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This study is an attempt towards a better understanding of the length scale effects on the bending response of the granular beams. The current work allows to investigate the interactions between the theoretical models, granular materials and the included effective parameters. To this aim first, a unidimensional discrete granular chain resting on the Winkler foundation is considered. This problem can be considered as a simple model to rigorously study the effects of the microstructure on the static and dynamic behavior of the equivalent continuum structural model. The unidimensional granular chain consists of uniform rigid grains confined by discrete elastic interactions with both shear and rotational springs, to take into account the lateral granular contributions. The presented repetitive discrete system can be referred to elastic lattice model or discrete Cosserat chain with two independent degrees of freedom (DOF) (the transversal displacement and the rotation) for each grain with the consideration of shear interaction. Accordingly, the deformation of this granular model subjected to a uniform distributed loading, are investigated theoretically for various boundary conditions defined at the grain level. Such a discrete model permits to introduce the size effect (grain dimension) in the bending formulation of a microstructured granular beam. The length scale at which the system is probed is an important issue bridging together multi-scale behavior and heterogeneity. It is shown that for an infinite number of grains, the difference equations governed to the discrete system asymptotically converge towards the differential equations of the Bresse-Timoshenko continuum beam (neglecting the length scale) resting on Winkler foundation (also classified as a continuous Cosserat beam model). Next, a twin numerical problem is studied to compare the exact analytical results with the numerical ones simulated by the discrete element method (DEM). The natural frequencies of free vibrational granular model are analytically calculated for whatever modes. The results clarify the dependency of the beam dynamic responses to the beam length ratio. In the presence of internal (microstructural) length scales, the elastic wave propagation problem involves an interplay between wave dispersion and structural features. The wave dispersive properties of this discrete model are investigated also in the Brillouin zone. Eventually, through the continualization of the coupled difference equations system governing the discrete beam, a nonlocal elasticity Cosserat continuum model is obtained. The process of continualization consists in approaching the difference operators by differential operators applied either by the polynomial or by the rational development of initial differential operators in which a length scale appears. It is shown that both the granular model and the nonlocal beam model give very close which underlines the relevance of our approach. In the end, a two-dimensional granular model connected elastically to the lateral and diagonal neighbors, is studied. The equation of the motion of this 2D system is obtained and continualized using six material parameters. Furthermore, we investigate an efficient formulation of nonlinear micropolar continuum model based on a new contribution of the relative micro rotations. Thus, a novel relative rotation tensor is used as a measure of deformation in addition to the classical strain tensor and the wryness tensor. The consequences of the proposed micropolar model are then discussed with the aid of numerical examples. To this aim, several numerical applications of 2D plate specimens subjected to in-plane loads are considered by performing a finite element code based on a variational formulation. Some new key features of the novel model, in comparison with the classical one, are illustrated by the sensitive numerical analysis.

iii Titre : Structures granulaires avec les interactions de cisaillement : approches discrètes et non locales Mots clés : Chaîne granulaire, Mécanique du continu micropolaire, Formulation discrète de Cosserat, Dispersion des ondes, Poutres non locaux, DEM Résumé : L'objectif de ce travail est d'obtenir une meilleure compréhension des effets d'échelle de longueur sur la réponse en flexion des poutres granulaires. Cette étude nous permet de mieux comprendre les liens entre les modèles théoriques, les matériaux granulaires et les paramètres effectifs inclus. Dans ce but on considère tout d'abord, une chaîne granulaire discrète unidimensionnelle reposant sur la fondation de Winkler. Ce problème peut être considéré comme un modèle simple pour étudier rigoureusement les effets de la microstructure sur le comportement statique et dynamique du modèle structurel continu équivalent. La chaîne granulaire unidimensionnelle est constituée de grains rigides uniformes confinés par des interactions élastiques discrètes avec des ressorts de cisaillement et de rotation, pour prendre en compte les contributions granulaires latérales. Le système discret répétitif présenté peut être appelé modèle de réseau élastique ou chaîne de Cosserat discrète avec deux degrés de liberté (DOF) indépendants pour chaque grain en tenant compte de l'interaction de cisaillement. Les déformations d'un tel modèle granulaire soumis à un chargement réparti uniforme, sont étudiées théoriquement pour différentes conditions aux limites. Un tel modèle discret permet d'introduire l'effet de taille (dimension de grain) dans la formulation de flexion d'une poutre granulaire micro-structurée. L'échelle de longueur à laquelle le système est sondé est un problème important associant comportement multi-échelle et hétérogénéité. On montre que pour un nombre infini de grains, les équations aux différences régies par le système discret convergent asymptotiquement vers les équations différentielles de la poutre continue de Bresse-Timoshenko (en négligeant l'échelle de longueur) reposant sur la fondation de Winkler (également classée comme poutre continue de Cosserat). Ensuite, un problème numérique jumeau est étudié pour comparer les résultats analytiques exacts avec ceux numériques simulés par la méthode des éléments discrets (DEM). Les fréquences naturelles d'un tel modèle granulaire sont calculées analytiquement pour tous les modes. Les résultats obtenus clarifient la dépendance des réponses dynamiques de la poutre avec sa longueur. En présence d'échelles de longueur internes (microstructurales), le problème de propagation des ondes élastiques implique une interaction entre la dispersion des ondes et les caractéristiques structurelles. Les propriétés de dispersion des vagues de ce modèle discret sont également étudiées dans la zone de Brillouin. Finalement, grâce à la continualisation du système d'équations aux différences couplées régissant l'évolution de la poutre discrète, un modèle continu de Cosserat à élasticité non locale est obtenu. Le processus de continualisation consiste à approcher les opérateurs aux différences impliqués dans les équations du système discret par des opérateurs différentiels obtenus soit par troncature polynômiale, soit par développements approchés rationnels dans lesquels apparaît une échelle de longueur. Enfin, un modèle granulaire bidimensionnel reliés élastiquement aux voisins latéraux et diagonaux, est étudié. Les équations du mouvement sont obtenues et continualisées par six paramètres de liaisons intergranulaires. De plus, nous étudions une formulation efficace d'un modèle de continuum micropolaire non linéaire basé sur une nouvelle contribution des micro-rotations relatives. Ainsi, un nouveau tenseur de rotation relative est utilisé comme mesure de déformation en plus du tenseur de déformation classique et du tenseur de torsion. Les conséquences du modèle micropolaire proposé sont ensuite discutées à l'aide d'exemples numériques. Dans ce but, plusieurs applications numériques d'éprouvettes de plaques 2D soumises à des charges dans le plan sont envisagées en réalisant un code d'éléments finis basé sur une formulation variationnelle xi Due to the importance of processing scale, using particulate material has become more and more popular. Large number of raw materials entering the industries are granular in nature. According to the huge applications of granular material in diverse industries such as pharmaceutical powders, food engineering, and agricultural grains, minerals, civil engineering, it is important to identify the characteristic behavior of such materials, when externally excited. Despite the simplicity of the granular medium by introducing the simple interactions at the micro scale, sophisticated nonlinear features emerge at the macro scale both in mechanical and morphological aspects (Nicot and Darve [START_REF] Nicot | The H-microdirectional model: accounting for a mesoscopic scale[END_REF], Vardoulakis. [START_REF] Vardoulakis | Cosserat continuum mechanics with applications to granular media[END_REF]).

LIST OF TABLES

Classical continuum mechanics suffer from the absence of internal scale effects.

This might be insufficient for analyzing the granular media, in which both the nonlocal effects (internal length) of the interactions and grain rotation may play an important role in the response of the system. In order to adapt a standard continuum theory to granular materials, it is necessary to introduce the independent rotational degrees of freedom (DOF) in addition to the conventional translational ones. This helps to describe accurately the relative movements between the microstructure and the average macroscopic deformations. One may obtain higher-order gradient continua with additional degrees of freedom. One may also obtain Cosserat modeling that consequently leads to a non-classical continuum or polar continuum theories (Cosserat type theories, e.g. Cosserat and Cosserat [START_REF] Cosserat | Theories of the deformable bodies[END_REF]; Nowacki [START_REF] Nowacki | The linear theory of micropolar elasticity[END_REF]). Voigt [START_REF] Voigt | Theoritical studies on the elasticity relationships of cristals[END_REF] was the pioneer of developing this concept who first showed the existence of couple-stress in materials.

Basically, as it was mentioned above, to deal with granular media, it may be necessary to define additional degrees of freedom or higher-order gradients (for instance Mindlin [6] and Aifantis [START_REF] Aifantis | On the role of gradients in the localization of deformation and fracture[END_REF]) which permits also to study the nonlocal effects and capture the internal length scale of the material (Truesdell and Noll [8], Toupin [START_REF] Toupin | Elastic materials with couple-stress[END_REF] and Truesdell [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF]). This leads to the enriched formulations of Cosserat-type or micro-polar type theories which possess both rotational degrees of freedom in addition to the conventional translational ones. Many studies have been done recently to study granular media using micropolar models ((Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF], Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF], Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF],

Poorsolhjouy and Misra [START_REF] Poorsolhjouy | Grain-size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials[END_REF] and Misra et al. [START_REF] Misra | Granular Material Models across Scales, mechanics Research Communications[END_REF])).

In beam analysis, the Bresse-Timoshenko model takes into account both beam shear flexibility and rotatory inertia (Bresse [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions Gautier-Villars[END_REF] and Timoshenko [17, [18]). The effects of shear and rotational inertia can be significant in the case of calculating eigenfrequencies for short beams, or in the case of sufficiently small shear modulus.

On the other hand, in presence of length scales, the elastic wave propagation problem involves an interplay between wave dispersion and structural features. The wave propagation characteristics of conventional forms of matter are well understood and well documented. In contrast, waves in granular media are more complex due to the discrete nature of these systems, which may include nonlinear interactions. Considerable interest in the dynamic response of granular media exists in the geomechanics community typically involving acoustics and wave propagation in sand, gravel and rock materials. Mechanical energy is transferred through a structured wave-guide network which is created by granular media. The key element in the mechanics of a granular system is the force chain. It is along these preferentially stressed chains of particles that waves are transmitted. These nonlinear chains are heavily dependent on the geometry of the bed and are prone to rearrangement even by the slightest of forces.

Dispersion is a real issue in wave propagation since each granular element acts as a filter for the frequencies (letting the low frequencies or large wave-lengths pass through).

In addition to dispersion, the material can delay or block the high frequencies (short wavelengths). Classical elasticity theories are not suitable for capturing the wave dispersion in granular materials when the microstructured influence is predominant in the wave propagation. For these cases, the long-range interactions are important to take into account in the deformation process (for instance the book of Bagdoev et al. [START_REF] Bagdoev | Wave Dynamics of Generalized Continua[END_REF] or

Vardoulakis [START_REF] Vardoulakis | Cosserat Continuum Mechanics With Applications to Granular Media[END_REF]).

It is noteworthy to mention that one of the efficient approaches to simulate granular media consists in a discrete element method (DEM). This method was first applied in granular media for a class of problems that cannot be solved through analytical or continuous methods (Cundall and Strack [21], Serrano and Rodriguez-Ortiz [START_REF] Serrano | A contribution to the mechanics of heterogeneous granular media[END_REF]). Using this method to analyze the behavior of continuum media provides new insights into the mechanical behavior of these materials. Newton's second law is applied to determine the displacements and rotations of each particle. Today, there are many open-source and commercial DEM programs available. YADE is an open-source DEM software that uses object-oriented (OO) programming techniques. The location and trajectory of each individual particle are calculated through Newton's second law. The forces and movements of particles are calculated basically from their contact interactions. In DEM, the interactions between the particles are obtained from simple contact laws while the interaction forces are deducted through the interatomic potential in the molecular dynamics simulations.

Literature Review

Cosserat continuum theories belong to the larger class of generalized continua which introduce intrinsic length scales into continuum mechanics via higher-order gradients or additional degrees of freedom (Eringen [23, [24], Forest [START_REF] Forest | Generalized continua[END_REF]). Feng [START_REF] Feng | Percolation properties of granular elastic networks in two dimensions[END_REF] analyzed the behavior of the granular medium considering normal, shear and rotation interactions. In contrast, the classical continuum mechanics ignore the rotational interactions among particles and neglect the size effect of material particles. Micropolar models could interpret both the complex discrete and continuum microstructures such as granular media (Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF], Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF], Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF],

Poorsolhjouy and Misra [START_REF] Poorsolhjouy | Grain-size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials[END_REF], Massoumi et al. [START_REF] Massoumi | Static bending of granular beam: Exact discrete and nonlocal solutions[END_REF] and Misra et al. [START_REF] Misra | Granular Material Models across Scales, mechanics Research Communications[END_REF]), soils (Matsushima et al. [START_REF] Matsushima | Grain rotation versus continuum rotation during shear deformation of granular assembly[END_REF] and Bourrier et al. [START_REF] Bourrier | Discrete modeling of granular soils reinforcement by plant roots[END_REF]), metamaterials (Barchiesi et al. [START_REF] Barchiesi | Mechanical metamaterials: a state of the art[END_REF], Vescovo and Giorgio [START_REF] Vescovo | Dynamic problems for metamaterials: review of existing models and ideas for further research[END_REF], Giorgio et al. [START_REF] Giorgio | In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials[END_REF] and Misra et al. [START_REF] Misra | Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing[END_REF]).

In a physical sense, each point of the material could be asymptotically equivalent to a rigid body. As a result, three degrees of freedom can be defined for a rigid body in 2D

analysis. The ideas of the micropolar continuum were presented at the end of the 19th century by Kelvin, Helmholtz, Duhem, Voigt and Cosserat and Cosserat [START_REF] Cosserat | Sur la théorie de l'elasticité[END_REF]. A new aspect of this theory is the introduction of couple stresses in addition to the conventional ones (Truesdell and Toupin [35]). Several researchers like Aero and Kuvshinskii [36, [37],

Toupin [START_REF] Toupin | Elastic materials with couple-stress[END_REF], Mindlin and Tiersten [START_REF] Mindlin | Effects of couple stresses in linear elasticity[END_REF] and Eringen [39, [40] investigated the linear Cosserat theory. On the other hand, the non-linear micropolar continuum was studied in the early publications by Toupin [START_REF] Toupin | Theories of elasticity with couple-stress[END_REF], and more recently by Pietraszkiewicz and Eremeyev [START_REF] Pietraszkiewicz | On natural strain measures of the non-linear micropolar continuum[END_REF] (see also Eremeyev and Pietraszkiewicz [START_REF] Eremeyev | Material symmetry group and constitutive equations of micropolar anisotropic elastic solids[END_REF] and La-Valle and Massoumi [START_REF] La-Valle | A new deformation measure for micropolar plates subjected to in-plane loads[END_REF]).

The deformation of the micropolar continuum could be defined through the position vector and the three orthonormal directors which model the orientation changes. This method could be used only for small deformation (Grioli [START_REF] Grioli | Elasticita asimmetrica[END_REF], Kafadar and Eringen [START_REF] Kafadar | Micropolar media-I. The classical theory[END_REF] and Ramezani and Naghdabadi [START_REF] Ramezani | Energy pairs in the micropolar continuum[END_REF]). Usually, the strain measures are presented by the Cosserat deformation and wryness tensors (Kafadar and Eringen [START_REF] Kafadar | Micropolar media-I. The classical theory[END_REF] and Eringen and Kafadar [START_REF] Eringen | Polar field theories[END_REF]).

Modeling continuum media with granular models (Cosserat discrete) which involve intrinsically the influence of size effects (grain diameter), allows for taking into account the nonlocal effect. The approaches for solving repetitive cell structures problems is applying finite difference calculus and obtaining the exact solutions and then making a continuous approximation (Bažant and Christensen [START_REF] Bažant | Analogy between micropolar continuum and grid frame-works under initial stress[END_REF]). Continualizing such a discrete system composed of repetitive periodical cells leads to the nonlocal continuum models (Bacigalupo and Gambarotta [START_REF] Bacigalupo | Identification of non-local continua for lattice-like materials[END_REF], Bacigalupo and Gambarotta [START_REF] Bacigalupo | Enhanced dynamic homogenization of hexagonally packed granular materials with elastic interfaces[END_REF] and Picandet et al. [START_REF] Picandet | On the failure of a discrete axial chain using a continualized nonlocal Continuum Damage Mechanics approach[END_REF]). For an infinite number of grains when this internal length approaches zero, the nonlocal continualized model converges asymptotically toward the local continuum one.

The advantage of discrete models in comparison with the continuum ones is their ability to describe better the inhomogeneous effects at the particle level. In recent decades, several models have been developed on the granular chains in order to understand deeper the static and dynamic behavior of these structures and predict more precisely the wave dispersion. Microstructural models of granular media based on both translation and rotational degrees of freedom have been initially investigated for regular granular packing by Duffy [START_REF] Duffy | Stress-strain relations and vibrations of granular medium[END_REF] and for random granular packing by Digby [START_REF] Digby | The effective elastic moduli of porous granular rock[END_REF] and Chang [START_REF] Chang | Micromechanical modelling of constitutive relations for granular material[END_REF]. Mühlhaus and Vardoulakis [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF] analyzed the influence of additional degrees of freedom on the familiar translational motion (Cosserat-type theories). This has led to formulations of the micro-polar type or Cosserat-type theories for random packing of granulates (Suiker et al. [START_REF] Suiker | Surface waves in a stratified half space with enhanced continuum properties[END_REF]). Chang and Ma [START_REF] Chang | Elastic material constants for isotropic granular solids with particle rotation[END_REF] studied the random packing of grains based on linear elastic contact interactions with the isotropic distribution. Using the same concept for static analysis, the buckling behavior of the granular chain has recently been investigated by Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF]. Schwartz et al. [START_REF] Schwartz | Vibrational modes in granular materials[END_REF] studied the vibrational behavior of solid grains by having particle rotation and translation together (Cosserat discrete model) while assuming only shear elastic interaction for both ordered and disordered packings. The model of Schwartz et al. [START_REF] Schwartz | Vibrational modes in granular materials[END_REF] has been generalized using a discrete Cosserat model with the consideration of both shear and rotation interactions (Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF],

Pichard et al. [START_REF] Pichard | Localized transversal-rotational modes in linear chains of equal masses[END_REF], Vasiliev et al. [START_REF] Vasiliev | A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations[END_REF] and Massoumi et al. [START_REF] Massoumi | Static bending of granular beam: Exact discrete and nonlocal solutions[END_REF] for instance). In particular, Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] studied both the dispersive wave propagation properties in the granular chain with both bending and shear interactions, and also the static response of the finite granular beam under distributed lateral forces. Furthermore, wave propagation properties of the infinite and a semi-infinite granular chain were investigated by Pichard et al. [START_REF] Pichard | Localized transversal-rotational modes in linear chains of equal masses[END_REF].

The Bresse-Timoshenko beam model is also a generalization of the Euler-Bernoulli model and admits kinematics with two independent fields, a field of transverse displacement and a field of rotation. Timoshenko pointed out that the effects of crosssectional dimensions on the beam dynamic behavior and frequencies could be significant.

Timoshenko [17, [18] calculated the exact eigenfrequencies for such a beam with two degrees of freedom resting on two simple supports. Several lattice models have been developed based on microstructured Timoshenko in order to go further in understanding the structure behavior (see Ostoja-Starzewski [START_REF] Ostoja-Starzewski | Lattice models in micromechanics[END_REF] and Attar et al. [START_REF] Attar | Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model[END_REF]). The static and dynamic properties of a Cosserat-type lattice interface were studied by Vasiliev et al. [START_REF] Vasiliev | A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations[END_REF].

Calculation of eigenfrequencies for a Bresse-Timoshenko beam with any boundary conditions and elastic interaction with a rigid medium is obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF] or Elishakoff et al. [START_REF] Elishakoff | Three alternative versions of Bresse-Timoshenko theory for beam[END_REF] (see more recently Elishakoff [START_REF] Elishakoff | Handbook on Timoshenko-Ehrenfest and Uflyand-Mindlin plate theories[END_REF] and Challamel and Elishakoff [START_REF] Challamel | A brief history of first-order shear-deformable beam and plate models[END_REF]). Bresse-Timoshenko beam theory is merely a onedimensional Cosserat continuum medium by considering two independent translational and rotational degrees of freedom (Rubin [69] and Exadaktylos [START_REF] Exadaktylos | Overview of micro-elasticity theories with emphasis on strain gradient elasticity: part I -Theoretical considerations[END_REF]). Thus, there is a fundamental link between these two continuum theories. In this thesis, we will develop a bridge between a discrete Cosserat theory for the granular system and an equivalent continuous one.

In the past few years, several studies focused on the investigation of the equivalent continua formulations from the lattice model by discretizing a continuum beam through periodic discrete elements. The granular models are able to predict both the static and dynamic response of lattice by taking into account the effects of the motions of the neighborhood (Eringen [71, [23, [24]). Although the lattice models propose a very large number of degrees of freedom for complicated geometry but in many cases, they permit to obtain analytical results simply. The nonlocal continuum models are derived by continualizing the Lagrangian difference equations governing the granular model. To this aim, the higher order continuum differential equations are obtained eventually through the approximations of difference equations by using the polynomial expansions based on the Taylor series (see for instance Kruskal and Zabusky [START_REF] Zabusky | Stroboscopic perturbation for treating a class of nonlinear wave equations[END_REF] or more recently by Gul et al. [START_REF] Gul | Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics[END_REF]) or rational expansions based on Padé approximants (Askes and Metrikine [START_REF] Askes | Higher-order continua derived from discrete media: continualization aspects and boundary conditions[END_REF],

Andrianov et al. [START_REF] Andrianov | Numerical investigation of 1D continuum dynamical models of discrete chain[END_REF]). Challamel et al. [START_REF] Challamel | Statics and dynamics of nanorods embed-ded in an elastic medium: nonlocal elasticity and lattice formulations[END_REF] investigated the nonlocal model for an axial lattice loaded by distributed forces and in interaction with an elastic medium.

In the literature, there are several general strategies to model the microstructure of a one-dimensional granular beam for bending. One strategy is based on pure rotational interactions, which consider only the elastic rotational springs, and take into account the bending effect; they are referred to as Hencky's chain model (Hencky [77] and Naschie [START_REF] Naschie | Stress, stability and chaos in structural engineering: An energy approach[END_REF]) and lead to an equivalent Euler-Bernoulli continuum beam. Challamel et al. [START_REF] Challamel | Eringen's stress gradient model for bending of nonlocal beams[END_REF] studied the bending response of nonlocal Euler-Bernoulli under lateral loads using the nonlocal elastic model of Eringen. Gomez-Silva and Zaera [START_REF] Gomez-Silva | Analysis of low order non-standard continualization methods for enhanced prediction of the dispersive behaviour of a beam lattice[END_REF] investigated different continualization methods for a one-dimensional Hencky beam model assuming only bending interactions. Another approach to model the microstructure of a beam consists in including the shear springs in addition to the rotational ones in order to simulate the shear interactions which are leading to an equivalent Timoshenko nonlocal beam (Bresse [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions Gautier-Villars[END_REF] and Timoshenko [17, [18]). Wave propagation of the granular beam assuming only shear effects has been studied by Schwartz et al. [START_REF] Schwartz | Vibrational modes in granular materials[END_REF] and for axial, shear, and rotational interactions by Feng [START_REF] Feng | Percolation properties of granular elastic networks in two dimensions[END_REF] (see also Nejadsadeghi et al. [START_REF] Nejadsadeghi | Frequency band gaps in dielectric granular metamaterials modulated by electric field[END_REF], Misra and Nejadsadeghi [START_REF] Misra | Longitudinal and transverse elastic waves in {1D} granular materials modeled as micromorphic continua[END_REF] and Nejadsadeghi and Misra [START_REF] Nejadsadeghi | Role of higher-order inertia in modulating elastic wave dispersion in materials with granular microstructure[END_REF]). The wave dispersion properties of the discrete granular beam under a discrete Winkler-type foundation has been studied by Massoumi et al. [START_REF] Massoumi | Bending/Shear wave dispersion analysis of granular chains -discrete and enriched continuous Cosserat modelling[END_REF],

which can be viewed as a discrete formulation of a Bresse-Timoshenko beam under a distributed Winkler-type foundation, as investigated by Manevich [65] also in term of wave dispersion properties.

Due to the importance of dynamic properties and functions of one-dimensional granular media, several studies have been done in various domains. Toward this aim, studying the phenomena involved using simple analytical models is beneficial.

Starosvetsky et al. [START_REF] Starosvetsky | Scattering of solitary waves and excitation of transient breathers in granular media by light intruders and no precompression[END_REF] studied the dynamic behavior of nonlinear granular chains with Hertz interaction. The problem of nonlinear perturbations in the one-dimensional granular chain is investigated by Nesterenko [START_REF] Nesterenko | Propagation of nonlinear compression pulses in granular media[END_REF] in Hertzian contact. Herbold et al. [START_REF] Herbold | Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap[END_REF] analyzed the formation and propagation of nonstationary signals in linear and nonlinear diatomic periodic one-dimensional granular chains. The free vibration of a granular chain with both bending and shear granular interactions rested on simply supported boundary conditions resting on Winkler elastic foundations is studied by Massoumi et al. [START_REF] Massoumi | Exact solutions for the vibration of finite granular beam using discrete and gradient elasticity Cosserat models[END_REF]. In the present study, the same discrete Cosserat model with both rotation and shear elastic interactions will be considered, which could be understood as an equivalent discrete Bresse-Timoshenko model (Bresse [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions Gautier-Villars[END_REF] and Timoshenko [17, [18]-see also Challamel and

Elishakoff [START_REF] Challamel | A brief history of first-order shear-deformable beam and plate models[END_REF]).

It is noteworthy to mention that detecting the constitutive equations and consequently identifying the material parameters, is one of the most important points of the micropolar theories. While studying the classical continuum model in isotropic materials only is needed to present two Lamé parameters, this might vary to six or more material moduli for the micropolar models. Generally, there exist two major strategies to obtain these material parameters. The first approach concerns defining various experimental tests based upon measuring size effects that have been reported (Gauthier and Jahsman [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF], Lakes [START_REF] Lakes | Experimental methods for study of Cosserat elastic solids and other generalized continua[END_REF], Mora and Waas [START_REF] Mora | Measurement of the Cosserat constant of circular-cell polycarbonate honeycomb[END_REF] and Beveridge et al. [START_REF] Beveridge | The micropolar elastic behaviour of model macroscopically heterogeneous materials[END_REF]). To this aim, the specimens of similar material and geometry are tested for various sizes to identify any variation in stiffness with size. Lakes et al. [START_REF] Lakes | Holographic screening method for microelastic solids[END_REF] presented a method that can identify micropolar materials without testing the various sample size. An alternative method is using different homogenization procedures (Cielecka et al. [START_REF] Cielecka | Elastodynamic behaviour of honeycomb cellular media[END_REF], Larsson and Zhang [START_REF] Larsson | Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics[END_REF] and Ostoja-Starzewski [START_REF] Ostoja-Starzewski | Lattice models in micromechanics[END_REF]). Accordingly, these approaches attempt to represent materials at the microstructural level basically using lattice structure by an assembly of individual elements.

Many studies have been done to investigate the micropolar continuum models for plates and shells. Eringen [START_REF] Eringen | Theory of micropolar plates[END_REF], Eringen [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF] and Altenbach and Eremeyev [START_REF] Altenbach | On the linear theory of micropolar plates[END_REF], Altenbach and Eremeyev [START_REF] Altenbach | On the constitutive equations of viscoelastic micropolar plates and shells of differential type[END_REF] studied the application of the linear micropolar model for plates.

Giorgio et al. [START_REF] Giorgio | Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics[END_REF] introduced an extended Cosserat model that accounts for the coupling between stretching deformations and the micro-rotation for 2D plates. Casolo [START_REF] Casolo | Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements[END_REF] investigated the macroscopic modeling of the in-plane elastic behavior of composite solids and expounds the theoretical relationship between the orthotropic Cosserat continuum and the proposed rigid elements. Besides, many researchers investigated the in-plane stress of 2D continuum plates using granular elements: Ouali et al. [START_REF] Ouali | Evaluation of the effects of stress concentrations on plates using granular micromechanics[END_REF] studied the stress concentrations of plates with notches and holes using granular micromechanics, Turco et al. [START_REF] Turco | A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations[END_REF] formulated a nonlinear Lagrangian model for 2d elastic interacting grains, Placidi et al. [START_REF] Placidi | Micromechanics-based elastoplastic-damage energy formulation for strain gradient solids with granular microstructure[END_REF] and Timofeev et al. [START_REF] Timofeev | Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution[END_REF] developed the continuum theories to interpret 2d granular microstructures. Hasanyan and Waas [START_REF] Hasanyan | On the Buckling of a Two-Dimensional Micropolar Strip[END_REF] investigated the buckling of a single strip of material, modeled as a two-dimensional (2D) micropolar solid. Misra and

Poorsolhjouy [START_REF] Misra | Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics[END_REF] studied the discrete micropolar theory for 2D granular models in order to develop a 2D micromorphic continuum model. Giorgio et al. [START_REF] Giorgio | A Biot-Cosserat two-dimensional elastic nonlinear model for a micromorphic medium[END_REF] used a nonlinear 2D

Biot-Cosserat to study a micromorphic medium.

The comprehensive literature review that was presented above not only permits us to understand better the problem namely the discrete and continuum micropolar theory as well as prepare the proper background knowledge of the nonlocal models but also gives us an effective perspective to orient the future works. Besides, analyzing the related works in this area allows recognizing some absent aspects of the topic which also emphasize the importance of the doing current thesis.

Motivation and Statement of the Problem

This study is an attempt towards a better understanding of the length scale effects on the bending response of the granular beams. To this aim, first, a unidimensional discrete granular chain composed of a finite number of rigid grains connected elastically is studied.

It is assumed that shear and rotational interactions exist at the rigid grain interfaces. This This work is motivated also by the detection of standing waves and negative velocity of acoustic and optical waves observed in discrete granular models. This study allows us to understand better the incorporation between the theoretical models, granular materials and the included effective parameters. Concerning wave propagation, granular elements create a structured wave-guide network through which mechanical energy is transferred. In the presence of internal (microstructural) length scales, the elastic wave propagation problem involves an interplay between wave dispersion and structural features.

The last chapter is dedicated to the study of the same methodology (micropolar theory) for two-dimensional plates starting from the 2d granular arrangement and continuing to obtain an enrich continuum model. Accordingly, the in-plane deformation of the plate (using plane stress) is taken into account by using a comprehensive discrete granular model for a regular packing of grains including horizontal, vertical and diagonal interactions. To this aim, in order to analyze the in-plane deformation of the system. we consider the normal, shear and rotational interactions. First, the constitutive relationships and governing equations of motion are derived using the Lagrangian equation of the discrete system. Next, the continualized model is compared with the literature and the material parameters are determined according to the discrete model. In the end, novel nonlinear deformation energy based on 2d continuum micropolar theory is presented with regards to the new measure of deformation.

CHAPTER 2

Static Bending of Granular Beam

Introduction

In this chapter, the bending behavior of the granular beam is investigated for a uniform distributed loading. The purpose is a deep analysis of discrete mechanics versus continuous ones which therefore leads to capture the internal length scale (grain diameter) This chapter is organized as follows. First, the governing equations of such a granular chain are obtained assuming shear and rotational interactions between the grains.

Each grain is supposed to comprise two independent degrees of freedom which is in accordance with the Cosserat discrete theory. The model could be considered the same as the one investigated by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] or more recently by Vasiliev et al.

[61] for a static case under uniformly distributed loading. The novel aspects of this analysis are studying the granular model presented by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] 

Discrete Granular Model

In this section, the microstructure of a beam of length L is considered. The discretized beam is composed of n+1 spherical rigid grains of size a connected elastically by rotational springs of stiffness 𝑘𝑘 𝑟𝑟 and shear springs of stiffness 𝑘𝑘 𝑠𝑠 . The normal interactions between the grains are neglected to study the shear and bending response of the system. This model was used also by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] or more recent by Massoumi et al. [START_REF] Massoumi | Exact solutions for the vibration of finite granular beam using discrete and gradient elasticity Cosserat models[END_REF]. The micro rolling rigidity and the micro shear stiffness relate to some macro parameters of the continuum beam, namely to the Young modulus 𝐸𝐸, the shear modulus 𝐺𝐺, the second moment of area 𝐼𝐼 , the area of the cross-section 𝐴𝐴 and the shear coefficient of the Bresse-Timoshenko beam 𝒦𝒦 that depends on the Poisson's ratio (Cowper [109]).

𝑘𝑘 𝑟𝑟 = 𝐸𝐸𝐼𝐼 𝑎𝑎 , 𝑘𝑘 𝑠𝑠 = 𝒦𝒦𝐺𝐺𝐴𝐴 𝑎𝑎 (1) 
The proposed model behaves as a discrete Cosserat model or equivalently as a discrete The Lagrangian of the system may be defined as 𝐿𝐿 = -(𝑈𝑈 𝑠𝑠 + 𝑈𝑈 𝑏𝑏 + 𝑈𝑈 𝑄𝑄 ), where 𝑈𝑈 𝑠𝑠 and 𝑈𝑈 𝑏𝑏 are respectively the elastic potential energies of deformed shear and rotational springs and 𝑈𝑈 𝑄𝑄 concerns the work done by the transverse distributed load. With the substitution of the potential terms, the Lagrangian or equivalently the energy functional may be expressed as:

𝐿𝐿 = -� 1 2 � 𝑘𝑘 𝑠𝑠 �𝑊𝑊 𝑖𝑖+1 -𝑊𝑊 𝑖𝑖 -𝑎𝑎 𝛩𝛩 𝑖𝑖+1 + 𝛩𝛩 𝑖𝑖 2 � 2 𝑛𝑛-1 𝑖𝑖=0 + 1 2 � 𝑘𝑘 𝑟𝑟 (𝛩𝛩 𝑖𝑖+1 -𝛩𝛩 𝑖𝑖 ) 2 𝑛𝑛-1 𝑖𝑖=0 -� 𝑄𝑄 𝑖𝑖 𝑊𝑊 𝑖𝑖 𝑛𝑛 𝑖𝑖=0 � (2) 
where 𝑊𝑊 𝑖𝑖 = 𝑊𝑊(𝑥𝑥 = 𝑖𝑖𝑎𝑎) . The system of difference equations for both the discrete displacement and rotation fields is obtained from the application of Hamilton's principle for the static case, given by:

� 𝜹𝜹𝜹𝜹 𝒅𝒅𝒅𝒅 𝒅𝒅 𝟐𝟐 𝒅𝒅 𝟏𝟏 = � (-𝜹𝜹𝜹𝜹) 𝒅𝒅𝒅𝒅 𝒅𝒅 𝟐𝟐 𝒅𝒅 𝟏𝟏 = 𝟎𝟎 (3) 
The contact forces 𝑉𝑉 𝑖𝑖+1/2 and contact bending moment 𝑀𝑀 𝑖𝑖+1/2 derived from the potential energy of the system can be expressed as

𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒔𝒔 �𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒊𝒊+𝟏𝟏 + 𝜣𝜣 𝒊𝒊 )� , 𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒓𝒓 (𝜣𝜣 𝒊𝒊+𝟏𝟏 -𝜣𝜣 𝒊𝒊 ) (4) 
for 𝑖𝑖 = 0, … , 𝑛𝑛 -1 while for the grain 𝑖𝑖 two contact position 𝑖𝑖 ± ). Using Eq. ( 3) based on the energy function of Eq. ( 2) leads to the following difference equation system

𝒌𝒌 𝒔𝒔 (𝑾𝑾 𝒊𝒊+𝟏𝟏 + 𝑾𝑾 𝒊𝒊-𝟏𝟏 -𝟐𝟐𝑾𝑾 𝒊𝒊 ) - 𝒂𝒂 𝟐𝟐 𝒌𝒌 𝒔𝒔 (𝜽𝜽 𝒊𝒊+𝟏𝟏 -𝜽𝜽 𝒊𝒊-𝟏𝟏 ) = -𝑸𝑸 𝒊𝒊 (𝒊𝒊 = 𝟏𝟏, … , 𝒏𝒏 -𝟏𝟏) (5) 
𝒂𝒂 𝟐𝟐 𝒌𝒌 𝒔𝒔 (𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊-𝟏𝟏 ) - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝒌𝒌 𝒔𝒔 (𝜽𝜽 𝒊𝒊+𝟏𝟏 + 𝜽𝜽 𝒊𝒊-𝟏𝟏 + 𝟐𝟐𝜽𝜽 𝒊𝒊 )+𝒌𝒌 𝒓𝒓 (𝜽𝜽 𝒊𝒊+𝟏𝟏 + 𝜽𝜽 𝒊𝒊-𝟏𝟏 -𝟐𝟐𝜽𝜽 𝒊𝒊 ) = 𝟎𝟎 (𝒊𝒊 = 𝟏𝟏, … , 𝒏𝒏 -𝟏𝟏)
This equation could be compared well for static case by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] and Vasiliev et al. [START_REF] Vasiliev | A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations[END_REF] for free beam. Also neglecting the rotational interactions (𝐶𝐶 = 0) leads to the static equilibrium equations of Schwartz et al. [START_REF] Schwartz | Vibrational modes in granular materials[END_REF]. Eq. ( 5) might be generalized and rewritten compactly through the introduction of the following difference operators

𝜹𝜹 𝟎𝟎 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝑾𝑾 𝒊𝒊 + 𝑾𝑾 𝒊𝒊-𝟏𝟏 𝟒𝟒 , 𝜹𝜹 𝟏𝟏 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊-𝟏𝟏 𝟐𝟐𝒂𝒂 , 𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝟐𝟐𝑾𝑾 𝒊𝒊 + 𝑾𝑾 𝒊𝒊-𝟏𝟏 𝒂𝒂 𝟐𝟐 (6) 
It is noteworthy to mention that the boundary interactions are expressed as

𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒓𝒓 (𝜣𝜣 𝟏𝟏 -𝜣𝜣 𝟎𝟎 ), 𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒔𝒔 �𝑾𝑾 𝟏𝟏 -𝑾𝑾 𝟎𝟎 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 )� ; 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒓𝒓 (𝜣𝜣 𝒏𝒏 -𝜣𝜣 𝒏𝒏-𝟏𝟏 ), 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒔𝒔 �𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 )� (7) 
Thus, the coupled difference equations of the static bending of the granular chain could be obtained in the matrix form:

� -𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟏𝟏 +𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟐𝟐 𝒌𝒌 𝒓𝒓 𝜹𝜹 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟎𝟎 𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟏𝟏 � � 𝜣𝜣 𝒊𝒊 𝑾𝑾 𝒊𝒊 � = � -𝑸𝑸 𝒂𝒂 𝟐𝟐 𝟎𝟎 � (8) 
The uncoupled difference equations could be obtained as follows

𝒌𝒌 𝒓𝒓 𝜹𝜹 𝟐𝟐 𝜹𝜹 𝟐𝟐 𝜣𝜣 𝒊𝒊 -𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟎𝟎 𝜹𝜹 𝟐𝟐 𝜣𝜣 𝒊𝒊 -𝜹𝜹 𝟏𝟏 𝑸𝑸 𝒂𝒂 𝟐𝟐 + 𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟏𝟏 𝜹𝜹 𝟏𝟏 𝜣𝜣 𝒊𝒊 = 𝟎𝟎; 𝒌𝒌 𝒓𝒓 𝜹𝜹 𝟐𝟐 � 𝑸𝑸 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 � -𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟎𝟎 � 𝑸𝑸 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 � + 𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟏𝟏 𝜹𝜹 𝟏𝟏 𝑾𝑾 𝒊𝒊 = 𝟎𝟎 (9)
Knowing the following relationship between the difference operators defined in Eq. [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] which is true also for the equivalent pseudo-differential operators 𝜹𝜹 𝟎𝟎 𝜹𝜹 𝟐𝟐 = 𝜹𝜹 𝟐𝟐 𝜹𝜹 𝟎𝟎 = 𝜹𝜹 𝟏𝟏 𝜹𝜹 𝟏𝟏 [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF] the fourth-order difference equation for the displacement and rotation of the granular beam could be obtained from Eq. (9) as follows:

𝒌𝒌 𝒓𝒓 𝜹𝜹 𝟐𝟐 𝟐𝟐 𝑾𝑾 𝒊𝒊 = �𝜹𝜹 𝟎𝟎 - 𝒌𝒌 𝒓𝒓 𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟐𝟐 � 𝑸𝑸 𝒂𝒂 𝟐𝟐 , 𝒌𝒌 𝒓𝒓 𝜹𝜹 𝟏𝟏 𝟑𝟑 𝜽𝜽 𝒊𝒊 = 𝜹𝜹 𝟎𝟎 𝟐𝟐 𝑸𝑸 𝒂𝒂 𝟐𝟐 (11) 
Assuming a constant uniform load distribution (𝑞𝑞) on the beam which is equivalent for the discrete model as the point load (𝑄𝑄 = 𝑎𝑎𝑞𝑞) applied to the center of the grain.

Accordingly, the aforementioned difference equations could be simplified

𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 𝑾𝑾 𝒊𝒊 = 𝒒𝒒, 𝑬𝑬𝑬𝑬𝜹𝜹 𝟏𝟏 𝟑𝟑 𝜽𝜽 𝒊𝒊 = 𝒒𝒒 (12) 
The displacement and rotation equations of each grain can be exactly obtained for the granular beam with distributed uniform loading as follows (see details in Appendix A)

𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝟎𝟎 + �𝒂𝒂𝜽𝜽 𝟎𝟎 + � 𝒂𝒂 𝟔𝟔 - 𝟐𝟐𝒌𝒌 𝒓𝒓 𝒌𝒌 𝒔𝒔 𝒂𝒂 � 𝜷𝜷� 𝒊𝒊 + � 𝒂𝒂 𝟐𝟐 𝜶𝜶� 𝒊𝒊 𝟐𝟐 + � 𝒂𝒂 𝟑𝟑 𝜷𝜷� 𝒊𝒊 𝟑𝟑 + � 𝒂𝒂 𝟐𝟐 𝑸𝑸 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 � 𝒊𝒊 𝟒𝟒 + � 𝒂𝒂 𝟐𝟐 𝑸𝑸 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 - 𝑸𝑸 𝟐𝟐𝒌𝒌 𝒔𝒔 � 𝒊𝒊 𝟐𝟐 ; 𝜽𝜽 𝒊𝒊 = 𝜽𝜽 𝟎𝟎 + 𝜶𝜶𝒊𝒊 + 𝜷𝜷𝒊𝒊 𝟐𝟐 + 𝒂𝒂𝑸𝑸 𝟔𝟔𝒌𝒌 𝒓𝒓 𝒊𝒊 𝟑𝟑 (13) 
where 𝑊𝑊 0 , 𝜃𝜃 0 , 𝛼𝛼 and 𝛽𝛽 are constants that are obtained through the boundary conditions.

Furthermore, the shear and bending moment constitutive law is given by:

𝑽𝑽 𝒊𝒊 = 𝒌𝒌 𝒔𝒔 �𝑾𝑾 𝒊𝒊+𝟏𝟏/𝟐𝟐 -𝑾𝑾 𝒊𝒊-𝟏𝟏/𝟐𝟐 - 𝒂𝒂 𝟐𝟐 �𝜣𝜣 𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝜣𝜣 𝒊𝒊-𝟏𝟏/𝟐𝟐 �� = 𝒂𝒂𝒌𝒌 𝒔𝒔 ��𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 -�𝜹𝜹 𝟎𝟎 𝜣𝜣 𝒊𝒊 �; 𝑴𝑴 𝒊𝒊 = 𝒌𝒌 𝒓𝒓 �𝜣𝜣 𝒊𝒊+𝟏𝟏/𝟐𝟐 -𝜣𝜣 𝒊𝒊-𝟏𝟏/𝟐𝟐 � = 𝒂𝒂𝒌𝒌 𝒓𝒓 �𝜹𝜹 𝟐𝟐 𝜣𝜣 𝒊𝒊 (14) 
where the mean difference operators are defined by

�𝜹𝜹 𝟎𝟎 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝑾𝑾 𝒊𝒊-𝟏𝟏/𝟐𝟐 𝟐𝟐 , �𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏/𝟐𝟐 -𝑾𝑾 𝒊𝒊-𝟏𝟏/𝟐𝟐 𝒂𝒂 (15) 
The balance equations of the discrete granular system read where 𝑉𝑉 is the shear force and 𝑀𝑀 is the bending moment. In view of Eq. ( 12), the recent equation leads to

�𝜹𝜹 𝟐𝟐 𝑽𝑽 𝒊𝒊 = -𝒒𝒒 , 𝜹𝜹 𝟎𝟎 𝜹𝜹 𝟏𝟏 �𝜹𝜹 𝟐𝟐 𝑴𝑴 𝒊𝒊 = 𝒒𝒒 (17) 
The general solutions of the bending and shear distributions in the discrete model could be considered as follows:

𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 = -𝑸𝑸 �𝒊𝒊 + 𝟏𝟏 𝟐𝟐 + 𝝈𝝈�, 𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒂𝒂𝑸𝑸 𝟐𝟐 �(𝒊𝒊 + 𝟏𝟏 𝟐𝟐 ) 𝟐𝟐 + 𝟐𝟐𝝈𝝈(𝒊𝒊 + 𝟏𝟏 𝟐𝟐 ) + 𝜸𝜸� (18) 
where 𝜎𝜎 and 𝛾𝛾 are the unknown which might be obtained from the boundary reaction forces.

Simply Supported (S-S) Granular Beam

In this section, the bending responses of the granular beam are investigated analytically and numerically (using DEM) for simply supported boundary conditions.

Accordingly, the deflection and rotation equations of the system are obtained as a function of grain number by considering the exact discrete conditions for the boundary grains. Next, the model is simulated in YADE open-source software to estimate the accuracy of the numerical computations.

Exact Analytical Solution

Let's consider a simply supported granular beam under uniformly distributed point load of intensity 𝑄𝑄. The reaction forces could be obtained from the equilibrium equations of the granular system as follows 

Applying the values of Eq. ( 21) into Eq. ( 18), the distribution of bending moment and shear forces on the discrete granular beam could be obtained

𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 = -𝑸𝑸 �𝒊𝒊 + 𝟏𝟏 𝟐𝟐 - 𝒏𝒏 𝟐𝟐 �, 𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒂𝒂𝑸𝑸 𝟐𝟐 �(𝒊𝒊 + 𝟏𝟏 𝟐𝟐 ) 𝟐𝟐 -𝒏𝒏(𝒊𝒊 + 𝟏𝟏 𝟐𝟐 ) + 𝟏𝟏 𝟒𝟒 � (22) 
For an infinite number of grains (𝑛𝑛 → ∞), the corresponding local bending solutions of the Timoshenko continuum beam are found as follows (Timoshenko [110] and Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF])

𝑽𝑽(𝒙𝒙) = -𝒒𝒒 �𝒙𝒙 - 𝜹𝜹 𝟐𝟐 � , 𝑴𝑴(𝒙𝒙) = 𝒒𝒒 𝟐𝟐 (𝒙𝒙 𝟐𝟐 -𝜹𝜹𝒙𝒙) (23) 
The exact simply supported boundary conditions for such a granular system are defined by considering the sides grains could rotate freely while their vertical displacements are blocked. Thus, the proposed boundary conditions based on the finite difference beam model are obtained from Eq. ( 20) by replacing the interactions of Eq. ( 7) as follows: 

𝑾𝑾 𝟎𝟎 = 𝟎𝟎,
The substitution of general solutions of Eq. ( 13) into boundary conditions [START_REF] Eringen | Nonlocal continuum field theories[END_REF] leads to the displacement and rotation equations of the simply supported granular chain which could be expressed as follows: 

𝑾𝑾 𝒊𝒊 =
It is worthwhile to note that the scale effect leads to the smaller values of deflection and micro rotation which concludes the hardening behavior of the beam. Assuming an infinite number of grains when 𝑎𝑎 → 0 for the continuum model, Eq. ( 27) leads to

𝑾𝑾(𝒙𝒙) = 𝒒𝒒𝜹𝜹 𝟒𝟒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 ��𝟏𝟏 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � � 𝒙𝒙 𝜹𝜹 � -𝟐𝟐 � 𝒙𝒙 𝜹𝜹 � 𝟑𝟑 + � 𝒙𝒙 𝜹𝜹 � 𝟒𝟒 -� 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � � 𝒙𝒙 𝜹𝜹 � 𝟐𝟐 � ; 𝜽𝜽(𝒙𝒙) = 𝒒𝒒𝜹𝜹 𝟑𝟑 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 �𝟏𝟏 -𝟔𝟔 � 𝒙𝒙 𝜹𝜹 � 𝟐𝟐 + 𝟒𝟒 � 𝒙𝒙 𝜹𝜹 � 𝟑𝟑 � (28) 
These equations could be compared well by the equivalent local continuum model of Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF]. The maximum deflection and micro rotation angle which occur respectively at the middle (𝑥𝑥 = 𝐿𝐿 2

) and on the boundaries (𝑥𝑥 = 0, 𝐿𝐿) are given by

𝑾𝑾 𝒎𝒎𝒂𝒂𝒙𝒙 = 𝒒𝒒𝜹𝜹 𝟒𝟒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � 𝟓𝟓 𝟏𝟏𝟔𝟔 - 𝟏𝟏 𝟐𝟐𝒏𝒏 𝟐𝟐 + 𝟑𝟑𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � < 𝒇𝒇 𝑺𝑺𝑺𝑺 ∞ ; 𝜽𝜽 𝒎𝒎𝒂𝒂𝒙𝒙 = 𝒒𝒒𝜹𝜹 𝟑𝟑 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 �𝟏𝟏 - 𝟏𝟏 𝒏𝒏 𝟐𝟐 � (29)
𝑓𝑓 𝑆𝑆𝑆𝑆 ∞ refers to the maximum bending displacement of the S-S continuum Timoshenko beam which is given by Eq. [START_REF] Barchiesi | Mechanical metamaterials: a state of the art[END_REF]. For an infinite number of grains (𝑎𝑎 → 0) the discrete solutions converge to the local continuum deflection results obtained by Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF]:

𝑬𝑬𝑬𝑬 𝒒𝒒𝜹𝜹 𝟒𝟒 𝒇𝒇 𝑺𝑺𝑺𝑺 ∞ = 𝟓𝟓 𝟑𝟑𝟑𝟑𝟒𝟒 + 𝑬𝑬𝑬𝑬 𝟑𝟑𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 (30) 
It could be concluded that the nonlocal terms that affect the granular beam contribute to a stiffening effect, as compared to the so-called local continuum solution. The response of 

Numerical Simulations (DEM)

In this section, a granular beam of length L similar to Figure 2 The micromechanical properties of the beam are calculated for Titanium with the mechanical properties of 𝐸𝐸 = 116 𝐺𝐺𝐺𝐺𝑎𝑎 and 𝐺𝐺 = 43 𝐺𝐺𝐺𝐺𝑎𝑎. The beam geometry is introduced by 𝐿𝐿 = 1 𝜇𝜇, 𝐴𝐴 = 0.3 𝜇𝜇 2 and 𝐼𝐼 = 0.009 𝜇𝜇 4 . Thus, ones could be obtained as below:

𝒌𝒌 𝒔𝒔 = 𝟏𝟏𝟏𝟏. 𝟐𝟐𝟐𝟐𝒏𝒏 𝑵𝑵 𝒎𝒎 , 𝒌𝒌 𝒃𝒃 = 𝟏𝟏. 𝟎𝟎𝟒𝟒𝒏𝒏 𝑵𝑵. 𝒎𝒎 , 𝑸𝑸 = 𝟏𝟏𝟎𝟎 𝒏𝒏 𝒌𝒌𝑵𝑵 ( 33 
)
where 𝑛𝑛 is the grain number. The problem is investigated for a rectangular cross-section beam. The shear coefficient of the Bresse-Timoshenko beam could be estimated from 𝒦𝒦 = 5(1+𝜗𝜗)

6+5𝜗𝜗

(Challamel and Elishakoff [START_REF] Challamel | A brief history of first-order shear-deformable beam and plate models[END_REF]). Once the mechanical and geometrical parameters of the model are defined completely, the physical law and the mechanical principles of the system need to be introduced (collision physics and the contact law).

Collision Detection

There exist several efficient ways to determine approximately the contacts between discrete element pairs such as nearest neighbor contact detection scheme, neighboring cell contact detection scheme and sweep and prune. Depending on particles' arrangement or their shape, each method has its own advantages or disadvantages.

The sweep and prune algorithm is used for collision detection in Yade through the consideration of the bounding box. This general approach deals more efficiently with high density systems while permitting to handle poly-sized particle distributions. To this aim, each particle is surrounded by a bounding box with edges aligned with the reference coordinate system. In order to detect the collision between particles only it is needed to check the overlapping of the bounding boxes. The sweep and prune algorithm is optimized with Verlet's distance (Verlet [113]). Accordingly, this permits to introduce a relative length to enlarge the bounding boxes.

Interactions

Once the elements which are in contact are detected, it is needed to find the exact collision depending on the geometry of the individual particle. Since at every timestep the grains can move or rotate, exact collision detection must be run at every step. Let us consider two identical grains (with diameter 𝑎𝑎) in the non-deformed configuration. The position vectors are presented by 𝑑𝑑 1 and 𝑑𝑑 2 . The two spheres enter in when the distance (𝑢𝑢 𝑛𝑛 ) between the spheres is negative, with

𝒖𝒖 𝒏𝒏 = ‖𝒓𝒓 𝟐𝟐 -𝒓𝒓 𝟏𝟏 ‖ -𝒂𝒂 (34) 
The unit normal orientation (𝑛𝑛) at the contact is obtained by

𝒏𝒏 = 𝒓𝒓 𝟐𝟐 -𝒓𝒓 𝟏𝟏 ‖𝒓𝒓 𝟐𝟐 -𝒓𝒓 𝟏𝟏 ‖ (35)
Regarding the problem investigated in this chapter, the normal relative displacement is null, only the shear and bending relative displacement of two grains in contact are computed. The shear displacement contains two parts, namely the motion of the interaction in global space and the relative motion of spheres. At each step, the shear displacement 𝑢𝑢 𝑠𝑠 is updated as follows

𝒖𝒖 𝒔𝒔 𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖 𝒔𝒔 𝒅𝒅 + (𝜹𝜹 𝒔𝒔 ) 𝟏𝟏 + (𝜹𝜹 𝒔𝒔 ) 𝟐𝟐 + (𝜹𝜹 𝒔𝒔 ) 𝟑𝟑 (36) 
where (𝛿𝛿 𝑠𝑠 ) 1 and (𝛿𝛿 𝑠𝑠 ) 2 refer to the contact displacements due to changes in the spheres' positions and (𝛿𝛿 𝑠𝑠 ) 3 is the relative motion of spheres. These terms could be obtained respectively by

(𝜹𝜹 𝒔𝒔 ) 𝟏𝟏 = -𝜹𝜹 𝒔𝒔 𝒅𝒅-∆𝒅𝒅 × (𝒏𝒏 𝒅𝒅-∆𝒅𝒅 × 𝒏𝒏 𝒅𝒅 ); (𝜹𝜹 𝒔𝒔 ) 𝟐𝟐 = -𝜹𝜹 𝒔𝒔 𝒅𝒅-∆𝒅𝒅 × � ∆𝒅𝒅 𝟐𝟐 𝒏𝒏 𝒅𝒅 . �𝝎𝝎 𝟏𝟏 𝒅𝒅- ∆𝒅𝒅 𝟐𝟐 + 𝝎𝝎 𝟐𝟐 𝒅𝒅- ∆𝒅𝒅 𝟐𝟐 �� 𝒏𝒏 𝒅𝒅 ; (𝜹𝜹 𝒔𝒔 ) 𝟑𝟑 = -∆𝒅𝒅 𝒗𝒗 𝟏𝟏𝟐𝟐 ⊥ (37) 
Note that ∆𝑡𝑡 is the time step and the superscript 𝑡𝑡 refers to the current time. 𝑣𝑣 12 ⊥ is the relative velocity perpendicular to the interaction normal vector and could be computed as follows

𝒗𝒗 𝟏𝟏𝟐𝟐 ⊥ = 𝒗𝒗 𝟏𝟏𝟐𝟐 -(𝒗𝒗 𝟏𝟏𝟐𝟐 . 𝒏𝒏 𝒅𝒅 )𝒏𝒏 𝒅𝒅 ; 𝒗𝒗 𝟏𝟏𝟐𝟐 = �𝒗𝒗 𝟐𝟐 𝒅𝒅-∆𝒅𝒅/𝟐𝟐 -𝒗𝒗 𝟏𝟏 𝒅𝒅-∆𝒅𝒅/𝟐𝟐 � - 𝒂𝒂 𝟐𝟐 �𝝎𝝎 𝟏𝟏 𝒅𝒅-∆𝒅𝒅/𝟐𝟐 + 𝝎𝝎 𝟐𝟐 𝒅𝒅-∆𝒅𝒅/𝟐𝟐 � × 𝒏𝒏 𝒅𝒅 (38) 
The relative rotation of each grain sphere is expressed by

𝜹𝜹 𝒃𝒃 = ∆𝒅𝒅 (𝝎𝝎 𝟐𝟐 𝒅𝒅 -𝝎𝝎 𝟏𝟏 𝒅𝒅 ) × 𝒏𝒏 𝒅𝒅 (39) 
Once all kinematics components of the contact interaction are introduced and also the exact contact location (for instance 𝑑𝑑 1 + 𝑎𝑎 2 𝑛𝑛) is detected, the physical properties of the contact can be defined. To this aim, the following contact model is adopted, in which the normal, shear and bending forces and also the bending moment are defined by

𝑭𝑭 𝒏𝒏 = 𝒌𝒌 𝒏𝒏 𝜹𝜹 𝒏𝒏 , 𝑭𝑭 𝒔𝒔 = 𝒌𝒌 𝒔𝒔 𝜹𝜹 𝒔𝒔 , 𝑴𝑴 𝒃𝒃 = 𝒌𝒌 𝒃𝒃 𝜹𝜹 𝒃𝒃 (40) 
where 𝛿𝛿 𝑛𝑛 , 𝛿𝛿 𝑠𝑠 correspond to relative displacements in the normal and tangential direction and 𝛿𝛿 𝑏𝑏 is the relative rotation. It is worth mentioning that the friction angle (𝜑𝜑) which controls the relative sliding, is fixed to 90 degrees.

Explicit Dynamic Algorithm

The numerical resolution is based on an explicit integration scheme based on a Velocity Verlet scheme well adapted to DEM simulation. Once, the shear forces and bending moments at the interactions are computed, the accelerations of each particle can be estimated from the second Newton's law (Eq. ( 41)). In order to update the grain positions at the next timestep (𝑢𝑢 𝑡𝑡+∆𝑡𝑡 ) from the current position (𝑢𝑢 𝑡𝑡 ), the current acceleration (𝑢𝑢̈𝑡𝑡) is integrated by time as follows.

𝒖𝒖̈𝒅𝒅 = 𝜹𝜹 𝟐𝟐𝒅𝒅 𝒖𝒖 = 𝑭𝑭 𝒎𝒎 (41) 
where the time differences operator of 𝛿𝛿 2𝑡𝑡 is defined

𝜹𝜹 𝟐𝟐𝒅𝒅 𝒖𝒖 = 𝒖𝒖 𝒅𝒅+∆𝒅𝒅 + 𝒖𝒖 𝒅𝒅-∆𝒅𝒅 -𝟐𝟐𝒖𝒖 𝒅𝒅 ∆𝒅𝒅 𝟐𝟐 (42) 
So, the position of the next timestep might be expressed by

𝒖𝒖 𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖 𝒅𝒅 + ∆𝒅𝒅 � 𝒖𝒖 𝒅𝒅 -𝒖𝒖 𝒅𝒅-∆𝒅𝒅 ∆𝒅𝒅 + 𝒖𝒖̈𝒅𝒅∆𝒅𝒅� (43) 
Since only the current position (𝑢𝑢 𝑡𝑡 ) is known, the mean terms could be defined as follows

𝒖𝒖̇𝒅𝒅 -∆𝒅𝒅/𝟐𝟐 = 𝒖𝒖 𝒅𝒅 -𝒖𝒖 𝒅𝒅-∆𝒅𝒅 ∆𝒅𝒅 (44) 
The mean velocity during the previous step is known, thus,

𝒖𝒖 𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖 𝒅𝒅 + ∆𝒅𝒅�𝒖𝒖̇𝒅𝒅 -∆𝒅𝒅/𝟐𝟐 + 𝒖𝒖̈𝒅𝒅∆𝒅𝒅� (45) 
The current mean velocity (𝑢𝑢̇𝑡𝑡 +∆𝑡𝑡/2 ) is needed for the next step and obtained from the following equation

𝒖𝒖̈𝒅𝒅 = 𝒖𝒖̇𝒅𝒅 +∆𝒅𝒅/𝟐𝟐 -𝒖𝒖̇𝒅𝒅 -∆𝒅𝒅/𝟐𝟐 ∆𝒅𝒅 (46) 

Numerical Results

The discrete granular beam has been simulated by DEM for various boundary conditions. It could be demonstrated that the DEM numerical results have a significant accuracy with the exact analytical ones for the four types of boundary conditions S-S, C-C, S-C, and C-F. The maximum deflection and micro-rotation of the granular beam are reported respectively in Table 1 and Table 2. Although the numerical simulation includes dynamical effects (based on Newton's equation of motion) and so hysteresis effects may appear due to incremental formulation of the contact law, a significant accuracy (nearly 0.01%) has been obtained for the numerical results in comparison with the exact analytical ones. The coupled balance equations of Eq. ( 8) could be continualized using the Taylor series in the function of the small length scale noted by 𝒂𝒂 . The governing differential equations of the nonlocal continuum beam could be stated by

Nonlocal Continuum Approach

𝑬𝑬𝑬𝑬𝜣𝜣 ′′′ = 𝒒𝒒, 𝑬𝑬𝑬𝑬𝑾𝑾 ′′′′ = 𝒒𝒒 (47) 
The details are given in Appendix C. Accordingly, the governing equations of the nonlocal beam could be obtained the same as the local continuum beam from the coupled differential equations. Since the second gradient of the external load (a uniformly distributed load) is null, the governing differential equations of the nonlocal model are identical to the ones that have been obtained for the local continuum Bresse-Timoshenko beam (Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF]). The general solution reads in a quartic and cubic form respectively for the deflection and micro rotation as 

where 𝑊𝑊 � 0 , 𝜃𝜃 ̅ 0 , 𝜇𝜇 and 𝜆𝜆 are constants. These constant parameters would be obtained by applying the boundary conditions. On the other hand, the nonlocal shear and bending moment of the beam could be obtained from the continualization of Eq. ( 14) through the rational expansion of second order for the difference operator as follows

𝑽𝑽(𝒙𝒙) = 𝓚𝓚𝓚𝓚𝓚𝓚 �𝑾𝑾′(𝒙𝒙) -𝜣𝜣(𝒙𝒙) - 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝑾𝑾′′′(𝒙𝒙)� (50) 
𝑴𝑴(𝒙𝒙) - 𝒂𝒂 𝟐𝟐 𝟐𝟐𝟒𝟒 𝑴𝑴′′(𝒙𝒙) = 𝑬𝑬𝑬𝑬𝜣𝜣 ′ (𝒙𝒙) (51) 
Furthermore, in view of the continualization of Eq. ( 17), 𝑀𝑀′′(𝑥𝑥) = 𝑞𝑞 . Thus, Eq. ( 51) might be rewritten eventually as follows

𝑴𝑴(𝒙𝒙) = 𝑬𝑬𝑬𝑬𝜣𝜣 ′ (𝒙𝒙) + 𝒂𝒂 𝟐𝟐 𝟐𝟐𝟒𝟒 𝒒𝒒 (52) 

Continualization of the Boundary Conditions with Static Variables

This method stems from the direct continualization of the equilibrium equations of the continuum beam. Developing the equilibrium equations of the boundaries (See Appendix D, Eq. (D.4)) by Taylor series and ignoring the higher order of terms 𝑎𝑎 3 leads to 

Knowing 𝑉𝑉(𝑥𝑥) = -𝑀𝑀′(𝑥𝑥) and 𝑉𝑉 ′ (𝑥𝑥) = -𝑀𝑀 ′′ (𝑥𝑥) = -𝑞𝑞, the abovementioned equations could be simplified as follows

𝑴𝑴(𝟎𝟎) + 𝒂𝒂 𝟐𝟐 𝟑𝟑 (𝒒𝒒 -𝟐𝟐𝒒𝒒) = 𝟎𝟎; 𝑴𝑴(𝜹𝜹) + 𝒂𝒂 𝟐𝟐 𝟑𝟑 (𝒒𝒒 -𝟐𝟐𝒒𝒒) = 𝟎𝟎 (54) 
It is noteworthy to conclude that despite the simply supported boundary conditions the nonlocal bending moments on the pinned boundaries are not zero and is equal to

𝑀𝑀(0) = 𝑀𝑀(𝐿𝐿) = 𝑎𝑎 2 𝑞𝑞 8
. Thus, based on the nonlocal bending moment presented by Eq. ( 52), the nonlocal boundary conditions could be obtained independently from the discrete model as follows

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣 ′ (𝟎𝟎) = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 ; 𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ; 𝜣𝜣 ′ (𝜹𝜹) = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 (55)
The constant of the nonlocal general solutions of Eq. ( 49) could be obtained concerning the aforementioned set of conditions. Accordingly, the solutions are given 

These nonlocal solutions are exactly the same as those presented in Eq. ( 27) from the discrete model. For instance, the maximum deflection values are expressed by

𝑾𝑾 𝒎𝒎𝒂𝒂𝒙𝒙 = 𝒒𝒒𝜹𝜹 𝟒𝟒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � 𝟓𝟓 𝟏𝟏𝟔𝟔 - 𝒂𝒂 𝟐𝟐 𝟐𝟐𝜹𝜹 𝟐𝟐 + 𝟑𝟑𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � (57)
which can be compared well also by the results of the granular beam by Eq. (29).

Continualization of the Boundary Conditions Based on Deflection

An alternative approach based only on the deflection equation could be considered as follows. The differential deflection equation of the continuum beam could be expressed by 𝐸𝐸𝐼𝐼𝑊𝑊 ′′′′ = 𝑞𝑞 . In order to investigate the deflection equation of the problem, we have to consider four boundary values based on the deflection. From the discrete medium, it could be written

(𝜹𝜹 𝟎𝟎 -𝒌𝒌 𝒓𝒓 /𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟐𝟐 )𝜣𝜣 𝒊𝒊 = 𝜹𝜹 𝟏𝟏 𝑾𝑾 𝒊𝒊 (58) 
Using the rational expansion for the rotation

(𝛩𝛩 𝑖𝑖 = 𝑀𝑀 𝐸𝐸𝐸𝐸�𝛿𝛿 2
), it can be found

(𝜹𝜹 𝟎𝟎 - 𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚 𝜹𝜹 𝟐𝟐 )𝑴𝑴 = 𝑬𝑬𝑬𝑬𝜹𝜹 𝟏𝟏 �𝜹𝜹 𝟐𝟐 𝑾𝑾 (59) 
Through the polynomial development of the difference operators (using Taylor series by neglecting the higher-order terms in 𝒂𝒂 4 ), this can be continualized as

��𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟒𝟒 � - 𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝑫𝑫 𝒙𝒙 𝟐𝟐 � 𝑴𝑴 = 𝑬𝑬𝑬𝑬 �𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟔𝟔 � �𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟐𝟐𝟒𝟒 � 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝑾𝑾 (60) 
Considering the general solution of deflection given by Eq. ( 48) and knowing 𝑀𝑀′′(𝑥𝑥) = 𝑞𝑞, the nonlocal moment could be obtained

𝑴𝑴(𝒙𝒙) = - 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟒𝟒 + 𝑬𝑬𝑬𝑬𝒒𝒒 𝓚𝓚𝓚𝓚𝓚𝓚 + 𝑬𝑬𝑬𝑬 �𝟏𝟏 + 𝟓𝟓𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟐𝟐𝟒𝟒 � 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝑾𝑾 (61) 
Here, the simply supported continuum beam is introduced with the nonlocal boundary conditions depending only on the displacement which may be written by:

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝑾𝑾 ′′ (𝟎𝟎) + 𝟓𝟓𝒂𝒂 𝟐𝟐 𝟐𝟐𝟒𝟒 𝑾𝑾 ′′′′ (𝟎𝟎) = 𝟑𝟑𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟑𝟑𝑬𝑬𝑬𝑬 - 𝒒𝒒 𝓚𝓚𝓚𝓚𝓚𝓚 ; 𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ; 𝑾𝑾 ′′ (𝜹𝜹) + 𝟓𝟓𝒂𝒂 𝟐𝟐 𝟐𝟐𝟒𝟒 𝑾𝑾 ′′′′ (𝜹𝜹) = 𝟑𝟑𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟑𝟑𝑬𝑬𝑬𝑬 - 𝒒𝒒 𝓚𝓚𝓚𝓚𝓚𝓚 (62)
Again, this set of boundary conditions lead to the same deflection equation as the one obtained by Eq. [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF]. Also, the alternative approaches for studying nonlocal beams are given in Appendix D. The results of these two nonlocal approaches and also the ones of 

Conclusion and Outlook

This study represents an effort to investigate theoretically the scale effect upon the bending deformation of a granular beam which can be viewed as a discrete Bresse-Timoshenko beam in static conditions. A unidimensional granular chain consisting of rigid grains connected elastically with rotation and shear springs is considered. Thus, the mechanical properties of the system are characterized by the grain diameter (length scale). 

CHAPTER 3 Vibration Analysis of Granular Beam 1. Introduction

The present study focuses on the vibration of a granular beam with both bending and shear granular interactions. The granular beam is assumed to interact elastically with a rigid elastic support, a discrete elastic foundation labeled as a discrete Winkler foundation (Winkler [114]). Note that the difference equations governed to the model coincide with the ones of Cosserat granular model of Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] in the absence of an elastic foundation, but differ from the ones of the discrete shear model studied by Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF]. However, for some specific bending/ shear interaction modeling, the model developed by Bacigalupo and Gambarotta [START_REF] Bacigalupo | Generalized micropolar continualization of 1D beam lattices[END_REF] can be mathematically reformulated with the difference equation presented in this chapter.

This chapter is arranged as follows: First, a discrete granular beam model is introduced from a geometrical and mechanical point of view. The grain interaction and material parameters are defined in detail. Then from the dynamic analysis of the lattice beam model, the deflection equations of the finite granular beam are derived. This fourthorder linear difference equation is solved by using the exact resolution of the difference equation. For an infinite number of grains, the deflection equation of a continuous beam (a fourth-order linear differential equation) is obtained asymptotically. Next, the eigenfrequencies of the discrete granular model and the continuous one, are obtained and compared as well. In the end, two asymptotic continualization methods are used to investigate continuous beam from the discrete lattice problem. With this aim, the polynomial expansion of Taylor and the rational expansion of Padé (with involved pseudo-differential operators) are used to derive new enriched beam models. These two nonlocal continualization approaches with the introduction of the gradient terms engage the neighbor influences which allow the passage from discrete results to continuous ones and simultaneously capture the length effect. The total kinetic energy of the model may be expressed as follows:

Granular Model

𝑇𝑇 = 1 2 � 𝜇𝜇 𝑖𝑖 𝑊𝑊 ̇𝑖𝑖2 𝑛𝑛 𝑖𝑖=0 + 1 2 � 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝛩𝛩 ̇𝑖𝑖 2 𝑛𝑛 𝑖𝑖=0 (63) 
where

for i in [1, n-1], 𝐼𝐼 𝑚𝑚 𝐶𝐶 = 𝜌𝜌𝐸𝐸𝐿𝐿 𝑛𝑛
= 𝜌𝜌𝐼𝐼𝑎𝑎 is the second moment of inertia of the beam segment and 𝜇𝜇 𝑖𝑖 is the mass term for each grain that is defined for the inter grains by 𝜇𝜇 𝑖𝑖 = 𝜌𝜌𝑎𝑎.

The strain energy function due to deformed shear spring (shear term) is given by

𝜹𝜹 𝒔𝒔 = 𝟏𝟏 𝟐𝟐 � 𝑺𝑺 �𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊 -𝒂𝒂 𝜣𝜣 𝒊𝒊+𝟏𝟏 + 𝜣𝜣 𝒊𝒊 𝟐𝟐 � 𝟐𝟐 𝒏𝒏-𝟏𝟏 𝒊𝒊=𝟎𝟎 ( 64 
)
where S is the shear stiffness which can be expressed with respect to the shear stiffness 𝐾𝐾 𝑠𝑠 𝐺𝐺𝐴𝐴 of the equivalent beam. The shear stiffness parameter could be defined as 𝑆𝑆 =

𝐾𝐾 𝐷𝐷 𝒦𝒦𝒦𝒦 𝑎𝑎 = 𝑛𝑛𝐾𝐾 𝐷𝐷 𝒦𝒦𝒦𝒦 𝐿𝐿
in which G is the shear modulus, A is the cross-sectional area of the beam and Ks is an equivalent shear correction coefficient.

In the present formulation, the kinematic variables are measured at nodes i located at the center of each grain, which is consistent with the approach followed for instance by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF].

The strain energy function due to deformed rotational springs (bending term) may be obtained by

𝜹𝜹 𝒃𝒃 = 𝟏𝟏 𝟐𝟐 � 𝑪𝑪(𝜣𝜣 𝒊𝒊+𝟏𝟏 -𝜣𝜣 𝒊𝒊 ) 𝟐𝟐 𝒏𝒏-𝟏𝟏 𝒊𝒊=𝟎𝟎 ( 65 
)
where C is the rotational stiffness located at the connection between each grain. This discrete stiffness can be expressed with respect to the bending stiffness EI of the equivalent beam and thus would be defined as

𝐶𝐶 = 𝐸𝐸𝐸𝐸 𝑎𝑎 = 𝑛𝑛𝐸𝐸𝐸𝐸 𝐿𝐿
. where E is Young's modulus and I is the second moment of area.

The elastic energy in the discrete elastic support (Winkler [START_REF] Winkler | The doctrine of elasticity and strength[END_REF]) is given by

𝑈𝑈 𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟 = 1 2 � 𝐾𝐾𝑊𝑊 𝑖𝑖 2 𝑛𝑛 𝑖𝑖=0 ( 66 
)
where K=ka is the discrete stiffness of the elastic support and is attached to the center of each grain.

The Lagrangian of the system may be defined as 𝐿𝐿 = 𝑇𝑇 -(𝑈𝑈 𝑠𝑠 + 𝑈𝑈 𝑏𝑏 + 𝑈𝑈 𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟 ) which slightly differs from the shear lattice model considered by Ostoja-Starzewski [START_REF] Ostoja-Starzewski | Lattice models in micromechanics[END_REF] for the shear term. By substituting the kinetic and potential terms, the Lagrangian may be expressed as:

𝐿𝐿 = � 1 2 ∑ 𝜇𝜇 𝑖𝑖 𝑊𝑊 ̇𝑖𝑖2 𝑛𝑛 𝑖𝑖=0 + 1 2 ∑ 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝛩𝛩 ̇𝑖𝑖 2 𝑛𝑛 𝑖𝑖=0 � -� 1 2 ∑ 𝑆𝑆 �𝑊𝑊 𝑖𝑖+1 -𝑊𝑊 𝑖𝑖 -𝑎𝑎 𝛩𝛩 𝐶𝐶+1 +𝛩𝛩 𝐶𝐶 2 � 2 𝑛𝑛-1 𝑖𝑖=0 + 1 2 ∑ 𝐶𝐶(𝛩𝛩 𝑖𝑖+1 -𝛩𝛩 𝑖𝑖 ) 2 𝑛𝑛-1 𝑖𝑖=0 + 1 2 ∑ 𝐾𝐾𝑊𝑊 𝑖𝑖 2 𝑛𝑛 𝑖𝑖=0 � (67)
The system of difference equations for both the discrete displacement and rotation fields is obtained from the application of Hamilton's principle, given by:

∫ 𝜹𝜹𝜹𝜹 𝒅𝒅𝒅𝒅 𝒅𝒅 𝟐𝟐 𝒅𝒅 𝟏𝟏 = ∫ (𝜹𝜹𝜹𝜹 -𝜹𝜹𝜹𝜹) 𝒅𝒅𝒅𝒅 𝒅𝒅 𝟐𝟐 𝒅𝒅 𝟏𝟏 = 𝟎𝟎 (68) 
Using Eq. ( 3) based on the energy function of Eq. ( 67) leads to the following difference equation system

𝑺𝑺(𝑾𝑾 𝒊𝒊+𝟏𝟏 + 𝑾𝑾 𝒊𝒊-𝟏𝟏 -𝟐𝟐𝑾𝑾 𝒊𝒊 ) - 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝜣𝜣 𝒊𝒊+𝟏𝟏 -𝜣𝜣 𝒊𝒊-𝟏𝟏 ) -𝒌𝒌𝒂𝒂𝑾𝑾 𝒊𝒊 -𝒎𝒎 𝒊𝒊 𝑾𝑾 ̈𝒊𝒊 = 𝟎𝟎 (𝒊𝒊 = 𝟏𝟏, … , 𝒏𝒏 -𝟏𝟏) 𝑪𝑪(𝜣𝜣 𝒊𝒊+𝟏𝟏 + 𝜣𝜣 𝒊𝒊-𝟏𝟏 -𝟐𝟐𝜣𝜣 𝒊𝒊 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊-𝟏𝟏 ) - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺(𝜣𝜣 𝒊𝒊+𝟏𝟏 + 𝜣𝜣 𝒊𝒊-𝟏𝟏 + 𝟐𝟐𝜣𝜣 𝒊𝒊 ) -𝑬𝑬 𝒎𝒎 𝒊𝒊 𝜣𝜣 ̈𝒊𝒊 = 𝟎𝟎 (𝒊𝒊 = 𝟏𝟏, … , 𝒏𝒏 -𝟏𝟏) (69) 
where for the variationally-based boundary conditions, the following four equations could be obtained

�𝑺𝑺 �𝑾𝑾 𝟏𝟏 -𝑾𝑾 𝟎𝟎 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 )� -𝒌𝒌𝒂𝒂𝑾𝑾 𝟎𝟎 -𝒎𝒎 𝟎𝟎 𝑾𝑾 ̈𝟎𝟎� 𝜹𝜹𝑾𝑾 𝟎𝟎 = 𝟎𝟎; �𝑺𝑺 �𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 )� + 𝒌𝒌𝒂𝒂𝑾𝑾 𝒏𝒏 + 𝒎𝒎 𝒏𝒏 𝑾𝑾 ̈𝒏𝒏� 𝜹𝜹𝑾𝑾 𝒏𝒏 = 𝟎𝟎; �𝑪𝑪(𝜣𝜣 𝟏𝟏 -𝜣𝜣 𝟎𝟎 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝟏𝟏 -𝑾𝑾 𝟎𝟎 ) - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺(𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 ) -𝑬𝑬 𝒎𝒎 𝟎𝟎 𝜣𝜣 ̈𝟎𝟎� 𝜹𝜹𝜣𝜣 𝟎𝟎 = 𝟎𝟎; �-𝑪𝑪(𝜣𝜣 𝒏𝒏-𝟏𝟏 -𝜣𝜣 𝒏𝒏 ) - 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 ) + 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺(𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 ) -𝑬𝑬 𝒎𝒎 𝒏𝒏 𝜣𝜣 ̈𝒏𝒏� 𝜹𝜹𝜣𝜣 𝒏𝒏 = 𝟎𝟎 (70) 
Introducing the following difference operators,

𝜹𝜹 𝟎𝟎 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 +𝟐𝟐𝑾𝑾 𝒊𝒊 +𝑾𝑾 𝒊𝒊-𝟏𝟏 𝟒𝟒 , 𝜹𝜹 𝟏𝟏 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝑾𝑾 𝒊𝒊-𝟏𝟏 𝟐𝟐𝒂𝒂 , 𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 = 𝑾𝑾 𝒊𝒊+𝟏𝟏 -𝟐𝟐𝑾𝑾 𝒊𝒊 +𝑾𝑾 𝒊𝒊-𝟏𝟏 𝒂𝒂 𝟐𝟐 (71) 
Eq. ( 69) might be generalized and rewritten compactly by Eq. ( 6).

𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚(𝜹𝜹 𝟐𝟐 𝑾𝑾 𝒊𝒊 ) -𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚(𝜹𝜹 𝟏𝟏 𝜣𝜣 𝒊𝒊 ) -𝒌𝒌𝑾𝑾 𝒊𝒊 -𝝆𝝆𝓚𝓚𝑾𝑾 ̈𝒊𝒊 = 𝟎𝟎 𝑬𝑬𝑬𝑬(𝜹𝜹 𝟐𝟐 𝜣𝜣 𝒊𝒊 ) + 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚(𝜹𝜹 𝟏𝟏 𝑾𝑾 𝒊𝒊 ) -𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚(𝜹𝜹 𝟎𝟎 𝜣𝜣 𝒊𝒊 ) -𝝆𝝆𝑬𝑬𝜣𝜣 𝒊𝒊 ̈= 𝟎𝟎 (72) 
Assuming a small harmonic vibration

𝑾𝑾 𝒊𝒊 = 𝒘𝒘 𝒊𝒊 𝒆𝒆 𝒋𝒋𝝎𝝎𝒅𝒅 , 𝜣𝜣 𝒊𝒊 = 𝜽𝜽 𝒊𝒊 𝒆𝒆 𝒋𝒋𝝎𝝎𝒅𝒅 (73) 
with 𝑗𝑗 2 = -1.𝑤𝑤 𝑖𝑖 and 𝜃𝜃 𝑖𝑖 are the space part of the solution and are the functions of grains number and 𝜔𝜔 is the angular natural frequency, Eq. ( 72) may be written in a matrix form

� 𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 -𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝜹𝜹 𝟎𝟎 + 𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝜹𝜹 𝟏𝟏 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝜹𝜹 𝟏𝟏 𝒌𝒌-𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 � � 𝜽𝜽 𝒘𝒘 � 𝒊𝒊 = � 𝟎𝟎 𝟎𝟎 � (74) 
These difference equations system [START_REF] Askes | Higher-order continua derived from discrete media: continualization aspects and boundary conditions[END_REF] have been obtained by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] neglecting the elastic Winkler foundation (k=0). With consideration of an infinite number of grains (𝑛𝑛 → ∞) referring to the continuum beam, it converges to the coupled system differential equations Eq. ( 75) which has been obtained by Bresse [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions Gautier-Villars[END_REF] and Timoshenko [17, [18] in the absence of a Winkler foundation (k=0) and assuming that the shear correction factor to be unity (Ks=1). Eq. ( 75) valid for a Bresse-Timoshenko beam on elastic foundation have been also obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

� 𝑬𝑬𝑬𝑬𝝏𝝏 𝒙𝒙 𝟐𝟐 -𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝝏𝝏 𝒙𝒙 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝝏𝝏 𝒙𝒙 𝒌𝒌-𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚𝝏𝝏 𝒙𝒙 𝟐𝟐 -𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 � � 𝜽𝜽 𝒘𝒘 � = � 𝟎𝟎 𝟎𝟎 � (75) 
It is possible to introduce the following pseudo-differential operators

𝜹𝜹 𝟎𝟎 = 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟒𝟒 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝟐𝟐 � 𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐 � ; 𝜹𝜹 𝟏𝟏 = 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐𝒂𝒂 = 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 (𝒂𝒂𝝏𝝏 𝒙𝒙 ) 𝒂𝒂 ; 𝜹𝜹 𝟐𝟐 = 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂 𝟐𝟐 = 𝟒𝟒 𝒂𝒂 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝟐𝟐 � 𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐 � (76) 
The same relations could be obtained for the difference operators of Eq. ( 6). Going back to the discrete granular beam model Eq. ( 74), this characteristic equation has nontrivial solutions only if the determinant of the matrix is zero. Using the property of Eq. ( 10) gives the fourth-order difference equation for the deflection as follows:

[𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 - 𝒌𝒌𝑬𝑬𝑬𝑬 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝜹𝜹 𝟐𝟐 + (𝒌𝒌 -𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 )𝜹𝜹 𝟎𝟎 - 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆 𝟐𝟐 𝑬𝑬𝝎𝝎 𝟒𝟒 𝑲𝑲 𝒔𝒔 𝓚𝓚 ]𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (77) [𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 - 𝒌𝒌𝑬𝑬𝑬𝑬 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝜹𝜹 𝟐𝟐 + (𝒌𝒌 -𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 )𝜹𝜹 𝟎𝟎 - 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆 𝟐𝟐 𝑬𝑬𝝎𝝎 𝟒𝟒 𝑲𝑲 𝒔𝒔 𝓚𝓚 ]𝜽𝜽 𝒊𝒊 = 𝟎𝟎 (78) 
Neglecting the Winkler elastic foundation (k=0), Eq. ( 11) leads to

[𝜹𝜹 𝟐𝟐 𝟐𝟐 + 𝝎𝝎 𝟐𝟐 � 𝝆𝝆 𝑬𝑬 + 𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝜹𝜹 𝟐𝟐 -𝝎𝝎 𝟐𝟐 ( 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 𝜹𝜹 𝟎𝟎 - 𝝆𝝆 𝟐𝟐 𝝎𝝎 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 )]𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (79) 
Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] also studied a discrete Timoshenko beam model based on rigid links where the displacement fields are defined at the joint element. The scheme of their study slightly differs from the granular model considered in this chapter, essentially from the last term in the fourth-order difference equation of each model. The appearance of the difference operator δ 0 in this model in comparison with Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF], stems from the enhanced shear interaction modeling of the granular elements which refers to the fundamental difference between the two microstructural models.

�𝜹𝜹 𝟐𝟐 𝟐𝟐 + 𝝎𝝎 𝟐𝟐 � 𝝆𝝆 𝑬𝑬 + 𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝜹𝜹 𝟐𝟐 -𝝎𝝎 𝟐𝟐 � 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 - 𝝆𝝆 𝟐𝟐 𝝎𝝎 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 �� 𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (80) 
Eq. ( 79) and Eq. ( 80) are the governing deflection equations of two alternative discrete granular models for studying the beam vibration and its dynamic responses.

The fourth-order difference equation Eq. ( 11) is equivalent to the one of Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF] in the static range (𝜔𝜔 = 0). Considering infinite number of grains (𝑛𝑛 → ∞) for the continuum beam, the fourth-order differential equation valid for a Bresse-Timoshenko beam on Winkler elastic foundation is given by Eq. ( 81) which also could be compared well by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

𝒅𝒅 𝟒𝟒 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟒𝟒 + � 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 �𝟏𝟏 + 𝑬𝑬 𝒌𝒌 𝒔𝒔 𝓚𝓚 � - 𝒌𝒌 𝒌𝒌 𝒔𝒔 𝓚𝓚𝓚𝓚 � 𝒅𝒅 𝟐𝟐 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟐𝟐 -� 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 � 𝓚𝓚 𝑬𝑬 + 𝒌𝒌 𝒌𝒌 𝒔𝒔 𝓚𝓚𝓚𝓚 - 𝝆𝝆𝝎𝝎 𝟐𝟐 𝒌𝒌 𝒔𝒔 𝓚𝓚 � - 𝒌𝒌 𝑬𝑬𝑬𝑬 � 𝒘𝒘 = 𝟎𝟎 (81) 

Resolution of The Difference Equation

In this section, the exact solution for the fourth-order linear difference eigenvalue problem of Eq. ( 11) will be established (see the books of Goldberg [START_REF] Goldberg | Introduction to difference equations: with illustrative examples from economics, psychology, and sociology[END_REF] or Elaydi [START_REF] Elaydi | An introduction to difference equations[END_REF] for the general solution of linear difference equations). This approach, as detailed for instance by Elishakoff and Santoro [121, [122], has been used to analyze the error in the finite difference based probabilistic dynamic problems. Eq. ( 11) and Eq. ( 78) restricted to the vibration terms, the linear fourth-order difference equation may be expanded as

(𝒘𝒘 𝒊𝒊+𝟐𝟐 -𝟒𝟒𝒘𝒘 𝒊𝒊+𝟏𝟏 + 𝟔𝟔𝒘𝒘 𝒊𝒊 -𝟒𝟒𝒘𝒘 𝒊𝒊-𝟏𝟏 + 𝒘𝒘 𝒊𝒊-𝟐𝟐 ) + 𝒂𝒂 𝟐𝟐 � 𝝆𝝆𝑬𝑬 𝑬𝑬𝑬𝑬 𝝎𝝎 𝟐𝟐 - 𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � (𝒘𝒘 𝒊𝒊+𝟏𝟏 -𝟐𝟐𝒘𝒘 𝒊𝒊 + 𝒘𝒘 𝒊𝒊-𝟏𝟏 ) + 𝒂𝒂 𝟒𝟒 � 𝒌𝒌 𝟒𝟒𝑬𝑬𝑬𝑬 - 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬 � (𝒘𝒘 𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝒘𝒘 𝒊𝒊 + 𝒘𝒘 𝒊𝒊-𝟏𝟏 ) + 𝒂𝒂 𝟒𝟒 (- 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆 𝟐𝟐 𝑬𝑬𝓚𝓚𝝎𝝎 𝟒𝟒 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 )𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (82) 
(𝜽𝜽 𝒊𝒊+𝟐𝟐 -𝟒𝟒𝜽𝜽 𝒊𝒊+𝟏𝟏 + 𝟔𝟔𝜽𝜽 𝒊𝒊 -𝟒𝟒𝜽𝜽 𝒊𝒊-𝟏𝟏 + 𝜽𝜽 𝒊𝒊-𝟐𝟐 ) + 𝒂𝒂 𝟐𝟐 � 𝝆𝝆𝑬𝑬 𝑬𝑬𝑬𝑬 𝝎𝝎 𝟐𝟐 - 𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � (𝜽𝜽 𝒊𝒊+𝟏𝟏 -𝟐𝟐𝜽𝜽 𝒊𝒊 + 𝜽𝜽 𝒊𝒊-𝟏𝟏 ) + 𝒂𝒂 𝟒𝟒 � 𝒌𝒌 𝟒𝟒𝑬𝑬𝑬𝑬 - 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬 � (𝜽𝜽 𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝜽𝜽 𝒊𝒊 + 𝜽𝜽 𝒊𝒊-𝟏𝟏 ) + 𝒂𝒂 𝟒𝟒 (- 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆 𝟐𝟐 𝑬𝑬𝓚𝓚𝝎𝝎 𝟒𝟒 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 )𝜽𝜽 𝒊𝒊 = 𝟎𝟎 (83) 
As it was mentioned in the previous section these two equation systems are true for all grains except the two ends. For simply supported boundary conditions as shown in Figure 5 and with respect to Eq. ( 25), the four boundary conditions are formulated as:

⎩ ⎪ ⎨ ⎪ ⎧ 𝑾𝑾 𝟎𝟎 = 𝟎𝟎 𝑾𝑾 𝒏𝒏 = 𝟎𝟎 𝑪𝑪(𝜣𝜣 𝟏𝟏 -𝜣𝜣 𝟎𝟎 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝟏𝟏 -𝑾𝑾 𝟎𝟎 ) - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺(𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 ) -𝑬𝑬 𝒎𝒎 𝟎𝟎 𝜣𝜣 ̈𝟎𝟎 = 𝟎𝟎 𝑪𝑪(𝜣𝜣 𝒏𝒏 -𝜣𝜣 𝒏𝒏-𝟏𝟏 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 ) - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺(𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 ) + 𝑬𝑬 𝒎𝒎 𝒏𝒏 𝜣𝜣 ̈𝒏𝒏 = 𝟎𝟎 (84) 
The two last equations of Eq. ( 84) are actually second-newton laws for the boundary grains and could be rewritten in the compact form by

𝑴𝑴 𝟏𝟏/𝟐𝟐 + 𝒂𝒂 𝟐𝟐 𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝑬𝑬 𝒎𝒎 𝟎𝟎 𝜣𝜣 ̈𝟎𝟎 -𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 - 𝒂𝒂 𝟐𝟐 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝑬𝑬 𝒎𝒎 𝒏𝒏 𝜣𝜣 ̈𝒏𝒏 (85) 
where

𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣 𝟏𝟏 -𝜣𝜣 𝟎𝟎 ), 𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝒂𝒂 𝟐𝟐 𝑺𝑺 �𝑾𝑾 𝟏𝟏 -𝑾𝑾 𝟎𝟎 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 )� ; 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣 𝒏𝒏 -𝜣𝜣 𝒏𝒏-𝟏𝟏 ), 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 )) (86) 
On the other hand, Eq. ( 69) could be applied for the boundary grains by considering two fictitious grains (i=-1 and i=n+1) connected to the system with fictitious springs. The equilibrium conditions of the boundary grains could be written by Eq. ( 87).

𝑴𝑴 𝟏𝟏/𝟐𝟐 -𝑴𝑴 -𝟏𝟏/𝟐𝟐 + 𝒂𝒂 𝟐𝟐 (𝑽𝑽 𝟏𝟏/𝟐𝟐 -𝑽𝑽 -𝟏𝟏/𝟐𝟐 ) = 𝑬𝑬 � 𝒎𝒎 𝟎𝟎 𝜣𝜣 ̈𝟎𝟎 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 -𝑴𝑴 𝒏𝒏+𝟏𝟏/𝟐𝟐 + 𝒂𝒂 𝟐𝟐 (𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 -𝑽𝑽 𝒏𝒏+𝟏𝟏/𝟐𝟐 ) = 𝑬𝑬 � 𝒎𝒎 𝒏𝒏 𝜣𝜣 ̈𝒏𝒏 (87) 
where

𝑴𝑴 -𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣 𝟎𝟎 -𝜣𝜣 -𝟏𝟏 ), 𝑽𝑽 -𝟏𝟏/𝟐𝟐 = 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝟎𝟎 -𝑾𝑾 -𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝟎𝟎 + 𝜣𝜣 -𝟏𝟏 )) 𝑴𝑴 𝒏𝒏+𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣 𝒏𝒏+𝟏𝟏 -𝜣𝜣 𝒏𝒏 ), 𝑽𝑽 𝒏𝒏+𝟏𝟏/𝟐𝟐 = 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒏𝒏+𝟏𝟏 -𝑾𝑾 𝒏𝒏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏+𝟏𝟏 + 𝜣𝜣 𝟎𝟎 )) (88) 
The antisymmetric conditions lead to:

𝑴𝑴 -𝟏𝟏/𝟐𝟐 = -𝑴𝑴 𝟏𝟏/𝟐𝟐 , 𝑽𝑽 -𝟏𝟏/𝟐𝟐 = 𝑽𝑽 𝟏𝟏/𝟐𝟐 𝑴𝑴 𝒏𝒏+𝟏𝟏/𝟐𝟐 = -𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 , 𝑽𝑽 𝒏𝒏+𝟏𝟏/𝟐𝟐 = 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 (89) 
It can be concluded that

𝜣𝜣 𝟏𝟏 = 𝜣𝜣 -𝟏𝟏 , 𝑾𝑾 𝟏𝟏 = -𝑾𝑾 -𝟏𝟏 𝜣𝜣 𝒏𝒏-𝟏𝟏 = 𝜣𝜣 𝒏𝒏+𝟏𝟏 , 𝑾𝑾 𝒏𝒏-𝟏𝟏 = -𝑾𝑾 𝒏𝒏+𝟏𝟏 (90) 
Using the recent conditions in Eq. ( 69) for i=0 and i=n, leads to

𝑪𝑪(𝜣𝜣 𝟏𝟏 -𝜣𝜣 𝟎𝟎 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝟏𝟏 -𝑾𝑾 -𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝟏𝟏 + 𝜣𝜣 𝟎𝟎 )) - 𝑬𝑬 � 𝒎𝒎 𝟎𝟎 𝟐𝟐 𝜣𝜣 ̈𝟎𝟎 = 𝟎𝟎 𝑪𝑪(𝜣𝜣 𝒏𝒏-𝟏𝟏 -𝜣𝜣 𝒏𝒏 ) + 𝒂𝒂 𝟐𝟐 𝑺𝑺(𝑾𝑾 𝒏𝒏+𝟏𝟏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 - 𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 )) - 𝑬𝑬 � 𝒎𝒎 𝒏𝒏 𝟐𝟐 𝜣𝜣 ̈𝒏𝒏 = 𝟎𝟎 (91) 
where 𝐼𝐼 ̃𝑚𝑚0 and 𝐼𝐼 ̃𝑚𝑚𝑛𝑛 represent the second moment of inertia for the boundary grains with consideration of the fictitious elements (i=-1 and n+1).

Comparing the two systems of equations Eq. ( 84) and Eq. ( 91) results that the fictitious system behaves the same as the real model with the associated boundary conditions as follows:

𝓚𝓚𝒅𝒅 𝒊𝒊 = 𝟎𝟎 ∶ 𝒘𝒘 𝟎𝟎 = 𝟎𝟎 ; 𝒘𝒘 𝟏𝟏 = -𝒘𝒘 -𝟏𝟏 → 𝜹𝜹 𝟐𝟐 𝒘𝒘 𝟎𝟎 = 𝟎𝟎 𝓚𝓚𝒅𝒅 𝒊𝒊 = 𝒏𝒏 ∶ 𝒘𝒘 𝒏𝒏 = 𝟎𝟎 ; 𝒘𝒘 𝒏𝒏-𝟏𝟏 = -𝒘𝒘 𝒏𝒏+𝟏𝟏 → 𝜹𝜹 𝟐𝟐 𝒘𝒘 𝒏𝒏 = 𝟎𝟎 (92) 
These boundary conditions have been used also by Hunt et al. [START_REF] Hunt | Force-chain buckling in granular media: a structural mechanics perspective[END_REF] for the problem of static bifurcation of granular chains under axial load. The non-dimensional quantities may be introduced

𝜴𝜴 𝟐𝟐 = 𝝎𝝎 𝟐𝟐 𝝆𝝆𝓚𝓚𝜹𝜹 𝟒𝟒 𝑬𝑬𝑬𝑬 , 𝝁𝝁 𝒔𝒔 = 𝑬𝑬 𝑲𝑲 𝒔𝒔 𝓚𝓚 , 𝒓𝒓 = � 𝑬𝑬 𝓚𝓚 , 𝒓𝒓 * = 𝒓𝒓 𝜹𝜹 , 𝒌𝒌 * = 𝒌𝒌𝜹𝜹 𝟒𝟒 𝑬𝑬𝑬𝑬 (93) 
𝛺𝛺 is a dimensionless frequency; 𝜇𝜇 𝑠𝑠 is inversely proportional to the shear stiffness; and 𝑑𝑑 * is proportional to the rotatory inertia. The solution of the linear difference equation (Goldberg [START_REF] Goldberg | Introduction to difference equations: with illustrative examples from economics, psychology, and sociology[END_REF] and Elaydi [START_REF] Elaydi | An introduction to difference equations[END_REF]) is thought in the form

𝒘𝒘 𝒊𝒊 = 𝑩𝑩𝝀𝝀 𝒊𝒊 ( 94 
)
where B is a constant. Therefore, the characteristic equation could be obtained by replacing Eq. ( 94) in Eq. ( 82) as

(𝝀𝝀 + 𝟏𝟏 𝝀𝝀 ) 𝟐𝟐 + �𝝀𝝀 + 𝟏𝟏 𝝀𝝀 � 𝝐𝝐 + 𝝉𝝉 = 𝟎𝟎 (95) 
where the parameters 𝜖𝜖 and 𝜏𝜏 can be defined as

𝝐𝝐 = � 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝒏𝒏 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 - 𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � - 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒏𝒏 𝟐𝟐 + 𝒌𝒌 * 𝟒𝟒𝒏𝒏 𝟒𝟒 -𝟒𝟒�, ( 96 
) 𝝉𝝉 = � 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝒏𝒏 𝟒𝟒 �-𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 � + 𝟐𝟐 � 𝒌𝒌 * 𝟒𝟒𝒏𝒏 𝟒𝟒 - 𝜴𝜴 𝟐𝟐 𝟒𝟒𝒏𝒏 𝟒𝟒 � -𝟐𝟐( 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) - 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒏𝒏 𝟐𝟐 ) + 𝟒𝟒�
Solving Eq. ( 95) leads to the equation obtained by Zhang et al. [124] which could be written

𝝀𝝀 + 𝟏𝟏 𝝀𝝀 = -𝝐𝝐 ± √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟐𝟐 (97) 
Eq. ( 97) admits four solutions written

𝝀𝝀 𝟏𝟏,𝟐𝟐 = -𝝐𝝐 + √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ± � ( 𝝐𝝐 -√𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ) 𝟐𝟐 -𝟏𝟏 (98) 
𝝀𝝀 𝟑𝟑,𝟒𝟒 = -𝝐𝝐 -√𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ± 𝒋𝒋 � 𝟏𝟏 -( 𝝐𝝐 + √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ) 𝟐𝟐 (99) 
where 𝑗𝑗 2 = -1. On the other hand, it is important to notice that according to Eq. ( 97) the

results of 𝜆𝜆 + 1 𝜆𝜆 are in the ranges of (-∞, -2] or [2, +∞).
The limited cases when 𝜆𝜆 + 1 𝜆𝜆 = ±2 would happen for 𝜆𝜆 = ±1 which refers to the critical frequencies. The critical frequencies of the system are inconsistent condition with Eq. ( 94) would be obtained by assuming:

𝝉𝝉 = ±𝟐𝟐𝝐𝝐 -𝟒𝟒 (100) 
The critical frequencies of the system might be obtained with the substitution of 𝜏𝜏 and 𝜖𝜖 in the aforementioned equation by using Eq. ( 96):

( 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟒𝟒)( 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐 -𝒌𝒌 * ) -𝟒𝟒) = 𝟎𝟎 (101) 𝟏𝟏 𝒏𝒏 𝟒𝟒 ((𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐 -𝒌𝒌 * )(𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐 -𝟏𝟏)) = 𝟎𝟎 (102) 
Therefore, two branches of critical frequencies would be obtained as follows

𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟏𝟏 = 𝟐𝟐𝒏𝒏 𝒓𝒓 * , 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟐𝟐 = � 𝟒𝟒𝒏𝒏 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝒌𝒌 * (103) 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟏𝟏 = √𝒌𝒌 * , 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟐𝟐 = � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 (104) 
The critical frequencies of the first branch depend on the grain number (microstructure parameter), mechanical properties and beam geometry (macrostructure parameters) while the second critical frequencies branch are only defined as a function of the beam mechanical properties and geometry. On the other hand, comparing these critical values with those of the Timoshenko continuum beam resting on the Winkler foundations (see Wang and Stephens [64]), leads to the equivalency of the second branch critical values (Eq. ( 104)) to the Timoshenko continuum beam's. For an infinite number of grains, since the first branch critical frequencies (𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 and 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 ) leads to infinite values and consequently disappear, so only the second branch would remain. These critical values could be shown as follows

𝝎𝝎 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟏𝟏 = 𝝎𝝎 𝒄𝒄𝒓𝒓 𝜹𝜹𝒊𝒊𝒎𝒎𝒄𝒄𝒔𝒔𝒄𝒄𝒆𝒆𝒏𝒏𝒌𝒌𝒄𝒄 𝟏𝟏 = � 𝒌𝒌 𝝆𝝆𝓚𝓚 , 𝝎𝝎 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟐𝟐 = 𝝎𝝎 𝒄𝒄𝒓𝒓 𝜹𝜹𝒊𝒊𝒎𝒎𝒄𝒄𝒔𝒔𝒄𝒄𝒆𝒆𝒏𝒏𝒌𝒌𝒄𝒄 𝟐𝟐 = � 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 𝝆𝝆𝑬𝑬 (105) 
The behavior of the beam deflection solution would be separated by the critical frequencies into different regimes and depending on the frequencies values, the results would be in a distinct manner.

For a finite number of grains, four regimes would occur, categorized as follows: when 0 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 there are two exponential terms and two traveling waves since 𝜆𝜆 1,2 are real and 𝜆𝜆 3,4 are imaginary. In this case, the deflection equation form would be obtained from Eq.

(116).

When 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 , 𝜆𝜆 1,2,3,4 are all imaginary and therefore all terms represent traveling waves and for this case, the deflection equation form would be obtained from Eq. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF].

For 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 again there are two exponential terms and two traveling waves since 𝜆𝜆 1,2 are imaginary and 𝜆𝜆 3,4 are real and the deflection equation form would be obtained from Eq. ( 118).

Finally, for 𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 < 𝛺𝛺 , since all parameters of 𝜆𝜆 1,2,3,4 are real, thus whole terms represent exponential terms which leads to the deflection equation form of Eq. ( 119).

For a specific value of grain number, 𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 and 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 would be equal together. This leads to the reduction of the four regimes to three.

𝒏𝒏 = 𝟏𝟏 𝟐𝟐𝒓𝒓 * �𝝁𝝁 𝒔𝒔 = 𝜹𝜹 𝟐𝟐 � 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 𝑬𝑬𝑬𝑬 (106) 
The results are shown for a case study of 50 grains and the dimensionless parameters of For an infinite number of grains, since the first two critical values converge to the infinite, so the previous different regimes reduce to two regimes (Elishakoff [START_REF] Elishakoff | Handbook on Timoshenko-Ehrenfest and Uflyand-Mindlin plate theories[END_REF] and

Traill-Nash and Collar [START_REF] Traill-Nash | The effects of shear flexibility and rotory inertia of the bending vibrations of beams[END_REF]): when 0 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 there are two exponential terms and two traveling waves as 𝜆𝜆 1,2 are real and 𝜆𝜆 3,4 are imaginary and thus the deflection equation form would be obtained from Eq. (116).

when 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 < 𝛺𝛺 , 𝜆𝜆 1,2,3,4 are all imaginary and thus all terms represent traveling waves.

This case leads to the deflection equation form of Eq. ( 117). These two regimes correspond to the ones obtained for the continuum beam of Timoshenko resting on Winkler foundations. Therefore, 𝜆𝜆 1,2 can be rewritten for 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 and 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 < 𝛺𝛺 (see also Elishakoff

(a) (b) (c) (d) (e) (f) (g) (h) (e) (f) (g) (h)
and Santoro [START_REF] Elishakoff | Accuracy of the finite difference method in stochastic setting[END_REF] for a similar presentation applied to the finite difference formulation of Euler-Bernoulli beams) as

𝝀𝝀 𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 ± 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝝑𝝑 (107) 
where

𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 = -𝝐𝝐 𝟒𝟒 + 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 = -𝝐𝝐 𝟐𝟐 -𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 (108) 
𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 = -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 (109) 
while 𝜆𝜆 1,2 would be obtained for

𝛺𝛺 𝑐𝑐𝑟𝑟 2,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 𝝀𝝀 𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 ± 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏𝝑𝝑 (110) 
where

𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 = -𝝐𝝐 𝟒𝟒 + 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 (111) 
On the other hand, 𝜆𝜆 3,4 would be defined for 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 by

𝝀𝝀 𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 ± 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 (112) 
where

𝒄𝒄 = 𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 𝒔𝒔 � -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉� (113) 
And for

𝛺𝛺 𝑐𝑐𝑟𝑟 1,1 < 𝛺𝛺 𝝀𝝀 𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄 ± 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄𝒄𝒄 (114) 
𝒄𝒄 = 𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 � -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉� (115) 
In view of Eq. ( 108) and (109), there are three possible general solutions for 𝑤𝑤 𝑖𝑖 depending on the critical values of the frequencies which may be represented as 

General Solution of The Difference Equation

The general solution for the coupled system of difference equation of Eq. ( 74) can be considered through the trigonometric and hyperbolic terms in the low frequency regime as follows:

𝑤𝑤 𝑖𝑖 = 𝐴𝐴 1 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝜑𝜑 + 𝐴𝐴 2 𝑎𝑎 𝑐𝑐𝑖𝑖𝑛𝑛 𝑖𝑖𝜑𝜑 + 𝐴𝐴 3 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑖𝑖𝜗𝜗 + 𝐴𝐴 4 𝑎𝑎 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 𝑖𝑖𝜗𝜗 (120) 
𝜃𝜃 𝑖𝑖 = 𝐵𝐵 1 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝜑𝜑 + 𝐵𝐵 2 𝑐𝑐𝑖𝑖𝑛𝑛 𝑖𝑖𝜑𝜑 + 𝐵𝐵 3 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑖𝑖𝜗𝜗 + 𝐵𝐵 4 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 𝑖𝑖𝜗𝜗 (121) 
Replacing the form of the solution of Eq. ( 120) and Eq. ( 121) in Eq. ( 69) by ignoring the Winkler elastic foundation terms (k=0) leads to the following matrix form equations

⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 𝐺𝐺 1 0 0 0 0 -𝑎𝑎 2 𝐺𝐺 5 0 0 0 𝐺𝐺 1 0 0 𝑎𝑎 2 𝐺𝐺 5 0 0 0 0 0 𝐺𝐺 2 0 0 0 0 𝑎𝑎 2 𝐺𝐺 6 0 0 0 𝐺𝐺 2 0 0 𝑎𝑎 2 𝐺𝐺 6 0 0 𝐺𝐺 5 0 0 𝐺𝐺 3 0 0 0 -𝐺𝐺 5 0 0 0 0 𝐺𝐺 3 0 0 0 0 0 -𝐺𝐺 6 0 0 𝐺𝐺 4 0 0 0 -𝐺𝐺 6 0 0 0 0 𝐺𝐺 4 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 𝐴𝐴 1 𝐴𝐴 2 𝐴𝐴 3 𝐴𝐴 4 𝐵𝐵 1 𝐵𝐵 2 𝐵𝐵 3 𝐵𝐵 4 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ (122) 
where the components of the coefficient matrix of G are expressed by

⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 𝐺𝐺 1 = 𝜇𝜇 𝑖𝑖 𝜔𝜔 2 -2𝑘𝑘 𝑠𝑠 + 2 𝑘𝑘 𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 𝐺𝐺 2 = 𝜇𝜇 𝑖𝑖 𝜔𝜔 2 -2𝑘𝑘 𝑠𝑠 + 2𝑘𝑘 𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 𝐺𝐺 3 = 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝜔𝜔 2 -2𝑘𝑘 𝑟𝑟 - 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 2 + 2𝑘𝑘 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) - 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝐺𝐺 4 = 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝜔𝜔 2 -2𝑘𝑘 𝑟𝑟 - 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 2 + 2𝑘𝑘 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) - 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 𝐺𝐺 5 = 𝑘𝑘 𝑠𝑠 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) 𝐺𝐺 6 = 𝑘𝑘 𝑠𝑠 𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) (123) 
Eq. ( 122) leads to

𝐵𝐵 1 = -𝐴𝐴 2 𝐺𝐺 1 𝐺𝐺 5 = -𝐴𝐴 2 𝑎𝑎 2 𝐺𝐺 5 𝐺𝐺 3 , 𝐵𝐵 2 = 𝐴𝐴 1 𝐺𝐺 1 𝐺𝐺 5 = 𝐴𝐴 1 𝑎𝑎 2 𝐺𝐺 5 𝐺𝐺 3 ; 𝐵𝐵 3 = 𝐴𝐴 4 𝐺𝐺 2 𝐺𝐺 6 = -𝐴𝐴 4 𝑎𝑎 2 𝐺𝐺 6 𝐺𝐺 4 , 𝐵𝐵 4 = 𝐴𝐴 3 𝐺𝐺 2 𝐺𝐺 6 = -𝐴𝐴 3 𝑎𝑎 2 𝐺𝐺 6 𝐺𝐺 4 (124) 
Thus, the following relations could be obtained 

which leads to

4𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 + 2𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝜏𝜏 = 0 (127) 4𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 2𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) + 𝜏𝜏 = 0 (128) 
The exact simply supported conditions might be assumed by Eq. ( 84). Replacing the form of the solution of Eq. ( 120) and Eq. ( 121) in Eq. ( 84) (with regards to the properties of Eq.

Eq. ( 124) between the coefficients of 𝐴𝐴 𝑖𝑖 and 𝐵𝐵 𝑖𝑖 ), the following transcendental equation could be obtained by prohibiting the zero solutions for the deformation

𝐻𝐻(𝜔𝜔) = 𝑓𝑓 1 (𝜔𝜔) 𝜔𝜔 8 + 𝑓𝑓 2 (𝜔𝜔) 𝜔𝜔 6 + 𝑓𝑓 3 (𝜔𝜔) 𝜔𝜔 4 + 𝑓𝑓 4 (𝜔𝜔) 𝜔𝜔 2 + 𝑓𝑓 5 (𝜔𝜔) = 0 (129) 
where the coefficients of 𝑓𝑓(𝜔𝜔) are expressed by 

𝑓𝑓 1 (𝜔𝜔) = �-4𝐼𝐼 𝑚𝑚 0 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝑎𝑎
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)�))�𝑘𝑘 𝑠𝑠 2 (cos 2 (𝜑𝜑) -1)(cosh 2 (𝜗𝜗) -1)� 𝑓𝑓 4 (𝜔𝜔) = -(𝑎𝑎 2 (𝑘𝑘 𝑟𝑟 𝑘𝑘 𝑠𝑠 2 𝜇𝜇 𝑖𝑖 �10𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -8𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 10𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -12𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 4𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 4𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 4𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -8𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -16𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 6𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -2𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 40𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)� 𝑘𝑘 𝑟𝑟 2 𝑘𝑘 𝑠𝑠 𝜇𝜇 𝑖𝑖 �64𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 64𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 56𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 24𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 8𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 24𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 8𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 160𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -32𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� + 40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -48𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� - 56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 - 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� + 40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 - 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� + 40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� -8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 - 3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -104𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -104𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 16𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 16𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -160𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 64𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) -8𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) - 8𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)�l 0.5�𝐼𝐼 𝑚𝑚 0 + 𝐼𝐼 𝑚𝑚 𝐶𝐶 �𝑘𝑘 𝑟𝑟 𝑘𝑘 𝑠𝑠 2 �128𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 128𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 112𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 48𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 16𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 48𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 16𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) + 320𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -64𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� + 80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -96𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� + 32𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� + 80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� + 80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -2)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -1)� + 16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 1)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 + 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 -3)� -16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 -3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 + 2)� -208𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -208𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 32𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 32𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -320𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 128𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) -16𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) -16𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)�))�𝑘𝑘 𝑠𝑠 2 (cos(2𝜑𝜑) -1)(cosh 2 (𝜗𝜗) -1)� 𝑓𝑓 5 (𝜔𝜔) = -� 4𝑎𝑎 2 𝑘𝑘 𝑟𝑟 2 (

Antisymmetric Boundary Conditions on Deflection

For the simply supported discrete system by substituting Eq. ( 92) in Eq. ( 116), ( 117), ( 118) and ( 119 [START_REF] Vodenitcharova | Effective wall thickness of a single-walled carbon nanotube[END_REF] Setting the determinant of the homogeneous coefficient matrix of Eq. ( 131), ( 132), [START_REF] Wang | Flexural wave propagation in single-walled carbon nanotubes[END_REF] and [START_REF] Vodenitcharova | Effective wall thickness of a single-walled carbon nanotube[END_REF] to zero would be simplified

𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 -𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑) 𝟐𝟐 = 𝟎𝟎 (135) 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 -𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑) 𝟐𝟐 = 𝟎𝟎 (136) 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄 -𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑) 𝟐𝟐 = 𝟎𝟎 (137) 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄 -𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑) 𝟐𝟐 = 𝟎𝟎 (138) 
It is found from Eq. ( 135), ( 136) and ( 137) that sin(𝑛𝑛𝜑𝜑) = 0 and or sin(𝑛𝑛𝜗𝜗) = 0.

Thus, the natural vibration modes are obtained from the trigonometric shape function 𝑤𝑤 𝑖𝑖 = 𝐵𝐵 𝑐𝑐𝑖𝑖𝑛𝑛(𝑖𝑖𝜑𝜑) and or 𝑤𝑤 𝑖𝑖 = 𝐵𝐵 𝑐𝑐𝑖𝑖𝑛𝑛(𝑖𝑖𝜗𝜗) which lead to the fundamental natural vibration frequency, which are associated with the non-trivial condition:

𝐅𝐅𝐅𝐅𝐅𝐅 𝐢𝐢 = 𝐧𝐧, 𝒘𝒘 𝒊𝒊 = 𝟎𝟎 ⇒ 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒏𝒏) = 𝟎𝟎 ⇒ 𝒏𝒏 = 𝒑𝒑𝒑𝒑 𝒏𝒏 , 𝒏𝒏 = 𝒄𝒄, 𝝑𝝑 (139) 
On the other hand, one would be obtained from Eq. ( 138) that 𝜑𝜑 = 𝜗𝜗 which leads to

-𝝐𝝐 + √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 = -𝝐𝝐 -√𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ⇒ 𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 = 𝟎𝟎 (140) 
The frequencies could be obtained from Eq. (140) as follows 

For a simplified case by neglecting the elastic foundation, the dimensionless eigen frequencies can be obtained as

𝜴𝜴 = 𝟑𝟑𝒏𝒏 𝟐𝟐 �(𝟒𝟒𝒓𝒓 * 𝒏𝒏 + (𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝝁𝝁 𝒔𝒔 -𝟏𝟏) -𝟏𝟏))(𝟒𝟒𝒓𝒓 * 𝒏𝒏 -�𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝝁𝝁 𝒔𝒔 -𝟏𝟏) -𝟏𝟏�) 𝑩𝑩 * (144) 
the exact resolution of the dynamic analysis of the granular system that would be studied here is only true for the frequencies lower than 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 . Since 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 is a function of grain number, the results could be compared well for an infinite number of grains with those correspond to the Timoshenko continuum beam.

Therefore, regarding to Eq. ( 139), the deflection and rotation angle of each grain could be obtained by the following equation while

𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 𝒘𝒘 𝒊𝒊 = 𝐁𝐁 𝐬𝐬𝐢𝐢𝐧𝐧 � 𝒊𝒊𝒑𝒑𝒑𝒑 𝒏𝒏 � ( 145 
)
where p is the mode number or natural number (1 ≤ 𝑝𝑝 < 𝑛𝑛 for 𝑤𝑤 𝑖𝑖 and 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛 for 𝜃𝜃 𝑖𝑖 )

and i is the grain number (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛).

Substituting Eq. (139) in Eq. ( 109) leads to

𝒄𝒄𝒄𝒄𝒔𝒔 � 𝒑𝒑𝒑𝒑 𝒏𝒏 � = -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 (146) 
𝟐𝟐𝝐𝝐 𝒄𝒄𝒄𝒄𝒔𝒔 � 𝒑𝒑𝒑𝒑 𝒏𝒏 � + 𝝉𝝉 + 𝟒𝟒(𝒄𝒄𝒄𝒄𝒔𝒔 � 𝒑𝒑𝒑𝒑 𝒏𝒏 �) 𝟐𝟐 = 𝟎𝟎 (147) 
which is a quartic equation. Using non-dimensional eigenfrequency parameters 

+ 𝟒𝟒 + 𝟒𝟒(𝒄𝒄𝒄𝒄𝒔𝒔 � 𝒑𝒑𝒑𝒑 𝒏𝒏 �) 𝟐𝟐 � = 𝟎𝟎 (148) 
Neglecting the terms of Winkler elastic foundation (𝑘𝑘 * = 0), Eq. ( 148) leads to

� 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟒𝟒 � 𝜴𝜴 𝟒𝟒 -� 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 � 𝒑𝒑𝒑𝒑 𝟐𝟐𝒏𝒏 � + 𝟏𝟏 𝒏𝒏 𝟒𝟒 𝒄𝒄𝒄𝒄𝒔𝒔 𝟐𝟐 � 𝒑𝒑𝒑𝒑 𝟐𝟐𝒏𝒏 �� 𝜴𝜴 𝟐𝟐 + �𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏 𝟒𝟒 � 𝒑𝒑𝒑𝒑 𝟐𝟐𝒏𝒏 �� = 𝟎𝟎 (149) 
The last equation is different from the quartic equation of Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] that had been obtained as follows:

� 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟒𝟒 � 𝜴𝜴 𝟒𝟒 -� 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 � 𝒑𝒑𝒑𝒑 𝟐𝟐𝒏𝒏 � + 𝟏𝟏 𝒏𝒏 𝟒𝟒 � 𝜴𝜴 𝟐𝟐 + �𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏 𝟒𝟒 � 𝒑𝒑𝒑𝒑 𝟐𝟐𝒏𝒏 �� = 𝟎𝟎 (150) 
Going back to Eq. ( 148), it could be written in the compact form

𝜴𝜴 𝟒𝟒 -𝑩𝑩𝜴𝜴 𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (151)
in which the coefficients of B and C are defined 

Eq. ( 151) has two real positive roots

𝜴𝜴 = � 𝑩𝑩± � 𝑩𝑩 𝟐𝟐 -𝟒𝟒 𝑪𝑪 𝟐𝟐 (153) 
Eq. ( 153) shows that for a given mode number (p), there are two valid positive roots that refer to the two eigenfrequency spectra, in the distinction of the results refer to the Euler-Bernoulli beam associated with a single positive root. The same phenomenon for the continuum Bresse-Timoshenko beam has been already investigated by Traill-Nash and Collar [START_REF] Traill-Nash | The effects of shear flexibility and rotory inertia of the bending vibrations of beams[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

The natural frequencies of the granular chain represented in Figure 5 could be presented in a single form

𝝎𝝎 = 𝜴𝜴 𝜹𝜹 𝟐𝟐 � 𝑬𝑬𝑬𝑬 𝝆𝝆𝓚𝓚 (154) 
Substituting Eq. (153) in Eq. ( 154) gives the exact eigenfrequencies of the granular beam as a function of grain number (n) and for whatever mode numbers (p).

The recent natural frequency was obtained by the assumption of 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 which means that it needs to be able to support both the low and high frequencies. Therefore, the maximum value of 𝛾𝛾 must be less than 𝛺𝛺 𝑐𝑐𝑟𝑟 

According to the definition of 𝛺𝛺 𝑐𝑐𝑟𝑟 1,2 Eq. ( 155) could be rewritten in the short form as follows Simplifying Eq. ( 156) leads to the two max frequency values (Eq. ( 157)) each referring to the one branch. Therefore, Eq. ( 154) could be verified well for the range of high-frequency values, the natural frequencies of the discrete system do not exceed their critical values and thus the general solution form of the beam deflection remains in the harmonic and trigonometric manner.

𝜸𝜸 𝒎𝒎𝒂𝒂𝒙𝒙 = � 𝜴𝜴
𝜸𝜸 𝒎𝒎𝒂𝒂𝒙𝒙,𝟏𝟏 = 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟏𝟏 , 𝜸𝜸 𝒎𝒎𝒂𝒂𝒙𝒙,𝟐𝟐 = 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟐𝟐 (157) 
By considering low mode number (p<<n) and for the continuum case when 𝑛𝑛 → ∞, the

assumption of 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑝𝑝𝑝𝑝 𝑛𝑛 � ~1 - 1 2 ( 𝑝𝑝𝑝𝑝 𝑛𝑛
) 2 could be applied to Eq. ( 148). This leads to and in the compact form

𝜴𝜴 𝟒𝟒 -𝑩𝑩𝜴𝜴 𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (160)
where the two coefficients of B and C are defined as:

𝑩𝑩 = 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � , 𝑪𝑪 = 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒓𝒓 * 𝟐𝟐 + 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 , (161) 
Solving the quartic equation of (160) leads to the eigenfrequency values of the continuous beam that would be obtained again by Eq. ( 154) and with 𝛾𝛾 expressed as follows: 

𝜸𝜸 = � 𝒑𝒑 𝟐𝟐
These results agree with those obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]. Also with the negligence of the Winkler elastic foundation (k * =0), it could be compared well to Timoshenko [17, [18].

Explicit Method: Granular Beam Composed of Three Grains

Let's consider a vibrating granular chain composed of three rigid grains with the negligence of the Winkler elastic foundation (k * =0) resting on simply supported boundary conditions. The equilibrium equations of such a system could be considered as follows:

For i = 0 :

𝑊𝑊 0 = 0 𝑘𝑘 𝑑𝑑 (𝛩𝛩 1 -𝛩𝛩 0 ) + 𝑎𝑎 2 𝑘𝑘 𝑐𝑐 (𝑊𝑊 1 -𝑊𝑊 0 ) - 𝑎𝑎 2 4
𝑘𝑘 𝑐𝑐 (𝛩𝛩 1 + 𝛩𝛩 0 ) -𝐼𝐼 𝜇𝜇 0 𝛩𝛩 ̈0 = 0

For i = 1 :

𝑘𝑘 𝑐𝑐 (𝑊𝑊 2 + 𝑊𝑊 0 -2𝑊𝑊 1 ) - 𝑎𝑎 2 𝑘𝑘 𝑐𝑐 (𝛩𝛩 2 -𝛩𝛩 0 ) -𝜇𝜇 1 𝑊𝑊 ̈1 = 0 𝑘𝑘 𝑑𝑑 (𝛩𝛩 2 + 𝛩𝛩 0 -2𝛩𝛩 1 ) + 𝑎𝑎 2 𝑘𝑘 𝑐𝑐 (𝑊𝑊 2 -𝑊𝑊 0 ) - 𝑎𝑎 2 4 𝑘𝑘 𝑐𝑐 (𝛩𝛩 2 + 𝛩𝛩 0 + 2𝛩𝛩 1 ) -𝐼𝐼 𝜇𝜇 1 𝛩𝛩 ̈1 = 0
For i = 2 :

𝑊𝑊 2 = 0 -𝑘𝑘 𝑟𝑟 (𝛩𝛩 2 -𝛩𝛩 1 ) + 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 (𝑊𝑊 2 -𝑊𝑊 1 ) - 𝑎𝑎 2 4 𝑘𝑘 𝑠𝑠 (𝛩𝛩 2 + 𝛩𝛩 1 ) -𝐼𝐼 𝑚𝑚 2 𝛩𝛩 ̈2 = 0 (163) 
Assuming 𝐼𝐼 𝑚𝑚 0 = 𝐼𝐼 𝑚𝑚 2 , this equation could be simplified and eventually expressed in a matrix form as

𝑘𝑘 𝑐𝑐 (-2𝑊𝑊 1 ) - 𝑎𝑎 2 𝑘𝑘 𝑐𝑐 (𝛩𝛩 2 -𝛩𝛩 0 ) -𝜇𝜇 1 𝑊𝑊 ̈1 = 0 𝑘𝑘 𝑑𝑑 (𝛩𝛩 1 -𝛩𝛩 0 ) + 𝑎𝑎 2 𝑘𝑘 𝑐𝑐 (𝑊𝑊 1 ) - 𝑎𝑎 2 4 𝑘𝑘 𝑐𝑐 (𝛩𝛩 1 + 𝛩𝛩 0 ) -𝐼𝐼 𝜇𝜇 0 𝛩𝛩 ̈0 = 0 𝑘𝑘 𝑑𝑑 (𝛩𝛩 2 + 𝛩𝛩 0 -2𝛩𝛩 1 ) - 𝑎𝑎 2 4 𝑘𝑘 𝑐𝑐 (𝛩𝛩 2 + 𝛩𝛩 0 + 2𝛩𝛩 1 ) -𝐼𝐼 𝜇𝜇 1 𝛩𝛩 ̈1 = 0 -𝑘𝑘 𝑟𝑟 (𝛩𝛩 2 -𝛩𝛩 1 ) + 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 (-𝑊𝑊 1 ) - 𝑎𝑎 2 4 𝑘𝑘 𝑠𝑠 (𝛩𝛩 2 + 𝛩𝛩 1 ) -𝐼𝐼 𝑚𝑚 0 𝛩𝛩 ̈2 = 0 (164) 
this equation could be rewritten in matrix form as

� 𝜇𝜇 1 0 0 0 0 𝐼𝐼 𝑚𝑚 0 0 0 0 0 𝐼𝐼 𝑚𝑚 1 0 0 0 0 𝐼𝐼 𝑚𝑚 0 � ⎣ ⎢ ⎢ ⎢ ⎡ 𝑊𝑊 ̈1 𝛩𝛩 ̈0 𝛩𝛩 ̈1 𝛩𝛩 ̈2 ⎦ ⎥ ⎥ ⎥ ⎤ + ⎣ ⎢ ⎢ ⎡ 2𝑘𝑘 𝑠𝑠 -0.5𝑎𝑎𝑘𝑘 𝑠𝑠 0 0.5𝑎𝑎𝑘𝑘 𝑠𝑠 -0.5𝑎𝑎𝑘𝑘 𝑠𝑠 𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 0 0 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 2𝑘𝑘 𝑟𝑟 + 0.5𝑎𝑎 2 𝑘𝑘 𝑠𝑠 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 0.5𝑎𝑎𝑘𝑘 𝑠𝑠 0 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 ⎦ ⎥ ⎥ ⎤ � 𝑊𝑊 1 𝛩𝛩 0 𝛩𝛩 1 𝛩𝛩 2 � = 0 (165) 
Assuming a harmonic motion 𝑊𝑊 𝑖𝑖 = 𝑤𝑤 𝑖𝑖 𝑑𝑑 𝑗𝑗𝜔𝜔𝑡𝑡 and 𝛩𝛩 𝑖𝑖 = 𝜃𝜃 𝑖𝑖 𝑑𝑑 𝑗𝑗𝜔𝜔𝑡𝑡 with

𝑗𝑗 2 = -1, ⎣ ⎢ ⎢ ⎡ 2𝑘𝑘 𝑠𝑠 -𝜇𝜇 1 𝜔𝜔 2 -0.5𝑎𝑎𝑘𝑘 𝑠𝑠 0 0.5𝑎𝑎𝑘𝑘 𝑠𝑠 -0.5𝑎𝑎𝑘𝑘 𝑠𝑠 𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 -𝐼𝐼 𝑚𝑚 0 𝜔𝜔 2 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 0 0 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 2𝑘𝑘 𝑟𝑟 + 0.5𝑎𝑎 2 𝑘𝑘 𝑠𝑠 -𝐼𝐼 𝑚𝑚 1 𝜔𝜔 2 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 0.5𝑎𝑎𝑘𝑘 𝑠𝑠 0 -𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 𝑘𝑘 𝑟𝑟 + 0.25𝑎𝑎 2 𝑘𝑘 𝑠𝑠 -𝐼𝐼 𝑚𝑚 0 𝜔𝜔 2 ⎦ ⎥ ⎥ ⎤ � 𝑊𝑊 1 𝛩𝛩 0 𝛩𝛩 1 𝛩𝛩 2 � = 0 (166)
The natural frequencies of the system could be obtained by considering the determinant of the coefficient matrix equal to zero.

Continuum Solution

In the limit case for the continuum beam, the fourth-order differential equation including the Winkler elastic foundation could be considered in dimensionless form

𝒅𝒅 𝟒𝟒 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟒𝟒 + �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) -𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 � 𝒅𝒅 𝟐𝟐 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟐𝟐 -�𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 - 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 � -𝒌𝒌 * � 𝒘𝒘 � = 𝟎𝟎 (167) 
Eq. ( 167) is obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF] and the non-dimensional parameters can be introduced

𝒙𝒙 � = 𝒙𝒙 𝜹𝜹 , 𝒘𝒘 � = 𝒘𝒘 𝜹𝜹 , 𝒅𝒅 𝟐𝟐 𝒘𝒘 � 𝒅𝒅𝑿𝑿 𝟐𝟐 = 𝜹𝜹 𝒅𝒅 𝟐𝟐 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟐𝟐 , 𝒅𝒅 𝟒𝟒 𝒘𝒘 � 𝒅𝒅𝑿𝑿 𝟒𝟒 = 𝜹𝜹 𝟑𝟑 𝒅𝒅 𝟒𝟒 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟒𝟒 (168) 
For simply supported beam, the solution of Eq. ( 167) can be proposed by

𝒘𝒘 � (𝒙𝒙 �) = 𝐬𝐬𝐢𝐢𝐧𝐧(𝒑𝒑𝒑𝒑𝒙𝒙 �) (169) 
Substituting Eq. (169) in Eq. (167) leads to the following quartic frequency equation. 

which can be considered in the compact form

𝜴𝜴 𝟒𝟒 -𝑩𝑩𝜴𝜴 𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (171) 
The two coefficients of B and C are defined as: So, the natural frequencies of the continuous beam could be obtained from the quartic equation of Eq. ( 171). The results are in the same form as Eq. ( 154) with substitution of Eq. ( 162) and can be compared well to Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]. If the elastic Winkler foundation is neglected (k * =0) the eigenfrequency values will be similar to those obtained by Timoshenko [17, [18].

The sensitivity analysis is performed for the granular chain by assuming that the following set of dimensionless parameters for four grain number values (n=5; n=20; n=35; n=50)

𝜇𝜇 𝑠𝑠 = 4.28 and 𝑘𝑘 * ∈ {1.875, 480, 4502, 18750}

In Figure 8, the frequency results obtained by the exact solution of the discrete lattice model have been compared with those of Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF]. In this asymptotic analysis, the length of the beam is considered constant for instance and by increasing the number of grains subsequently reducing the grain diameter (a) the natural frequencies of the system are obtained. Since the local continuum solution of the problem (mentioned in Eq. ( 172)) is independent of the grain number, the results do not change by varying the grain number. Each model leads to two branches of frequency.

Regarding to the first branch (lower frequencies), for each typical value of the grain number, the results of two discrete models, diverge from each other and also from the continuum ones by increasing the mode number, starting from two different values of mode number. While for the second branch these two results are close to each other (Figure 9). The results for the second branches of eigenfrequencies have been shown in Figure 9 for the two discrete model and the equivalent continuum beam with respect to the mode number (p) and four grain number values (n=5; n=20; n=35; n=50). It can be concluded the exact solution of the discrete model always predicts lower frequencies than the continuum one. As it is expected, by increasing the ratio of n/p, the results of the two discrete models converge to the continuous ones. The coincidence of the results happens for the second branch when the ratio of n/p is typically higher than the approximate value of 3, while this approximate limit value is typically 2 for the first branch. Here, for a constant grain number and various geometric dimensionless parameters (𝑑𝑑 * ), the results have been compared and shown for the two branches respectively in Figure 10 and Figure 11. Increasing the values of the length ratio, the results obtained by discrete exact solution and Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] converge each other, for both the first and second branches. For the first branch, it can be understood that generally, the behavior of the exact discrete solution is closer to continuum one in comparison with Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF], for low values of the mode number (p). On the other hand, for the second branch or higher frequencies, the behavior of the results obtained by the exact model introduced here is more sensitive to the length ratio. In Figure 12, the effect of length ratio (beam thickness/beam length) regarding to the grain number has been studied for two typical mode numbers (p=1 and p=10). The minimum values of the required grain number (n*) have been also determined and reported when the difference between the discrete and continuum results start to be smaller than 1%.

It can be concluded generally that in order to achieve the continuum results from discrete solution, whether the length ratio decrease or the mode number increase, the grain number value needs to increase. 

Nonlocal Approximate Solutions -Continuous Approach

The fourth-order difference equations of Eq. ( 77) may be continualized in two general ways: the simplest approach is based on the polynomial expansions in which the finite differences operators are expanded with the Taylor approximation. This leads to a higher-order gradient Cosserat continuum theory. Another effective method considers a rational expansion based on the Padé approximation which could give a better homogenized solution compared to the Taylor series (see for instance Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] for the application of this technique to a similar discrete Bresse-Timoshenko system). The second strategy is based on homogenization of the equations by means of a discrete Fourier transformation. The result, in this case, is a Kunin-type non-local theory.

In the next section, the discrete nature of the granular beam structure which has been modeled utilizing the difference equation as Eq. ( 77) is continualized by applying the Taylor series and the Padé approximation.

Polynomial Expansion (Taylor Series Approximant)

The general solution for the granular beam will be investigated by a continualization transform based on exponential pseudo-differential operators. The following pseudo-differential operators are defined in order to introduce the relation between the discrete and the equivalent continuous system holds for a sufficiently smooth deflection function (Salvadori [126]):

𝒘𝒘 𝒊𝒊 = 𝒘𝒘 (𝒙𝒙 = 𝒊𝒊𝒂𝒂) 𝒘𝒘 𝒊𝒊+𝟏𝟏 = � 𝒂𝒂 𝒌𝒌 𝑫𝑫 𝒙𝒙 𝒌𝒌 𝒌𝒌! ∞ 𝒌𝒌=𝟎𝟎 𝒘𝒘(𝒙𝒙) = �𝟏𝟏 + 𝒂𝒂𝑫𝑫 𝒙𝒙 𝟏𝟏 𝟏𝟏! + 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟐𝟐! + 𝒂𝒂 𝟑𝟑 𝑫𝑫 𝒙𝒙 𝟑𝟑 𝟑𝟑! + ⋯ � 𝒘𝒘(𝒙𝒙) = 𝒆𝒆 𝒂𝒂𝑫𝑫 𝒙𝒙 𝒘𝒘(𝒙𝒙); 𝒙𝒙 = 𝒊𝒊𝒂𝒂 (174) 
Subsequently, the involved pseudo-differential equations 𝛿𝛿 2 2 𝑤𝑤(𝑥𝑥), 𝛿𝛿 2 𝑤𝑤(𝑥𝑥) and 𝛿𝛿 0 𝑤𝑤(𝑥𝑥) may be defined as: ) and neglecting higher-order terms in 𝑎𝑎 4 . 

𝜹𝜹 𝟐𝟐 𝟐𝟐 𝒘𝒘(𝒙𝒙) = � 𝒆𝒆 𝟐𝟐𝒂𝒂𝑫𝑫 𝒙𝒙 -𝟒𝟒𝒆𝒆 𝒂𝒂𝑫𝑫 𝒙𝒙 + 𝟔𝟔 -𝟒𝟒𝒆𝒆 -𝒂𝒂𝑫𝑫 𝒙𝒙 + 𝒆𝒆 -
Assuming static case (𝜔𝜔 = 0), Eq. ( 178) leads to an equivalent gradient elasticity of Euler-Bernoulli beam under Pasternak-type foundation

𝑬𝑬𝑬𝑬 �- 𝒂𝒂 𝟐𝟐 𝟔𝟔 𝒘𝒘 (𝟔𝟔) + 𝒘𝒘 (𝟒𝟒) � + 𝒌𝒌 �𝒘𝒘 - 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝒘𝒘 ′′ � = 𝟎𝟎 (182) 
Going back to Eq. ( 176) which is an approximation of the discrete model, the higher-order differential equation could be rewritten 

Eq. ( 183) has been obtained by Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF] in the static range (𝜔𝜔 = 0). For simply supported boundary conditions, the solution of Eq. ( 183) could be assumed in the following form:

𝒘𝒘(𝒙𝒙) = 𝐬𝐬𝐢𝐢𝐧𝐧 � 𝒑𝒑𝒑𝒑𝒙𝒙 𝜹𝜹 � (184) 
So, by substituting this fundamental solution in Eq. ( 183), the natural frequencies of the granular chain may be obtained from solving the following equation: 

Eq. ( 189) coincides with Eq. ( 162), which also exactly agrees with the results of Wang and

Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

In Figure 13, the natural frequencies of the discrete granular model obtained from the Taylor expansion of pseudo-differential (nonlocal approach) have been compared with the local continuum solution for the two spectra. The coincidence of the discrete and continuum eigenfrequencies occurs when the ratio of n/p is sufficiently large which can be quantified for the second branch typically 7 and for the first branch by a typical value of 5.

In comparison with the exact solution, it can be clarified that the Taylor approximation requires more discrete elements in order to converge to the continuum results.

It is important to note that by decreasing the n/p ratio, the imaginary term appears in the nonlocal results for the two branches. For these cases, the real parts of the two branches are equal together while the imaginary parts are equal in values but opposite in sign. Therefore, using the Taylor series for continualizing the difference equations of the granular beam implies imaginary eigenfrequencies. The length ratio and grain number effects on frequencies have been studied in Figure 14. 

Rational Expansion (Padé Approximant)

In this section, the approximation of Padé has been used in the asymptotic expansion of the pseudo-differential operators. This method often gives a better approximation of a function than its Taylor series counterpart (Baker and Graves-Morris [START_REF] Baker | Pade approximants[END_REF]).

Applying the Padé approximant of [1/4] 

Eq. ( 11) could be rewritten as a function of Eq. ( 175) where p is the mode number (natural number). 𝛺𝛺 would be obtained by

𝜴𝜴 = � 𝑩𝑩 ± √𝑩𝑩 𝟐𝟐 -𝟒𝟒𝓚𝓚 𝑪𝑪 𝟐𝟐𝓚𝓚 (201) 
For continuum case when 𝑛𝑛 → ∞, Eq. (198) could be written in a quartic form

𝜴𝜴 𝟒𝟒 -𝑩𝑩𝜴𝜴 𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (202) 
B and C are defined as: 

The last equation is valid for the continuum case and agrees with the results of the Bresse-Timoshenko beam on elastic Winkler foundation, as treated by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

The natural frequencies of the two existing branches regarding Eq. ( 204), have been

shown in Figure 15. The frequencies obtained by the Padé approximants can be supposed equal to the continuum results when the ratio of n/p is large enough. For the second branch, this ratio needs to be typically higher than 5 while for the first branch this limit value is typically 3. These typical limit values are the same as those obtained by the exact solution.

Figure 16 shows the length ratio (𝑑𝑑 * ) and grain number effects on frequencies. Increasing the length ratio (refers to beam thickness/beam length) causes an increase in the eigenfrequencies. The values of grain number limit (n*) have been also reported for each case. 

Discussion

The eigenfrequency results of the two branches are gathered together for all approaches (local, nonlocal and continuum models) in Figure 17 

Conclusion

This chapter investigates the macroscopic free vibration behavior of a discrete 

CHAPTER 4

Wave Dispersion Analysis of Granular Beam

Introduction

The current study focuses on the analysis of wave propagation and the dispersive behavior of mechanical waves in discrete granular media resting on elastic foundations.

Misra and Nejadsadeghi [START_REF] Misra | Longitudinal and transverse elastic waves in {1D} granular materials modeled as micromorphic continua[END_REF] studied the dispersive behavior of granular materials in response to elastic deformation waves using the granular micromechanics approach proposed by Misra and Poorsolhjouy [START_REF] Misra | Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics[END_REF]. This study can be considered also as the discrete study of the continuous Bresse-Timoshenko beam on the continuous linear elastic foundation (Winkler foundation). Assuming an infinite number of grains, the results lead to the response of a continuous Bresse-Timoshenko beam on an elastic foundation, studied for instance by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundations[END_REF], Cheng and Pantelides [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF] or Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]. In particular, the dispersive behavior of continuous Bresse-Timoshenko beam resting on elastic foundation has been specifically addressed by Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]. The Bresse-Timoshenko continuum limit may be also understood as the long-wave limit of the discrete granular model. The granular chain composed of rigid grains is assumed to interact with a Winkler elastic foundation (Winkler [128]). The wave dispersion of this granular system is derived from the uncoupled equation of motion using a discrete Cosserat theory, based on both rotational and translational degrees of freedom for each grain. For the long-wave limit, the dispersion equation converges towards the continuum model of the Bresse-Timoshenko beam on the Winkler foundation, as treated by Manevich [START_REF] Vardoulakis | Cosserat Continuum Mechanics With Applications to Granular Media[END_REF]. Also, the results valid for the discrete granular beam could be well compared to those of Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] and Pichard et al. [START_REF] Pichard | Localized transversal-rotational modes in linear chains of equal masses[END_REF], neglecting the foundation contribution (k=0).

Next, the nonlocal dispersion results are obtained through the homogenization of the fourth-order difference equation of the system by applying the Taylor series and Padé approximation. Finally, a comparison between the discrete and the enriched continuous model will be discussed and conclusions sections are presented. A comprehensive dispersion analysis is done regarding the local and nonlocal deflection equations of this 1D granular chain. Based on the presented parametric study, the wave dispersion curves for the discrete lattice models are compared to the corresponding continuum models (Bresse-Timoshenko). The results also compared to molecular dynamics of the flexural behavior in carbon nanotubes with acceptable coincidence. The results of this study is a generalization for the outcome of Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] and Pichard et al. [START_REF] Pichard | Localized transversal-rotational modes in linear chains of equal masses[END_REF] valid for the wave propagation of elastic chain without elastic foundation.

Discrete Approach via Exact Solution

Dispersion of propagation waves would influence the media if the wavelength is of the same magnitude order as the characteristic spacing of the dominant source of heterogeneity. In order to capture wave dispersion, continuum models need to be equipped with appreciate terms that capture the lower scale behavior (Domenico and Askes [129]).

Recalling, the dynamic equation for the deflection of the granular chain resting on Winkler elastic foundation (granular lattice model) To satisfy this fourth-order mixed difference-differential equation, a fundamental solution in the harmonic form could be considered as follow:

𝒘𝒘 𝒊𝒊 = 𝜷𝜷𝒆𝒆 𝒋𝒋(𝝎𝝎𝒅𝒅-𝒌𝒌 𝒘𝒘 𝒙𝒙 𝒊𝒊 ) (206) 
Substitution of the expression Eq. ( 206) into Eq. ( 205) provides the algebraic equation as:

𝜷𝜷𝒆𝒆 𝒋𝒋(𝝎𝝎𝒅𝒅-𝒌𝒌 𝒘𝒘 𝒙𝒙 𝒊𝒊 ) ��𝒆𝒆 𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟒𝟒𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝟔𝟔 -𝟒𝟒𝒆𝒆 

The following biquadratic equation expressed by the angular frequency could be obtained from Eq. ( 207): Neglecting the Winkler foundation (𝑘𝑘 = 0), the aforementioned equation leads to the results obtained by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] (Eq. ( 209)).

[𝝆𝝆𝒂𝒂 𝟐𝟐 ]𝝎𝝎 𝟒𝟒 -
[𝑴𝑴𝑵𝑵]𝝎𝝎 𝟒𝟒 -𝟒𝟒 �(𝑵𝑵𝑺𝑺 + 𝑴𝑴𝑪𝑪) 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 In order to know the nature of the results for Eq. ( 208), the sign of the coefficients in the characteristic equation need to be clarified. The discriminant (∆) of Eq. ( 208) would be obtained as follows 

𝑓𝑓(0) leads to the result obtained by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF]. Here an attempt is made to identify the effect of adding elastic foundation to the model, for the dynamic response of the system.

∀ 𝑬𝑬, 𝓚𝓚, 𝑬𝑬, 𝓚𝓚, 𝑲𝑲 𝒔𝒔 , 𝒂𝒂, 𝒌𝒌 𝒘𝒘 :

� 𝒂𝒂 𝟐𝟐 𝟒𝟒𝓚𝓚 � 𝟐𝟐 > 𝟎𝟎 , ∆ 𝟐𝟐 = - �𝒂𝒂 𝟑𝟑 𝑲𝑲 𝒔𝒔 𝓚𝓚� 𝟐𝟐 𝟏𝟏𝟔𝟔𝓚𝓚𝑬𝑬 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 (𝒂𝒂𝒌𝒌 𝒘𝒘 ) < 𝟎𝟎 (220)
It can be concluded that the parabolic equation of Eq. ( 219) is upward with the minimum positive value of

-4𝒦𝒦 2 ∆ 2 𝑎𝑎 4 .
On the other hand, the behavior of Eq. ( 218) depending on 𝑘𝑘 𝑤𝑤 is studied for any physical parameters of the system. All terms of the discriminant (∆ 𝟏𝟏 ) are positive except the third one. Therefore, the discriminant of Eq. ( 208) (∆ 1 ) is always positive for any values of Winkler elastic foundation and mode number. This fact with regard to Eq. ( 217) leads to two real positive solutions for Eq. ( 208) expressed by natural frequency.

Here the nature of the wave is tried to be clarified. Substituting the exponential form of Eq. ( 206) for 𝜃𝜃 𝑖𝑖 and 𝑤𝑤 𝑖𝑖 by 𝜃𝜃 𝑖𝑖 = 𝛼𝛼𝑑𝑑 𝑗𝑗(𝜔𝜔𝑡𝑡-𝑘𝑘 𝑤𝑤 𝑥𝑥 𝑖𝑖 ) and 𝑤𝑤 𝑖𝑖 = 𝛽𝛽𝑑𝑑 𝑗𝑗(𝜔𝜔𝑡𝑡-𝑊𝑊 𝑤𝑤 𝑥𝑥 𝐶𝐶 ) in the equilibrium equation system of Eq. ( 69) while assuming 𝜔𝜔 = 𝑘𝑘 𝑤𝑤 𝑣𝑣 𝑝𝑝 , leads to:

-𝟒𝟒𝜷𝜷𝑺𝑺 𝐬𝐬𝐢𝐢𝐧𝐧 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � 𝟐𝟐 -𝒂𝒂𝜶𝜶𝑺𝑺𝒋𝒋 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌 𝒘𝒘 ) -𝒂𝒂𝜷𝜷𝒌𝒌 + 𝜷𝜷𝒎𝒎𝒌𝒌 𝒘𝒘 𝟐𝟐 𝒗𝒗 𝒑𝒑 𝟐𝟐 = 𝟎𝟎, -𝟒𝟒𝜶𝜶𝑪𝑪 𝐬𝐬𝐢𝐢𝐧𝐧 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � 𝟐𝟐 + 𝒂𝒂𝜷𝜷𝑺𝑺𝒋𝒋 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌 𝒘𝒘 ) -𝒂𝒂 𝟐𝟐 𝜶𝜶𝑺𝑺 𝐜𝐜𝐅𝐅𝐬𝐬 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � 𝟐𝟐 -𝜶𝜶𝑬𝑬 𝒎𝒎 𝒌𝒌 𝒘𝒘 𝟐𝟐 𝒗𝒗 𝒑𝒑 𝟐𝟐 = 𝟎𝟎 (221)
in which 𝑣𝑣 𝑝𝑝 is the phase velocity. The dynamic response of this coupled system of the equation can be obtained in the following form

𝝎𝝎 𝟐𝟐 = 𝝈𝝈 ± √𝝈𝝈 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟐𝟐 (222)
where 𝜎𝜎 and 𝜏𝜏 are represented by Regarding the two positive responses of Eq. ( 153), the phase velocity could be obtained for 𝑘𝑘 𝑤𝑤 → 0 as follows

𝒗𝒗 𝒑𝒑 = � 𝝈𝝈 ± √𝝈𝝈 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟐𝟐𝒌𝒌 𝒘𝒘 𝟐𝟐 𝒌𝒌 𝒘𝒘 → 𝟎𝟎 �⎯⎯⎯⎯⎯� 𝒗𝒗 𝒑𝒑 ≈ � � 𝓚𝓚𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝆𝝆𝑬𝑬 + 𝒌𝒌 𝝆𝝆𝓚𝓚 � ± � 𝓚𝓚𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝆𝝆𝑬𝑬 - 𝒌𝒌 𝝆𝝆𝓚𝓚 � 𝟐𝟐𝒌𝒌 𝒘𝒘 𝟐𝟐 ( 224 
)
The ratio of the amplitudes (𝛼𝛼/𝛽𝛽) can be found from Eq. ( 221). The first relation leads to

𝜶𝜶 𝜷𝜷 = 𝒋𝒋 𝟒𝟒𝑺𝑺 𝐬𝐬𝐢𝐢𝐧𝐧 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � 𝟐𝟐 + 𝒂𝒂𝒌𝒌 -𝒎𝒎𝒌𝒌 𝒘𝒘 𝟐𝟐 𝒗𝒗 𝒑𝒑 𝟐𝟐 𝒂𝒂𝑺𝑺 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌 𝒘𝒘 ) (225) 
Supposing 𝑘𝑘 = 0, Eq. ( 225) leads to the result obtained by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF].

According to Eq. ( 224) and the positive root of Eq. ( 225) for the low value of mode number (long-wave limit), only the rotational wave could propagate in the system. The oscillations here are the displacement of the grains in directions perpendicular to the propagation of the wave. Therefore, with the foundation, the wave nature is mixed of both types that one is dominant to the other and it can be considered as a shear-rotational wave.

The mode number cannot exceed the grain number value or in the other words, the wave length cannot be shorter than the grain size. Thus, the assumption of 𝑘𝑘 𝑤𝑤 → ∞ can be true only for an infinite number of grains or continuum beams.

On the other hand, by neglecting the Winkler foundation, the phase velocity for a small value of mode number leads to Using again the coefficient ratio of Eq. ( 225) for the long waves and 𝑘𝑘 = 0 leads to the dominancy of the shear component when taking into account the first spectrum of the results of Eq. ( 227) as follows:

𝒗𝒗 𝒑𝒑𝟏𝟏 = � 𝝈𝝈 -√𝝈𝝈 𝟐𝟐 -
𝒌𝒌 𝒘𝒘 → 𝟎𝟎: 𝜶𝜶 𝜷𝜷 ≈ 𝟎𝟎 (Shear wave) (229)
While for the second spectrum or the higher frequency branch, the rotational wave is dominated by the system.

𝒌𝒌 𝒘𝒘 → 𝟎𝟎: 𝜶𝜶 𝜷𝜷 ≈ ∞ (Rotational wave) (230)
Thus, without the Winkler elastic foundation, the wave nature is also combined of both types (Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF]).

On the other hand, the mixed differential-difference equation for a Hencky beam problem or discrete Euler-Bernoulli beam theory has been obtained as

�𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 + 𝝆𝝆𝓚𝓚𝝏𝝏 𝒅𝒅 𝟐𝟐 �𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (231)
Regarding the properties of Eq. ( 6), Eq. ( 231) leads to 𝑬𝑬𝑬𝑬�𝒆𝒆 𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟒𝟒𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝟔𝟔 -𝟒𝟒𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝒆𝒆 -𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � -𝝆𝝆𝓚𝓚𝒂𝒂 𝟒𝟒 𝝎𝝎 𝟐𝟐 = 𝟎𝟎 (232)

This equation can be simplified as

𝑬𝑬 𝒂𝒂 𝟒𝟒 (𝟐𝟐𝐜𝐜𝐅𝐅𝐬𝐬(𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 ) -𝟑𝟑 𝐜𝐜𝐅𝐅𝐬𝐬(𝒂𝒂𝒌𝒌 𝒘𝒘 ) + 𝟔𝟔) - 𝝆𝝆𝓚𝓚 𝑬𝑬 𝝎𝝎 𝟐𝟐 = 𝟎𝟎 (233)
the quadratic wave dispersive equation would be obtained as follows in a dimensionless form with respect to the angular frequency of the granular chain with pure bending interactions:

𝜴𝜴 𝒃𝒃 𝟐𝟐 = 𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏 𝟒𝟒 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � (234) 
This equation associated with the discrete granular chain may be efficiently approximated by a nonlocal equation associated with the wave propagation in a nonlocal continuous beam.

On the other hand, let's consider the case of a granular chain with predominant bending interactions (𝑆𝑆 → ∞) and neglecting the Winkler foundation (𝑘𝑘 = 0). In this case, the wave propagation equation expressed by transverse deflection for the granular system (Eq. ( 205)) leads to

[𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 + 𝝏𝝏 𝒅𝒅 𝟐𝟐 (𝝆𝝆𝓚𝓚𝜹𝜹 𝟎𝟎 -𝝆𝝆𝑬𝑬𝜹𝜹 𝟐𝟐 )]𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (235)
This equation leads to the following relation by using the definitions of Eq. ( 6)

𝜷𝜷𝒆𝒆 𝒋𝒋(𝝎𝝎𝒅𝒅-𝒌𝒌 𝒘𝒘 𝒙𝒙 𝒊𝒊 ) [�𝒆𝒆 𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟒𝟒𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝟔𝟔 -𝟒𝟒𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝒆𝒆 -𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � + 𝒂𝒂 𝟐𝟐 � 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 � �𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � + 𝒂𝒂 𝟒𝟒 �- 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬 � �𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 �] = 𝟎𝟎 (236)
Which can be simplified as Neglecting the rotational inertia terms leads to the following equation which is slightly different from Eq. ( 234).

𝜴𝜴 𝒃𝒃 𝟐𝟐 = 𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � 𝒅𝒅𝒂𝒂𝒏𝒏 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � (239)
For an infinite number of grains, the granular chain asymptotically behaves as a gradient elasticity Rayleigh model (where the bending interactions are predominant). Eq. ( 235) with terms of translation and rotation inertia leads to

[𝑬𝑬𝑬𝑬𝝏𝝏 𝒙𝒙 𝟒𝟒 -𝝆𝝆𝑬𝑬𝝏𝝏 𝒅𝒅 𝟐𝟐 𝝏𝝏 𝒙𝒙 𝟐𝟐 + 𝝆𝝆𝓚𝓚𝝏𝝏 𝒅𝒅 𝟐𝟐 ]𝒘𝒘 = 𝟎𝟎 (240) 
Lu et al. [START_REF] Lu | Dynamic properties of flexural beams using a nonlocal elasticity model[END_REF] investigated the wave propagation properties in a nonlocal Euler-Bernoulli beam (Eq. ( 241)), based on a differential nonlocal model introduced by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] for one-dimensional media. Eq. ( 240) could be compared well by Lu et al. [START_REF] Lu | Dynamic properties of flexural beams using a nonlocal elasticity model[END_REF] which obtained in their study as follows

�𝑬𝑬𝑬𝑬𝝏𝝏 𝒙𝒙 𝟒𝟒 -𝝆𝝆𝓚𝓚𝝏𝝏 𝒅𝒅 𝟐𝟐 ((𝒆𝒆 𝟎𝟎 𝒅𝒅 𝟎𝟎 ) 𝟐𝟐 𝝏𝝏 𝒙𝒙 𝟐𝟐 -𝟏𝟏)�𝒘𝒘 = 𝟎𝟎 ( 241 
)
𝑑𝑑 0 is the nondimensional calibration parameter of the Eringen nonlocal approach. This parameter adjusts in order to achieve a good dispersive curve at the end of the Brillouin zone and 𝑑𝑑 0 is an internal characteristic length. Eq. ( 241) is equivalent to considering an Eringen's based nonlocal model by

𝑴𝑴 -𝒍𝒍 𝒄𝒄 𝟐𝟐 𝑴𝑴 ′′ = 𝑬𝑬𝑬𝑬𝒘𝒘 ′′ ; 𝑴𝑴 ′′ = -𝝆𝝆𝓚𝓚𝒘𝒘̈ (242)
Here 𝑙𝑙 𝑐𝑐 is the characteristic length of the nonlocal model. Regarding the fourth-order differential equation of the nonlocal beam (Eq. ( 241)) and considering the solution of the deflection in a harmonic form, the substitution of Eq. ( 206) in Eq. ( 242) gives

𝑬𝑬𝑬𝑬𝒌𝒌 𝒘𝒘 𝟒𝟒 -𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 (𝟏𝟏 + (𝒂𝒂𝒆𝒆 𝟎𝟎 𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 ) = 𝟎𝟎 (243)
in which 𝑑𝑑 0 could be defined by 𝑑𝑑 0 = 𝑙𝑙 𝑐𝑐 /𝑎𝑎. The approximate angular frequencies calculated from Eringen's nonlocal beam approach could be obtained by:

𝜴𝜴 𝒃𝒃 𝟐𝟐 = (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝒆𝒆 𝟎𝟎 𝟐𝟐 (244)
where 𝜴𝜴 𝒃𝒃 is the dimensionless parameter of frequency regarding the bending wave velocity definition. Comparing Eq. ( 244) with the one issued of Eringen's model (Eringen [71]) applied to beam mechanics, (Eq. ( 234)) leads to the two fundamental values that differ for the low and high natural frequencies. These two values are obtained as follows 

𝐟𝐟𝐅𝐅𝐅𝐅 𝒂𝒂𝒌𝒌 𝒘𝒘 = 𝒑𝒑: 𝟏𝟏𝟔𝟔 = 𝒑𝒑 𝟒𝟒 𝟏𝟏 + (𝒑𝒑) 𝟐𝟐 (𝒆𝒆 𝟎𝟎 ) 𝟐𝟐 ⇒ 𝒆𝒆 𝟎𝟎 = � 𝒑𝒑 𝟐𝟐 𝟏𝟏𝟔𝟔 - 𝟏𝟏 𝒑𝒑 𝟐𝟐 ≈ 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟑𝟑 (246) 
The specific values of e 0 =0.408 and e 0 =0.718 obtained in Eq. ( 245) and ( 246) could be verified well also by Challamel et al. [131].

Assuming only shear effects (pure bending beam) ( 𝐸𝐸𝐸𝐸 𝐾𝐾 𝐷𝐷 𝒦𝒦𝒦𝒦𝐿𝐿 2 → 0) by considering 𝐸𝐸𝐼𝐼 → 0 and neglecting the Winkler elastic foundation (𝑘𝑘 = 0), Eq. ( 205) leads to

�(𝓚𝓚𝜹𝜹 𝟎𝟎 -𝑬𝑬𝜹𝜹 𝟐𝟐 )𝝏𝝏 𝒅𝒅 𝟐𝟐 + 𝝆𝝆𝑬𝑬𝝏𝝏 𝒅𝒅 𝟒𝟒 𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝒘𝒘 𝒊𝒊 = 𝟎𝟎 (247)
This equation leads to the following relation by using Eq. ( 6)

𝜷𝜷𝒆𝒆 𝒋𝒋(𝝎𝝎𝒅𝒅-𝒌𝒌 𝒘𝒘 𝒙𝒙 𝒊𝒊 ) �𝑬𝑬�𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � - 

Continuous Approach

Exact Solution

From the continuum model, the wave propagation equation regarding the local Bresse-Timoshenko could be obtained as: Substituting the fundamental solution of 𝑤𝑤 = 𝑊𝑊𝑑𝑑 𝑗𝑗(𝜔𝜔𝑡𝑡-𝑊𝑊 𝑤𝑤 𝑥𝑥) (the wave propagation equation in the harmonic form for the continuum beam model) in Eq. ( 251) leads to:

�𝑬𝑬𝑬𝑬𝝏𝝏 𝒙𝒙 𝟒𝟒 + �-
� 𝝆𝝆 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 � 𝝎𝝎 𝟒𝟒 -�� 𝝆𝝆 𝑬𝑬 + 𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 � �𝒌𝒌 𝒘𝒘 𝟐𝟐 � + 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 + 𝒌𝒌𝝆𝝆 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � 𝝎𝝎 𝟐𝟐 + �𝒌𝒌 𝒘𝒘 𝟒𝟒 + 𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 �𝒌𝒌 𝒘𝒘 𝟐𝟐 � + 𝒌𝒌 𝑬𝑬𝑬𝑬 � = 𝟎𝟎 (252)
On the other hand, for an infinite number of grains assuming 𝑎𝑎 → 0, the discrete dispersive relation of Eq. ( 208) leads to the biquadratic equation of Eq. ( 252). This dispersion equation for the continuum beam can be compared well also by the one obtained by Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF] on Winkler elastic foundations (Eq. ( 213)).

Approximate Solution via Polynomial Expansion

In this section, the continualization of the difference equation of Eq. ( 205) is investigated using polynomial expansions. The finite difference terms are replaced by the corresponding Taylor series and lead to a Cosserat continuum theory.

Using this nonlocal solution allows to obtain the continuous approximate model of the discrete equations holds for a sufficiently smooth deflection function (Salvadori [126])(see for instance the application of this method for nonlinear lattices by Kruskal and Zabusky [START_REF] Zabusky | Stroboscopic perturbation for treating a class of nonlinear wave equations[END_REF]):

𝒘𝒘 𝒊𝒊 = 𝒘𝒘(𝒙𝒙 = 𝒊𝒊𝒂𝒂); 𝒘𝒘 𝒊𝒊+𝟏𝟏 = � 𝒂𝒂 𝒌𝒌 𝝏𝝏 𝒙𝒙 𝒌𝒌 𝒌𝒌! ∞ 𝒌𝒌=𝟎𝟎 𝒘𝒘(𝒙𝒙) = �𝟏𝟏 + 𝒂𝒂𝝏𝝏 𝒙𝒙 𝟏𝟏 𝟏𝟏! + 𝒂𝒂 𝟐𝟐 𝝏𝝏 𝒙𝒙 𝟐𝟐 𝟐𝟐! + 𝒂𝒂 𝟑𝟑 𝝏𝝏 𝒙𝒙 𝟑𝟑 𝟑𝟑! + ⋯ � 𝒘𝒘(𝒙𝒙) = 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 𝒘𝒘(𝒙𝒙); 𝐱𝐱 = 𝐢𝐢𝐢𝐢 (253) 
The pseudodifferential operators 𝛿𝛿 2 2 , 𝛿𝛿 2 and 𝛿𝛿 0 could be expanded as: 

𝜹𝜹 𝟐𝟐 𝟐𝟐 𝒘𝒘 = � 𝒆𝒆 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟒𝟒𝒆𝒆 𝒂𝒂𝝏𝝏
A continualization procedure up to the order 𝒂𝒂 𝟔𝟔 from the mixed difference-differential equation of Eq. ( 205) through the substitution of the expansion series of Eq. (175) leads to the following higher-order gradient system: To satisfy this eighth-order differential equation, a wave equation in a harmonic type is chosen again as Eq. ( 206). One would be obtained as: Using the dimensionless parameters of Eq. ( 214) leads to:

𝜴𝜴 𝒃𝒃 𝟒𝟒 -�� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 � + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒 + 𝟏𝟏� + 𝒌𝒌 * � 𝜴𝜴 𝒃𝒃 𝟐𝟐 + �� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟑𝟑𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟔𝟔 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 � + � 𝒌𝒌 * 𝒓𝒓 * 𝟐𝟐 � � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 � + � 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒 + 𝟏𝟏�� = 𝟎𝟎 (260)
Using the second-order 𝒂𝒂 𝟐𝟐 of the continualization of the Taylor expansion series of Eq.

(175), Eq. (205) leads to the following higher-order gradient system: For the static range, this equation leads to the one obtained by Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF].

Using the dimensionless parameters introduced in Eq. ( 214), the comparable deflection equation of the continuous approximate for the static condition would be obtained as follows 

This gradient elasticity Rayleigh model (pure bending) under a gradient Winkler elastic foundation is associated with a non-positive definite energy function. After integration by part, one obtains the following energy functional:

𝜫𝜫 = � 𝟏𝟏 𝟐𝟐 𝑬𝑬𝑬𝑬 �𝒘𝒘 ′′ 𝟐𝟐 - 𝒂𝒂 𝟐𝟐 𝟔𝟔 𝒘𝒘 ′′′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙 + � 𝟏𝟏 𝟐𝟐 𝝆𝝆𝑬𝑬𝝏𝝏 𝒅𝒅 𝟐𝟐 �𝒘𝒘 ′ 𝟐𝟐 - 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝒘𝒘 ′′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙 + � 𝟏𝟏 𝟐𝟐 �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏 𝒅𝒅 𝟐𝟐 � �𝒘𝒘 𝟐𝟐 - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝒘𝒘 ′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙. (264) 
The wave propagation equation could be obtained as the following sixth-order differential equation from Eq. ( 261): and in the nondimensional form as:

𝜴𝜴 𝒃𝒃 𝟒𝟒 + �� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐 + � 𝟏𝟏 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 - 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 - 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 -( 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * )� 𝜴𝜴 𝒃𝒃 𝟐𝟐 + �-� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟔𝟔 + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 - 𝒌𝒌 * 𝟏𝟏𝟐𝟐𝒓𝒓 * 𝟐𝟐 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 + ( 𝒌𝒌 * 𝒓𝒓 * 𝟐𝟐 - 𝒌𝒌 * 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 )(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 + 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � = 𝟎𝟎 (267) 
The dispersive analysis of the granular chain with regards to the dimensionless parameter of bending frequency is done for the two branches. The results are plotted in (208), ( 257), ( 259), ( 252) and ( 266)). For instance, in order to investigate a sensitive numerical analysis of the abovementioned model, we consider the following parameters (steel is assumed for the material parameter). Let's assume the mechanical parameters of steel with an elastic foundation as follows Due to the quartic equation of Eq. ( 257), depending on the discriminant value of this equation for the sixth, the fourth and the second-order expansion of the Taylor series, the dynamic results could take complex values.

𝑬𝑬 = 𝟐𝟐𝟎𝟎𝟎𝟎 𝓚𝓚𝑮𝑮𝒂𝒂, 𝓚𝓚 = 𝟎𝟎𝟎𝟎 𝓚𝓚𝑮𝑮𝒂𝒂, 𝑲𝑲 𝒔𝒔 = 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟎𝟎, 𝝆𝝆 = 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 𝒌𝒌𝒌𝒌 𝒎𝒎 𝟑𝟑 , k= 𝟓𝟓𝟎𝟎 𝑴𝑴𝑮𝑮𝒂𝒂. (268) (a) (b) 
For analyzing the behavior of the nonlocal approach using the Taylor development precisely, here an asymptotic study of the frequency has been done. Regarding Eq.

(258),one could be obtained for the dimensionless parameter of bending frequency as follows:

𝜴𝜴 𝒃𝒃 = � 𝜺𝜺 ± �𝜺𝜺 𝟐𝟐 -𝜸𝜸 (269) 
where 𝜀𝜀 and 𝛾𝛾 would be considered as

𝜺𝜺 = 𝟏𝟏 𝟐𝟐 �� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � �- (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 � + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �- (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒 + 𝟏𝟏� + 𝒌𝒌 * � ; (270) 
𝜸𝜸 = � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �- 𝟏𝟏𝟎𝟎(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟏𝟏𝟎𝟎 𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟑𝟑𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟔𝟔 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 � + � 𝒌𝒌 * 𝒓𝒓 * 𝟐𝟐 � �- (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 � + � 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �- (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑 - (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒 + 𝟏𝟏�
Due to the discriminant of Eq. ( 269) and the typical values for the mechanical and geometrical parameters of the system (Eq. ( 268)) the results contain the imaginary part. 

Approximate Solution via Rational Expansion

Another nonlocal approximation is based on a rational expansion (Padé approximants) instead of the polynomial approximation, which may lead to a betterhomogenized solution in comparison to the Taylor series (Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF]). With the application of Padé approximant of order in 𝒂𝒂 4 subsequently for the pseudo-differential operators of Eq. ( 175), ones would be obtained as: 

𝜹𝜹 𝟐𝟐 𝟐𝟐 𝒘𝒘
Thus, the deflection equation of Eq. ( 205) for a discrete system could be written for a continuous system using Eq. (190) as: 

The wave propagation equation can be obtained by: 

The dimensionless form of this equation would be obtained through the dimensionless parameters of Eq. (214) as follows:

�� 𝟏𝟏𝟏𝟏(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟎𝟎𝟐𝟐𝟎𝟎 + (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟔𝟔 + 𝟏𝟏�� 𝜴𝜴 𝒃𝒃 𝟒𝟒 -�� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟐𝟐𝟒𝟒𝟎𝟎 + �� 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � 𝟏𝟏 𝟏𝟏𝟐𝟐 + �𝒌𝒌 * - 𝟒𝟒 𝟏𝟏𝟏𝟏𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � 𝟏𝟏𝟏𝟏 𝟎𝟎𝟐𝟐𝟎𝟎 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 + �𝒌𝒌 * - 𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � 𝟏𝟏 𝟔𝟔 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * �� 𝜴𝜴 𝒃𝒃 𝟐𝟐 + �� 𝒌𝒌 * 𝟐𝟐𝟒𝟒𝟎𝟎𝒓𝒓 * 𝟐𝟐 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 + � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * 𝟏𝟏𝟐𝟐𝒓𝒓 * 𝟐𝟐 - 𝒌𝒌 * 𝟏𝟏𝟑𝟑𝟎𝟎𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 + � 𝒌𝒌 * 𝒓𝒓 * 𝟐𝟐 - 𝒌𝒌 * 𝟏𝟏𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 + 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � = 𝟎𝟎 (276) 
On the other hand, regarding the work of Bacigalupo and Gambarotta [START_REF] Bacigalupo | Generalized micropolar continualization of 1D beam lattices[END_REF] or Bacigalupo and Gambarotta [START_REF] Bacigalupo | Identification of non-local continua for lattice-like materials[END_REF] by using the approach of enhanced continualization via the first-order regularization, the derivatives of the continuum fields could be expressed by

𝝏𝝏 𝒙𝒙 𝒘𝒘 � 𝒊𝒊 = 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐𝒂𝒂 𝒘𝒘 𝒊𝒊 (277) 
And the down-scaling law for each node defined by

𝒘𝒘 𝒊𝒊 = 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒘𝒘 � 𝒊𝒊 (278) 
Substituting Eq. ( 278) in Eq. ( 69) leads to

�𝟐𝟐𝑺𝑺 (𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -(𝟐𝟐 + 𝒌𝒌𝒂𝒂/𝒔𝒔) + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 ) 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂𝝏𝝏 𝒙𝒙 � 𝒘𝒘 � 𝒊𝒊 -𝒂𝒂 𝟐𝟐 𝑺𝑺𝝏𝝏 𝒙𝒙 𝜽𝜽 � 𝒊𝒊 -� 𝟐𝟐𝒎𝒎 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝑫𝑫 𝒙𝒙 𝒂𝒂𝝏𝝏 𝒙𝒙 � 𝒘𝒘 � 𝒊𝒊 ̈= 𝟎𝟎; �(𝑪𝑪 (𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 ) 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑺𝑺 (𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 ) 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 )𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 � 𝜽𝜽 � 𝒊𝒊 + 𝒂𝒂 𝟐𝟐 𝑺𝑺𝝏𝝏 𝒙𝒙 𝒘𝒘 � 𝒊𝒊 -� 𝟐𝟐𝑬𝑬 𝒎𝒎 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂𝝏𝝏 𝒙𝒙 � 𝜽𝜽 � 𝒊𝒊 ̈= 𝟎𝟎 (279) 
Here, the differential equations of the equivalent homogenized continuum are obtained by applying the fourth-order terms of the Taylor series:

- 

Regarding Eq. ( 278), the difference operators of Eq. ( 6) actually could be expressed in the following form

𝜹𝜹 𝟐𝟐 𝟐𝟐 𝒘𝒘 = � 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 � � 𝒆𝒆 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟒𝟒𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝟔𝟔 -𝟒𝟒𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝒆𝒆 -𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂 𝟒𝟒 � 𝒘𝒘 � = �𝟏𝟏 + 𝒂𝒂 𝟒𝟒 𝝏𝝏 𝒙𝒙 𝟒𝟒 𝟐𝟐𝟒𝟒𝟎𝟎 + 𝑶𝑶�𝒂𝒂 𝟔𝟔 𝝏𝝏 𝒙𝒙 𝟔𝟔 �� 𝝏𝝏 𝒙𝒙 𝟒𝟒 𝒘𝒘 � , 𝜹𝜹 𝟐𝟐 𝒘𝒘 = � 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 � � 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂 𝟐𝟐 � 𝒘𝒘 � = �𝟏𝟏 - 𝒂𝒂 𝟐𝟐 𝝏𝝏 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 + 𝒂𝒂 𝟒𝟒 𝝏𝝏 𝒙𝒙 𝟒𝟒 𝟏𝟏𝟐𝟐𝟎𝟎 + 𝑶𝑶�𝒂𝒂 𝟔𝟔 𝝏𝝏 𝒙𝒙 𝟔𝟔 �� 𝝏𝝏 𝒙𝒙 𝟐𝟐 𝒘𝒘 � , 𝜹𝜹 𝟏𝟏 𝒘𝒘 = � 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 � � 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐𝒂𝒂 � 𝒘𝒘 � = 𝝏𝝏 𝒙𝒙 𝒘𝒘 � , (281) 
𝜹𝜹 𝟎𝟎 𝒘𝒘 = � 𝟐𝟐𝒂𝒂𝝏𝝏 𝒙𝒙 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 � � 𝒆𝒆 𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟒𝟒 � 𝒘𝒘 � = �𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝝏𝝏 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 - 𝒂𝒂 𝟒𝟒 𝝏𝝏 𝒙𝒙 𝟒𝟒 𝟎𝟎𝟐𝟐𝟎𝟎 + 𝑶𝑶�𝒂𝒂 𝟔𝟔 𝝏𝝏 𝒙𝒙 𝟔𝟔 �� 𝒘𝒘 �
Continualizing Eq. ( 205) through the application of the series of Eq. ( 281) and neglecting higher-order terms in 𝒂𝒂 4 leads to the following extended deflection equation 

This equation (nonlocal model Padé 1) could be obtained also from Eq. ( 274) neglecting the higher-order terms in 𝒂𝒂 4 . An alternative strategy to obtain Eq. ( 282) is through the multiplication of �1 -𝑎𝑎 2 𝝏𝝏 𝑥𝑥 2 6 � to Eq. (261). Eq. ( 282) would be simplified as: 

�𝑬𝑬𝑬𝑬 + �𝝆𝝆𝑬𝑬𝝏𝝏 𝒅𝒅 𝟐𝟐 + 𝒌𝒌𝑬𝑬𝑬𝑬 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝑬𝑬𝑬𝑬𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝏𝝏 𝒅𝒅 𝟐𝟐 � 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝒘𝒘 � (𝟒𝟒)
Choosing again a wave equation in a harmonic type as Eq. ( 206), one would be obtained:

� 𝝆𝝆 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 (𝟏𝟏 + 𝒂𝒂 𝟐𝟐 𝟔𝟔 𝒌𝒌 𝒘𝒘 𝟐𝟐 )� 𝝎𝝎 𝟒𝟒 -�� 𝝆𝝆 𝑬𝑬 + 𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 � � 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝒌𝒌 𝒘𝒘 𝟒𝟒 + � 𝝆𝝆 𝑬𝑬 + 𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚 + ( 𝒌𝒌𝝆𝝆 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 - 𝝆𝝆𝓚𝓚 𝟐𝟐𝑬𝑬𝑬𝑬 ) 𝒂𝒂 𝟐𝟐 𝟔𝟔 � 𝒌𝒌 𝒘𝒘 𝟐𝟐 + � 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 + 𝒌𝒌𝝆𝝆 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 �� 𝝎𝝎 𝟐𝟐 + ��𝟏𝟏 + 𝒌𝒌𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � 𝒌𝒌 𝒘𝒘 𝟒𝟒 + � 𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 - 𝒌𝒌𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 � 𝒌𝒌 𝒘𝒘 𝟐𝟐 + 𝒌𝒌 𝑬𝑬𝑬𝑬 � = 𝟎𝟎 (284) 
Using Eq. ( 214), the following non-dimensional equation would be obtained through the bending wave velocity definition. 

Here, the gradient elasticity for a granular chain with predominant bending interactions are associated with positive definite energy function as follows:

𝜫𝜫 = � 𝟏𝟏 𝟐𝟐 𝑬𝑬𝑬𝑬 �𝒘𝒘 ′′ 𝟐𝟐 + 𝒂𝒂 𝟐𝟐 𝟔𝟔 𝒘𝒘 ′′′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙 + � 𝟏𝟏 𝟐𝟐 𝝆𝝆𝑬𝑬𝝏𝝏 𝒅𝒅 𝟐𝟐 �𝒘𝒘 ′ 𝟐𝟐 + 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝒘𝒘 ′′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙 + � 𝟏𝟏 𝟐𝟐 �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏 𝒅𝒅 𝟐𝟐 � �𝒘𝒘 𝟐𝟐 + 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝒘𝒘 ′ 𝟐𝟐 � 𝒅𝒅𝒙𝒙. (287) 
For the static analysis, the comparable deflection equation of the continuous approximate again leads to the one investigated by Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF] neglecting the compressional buckling force as follows

��𝟏𝟏 - 𝒂𝒂 𝟐𝟐 𝟔𝟔 𝑫𝑫 𝒙𝒙 𝟐𝟐 � 𝑫𝑫 𝒙𝒙 𝟒𝟒 -𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 �𝟏𝟏 - 𝒂𝒂 𝟐𝟐 𝟒𝟒 𝑫𝑫 𝒙𝒙 𝟐𝟐 � 𝑫𝑫 𝒙𝒙 𝟐𝟐 + 𝒌𝒌 * �𝟏𝟏 - 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 �� 𝒘𝒘 � = 𝟎𝟎 (288) 
Going back to the continuous approximate model expressed by the enriched differential equation (Eq. ( 286)), the wave propagation equation could be obtained as: 

The non-dimensional equation of this approach could be obtained using Eq. ( 214) with respect to the bending wave velocity definition as follows: 

The dimensionless bending frequency results obtained through the Padé polynomial expansions are plotted in (a) (b)

Figure 24 for the two branches. Again, for a numeral example defined in Eq. ( 268)

and with respect to the equations presented by Eq. ( 208), ( 252), ( 275), ( 284) and ( 290), the calculations are done.

(a) (b) 

Discussion

The dispersive results using Eq. ( 208), ( 252), ( 257), ( 259), ( 266), ( 275), ( 284) and

(290) are plotted for shear dimensionless frequency in Figure 25. There exist two solutions leading to the two branches of the dynamic response of the system each refers to low and high frequencies. The lower branch refers to the acoustic mode and the higher one is the optical mode.

Reminding that the mechanical parameters were considered as E= 200GPa, G= 70GPa, K s = 0.667, 𝜌𝜌 =8000𝑘𝑘𝑑𝑑/𝜇𝜇 3 and k=50MPa. For the long-wave limit (𝑎𝑎𝑘𝑘 𝑤𝑤 →0), the dispersive results obtained from the discrete and continuous model must be equivalent. So, the velocity at the infinite wavelength of the discrete model could be considered equal to the compression wave velocity of the classical elastic continuum. The divergence of the discrete and continuum frequencies for the wave number increase is obvious. Thus, the inhomogeneous effect by the particle size becomes more prominent or in the other words, the granular models behave more dispersive.

According to the sinusoidal dispersive curve of the exact results, when the curve meets the horizontal axis (𝜔𝜔 = 0), it continues periodically. Therefore, it can be concluded that for the exact discrete approach, the responses are always stable. Likewise, the dispersive curves of the Padé approximants could be considered stable as they increase continually from zero without any imaginary part. The unstable harmonic responses appear when the downward branch of the Taylor dispersive curve encounters axis 𝜔𝜔 = 0 .

(a) (b) for the Taylor approach of the pair order and exact discrete solution show the same behavior in which both proceed into a downward trend after passing from a maximum frequency.

Since all the frequencies are in the limited domain, the transition of only low frequencies is possible and consequently, it can be supposed that the media act as a granular filter. This is in contrast to the Padé results and continuum curve since the dispersive curve increases continuously and so all ranges of frequencies can be transmitted.

Here, parametric studies are carried out in order to figure out how intergranular stiffness contributes to the dispersive behavior of the material. To this aim, the influence of the Young modulus on the wave velocity (c 0 ) and μ s has been studied in Figure 15 and 

Conclusions

Wave dispersion occurs in granular systems when the characteristic length scale of the discrete model is of the same order as the wavelength of the waves propagating through the equivalent continuous media. In order to capture this effect, a discrete Cosserat theory has been used to analyze the wave propagation in discrete granular chains. First, the exact dispersive equation of the system has been obtained from the uncoupled equation of motion of the discrete granular chain resting on Winkler foundations. Using the exact resolution of the difference equation of the discrete system, it has been clarified that the two branches of eigenfrequencies exist for the granular model which leads to the ones obtained in the literature, namely by Bresse and Timoshenko for an infinite number of grains. Next, the model has been homogenized using non-local gradient terms by two approaches based on the Taylor series and Padé approximations. It has been shown that the dispersion behavior of higher-order continuous models is improved by considering additional gradient enrichments terms, as compared to the initial discrete one. It can be also concluded that, as observed for the dispersion curves of the discrete granular chain, the continuous approximation issued of a Padé approximant is always stable.

CHAPTER 5

Two-Dimensional Plane: Discrete and Continuum Modelling

Introduction

In this chapter, we investigate a novel micropolar model which is consistent with the non-linear first gradient formulation. The enriched model is obtained for isotropic plates. The new approach is based on introducing three measures of deformation namely the Cauchy-Green strain tensor, the wryness tensor in addition to a new relative rotation tensor. Instead of the Euler angles (Bojanczyk and Lutoborski [START_REF] Bojanczyk | Computation of the Euler angles of a symmetric 3x3 matrix[END_REF]), the microrotation of the system is introduced by a tensor Q to describe the local rigid rotations. This orthogonal tensor consists of four independent components for 2D problems which admits four constraints: the latter correspond to the orthogonal property of the microrotation tensor and to its determinant which needs to be equal to one.

The present study is organized as follows. First, we try to investigate the generalization of discrete plane media. To this aim, for the kinematically constrained condition of a discrete Cosserat media, the Born-Karman media would be found. The model must converge asymptotically towards a linear elastic continuous media with two parameters (for example Young modulus and Poisson's ratio), and towards a continuous isotropic Cosserat media with 6 parameters (2 classical elastic parameters and 4 additional parameters -see for example Eremeyev et al. [START_REF] Eremeyev | Foundations of micropolar mechanics[END_REF]). Next, the governing formulations of the nonlinear micropolar model and the deformation energy equations are obtained for isotropic materials. Finally, several numerical simulations have been performed with a finite element method using variational formulations to underline the main features of the proposed model. The finite element method which is based on the variations principle minimizes the action functional of the physical problem in exam (dell'Isola and Gavrilyuk [START_REF] Dell'isola | Variational models and methods in solid and fluid mechanics[END_REF], Steinmann and Stein [START_REF] Steinmann | A uniform treatment of variational principles for two types of micropolar continua[END_REF], Nistor [139] and Hashin and Shtrikman [140]).

In-Plane Granular Model

Let's consider a two-dimensional granular system of dimension 𝐿𝐿 1 × 𝐿𝐿 2 that is modeled by a lattice granular structure. Such a system could be presented by microstructured granular chain comprising 𝑛𝑛 + 1 × 𝜇𝜇 + 1 rigid grains with diameter a (a=𝐿𝐿 1 /n=𝐿𝐿 2 /m) that are connected elastically by n+m normal, shear and rotational springs as shown in Figure 29. Each grain has three degrees of freedom in-plane which are represented by Ui,j , Vi,j and 𝛩𝛩 𝑖𝑖,𝑗𝑗 for grain number i and j. The objective is finding the vibration equation governing the model and then trying to obtain the natural frequencies. The strain energy function due to deformed normal springs is given by: in which E and A are Young's modulus and the cross-section area of the plate.

The strain energy function due to deformed shear springs (shear term) is given by: where 𝑘𝑘 𝑡𝑡 and 𝑘𝑘 𝑡𝑡𝑏𝑏 are the shear stiffness and can be expressed with respect to the shear stiffness 𝑐𝑐 0 𝐺𝐺𝐴𝐴 of the equivalent beam which would be defined as

𝑈𝑈 𝑡𝑡 = 1 2 � � �𝑘𝑘 𝑡𝑡 �𝑈𝑈
𝑘𝑘 𝑡𝑡 = 𝑐𝑐 0 𝐺𝐺𝐴𝐴 𝑎𝑎 = 𝑛𝑛𝑐𝑐 0 𝐺𝐺𝐴𝐴 𝐿𝐿 1 = 𝜇𝜇𝑐𝑐 0 𝐺𝐺𝐴𝐴 𝐿𝐿 2
and 𝑘𝑘 𝑡𝑡𝑏𝑏 = 𝑐𝑐 0 𝐺𝐺𝐴𝐴 �2𝑎𝑎 in which G is the shear modulus, A is the cross-sectional area of the beam and 𝑐𝑐 0 the shear correction coefficient to compensate for the error in assuming a constant shear strain/stress.

The strain energy function due to deformed rotational springs is given as: where 𝑘𝑘 𝑐𝑐 and 𝑘𝑘 𝑐𝑐𝑏𝑏 are the rotational stiffness and are located between the neighbor grains whereas they transmit moments to particle rotation. This discrete stiffness can be expressed with respect to the bending stiffness EI of the equivalent beam and thus would be defined where 𝐼𝐼 𝑚𝑚 = 𝜌𝜌𝐸𝐸𝐿𝐿 𝑛𝑛 = 𝜌𝜌𝐼𝐼𝑎𝑎 is the second moment of inertia of the beam segment.

𝜹𝜹 𝒃𝒃 = 𝟏𝟏 𝟐𝟐 � � �𝒌𝒌 𝒄𝒄 �𝜣𝜣
Therefore, the Lagrangian equation of the granular system is defined as 𝐿𝐿 = 𝑇𝑇 -(𝑈𝑈 𝑁𝑁 + 𝑈𝑈 𝑠𝑠 + 𝑈𝑈 𝑏𝑏 ) and can be expressed for the linear elastic isotropic granular system as 

The Euler-Lagrange equations are given by: 

The Euler-Lagrange equations based on the energy function of Eq. ( 297) are obtained as follows: 

(k 𝑛𝑛 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑈𝑈 𝑖𝑖+1,𝑗𝑗 + 𝑈𝑈 𝑖𝑖-
In order to shorten the equations, the following difference operators can be defined: 

𝛿𝛿 0𝑗𝑗 𝜒𝜒 = 𝜒𝜒 𝑖𝑖+1,𝑗𝑗 + 2𝜒𝜒
Therefore Eq. ( 299), (300) and (301) could be rewritten compactly as:

(k 𝑛𝑛 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 2𝑗𝑗 𝑈𝑈 + (k 𝑡𝑡 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 𝑖𝑖2 𝑈𝑈 + (k 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )𝛿𝛿 𝑖𝑖1 𝛩𝛩 + 2(k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 11 𝑉𝑉 -𝜌𝜌𝐴𝐴𝑈𝑈 ̈𝑖𝑖,𝑗𝑗 = 0 (k 𝑛𝑛 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 𝑖𝑖2 𝑉𝑉 + (k 𝑡𝑡 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 2𝑗𝑗 𝑉𝑉 -(k 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )𝛿𝛿 1𝑗𝑗 𝛩𝛩 + 2(k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )𝛿𝛿 11 𝑈𝑈 -𝜌𝜌𝐴𝐴𝑉𝑉 ̈𝑖𝑖,𝑗𝑗 = 0 (k 𝑐𝑐 + 2k 𝑐𝑐𝑏𝑏 )�𝛿𝛿 2𝑗𝑗 + 𝛿𝛿 𝑖𝑖2 �𝛩𝛩 + 4k 𝑐𝑐𝑏𝑏 𝛿𝛿 11 𝛩𝛩 -(k 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )�𝛿𝛿 𝑖𝑖1 𝑈𝑈 -𝛿𝛿 1𝑗𝑗 𝑉𝑉� -(k 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )�𝛿𝛿 0𝑗𝑗 + 𝛿𝛿 𝑖𝑖0 �𝛩𝛩 -𝜌𝜌𝐼𝐼𝛩𝛩 ̈𝑖𝑖,𝑗𝑗 = 0 (303) 
Considering only two degrees of freedom (U and V), these equations of motion leads to the ones obtained by Suiker et al. [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, Part 1: Analysis of body waves and eigenmodes[END_REF] neglecting the effects of rotation angle and rotational springs (k 𝑐𝑐 = 0 and k 𝑐𝑐𝑏𝑏 = 0) as follows Denoting the following equivalence spring rigidity parameters as

𝑘𝑘 𝑏𝑏 = 2(𝑘𝑘 𝑛𝑛𝑏𝑏 + 𝑘𝑘 𝑡𝑡𝑏𝑏 ), 𝑘𝑘 1 = 𝑘𝑘 𝑛𝑛 + 0.5𝑘𝑘 𝑏𝑏 , 𝑘𝑘 2 = 𝑘𝑘 𝑡𝑡 + 0.5𝑘𝑘 𝑏𝑏 , 𝑘𝑘 𝑠𝑠 = 𝑘𝑘 𝑡𝑡 + 2𝑘𝑘 𝑡𝑡𝑏𝑏 , 𝑘𝑘 𝑟𝑟 = 𝑘𝑘 𝑐𝑐 + 2𝑘𝑘 𝑐𝑐𝑏𝑏 , (306) 
The following pseudodifferential operators could be expressed for continuum media with respect to Eq. (302):

𝛿𝛿 0𝑗𝑗 = 𝑊𝑊 𝑎𝑎𝜕𝜕 𝑥𝑥 +2+𝑊𝑊 -𝑎𝑎𝜕𝜕 𝑥𝑥 4 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 2 ( 𝑎𝑎𝜕𝜕 𝑥𝑥 2 ) , 𝛿𝛿 1𝑗𝑗 = 𝑊𝑊 𝑎𝑎𝜕𝜕 𝑥𝑥 -𝑊𝑊 -𝑎𝑎𝜕𝜕 𝑥𝑥 2𝑎𝑎 = 𝑠𝑠𝑖𝑖𝑛𝑛ℎ (𝑎𝑎𝜕𝜕 𝑥𝑥 ) 𝑎𝑎 , 𝛿𝛿 2𝑗𝑗 = 𝑊𝑊 𝑎𝑎𝜕𝜕 𝑥𝑥 -2+𝑊𝑊 -𝑎𝑎𝜕𝜕 𝑥𝑥 𝑎𝑎 2 = 4 𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 2 ( 𝑎𝑎𝜕𝜕 𝑥𝑥 2 ) (307) 
𝛿𝛿 𝑖𝑖0 = 𝑑𝑑 𝑎𝑎𝜕𝜕 𝑦𝑦 + 2 + 𝑑𝑑 -𝑎𝑎𝜕𝜕 𝑦𝑦 4 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 2 � 𝑎𝑎𝜕𝜕 𝑟𝑟 2 � , 𝛿𝛿 𝑖𝑖1 = 𝑑𝑑 𝑎𝑎𝜕𝜕 𝑦𝑦 -𝑑𝑑 -𝑎𝑎𝜕𝜕 𝑦𝑦 2𝑎𝑎 = 𝑐𝑐𝑖𝑖𝑛𝑛ℎ (𝑎𝑎𝜕𝜕 𝑟𝑟 ) 𝑎𝑎 , 𝛿𝛿 𝑖𝑖2 = 𝑑𝑑 𝑎𝑎𝜕𝜕 𝑦𝑦 -2 + 𝑑𝑑 -𝑎𝑎𝜕𝜕 𝑦𝑦 𝑎𝑎 2 = 4 𝑎𝑎 2 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 2 ( 𝑎𝑎𝜕𝜕 𝑟𝑟 2 )
(308)

𝛿𝛿 11 = 2�𝑑𝑑 𝑎𝑎 2 𝜕𝜕 𝑥𝑥 𝜕𝜕 𝑦𝑦 -𝑑𝑑 -𝑎𝑎 2 𝜕𝜕 𝑥𝑥 𝜕𝜕 𝑦𝑦 � 4𝑎𝑎 2 = 𝑐𝑐𝑖𝑖𝑛𝑛ℎ (𝑎𝑎 2 𝜕𝜕 𝑥𝑥 𝜕𝜕 𝑟𝑟 ) 𝑎𝑎 2 (309) 
In which there is a relation between these operators as:

Omitting the rotational and diagonal terms (𝑘𝑘 𝑟𝑟 = 𝑘𝑘 𝑏𝑏 = 0):

�𝑘𝑘 1 𝑘𝑘 𝑠𝑠 2 (𝛿𝛿 𝑖𝑖0 + 𝛿𝛿 0𝑗𝑗 )��𝛿𝛿 𝑖𝑖2 2 + 𝛿𝛿 2𝑗𝑗 2 � -[𝑘𝑘 1 𝑘𝑘 𝑠𝑠 2 ]� 𝛿𝛿 𝑖𝑖1 2 𝛿𝛿 𝑖𝑖2 + 𝛿𝛿 1𝑗𝑗 2 𝛿𝛿 2𝑗𝑗 � + [𝑘𝑘 𝑠𝑠 𝑘𝑘 1 2 ]�𝛿𝛿 1𝑗𝑗 2 𝛿𝛿 𝑖𝑖2 + 𝛿𝛿 𝑖𝑖1 2 𝛿𝛿 2𝑗𝑗 � = 0 (316)
Using the properties of Eq. ( 310) and considering a continuum media using Eq. ( 307), (308) and (309) leads to:

��𝝏𝝏 𝒙𝒙 𝟐𝟐 + 𝝏𝝏 𝒓𝒓 𝟐𝟐 � + �𝟐𝟐 𝐸𝐸 𝐾𝐾 𝑠𝑠 𝐺𝐺 � 𝝏𝝏 𝒙𝒙 𝟐𝟐 𝝏𝝏 𝒓𝒓 𝟐𝟐 � 𝑢𝑢 = 𝟎𝟎 (317) 
The Lagrangian equation of the equivalent continuum system could be obtained as follows 

This system of equations is almost the same as the one of Suiker et al. [START_REF] Suiker | Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models[END_REF] for nine-cell square lattice. Also omitting the diagonal shear and rotation springs (k 𝑐𝑐𝑏𝑏 = 0, k 𝑡𝑡𝑏𝑏 = 0) leads to the model studied by Pavlov et al. [START_REF] Pavlov | A 2D granular medium with rotating particles[END_REF]. Neglecting all the diagonal springs (k 𝑛𝑛𝑏𝑏 = 0 , k 𝑡𝑡𝑏𝑏 = 0 and k 𝑐𝑐𝑏𝑏 = 0 ) leads to the governing equations obtained by Pasternak and Dyskin [START_REF] Pasternak | On a possibility of reconstruction of Cosserat moduli in particulate materials using long waves[END_REF]. It is noteworthy to mention that neglecting rotational springs (𝑘𝑘 𝑟𝑟 = 0) and shear springs (𝑘𝑘 𝑐𝑐 = 0), the abovementioned equation of motion leads to the ones obtained by Navier with the assumption of plane strain by (𝜆𝜆 + 2𝜇𝜇)𝜕𝜕 𝑥𝑥𝑥𝑥 𝑈𝑈 + (𝜆𝜆 + 𝜇𝜇)𝜕𝜕 𝑥𝑥𝑟𝑟 𝑉𝑉 + (𝜇𝜇)𝜕𝜕 𝑟𝑟𝑟𝑟 𝑈𝑈 = 𝜌𝜌𝜕𝜕 𝑡𝑡𝑡𝑡 𝑈𝑈;

(𝜆𝜆 + 2𝜇𝜇)𝜕𝜕 𝑟𝑟𝑟𝑟 𝑉𝑉 + (𝜆𝜆 + 𝜇𝜇)𝜕𝜕 𝑥𝑥𝑟𝑟 𝑈𝑈 + (𝜇𝜇)𝜕𝜕 𝑥𝑥𝑥𝑥 𝑉𝑉 = 𝜌𝜌𝜕𝜕 𝑡𝑡𝑡𝑡 𝑉𝑉 (320) where 𝜆𝜆 and 𝜇𝜇 are Lamé parameters. The micro parameters of the model are then defined

𝑘𝑘 1 = 𝜆𝜆 + 2𝜇𝜇, 𝑘𝑘 𝑏𝑏 = 𝜆𝜆 + 𝜇𝜇, 𝑘𝑘 2 = 𝜇𝜇 (321) 
where the property of 𝑘𝑘 𝑏𝑏 = 𝑘𝑘 1 -𝑘𝑘 2 is true. Substituting Eq. ( 306) leads to

𝑘𝑘 𝑛𝑛 = 2𝑘𝑘 𝑛𝑛𝑏𝑏 (322) 
While the macro parameters would be expressed by

𝜆𝜆 = 𝜇𝜇 = 𝑘𝑘 𝑛𝑛𝑏𝑏 (323) 
Or in terms of Young's modulus (𝐸𝐸) and Poisson's ratio (𝜗𝜗)

𝜗𝜗 = 𝜆𝜆 2( 𝜆𝜆 + 𝜇𝜇) = 1 4 , 𝐸𝐸 = 𝜇𝜇(3𝜆𝜆 + 2𝜇𝜇) 𝜆𝜆 + 𝜇𝜇 = 5 2 𝑘𝑘 𝑛𝑛𝑏𝑏 (324) 

Linear Isotropic Micropolar Elasticity Theory

Nowacki [START_REF] Nowacki | The linear theory of micropolar elasticity[END_REF] studied the linear elastic isotropic Cosserat continuum model, which has 6 independent parameters. In a linear micropolar continuum, a micropolar deformation is described by asymmetric strain and twist tensors which might be defined respectively as follows

𝜀𝜀 𝑖𝑖𝑗𝑗 = 𝑈𝑈 𝑗𝑗,𝑖𝑖 -𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 𝜃𝜃 𝑊𝑊 𝜏𝜏 𝑖𝑖𝑗𝑗 = 𝜃𝜃 𝑗𝑗,𝑖𝑖 (325) 
where 𝑈𝑈 is displacement field vector and 𝜃𝜃 is microrotation field vector. The strain tensor can be decomposed into a symmetric and antisymmetric part where 𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 is the antisymmetric Levi-Civita (alternating or permutation) tensor, 𝜑𝜑 𝑊𝑊 is the macro rotation vector and is defined by

𝜑𝜑 𝑊𝑊 = 1 2
�𝑈𝑈 𝑗𝑗,𝑖𝑖 -𝑈𝑈 𝑖𝑖,𝑗𝑗 � = 0.5𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 𝑈𝑈 𝑗𝑗,𝑖𝑖 .

The associated internal energy of the system is expressed by (Nowacki [4]): The equations of motion in terms of displacements and rotations for the micropolar two-dimensional system with six material parameters could be obtained by substituting Eq.

𝑈𝑈 𝑖𝑖𝑛𝑛𝑡𝑡𝑊𝑊𝑟𝑟𝑛𝑛𝑎𝑎𝑊𝑊 =
(325) and Eq. (329) in Eq. (328) as follows (Cosserat and Cosserat [3], Nowacki [START_REF] Nowacki | The linear theory of micropolar elasticity[END_REF] and Schaefer [START_REF] Schaefer | Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums[END_REF]):

(𝜇𝜇 + 𝜅𝜅)𝑈𝑈 𝑖𝑖,𝑗𝑗𝑗𝑗 + (𝜇𝜇 -𝜅𝜅 + 𝜆𝜆)𝑈𝑈 𝑗𝑗,𝑗𝑗𝑖𝑖 + 2𝜅𝜅𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 𝜃𝜃 𝑊𝑊,𝑗𝑗 + 𝑓𝑓 𝑖𝑖 𝑣𝑣 = 𝜌𝜌𝐴𝐴𝑈𝑈 𝚤𝚤 ̈;

(𝛾𝛾 + 𝛽𝛽)𝜃𝜃 𝑖𝑖,𝑗𝑗𝑗𝑗 + (𝛾𝛾 -𝛽𝛽 + 𝛼𝛼)𝜃𝜃 𝑗𝑗,𝑗𝑗𝑖𝑖 + 2𝜅𝜅(𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 𝑈𝑈 𝑊𝑊,𝑗𝑗 -2𝜃𝜃 𝑖𝑖 ) + 𝑙𝑙 𝑖𝑖 𝑣𝑣 = 𝜌𝜌𝐼𝐼𝜃𝜃 𝚤𝚤 ̈ (331) 
Assuming plane strain conditions by 𝑈𝑈 𝑖𝑖 = (𝑈𝑈, 𝑉𝑉, 0) and 𝜃𝜃 𝑖𝑖 = (0, 0, 𝜃𝜃) and neglecting the body forces and moments, it could be obtained (𝜖𝜖 = 𝛾𝛾 + 𝛽𝛽): Going back to the discrete granular model, the micro parameters of the system might be determined by comparing Eq. (332) and Eq. (319) as follows ,

(𝜆𝜆 +
k 𝑐𝑐𝑏𝑏 = 0, 𝑘𝑘 𝑐𝑐 = 𝜖𝜖 (333) 
In the view of abovementioned equation, the following property could be obtained between the microparameters of the system

𝑘𝑘 𝑛𝑛 -𝑘𝑘 𝑡𝑡 = 2(𝑘𝑘 𝑡𝑡𝑏𝑏 + 𝑘𝑘 𝑛𝑛𝑏𝑏 ) (334) 
Assuming 𝑘𝑘 𝑡𝑡𝑏𝑏 = 0 (𝜅𝜅 = 𝜇𝜇 -𝜆𝜆) (Pavlov et al. [START_REF] Pavlov | A 2D granular medium with rotating particles[END_REF]), leads to the comparison results of Suiker et al. [START_REF] Suiker | Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models[END_REF] 𝑘𝑘 𝑛𝑛 = 2𝜇𝜇, 𝑘𝑘 𝑡𝑡 = 2(𝜇𝜇 -𝜆𝜆), 𝑘𝑘 𝑛𝑛𝑏𝑏 = 𝜆𝜆, 𝑘𝑘 𝑡𝑡𝑏𝑏 = 0, k 𝑐𝑐𝑏𝑏 = 0, 𝑘𝑘 𝑐𝑐 = 𝜖𝜖 (335)

Two-dimensional Micropolar Continuum Model

A micropolar plate ℒ ⊂ 𝑅𝑅 2 deform in the two-dimensional Euclidean space ℰ ⊂ 𝑅𝑅 2 .

In the reference placement, the state of a material particle is described by a position vector 𝑋𝑋 ∈ ℒ and by a local reference system defined by two vectors

𝑬𝑬 𝟏𝟏 ′ ′ (𝑿𝑿) = 𝑯𝑯(𝑿𝑿)𝑬𝑬 𝟏𝟏 , 𝑬𝑬 𝟐𝟐 ′ ′ (𝑿𝑿) = 𝑯𝑯(𝑿𝑿)𝑬𝑬 𝟐𝟐 (336) 
where 𝐸𝐸 1 , 𝐸𝐸 2 ∈ ℒ are orthonormal base vectors; the application 𝐻𝐻 ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℒ, ℒ) is such that

𝑯𝑯 -𝟏𝟏 = 𝑯𝑯 𝜹𝜹 , 𝐝𝐝𝐝𝐝𝐝𝐝(𝑯𝑯) = 𝟏𝟏 (337) 
The tensor Q with four components for the 2D plates describes microrotations, i.e.

the differences between the initial and the actual orientation of the local reference system jointed to each particle

𝒆𝒆 𝟏𝟏 ′ ′ (𝑿𝑿) = 𝑸𝑸𝑬𝑬 𝟏𝟏 ′ ′ , 𝒆𝒆 𝟐𝟐 ′ ′ (𝑿𝑿) = 𝑸𝑸𝑬𝑬 𝟐𝟐 ′ ′ (338) 
where

𝑑𝑑 1 ′ ′ (𝑋𝑋) = ℎ(𝑋𝑋)𝑑𝑑 1 , 𝑑𝑑 2 ′
′ (𝑋𝑋) = ℎ(𝑋𝑋)𝑑𝑑 2 ; 𝑑𝑑 1 and 𝑑𝑑 2 are orthonormal base vectors of ℰ; ℎ ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℰ, ℰ) and det(ℎ) = 1; the application 𝑄𝑄 ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℒ, ℰ) has the following properties

𝑸𝑸 -𝟏𝟏 = 𝑸𝑸 𝜹𝜹 , 𝒅𝒅𝒆𝒆𝒅𝒅(𝑸𝑸) = 𝟏𝟏 (339) 
It is noteworthy to mention that assuming only an orthogonal structure for H and Q imply their determinants equal to ±1: fixing these two scalar quantities to 1 avoid numerical fluctuations and physical inconsistencies.

The Cauchy-Green Strain Tensor

Let 𝐹𝐹 = ∇𝜒𝜒 be the placement gradient that belongs to 𝐿𝐿𝑖𝑖𝑛𝑛(ℒ; ℰ) . The polar decomposition theorem ensures the existence of only one couple of linear applications (𝑅𝑅, 𝑈𝑈) ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℒ; ℰ) × 𝑆𝑆𝑟𝑟𝜇𝜇(ℒ, ℒ) such that 𝐹𝐹 = 𝑅𝑅𝑈𝑈: 𝑅𝑅 and 𝑈𝑈 are respectively the rotation and strain tensors. The Cauchy-Green tensor 𝐶𝐶 is defined by the product between the transpose of 𝐹𝐹 and 𝐹𝐹 itself: 𝐶𝐶 = 𝐹𝐹 𝑇𝑇 𝐹𝐹. Thus, the Cauchy-Green measure of deformation is defined as follows

𝓚𝓚 = 𝟏𝟏 𝟐𝟐 (𝑭𝑭 𝜹𝜹 𝑭𝑭 -𝑬𝑬) (340) 

Relative Rotation Tensor

The presence of a microrotation implies the necessity to define another deformation tensor that takes into account the differences between macro and microrotations: indeed if the microrotation 𝑅𝑅 is equal to the microrotation 𝑄𝑄, the abovementioned new deformation tensor needs to be zero. Many authors consider the tensors 𝑅𝑅 , 𝑄𝑄 and 𝐹𝐹 in a unique deformation tensor 𝒞𝒞 = 𝑄𝑄 𝑇𝑇 𝐹𝐹 = 𝑄𝑄 𝑇𝑇 𝑅𝑅𝑈𝑈 which replaces also the Cauchy-Green tensor. It is noteworthy to mention that although 𝒞𝒞 is really useful from a computational point of view, it does not allow to divide the energy contributions linked respectively to strain, curvature and relative rotation. As an alternative method, it could be possible to introduce the tensor 𝑄𝑄 𝑇𝑇 𝑅𝑅 which is objective and also depending only on 𝑅𝑅 and 𝑄𝑄; even if this new term would allow identifying each energy contribution, it would be almost impossible to evaluate and to define in a FEM code due to the structure of R:

𝑹𝑹 = 𝑭𝑭𝜹𝜹 -𝟏𝟏 = 𝑭𝑭(𝑭𝑭 𝜹𝜹 𝑭𝑭) -𝟏𝟏/𝟐𝟐 (341)
Keeping in mind all the aforementioned remarks, here, we decide to define a new relative rotation tensor ℛ as the difference between (𝑄𝑄 𝑇𝑇 𝐹𝐹) 2 and (𝑅𝑅 𝑇𝑇 𝐹𝐹) 2 𝓡𝓡 = (𝑸𝑸 𝜹𝜹 𝑭𝑭) 𝟐𝟐 -(𝑹𝑹 𝜹𝜹 𝑭𝑭) 𝟐𝟐 = (𝑸𝑸 𝜹𝜹 𝑭𝑭) 𝟐𝟐 -𝑪𝑪 (342)

The Wryness Tensor

To contribute the gradient of the microrotation tensor 𝑄𝑄 in the deformation energy functions, it is essential to define the third measure of deformation namely the wryness tensor 𝛤𝛤. This tensor could be expressed as follows:

𝜞𝜞 = 𝟏𝟏 𝟐𝟐 𝝐𝝐: 𝜵𝜵𝑸𝑸 𝜹𝜹 𝑸𝑸 (343) 

Energy Approach

The energetic approach is indeed the most powerful tool to derive new mechanical models and to perform numerical applications. The principle of least action leads to fix a suitable action functional based on the kinematic assumptions introduced in Section 1:

𝓚𝓚 = �(-𝑾𝑾(𝝌𝝌, 𝑸𝑸, 𝑪𝑪, 𝓡𝓡, 𝜞𝜞 , 𝑿𝑿)) 𝓛𝓛 𝒅𝒅𝓚𝓚 + � (-𝑾𝑾 𝒔𝒔 (𝝌𝝌, 𝑸𝑸, 𝑿𝑿)) 𝝏𝝏𝓛𝓛 𝒅𝒅𝒍𝒍 (344) 
where the field 𝜒𝜒 denotes the placement function between ℒ and ℰ ; the potential 𝑊𝑊 is relative to the surface actions inside ℒ and the potential 𝑊𝑊 𝑠𝑠 is relative to the edge actions externally applied at the boundary 𝜕𝜕ℒ: all the external actions are defined consistently with the internal work.

The internal energy W can be split into two addends, the first one representing the deformation energy satisfying the principle of material frame indifference, the second one an external conservative action of surface loads expressed as 

The objectivity of 𝐶𝐶, ℛ and 𝛤𝛤 ensures the objectivity of the deformation energy 𝑊𝑊 𝑏𝑏𝑊𝑊𝑑𝑑 . The first variation of the action functional gives the minimum of the action functional itself and, consequently, the solution of the elastic problem in exam.

Deformation Energy Function for Isotropic Materials

For an isotropic material, the deformation energy function can be approximated up to quadratic terms in the non-linear case as follows (see La-Valle and Massoumi [START_REF] La-Valle | A new deformation measure for micropolar plates subjected to in-plane loads[END_REF] and represent the first and second invariants of the tensors assigned that are expressed by

𝑬𝑬 ( * ) = 𝜹𝜹𝒓𝒓( * ), 𝑬𝑬𝑬𝑬 ( * ) = 𝟏𝟏 𝟐𝟐 ��𝑬𝑬 ( * ) � 𝟐𝟐 -𝑬𝑬 �( * ) 𝟐𝟐 � � (347) 
An alternative enriched deformation with eight material parameters could be considered as follows:

𝑾𝑾 𝒊𝒊𝒔𝒔𝒄𝒄 = 𝟏𝟏 𝟐𝟐 𝝀𝝀 𝓚𝓚 [𝑬𝑬 𝓚𝓚 ] 𝟐𝟐 + 𝝁𝝁 𝓚𝓚𝓚𝓚 𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚 + 𝝁𝝁 𝓚𝓚𝓚𝓚 𝜹𝜹 𝑬𝑬 𝓚𝓚𝓚𝓚 𝜹𝜹 + 𝟏𝟏 𝟐𝟐 𝝀𝝀 𝓡𝓡 [𝑬𝑬 𝓡𝓡 ] 𝟐𝟐 + 𝝁𝝁 𝓡𝓡𝓡𝓡 𝑬𝑬 𝓡𝓡𝓡𝓡 + 𝝁𝝁 𝓡𝓡𝓡𝓡 𝜹𝜹 𝑬𝑬 𝓡𝓡𝓡𝓡 𝜹𝜹 + 𝝁𝝁 𝜞𝜞𝜞𝜞 𝜹𝜹 𝑬𝑬 𝜞𝜞𝜞𝜞 𝜹𝜹 + 𝜸𝜸 𝓚𝓚𝓡𝓡 𝑬𝑬 𝓚𝓚𝓡𝓡 (348) 

Boundary Conditions

Since it has not been considered a rotation angle as in all the common Cosserat models, we need to analyze the correct way to fix boundary conditions. To model a constrain which acts on a part of the boundary 𝜕𝜕𝐿𝐿 and which is able to block each degree of freedom, it is necessary to impose the initial placement equal to the actual placement and the initial orientation equal to the actual orientation. The boundary conditions of the displacement for clamped ends could be considered as

𝒖𝒖 𝟏𝟏 = 𝟎𝟎, 𝒖𝒖 𝟐𝟐 = 𝟎𝟎, (349) 
Also regarding Eq. ( 338), the microrotations are assumed by

𝒆𝒆 𝟏𝟏 ′ ′ (𝑿𝑿) = 𝑬𝑬 𝟏𝟏 ′ ′ , 𝒆𝒆 𝟐𝟐 ′ ′ (𝑿𝑿) = 𝑬𝑬 𝟐𝟐 ′ ′ → 𝑸𝑸 = 𝑬𝑬 (350) 

Numerical Simulations

In this section, several applications of the energy model which was given by equation (Eq. ( 346)) for the isotropic materials are investigated numerically. This sensitive numerical analysis is based on standard energy minimization techniques through the applications of the standard FEM packages in COMSOL Multiphysics. In detail, a 2D planar square of length 𝐿𝐿 = 0.5𝜇𝜇 with a single square hole of length 𝑙𝑙 is chosen. The defect is half size of the specimen dimensions and is located at the center of the model. The material parameters of the model are defined in Table 3. Many researchers investigated the efficient methods for determining material parameters which are mainly the micro-macro identifications (see for instance Misra and Poorsolhjouy [START_REF] Misra | Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics[END_REF], Giorgio et al. [START_REF] Giorgio | Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches[END_REF], Angelo et al. [START_REF] Angelo | Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling[END_REF] and Turco [START_REF] Turco | Identification of axial forces on statically indeterminate pin-jointed trusses by a nondestructive mechanical test[END_REF]). The number of the mesh elements must be large enough to assure smooth convergence of the results for the discrete finite element approximation. The model is meshed through 1046 free quad elements corresponding to 47560 degrees of freedom. A usual Lagrange quadratic shape function of quartic order for displacement and quadratic order for microrotation is considered to discretize the weak formulations.

Compression Test

The first test is set up by applying a vertical compression displacement to the top edge while the bottom edge is assumed to be clamped. Thus, the micro rotations and displacements of the bottom side are null. Accordingly, the boundary conditions are specified as follows:

𝒖𝒖 𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = -𝟎𝟎. 𝟎𝟎𝟏𝟏𝜹𝜹, 𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝑸𝑸 𝟐𝟐𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝑸𝑸 𝟐𝟐𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟏𝟏, 𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝒖𝒖 𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝑸𝑸 𝟐𝟐𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟏𝟏 (351) 
The results are shown in Figure 30 It is noteworthy to mention that the maximum energy is stored near the corner of the hole which could be predicted also regarding the stress concentration. The variation of the shear and macro rotation distribution is nearly ignorable in contrast to the distribution of the microrotation which affects severely the domain. The compression test allows for the analysis of properties having a broad range of applications. The horizontal and vertical displacements obtained in Figure 30 are predictable and not so far from the classical one stating the reliability of the proposed theoretical model. 

Biaxial Shear Test

This test is performed by imposing parallel displacements of 1% of the square dimension which we apply to each side of the square but in opposite direction with respect to the opposite side. The microrotations of all edges are clamped. Briefly, these conditions could be expressed as 

𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = -𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝒖𝒖 𝟐𝟐 (𝜹𝜹, 𝑿𝑿 𝟐𝟐 ) = -𝒖𝒖 𝟐𝟐 (𝟎𝟎, 𝑿𝑿 𝟐𝟐 ) = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝜹𝜹 ( 

Parametric Analysis for Tensile Test

This section focuses on analyzing the effects of additional terms corresponding to the gradient of the microrotation in the energy equation with respect to the classical model.

A sensitive parametric analysis has been done for 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 which controls mainly the amount of microrotation stored in the system. This test is set up by applying a horizontal tensile displacement equal to 1% of the model width. The constant displacement is applied to the top side of the square while the bottom side is clamped. For this setup, it is assumed also that the microrotations of the top and bottom sides are fixed. The boundary conditions could be specified as follows:

𝒖𝒖 𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝜹𝜹, 𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟎𝟎 , 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝑸𝑸 𝟐𝟐𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟎𝟎 , 𝑸𝑸 𝟏𝟏𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝑸𝑸 𝟐𝟐𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝜹𝜹) = 𝟏𝟏 𝒖𝒖 𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝒖𝒖 𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝑸𝑸 𝟏𝟏𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟎𝟎, 𝑸𝑸 𝟏𝟏𝟏𝟏 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝑸𝑸 𝟐𝟐𝟐𝟐 (𝑿𝑿 𝟏𝟏 , 𝟎𝟎) = 𝟏𝟏 (353) 
The effect of material parameter 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 on the distribution of the lateral displacement 𝑢𝑢 1 is presented in Figure 32 for two typical values of 0.001𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 0 and 0.1𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 0 in which 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 0 is presented in Table 3. The results are shown for a scale factor of 5 to magnify the deformation changes. For small values of 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 , the effect of the poison ratio is dominant and leads to the larger values of the lateral displacement and thus increasing the curvature of the sample. This condition converges to the classical model by neglecting the microrotations. Another interesting difference is the distribution of 𝑢𝑢 1 between the corners of the sample and the ones of the squared hole. It can be noticed that for the great values of 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 the displacement distribution in these zones is not linear but curved. 

CHAPTER 6 Conclusion and Perspective

Conclusion and Summary

This thesis represents an effort to investigate theoretically the scale effect upon the bending deformation of a granular beam which can be viewed as a discrete Bresse-Timoshenko beam in both static and dynamic conditions. Furthermore, the presented work introduces a new non-linear micropolar continuum model which could be applied for twodimensional isotropic elastic system. The need for such an enriched model is motivated for studying in a better way the 2D granular material arrangement in a continuum framework.

A unidimensional granular chain consisting of rigid grains connected elastically with rotation and shear springs is considered. Thus, the mechanical properties of the system are characterized by the grain diameter (length scale). The proposed system can be considered Furthermore, the scale effects of the granular chain are captured by the continuous gradient elasticity model. This scale effect is related to the grain size with respect to the total length of the Cosserat chain.

It is noteworthy to be summarized that for a S-S discrete beam modeled by granular elements, we obtained three critical frequencies. It was shown that the two higher critical frequencies are actually the natural frequencies of the system (one belongs to the mechanical branch of frequencies and the other belongs to the optical one). Notably, the corresponding mode shapes are the pure shear ones which represent that the grains are only rotating without displacing. As it was already mentioned for an infinite number of grains, the discrete model converges toward the continuum beam of Bresse and Timoshenko. For the continuum case, two of the critical frequencies which are depending on the length scale lead to zero. Thus, it could be predicted that the only critical frequency of the system

�𝜔𝜔 = � 𝐾𝐾 𝐷𝐷 𝒦𝒦𝒦𝒦 𝜌𝜌𝐸𝐸
� refers to the one pure shear mode in simply supported boundary conditions.

For this frequency, it could be imagined that although the deflection of the beam is zero, but the beam is vibrating through the rotations of the microstructure elements in the same orientation and with identical values.

In order to capture the wave dispersion effect, the same model has been used to analyze the wave propagation in one dimensional discrete granular chain. Using the exact resolution of the difference equation of the discrete system, it has been clarified that the two branches of eigenfrequencies exist for the granular model which leads to the ones obtained in the literature, namely by Bresse and Timoshenko for an infinite number of grains. It has been shown that the dispersion behavior of higher-order continuous models is improved by considering additional gradient enrichments terms, as compared to the initial discrete one. It can be also concluded that, as observed for the dispersion curves of the discrete granular chain, the continuous approximation issued of a Padé approximant is always stable.

In the end, a new non-linear micropolar continuum model for two-dimensional isotropic plates was studied. The need for such an enriched model is motivated to study better the 2D granular material arrangement in a continuum framework. The total deformation energy function of the proposed theory involves the contribution of a new measure of deformation which accounts for the relative rotation between the macro and micro rotations. Unlike all the other models findable in the literature, it aims to clearly distinguish each energetic contribution. The latter aspect could facilitate the conception of a discrete model converging to the proposed continuum approach, in addition to a better understanding of the mechanical behavior. Consequently, there are several implications for the study of granular, porous and composite material such as rocks, concrete, soil and biological tissues: nowadays, the application of generalized theories and second gradient models for the analysis of this kind of complex materials has been embraced by a large number of scientists. The approach proposed in this study has been formulated for 2D

plates subjected to in-plane loads through the three measures of deformation with the coupling terms. The enriched deformation energy depends on eight material parameters of which three of them correspond to the contributions of the new relative rotation. Few applications of the model are studied for a squared plate with a central squared hole to depict some new functional aspects. Accordingly, the deformation energy equation has been implemented through the standard FEM in COMSOL Multiphysics. Parametric simulations are presented to expound on the effect of microrotation on response.

Outlook

The results of the presented thesis will serve as a preamble to the further investigations on passage from discrete to continuum mechanics specifically in static deformation, vibration analysis and wave dispersion for metamaterials and granular structures. Nowadays, the advancements in additive manufacturing technology clarify the importance of analyzing the characteristics of granular microstructures.

Here, I would like to identify a few numbers of potential perspectives of the current thesis which will be useful for future works:

First, the discrete granular model presented for one-dimensional analysis can be extended by incorporating the effects of more neighbors which are not just in the vicinity of the subject grain. One challenge would be how to define the proper interactions and resolve the problem through an exact solution.

Another outlook might be working on the continualization approaches. To this aim, in truncation of the Padé approximant or Taylor's series expansion, higher order developments in terms of the kinematic parameters can be considered. This leads to higherorder gradient continuum theories. Also, it might be interesting to study the effects of the other continualization approximations for difference operators.

The model can be extended to an anisotropic one by considering different mechanical properties in different orientations. Imagine a discrete system connected elastically through various types of springs with different rigidity.

The proposed model motivates to study the nonlinear discrete systems which permits to analyze of further nonlinear plane waves, instability, buckling and post-buckling analysis.

The nonlinearity may be considered in the geometry (geometrical nonlinear discrete problem) or the constitutive law (nonlinear elasticity) and interactions. Random packed three-dimensional granular media are highly nonlinear according to the nonlinearity of the Hertz Law and the structural rearrangements of the structure when subjecting to dynamic loads. Wave propagation in nonlinear discrete systems leads to the failure of the continuum approximation which is evident in the acoustic diode behavior.

The verification of the numerical simulations for the static and dynamic linear problem of the one-dimensional discrete model can be a prelude to study more complex systems such as discrete systems with different elastic foundations, intricate external loading, 2D and 3D dimensions discrete media, disordered discrete structures and nonlinear problems.

For 2D planar problems, an interesting perspective might be considering various arrangements of the granular packing. Also, the influence of the further neighbors on the representative grain can be investigated. On the other hand, the interactions can be defined in such a way that lead to include more coupling effects between the kinematic descriptors.

The next research track might be studying the problem experimentally by designing grain pair interactions using 3d printing. This allows studying different coupling effects between the degrees of the freedom of the system.

APPENDIX B. Exact solution of the static deflection of the discrete granular beam for various boundary conditions

I. Clamped-Simply (C-S) Supported Granular Beam

Considering the clamped condition located at the left and the simply support boundary at the right end. Thus, the boundary conditions for such a beam are given by

𝑾𝑾 𝟎𝟎 = 𝟎𝟎 , 𝜽𝜽 𝟎𝟎 = 𝟎𝟎 ; 𝑾𝑾 𝒏𝒏 = 𝟎𝟎 , 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 -� 𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝟎𝟎 → -𝒂𝒂𝒌𝒌 𝒔𝒔 𝑾𝑾 𝒏𝒏-𝟏𝟏 - 𝒂𝒂 𝟐𝟐 𝟐𝟐 𝒌𝒌 𝒔𝒔 (𝜽𝜽 𝒏𝒏-𝟏𝟏 + 𝜽𝜽 𝒏𝒏 )+𝟐𝟐𝒌𝒌 𝒓𝒓 (𝜽𝜽 𝒏𝒏-𝟏𝟏 -𝜽𝜽 𝒏𝒏 ) = 𝟎𝟎 (B.1)
By replacing the general solutions of the discrete beam (Eq. ( 13)) into the aforementioned set of exact boundary conditions, the deflection and rotation can be obtained readily by: For an infinite number of grains, the aforementioned discrete solutions could be compared well by the ones of Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF] as follows Once the solutions of the discrete beam have been obtained, the shear and bending interactions of the boundary grains could be expressed readily by using Eq. (B.2) in Eq. [START_REF] Aifantis | On the role of gradients in the localization of deformation and fracture[END_REF] as follows The reaction forces could be obtained through the equilibrium conditions of the granular beam as follows These results converge to the ones of the C-S Timoshenko beam (Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF]).

II. Clamped -Clamped (C-C) Granular Beam

The exact conditions of the clamped ends beam can be considered with With regards to the general solutions form of granular beam for deflection and rotation of Eq. ( 13), the deformation of C-C discrete beam could be obtained by: The recent results could be compared well with the ones proposed by Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF].

𝑾𝑾 𝒊𝒊 =
The maximum values are given by where 𝑓𝑓 𝐶𝐶𝐶𝐶 ∞ represents the maximum displacement of the continuum beam which was obtained by Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF] as follows These two equations Eq. (B.12) demonstrate that the length scale influence only the maximum values of beam deflection. This predicts that the granular beam behaves more rigidly than the equivalent local continuum one. The interaction shear and bending moment could be obtained for the boundary grains by using Eq. (B.10) in the definitions of Eq. ( 7) Also, the reaction forces of the boundary would be obtained by using the equilibrium conditions for the boundary grains as follows It could be concluded that, for an infinite number of grains, the distribution of bending moment and shear forces converge to the ones that refer to the local continuum model of Bresse-Timoshenko as follows (Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF]). These equations are almost the same for the Euler-Bernoulli beam subjected to uniformly distributed load.

𝑽𝑽

III. Clamped-Free (C-F) Granular Beam

We assumed here that the 2 DOF of the clamped boundary (for instant left side) are blocked while for the free side, there is no constraint. The reaction forces could be found through the application of the equilibrium equations of the whole system by Applying these conditions in the discrete general form solutions of the shear and bending moment distribution (Eq. ( 18)) leads to The solutions could be found by replacing the general solutions of Eq. ( 13) in the aforementioned boundary conditions. Thus, the deflection and micro rotations of the system are given by These converge asymptotically to the ones obtained by Bresse-Timoshenko (Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF] and Wang et al. [START_REF] Wang | Shear deformable beam and plates -Relationships with classical solutions[END_REF]) for continuum beam assuming an infinite number of grains as follows 𝑓𝑓 𝐶𝐶𝐹𝐹 ∞ refers to the maximum displacement of the C-F continuum beam which was obtained by Timoshenko [START_REF] Timoshenko | Strength of materials[END_REF]. It could be concluded that the length scale only affects 𝜃𝜃 𝜇𝜇𝑎𝑎𝑥𝑥 for clamped-free boundary conditions while 𝑊𝑊 𝜇𝜇𝑎𝑎𝑥𝑥 is independent of the grain dimension. The maximum values of micro-rotation are estimated bigger than the local continuum ones for this case.

APPENDIX C. Exact solution of the static deflection of the continuous nonlocal granular beam

The development of the difference operators is done neglecting the higher-order terms in 𝒂𝒂 4 for deflection and rotation field as follows: According to Eq. ( 52) and Eq. (C.1) by considering the corresponding bending moments on the boundaries, the nonlocal conditions could be obtained the same as Eq. ( 55).

II. Continualization of the Kinematic Boundary Conditions

This method is based on the continualization of the cinematic boundary conditions presented for the discrete system by Eq. ( 24). This could be expressed for the nonlocal beam as Using the general nonlocal continuum solutions of Eq. ( 49) in the abovementioned conditions reflects the same nonlocal solutions that have been obtained by Eq. [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF].

III. Continualization of Discrete Bending Moment

Another approach to continualize the cinematic conditions could be done by applying the polynomial expansions. Developing the difference terms using the Taylor series up to the quartic order 𝑎𝑎 4 for displacement and cubic order 𝑎𝑎 3 for rotation in Eq.

(D.2) leads to The aforementioned developed conditions again lead to the solutions of Eq. ( 56).

IV. Continualization of the Static Boundary Conditions with Cinematic Variables

The equilibrium of the bending moment for the boundaries of the nonlocal beam could be considered by The constants of the general solutions of Eq. ( 49) could be obtained the same as the ones that have been expressed by Eq. [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF].

APPENDIX E.

Nonlocal static analysis of the granular beam for various boundary conditions

I. Clamped-Simply Nonlocal Model

For C-S boundary conditions, ones could be obtained for the bending moment and shear distribution, through the continualization of the corresponding discrete equations.

These are given respectively as follows The nonlocal C-S boundary conditions could be considered in view of Eq. ( 52) and Eq. These could be also obtained from the continualization of the corresponding discrete solutions (Eq. (B.2)).

II. Clamped-Clamped Nonlocal Model

The shear and bending distribution of the nonlocal continuum beam could be obtained by continualizing the ones which were found for the discrete system. Applying the aforementioned set of boundary conditions in the general solutions of the nonlocal beam (Eq. ( 49)) leads to: Similarly, an alternative method to obtain these results is through the continualization of the corresponding discrete solutions of Eq. (B.10). The maximum displacement occurs at the middle of the beam and is given by Applying the nonlocal beam solutions of Eq. ( 49) in one of the aforementioned boundary conditions (e.g. Eq. (E.9)) leads to: These results coincide with the ones that could be found from the continualization of the discrete solutions which have been presented in Eq. (B.25). The maximum deflection happens at the free side of the beam and is obtained as follows APPENDIX F. Comparison of the numerical DEM model and the exact discrete approach of the static deflection of the granular beam 
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  granular model can be classified also as a discrete Cosserat chain with two independent degrees of freedom (DOF) for each grain (the deflection and the rotation). Subsequently, such a discrete model permits to introduce the size effect (grain dimension) in the bending formulation of a microstructured granular beam. It is shown that for an infinite number of grains, the difference equations that govern the behaviour of the discrete granular beam converge towards the differential equations of the Bresse-Timoshenko beam resting on Winkler foundation (also classified as a continuous Cosserat beam model on Winkler foundation). A gradient Bresse-Timoshenko model is constructed from the continualization of the difference equations. The continuous gradient elasticity Cosserat model is obtained from a polynomial or a rational expansion of the pseudo-differential operators in which scale effects of the granular chain would be captured.The exact solutions of this granular model subjected to a uniform distributed loading, are investigated in static conditions for various boundary conditions which are defined at the grain level. The performance of the Discrete Element Method (DEM) for simulating such a problem is investigated as well. Accordingly, a twin numerical problem is studied to compare the exact analytical results with the numerical ones simulated by DEM. Furthermore, the natural frequencies of a free vibrating granular beam with simply supported boundary conditions are analytically calculated for whatever modes.In chapter 3, we studied the free vibrations of granular-microstructured beams using the Cosserat discrete model. To this end, the dynamic responses of the one-dimensional granular beam have been investigated for simply supported boundary conditions through the analytical resolution of the exact problem. The effective parameters and the constitutive equations defined in the interactions are described in detail. Next, the governing equations of motion and variationally-based boundary conditions are derived through the Lagrangian of the system and Hamilton's principle. For simply supported granular beams, the equivalency of the exact boundary conditions with an alternative problem (half boundary density with antisymmetric deflection) has been checked. Besides, the problem is simulated by DEM. The responses of the numerical approach are compared with the exact results of the analytical solutions which present a quite well accuracy. Some interesting features of the results such as the critical frequencies of the discrete model and the pure shear modes are discussed through the numerical sensitive analysis.

  and give some clues to check the ability of DEM (for instance using YADE) to account for the 1D Cosserat chain. Assuming that the number of granular elements is large enough, DEM with basic contact laws can describe enriched continuum mechanics. The local and non-local continuum models converge to each other for negligible length scale parameters. Within this perspective, comparisons between DEM and exact analytical Cosserat discrete solution through the static analysis of granular chain are carried out. Accordingly, the discrete system is considered as the reference model to be studied. This granular model could be considered as the discrete Cosserat model or discrete Bresse-Timoshenko model which takes into account the effects of the length scale. It is shown that for an infinite number of grains this model converges to the local continuum model of Cosserat which is merely the local continuum model of Bresse-Timoshenko. This model is called local in the sense that the generalized variables of bending moment and shearing force depend on the variables of generalized deformations namely the curvature and sliding in a local way and without scale effects.

  for four various boundary conditions of simply supported, clamped, clamped-simply supported and clamped-free, the exact solutions of the bending discrete beam are studied. Also, the nonlocal continuum beam is investigated originally for the aforementioned boundary conditions and the results are compared well by the ones of the discrete model. Next, the same problem is simulated by DEM using YADE open-source software. The numerical results obtained by DEM are verified well with the exact analytical results of the granular model for the deflection and micro rotations. A significant accuracy was obtained between the results of these two approaches. Finally, the nonlocal continuum model is achieved through the continualization of the problem by virtue of the Taylor series.

Bresse-Figure 1 .

 1 Figure 1. A discrete granular beam with length L (a) Non-deformed discretized beam (b) Deformed beam composed of 𝑛𝑛 + 1 rigid grain; 𝐿𝐿 = 𝑛𝑛𝑎𝑎

1 2

 1 refers to the contact position at 𝑎𝑎𝑖𝑖 ± 𝑎𝑎 2
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 23 Figure 2. Static bending granular beam solution for 11 number of grains (a) Deflection and (b) Rotation

Figure 3 .

 3 Figure 3. Parametric analysis of the continuum and discrete differences (𝝐𝝐) with regards to the grain number values for a simply supported granular beam by varying (a) Rotational spring rigidity, (b) Shear spring rigidity, and (c) Beam length

Figure 4 .

 4 Figure 4. Comparison of the exact discrete approach with the nonlocal ones based on discrete model (1 st nonlocal approximation) and based on the development of the continuum formulations (2 nd nonlocal approximation) for 11 number of granular elements (a) Deflection and (b) Rotation

The proposed system can

  be considered as a discrete Cosserat chain with two independent degrees of freedom, namely the deflection and the rotation of each grain. Once the kinematics and Lagrangian energy of the model have been introduced, we have obtained the general solutions of the static granular chain under distributed vertical loads ruled by a coupled system of difference equations. The problem is postulated for four conventional boundary conditions, namely simply supported, clamped, clamped-simply and clampedfree. For each case, the exact displacement and rotation of the granular beam are found through the exact discrete conditions defined for the boundary grains. The solution of the simply supported discrete system is compared to the one of a continuous Cosserat chain asymptotically obtained for an infinite number of grains when only the local neighbor effects are taken into account. For this case, the discrete solution converges asymptotically towards the local continuum one of a Bresse-Timoshenko beam. Then, the gradient elasticity Cosserat continuum is developed through the continualization of the difference equations using two equivalent strategies. The nonlocal models are able to reproduce the scale effects. The distinguishing features of these two refined continuous models basically stem from the continualization of the bending moment valid for the discrete Cosserat media which could be defined either by displacement or rotation parameters. It was shown that both nonlocal solutions coincide with the exact discrete one. Finally, a numerical asymptotic problem of a cantilever beam under distributed loading is studied for various boundary conditions. The problem is simulated by the open-source framework of Yade based on DEM. The DEM numerical results are exactly the same as the ones obtained by the exact analytical discrete approach. As the relevance of this discrete numerical model was checked for elementary cases, it would be of great interest to use it for investigating more complicated problems involving disordered discrete structures subjected to various types of loading including dynamic and vibration effects in 2D and 3D.

AFigure 5 .

 5 Figure 5. A discrete shear granular chain model composed of n+1 grain; (a) undeformed and (b) deformed.
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 42886 Figure 6. Schematic behavior of the wave vector regarding the eigenfrequencies for finite grain number (n=50). (a), (c), (e) and (g) correspond to the real part and (b), (d), (f) and (h) correspond to the imaginary part of the wave vector.

Figure 7 .

 7 Figure 7. The effects of the eigenfrequencies on the wave behavior for a general discrete beam contains an infinite grain number (𝒏𝒏 → ∞). (a), (c), (e) and (g) correspond to the real part and (b), (d), (f) and (h) correspond to the imaginary part of the wave vector.
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Figure 8 .

 8 Figure 8. Comparison of the first branch natural frequencies for the discrete exact, Duan et al. [12] and continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑, 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 and 𝒌𝒌 * = 𝟎𝟎.

Furthermore, for theFigure 9 .

 9 Figure 9. Comparison of the second branch natural frequencies for the discrete exact, Duan et al. [12] and continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑, 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎 and 𝒌𝒌 * = 𝟎𝟎.
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 1011 Figure 10. Comparison of the first branch natural frequencies for the discrete exact, Duan et al. [12] and continuum solutions with respect to the mode number (p) and grain number: (a) 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟒𝟒, (b) 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟐𝟐𝟐𝟐, (c) 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟒𝟒 and (d) 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟓𝟓𝟑𝟑 for 𝒏𝒏 = 𝟐𝟐𝟎𝟎, 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑 and 𝒌𝒌 * = 𝟎𝟎. (a) (b)

Figure 12 .

 12 Figure 12. Analysis of the grain number effect on the frequencies (discrete exact solution) for the mode number (a) 𝒑𝒑 = 𝟏𝟏 and (b) 𝒑𝒑 = 𝟏𝟏𝟎𝟎 with respect to the length ratio (𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟐𝟐𝟎𝟎) for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑 and 𝒌𝒌 * = 𝟏𝟏. 𝟑𝟑𝟎𝟎.

Figure 13 .Figure 14 .

 1314 Figure 13. Comparison of the natural frequencies for the nonlocal Taylor and continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟒𝟒, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑.(a) (b)

Figure 15 .Figure 16 .

 1516 Figure 15. Comparison of the natural frequencies for the nonlocal Padé and continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟒𝟒, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑.(a) (b)
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 171819 Figure 17. Comparison of the first branch natural frequencies for different approaches as a function of mode number (p) with respect to the grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑.

Figure 20 .

 20 Figure 20. Comparison of the natural frequencies of the second branch for different approaches as a function of mode number (p) with respect to the grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟒𝟒 , (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓 * = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁 𝒔𝒔 → ∞ (weak shear interaction).

Figure 21 .

 21 Figure 21. Correction in the first branch natural frequencies regarding Winkler foundation effect.

  granular system resting on a Winkler elastic foundation. This microstructured system consists of uniform grains elastically connected by shear and rotation springs. It is shown that the discrete deflection equation of this granular system (Cosserat chain) is mathematically equivalent to the finite difference formulation of a shear deformable Bresse-Timoshenko beam resting on Winkler foundation. Next, the natural frequencies of such a granular model with simply supported ends are first analytically investigated, whatever considered modes through the resolution of a linear difference equation.The model is continualized to its equivalent continuous system by using two approximate methods based on the Taylor series and Padé approximants (nonlocal continuum). The eigenfrequencies obtained from the continualized beam using the Padé approximation have shown a good performance if compared to the corresponding responses of the Taylor approximation. Nevertheless, it has been shown that in some cases the approach based on the Taylor approximant provides imaginary values for the two eigenfrequencies branches without a physical sense for the homogenized continuum.The dependency of the beam dynamic responses to its length ratio is clarified and the equations of the eigenfrequencies are obtained regarding the discrete Cosserat model, local and nonlocal continuous models. Finally, the results of the exact approach for the discrete Cosserat model are compared with those of the nonlocal continuous approach. It is found that the shear stiffness (represented by shear springs) has a significant effect on the vibration frequencies. Furthermore, the scale effects of the granular chain are captured by the continuous gradient elasticity model. This scale effect is related to the grain size with respect to the total length of the Cosserat chain.

  𝒔𝒔 𝓚𝓚 𝑬𝑬 𝒂𝒂𝑺𝑺 𝒔𝒔𝒊𝒊𝒏𝒏(𝒂𝒂𝒌𝒌 𝒘𝒘 ) ≈ ∞ (Rotational wave) (226)While regarding the other branch (the negative root), the shear term of the wave appears as follows

Figure 22

 22 Figure 22 asymptotically for a numeral example characterized in Eq. (268) through the

Figure 22 .

 22 Figure 22. Dispersive curves for one-dimensional compression wave of (a) the first branch and (b) the second branch according to bending nondimensional parameter for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑, 𝒓𝒓 * = 𝟎𝟎. 𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌 * = 𝟎𝟎. 𝟎𝟎𝟐𝟐.

Figure 23 Figure 23 .

 2323 Figure 23 clarifies this evidence as follows

Figure 24 .

 24 Figure 24. Dispersive curves for one-dimensional compression wave of (a) the first branch and (b) the second branch according to bending nondimensional parameter for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑, 𝒓𝒓 * = 𝟎𝟎. 𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌 * = 𝟎𝟎. 𝟎𝟎𝟐𝟐.

Figure 25 .

 25 Figure 25. Dispersive curves for one-dimensional compression wave of (a) first branch or the acoustic mode and (b)second branch or the optical mode according to shear nondimensional parameter-various approaches for 𝝁𝝁 𝒔𝒔 = 𝟒𝟒. 𝟐𝟐𝟑𝟑, 𝒓𝒓 * = 𝟎𝟎. 𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌 * = 𝟏𝟏. 𝟎𝟎𝟑𝟑.
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 27262728 Figure 27. The dispersive curves of the first branch frequency for the granular chain are

Figure 29 .

 29 Figure 29. A discrete shear granular plane of dimension 𝜹𝜹 𝟏𝟏 × 𝜹𝜹 𝟐𝟐 composed of (𝒏𝒏 + 𝟏𝟏) × (𝒎𝒎 + 𝟏𝟏) grains of diameter a and mass m

+

  and I are Young's modulus and the second moment of area.The total kinetic energy T is given by: 𝑬𝑬 𝒎𝒎 𝜽𝜽 ̇𝒊𝒊,𝒋𝒋 𝟐𝟐 + 𝒎𝒎𝑽𝑽 ̇𝒊𝒊,𝒋𝒋 𝟐𝟐 ) (296)

Figure 30 .

 30 Figure 30. Compression test with a clamped bottom side (a) distribution of the vertical strain (b) distribution of the horizontal strain (c) distribution of the microrotation
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 31 Figure 31. Biaxial shear test with fixed microrotation on the sides (a) distribution of the macro-rotation (b) distribution of the micro-rotation Q 21 (c) distribution of the relative rotation ℛ 21
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 321333433347 Figure 32. Distribution of the lateral displacement for parametric analysis on 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 for tensile test (a) 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 /𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 0 = 0.001 (b) 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 /𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 0 = 0.1 Figure 33 presents the effects of the 𝝁𝝁 𝜞𝜞𝜞𝜞 𝜹𝜹 changes on the microrotations distribution. This figure shows that an antisymmetric microrotation field is created for the

  as a discrete Cosserat chain with two independent degrees of freedom, namely the deflection and the rotation of each grain. Once the kinematics and Lagrangian energy of the model have been introduced, we have obtained the general solutions of the static granular chain under distributed vertical loads ruled by a coupled system of difference equations. It is shown that the discrete deflection equation of this granular system (Cosserat chain) is mathematically equivalent to the finite difference formulation of a shear deformable Bresse-Timoshenko beam resting on Winkler foundation. Then, the gradient elasticity Cosserat continuum is developed through the continualization of the difference equations using two equivalent strategies based on the Taylor series and Padé approximants (nonlocal continuum). The nonlocal models are able to reproduce the scale effects. The distinguishing features of these two refined continuous models basically stem from the continualization of the bending moment valid for the discrete Cosserat media which could be defined either by displacement or rotation parameters. It was shown that both nonlocal solutions coincide with the exact discrete one. A numerical asymptotic problem of a cantilever beam under distributed loading is studied for various boundary conditions. The problem is simulated by the open-source framework of Yade based on DEM. The DEM numerical results are exactly the same as the ones obtained by the exact analytical discrete approach. As the relevance of this discrete numerical model was checked for elementary cases, it would be of great interest to use it for investigating more complicated problems involving disordered discrete structures subjected to various types of loading including dynamic and vibration effects in 2D and 3D.Next, the natural frequencies of such a granular model with simply supported ends were analytically investigated, whatever considered modes through the resolution of a linear difference equation. The eigenfrequencies obtained from the continualized beam using the Padé approximation have shown a good performance if compared to the corresponding one from the Taylor approximation. Nevertheless, it has been shown that in some cases the approach based on the Taylor approximant provides imaginary values for the two eigenfrequencies branches without a physical sense for the homogenized continuum. The dependency of the beam dynamic responses to its length ratio is clarified and the equations of the eigenfrequencies are obtained regarding the discrete Cosserat model, local and nonlocal continuous ones. It was found that the shear stiffness (represented by shear springs) has a significant effect on the vibration frequencies.

  𝑾𝑾 𝟎𝟎 = 𝟎𝟎 , 𝜽𝜽 𝟎𝟎 = 𝟎𝟎 ; 𝑾𝑾 𝒏𝒏 = 𝟎𝟎 , 𝜽𝜽 𝒏𝒏 = 𝟎𝟎 (B.9)

22 )

 22 Ignoring the length scale for an infinite number of grains refers to the Bresse-Timoshenko beam which has the same moment and shear distributions as the Euler-Bernoulli for the C-F conditions. Furthermore, the bending moment and shear equations could be found for the local continuum model as𝑽𝑽(𝒙𝒙) = -𝒒𝒒(𝒙𝒙 -𝜹𝜹), 𝑴𝑴(𝒙𝒙) = 𝒒𝒒 𝟐𝟐 �𝒙𝒙 𝟐𝟐 -𝟐𝟐𝜹𝜹𝒙𝒙 + 𝜹𝜹 𝟐𝟐 � (B.23)substituting the shear and bending moment interactions through the kinematics terms (Eq.(7)) into Eq. (B.20) leads to 𝑾𝑾 𝟎𝟎 = 𝟎𝟎 , 𝜽𝜽 𝟎𝟎 = 𝟎𝟎 ; 𝒌𝒌 𝒓𝒓 (𝜣𝜣 𝒏𝒏 -𝜣𝜣 𝒏𝒏-𝟏𝟏 ) -𝒂𝒂 𝟒𝟒 𝑸𝑸 = 𝟎𝟎 , 𝒌𝒌 𝒔𝒔 �𝑾𝑾 𝒏𝒏 -𝑾𝑾 𝒏𝒏-𝟏𝟏 -𝒂𝒂 𝟐𝟐 (𝜣𝜣 𝒏𝒏 + 𝜣𝜣 𝒏𝒏-𝟏𝟏 )� -𝟏𝟏 𝟐𝟐 𝑸𝑸 = 𝟎𝟎 (B.24)

(C. 3 )

 3 Summing the previous equation with Eq. (C.1) leads to 𝑬𝑬𝑬𝑬𝜣𝜣′′′ = 𝒒𝒒 (C.4) On the other hand, the following auxiliary equation could be obtained with the multiplication of Eq. (C.1) by the term �1deflection differential equations of the nonlocal system for the displacement could be obtained for a uniform constant distributed loading through the application of relation Eq. (C.4) as follows 𝑬𝑬𝑬𝑬𝑾𝑾 ′′′′ = 𝒒𝒒 (C.6)APPENDIX D. Alternative methods of the static analysis of the continuous nonlocal granular beamI. Continualization of Discrete Bending MomentThe nonlocal bending moment and shear distribution of the S-S continuum beam could be obtained from the continualization of Eq. (22) by substituting 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 𝑄𝑄 = 𝑞𝑞𝑎𝑎 as follows 𝑽𝑽(𝒙𝒙) = -𝒒𝒒 �𝒙𝒙 -

  𝑾𝑾(𝟎𝟎) = 𝟎𝟎, 𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚𝑾𝑾(𝒂𝒂) -𝒂𝒂 𝟐𝟐 𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝜽𝜽(𝒂𝒂) + 𝜽𝜽(𝟎𝟎)� + 𝟐𝟐𝑬𝑬𝑬𝑬(𝜽𝜽(𝒂𝒂) -𝜽𝜽(𝟎𝟎)) = 𝟎𝟎 ; 𝑾𝑾(𝜹𝜹) = 𝟎𝟎, -𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚𝑾𝑾(𝜹𝜹 -𝒂𝒂) -𝒂𝒂 𝟐𝟐 𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝜽𝜽(𝜹𝜹 -𝒂𝒂) + 𝜽𝜽(𝜹𝜹)� + 𝟐𝟐𝑬𝑬𝑬𝑬�𝜽𝜽(𝜹𝜹 -𝒂𝒂) -𝜽𝜽(𝜹𝜹)� = 𝟎𝟎 (D.2)

(E. 1 )

 1 , by:𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ; 𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ; 𝜣𝜣 ′ (𝜹𝜹) = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 (E.2)Thus, ones could be obtained for the deflection and rotation of the nonlocal beam by replacing the nonlocal general solutions (Eq. (49))

  This could be done by considering the continuum terms 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 𝑄𝑄 = 𝑞𝑞𝑎𝑎. Accordingly, Eq. (B.14) leads to 𝑽𝑽(𝒙𝒙) = -𝒒𝒒 �𝒙𝒙 -𝜹𝜹 𝟐𝟐 � , 𝑴𝑴(𝒙𝒙) = 𝒒𝒒 𝟐𝟐 �𝒙𝒙 𝟐𝟐 -𝜹𝜹𝒙𝒙 + 𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 + 𝜹𝜹 𝟐𝟐 𝟔𝟔 � (E.4) For this case, the boundary conditions might be defined the same as the discrete or local ones by 𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ; 𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ; 𝜣𝜣(𝜹𝜹) = 𝟎𝟎 (E.5)

𝑞𝑞 8 .

 8 𝑾𝑾 𝒎𝒎𝒂𝒂𝒙𝒙 = 𝑾𝑾(𝜹𝜹/𝟐𝟐) = � 𝒒𝒒𝜹𝜹 𝟒𝟒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � � 𝟏𝟏 𝟑𝟑 -𝒂𝒂 𝟐𝟐 𝟒𝟒𝜹𝜹 𝟐𝟐 + 𝟑𝟑𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � (E.7)It is noteworthy to state that the maximum value is equal to Eq. (B.12). Although the boundary conditions and the governing differential equations of the local and nonlocal beam are the same, the scale effect appears (only in the displacement equation) in the results. This stems from the nonlocal gradient coupled differential equations system expressed by Eq. (C.1) and Eq. (C.2).III. Clamped-Free Nonlocal ModelReplacing 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 𝑄𝑄 = 𝑞𝑞𝑎𝑎 in Eq. (B.22) leads to the moment and shear equations of the nonlocal continuum beam as follows𝑽𝑽(𝒙𝒙) = -𝒒𝒒(𝒙𝒙 -𝜹𝜹), 𝑴𝑴(𝒙𝒙) = 𝒒𝒒 𝟐𝟐 �𝒙𝒙 𝟐𝟐 -𝟐𝟐𝜹𝜹𝒙𝒙 + 𝒂𝒂 𝟐𝟐 𝟒𝟒 + 𝜹𝜹 𝟐𝟐 � (E.8)For the free boundary, we have 𝑉𝑉(𝐿𝐿) = 0 and 𝑀𝑀(𝐿𝐿) = 𝑎𝑎 2 Applying Eq. (50) and Eq. (51) leads to the following nonlocal variational boundary conditions 𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣 ′ (𝜹𝜹) = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 ; 𝑾𝑾 ′ (𝜹𝜹) -𝜣𝜣(𝜹𝜹) -𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐 𝑾𝑾 ′′′ (𝜹𝜹) = 𝟎𝟎 (E.9)Also, regarding Eq. (52) and knowing 𝑀𝑀 ′ (𝐿𝐿) = -𝑉𝑉(𝐿𝐿) = 0 , an equivalent boundary conditions could be assumed𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣 ′ (𝜹𝜹) = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 ; 𝜣𝜣 ′′ (𝜹𝜹) = 𝟎𝟎 (E.10)On the other hand, defining the bending moment and shear force of the free end through the cinematic parameters leads to an alternative set of boundary conditions for C-F nonlocal beam 𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ; 𝜣𝜣(𝜹𝜹) -𝜣𝜣(𝜹𝜹 -𝒂𝒂) = 𝒂𝒂 𝟑𝟑 𝒒𝒒 𝟒𝟒𝑬𝑬𝑬𝑬 ; 𝑾𝑾(𝜹𝜹) -𝑾𝑾(𝜹𝜹 -𝒂𝒂) -𝒂𝒂 𝜣𝜣(𝜹𝜹) + 𝜣𝜣(𝜹𝜹 -𝒂𝒂) 𝟐𝟐 = 𝒂𝒂 𝟐𝟐 𝒒𝒒 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 (E.11)

  𝑾𝑾 𝒎𝒎𝒂𝒂𝒙𝒙 = 𝑾𝑾(𝜹𝜹) = 𝒒𝒒𝜹𝜹 𝟒𝟒 𝟑𝟑𝑬𝑬𝑬𝑬 �𝟏𝟏 + 𝟒𝟒𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � (E.[START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF] This equation reflects also the same values as Eq. (B.27).

  

  

  𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 -𝑽𝑽 𝒊𝒊-𝟏𝟏/𝟐𝟐 = -𝑸𝑸; 𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐 -𝑴𝑴 𝒊𝒊-𝟏𝟏/𝟐𝟐 + 𝒂𝒂 𝟐𝟐 �𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝑽𝑽 𝒊𝒊-𝟏𝟏/𝟐𝟐 � = 𝟎𝟎 (16)

  Note that 𝑘𝑘 𝑛𝑛 , 𝑘𝑘 𝑠𝑠 and 𝑘𝑘 𝑏𝑏 are associated with normal, shear, and bending stiffness. 𝜗𝜗 𝑚𝑚 and 𝛼𝛼 𝑏𝑏 are respectively the contact stiffness ratio and the dimensionless rolling stiffness which can be defined as follows with regards to the discrete model presented in section 2.

	𝝑𝝑 𝒎𝒎 =	𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 𝑬𝑬𝒂𝒂 𝟐𝟐 , 𝜶𝜶 𝒃𝒃 =	𝑬𝑬𝝑𝝑 𝒎𝒎 𝒂𝒂 𝟒𝟒 𝟑𝟑𝑬𝑬𝑬𝑬			(32)
						, is studied for
	different values of grain number. The open-source software YADE (Šmilauer et al. [112])
	is used for numerical simulations. This model embeds parameters such as the number of
	grains, initial positions, density, and radius. To model the contact behavior of the grains,
	an elastic contact relation will be used thereafter. The contact stiffnesses are defined as
	follows				
	𝒌𝒌 𝒏𝒏 = 𝑬𝑬𝒂𝒂, 𝒌𝒌 𝒔𝒔 = 𝝑𝝑 𝒎𝒎 𝒌𝒌 𝒏𝒏 , 𝒌𝒌 𝒃𝒃 = 𝜶𝜶 𝒃𝒃 𝒌𝒌 𝒔𝒔 �	𝒂𝒂 𝟐𝟐	�	𝟐𝟐	(31)

  𝒘𝒘 𝒊𝒊 = 𝑩𝑩 𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝒄𝒄 + 𝑩𝑩 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝒄𝒄 + 𝑩𝑩 𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝝑𝝑 + 𝑩𝑩 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝝑𝝑 (𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟐𝟐 < 𝜴𝜴 < 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟐𝟐 ) 𝒘𝒘 𝒊𝒊 = 𝑪𝑪 𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑪𝑪 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑪𝑪 𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝝑𝝑 + 𝑪𝑪 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝝑𝝑 (𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟐𝟐 < 𝜴𝜴 < 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟏𝟏 ) 𝒘𝒘 𝒊𝒊 = 𝑫𝑫 𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑫𝑫 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑫𝑫 𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝝑𝝑 + 𝑫𝑫 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝝑𝝑 (𝜴𝜴 𝒄𝒄𝒓𝒓 𝟏𝟏,𝟏𝟏 < 𝜴𝜴 )

	(117)
	(118)
	(119)

𝒘𝒘 𝒊𝒊 = 𝓚𝓚 𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝒄𝒄 + 𝓚𝓚 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝒄𝒄 + 𝓚𝓚 𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝝑𝝑 + 𝓚𝓚 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝝑𝝑 (𝜴𝜴 < 𝜴𝜴 𝒄𝒄𝒓𝒓 𝟐𝟐,𝟐𝟐 )

(116) 

  ( 16�𝐼𝐼 𝑚𝑚 0 + 𝐼𝐼 𝑚𝑚 𝐶𝐶 �𝑘𝑘 𝑟𝑟 𝑘𝑘 𝑠𝑠 𝜇𝜇 𝑖𝑖 (2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)3 + 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) 3 𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) -6𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) -4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)3 -4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) 𝑘𝑘 𝑟𝑟 𝑘𝑘 𝑠𝑠 �𝑘𝑘 𝑟𝑟 𝜇𝜇 𝑖𝑖 2 + 𝑘𝑘 𝑠𝑠 �𝐼𝐼 𝑚𝑚 0 + 𝐼𝐼 𝑚𝑚 𝐶𝐶 �𝜇𝜇 𝑖𝑖 ��0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)

	𝑓𝑓 3 (𝜔𝜔)	
	= -(𝑎𝑎 2 + 4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)	
	+ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)	
	+ 4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)	
	-𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 3 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 3 𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)	
	+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
	+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
	-4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
	+ 2𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗))	
	+ 8𝑎𝑎 2 + 16𝑘𝑘 𝑟𝑟 2 𝜇𝜇 𝑖𝑖 2 (-0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
		(130)
	𝑓𝑓 2 (𝜔𝜔)	
	= -�𝑎𝑎 2 �𝜇𝜇 𝑖𝑖 2 �𝐼𝐼 𝑚𝑚 0 𝐼𝐼 𝑚𝑚 𝜗𝜗)
	+ sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑) + sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) + cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗)
	+ cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) -cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗)	
	-cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑) + sin(2𝜑𝜑) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sinh(𝜗𝜗)	
	+ sinh(2𝜗𝜗) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) -4 cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) sinh(𝜗𝜗))�� �𝑘𝑘 𝑠𝑠	2 (cos(2𝜑𝜑)
	-1)(cosh(2𝜗𝜗) -1)�	
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𝜇𝜇 𝑖𝑖 2 �2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -2𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)(𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)

2 

+ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)

2 

) -2𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)�� (𝑘𝑘 𝑠𝑠 2 sin 2 (𝜑𝜑) sinh 2 (𝜗𝜗)) -1 𝐶𝐶 ��(4𝑘𝑘 𝑟𝑟 + 𝑎𝑎 2 𝑘𝑘 𝑠𝑠 )(2 cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 2 cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) -4 sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 8 sin(𝜑𝜑) sinh(𝜗𝜗) -8 cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) sinh(𝜗𝜗)) + 2(4𝑘𝑘 𝑟𝑟 -𝑎𝑎 2 𝑘𝑘 𝑠𝑠 )(sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) -sinh(2𝜗𝜗) sin(𝜑𝜑) -sin(2𝜑𝜑) sinh(𝜗𝜗) + sinh(2𝜗𝜗) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) + sin(2𝜑𝜑) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sinh(𝜗𝜗) + sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑) -cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) -cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑))� + 64𝐼𝐼 𝑚𝑚 0 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝑘𝑘 𝑠𝑠 𝜇𝜇 𝑖𝑖 (sin(2𝜑𝜑) sinh(𝜗𝜗) -sinh(2𝜗𝜗) sin(𝜑𝜑) -2 sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 4 sin(𝜑𝜑) sinh(-𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)� -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)) + 𝑎𝑎 4 𝑘𝑘 𝑠𝑠 2 𝜇𝜇 𝑖𝑖 2 (-0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)

-0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)) +64𝐼𝐼 𝑚𝑚 0 𝐼𝐼 𝑚𝑚 𝐶𝐶 𝑘𝑘 𝑠𝑠 2 �-0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) -𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) -𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) 2

  ) the boundary conditions could be defined in matrix form,

	respectively						
		�	𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝟎𝟎			𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) 𝟎𝟎	� �	𝓚𝓚 𝟏𝟏 𝓚𝓚 𝟑𝟑 𝓚𝓚 𝟐𝟐	� = 𝟎𝟎	(131)
		𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)	𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)	𝓚𝓚 𝟒𝟒
		�	𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝟎𝟎			𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) 𝟎𝟎	� �	𝑩𝑩 𝟏𝟏 𝑩𝑩 𝟑𝟑 𝑩𝑩 𝟐𝟐	� = 𝟎𝟎	(132)
			𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)	𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑)	𝑩𝑩 𝟒𝟒
	�	𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄 𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄 𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄(𝒏𝒏𝒄𝒄)	𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝟎𝟎 𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄 𝒔𝒔𝒊𝒊𝒏𝒏 𝒄𝒄(𝒏𝒏𝒄𝒄)	𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)	𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) 𝟎𝟎 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) � �	𝑪𝑪 𝟒𝟒 𝑪𝑪 𝟏𝟏 𝑪𝑪 𝟑𝟑 𝑪𝑪 𝟐𝟐	� = 𝟎𝟎	(133)
	�	𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝟎𝟎			𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑) 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑		𝟎𝟎 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) 𝟎𝟎	� �	𝑫𝑫 𝟏𝟏 𝑫𝑫 𝟐𝟐 𝑫𝑫 𝟑𝟑	� = 𝟎𝟎
	𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄)	𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒄𝒄 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)	𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)	𝑫𝑫 𝟒𝟒

  𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟔𝟔 -𝟏𝟏𝟔𝟔𝝁𝝁 𝒔𝒔 𝟑𝟑 𝒓𝒓 * 𝟔𝟔 𝒏𝒏 𝟒𝟒 + 𝟑𝟑𝟐𝟐𝝁𝝁 𝒔𝒔 𝟐𝟐 𝒓𝒓 * 𝟔𝟔 𝒏𝒏 𝟒𝟒 + 𝟑𝟑𝝁𝝁 𝒔𝒔 𝟐𝟐 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 -𝟏𝟏𝟔𝟔𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟔𝟔 𝒏𝒏 𝟒𝟒 + 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟒𝟒𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 -𝒓𝒓 * 𝟐𝟐 ) + 𝟒𝟒𝒏𝒏 𝟐𝟐 𝑩𝑩 * = -𝟏𝟏𝟔𝟔𝝁𝝁 𝒔𝒔 𝟐𝟐 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟒𝟒 + 𝟑𝟑𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟒𝟒 + 𝟑𝟑𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟏𝟏𝟔𝟔𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟒𝟒 + 𝟑𝟑𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟏𝟏

	(142)

𝜴𝜴 = � 𝟑𝟑𝟐𝟐𝒏𝒏 𝟒𝟒 -𝒌𝒌 * + 𝟒𝟒𝒌𝒌 * 𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟏𝟏 + 𝟐𝟐𝝁𝝁 𝒔𝒔 (𝟏𝟏 + 𝟐𝟐𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟏𝟏 -𝝁𝝁 𝒔𝒔 ))) ± 𝓚𝓚 * 𝑩𝑩 * (141) where 𝐴𝐴 * and 𝐵𝐵 * are defined by 𝓚𝓚 * = 𝟏𝟏𝟔𝟔𝒏𝒏 𝟑𝟑 �𝒌𝒌 * (𝒌𝒌 *

  [START_REF] Nicot | The H-microdirectional model: accounting for a mesoscopic scale[END_REF][START_REF] Vardoulakis | Cosserat continuum mechanics with applications to granular media[END_REF] . Here the validity of this hypothesis is checked by analyzing the behavior of Eq. (154). Since 𝛾𝛾 is an ascending function of mode number (p) and knowing the mode number values cannot exceed the grain number, thus the maximum value of 𝛾𝛾 could be obtained for p=n which leads to

	𝜸𝜸 𝒎𝒎𝒂𝒂𝒙𝒙 = � 𝒌𝒌 * 𝟐𝟐	+	𝟐𝟐𝒏𝒏 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) ± �( 𝒌𝒌 * 𝟐𝟐	+	𝟐𝟐𝒏𝒏 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 )) 𝟐𝟐 -	𝒏𝒏 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 (+	𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒏𝒏 𝟐𝟐	+ 𝟏𝟏𝟔𝟔)

  𝒑𝒑 𝟐𝟐 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) +

	𝒌𝒌 * 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 ± �( 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 ) 𝟐𝟐 -(	𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 +	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒓𝒓 * 𝟐𝟐 +	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 )

* 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) +

  �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 �𝜴𝜴 𝟒𝟒 -�𝒓𝒓 * 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 )� 𝜴𝜴 𝟐𝟐 + �𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 + 𝒌𝒌

* + 𝟏𝟏 𝒓𝒓 * � + * + 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 � = 𝟎𝟎

  𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * +

	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � , 𝑪𝑪 =	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 +	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒓𝒓 * 𝟐𝟐 +	𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒌𝒌 *	(172)

𝑩𝑩 =

  The natural frequencies could be calculated by substituting Eq. (153) in the following equation with respect to the parameters of Eq. (187).

																		𝝎𝝎 =	𝜴𝜴 𝜹𝜹 𝟐𝟐 � 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬	(188)
	For continuum modeling when 𝑛𝑛 → ∞, 𝛾𝛾 change to
																		𝜸𝜸 =
	�( 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) +	𝒌𝒌 * 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 ) ± �( 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐	𝒌𝒌 * 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 ) 𝟐𝟐 -(	𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 +	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒓𝒓 * 𝟐𝟐 +	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 )
		�	𝝆𝝆 𝟐𝟐 𝑬𝑬 𝒌𝒌 𝒔𝒔 𝓚𝓚	� 𝝎𝝎 𝟒𝟒 + ��𝝆𝝆𝑬𝑬 +	𝑬𝑬𝑬𝑬𝝆𝝆 𝒌𝒌 𝒔𝒔 𝓚𝓚 �	𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐	×	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝜹𝜹 𝟒𝟒 -�𝝆𝝆𝑬𝑬 +	𝑬𝑬𝑬𝑬𝝆𝝆 𝒌𝒌 𝒔𝒔 𝓚𝓚	-𝝆𝝆𝓚𝓚	𝒂𝒂 𝟐𝟐 𝟒𝟒 �	𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝜹𝜹 𝟐𝟐 -(𝝆𝝆𝓚𝓚 +	𝒌𝒌𝑬𝑬𝝆𝝆 𝒌𝒌 𝒔𝒔 𝓚𝓚𝓚𝓚 )� 𝝎𝝎 𝟐𝟐 +
	�-𝑬𝑬𝑬𝑬	𝒂𝒂 𝟐𝟐 𝟔𝟔	×	𝒑𝒑 𝟔𝟔 𝒑𝒑 𝟔𝟔 𝜹𝜹 𝟔𝟔 + 𝑬𝑬𝑬𝑬	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝜹𝜹 𝟒𝟒 -	𝒌𝒌𝑬𝑬𝑬𝑬 𝒌𝒌 𝒔𝒔 𝓚𝓚𝓚𝓚	×	𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐	×	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝜹𝜹 𝟒𝟒 +	𝒌𝒌𝑬𝑬𝑬𝑬 𝒌𝒌 𝒔𝒔 𝓚𝓚𝓚𝓚	×	𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝜹𝜹 𝟐𝟐 -𝒌𝒌	𝒂𝒂 𝟐𝟐 𝟒𝟒	×	𝜹𝜹 𝟐𝟐 + 𝒌𝒌� = 𝟎𝟎 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐	(185)
	or in non-dimensional form		
		𝜴𝜴 𝟒𝟒 + ��	𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 �	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 -�	𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -
																		(186)
								𝒑𝒑 𝟔𝟔 𝒑𝒑 𝟔𝟔 𝟔𝟔𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 +	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 -	𝒌𝒌 * 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟐𝟐𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 +	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒓𝒓 * 𝟐𝟐 -	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 +	𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � = 𝟎𝟎
	By solving Eq. (186) leads to the form of Eq. (153) with the parameters
	𝑩𝑩 = �	𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 �	𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 -�	𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -	𝟏𝟏 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 � 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 -�	𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * �,
		𝑪𝑪 =	𝟏𝟏 𝟔𝟔𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 𝒑𝒑 𝟔𝟔 𝒑𝒑 𝟔𝟔 + ( 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 -𝟏𝟏	𝒌𝒌 * 𝟏𝟏𝟐𝟐𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 )𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 + ( 𝒓𝒓 * 𝟐𝟐 -𝒌𝒌 *	𝒌𝒌 * 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 )𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 +	𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒	(187)

𝟏𝟏 𝟒𝟒𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒏𝒏 𝟐𝟐 � 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 -( 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 + 𝒌𝒌 * )� 𝜴𝜴 𝟐𝟐 + �

  ,[1/2] and [1/2] in Eq. (175) yields:

	𝜹𝜹 𝟐𝟐	𝟐𝟐 𝒘𝒘(𝒙𝒙) ≈ � 𝟏𝟏 -	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟔𝟔	𝟏𝟏 +	𝟏𝟏𝟏𝟏𝒂𝒂 𝟒𝟒 𝑫𝑫 𝒙𝒙 𝟒𝟒 𝟎𝟎𝟐𝟐𝟎𝟎	� 𝑫𝑫 𝒙𝒙 𝟒𝟒 𝒘𝒘(𝒙𝒙) ≈	⎝ ⎜ ⎛	�𝟏𝟏 -	𝟏𝟏 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟏𝟏𝟐𝟐 𝟐𝟐	� 𝟐𝟐	⎠ ⎟ ⎞	𝑫𝑫 𝒙𝒙 𝟒𝟒 𝒘𝒘(𝒙𝒙);
			𝜹𝜹 𝟐𝟐 𝒘𝒘(𝒙𝒙) ≈ � 𝟏𝟏 -	𝟏𝟏 𝟏𝟏𝟐𝟐 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐	� 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝒘𝒘(𝒙𝒙);
		𝜹𝜹 𝟎𝟎 𝒘𝒘(𝒙𝒙) ≈ [𝟏𝟏 + � 𝟏𝟏 -	𝟏𝟏 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟏𝟏𝟐𝟐 𝟐𝟐	�	𝟐𝟐 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟒𝟒	]𝒘𝒘(𝒙𝒙)

  𝜶𝜶 = �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � -𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 + 𝜷𝜷 = -�𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 � -𝒌𝒌 * � �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * -𝒌𝒌 * 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 + 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 + 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 -

						�	𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 +	𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐	+ 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � 𝜴𝜴 𝟒𝟒	𝒌𝒌 * 𝟒𝟒𝒏𝒏 𝟐𝟐 � ;	(194)
		+ �	𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 �-𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * -	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � -	𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -	𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 �	(198)
	Using Eq. (190), the dimensionless differential equation can be presented in the following -𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � -𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 �𝒓𝒓 * 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � + 𝒓𝒓 * 𝟐𝟐 �-𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * -𝟏𝟏 𝒓𝒓 * 𝟐𝟐 �� 𝜴𝜴 𝟐𝟐
	form: + � 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐	-	𝒌𝒌 * 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟒𝟒𝟑𝟑𝒏𝒏 𝟒𝟒 +						𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟒𝟒𝒏𝒏 𝟐𝟐 +	𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 + 𝒌𝒌 * �
	�	𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * -	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � -	𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -= 𝟎𝟎	𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � +	𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 -	𝒌𝒌 * 𝟒𝟒𝟑𝟑𝒏𝒏 𝟒𝟒
	or in the compact form						+	𝒌𝒌 * 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 + 𝟏𝟏�	𝒅𝒅 𝟒𝟒 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟒𝟒	(195)
	+ �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -	𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � -𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 + 𝓚𝓚𝜴𝜴 𝟒𝟒 -𝑩𝑩𝜴𝜴 𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 𝒌𝒌 * 𝟒𝟒𝒏𝒏 𝟐𝟐 + 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �	(199)
	�� Ignoring Winkler foundation effect (𝑘𝑘 * = 0), Eq. (195) leads to 𝟏𝟏 �𝟏𝟏-𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝟐𝟐 � 𝑫𝑫 𝒙𝒙 𝟒𝟒 + � 𝝆𝝆𝑬𝑬 𝑬𝑬𝑬𝑬 𝝎𝝎 𝟐𝟐 -𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � � 𝟏𝟏 𝟏𝟏-𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝑫𝑫 𝒙𝒙 𝟐𝟐 + � 𝒌𝒌 𝑬𝑬𝑬𝑬 --𝒌𝒌 * 𝟔𝟔𝒏𝒏 𝟐𝟐 � 𝒅𝒅 𝟐𝟐 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟐𝟐 + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � + 𝒌𝒌 * � 𝒘𝒘 � = 𝟎𝟎 𝓚𝓚 = 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 + 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 + 𝒓𝒓 * 𝟒𝟒 𝝁𝝁 𝒔𝒔 ; 𝟔𝟔𝒏𝒏 𝟐𝟐 𝑩𝑩	𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝑬𝑬𝑬𝑬 � �𝟏𝟏 +
	� 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟏𝟏-𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟏𝟏 𝟐𝟐 𝟏𝟏𝟐𝟐 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 -� 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟒𝟒 � + �-𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � -𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 � 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � + � 𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 + 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -𝝆𝝆 𝟐𝟐 𝑬𝑬𝓚𝓚𝝎𝝎 𝟒𝟒 𝑬𝑬𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 + 𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 � �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � + 𝟏𝟏� 𝒅𝒅 𝟒𝟒 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟒𝟒 𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � �� 𝒘𝒘(𝒙𝒙) = 𝟎𝟎 + �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -= 𝟏𝟏 𝟒𝟒𝒓𝒓 * 𝟐𝟐 𝒏𝒏 𝟐𝟐 � + 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 � 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �� 𝒅𝒅 𝟐𝟐 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟐𝟐 + �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 -+ � 𝒓𝒓 * 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 + 𝒓𝒓 * 𝟐𝟐 � �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * + 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � ;	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 �� 𝒘𝒘 �	(191) (196)
	Multiplication of Eq. (191) by �1 -𝑪𝑪 = 𝒌𝒌 * 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 (𝒓𝒓 * 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 -𝑎𝑎 2 𝐷𝐷 𝑥𝑥 2 12 = 𝟎𝟎 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 � 2 𝟔𝟔𝒏𝒏	leads to the following compact form equation.
		�𝑫𝑫 𝒙𝒙 𝟒𝟒 + �	𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬	+	𝝆𝝆𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚	-	𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬	𝒂𝒂 𝟐𝟐 -	𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	+	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬	� �𝟏𝟏 -	𝟐𝟐 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟏𝟏𝟐𝟐	𝟐𝟐 � 𝑫𝑫 𝒙𝒙	(192)
		+ � � 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝝆𝝆 𝟐𝟐 𝝎𝝎 𝟒𝟒 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏 𝟒𝟒 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 --𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝑬𝑬𝑬𝑬 -𝒌𝒌𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � -+	𝒌𝒌 𝑬𝑬𝑬𝑬 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 � �𝟏𝟏 -𝟏𝟏𝟐𝟐𝒏𝒏 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝟏𝟏� 𝟐𝟐 𝟐𝟐 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟏𝟏𝟐𝟐 � � 𝒘𝒘 (𝒙𝒙) = 𝟎𝟎 𝒅𝒅 𝟒𝟒 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟒𝟒	(197)
	Eq. (192) can be written in the dimensionless form �𝜹𝜹 𝟒𝟒 𝑫𝑫 𝒙𝒙 𝟒𝟒 + 𝜶𝜶 �𝟏𝟏 -𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐 � 𝜹𝜹 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 + 𝜷𝜷 �𝟏𝟏 -𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟔𝟔 + + �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 𝟔𝟔𝒏𝒏 𝟐𝟐 � 𝟏𝟏 𝒓𝒓 * 𝟐𝟐 -𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �� 𝒅𝒅 𝟐𝟐 𝒘𝒘 � 𝒅𝒅𝒙𝒙 � 𝟐𝟐 + �𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 �𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 𝜴𝜴 𝟐𝟐 -𝟒𝟒 𝒂𝒂 𝟒𝟒 𝑫𝑫 𝒙𝒙 𝟏𝟏𝟒𝟒𝟒𝟒 �� 𝒘𝒘(𝒙𝒙) = 𝟎𝟎 𝒓𝒓 * 𝟐𝟐 �� 𝒘𝒘 � 𝟏𝟏 = 𝟎𝟎	(193)

in which 𝛼𝛼 and 𝛽𝛽 are defined as:

If the pseudo-differential operator effect of 𝛿𝛿 0 𝑤𝑤(𝑥𝑥) is neglected, Eq. (196) leads to the one of Duan et al.

[START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF]

. The dimensionless differential equation of Duan et al.

[START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] 

is given by For the simply supported boundary conditions, the solution of the Eq. (

195

) can be considered again as the form of Eq. (

169

). Substitution of the Eq. (169) in Eq. (195) yields:

A, B and C are defined as: 𝟐𝟐 -𝟏𝟏) + 𝒑𝒑 𝟒𝟒 𝒑𝒑 𝟒𝟒 + 𝒓𝒓 * 𝟐𝟐 𝒌𝒌 * 𝝁𝝁 𝒔𝒔 𝒑𝒑 𝟐𝟐 𝒑𝒑 𝟐𝟐 + 𝒌𝒌 * (200)

  -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝒆𝒆 -𝟐𝟐𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 �

	+ 𝒂𝒂 𝟐𝟐 � 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬	-	𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	+	𝝆𝝆𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚	� �𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 -𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � + 𝒂𝒂 𝟒𝟒 � 𝟒𝟒𝑬𝑬𝑬𝑬 𝒌𝒌	-	𝝆𝝆𝓚𝓚𝝎𝝎 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬	� �𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 �
						+ 𝒂𝒂 𝟒𝟒 �-	𝒌𝒌𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	+	𝝆𝝆 𝟐𝟐 𝝎𝝎 𝟒𝟒 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚	�� = 𝟎𝟎

  ∀ 𝑬𝑬, 𝓚𝓚, 𝒌𝒌, 𝑬𝑬, 𝓚𝓚, 𝑲𝑲 𝒔𝒔 , 𝒂𝒂, 𝒌𝒌 𝒘𝒘 :

					𝝆𝝆𝒂𝒂 𝟐𝟐 > 𝟎𝟎,		
		-𝟒𝟒 �(𝑲𝑲 𝒔𝒔 𝓚𝓚 + 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	� +	𝓚𝓚𝒂𝒂 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚 𝟒𝟒𝑬𝑬	𝒄𝒄𝒄𝒄𝒔𝒔 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	� +	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟒𝟒𝓚𝓚	� < 𝟎𝟎,	(217)
	𝟏𝟏𝟔𝟔	𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝆𝝆𝒂𝒂 𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏 𝟒𝟒 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	� + 𝒌𝒌 � 𝝆𝝆𝓚𝓚 𝟒𝟒𝑬𝑬	𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	� +	𝒂𝒂 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝆𝝆𝑬𝑬	𝒄𝒄𝒄𝒄𝒔𝒔 𝟐𝟐 � 𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	�� > 𝟎𝟎

  𝟐𝟐 + 𝒆𝒆 -𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 � +

							𝓚𝓚𝒂𝒂 𝟐𝟐 𝟒𝟒	�𝒆𝒆 𝒂𝒂𝒌𝒌 𝒘𝒘 𝒋𝒋 + 𝝆𝝆𝑬𝑬𝒂𝒂 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚	𝝎𝝎 𝟐𝟐 � = 𝟎𝟎	(248)
	Which can be simplified as						
	𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 �	𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � +	𝓚𝓚𝒂𝒂 𝟐𝟐 𝑬𝑬	𝒄𝒄𝒄𝒄𝒔𝒔 𝟐𝟐 �	𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐 � -	𝝆𝝆𝒂𝒂 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝓚𝓚	𝝎𝝎 𝟐𝟐 = 𝟎𝟎	(249)
	Using Eq. (214) for the non-dimensional frequency with 𝑐𝑐 𝒔𝒔𝒄𝒄𝒆𝒆𝒂𝒂𝒓𝒓 , one could be found as
	follows							
	𝜴𝜴 𝒔𝒔	𝟐𝟐 = 𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝟐𝟐 �	𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	� +	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔 𝟐𝟐 �	𝒂𝒂𝒌𝒌 𝒘𝒘 𝟐𝟐	�	(250)

  While for the fourth-order continualization, neglecting the terms of 𝒂𝒂 𝟔𝟔 , Eq. (257) could be simplified to the following quartic equation:

																							𝜴𝜴 𝒃𝒃	𝟒𝟒
										-�� 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟐𝟐 + 𝟏𝟏	𝟏𝟏 𝒓𝒓 * 𝟐𝟐 � �-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎	+	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎	-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐	+ (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 �
													+ � 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �-𝟏𝟏	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎	+	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑	-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒	+ 𝟏𝟏� + 𝒌𝒌 * � 𝜴𝜴 𝒃𝒃	𝟐𝟐
													+ �� 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �-𝟏𝟏	𝟏𝟏𝟎𝟎(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟏𝟏𝟎𝟎 𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎	+	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟑𝟑𝟎𝟎	-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟔𝟔	+ (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 �	(258)
														+ � 𝒓𝒓 * 𝟐𝟐 � �-𝒌𝒌 *	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟑𝟑 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎	+	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟑𝟑𝟔𝟔𝟎𝟎	-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟏𝟏𝟐𝟐	+ (𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 �
													+ � 𝝁𝝁 𝒔𝒔 𝒓𝒓 * 𝟒𝟒 � �-𝒌𝒌 *	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟔𝟔 𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎	+	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟒𝟒 𝟒𝟒𝟑𝟑	-	(𝒂𝒂𝒌𝒌 𝒘𝒘 ) 𝟐𝟐 𝟒𝟒	+ 𝟏𝟏�� = 𝟎𝟎
																							� 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚 𝝆𝝆 𝟐𝟐	� 𝝎𝝎 𝟒𝟒
	-��	𝝆𝝆 𝑬𝑬	+	𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚	� �� 𝟑𝟑𝟔𝟔𝟎𝟎 𝒂𝒂 𝟒𝟒	� 𝒌𝒌 𝒘𝒘	𝟔𝟔 -� 𝟏𝟏𝟐𝟐 𝒂𝒂 𝟐𝟐	� 𝒌𝒌 𝒘𝒘	𝟒𝟒 + 𝒌𝒌 𝒘𝒘	𝟐𝟐 � + �	𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 � ��	𝒂𝒂 𝟒𝟒 𝟒𝟒𝟑𝟑	� 𝒌𝒌 𝒘𝒘	𝟒𝟒 -� 𝒂𝒂 𝟐𝟐 𝟒𝟒	� 𝒌𝒌 𝒘𝒘	𝟐𝟐 + 𝟏𝟏� + �	𝒌𝒌𝝆𝝆 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	�� 𝝎𝝎 𝟐𝟐
	+ ��	𝒂𝒂 𝟒𝟒 𝟑𝟑𝟎𝟎	� 𝒌𝒌 𝒘𝒘	𝟑𝟑 + �	𝒌𝒌𝒂𝒂 𝟒𝟒 𝟑𝟑𝟔𝟔𝟎𝟎𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	-	𝒂𝒂 𝟐𝟐 𝟔𝟔	� 𝒌𝒌 𝒘𝒘	𝟔𝟔 + �𝟏𝟏 -	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	+	𝒌𝒌𝒂𝒂 𝟒𝟒 𝟒𝟒𝟑𝟑𝑬𝑬𝑬𝑬	� 𝒌𝒌 𝒘𝒘	𝟒𝟒 + �	𝒌𝒌 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	-	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬	� 𝒌𝒌 𝒘𝒘	𝟐𝟐 +	𝒌𝒌 𝑬𝑬𝑬𝑬	� = 𝟎𝟎	(259)
																							�	𝝆𝝆 𝟐𝟐 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚	� 𝝎𝝎 𝟒𝟒
																							-�-� 𝑬𝑬 𝝆𝝆	+	𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚	� � 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 𝒂𝒂 𝟔𝟔	� 𝒌𝒌 𝒘𝒘	𝟑𝟑
	+ �� 𝑬𝑬 𝝆𝝆	+	𝝆𝝆 𝑲𝑲 𝒔𝒔 𝓚𝓚	� -�	𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬 � � 𝒂𝒂 𝟐𝟐 𝟒𝟒	�� �� 𝟑𝟑𝟔𝟔𝟎𝟎 𝒂𝒂 𝟒𝟒	� 𝒌𝒌 𝒘𝒘	𝟔𝟔 -� 𝟏𝟏𝟐𝟐 𝒂𝒂 𝟐𝟐	� 𝒌𝒌 𝒘𝒘	𝟒𝟒 + 𝒌𝒌 𝒘𝒘	𝟐𝟐 � + � 𝝆𝝆𝓚𝓚 𝑬𝑬𝑬𝑬	+	𝒌𝒌𝝆𝝆 𝑬𝑬𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 �� 𝝎𝝎 𝟐𝟐
	+ �-� 𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 𝟏𝟏𝟎𝟎𝒂𝒂 𝟔𝟔	� 𝒌𝒌 𝒘𝒘	𝟏𝟏𝟎𝟎 + � 𝟑𝟑𝟎𝟎 𝒂𝒂 𝟒𝟒	-	𝒌𝒌𝒂𝒂 𝟔𝟔 𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 � 𝒌𝒌 𝒘𝒘	𝟑𝟑 + �-	𝒌𝒌𝒂𝒂 𝟔𝟔 𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎𝑬𝑬𝑬𝑬	+	𝒌𝒌𝒂𝒂 𝟒𝟒 𝟑𝟑𝟔𝟔𝟎𝟎𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	-	𝒂𝒂 𝟐𝟐 𝟔𝟔	� 𝒌𝒌 𝒘𝒘	𝟔𝟔	(257)
										+ �𝟏𝟏 -	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚	+	𝒌𝒌𝒂𝒂 𝟒𝟒 𝟒𝟒𝟑𝟑𝑬𝑬𝑬𝑬 � 𝒌𝒌 𝒘𝒘	𝟒𝟒 + � 𝑲𝑲 𝒔𝒔 𝓚𝓚𝓚𝓚 𝒌𝒌	-	𝒌𝒌𝒂𝒂 𝟐𝟐 𝟒𝟒𝑬𝑬𝑬𝑬	� 𝒌𝒌 𝒘𝒘	𝟐𝟐 +	𝒌𝒌 𝑬𝑬𝑬𝑬	� = 𝟎𝟎
	which could be rewritten through the dimensionless parameters of Eq. (214) as follows:

  �𝒌𝒌 𝒏𝒏 �𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜹𝜹 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 + 𝒌𝒌 𝒏𝒏 �𝑽𝑽 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 � 𝑗𝑗 -𝜹𝜹 𝑖𝑖,𝑗𝑗 � + �𝑈𝑈 𝑖𝑖,𝑗𝑗+1 -𝜹𝜹 𝑖𝑖,𝑗𝑗 � + �𝑽𝑽 𝑖𝑖+1,𝑗𝑗 -𝑉𝑉 𝑖𝑖,𝑗𝑗 � + �𝑽𝑽 𝑖𝑖,𝑗𝑗+1 -𝑉𝑉 𝑖𝑖,𝑗𝑗 �� 𝑗𝑗 -𝑈𝑈 𝑖𝑖-1,𝑗𝑗 � -�𝑈𝑈 𝑖𝑖,𝑗𝑗+1 -𝜹𝜹 𝑖𝑖,𝑗𝑗 � -�𝑉𝑉 𝑖𝑖,𝑗𝑗 -𝑽𝑽 𝑖𝑖-1,𝑗𝑗 � + �𝑽𝑽 𝑖𝑖,𝑗𝑗+1 -𝑉𝑉 𝑖𝑖,𝑗𝑗 �� 𝑘𝑘 𝑛𝑛 and 𝑘𝑘 𝑛𝑛𝑏𝑏 are respectively the normal and diagonal rigidity characterize force interactions of the granules of extension/compression and the Poisson's ratio effect which can be expressed with respect to the normal stiffness 𝐸𝐸𝐴𝐴 of the equivalent material. These two parameters would be defined as 𝑘𝑘 𝑛𝑛 =

					𝜹𝜹 𝑵𝑵	
		=	𝟏𝟏 𝟐𝟐	𝒊𝒊=𝟎𝟎 � � 𝟐𝟐 𝒋𝒋=𝟎𝟎 𝒏𝒏-𝟏𝟏 𝒎𝒎-𝟏𝟏	(292)
	+ 𝒌𝒌 𝒏𝒏𝒅𝒅 ��𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝜹𝜹 𝒊𝒊,𝒋𝒋 � + �𝑽𝑽 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 ��	𝟐𝟐	+ 𝒌𝒌 𝒏𝒏𝒅𝒅 ��𝜹𝜹 𝒊𝒊,𝒋𝒋 -𝜹𝜹 𝒊𝒊-𝟏𝟏,𝒋𝒋+𝟏𝟏 � + �𝑽𝑽 𝒊𝒊-𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 ��	𝟐𝟐	�
	One could define for the relative diagonal displacement as follows:
	𝟏𝟏 √𝟐𝟐	��𝑈𝑈 𝑖𝑖+1,𝑗𝑗+1 -𝜹𝜹 𝑖𝑖,𝑗𝑗 � + �𝑉𝑉 𝑖𝑖+1,𝑗𝑗+1 -𝑉𝑉 𝑖𝑖,𝑗𝑗 ��			
	= ��𝑈𝑈 𝑖𝑖+1,= 𝟏𝟏 √𝟐𝟐 𝟏𝟏 √𝟐𝟐 �∆𝑈𝑈 𝑖𝑖 + ∆𝑈𝑈 𝒋𝒋 + ∆𝑉𝑉 𝑖𝑖 + ∆𝑉𝑉 𝒋𝒋 �;			
	𝟏𝟏 √𝟐𝟐	��𝜹𝜹 𝑖𝑖,𝑗𝑗 -𝑈𝑈 𝑖𝑖-1,𝑗𝑗+1 � + �𝑉𝑉 𝑖𝑖-1,𝑗𝑗+1 -𝑉𝑉 𝑖𝑖,𝑗𝑗 ��				(293)
	= ��𝜹𝜹 𝑖𝑖,= 𝟏𝟏 √𝟐𝟐 𝟏𝟏 √𝟐𝟐 �∆𝑈𝑈 𝑖𝑖 -∆𝑈𝑈 𝒋𝒋 -∆𝑉𝑉 𝑖𝑖 + ∆𝑉𝑉 𝒋𝒋 �			
						𝐸𝐸𝒦𝒦 𝑎𝑎	=	𝑛𝑛𝐸𝐸𝒦𝒦 𝐿𝐿 1	=	𝑚𝑚𝐸𝐸𝒦𝒦 𝐿𝐿 2	and 𝑘𝑘 𝑛𝑛𝑏𝑏 =	𝐸𝐸𝒦𝒦 √2𝑎𝑎

where

  𝑖𝑖,𝑗𝑗+1 -𝑈𝑈 𝑖𝑖,𝑗𝑗 + 𝑎𝑎 𝛩𝛩 𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗 2 �

	𝑚𝑚-1 𝑗𝑗=0	𝑛𝑛-1 𝑖𝑖=0	2	+ 𝑘𝑘 𝑡𝑡 �𝑉𝑉 𝑖𝑖+1,𝑗𝑗 -𝑉𝑉 𝑖𝑖,𝑗𝑗 -𝑎𝑎	𝛩𝛩 𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖,𝑗𝑗 2	2 �
	+ 𝑘𝑘 𝑡𝑡𝑏𝑏 �𝑈𝑈 𝑖𝑖+1,𝑗𝑗+1 -𝑈𝑈 𝑖𝑖,𝑗𝑗 -𝑉𝑉 𝑖𝑖+1,𝑗𝑗+1 + 𝑉𝑉 𝑖𝑖,𝑗𝑗 + 𝑎𝑎	2 𝛩𝛩 𝑖𝑖+1,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗	� 2	
	+ 𝑘𝑘 𝑡𝑡𝑏𝑏 �𝑈𝑈 𝑖𝑖,𝑗𝑗 -𝑈𝑈 𝑖𝑖-1,𝑗𝑗+1 + 𝑉𝑉 𝑖𝑖,𝑗𝑗 -𝑉𝑉 𝑖𝑖-1,𝑗𝑗+1 + 𝑎𝑎	2 𝛩𝛩 𝑖𝑖-1,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗	� 2	�	(294)

  𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜣𝜣 𝒊𝒊,𝒋𝒋 �

	𝒎𝒎-𝟏𝟏	𝒏𝒏-𝟏𝟏	
			𝟐𝟐
	𝒋𝒋=𝟎𝟎	𝒊𝒊=𝟎𝟎		(295)
	+ 𝒌𝒌 𝒄𝒄 �𝜣𝜣 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 +𝒌𝒌 𝒄𝒄𝒅𝒅 �𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 �	𝟐𝟐 +𝒌𝒌 𝒄𝒄𝒅𝒅 �𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋-𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 �	𝟐𝟐 �

  𝒌𝒌 𝒏𝒏𝒅𝒅 ��𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜹𝜹 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 + �𝜹𝜹 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝜹𝜹 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 + �𝑽𝑽 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝑽𝑽 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 + �𝑽𝑽 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 � 𝟐𝟐�𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜹𝜹 𝒊𝒊,𝒋𝒋 ��𝑽𝑽 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 � + 𝟐𝟐�𝜹𝜹 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝜹𝜹 𝒊𝒊,𝒋𝒋 ��𝑽𝑽 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝑽𝑽 𝒊𝒊,𝒋𝒋 ��� 𝒌𝒌 𝒅𝒅𝒅𝒅 �𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝜹𝜹 𝒊𝒊,𝒋𝒋 -𝑽𝑽 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝑽𝑽 𝒊𝒊,𝒋𝒋 + 𝒂𝒂 𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝜣𝜣 𝒊𝒊,𝒋𝒋 𝟐𝟐 � 𝒌𝒌 𝒅𝒅𝒅𝒅 �𝜹𝜹 𝒊𝒊,𝒋𝒋 -𝜹𝜹 𝒊𝒊-𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝑽𝑽 𝒊𝒊,𝒋𝒋 -𝑽𝑽 𝒊𝒊-𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝒂𝒂 𝜣𝜣 𝒊𝒊-𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝜣𝜣 𝒊𝒊,𝒋𝒋 𝟐𝟐 � 𝒌𝒌 𝒄𝒄 �𝜣𝜣 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 +𝒌𝒌 𝒄𝒄𝒅𝒅 �𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 +𝒌𝒌 𝒄𝒄𝒅𝒅 �𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋-𝟏𝟏 -𝜣𝜣 𝒊𝒊,𝒋𝒋 �

									𝜹𝜹
					=	𝟏𝟏 𝟐𝟐	𝒏𝒏 � � �𝒎𝒎𝜹𝜹 ̇𝒊𝒊,𝒋𝒋 𝒎𝒎 𝒊𝒊=𝟏𝟏 𝒋𝒋=𝟏𝟏	𝟐𝟐 + 𝑬𝑬 𝒎𝒎 𝜽𝜽 ̇𝒊𝒊,𝒋𝒋 𝟐𝟐 + 𝒎𝒎𝑽𝑽 ̇𝒊𝒊,𝒋𝒋	𝟐𝟐 �
			-�	𝟏𝟏 𝟐𝟐	𝒏𝒏-𝟏𝟏 � � �𝒌𝒌 𝒏𝒏 �𝜹𝜹 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜹𝜹 𝒊𝒊,𝒋𝒋 � 𝒎𝒎-𝟏𝟏 𝟐𝟐 + 𝒌𝒌 𝒏𝒏 �𝑽𝑽 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝑽𝑽 𝒊𝒊,𝒋𝒋 � 𝟐𝟐 𝒊𝒊=𝟎𝟎 𝒋𝒋=𝟎𝟎
			+ + 𝟏𝟏 𝟐𝟐 � � �𝒌𝒌 𝒅𝒅 �𝜹𝜹 𝒊𝒊,𝒋𝒋+𝟏𝟏 -𝜹𝜹 𝒊𝒊,𝒋𝒋 + 𝒂𝒂 𝒏𝒏 𝒎𝒎 𝒊𝒊=𝟏𝟏 𝒋𝒋=𝟏𝟏	𝜣𝜣 𝒊𝒊,𝒋𝒋+𝟏𝟏 + 𝜣𝜣 𝒊𝒊,𝒋𝒋 𝟐𝟐	�	𝟐𝟐	+ 𝒌𝒌 𝒅𝒅 �𝑽𝑽 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝑽𝑽 𝒊𝒊,𝒋𝒋 -𝒂𝒂	𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋 + 𝜣𝜣 𝒊𝒊,𝒋𝒋 𝟐𝟐	�	𝟐𝟐
			+ 𝟐𝟐
									�
	+	𝟏𝟏 𝟐𝟐	𝒏𝒏-𝟏𝟏 𝒊𝒊=𝟎𝟎 � � �𝒌𝒌 𝒄𝒄 �𝜣𝜣 𝒊𝒊+𝟏𝟏,𝒋𝒋 -𝜣𝜣 𝒊𝒊,𝒋𝒋 � 𝒎𝒎-𝟏𝟏 𝒋𝒋=𝟎𝟎				𝟐𝟐	� �

𝟐𝟐

+ 𝟐𝟐 + 𝟐𝟐 +

  1,𝑗𝑗 -2𝑈𝑈 𝑖𝑖,𝑗𝑗 � + (k 𝑡𝑡 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑈𝑈 𝑖𝑖,𝑗𝑗+1 + 𝑈𝑈 𝑖𝑖,𝑗𝑗-1 -2𝑈𝑈 𝑖𝑖,𝑗𝑗 � 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )�𝛩𝛩 𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖-1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗-1 -4𝛩𝛩 𝑖𝑖,𝑗𝑗 � + (k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑉𝑉 𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉 𝑖𝑖-1,𝑗𝑗 + 𝑉𝑉 𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉 𝑖𝑖,𝑗𝑗-1 -4𝑉𝑉 𝑖𝑖,𝑗𝑗 � -𝜇𝜇𝑈𝑈 ̈𝑖𝑖,𝑗𝑗 = 0 𝑛𝑛 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑉𝑉 𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉 𝑖𝑖,𝑗𝑗-1 -2𝑉𝑉 𝑖𝑖,𝑗𝑗 � + (k 𝑡𝑡 + k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑉𝑉 𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉 𝑖𝑖-1,𝑗𝑗 -2𝑉𝑉 𝑖𝑖,𝑗𝑗 � 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )�𝛩𝛩 𝑖𝑖+1,𝑗𝑗 -𝛩𝛩 𝑖𝑖-1,𝑗𝑗 � + (k 𝑛𝑛𝑏𝑏 + k 𝑡𝑡𝑏𝑏 )�𝑈𝑈 𝑖𝑖+1,𝑗𝑗 + 𝑈𝑈 𝑖𝑖-1,𝑗𝑗 + 𝑈𝑈 𝑖𝑖,𝑗𝑗+1 + 𝑈𝑈 𝑖𝑖,𝑗𝑗-1 -4𝑈𝑈 𝑖𝑖,𝑗𝑗 � 𝑐𝑐 + 2k 𝑐𝑐𝑏𝑏 )��𝛩𝛩 𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖-1,𝑗𝑗 -2𝛩𝛩 𝑖𝑖,𝑗𝑗 � + �𝛩𝛩 𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗-1 -2𝛩𝛩 𝑖𝑖,𝑗𝑗 ��+ 2k 𝑐𝑐𝑏𝑏 �𝛩𝛩 𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖-1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗-1 -4𝛩𝛩 𝑖𝑖,𝑗𝑗 � 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )��𝛩𝛩 𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩 𝑖𝑖-1,𝑗𝑗 + 2𝛩𝛩 𝑖𝑖,𝑗𝑗 � + �𝛩𝛩 𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩 𝑖𝑖,𝑗𝑗-1 + 2𝛩𝛩 𝑖𝑖,𝑗𝑗 �� -𝐼𝐼 𝑚𝑚 𝛩𝛩 ̈𝑖𝑖,𝑗𝑗 = 0

				(300)
	-	𝑎𝑎 2	(k -𝜇𝜇𝑉𝑉 ̈𝑖𝑖,𝑗𝑗 = 0
				-	𝑎𝑎 2	(k 𝑡𝑡 + 2k 𝑡𝑡𝑏𝑏 )��𝑈𝑈 𝑖𝑖,𝑗𝑗+1 -𝑈𝑈 𝑖𝑖,𝑗𝑗-1 � -�𝑉𝑉 𝑖𝑖+1,𝑗𝑗 -𝑉𝑉 𝑖𝑖-1,𝑗𝑗 ��
		-	𝑎𝑎 2 4	(k
				+	𝑎𝑎 2	(k (299)

(k (k

  𝜒𝜒 𝑖𝑖,𝑗𝑗+1 + 𝜒𝜒 𝑖𝑖-1,𝑗𝑗 + 𝜒𝜒 𝑖𝑖,𝑗𝑗-1 -4𝜒𝜒 𝑖𝑖,𝑗𝑗

			𝑖𝑖,𝑗𝑗 + 𝜒𝜒 𝑖𝑖-1,𝑗𝑗 4	, 𝛿𝛿 1𝑗𝑗 𝜒𝜒 =	𝜒𝜒 𝑖𝑖+1,𝑗𝑗 -𝜒𝜒 𝑖𝑖-1,𝑗𝑗 2𝑎𝑎	, 𝛿𝛿 2𝑗𝑗 𝜒𝜒 =	𝜒𝜒 𝑖𝑖+1,𝑗𝑗 -2𝜒𝜒 𝑖𝑖,𝑗𝑗 + 𝜒𝜒 𝑖𝑖-1,𝑗𝑗 𝑎𝑎 2
	𝛿𝛿 𝑖𝑖0 𝜒𝜒 =	𝜒𝜒 𝑖𝑖,𝑗𝑗+1 + 2𝜒𝜒 𝑖𝑖,𝑗𝑗 + 𝜒𝜒 𝑖𝑖,𝑗𝑗-1 4	, 𝛿𝛿 𝑖𝑖1 𝜒𝜒 =	𝜒𝜒 𝑖𝑖,𝑗𝑗+1 -𝜒𝜒 𝑖𝑖,𝑗𝑗-1 2𝑎𝑎	, 𝛿𝛿 𝑖𝑖2 𝜒𝜒 =	𝜒𝜒 𝑖𝑖,𝑗𝑗+1 -2𝜒𝜒 𝑖𝑖,𝑗𝑗 + 𝜒𝜒 𝑖𝑖,𝑗𝑗-1 𝑎𝑎 2
	𝛿𝛿 11 𝜒𝜒 =	𝜒𝜒 𝑖𝑖+1,𝑗𝑗+1 + 𝜒𝜒 𝑖𝑖-1,𝑗𝑗-1 -𝜒𝜒 𝑖𝑖-1,𝑗𝑗+1 -𝜒𝜒 𝑖𝑖+1,𝑗𝑗-1 𝑎𝑎 2	=	𝜒𝜒 𝑖𝑖+1,𝑗𝑗 +

  𝑛𝑛 )�𝛿𝛿 2𝑗𝑗 𝑈𝑈� + (k 𝑛𝑛𝑏𝑏 )�𝛿𝛿 2𝑗𝑗 𝑈𝑈 + 𝛿𝛿 𝑖𝑖2 𝑈𝑈 + 2𝛿𝛿 11 𝑉𝑉� + (k 𝑡𝑡 )(𝛿𝛿 𝑖𝑖2 𝑈𝑈) + (k 𝑡𝑡𝑏𝑏 )�𝛿𝛿 2𝑗𝑗 𝑈𝑈 + 𝛿𝛿 𝑖𝑖2 𝑈𝑈 + 2𝛿𝛿 11 𝑉𝑉� -𝜌𝜌𝐴𝐴𝑈𝑈 ̈𝑖𝑖,𝑗𝑗 = 0 (k 𝑛𝑛 )(𝛿𝛿 𝑖𝑖2 𝑉𝑉) + (k 𝑛𝑛𝑏𝑏 )�𝛿𝛿 𝑖𝑖2 𝑉𝑉 + 𝛿𝛿 2𝑗𝑗 𝑉𝑉 + 2𝛿𝛿 11 𝑈𝑈� + (k 𝑡𝑡 )�𝛿𝛿 2𝑗𝑗 𝑉𝑉�+ (k 𝑡𝑡𝑏𝑏 )�𝛿𝛿 𝑖𝑖2 𝑉𝑉 + 𝛿𝛿 2𝑗𝑗 𝑉𝑉 + 2𝛿𝛿 11 𝑈𝑈� -𝜌𝜌𝐴𝐴𝑉𝑉 ̈𝑖𝑖,𝑗𝑗 = 0 𝑈𝑈 𝑖𝑖,𝑗𝑗 = 𝑢𝑢 𝑖𝑖,𝑗𝑗 𝑑𝑑 𝑖𝑖𝜔𝜔𝑡𝑡 , 𝑉𝑉 𝑖𝑖,𝑗𝑗 = 𝑣𝑣 𝑖𝑖,𝑗𝑗 𝑑𝑑 𝑖𝑖𝜔𝜔𝑡𝑡 and 𝛩𝛩 𝑖𝑖,𝑗𝑗 = 𝜃𝜃 𝑖𝑖,𝑗𝑗 𝑑𝑑 𝑖𝑖𝜔𝜔𝑡𝑡 , the Eq. (303) can be written in the matrix form as follows: 𝑟𝑟 �𝛿𝛿 2𝑗𝑗 + 𝛿𝛿 𝑖𝑖2 � -4k 𝑐𝑐𝑏𝑏 𝛿𝛿 11 + k 𝑠𝑠 �𝛿𝛿 0𝑗𝑗 + 𝛿𝛿 𝑖𝑖0 � -𝜌𝜌𝐼𝐼𝜔𝜔2 

					(304)
			Assuming a harmonic motion leads to the consideration of displacement and
	rotation in a general form as � 𝑘𝑘 1 𝛿𝛿 2𝑗𝑗 + 𝑘𝑘 2 𝛿𝛿 𝑖𝑖2 + 𝜌𝜌𝐴𝐴𝜔𝜔 2 𝑘𝑘 𝑏𝑏 𝛿𝛿 11 𝑘𝑘 𝑏𝑏 𝛿𝛿 11 𝑘𝑘 1 𝛿𝛿 𝑖𝑖2 + 𝑘𝑘 2 𝛿𝛿 2𝑗𝑗 + 𝜌𝜌𝐴𝐴𝜔𝜔 2 k 𝑠𝑠 𝛿𝛿 𝑖𝑖1 -k 𝑠𝑠 𝛿𝛿 1𝑗𝑗	k 𝑠𝑠 𝛿𝛿 𝑖𝑖1 -k 𝑠𝑠 𝛿𝛿 1𝑗𝑗 -k � � 𝑢𝑢 𝑣𝑣 𝜃𝜃	�	(305)
		0		
	= �	0	�	
		0		

(k

  𝝏𝝏 𝒅𝒅 𝜹𝜹) 𝟐𝟐 + 𝑬𝑬 𝒎𝒎 (𝝏𝝏 𝒅𝒅 𝜣𝜣) 𝟐𝟐 + 𝒎𝒎(𝝏𝝏 𝒅𝒅 𝑽𝑽) 𝟐𝟐 � 𝒌𝒌 𝒏𝒏𝒅𝒅 + 𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )�(𝝏𝝏 𝒙𝒙 𝜹𝜹) 𝟐𝟐 + (𝝏𝝏 𝒓𝒓 𝑽𝑽) 𝟐𝟐 � + (𝒌𝒌 𝒏𝒏𝒅𝒅 + 𝒌𝒌 𝒅𝒅 + 𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )�(𝝏𝝏 𝒙𝒙 𝑽𝑽) 𝟐𝟐 + (𝝏𝝏 𝒓𝒓 𝜹𝜹) 𝟐𝟐 � 𝒌𝒌 𝒄𝒄 + 𝟐𝟐𝒌𝒌 𝒄𝒄𝒅𝒅 � �(𝝏𝝏 𝒙𝒙 𝜣𝜣) 𝟐𝟐 + (𝝏𝝏 𝒓𝒓 𝜣𝜣) 𝟐𝟐 � + (𝟐𝟐𝒌𝒌 𝒏𝒏𝒅𝒅 -𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )�𝝏𝝏 𝒙𝒙 𝜹𝜹𝝏𝝏 𝒓𝒓 𝑽𝑽 + 𝝏𝝏 𝒙𝒙 𝑽𝑽𝝏𝝏 𝒓𝒓 𝜹𝜹� + (𝟐𝟐𝒌𝒌 𝒅𝒅 + 𝟒𝟒𝒌𝒌 𝒅𝒅𝒅𝒅 )�𝝏𝝏 𝒓𝒓 𝜹𝜹 -𝝏𝝏 𝒙𝒙 𝑽𝑽�𝜣𝜣 + (𝒌𝒌 𝒅𝒅 + 𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )�𝝏𝝏 𝒓𝒓 𝜹𝜹𝝏𝝏 𝒓𝒓 𝜣𝜣 -𝝏𝝏 𝒙𝒙 𝑽𝑽𝝏𝝏 𝒙𝒙 𝜣𝜣� + (𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )�𝝏𝝏 𝒙𝒙 𝜹𝜹𝝏𝝏 𝒙𝒙 𝜣𝜣 -𝝏𝝏 𝒓𝒓 𝑽𝑽𝝏𝝏 𝒓𝒓 𝜣𝜣� + (𝟐𝟐𝒌𝒌 𝒅𝒅 + 𝟒𝟒𝒌𝒌 𝒅𝒅𝒅𝒅 )�𝝏𝝏 𝒓𝒓 𝜣𝜣�𝜣𝜣 + (𝟐𝟐𝒌𝒌 𝒅𝒅 )(𝝏𝝏 𝒙𝒙 𝜣𝜣)𝜣𝜣 + (𝟐𝟐𝒌𝒌 𝒅𝒅 + 𝟐𝟐𝒌𝒌 𝒅𝒅𝒅𝒅 )𝜣𝜣 𝟐𝟐 �

			𝜹𝜹			
		= �𝒎𝒎(-𝟏𝟏 𝟐𝟐 𝟏𝟏 𝟐𝟐 �(𝒌𝒌 𝒏𝒏 + + � 𝒌𝒌 𝒅𝒅 𝟒𝟒 + 𝒌𝒌 𝒅𝒅𝒅𝒅 𝟐𝟐 + (318)
	Besides, the governing equations of the two-dimensional continuum for in-plane
	deformation could be obtained through the continualization of Eq. (305) as follows
	�	𝑘𝑘 1 𝜕𝜕 𝑥𝑥𝑥𝑥 + 𝑘𝑘 2 𝜕𝜕 𝑟𝑟𝑟𝑟 + 𝜌𝜌𝐴𝐴𝜔𝜔 2 𝑘𝑘 𝑏𝑏 𝜕𝜕 𝑥𝑥𝑟𝑟	𝑘𝑘 𝑏𝑏 𝜕𝜕 𝑥𝑥𝑟𝑟 𝑘𝑘 1 𝜕𝜕 𝑟𝑟𝑟𝑟 + 𝑘𝑘 2 𝜕𝜕 𝑥𝑥𝑥𝑥 + 𝜌𝜌𝐴𝐴𝜔𝜔 2	𝑘𝑘 𝑠𝑠 𝜕𝜕 𝑟𝑟 -𝑘𝑘 𝑠𝑠 𝜕𝜕 𝑥𝑥	𝑢𝑢 � � 𝑣𝑣	�
		𝑘𝑘 𝑠𝑠 𝜕𝜕 𝑟𝑟	-𝑘𝑘 𝑠𝑠 𝜕𝜕 𝑥𝑥	-k 𝑟𝑟 �𝜕𝜕 𝑥𝑥𝑥𝑥 + 𝜕𝜕 𝑟𝑟𝑟𝑟 � -4k 𝑐𝑐𝑏𝑏 𝜕𝜕 𝑥𝑥𝑟𝑟 + 2𝑘𝑘 𝑠𝑠 -𝜌𝜌𝐼𝐼𝜔𝜔 2	𝜃𝜃	
			0			
			= � 0 �		
			0			

  Denoting that 𝜇𝜇, 𝜆𝜆, 𝜅𝜅, 𝛾𝛾, 𝛼𝛼 and 𝛽𝛽 are six material parameters from which 𝜇𝜇 (shear modulus) and 𝜆𝜆 are the classical Lame coefficients. 𝜅𝜅 is Cosserat couple modulus 𝛾𝛾, 𝛼𝛼 and 𝛽𝛽 are Cosserat twist coefficients, which are four new elastic constants referred to as the micropolar (Cosserat elastic constants). 𝜅𝜅)𝜀𝜀 𝑖𝑖𝑗𝑗 + (𝜇𝜇 -𝜅𝜅)𝜀𝜀 𝑗𝑗𝑖𝑖 + 𝜆𝜆𝜀𝜀 𝑊𝑊𝑊𝑊 𝛿𝛿 𝑖𝑖𝑗𝑗 ∁ 𝑖𝑖𝑗𝑗 = (𝛾𝛾 + 𝛽𝛽)𝜏𝜏 𝑖𝑖𝑗𝑗 + (𝛾𝛾 -𝛽𝛽)𝜏𝜏 𝑗𝑗𝑖𝑖 + 𝛼𝛼𝜏𝜏 𝑊𝑊𝑊𝑊 𝛿𝛿 𝑖𝑖𝑗𝑗(329) where 𝛿𝛿 𝑖𝑖𝑗𝑗 is the Kronecker delta tensor (dyadic). Assuming a simple case by uniform tensile test along 𝑥𝑥 11 , leads to the classical strain Poisson's ratio (𝜗𝜗) and the classical tensile

	𝜇𝜇𝜀𝜀 𝑖𝑖𝑗𝑗 𝑠𝑠 𝜀𝜀 𝑖𝑖𝑗𝑗 𝑠𝑠 + 𝜅𝜅𝜀𝜀 𝑖𝑖𝑗𝑗 𝑎𝑎 𝜀𝜀 𝑖𝑖𝑗𝑗 𝑎𝑎 + The internal loads in a micropolar continuum are definable in terms of a classical force 𝜆𝜆 2 𝜀𝜀 𝑊𝑊𝑊𝑊 𝜀𝜀 𝑛𝑛𝑛𝑛 + 𝛾𝛾𝜏𝜏 𝑖𝑖𝑗𝑗 𝑠𝑠 𝜏𝜏 𝑖𝑖𝑗𝑗 𝑠𝑠 + 𝛽𝛽𝜏𝜏 𝑖𝑖𝑗𝑗 𝑎𝑎 𝜏𝜏 𝑖𝑖𝑗𝑗 𝑎𝑎 + 𝛼𝛼 2 𝜏𝜏 𝑊𝑊𝑊𝑊 𝜏𝜏 𝑛𝑛𝑛𝑛 (327) stress tensor (𝜎𝜎) and a micropolar couple stress tensor (∁) which should satisfy the balance of linear and angular momentum as 𝜎𝜎 𝑗𝑗𝑖𝑖,𝑗𝑗 + 𝑓𝑓 𝑖𝑖 𝑣𝑣 = 𝜌𝜌𝐴𝐴𝑈𝑈 𝚤𝚤 ̈; ∁ 𝑗𝑗𝑖𝑖,𝑗𝑗 + 𝜖𝜖 𝑖𝑖𝑗𝑗𝑊𝑊 𝜎𝜎 𝑗𝑗𝑊𝑊 + 𝑙𝑙 𝑖𝑖 𝑣𝑣 = 𝜌𝜌𝐼𝐼𝜃𝜃 𝚤𝚤 ̈ (328) Denoting that 𝑓𝑓 𝑖𝑖 𝑣𝑣 and 𝑙𝑙 𝑖𝑖 𝑣𝑣 are respectively the body force and body moment. The constitutive relations for a homogeneous, isotropic, and centrally symmetric elastic body is considered by 𝐸𝐸 = 𝜎𝜎 11 𝜀𝜀 11 = 𝜇𝜇(2𝜇𝜇 + 3𝜆𝜆) 𝜇𝜇 + 𝜆𝜆 𝜎𝜎 𝑖𝑖𝑗𝑗 = (𝜇𝜇 + or Young's modulus (𝐸𝐸) as follows 𝜗𝜗 = -𝜀𝜀 22 𝜀𝜀 11 = -𝜀𝜀 33 𝜀𝜀 11 2(𝜇𝜇 + 𝜆𝜆) = 𝜆𝜆 (330)

  𝑾𝑾(𝝌𝝌, 𝑸𝑸, 𝑪𝑪, 𝓡𝓡, 𝜞𝜞 , 𝑿𝑿) = 𝑾𝑾 𝒅𝒅𝒆𝒆𝒇𝒇 (𝑪𝑪, 𝓡𝓡, 𝜞𝜞 , 𝑿𝑿) + 𝜹𝜹 𝒆𝒆𝒙𝒙𝒅𝒅 (𝝌𝝌, 𝑸𝑸, 𝑿𝑿)

  𝑬𝑬 𝓚𝓚 ] 𝟐𝟐 + 𝝁𝝁 𝓚𝓚 𝑬𝑬𝑬𝑬 𝓚𝓚 + 𝟏𝟏 𝟐𝟐 𝝀𝝀 𝓡𝓡 [𝑬𝑬 𝓡𝓡 ] 𝟐𝟐 + 𝝁𝝁 𝓡𝓡 𝑬𝑬𝑬𝑬 𝓡𝓡 + 𝝁𝝁 𝜞𝜞𝜞𝜞 𝜹𝜹 𝑬𝑬 𝜞𝜞𝜞𝜞 𝜹𝜹 + 𝜸𝜸 𝓚𝓚𝓡𝓡 𝑬𝑬 𝓚𝓚𝓡𝓡 (346) where 𝜆𝜆 𝒦𝒦 , 𝜇𝜇 𝒦𝒦 , 𝜆𝜆 ℛ , 𝜇𝜇 ℛ , 𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇 and 𝛾𝛾 𝒦𝒦ℛ are six material parameters. The operators 𝐼𝐼 ( * ) and 𝐼𝐼𝐼𝐼 ( * )

	Massoumi and La-Valle [146])
	𝑾𝑾 𝒊𝒊𝒔𝒔𝒄𝒄 =	𝟏𝟏 𝟐𝟐	𝝀𝝀 𝓚𝓚 [

  𝒔𝒔 𝜹𝜹 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 � 𝟒𝟒𝒌𝒌 𝒓𝒓 (𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 ) � 𝒊𝒊 + � 𝟔𝟔𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟒𝟒 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 (𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 ) 𝒂𝒂 𝟐𝟐 𝑸𝑸� 𝒊𝒊 𝟐𝟐 -� 𝒂𝒂 𝟐𝟐 𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌 𝒔𝒔 𝜹𝜹 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 � 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 (𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 ) 𝟔𝟔𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟒𝟒 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 (𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 ) 𝒂𝒂𝑸𝑸𝒊𝒊 -𝒂𝒂𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 � 𝟒𝟒𝒌𝒌 𝒓𝒓 (𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 )

	𝑾𝑾 𝒊𝒊				
	= �� 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒓𝒓	𝟏𝟏 𝟔𝟔	�	𝒂𝒂 𝟐𝟐 𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌 � 𝒊𝒊 𝟑𝟑
	+ � 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 𝒂𝒂 𝟐𝟐 𝑸𝑸	� 𝒊𝒊 𝟒𝟒 + � 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 𝒂𝒂 𝟐𝟐 𝑸𝑸	-	𝑸𝑸 𝟐𝟐𝒌𝒌 𝒔𝒔	� 𝒊𝒊 𝟐𝟐 ;	(B.2)
	𝜽𝜽 𝒊𝒊					
	=						𝒊𝒊 𝟐𝟐
	+	𝒂𝒂𝑸𝑸 𝟔𝟔𝒌𝒌 𝒓𝒓	𝒊𝒊 𝟑𝟑			

  𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝑸𝑸 𝟐𝟐 � 𝟓𝟓𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝒏𝒏 -𝟏𝟏� ; 𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝒂𝒂𝑸𝑸 𝟒𝟒 ( 𝒏𝒏� 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 (𝟐𝟐𝒏𝒏 -𝟓𝟓) -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 (𝒏𝒏 -𝟏𝟏) -𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 � 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 + 𝟏𝟏) ; 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = -𝑸𝑸 𝟐𝟐 � 𝟑𝟑𝒏𝒏�𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 + 𝟒𝟒𝒌𝒌𝒓𝒓� 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 -𝟏𝟏� ; 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 = -𝒂𝒂𝑸𝑸 𝟒𝟒 � 𝟑𝟑𝒏𝒏�𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 + 𝟒𝟒𝒌𝒌𝒓𝒓� 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 -𝟏𝟏�

	(B.4)

  𝟓𝟓𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 ( 𝒏𝒏𝑸𝑸 𝟐𝟐 ) , 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 = 𝒂𝒂𝒏𝒏 𝟐𝟐 𝑸𝑸� 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 � 𝟑𝟑𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 ; 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 + 𝟒𝟒𝒌𝒌𝒓𝒓 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 Thus, the bending moment and shear equations are given by 𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 = -𝑸𝑸 �𝒊𝒊 + 𝟏𝟏 𝟐𝟐 -𝟓𝟓𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟑𝟑𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 𝒏𝒏� ; 𝟓𝟓𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓 𝒏𝒏(𝒊𝒊 + 𝟏𝟏 𝟐𝟐 ) + 𝒏𝒏 𝟐𝟐 � 𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 � 𝟒𝟒𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 -𝒌𝒌 𝒔𝒔 𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓

							𝑽𝑽(𝒙𝒙) = -𝒒𝒒 �𝒙𝒙 -	𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝟑𝟑𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 + 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬	𝜹𝜹� ;
					𝑴𝑴(𝒙𝒙) =	𝒒𝒒 𝟐𝟐	�𝒙𝒙 𝟐𝟐 -	𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬	𝜹𝜹𝒙𝒙 +	𝜹𝜹 𝟐𝟐 �𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � 𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 �	(B.8)
					𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 -	𝑸𝑸 𝟐𝟐	-𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 , 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 -�	𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝟏𝟏/𝟐𝟐 -𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ;
					𝑭𝑭 𝒓𝒓𝒓𝒓 𝟐𝟐 -	𝑸𝑸 𝟐𝟐	+ 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝟎𝟎 , 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 -�	𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝟎𝟎	(B.5)
	which leads to			
		𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 =					
									( 𝟑𝟑𝒏𝒏𝑸𝑸 𝟐𝟐	)	(B.6)
									𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐
									(B.7)
	=	𝒂𝒂𝑸𝑸 𝟐𝟐	�(𝒊𝒊 +	𝟏𝟏 𝟐𝟐	) 𝟐𝟐 -				+	𝟏𝟏 𝟒𝟒	�
	Replacing the continuum terms and neglecting the length scale leads to following
	continuum local equations

  For an infinite number of grains, the solutions of the Bresse-Timoshenko beam on clamped ends might be considered as follows

		�� 𝟐𝟐𝒌𝒌 𝒓𝒓 𝒌𝒌 𝒔𝒔 𝒂𝒂	-	𝒂𝒂 𝟔𝟔	�	𝒂𝒂𝒏𝒏𝑸𝑸 𝟒𝟒𝒌𝒌 𝒓𝒓	� 𝒊𝒊 + � 𝒂𝒂 𝟐𝟐 𝒏𝒏 𝟐𝟐 𝑸𝑸 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓	� 𝒊𝒊 𝟐𝟐 -� 𝒂𝒂 𝟐𝟐 𝒏𝒏𝑸𝑸 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓	� 𝒊𝒊 𝟑𝟑 + � 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 𝒂𝒂 𝟐𝟐 𝑸𝑸	� 𝒊𝒊 𝟒𝟒 + � 𝟐𝟐𝟒𝟒𝒌𝒌 𝒓𝒓 𝒂𝒂 𝟐𝟐 𝑸𝑸	-	𝑸𝑸 𝟐𝟐𝒌𝒌 𝒔𝒔	� 𝒊𝒊 𝟐𝟐 ;	(B.10)
	𝜽𝜽 𝒊𝒊 =	𝒂𝒂𝒏𝒏 𝟐𝟐 𝑸𝑸 𝟏𝟏𝟐𝟐𝒌𝒌 𝒓𝒓	𝒊𝒊 -	𝒂𝒂𝒏𝒏𝑸𝑸 𝟒𝟒𝒌𝒌 𝒓𝒓	𝒊𝒊 𝟐𝟐 +	𝒂𝒂𝑸𝑸 𝟔𝟔𝒌𝒌 𝒓𝒓	𝒊𝒊 𝟑𝟑	
		𝑾𝑾(𝒙𝒙) = �	𝜹𝜹𝒒𝒒 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 � 𝒙𝒙 + � 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 𝜹𝜹 𝟐𝟐 𝒒𝒒 � 𝒙𝒙 𝟐𝟐 -�	𝜹𝜹𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 � 𝒙𝒙 𝟑𝟑 + �	𝒒𝒒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � 𝒙𝒙 𝟒𝟒 -�	𝒒𝒒 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 � 𝒙𝒙 𝟐𝟐 ;
														(B.11)
											𝜽𝜽(𝒙𝒙) =	𝜹𝜹 𝟐𝟐 𝒒𝒒 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬	𝒙𝒙 -	𝜹𝜹𝒒𝒒 𝟒𝟒𝑬𝑬𝑬𝑬	𝒙𝒙 𝟐𝟐 +	𝒒𝒒 𝟔𝟔𝑬𝑬𝑬𝑬	𝒙𝒙 𝟑𝟑

  Note that 𝐹𝐹 𝑑𝑑𝑟𝑟1 and 𝑀𝑀 𝑑𝑑𝑟𝑟 1 are the vertical force and moment reaction of the left clamped end and 𝐹𝐹 𝑑𝑑𝑟𝑟 2 and 𝑀𝑀 𝑑𝑑𝑟𝑟 2 are the reactions of the right clamped boundary which are obtained byThe distribution of bending moment and shear forces for clamped ends beam could be found eventually by applying the conditions of Eq. (B.14) the discrete general solutions of Eq. (18),

	𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 -	𝑸𝑸 𝟐𝟐	-𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 , 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 -�	𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝟏𝟏/𝟐𝟐 -𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ;
	𝑭𝑭 𝒓𝒓𝒓𝒓 𝟐𝟐 -	𝑸𝑸 𝟐𝟐	+ 𝑽𝑽 𝒏𝒏-	𝟏𝟏 𝟐𝟐	= 𝟎𝟎 , -𝑴𝑴 𝒓𝒓𝒓𝒓 𝟐𝟐 + 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 -�	𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝟎𝟎	(B.15)
	𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 = 𝑭𝑭 𝒓𝒓𝒓𝒓 𝟐𝟐 =	𝒏𝒏𝑸𝑸 𝟐𝟐	, 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 = 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟐𝟐 =	𝒂𝒂𝑸𝑸 𝟏𝟏𝟐𝟐	�𝒏𝒏 𝟐𝟐 -𝟏𝟏� ;	(B.16)
	𝑽𝑽 𝒊𝒊+𝟏𝟏/𝟐𝟐 = -𝑸𝑸 �𝒊𝒊 +	𝟏𝟏 𝟐𝟐	-	𝒏𝒏 𝟐𝟐 �, 𝑴𝑴 𝒊𝒊+𝟏𝟏/𝟐𝟐 =	𝒂𝒂𝑸𝑸 𝟐𝟐	�(𝒊𝒊 +	𝟏𝟏 𝟐𝟐	) 𝟐𝟐 -𝒏𝒏(𝒊𝒊 +	𝟏𝟏 𝟐𝟐	) +	𝟏𝟏 𝟏𝟏𝟐𝟐	+	𝒏𝒏 𝟐𝟐 𝟔𝟔	�	(B.17)

  𝐹𝐹 𝑑𝑑𝑟𝑟 1 and 𝐹𝐹 𝑑𝑑𝑟𝑟 1 are respectively the vertical reaction and the bending reaction of the clamped end. Applying the equilibrium conditions to the individual boundary grains In view of Eq. (B.19) and Eq. (B.20), the shear and bending interactions of the boundaries might be obtained by

		𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 -𝒏𝒏𝑸𝑸 = 𝟎𝟎 , 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 -(	𝒂𝒂𝒏𝒏 𝟐𝟐 )(𝒏𝒏𝑸𝑸) = 𝟎𝟎	(B.19)
	𝑭𝑭 𝒓𝒓𝒓𝒓 𝟏𝟏 -	𝑸𝑸 𝟐𝟐	-𝑽𝑽 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 , 𝑴𝑴 𝒓𝒓𝒓𝒓 𝟏𝟏 -�	𝒂𝒂 𝟐𝟐	� 𝑽𝑽 𝟏𝟏/𝟐𝟐 -𝑴𝑴 𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ;
	𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 -	𝑸𝑸 𝟐𝟐	= 𝟎𝟎 , 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 -�	𝒂𝒂 𝟐𝟐	� 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 = 𝟎𝟎	(B.20)
	𝑽𝑽 𝟏𝟏/𝟐𝟐 =	𝑸𝑸 𝟐𝟐	(𝟐𝟐𝒏𝒏 -𝟏𝟏), 𝑴𝑴 𝟏𝟏/𝟐𝟐 =	𝒂𝒂𝑸𝑸 𝟒𝟒	�𝟐𝟐𝒏𝒏 𝟐𝟐 -𝟐𝟐𝒏𝒏 + 𝟏𝟏�
		𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 =	𝑸𝑸 𝟐𝟐	, 𝑴𝑴 𝒏𝒏-𝟏𝟏/𝟐𝟐 = �	𝒂𝒂 𝟐𝟐 � 𝑽𝑽 𝒏𝒏-𝟏𝟏/𝟐𝟐 =	𝟒𝟒 𝒂𝒂𝑸𝑸	(B.21)

  The maximum deflection and micro angle occur at 𝑖𝑖 = 𝑛𝑛𝑎𝑎 and obtained as follows

	𝜽𝜽 𝒎𝒎𝒂𝒂𝒙𝒙 =	𝒒𝒒𝜹𝜹 𝟑𝟑 𝟔𝟔𝑬𝑬𝑬𝑬	�𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝟐𝟐𝜹𝜹 𝟐𝟐 �
	𝑾𝑾(𝒙𝒙) = � 𝓚𝓚𝓚𝓚𝓚𝓚 𝜹𝜹𝒒𝒒 � 𝒙𝒙 + � 𝟒𝟒𝑬𝑬𝑬𝑬 𝜹𝜹 𝟐𝟐 𝒒𝒒 � 𝒙𝒙 𝟐𝟐 -� 𝟔𝟔𝑬𝑬𝑬𝑬 𝜹𝜹𝒒𝒒 � 𝒙𝒙 𝟑𝟑 + �	𝒒𝒒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � 𝒙𝒙 𝟒𝟒 -�	𝒒𝒒 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 � 𝒙𝒙 𝟐𝟐 ;
								(B.26)
	𝜽𝜽(𝒙𝒙) =	𝟔𝟔𝒒𝒒𝜹𝜹 𝟐𝟐 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬		𝒙𝒙 -	𝜹𝜹𝒒𝒒 𝟐𝟐𝑬𝑬𝑬𝑬	𝒙𝒙 𝟐𝟐 +	𝒒𝒒 𝟔𝟔𝑬𝑬𝑬𝑬	𝒙𝒙 𝟑𝟑
	𝑾𝑾 𝒎𝒎𝒂𝒂𝒙𝒙 =	𝒒𝒒𝜹𝜹 𝟒𝟒 𝟑𝟑𝑬𝑬𝑬𝑬	�𝟏𝟏 +	𝟒𝟒𝑬𝑬𝑬𝑬 𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 � = 𝒇𝒇 𝑪𝑪𝑭𝑭 ∞ ;
								(B.27)

  Here, a is the characteristic length of the nonlocal model which can be computed from the microstructure cell size (grain diameter for instance). Multiplying Eq. (C.2)(C.2) by the 𝐷𝐷 𝑥𝑥 with neglecting the higher order terms in 𝑎𝑎 4 leads to

	𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐	� 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝑾𝑾(𝒙𝒙) -𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟔𝟔	� 𝑫𝑫 𝒙𝒙 𝜣𝜣(𝒙𝒙) = -𝒒𝒒	(C.1)
	𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟔𝟔	� 𝑫𝑫 𝒙𝒙 𝑾𝑾(𝒙𝒙) + �𝑬𝑬𝑬𝑬 �𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐	� 𝑫𝑫 𝒙𝒙 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 +	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟒𝟒	�� 𝜣𝜣(𝒙𝒙) = 𝟎𝟎	(C.2)
	term -�1 -� -𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 + 𝑎𝑎 2 𝐷𝐷 𝑥𝑥 2 12	𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝟏𝟏𝟐𝟐	� 𝑫𝑫 𝒙𝒙 𝟐𝟐 𝑾𝑾(𝒙𝒙) -�𝑬𝑬𝑬𝑬𝑫𝑫 𝒙𝒙 𝟑𝟑 -𝓚𝓚𝓚𝓚𝓚𝓚 �𝟏𝟏 +	𝟐𝟐 𝒂𝒂 𝟐𝟐 𝑫𝑫 𝒙𝒙 𝟔𝟔	� 𝑫𝑫

𝒙𝒙 � 𝜣𝜣(𝒙𝒙) = 𝟎𝟎

  𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟒𝟒 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒂𝒂 𝟐𝟐 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)

						𝑾𝑾(𝒙𝒙)
		= �� 𝓚𝓚𝓚𝓚𝓚𝓚 𝟐𝟐𝑬𝑬𝑬𝑬	-	𝒂𝒂 𝟐𝟐 𝟔𝟔	�	𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬� 𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)	� 𝒙𝒙
		+ � 𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟒𝟒 -𝒒𝒒� 𝒙𝒙 𝟐𝟐
		-� 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬) 𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�	� 𝒙𝒙 𝟑𝟑 + �	𝒒𝒒 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 � 𝒙𝒙 𝟒𝟒 + � 𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 𝒒𝒒𝒂𝒂 𝟐𝟐	-	𝒒𝒒 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚 � 𝒙𝒙 𝟐𝟐 ;	(E.3)
							𝜽𝜽(𝒙𝒙)
	=	𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟒𝟒 -𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟒𝟒 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒂𝒂 𝟐𝟐 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)	𝒒𝒒𝒙𝒙 -	𝜹𝜹�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬� 𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹 𝟐𝟐 -𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂 𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)	𝒙𝒙 𝟐𝟐
						+	𝒒𝒒 𝟔𝟔𝑬𝑬𝑬𝑬	𝒙𝒙 𝟑𝟑

Table 1 :

 1 Comparison of the maximum deflection values (𝜇𝜇𝜇𝜇) for the discrete granular beam with simply supported (S-S), clamped-simply (C-S), clamped-clamped (C-C) and clamped-free (C-F); exact analytical solutions and the numerical ones (DEM)

			DEM Results		Exact Analytic Results	
	Boundary	Number of Grain 𝑛𝑛 =	𝐿𝐿 𝑎𝑎				
	Conditions							
		5	11	21	5	11	21	∞
	S-S	0.2261	0.2366	0.2381	0.2261	0.2366	0.2381	0.2386
	C-S	0.1709	0.1788	0.1799	0.1709	0.1788	0.1799	0.1808
	C-C	0.1326	0.1379	0.1386	0.1326	0.1379	0.1386	0.1388
	C-F	0.1653	0.1653	0.1653	0.1653	0.1653	0.1653	0.1653

Table 2 :

 2 Comparison of the maximum rotation values (𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for the discrete granular beam with simply supported (S-S), clamped-simply (C-S), clamped-clamped (C-C) and clamped-free (C-F); exact analytical solutions and the numerical ones (DEM)

		Numerical DEM Results		Exact Analytic Results	
	Boundary	Number of Grain 𝑛𝑛 =	𝐿𝐿 𝑎𝑎				
	Conditions							
		5	11	21	5	11	21	∞
	S-S	0.3742	0.3951	0.3981	0.3742	0.3951	0.3981	0.3991
	C-S	-0.3063	-0.3282	-0.3314	-0.3063	-0.3282	-0.3314	-0.3324
	C-C	0.7483	0.7663	0.7663	0.7483	0.7663	0.7663	0.7681
	C-F	-0.1646	-0.1604	-0.1598	-0.1646	-0.1604	-0.1598	-0.1596

Table 3 :

 3 Material parameters used in energy definition of the medium

	𝜆𝜆 𝒦𝒦 0	𝜇𝜇 𝒦𝒦𝒦𝒦 0	𝜇𝜇 𝒦𝒦𝒦𝒦 𝑇𝑇	0	𝜆𝜆 𝑅𝑅 0
	85.52 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1	32.50 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1	25.35 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1	40.12 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1
	𝜇𝜇 ℛℛ 0	𝜇𝜇 ℛℛ 𝑇𝑇	0	𝜇𝜇 𝛤𝛤𝛤𝛤 𝑇𝑇	0	𝛾𝛾 𝒦𝒦ℛ 0
	15.85 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1	20.40 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1	25.36 × 10 6 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇	20.25 𝑘𝑘𝑁𝑁. 𝜇𝜇𝜇𝜇 -1

For the continuum condition by assuming an infinite number of grains when the diameter of the grains converge to zero, the difference operators of Eq. (307), Eq. (308) and Eq.

(309) could be continulized by keeping the first order development of Taylor series as follows:

In order to obtain the nonzero solutions for Eq. ( 305) considering the determinant of the coefficient matrix equal to zero, yields:

For static condition and by assuming 𝜔𝜔 = 0:

APPENDIX A. Exact solution of the static deflection of the discrete granular beam -General solution

Basically, the general solutions of Eq. ( 12) could be considered as

Note that 𝑊𝑊 𝑖𝑖 ℎ and 𝜃𝜃 𝑖𝑖 ℎ are the homogenous solutions of the associated homogenous equations of Eq. ( 12) and 𝑊𝑊 𝑖𝑖 𝑝𝑝 and 𝜃𝜃 𝑖𝑖 𝑝𝑝 are the particular solutions depending on the loading type. The homogenous parts admit the cubic polynomial solution: where 𝐴𝐴 𝑖𝑖 , 𝐵𝐵 𝑖𝑖 , 𝐶𝐶 𝑖𝑖 and 𝐷𝐷 𝑖𝑖 are constants. Eq. (A.2) could be simplified as follows by substituting in the homogenous difference equation system of Eq. ( 5). Where 𝑊𝑊 0 , 𝜃𝜃 0 , 𝛼𝛼 and 𝛽𝛽 are constants that are obtained through the boundary conditions. A particular solution of Eq. ( 11) for a uniform loading can be found as: