spherical regions were extracted from the halo finder results, selecting as center for these regions the position of the most massive halo at redshift z = 0. The radius of each spherical region is 15 h -1 Mpc that is much larger than the virial radius of the central cluster, which is the radius that encloses the mass that corresponds to approximately 98 times of the critical density of the Universe (at z = 0), as given by the Spherical Collapse model. The phase space initial conditions for the 324 selected regions are used to perform the 'zoom' re-simulations. For the study presented in this thesis, the 300th collaboration has ran these simulations in four different flavors based on the GADGET-X [START_REF] Alexander M Beck | An improved sph scheme for cosmological simulations[END_REF] code, which can generate both dark matter only or hydrodynamical simulations. The GADGET-X code is based on a modern version of the Smoothed Particle Hydrodynamics (SPH). The SPH is a numerical method for solving the fluid equations discretizing the continuous fluid in particles flowing in it, first proposed by [START_REF] Leon | A numerical approach to the testing of the fission hypothesis[END_REF][START_REF] Robert | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF]. See Chapter 1 for more details. In the case of hydrodynamical simulations the GADGET-X code applies the following baryonic physical models:

• The gas treatment consists of an homogeneous UV background [START_REF] Haardt | Radiative transfer in a clumpy universe: Ii. the utraviolet extragalactic background[END_REF] and gas metal dependent cooling [START_REF] Robert Pc Wiersma | The effect of photoionization on the cooling rates of enriched, astrophysical plasmas[END_REF].

• The gas treatment consists of an homogeneous UV background [START_REF] Haardt | Radiative transfer in a clumpy universe: Ii. the utraviolet extragalactic background[END_REF] and gas metal dependent cooling [START_REF] Robert Pc Wiersma | The effect of photoionization on the cooling rates of enriched, astrophysical plasmas[END_REF].

• Star formation and stellar feedback are included using a stellar model by Tornatore et al [START_REF] Tornatore | Chemical enrichment of galaxy clusters from hydrodynamical simulations[END_REF] and galactic stellar and substellar initial mass function by Chabrier et al [START_REF] Chabrier | Galactic stellar and substellar initial mass function[END_REF].

Kinetic feedback [START_REF] Springel | Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation[END_REF], wind velocity of 350 km/s, thermal feedback and no gas mass loss are also implemented.

• Finally, GADGET-X includes black hole seeding and growth and active galactic nuclei (AGN) feedback [START_REF] Lisa K Steinborn | A refined sub-grid model for black hole accretion and agn feedback in large cosmological simulations[END_REF].

The four different flavours in the re-simulated regions are:

1. LR DMONLY: Dark matter only simulations with a dark matter particle resolution of 1.5 x 10 9 h -1 M ⊙ .

2. HR DMONLY: Dark matter only simulations at high resolution. With respect to LR DMONLY, it has twice particles per dimension, thus, 7680 3 , with eight times less mass per particle i.e., 1.8 x 10 8 h -1 M ⊙ each. For these simulations we only have 68 regions, not 324 as for the low resolution ones. Hence, when comparing with the low resolution simulations with the HR DMONLY ones, we will use the 68 regions for which we have high resolution data.

LR HYDRO:

Full-physics hydrodynamics zoom simulations at low resolution. These simulations are at the same resolution as the LR DMONLY simulations.

HR HYDRO:

Full-physics hydrodynamics zoom simulations at high resolution. These simulations are at the same resolution as the HR DMONLY simulations. For these simulations we only have 1 region, due to the high computational cost.

For each simulation, a total of 128 snapshots in redshift are stored, for a redshift range between z = 17 and z = 0. As explained in Chapter 5, the N-body simulations for the Euclid Mock Catalogue have a resolution of 5200 3 particles for a 1 h -1 Gpc box. That means that the low resolution simulations for the Three Hundred project and the high resolution ones are below and above the resolution of Euclid, respectively.

Once the regions are re-simulated, they are analysed by the Amiga's Halo Finder (AHF) [START_REF] Steffen R Knollmann | Ahf: Amiga's halo finder[END_REF], producing a catalogue with haloes found within the regions. In the case of hydrodynamical simulations, for each halo different properties are computed, such as its radius R 200 , mass M 200 , density profile, galaxy luminosities for several spectral bands covering from far-UV to radio.

The galaxy luminosities are computed from the identified stars of the AHF finder using the STARDUST code [START_REF] Julien | Galaxy modelling-i. spectral energy distributions from far-uv to sub-mm wavelengths[END_REF]. The spectral energy distribution (SED) of each galaxy is convolved with the bandpass of each photometric filter to compute the galaxy luminosity. In the case of dark matter only simulations we have the same properties except those related to baryon physics (e.g., stellar mass and luminosities). Each halo can have smaller haloes gravitationally bounded to it, which we will call subhaloes, with their own properties. The more massive and central halo is known as the host halo. Then the final data set is composed of 324 regions, for the low resolution cases, 68 regions for the high resolution dark matter only and 1 region for the high resolution hydrodynamical simulations. We have a low mass threshold for the central halo of 6 • 10 14 h -1 M ⊙ at z = 0. Other haloes, which we do not consider, can be found out of the sphere of the central halo, in the 15 h -1 Mpc region.

Identifying Galaxy Cluster Members in the 300th Cluster Catalogue.

In this section we explain how to construct the dataset that will be used for all the analysis during this chapter. As discussed, we have access to three different cluster catalogues corresponding to the simulations describes before: LR DMONLY, HR DMONLY and the low resolution hydrodynamical simulations or LR HYDRO, that shares the same resolution with the low resolution dark-matter-only simulations. For the HR HYDRO we only have one single re-simulated region.

For our dataset only the most massive and central cluster of the 15 h -1 Mpc region, also called host halo, is considered. This is done for ensuring large enough clusters that can host a significant number subhalos or substructures inside, implying higher statistics. A subhalo is a gravitationally bound structure to the host halo. It can be a small cluster with substructures bound to it, or it can also be a single galaxy bound directly to the host halo. Here, as we will explain later, a subhalo that is identified as a cluster will be split into its various galaxies, and we will consider them as bounded directly to the host halo. However, there is no clear definition for what a galaxy is in the 300th catalogue, i.e., we only have halo properties, that can be a galaxy, or another type of object. Therefore, we need to find first a definition for galaxy, identify them and create a cluster's galaxy members catalogue. Once this is done, in the following, a galaxy can be called substructure or subhalo and viceversa.

To define a galaxy, first we consider a mass threshold, for the subhalo mass, for each of three simulations. This translates into a mass resolution limit. Notice that we consider the particle mass instead of the number of particles as our threshold because for the different simulations the particle mass is different. Thus, the same number of particles does not translate into the same subhalo mass. Taking into account the particle mass and the simulation resolution we adopt the following cuts:

• For LR DMONLY, we consider 4 x 10 10 M ⊙ as the lower limit. This is equivalent to considering that the substructure is formed by, at least, 20 dark matter particles.

• For HR DMONLY, considering the same mass threshold as for the low resolution ones, it leads to be at least 160 dark matter particles, because the resolution is 8 times higher.

Since the resolution is significantly higher, we can vary this threshold with respect to • The LR HYDRO) share resolution with the LR DMONLY case. However the particle mass is different because in this case we have dark matter particles and gas particles.

This means that the same mass threshold between LR DMONLY and LR HYDRO does not translate into the same number of particles. A hydrodynamical simulated structure can have the same mass as a dark-matter-only one, but without dark matter particles.

We have to ensure that a galaxy has dark matter particles. For this reason we apply, on top of the mass threshold, a number of particles threshold. Thus we consider a mass threshold of 4 x 10 10 M ⊙ (for LR DMONLY case) and a number of particles threshold of 10. We do not put more than 20 particles, because we want the same mass threshold for simulations that share the same resolution. Doing this, we assure the presence of dark matter components in the baryonic structures, and also a minimum mass for having enough resolution.

The next step is to distinguish between substructures that are directly bounded to the host halo, and those that are inside a subhalo, called subsubtructures. The AHF cluster detection algorithm defines haloes from a maxima in the density field. It is possible to find some group of galaxies inside a cluster that the detection algorithm interpret as another halo. For our purposes, these galaxies will belong to the host halo. However, in the catalogue they appear as secondary galaxies bounded to secondary haloes, so we have to make some changes. The first thing is to consider that a subhalo is formed by a brightest central galaxy (BCG) and subsubstructures.

In the catalogue, the available information for a halo (either host halo or subhalo) is the bound mass, i.e., the sum of the virial masses of every structure, including the BCG, that is directly linked to the halo. Then, for finding the mass of the BCG it is necessary to substract the sum of all the masses of the substructures to the total bound mass. Once this is done, a subhalo then is treated as a group of galaxies, including a BCG, that can be linked directly to the host halo, and then they are not considered subsubstructures anymore. After this process, our dataset is formed by a list of host halos with galaxies linked to them. In the case of the hydrodynamical simulations, we need to consider the mass ratio between the dark matter and the star content of the galaxy. We assume that the mass of a real galaxy is mainly coming from the dark matter halo surrounding the stars and gas, so we impose that the stellar mass component is not higher than 30% of the total mass.

The last part of the clean data process and galaxy selection, is to avoid contamination from low resolution particles that initially were outside the region of interest. To get rid of these particles and maintain only well resolved structures, we indicate the fraction of mass in the high resolution particles. We have considered a minimum mass fraction resolution of 0.999 (where the perfect zero contamination level would be one).

Finally we consider three cluster catalogues, with the 3D properties of haloes and subhaloes.

We have 324 regions for the two low resolution simulations, LR DMONLY and LR HYDRO, and 68 regions for the high resolution ones, HR DMONLY. We have a host halo per region with a BCG and bounded galaxies, all of them free of contamination. As discussed above, for being able to compare the three simulations, we will choose the same 68 regions.

Resolution Effects

The primary goal of this chapter was to redo the work done in Chapter 5 but using more realistic simulations. Therefore, we want to compute the galaxy density radial distribution and the LF for the 300th clusters for several bins in mass and redshift. Later, we want to fit these properties by analytical methods to finally construct a synthetic catalogue. We expect from this catalogue more realistic cluster properties because it comes from more realistic simulations. We repeat the process explained in Chapter 5.

Resolution Effects on the Luminosity Function

First, we study is the LF, defined as the number of galaxies divided by the magnitude bin difference and the total cluster area, i.e., A = π R 2 i, [START_REF] Dolag | Substructures in hydrodynamical cluster simulations[END_REF] , with i for each cluster in the bin. The LF can only be computed for simulations with baryonic information, because we need the magnitude of galaxies. Thus, we compute the LF for the low resolution hydrodynamical simulations, LR HYDRO, which contains 324 clusters. To compare with the results of SAMs corresponding to the Euclid Mock catalogue, we establish a magnitude upper limit of 24. Figure 8.1 shows the luminosity function at redshift z = 1, for the 324 central clusters. The black points with uncertainties are the number of galaxies per magnitude bin difference per total clusters' area with a Poisson distributed uncertainty over the number of galaxies (see Chapter 5). The LF is fitted by a Schechter model, following Equation 5.5. We use a MCMC to perform the fit, as explained in Chapter 5. The red and green shaded areas are the 1σ and 2σ uncertainties over the best-fit, respectively. As we observe in the figure, the number of galaxies drop after an apparent magnitude of 19, and the model does not fit the data, as one would expect from the shape for the large magnitudes.

The drop in the number of faint galaxies could be caused because of a lack of resolution in the hydrodynamical simulations. To test this hypothesis, the 300th Collaboration has run a hydrodynamical simulation of one of the 324 cluster regions at high resolution. We present in • Low resolution hydrodynamical simulations, LR HYDRO, in black.

• Low resolution dark matter only simulations, LR DMONLY, in blue.

In the Figure, each line corresponds to the mean value of the 3D galaxy mass functions of the clusters in the bin. The shaded regions are the 1σ uncertainties coming from the standard deviation across clusters. We compute the cumulative function, i.e., when increasing the mass threshold, we include galaxies which masses are above the threshold. For this reason we can observe larger uncertainties at high substructure mass because we have less remaining objects in the cluster.

First we compare the two different resolution dark matter only simulations. The galaxy mass function for both resolutions converge to the same number of substructures for the most massive ones. The main difference between the two is seen for the smaller substructures. We find many more of them for the high resolution simulations. For both mass functions we observe that the cumulative number of structures is constant for the smallest masses, indicating that there are no structures smaller than a certain threshold in relative mass (M substructure /M parent ). This threshold is different for the low and high resolution simulations. The latter show many more galaxies and extend to smaller masses. This feature is common for the three bins in mass. The only difference is that when the cluster mass is higher, we find more substructures, as expected.

We can conclude from this figure that the lack of resolution affects only the formation of smaller structures, while conserving the total mass of the cluster. Galaxies that are bigger size in the low resolution are divided in smaller ones for the high resolution.

We check now how the resolution effects affect the low resolution hydrodynamical simulations, LR HYDRO. For this we consider the same 68 clusters that we have used for the dark matter only simulations and we compute the 3D cumulative galaxy mass function on the LR HYDRO simulations, in the same three cluster mass bins. In Figure 8.3, we show the results for the hydrodynamical simulations in black, at a redshift z = 0. We can see that the three simulations converge for the more massive substructures, and again the main differences come from the low relative mass galaxies.

The slope for the LR HYDRO simulations is closer to the HR DMONLY but still we can see that the black line is slightly above the red one in the low mass regime. For the same resolution, i.e., the blue and black lines, we find more objects for the hydro simulation, and these objects are less massive. This could be due to the fact that baryonic physics avoid the strip out of the particles because of gas cooling process.

For the hydrodynamical simulation we can see in general more objects than for the LR DMONLY, but less than for HR DMONLY. This behaviour is the same for every cluster mass bin. We also find, as expected, more substructures when the mass of the clusters are larger. We conclude that baryonic physics diminish the ripping out of the objects because of cooling down processes of the gas, so we keep more smaller substructures in comparison to the same resolution dark-matter-only simulations. Also, increasing the resolution in dark matter only simulations allows us to get a closer distribution to the hydrodynamical simulations even though we still find differences for both simulations. This means that improving the resolution in dark-matter-only simulations is not equivalent to adding baryonic physics in the simulations.

Galaxy Mass Function Variation with Mass and Redshift

For the previous results we concentrated on redshift z = 0. However the redshift evolution of the galaxy mass function is fundamental for understanding structure formation processes. We present in Figure 8.4 the redshift evolution from z = 0 to z = 1 of the 3D cumulative galaxy mass function for two different cluster mass bins: Bin 1 and Bin 3, following Table 8.1, and for the LR HYDRO, LR DMONLY and HR DMONLY simulations.

The color coding that will be used in plots for the redshift evolution during the chapter will be

• Redshift z = 0 in blue.

• Redshift z = 0.3 in orange.

• Redshift z = 0.5 in green.

• Redshift z = 0.8 in red.

• Redshift z = 1 in purple.

The upper row of the figure represents the Bin 1 cluster mass (7 x 10 14 M ⊙ < M < 1 x 10 15 M ⊙ )

for LR HYDRO, LR DMONLY and HR DMONLY simulations from left to right, respectively.

Each line corresponds to the mean value of 3D galaxy mass functions of the clusters in the bin.

The shaded regions are the 1σ uncertainties coming from the standard deviation across clusters.

For each simulation the number of substructures as a function of redshift is almost constant.

This would be consistent with the self similar scenario for cluster formation. Clusters are a copy one of the others, that means that if they have the same mass, they have the same size, and their formation history is the same. Nevertheless, there is an evolution of the number of galaxies with redshift, so the clusters are not exactly self-similar one to the other, finding more galaxies at higher redshift, even though this difference is inside the 1σ uncertainties. We observe the same behaviour for the Bin 2 in mass in the middle row of the figure.

The bottom row of the figure shows the results for the Bin 3 in mass. For z > 0.5 we have no clusters in this mass range. For z = 0.5 we find only one cluster and therefore the uncertainties, computed from the dispersion among clusters, are undefined. The feature of the 3D galaxy mass function evolution with redshift is the same for both bins in mass. However, the only difference is that at higher cluster mass, there are more galaxies, as expected.

Resolution Cuts for the Galaxy Mass Function

For concluding this analysis, we are going to establish galaxy mass cuts in order to be able to compare the different simulations in a region where resolution effects do not bias the recovered cluster properties. We present in Figure 8.6 for z = 0 and for the least massive cluster mass bin, Bin 1, the ratio between the 3D cumulative galaxy mass function for every simulation with respect of HR DMONLY one. We consider the latter as a reference model as it is less affected by resolution effects. In the figure, the black line is the ratio between LR HYDRO and HR DMONLY. And the blue line corresponds to the ratio of the two dark matter only simulations, LR DMONLY and HR DMONLY. The vertical lines in the figure represent the mass cut we choose, and the color is equivalent to the color of the curve they refer to. We consider that resolution effects are negligible when the ratio is approximately one, just before decreasing.

In the case of the hydrodynamical simulation, we can see an excess of galaxies between the mass ratio cut (4 x 10 -5 ) and the one for low resolution (4 x 10 -4 ). This is also appreciated in Figure 8.3, where even if the curves between the high resolution simulation and the hydrodynamical one are overlapping we can see that the black curve is a slightly above the red one for the low mass galaxy range. As we explained, this is probably due to the inclusion of baryon physics in the simulations. Due to cooling down of gas, the smallest galaxies are not ripped out.

These two mass cuts will be used in the following, when comparing the properties of clusters in the three types of simulations considered. If we want to use the low resolution dark matter only simulation we have to use its resolution mass cut in the other simulations, for avoiding differences in the physics results related just to the resolution. Likewise, when using the hydrodynamical simulations, we will use its resolution mass cut. Here we only present, as an example, the mass cut for a single redshift and a mass bin, but we have computed it for every redshift and mass bin used before. The mass cuts will be named from now on as

• No Cut, if there is no resolution mass cut.

• HYDRO Cut, for the LR HYDRO resolution mass cut.

• LR Cut, for the LR DMONLY resolution mass cut.

CHAPTER 8. THE THREE HUNDRED PROJECT

Galaxy Density Distribution

Methodology

Now that we have checked the resolution limits, for each simulation we compute the galaxy density profiles, which represents the number of galaxies in a spherical volume at a distance r from the cluster center in R 200 units, as we did for Euclid Cluster Galaxies' Mock catalogue in Chapter 5.

We use the same bins in mass and redshift for computing the galaxy density profiles, as the ones in the previous sections. To compute the galaxy density profiles we use equally spaced logarithmic bins and the cumulative distribution. For a spherical shell at a distance r from the cluster center, we account for all the galaxies that are inside this sphere, and we compute the volume as 4πr 3 /3. The data points correspond to the mean value of the number of galaxies across all the clusters in the mass bin and over the volume of the bin. The uncertainties are the 1σ dispersion over the mean, as done in Chapter 5.

When using the HYDRO Cut (left column of Figure 8.7), the LR HYDRO simulation shows larger density towards the center of the cluster for all the bins in mass, and this difference increases with the mass bin. In terms of the mass bins, the galaxy density is higher when the mass is higher. Nevertheless, both profiles converge on the outskirts. Taking into account the results in Section 8.2, this means that the smaller objects that survive on the hydrodynamical simulations, are located towards the center. The fact that this increases with the cluster mass can be due to the fact that for a bigger size cluster there can be more fragmented galaxies, i.e., massive galaxies divided in smaller ones, that can be seen in the LR HYDRO simulations.

For the LR Cut, right column of the figure, the three types of simulations converge within 1σ. This is expected because the small structures, which are the discrepancies between the hydrodynamical and dark matter only simulations, are not kept. Nevertheless, the slope for the LR HYDRO is higher as well as the mean value of the galaxy density.

which is linear in this figure representation. This region is not considered in the following.

Variation in Mass and Redshift

For the previous results we concentrated on redshift z = 0. However the redshift evolution of the galaxy density distribution is fundamental for understanding structure formation processes. For the first cluster mass bin, we can see that even though we have applied the LR Cut, the LR HYDRO simulations present more galaxy density towards the center of the cluster where, as seen before, the small galaxies are located. This means that the LR HYDRO simulations keep smaller galaxies even when the resolution mass cut is applied.

In terms of the redshift evolution, we see the same behaviour for both simulations. At high redshift there are more galaxies towards the center, while in the outskirts the decrease is sharper.

For low redshifts the change in the slope is smoother, having less structures in the center but more in the outskirts, and this feature is common for both simulations. This can be due to an increase of the fragmentation (bigger galaxies splitting into smaller ones) at high redshift. When the cluster mass bin increases, as we can see in the middle and bottom panels of the figure, the redshift differences are more clear, evidencing what we have said before. The significant differences in the profiles in the mass bin Bin 3, can be due to the low statistics at high redshift.

The main differences we can see for both simulations is the slope of the curves. For the LR HYDRO simulations the slope is higher, while for the LR DMONLY the curves tend to smooth towards the center. This lead us to conclude that the fragmentation takes place towards the center of the cluster where most of the collisions occur in the cluster formation in the hydrodynamical simulations, and due to the gas cooling effects, these collisions are reduced. Thus small galaxies are kept.

There is a clear difference between LR HYDRO and LR DMONLY, which are performed at the same resolution, so baryons affect the structure formation. Since the low resolution for the Three Hundred Project is lower than the resolution for Euclid, as we have seen in Chapter 5, Figure 8.9 shows the 3D cumulative galaxy density profiles when the HYDRO Cut is applied, for the LR HYDRO and HR DMONLY simulations, in the left and right columns of the figure, respectively. From top to bottom we have the three cluster mass bins of Table 8.1.

In each figure we have the redshift evolution following the color coding discussed in Section 8.2.3.

For the Bin 1 cluster mass bin, we observe that even though we have applied the HYDRO Cut, the LR HYDRO simulations present more density towards the center where, as seen before, the small galaxies are located. This means that increasing the resolution in dark matter only simulations can not reproduce the baryons effect in the structure formation.

In terms of the redshift evolution, we see the same behaviour for both simulations. At higher redshift there are more galaxies towards the center, but decreasing rapidly in the outskirts. For low redshifts the change in the slope is smoother, having less structures in the center but more in the outskirts. This feature is common for both simulations. For the highest cluster mass bin, the behaviour is different for z = 0.5, and this can be due to the lack of statistics.

The main differences we can see for both simulations is the slope of the curves. For the LR HYDRO simulations the slope is higher, while for the HR DMONLY the curves tend to smooth towards the center. This lead us to same conclusion that for the low resolution case.

Modelling and Fitting

The goal is to compare the LR HYDRO and HR DMONLY simulations to see if the properties of the clusters can change. As there are resolution effects on the simulations, we need to account for them. We select to compare these two types of simulations to have a maximum of galaxies and be as realistic as possible. For this, we study, for both types of simulations, the 3D cumulative galaxy radial density profiles by fitting them with an analytical model and check the evolution of the parameters with mass and redshift, as performed in Chapter 5.

We use the HYDRO Cut, for being able to compare both simulations. The analytical model was chosen so that it can correctly fit the three types of simulations: LR HYDRO, HR DMONLY and LR DMONLY. It has been proven, by Navarro et al [START_REF] Navarro | The diversity and similarity of simulated cold dark matter haloes[END_REF], that for numerical simulations with an accurate resolution, the NFW profile differs from the data, and that the Einasto profile is a better fit. Thus, we use the Einasto profile defined by [START_REF] Einasto | On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters[END_REF][START_REF] Navarro | The inner structure of λcdm haloes-iii. universality and asymptotic slopes[END_REF] as

ρ(r) = n 0 exp -2 α r r 0 α -1 , ( 8.2) 
where n 0 , r 0 and α are the free parameters describing the model. The behaviour of the model

To fit the model we do not use the data beyond R 200 , nor bins with less than three galaxies (see darkest regions in the Figure ). The darkest regions are larger for LR HYDRO because we have more galaxies, which is in agreement with all the previous results. The model has been fitted by the same MCMC method explained in Chapter 5. The dotted lines and the shaded regions correspond to the best-fit value with its uncertainties based on the 16th, 50th and 84th

percentiles over the posterior model distribution (median and 1 σ spread). To perform the Einasto model fit in the cumulative distribution we have integrated the predicted number of galaxies on the spherical volume for each radius, r. As we can see in the figure, the Einasto profile is a very good fit to the data in all the cases.

We repeat the process for the three cluster mass bins and all the redshift bins we have. Later, we study the evolution of the three free parameters of the Einasto profile with mass and redshift.

Due to the correlation found between the best-fit parameters, we will present the 2D posterior probability distributions found from the MCMC analysis. Furthermore, the uncertainties decrease. This can be due to the fact that there are less clusters at high redshift, so the scatter is lower. However, there is a clear tendency for the evolution of the parameters. With respect to the simulation type, for HR DMONLY both parameters show a wider value range, and in general, the α value is higher. With respect to r 0 , we observe that the value is consistent for both types of simulations, while α keeps being greater at high mass for HR DMONLY. These results are in agreement with the profiles shown in Figure 8.9. At higher redshift the slope of the galaxy density profiles is higher. Following the behaviour of the Einasto model with its parameters (explained before), if the α and r 0 parameters decrease with redshift, means a higher slope towards the center that decrease rapidly towards the outskirts of the cluster, equivalently a more concentrated cluster. In addition, in Figure 8.9, the density is higher for LR HYDRO than for HR DMONLY. For this reason the value of α is higher for the latter, because its slope is smoother towards the center.

Figure 8.12 is equivalent to Figure 8.11 but for the parameters r 0 and n 0 . We observe that these parameters are highly correlated and in a similar way like for the α and r 0 and for both types of simulations. For LR HYDRO we have already explained in previous the section that baryon cooling allows to preserve structures that dark-matter-only simulations do not. In terms of the redshift and mass, the r 0 parameter decreases, and n 0 increases. The fact that n 0 increases with redshift can be due to, as explained in Section 8.3.2, that at high redshift there is more

A possible application of the Three Hundred results for Euclid

In previous sections we have discussed the effects of resolution on the galaxy density distribution, and in the LF. We have observed how the inclusion of baryonic physics in numerical simulations affect significantly both observational properties. Therefore, the main interest of this work lies in its possible application to construct a more realistic cluster catalogue for the estimation of the selection function for Euclid. The major problem with the catalogues we have used in this chapter is the lack of statistics with respect to the amount of cluster that Euclid will detect. For example, for the 68 regions we have studied, there are no central clusters for z > 0.5 at large cluster masses.

To improve the statistics with the current catalogue we could

• Use the 324 regions for the LR HYDRO simulations instead of 68 regions. The latter were used to establish a resolution mass cut. However, this resolution mass cut may be applied to the 324 regions. This will enlarge our dataset and, therefore, our statistics.

• We could use more than the central cluster in the regions. This allows us to have more clusters at low mass and at high redshift.

For the LF the HR HYDRO simulations are needed. In this thesis we have demonstrated that even just for a single cluster the LF can be well determined. The Three Hundred collaboration is currently running those simulations and we expect to have a larger sample soon.

For now one could imagine to adopt a hybrid methodology by including changes in the galaxy density distribution to approach the properties observed in the Three Hundred simulations while keeping the current Euclid LF until more HR HYDRO simulations are available.

Conclusions and Perspectives

In this chapter we have studied the optical cluster properties of the 300th Cluster catalogue between hydrodynamical and N-body simulations, accounting for resolution effects.

At the beginning, The main goal of this analysis was to repeat the analysis done for EU-CLID in Chapter 5. However, we computed the luminosity function (LF) for hydrodynamical simulations with lower resolution than the Euclid N-body simulations, and we observed a lack of galaxies in the faint part of the LF. When computing the LF for one high resolution hydrodynamical cluster, this problem was solved. For this reason we decided to perform an analysis of resolution effects in cluster properties for hydrodynamical and N-body simulations.

We computed the galaxy mass function and the galaxy density radial distribution. We fitted these properties with analytical models and we studied the distribution with mass and redshift of the free parameters of each model. Observing the results we conclude that the choice of the bins is not right. We chose the bins at redshift zero, for ensuring that cluster properties within a bin are similar while having a sufficient number of clusters per bin. However, at high redshift the number of clusters drop. For the future, it would be better to arrange the three bins in two bins, to ensure larger statistics but preserving the cluster physical properties.

When comparing N-body simulations for two different resolutions, we realized that increasing the resolution lead to fragmentation of galaxies. This means that, massive galaxies in the low resolution simulations are divided into smaller ones in the high resolution simulations. This leads to larger values of the galaxy mass function and the galaxy density. For hydrodynamical simulations, we conclude that they keep small galaxies alive possibly due to cooling processes of gas in the simulations. These galaxies are generally located towards the center of the cluster.

When increasing the resolution of N-body simulations, this feature can not be replicated. At higher redshift, this behaviour is more significant, because we find more fragmentation. Thus the galaxy density and galaxy mass function is larger at higher redshift, and mass.

The fact that baryonic physics affect the structure formation processes may affect the cluster finders performances. As seen in Chapter 5, the luminosity function does not change with the cluster mass, but with its distance. Therefore, having more fragmentation, and keeping smaller galaxies, instead of overmerging them, may affect cluster finders such as PZWAV, which looks for overdensities when identifying a cluster.

CONCLUSIONS AND PERSPECTIVES

My thesis was carried out within two main collaborations: Euclid [START_REF] Laureijs | Euclid definition study report[END_REF] and The Three Hundred [START_REF] Cui | The three hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications[END_REF], with two main topics 1. Characterization of the readout noise of the Euclid infrared detectors in the NISP instrument.

2. Study observational optical/infrared properties of galaxy clusters for the estimation of the selection function.

Infrared instruments, and in particular the NISP, acquire data using the MACC readout mode, which consists of a series of non-destructive exposures averaged into groups that form a ramp. The input flux in the detectors can then be obtained from the slope of the ramp using maximum likehood estimators, which generally assume white readout noise. We have extended these estimators to the case of correlated readout noise. Analytical expressions for the group and group difference covariance matrices are presented for the case of (1/f ) α -like correlated readout noise. These have been validated via Monte Carlo simulations.

Furthermore, we have studied the readout noise associated to NISP detectors taking advantage of long exposure (few hours) performed during laboratory dark tests at the CPPM cryogenic facilities. We have found that the NISP readout noise is mildly correlated and can be well characterized by a (1/f ) α -like model. From this we conclude that the readout noise of the NISP detectors has non-negligible correlation within the typical in-flight NISP exposure time (574 seconds).

Finally, we have performed Monte Carlo simulations of the in-flight expected NISP detector signal and noise, including a realistic background signal and correlated readout noise as measured on the ground calibration tests. From these simulations we have been able to estimate the expected bias in the on-board flux estimates during in-flight operations for which white readout noise is assumed. We find that for the spectroscopic mode of the NISP instrument, NISP-S, low background the flux bias can be up to four times larger than when accounting for the correlation in the readout noise. Nevertheless, this bias is negligible for typical sky background signals.

Therefore, we expect no significant bias in the on-board fluxes measured by EUCLID. On the other hand, for the photometric mode, NISP-P, the white noise approximation is the one that should be taking into account since the exposure time of the NISP-P mode corresponds to a frequency domain where the power spectrum is dominated by a white noise. This work is published in Publications of the Astronomical Society of the Pacific (PASP) as Jiménez Muñoz et al. [START_REF] Jiménez Muñoz | Euclid: Estimation of the Impact of Correlated Readout Noise for Flux Measurements with the Euclid NISP Instrument[END_REF].

The second part of the thesis includes a work done in the context of cosmology with galaxy clusters. The final goal was to determine the Euclid selection function through the cluster injection method [START_REF] Es Rykoff | redmapper. i. algorithm and sdss dr8 catalog[END_REF]. To carry out this project, first, we have studied the two most important observational cluster properties using the 300 deg 2 Euclid Mock catalogue [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]: the galaxy density radial profile and the luminosity function. The first of the two properties was recovered from the mock catalogue, creating bins in clusters' mass and redshift, to later be fitted by a truncated analytical Navarro-Frenk-White (NFW) [START_REF] Navarro | The structure of cold dark matter halos[END_REF] model following previous studies. Overall, we find that this model does not fit properly the data. However, we have demonstrated during this thesis that for dark-matter-only simulations, as it is the case for the Euclid Mock catalogue, and for hydrodynamical simulations, the galaxy density distribution is well-fitted by an Einasto profile [START_REF] Einasto | On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters[END_REF][START_REF] Navarro | The inner structure of λcdm haloes-iii. universality and asymptotic slopes[END_REF] at 1σ. This Einasto model should then be used for the analysis of the real Euclid data.

The luminosity function (LF) is computed using the Euclid Mock catalogue, for the same bins in mass and redshift, to later be fitted to a Schechter model [START_REF] Schechter | An analytic expression for the luminosity function for galaxies[END_REF]. Generally, this model does not fit the brightest region of the LF while it is a good fit to the fainter region. To perform a good fit to the brightest region it would suffice to establish a maximum threshold in magnitude for the galaxies, but this will need to be completed with another model to consider the faintest part. For our purposes we did not consider this cut because we wanted to reproduce the full LF.

For future works we may consider to chose a different analytical model, for example a double

Schechter function [START_REF] Ting-Wen Lan | The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function[END_REF], to improve the fit. The free parameters for both models were recorded for each bin in mass and redshift. Overall, the binning choice could be improved by choosing narrower regions, specially in redshift. In summary, the luminosity function is not well recovered by the Schechter model while the galaxy density distribution, as a first approximation, may be described by a NFW profile. However, as a perspective we consider to explore other analytical models that recover the Euclid cluster's observational properties in a more precise way.

The next step was to construct a synthetic cluster catalogue for cluster injection. To avoid computational cost problems and as a first attempt, we decided to construct a portion of 36 deg 2 on the sky within the limits of the 300 deg 2 Euclid Mock catalogue. We generated the expected number of clusters for each bin in mass and redshift randomizing the mass and redshift within the bin limits. The cluster galaxy members density distributions of the synthetic clusters were constructed from the NFW profiles using the parameters stored from the fits discussed above.

The luminosity function was chosen to be the same of the Euclid catalogue because, as discussed, the Schechter model does not describe fully the data. In practice we just draw the magnitude of the cluster galaxy members from the binned LF for each bin in mass and redshift. The cluster member galaxies' redshifts follow a Gaussian distribution with the cluster redshift as the mean, and as standard deviation, the instrumental Euclid photometric uncertainies as given by the Euclid Red Book [START_REF] Laureijs | Euclid definition study report[END_REF].

The number of member galaxies for clusters in the same bin in mass and redshift was the same. As a whole, the synthetic clusters preserve the main properties of the ones in the Euclid Mock catalogue. However, they could be improved by adding several properties we did not consider, such as: velocity dispersion, ellipticity, dispersion for the number of galaxies or photometric redshift dispersion other than the Euclid instrumental uncertainties. To have a test catalogue of galaxies to compare to the Euclid one we also simulated field galaxies from the Schechter model luminosity function, and a standard redshift distribution from Chang et al. [START_REF] Chang | The effective number density of galaxies for weak lensing measurements in the lsst project[END_REF].

The synthetic clusters were then injected into the Euclid Mock catalogue. We have performed two analysis: (i) The synthetic clusters are directly injected into the Euclid Mock catalogue without removing the detected clusters in the 36 deg 2 region, (ii) The synthetic cluster catalogue is injected into the Euclid Mock catalogue for which all the galaxies have been randomly shuffled in space and redshift, so that the original clusters are "removed". The main issue with respect to the first method is the overdensity of galaxy clusters that can overlap. This can hinder the detection of galaxy clusters by the cluster finder. As for the second method, the fact that we randomize the galaxy positions breaks the spatial correlation between structures which may affect cluster detection with respect to the original Euclid Mock catalogue. In addition, there is an overdensity of field galaxies in the 36 deg 2 region because we did not remove Mock Euclid galaxy cluster members. Overall, both methods could be improved by explicitly removing the detected cluster galaxy members. However, the first method allows us to check if the different nature of galaxy clusters affect the cluster finders, while the second method enables us to verify if the environment plays a key role in the detection of galaxy clusters.

To compute the selection function is essential to characterize the performance of a cluster finder through the completeness and purity. The PZWAV cluster finder [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF] has been ran in the four catalogues discussed above: 1) Euclid Mock catalogue, 2) synthetic cluster and field galaxies catalogue, 3) synthetic clusters injected in the Euclid Mock catalogue and 4) synthetic clusters injected in the shuffled Euclid Mock catalogue. To calculate the matchings between the output of PZWAV and the simulated catalogues we used a geometrical matching procedure by defining a volume in redshift and cluster distance [START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF]. We have checked that the distance in redshift is mainly affected by the environment but not by the properties of the cluster. On the other hand, the volume distance transversal to the line of sight depends on the size of the clusters, thus on their physical properties. Overall, the completeness and purity from PZWAV is greater for the synthetic cluster and field galaxies catalogue. The worst performance occurs for the injection catalogue including the Euclid Mock clusters. This tells us that the difference in the field galaxy spatial structure and the presence of other clusters affects significantly the detection performance. To check the effect from the environment we compared the synthetic catalogue with the injection after randomizing the galaxy position and redshift. We observe that PZWAV finds more true clusters that in the case of the other injection catalogue. Thus, the cluster overdensities are clearly affecting the detections. In addition, with respect to the full synthetic catalogue the PZWAV performance worsen. We conclude that, the environment plays a key role. Comparing the results between the Euclid Mock catalogue and the synthetic catalogue, we observe that simulated clusters with basic properties are more likely to be detected than the ones in the Euclid Mock catalogue.

In terms of number of galaxies, the synthetic clusters are observed with less richness than the Euclid ones. At the time of writing this thesis it is not clear why this is happening, and why the richness of the detected synthetic cluster depends strongly on the environmental properties. To go further in the analysis we would like to include more cluster properties and modify the ones that we have simulated with models that fit better the data. For the injection method, it would be also interesting to remove the galaxy clusters in the Euclid Mock catalogue and inject the synthetic ones at the same positions, to keep the spatial correlation between structures, and avoid "fake" overdensities. In addition, we have illustrated in this thesis the complexity of constructing a selection function either using a mock catalogue or an injection catalogue methodology. We have shown that the properties of the field galaxies in terms of the spatial correlation plays a key role and need to be reproduce accurately in both methodologies. Further work is needed to better define how to go from the properties of the real survey detected clusters to a simulation of synthetic clusters.

The final project presented in this thesis was in the framework of the Three Hundred Collaboration [START_REF] Cui | The three hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications[END_REF], for which we started a collaboration with M. De Petris, G. Yepes, W. Cui and A.

Ferragamo. The Three Hundred is a sample of 324 cluster regions that have been re-simulated with N-body simulations and with hydrodynamical simulations [START_REF] Leon | A numerical approach to the testing of the fission hypothesis[END_REF], for several mass resolutions.

The main goal of this collaboration was to construct a synthetic catalogue, as discussed above, with more realistic cluster properties from the hydrodynamical simulations. For the latter, we checked that at high resolution, an Einasto profile and a Schechter model perform a good fit to the hydrodynamical simulations. However, the lack of statistics for high resolution for hydrodynamical simulations (only one region was available) did not enable us to generate a full synthetic cluster catalogue. We have also studied the low resolution hydrodynamical simulations. We have found that in this case it is not possible to derive the LF, because of lack of resolution we are limited to an apparent magnitude about 21 in the H band. As a consequence, we decided to concentrate only on the galaxy distribution and study the resolution effects on the galaxy density profile, which can be computed for both hydrodynamical and dark-matter-only simulations. We observed that low mass galaxies are generally located towards the center of the clusters. Furthermore, hydrodynamical simulations tend to preserve small structures, that can not be found in dark-matter-only simulations, even when the resolution of the latter is improved significantly. Thus, the effect of baryonic physics in the structure formation plays a key role in the observational properties of galaxy clusters, which may affect the cluster finders' performance.

In general, we could improve the choice of binning in mass and redshift, because we have a lack of statistics at high mass and redshift. Moreover, we could have considered other clusters apart from the central one for the 324 regions, to explore a wider range in cluster mass and redshift and improve the statistics. Furthermore, the significant computational cost for high resolution hydrodynamical simulations avoids the possibility of constructing a luminosity function.

However, we could construct a synthetic catalogue by mixing realistic properties, as the galaxy density profile from the Three Hundred Project, with the luminosity functions coming from the Euclid Mock catalogue, or extrapolate the low resolution LF to fainter magnitudes.

The final objective to be reached would be to compute the selection function in the most realistic way. This will allow us to do cosmology with galaxy clusters in the context of Euclid, calculating the cluster abundance and constraining mainly the cosmological parameters σ 8 and Ω m [START_REF] Sartoris | Next generation cosmology: constraints from the Euclid galaxy cluster survey[END_REF]. For this thesis we have performed a step forward in that direction but work will be need to fully exploit the future Euclid Cluster catalogue.

Appendix A

DETAILED COMPUTATION OF THE GROUP READOUT NOISE COVARIANCE MATRIX

We detail here the computation of the group noise covariance matrix for correlated readout noise. We concentrate in the correlated readout noise terms. Other terms can be found in [START_REF] Kubik | Optimization of the multiple sampling and signal extraction in nondestructive exposures[END_REF].

The group noise covariance matrix is given by: We compute now each term of the correlated readout noise contribution: Finally, the group difference off-diagonal covariance matrix is: 

C kk = (k - 
D kl = f 6m (m 2 -1)δ (k+1)l
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 1 THEORETICAL FRAMEWORK number of particles, because the computation cost scales with N (N -1) where N is the number of particles and N -1 the sum of the pair forces between the particles. Few years later, and thanks to the development of computational power and new numerical algorithms, the N-body simulations experience an exponential improvement. Nowadays the algorithms most frequently used are: Particle Mesh (PM), Particle-Particle/Particle-Mesh (P 3 M ) and TREE codes.
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 2 2 shows the actual constraints in S 8 obtained from different measurements: CMB (top part), Cluster counts (middle part), galaxy distribution (bottom part).
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 31 Figure 3.1 -Artistic representation of the Euclid satellite from ESA. Credit: https://www. euclid-ec.org/ .
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 38 Figure 3.8 -Distortions of background galaxies due to the massive Abell 2218 galaxy cluster. Image by Hubble Space Telescope [Image credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France)]
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 310 Figure 3.10 -Number of clusters above a given redshift to be detected with overdensities N 500,c /σ f ield in the Euclid photometric survey (dotted blue and solid red lines, respectively).The histograms show the number density of clusters expected to be detected within redshift bins of width ∆z = 0.1 for the same detection thresholds (dotted cyan and solid magenta histograms, respectively). Figure adapted from Sartoris et al.[START_REF] Sartoris | Next generation cosmology: constraints from the Euclid galaxy cluster survey[END_REF].
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 3 Figure 3.11 shows the forecasted constraints on cosmological parameters from Euclid photometric clusters on the most interesting pairs of cosmological parameters. The ellipses correspond to 68 C.L. In each of the figures, the blue dotted contours are obtained by the number counts (NC) fisher matrix (FM) and the cluster power spectrum (PS) FM (Sartoris et al. [137, see]) assuming no prior information on any cosmological or nuisance parameters, for a cluster sample with a selection of N 500,c /σ f ield ≥ 3. The green dashed-dotted contours are obtained in the same way but adding strong priors on the scaling relation between the true and observed clusters mass, labelled as '+known SR'. The magenta solid contours have been obtained accounting for
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 312314812492523554 Figure, 2) the Euclid Deep Field Fornax (EDF Fornax) located in the bottom right part, cover a 10 deg 2 sky region and 3) the Euclid Deep Field South (EDF South) that covers 20 deg 2 . The latter is particularly interesting as it will be the first time this region is covered by a deep survey.Both the deep field found in the north part of the map, and the other south deep fields are the closest as possible to the Ecliptic Poles. This will allow a maximum coverage throughout the year.
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 10 It gives information about how far from the true value our data are, or what is the same, how good our fit is.

  .29) being D white kk and D white kl are the white noise approximation group noise covariance matrices for FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT

  2. They mainly correspond to manufacturing defects. The 1D distributions of the best-fit parameters and the χ 2 /N d.o.f. are shown in the right panels of Figure 4.6 excluding hot and bad-fit pixels. We show in the figure four ramps of the same detector for which we find consistent results. We observe that the distributions for the three parameters are skewed towards large values. We find that the median values for the best-fit parameters are σ = 19.70 +1.11 -0.78 e -/ √ Hz, f knee = 0.0052 +0.0018 -0.0013 Hz and α = 1.24 +0.26 -0.21 . We derive the uncertainties from the 15.8th (≡ -1σ) and 84.13th (≡ +1σ) percentiles of the distribution. FLUX MEASUREMENT WITH THE EUCLID NISP INSTRUMENT 4.5 Covariance Matrices for the NISP Instrument 4.5.
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Figure 5 .

 5 [START_REF] Einstein | The foundation of the general theory of relativity.[first published in 1916 as die grundlage der allgemeinen relativitätstheorie[END_REF] shows the distribution of galaxy clusters as a function of mass and redshift. The distribution shows a peak at redshift 1.2 and 10 13 M ⊙ . At high redshift (2 < z < 3) clusters are still forming, thus they are not massive. When redshift decreases, the cluster masses increase, having a peak at about redshift one. Following this clusters' distribution is fundamental when reproducing the catalogue properties.

4 .

 4 The posterior distribution is sampled by initializing the parameters (or walkers) in a small Gaussian around the maximum likelihood. Next, we run 200 steps of MCMC for 200 walkers. Combining all the walkers we obtain chains of 40000 samples. The first 50

  10 13 M ⊙ < M < 10 15.6 M ⊙ and 0.0008 < z < 3. Some examples of 2D galaxy density profiles with their best-fit are shown in Figure 5.6 and their respective corner plots in Figure 5.7. See the caption of the figures for more details.

5 .

 5 The one and two dimensional projections of the posterior probability distribution of the parameters are shown in Figure5.11. We can see that the characteristic magnitude, the faint-end slope and normalization are degenerate. For the bin in mass and redshift, that we are considering, the characteristic magnitude varies between 16.5 and 17, which is in agreement with Adam et al.[START_REF] Adam | Euclid preparation-iii. galaxy BIBLIOGRAPHY 203 cluster detection in the wide photometric survey, performance and algorithm selection[END_REF].6. From the posterior probability distribution we compute the best-fit with its uncertainties based on the 16th, 50th and 84th percentiles.The results of the fit are shown in Figure5.10, where the blue dashed line represents the best-fit value and the red and green shaded areas the 1σ and 2σ uncertainties. The theoretical Schechter model is a good fit to the data in the faint part of the LF, but not for the bright galaxies.We repeat the process of computing the LF profiles and fitting them by a Schechter model, for the full redshift and mass range shown in Figure5.1: 10 13 M ⊙ < M < 10 15.6 M ⊙ and 0.0008 < z < 3. Some examples of LF profiles with their best-fit are shown in Figure5.12 and their respective corner plots in Figure5.13. See the caption of the figures for more details. The corner plots show the same dependency behaviour between the parameters shown in Figure5.11. The characteristic magnitude increases with redshift. So does the normalization, φ * . The faint-end slope, varies, both increasing and decreasing, when comparing with Figure5.10, so we observe a dependency with mass and/or redshift.

Figure 5 .

 5 Figure 5.14 shows in upper right plot the best-fit parameter m * , color coded, as a function of mass and redshift. The colorbar represents the value of the parameter. The characteristic magnitude varies from 16 to 24. These values are shifted with respect to Adam et al. [134] (see Figure

Figure 6 .

 6 Figure 6.2 shows the sky coordinates in degrees RA, DEC of the member galaxies of a simulated cluster of galaxies of the Synthetic Cluster Catalogue. Each dot represents a galaxy and the colorbar its apparent magnitude in the H-band. The cluster has a mass of M = 10 x 10 15.1

10 14 M

 14 ⊙ < M < 10 15.45 M ⊙ and 0 < z < 3. The cluster distribution as a function of the mass and redshift is shown in figure 6.3. Clusters are concentrated at low mass around redshift one.

Figure 7 .

 7 Figure 7.1 shows the purity versus completeness for several cuts in detection's percentages, represented as dots, in increasing order from left to right, i.e., 1% of detections correspond to low completeness and high purity, and 99% of detections refers to high completeness and low purity. The top panel shows the values of purity and completeness depending on the geometrical parameter ∆z for four values: 0.05, 0.1, 0.15 and 0.2 in blue, orange, green and red, respectively, for a fixed value of R M P of 2 Mpc. The bottom panel corresponds to values of purity and completeness depending on the geometrical parameter R M P for two values: 1 Mpc and 2 Mpc, in blue and red, respectively, for a fixed value ∆z of 0.2.
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 8 THE THREE HUNDRED PROJECT 147 the low resolution ones. So to check resolution effects, we choose a mass threshold of 1 x 10 10 M ⊙ , corresponding to 50 dark matter particles.

Figure 8 .

 8 Figure 8.2 the LF for the high resolution hydrodynamical simulation. The process to compute

Figure 8 .

 8 [START_REF] Lemaître | L'expansion de l'espace[END_REF] shows the 3D cumulative galaxy density profiles at redshift z = 0, for the three mass bins, from top to bottom, Bin 1, Bin 2, Bin 3 (see Table8.1), and for two resolution mass cuts, discussed before. In the figures in the left column, where we have applied the HYDRO Cut, we compare LR HYDRO with HR DMONLY. The right column of the figure, where we have applied the LR Cut, we compare the three types of simulations LR HYDRO, LR DMONLY and HR DMONLY. The data points are shifted with respect to LR HYDRO for visualization purposes.

Figure 8 . 1 :

 81 Figure 8.8 shows the 3D cumulative galaxy density profiles when the LR Cut is applied, for the LR HYDRO and LR DMONLY simulations, in the left and right columns of the figure, respectively. From top to bottom we present results for the three cluster mass bins of Table 8.1: Bin 1, Bin 2 and Bin 3, respectively. In each figure we have the redshift evolution following the color coding explained in Section 8.2.3. The data points are shifted in radius with respect to z = 0 for visualization purposes.

Figure 8 .

 8 Figure 8.11 shows the evolution of the parameters α and r 0 with the redshift for LR HYDRO in the left column, and HR DMONLY in the right one. The shaded colored regions represent the 68 % C.L. We show results for the cluster mass bins Bin 1, Bin 2 and Bin 3 from top to bottom, respectively. We can see in the figure that the values of r 0 and α decrease with increasing redshift.
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Table 8 .

 8 1 -Cluster mass bins considered in this chapter. The first bin, called Bin 1, corresponds to cluster masses: 7 x 10 14 M ⊙ -1 x 10 15 M ⊙ . The second bin, called Bin 2, corresponds to cluster masses: 1 x 10 15 M ⊙ -2 x 10 15 M ⊙ . The third bin, called Bin 3, corresponds to cluster masses: 2 x 10 15 M ⊙ -1 x 10 16 M ⊙ . within a bin are similar while having a sufficient number of clusters per bin. The color code used in this figure will be the same for the next results during the chapter • High resolution dark matter only simulations, HR DMONLY, in red.

In this chapter the convention of c = 1 is used.

Acknowledgements

Introduction

ACKNOWLEDGEMENTS

Starting these acknowledgements is not easy, but I hope not to forget anyone (sorry in advance, just in case). By the way, for those of you who can't speak Spanish: sorry not sorry.

Modelling and Fitting of the the Galaxy Mass Function

The 3D cumulative galaxy mass function can be well approximated by a power-law function as in [START_REF] Dolag | Substructures in hydrodynamical cluster simulations[END_REF],

where N -4 is a normalization, α the slope and m sub /M vir is the ratio between the virial mass of the substructures (galaxies) and their host halo. For the best-fit value parameters we perform a least square fits of the mean value accounting for the uncertainties computed from the dispersion across clusters as shown in Figure 8.3. In addition, we also perform a fit of the cumulative galaxy mass function per clusters and we compute the dispersion of the best-fit parameters across clusters.

We present in Figure 8.5 the evolution with redshift for both, the normalization and the slope parameters of the power-law fit, for the three cluster mass bins discussed above, and for the three types of simulations we are considering. From left to right we represent the results for the three cluster mass bins Bin 1, Bin 2 and Bin 3, respectively, as defined in Table 8.1. As in the previous plots, the black color represents LR HYDRO, the red one HR DMONLY and the blue LR DMONLY. The redshift interval we are considering is 0 < z < 1. The points represents the best fit parameters for the power-law fit over the mean 3D cumulative galaxy mass function (distribution shown in Figure 8.3). The uncertainties are computed from the dispersion of the power-law fit of the 3D cumulative galaxy mass function distribution per cluster, and from the intrinsic uncertainty of the fit of the mean cumulative galaxy mass function. The upper row of the figure corresponds to the slope parameter, α. We see that we have a larger slope, in absolute value, for the LR HYDRO, followed by HR DMONLY and, finally, LR DMONLY, as we can check also in the Figure 8.3. In terms of redshift, the evolution is small, almost non-existent, and as expected from Figure 8.4. For the more massive bin, the plot in the right panel, we can see, that for z > 0.5, as we have seen in the Figure 8.4, we do not find clusters, so we show no results. In addition, as we discussed for Figure 8.4, at z = 0.5 the uncertainties are small because we only have one cluster. For the normalization parameter, N -4 , we find equivalent results, with no evolution with redshift. These results are in agreement with Dolag et al. [START_REF] Dolag | Substructures in hydrodynamical cluster simulations[END_REF], which did a similar analysis but in a smaller cluster sample both in mass and redshift.
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degeneracy with respect to the previous cases. The main behaviour we observe is that even with the same resolution mass cut, both simulations shows different parameter values. The α parameter, the curvature, is higher for the HR DMONLY but the n 0 is lower. The fact that α is higher and n 0 is lower for the HR DMONLY simulations, tell us that the galaxy density is lower, as expected. In addition, α decreases with redshift, while n 0 increases, for both types of simulations. So these results are also in agreement with the previous ones in Figure 8.9. We can conclude that the Einasto model performs a good fit of the data because the redshift and mass evolution of its parameters reproduce the data behaviour.

Résumé

Euclid est une mission satellite de classe moyenne qui sera lancée par l'ESA en 2023 et qui est composée de deux instruments : l'instrument Visible (VIS) et le spectromètre et photomètre dans le proche infrarouge (NISP). Il est principalement consacré à la cosmologie et entend dévoiler la nature de l'énergie et de la matière noire en utilisant diverses sondes cosmologiques, comme par exemple la distribution des amas de galaxies en masse et en redshift. 

Abstract

Euclid is a Medium Class satellite mission to be launched by ESA in 2023 and composed of two instruments: the Visible instrument (VIS) and the Near Infrared Spectrometer and Photometer (NISP). It is mainly devoted to cosmology and intends to unveil the nature of the Dark Energy and the Dark Matter by using various cosmological probes, such as for example the galaxy clusters distribution as a function of their mass and redshift. This thesis is focused, first, in the estimation of the implications of correlated readout noise in the NISP detectors for the final in-flight flux measurements. We find that for the expected sky background the current on board algorithm will provide unbiased flux estimates. Second, in the construction of a synthetic catalogue of galaxy clusters using analytical models that reproduce cluster galaxy observational properties such as: the luminosity function and their galaxy density distribution. These properties are inferred from two simulated catalogues: a semi-analytical (SAMs) mock catalogue as provided by Euclid Collaboration, and a hydrodynamical simulated cluster catalogue, coming from the 300th Project. Finally, our synthetic catalogue is used for inferring the selection function, which is essential for computing the cluster number counts, using a cluster injection technique. We conclude that cluster injection technique is a promising alternative to fill simulation methods. Furthermore, we find that in both cases special care is needed to reproduce the clusters and background properties.