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Title : Granular Structures with Shear Interactions; Discrete and Nonlocal Approaches  
Keywords : Granular chain, Micropolar continuum mechanic, Discrete Cosserat formulation, Wave dispersion, Nonlocal 
beams, DEM 
ABSTRACT: 
This study is an attempt towards a better understanding of 
the length scale effects on the bending response of the 
granular beams. The current work allows to investigate the 
interactions between the theoretical models, granular 
materials and the included effective parameters. To this 
aim first, a unidimensional discrete granular chain resting 
on the Winkler foundation is considered. This problem can 
be considered as a simple model to rigorously study the 
effects of the microstructure on the static and dynamic 
behavior of the equivalent continuum structural model. 
The unidimensional granular chain consists of uniform 
rigid grains confined by discrete elastic interactions with 
both shear and rotational springs, to take into account the 
lateral granular contributions. The presented repetitive 
discrete system can be referred to elastic lattice model or 
discrete Cosserat chain with two independent degrees of 
freedom (DOF) (the transversal displacement and the 
rotation) for each grain with the consideration of shear 
interaction. Accordingly, the deformation of this granular 
model subjected to a uniform distributed loading, are 
investigated theoretically for various boundary conditions 
defined at the grain level. Such a discrete model permits to 
introduce the size effect (grain dimension) in the bending 
formulation of a microstructured granular beam. The 
length scale at which the system is probed is an important 
issue bridging together multi-scale behavior and 
heterogeneity. It is shown that for an infinite number of 
grains, the difference equations governed to the discrete 
system asymptotically converge towards the differential 
equations of the Bresse-Timoshenko continuum beam 
(neglecting the length scale) resting on Winkler 
foundation (also classified as a continuous Cosserat beam 
model). Next, a twin numerical problem is studied to 
compare the exact analytical results with the numerical 
ones simulated by the discrete element method (DEM). 
The natural frequencies of free vibrational granular model 
 

are analytically calculated for whatever modes. The 
results clarify the dependency of the beam dynamic 
responses to the beam length ratio. In the presence of 
internal (microstructural) length scales, the elastic wave 
propagation problem involves an interplay between 
wave dispersion and structural features. The wave 
dispersive properties of this discrete model are 
investigated also in the Brillouin zone. Eventually, 
through the continualization of the coupled difference 
equations system governing the discrete beam, a 
nonlocal elasticity Cosserat continuum model is 
obtained. The process of continualization consists in 
approaching the difference operators by differential 
operators applied either by the polynomial or by the 
rational development of initial differential operators in 
which a length scale appears. It is shown that both the 
granular model and the nonlocal beam model give very 
close which underlines the relevance of our approach. In 
the end, a two-dimensional granular model connected 
elastically to the lateral and diagonal neighbors, is 
studied. The equation of the motion of this 2D system is 
obtained and continualized using six material 
parameters. Furthermore, we investigate an efficient 
formulation of nonlinear micropolar continuum model 
based on a new contribution of the relative micro 
rotations. Thus, a novel relative rotation tensor is used 
as a measure of deformation in addition to the classical 
strain tensor and the wryness tensor. The consequences 
of the proposed micropolar model are then discussed 
with the aid of numerical examples. To this aim, several 
numerical applications of 2D plate specimens subjected 
to in-plane loads are considered by performing a finite 
element code based on a variational formulation. Some 
new key features of the novel model, in comparison with 
the classical one, are illustrated by the sensitive 
numerical analysis. 
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Titre : Structures granulaires avec les interactions de cisaillement : approches discrètes et non locales 
Mots clés : Chaîne granulaire, Mécanique du continu micropolaire, Formulation discrète de Cosserat, Dispersion des 
ondes, Poutres non locaux, DEM 

Résumé : L’objectif de ce travail est d’obtenir une 
meilleure compréhension des effets d'échelle de longueur 
sur la réponse en flexion des poutres granulaires. Cette 
étude nous permet de mieux comprendre les liens entre les 
modèles théoriques, les matériaux granulaires et les 
paramètres effectifs inclus. Dans ce but on considère tout 
d’abord, une chaîne granulaire discrète unidimensionnelle 
reposant sur la fondation de Winkler. Ce problème peut 
être considéré comme un modèle simple pour étudier 
rigoureusement les effets de la microstructure sur le 
comportement statique et dynamique du modèle structurel 
continu équivalent. La chaîne granulaire 
unidimensionnelle est constituée de grains rigides 
uniformes confinés par des interactions élastiques 
discrètes avec des ressorts de cisaillement et de rotation, 
pour prendre en compte les contributions granulaires 
latérales. Le système discret répétitif présenté peut être 
appelé modèle de réseau élastique ou chaîne de Cosserat 
discrète avec deux degrés de liberté (DOF) indépendants 
pour chaque grain en tenant compte de l'interaction de 
cisaillement. Les déformations d'un tel modèle granulaire 
soumis à un chargement réparti uniforme, sont étudiées 
théoriquement pour différentes conditions aux limites. Un 
tel modèle discret permet d'introduire l'effet de taille 
(dimension de grain) dans la formulation de flexion d'une 
poutre granulaire micro-structurée. L'échelle de longueur 
à laquelle le système est sondé est un problème important 
associant comportement multi-échelle et hétérogénéité. 
On montre que pour un nombre infini de grains, les 
équations aux différences régies par le système discret 
convergent asymptotiquement vers les équations 
différentielles de la poutre continue de Bresse-
Timoshenko (en négligeant l'échelle de longueur) reposant 
sur la fondation de Winkler (également classée comme 
poutre continue de Cosserat). Ensuite, un problème 
numérique jumeau est étudié pour comparer les résultats 
analytiques exacts avec ceux numériques simulés par la 

méthode des éléments discrets (DEM). Les fréquences 
naturelles d'un tel modèle granulaire sont calculées 
analytiquement pour tous les modes. Les résultats 
obtenus clarifient la dépendance des réponses 
dynamiques de la poutre avec sa longueur. En présence 
d'échelles de longueur internes (microstructurales), le 
problème de propagation des ondes élastiques implique 
une interaction entre la dispersion des ondes et les 
caractéristiques structurelles. Les propriétés de 
dispersion des vagues de ce modèle discret sont 
également étudiées dans la zone de Brillouin. 
Finalement, grâce à la continualisation du système 
d'équations aux différences couplées régissant 
l’évolution de la poutre discrète, un modèle continu de 
Cosserat à élasticité non locale est obtenu. Le processus 
de continualisation consiste à approcher les opérateurs 
aux différences impliqués dans les équations du système 
discret par des opérateurs différentiels obtenus soit par 
troncature polynômiale, soit par développements 
approchés rationnels dans lesquels apparaît une échelle 
de longueur. Enfin, un modèle granulaire 
bidimensionnel reliés élastiquement aux voisins 
latéraux et diagonaux, est étudié. Les équations du 
mouvement sont obtenues et continualisées par six 
paramètres de liaisons intergranulaires. De plus, nous 
étudions une formulation efficace d'un modèle de 
continuum micropolaire non linéaire basé sur une 
nouvelle contribution des micro-rotations relatives. 
Ainsi, un nouveau tenseur de rotation relative est utilisé 
comme mesure de déformation en plus du tenseur de 
déformation classique et du tenseur de torsion. Les 
conséquences du modèle micropolaire proposé sont 
ensuite discutées à l'aide d'exemples numériques. Dans 
ce but, plusieurs applications numériques d'éprouvettes 
de plaques 2D soumises à des charges dans le plan sont 
envisagées en réalisant un code d'éléments finis basé sur 
une formulation variationnelle 

 



 

iv 
 

 
 

DEDICATION 
 
 

This work is dedicated to: 

My respectful parents, Soheila and Bahram Massoumi who has supported, encouraged and 

helped me attentively with their fullest attention, 

My dear aunt and uncle, Karine and Shahram Massoumi who supported me particularly 

during my stay in France, 

My beloved grandparents whom I always appreciate for all they have done especially by 

inspiring me, 

My great friends and all the people in my life who touch my heart and affected my thinking 

and living style: S. M. Zia Abadi, Sheikh H. Ansarian, Prof. M. M. Shokrieh and Prof. H. 

Elahi Ghomshei. 

 
 
 



 

v 
 

ACKNOWLEDGMENTS 

 

I would like to express my sincere gratitude to my supervisors Prof. Jean 

Lerbet and Prof. Noël Challamel for their consistent support, thoughtful 

comments and recommendations on this dissertation. I would like to thank Prof. 

François Nicot and Prof. Felix Darve for their guidance during this research. To 

Dr. Antoine Wautier for his contribution in numerical analysis. Furthermore, I 

would also like to acknowledge Prof. Francesco Dell’Isola and his research team 

for the collaboration in the continuum analysis. Finally, I would like to 

appreciate my family for supporting me during the compilation of this 

dissertation. 

  



 

vi 
 

Sina MASSOUMI 
B.Sc., IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 
M.Sc., IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

M.Sc., ECOLE NATIONALE SUPERIEURE D’ARTS ET METIERS 
Ph.D., UNIVERSITY OF PARIS-SACLAY (EVRY) 

Directed by: Professor Noël Challamel and Professor Jean Lerbet 
  

List of Publications 

1. S. Massoumi, N. Challamel and J. Lerbet, Exact solutions for the vibration of finite 

granular beam using discrete and gradient elasticity Cosserat models, Journal of Sound 

and Vibration, 494, 2021. 

2. S. Massoumi, N. Challamel and J. Lerbet, Bending/Shear Wave Dispersion Analysis 

of Granular Chains – Discrete and Enriched Continuous Cosserat Modelling, 

International Journal of Solids and Structures, 2021. 

3. S. Massoumi, G. La Valle, Static Analysis of 2D Micropolar Model for Describing 

Granular Media by Considering Relative Rotations, Mechanics Research 

Communications, 2021. 

4. G. La Valle, S. Massoumi, A new deformation measure for micropolar plates subjected 

to in-plane loads, Continuum Mechanics and Thermodynamics, 2021. 

5. S. Massoumi, N. Challamel, A. Wautier, F. Nicot, F. Darve and J. Lerbet., Static 

bending of granular beam: Exact discrete and nonlocal solutions, in Revision, 

Meccanica, 2021. 

6. S. Massoumi, N. Challamel, J. Lerbet, A. Wautier, F.Nicot and F. Darve, Shear 

vibration modes of granular structures for general boundary conditions, in Preparation, 

2022. 

 
 
 
 
 
 
 
 



 

vii 
 

Conference Presentations 
 

1. Massoumi S., Challamel N. et Lerbet J., Dynamique d'une chaîne granulaire - Modèles 

discrets et continus, Congrès Français de Mécanique, 26-30 Août 2019, Brest, France. 

2. Massoumi S., Challamel N. et Lerbet J., Discrete and gradient elasticity Cosserat 

modelling of granular chains, Powder and Granular Materials, 6-7 June 2019, 

Montpellier, France. 

3. Massoumi S., Challamel N. et Lerbet J., Wave dispersion analysis of discrete granular 

chains: discrete versus non-local approaches, ASCE-EMI 2019, 3-5 July 2019, Lyon, 

France. 

4. Massoumi S., Challamel N. et Lerbet J., Vibration and wave dispersion analysis of 

finite granular chains - discrete versus non-local approaches, 14th World Congress in 

Computational Mechanics (WCCM), 19-24 July 2020, Paris, France. 

5. Massoumi S., Challamel N. and Lerbet J., On the wave dispersion analysis of granular 

chain surrounded by elastic media using an exact discrete approach, ASCE-EMI 2021, 

25-28 May 2021, New-York, USA. 

6. Massoumi S., Challamel N. et Lerbet J., Dynamic analysis of granular chain using 

Cosserat discrete modeling, International Congress of Theoretical and Applied 

Mechanics. 22-27 August 2021, Milan, Italy. 

 

 

 

 

 

 
 
 
 
 



 

viii 
 

TABLE OF CONTENTS 
 

 Page 
 
ABSTRACT:....................................................................................................................... ii 

ACKNOWLEDGMENTS ...................................................................................................v 

List of Publications ............................................................................................................ vi 

LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES .......................................................................................................... xii 

Introduction ..........................................................................................................................1 

1. Background ........................................................................................................1 
2. Literature Review...............................................................................................4 
3. Motivation and Statement of the Problem .......................................................11 

Static Bending of Granular Beam ......................................................................................15 

1. Introduction ......................................................................................................15 
2. Discrete Granular Model ..................................................................................16 
3. Simply Supported (S-S) Granular Beam ..........................................................21 

3.1. Exact Analytical Solution ........................................................21 
3.2. Numerical Simulations (DEM) ................................................26 

3.2.1. Collision Detection ......................................................27 
3.2.2. Interactions ...................................................................28 
3.2.3. Explicit Dynamic Algorithm........................................30 
3.2.4. Numerical Results ........................................................31 

4. Nonlocal Continuum Approach .......................................................................31 
4.1. Continualization of the Boundary Conditions with 

Static Variables ....................................................................................33 
4.2. Continualization of the Boundary Conditions Based on 

Deflection .............................................................................................34 
5. Conclusion and Outlook ..................................................................................36 

Vibration Analysis of Granular Beam ...............................................................................39 

1. Introduction ......................................................................................................39 
2. Granular Model ................................................................................................40 
3. Resolution of The Difference Equation ...........................................................46 

3.1. General Solution of The Difference Equation .........................55 
3.2. Antisymmetric Boundary Conditions on Deflection ...............59 
3.3. Explicit Method: Granular Beam Composed of Three 

Grains 64 
3.4. Continuum Solution .................................................................66 



 

ix 
 

4. Nonlocal Approximate Solutions - Continuous Approach ..............................73 
4.1. Polynomial Expansion (Taylor Series Approximant) ..............74 
4.2. Rational Expansion (Padé Approximant) ................................78 

5. Discussion ........................................................................................................83 
6. Conclusion .......................................................................................................87 

Wave Dispersion Analysis of Granular Beam ...................................................................90 

1. Introduction ......................................................................................................90 
2. Discrete Approach via Exact Solution .............................................................91 
3. Continuous Approach ....................................................................................101 

3.1. Exact Solution ........................................................................101 
3.2. Approximate Solution via Polynomial Expansion .................102 
3.3. Approximate Solution via Rational Expansion ......................109 

4. Discussion ......................................................................................................117 
5. Conclusions ....................................................................................................121 

Two-Dimensional Plane: Discrete and Continuum Modelling ........................................124 

1. Introduction ....................................................................................................124 
2. In-Plane Granular Model ...............................................................................125 
3. Linear Isotropic Micropolar Elasticity Theory ..............................................133 
4. Two-dimensional Micropolar Continuum Model ..........................................136 

4.1. The Cauchy-Green Strain Tensor ..........................................137 
4.2. Relative Rotation Tensor .......................................................137 
4.3. The Wryness Tensor ..............................................................138 

5. Energy Approach ...........................................................................................138 
5.1. Deformation Energy Function for Isotropic Materials ..........139 
5.2. Boundary Conditions .............................................................139 

6. Numerical Simulations ...................................................................................140 
6.1. Compression Test...................................................................141 
6.2. Biaxial Shear Test ..................................................................142 
6.3. Parametric Analysis for Tensile Test .....................................144 

7. Conclusion and Summary ..............................................................................147 
Conclusion and Perspective .............................................................................................150 

1. Conclusion and Summary ..............................................................................150 
2. Outlook ..........................................................................................................154 

APPENDIX A. Exact solution of the static deflection of the discrete granular beam – 

General solution ...............................................................................................................156 

APPENDIX B. Exact solution of the static deflection of the discrete granular beam for 

various boundary conditions ............................................................................................157 

I. Clamped-Simply (C-S) Supported Granular Beam .......................................157 
II. Clamped – Clamped (C-C) Granular Beam ...................................................159 



 

x 
 

III. Clamped-Free (C-F) Granular Beam .............................................................161 
APPENDIX C. Exact solution of the static deflection of the continuous nonlocal granular 

beam 164 

APPENDIX D. Alternative methods of the static analysis of the continuous nonlocal 

granular beam...................................................................................................................165 

I. Continualization of Discrete Bending Moment .............................................165 
II. Continualization of the Kinematic Boundary Conditions ..............................165 
III. Continualization of Discrete Bending Moment .............................................165 
IV. Continualization of the Static Boundary Conditions with Cinematic 

Variables ........................................................................................................166 
APPENDIX E. Nonlocal static analysis of the granular beam for various boundary 

conditions .........................................................................................................................167 

I. Clamped-Simply Nonlocal Model .................................................................167 
II. Clamped-Clamped Nonlocal Model ..............................................................168 
III. Clamped-Free Nonlocal Model ......................................................................169 

APPENDIX F. Comparison of the numerical DEM model and the exact discrete approach 

of the static deflection of the granular beam ....................................................................171 

BIBLIOGRAPHY ............................................................................................................172 

 
  



 

xi 
 

LIST OF TABLES 

 
Table Page 
 

Table 1: Comparison of the maximum deflection values (𝜇𝜇𝜇𝜇) for the discrete 
granular beam with simply supported (S-S), clamped-simply (C-S), 
clamped-clamped (C-C) and clamped-free (C-F); exact analytical 
solutions and the numerical ones (DEM).................................................... 171 

Table 2: Comparison of the maximum rotation values (𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) for the 
discrete granular beam with simply supported (S-S), clamped-simply 
(C-S), clamped-clamped (C-C) and clamped-free (C-F); exact analytical 
solutions and the numerical ones (DEM).................................................... 171 

Table 3: Material parameters used in energy definition of the medium ................. 171 

 
 
  



 

xii 
 

LIST OF FIGURES 

 
Figure Page 

Figure 1. A discrete granular beam with length L (a) Non-deformed discretized 
beam (b) Deformed beam composed of n + 1 rigid grain; L = na .............. 17 

Figure 2. Static bending granular beam solution for 11 number of grains (a) 
Deflection and (b) Rotation .......................................................................... 25 

Figure 3. Parametric analysis of the continuum and discrete differences (ϵ) with 
regards to the grain number values for a simply supported granular beam 
by varying (a) Rotational spring rigidity, (b) Shear spring rigidity, and 
(c) Beam length ............................................................................................. 26 

Figure 4. Comparison of the exact discrete approach with the nonlocal ones 
based on discrete model (1st nonlocal approximation) and based on the 
development of the continuum formulations (2nd nonlocal 
approximation) for 11 number of granular elements (a) Deflection and 
(b) Rotation ................................................................................................... 36 

Figure 5. A discrete shear granular chain model composed of n+1 grain; (a) 
undeformed and (b) deformed. ..................................................................... 41 

Figure 6. Schematic behavior of the wave vector regarding the eigenfrequencies 
for finite grain number (n=50). (a), (c), (e) and (g) correspond to the real 
part and (b), (d), (f) and (h) correspond to the imaginary part of the wave 
vector............................................................................................................. 52 

Figure 7. The effects of the eigenfrequencies on the wave behavior for a general 
discrete beam contains an infinite grain number (n → ∞). (a), (c), (e) 
and (g) correspond to the real part and (b), (d), (f) and (h) correspond to 
the imaginary part of the wave vector. .......................................................... 53 

Figure 8.  Comparison of the first branch natural frequencies for the discrete 
exact, Duan et al. [12] and continuum solutions with respect to the mode 
number (p) and grain number: (a) n = 5, (b) n = 20, (c) n = 35 and (d) 
n = 50 for μs = 4.28, r* = 0.007 and  k* = 0. .......................................... 68 

Figure 9. Comparison of the second branch natural frequencies for the discrete 
exact, Duan et al. [12] and continuum solutions with respect to the mode 
number (p) and grain number: (a) n = 5, (b) n = 20, (c) n = 35 and (d) 
n = 50 for μs = 4.28, r* = 0.07 and  k* = 0. ............................................ 70 

Figure 10. Comparison of the first branch natural frequencies for the discrete 
exact, Duan et al. [12] and continuum solutions with respect to the mode 



 

xiii 
 

number (p) and grain number: (a) r* = 0.004, (b) r* = 0.022, (c) r* =
0.04 and (d) r* = 0.058 for n = 20,  μs = 4.28 and  k* = 0. .................... 71 

Figure 11. Comparison of the second branch natural frequencies for the discrete 
exact, Duan et al. [12] and continuum solutions with respect to the mode 
number (p) and grain number: (a) r* = 0.004, (b) r* = 0.022, (c) r* =
0.04 and (d) r* = 0.058 for n = 20,  μs = 4.28 and  k* = 0. .................... 72 

Figure 12. Analysis of the grain number effect on the frequencies (discrete exact 
solution) for the mode number (a) p = 1 and (b) p = 10 with respect to 
the length ratio (r* = 0.029) for μs = 4.28 and k* = 1.87. ........................ 73 

Figure 13. Comparison of the natural frequencies for the nonlocal Taylor and 
continuum solutions with respect to the mode number (p) and grain 
number: (a) n = 5  and r* = 0.058 , (b) n = 20  and r* = 0.014 , (c) 
n = 35  and r* = 0.0082  and (d) n = 50  and r* = 0.0058  for μs =
4.28. .............................................................................................................. 78 

Figure 14. Analysis of the grain number effect on the frequencies (nonlocal 
Taylor) for the mode number (a) p = 1 and (b) p = 10 with respect to 
the length ratio for μs = 4.28 and k* = 1.87. .............................................. 78 

Figure 15. Comparison of the natural frequencies for the nonlocal Padé and 
continuum solutions with respect to the mode number (p) and grain 
number: (a) n = 5  and r* = 0.058 , (b) n = 20  and r* = 0.014 , (c) 
n = 35  and r* = 0.0082  and (d) n = 50  and r* = 0.0058  for μs =
4.28. .............................................................................................................. 83 

Figure 16. Analysis of the grain number effect on the frequencies (nonlocal 
Padé) with respect to the length ratio (r* = 0.029) for mode number: 
(a) p = 1 and (b) p = 10  μs = 4.28. ........................................................... 83 

Figure 17. Comparison of the first branch natural frequencies for different 
approaches as a function of mode number (p) with respect to the grain 
number: (a) n = 5, (b) n = 20 , (c) n = 35  and (d) n = 50  for μs =
4.28. .............................................................................................................. 84 

Figure 18. Comparison of the second branch natural frequencies for different 
approaches as a function of mode number (p) with respect to the grain 
number: (a) n = 5  and r* = 0.058 , (b) n = 20  and r* = 0.014 , (c) 
n = 35  and r* = 0.0082  and (d) n = 50  and r* = 0.0058  for μs =
4.28. .............................................................................................................. 85 

Figure 19. Comparison of the natural frequencies of the first branch for different 
approaches as a function of mode number (p) with respect to the grain 
number: (a) n = 5  and r* = 0.058 , (b) n = 20  and r* = 0.014 , (c) 



 

xiv 
 

n = 35 and r* = 0.0082 and (d) n = 50 and r* = 0.0058 for μs → ∞ 
(weak shear interaction). ............................................................................... 85 

Figure 20. Comparison of the natural frequencies of the second branch for 
different approaches as a function of mode number (p) with respect to 
the grain number: (a) n = 5  and r* = 0.058 , (b) n = 20  and r* =
0.014, (c) n = 35 and r* = 0.0082 and (d) n = 50 and r* = 0.0058 
for μs → ∞ (weak shear interaction). ........................................................... 86 

Figure 21. Correction in the first branch natural frequencies regarding Winkler 
foundation effect. .......................................................................................... 87 

Figure 22.  Dispersive curves for one-dimensional compression wave of (a) the 
first branch and (b) the second branch according to bending 
nondimensional parameter for μs = 4.28, r* = 0.289 and k* = 0.02. ..... 107 

Figure 23.  The complex results of nonlocal Taylor development (a) 2nd-order 
first branch, (b) 2nd-order second branch, (c) 4th-order first branch, (d) 
4th-order second branch, (e) 6th-order first branch and (f) 6th -order 
second branch according to bending nondimensional parameter for 
μs = 4.28, r* = 0.289 and k* = 0.02. ...................................................... 109 

Figure 24.  Dispersive curves for one-dimensional compression wave of (a) the 
first branch and (b) the second branch according to bending 
nondimensional parameter for μs = 4.28, r* = 0.289 and k* = 0.02. ..... 116 

Figure 25.  Dispersive curves for one-dimensional compression wave of (a) first 
branch or the acoustic mode and (b)second branch or the optical mode 
according to shear nondimensional parameter- various approaches for 
μs = 4.28, r* = 0.289 and k* = 1.03. ...................................................... 118 

Figure 26. Comparison of the first branch of natural frequency for the different 
values of Young modulus in 1D media: (a) c0 = 3162 m/s2 and μs =
1.71 , (b) c0 = 4183  m/s2 and μs = 2.99 , (c) c0 = 5000  m/s2 and 
μs = 4.28  and (d) c0 = 8660  m/s2 and μs = 12.85  for  r* = 0.289 
and k* = 0. ................................................................................................. 119 

Figure 27. Comparison of the second branch of natural frequency for the 
different values of Young modulus in 1D media: (a) c0 = 3160 m/s2 
and μs = 1.71 , (b) c0 = 4183 m/s2  and μs = 2.99 , (c) c0 = 5000 
m/s2 and μs = 4.28  and (d) c0 = 8660 m/s2  and μs = 12.85  for  
r* = 0.289 and k* = 0. .............................................................................. 120 

Figure 28. Comparison of the different approaches with the molecular dynamics 
results of Wang and Hu [133]: (a) (5,5) and (b) (10,10) armchair CNT - 
various approaches ...................................................................................... 121 



 

xv 
 

Figure 29. A discrete shear granular plane of dimension L1 × L2 composed of 
(n + 1) × (m + 1) grains of diameter a and mass m ................................. 125 

Figure 30. Compression test with a clamped bottom side (a) distribution of the 
vertical strain (b) distribution of the horizontal strain (c) distribution of 
the microrotation ......................................................................................... 142 

Figure 31. Biaxial shear test with fixed microrotation on the sides (a) 
distribution of the macro-rotation (b) distribution of the micro-rotation 
Q21 (c) distribution of the relative rotation R21 ........................................... 143 

Figure 32. Distribution of the lateral displacement for parametric analysis on 
μΓΓT for tensile test (a) μΓΓT/μΓΓT0 = 0.001 (b) μΓΓT/μΓΓT0 = 0.1
..................................................................................................................... 145 

Figure 33. Distribution of the micro rotation for parametric analysis on μΓΓT 
for tensile test (a) μΓΓT/μΓΓT0 = 0.001 (b) μΓΓT/μΓΓT0 = 0.1 ............ 146 

Figure 34. Distribution of reactions along the clamped boundary (a) Horizontal 
reaction (along x-direction) (b) Vertical reaction (along y-direction) ........ 147 

 
 
 
 



 

 



Chapter 1: Introduction 1 
 

 

CHAPTER 1 
 

Introduction 

1. Background 

Due to the importance of processing scale, using particulate material has become 

more and more popular. Large number of raw materials entering the industries are granular 

in nature. According to the huge applications of granular material in diverse industries such 

as pharmaceutical powders, food engineering, and agricultural grains, minerals, civil 

engineering, it is important to identify the characteristic behavior of such materials, when 

externally excited. Despite the simplicity of the granular medium by introducing the simple 

interactions at the micro scale, sophisticated nonlinear features emerge at the macro scale 

both in mechanical and morphological aspects (Nicot and Darve [1], Vardoulakis. [2]). 

Classical continuum mechanics suffer from the absence of internal scale effects. 

This might be insufficient for analyzing the granular media, in which both the nonlocal 

effects (internal length) of the interactions and grain rotation may play an important role in 

the response of the system. In order to adapt a standard continuum theory to granular 

materials, it is necessary to introduce the independent rotational degrees of freedom (DOF) 

in addition to the conventional translational ones. This helps to describe accurately the 

relative movements between the microstructure and the average macroscopic 

deformations. One may obtain higher-order gradient continua with additional degrees of 

freedom. One may also obtain Cosserat modeling that consequently leads to a non-classical 

continuum or polar continuum theories (Cosserat type theories, e.g. Cosserat and Cosserat 
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[3]; Nowacki [4]). Voigt [5] was the pioneer of developing this concept who first showed 

the existence of couple–stress in materials.  

Basically, as it was mentioned above, to deal with granular media, it may be 

necessary to define additional degrees of freedom or higher-order gradients (for instance 

Mindlin [6] and Aifantis [7]) which permits also to study the nonlocal effects and capture 

the internal length scale of the material (Truesdell and Noll [8], Toupin [9] and Truesdell 

[10]). This leads to the enriched formulations of Cosserat-type or micro-polar type theories 

which possess both rotational degrees of freedom in addition to the conventional 

translational ones. Many studies have been done recently to study granular media using 

micropolar models ((Pasternak and Mühlhaus [11], Duan et al. [12], Challamel et al. [13], 

Poorsolhjouy and Misra [14] and Misra et al. [15])).  

In beam analysis, the Bresse-Timoshenko model takes into account both beam 

shear flexibility and rotatory inertia (Bresse [16] and Timoshenko [17, [18]). The effects 

of shear and rotational inertia can be significant in the case of calculating eigenfrequencies 

for short beams, or in the case of sufficiently small shear modulus.  

On the other hand, in presence of length scales, the elastic wave propagation 

problem involves an interplay between wave dispersion and structural features. The wave 

propagation characteristics of conventional forms  of matter are well understood and well 

documented. In contrast, waves in granular media are  more complex due to the discrete 

nature of these systems, which may include nonlinear interactions. Considerable interest in 

the dynamic response of granular media exists in the geomechanics community typically 

involving acoustics and wave propagation in sand, gravel and rock materials. Mechanical 

energy is transferred through a structured wave-guide network which is created by granular 
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media. The key element in the mechanics  of a granular system is the force chain. It is along 

these preferentially stressed chains of particles  that waves are transmitted. These nonlinear 

chains are heavily dependent on the geometry of the  bed and are prone to rearrangement 

even by the slightest of forces. 

Dispersion is a real issue in wave propagation since each granular element acts as 

a filter for the frequencies (letting the low frequencies or large wave-lengths pass through). 

In addition to dispersion, the material can delay or block the high frequencies (short 

wavelengths). Classical elasticity theories are not suitable for capturing the wave 

dispersion in granular materials when the microstructured influence is predominant in the 

wave propagation. For these cases, the long-range interactions are important to take into 

account in the deformation process (for instance the book of Bagdoev et al. [19] or 

Vardoulakis [20]).  

It is noteworthy to mention that one of the efficient approaches to simulate granular 

media consists in a discrete element method (DEM). This method was first applied in 

granular media for a class of problems that cannot be solved through analytical or 

continuous methods (Cundall and Strack [21], Serrano and Rodriguez-Ortiz [22]). Using 

this method to analyze the behavior of continuum media provides new insights into the 

mechanical behavior of these materials.  Newton’s second law is applied to determine the 

displacements and rotations of each particle. Today, there are many open-source and 

commercial DEM programs available. YADE is an open-source DEM software that uses 

object-oriented (OO) programming techniques. The location and trajectory of each 

individual particle are calculated through Newton’s second law. The forces and movements 

of particles are calculated basically from their contact interactions. In DEM, the 
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interactions between the particles are obtained from simple contact laws while the 

interaction forces are deducted through the interatomic potential in the molecular dynamics 

simulations.  

2. Literature Review 

Cosserat continuum theories belong to the larger class of generalized continua 

which introduce intrinsic length scales into continuum mechanics via higher-order 

gradients or additional degrees of freedom (Eringen [23, [24], Forest [25]). Feng [26] 

analyzed the behavior of the granular medium considering normal, shear and rotation 

interactions. In contrast, the classical continuum mechanics ignore the rotational 

interactions among particles and neglect the size effect of material particles. Micropolar 

models could interpret both the complex discrete and continuum microstructures such as 

granular media (Pasternak and Mühlhaus [11], Duan et al. [12], Challamel et al. [13], 

Poorsolhjouy and Misra [14], Massoumi et al. [27] and Misra et al. [15]), soils (Matsushima 

et al. [28] and Bourrier et al. [29]), metamaterials (Barchiesi et al. [30], Vescovo and 

Giorgio [31], Giorgio et al. [32] and Misra et al. [33]). 

In a physical sense, each point of the material could be asymptotically equivalent 

to a rigid body. As a result, three degrees of freedom can be defined for a rigid body in 2D 

analysis. The ideas of the micropolar continuum were presented at the end of the 19th 

century by Kelvin, Helmholtz, Duhem, Voigt and Cosserat and Cosserat [34]. A new aspect 

of this theory is the introduction of couple stresses in addition to the conventional ones 

(Truesdell and Toupin [35]). Several researchers like Aero and Kuvshinskii [36, [37], 

Toupin [9], Mindlin and Tiersten [38] and Eringen [39, [40] investigated the linear Cosserat 

theory. On the other hand, the non-linear micropolar continuum was studied in the early 
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publications by Toupin [41], and more recently by Pietraszkiewicz and Eremeyev [42] (see 

also Eremeyev and Pietraszkiewicz [43] and La-Valle and Massoumi [44]).  

The deformation of the micropolar continuum could be defined through the position 

vector and the three orthonormal directors which model the orientation changes. This 

method could be used only for small deformation (Grioli [45], Kafadar and Eringen [46] 

and Ramezani and Naghdabadi [47]). Usually, the strain measures are presented by the 

Cosserat deformation and wryness tensors (Kafadar and Eringen [46] and Eringen and 

Kafadar [48]). 

Modeling continuum media with granular models (Cosserat discrete) which involve 

intrinsically the influence of size effects (grain diameter), allows for taking into account 

the nonlocal effect. The approaches for solving repetitive cell structures problems is 

applying finite difference calculus and obtaining the exact solutions and then making a 

continuous approximation (Bažant and Christensen [49]). Continualizing such a discrete 

system composed of repetitive periodical cells leads to the nonlocal continuum models 

(Bacigalupo and Gambarotta [50], Bacigalupo and Gambarotta [51] and Picandet et al. 

[52]). For an infinite number of grains when this internal length approaches zero, the 

nonlocal continualized model converges asymptotically toward the local continuum one. 

The advantage of discrete models in comparison with the continuum ones is their 

ability to describe better the inhomogeneous effects at the particle level. In recent decades, 

several models have been developed on the granular chains in order to understand deeper 

the static and dynamic behavior of these structures and predict more precisely the wave 

dispersion. Microstructural models of granular media based on both translation and 

rotational degrees of freedom have been initially investigated for regular granular packing 
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by Duffy [53] and for random granular packing by Digby [54] and Chang [55]. Mühlhaus 

and Vardoulakis [56] analyzed the influence of additional degrees of freedom on the 

familiar translational motion (Cosserat-type theories). This has led to formulations of the 

micro-polar type or Cosserat-type theories for random packing of granulates (Suiker et al. 

[57]). Chang and Ma [58] studied the random packing of grains based on linear elastic 

contact interactions with the isotropic distribution. Using the same concept for static 

analysis, the buckling behavior of the granular chain has recently been investigated by 

Challamel et al. [13]. Schwartz et al. [59] studied the vibrational behavior of solid grains 

by having particle rotation and translation together (Cosserat discrete model) while 

assuming only shear elastic interaction for both ordered and disordered packings. The 

model of Schwartz et al. [59] has been generalized using a discrete Cosserat model with 

the consideration of both shear and rotation interactions (Pasternak and Mühlhaus [11], 

Pichard et al. [60], Vasiliev et al. [61] and Massoumi et al. [27] for instance). In particular, 

Pasternak and Mühlhaus [11] studied both the dispersive wave propagation properties in 

the granular chain with both bending and shear interactions, and also the static response of 

the finite granular beam under distributed lateral forces. Furthermore, wave propagation 

properties of the infinite and a semi-infinite granular chain were investigated by  Pichard 

et al. [60]. 

The Bresse-Timoshenko beam model is also a generalization of the Euler-Bernoulli 

model and admits kinematics with two independent fields, a field of transverse 

displacement and a field of rotation. Timoshenko pointed out that the effects of cross-

sectional dimensions on the beam dynamic behavior and frequencies could be significant. 

Timoshenko [17, [18] calculated the exact eigenfrequencies for such a beam with two 
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degrees of freedom resting on two simple supports. Several lattice models have been 

developed based on microstructured Timoshenko in order to go further in understanding 

the structure behavior (see Ostoja-Starzewski [62] and Attar et al. [63]). The static and 

dynamic properties of a Cosserat-type lattice interface were studied by Vasiliev et al. [61]. 

Calculation of eigenfrequencies for a Bresse-Timoshenko beam with any boundary 

conditions and elastic interaction with a rigid medium is obtained by Wang and Stephens 

[64], Manevich [65] or Elishakoff et al. [66] (see more recently Elishakoff [67] and 

Challamel and Elishakoff [68]). Bresse-Timoshenko beam theory is merely a one-

dimensional Cosserat continuum medium by considering two independent translational 

and rotational degrees of freedom (Rubin [69] and Exadaktylos [70]). Thus, there is a 

fundamental link between these two continuum theories. In this thesis, we will develop a 

bridge between a discrete Cosserat theory for the granular system and an equivalent 

continuous one. 

In the past few years, several studies focused on the investigation of the equivalent 

continua formulations from the lattice model by discretizing a continuum beam through 

periodic discrete elements. The granular models are able to predict both the static and 

dynamic response of lattice by taking into account the effects of the motions of the 

neighborhood (Eringen [71, [23, [24]). Although the lattice models propose a very large 

number of degrees of freedom for complicated geometry but in many cases, they permit to 

obtain analytical results simply. The nonlocal continuum models are derived by 

continualizing the Lagrangian difference equations governing the granular model. To this 

aim, the higher order continuum differential equations are obtained eventually through the 

approximations of difference equations by using the polynomial expansions based on the 
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Taylor series (see for instance Kruskal and Zabusky [72] or more recently by Gul et al. 

[73]) or rational expansions based on Padé approximants (Askes and Metrikine [74], 

Andrianov et al. [75]). Challamel et al. [76] investigated the nonlocal model for an axial 

lattice loaded by distributed forces and in interaction with an elastic medium.  

In the literature, there are several general strategies to model the microstructure of 

a one-dimensional granular beam for bending. One strategy is based on pure rotational 

interactions, which consider only the elastic rotational springs, and take into account the 

bending effect; they are referred to as Hencky’s chain model (Hencky [77] and Naschie 

[78]) and lead to an equivalent Euler-Bernoulli continuum beam. Challamel et al. [79] 

studied the bending response of nonlocal Euler-Bernoulli under lateral loads using the 

nonlocal elastic model of Eringen. Gomez-Silva and Zaera [80] investigated different 

continualization methods for a one-dimensional Hencky beam model assuming only 

bending interactions. Another approach to model the microstructure of a beam consists in 

including the shear springs in addition to the rotational ones in order to simulate the shear 

interactions which are leading to an equivalent Timoshenko nonlocal beam (Bresse [16] 

and Timoshenko [17, [18]). Wave propagation of the granular beam assuming only shear 

effects has been studied by Schwartz et al. [59] and for axial, shear, and rotational 

interactions by Feng [26] (see also Nejadsadeghi et al. [81], Misra and Nejadsadeghi [82] 

and Nejadsadeghi and Misra [83]). The wave dispersion properties of the discrete granular 

beam under a discrete Winkler-type foundation has been studied by Massoumi et al. [84], 

which can be viewed as a discrete formulation of a Bresse-Timoshenko beam under a 

distributed Winkler-type foundation, as investigated by Manevich [65] also in term of wave 

dispersion properties. 



Chapter 1: Introduction 9 
 

 

Due to the importance of dynamic properties and functions of one-dimensional 

granular media, several studies have been done in various domains. Toward this aim, 

studying the phenomena involved using simple analytical models is beneficial. 

Starosvetsky et al. [85] studied the dynamic behavior of nonlinear granular chains with 

Hertz interaction. The problem of nonlinear perturbations in the one-dimensional granular 

chain is investigated by Nesterenko [86] in Hertzian contact. Herbold et al. [87] analyzed 

the formation and propagation of nonstationary signals in linear and nonlinear diatomic 

periodic one-dimensional granular chains. The free vibration of a granular chain with both 

bending and shear granular interactions rested on simply supported boundary conditions 

resting on Winkler elastic foundations is studied by Massoumi et al. [88]. In the present 

study, the same discrete Cosserat model with both rotation and shear elastic interactions 

will be considered, which could be understood as an equivalent discrete Bresse-

Timoshenko model (Bresse [16] and Timoshenko [17, [18]- see also Challamel and 

Elishakoff [68]).   

It is noteworthy to mention that detecting the constitutive equations and 

consequently identifying the material parameters, is one of the most important points of 

the micropolar theories. While studying the classical continuum model in isotropic 

materials only is needed to present two Lamé parameters, this might vary to six or more 

material moduli for the micropolar models. Generally, there exist two major strategies to 

obtain these material parameters. The first approach concerns defining various 

experimental tests based upon measuring size effects that have been reported (Gauthier and 

Jahsman [89], Lakes [90], Mora and Waas [91] and Beveridge et al. [92]). To this aim, the 

specimens of similar material and geometry are tested for various sizes to identify any 
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variation in stiffness with size. Lakes et al. [93] presented a method that can identify 

micropolar materials without testing the various sample size. An alternative method is 

using different homogenization procedures (Cielecka et al. [94], Larsson and Zhang [95] 

and Ostoja-Starzewski [62]). Accordingly, these approaches attempt to represent materials 

at the microstructural level basically using lattice structure by an assembly of individual 

elements. 

Many studies have been done to investigate the micropolar continuum models for 

plates and shells. Eringen [96], Eringen [97] and Altenbach and Eremeyev [98], Altenbach 

and Eremeyev [99] studied the application of the linear micropolar model for plates. 

Giorgio et al. [100] introduced an extended Cosserat model that accounts for the coupling 

between stretching deformations and the micro-rotation for 2D plates. Casolo [101] 

investigated the macroscopic modeling of the in-plane elastic behavior of composite solids 

and expounds the theoretical relationship between the orthotropic Cosserat continuum and 

the proposed rigid elements. Besides, many researchers investigated the in-plane stress of 

2D continuum plates using granular elements: Ouali et al. [102] studied the stress 

concentrations of plates with notches and holes using granular micromechanics, Turco et 

al. [103] formulated a nonlinear Lagrangian model for 2d elastic interacting grains, Placidi 

et al. [104] and Timofeev et al. [105] developed the continuum theories to interpret 2d 

granular microstructures. Hasanyan and Waas [106] investigated the buckling of a single 

strip of material, modeled as a two-dimensional (2D) micropolar solid. Misra and 

Poorsolhjouy [107] studied the discrete micropolar theory for 2D granular models in order 

to develop a 2D micromorphic continuum model. Giorgio et al. [108] used a nonlinear 2D 

Biot-Cosserat to study a micromorphic medium. 
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The comprehensive literature review that was presented above not only permits us 

to understand better the problem namely the discrete and continuum micropolar theory as 

well as prepare the proper background knowledge of the nonlocal models but also gives us 

an effective perspective to orient the future works. Besides, analyzing the related works in 

this area allows recognizing some absent aspects of the topic which also emphasize the 

importance of the doing current thesis. 

 
3. Motivation and Statement of the Problem 

This study is an attempt towards a better understanding of the length scale effects 

on the bending response of the granular beams. To this aim, first, a unidimensional discrete 

granular chain composed of a finite number of rigid grains connected elastically is studied. 

It is assumed that shear and rotational interactions exist at the rigid grain interfaces. This 

granular model can be classified also as a discrete Cosserat chain with two independent 

degrees of freedom (DOF) for each grain (the deflection and the rotation). Subsequently, 

such a discrete model permits to introduce the size effect (grain dimension) in the bending 

formulation of a microstructured granular beam. It is shown that for an infinite number of 

grains, the difference equations that govern the behaviour of the discrete granular beam 

converge towards the differential equations of the Bresse-Timoshenko beam resting on 

Winkler foundation (also classified as a continuous Cosserat beam model on Winkler 

foundation). A gradient Bresse-Timoshenko model is constructed from the continualization 

of the difference equations. The continuous gradient elasticity Cosserat model is obtained 

from a polynomial or a rational expansion of the pseudo-differential operators in which 

scale effects of the granular chain would be captured.  
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The exact solutions of this granular model subjected to a uniform distributed 

loading, are investigated in static conditions for various boundary conditions which are 

defined at the grain level. The performance of the Discrete Element Method (DEM) for 

simulating such a problem is investigated as well. Accordingly, a twin numerical problem 

is studied to compare the exact analytical results with the numerical ones simulated by 

DEM. Furthermore, the natural frequencies of a free vibrating granular beam with simply 

supported boundary conditions are analytically calculated for whatever modes.   

In chapter 3, we studied the free vibrations of granular-microstructured beams using 

the Cosserat discrete model. To this end, the dynamic responses of the one-dimensional 

granular beam have been investigated for simply supported boundary conditions through 

the analytical resolution of the exact problem. The effective parameters and the constitutive 

equations defined in the interactions are described in detail. Next, the governing equations 

of motion and variationally-based boundary conditions are derived through the Lagrangian 

of the system and Hamilton’s principle. For simply supported granular beams, the 

equivalency of the exact boundary conditions with an alternative problem (half boundary 

density with antisymmetric deflection) has been checked. Besides, the problem is simulated 

by DEM. The responses of the numerical approach are compared with the exact results of 

the analytical solutions which present a quite well accuracy. Some interesting features of 

the results such as the critical frequencies of the discrete model and the pure shear modes 

are discussed through the numerical sensitive analysis. 

This work is motivated also by the detection of standing waves and negative 

velocity of acoustic and optical waves observed in discrete granular models. This study 

allows us to understand better the incorporation between the theoretical models, granular 
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materials and the included effective parameters. Concerning wave propagation, granular 

elements create a structured wave-guide network through which mechanical energy is 

transferred. In the presence of internal (microstructural) length scales, the elastic wave 

propagation problem involves an interplay between wave dispersion and structural 

features. 

The last chapter is dedicated to the study of the same methodology (micropolar 

theory) for two-dimensional plates starting from the 2d granular arrangement and 

continuing to obtain an enrich continuum model. Accordingly, the in-plane deformation of 

the plate (using plane stress) is taken into account by using a comprehensive discrete 

granular model for a regular packing of grains including horizontal, vertical and diagonal 

interactions. To this aim, in order to analyze the in-plane deformation of the system. we 

consider the normal, shear and rotational interactions. First, the constitutive relationships 

and governing equations of motion are derived using the Lagrangian equation of the 

discrete system. Next, the continualized model is compared with the literature and the 

material parameters are determined according to the discrete model. In the end, novel 

nonlinear deformation energy based on 2d continuum micropolar theory is presented with 

regards to the new measure of deformation. 
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CHAPTER 2 
 

Static Bending of Granular Beam 

 
1. Introduction 

In this chapter, the bending behavior of the granular beam is investigated for a 

uniform distributed loading. The purpose is a deep analysis of discrete mechanics versus 

continuous ones which therefore leads to capture the internal length scale (grain diameter) 

and give some clues to check the ability of DEM (for instance using YADE) to account for 

the 1D Cosserat chain. Assuming that the number of granular elements is large enough, 

DEM with basic contact laws can describe enriched continuum mechanics. The local and 

non-local continuum models converge to each other for negligible length scale parameters. 

Within this perspective, comparisons between DEM and exact analytical Cosserat discrete 

solution through the static analysis of granular chain are carried out. Accordingly, the 

discrete system is considered as the reference model to be studied. This granular model 

could be considered as the discrete Cosserat model or discrete Bresse-Timoshenko model 

which takes into account the effects of the length scale.  It is shown that for an infinite 

number of grains this model converges to the local continuum model of Cosserat which is 

merely the local continuum model of Bresse-Timoshenko. This model is called local in the 

sense that the generalized variables of bending moment and shearing force depend on the 

variables of generalized deformations namely the curvature and sliding in a local way and 

without scale effects. 

 This chapter is organized as follows. First, the governing equations of such a 

granular chain are obtained assuming shear and rotational interactions between the grains. 
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Each grain is supposed to comprise two independent degrees of freedom which is in 

accordance with the Cosserat discrete theory. The model could be considered the same as 

the one investigated by  Pasternak and Mühlhaus [11] or more recently by Vasiliev et al. 

[61] for a static case under uniformly distributed loading. The novel aspects of this analysis 

are studying the granular model presented by Pasternak and Mühlhaus [11] for four various 

boundary conditions of simply supported, clamped, clamped-simply supported and 

clamped-free, the exact solutions of the bending discrete beam are studied. Also, the 

nonlocal continuum beam is investigated originally for the aforementioned boundary 

conditions and the results are compared well by the ones of the discrete model. Next, the 

same problem is simulated by DEM using YADE open-source software. The numerical 

results obtained by DEM are verified well with the exact analytical results of the granular 

model for the deflection and micro rotations. A significant accuracy was obtained between 

the results of these two approaches. Finally, the nonlocal continuum model is achieved 

through the continualization of the problem by virtue of the Taylor series.  

2. Discrete Granular Model 

In this section, the microstructure of a beam of length L is considered. The 

discretized beam is composed of n+1 spherical rigid grains of size a connected elastically 

by rotational springs of stiffness 𝑘𝑘𝑟𝑟  and shear springs of stiffness 𝑘𝑘𝑠𝑠 . The normal 

interactions between the grains are neglected to study the shear and bending response of 

the system. This model was used also by Pasternak and Mühlhaus [11] or more recent by 

Massoumi et al. [88]. The micro rolling rigidity and the micro shear stiffness relate to some 

macro parameters of the continuum beam, namely to the Young modulus 𝐸𝐸, the shear 

modulus 𝐺𝐺, the second moment of area 𝐼𝐼 , the area of the cross-section 𝐴𝐴 and the shear 
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coefficient of the Bresse-Timoshenko beam 𝒦𝒦   that depends on the Poisson’s ratio 

(Cowper [109]). 

𝑘𝑘𝑟𝑟 =
𝐸𝐸𝐼𝐼
𝑎𝑎

 ,   𝑘𝑘𝑠𝑠 =
𝒦𝒦𝐺𝐺𝐴𝐴
𝑎𝑎

 (1) 

The proposed model behaves as a discrete Cosserat model or equivalently as a discrete 

Bresse-Timoshenko one. The model is loaded by distributed vertical uniform forces 

denoted by 𝑄𝑄 = 𝑞𝑞𝑎𝑎  concentrated at the center of each grain. This model allows for 

capturing an intrinsic length scale a and can be shown in Figure 1. Assuming two degrees 

of freedom (DOF) for each grain (vertical displacement (𝑊𝑊𝑖𝑖) in addition to the rotation 

(𝛩𝛩𝑖𝑖)) in the 1D study let us apply Cosserat discrete theory by considering a system of 2(𝑛𝑛 +

1)  DOF.  

(a) 

 

(b) 

 

Figure 1. A discrete granular beam with length L (a) Non-deformed discretized beam (b) Deformed 
beam composed of 𝑛𝑛 + 1 rigid grain; 𝐿𝐿 = 𝑛𝑛𝑎𝑎 
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The Lagrangian of the system may be defined as 𝐿𝐿 = − (𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑏𝑏 + 𝑈𝑈𝑄𝑄), where 

𝑈𝑈𝑠𝑠 and 𝑈𝑈𝑏𝑏 are respectively the elastic potential energies of deformed shear and rotational 

springs and 𝑈𝑈𝑄𝑄  concerns the work done by the transverse distributed load. With the 

substitution of the potential terms, the Lagrangian or equivalently the energy functional 

may be expressed as: 

𝐿𝐿 = −�
1
2
�𝑘𝑘𝑠𝑠 �𝑊𝑊𝑖𝑖+1 −𝑊𝑊𝑖𝑖 − 𝑎𝑎

𝛩𝛩𝑖𝑖+1 + 𝛩𝛩𝑖𝑖
2

�
2𝑛𝑛−1

𝑖𝑖=0

+
1
2
�𝑘𝑘𝑟𝑟(𝛩𝛩𝑖𝑖+1 − 𝛩𝛩𝑖𝑖)2
𝑛𝑛−1

𝑖𝑖=0

−�𝑄𝑄𝑖𝑖𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=0

� 
(2) 

where 𝑊𝑊𝑖𝑖 = 𝑊𝑊(𝑥𝑥 = 𝑖𝑖𝑎𝑎) . The system of difference equations for both the discrete 

displacement and rotation fields is obtained from the application of Hamilton’s principle 

for the static case, given by: 

� 𝜹𝜹𝜹𝜹 𝒅𝒅𝒅𝒅
𝒅𝒅𝟐𝟐

𝒅𝒅𝟏𝟏
= � (−𝜹𝜹𝜹𝜹) 𝒅𝒅𝒅𝒅

𝒅𝒅𝟐𝟐

𝒅𝒅𝟏𝟏
= 𝟎𝟎 

(3) 

The contact forces 𝑉𝑉𝑖𝑖+1/2 and contact bending moment 𝑀𝑀𝑖𝑖+1/2 derived from the potential 

energy of the system can be expressed as  

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒔𝒔 �𝑾𝑾𝒊𝒊+𝟏𝟏 −𝑾𝑾𝒊𝒊 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒊𝒊+𝟏𝟏 + 𝜣𝜣𝒊𝒊)� , 

𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒓𝒓(𝜣𝜣𝒊𝒊+𝟏𝟏 − 𝜣𝜣𝒊𝒊) 

 

(4) 

for 𝑖𝑖 = 0, … ,𝑛𝑛 − 1 while for the grain 𝑖𝑖 two contact position 𝑖𝑖 ± 1
2
 could be defined (the 

subscript 𝑖𝑖 ± 1
2
 refers to the contact position at 𝑎𝑎𝑖𝑖 ± 𝑎𝑎

2
 ). Using Eq. (3) based on the energy 

function of Eq. (2) leads to the following difference equation system  

𝒌𝒌𝒔𝒔(𝑾𝑾𝒊𝒊+𝟏𝟏 + 𝑾𝑾𝒊𝒊−𝟏𝟏 − 𝟐𝟐𝑾𝑾𝒊𝒊) −
𝒂𝒂
𝟐𝟐
𝒌𝒌𝒔𝒔(𝜽𝜽𝒊𝒊+𝟏𝟏 − 𝜽𝜽𝒊𝒊−𝟏𝟏) = −𝑸𝑸𝒊𝒊   (𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏 − 𝟏𝟏)  

(5) 
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𝒂𝒂
𝟐𝟐
𝒌𝒌𝒔𝒔(𝑾𝑾𝒊𝒊+𝟏𝟏 −𝑾𝑾𝒊𝒊−𝟏𝟏) −

𝒂𝒂𝟐𝟐

𝟒𝟒
𝒌𝒌𝒔𝒔(𝜽𝜽𝒊𝒊+𝟏𝟏 + 𝜽𝜽𝒊𝒊−𝟏𝟏 + 𝟐𝟐𝜽𝜽𝒊𝒊)+𝒌𝒌𝒓𝒓(𝜽𝜽𝒊𝒊+𝟏𝟏 + 𝜽𝜽𝒊𝒊−𝟏𝟏 − 𝟐𝟐𝜽𝜽𝒊𝒊) = 𝟎𝟎   (𝒊𝒊

= 𝟏𝟏, … ,𝒏𝒏 − 𝟏𝟏) 

This equation could be compared well for static case by Pasternak and Mühlhaus [11] and 

Vasiliev et al. [61] for free beam. Also neglecting the rotational interactions (𝐶𝐶 = 0) leads 

to the static equilibrium equations of Schwartz et al. [59].  Eq. (5) might be generalized 

and rewritten compactly through the introduction of the following difference operators  

𝜹𝜹𝟎𝟎𝑾𝑾𝒊𝒊 =
𝑾𝑾𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝑾𝑾𝒊𝒊 + 𝑾𝑾𝒊𝒊−𝟏𝟏

𝟒𝟒
,   𝜹𝜹𝟏𝟏𝑾𝑾𝒊𝒊 =

𝑾𝑾𝒊𝒊+𝟏𝟏 −𝑾𝑾𝒊𝒊−𝟏𝟏

𝟐𝟐𝒂𝒂
,   𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊 =

𝑾𝑾𝒊𝒊+𝟏𝟏 − 𝟐𝟐𝑾𝑾𝒊𝒊 + 𝑾𝑾𝒊𝒊−𝟏𝟏

𝒂𝒂𝟐𝟐
 (6) 

It is noteworthy to mention that the boundary interactions are expressed as 

𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒓𝒓(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎),    𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒔𝒔 �𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)� ; 

𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒓𝒓(𝜣𝜣𝒏𝒏 − 𝜣𝜣𝒏𝒏−𝟏𝟏),    𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝒌𝒌𝒔𝒔 �𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)� 

 

(7) 

Thus, the coupled difference equations of the static bending of the granular chain could be 

obtained in the matrix form: 

� −𝒌𝒌𝒔𝒔𝜹𝜹𝟏𝟏 +𝒌𝒌𝒔𝒔𝜹𝜹𝟐𝟐
𝒌𝒌𝒓𝒓𝜹𝜹𝟐𝟐 − 𝒌𝒌𝒔𝒔𝜹𝜹𝟎𝟎 𝒌𝒌𝒔𝒔𝜹𝜹𝟏𝟏

� �𝜣𝜣𝒊𝒊
𝑾𝑾𝒊𝒊

� = �
−𝑸𝑸
𝒂𝒂𝟐𝟐
𝟎𝟎
� 

(8) 

The uncoupled difference equations could be obtained as follows  

𝒌𝒌𝒓𝒓𝜹𝜹𝟐𝟐𝜹𝜹𝟐𝟐𝜣𝜣𝒊𝒊 − 𝒌𝒌𝒔𝒔𝜹𝜹𝟎𝟎𝜹𝜹𝟐𝟐𝜣𝜣𝒊𝒊 − 𝜹𝜹𝟏𝟏
𝑸𝑸
𝒂𝒂𝟐𝟐

+ 𝒌𝒌𝒔𝒔𝜹𝜹𝟏𝟏𝜹𝜹𝟏𝟏𝜣𝜣𝒊𝒊 = 𝟎𝟎; 

𝒌𝒌𝒓𝒓𝜹𝜹𝟐𝟐 �
𝑸𝑸

𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐
+ 𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊� − 𝒌𝒌𝒔𝒔𝜹𝜹𝟎𝟎 �

𝑸𝑸
𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐

+ 𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊� + 𝒌𝒌𝒔𝒔𝜹𝜹𝟏𝟏𝜹𝜹𝟏𝟏𝑾𝑾𝒊𝒊 = 𝟎𝟎 

 

(9) 

Knowing the following relationship between the difference operators defined in Eq. (6) 

which is true also for the equivalent pseudo-differential operators  

𝜹𝜹𝟎𝟎𝜹𝜹𝟐𝟐 = 𝜹𝜹𝟐𝟐𝜹𝜹𝟎𝟎 = 𝜹𝜹𝟏𝟏𝜹𝜹𝟏𝟏    (10) 
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the fourth-order difference equation for the displacement and rotation of the granular beam 

could be obtained from Eq. (9) as follows: 

𝒌𝒌𝒓𝒓𝜹𝜹𝟐𝟐
𝟐𝟐𝑾𝑾𝒊𝒊 = �𝜹𝜹𝟎𝟎 −

𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔
𝜹𝜹𝟐𝟐�

𝑸𝑸
𝒂𝒂𝟐𝟐

,   𝒌𝒌𝒓𝒓𝜹𝜹𝟏𝟏
𝟑𝟑𝜽𝜽𝒊𝒊 = 𝜹𝜹𝟎𝟎

𝟐𝟐 𝑸𝑸
𝒂𝒂𝟐𝟐

 
(11) 

Assuming a constant uniform load distribution (𝑞𝑞) on the beam which is equivalent 

for the discrete model as the point load (𝑄𝑄 = 𝑎𝑎𝑞𝑞) applied to the center of the grain. 

Accordingly, the aforementioned difference equations could be simplified  

𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐𝑾𝑾𝒊𝒊 = 𝒒𝒒,   𝑬𝑬𝑬𝑬𝜹𝜹𝟏𝟏

𝟑𝟑𝜽𝜽𝒊𝒊 = 𝒒𝒒 (12) 

The displacement and rotation equations of each grain can be exactly obtained for the 

granular beam with distributed uniform loading as follows (see details in Appendix A) 

𝑾𝑾𝒊𝒊

= 𝑾𝑾𝟎𝟎 + �𝒂𝒂𝜽𝜽𝟎𝟎 + �
𝒂𝒂
𝟔𝟔
−
𝟐𝟐𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔𝒂𝒂

�𝜷𝜷� 𝒊𝒊 + �
𝒂𝒂
𝟐𝟐
𝜶𝜶� 𝒊𝒊𝟐𝟐 + �

𝒂𝒂
𝟑𝟑
𝜷𝜷� 𝒊𝒊𝟑𝟑 + �

𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟒𝟒

+ �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐; 

𝜽𝜽𝒊𝒊 = 𝜽𝜽𝟎𝟎 + 𝜶𝜶𝒊𝒊 + 𝜷𝜷𝒊𝒊𝟐𝟐 +
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

 

 

 

(13) 

where 𝑊𝑊0, 𝜃𝜃0, 𝛼𝛼 and 𝛽𝛽 are constants that are obtained through the boundary conditions. 

Furthermore, the shear and bending moment constitutive law is given by: 

𝑽𝑽𝒊𝒊 = 𝒌𝒌𝒔𝒔 �𝑾𝑾𝒊𝒊+𝟏𝟏/𝟐𝟐 −𝑾𝑾𝒊𝒊−𝟏𝟏/𝟐𝟐 −
𝒂𝒂
𝟐𝟐
�𝜣𝜣𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝜣𝜣𝒊𝒊−𝟏𝟏/𝟐𝟐�� = 𝒂𝒂𝒌𝒌𝒔𝒔��𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊 − �𝜹𝜹𝟎𝟎𝜣𝜣𝒊𝒊�; 

𝑴𝑴𝒊𝒊 = 𝒌𝒌𝒓𝒓�𝜣𝜣𝒊𝒊+𝟏𝟏/𝟐𝟐 − 𝜣𝜣𝒊𝒊−𝟏𝟏/𝟐𝟐� = 𝒂𝒂𝒌𝒌𝒓𝒓�𝜹𝜹𝟐𝟐𝜣𝜣𝒊𝒊 

 

(14) 

where the mean difference operators are defined by 

�𝜹𝜹𝟎𝟎𝑾𝑾𝒊𝒊 =
𝑾𝑾𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝑾𝑾𝒊𝒊−𝟏𝟏/𝟐𝟐

𝟐𝟐
,   �𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊 =

𝑾𝑾𝒊𝒊+𝟏𝟏/𝟐𝟐 −𝑾𝑾𝒊𝒊−𝟏𝟏/𝟐𝟐

𝒂𝒂
 

(15) 

The balance equations of the discrete granular system read 
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𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 − 𝑽𝑽𝒊𝒊−𝟏𝟏/𝟐𝟐 = −𝑸𝑸; 

𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 −𝑴𝑴𝒊𝒊−𝟏𝟏/𝟐𝟐 +
𝒂𝒂
𝟐𝟐
�𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 + 𝑽𝑽𝒊𝒊−𝟏𝟏/𝟐𝟐� = 𝟎𝟎 

 

(16) 

where 𝑉𝑉 is the shear force and 𝑀𝑀 is the bending moment. In view of Eq. (12), the recent 

equation leads to 

�𝜹𝜹𝟐𝟐𝑽𝑽𝒊𝒊 = −𝒒𝒒 ,   𝜹𝜹𝟎𝟎𝜹𝜹𝟏𝟏�𝜹𝜹𝟐𝟐𝑴𝑴𝒊𝒊 = 𝒒𝒒 (17) 

The general solutions of the bending and shear distributions in the discrete model 

could be considered as follows: 

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = −𝑸𝑸�𝒊𝒊 +
𝟏𝟏
𝟐𝟐

+ 𝝈𝝈� ,   𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 =
𝒂𝒂𝑸𝑸
𝟐𝟐
�(𝒊𝒊 +

𝟏𝟏
𝟐𝟐

)𝟐𝟐 + 𝟐𝟐𝝈𝝈(𝒊𝒊 +
𝟏𝟏
𝟐𝟐

) + 𝜸𝜸� (18) 

where 𝜎𝜎  and 𝛾𝛾  are the unknown which might be obtained from the boundary reaction 

forces.  

 
3. Simply Supported (S-S) Granular Beam 

In this section, the bending responses of the granular beam are investigated 

analytically and numerically (using DEM) for simply supported boundary conditions. 

Accordingly, the deflection and rotation equations of the system are obtained as a function 

of grain number by considering the exact discrete conditions for the boundary grains. Next, 

the model is simulated in YADE open-source software to estimate the accuracy of the 

numerical computations.  

3.1. Exact Analytical Solution 

Let’s consider a simply supported granular beam under uniformly distributed point 

load of intensity 𝑄𝑄. The reaction forces could be obtained from the equilibrium equations 

of the granular system as follows 
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𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 + 𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 − 𝒏𝒏𝑸𝑸 = 𝟎𝟎 ; 

   (𝒂𝒂𝒏𝒏)𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 − �
𝒂𝒂𝒏𝒏
𝟐𝟐 � (𝒏𝒏𝑸𝑸) = 𝟎𝟎  

 

(19) 

Note that 𝐹𝐹𝑑𝑑𝑟𝑟1  and 𝐹𝐹𝑑𝑑𝑟𝑟2  are the vertical reaction forces of the left and right boundaries and 

are found by 𝐹𝐹𝑟𝑟𝑟𝑟1 = 𝐹𝐹𝑟𝑟𝑟𝑟2 = 𝑛𝑛𝑄𝑄
2

.  Also, using the equilibrium conditions for the boundary grains 

individually leads to 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 −
𝑸𝑸
𝟐𝟐
− 𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   − �

𝒂𝒂
𝟐𝟐�

𝑽𝑽𝟏𝟏/𝟐𝟐 −𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ; 

𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 −
𝑸𝑸
𝟐𝟐

+ 𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 − �
𝒂𝒂
𝟐𝟐�

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎  

 

(20) 

Therefore, the shear and bending interactions of the boundary grains could be obtained as 

follows  

𝑽𝑽𝟏𝟏/𝟐𝟐 =
𝑸𝑸
𝟐𝟐

(𝒏𝒏 − 𝟏𝟏),   𝑴𝑴𝟏𝟏/𝟐𝟐 = −
𝒂𝒂𝑸𝑸
𝟒𝟒

(𝒏𝒏 − 𝟏𝟏) ; 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝑸𝑸
𝟐𝟐

(𝒏𝒏 − 𝟏𝟏),   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝒂𝒂𝑸𝑸
𝟒𝟒

(𝒏𝒏 − 𝟏𝟏) 

 

(21) 

Applying the values of Eq. (21) into Eq. (18), the distribution of bending moment and shear 

forces on the discrete granular beam could be obtained 

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = −𝑸𝑸�𝒊𝒊 +
𝟏𝟏
𝟐𝟐
−
𝒏𝒏
𝟐𝟐
� ,   𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 =

𝒂𝒂𝑸𝑸
𝟐𝟐
�(𝒊𝒊 +

𝟏𝟏
𝟐𝟐

)𝟐𝟐 − 𝒏𝒏(𝒊𝒊 +
𝟏𝟏
𝟐𝟐

) +
𝟏𝟏
𝟒𝟒
� (22) 

For an infinite number of grains (𝑛𝑛 → ∞), the corresponding local bending 

solutions of the Timoshenko continuum beam are found as follows (Timoshenko [110] and 

Wang et al. [111]) 

𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝜹𝜹
𝟐𝟐
� ,   𝑴𝑴(𝒙𝒙) =

𝒒𝒒
𝟐𝟐

(𝒙𝒙𝟐𝟐 − 𝜹𝜹𝒙𝒙) (23) 

The exact simply supported boundary conditions for such a granular system are defined by 

considering the sides grains could rotate freely while their vertical displacements are 
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blocked. Thus, the proposed boundary conditions based on the finite difference beam 

model are obtained from Eq. (20) by replacing the interactions of Eq. (7) as follows: 

𝑾𝑾𝟎𝟎 = 𝟎𝟎,   𝒂𝒂𝒌𝒌𝒔𝒔𝑾𝑾𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟐𝟐
𝒌𝒌𝒔𝒔(𝜽𝜽𝟏𝟏 + 𝜽𝜽𝟎𝟎)+𝟐𝟐𝒌𝒌𝒓𝒓(𝜽𝜽𝟏𝟏 − 𝜽𝜽𝟎𝟎) = 𝟎𝟎 ; 

𝑾𝑾𝒏𝒏 = 𝟎𝟎,   − 𝒂𝒂𝒌𝒌𝒔𝒔𝑾𝑾𝒏𝒏−𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟐𝟐
𝒌𝒌𝒔𝒔(𝜽𝜽𝒏𝒏−𝟏𝟏 + 𝜽𝜽𝒏𝒏)+𝟐𝟐𝒌𝒌𝒓𝒓(𝜽𝜽𝒏𝒏−𝟏𝟏 − 𝜽𝜽𝒏𝒏) = 𝟎𝟎 

 

(24) 

On the other hand, based on Hamilton’s principle, using the variationally-based 

boundary conditions, the same properties could be obtained as follows 

�𝒌𝒌𝒔𝒔 �𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)�� 𝜹𝜹𝑾𝑾𝟎𝟎 = 𝟎𝟎 ; 

�𝒌𝒌𝒔𝒔 �𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)�� 𝜹𝜹𝑾𝑾𝒏𝒏 = 𝟎𝟎 ; 

�𝒌𝒌𝒓𝒓(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎) +
𝒂𝒂
𝟐𝟐𝒌𝒌𝒔𝒔

(𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎) −
𝒂𝒂𝟐𝟐

𝟒𝟒 𝒌𝒌𝒔𝒔(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)� 𝜹𝜹𝜣𝜣𝟎𝟎 = 𝟎𝟎 ; 

�−𝒌𝒌𝒓𝒓(𝜣𝜣𝒏𝒏−𝟏𝟏 − 𝜣𝜣𝒏𝒏) −
𝒂𝒂
𝟐𝟐𝒌𝒌𝒔𝒔

(𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏) +
𝒂𝒂𝟐𝟐

𝟒𝟒 𝒌𝒌𝒔𝒔(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)� 𝜹𝜹𝜣𝜣𝒏𝒏 = 𝟎𝟎 

 

 

 

 

(25) 

The substitution of general solutions of Eq. (13) into boundary conditions (24) leads to the 

displacement and rotation equations of the simply supported granular chain which could 

be expressed as follows: 

𝑾𝑾𝒊𝒊 = ��
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� �𝒏𝒏𝟑𝟑 − 𝟐𝟐𝒏𝒏� +
𝑸𝑸𝒏𝒏
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊 − �
𝒂𝒂𝟐𝟐𝒏𝒏𝑸𝑸
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟑𝟑 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟒𝟒 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐; 

𝜽𝜽𝒊𝒊 = �
𝒂𝒂𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� �𝒏𝒏𝟑𝟑 − 𝒏𝒏� +
𝒂𝒂𝑸𝑸
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

𝒊𝒊 −
𝒂𝒂𝑸𝑸𝒏𝒏
𝟒𝟒𝒌𝒌𝒓𝒓

𝒊𝒊𝟐𝟐 +
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

 

(26) 

Recalling the continuum terms (𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝑘𝑘𝑠𝑠 = 𝒦𝒦𝒦𝒦𝒦𝒦
𝑎𝑎

, 𝑘𝑘𝑟𝑟 = 𝐸𝐸𝐸𝐸
𝑎𝑎

), leads to 

𝑾𝑾(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 ��𝟏𝟏 +
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹� − 𝟐𝟐 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
+ �

𝒙𝒙
𝜹𝜹�

𝟒𝟒
− �

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹�

𝟐𝟐
−
𝟐𝟐𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 �𝟏𝟏 −
𝒙𝒙
𝜹𝜹� �

𝒙𝒙
𝜹𝜹�� ; 

𝜽𝜽(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟑𝟑

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 �𝟏𝟏 − 𝟔𝟔 �
𝒙𝒙
𝜹𝜹�

𝟐𝟐
+ 𝟒𝟒 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
−
𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 �𝟏𝟏 − 𝟐𝟐 �
𝒙𝒙
𝜹𝜹��� 

 

(27) 
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It is worthwhile to note that the scale effect leads to the smaller values of deflection and 

micro rotation which concludes the hardening behavior of the beam. Assuming an infinite 

number of grains when 𝑎𝑎 → 0 for the continuum model, Eq. (27) leads to 

𝑾𝑾(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 ��𝟏𝟏 +
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹� − 𝟐𝟐 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
+ �

𝒙𝒙
𝜹𝜹�

𝟒𝟒
− �

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹�

𝟐𝟐
� ; 

𝜽𝜽(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟑𝟑

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 �𝟏𝟏 − 𝟔𝟔 �
𝒙𝒙
𝜹𝜹�

𝟐𝟐
+ 𝟒𝟒 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
� 

 

(28) 

These equations could be compared well by the equivalent local continuum model of  

Timoshenko [110]. The maximum deflection and micro rotation angle which occur 

respectively at the middle (𝑥𝑥 = 𝐿𝐿
2
) and on the boundaries (𝑥𝑥 = 0, 𝐿𝐿) are given by  

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬
�
𝟓𝟓
𝟏𝟏𝟔𝟔

−
𝟏𝟏
𝟐𝟐𝒏𝒏𝟐𝟐

+
𝟑𝟑𝑬𝑬𝑬𝑬

𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐
� < 𝒇𝒇𝑺𝑺𝑺𝑺∞ ; 

𝜽𝜽𝒎𝒎𝒂𝒂𝒙𝒙 =
𝒒𝒒𝜹𝜹𝟑𝟑

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬
�𝟏𝟏 −

𝟏𝟏
𝒏𝒏𝟐𝟐
� 

 

(29) 

𝑓𝑓𝑆𝑆𝑆𝑆
∞  refers to the maximum bending displacement of the S-S continuum Timoshenko beam 

which is given by Eq. (30). For an infinite number of grains (𝑎𝑎 → 0) the discrete solutions 

converge to the local continuum deflection results obtained by Timoshenko [110]: 

𝑬𝑬𝑬𝑬
𝒒𝒒𝜹𝜹𝟒𝟒

𝒇𝒇𝑺𝑺𝑺𝑺∞ =
𝟓𝟓
𝟑𝟑𝟑𝟑𝟒𝟒

+
𝑬𝑬𝑬𝑬

𝟑𝟑𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐
 

(30) 

 It could be concluded that the nonlocal terms that affect the granular beam contribute to a 

stiffening effect, as compared to the so-called local continuum solution. The response of 

the system for clamped-simply, clamped-clamped and clamped-free boundary conditions 

are discussed in Appendix B. 

The deflection and rotation of the granular beam subjected to distributed loading 

are shown in Figure 2 for various boundary conditions presented above. The results are 
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obtained for the numerical problem of section 3.2 while the typical value of grain number 

is fixed to 11.  

(a) (b) 

 

 

Figure 2. Static bending granular beam solution for 11 number of grains (a) Deflection and (b) 
Rotation 
 
Figure 3 studies the effect of the grain number on the exact solution of the simply supported 

granular beam (Eq. (26)). The difference between the discrete and continuum solutions 

parameterized by ( 𝜖𝜖 = 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑊𝑊𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷

𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 100 ) are plotted. The effects of the 

rotational and shear spring rigidity and the beam length are also investigated. As it was 

expected, the discrete results converge to the continuum ones by increasing the grain 

number or decreasing the length scale. For this specific numerical problem (introduced in 

section) 𝜖𝜖 is less than 1% when the grain number is more than 10.  It could be concluded 

that either the decrease of bending stiffness or the increase of the shear stiffness leads to 

the larger difference values of the discrete and continuum models.  

(a) (b) 
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(c) 

 

Figure 3. Parametric analysis of the continuum and discrete differences (𝝐𝝐) with regards to the grain 
number values for a simply supported granular beam by varying (a) Rotational spring rigidity, (b) 
Shear spring rigidity, and (c) Beam length 

 
3.2. Numerical Simulations (DEM) 

In this section, a granular beam of length L similar to Figure 2, is studied for 

different values of grain number. The open-source software YADE (Šmilauer et al. [112]) 

is used for numerical simulations. This model embeds parameters such as the number of 

grains, initial positions, density, and radius. To model the contact behavior of the grains, 

an elastic contact relation will be used thereafter. The contact stiffnesses are defined as 

follows 

𝒌𝒌𝒏𝒏 = 𝑬𝑬𝒂𝒂,   𝒌𝒌𝒔𝒔 = 𝝑𝝑𝒎𝒎𝒌𝒌𝒏𝒏,   𝒌𝒌𝒃𝒃 = 𝜶𝜶𝒃𝒃𝒌𝒌𝒔𝒔 �
𝒂𝒂
𝟐𝟐�

𝟐𝟐
 

(31) 
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Note that 𝑘𝑘𝑛𝑛, 𝑘𝑘𝑠𝑠  and 𝑘𝑘𝑏𝑏  are associated with normal, shear, and bending stiffness. 𝜗𝜗𝑚𝑚  and 

𝛼𝛼𝑏𝑏are respectively the contact stiffness ratio and the dimensionless rolling stiffness which 

can be defined as follows with regards to the discrete model presented in section 2.  

𝝑𝝑𝒎𝒎 =
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚
𝑬𝑬𝒂𝒂𝟐𝟐

,   𝜶𝜶𝒃𝒃 =
𝟑𝟑𝑬𝑬𝑬𝑬

𝑬𝑬𝝑𝝑𝒎𝒎𝒂𝒂𝟒𝟒
 (32) 

The micromechanical properties of the beam are calculated for Titanium with the 

mechanical properties of 𝐸𝐸 = 116 𝐺𝐺𝐺𝐺𝑎𝑎 and 𝐺𝐺 = 43 𝐺𝐺𝐺𝐺𝑎𝑎. The beam geometry is introduced 

by 𝐿𝐿 = 1 𝜇𝜇,𝐴𝐴 = 0.3 𝜇𝜇2 and 𝐼𝐼 = 0.009 𝜇𝜇4. Thus, ones could be obtained as below: 

𝒌𝒌𝒔𝒔 = 𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐𝒏𝒏 
𝑵𝑵
𝒎𝒎

,   𝒌𝒌𝒃𝒃 = 𝟏𝟏.𝟎𝟎𝟒𝟒𝒏𝒏  𝑵𝑵.𝒎𝒎 ,   𝑸𝑸 =
𝟏𝟏𝟎𝟎
𝒏𝒏

  𝒌𝒌𝑵𝑵 (33) 

where 𝑛𝑛 is the grain number. The problem is investigated for a rectangular cross-section 

beam. The shear coefficient of the Bresse-Timoshenko beam could be estimated from 𝒦𝒦 =

5(1+𝜗𝜗)
6+5𝜗𝜗

 (Challamel and Elishakoff [68]). Once the mechanical and geometrical parameters 

of the model are defined completely, the physical law and the mechanical principles of the 

system need to be introduced (collision physics and the contact law).  

3.2.1. Collision Detection 

There exist several efficient ways to determine approximately the contacts between 

discrete element pairs such as nearest neighbor contact detection scheme, neighboring cell 

contact detection scheme and sweep and prune. Depending on particles' arrangement or 

their shape, each method has its own advantages or disadvantages.  

The sweep and prune algorithm is used for collision detection in Yade through the 

consideration of the bounding box. This general approach deals more efficiently with high 

density systems while permitting to handle poly-sized particle distributions. To this aim, 



Chapter 2: Static Bending of Granular Beam 28 
 

 

each particle is surrounded by a bounding box with edges aligned with the reference 

coordinate system. In order to detect the collision between particles only it is needed to 

check the overlapping of the bounding boxes. The sweep and prune algorithm is optimized 

with Verlet’s distance (Verlet [113]). Accordingly, this permits to introduce a relative 

length to enlarge the bounding boxes. 

3.2.2. Interactions 

Once the elements which are in contact are detected, it is needed to find the exact 

collision depending on the geometry of the individual particle. Since at every timestep the 

grains can move or rotate, exact collision detection must be run at every step. Let us 

consider two identical grains (with diameter 𝑎𝑎) in the non-deformed configuration. The 

position vectors are presented by 𝑑𝑑1 and 𝑑𝑑2. The two spheres enter in when the distance 

(𝑢𝑢𝑛𝑛) between the spheres is negative, with 

𝒖𝒖𝒏𝒏 = ‖𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟏𝟏‖ − 𝒂𝒂 (34) 

The unit normal orientation (𝑛𝑛) at the contact is obtained by 

𝒏𝒏 =
𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟏𝟏
‖𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟏𝟏‖

 (35) 

Regarding the problem investigated in this chapter, the normal relative displacement is 

null, only the shear and bending relative displacement of two grains in contact are 

computed. The shear displacement contains two parts, namely the motion of the interaction 

in global space and the relative motion of spheres. At each step, the shear displacement 𝑢𝑢𝑠𝑠 

is updated as follows  

𝒖𝒖𝒔𝒔𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖𝒔𝒔𝒅𝒅 + (𝜹𝜹𝒔𝒔)𝟏𝟏 + (𝜹𝜹𝒔𝒔)𝟐𝟐 + (𝜹𝜹𝒔𝒔)𝟑𝟑 (36) 
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where (𝛿𝛿𝑠𝑠)1 and (𝛿𝛿𝑠𝑠)2 refer to the contact displacements due to changes in the spheres’ 

positions and (𝛿𝛿𝑠𝑠)3  is the relative motion of spheres. These terms could be obtained 

respectively by 

(𝜹𝜹𝒔𝒔)𝟏𝟏 = −𝜹𝜹𝒔𝒔𝒅𝒅−∆𝒅𝒅 × (𝒏𝒏𝒅𝒅−∆𝒅𝒅 × 𝒏𝒏𝒅𝒅); 

(𝜹𝜹𝒔𝒔)𝟐𝟐 = −𝜹𝜹𝒔𝒔𝒅𝒅−∆𝒅𝒅 × �
∆𝒅𝒅
𝟐𝟐
𝒏𝒏𝒅𝒅.�𝝎𝝎𝟏𝟏

𝒅𝒅−∆𝒅𝒅𝟐𝟐 + 𝝎𝝎𝟐𝟐
𝒅𝒅−∆𝒅𝒅𝟐𝟐 ��𝒏𝒏𝒅𝒅; 

(𝜹𝜹𝒔𝒔)𝟑𝟑 = −∆𝒅𝒅 𝒗𝒗𝟏𝟏𝟐𝟐⊥  

 

(37) 

Note that ∆𝑡𝑡 is the time step and the superscript 𝑡𝑡 refers to the current time. 𝑣𝑣12⊥  is the 

relative velocity perpendicular to the interaction normal vector and could be computed as 

follows 

𝒗𝒗𝟏𝟏𝟐𝟐⊥ = 𝒗𝒗𝟏𝟏𝟐𝟐 − (𝒗𝒗𝟏𝟏𝟐𝟐.𝒏𝒏𝒅𝒅)𝒏𝒏𝒅𝒅; 

𝒗𝒗𝟏𝟏𝟐𝟐 = �𝒗𝒗𝟐𝟐
𝒅𝒅−∆𝒅𝒅/𝟐𝟐 − 𝒗𝒗𝟏𝟏

𝒅𝒅−∆𝒅𝒅/𝟐𝟐� −
𝒂𝒂
𝟐𝟐
�𝝎𝝎𝟏𝟏

𝒅𝒅−∆𝒅𝒅/𝟐𝟐 + 𝝎𝝎𝟐𝟐
𝒅𝒅−∆𝒅𝒅/𝟐𝟐� × 𝒏𝒏𝒅𝒅 

 

(38) 

The relative rotation of each grain sphere is expressed by 

𝜹𝜹𝒃𝒃 = ∆𝒅𝒅 (𝝎𝝎𝟐𝟐
𝒅𝒅 − 𝝎𝝎𝟏𝟏

𝒅𝒅 ) × 𝒏𝒏𝒅𝒅 (39) 

Once all kinematics components of the contact interaction are introduced and also the exact 

contact location (for instance 𝑑𝑑1 + 𝑎𝑎
2
𝑛𝑛) is detected, the physical properties of the contact can 

be defined. To this aim, the following contact model is adopted, in which the normal, shear 

and bending forces and also the bending moment are defined by 

𝑭𝑭𝒏𝒏 = 𝒌𝒌𝒏𝒏𝜹𝜹𝒏𝒏,     𝑭𝑭𝒔𝒔 = 𝒌𝒌𝒔𝒔𝜹𝜹𝒔𝒔,    𝑴𝑴𝒃𝒃 = 𝒌𝒌𝒃𝒃𝜹𝜹𝒃𝒃 (40) 

where 𝛿𝛿𝑛𝑛, 𝛿𝛿𝑠𝑠 correspond to relative displacements in the normal and tangential direction 

and 𝛿𝛿𝑏𝑏  is the relative rotation. It is worth mentioning that the friction angle (𝜑𝜑) which 

controls the relative sliding, is fixed to 90 degrees.  
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3.2.3. Explicit Dynamic Algorithm 

The numerical resolution is based on an explicit integration scheme based on a 

Velocity Verlet scheme well adapted to DEM simulation. Once, the shear forces and 

bending moments at the interactions are computed, the accelerations of each particle can 

be estimated from the second Newton’s law (Eq. (41)). In order to update the grain 

positions at the next timestep (𝑢𝑢𝑡𝑡+∆𝑡𝑡) from the current position (𝑢𝑢𝑡𝑡), the current acceleration 

(�̈�𝑢𝑡𝑡) is integrated by time as follows.  

�̈�𝒖𝒅𝒅 = 𝜹𝜹𝟐𝟐𝒅𝒅𝒖𝒖 =
𝑭𝑭
𝒎𝒎

 (41) 

where the time differences operator of 𝛿𝛿2𝑡𝑡 is defined  

𝜹𝜹𝟐𝟐𝒅𝒅𝒖𝒖 =
𝒖𝒖𝒅𝒅+∆𝒅𝒅 + 𝒖𝒖𝒅𝒅−∆𝒅𝒅 − 𝟐𝟐𝒖𝒖𝒅𝒅

∆𝒅𝒅𝟐𝟐
 

(42) 

So, the position of the next timestep might be expressed by 

𝒖𝒖𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖𝒅𝒅 + ∆𝒅𝒅 �
𝒖𝒖𝒅𝒅 − 𝒖𝒖𝒅𝒅−∆𝒅𝒅

∆𝒅𝒅
+ �̈�𝒖𝒅𝒅∆𝒅𝒅� 

(43) 

Since only the current position (𝑢𝑢𝑡𝑡) is known, the mean terms could be defined as follows 

�̇�𝒖𝒅𝒅−∆𝒅𝒅/𝟐𝟐 =
𝒖𝒖𝒅𝒅 − 𝒖𝒖𝒅𝒅−∆𝒅𝒅

∆𝒅𝒅
 

(44) 

The mean velocity during the previous step is known, thus,  

𝒖𝒖𝒅𝒅+∆𝒅𝒅 = 𝒖𝒖𝒅𝒅 + ∆𝒅𝒅��̇�𝒖𝒅𝒅−∆𝒅𝒅/𝟐𝟐 + �̈�𝒖𝒅𝒅∆𝒅𝒅� (45) 

The current mean velocity (�̇�𝑢𝑡𝑡+∆𝑡𝑡/2) is needed for the next step and obtained from the 

following equation 

�̈�𝒖𝒅𝒅 =
�̇�𝒖𝒅𝒅+∆𝒅𝒅/𝟐𝟐 − �̇�𝒖𝒅𝒅−∆𝒅𝒅/𝟐𝟐

∆𝒅𝒅
 

(46) 
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3.2.4. Numerical Results 

The discrete granular beam has been simulated by DEM for various boundary 

conditions. It could be demonstrated that the DEM numerical results have a significant 

accuracy with the exact analytical ones for the four types of boundary conditions S-S, C-

C, S-C, and C-F. The maximum deflection and micro-rotation of the granular beam are 

reported respectively in Table 1 and Table 2. Although the numerical simulation includes 

dynamical effects (based on Newton’s equation of motion) and so hysteresis effects may 

appear due to incremental formulation of the contact law, a significant accuracy (nearly 

0.01%) has been obtained for the numerical results in comparison with the exact analytical 

ones. 

4. Nonlocal Continuum Approach 

Nonlocal continuum theories stem from the substitution of the local axiom action 

by the principle of weakening neighborhood. This states that the mechanical behavior of 

each element is affected significantly by the rotation and displacement of a finite-size 

neighborhood. Subsequently, internal characteristic length and scale effects can be 

introduced through gradient elasticity or nonlocal elasticity. Furthermore, discrete granular 

structured systems (Cosserat discrete) behave as nonlocal structural systems in which the 

continualization leads to the nonlocal continuum models. 

In this section, a more refined Cosserat continuum that accounts for the internal 

nonlocal effects is proposed through the continualization of the difference governing 

coupled equation of the Cosserat discrete chain (Eq. (8)) using polynomial or rational 

expansions. Accordingly, the governing differential equations are given with the 

variationally-based boundary conditions. It is worth mentioning that for clamped ends, the 
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nonlocal boundary conditions are the same as the discrete ones. The nonlocal boundary 

conditions of C-S, C-C and C-F boundaries are also investigated in Appendix E. For simply 

supported boundary conditions, several different strategies are followed to obtain the 

nonlocal solutions. The nonlocal boundary conditions could be investigated from various 

approaches: the first approximation is based on the development of the continuum 

equilibrium equations of the boundaries independently from the discrete model. 

Alternative approaches are based on the discrete model formulations (2nd nonlocal 

approximation) such as continualization of the exact cinematic conditions, continualization 

of the bending moment, or continualization of the static boundary conditions. 

The coupled balance equations of Eq. (8) could be continualized using the Taylor 

series in the function of the small length scale noted by 𝒂𝒂 . The governing differential 

equations of the nonlocal continuum beam could be stated by 

𝑬𝑬𝑬𝑬𝜣𝜣′′′ = 𝒒𝒒,   𝑬𝑬𝑬𝑬𝑾𝑾′′′′ = 𝒒𝒒   (47) 

The details are given in Appendix C. Accordingly, the governing equations of the nonlocal 

beam could be obtained the same as the local continuum beam from the coupled differential 

equations. Since the second gradient of the external load (a uniformly distributed load) is 

null, the governing differential equations of the nonlocal model are identical to the ones 

that have been obtained for the local continuum Bresse-Timoshenko beam (Timoshenko 

[110]). The general solution reads in a quartic and cubic form respectively for the deflection 

and micro rotation as 

𝑾𝑾(𝒙𝒙) = 𝓚𝓚�𝟏𝟏 + 𝑩𝑩�𝟏𝟏𝒙𝒙 + 𝑪𝑪�𝟏𝟏𝒙𝒙𝟐𝟐 + 𝑫𝑫�𝟏𝟏𝒙𝒙𝟑𝟑 +
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬
𝒙𝒙𝟒𝟒; 

𝜣𝜣(𝒙𝒙) = 𝓚𝓚�𝟐𝟐 + 𝑩𝑩�𝟐𝟐𝒙𝒙 + 𝑪𝑪�𝟐𝟐𝒙𝒙𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬

𝒙𝒙𝟑𝟑 

(48) 
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�̅�𝐴1,𝐵𝐵�1,𝐶𝐶1̅,𝐷𝐷�1, �̅�𝐴2,𝐵𝐵�2 and 𝐶𝐶2̅  are constants. Replacing Eq. (48) in the coupled balance 

equations of the nonlocal model presented by Eq. (C.2) leads to   

𝑾𝑾(𝒙𝒙) = 𝑾𝑾���𝟎𝟎 + �𝜽𝜽�𝟎𝟎  +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝝁𝝁 −
𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝝁𝝁�𝒙𝒙 + �

𝝀𝝀
𝟐𝟐 +

𝒂𝒂𝟐𝟐𝒒𝒒
𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 −

𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙

𝟐𝟐 + �
𝝁𝝁
𝟑𝟑� 𝒙𝒙

𝟑𝟑 +
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬𝒙𝒙
𝟒𝟒; 

𝜣𝜣(𝒙𝒙) = 𝜽𝜽�𝟎𝟎  + 𝝀𝝀𝒙𝒙 + 𝝁𝝁𝒙𝒙𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬 𝒙𝒙

𝟑𝟑 

 

(49) 

where 𝑊𝑊�0, �̅�𝜃0, 𝜇𝜇 and 𝜆𝜆  are constants. These constant parameters would be obtained by 

applying the boundary conditions. On the other hand, the nonlocal shear and bending 

moment of the beam could be obtained from the continualization of Eq. (14) through the 

rational expansion of second order for the difference operator as follows 

𝑽𝑽(𝒙𝒙) = 𝓚𝓚𝓚𝓚𝓚𝓚�𝑾𝑾′(𝒙𝒙) − 𝜣𝜣(𝒙𝒙) − 𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
𝑾𝑾′′′(𝒙𝒙)�  

(50) 

𝑴𝑴(𝒙𝒙) −
𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒
𝑴𝑴′′(𝒙𝒙) = 𝑬𝑬𝑬𝑬𝜣𝜣′(𝒙𝒙) 

(51) 

Furthermore, in view of the continualization of Eq. (17), 𝑀𝑀′′(𝑥𝑥) = 𝑞𝑞 . Thus, Eq. (51) might 

be rewritten eventually as follows 

𝑴𝑴(𝒙𝒙) = 𝑬𝑬𝑬𝑬𝜣𝜣′(𝒙𝒙) +
𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒
𝒒𝒒 

(52) 

4.1. Continualization of the Boundary Conditions with Static Variables 

This method stems from the direct continualization of the equilibrium equations of 

the continuum beam. Developing the equilibrium equations of the boundaries (See 

Appendix D, Eq. (D.4)) by Taylor series and ignoring the higher order of terms 𝑎𝑎3 leads to 

𝑴𝑴(𝟎𝟎) +
𝒂𝒂
𝟐𝟐𝑴𝑴

′(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟑𝟑 𝑴𝑴′′(𝟎𝟎) +
𝒂𝒂
𝟐𝟐�𝑽𝑽

(𝟎𝟎) +
𝒂𝒂
𝟐𝟐𝑽𝑽

′(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟑𝟑 𝑽𝑽′′(𝟎𝟎)� = 𝟎𝟎 ;   

  𝑴𝑴(𝜹𝜹) −
𝒂𝒂
𝟐𝟐𝑴𝑴

′(𝜹𝜹) +
𝒂𝒂𝟐𝟐

𝟑𝟑 𝑴𝑴′′(𝜹𝜹) +
𝒂𝒂
𝟐𝟐�𝑽𝑽

(𝜹𝜹) −
𝒂𝒂
𝟐𝟐𝑽𝑽

′(𝜹𝜹) +
𝒂𝒂𝟐𝟐

𝟑𝟑 𝑽𝑽′′(𝜹𝜹)� = 𝟎𝟎 

 

 

(53) 
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Knowing 𝑉𝑉(𝑥𝑥) = −𝑀𝑀′(𝑥𝑥) and 𝑉𝑉′(𝑥𝑥) = −𝑀𝑀′′(𝑥𝑥) = −𝑞𝑞, the abovementioned equations could 

be simplified as follows 

𝑴𝑴(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟑𝟑
(𝒒𝒒 − 𝟐𝟐𝒒𝒒) = 𝟎𝟎;   𝑴𝑴(𝜹𝜹) +

𝒂𝒂𝟐𝟐

𝟑𝟑
(𝒒𝒒 − 𝟐𝟐𝒒𝒒) = 𝟎𝟎 

(54) 

It is noteworthy to conclude that despite the simply supported boundary conditions the 

nonlocal bending moments on the pinned boundaries are not zero and is equal to 𝑀𝑀(0) =

𝑀𝑀(𝐿𝐿) = 𝑎𝑎2𝑞𝑞
8

. Thus, based on the nonlocal bending moment presented by Eq. (52), the 

nonlocal boundary conditions could be obtained independently from the discrete model as 

follows 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣′(𝟎𝟎) =
𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬

 ;    𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ;    𝜣𝜣′(𝜹𝜹) =
𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬

 
(55) 

The constant of the nonlocal general solutions of Eq. (49) could be obtained concerning 

the aforementioned set of conditions. Accordingly, the solutions are given 

𝑾𝑾(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 ��𝟏𝟏 −
𝟐𝟐𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 +
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹� + �

𝟐𝟐𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 −
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� �

𝒙𝒙
𝜹𝜹�

𝟐𝟐
− 𝟐𝟐 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
+ �

𝒙𝒙
𝜹𝜹�

𝟒𝟒
� ; 

𝜣𝜣(𝒙𝒙) =
𝒒𝒒𝜹𝜹𝟑𝟑

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 �𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 +
𝟐𝟐𝒂𝒂𝟐𝟐

𝜹𝜹𝟐𝟐 �
𝒙𝒙
𝜹𝜹� − 𝟔𝟔 �

𝒙𝒙
𝜹𝜹�

𝟐𝟐
+ 𝟒𝟒 �

𝒙𝒙
𝜹𝜹�

𝟑𝟑
� 

 

 

(56) 

These nonlocal solutions are exactly the same as those presented in Eq. (27) from the 

discrete model. For instance, the maximum deflection values are expressed by 

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬
�
𝟓𝟓
𝟏𝟏𝟔𝟔

−
𝒂𝒂𝟐𝟐

𝟐𝟐𝜹𝜹𝟐𝟐
+

𝟑𝟑𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐

� 
(57) 

which can be compared well also by the results of the granular beam by Eq. (29). 

4.2. Continualization of the Boundary Conditions Based on Deflection 

An alternative approach based only on the deflection equation could be considered 

as follows. The differential deflection equation of the continuum beam could be expressed 
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by 𝐸𝐸𝐼𝐼𝑊𝑊′′′′ = 𝑞𝑞 . In order to investigate the deflection equation of the problem, we have to 

consider four boundary values based on the deflection. From the discrete medium, it could 

be written 

(𝜹𝜹𝟎𝟎 − 𝒌𝒌𝒓𝒓/𝒌𝒌𝒔𝒔 𝜹𝜹𝟐𝟐)𝜣𝜣𝒊𝒊 = 𝜹𝜹𝟏𝟏𝑾𝑾𝒊𝒊 (58) 

Using the rational expansion for the rotation (𝛩𝛩𝑖𝑖 = 𝑀𝑀
𝐸𝐸𝐸𝐸�𝛿𝛿2

), it can be found 

(𝜹𝜹𝟎𝟎 −
𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚

𝜹𝜹𝟐𝟐)𝑴𝑴 = 𝑬𝑬𝑬𝑬𝜹𝜹𝟏𝟏�𝜹𝜹𝟐𝟐𝑾𝑾 (59) 

Through the polynomial development of the difference operators (using Taylor series by 

neglecting the higher-order terms in 𝒂𝒂4), this can be continualized as 

��𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟒𝟒 � −
𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐�𝑴𝑴 = 𝑬𝑬𝑬𝑬 �𝟏𝟏 +

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟔𝟔 ��𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟐𝟐𝟒𝟒 �𝑫𝑫𝒙𝒙
𝟐𝟐𝑾𝑾 

(60) 

Considering the general solution of deflection given by Eq. (48) and knowing 𝑀𝑀′′(𝑥𝑥) = 𝑞𝑞, 

the nonlocal moment could be obtained  

𝑴𝑴(𝒙𝒙) = −
𝒂𝒂𝟐𝟐𝒒𝒒
𝟒𝟒

+
𝑬𝑬𝑬𝑬𝒒𝒒
𝓚𝓚𝓚𝓚𝓚𝓚

+ 𝑬𝑬𝑬𝑬�𝟏𝟏 +
𝟓𝟓𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟐𝟐𝟒𝟒
�𝑫𝑫𝒙𝒙

𝟐𝟐𝑾𝑾 
(61) 

Here, the simply supported continuum beam is introduced with the nonlocal boundary 

conditions depending only on the displacement which may be written by: 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝑾𝑾′′(𝟎𝟎) +
𝟓𝟓𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒
𝑾𝑾′′′′(𝟎𝟎) =

𝟑𝟑𝒂𝒂𝟐𝟐𝒒𝒒
𝟑𝟑𝑬𝑬𝑬𝑬

−
𝒒𝒒

𝓚𝓚𝓚𝓚𝓚𝓚
;  

  𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ;    𝑾𝑾′′(𝜹𝜹) +
𝟓𝟓𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒
𝑾𝑾′′′′(𝜹𝜹) =

𝟑𝟑𝒂𝒂𝟐𝟐𝒒𝒒
𝟑𝟑𝑬𝑬𝑬𝑬

−
𝒒𝒒

𝓚𝓚𝓚𝓚𝓚𝓚
 

 

(62) 

Again, this set of boundary conditions lead to the same deflection equation as the one 

obtained by Eq. (56). Also, the alternative approaches for studying nonlocal beams are 

given in Appendix D. The results of these two nonlocal approaches and also the ones of 
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the exact analytical discrete beam are plotted in Figure 4. The results of the other boundary 

conditions are presented in Appendix E. 

(a) (b) 

 
 

Figure 4. Comparison of the exact discrete approach with the nonlocal ones based on discrete model (1st 
nonlocal approximation) and based on the development of the continuum formulations (2nd nonlocal 
approximation) for 11 number of granular elements (a) Deflection and (b) Rotation 
 
5. Conclusion and Outlook 

This study represents an effort to investigate theoretically the scale effect upon the 

bending deformation of a granular beam which can be viewed as a discrete Bresse-

Timoshenko beam in static conditions. A unidimensional granular chain consisting of rigid 

grains connected elastically with rotation and shear springs is considered. Thus, the 

mechanical properties of the system are characterized by the grain diameter (length scale). 

The proposed system can be considered as a discrete Cosserat chain with two independent 

degrees of freedom, namely the deflection and the rotation of each grain. Once the 

kinematics and Lagrangian energy of the model have been introduced, we have obtained 

the general solutions of the static granular chain under distributed vertical loads ruled by a 

coupled system of difference equations. The problem is postulated for four conventional 

boundary conditions, namely simply supported, clamped, clamped-simply and clamped-

free. For each case, the exact displacement and rotation of the granular beam are found 



Chapter 2: Static Bending of Granular Beam 37 
 

 

through the exact discrete conditions defined for the boundary grains. The solution of the 

simply supported discrete system is compared to the one of a continuous Cosserat chain 

asymptotically obtained for an infinite number of grains when only the local neighbor 

effects are taken into account. For this case, the discrete solution converges asymptotically 

towards the local continuum one of a Bresse-Timoshenko beam. Then, the gradient 

elasticity Cosserat continuum is developed through the continualization of the difference 

equations using two equivalent strategies. The nonlocal models are able to reproduce the 

scale effects. The distinguishing features of these two refined continuous models basically 

stem from the continualization of the bending moment valid for the discrete Cosserat media 

which could be defined either by displacement or rotation parameters. It was shown that 

both nonlocal solutions coincide with the exact discrete one. Finally, a numerical 

asymptotic problem of a cantilever beam under distributed loading is studied for various 

boundary conditions. The problem is simulated by the open-source framework of Yade 

based on DEM. The DEM numerical results are exactly the same as the ones obtained by 

the exact analytical discrete approach. As the relevance of this discrete numerical model 

was checked for elementary cases, it would be of great interest to use it for investigating 

more complicated problems involving disordered discrete structures subjected to various 

types of loading including dynamic and vibration effects in 2D and 3D. 
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CHAPTER 3 
 

Vibration Analysis of Granular Beam 

1. Introduction 

The present study focuses on the vibration of a granular beam with both bending 

and shear granular interactions. The granular beam is assumed to interact elastically with 

a rigid elastic support, a discrete elastic foundation labeled as a discrete Winkler foundation 

(Winkler [114]). Note that the difference equations governed to the model coincide with 

the ones of Cosserat granular model of Pasternak and Mühlhaus [11] in the absence of an 

elastic foundation, but differ from the ones of the discrete shear model studied by Duan et 

al. [12]. However, for some specific bending/ shear interaction modeling, the model 

developed by Bacigalupo and Gambarotta [115] can be mathematically reformulated with 

the difference equation presented in this chapter. 

This chapter is arranged as follows: First, a discrete granular beam model is 

introduced from a geometrical and mechanical point of view. The grain interaction and 

material parameters are defined in detail. Then from the dynamic analysis of the lattice 

beam model, the deflection equations of the finite granular beam are derived. This fourth-

order linear difference equation is solved by using the exact resolution of the difference 

equation. For an infinite number of grains, the deflection equation of a continuous beam (a 

fourth-order linear differential equation) is obtained asymptotically. Next, the 

eigenfrequencies of the discrete granular model and the continuous one, are obtained and 

compared as well. In the end, two asymptotic continualization methods are used to 

investigate continuous beam from the discrete lattice problem. With this aim, the 

polynomial expansion of Taylor and the rational expansion of Padé (with involved pseudo-
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differential operators) are used to derive new enriched beam models. These two nonlocal 

continualization approaches with the introduction of the gradient terms engage the 

neighbor influences which allow the passage from discrete results to continuous ones and 

simultaneously capture the length effect.  

2. Granular Model 

A granular beam of length L resting on two simple supports is modeled by a finite 

number of grains interacting together. Such a model could be presented by considering the 

microstructured granular chain comprising n+1 rigid grains with diameter a (a=L/n) that 

are connected by n shear and rotational springs, as shown in Figure 5. It is assumed that 

the elastic support springs are located at the center of each rigid grain. Each grain has two 

degrees of freedom which are denoted by Wi for the deflection and 𝛩𝛩𝑖𝑖 for the rotation. This 

model is slightly different from the one of Challamel et al. [116] where the nodal 

kinematics and the Winkler elastic foundation are located at the grain interface. The aim 

of this study consists in finding the vibration equation of this granular chain and then trying 

to obtain the natural frequencies. 

(a) 

 

(b) 
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Figure 5. A discrete shear granular chain model composed of n+1 grain; (a) undeformed and (b) deformed. 

The total kinetic energy of the model may be expressed as follows: 

𝑇𝑇 =
1
2
�𝜇𝜇𝑖𝑖�̇�𝑊𝑖𝑖

2
𝑛𝑛

𝑖𝑖=0

+
1
2
�𝐼𝐼𝑚𝑚𝐶𝐶�̇�𝛩𝑖𝑖

2
𝑛𝑛

𝑖𝑖=0

 
(63) 

where for i in [1, n-1], 𝐼𝐼𝑚𝑚𝐶𝐶 = 𝜌𝜌𝐸𝐸𝐿𝐿
𝑛𝑛

= 𝜌𝜌𝐼𝐼𝑎𝑎 is the second moment of inertia of the beam 

segment and 𝜇𝜇𝑖𝑖 is the mass term for each grain that is defined for the inter grains by 𝜇𝜇𝑖𝑖 =

𝜌𝜌𝑎𝑎. 

The strain energy function due to deformed shear spring (shear term) is given by 

𝜹𝜹𝒔𝒔 =
𝟏𝟏
𝟐𝟐
�𝑺𝑺�𝑾𝑾𝒊𝒊+𝟏𝟏 −𝑾𝑾𝒊𝒊 − 𝒂𝒂

𝜣𝜣𝒊𝒊+𝟏𝟏 + 𝜣𝜣𝒊𝒊

𝟐𝟐
�
𝟐𝟐𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

 
 

(64) 

where S is the shear stiffness which can be expressed with respect to the shear stiffness 

𝐾𝐾𝑠𝑠𝐺𝐺𝐴𝐴 of the equivalent beam. The shear stiffness parameter could be defined as 𝑆𝑆 = 𝐾𝐾𝐷𝐷𝒦𝒦𝒦𝒦
𝑎𝑎

=

𝑛𝑛𝐾𝐾𝐷𝐷𝒦𝒦𝒦𝒦
𝐿𝐿

  in which G is the shear modulus, A is the cross-sectional area of the beam and Ks is 

an equivalent shear correction coefficient.  
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In the present formulation, the kinematic variables are measured at nodes i located at the 

center of each grain, which is consistent with the approach followed for instance by 

Pasternak and Mühlhaus [11].  

The strain energy function due to deformed rotational springs (bending term) may 

be obtained by 

𝜹𝜹𝒃𝒃 =
𝟏𝟏
𝟐𝟐
�𝑪𝑪(𝜣𝜣𝒊𝒊+𝟏𝟏 − 𝜣𝜣𝒊𝒊)𝟐𝟐
𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

 
(65) 

where C is the rotational stiffness located at the connection between each grain. This 

discrete stiffness can be expressed with respect to the bending stiffness EI of the equivalent 

beam and thus would be defined as 𝐶𝐶 = 𝐸𝐸𝐸𝐸
𝑎𝑎

= 𝑛𝑛𝐸𝐸𝐸𝐸
𝐿𝐿

 . where E is Young’s modulus and I is 

the second moment of area. 

The elastic energy in the discrete elastic support (Winkler [114]) is given by 

𝑈𝑈𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟 =
1
2
�𝐾𝐾𝑊𝑊𝑖𝑖

2
𝑛𝑛

𝑖𝑖=0

 
(66) 

where K=ka is the discrete stiffness of the elastic support and is attached to the center of 

each grain. 

The Lagrangian of the system may be defined as 𝐿𝐿 = 𝑇𝑇 − (𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑏𝑏 +

𝑈𝑈𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑟𝑟) which slightly differs from the shear lattice model considered by Ostoja-

Starzewski [62] for the shear term. By substituting the kinetic and potential terms, the 

Lagrangian may be expressed as: 

𝐿𝐿 = �1
2
∑ 𝜇𝜇𝑖𝑖�̇�𝑊𝑖𝑖

2𝑛𝑛
𝑖𝑖=0 + 1

2
∑ 𝐼𝐼𝑚𝑚𝐶𝐶�̇�𝛩𝑖𝑖

2𝑛𝑛
𝑖𝑖=0 � − �1

2
∑ 𝑆𝑆 �𝑊𝑊𝑖𝑖+1 −𝑊𝑊𝑖𝑖 − 𝑎𝑎 𝛩𝛩𝐶𝐶+1+𝛩𝛩𝐶𝐶

2
�
2

𝑛𝑛−1
𝑖𝑖=0 +

1
2
∑ 𝐶𝐶(𝛩𝛩𝑖𝑖+1 − 𝛩𝛩𝑖𝑖)2𝑛𝑛−1
𝑖𝑖=0 + 1

2
∑ 𝐾𝐾𝑊𝑊𝑖𝑖

2𝑛𝑛
𝑖𝑖=0 �   

(67) 
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The system of difference equations for both the discrete displacement and rotation fields 

is obtained from the application of Hamilton’s principle, given by: 

∫ 𝜹𝜹𝜹𝜹 𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐
𝒅𝒅𝟏𝟏

= ∫ (𝜹𝜹𝜹𝜹 − 𝜹𝜹𝜹𝜹) 𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐
𝒅𝒅𝟏𝟏

= 𝟎𝟎   (68) 

Using Eq. (3) based on the energy function of Eq. (67) leads to the following difference 

equation system  

𝑺𝑺(𝑾𝑾𝒊𝒊+𝟏𝟏 + 𝑾𝑾𝒊𝒊−𝟏𝟏 − 𝟐𝟐𝑾𝑾𝒊𝒊) −
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝜣𝜣𝒊𝒊+𝟏𝟏 − 𝜣𝜣𝒊𝒊−𝟏𝟏) − 𝒌𝒌𝒂𝒂𝑾𝑾𝒊𝒊 −𝒎𝒎𝒊𝒊�̈�𝑾𝒊𝒊 = 𝟎𝟎   (𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏 − 𝟏𝟏) 

𝑪𝑪(𝜣𝜣𝒊𝒊+𝟏𝟏 + 𝜣𝜣𝒊𝒊−𝟏𝟏 − 𝟐𝟐𝜣𝜣𝒊𝒊) +
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝒊𝒊+𝟏𝟏 −𝑾𝑾𝒊𝒊−𝟏𝟏) −

𝒂𝒂𝟐𝟐

𝟒𝟒
𝑺𝑺(𝜣𝜣𝒊𝒊+𝟏𝟏 + 𝜣𝜣𝒊𝒊−𝟏𝟏 + 𝟐𝟐𝜣𝜣𝒊𝒊) − 𝑬𝑬𝒎𝒎𝒊𝒊�̈�𝜣𝒊𝒊 = 𝟎𝟎   (𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏 − 𝟏𝟏) 

 

(69) 

where for the variationally-based boundary conditions, the following four equations could 

be obtained 

�𝑺𝑺 �𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)� − 𝒌𝒌𝒂𝒂𝑾𝑾𝟎𝟎 −𝒎𝒎𝟎𝟎�̈�𝑾𝟎𝟎� 𝜹𝜹𝑾𝑾𝟎𝟎 = 𝟎𝟎; 

�𝑺𝑺 �𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −
𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)� + 𝒌𝒌𝒂𝒂𝑾𝑾𝒏𝒏 + 𝒎𝒎𝒏𝒏�̈�𝑾𝒏𝒏� 𝜹𝜹𝑾𝑾𝒏𝒏 = 𝟎𝟎; 

�𝑪𝑪(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎) +
𝒂𝒂
𝟐𝟐 𝑺𝑺

(𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎) −
𝒂𝒂𝟐𝟐

𝟒𝟒 𝑺𝑺(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎) − 𝑬𝑬𝒎𝒎𝟎𝟎�̈�𝜣𝟎𝟎� 𝜹𝜹𝜣𝜣𝟎𝟎 = 𝟎𝟎; 

�−𝑪𝑪(𝜣𝜣𝒏𝒏−𝟏𝟏 − 𝜣𝜣𝒏𝒏) −
𝒂𝒂
𝟐𝟐 𝑺𝑺

(𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏) +
𝒂𝒂𝟐𝟐

𝟒𝟒 𝑺𝑺(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏) − 𝑬𝑬𝒎𝒎𝒏𝒏�̈�𝜣𝒏𝒏� 𝜹𝜹𝜣𝜣𝒏𝒏 = 𝟎𝟎 

 

 

 

 

(70) 

Introducing the following difference operators, 

𝜹𝜹𝟎𝟎𝑾𝑾𝒊𝒊 = 𝑾𝑾𝒊𝒊+𝟏𝟏+𝟐𝟐𝑾𝑾𝒊𝒊+𝑾𝑾𝒊𝒊−𝟏𝟏
𝟒𝟒

   ,   𝜹𝜹𝟏𝟏𝑾𝑾𝒊𝒊 = 𝑾𝑾𝒊𝒊+𝟏𝟏−𝑾𝑾𝒊𝒊−𝟏𝟏
𝟐𝟐𝒂𝒂

    ,   𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊 = 𝑾𝑾𝒊𝒊+𝟏𝟏−𝟐𝟐𝑾𝑾𝒊𝒊+𝑾𝑾𝒊𝒊−𝟏𝟏
𝒂𝒂𝟐𝟐

 (71) 

Eq. (69) might be generalized and rewritten compactly by Eq. (6). 

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚(𝜹𝜹𝟐𝟐𝑾𝑾𝒊𝒊) −𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚(𝜹𝜹𝟏𝟏𝜣𝜣𝒊𝒊) − 𝒌𝒌𝑾𝑾𝒊𝒊 − 𝝆𝝆𝓚𝓚�̈�𝑾𝒊𝒊 = 𝟎𝟎
𝑬𝑬𝑬𝑬(𝜹𝜹𝟐𝟐𝜣𝜣𝒊𝒊) + 𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚(𝜹𝜹𝟏𝟏𝑾𝑾𝒊𝒊) −𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚(𝜹𝜹𝟎𝟎𝜣𝜣𝒊𝒊) − 𝝆𝝆𝑬𝑬𝜣𝜣𝒊𝒊̈ = 𝟎𝟎

 
(72) 

Assuming a small harmonic vibration  

𝑾𝑾𝒊𝒊 = 𝒘𝒘𝒊𝒊𝒆𝒆𝒋𝒋𝝎𝝎𝒅𝒅 ,   𝜣𝜣𝒊𝒊 = 𝜽𝜽𝒊𝒊𝒆𝒆𝒋𝒋𝝎𝝎𝒅𝒅 (73) 
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with 𝑗𝑗2 = −1.𝑤𝑤𝑖𝑖 and 𝜃𝜃𝑖𝑖 are the space part of the solution and are the functions of grains 

number and 𝜔𝜔 is the angular natural frequency, Eq. (72) may be written in a matrix form 

�𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐 − 𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝜹𝜹𝟎𝟎 + 𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝜹𝜹𝟏𝟏
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝜹𝜹𝟏𝟏 𝒌𝒌−𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� �

𝜽𝜽
𝒘𝒘�𝒊𝒊

= �𝟎𝟎𝟎𝟎� 
(74) 

These difference equations system (74) have been obtained by Pasternak and Mühlhaus 

[11] neglecting the elastic Winkler foundation (k=0). With consideration of an infinite 

number of grains (𝑛𝑛 → ∞)  referring to the continuum beam, it converges to the coupled 

system differential equations Eq. (75) which has been obtained by Bresse [16] and 

Timoshenko [17, [18] in the absence of a Winkler foundation (k=0) and assuming that the 

shear correction factor to be unity (Ks=1). Eq. (75) valid for a Bresse-Timoshenko beam 

on elastic foundation have been also obtained by Wang and Stephens [64] and Manevich 

[65]. 

�𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙
𝟐𝟐 − 𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚 + 𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝝏𝝏𝒙𝒙
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝝏𝝏𝒙𝒙 𝒌𝒌−𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚𝝏𝝏𝒙𝒙𝟐𝟐 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� �

𝜽𝜽
𝒘𝒘� = �𝟎𝟎𝟎𝟎� 

(75) 

It is possible to introduce the following pseudo-differential operators 

𝜹𝜹𝟎𝟎 =
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟒𝟒
= 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝟐𝟐 �

𝒂𝒂𝝏𝝏𝒙𝒙
𝟐𝟐
� ; 

𝜹𝜹𝟏𝟏 =
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟐𝟐𝒂𝒂
=
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 (𝒂𝒂𝝏𝝏𝒙𝒙)

𝒂𝒂
; 

𝜹𝜹𝟐𝟐 =
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝒂𝒂𝟐𝟐
=

𝟒𝟒
𝒂𝒂𝟐𝟐
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄𝟐𝟐 �

𝒂𝒂𝝏𝝏𝒙𝒙
𝟐𝟐
� 

 

 

(76) 

The same relations could be obtained for the difference operators of Eq. (6). Going back to 

the discrete granular beam model Eq. (74), this characteristic equation has nontrivial 

solutions only if the determinant of the matrix is zero. Using the property of Eq. (10) gives 

the fourth-order difference equation for the deflection as follows: 



Chapter 3: Vibration Analysis of Granular Beam 45 
 

 

[𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 −

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
�𝜹𝜹𝟐𝟐 + (𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐)𝜹𝜹𝟎𝟎 −

𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
]𝒘𝒘𝒊𝒊 = 𝟎𝟎 

(77) 

[𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 −

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
�𝜹𝜹𝟐𝟐 + (𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐)𝜹𝜹𝟎𝟎 −

𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
]𝜽𝜽𝒊𝒊 = 𝟎𝟎 

(78) 

Neglecting the Winkler elastic foundation (k=0), Eq. (11) leads to 

[𝜹𝜹𝟐𝟐
𝟐𝟐 + 𝝎𝝎𝟐𝟐 �

𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝜹𝜹𝟐𝟐 − 𝝎𝝎𝟐𝟐(
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

𝜹𝜹𝟎𝟎 −
𝝆𝝆𝟐𝟐𝝎𝝎𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
)]𝒘𝒘𝒊𝒊 = 𝟎𝟎 

(79) 

Duan et al. [12] also studied a discrete Timoshenko beam model based on rigid 

links where the displacement fields are defined at the joint element. The scheme of their 

study slightly differs from the granular model considered in this chapter, essentially from 

the last term in the fourth-order difference equation of each model. The appearance of the 

difference operator δ0 in this model in comparison with Duan et al. [12], stems from the 

enhanced shear interaction modeling of the granular elements which refers to the 

fundamental difference between the two microstructural models.  

�𝜹𝜹𝟐𝟐
𝟐𝟐 + 𝝎𝝎𝟐𝟐 �

𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝜹𝜹𝟐𝟐 − 𝝎𝝎𝟐𝟐 �
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

−
𝝆𝝆𝟐𝟐𝝎𝝎𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
��𝒘𝒘𝒊𝒊 = 𝟎𝟎 

(80) 

Eq. (79) and Eq. (80) are the governing deflection equations of two alternative discrete 

granular models for studying the beam vibration and its dynamic responses. 

The fourth-order difference equation Eq. (11) is equivalent to the one of  Challamel 

et al. [117] in the static range (𝜔𝜔 = 0). Considering infinite number of grains (𝑛𝑛 → ∞) for 

the continuum beam, the fourth-order differential equation valid for a Bresse-Timoshenko 

beam on Winkler elastic foundation is given by Eq. (81) which also could be compared 

well by Wang and Stephens [64], Cheng and Pantelides [118] and Manevich [65]. 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒

+ �𝝆𝝆𝝎𝝎
𝟐𝟐

𝑬𝑬
�𝟏𝟏 + 𝑬𝑬

𝒌𝒌𝒔𝒔𝓚𝓚
� − 𝒌𝒌

𝒌𝒌𝒔𝒔𝓚𝓚𝓚𝓚
� 𝒅𝒅

𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐

− �𝝆𝝆𝝎𝝎
𝟐𝟐

𝑬𝑬
�𝓚𝓚
𝑬𝑬

+ 𝒌𝒌
𝒌𝒌𝒔𝒔𝓚𝓚𝓚𝓚

− 𝝆𝝆𝝎𝝎𝟐𝟐

𝒌𝒌𝒔𝒔𝓚𝓚
� − 𝒌𝒌

𝑬𝑬𝑬𝑬
�𝒘𝒘 = 𝟎𝟎  (81) 
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3. Resolution of The Difference Equation 

In this section, the exact solution for the fourth-order linear difference eigenvalue 

problem of Eq. (11) will be established (see the books of Goldberg [119] or Elaydi [120] 

for the general solution of linear difference equations). This approach, as detailed for 

instance by Elishakoff and Santoro [121, [122], has been used to analyze the error in the 

finite difference based probabilistic dynamic problems. Eq. (11) and Eq. (78) restricted to 

the vibration terms, the linear fourth-order difference equation may be expanded as 

(𝒘𝒘𝒊𝒊+𝟐𝟐 − 𝟒𝟒𝒘𝒘𝒊𝒊+𝟏𝟏 + 𝟔𝟔𝒘𝒘𝒊𝒊 − 𝟒𝟒𝒘𝒘𝒊𝒊−𝟏𝟏 + 𝒘𝒘𝒊𝒊−𝟐𝟐) + 𝒂𝒂𝟐𝟐 �𝝆𝝆𝑬𝑬
𝑬𝑬𝑬𝑬
𝝎𝝎𝟐𝟐 − 𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
� (𝒘𝒘𝒊𝒊+𝟏𝟏 − 𝟐𝟐𝒘𝒘𝒊𝒊 +

𝒘𝒘𝒊𝒊−𝟏𝟏) + 𝒂𝒂𝟒𝟒 � 𝒌𝒌
𝟒𝟒𝑬𝑬𝑬𝑬

− 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬
� (𝒘𝒘𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝒘𝒘𝒊𝒊 + 𝒘𝒘𝒊𝒊−𝟏𝟏) + 𝒂𝒂𝟒𝟒(− 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
)𝒘𝒘𝒊𝒊 = 𝟎𝟎  

 

(82) 

(𝜽𝜽𝒊𝒊+𝟐𝟐 − 𝟒𝟒𝜽𝜽𝒊𝒊+𝟏𝟏 + 𝟔𝟔𝜽𝜽𝒊𝒊 − 𝟒𝟒𝜽𝜽𝒊𝒊−𝟏𝟏 + 𝜽𝜽𝒊𝒊−𝟐𝟐) + 𝒂𝒂𝟐𝟐 �𝝆𝝆𝑬𝑬
𝑬𝑬𝑬𝑬
𝝎𝝎𝟐𝟐 − 𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
� (𝜽𝜽𝒊𝒊+𝟏𝟏 − 𝟐𝟐𝜽𝜽𝒊𝒊 +

𝜽𝜽𝒊𝒊−𝟏𝟏) + 𝒂𝒂𝟒𝟒 � 𝒌𝒌
𝟒𝟒𝑬𝑬𝑬𝑬

− 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬
� (𝜽𝜽𝒊𝒊+𝟏𝟏 + 𝟐𝟐𝜽𝜽𝒊𝒊 + 𝜽𝜽𝒊𝒊−𝟏𝟏) + 𝒂𝒂𝟒𝟒(− 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
)𝜽𝜽𝒊𝒊 = 𝟎𝟎  

 

(83) 

As it was mentioned in the previous section these two equation systems are true for all 

grains except the two ends. For simply supported boundary conditions as shown in Figure 

5 and with respect to Eq. (25), the four boundary conditions are formulated as: 

  

⎩
⎪
⎨

⎪
⎧

𝑾𝑾𝟎𝟎 = 𝟎𝟎
𝑾𝑾𝒏𝒏 = 𝟎𝟎

𝑪𝑪(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎) + 𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎) − 𝒂𝒂𝟐𝟐

𝟒𝟒
𝑺𝑺(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎) − 𝑬𝑬𝒎𝒎𝟎𝟎�̈�𝜣𝟎𝟎 = 𝟎𝟎

𝑪𝑪(𝜣𝜣𝒏𝒏 − 𝜣𝜣𝒏𝒏−𝟏𝟏) + 𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏) − 𝒂𝒂𝟐𝟐

𝟒𝟒
𝑺𝑺(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏) + 𝑬𝑬𝒎𝒎𝒏𝒏�̈�𝜣𝒏𝒏 = 𝟎𝟎

 

 

 

(84) 

The two last equations of Eq. (84) are actually second-newton laws for the boundary grains 

and could be rewritten in the compact form by 

 
𝑴𝑴𝟏𝟏/𝟐𝟐 + 𝒂𝒂

𝟐𝟐
𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝑬𝑬𝒎𝒎𝟎𝟎�̈�𝜣𝟎𝟎

−𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 −
𝒂𝒂
𝟐𝟐
𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝑬𝑬𝒎𝒎𝒏𝒏�̈�𝜣𝒏𝒏

 
 

(85) 

where 
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𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎), 𝑽𝑽𝟏𝟏/𝟐𝟐 =
𝒂𝒂
𝟐𝟐
𝑺𝑺�𝑾𝑾𝟏𝟏 −𝑾𝑾𝟎𝟎 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)� ; 

𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣𝒏𝒏 − 𝜣𝜣𝒏𝒏−𝟏𝟏), 𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 =
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)) 

 

 

(86) 

On the other hand, Eq. (69) could be applied for the boundary grains by considering 

two fictitious grains (i=-1 and i=n+1) connected to the system with fictitious springs. The 

equilibrium conditions of the boundary grains could be written by Eq. (87).  

𝑴𝑴𝟏𝟏/𝟐𝟐 −𝑴𝑴−𝟏𝟏/𝟐𝟐 +
𝒂𝒂
𝟐𝟐

(𝑽𝑽𝟏𝟏/𝟐𝟐 − 𝑽𝑽−𝟏𝟏/𝟐𝟐) = 𝑬𝑬�𝒎𝒎𝟎𝟎�̈�𝜣𝟎𝟎

𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 −𝑴𝑴𝒏𝒏+𝟏𝟏/𝟐𝟐 +
𝒂𝒂
𝟐𝟐

(𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 − 𝑽𝑽𝒏𝒏+𝟏𝟏/𝟐𝟐) = 𝑬𝑬�𝒎𝒎𝒏𝒏�̈�𝜣𝒏𝒏

 
 

(87) 

where 

𝑴𝑴−𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣𝟎𝟎 − 𝜣𝜣−𝟏𝟏), 𝑽𝑽−𝟏𝟏/𝟐𝟐 =
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝟎𝟎 −𝑾𝑾−𝟏𝟏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟎𝟎 + 𝜣𝜣−𝟏𝟏)) 

𝑴𝑴𝒏𝒏+𝟏𝟏/𝟐𝟐 = 𝑪𝑪(𝜣𝜣𝒏𝒏+𝟏𝟏 − 𝜣𝜣𝒏𝒏), 𝑽𝑽𝒏𝒏+𝟏𝟏/𝟐𝟐 =
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝒏𝒏+𝟏𝟏 −𝑾𝑾𝒏𝒏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏+𝟏𝟏 + 𝜣𝜣𝟎𝟎)) 

 

(88) 

The antisymmetric conditions lead to: 

𝑴𝑴−𝟏𝟏/𝟐𝟐 = −𝑴𝑴𝟏𝟏/𝟐𝟐, 𝑽𝑽−𝟏𝟏/𝟐𝟐 = 𝑽𝑽𝟏𝟏/𝟐𝟐 

𝑴𝑴𝒏𝒏+𝟏𝟏/𝟐𝟐 = −𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐, 𝑽𝑽𝒏𝒏+𝟏𝟏/𝟐𝟐 = 𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 

 

(89) 

It can be concluded that  

𝜣𝜣𝟏𝟏 = 𝜣𝜣−𝟏𝟏 , 𝑾𝑾𝟏𝟏 = −𝑾𝑾−𝟏𝟏 

𝜣𝜣𝒏𝒏−𝟏𝟏 = 𝜣𝜣𝒏𝒏+𝟏𝟏, 𝑾𝑾𝒏𝒏−𝟏𝟏 = −𝑾𝑾𝒏𝒏+𝟏𝟏 

 

(90) 

Using the recent conditions in Eq. (69) for i=0 and i=n, leads to 

  
𝑪𝑪(𝜣𝜣𝟏𝟏 − 𝜣𝜣𝟎𝟎) +

𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝟏𝟏 −𝑾𝑾−𝟏𝟏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝟏𝟏 + 𝜣𝜣𝟎𝟎)) −
𝑬𝑬�𝒎𝒎𝟎𝟎
𝟐𝟐

�̈�𝜣𝟎𝟎 = 𝟎𝟎

𝑪𝑪(𝜣𝜣𝒏𝒏−𝟏𝟏 − 𝜣𝜣𝒏𝒏) +
𝒂𝒂
𝟐𝟐
𝑺𝑺(𝑾𝑾𝒏𝒏+𝟏𝟏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)) −
𝑬𝑬�𝒎𝒎𝒏𝒏
𝟐𝟐

�̈�𝜣𝒏𝒏 = 𝟎𝟎
 

 

(91) 
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where 𝐼𝐼𝑚𝑚0 and 𝐼𝐼𝑚𝑚𝑛𝑛 represent the second moment of inertia for the boundary grains with 

consideration of the fictitious elements (i=-1 and n+1).  

Comparing the two systems of equations Eq. (84) and Eq. (91) results that the 

fictitious system behaves the same as the real model with the associated boundary 

conditions as follows: 

𝓚𝓚𝒅𝒅  𝒊𝒊 = 𝟎𝟎 ∶    𝒘𝒘𝟎𝟎 = 𝟎𝟎 ;  𝒘𝒘𝟏𝟏 = −𝒘𝒘−𝟏𝟏 → 𝜹𝜹𝟐𝟐𝒘𝒘𝟎𝟎 = 𝟎𝟎 

𝓚𝓚𝒅𝒅  𝒊𝒊 = 𝒏𝒏 ∶   𝒘𝒘𝒏𝒏 = 𝟎𝟎 ;  𝒘𝒘𝒏𝒏−𝟏𝟏 = −𝒘𝒘𝒏𝒏+𝟏𝟏 →  𝜹𝜹𝟐𝟐𝒘𝒘𝒏𝒏 = 𝟎𝟎 

(92) 

These boundary conditions have been used also by Hunt et al. [123] for the problem 

of static bifurcation of granular chains under axial load. The non-dimensional quantities 

may be introduced  

𝜴𝜴𝟐𝟐 = 𝝎𝝎𝟐𝟐𝝆𝝆𝓚𝓚𝜹𝜹𝟒𝟒

𝑬𝑬𝑬𝑬
  ,  𝝁𝝁𝒔𝒔 = 𝑬𝑬

𝑲𝑲𝒔𝒔 𝓚𝓚
  , 𝒓𝒓 = �𝑬𝑬

𝓚𝓚
  ,  𝒓𝒓∗ = 𝒓𝒓

𝜹𝜹
  ,  𝒌𝒌∗ = 𝒌𝒌𝜹𝜹𝟒𝟒

𝑬𝑬𝑬𝑬
 

(93) 

𝛺𝛺 is a dimensionless frequency; 𝜇𝜇𝑠𝑠 is inversely proportional to the shear stiffness; and 𝑑𝑑∗ 

is proportional to the rotatory inertia. The solution of the linear difference equation 

(Goldberg [119] and Elaydi [120]) is thought in the form  

𝒘𝒘𝒊𝒊 = 𝑩𝑩𝝀𝝀𝒊𝒊  (94) 

where B is a constant. Therefore, the characteristic equation could be obtained by replacing 

Eq. (94) in Eq. (82) as 

(𝝀𝝀 +
𝟏𝟏
𝝀𝝀

)𝟐𝟐 + �𝝀𝝀 +
𝟏𝟏
𝝀𝝀
� 𝝐𝝐 + 𝝉𝝉 = 𝟎𝟎 (95) 

where the parameters 𝜖𝜖 and 𝜏𝜏 can be defined as 

𝝐𝝐 = �
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝒏𝒏𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� −

𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔
𝒏𝒏𝟐𝟐 +

𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟒𝟒 − 𝟒𝟒�, 
 

 

(96) 
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𝝉𝝉 = �
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝒏𝒏𝟒𝟒 �−𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ + 𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝜴𝜴𝟐𝟐� + 𝟐𝟐�
𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟒𝟒 −
𝜴𝜴𝟐𝟐

𝟒𝟒𝒏𝒏𝟒𝟒� − 𝟐𝟐(
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) −

𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔
𝒏𝒏𝟐𝟐 ) + 𝟒𝟒� 

Solving Eq. (95) leads to the equation obtained by Zhang et al. [124] which could be written  

𝝀𝝀 +
𝟏𝟏
𝝀𝝀

=
−𝝐𝝐 ± √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟐𝟐
 

(97) 

Eq. (97) admits four solutions written  

𝝀𝝀𝟏𝟏,𝟐𝟐 =
−𝝐𝝐 + √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟒𝟒
± �(

𝝐𝝐 − √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟒𝟒

)𝟐𝟐 − 𝟏𝟏 
(98) 

𝝀𝝀𝟑𝟑,𝟒𝟒 =
−𝝐𝝐 − √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟒𝟒
± 𝒋𝒋�𝟏𝟏 − (

𝝐𝝐 + √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟒𝟒

)𝟐𝟐 
(99) 

where 𝑗𝑗2 = −1. On the other hand, it is important to notice that according to Eq. (97) the 

results of 𝜆𝜆 + 1
𝜆𝜆
  are in the ranges of (−∞, −2] or [2, +∞).  

The limited cases when 𝜆𝜆 + 1
𝜆𝜆
 = ±2 would happen for 𝜆𝜆 = ±1 which refers to the 

critical frequencies. The critical frequencies of the system are inconsistent condition with 

Eq. (94) would be obtained by assuming: 

𝝉𝝉 = ±𝟐𝟐𝝐𝝐 − 𝟒𝟒 (100) 

The critical frequencies of the system might be obtained with the substitution of 𝜏𝜏  and 𝜖𝜖 

in the aforementioned equation by using Eq. (96): 

(
𝒓𝒓∗𝟐𝟐𝜴𝜴𝒄𝒄𝒓𝒓

𝟐𝟐

𝒏𝒏𝟐𝟐
− 𝟒𝟒)(

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐

𝒏𝒏𝟐𝟐
(𝜴𝜴𝒄𝒄𝒓𝒓

𝟐𝟐 − 𝒌𝒌∗) − 𝟒𝟒) = 𝟎𝟎 
(101) 

𝟏𝟏
𝒏𝒏𝟒𝟒

((𝜴𝜴𝒄𝒄𝒓𝒓
𝟐𝟐 − 𝒌𝒌∗)(𝝁𝝁𝒔𝒔 𝒓𝒓∗𝟒𝟒𝜴𝜴𝒄𝒄𝒓𝒓

𝟐𝟐 − 𝟏𝟏)) = 𝟎𝟎 (102) 

Therefore, two branches of critical frequencies would be obtained as follows 
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𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟏𝟏 =  
𝟐𝟐𝒏𝒏
𝒓𝒓∗

     ,     𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐 = �
𝟒𝟒𝒏𝒏𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+ 𝒌𝒌∗ 

(103) 

𝜴𝜴𝒄𝒄𝒓𝒓𝟐𝟐,𝟏𝟏 = √𝒌𝒌∗      ,     𝜴𝜴𝒄𝒄𝒓𝒓𝟐𝟐,𝟐𝟐 = �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
 

 

(104) 

The critical frequencies of the first branch depend on the grain number 

(microstructure parameter), mechanical properties and beam geometry (macrostructure 

parameters) while the second critical frequencies branch are only defined as a function of 

the beam mechanical properties and geometry. On the other hand, comparing these critical 

values with those of the Timoshenko continuum beam resting on the Winkler foundations 

(see Wang and Stephens [64]), leads to the equivalency of the second branch critical values 

(Eq. (104)) to the Timoshenko continuum beam’s. For an infinite number of grains, since 

the first branch critical frequencies (𝛺𝛺𝑐𝑐𝑟𝑟1,1  and 𝛺𝛺𝑐𝑐𝑟𝑟1,2) leads to infinite values and 

consequently disappear, so only the second branch would remain. These critical values 

could be shown as follows 

𝝎𝝎𝒄𝒄𝒓𝒓𝟐𝟐,𝟏𝟏 = 𝝎𝝎𝒄𝒄𝒓𝒓𝜹𝜹𝒊𝒊𝒎𝒎𝒄𝒄𝒔𝒔𝒄𝒄𝒆𝒆𝒏𝒏𝒌𝒌𝒄𝒄 𝟏𝟏 = �
𝒌𝒌
𝝆𝝆𝓚𝓚

      ,    𝝎𝝎𝒄𝒄𝒓𝒓𝟐𝟐,𝟐𝟐 = 𝝎𝝎𝒄𝒄𝒓𝒓𝜹𝜹𝒊𝒊𝒎𝒎𝒄𝒄𝒔𝒔𝒄𝒄𝒆𝒆𝒏𝒏𝒌𝒌𝒄𝒄 𝟐𝟐 = �
𝑲𝑲𝒔𝒔 𝓚𝓚𝓚𝓚
𝝆𝝆𝑬𝑬

 
(105) 

The behavior of the beam deflection solution would be separated by the critical 

frequencies into different regimes and depending on the frequencies values, the results 

would be in a distinct manner. 

For a finite number of grains, four regimes would occur, categorized as follows: when 0 <

𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟2,2 there are two exponential terms and two traveling waves since 𝜆𝜆1,2 are real and 

𝜆𝜆3,4 are imaginary. In this case, the deflection equation form would be obtained from Eq. 

(116). 
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When 𝛺𝛺𝑐𝑐𝑟𝑟2,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,2  , 𝜆𝜆1,2,3,4  are all imaginary and therefore all terms represent 

traveling waves and for this case, the deflection equation form would be obtained from Eq. 

(117).  

For  𝛺𝛺𝑐𝑐𝑟𝑟1,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,1 again there are two exponential terms and two traveling waves 

since 𝜆𝜆1,2  are imaginary and 𝜆𝜆3,4  are real and the deflection equation form would be 

obtained from Eq. (118).  

Finally, for 𝛺𝛺𝑐𝑐𝑟𝑟1,1 < 𝛺𝛺 , since all parameters of 𝜆𝜆1,2,3,4 are real, thus whole terms 

represent exponential terms which leads to the deflection equation form of Eq. (119). 

For a specific value of grain number, 𝛺𝛺𝑐𝑐𝑟𝑟1,1 and 𝛺𝛺𝑐𝑐𝑟𝑟2,2 would be equal together. This leads 

to the reduction of the four regimes to three. 

𝒏𝒏 =  
𝟏𝟏

𝟐𝟐𝒓𝒓∗�𝝁𝝁𝒔𝒔
 =

𝜹𝜹
𝟐𝟐
�𝑲𝑲𝒔𝒔 𝓚𝓚𝓚𝓚

𝑬𝑬𝑬𝑬
 

(106) 

The results are shown for a case study of 50 grains and the dimensionless parameters of  

𝜇𝜇𝑠𝑠 = 4.28,  𝑑𝑑∗ = 0.029,  𝑘𝑘∗ = 15 in Figure 6. In this example, the values of the critical 

frequencies are respectively 𝛺𝛺𝑐𝑐𝑟𝑟1,1 = 3464.1 , 𝛺𝛺𝑐𝑐𝑟𝑟1,2 = 1673.7 , 𝛺𝛺𝑐𝑐𝑟𝑟2,1 = 3.87  and  𝛺𝛺𝑐𝑐𝑟𝑟2,2 =

579.8. 

(a) (b) 

  
(c) (d) 
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Figure 6. Schematic behavior of the wave vector regarding the eigenfrequencies for finite grain number 
(n=50). (a), (c), (e) and (g) correspond to the real part and (b), (d), (f) and (h) correspond to the imaginary 
part of the wave vector. 
 

For an infinite number of grains, since the first two critical values converge to the 

infinite, so the previous different regimes reduce to two regimes (Elishakoff [67] and 

Traill-Nash and Collar [125]): when 0 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟2,2 there are two exponential terms and 

two traveling waves as 𝜆𝜆1,2 are real and 𝜆𝜆3,4 are imaginary and thus the deflection equation 

form would be obtained from Eq. (116).  

when 𝛺𝛺𝑐𝑐𝑟𝑟2,2 < 𝛺𝛺 , 𝜆𝜆1,2,3,4 are all imaginary and thus all terms represent traveling waves. 

This case leads to the deflection equation form of Eq. (117). These two regimes correspond 

to the ones obtained for the continuum beam of Timoshenko resting on Winkler 

foundations. 

(a) (b) 

  
(c) (d) 

(e) (f) 

  
(g) (h) 
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(e) (f) 

  
(g) (h) 

  
Figure 7. The effects of the eigenfrequencies on the wave behavior for a general discrete beam contains an 
infinite grain number (𝒏𝒏 → ∞). (a), (c), (e) and (g) correspond to the real part and (b), (d), (f) and (h) 
correspond to the imaginary part of the wave vector. 
 

Therefore, 𝜆𝜆1,2 can be rewritten for 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟2,2 and 𝛺𝛺𝑐𝑐𝑟𝑟1,2 < 𝛺𝛺 (see also Elishakoff 

and Santoro [122] for a similar presentation applied to the finite difference formulation of 

Euler-Bernoulli beams) as 

𝝀𝝀𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 ± 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝝑𝝑 (107) 

where  

𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝝑𝝑 =
−𝝐𝝐
𝟒𝟒

+
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 =

−𝝐𝝐
𝟐𝟐
− 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 

(108) 

𝒄𝒄𝒄𝒄𝒔𝒔 𝒄𝒄 =
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 

 

(109) 

while 𝜆𝜆1,2 would be obtained for 𝛺𝛺𝑐𝑐𝑟𝑟2,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,2 

𝝀𝝀𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 ± 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏𝝑𝝑    (110) 
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where 

𝒄𝒄𝒄𝒄𝒔𝒔 𝝑𝝑 =
−𝝐𝝐
𝟒𝟒

+
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 

(111) 

On the other hand, 𝜆𝜆3,4 would be defined for 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,1 by  

𝝀𝝀𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 ± 𝒋𝒋𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 (112) 

where 

𝒄𝒄 = 𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 𝒔𝒔�
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉� 

(113) 

And for 𝛺𝛺𝑐𝑐𝑟𝑟1,1 < 𝛺𝛺  

𝝀𝝀𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄 ± 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄𝒄𝒄 (114) 

𝒄𝒄 = 𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄�
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉� 

(115) 

In view of Eq. (108) and (109), there are three possible general solutions for 𝑤𝑤𝑖𝑖 depending 

on the critical values of the frequencies which may be represented as 

𝒘𝒘𝒊𝒊 = 𝓚𝓚𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝒄𝒄 +  𝓚𝓚𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝒄𝒄 +  𝓚𝓚𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝝑𝝑 +  𝓚𝓚𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝝑𝝑   (𝜴𝜴 < 𝜴𝜴𝒄𝒄𝒓𝒓𝟐𝟐,𝟐𝟐  ) (116) 

𝒘𝒘𝒊𝒊 = 𝑩𝑩𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝒄𝒄 + 𝑩𝑩𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝒄𝒄 +  𝑩𝑩𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝝑𝝑 + 𝑩𝑩𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝝑𝝑   (𝜴𝜴𝒄𝒄𝒓𝒓𝟐𝟐,𝟐𝟐 < 𝜴𝜴 < 𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐 ) (117) 

𝒘𝒘𝒊𝒊 = 𝑪𝑪𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝒄𝒄 +  𝑪𝑪𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑪𝑪𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝝑𝝑 +  𝑪𝑪𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏 𝒊𝒊𝝑𝝑  (𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐 < 𝜴𝜴 < 𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟏𝟏 ) (118) 

𝒘𝒘𝒊𝒊 = 𝑫𝑫𝟏𝟏 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝒄𝒄 +  𝑫𝑫𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝒄𝒄 + 𝑫𝑫𝟑𝟑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄 𝒊𝒊𝝑𝝑 +  𝑫𝑫𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄 𝒊𝒊𝝑𝝑   (𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟏𝟏 < 𝜴𝜴 ) (119) 
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3.1. General Solution of The Difference Equation  

The general solution for the coupled system of difference equation of Eq. (74) can 

be considered through the trigonometric and hyperbolic terms in the low frequency regime 

as follows: 

𝑤𝑤𝑖𝑖 = 𝐴𝐴1𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝜑𝜑 + 𝐴𝐴2𝑎𝑎 𝑐𝑐𝑖𝑖𝑛𝑛 𝑖𝑖𝜑𝜑 + 𝐴𝐴3𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑖𝑖𝜗𝜗 + 𝐴𝐴4𝑎𝑎 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 𝑖𝑖𝜗𝜗 (120) 

𝜃𝜃𝑖𝑖 = 𝐵𝐵1 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝜑𝜑 + 𝐵𝐵2 𝑐𝑐𝑖𝑖𝑛𝑛 𝑖𝑖𝜑𝜑 + 𝐵𝐵3 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑖𝑖𝜗𝜗 + 𝐵𝐵4 𝑐𝑐𝑖𝑖𝑛𝑛ℎ 𝑖𝑖𝜗𝜗 (121) 

Replacing the form of the solution of Eq. (120) and Eq. (121) in Eq. (69) by ignoring the 

Winkler elastic foundation terms (k=0) leads to the following matrix form equations  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐺𝐺1

0
0
0
0

−𝑎𝑎2𝐺𝐺5
0
0

0
𝐺𝐺1
0
0

𝑎𝑎2𝐺𝐺5
0
0
0

0
0
𝐺𝐺2
0
0
0
0

𝑎𝑎2𝐺𝐺6

0
0
0
𝐺𝐺2
0
0

𝑎𝑎2𝐺𝐺6
0

0
𝐺𝐺5
0
0
𝐺𝐺3
0
0
0

−𝐺𝐺5
0
0
0
0
𝐺𝐺3
0
0

0
0
0
−𝐺𝐺6

0
0
𝐺𝐺4
0

0
0
−𝐺𝐺6

0
0
0
0
𝐺𝐺4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4
𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

(122) 

where the components of the coefficient matrix of G are expressed by 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐺𝐺1 = 𝜇𝜇𝑖𝑖𝜔𝜔2 −  2𝑘𝑘𝑠𝑠 +  2 𝑘𝑘𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)

𝐺𝐺2 = 𝜇𝜇𝑖𝑖𝜔𝜔2 −  2𝑘𝑘𝑠𝑠 +  2𝑘𝑘𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)

𝐺𝐺3 = 𝐼𝐼𝑚𝑚𝐶𝐶𝜔𝜔
2 −  2𝑘𝑘𝑟𝑟 −

𝑎𝑎2𝑘𝑘𝑠𝑠
2

+  2𝑘𝑘𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) −
𝑎𝑎2𝑘𝑘𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)

2

𝐺𝐺4 = 𝐼𝐼𝑚𝑚𝐶𝐶𝜔𝜔
2 −  2𝑘𝑘𝑟𝑟 −

𝑎𝑎2𝑘𝑘𝑠𝑠
2

+  2𝑘𝑘𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) −
𝑎𝑎2𝑘𝑘𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)

2
𝐺𝐺5 = 𝑘𝑘𝑠𝑠𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
𝐺𝐺6 = 𝑘𝑘𝑠𝑠𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)

 

 

 

 

 

(123) 

Eq. (122) leads to 

𝐵𝐵1 = −𝐴𝐴2
𝐺𝐺1
𝐺𝐺5

= −𝐴𝐴2
𝑎𝑎2𝐺𝐺5
𝐺𝐺3

 ,   𝐵𝐵2 = 𝐴𝐴1
𝐺𝐺1
𝐺𝐺5

= 𝐴𝐴1
𝑎𝑎2𝐺𝐺5
𝐺𝐺3

; 

𝐵𝐵3 = 𝐴𝐴4
𝐺𝐺2
 𝐺𝐺6

= −𝐴𝐴4
𝑎𝑎2𝐺𝐺6
𝐺𝐺4

 ,   𝐵𝐵4 = 𝐴𝐴3
𝐺𝐺2
 𝐺𝐺6

= −𝐴𝐴3
𝑎𝑎2𝐺𝐺6
𝐺𝐺4

 

 

(124) 

Thus, the following relations could be obtained 
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𝑚𝑚𝐶𝐶𝜔𝜔2− 2𝑊𝑊𝐷𝐷+ 2 𝑊𝑊𝐷𝐷𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑)
𝑊𝑊𝐷𝐷𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑) = 𝑎𝑎2𝑊𝑊𝐷𝐷𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑)

𝐸𝐸𝐶𝐶𝐶𝐶𝜔𝜔
2− 2𝑊𝑊𝐷𝐷− 𝑎𝑎

2𝑘𝑘𝐷𝐷
2 + 2𝑊𝑊𝐷𝐷𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑)−𝑎𝑎

2𝑘𝑘𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷(𝜑𝜑)
2

   

(125) 

𝑚𝑚𝐶𝐶𝜔𝜔2− 2𝑊𝑊𝐷𝐷+ 2𝑊𝑊𝐷𝐷𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜗𝜗)
𝑊𝑊𝐷𝐷𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) = 𝑎𝑎2𝑊𝑊𝐷𝐷𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)

𝐸𝐸𝐶𝐶𝐶𝐶𝜔𝜔
2− 2𝑊𝑊𝐷𝐷− 𝑎𝑎

2𝑘𝑘𝐷𝐷
2 + 2𝑊𝑊𝐷𝐷𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜗𝜗)−𝑎𝑎

2𝑘𝑘𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷ℎ(𝜗𝜗)
2

   

(126) 

which leads to 
4𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2 + 2𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) +  𝜏𝜏 = 0 (127) 

4𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 + 2𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) +  𝜏𝜏 = 0  (128) 

The exact simply supported conditions might be assumed by Eq. (84). Replacing the form 

of the solution of Eq. (120) and Eq. (121) in Eq. (84) (with regards to the properties of Eq. 

Eq. (124) between the coefficients of 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖), the following transcendental equation 

could be obtained by prohibiting the zero solutions for the deformation 

𝐻𝐻(𝜔𝜔) = 𝑓𝑓1(𝜔𝜔) 𝜔𝜔8 + 𝑓𝑓2(𝜔𝜔) 𝜔𝜔6 + 𝑓𝑓3(𝜔𝜔) 𝜔𝜔4 + 𝑓𝑓4(𝜔𝜔) 𝜔𝜔2 + 𝑓𝑓5(𝜔𝜔)  = 0 (129) 

where the coefficients of 𝑓𝑓(𝜔𝜔) are expressed by 

𝑓𝑓1(𝜔𝜔)

= �−4𝐼𝐼𝑚𝑚0𝐼𝐼𝑚𝑚𝐶𝐶𝑎𝑎
2𝜇𝜇𝑖𝑖

2�2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  2𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)(𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2

+ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2) −  2𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)�� (𝑘𝑘𝑠𝑠2 sin2(𝜑𝜑) sinh2(𝜗𝜗))−1 

(130) 

𝑓𝑓2(𝜔𝜔)

= −�𝑎𝑎2 �𝜇𝜇𝑖𝑖
2�𝐼𝐼𝑚𝑚0𝐼𝐼𝑚𝑚𝐶𝐶��(4𝑘𝑘𝑟𝑟 + 𝑎𝑎2𝑘𝑘𝑠𝑠)(2 cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 2 cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗)

− 4 sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 8 sin(𝜑𝜑) sinh(𝜗𝜗) − 8 cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) sinh(𝜗𝜗))
+ 2(4𝑘𝑘𝑟𝑟 − 𝑎𝑎2𝑘𝑘𝑠𝑠)(sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) − sinh(2𝜗𝜗) sin(𝜑𝜑) − sin(2𝜑𝜑) sinh(𝜗𝜗)
+ sinh(2𝜗𝜗) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) + sin(2𝜑𝜑) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sinh(𝜗𝜗) + sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑)
− cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) − cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑))�
+ 64𝐼𝐼𝑚𝑚0𝐼𝐼𝑚𝑚𝐶𝐶𝑘𝑘𝑠𝑠𝜇𝜇𝑖𝑖(− sin(2𝜑𝜑) sinh(𝜗𝜗) − sinh(2𝜗𝜗) sin(𝜑𝜑) − 2 sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) + 4 sin(𝜑𝜑) sinh(𝜗𝜗)
+ sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑) + sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗) + cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗)
+ cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) −  cos(2𝜑𝜑) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cosh(𝜗𝜗)
−  cosh(2𝜗𝜗) sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) cos(𝜑𝜑) + sin(2𝜑𝜑) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sinh(𝜗𝜗)

+  sinh(2𝜗𝜗) cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) −  4 cos(𝑛𝑛𝜑𝜑) cosh(𝑛𝑛𝜗𝜗) sin(𝜑𝜑) sinh(𝜗𝜗))�� �𝑘𝑘𝑠𝑠
2(cos(2𝜑𝜑)

−  1)(cosh(2𝜗𝜗) −  1)�
−1
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𝑓𝑓3(𝜔𝜔)
= −(𝑎𝑎2( 16�𝐼𝐼𝑚𝑚0 + 𝐼𝐼𝑚𝑚𝐶𝐶�𝑘𝑘𝑟𝑟𝑘𝑘𝑠𝑠𝜇𝜇𝑖𝑖(2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) +  2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+  2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) −  𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)3 + 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)3𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
−  0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) −  6𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) −  4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)
− 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)3 −  4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 −  𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+  4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+  𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+  4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 + 4𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)
− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)3𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) −  𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)3𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+  𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
−  4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  4𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+  2𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)) 
+ 8𝑎𝑎2𝑘𝑘𝑟𝑟𝑘𝑘𝑠𝑠�𝑘𝑘𝑟𝑟𝜇𝜇𝑖𝑖

2 + 𝑘𝑘𝑠𝑠�𝐼𝐼𝑚𝑚0 + 𝐼𝐼𝑚𝑚𝐶𝐶�𝜇𝜇𝑖𝑖��0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
− 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2 − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2

− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)�
+  16𝑘𝑘𝑟𝑟2𝜇𝜇𝑖𝑖

2(−0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
− 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2

+ 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2

− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)) + 𝑎𝑎4𝑘𝑘𝑠𝑠2𝜇𝜇𝑖𝑖

2(−0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)
− 0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2

− 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)
+ 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)) 
+64𝐼𝐼𝑚𝑚0𝐼𝐼𝑚𝑚𝐶𝐶𝑘𝑘𝑠𝑠

2�−0.25𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) + 0.5𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  0.5𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+ 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)
− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
+ 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜗𝜗)2

+ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)�))�𝑘𝑘𝑠𝑠2(cos2(𝜑𝜑) −  1)(cosh2(𝜗𝜗) −  1)�−1 
 



Chapter 3: Vibration Analysis of Granular Beam 58 
 

 

𝑓𝑓4(𝜔𝜔)
= −(𝑎𝑎2(𝑘𝑘𝑟𝑟𝑘𝑘𝑠𝑠2𝜇𝜇𝑖𝑖 �10𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  8𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
+  10𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� −  12𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�
−  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
−  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
−  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)� +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�
+  4𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�
−  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)� −  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+  4𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  4𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) −  8𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) −  16𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
+  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  6𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) −  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
−  2𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  40𝑎𝑎2𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)� 

𝑘𝑘𝑟𝑟2𝑘𝑘𝑠𝑠𝜇𝜇𝑖𝑖 �64𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  64𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +
 56𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  24𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +
 8𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  24𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +
 8𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  160𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  32𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� +
 40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� +  40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� −  48𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +
 1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)� −
 56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� −  56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −
 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  56𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)� +
 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)� +  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� +  40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −
 2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)� +  40𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� +
 8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)� −  8𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −
 3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)� −  104𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  104𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) +  16𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +
 16𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) −  160𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  64𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗) −  8𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) −
 8𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)�l 

0.5�𝐼𝐼𝑚𝑚0 + 𝐼𝐼𝑚𝑚𝐶𝐶�𝑘𝑘𝑟𝑟𝑘𝑘𝑠𝑠
2 �128𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)

+  128𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  112𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗)
+  48𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  16𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  48𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)
+  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  16𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑) +  320𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗)
−  64𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� +  80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�
+  80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)� −  96𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)�
−  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�
−  112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
−  112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  112𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
−  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)� +  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  1)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�
+  32𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� +  80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)�
+  80𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  2)� −  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  1)�
+  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  1)� −  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 +  2)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 −  3)�
−  16𝑐𝑐𝑖𝑖𝑛𝑛�𝜑𝜑(𝑛𝑛 −  3)�𝑐𝑐𝑖𝑖𝑛𝑛ℎ�𝜗𝜗(𝑛𝑛 +  2)� −  208𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) −  208𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑)
+  32𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝜗𝜗) +  32𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗)𝑐𝑐𝑖𝑖𝑛𝑛(𝜑𝜑) −  320𝑐𝑐𝑖𝑖𝑛𝑛(𝑛𝑛𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝑛𝑛𝜗𝜗) +  128𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)
−  16𝑐𝑐𝑖𝑖𝑛𝑛(2𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(3𝜗𝜗) −  16𝑐𝑐𝑖𝑖𝑛𝑛(3𝜑𝜑)𝑐𝑐𝑖𝑖𝑛𝑛ℎ(2𝜗𝜗)�))�𝑘𝑘𝑠𝑠2(cos(2𝜑𝜑) −  1)(cosh2(𝜗𝜗) −  1)�−1 
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𝑓𝑓5(𝜔𝜔)
= −� 4𝑎𝑎2𝑘𝑘𝑟𝑟2(6 sin�𝜑𝜑(𝑛𝑛 −  1)� sinh(𝑛𝑛𝜗𝜗) +  6 sinh�𝜗𝜗(𝑛𝑛 −  1)� sin(𝑛𝑛𝜑𝜑) −  6 sin�𝜑𝜑(𝑛𝑛 −  2)� sinh(𝑛𝑛𝜗𝜗)
−  6 sinh�𝜗𝜗(𝑛𝑛 −  2)� sin(𝑛𝑛𝜑𝜑) +  2 sin�𝜑𝜑(𝑛𝑛 −  3)� sinh(𝑛𝑛𝜗𝜗) +  2 sinh�𝜗𝜗(𝑛𝑛 −  3)� sin(𝑛𝑛𝜑𝜑)
+  8 sin(𝜑𝜑) sinh(𝜗𝜗) +  10 sin�𝜑𝜑(𝑛𝑛 −  1)� sinh�𝜗𝜗(𝑛𝑛 −  1)� +  9 sin�𝜑𝜑(𝑛𝑛 −  1)� sinh�𝜗𝜗(𝑛𝑛 +  1)�
+  9 sin�𝜑𝜑(𝑛𝑛 +  1)� sinh�𝜗𝜗(𝑛𝑛 −  1)� −  2 sin�𝜑𝜑(𝑛𝑛 −  1)� sinh�𝜗𝜗(𝑛𝑛 −  2)�
−  6 sin�𝜑𝜑(𝑛𝑛 +  1)� sinh�𝜗𝜗(𝑛𝑛 −  2)� −  2 sin�𝜑𝜑(𝑛𝑛 −  2)� sinh�𝜗𝜗(𝑛𝑛 −  1)�
−  6 sin�𝜑𝜑(𝑛𝑛 −  2)� sinh�𝜗𝜗(𝑛𝑛 +  1)� + sin�𝜑𝜑(𝑛𝑛 −  1)� sinh�𝜗𝜗(𝑛𝑛 −  3)�
+ sin�𝜑𝜑(𝑛𝑛 +  1)� sinh�𝜗𝜗(𝑛𝑛 −  3)� −  2 sin�𝜑𝜑(𝑛𝑛 −  2)� sinh�𝜗𝜗(𝑛𝑛 −  2)�
+ sin�𝜑𝜑(𝑛𝑛 −  3)� sinh�𝜗𝜗(𝑛𝑛 −  1)� + sin�𝜑𝜑(𝑛𝑛 −  3)� sinh�𝜗𝜗(𝑛𝑛 +  1)� −  4 sin(2𝜑𝜑) sinh(𝜗𝜗)

−  4 sinh(2𝜗𝜗) sin(𝜑𝜑) −  18 sin(𝑛𝑛𝜑𝜑) sinh(𝑛𝑛𝜗𝜗) +  2 sin(2𝜑𝜑) sinh(2𝜗𝜗))��(cos(𝜑𝜑) +  1)(cosh(𝜗𝜗) +  1)�−1 
 

3.2. Antisymmetric Boundary Conditions on Deflection 

For the simply supported discrete system by substituting Eq. (92) in Eq. (116), 

(117), (118) and (119) the boundary conditions could be defined in matrix form, 

respectively  

   �

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄

𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑

𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)

� �

𝓚𝓚𝟏𝟏
𝓚𝓚𝟐𝟐
𝓚𝓚𝟑𝟑
𝓚𝓚𝟒𝟒

� = 𝟎𝟎       
(131) 

 

   �

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄

𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄)

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑

𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑)

� �

𝑩𝑩𝟏𝟏
𝑩𝑩𝟐𝟐
𝑩𝑩𝟑𝟑
𝑩𝑩𝟒𝟒

� = 𝟎𝟎       
(132) 

 

   �

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄

𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑

𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 𝒄𝒄𝒄𝒄𝒔𝒔(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)

� �

𝑪𝑪𝟏𝟏
𝑪𝑪𝟐𝟐
𝑪𝑪𝟑𝟑
𝑪𝑪𝟒𝟒

� = 𝟎𝟎       
(133) 

 

   �

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄

𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟎𝟎
𝟐𝟐𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄)

𝟏𝟏
𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑

𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)

𝟎𝟎
𝟐𝟐 𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑)

� �

𝑫𝑫𝟏𝟏
𝑫𝑫𝟐𝟐
𝑫𝑫𝟑𝟑
𝑫𝑫𝟒𝟒

� = 𝟎𝟎       
(134) 

Setting the determinant of the homogeneous coefficient matrix of Eq. (131), (132), (133) 

and (134) to zero would be simplified  

𝟒𝟒𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄−𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑)𝟐𝟐 = 𝟎𝟎 (135) 
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𝟒𝟒𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄−𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑)𝟐𝟐 = 𝟎𝟎 (136) 

𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄−𝒄𝒄𝒄𝒄𝒔𝒔𝝑𝝑)𝟐𝟐 = 𝟎𝟎 (137) 

𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝒄𝒄) 𝒔𝒔𝒊𝒊𝒏𝒏𝒄𝒄(𝒏𝒏𝝑𝝑) (𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝒄𝒄−𝒄𝒄𝒄𝒄𝒔𝒔𝒄𝒄𝝑𝝑)𝟐𝟐 = 𝟎𝟎 (138) 

It is found from Eq. (135), (136) and (137)  that sin(𝑛𝑛𝜑𝜑) = 0 and or sin(𝑛𝑛𝜗𝜗) = 0. 

Thus, the natural vibration modes are obtained from the trigonometric shape function 

𝑤𝑤𝑖𝑖 = 𝐵𝐵 𝑐𝑐𝑖𝑖𝑛𝑛(𝑖𝑖𝜑𝜑) and or 𝑤𝑤𝑖𝑖 = 𝐵𝐵 𝑐𝑐𝑖𝑖𝑛𝑛(𝑖𝑖𝜗𝜗) which lead to the fundamental natural vibration 

frequency, which are associated with the non-trivial condition: 

𝐅𝐅𝐅𝐅𝐅𝐅  𝐢𝐢 = 𝐧𝐧,   𝒘𝒘𝒊𝒊 = 𝟎𝟎 ⇒ 𝒔𝒔𝒊𝒊𝒏𝒏(𝒏𝒏𝒏𝒏) = 𝟎𝟎 ⇒ 𝒏𝒏 =
𝒑𝒑𝒑𝒑
𝒏𝒏

 ,   𝒏𝒏 = 𝒄𝒄,𝝑𝝑  (139) 

On the other hand, one would be obtained from Eq. (138) that 𝜑𝜑 = 𝜗𝜗 which leads to 

−𝝐𝝐 + √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟒𝟒

=
−𝝐𝝐 − √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟒𝟒
 ⇒ 𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉 = 𝟎𝟎 

(140) 

The frequencies could be obtained from Eq. (140) as follows 

𝜴𝜴 = �𝟑𝟑𝟐𝟐𝒏𝒏
𝟒𝟒 − 𝒌𝒌∗ + 𝟒𝟒𝒌𝒌∗𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐(𝟏𝟏 + 𝟐𝟐𝝁𝝁𝒔𝒔(𝟏𝟏 + 𝟐𝟐𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐(𝟏𝟏 − 𝝁𝝁𝒔𝒔))) ± 𝓚𝓚∗

𝑩𝑩∗  
(141) 

where 𝐴𝐴∗ and 𝐵𝐵∗ are defined by 

𝓚𝓚∗

= 𝟏𝟏𝟔𝟔𝒏𝒏𝟑𝟑�𝒌𝒌∗(𝒌𝒌∗𝝁𝝁𝒔𝒔𝒓𝒓∗𝟔𝟔 − 𝟏𝟏𝟔𝟔𝝁𝝁𝒔𝒔𝟑𝟑𝒓𝒓∗𝟔𝟔𝒏𝒏𝟒𝟒 + 𝟑𝟑𝟐𝟐𝝁𝝁𝒔𝒔𝟐𝟐𝒓𝒓∗𝟔𝟔𝒏𝒏𝟒𝟒 + 𝟑𝟑𝝁𝝁𝒔𝒔𝟐𝟐𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐 − 𝟏𝟏𝟔𝟔𝝁𝝁𝒔𝒔𝒓𝒓∗𝟔𝟔𝒏𝒏𝟒𝟒 + 𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐 − 𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐 + 𝟒𝟒𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐 − 𝒓𝒓∗𝟐𝟐) + 𝟒𝟒𝒏𝒏𝟐𝟐 

(142) 

𝑩𝑩∗ = −𝟏𝟏𝟔𝟔𝝁𝝁𝒔𝒔𝟐𝟐𝒓𝒓∗
𝟒𝟒𝒏𝒏𝟒𝟒 + 𝟑𝟑𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒏𝒏𝟒𝟒 + 𝟑𝟑𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒏𝒏𝟐𝟐 − 𝟏𝟏𝟔𝟔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟒𝟒 + 𝟑𝟑𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐 − 𝟏𝟏 

(143) 

For a simplified case by neglecting the elastic foundation, the dimensionless eigen 

frequencies can be obtained as 

𝜴𝜴 =
𝟑𝟑𝒏𝒏𝟐𝟐�(𝟒𝟒𝒓𝒓∗𝒏𝒏 + (𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐(𝝁𝝁𝒔𝒔 − 𝟏𝟏) − 𝟏𝟏))(𝟒𝟒𝒓𝒓∗𝒏𝒏 − �𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐(𝝁𝝁𝒔𝒔 − 𝟏𝟏) − 𝟏𝟏�)

𝑩𝑩∗  
(144) 
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the exact resolution of the dynamic analysis of the granular system that would be studied 

here is only true for the frequencies lower than 𝛺𝛺𝑐𝑐𝑟𝑟1,2. Since 𝛺𝛺𝑐𝑐𝑟𝑟1,2 is a function of grain 

number, the results could be compared well for an infinite number of grains with those 

correspond to the Timoshenko continuum beam. 

Therefore, regarding to Eq. (139), the deflection and rotation angle of each grain could be 

obtained by the following equation while 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,2 

𝒘𝒘𝒊𝒊 = 𝐁𝐁 𝐬𝐬𝐢𝐢𝐧𝐧 �
𝒊𝒊𝒑𝒑𝒑𝒑
𝒏𝒏
� (145) 

where p is the mode number or natural number (1 ≤ 𝑝𝑝 < 𝑛𝑛 for 𝑤𝑤𝑖𝑖  and 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛 for 𝜃𝜃𝑖𝑖) 

and i is the grain number (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛).  

Substituting Eq. (139) in Eq. (109) leads to 

𝒄𝒄𝒄𝒄𝒔𝒔 �
𝒑𝒑𝒑𝒑
𝒏𝒏 � =

−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 

 

(146) 

𝟐𝟐𝝐𝝐 𝒄𝒄𝒄𝒄𝒔𝒔 �
𝒑𝒑𝒑𝒑
𝒏𝒏 � + 𝝉𝝉 + 𝟒𝟒(𝒄𝒄𝒄𝒄𝒔𝒔 �

𝒑𝒑𝒑𝒑
𝒏𝒏 �)𝟐𝟐 = 𝟎𝟎 (147) 

which is a quartic equation. Using non-dimensional eigenfrequency parameters 

�𝝁𝝁𝒔𝒔𝒓𝒓
∗𝟒𝟒

𝒏𝒏𝟒𝟒
�𝜴𝜴𝟒𝟒 + �𝟐𝟐𝒓𝒓

∗𝟐𝟐

𝒏𝒏𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐

� 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒑𝒑𝒑𝒑
𝒏𝒏
� − 𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒌𝒌∗

𝒏𝒏𝟒𝟒
− 𝟏𝟏

𝟐𝟐𝒏𝒏𝟒𝟒
−

𝟐𝟐𝒓𝒓∗𝟐𝟐

𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔)�𝜴𝜴𝟐𝟐 + �𝟐𝟐(− 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟒𝟒
− 𝟒𝟒) 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒑𝒑𝒑𝒑

𝒏𝒏
� + 𝒌𝒌∗

𝟐𝟐𝒏𝒏𝟒𝟒
+ 𝟐𝟐𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝟒𝟒 +

𝟒𝟒(𝒄𝒄𝒄𝒄𝒔𝒔 �𝒑𝒑𝒑𝒑
𝒏𝒏
�)𝟐𝟐� = 𝟎𝟎  

 

(148) 

Neglecting the terms of Winkler elastic foundation (𝑘𝑘∗ = 0), Eq. (148) leads to 

�
𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒

𝒏𝒏𝟒𝟒
�𝜴𝜴𝟒𝟒 − �

𝟒𝟒𝒓𝒓∗𝟐𝟐

𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒑𝒑𝒑𝒑
𝟐𝟐𝒏𝒏�

+
𝟏𝟏
𝒏𝒏𝟒𝟒

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒑𝒑𝒑𝒑
𝟐𝟐𝒏𝒏�

�𝜴𝜴𝟐𝟐 + �𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �
𝒑𝒑𝒑𝒑
𝟐𝟐𝒏𝒏�

� = 𝟎𝟎 
(149) 
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The last equation is different from the quartic equation of Duan et al. [12] that had been 

obtained as follows: 

�𝝁𝝁𝒔𝒔𝒓𝒓
∗𝟒𝟒

𝒏𝒏𝟒𝟒
�𝜴𝜴𝟒𝟒 − �𝟒𝟒𝒓𝒓

∗𝟐𝟐

𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �𝒑𝒑𝒑𝒑

𝟐𝟐𝒏𝒏
� + 𝟏𝟏

𝒏𝒏𝟒𝟒
�𝜴𝜴𝟐𝟐 + �𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �𝒑𝒑𝒑𝒑

𝟐𝟐𝒏𝒏
�� = 𝟎𝟎  (150) 

Going back to Eq. (148), it could be written in the compact form  

𝜴𝜴𝟒𝟒 − 𝑩𝑩𝜴𝜴𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎    (151) 

in which the coefficients of B and C are defined 

𝑩𝑩 = −
𝟐𝟐𝒏𝒏𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐

� 𝒄𝒄𝒄𝒄𝒔𝒔 �
𝒑𝒑𝒑𝒑
𝒏𝒏 � + 𝒌𝒌∗ +

𝟏𝟏
𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+
𝟐𝟐𝒏𝒏𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔),  

  𝑪𝑪 = 𝟐𝟐𝒏𝒏𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 (−𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟒𝟒
− 𝟒𝟒) 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒑𝒑𝒑𝒑

𝒏𝒏
� + 𝒌𝒌∗

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 + 𝟐𝟐𝒏𝒏𝟐𝟐𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
+

𝟒𝟒𝒏𝒏𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 (𝟏𝟏 + 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒑𝒑𝒑𝒑

𝒏𝒏
�)𝟐𝟐   

 

 

(152) 

Eq. (151) has two real positive roots 

𝜴𝜴 = �𝑩𝑩±�𝑩𝑩𝟐𝟐−𝟒𝟒 𝑪𝑪
𝟐𝟐

     
(153) 

Eq. (153) shows that for a given mode number (p), there are two valid positive roots that 

refer to the two eigenfrequency spectra, in the distinction of the results refer to the Euler-

Bernoulli beam associated with a single positive root. The same phenomenon for the 

continuum Bresse-Timoshenko beam has been already investigated by Traill-Nash and 

Collar [125] and Manevich [65]. 

The natural frequencies of the granular chain represented in Figure 5 could be 

presented in a single form 
𝝎𝝎 = 𝜴𝜴

𝜹𝜹𝟐𝟐 �
𝑬𝑬𝑬𝑬
𝝆𝝆𝓚𝓚

     (154) 
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Substituting Eq. (153) in Eq. (154) gives the exact eigenfrequencies of the granular beam 

as a function of grain number (n) and for whatever mode numbers (p).  

The recent natural frequency was obtained by the assumption of  𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑟𝑟1,2 which 

means that it needs to be able to support both the low and high frequencies. Therefore, the 

maximum value of 𝛾𝛾 must be less than 𝛺𝛺𝑐𝑐𝑟𝑟1,2. Here the validity of this hypothesis is checked 

by analyzing the behavior of Eq. (154). Since 𝛾𝛾 is an ascending function of mode number 

(p) and knowing the mode number values cannot exceed the grain number, thus the 

maximum value of 𝛾𝛾 could be obtained for p=n which leads to 

𝜸𝜸𝒎𝒎𝒂𝒂𝒙𝒙 = �𝒌𝒌∗

𝟐𝟐
+ 𝟐𝟐𝒏𝒏𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) ± �(𝒌𝒌

∗

𝟐𝟐
+ 𝟐𝟐𝒏𝒏𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔))𝟐𝟐 −   𝒏𝒏𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
(+ 𝟒𝟒𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝟏𝟏𝟔𝟔)     

 

(155) 

According to the definition of 𝛺𝛺𝑐𝑐𝑟𝑟1,2 Eq. (155) could be rewritten in the short form as 

follows 

𝜸𝜸𝒎𝒎𝒂𝒂𝒙𝒙 = �𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐
𝟐𝟐

𝟐𝟐
+ 𝟐𝟐𝒏𝒏𝟐𝟐

𝒓𝒓∗𝟐𝟐
± �(

𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐
𝟐𝟐

𝟐𝟐
+ 𝟐𝟐𝒏𝒏𝟐𝟐

𝒓𝒓∗𝟐𝟐
)𝟐𝟐 −

𝟒𝟒𝒏𝒏𝟐𝟐𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐
𝟐𝟐

𝒓𝒓∗𝟐𝟐
     

 

(156) 

Simplifying Eq. (156) leads to the two max frequency values (Eq. (157)) each referring to 

the one branch. Therefore, Eq. (154) could be verified well for the range of high-frequency 

values, the natural frequencies of the discrete system do not exceed their critical values and 

thus the general solution form of the beam deflection remains in the harmonic and 

trigonometric manner. 

𝜸𝜸𝒎𝒎𝒂𝒂𝒙𝒙,𝟏𝟏 = 𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟏𝟏    ,    𝜸𝜸𝒎𝒎𝒂𝒂𝒙𝒙,𝟐𝟐 = 𝜴𝜴𝒄𝒄𝒓𝒓𝟏𝟏,𝟐𝟐  (157) 

By considering low mode number (p<<n) and for the continuum case when 𝑛𝑛 → ∞, the 

assumption of  𝑐𝑐𝑐𝑐𝑐𝑐 �𝑝𝑝𝑝𝑝
𝑛𝑛
�~1 − 1

2
(𝑝𝑝𝑝𝑝
𝑛𝑛

)2 could be applied to Eq. (148). This leads to 
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�𝝁𝝁𝒔𝒔𝒓𝒓
∗𝟒𝟒

𝒏𝒏𝟒𝟒
�𝜴𝜴𝟒𝟒 + �𝟐𝟐𝒓𝒓

∗𝟐𝟐

𝒏𝒏𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐

� (𝟏𝟏 − 𝟏𝟏
𝟐𝟐
�𝒑𝒑𝒑𝒑
𝒏𝒏
�
𝟐𝟐

)−𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒𝒌𝒌∗

𝒏𝒏𝟒𝟒
− 𝟏𝟏

𝟐𝟐𝒏𝒏𝟒𝟒
−

𝟐𝟐𝒓𝒓∗𝟐𝟐

𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔)�𝜴𝜴𝟐𝟐 + �𝟐𝟐(− 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟒𝟒
− 𝟒𝟒) (𝟏𝟏 − 𝟏𝟏

𝟐𝟐
�𝒑𝒑𝒑𝒑
𝒏𝒏
�
𝟐𝟐

) + 𝒌𝒌∗

𝟐𝟐𝒏𝒏𝟒𝟒
+ 𝟐𝟐𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔

𝒏𝒏𝟐𝟐
+ 𝟒𝟒 +

𝟒𝟒 (𝟏𝟏 − �𝒑𝒑𝒑𝒑
𝒏𝒏
�
𝟐𝟐

+ 𝟏𝟏
𝟒𝟒

(𝒑𝒑𝒑𝒑
𝒏𝒏

)𝟒𝟒)� = 𝟎𝟎  

 

(158) 

Eq. (158) can be simplified 

𝜴𝜴𝟒𝟒 − �𝒑𝒑
𝟐𝟐𝒑𝒑𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 (𝟏𝟏 + 𝝁𝝁𝒔𝒔) +𝒌𝒌∗ + 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒�𝜴𝜴𝟐𝟐 + �(𝒌𝒌

∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+ 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒) + 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒� = 𝟎𝟎  (159) 

and in the compact form 

𝜴𝜴𝟒𝟒 − 𝑩𝑩𝜴𝜴𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (160) 

where the two coefficients of B and C are defined as:  

𝑩𝑩 = 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 (𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝒌𝒌∗ + 𝟏𝟏
𝒓𝒓∗𝟐𝟐
� ,   𝑪𝑪 = 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 + 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+ 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒,    (161) 

Solving the quartic equation of (160) leads to the eigenfrequency values of the 

continuous beam that would be obtained again by Eq. (154) and with 𝛾𝛾 expressed as 

follows: 

𝜸𝜸 = � 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝒌𝒌∗

𝟐𝟐
+ 𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
± �( 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝒌𝒌∗

𝟐𝟐
+ 𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)𝟐𝟐 −  ( 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+ 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+ 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)    

 

(162) 

These results agree with those obtained by Wang and Stephens [64], Cheng and Pantelides 

[118] and Manevich [65]. Also with the negligence of the Winkler elastic foundation 

(k*=0), it could be compared well to Timoshenko [17, [18]. 

3.3. Explicit Method: Granular Beam Composed of Three Grains 

 Let’s consider a vibrating granular chain composed of three rigid grains with the 

negligence of the Winkler elastic foundation (k*=0) resting on simply supported boundary 

conditions. The equilibrium equations of such a system could be considered as follows: 
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For i = 0 : 

𝑊𝑊0 = 0 

𝑘𝑘𝑑𝑑(𝛩𝛩1 − 𝛩𝛩0) +
𝑎𝑎

2
𝑘𝑘𝑐𝑐(𝑊𝑊1 − 𝑊𝑊0) −

𝑎𝑎2

4
𝑘𝑘𝑐𝑐(𝛩𝛩1 + 𝛩𝛩0) − 𝐼𝐼𝜇𝜇0�̈�𝛩0 = 0 

For i = 1 : 

𝑘𝑘𝑐𝑐(𝑊𝑊2 + 𝑊𝑊0 − 2𝑊𝑊1) −
𝑎𝑎

2
𝑘𝑘𝑐𝑐(𝛩𝛩2 − 𝛩𝛩0) − 𝜇𝜇1�̈�𝑊1 = 0 

𝑘𝑘𝑑𝑑(𝛩𝛩2 + 𝛩𝛩0 − 2𝛩𝛩1) +
𝑎𝑎

2
𝑘𝑘𝑐𝑐(𝑊𝑊2 − 𝑊𝑊0) −

𝑎𝑎2

4
𝑘𝑘𝑐𝑐(𝛩𝛩2 + 𝛩𝛩0 + 2𝛩𝛩1) − 𝐼𝐼𝜇𝜇1

�̈�𝛩1 = 0 

For i = 2 : 

𝑊𝑊2 = 0 

−𝑘𝑘𝑟𝑟(𝛩𝛩2 − 𝛩𝛩1) +
𝑎𝑎
2
𝑘𝑘𝑠𝑠(𝑊𝑊2 −𝑊𝑊1) −

𝑎𝑎2

4
𝑘𝑘𝑠𝑠(𝛩𝛩2 + 𝛩𝛩1) − 𝐼𝐼𝑚𝑚2�̈�𝛩2 = 0 

 

 

 

 

 

(163) 

Assuming 𝐼𝐼𝑚𝑚0 = 𝐼𝐼𝑚𝑚2 , this equation could be simplified and eventually expressed in a 

matrix form as  

 

𝑘𝑘𝑐𝑐(−2𝑊𝑊1) −
𝑎𝑎

2
𝑘𝑘𝑐𝑐(𝛩𝛩2 − 𝛩𝛩0) − 𝜇𝜇1�̈�𝑊1 = 0 

𝑘𝑘𝑑𝑑(𝛩𝛩1 − 𝛩𝛩0) +
𝑎𝑎

2
𝑘𝑘𝑐𝑐(𝑊𝑊1) −

𝑎𝑎2

4
𝑘𝑘𝑐𝑐(𝛩𝛩1 + 𝛩𝛩0) − 𝐼𝐼𝜇𝜇0�̈�𝛩0 = 0   

𝑘𝑘𝑑𝑑(𝛩𝛩2 + 𝛩𝛩0 − 2𝛩𝛩1) −
𝑎𝑎2

4
𝑘𝑘𝑐𝑐(𝛩𝛩2 + 𝛩𝛩0 + 2𝛩𝛩1) − 𝐼𝐼𝜇𝜇1

�̈�𝛩1 = 0    

−𝑘𝑘𝑟𝑟(𝛩𝛩2 − 𝛩𝛩1) +
𝑎𝑎
2
𝑘𝑘𝑠𝑠(−𝑊𝑊1) −

𝑎𝑎2

4
𝑘𝑘𝑠𝑠(𝛩𝛩2 + 𝛩𝛩1) − 𝐼𝐼𝑚𝑚0�̈�𝛩2 = 0 

 

(164) 

this equation could be rewritten in matrix form as  

�

𝜇𝜇1
0
0
0

0
𝐼𝐼𝑚𝑚0

0
0

0
0
𝐼𝐼𝑚𝑚1

0

0
0
0
𝐼𝐼𝑚𝑚0

�

⎣
⎢
⎢
⎢
⎡�̈�𝑊1
�̈�𝛩0
�̈�𝛩1
�̈�𝛩2 ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡ 2𝑘𝑘𝑠𝑠
−0.5𝑎𝑎𝑘𝑘𝑠𝑠

0
0.5𝑎𝑎𝑘𝑘𝑠𝑠

−0.5𝑎𝑎𝑘𝑘𝑠𝑠
𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠
−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠

0

0
−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠
2𝑘𝑘𝑟𝑟 + 0.5𝑎𝑎2𝑘𝑘𝑠𝑠
−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠

0.5𝑎𝑎𝑘𝑘𝑠𝑠
0

−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠
𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠 ⎦

⎥
⎥
⎤
�

𝑊𝑊1
𝛩𝛩0
𝛩𝛩1
𝛩𝛩2

� = 0 

 

(165) 

Assuming a harmonic motion 𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑑𝑑𝑗𝑗𝜔𝜔𝑡𝑡 and 𝛩𝛩𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑑𝑑𝑗𝑗𝜔𝜔𝑡𝑡 with 𝑗𝑗2 = −1, 
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⎣
⎢
⎢
⎡2𝑘𝑘𝑠𝑠 − 𝜇𝜇1𝜔𝜔2

−0.5𝑎𝑎𝑘𝑘𝑠𝑠
0

0.5𝑎𝑎𝑘𝑘𝑠𝑠

−0.5𝑎𝑎𝑘𝑘𝑠𝑠
𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠−𝐼𝐼𝑚𝑚0𝜔𝜔

2

−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠
0

0
−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠

2𝑘𝑘𝑟𝑟 + 0.5𝑎𝑎2𝑘𝑘𝑠𝑠−𝐼𝐼𝑚𝑚1𝜔𝜔
2

−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠

0.5𝑎𝑎𝑘𝑘𝑠𝑠
0

−𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠
𝑘𝑘𝑟𝑟 + 0.25𝑎𝑎2𝑘𝑘𝑠𝑠−𝐼𝐼𝑚𝑚0𝜔𝜔

2⎦
⎥
⎥
⎤
�

𝑊𝑊1
𝛩𝛩0
𝛩𝛩1
𝛩𝛩2

� = 0 

 

(166) 

The natural frequencies of the system could be obtained by considering the determinant of 

the coefficient matrix equal to zero.  

 
3.4. Continuum Solution 

In the limit case for the continuum beam, the fourth-order differential equation 

including the Winkler elastic foundation could be considered in dimensionless form 

𝒅𝒅𝟒𝟒𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟒𝟒

+ �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐(𝟏𝟏 + 𝝁𝝁𝒔𝒔) − 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔�
𝒅𝒅𝟐𝟐𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟐𝟐

− �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ + 𝟏𝟏

𝒓𝒓∗𝟐𝟐
−

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐� − 𝒌𝒌∗�𝒘𝒘� = 𝟎𝟎   

(167) 

Eq. (167) is obtained by Wang and Stephens [64] and the non-dimensional parameters 

can be introduced 

𝒙𝒙� = 𝒙𝒙
𝜹𝜹
  ,  𝒘𝒘� = 𝒘𝒘

𝜹𝜹
 , 𝒅𝒅

𝟐𝟐𝒘𝒘�
𝒅𝒅𝑿𝑿𝟐𝟐

= 𝜹𝜹 𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐

  ,  𝒅𝒅
𝟒𝟒𝒘𝒘�
𝒅𝒅𝑿𝑿𝟒𝟒

= 𝜹𝜹𝟑𝟑 𝒅𝒅
𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒

 (168) 

For simply supported beam, the solution of Eq. (167) can be proposed by 

𝒘𝒘�(𝒙𝒙�) = 𝐬𝐬𝐢𝐢𝐧𝐧(𝒑𝒑𝒑𝒑𝒙𝒙�) (169) 

Substituting Eq. (169) in Eq. (167) leads to the following quartic frequency equation. 

�𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒�𝜴𝜴𝟒𝟒 − �𝒓𝒓∗𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝒌𝒌∗ + 𝟏𝟏
𝒓𝒓∗
� + 𝒓𝒓∗𝟐𝟐𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐(𝟏𝟏 + 𝝁𝝁𝒔𝒔)� 𝜴𝜴𝟐𝟐 + �𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 + 𝒌𝒌∗ +

𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒� = 𝟎𝟎  

(170) 

which can be considered in the compact form 

𝜴𝜴𝟒𝟒 − 𝑩𝑩𝜴𝜴𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (171) 

The two coefficients of B and C are defined as: 
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𝑩𝑩 = 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 (𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝒌𝒌∗ + 𝟏𝟏
𝒓𝒓∗𝟐𝟐
� ,   𝑪𝑪 = 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 + 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+ 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒   (172) 

So, the natural frequencies of the continuous beam could be obtained from the quartic 

equation of Eq. (171). The results are in the same form as Eq. (154) with substitution of 

Eq. (162) and can be compared well to Wang and Stephens [64], Cheng and Pantelides 

[118] and Manevich [65]. If the elastic Winkler foundation is neglected (k*=0) the 

eigenfrequency values will be similar to those obtained by Timoshenko [17, [18]. 

The sensitivity analysis is performed for the granular chain by assuming that the 

following set of dimensionless parameters for four grain number values (n=5; n=20; n=35; 

n=50) 

  𝜇𝜇𝑠𝑠 = 4.28  and 𝑘𝑘∗ ∈ {1.875, 480, 4502, 18750} (173) 

In Figure 8, the frequency results obtained by the exact solution of the discrete 

lattice model have been compared with those of Duan et al. [12]. In this asymptotic 

analysis, the length of the beam is considered constant for instance and by increasing the 

number of grains subsequently reducing the grain diameter (a) the natural frequencies of 

the system are obtained. Since the local continuum solution of the problem (mentioned in 

Eq. (172)) is independent of the grain number, the results do not change by varying the 

grain number. Each model leads to two branches of frequency.  

Regarding to the first branch (lower frequencies), for each typical value of the grain 

number, the results of two discrete models, diverge from each other and also from the 

continuum ones by increasing the mode number, starting from two different values of mode 

number. While for the second branch these two results are close to each other (Figure 9). 

(a) (b) 
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(c) (d) 

  

Figure 8.  Comparison of the first branch natural frequencies for the discrete exact, Duan et al. [12] and 
continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 =
𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and  𝒌𝒌∗ = 𝟎𝟎. 
 

The results for the second branches of eigenfrequencies have been shown in Figure 

9 for the two discrete model and the equivalent continuum beam with respect to the mode 

number (p) and four grain number values (n=5; n=20; n=35; n=50). It can be concluded 

the exact solution of the discrete model always predicts lower frequencies than the 

continuum one. As it is expected, by increasing the ratio of n/p, the results of the two 

discrete models converge to the continuous ones. The coincidence of the results happens 
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for the second branch when the ratio of n/p is typically higher than the approximate value 

of 3, while this approximate limit value is typically 2 for the first branch.  

Furthermore, for the first branch or lower frequencies, the results of the discrete 

model developed in this study are closer to the continuum ones in comparison with those 

obtained by Duan et al. [12], for a typical value of the mode number. While this conclusion 

is opposite for the second branch which means for small values of the grain number Duan 

et al. [12] predict the dynamic response closer to the continuum results. 

(a) (b) 

  

(c) (d) 
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Figure 9. Comparison of the second branch natural frequencies for the discrete exact, Duan et al. [12] and 
continuum solutions with respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 =
𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎 and  𝒌𝒌∗ = 𝟎𝟎. 
 

Here, for a constant grain number and various geometric dimensionless parameters 

(𝑑𝑑∗), the results have been compared and shown for the two branches respectively in Figure 

10 and Figure 11. Increasing the values of the length ratio, the results obtained by discrete 

exact solution and Duan et al. [12] converge each other, for both the first and second 

branches. For the first branch, it can be understood that generally, the behavior of the exact 

discrete solution is closer to continuum one in comparison with Duan et al. [12], for low 

values of the mode number (p). On the other hand, for the second branch or higher 

frequencies, the behavior of the results obtained by the exact model introduced here is more 

sensitive to the length ratio. 

(a) (b) 
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(c) (d) 

  

Figure 10. Comparison of the first branch natural frequencies for the discrete exact, Duan et al. [12] and 
continuum solutions with respect to the mode number (p) and grain number: (a) 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟒𝟒, (b) 𝒓𝒓∗ =
𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐, (c) 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟒𝟒 and (d) 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑 for 𝒏𝒏 = 𝟐𝟐𝟎𝟎,  𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and  𝒌𝒌∗ = 𝟎𝟎. 
 
(a) (b) 
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(c) (d) 

  

Figure 11. Comparison of the second branch natural frequencies for the discrete exact, Duan et al. [12] and 
continuum solutions with respect to the mode number (p) and grain number: (a) 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟒𝟒, (b) 𝐅𝐅∗ =
𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐, (c) 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟒𝟒 and (d) 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑 for 𝐧𝐧 = 𝟐𝟐𝟎𝟎,  𝛍𝛍𝐬𝐬 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and  𝐤𝐤∗ = 𝟎𝟎. 
 

In Figure 12, the effect of length ratio (beam thickness/beam length) regarding to 

the grain number has been studied for two typical mode numbers (p=1 and p=10). The 

minimum values of the required grain number (n*) have been also determined and reported 

when the difference between the discrete and continuum results start to be smaller than 1%. 

It can be concluded generally that in order to achieve the continuum results from discrete 

solution, whether the length ratio decrease or the mode number increase, the grain number 

value needs to increase. 
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(a) (b) 

  

Figure 12. Analysis of the grain number effect on the frequencies (discrete exact solution) for the 
mode number (a) 𝒑𝒑 = 𝟏𝟏 and (b) 𝒑𝒑 = 𝟏𝟏𝟎𝟎 with respect to the length ratio (𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟐𝟐𝟎𝟎) for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and 
𝒌𝒌∗ = 𝟏𝟏.𝟑𝟑𝟎𝟎. 
 
4. Nonlocal Approximate Solutions - Continuous Approach 

The fourth-order difference equations of Eq. (77) may be continualized in two 

general ways: the simplest approach is based on the polynomial expansions in which the 

finite differences operators are expanded with the Taylor approximation. This leads to a 

higher-order gradient Cosserat continuum theory. Another effective method considers a 

rational expansion based on the Padé approximation which could give a better 

homogenized solution compared to the Taylor series (see for instance Duan et al. [12] for 

the application of this technique to a similar discrete Bresse-Timoshenko system). The 

second strategy is based on homogenization of the equations by means of a discrete Fourier 

transformation. The result, in this case, is a Kunin-type non-local theory.  

In the next section, the discrete nature of the granular beam structure which has 

been modeled utilizing the difference equation as Eq. (77) is continualized by applying the 

Taylor series and the Padé approximation. 
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4.1. Polynomial Expansion (Taylor Series Approximant) 

The general solution for the granular beam will be investigated by a 

continualization transform based on exponential pseudo-differential operators. The 

following pseudo-differential operators are defined in order to introduce the relation 

between the discrete and the equivalent continuous system holds for a sufficiently smooth 

deflection function (Salvadori [126]):  

𝒘𝒘𝒊𝒊 = 𝒘𝒘 (𝒙𝒙 = 𝒊𝒊𝒂𝒂) 

𝒘𝒘𝒊𝒊+𝟏𝟏 = �
𝒂𝒂𝒌𝒌𝑫𝑫𝒙𝒙

𝒌𝒌

𝒌𝒌!

∞

𝒌𝒌=𝟎𝟎

𝒘𝒘(𝒙𝒙)  = �𝟏𝟏 +
𝒂𝒂𝑫𝑫𝒙𝒙

𝟏𝟏

𝟏𝟏! +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟐𝟐! +
𝒂𝒂𝟑𝟑𝑫𝑫𝒙𝒙

𝟑𝟑

𝟑𝟑! + ⋯�𝒘𝒘(𝒙𝒙)  = 𝒆𝒆𝒂𝒂𝑫𝑫𝒙𝒙𝒘𝒘(𝒙𝒙);  𝒙𝒙 = 𝒊𝒊𝒂𝒂 

 

(174) 

Subsequently, the involved pseudo-differential equations 𝛿𝛿2
2𝑤𝑤(𝑥𝑥), 𝛿𝛿2𝑤𝑤(𝑥𝑥) and 𝛿𝛿0𝑤𝑤(𝑥𝑥)  

may be defined as:  

𝜹𝜹𝟐𝟐
𝟐𝟐𝒘𝒘(𝒙𝒙) = �

𝒆𝒆𝟐𝟐𝒂𝒂𝑫𝑫𝒙𝒙 − 𝟒𝟒𝒆𝒆𝒂𝒂𝑫𝑫𝒙𝒙 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝑫𝑫𝒙𝒙 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝑫𝑫𝒙𝒙
𝒂𝒂𝟒𝟒 �𝒘𝒘(𝒙𝒙)

= �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 +
𝒂𝒂𝟒𝟒𝑫𝑫𝒙𝒙

𝟒𝟒

𝟑𝟑𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝑫𝑫𝒙𝒙
𝟔𝟔��𝑫𝑫𝒙𝒙

𝟒𝟒𝒘𝒘(𝒙𝒙); 

𝜹𝜹𝟐𝟐𝒘𝒘(𝒙𝒙) = �
𝒆𝒆𝒂𝒂𝑫𝑫𝒙𝒙 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝑫𝑫𝒙𝒙

𝒂𝒂𝟐𝟐 �𝒘𝒘(𝒙𝒙) = �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝒂𝒂𝟒𝟒𝑫𝑫𝒙𝒙

𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝑫𝑫𝒙𝒙
𝟔𝟔��𝑫𝑫𝒙𝒙

𝟐𝟐𝒘𝒘(𝒙𝒙); 

𝜹𝜹𝟎𝟎𝒘𝒘(𝒙𝒙) = �
𝒆𝒆𝒂𝒂𝑫𝑫𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝑫𝑫𝒙𝒙

𝟒𝟒 �𝒘𝒘(𝒙𝒙) = �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟒𝟒 +
𝒂𝒂𝟒𝟒𝑫𝑫𝒙𝒙

𝟒𝟒

𝟒𝟒𝟑𝟑 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝑫𝑫𝒙𝒙
𝟔𝟔��𝒘𝒘(𝒙𝒙) 

 

 

 

(175) 

Substitution of the fourth-order expansions of Eq. (175) for the pseudo-differential 

operators in Eq. (11) leads to 

[𝑬𝑬𝑬𝑬(𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 )𝑫𝑫𝒙𝒙
𝟒𝟒  + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 −

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
� (𝟏𝟏 +

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 )𝑫𝑫𝒙𝒙
𝟐𝟐  + (𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐)(𝟏𝟏

+
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟒𝟒 )  −
𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
]𝒘𝒘(𝒙𝒙)  = 𝟎𝟎 

 

(176) 

Next, a gradient-type differential equation could be obtained as follows with the 

multiplication of the last equation by (1 − 𝑎𝑎2𝐷𝐷𝑥𝑥2

3
) and neglecting higher-order terms in 𝑎𝑎4. 
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�𝑬𝑬𝑬𝑬 �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 �𝑫𝑫𝒙𝒙
𝟒𝟒 + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 −

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
��𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟒𝟒 �𝑫𝑫𝒙𝒙
𝟐𝟐

+ �𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 � + �−
𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
��𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟑𝟑 ��𝒘𝒘(𝒙𝒙)  = 𝟎𝟎 

 

(177) 

With ignorance of shear effects in the granular system (𝐾𝐾𝑠𝑠𝐺𝐺𝐴𝐴 → ∞), Eq. (177) could be 

simplified  

𝑬𝑬𝑬𝑬 �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 �𝑫𝑫𝒙𝒙
𝟒𝟒𝒘𝒘(𝒙𝒙) + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐� �𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟒𝟒 �𝑫𝑫𝒙𝒙
𝟐𝟐𝒘𝒘(𝒙𝒙) + �𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� �𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �𝒘𝒘(𝒙𝒙)  

= 𝟎𝟎 

(178) 

which is equivalent to 

𝑬𝑬𝑬𝑬�−
𝒂𝒂𝟐𝟐

𝟔𝟔 𝒘𝒘(𝟔𝟔) + 𝒘𝒘(𝟒𝟒)� + 𝒌𝒌�𝒘𝒘 −
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝒘𝒘
′′� − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐 �𝒘𝒘 −

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝒘𝒘
′′� + 𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 �𝒘𝒘′′ −

𝒂𝒂𝟐𝟐

𝟒𝟒 𝒘𝒘(𝟒𝟒)�

= 𝟎𝟎 

(179) 

The last equation is formally the same as the gradient elasticity of Rayleigh beam 

equation under the Pasternak-type foundation. This differential equation can be obtained 

from the application of the Hamilton principle associated with some connected energy 

functions. The (definitive positive) potential energy and kinetic energy functions are 

respectively given by 

𝑾𝑾 = �
𝟏𝟏
𝟐𝟐𝑬𝑬𝑬𝑬 �𝒘𝒘

′′𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝒘𝒘′′′𝟐𝟐�𝒅𝒅𝒙𝒙
𝜹𝜹

𝟎𝟎
+ �

𝟏𝟏
𝟐𝟐𝒌𝒌�𝒘𝒘

𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝒘𝒘
′𝟐𝟐�

𝜹𝜹

𝟎𝟎
𝒅𝒅𝒙𝒙 = 𝟎𝟎 

(180) 

𝜹𝜹 = �
𝟏𝟏
𝟐𝟐𝝆𝝆𝓚𝓚��̇�𝒘

𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝒘𝒘
′̇ 𝟐𝟐� 𝒅𝒅𝒙𝒙

𝜹𝜹

𝟎𝟎
+ �

𝟏𝟏
𝟐𝟐𝝆𝝆𝑬𝑬��̇�𝒘

′𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟒𝟒 𝒘𝒘′′̇ 𝟐𝟐�
𝜹𝜹

𝟎𝟎
𝒅𝒅𝒙𝒙 = 𝟎𝟎 

(181) 

Assuming static case (𝜔𝜔 = 0), Eq. (178) leads to an equivalent gradient elasticity of Euler-

Bernoulli beam under Pasternak-type foundation  

𝑬𝑬𝑬𝑬�−
𝒂𝒂𝟐𝟐

𝟔𝟔
𝒘𝒘(𝟔𝟔) + 𝒘𝒘(𝟒𝟒)�+ 𝒌𝒌�𝒘𝒘 −

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
𝒘𝒘′′�  = 𝟎𝟎 

(182) 
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Going back to Eq. (176) which is an approximation of the discrete model, the higher-order 

differential equation could be rewritten  

�𝑬𝑬𝑬𝑬𝒂𝒂
𝟐𝟐

𝟔𝟔
𝒘𝒘(𝟔𝟔) + �𝑬𝑬𝑬𝑬 + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 − 𝒌𝒌𝑬𝑬𝑬𝑬

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝑬𝑬𝑬𝑬𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
� 𝒂𝒂

𝟐𝟐

𝟏𝟏𝟐𝟐
�𝒘𝒘(𝟒𝟒) + ��𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 − 𝒌𝒌𝑬𝑬𝑬𝑬

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝑬𝑬𝑬𝑬𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
� +

�𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� 𝒂𝒂
𝟐𝟐

𝟒𝟒
�𝒘𝒘(𝟐𝟐) + ��𝒌𝒌 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐� − 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
��𝒘𝒘 = 𝟎𝟎  

(183) 

Eq. (183) has been obtained by Challamel et al. [117] in the static range (𝜔𝜔 = 0). For 

simply supported boundary conditions, the solution of Eq. (183) could be assumed in the 

following form: 

𝒘𝒘(𝒙𝒙) = 𝐬𝐬𝐢𝐢𝐧𝐧 �
𝒑𝒑𝒑𝒑𝒙𝒙
𝜹𝜹 � (184) 

So, by substituting this fundamental solution in Eq. (183), the natural frequencies of the 

granular chain may be obtained from solving the following equation: 

�𝝆𝝆
𝟐𝟐𝑬𝑬

𝒌𝒌𝒔𝒔𝓚𝓚
�𝝎𝝎𝟒𝟒 + ��𝝆𝝆𝑬𝑬 + 𝑬𝑬𝑬𝑬𝝆𝝆

𝒌𝒌𝒔𝒔𝓚𝓚
� 𝒂𝒂

𝟐𝟐

𝟏𝟏𝟐𝟐
× 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝜹𝜹𝟒𝟒
− �𝝆𝝆𝑬𝑬 + 𝑬𝑬𝑬𝑬𝝆𝝆

𝒌𝒌𝒔𝒔𝓚𝓚
− 𝝆𝝆𝓚𝓚 𝒂𝒂𝟐𝟐

𝟒𝟒
� 𝒑𝒑

𝟐𝟐𝒑𝒑𝟐𝟐

𝜹𝜹𝟐𝟐
− (𝝆𝝆𝓚𝓚 + 𝒌𝒌𝑬𝑬𝝆𝝆

𝒌𝒌𝒔𝒔𝓚𝓚𝓚𝓚
)�𝝎𝝎𝟐𝟐 +

�−𝑬𝑬𝑬𝑬 𝒂𝒂
𝟐𝟐

𝟔𝟔
× 𝒑𝒑𝟔𝟔𝒑𝒑𝟔𝟔

𝜹𝜹𝟔𝟔
+ 𝑬𝑬𝑬𝑬 𝒑𝒑

𝟒𝟒𝒑𝒑𝟒𝟒

𝜹𝜹𝟒𝟒
− 𝒌𝒌𝑬𝑬𝑬𝑬

𝒌𝒌𝒔𝒔𝓚𝓚𝓚𝓚
× 𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
× 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝜹𝜹𝟒𝟒
+ 𝒌𝒌𝑬𝑬𝑬𝑬

𝒌𝒌𝒔𝒔𝓚𝓚𝓚𝓚
× 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝜹𝜹𝟐𝟐
− 𝒌𝒌 𝒂𝒂𝟐𝟐

𝟒𝟒
× 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝜹𝜹𝟐𝟐
+ 𝒌𝒌� = 𝟎𝟎  

 

(185) 

or in non-dimensional form 

𝜴𝜴𝟒𝟒 + �� 𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+ 𝟏𝟏
𝒓𝒓∗𝟐𝟐
� 𝒑𝒑

𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐
− � 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+ 𝟏𝟏

𝒓𝒓∗𝟐𝟐
− 𝟏𝟏

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐
� 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 − ( 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+

𝒌𝒌∗)� 𝜴𝜴𝟐𝟐 + � 𝒑𝒑𝟔𝟔𝒑𝒑𝟔𝟔

𝟔𝟔𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐
+ 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
− 𝒌𝒌∗𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
+ 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
− 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐
+ 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� = 𝟎𝟎  

 

(186) 

By solving Eq. (186) leads to the form of Eq. (153) with the parameters 

𝑩𝑩 = �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐
− �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+
𝟏𝟏
𝒓𝒓∗𝟐𝟐

−
𝟏𝟏

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒𝒏𝒏𝟐𝟐
�𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 − �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+ 𝒌𝒌∗�, 

   𝑪𝑪 = 𝟏𝟏
𝟔𝟔𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒏𝒏𝟐𝟐
𝒑𝒑𝟔𝟔𝒑𝒑𝟔𝟔 + ( 𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒 −

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
)𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒 + ( 𝒌𝒌

∗

𝒓𝒓∗𝟐𝟐
− 𝒌𝒌∗

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒𝒏𝒏𝟐𝟐

)𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 + 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒    

 

 

(187) 
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The natural frequencies could be calculated by substituting Eq. (153) in the following 

equation with respect to the parameters of Eq. (187). 
𝝎𝝎 = 𝜴𝜴

𝜹𝜹𝟐𝟐 �
𝑬𝑬𝑬𝑬
𝝆𝝆𝓚𝓚

     (188) 

For continuum modeling when 𝑛𝑛 → ∞, 𝛾𝛾 change to 

𝜸𝜸 =

�( 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝒌𝒌∗

𝟐𝟐
+ 𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
) ± �( 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝒌𝒌∗

𝟐𝟐
+ 𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)𝟐𝟐 −  ( 𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+ 𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+ 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)    

(189) 

Eq. (189) coincides with Eq. (162), which also exactly agrees with the results of Wang and 

Stephens [64], Cheng and Pantelides [118] and Manevich [65]. 

In Figure 13, the natural frequencies of the discrete granular model obtained from 

the Taylor expansion of pseudo-differential (nonlocal approach) have been compared with 

the local continuum solution for the two spectra. The coincidence of the discrete and 

continuum eigenfrequencies occurs when the ratio of n/p is sufficiently large which can be 

quantified for the second branch typically 7 and for the first branch by a typical value of 5. 

In comparison with the exact solution, it can be clarified that the Taylor approximation 

requires more discrete elements in order to converge to the continuum results.  

It is important to note that by decreasing the n/p ratio, the imaginary term appears 

in the nonlocal results for the two branches. For these cases, the real parts of the two 

branches are equal together while the imaginary parts are equal in values but opposite in 

sign. Therefore, using the Taylor series for continualizing the difference equations of the 

granular beam implies imaginary eigenfrequencies. The length ratio and grain number 

effects on frequencies have been studied in Figure 14.  

(a) (b) 
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(c) (d) 

  
Figure 13. Comparison of the natural frequencies for the nonlocal Taylor and continuum solutions with 
respect to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟏𝟏𝟒𝟒, 
(c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑. 
 
(a) (b) 

  
Figure 14. Analysis of the grain number effect on the frequencies (nonlocal Taylor) for the mode number (a) 
𝒑𝒑 = 𝟏𝟏 and (b) 𝒑𝒑 = 𝟏𝟏𝟎𝟎 with respect to the length ratio for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and 𝒌𝒌∗ = 𝟏𝟏.𝟑𝟑𝟎𝟎. 
 

4.2. Rational Expansion (Padé Approximant) 

In this section, the approximation of Padé has been used in the asymptotic 

expansion of the pseudo-differential operators. This method often gives a better 
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approximation of a function than its Taylor series counterpart (Baker and Graves-Morris 

[127]). 

Applying the Padé approximant of [1/4], [1/2] and [1/2] in Eq. (175) yields: 

𝜹𝜹𝟐𝟐
𝟐𝟐𝒘𝒘(𝒙𝒙) ≈ �

𝟏𝟏

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟔𝟔 + 𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝑫𝑫𝒙𝒙
𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎

�𝑫𝑫𝒙𝒙
𝟒𝟒𝒘𝒘(𝒙𝒙) ≈

⎝

⎜
⎛ 𝟏𝟏

�𝟏𝟏 − 𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �
𝟐𝟐

⎠

⎟
⎞
𝑫𝑫𝒙𝒙
𝟒𝟒𝒘𝒘(𝒙𝒙); 

𝜹𝜹𝟐𝟐𝒘𝒘(𝒙𝒙) ≈ �
𝟏𝟏

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐

�𝑫𝑫𝒙𝒙
𝟐𝟐𝒘𝒘(𝒙𝒙); 

𝜹𝜹𝟎𝟎𝒘𝒘(𝒙𝒙)  ≈ [𝟏𝟏 + �
𝟏𝟏

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐

�
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟒𝟒 ]𝒘𝒘(𝒙𝒙) 

 

 

 

 

(190) 

Eq. (11) could be rewritten as a function of Eq. (175) 

�� 𝟏𝟏

�𝟏𝟏−𝒂𝒂
𝟐𝟐𝑫𝑫𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 �
𝟐𝟐�𝑫𝑫𝒙𝒙

𝟒𝟒 + �𝝆𝝆𝑬𝑬
𝑬𝑬𝑬𝑬
𝝎𝝎𝟐𝟐 − 𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�� 𝟏𝟏

𝟏𝟏−𝒂𝒂
𝟐𝟐𝑫𝑫𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐

�𝑫𝑫𝒙𝒙
𝟐𝟐 + � 𝒌𝒌

𝑬𝑬𝑬𝑬
− 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑬𝑬𝑬𝑬
� �𝟏𝟏 +

� 𝟏𝟏

𝟏𝟏−𝒂𝒂
𝟐𝟐𝑫𝑫𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐

� 𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙𝟐𝟐

𝟒𝟒
� + �− 𝒌𝒌𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+ 𝝆𝝆𝟐𝟐𝑬𝑬𝓚𝓚𝝎𝝎𝟒𝟒

𝑬𝑬𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
��𝒘𝒘(𝒙𝒙) = 𝟎𝟎  

 

 

(191) 

Multiplication of Eq. (191) by �1 − 𝑎𝑎2𝐷𝐷𝑥𝑥2

12
�
2
 leads to the following compact form equation. 

�𝑫𝑫𝒙𝒙
𝟒𝟒  + �

𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬 +
𝝆𝝆𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
−
𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬 𝒂𝒂𝟐𝟐 −
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬� �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐

+ �
𝝆𝝆𝟐𝟐𝝎𝝎𝟒𝟒

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
−
𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑬𝑬𝑬𝑬 −
𝒌𝒌𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝒌𝒌
𝑬𝑬𝑬𝑬� �𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �
𝟐𝟐

�𝒘𝒘(𝒙𝒙) = 𝟎𝟎 

 

(192) 

Eq. (192) can be written in the dimensionless form 

�𝜹𝜹𝟒𝟒𝑫𝑫𝒙𝒙
𝟒𝟒 + 𝜶𝜶�𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐
�𝜹𝜹𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐 + 𝜷𝜷�𝟏𝟏 −
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔
+
𝒂𝒂𝟒𝟒𝑫𝑫𝒙𝒙

𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒
��𝒘𝒘(𝒙𝒙) = 𝟎𝟎 

(193) 

in which 𝛼𝛼 and 𝛽𝛽 are defined as: 
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𝜶𝜶 = �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� − 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔 +

𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟐𝟐
�  ; 

 𝜷𝜷 = −�𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

− 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐� − 𝒌𝒌∗� 

(194) 

Using Eq. (190), the dimensionless differential equation can be presented in the following 

form: 

�
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 �𝝁𝝁𝒔𝒔𝒓𝒓
∗𝟐𝟐𝜴𝜴𝟐𝟐 − 𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝒌𝒌∗ −
𝟏𝟏
𝒓𝒓∗𝟐𝟐

� −
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� +

𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔
𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 −

𝒌𝒌∗

𝟒𝟒𝟑𝟑𝒏𝒏𝟒𝟒

+
𝒌𝒌∗

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 + 𝟏𝟏�
𝒅𝒅𝟒𝟒𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟒𝟒

+ �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� − 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔 +

𝒌𝒌∗

𝟒𝟒𝒏𝒏𝟐𝟐 +
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

− 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐�

−
𝒌𝒌∗

𝟔𝟔𝒏𝒏𝟐𝟐�
𝒅𝒅𝟐𝟐𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟐𝟐 + �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝜴𝜴𝟐𝟐 − 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ −

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� + 𝒌𝒌∗�𝒘𝒘� = 𝟎𝟎 

 

 

(195) 

Ignoring Winkler foundation effect (𝑘𝑘∗ = 0), Eq. (195) leads to 

�
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 �𝝁𝝁𝒔𝒔𝒓𝒓
∗𝟐𝟐𝜴𝜴𝟐𝟐 −

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� −
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� + 𝟏𝟏�

𝒅𝒅𝟒𝟒𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟒𝟒

+ �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� +

𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 �
𝟏𝟏
𝒓𝒓∗𝟐𝟐

− 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐��

𝒅𝒅𝟐𝟐𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟐𝟐 + �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝜴𝜴𝟐𝟐 −
𝟏𝟏
𝒓𝒓∗𝟐𝟐

��𝒘𝒘�

= 𝟎𝟎 

 

(196) 

If the pseudo-differential operator effect of 𝛿𝛿0𝑤𝑤(𝑥𝑥) is neglected, Eq. (196) leads to the one 

of Duan et al. [12]. The dimensionless differential equation of Duan et al. [12] is given by 

�
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒
�𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐𝜴𝜴𝟐𝟐 −
𝟏𝟏
𝒓𝒓∗𝟐𝟐

� −
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) + 𝟏𝟏�

𝒅𝒅𝟒𝟒𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟒𝟒

+ �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +
𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐
�
𝟏𝟏
𝒓𝒓∗𝟐𝟐

− 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐��

𝒅𝒅𝟐𝟐𝒘𝒘�
𝒅𝒅𝒙𝒙�𝟐𝟐

+ �𝒓𝒓∗𝟐𝟐𝜴𝜴𝟐𝟐 �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝜴𝜴𝟐𝟐 −

𝟏𝟏
𝒓𝒓∗𝟐𝟐

��𝒘𝒘�

= 𝟎𝟎 

 

(197) 

For the simply supported boundary conditions, the solution of the Eq. (195) can be 

considered again as the form of Eq. (169). Substitution of the Eq. (169) in Eq. (195) yields: 
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�
𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 +
𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 + 𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟒𝟒�𝜴𝜴𝟒𝟒

+ �
𝒓𝒓∗𝟐𝟐𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 �−𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ −

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� −
𝒓𝒓∗𝟐𝟐𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
�

− 𝒓𝒓∗𝟐𝟐𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
� −

𝒓𝒓∗𝟐𝟐𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 �𝒓𝒓∗𝟐𝟐𝝁𝝁𝒔𝒔𝒌𝒌∗ +
𝟏𝟏
𝒓𝒓∗𝟐𝟐

� + 𝒓𝒓∗𝟐𝟐 �−𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ −

𝟏𝟏
𝒓𝒓∗𝟐𝟐

��𝜴𝜴𝟐𝟐

+ �
𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 −
𝒌𝒌∗𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟒𝟒𝟑𝟑𝒏𝒏𝟒𝟒 +
𝒌𝒌∗𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 + 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒 + 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 −
𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟒𝟒𝒏𝒏𝟐𝟐 +
𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 + 𝒌𝒌∗�

= 𝟎𝟎 

 

 

(198) 

or in the compact form 

𝓚𝓚𝜴𝜴𝟒𝟒 − 𝑩𝑩𝜴𝜴𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎  (199) 

A, B and C are defined as: 

𝓚𝓚 =
𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 +
𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟒𝟒𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 + 𝒓𝒓∗𝟒𝟒𝝁𝝁𝒔𝒔; 

𝑩𝑩

=
𝒓𝒓∗𝟐𝟐𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒𝒏𝒏𝟒𝟒 �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� + �
𝒓𝒓∗𝟐𝟐𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 + 𝒓𝒓∗𝟐𝟐𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐� �𝟏𝟏 + 𝝁𝝁𝒔𝒔 −
𝟏𝟏

𝟒𝟒𝒓𝒓∗𝟐𝟐𝒏𝒏𝟐𝟐
�

+ �
𝒓𝒓∗𝟐𝟐𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 + 𝒓𝒓∗𝟐𝟐� �𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� ; 

𝑪𝑪 =
𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟏𝟏𝟐𝟐𝒏𝒏𝟐𝟐 (𝒓𝒓∗𝟐𝟐𝝁𝝁𝒔𝒔𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 −
𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟔𝟔𝒏𝒏𝟐𝟐 − 𝟏𝟏) + 𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒 + 𝒓𝒓∗𝟐𝟐𝒌𝒌∗𝝁𝝁𝒔𝒔𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐 + 𝒌𝒌∗ 

 

 

 

 

(200) 

where p is the mode number (natural number). 𝛺𝛺  would be obtained by 

𝜴𝜴 = �𝑩𝑩 ± √𝑩𝑩𝟐𝟐 − 𝟒𝟒𝓚𝓚 𝑪𝑪
𝟐𝟐𝓚𝓚

   
(201) 

For continuum case when 𝑛𝑛 → ∞, Eq. (198) could be written in a quartic form 

𝜴𝜴𝟒𝟒 − 𝑩𝑩𝜴𝜴𝟐𝟐 + 𝑪𝑪 = 𝟎𝟎 (202) 

B and C are defined as: 
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𝑩𝑩 =
𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

�𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐𝒌𝒌∗ +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� ,   𝑪𝑪 =
𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+
𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+

𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
 

(203) 

Thus, again the natural frequency could be obtained by Eq. (154) with 𝛾𝛾 expressed 

𝜸𝜸 = � 𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +

𝒌𝒌∗

𝟐𝟐
+

𝟏𝟏
𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

± �(
𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +

𝒌𝒌∗

𝟐𝟐
+

𝟏𝟏
𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

)𝟐𝟐 −  (
𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+
𝒌𝒌∗𝒑𝒑𝟐𝟐𝒑𝒑𝟐𝟐

𝒓𝒓∗𝟐𝟐
+
𝒑𝒑𝟒𝟒𝒑𝒑𝟒𝟒

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)   

 

(204) 

The last equation is valid for the continuum case and agrees with the results of the 

Bresse-Timoshenko beam on elastic Winkler foundation, as treated by Wang and Stephens 

[64], Cheng and Pantelides [118] and Manevich [65]. 

The natural frequencies of the two existing branches regarding Eq. (204), have been 

shown in Figure 15. The frequencies obtained by the Padé approximants can be supposed 

equal to the continuum results when the ratio of n/p is large enough. For the second branch, 

this ratio needs to be typically higher than 5 while for the first branch this limit value is 

typically 3. These typical limit values are the same as those obtained by the exact solution. 

Figure 16 shows the length ratio (𝑑𝑑∗) and grain number effects on frequencies. Increasing 

the length ratio (refers to beam thickness/beam length) causes an increase in the 

eigenfrequencies. The values of grain number limit (n*) have been also reported for each 

case.  

(a) (b) 
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(c) (d) 

  
Figure 15. Comparison of the natural frequencies for the nonlocal Padé and continuum solutions with respect 
to the mode number (p) and grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟏𝟏𝟒𝟒, (c) 𝒏𝒏 =
𝟑𝟑𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑. 
 
(a) (b) 

  
Figure 16. Analysis of the grain number effect on the frequencies (nonlocal Padé) with respect to the length 
ratio (𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟐𝟐𝟎𝟎) for mode number: (a) 𝒑𝒑 = 𝟏𝟏 and (b) 𝒑𝒑 = 𝟏𝟏𝟎𝟎  𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑. 
 
5. Discussion 

The eigenfrequency results of the two branches are gathered together for all 

approaches (local, nonlocal and continuum models) in Figure 17 and Figure 18. The results 

are reported as a function of mode number (p) for four typical grain number values (𝑛𝑛 ∈

{5, 20, 35, 50}) and the dimensionless parameters of 𝑑𝑑∗ ∈ {0.058, 0.014, 0.0082, 0.0058} 

and 𝑘𝑘∗ ∈ {1.875, 480, 4502, 18750}. It can be obtained from the figures that the results of 

the Padé approximation are closer to the results of exact resolution. Another point is that 
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the eigenfrequencies obtained by the Taylor series are imaginary when the ratio of n/p is 

less than the typical approximate value of 2.  Furthermore, the results are investigated for 

the weak shear interaction (𝐾𝐾𝑠𝑠𝐺𝐺𝐴𝐴 → 0) model in Figure 19 and Figure 20. 

(a) (b) 

  
(c) (d) 

  
Figure 17. Comparison of the first branch natural frequencies for different approaches as a function of mode 
number (p) with respect to the grain number: (a) 𝒏𝒏 = 𝟓𝟓, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎, (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 for 𝝁𝝁𝒔𝒔 =
𝟒𝟒.𝟐𝟐𝟑𝟑. 
 
(a) (b) 

  
(c) (d) 
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Figure 18. Comparison of the second branch natural frequencies for different approaches as a function of 
mode number (p) with respect to the grain number: (a) 𝐧𝐧 = 𝟓𝟓 and 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝐧𝐧 = 𝟐𝟐𝟎𝟎 and 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟏𝟏𝟒𝟒, 
(c) 𝐧𝐧 = 𝟑𝟑𝟓𝟓 and 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝐧𝐧 = 𝟓𝟓𝟎𝟎 and 𝐅𝐅∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝛍𝛍𝐬𝐬 = 𝟒𝟒.𝟐𝟐𝟑𝟑. 
 
(a) (b) 

  
(c) (d) 

  
Figure 19. Comparison of the natural frequencies of the first branch for different approaches as a function of 
mode number (p) with respect to the grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟏𝟏𝟒𝟒, 
(c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐 and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑 for 𝝁𝝁𝒔𝒔 → ∞ (weak shear interaction). 
 
(a) (b) 
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(c) (d) 

  
Figure 20. Comparison of the natural frequencies of the second branch for different approaches as a function 
of mode number (p) with respect to the grain number: (a) 𝒏𝒏 = 𝟓𝟓 and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟓𝟓𝟑𝟑, (b) 𝒏𝒏 = 𝟐𝟐𝟎𝟎 and 𝒓𝒓∗ =
𝟎𝟎.𝟎𝟎𝟏𝟏𝟒𝟒 , (c) 𝒏𝒏 = 𝟑𝟑𝟓𝟓  and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟑𝟑𝟐𝟐  and (d) 𝒏𝒏 = 𝟓𝟓𝟎𝟎  and 𝒓𝒓∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟑𝟑  for 𝝁𝝁𝒔𝒔 → ∞  (weak shear 
interaction). 
 

The results of 𝛺𝛺10/𝛺𝛺0  on a Winkler type foundation for the first five modes, with 

length ratio (r*) varying from 0 to 0.1 are plotted in Figure 21. 
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Figure 21. Correction in the first branch natural frequencies regarding Winkler foundation effect. 
 
6. Conclusion 

This chapter investigates the macroscopic free vibration behavior of a discrete 

granular system resting on a Winkler elastic foundation. This microstructured system 

consists of uniform grains elastically connected by shear and rotation springs. It is shown 

that the discrete deflection equation of this granular system (Cosserat chain) is 

mathematically equivalent to the finite difference formulation of a shear deformable 

Bresse-Timoshenko beam resting on Winkler foundation. Next, the natural frequencies of 

such a granular model with simply supported ends are first analytically investigated, 

whatever considered modes through the resolution of a linear difference equation.  

The model is continualized to its equivalent continuous system by using two approximate 

methods based on the Taylor series and Padé approximants (nonlocal continuum). The 

eigenfrequencies obtained from the continualized beam using the Padé approximation have 

shown a good performance if compared to the corresponding responses of the Taylor 
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approximation. Nevertheless, it has been shown that in some cases the approach based on 

the Taylor approximant provides imaginary values for the two eigenfrequencies branches 

without a physical sense for the homogenized continuum.  

The dependency of the beam dynamic responses to its length ratio is clarified and 

the equations of the eigenfrequencies are obtained regarding the discrete Cosserat model, 

local and nonlocal continuous models. Finally, the results of the exact approach for the 

discrete Cosserat model are compared with those of the nonlocal continuous approach. It 

is found that the shear stiffness (represented by shear springs) has a significant effect on 

the vibration frequencies. Furthermore, the scale effects of the granular chain are captured 

by the continuous gradient elasticity model. This scale effect is related to the grain size 

with respect to the total length of the Cosserat chain. 
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CHAPTER 4 
 

Wave Dispersion Analysis of Granular Beam 

1. Introduction 

The current study focuses on the analysis of wave propagation and the dispersive 

behavior of mechanical waves in discrete granular media resting on elastic foundations. 

Misra and Nejadsadeghi [82] studied the dispersive behavior of granular materials in 

response to elastic deformation waves using the granular micromechanics approach 

proposed by Misra and Poorsolhjouy [107]. This study can be considered also as the 

discrete study of the continuous Bresse-Timoshenko beam on the continuous linear elastic 

foundation (Winkler foundation). Assuming an infinite number of grains, the results lead 

to the response of a continuous Bresse-Timoshenko beam on an elastic foundation, studied 

for instance by Wang and Stephens [64], Cheng and Pantelides [118] or Manevich [65]. In 

particular, the dispersive behavior of continuous Bresse-Timoshenko beam resting on 

elastic foundation has been specifically addressed by Manevich [65]. The Bresse-

Timoshenko continuum limit may be also understood as the long-wave limit of the discrete 

granular model. The granular chain composed of rigid grains is assumed to interact with a 

Winkler elastic foundation (Winkler [128]). The wave dispersion of this granular system 

is derived from the uncoupled equation of motion using a discrete Cosserat theory, based 

on both rotational and translational degrees of freedom for each grain. For the long-wave 

limit, the dispersion equation converges towards the continuum model of the Bresse-

Timoshenko beam on the Winkler foundation, as treated by Manevich [20]. Also, the 

results valid for the discrete granular beam could be well compared to those of Pasternak 

and Mühlhaus [11] and Pichard et al. [60], neglecting the foundation contribution (k=0). 
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Next, the nonlocal dispersion results are obtained through the homogenization of the 

fourth-order difference equation of the system by applying the Taylor series and Padé 

approximation. Finally, a comparison between the discrete and the enriched continuous 

model will be discussed and conclusions sections are presented. A comprehensive 

dispersion analysis is done regarding the local and nonlocal deflection equations of this 1D 

granular chain. Based on the presented parametric study, the wave dispersion curves for 

the discrete lattice models are compared to the corresponding continuum models (Bresse-

Timoshenko). The results also compared to molecular dynamics of the flexural behavior in 

carbon nanotubes with acceptable coincidence. The results of this study is a generalization 

for the outcome of Pasternak and Mühlhaus [11] and Pichard et al. [60] valid for the wave 

propagation of elastic chain without elastic foundation. 

 
2. Discrete Approach via Exact Solution 

Dispersion of propagation waves would influence the media if the wavelength is of the 

same magnitude order as the characteristic spacing of the dominant source of 

heterogeneity. In order to capture wave dispersion, continuum models need to be equipped 

with appreciate terms that capture the lower scale behavior (Domenico and Askes [129]). 

Recalling, the dynamic equation for the deflection of the granular chain resting on Winkler 

elastic foundation (granular lattice model)  

[𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆𝝏𝝏𝒅𝒅

𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
�𝜹𝜹𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�𝜹𝜹𝟎𝟎 +
𝒌𝒌𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝏𝝏𝒅𝒅

𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
]𝒘𝒘𝒊𝒊 = 𝟎𝟎 

(205) 
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To satisfy this fourth-order mixed difference-differential equation, a fundamental solution 

in the harmonic form could be considered as follow: 

𝒘𝒘𝒊𝒊 = 𝜷𝜷𝒆𝒆𝒋𝒋(𝝎𝝎𝒅𝒅−𝒌𝒌𝒘𝒘𝒙𝒙𝒊𝒊) (206) 

Substitution of the expression Eq. (206) into Eq. (205) provides the algebraic equation as: 

𝜷𝜷𝒆𝒆𝒋𝒋(𝝎𝝎𝒅𝒅−𝒌𝒌𝒘𝒘𝒙𝒙𝒊𝒊) ��𝒆𝒆𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟒𝟒𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋�

+ 𝒂𝒂𝟐𝟐 �
𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬 −
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
� �𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋� + 𝒂𝒂𝟒𝟒 �

𝒌𝒌
𝟒𝟒𝑬𝑬𝑬𝑬 −

𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬 � �𝒆𝒆
𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋�

+ 𝒂𝒂𝟒𝟒 �−
𝒌𝒌𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝝎𝝎𝟒𝟒

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�� = 𝟎𝟎 

 

(207) 

The following biquadratic equation expressed by the angular frequency could be obtained 

from Eq. (207): 

[𝝆𝝆𝒂𝒂𝟐𝟐]𝝎𝝎𝟒𝟒 − 𝟒𝟒 �(𝑲𝑲𝒔𝒔𝓚𝓚 + 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 �𝝎𝝎
𝟐𝟐

+ �𝟏𝟏𝟔𝟔
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝒂𝒂𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌�

𝟒𝟒𝑬𝑬
𝝆𝝆𝓚𝓚𝒔𝒔𝒊𝒊𝒏𝒏

𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��� = 𝟎𝟎 

 

(208) 

Neglecting the Winkler foundation (𝑘𝑘 = 0), the aforementioned equation leads to the 

results obtained by Pasternak and Mühlhaus [11] (Eq. (209)). 

[𝑴𝑴𝑵𝑵]𝝎𝝎𝟒𝟒 − 𝟒𝟒 �(𝑵𝑵𝑺𝑺 + 𝑴𝑴𝑪𝑪) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝑴𝑴𝑺𝑺𝒂𝒂𝟐𝟐

𝟒𝟒 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��𝝎𝝎𝟐𝟐 + �𝟏𝟏𝟔𝟔𝑺𝑺𝑪𝑪 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 �� = 𝟎𝟎 

(209) 

with 𝑀𝑀 = 𝜌𝜌𝐴𝐴𝑎𝑎 and 𝑁𝑁 = 𝐼𝐼𝑚𝑚 = 𝜌𝜌𝐼𝐼𝑎𝑎. Two asymptotic cases for a granular chain could be 

obtained from Eq. (208) supposing pure shear and or pure bending. Assuming only shear 

interaction (𝐸𝐸 = 0) 

[𝝆𝝆𝒂𝒂𝟐𝟐]𝝎𝝎𝟒𝟒 − 𝟒𝟒 �𝑲𝑲𝒔𝒔𝓚𝓚 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 �𝝎𝝎
𝟐𝟐 + �

𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚𝒌𝒌
𝝆𝝆𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 �� = 𝟎𝟎 

(210) 
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This equation leads to the following quadratic equation of Schwartz et al. [59] with respect 

to the angular frequency by omitting Winkler foundation (𝑘𝑘 = 0): 

�𝝎𝝎𝟐𝟐 − 𝝎𝝎𝟎𝟎
𝟐𝟐 �𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +𝜶𝜶𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
���𝝎𝝎𝟐𝟐 = 𝟎𝟎 

(211) 

in which 𝜔𝜔02 = 4𝑆𝑆
𝑀𝑀

 and 𝛼𝛼 = 𝑀𝑀𝑟𝑟2

𝐸𝐸𝐶𝐶
 . On the other hand, considering only the rotational effect 

(𝐺𝐺 = 0) in Eq. (208) leads to 

[𝝆𝝆𝒂𝒂𝟐𝟐]𝝎𝝎𝟒𝟒 − 𝟒𝟒 �𝑬𝑬 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚
�𝝎𝝎𝟐𝟐 + �

𝟒𝟒𝑬𝑬𝒌𝒌
𝝆𝝆𝓚𝓚

𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�� = 𝟎𝟎 

(212) 

For the continuum case by assuming an infinite number of grains Eq. (208) leads to the 

quartic equation obtained by Manevich [65] as follows 

[𝓧𝓧]𝝕𝝕𝟒𝟒 − [𝟏𝟏 + (𝟏𝟏 + 𝓧𝓧)𝓴𝓴𝟐𝟐 + 𝒘𝒘𝟏𝟏𝓧𝓧]𝝕𝝕𝟐𝟐 + [𝒘𝒘𝟏𝟏(𝟏𝟏 + 𝓧𝓧𝓴𝓴𝟐𝟐) + 𝓴𝓴𝟒𝟒] = 𝟎𝟎 (213) 

in which 𝑤𝑤1 = 𝐸𝐸
𝐸𝐸𝒦𝒦2

𝑘𝑘  , 𝒳𝒳 = 𝐸𝐸
𝐾𝐾𝐷𝐷𝒦𝒦

 , 𝜛𝜛2 = 𝐸𝐸𝜌𝜌
𝐸𝐸𝒦𝒦
𝜔𝜔2 and 𝓀𝓀2 = 𝐸𝐸

𝒦𝒦
𝑘𝑘𝑤𝑤

2 . Introducing the non-

dimensional quantities as follows: 

𝜴𝜴𝒃𝒃 ,𝒔𝒔 = 𝒂𝒂
𝒄𝒄𝒃𝒃,𝒔𝒔

𝝎𝝎  ,  𝝁𝝁𝒔𝒔 = 𝑬𝑬
𝑲𝑲𝒔𝒔 𝓚𝓚

  , 𝒓𝒓∗ = 𝟏𝟏
𝒂𝒂
�𝑬𝑬
𝓚𝓚

  ,   𝒌𝒌∗ = 𝒌𝒌𝒂𝒂𝟒𝟒

𝑬𝑬𝑬𝑬
 

(214) 

where 𝑐𝑐0 is the one-dimensional wave velocity and could be defined by either shear or 

bending beam parameters as 𝑐𝑐𝑏𝑏𝑊𝑊𝑛𝑛𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = � 𝐸𝐸𝐸𝐸
𝜌𝜌𝒦𝒦𝒂𝒂𝟐𝟐

 and 𝑐𝑐𝑠𝑠ℎ𝑊𝑊𝑎𝑎𝑟𝑟 = �𝑲𝑲𝒔𝒔 𝓚𝓚
𝜌𝜌

. Eq. (208) could be 

rewritten in the following form 

𝜴𝜴𝒃𝒃
𝟒𝟒 − ��

𝟒𝟒
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+
𝟒𝟒
𝒓𝒓∗𝟐𝟐

� 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌∗�𝜴𝜴𝒃𝒃

𝟐𝟐

+ �𝟏𝟏𝟔𝟔
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌∗ �

𝟒𝟒
𝒓𝒓∗𝟐𝟐

𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��� = 𝟎𝟎 

 

(215) 

or through the shear wave velocity definition 
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𝜴𝜴𝒔𝒔
𝟒𝟒 − �(𝟒𝟒 + 𝟒𝟒𝝁𝝁𝒔𝒔) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌∗𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐�𝜴𝜴𝒔𝒔
𝟐𝟐

+ �𝟏𝟏𝟔𝟔𝝁𝝁𝒔𝒔𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌∗𝝁𝝁𝒔𝒔 �𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗

𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��� = 𝟎𝟎 

 

(216) 

In order to know the nature of the results for Eq. (208), the sign of the coefficients in the 

characteristic equation need to be clarified. 

∀ 𝑬𝑬,𝓚𝓚,𝒌𝒌, 𝑬𝑬,𝓚𝓚,𝑲𝑲𝒔𝒔,𝒂𝒂,𝒌𝒌𝒘𝒘: 

𝝆𝝆𝒂𝒂𝟐𝟐 > 𝟎𝟎, 

−𝟒𝟒�(𝑲𝑲𝒔𝒔𝓚𝓚 + 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 � < 𝟎𝟎, 

𝟏𝟏𝟔𝟔
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝒂𝒂𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝒌𝒌�

𝟒𝟒𝑬𝑬
𝝆𝝆𝓚𝓚𝒔𝒔𝒊𝒊𝒏𝒏

𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 �� > 𝟎𝟎 

 

 

(217) 

The discriminant (∆) of Eq. (208) would be obtained as follows  

∆𝟏𝟏

= �(𝑲𝑲𝒔𝒔𝓚𝓚 − 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��

𝟐𝟐

+ �
𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚

𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � −

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 �
𝟐𝟐

+ �𝟐𝟐𝑬𝑬 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 �� �

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � −

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 �

+ �𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 �� �

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚 � 

 

 

 

(218) 

Considering Eq. (218) as a function of Winkler elastic foundation leads to the following 

parabolic equation 

𝒇𝒇(𝒌𝒌)

= ��
𝒂𝒂𝟐𝟐

𝟒𝟒𝓚𝓚�
𝟐𝟐

�𝒌𝒌𝟐𝟐 − �
𝒂𝒂𝟒𝟒𝑲𝑲𝒔𝒔𝓚𝓚
𝟑𝟑𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + (𝑬𝑬 −𝑲𝑲𝒔𝒔𝓚𝓚)�

𝒂𝒂𝟐𝟐

𝟐𝟐𝓚𝓚� 𝒔𝒔𝒊𝒊𝒏𝒏
𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��𝒌𝒌

+ ��
𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚

𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ���

𝓚𝓚𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝟒𝟒𝑬𝑬 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 � + 𝟐𝟐(𝑬𝑬 + 𝑲𝑲𝒔𝒔𝓚𝓚) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��

+ �(𝑲𝑲𝒔𝒔𝓚𝓚 − 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐 ��

𝟐𝟐

� 

 

 

 

(219) 
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𝑓𝑓(0) leads to the result obtained by Pasternak and Mühlhaus [11]. Here an attempt is made 

to identify the effect of adding elastic foundation to the model, for the dynamic response 

of the system. 

∀ 𝑬𝑬,𝓚𝓚, 𝑬𝑬,𝓚𝓚,𝑲𝑲𝒔𝒔,𝒂𝒂,𝒌𝒌𝒘𝒘: 

�𝒂𝒂
𝟐𝟐

𝟒𝟒𝓚𝓚
�
𝟐𝟐

> 𝟎𝟎 ,  ∆𝟐𝟐= − �𝒂𝒂𝟑𝟑𝑲𝑲𝒔𝒔𝓚𝓚�
𝟐𝟐

𝟏𝟏𝟔𝟔𝓚𝓚𝑬𝑬
𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐(𝒂𝒂𝒌𝒌𝒘𝒘) < 𝟎𝟎 

 

(220) 

It can be concluded that the parabolic equation of Eq. (219) is upward with the minimum 

positive value of −4𝒦𝒦
2∆2

𝑎𝑎4
. On the other hand, the behavior of Eq. (218) depending on 𝑘𝑘𝑤𝑤 is 

studied for any physical parameters of the system. All terms of the discriminant (∆𝟏𝟏) are 

positive except the third one. Therefore, the discriminant of Eq. (208) (∆1) is always 

positive for any values of Winkler elastic foundation and mode number. This fact with 

regard to Eq. (217) leads to two real positive solutions for Eq. (208) expressed by natural 

frequency.  

Here the nature of the wave is tried to be clarified. Substituting the exponential form of 

Eq. (206) for 𝜃𝜃𝑖𝑖  and 𝑤𝑤𝑖𝑖  by 𝜃𝜃𝑖𝑖 = 𝛼𝛼𝑑𝑑𝑗𝑗(𝜔𝜔𝑡𝑡−𝑘𝑘𝑤𝑤𝑥𝑥𝑖𝑖)  and 𝑤𝑤𝑖𝑖 = 𝛽𝛽𝑑𝑑𝑗𝑗(𝜔𝜔𝑡𝑡−𝑊𝑊𝑤𝑤𝑥𝑥𝐶𝐶)  in the equilibrium 

equation system of Eq. (69) while assuming 𝜔𝜔 = 𝑘𝑘𝑤𝑤𝑣𝑣𝑝𝑝, leads to: 

−𝟒𝟒𝜷𝜷𝑺𝑺𝐬𝐬𝐢𝐢𝐧𝐧 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�
𝟐𝟐

− 𝒂𝒂𝜶𝜶𝑺𝑺𝒋𝒋 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌𝒘𝒘) − 𝒂𝒂𝜷𝜷𝒌𝒌 + 𝜷𝜷𝒎𝒎𝒌𝒌𝒘𝒘
𝟐𝟐𝒗𝒗𝒑𝒑𝟐𝟐 = 𝟎𝟎,

−𝟒𝟒𝜶𝜶𝑪𝑪𝐬𝐬𝐢𝐢𝐧𝐧 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�
𝟐𝟐

+ 𝒂𝒂𝜷𝜷𝑺𝑺𝒋𝒋 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌𝒘𝒘) − 𝒂𝒂𝟐𝟐𝜶𝜶𝑺𝑺𝐜𝐜𝐅𝐅𝐬𝐬 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�
𝟐𝟐

− 𝜶𝜶𝑬𝑬𝒎𝒎𝒌𝒌𝒘𝒘
𝟐𝟐𝒗𝒗𝒑𝒑𝟐𝟐 = 𝟎𝟎

 

 

(221) 

in which 𝑣𝑣𝑝𝑝 is the phase velocity. The dynamic response of this coupled system of the 

equation can be obtained in the following form 

𝝎𝝎𝟐𝟐 =
𝝈𝝈 ± √𝝈𝝈𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟐𝟐
 

(222) 
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where 𝜎𝜎 and 𝜏𝜏 are represented by 

𝝈𝝈 =
𝟒𝟒
𝝆𝝆𝒂𝒂𝟐𝟐

(𝑲𝑲𝒔𝒔𝓚𝓚 + 𝑬𝑬) 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝓚𝓚𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝒌𝒌
𝝆𝝆𝓚𝓚

 ; 

𝝉𝝉 = 𝟏𝟏𝟔𝟔
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝟐𝟐𝒂𝒂𝟒𝟒

𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝒌𝒌
𝝆𝝆𝒂𝒂𝟐𝟐

�
𝟒𝟒𝑬𝑬
𝝆𝝆𝓚𝓚

𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝒂𝒂𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�� 

 

(223) 

Regarding the two positive responses of Eq. (153), the phase velocity could be obtained 

for  𝑘𝑘𝑤𝑤 →  0 as follows 

𝒗𝒗𝒑𝒑 = �𝝈𝝈 ± √𝝈𝝈𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟐𝟐𝒌𝒌𝒘𝒘

𝟐𝟐  
  𝒌𝒌𝒘𝒘 → 𝟎𝟎   
�⎯⎯⎯⎯⎯�  𝒗𝒗𝒑𝒑 ≈ �

�𝓚𝓚𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬 + 𝒌𝒌

𝝆𝝆𝓚𝓚� ± �𝓚𝓚𝑲𝑲𝒔𝒔𝓚𝓚
𝝆𝝆𝑬𝑬 − 𝒌𝒌

𝝆𝝆𝓚𝓚�

𝟐𝟐𝒌𝒌𝒘𝒘
𝟐𝟐  

 

(224) 

The ratio of the amplitudes (𝛼𝛼/𝛽𝛽) can be found from Eq. (221). The first relation leads to 

𝜶𝜶
𝜷𝜷

= 𝒋𝒋
𝟒𝟒𝑺𝑺 𝐬𝐬𝐢𝐢𝐧𝐧 �𝒂𝒂𝒌𝒌𝒘𝒘𝟐𝟐 �

𝟐𝟐
+ 𝒂𝒂𝒌𝒌 −𝒎𝒎𝒌𝒌𝒘𝒘

𝟐𝟐𝒗𝒗𝒑𝒑𝟐𝟐

𝒂𝒂𝑺𝑺 𝐬𝐬𝐢𝐢𝐧𝐧(𝒂𝒂𝒌𝒌𝒘𝒘)  

(225) 

Supposing 𝑘𝑘 = 0, Eq. (225) leads to the result obtained by Pasternak and Mühlhaus [11]. 

According to Eq. (224) and the positive root of Eq. (225) for the low value of mode number 

(long-wave limit), only the rotational wave could propagate in the system.  

𝒌𝒌𝒘𝒘 → 𝟎𝟎:    𝜶𝜶
𝜷𝜷

 ≈  𝒋𝒋
 𝒂𝒂𝒌𝒌 − 𝒂𝒂𝓚𝓚

𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚
𝑬𝑬

𝒂𝒂𝑺𝑺 𝒔𝒔𝒊𝒊𝒏𝒏(𝒂𝒂𝒌𝒌𝒘𝒘)
≈ ∞  (Rotational wave) 

(226) 

While regarding the other branch (the negative root), the shear term of the wave appears as 

follows 

𝒌𝒌𝒘𝒘 → 𝟎𝟎:    𝜶𝜶
𝜷𝜷

 ≈  𝒋𝒋 𝟐𝟐
𝒂𝒂
𝒅𝒅𝒂𝒂𝒏𝒏 �𝒂𝒂𝒌𝒌𝒘𝒘

𝟐𝟐
� ≈ 𝟎𝟎  (Shear wave) (227) 

The oscillations here are the displacement of the grains in directions perpendicular to the 

propagation of the wave. Therefore, with the foundation, the wave nature is mixed of both 

types that one is dominant to the other and it can be considered as a shear-rotational wave. 
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The mode number cannot exceed the grain number value or in the other words, the wave 

length cannot be shorter than the grain size. Thus, the assumption of 𝑘𝑘𝑤𝑤 → ∞ can be true 

only for an infinite number of grains or continuum beams. 

On the other hand, by neglecting the Winkler foundation, the phase velocity for a small 

value of mode number leads to 

𝒗𝒗𝒑𝒑𝟏𝟏 = �𝝈𝝈 − √𝝈𝝈𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟐𝟐𝒌𝒌𝒘𝒘

𝟐𝟐  
  𝒌𝒌𝒘𝒘 → 𝟎𝟎   
�⎯⎯⎯⎯⎯�  𝒗𝒗𝒑𝒑 ∝ 𝒌𝒌𝒘𝒘; 

𝒗𝒗𝒑𝒑𝟐𝟐 = �𝝈𝝈 + √𝝈𝝈𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟐𝟐𝒌𝒌𝒘𝒘

𝟐𝟐  
  𝒌𝒌𝒘𝒘 → 𝟎𝟎   
�⎯⎯⎯⎯⎯�  𝒗𝒗𝒑𝒑 ∝

𝟏𝟏
𝒌𝒌𝒘𝒘

 

 

 

(228) 

Using again the coefficient ratio of Eq. (225) for the long waves and 𝑘𝑘 = 0 leads to the 

dominancy of the shear component when taking into account the first spectrum of the 

results of Eq. (227) as follows:  

𝒌𝒌𝒘𝒘 → 𝟎𝟎: 𝜶𝜶
𝜷𝜷
≈ 𝟎𝟎    (Shear wave) (229) 

While for the second spectrum or the higher frequency branch, the rotational wave is 

dominated by the system.  

𝒌𝒌𝒘𝒘 → 𝟎𝟎: 𝜶𝜶
𝜷𝜷
≈ ∞   (Rotational wave) (230) 

Thus, without the Winkler elastic foundation, the wave nature is also combined of both 

types (Pasternak and Mühlhaus [11]).  

On the other hand, the mixed differential-difference equation for a Hencky beam 

problem or discrete Euler-Bernoulli beam theory has been obtained as 

�𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�𝒘𝒘𝒊𝒊 = 𝟎𝟎 (231) 

Regarding the properties of Eq. (6), Eq. (231) leads to 
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𝑬𝑬𝑬𝑬�𝒆𝒆𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟒𝟒𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋� − 𝝆𝝆𝓚𝓚𝒂𝒂𝟒𝟒𝝎𝝎𝟐𝟐 = 𝟎𝟎 (232) 

This equation can be simplified as 

𝑬𝑬
𝒂𝒂𝟒𝟒

(𝟐𝟐𝐜𝐜𝐅𝐅𝐬𝐬(𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘) − 𝟑𝟑𝐜𝐜𝐅𝐅𝐬𝐬(𝒂𝒂𝒌𝒌𝒘𝒘) + 𝟔𝟔) −
𝝆𝝆𝓚𝓚
𝑬𝑬
𝝎𝝎𝟐𝟐 = 𝟎𝟎 (233) 

the quadratic wave dispersive equation would be obtained as follows in a dimensionless 

form with respect to the angular frequency of the granular chain with pure bending 

interactions: 

𝜴𝜴𝒃𝒃
𝟐𝟐 = 𝟏𝟏𝟔𝟔 𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� 

(234) 

This equation associated with the discrete granular chain may be efficiently approximated 

by a nonlocal equation associated with the wave propagation in a nonlocal continuous 

beam.  

On the other hand, let’s consider the case of a granular chain with predominant bending 

interactions (𝑆𝑆 → ∞) and neglecting the Winkler foundation (𝑘𝑘 = 0). In this case, the 

wave propagation equation expressed by transverse deflection for the granular system (Eq. 

(205)) leads to  

[𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐
𝟐𝟐 + 𝝏𝝏𝒅𝒅

𝟐𝟐(𝝆𝝆𝓚𝓚𝜹𝜹𝟎𝟎 − 𝝆𝝆𝑬𝑬𝜹𝜹𝟐𝟐)]𝒘𝒘𝒊𝒊 = 𝟎𝟎 (235) 

This equation leads to the following relation by using the definitions of Eq. (6) 

𝜷𝜷𝒆𝒆𝒋𝒋(𝝎𝝎𝒅𝒅−𝒌𝒌𝒘𝒘𝒙𝒙𝒊𝒊)[�𝒆𝒆𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟒𝟒𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋�

+ 𝒂𝒂𝟐𝟐 �
𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬
� �𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋� + 𝒂𝒂𝟒𝟒 �−

𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬
� �𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋�] = 𝟎𝟎 

 

(236) 

Which can be simplified as 

𝟏𝟏𝟔𝟔𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝒂𝒂𝟐𝟐

𝓚𝓚
 �
𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑬𝑬
��𝟒𝟒 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�� −

𝒂𝒂𝟒𝟒

𝑬𝑬
�
𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐

𝑬𝑬
��𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
�� = 𝟎𝟎 

(237) 
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Using Eq. (214) for the non-dimensional frequency with 𝑐𝑐𝑏𝑏𝑊𝑊𝑛𝑛𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏, leads to 

𝜴𝜴𝒃𝒃
𝟐𝟐 =

𝟏𝟏𝟔𝟔𝒔𝒔𝒊𝒊𝒏𝒏𝟒𝟒 �𝒂𝒂𝒌𝒌𝒘𝒘𝟐𝟐 �

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �𝒂𝒂𝒌𝒌𝒘𝒘𝟐𝟐 � − 𝟒𝟒𝒓𝒓∗𝟐𝟐 𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �𝒂𝒂𝒌𝒌𝒘𝒘𝟐𝟐 �
 

(238) 

Neglecting the rotational inertia terms leads to the following equation which is slightly 

different from Eq. (234). 

𝜴𝜴𝒃𝒃
𝟐𝟐 = 𝟏𝟏𝟔𝟔𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� 𝒅𝒅𝒂𝒂𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� 

(239) 

For an infinite number of grains, the granular chain asymptotically behaves as a gradient 

elasticity Rayleigh model (where the bending interactions are predominant). Eq. (235) with 

terms of translation and rotation inertia leads to  

[𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙𝟒𝟒 − 𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅𝟐𝟐]𝒘𝒘 = 𝟎𝟎 (240) 

Lu et al. [130] investigated the wave propagation properties in a nonlocal Euler-Bernoulli 

beam (Eq. (241)), based on a differential nonlocal model introduced by Eringen [71]  for 

one-dimensional media. Eq. (240) could be compared well by Lu et al. [130] which 

obtained in their study as follows 

�𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙𝟒𝟒 − 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐((𝒆𝒆𝟎𝟎𝒅𝒅𝟎𝟎)𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐 − 𝟏𝟏)�𝒘𝒘 = 𝟎𝟎 (241) 

𝑑𝑑0 is the nondimensional calibration parameter of the Eringen nonlocal approach. This 

parameter adjusts in order to achieve a good dispersive curve at the end of the Brillouin 

zone and 𝑑𝑑0 is an internal characteristic length. Eq. (241) is equivalent to considering an 

Eringen’s based nonlocal model by 

𝑴𝑴− 𝒍𝒍𝒄𝒄𝟐𝟐𝑴𝑴′′ = 𝑬𝑬𝑬𝑬𝒘𝒘′′   ;   𝑴𝑴′′ = −𝝆𝝆𝓚𝓚�̈�𝒘 (242) 
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Here 𝑙𝑙𝑐𝑐  is the characteristic length of the nonlocal model. Regarding the fourth-order 

differential equation of the nonlocal beam (Eq. (241)) and considering the solution of the 

deflection in a harmonic form, the substitution of Eq. (206) in Eq. (242) gives 

𝑬𝑬𝑬𝑬𝒌𝒌𝒘𝒘
𝟒𝟒 − 𝝆𝝆𝓚𝓚𝝎𝝎𝟐𝟐(𝟏𝟏 + (𝒂𝒂𝒆𝒆𝟎𝟎𝒌𝒌𝒘𝒘)𝟐𝟐) = 𝟎𝟎  (243) 

in which 𝑑𝑑0 could be defined by 𝑑𝑑0 = 𝑙𝑙𝑐𝑐/𝑎𝑎. The approximate angular frequencies calculated 

from Eringen’s nonlocal beam approach could be obtained by:  

𝜴𝜴𝒃𝒃
𝟐𝟐 =

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐𝒆𝒆𝟎𝟎𝟐𝟐
 

 

(244) 

where 𝜴𝜴𝒃𝒃 is the dimensionless parameter of frequency regarding the bending wave velocity 

definition. Comparing Eq. (244) with the one issued of Eringen's model (Eringen [71]) 

applied to beam mechanics, (Eq. (234)) leads to the two fundamental values that differ for 

the low and high natural frequencies. These two values are obtained as follows 

𝐟𝐟𝐅𝐅𝐅𝐅 𝒂𝒂𝒌𝒌𝒘𝒘 → 𝟎𝟎:    (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒 �𝟏𝟏 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟐𝟐𝟒𝟒
�
𝟒𝟒

=
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐𝒆𝒆𝟎𝟎𝟐𝟐
⇒ 𝒆𝒆𝟎𝟎 = �𝟏𝟏

𝟔𝟔
≈ 𝟎𝟎.𝟒𝟒𝟎𝟎𝟑𝟑 

 

(245) 

𝐟𝐟𝐅𝐅𝐅𝐅 𝒂𝒂𝒌𝒌𝒘𝒘 = 𝒑𝒑:    𝟏𝟏𝟔𝟔 =
𝒑𝒑𝟒𝟒

𝟏𝟏 + (𝒑𝒑)𝟐𝟐(𝒆𝒆𝟎𝟎)𝟐𝟐 ⇒ 𝒆𝒆𝟎𝟎 = �𝒑𝒑
𝟐𝟐

𝟏𝟏𝟔𝟔
−
𝟏𝟏
𝒑𝒑𝟐𝟐

≈ 𝟎𝟎.𝟎𝟎𝟏𝟏𝟑𝟑 
 

(246) 

The specific values of e0 =0.408 and e0 =0.718 obtained in Eq. (245) and (246) could be 

verified well also by Challamel et al. [131].  

Assuming only shear effects (pure bending beam) ( 𝐸𝐸𝐸𝐸
𝐾𝐾𝐷𝐷𝒦𝒦𝒦𝒦𝐿𝐿2

→ 0) by considering 𝐸𝐸𝐼𝐼 → 0 and 

neglecting the Winkler elastic foundation (𝑘𝑘 = 0), Eq. (205) leads to 

�(𝓚𝓚𝜹𝜹𝟎𝟎 − 𝑬𝑬𝜹𝜹𝟐𝟐)𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
�𝒘𝒘𝒊𝒊 = 𝟎𝟎 

(247) 
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This equation leads to the following relation by using Eq. (6) 

𝜷𝜷𝒆𝒆𝒋𝒋(𝝎𝝎𝒅𝒅−𝒌𝒌𝒘𝒘𝒙𝒙𝒊𝒊) �𝑬𝑬�𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋� − 𝓚𝓚𝒂𝒂𝟐𝟐

𝟒𝟒
�𝒆𝒆𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝒌𝒌𝒘𝒘𝒋𝒋� + 𝝆𝝆𝑬𝑬𝒂𝒂𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
𝝎𝝎𝟐𝟐� = 𝟎𝟎  (248) 

Which can be simplified as 

𝟒𝟒𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� + 𝓚𝓚𝒂𝒂𝟐𝟐

𝑬𝑬
𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �𝒂𝒂𝒌𝒌𝒘𝒘

𝟐𝟐
� − 𝝆𝝆𝒂𝒂𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
𝝎𝝎𝟐𝟐 = 𝟎𝟎  (249) 

Using Eq. (214) for the non-dimensional frequency with 𝑐𝑐𝒔𝒔𝒄𝒄𝒆𝒆𝒂𝒂𝒓𝒓, one could be found as 

follows 

𝜴𝜴𝒔𝒔
𝟐𝟐 = 𝟒𝟒𝒔𝒔𝒊𝒊𝒏𝒏𝟐𝟐 �

𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� +

𝟏𝟏
𝒓𝒓∗𝟐𝟐

𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐 �
𝒂𝒂𝒌𝒌𝒘𝒘
𝟐𝟐
� 

(250) 

 

 
3. Continuous Approach 

3.1. Exact Solution 

From the continuum model, the wave propagation equation regarding the local 

Bresse-Timoshenko could be obtained as: 

�𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙
𝟒𝟒 + �−𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 −
𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

−
𝑬𝑬𝑬𝑬𝝆𝝆𝝏𝝏𝒅𝒅

𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚
�𝝏𝝏𝒙𝒙

𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� +

𝒌𝒌𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝏𝝏𝒅𝒅

𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
�𝒘𝒘 = 𝟎𝟎 

(251) 

Substituting the fundamental solution of 𝑤𝑤 = 𝑊𝑊𝑑𝑑𝑗𝑗(𝜔𝜔𝑡𝑡−𝑊𝑊𝑤𝑤𝑥𝑥) (the wave propagation equation 

in the harmonic form for the continuum beam model) in Eq. (251) leads to: 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�𝝎𝝎𝟒𝟒 − ��

𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

� �𝒌𝒌𝒘𝒘
𝟐𝟐� +

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 +

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

�𝝎𝝎𝟐𝟐 + �𝒌𝒌𝒘𝒘
𝟒𝟒 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

�𝒌𝒌𝒘𝒘
𝟐𝟐� +

𝒌𝒌
𝑬𝑬𝑬𝑬� = 𝟎𝟎 

(252) 

On the other hand, for an infinite number of grains assuming 𝑎𝑎 → 0, the discrete dispersive 

relation of Eq. (208) leads to the biquadratic equation of Eq. (252). This dispersion equation 

for the continuum beam can be compared well also by the one obtained by Manevich [65] 

on Winkler elastic foundations (Eq. (213)).  
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3.2. Approximate Solution via Polynomial Expansion 

In this section, the continualization of the difference equation of Eq. (205) is 

investigated using polynomial expansions. The finite difference terms are replaced by the 

corresponding Taylor series and lead to a Cosserat continuum theory.  

Using this nonlocal solution allows to obtain the continuous approximate model of the 

discrete equations holds for a sufficiently smooth deflection function (Salvadori [126])(see 

for instance the application of this method for nonlinear lattices by Kruskal and Zabusky 

[132]):  

𝒘𝒘𝒊𝒊 = 𝒘𝒘(𝒙𝒙 = 𝒊𝒊𝒂𝒂); 

𝒘𝒘𝒊𝒊+𝟏𝟏 = �
𝒂𝒂𝒌𝒌𝝏𝝏𝒙𝒙𝒌𝒌

𝒌𝒌!

∞

𝒌𝒌=𝟎𝟎

𝒘𝒘(𝒙𝒙) = �𝟏𝟏 +
𝒂𝒂𝝏𝝏𝒙𝒙𝟏𝟏

𝟏𝟏! +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟐𝟐! +
𝒂𝒂𝟑𝟑𝝏𝝏𝒙𝒙𝟑𝟑

𝟑𝟑! + ⋯�𝒘𝒘(𝒙𝒙) = 𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙𝒘𝒘(𝒙𝒙);  𝐱𝐱 = 𝐢𝐢𝐢𝐢 

 

(253) 

The pseudodifferential operators 𝛿𝛿2
2,𝛿𝛿2 and 𝛿𝛿0 could be expanded as:  

𝜹𝜹𝟐𝟐
𝟐𝟐𝒘𝒘 = �

𝒆𝒆𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟒𝟒𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙
𝒂𝒂𝟒𝟒 �𝒘𝒘

= �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟑𝟑𝟎𝟎 +
𝟏𝟏𝟎𝟎𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟑𝟑𝝏𝝏𝒙𝒙𝟑𝟑�� 𝝏𝝏𝒙𝒙𝟒𝟒𝒘𝒘; 

𝜹𝜹𝟐𝟐𝒘𝒘 = �
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝒂𝒂𝟐𝟐 �𝒘𝒘 = �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎 +
𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟑𝟑𝝏𝝏𝒙𝒙𝟑𝟑��𝝏𝝏𝒙𝒙𝟐𝟐𝒘𝒘; 

𝜹𝜹𝟎𝟎𝒘𝒘 = �
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟒𝟒 �𝒘𝒘 = �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟒𝟒 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟒𝟒𝟑𝟑 +
𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟑𝟑𝝏𝝏𝒙𝒙𝟑𝟑��𝒘𝒘 

 

 

 

(254) 

A continualization procedure up to the order 𝒂𝒂𝟔𝟔  from the mixed difference-differential 

equation of Eq. (205) through the substitution of the expansion series of Eq. (175) leads to 

the following higher-order gradient system: 
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�𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝝏𝝏𝒙𝒙𝟐𝟐 +
𝒂𝒂𝟒𝟒

𝟑𝟑𝟎𝟎𝝏𝝏𝒙𝒙
𝟒𝟒 +

𝟏𝟏𝟎𝟎𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 �𝝏𝝏𝒙𝒙
𝟒𝟒

− �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝝏𝝏𝒙𝒙
𝟐𝟐 +

𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎𝝏𝝏𝒙𝒙
𝟒𝟒 +

𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎�𝝏𝝏𝒙𝒙
𝟐𝟐

+ �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟒𝟒 𝝏𝝏𝒙𝒙𝟐𝟐 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟒𝟒𝟑𝟑 +
𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎� + �
𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒��𝒘𝒘 = 𝟎𝟎 

 

 

 

(255) 

which leads to the following nonlocal dispersion equation: 

�
𝟏𝟏𝟎𝟎𝑬𝑬𝑬𝑬𝒂𝒂𝟔𝟔

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 �𝒘𝒘
(𝟏𝟏𝟎𝟎) + �

𝑬𝑬𝑬𝑬𝒂𝒂𝟒𝟒

𝟑𝟑𝟎𝟎 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�

𝒂𝒂𝟔𝟔

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎�𝒘𝒘
(𝟑𝟑)

+ �
𝑬𝑬𝑬𝑬𝒂𝒂𝟐𝟐

𝟔𝟔 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�

𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐�

𝒂𝒂𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎�𝒘𝒘
(𝟔𝟔)

+ �𝑬𝑬𝑬𝑬 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐�
𝒂𝒂𝟒𝟒

𝟒𝟒𝟑𝟑�𝒘𝒘
(𝟒𝟒)

+ �− �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟒𝟒 �𝒘𝒘
(𝟐𝟐)

+ ��𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� +

𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒�𝒘𝒘 = 𝟎𝟎 

 

 

 

(256) 

To satisfy this eighth-order differential equation, a wave equation in a harmonic type is 

chosen again as Eq. (206). One would be obtained as: 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�𝝎𝝎𝟒𝟒

− �−�
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

��
𝒂𝒂𝟔𝟔

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎�𝒌𝒌𝒘𝒘
𝟑𝟑

+ ��
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

� − �
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬� �

𝒂𝒂𝟐𝟐

𝟒𝟒 ����
𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎�𝒌𝒌𝒘𝒘
𝟔𝟔 − �

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐�𝒌𝒌𝒘𝒘
𝟒𝟒 + 𝒌𝒌𝒘𝒘

𝟐𝟐� + �
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 +

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��𝝎𝝎𝟐𝟐

+ �−�
𝟏𝟏𝟎𝟎𝒂𝒂𝟔𝟔

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎�𝒌𝒌𝒘𝒘
𝟏𝟏𝟎𝟎 + �

𝒂𝒂𝟒𝟒

𝟑𝟑𝟎𝟎 −
𝒌𝒌𝒂𝒂𝟔𝟔

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�𝒌𝒌𝒘𝒘

𝟑𝟑 + �−
𝒌𝒌𝒂𝒂𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎𝑬𝑬𝑬𝑬 +
𝒌𝒌𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒌𝒌𝒘𝒘
𝟔𝟔

+ �𝟏𝟏 −
𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+

𝒌𝒌𝒂𝒂𝟒𝟒

𝟒𝟒𝟑𝟑𝑬𝑬𝑬𝑬�𝒌𝒌𝒘𝒘
𝟒𝟒 + �

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

−
𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬�𝒌𝒌𝒘𝒘
𝟐𝟐 +

𝒌𝒌
𝑬𝑬𝑬𝑬� = 𝟎𝟎 

 

 

 

 

 

(257) 

which could be rewritten through the dimensionless parameters of Eq. (214) as follows: 
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𝜴𝜴𝒃𝒃
𝟒𝟒

− ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� �−
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐�

+ �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏� + 𝒌𝒌∗�𝜴𝜴𝒃𝒃
𝟐𝟐

+ ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

𝟏𝟏𝟎𝟎(𝒂𝒂𝒌𝒌𝒘𝒘)𝟏𝟏𝟎𝟎

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟑𝟑𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟔𝟔 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒�

+ �
𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐�

+ �
𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏�� = 𝟎𝟎 

 

 

 

 

(258) 

While for the fourth-order continualization, neglecting the terms of 𝒂𝒂𝟔𝟔, Eq. (257) could be 

simplified to the following quartic equation: 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�𝝎𝝎𝟒𝟒

− ��
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

���
𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎
�𝒌𝒌𝒘𝒘

𝟔𝟔 − �
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
�𝒌𝒌𝒘𝒘

𝟒𝟒 + 𝒌𝒌𝒘𝒘
𝟐𝟐� + �

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬
���

𝒂𝒂𝟒𝟒

𝟒𝟒𝟑𝟑
�𝒌𝒌𝒘𝒘

𝟒𝟒 − �
𝒂𝒂𝟐𝟐

𝟒𝟒
�𝒌𝒌𝒘𝒘

𝟐𝟐 + 𝟏𝟏� + �
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
��𝝎𝝎𝟐𝟐

+ ��
𝒂𝒂𝟒𝟒

𝟑𝟑𝟎𝟎
�𝒌𝒌𝒘𝒘

𝟑𝟑 + �
𝒌𝒌𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝒂𝒂𝟐𝟐

𝟔𝟔
�𝒌𝒌𝒘𝒘

𝟔𝟔 + �𝟏𝟏 −
𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+

𝒌𝒌𝒂𝒂𝟒𝟒

𝟒𝟒𝟑𝟑𝑬𝑬𝑬𝑬
�𝒌𝒌𝒘𝒘

𝟒𝟒 + �
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬
�𝒌𝒌𝒘𝒘

𝟐𝟐 +
𝒌𝒌
𝑬𝑬𝑬𝑬
� = 𝟎𝟎 

 

 

 

(259) 

Using the dimensionless parameters of Eq. (214) leads to: 

𝜴𝜴𝒃𝒃
𝟒𝟒

− ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

� �
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐� + �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏�

+ 𝒌𝒌∗�𝜴𝜴𝒃𝒃
𝟐𝟐

+ ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
��

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟑𝟑𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟔𝟔 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒� + �
𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
� �

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐�

+ �
𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏�� = 𝟎𝟎 

 

 

(260) 

Using the second-order 𝒂𝒂𝟐𝟐 of the continualization of the Taylor expansion series of Eq. 

(175), Eq. (205) leads to the following higher-order gradient system: 
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�𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝝏𝝏𝒙𝒙𝟐𝟐�𝝏𝝏𝒙𝒙𝟒𝟒 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝝏𝝏𝒙𝒙
𝟐𝟐�𝝏𝝏𝒙𝒙𝟐𝟐

+ �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟒𝟒 𝝏𝝏𝒙𝒙𝟐𝟐� + �
𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒��𝒘𝒘 = 𝟎𝟎 

 

 

(261) 

For the static range, this equation leads to the one obtained by Challamel et al. [13]. 

Using the dimensionless parameters introduced in Eq. (214), the comparable deflection 

equation of the continuous approximate for the static condition would be obtained as 

follows 

��𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝝏𝝏𝒙𝒙𝟐𝟐�𝝏𝝏𝒙𝒙𝟒𝟒 − 𝒌𝒌∗𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝝏𝝏𝒙𝒙
𝟐𝟐�𝝏𝝏𝒙𝒙𝟐𝟐 + 𝒌𝒌∗ �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟒𝟒 𝝏𝝏𝒙𝒙𝟐𝟐��𝒘𝒘� = 𝟎𝟎 
(262) 

where 𝑤𝑤 = 𝑤𝑤�
𝑎𝑎

. Let’s consider the case of a granular chain with predominant bending 

interactions (𝑆𝑆 → ∞). Thus, Eq. (261) leads to 

�𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟔𝟔 𝝏𝝏𝒙𝒙𝟐𝟐�𝝏𝝏𝒙𝒙𝟒𝟒 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝝏𝝏𝒙𝒙
𝟐𝟐�𝝏𝝏𝒙𝒙𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐� �𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟒𝟒 𝝏𝝏𝒙𝒙𝟐𝟐��𝒘𝒘 = 𝟎𝟎 
(263) 

This gradient elasticity Rayleigh model (pure bending) under a gradient Winkler elastic 

foundation is associated with a non-positive definite energy function. After integration by 

part, one obtains the following energy functional: 

𝜫𝜫

= �
𝟏𝟏
𝟐𝟐𝑬𝑬𝑬𝑬�𝒘𝒘

′′𝟐𝟐 −
𝒂𝒂𝟐𝟐

𝟔𝟔 𝒘𝒘′′′𝟐𝟐�𝒅𝒅𝒙𝒙 + �
𝟏𝟏
𝟐𝟐𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 �𝒘𝒘′𝟐𝟐 −
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝒘𝒘
′′𝟐𝟐�𝒅𝒅𝒙𝒙

+ �
𝟏𝟏
𝟐𝟐 �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐� �𝒘𝒘𝟐𝟐 −
𝒂𝒂𝟐𝟐

𝟒𝟒 𝒘𝒘′𝟐𝟐�𝒅𝒅𝒙𝒙. 

 

(264) 

The wave propagation equation could be obtained as the following sixth-order 

differential equation from Eq. (261): 
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�
𝑬𝑬𝑬𝑬𝒂𝒂𝟐𝟐

𝟔𝟔
�𝒘𝒘(𝟔𝟔) + �𝑬𝑬𝑬𝑬 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
�𝒘𝒘(𝟒𝟒)

+ �− �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟒𝟒
�𝒘𝒘(𝟐𝟐)

+ ��𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� +

𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒�𝒘𝒘 = 𝟎𝟎 

 

(265) 

Again, using a wave equation in a harmonic type like Eq. (206) leads to: 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�𝝎𝝎𝟒𝟒 + ��

𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

��
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐�𝒌𝒌𝒘𝒘
𝟒𝟒 + �

𝝆𝝆𝓚𝓚𝒂𝒂𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬 −
𝝆𝝆
𝑬𝑬 −

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝒌𝒌𝒘𝒘
𝟐𝟐 − (

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 +

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

)�𝝎𝝎𝟐𝟐

+ �−�
𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒌𝒌𝒘𝒘
𝟔𝟔 + �𝟏𝟏 −

𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�𝒌𝒌𝒘𝒘

𝟒𝟒 + (
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝑬𝑬𝑬𝑬)𝒌𝒌𝒘𝒘
𝟐𝟐 +

𝒌𝒌
𝑬𝑬𝑬𝑬� = 𝟎𝟎 

 

 

(266) 

and in the nondimensional form as: 

𝜴𝜴𝒃𝒃
𝟒𝟒 + ��

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+
𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + �
𝟏𝟏

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
−

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

−
𝟏𝟏
𝒓𝒓∗𝟐𝟐

� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 − (
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+ 𝒌𝒌∗)�𝜴𝜴𝒃𝒃

𝟐𝟐

+ �−�
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟔𝟔 + �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
−

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝒓𝒓∗𝟐𝟐
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒 + (

𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
−

𝒌𝒌∗

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
)(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 +

𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� = 𝟎𝟎 

 

(267) 

The dispersive analysis of the granular chain with regards to the dimensionless 

parameter of bending frequency is done for the two branches.  The results are plotted in 

Figure 22 asymptotically for a numeral example characterized in Eq. (268) through the 

equations obtained for discrete exact, local continuum and nonlocal Taylor approaches (Eq. 

(208), (257), (259), (252) and (266)). For instance, in order to investigate a sensitive 

numerical analysis of the abovementioned model, we consider the following parameters 

(steel is assumed for the material parameter). Let’s assume the mechanical parameters of 

steel with an elastic foundation as follows 

𝑬𝑬 = 𝟐𝟐𝟎𝟎𝟎𝟎 𝓚𝓚𝑮𝑮𝒂𝒂, 𝓚𝓚 = 𝟎𝟎𝟎𝟎 𝓚𝓚𝑮𝑮𝒂𝒂, 𝑲𝑲𝒔𝒔 = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟎𝟎, 𝝆𝝆 = 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 𝒌𝒌𝒌𝒌
𝒎𝒎𝟑𝟑 , k= 𝟓𝟓𝟎𝟎 𝑴𝑴𝑮𝑮𝒂𝒂. (268) 

(a) (b) 
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Figure 22.  Dispersive curves for one-dimensional compression wave of (a) the first branch and (b) the second 
branch according to bending nondimensional parameter for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ = 𝟎𝟎.𝟎𝟎𝟐𝟐. 

Due to the quartic equation of Eq. (257), depending on the discriminant value of 

this equation for the sixth, the fourth and the second-order expansion of the Taylor series, 

the dynamic results could take complex values. 

For analyzing the behavior of the nonlocal approach using the Taylor development 

precisely, here an asymptotic study of the frequency has been done. Regarding Eq. 

(258),one could be obtained for the dimensionless parameter of bending frequency as 

follows: 

𝜴𝜴𝒃𝒃 = �𝜺𝜺 ± �𝜺𝜺𝟐𝟐 − 𝜸𝜸 
(269) 

where 𝜀𝜀 and 𝛾𝛾  would be considered as 

𝜺𝜺

=
𝟏𝟏
𝟐𝟐 ��

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+
𝟏𝟏
𝒓𝒓∗𝟐𝟐

� �−
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐�

+ �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏� + 𝒌𝒌∗� ; 

 

 

 

(270) 
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𝜸𝜸

= �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

𝟏𝟏𝟎𝟎(𝒂𝒂𝒌𝒌𝒘𝒘)𝟏𝟏𝟎𝟎

𝟑𝟑𝟎𝟎𝟐𝟐𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟑𝟑𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟔𝟔 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒�

+ �
𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟑𝟑

𝟐𝟐𝟎𝟎𝟏𝟏𝟔𝟔𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟑𝟑𝟔𝟔𝟎𝟎 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐�

+ �
𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� �−

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟏𝟏𝟒𝟒𝟒𝟒𝟎𝟎 +
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒𝟑𝟑 −
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟒𝟒 + 𝟏𝟏� 

Due to the discriminant of Eq. (269) and the typical values for the mechanical and 

geometrical parameters of the system (Eq. (268)) the results contain the imaginary part. 

Figure 23 clarifies this evidence as follows 

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

Figure 23.  The complex results of nonlocal Taylor development (a) 2nd-order first branch, (b) 2nd-order 
second branch, (c) 4th-order first branch, (d) 4th-order second branch, (e) 6th-order first branch and (f) 6th -
order second branch according to bending nondimensional parameter for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ =
𝟎𝟎.𝟎𝟎𝟐𝟐. 

3.3. Approximate Solution via Rational Expansion 

Another nonlocal approximation is based on a rational expansion (Padé 

approximants) instead of the polynomial approximation, which may lead to a better-

homogenized solution in comparison to the Taylor series (Duan et al. [12]). With the 
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application of Padé approximant of order in 𝒂𝒂4 subsequently for the pseudo-differential 

operators of Eq. (175), ones would be obtained as: 

𝜹𝜹𝟐𝟐
𝟐𝟐𝒘𝒘 ≈ �𝟏𝟏 −

𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 +
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎 �
−𝟏𝟏

𝝏𝝏𝒙𝒙𝟒𝟒𝒘𝒘; 

𝜹𝜹𝟐𝟐𝒘𝒘(𝒙𝒙) ≈ �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎 ��𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 +
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎 �
−𝟏𝟏

𝝏𝝏𝒙𝒙𝟐𝟐𝒘𝒘; 

𝜹𝜹𝟎𝟎𝒘𝒘 ≈ �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 −
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟏𝟏𝟑𝟑𝟎𝟎 ��𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 +
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎 �
−𝟏𝟏

𝒘𝒘 

 

 

 

(271) 

Thus, the deflection equation of Eq. (205) for a discrete system could be written for a 

continuous system using Eq. (190) as: 

�
𝟏𝟏

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐
𝟔𝟔 + 𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎

𝝏𝝏𝒙𝒙𝟒𝟒 − ��
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

�
𝟏𝟏 − 𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 + 𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒
𝟐𝟐𝟒𝟒𝟎𝟎

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐
𝟔𝟔 + 𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎

𝝏𝝏𝒙𝒙𝟐𝟐

+ �
𝒌𝒌
𝑬𝑬𝑬𝑬 +

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 𝝏𝝏𝒅𝒅

𝟐𝟐�
𝟏𝟏 + 𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 − 𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒
𝟏𝟏𝟑𝟑𝟎𝟎

𝟏𝟏 − 𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐
𝟔𝟔 + 𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎

+ �
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝏𝝏𝒅𝒅

𝟒𝟒��𝒘𝒘 = 𝟎𝟎 

 

 

(272) 

Multiplying Eq. (191) by (1 −
𝑎𝑎2𝜕𝜕𝑥𝑥

2

6
+

11𝑎𝑎4𝜕𝜕𝑥𝑥
4

720
) leads to the following compact form equation: 

�𝝏𝝏𝒙𝒙𝟒𝟒 − ��
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎 �𝝏𝝏𝒙𝒙
𝟐𝟐

+ �
𝒌𝒌
𝑬𝑬𝑬𝑬 +

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 𝝏𝝏𝒅𝒅

𝟐𝟐� �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 −
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟏𝟏𝟑𝟑𝟎𝟎 �

+ �
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝏𝝏𝒅𝒅

𝟒𝟒� �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 +
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎 ��𝒘𝒘 = 𝟎𝟎 

 

 

(273) 

The wave propagation equation can be obtained by: 
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�−��
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��
𝒂𝒂𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎
�� 𝝏𝝏𝒙𝒙𝟔𝟔 𝒘𝒘

+ �𝟏𝟏 + ��
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
� − �

𝒌𝒌
𝑬𝑬𝑬𝑬

+
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

𝝏𝝏𝒅𝒅
𝟐𝟐� �

𝒂𝒂𝟒𝟒

𝟏𝟏𝟑𝟑𝟎𝟎
�

+ �
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝏𝝏𝒅𝒅

𝟒𝟒� �
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎
�� 𝝏𝝏𝒙𝒙𝟒𝟒 𝒘𝒘

− ���
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

� − �
𝒌𝒌
𝑬𝑬𝑬𝑬

+
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

𝝏𝝏𝒅𝒅
𝟐𝟐� �

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
� + �

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝏𝝏𝒅𝒅

𝟒𝟒� �
𝒂𝒂𝟐𝟐

𝟔𝟔
�� 𝝏𝝏𝒙𝒙𝟐𝟐𝒘𝒘

+ ��
𝒌𝒌
𝑬𝑬𝑬𝑬

+
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

𝝏𝝏𝒅𝒅
𝟐𝟐� + �

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
𝝏𝝏𝒅𝒅

𝟒𝟒��𝒘𝒘 = 𝟎𝟎 

 

 

 

 

 

 

(274) 

Applying the fundamental solution of Eq. (206), the characteristic equation of the nonlocal 

continued model (nonlocal model Padé 1) is obtained as follows 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎
𝒌𝒌𝒘𝒘

𝟒𝟒 +
𝒂𝒂𝟐𝟐

𝟔𝟔
𝒌𝒌𝒘𝒘

𝟐𝟐 + 𝟏𝟏��𝝎𝝎𝟒𝟒

− ���
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�
𝒂𝒂𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎
�𝒌𝒌𝒘𝒘

𝟔𝟔 + ��
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
+ �

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

−
𝟒𝟒𝝆𝝆𝓚𝓚
𝟏𝟏𝟏𝟏𝑬𝑬𝑬𝑬

�
𝟏𝟏𝟏𝟏𝒂𝒂𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎
�𝒌𝒌𝒘𝒘

𝟒𝟒

+ �
𝝆𝝆
𝑬𝑬

+
𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

+ �
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝝆𝝆𝓚𝓚
𝟐𝟐𝑬𝑬𝑬𝑬

�
𝒂𝒂𝟐𝟐

𝟔𝟔
�𝒌𝒌𝒘𝒘

𝟐𝟐 + (
𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬

+
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
)�𝝎𝝎𝟐𝟐  

+ ���
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�
𝒂𝒂𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎
�𝒌𝒌𝒘𝒘

𝟔𝟔 + �𝟏𝟏 + �
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
− �

𝒌𝒌
𝑬𝑬𝑬𝑬
�
𝒂𝒂𝟒𝟒

𝟏𝟏𝟑𝟑𝟎𝟎
�  𝒌𝒌𝒘𝒘

𝟒𝟒 + �
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
− �

𝒌𝒌
𝑬𝑬𝑬𝑬
�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
�𝒌𝒌𝒘𝒘

𝟐𝟐 +
𝒌𝒌
𝑬𝑬𝑬𝑬
� = 𝟎𝟎 

 

 

 

 

(275) 

The dimensionless form of this equation would be obtained through the 

dimensionless parameters of Eq. (214) as follows: 

��
𝟏𝟏𝟏𝟏(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎
+

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟔𝟔
+ 𝟏𝟏��𝜴𝜴𝒃𝒃

𝟒𝟒

− ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟐𝟐𝟒𝟒𝟎𝟎
+ ��

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐

+
𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
𝟏𝟏
𝟏𝟏𝟐𝟐

+ �𝒌𝒌∗ −
𝟒𝟒

𝟏𝟏𝟏𝟏𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�
𝟏𝟏𝟏𝟏
𝟎𝟎𝟐𝟐𝟎𝟎

� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

+ �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

+ �𝒌𝒌∗ −
𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�
𝟏𝟏
𝟔𝟔
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 + �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+ 𝒌𝒌∗��𝜴𝜴𝒃𝒃
𝟐𝟐

+ ��
𝒌𝒌∗

𝟐𝟐𝟒𝟒𝟎𝟎𝒓𝒓∗𝟐𝟐
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔 + �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+
𝒌𝒌∗

𝟏𝟏𝟐𝟐𝒓𝒓∗𝟐𝟐
−

𝒌𝒌∗

𝟏𝟏𝟑𝟑𝟎𝟎𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒 + �

𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
−

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 +

𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� = 𝟎𝟎 

 

 

 

 

(276) 
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On the other hand, regarding the work of Bacigalupo and Gambarotta [115] or 

Bacigalupo and Gambarotta [50] by using the approach of enhanced continualization via 

the first-order regularization, the derivatives of the continuum fields could be expressed by 

𝝏𝝏𝒙𝒙𝒘𝒘�𝒊𝒊 =
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟐𝟐𝒂𝒂
𝒘𝒘𝒊𝒊 

(277) 

And the down-scaling law for each node defined by 

𝒘𝒘𝒊𝒊 =
𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
𝒘𝒘�𝒊𝒊 

(278) 

Substituting Eq. (278) in Eq. (69) leads to 

�𝟐𝟐𝑺𝑺
(𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − (𝟐𝟐 + 𝒌𝒌𝒂𝒂/𝒔𝒔) + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙)

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
𝒂𝒂𝝏𝝏𝒙𝒙�𝒘𝒘�𝒊𝒊 − 𝒂𝒂𝟐𝟐𝑺𝑺𝝏𝝏𝒙𝒙𝜽𝜽�𝒊𝒊 − �

𝟐𝟐𝒎𝒎
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝑫𝑫𝒙𝒙

𝒂𝒂𝝏𝝏𝒙𝒙�𝒘𝒘�𝒊𝒊̈ = 𝟎𝟎;

�(𝑪𝑪
(𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙)

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
−
𝒂𝒂𝟐𝟐

𝟒𝟒
𝑺𝑺

(𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙)
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

)𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙�𝜽𝜽�𝒊𝒊 + 𝒂𝒂𝟐𝟐𝑺𝑺𝝏𝝏𝒙𝒙𝒘𝒘�𝒊𝒊 − �
𝟐𝟐𝑬𝑬𝒎𝒎

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
𝒂𝒂𝝏𝝏𝒙𝒙�𝜽𝜽�𝒊𝒊̈ = 𝟎𝟎

 

 

(279) 

Here, the differential equations of the equivalent homogenized continuum are 

obtained by applying the fourth-order terms of the Taylor series: 

−𝒌𝒌𝒂𝒂𝒘𝒘𝒊𝒊 + �𝒔𝒔 +
𝟏𝟏
𝟔𝟔
𝒌𝒌𝒂𝒂�𝒂𝒂𝟐𝟐

𝝏𝝏𝟐𝟐𝒘𝒘
𝝏𝝏𝒙𝒙𝟐𝟐

− �
𝒔𝒔
𝟏𝟏𝟐𝟐

+
𝟎𝟎
𝟑𝟑𝟔𝟔𝟎𝟎

𝒌𝒌𝒂𝒂�𝒂𝒂𝟒𝟒
𝝏𝝏𝟒𝟒𝒘𝒘
𝝏𝝏𝒙𝒙𝟒𝟒

− 𝒂𝒂𝑺𝑺
𝝏𝝏𝜽𝜽
𝝏𝝏𝒙𝒙

−𝒎𝒎��̈�𝒘 −
𝒂𝒂𝟐𝟐

𝟔𝟔
𝝏𝝏𝟐𝟐�̈�𝒘
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝟎𝟎𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎
𝝏𝝏𝟒𝟒�̈�𝒘
𝝏𝝏𝒙𝒙𝟒𝟒

� = 𝟎𝟎;

−𝒂𝒂𝟐𝟐𝑺𝑺𝒘𝒘𝒊𝒊 + �𝑪𝑪 −
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
𝑺𝑺�𝒂𝒂𝟐𝟐

𝝏𝝏𝟐𝟐𝜽𝜽𝒊𝒊
𝝏𝝏𝒙𝒙𝟐𝟐

− �
𝑪𝑪
𝟏𝟏𝟐𝟐

+
𝒂𝒂𝟐𝟐

𝟏𝟏𝟒𝟒𝟒𝟒
𝑺𝑺�𝒂𝒂𝟒𝟒

𝝏𝝏𝟒𝟒𝜽𝜽𝒊𝒊
𝝏𝝏𝒙𝒙𝟒𝟒

+ 𝒂𝒂𝑺𝑺
𝝏𝝏𝒘𝒘
𝝏𝝏𝒙𝒙

− 𝑬𝑬𝒎𝒎 ��̈�𝜽 −
𝒂𝒂𝟐𝟐

𝟔𝟔
𝝏𝝏𝟐𝟐�̈�𝜽
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝟎𝟎𝒂𝒂𝟒𝟒

𝟑𝟑𝟔𝟔𝟎𝟎
𝝏𝝏𝟒𝟒�̈�𝜽
𝝏𝝏𝒙𝒙𝟒𝟒

� = 𝟎𝟎
 

 

(280) 

Regarding Eq. (278), the difference operators of Eq. (6) actually could be expressed 

in the following form 

𝜹𝜹𝟐𝟐
𝟐𝟐𝒘𝒘 = �

𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

� �
𝒆𝒆𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟒𝟒𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟔𝟔 − 𝟒𝟒𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙 + 𝒆𝒆−𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙

𝒂𝒂𝟒𝟒 �𝒘𝒘�

= �𝟏𝟏 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟐𝟐𝟒𝟒𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔��𝝏𝝏𝒙𝒙𝟒𝟒𝒘𝒘� , 

𝜹𝜹𝟐𝟐𝒘𝒘 = �
𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
� �
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝒂𝒂𝟐𝟐 �𝒘𝒘� = �𝟏𝟏 −
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟏𝟏𝟐𝟐𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔�� 𝝏𝝏𝒙𝒙𝟐𝟐𝒘𝒘� , 

𝜹𝜹𝟏𝟏𝒘𝒘 = �
𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
� �
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟐𝟐𝒂𝒂 �𝒘𝒘� = 𝝏𝝏𝒙𝒙𝒘𝒘� , 

 

 

 

 

 

(281) 
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𝜹𝜹𝟎𝟎𝒘𝒘 = �
𝟐𝟐𝒂𝒂𝝏𝝏𝒙𝒙

𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 − 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙
� �
𝒆𝒆𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟐𝟐 + 𝒆𝒆−𝒂𝒂𝝏𝝏𝒙𝒙

𝟒𝟒 �𝒘𝒘� = �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 −
𝒂𝒂𝟒𝟒𝝏𝝏𝒙𝒙𝟒𝟒

𝟎𝟎𝟐𝟐𝟎𝟎 + 𝑶𝑶�𝒂𝒂𝟔𝟔𝝏𝝏𝒙𝒙𝟔𝟔��𝒘𝒘�  

Continualizing Eq. (205) through the application of the series of Eq. (281) and neglecting 

higher-order terms in 𝒂𝒂4 leads to the following extended deflection equation  

�𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙𝟒𝟒 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 −

𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 �𝝏𝝏𝒙𝒙𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 +

𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟏𝟏𝟐𝟐 � + (
𝒌𝒌𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝝆𝝆𝟐𝟐𝑬𝑬𝝏𝝏𝒅𝒅

𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
)�𝟏𝟏 −

𝒂𝒂𝟐𝟐𝝏𝝏𝒙𝒙𝟐𝟐

𝟔𝟔 ��𝒘𝒘� = 𝟎𝟎 

 

(282) 

This equation (nonlocal model Padé 1) could be obtained also from Eq. (274) 

neglecting the higher-order terms in 𝒂𝒂4. An alternative strategy to obtain Eq. (282) is 

through the multiplication of �1 − 𝑎𝑎2𝝏𝝏𝑥𝑥2

6
� to Eq. (261). Eq. (282) would be simplified as: 

�𝑬𝑬𝑬𝑬 + �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐�𝒘𝒘
� (𝟒𝟒)

− ��𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� − �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐 + �
𝒌𝒌𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝏𝝏𝒅𝒅

𝟒𝟒

𝑲𝑲𝒔𝒔𝓚𝓚
�
𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒘𝒘
� (𝟐𝟐)

+ �𝒌𝒌 + (𝝆𝝆𝓚𝓚 +
𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐)𝝏𝝏𝒅𝒅

𝟐𝟐�𝒘𝒘� = 𝟎𝟎 

 

(283) 

Choosing again a wave equation in a harmonic type as Eq. (206), one would be obtained: 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
(𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟔𝟔 𝒌𝒌𝒘𝒘
𝟐𝟐)�𝝎𝝎𝟒𝟒

− ��
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

��
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐�𝒌𝒌𝒘𝒘
𝟒𝟒 + �

𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

+ (
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−
𝝆𝝆𝓚𝓚
𝟐𝟐𝑬𝑬𝑬𝑬)

𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒌𝒌𝒘𝒘
𝟐𝟐 + �

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 +

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��𝝎𝝎𝟐𝟐

+ ��𝟏𝟏 +
𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�𝒌𝒌𝒘𝒘

𝟒𝟒 + �
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
−

𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�𝒌𝒌𝒘𝒘
𝟐𝟐 +

𝒌𝒌
𝑬𝑬𝑬𝑬� = 𝟎𝟎 

 

(284) 

Using Eq. (214), the following non-dimensional equation would be obtained through the 

bending wave velocity definition. 
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��
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟔𝟔 + 𝟏𝟏��𝜴𝜴𝒃𝒃
𝟒𝟒

− ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟏𝟏𝟐𝟐 + �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

+ �𝒌𝒌∗ −
𝟏𝟏

𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�
𝟏𝟏
𝟔𝟔� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 + �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+ 𝒌𝒌∗��𝜴𝜴𝒃𝒃
𝟐𝟐

+ ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝒓𝒓∗𝟐𝟐
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒 + �

𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
−

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 +

𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� = 𝟎𝟎 

 

 

 

(285) 

An alternative continuous approach could be obtained by multiplying the terms 

�1 − 𝑎𝑎2𝝏𝝏𝑥𝑥2

3
� to Eq. (261) and neglect higher-order terms in 𝒂𝒂4. This leads to the following 

extended governed equation (nonlocal model Padé 2): 

�𝑬𝑬𝑬𝑬 �𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟔𝟔
𝝏𝝏𝒙𝒙𝟐𝟐�𝝏𝝏𝒙𝒙𝟒𝟒 − �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 +
𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� �𝟏𝟏 −

𝒂𝒂𝟐𝟐

𝟒𝟒
𝝏𝝏𝒙𝒙𝟐𝟐�𝝏𝝏𝒙𝒙𝟐𝟐 + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐� �𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
𝝏𝝏𝒙𝒙𝟐𝟐�

+ �
𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒� �𝟏𝟏 −

𝒂𝒂𝟐𝟐

𝟑𝟑
𝝏𝝏𝒙𝒙𝟐𝟐��𝒘𝒘 = 𝟎𝟎 

 

(286) 

Here, the gradient elasticity for a granular chain with predominant bending interactions are 

associated with positive definite energy function as follows: 

𝜫𝜫

= �
𝟏𝟏
𝟐𝟐
𝑬𝑬𝑬𝑬 �𝒘𝒘′′𝟐𝟐 +

𝒂𝒂𝟐𝟐

𝟔𝟔
𝒘𝒘′′′𝟐𝟐�𝒅𝒅𝒙𝒙 + �

𝟏𝟏
𝟐𝟐
𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅

𝟐𝟐 �𝒘𝒘′𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟒𝟒
𝒘𝒘′′𝟐𝟐�𝒅𝒅𝒙𝒙 + �

𝟏𝟏
𝟐𝟐
�𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐� �𝒘𝒘𝟐𝟐 +
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐
𝒘𝒘′𝟐𝟐�𝒅𝒅𝒙𝒙. 

(287) 

For the static analysis, the comparable deflection equation of the continuous 

approximate again leads to the one investigated by Challamel et al. [13] neglecting the 

compressional buckling force as follows 

��𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟔𝟔 𝑫𝑫𝒙𝒙
𝟐𝟐�𝑫𝑫𝒙𝒙

𝟒𝟒 − 𝒌𝒌∗𝝁𝝁𝒔𝒔𝒓𝒓∗
𝟐𝟐 �𝟏𝟏 −

𝒂𝒂𝟐𝟐

𝟒𝟒 𝑫𝑫𝒙𝒙
𝟐𝟐�𝑫𝑫𝒙𝒙

𝟐𝟐 + 𝒌𝒌∗ �𝟏𝟏 −
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐��𝒘𝒘� = 𝟎𝟎 

(288) 

Going back to the continuous approximate model expressed by the enriched 

differential equation (Eq. (286)), the wave propagation equation could be obtained as: 
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�
𝑬𝑬𝑬𝑬𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒘𝒘(𝟔𝟔) − �𝑬𝑬𝑬𝑬 + �𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟒𝟒 �𝒘𝒘
(𝟒𝟒)

+ ��𝝆𝝆𝑬𝑬𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝒌𝒌𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

+
𝑬𝑬𝑬𝑬𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐� + �𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅

𝟐𝟐�
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐 + �
𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒�
𝒂𝒂𝟐𝟐

𝟑𝟑 �𝒘𝒘
(𝟐𝟐)

− ��𝒌𝒌 + 𝝆𝝆𝓚𝓚𝝏𝝏𝒅𝒅
𝟐𝟐� +

𝒌𝒌𝝆𝝆𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

𝝏𝝏𝒅𝒅
𝟐𝟐 +

𝝆𝝆𝟐𝟐𝑬𝑬
𝑲𝑲𝒔𝒔𝓚𝓚

𝝏𝝏𝒅𝒅
𝟒𝟒�𝒘𝒘 = 𝟎𝟎 

 

 

 

(289) 

Supposing a harmonic wave equation in the form of Eq. (206) leads to 

�
𝝆𝝆𝟐𝟐

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚
�𝟏𝟏 +

𝒂𝒂𝟐𝟐

𝟑𝟑 𝒌𝒌𝒘𝒘
𝟐𝟐��𝝎𝝎𝟒𝟒

− ��
𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

��
𝒂𝒂𝟐𝟐

𝟒𝟒 �𝒌𝒌𝒘𝒘
𝟒𝟒 + �

𝝆𝝆
𝑬𝑬 +

𝝆𝝆
𝑲𝑲𝒔𝒔𝓚𝓚

+ (
𝒌𝒌𝝆𝝆

𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+
𝝆𝝆𝓚𝓚
𝟒𝟒𝑬𝑬𝑬𝑬)

𝒂𝒂𝟐𝟐

𝟑𝟑 �𝒌𝒌𝒘𝒘
𝟐𝟐 + �

𝝆𝝆𝓚𝓚
𝑬𝑬𝑬𝑬 +

𝒌𝒌𝝆𝝆
𝑬𝑬𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚

��𝝎𝝎𝟐𝟐

+ ��
𝒂𝒂𝟐𝟐

𝟔𝟔 �𝒌𝒌𝒘𝒘
𝟔𝟔 + �𝟏𝟏 +

𝒌𝒌𝒂𝒂𝟐𝟐

𝟒𝟒𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
�𝒌𝒌𝒘𝒘

𝟒𝟒 + �
𝒌𝒌

𝑲𝑲𝒔𝒔𝓚𝓚𝓚𝓚
+

𝒌𝒌𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�𝒌𝒌𝒘𝒘
𝟐𝟐 +

𝒌𝒌
𝑬𝑬𝑬𝑬� = 𝟎𝟎 

 

 

(290) 

The non-dimensional equation of this approach could be obtained using Eq. (214) with 

respect to the bending wave velocity definition as follows: 

��
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐

𝟑𝟑 + 𝟏𝟏��𝜴𝜴𝒃𝒃
𝟒𝟒

− ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

�
(𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒

𝟒𝟒 + �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟐𝟐
+

𝟏𝟏
𝒓𝒓∗𝟐𝟐

+ �𝒌𝒌∗ +
𝟏𝟏

𝟒𝟒𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�
𝟏𝟏
𝟑𝟑� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 + �

𝟏𝟏
𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒

+ 𝒌𝒌∗��𝜴𝜴𝒃𝒃
𝟐𝟐

+ ��
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
�

(𝒂𝒂𝒌𝒌𝒘𝒘)𝟔𝟔

𝟔𝟔 + �
𝟏𝟏

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
+

𝒌𝒌∗

𝟒𝟒𝒓𝒓∗𝟐𝟐
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟒𝟒 + �

𝒌𝒌∗

𝒓𝒓∗𝟐𝟐
+

𝒌𝒌∗

𝟏𝟏𝟐𝟐𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� (𝒂𝒂𝒌𝒌𝒘𝒘)𝟐𝟐 +

𝒌𝒌∗

𝝁𝝁𝒔𝒔𝒓𝒓∗𝟒𝟒
� = 𝟎𝟎 

 

 

 

(291) 

The dimensionless bending frequency results obtained through the Padé 

polynomial expansions are plotted in  

(a) (b) 
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Figure 24 for the two branches. Again, for a numeral example defined in Eq. (268) 

and with respect to the equations presented by Eq. (208), (252), (275), (284) and (290), the 

calculations are done.  

(a) (b) 

  

Figure 24.  Dispersive curves for one-dimensional compression wave of (a) the first branch and (b) the second 
branch according to bending nondimensional parameter for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ = 𝟎𝟎.𝟎𝟎𝟐𝟐. 
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4. Discussion 

The dispersive results using Eq. (208), (252), (257), (259), (266), (275), (284) and 

(290) are plotted for shear dimensionless frequency in Figure 25. There exist two solutions 

leading to the two branches of the dynamic response of the system each refers to low and 

high frequencies. The lower branch refers to the acoustic mode and the higher one is the 

optical mode.  

Reminding that the mechanical parameters were considered as E= 200GPa, G= 70GPa, 

Ks= 0.667, 𝜌𝜌 =8000𝑘𝑘𝑑𝑑/𝜇𝜇3  and k=50MPa. For the long-wave limit (𝑎𝑎𝑘𝑘𝑤𝑤 →0), the dispersive 

results obtained from the discrete and continuous model must be equivalent. So, the 

velocity at the infinite wavelength of the discrete model could be considered equal to the 

compression wave velocity of the classical elastic continuum. The divergence of the 

discrete and continuum frequencies for the wave number increase is obvious. Thus, the 

inhomogeneous effect by the particle size becomes more prominent or in the other words, 

the granular models behave more dispersive.  

According to the sinusoidal dispersive curve of the exact results, when the curve 

meets the horizontal axis (𝜔𝜔 = 0), it continues periodically. Therefore, it can be concluded 

that for the exact discrete approach, the responses are always stable. Likewise, the 

dispersive curves of the Padé approximants could be considered stable as they increase 

continually from zero without any imaginary part. The unstable harmonic responses appear 

when the downward branch of the Taylor dispersive curve encounters axis 𝜔𝜔 = 0 .  

(a) (b) 
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Figure 25.  Dispersive curves for one-dimensional compression wave of (a) first branch or the acoustic mode 
and (b)second branch or the optical mode according to shear nondimensional parameter- various approaches 
for 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑, 𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ = 𝟏𝟏.𝟎𝟎𝟑𝟑. 

 
The derivation of  𝜕𝜕𝜔𝜔

𝜕𝜕𝑊𝑊𝑤𝑤
 represent the wave propagation speed in the system. The 

existence of the maximum point in the exact and Taylor dispersive results where 𝜕𝜕𝜔𝜔
𝜕𝜕𝑊𝑊𝑤𝑤

= 0, 

the wave energy can’t propagate and it represents a standing wave. The dispersive results 

for the Taylor approach of the pair order and exact discrete solution show the same 

behavior in which both proceed into a downward trend after passing from a maximum 

frequency. 

Since all the frequencies are in the limited domain, the transition of only low 

frequencies is possible and consequently, it can be supposed that the media act as a granular 

filter. This is in contrast to the Padé results and continuum curve since the dispersive curve 

increases continuously and so all ranges of frequencies can be transmitted.  

Here, parametric studies are carried out in order to figure out how intergranular 

stiffness contributes to the dispersive behavior of the material. To this aim, the influence 

of the Young modulus on the wave velocity (c0) and μs has been studied in Figure 15 and 
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Figure 27. The dispersive curves of the first branch frequency for the granular chain are 

plotted for different approaches. 

(a) (b) 

  

(c) (d) 

  

Figure 26. Comparison of the first branch of natural frequency for the different values of Young modulus in 
1D media: (a) 𝒄𝒄𝟎𝟎 = 𝟑𝟑𝟏𝟏𝟔𝟔𝟐𝟐 m/s2 and 𝝁𝝁𝒔𝒔 = 𝟏𝟏.𝟎𝟎𝟏𝟏, (b) 𝒄𝒄𝟎𝟎 = 𝟒𝟒𝟏𝟏𝟑𝟑𝟑𝟑 m/s2 and 𝝁𝝁𝒔𝒔 = 𝟐𝟐.𝟎𝟎𝟎𝟎, (c) 𝒄𝒄𝟎𝟎 = 𝟓𝟓𝟎𝟎𝟎𝟎𝟎𝟎 m/s2 
and 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and (d) 𝒄𝒄𝟎𝟎 = 𝟑𝟑𝟔𝟔𝟔𝟔𝟎𝟎 m/s2 and 𝝁𝝁𝒔𝒔 = 𝟏𝟏𝟐𝟐.𝟑𝟑𝟓𝟓 for  𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ = 𝟎𝟎. 

(a) (b) 
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(c) (d) 

 
 

Figure 27. Comparison of the second branch of natural frequency for the different values of Young modulus 
in 1D media: (a) 𝒄𝒄𝟎𝟎 = 𝟑𝟑𝟏𝟏𝟔𝟔𝟎𝟎 𝒎𝒎/𝒔𝒔𝟐𝟐 and 𝝁𝝁𝒔𝒔 = 𝟏𝟏.𝟎𝟎𝟏𝟏, (b) 𝒄𝒄𝟎𝟎 = 𝟒𝟒𝟏𝟏𝟑𝟑𝟑𝟑 𝒎𝒎/𝒔𝒔𝟐𝟐 and 𝝁𝝁𝒔𝒔 = 𝟐𝟐.𝟎𝟎𝟎𝟎, (c) 𝒄𝒄𝟎𝟎 = 𝟓𝟓𝟎𝟎𝟎𝟎𝟎𝟎 
m/s2 and 𝝁𝝁𝒔𝒔 = 𝟒𝟒.𝟐𝟐𝟑𝟑 and (d) 𝒄𝒄𝟎𝟎 = 𝟑𝟑𝟔𝟔𝟔𝟔𝟎𝟎 𝒎𝒎/𝒔𝒔𝟐𝟐 and 𝝁𝝁𝒔𝒔 = 𝟏𝟏𝟐𝟐.𝟑𝟑𝟓𝟓 for  𝒓𝒓∗ = 𝟎𝟎.𝟐𝟐𝟑𝟑𝟎𝟎 and 𝒌𝒌∗ = 𝟎𝟎. 
 

The bending behavior of Carbon Nanotubes (CNTs) could be modeled quite well 

by the Timoshenko beam theory. In this study for short tubes, the short wavelengths or 

high frequencies are investigated and the results are compared by the molecular dynamics 

results of Wang and Hu [133] a different gradient enrichment of the Timoshenko beam 

theory for (5,5) and (10,10) armchair CNTs. 
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In this article, the effective parameters reported as Ks= 0.5, 𝜌𝜌 =2237𝑘𝑘𝑑𝑑/𝜇𝜇3 , 

k=0MPa, E= 460GPa and G= 188.5GPa for (5,5) CNT and E= 470GPa and G= 

195.8GPa for (10,10) CNT. The cross-section area and the second moment of inertia could 

be calculated subsequently by 𝐴𝐴 = 2𝜋𝜋𝑑𝑑𝑡𝑡 and 𝐼𝐼 = 𝜋𝜋(𝑅𝑅3𝑡𝑡 + 0.25𝑡𝑡3𝑅𝑅), where R is the radius 

of the CNT and t is the wall thickness. According to Domenico and Askes [129] for C-C 

bond length of 𝑙𝑙 = 0.142nm the closest longitudinal distance between two rings of atoms 

in an armchair CNT given by 𝐿𝐿 = √3𝑙𝑙 and R the radius of the CNT would be found by 

𝑅𝑅 = 3𝑛𝑛𝑊𝑊
2𝑝𝑝

 (for 𝑛𝑛 = 5, 10 ). The thickness of the tube wall is supposed 𝑡𝑡 = 0.0617 nm 

(Vodenitcharova and Zhang [134]). 

(a) (b) 

  

Figure 28. Comparison of the different approaches with the molecular dynamics results of Wang and Hu 
[133]: (a) (5,5) and (b) (10,10) armchair CNT - various approaches 

 
5. Conclusions 

Wave dispersion occurs in granular systems when the characteristic length scale of 

the discrete model is of the same order as the wavelength of the waves propagating through 

the equivalent continuous media. In order to capture this effect, a discrete Cosserat theory 
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has been used to analyze the wave propagation in discrete granular chains. First, the exact 

dispersive equation of the system has been obtained from the uncoupled equation of motion 

of the discrete granular chain resting on Winkler foundations. Using the exact resolution 

of the difference equation of the discrete system, it has been clarified that the two branches 

of eigenfrequencies exist for the granular model which leads to the ones obtained in the 

literature, namely by Bresse and Timoshenko for an infinite number of grains. Next, the 

model has been homogenized using non-local gradient terms by two approaches based on 

the Taylor series and Padé approximations. It has been shown that the dispersion behavior 

of higher-order continuous models is improved by considering additional gradient 

enrichments terms, as compared to the initial discrete one. It can be also concluded that, as 

observed for the dispersion curves of the discrete granular chain, the continuous 

approximation issued of a Padé approximant is always stable.  
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CHAPTER 5 
 

Two-Dimensional Plane: Discrete and Continuum Modelling 

1. Introduction 

In this chapter, we investigate a novel micropolar model which is consistent with 

the non-linear first gradient formulation. The enriched model is obtained for isotropic 

plates. The new approach is based on introducing three measures of deformation namely 

the Cauchy-Green strain tensor, the wryness tensor in addition to a new relative rotation 

tensor. Instead of the Euler angles (Bojanczyk and Lutoborski [135]), the microrotation of 

the system is introduced by a tensor Q to describe the local rigid rotations. This orthogonal 

tensor consists of four independent components for 2D problems which admits four 

constraints: the latter correspond to the orthogonal property of the microrotation tensor and 

to its determinant which needs to be equal to one.  

The present study is organized as follows. First, we try to investigate the 

generalization of discrete plane media. To this aim, for the kinematically constrained 

condition of a discrete Cosserat media, the Born-Karman media would be found. The 

model must converge asymptotically towards a linear elastic continuous media with two 

parameters (for example Young modulus and Poisson’s ratio), and towards a continuous 

isotropic Cosserat media with 6 parameters (2 classical elastic parameters and 4 additional 

parameters - see for example Eremeyev et al. [136]). Next, the governing formulations of 

the nonlinear micropolar model and the deformation energy equations are obtained for 

isotropic materials. Finally, several numerical simulations have been performed with a 

finite element method using variational formulations to underline the main features of the 

proposed model. The finite element method which is based on the variations principle 
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minimizes the action functional of the physical problem in exam (dell’Isola and Gavrilyuk 

[137], Steinmann and Stein [138], Nistor [139] and Hashin and Shtrikman [140]).  

 
2. In-Plane Granular Model 

Let’s consider a two-dimensional granular system of dimension 𝐿𝐿1 × 𝐿𝐿2 that is 

modeled by a lattice granular structure. Such a system could be presented by 

microstructured granular chain comprising 𝑛𝑛 + 1 × 𝜇𝜇 + 1 rigid grains with diameter a 

(a=𝐿𝐿1/n=𝐿𝐿2/m) that are connected elastically by n+m normal, shear and rotational springs 

as shown in Figure 29. Each grain has three degrees of freedom in-plane which are 

represented by Ui,j , Vi,j and 𝛩𝛩𝑖𝑖,𝑗𝑗 for grain number i and j. The objective is finding the 

vibration equation governing the model and then trying to obtain the natural frequencies. 

           

Figure 29. A discrete shear granular plane of dimension 𝜹𝜹𝟏𝟏 × 𝜹𝜹𝟐𝟐 composed of (𝒏𝒏 + 𝟏𝟏) × (𝒎𝒎 + 𝟏𝟏) grains of 
diameter a and mass m 
 
The strain energy function due to deformed normal springs is given by: 
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𝜹𝜹𝑵𝑵

=
𝟏𝟏
𝟐𝟐 � ��𝒌𝒌𝒏𝒏�𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜹𝜹𝒊𝒊,𝒋𝒋�

𝟐𝟐 + 𝒌𝒌𝒏𝒏�𝑽𝑽𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋�
𝟐𝟐

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

𝒎𝒎−𝟏𝟏

𝒋𝒋=𝟎𝟎

+ 𝒌𝒌𝒏𝒏𝒅𝒅 ��𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝜹𝜹𝒊𝒊,𝒋𝒋� + �𝑽𝑽𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋��
𝟐𝟐

+ 𝒌𝒌𝒏𝒏𝒅𝒅 ��𝜹𝜹𝒊𝒊,𝒋𝒋 − 𝜹𝜹𝒊𝒊−𝟏𝟏,𝒋𝒋+𝟏𝟏� + �𝑽𝑽𝒊𝒊−𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋��
𝟐𝟐
� 

 

(292) 

One could define for the relative diagonal displacement as follows: 

𝟏𝟏
√𝟐𝟐

��𝑈𝑈𝑖𝑖+1,𝑗𝑗+1 − 𝜹𝜹𝑖𝑖,𝑗𝑗� + �𝑉𝑉𝑖𝑖+1,𝑗𝑗+1 − 𝑉𝑉𝑖𝑖,𝑗𝑗��

=
𝟏𝟏
√𝟐𝟐

��𝑈𝑈𝑖𝑖+1,𝑗𝑗 − 𝜹𝜹𝑖𝑖,𝑗𝑗� + �𝑈𝑈𝑖𝑖,𝑗𝑗+1 − 𝜹𝜹𝑖𝑖,𝑗𝑗� + �𝑽𝑽𝑖𝑖+1,𝑗𝑗 − 𝑉𝑉𝑖𝑖,𝑗𝑗� + �𝑽𝑽𝑖𝑖,𝑗𝑗+1 − 𝑉𝑉𝑖𝑖,𝑗𝑗��

=
𝟏𝟏
√𝟐𝟐

�∆𝑈𝑈𝑖𝑖 + ∆𝑈𝑈𝒋𝒋 + ∆𝑉𝑉𝑖𝑖 + ∆𝑉𝑉𝒋𝒋�; 

𝟏𝟏
√𝟐𝟐

��𝜹𝜹𝑖𝑖,𝑗𝑗 − 𝑈𝑈𝑖𝑖−1,𝑗𝑗+1� + �𝑉𝑉𝑖𝑖−1,𝑗𝑗+1 − 𝑉𝑉𝑖𝑖,𝑗𝑗��

=
𝟏𝟏
√𝟐𝟐

��𝜹𝜹𝑖𝑖,𝑗𝑗 − 𝑈𝑈𝑖𝑖−1,𝑗𝑗� − �𝑈𝑈𝑖𝑖,𝑗𝑗+1 − 𝜹𝜹𝑖𝑖,𝑗𝑗� − �𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑽𝑽𝑖𝑖−1,𝑗𝑗� + �𝑽𝑽𝑖𝑖,𝑗𝑗+1 − 𝑉𝑉𝑖𝑖,𝑗𝑗��

=
𝟏𝟏
√𝟐𝟐

�∆𝑈𝑈𝑖𝑖 − ∆𝑈𝑈𝒋𝒋 − ∆𝑉𝑉𝑖𝑖 + ∆𝑉𝑉𝒋𝒋� 

 

 

 

 

 

(293) 

where 𝑘𝑘𝑛𝑛  and 𝑘𝑘𝑛𝑛𝑏𝑏  are respectively the normal and diagonal rigidity characterize force 

interactions of the granules of extension/compression and the Poisson’s ratio effect which 

can be expressed with respect to the normal stiffness 𝐸𝐸𝐴𝐴 of the equivalent material. These 

two parameters would be defined as 𝑘𝑘𝑛𝑛 = 𝐸𝐸𝒦𝒦
𝑎𝑎

= 𝑛𝑛𝐸𝐸𝒦𝒦
𝐿𝐿1

= 𝑚𝑚𝐸𝐸𝒦𝒦
𝐿𝐿2

  and 𝑘𝑘𝑛𝑛𝑏𝑏 = 𝐸𝐸𝒦𝒦
√2𝑎𝑎

 in which E and 

A are Young’s modulus and the cross-section area of the plate. 

The strain energy function due to deformed shear springs (shear term) is given by: 
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𝑈𝑈𝑡𝑡

=
1
2 � ��𝑘𝑘𝑡𝑡 �𝑈𝑈𝑖𝑖,𝑗𝑗+1 − 𝑈𝑈𝑖𝑖,𝑗𝑗 + 𝑎𝑎

𝛩𝛩𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗
2 �

2

+ 𝑘𝑘𝑡𝑡 �𝑉𝑉𝑖𝑖+1,𝑗𝑗 − 𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑎𝑎
𝛩𝛩𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩𝑖𝑖,𝑗𝑗

2 �
2𝑛𝑛−1

𝑖𝑖=0

𝑚𝑚−1

𝑗𝑗=0

+ 𝑘𝑘𝑡𝑡𝑏𝑏 �𝑈𝑈𝑖𝑖+1,𝑗𝑗+1 − 𝑈𝑈𝑖𝑖,𝑗𝑗 − 𝑉𝑉𝑖𝑖+1,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗 + 𝑎𝑎
𝛩𝛩𝑖𝑖+1,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗

2 �
2

+ 𝑘𝑘𝑡𝑡𝑏𝑏 �𝑈𝑈𝑖𝑖,𝑗𝑗 − 𝑈𝑈𝑖𝑖−1,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑉𝑉𝑖𝑖−1,𝑗𝑗+1 + 𝑎𝑎
𝛩𝛩𝑖𝑖−1,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗

2 �
2

� 

 

 

 

 

(294) 

where 𝑘𝑘𝑡𝑡 and  𝑘𝑘𝑡𝑡𝑏𝑏 are the shear stiffness and can be expressed with respect to the shear 

stiffness 𝑐𝑐0𝐺𝐺𝐴𝐴 of the equivalent beam which would be defined as 𝑘𝑘𝑡𝑡 = 𝑐𝑐0𝐺𝐺𝐴𝐴
𝑎𝑎 = 𝑛𝑛𝑐𝑐0𝐺𝐺𝐴𝐴

𝐿𝐿1
= 𝜇𝜇𝑐𝑐0𝐺𝐺𝐴𝐴

𝐿𝐿2
  

and  𝑘𝑘𝑡𝑡𝑏𝑏 = 𝑐𝑐0𝐺𝐺𝐴𝐴
�2𝑎𝑎

 in which G is the shear modulus, A is the cross-sectional area of the beam 

and 𝑐𝑐0 the shear correction coefficient to compensate for the error in assuming a constant 

shear strain/stress.  

The strain energy function due to deformed rotational springs is given as: 

𝜹𝜹𝒃𝒃

=
𝟏𝟏
𝟐𝟐 � ��𝒌𝒌𝒄𝒄�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜣𝜣𝒊𝒊,𝒋𝒋�

𝟐𝟐
𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

𝒎𝒎−𝟏𝟏

𝒋𝒋=𝟎𝟎

+ 𝒌𝒌𝒄𝒄�𝜣𝜣𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�
𝟐𝟐+𝒌𝒌𝒄𝒄𝒅𝒅�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�

𝟐𝟐+𝒌𝒌𝒄𝒄𝒅𝒅�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋−𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�
𝟐𝟐� 

 

 

(295) 

where 𝑘𝑘𝑐𝑐 and  𝑘𝑘𝑐𝑐𝑏𝑏 are the rotational stiffness and are located between the neighbor grains 

whereas they transmit moments to particle rotation. This discrete stiffness can be expressed 

with respect to the bending stiffness EI of the equivalent beam and thus would be defined 

as 𝑘𝑘𝑐𝑐 = 𝐸𝐸𝐸𝐸
𝑎𝑎

= 𝑛𝑛𝐸𝐸𝐸𝐸
𝐿𝐿1

= 𝑚𝑚𝐸𝐸𝐸𝐸
𝐿𝐿2

 and 𝑘𝑘𝑐𝑐𝑏𝑏 = 𝐸𝐸𝐸𝐸
√2𝑎𝑎

where E and I are Young’s modulus and the second 

moment of area. 

The total kinetic energy T is given by: 

𝜹𝜹 =
𝟏𝟏
𝟐𝟐
��(𝒎𝒎�̇�𝜹𝒊𝒊,𝒋𝒋

𝟐𝟐
𝒏𝒏

𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒋𝒋=𝟏𝟏

+ 𝑬𝑬𝒎𝒎�̇�𝜽𝒊𝒊,𝒋𝒋𝟐𝟐 + 𝒎𝒎�̇�𝑽𝒊𝒊,𝒋𝒋
𝟐𝟐) 

(296) 
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where 𝐼𝐼𝑚𝑚 = 𝜌𝜌𝐸𝐸𝐿𝐿
𝑛𝑛

= 𝜌𝜌𝐼𝐼𝑎𝑎 is the second moment of inertia of the beam segment. 

Therefore, the Lagrangian equation of the granular system is defined as 𝐿𝐿 = 𝑇𝑇 − (𝑈𝑈𝑁𝑁 +

𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑏𝑏) and can be expressed for the linear elastic isotropic granular system as 

𝜹𝜹

=
𝟏𝟏
𝟐𝟐
���𝒎𝒎�̇�𝜹𝒊𝒊,𝒋𝒋

𝟐𝟐 + 𝑬𝑬𝒎𝒎�̇�𝜽𝒊𝒊,𝒋𝒋𝟐𝟐 + 𝒎𝒎�̇�𝑽𝒊𝒊,𝒋𝒋
𝟐𝟐�

𝒏𝒏

𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒋𝒋=𝟏𝟏

− �
𝟏𝟏
𝟐𝟐
���𝒌𝒌𝒏𝒏�𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜹𝜹𝒊𝒊,𝒋𝒋�

𝟐𝟐 + 𝒌𝒌𝒏𝒏�𝑽𝑽𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋�
𝟐𝟐

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

𝒎𝒎−𝟏𝟏

𝒋𝒋=𝟎𝟎

+ 𝒌𝒌𝒏𝒏𝒅𝒅 ��𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜹𝜹𝒊𝒊,𝒋𝒋�
𝟐𝟐 + �𝜹𝜹𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝜹𝜹𝒊𝒊,𝒋𝒋�

𝟐𝟐 + �𝑽𝑽𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝑽𝑽𝒊𝒊,𝒋𝒋�
𝟐𝟐 + �𝑽𝑽𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋�

𝟐𝟐

+ 𝟐𝟐�𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜹𝜹𝒊𝒊,𝒋𝒋��𝑽𝑽𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝑽𝑽𝒊𝒊,𝒋𝒋� + 𝟐𝟐�𝜹𝜹𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝜹𝜹𝒊𝒊,𝒋𝒋��𝑽𝑽𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝑽𝑽𝒊𝒊,𝒋𝒋���

+
𝟏𝟏
𝟐𝟐
���𝒌𝒌𝒅𝒅 �𝜹𝜹𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝜹𝜹𝒊𝒊,𝒋𝒋 + 𝒂𝒂

𝜣𝜣𝒊𝒊,𝒋𝒋+𝟏𝟏 + 𝜣𝜣𝒊𝒊,𝒋𝒋

𝟐𝟐
�
𝟐𝟐

+ 𝒌𝒌𝒅𝒅 �𝑽𝑽𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝑽𝑽𝒊𝒊,𝒋𝒋 − 𝒂𝒂
𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋 + 𝜣𝜣𝒊𝒊,𝒋𝒋

𝟐𝟐
�
𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒋𝒋=𝟏𝟏

+ 𝒌𝒌𝒅𝒅𝒅𝒅 �𝜹𝜹𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝜹𝜹𝒊𝒊,𝒋𝒋 − 𝑽𝑽𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝑽𝑽𝒊𝒊,𝒋𝒋 + 𝒂𝒂
𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝜣𝜣𝒊𝒊,𝒋𝒋

𝟐𝟐
�
𝟐𝟐

+ 𝒌𝒌𝒅𝒅𝒅𝒅 �𝜹𝜹𝒊𝒊,𝒋𝒋 − 𝜹𝜹𝒊𝒊−𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝑽𝑽𝒊𝒊,𝒋𝒋 − 𝑽𝑽𝒊𝒊−𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝒂𝒂
𝜣𝜣𝒊𝒊−𝟏𝟏,𝒋𝒋+𝟏𝟏 + 𝜣𝜣𝒊𝒊,𝒋𝒋

𝟐𝟐
�
𝟐𝟐

�

+
𝟏𝟏
𝟐𝟐
���𝒌𝒌𝒄𝒄�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋 − 𝜣𝜣𝒊𝒊,𝒋𝒋�

𝟐𝟐 + 𝒌𝒌𝒄𝒄�𝜣𝜣𝒊𝒊,𝒋𝒋+𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�
𝟐𝟐+𝒌𝒌𝒄𝒄𝒅𝒅�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋+𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�

𝟐𝟐+𝒌𝒌𝒄𝒄𝒅𝒅�𝜣𝜣𝒊𝒊+𝟏𝟏,𝒋𝒋−𝟏𝟏 − 𝜣𝜣𝒊𝒊,𝒋𝒋�
𝟐𝟐
�

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

𝒎𝒎−𝟏𝟏

𝒋𝒋=𝟎𝟎

� 

 

 

 

 

 

(297) 

The Euler-Lagrange equations are given by: 

𝜕𝜕𝐿𝐿
𝜕𝜕𝑈𝑈𝐶𝐶,𝑗𝑗

= 𝑏𝑏
𝑏𝑏𝑡𝑡
� 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑈𝐶𝐶,𝑗𝑗

�  ;  𝜕𝜕𝐿𝐿
𝜕𝜕𝑉𝑉𝐶𝐶,𝑗𝑗

= 𝑏𝑏
𝑏𝑏𝑡𝑡
� 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑉𝐶𝐶,𝑗𝑗

�  ;  𝜕𝜕𝐿𝐿
𝜕𝜕𝛩𝛩𝐶𝐶,𝑗𝑗

= 𝑏𝑏
𝑏𝑏𝑡𝑡
� 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝛩𝐶𝐶,𝑗𝑗

�   (298) 

The Euler-Lagrange equations based on the energy function of Eq. (297) are obtained as 

follows: 

(k𝑛𝑛 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑈𝑈𝑖𝑖+1,𝑗𝑗 + 𝑈𝑈𝑖𝑖−1,𝑗𝑗 − 2𝑈𝑈𝑖𝑖,𝑗𝑗� + (k𝑡𝑡 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑈𝑈𝑖𝑖,𝑗𝑗+1 + 𝑈𝑈𝑖𝑖,𝑗𝑗−1 − 2𝑈𝑈𝑖𝑖,𝑗𝑗�

+
𝑎𝑎
2

(k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)�𝛩𝛩𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩𝑖𝑖−1,𝑗𝑗 + 𝛩𝛩𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗−1 − 4𝛩𝛩𝑖𝑖,𝑗𝑗�

+ (k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑉𝑉𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉𝑖𝑖−1,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗−1 − 4𝑉𝑉𝑖𝑖,𝑗𝑗� − 𝜇𝜇�̈�𝑈𝑖𝑖,𝑗𝑗 = 0 

(299) 
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(k𝑛𝑛 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑉𝑉𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗−1 − 2𝑉𝑉𝑖𝑖,𝑗𝑗� + (k𝑡𝑡 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑉𝑉𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉𝑖𝑖−1,𝑗𝑗 − 2𝑉𝑉𝑖𝑖,𝑗𝑗�

−
𝑎𝑎
2

(k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)�𝛩𝛩𝑖𝑖+1,𝑗𝑗 − 𝛩𝛩𝑖𝑖−1,𝑗𝑗� + (k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)�𝑈𝑈𝑖𝑖+1,𝑗𝑗 + 𝑈𝑈𝑖𝑖−1,𝑗𝑗 + 𝑈𝑈𝑖𝑖,𝑗𝑗+1 + 𝑈𝑈𝑖𝑖,𝑗𝑗−1 − 4𝑈𝑈𝑖𝑖,𝑗𝑗�

− 𝜇𝜇�̈�𝑉𝑖𝑖,𝑗𝑗 = 0 

(300) 

(k𝑐𝑐 + 2k𝑐𝑐𝑏𝑏)��𝛩𝛩𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩𝑖𝑖−1,𝑗𝑗 − 2𝛩𝛩𝑖𝑖,𝑗𝑗� + �𝛩𝛩𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗−1 − 2𝛩𝛩𝑖𝑖,𝑗𝑗��

+ 2k𝑐𝑐𝑏𝑏�𝛩𝛩𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩𝑖𝑖−1,𝑗𝑗 + 𝛩𝛩𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗−1 − 4𝛩𝛩𝑖𝑖,𝑗𝑗�

−
𝑎𝑎
2

(k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)��𝑈𝑈𝑖𝑖,𝑗𝑗+1 − 𝑈𝑈𝑖𝑖,𝑗𝑗−1� − �𝑉𝑉𝑖𝑖+1,𝑗𝑗 − 𝑉𝑉𝑖𝑖−1,𝑗𝑗��

−
𝑎𝑎2

4
(k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)��𝛩𝛩𝑖𝑖+1,𝑗𝑗 + 𝛩𝛩𝑖𝑖−1,𝑗𝑗 + 2𝛩𝛩𝑖𝑖,𝑗𝑗� + �𝛩𝛩𝑖𝑖,𝑗𝑗+1 + 𝛩𝛩𝑖𝑖,𝑗𝑗−1 + 2𝛩𝛩𝑖𝑖,𝑗𝑗�� − 𝐼𝐼𝑚𝑚�̈�𝛩𝑖𝑖,𝑗𝑗 = 0 

(301) 

In order to shorten the equations, the following difference operators can be defined: 

𝛿𝛿0𝑗𝑗𝜒𝜒 =
𝜒𝜒𝑖𝑖+1,𝑗𝑗 + 2𝜒𝜒𝑖𝑖,𝑗𝑗 + 𝜒𝜒𝑖𝑖−1,𝑗𝑗

4 , 𝛿𝛿1𝑗𝑗𝜒𝜒 =
𝜒𝜒𝑖𝑖+1,𝑗𝑗 − 𝜒𝜒𝑖𝑖−1,𝑗𝑗

2𝑎𝑎 , 𝛿𝛿2𝑗𝑗𝜒𝜒 =
𝜒𝜒𝑖𝑖+1,𝑗𝑗 − 2𝜒𝜒𝑖𝑖,𝑗𝑗 + 𝜒𝜒𝑖𝑖−1,𝑗𝑗

𝑎𝑎2  

𝛿𝛿𝑖𝑖0𝜒𝜒 =
𝜒𝜒𝑖𝑖,𝑗𝑗+1 + 2𝜒𝜒𝑖𝑖,𝑗𝑗 + 𝜒𝜒𝑖𝑖,𝑗𝑗−1

4 , 𝛿𝛿𝑖𝑖1𝜒𝜒 =
𝜒𝜒𝑖𝑖,𝑗𝑗+1 − 𝜒𝜒𝑖𝑖,𝑗𝑗−1

2𝑎𝑎 , 𝛿𝛿𝑖𝑖2𝜒𝜒 =
𝜒𝜒𝑖𝑖,𝑗𝑗+1 − 2𝜒𝜒𝑖𝑖,𝑗𝑗 + 𝜒𝜒𝑖𝑖,𝑗𝑗−1

𝑎𝑎2  

 𝛿𝛿11𝜒𝜒 =
𝜒𝜒𝑖𝑖+1,𝑗𝑗+1 + 𝜒𝜒𝑖𝑖−1,𝑗𝑗−1 − 𝜒𝜒𝑖𝑖−1,𝑗𝑗+1 − 𝜒𝜒𝑖𝑖+1,𝑗𝑗−1

𝑎𝑎2 =
𝜒𝜒𝑖𝑖+1,𝑗𝑗 + 𝜒𝜒𝑖𝑖,𝑗𝑗+1 + 𝜒𝜒𝑖𝑖−1,𝑗𝑗 + 𝜒𝜒𝑖𝑖,𝑗𝑗−1 − 4𝜒𝜒𝑖𝑖,𝑗𝑗

2𝑎𝑎2  (302) 

Therefore Eq. (299), (300) and (301) could be rewritten compactly as: 

(k𝑛𝑛 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿2𝑗𝑗𝑈𝑈 + (k𝑡𝑡 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿𝑖𝑖2𝑈𝑈 + (k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)𝛿𝛿𝑖𝑖1𝛩𝛩

+ 2(k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿11𝑉𝑉 − 𝜌𝜌𝐴𝐴�̈�𝑈𝑖𝑖,𝑗𝑗 = 0 

(k𝑛𝑛 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿𝑖𝑖2𝑉𝑉 + (k𝑡𝑡 + k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿2𝑗𝑗𝑉𝑉 − (k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)𝛿𝛿1𝑗𝑗𝛩𝛩

+ 2(k𝑛𝑛𝑏𝑏 + k𝑡𝑡𝑏𝑏)𝛿𝛿11𝑈𝑈 − 𝜌𝜌𝐴𝐴�̈�𝑉𝑖𝑖,𝑗𝑗 = 0 

(k𝑐𝑐 + 2k𝑐𝑐𝑏𝑏)�𝛿𝛿2𝑗𝑗 + 𝛿𝛿𝑖𝑖2�𝛩𝛩 + 4k𝑐𝑐𝑏𝑏𝛿𝛿11𝛩𝛩 − (k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)�𝛿𝛿𝑖𝑖1𝑈𝑈 − 𝛿𝛿1𝑗𝑗𝑉𝑉�

− (k𝑡𝑡 + 2k𝑡𝑡𝑏𝑏)�𝛿𝛿0𝑗𝑗 + 𝛿𝛿𝑖𝑖0�𝛩𝛩 − 𝜌𝜌𝐼𝐼�̈�𝛩𝑖𝑖,𝑗𝑗 = 0 

(303) 

Considering only two degrees of freedom (U and V), these equations of motion 

leads to the ones obtained by Suiker et al. [141] neglecting the effects of rotation angle and 

rotational springs (k𝑐𝑐 = 0 and k𝑐𝑐𝑏𝑏 = 0) as follows 
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(k𝑛𝑛)�𝛿𝛿2𝑗𝑗𝑈𝑈� + (k𝑛𝑛𝑏𝑏)�𝛿𝛿2𝑗𝑗𝑈𝑈 + 𝛿𝛿𝑖𝑖2𝑈𝑈 + 2𝛿𝛿11𝑉𝑉� + (k𝑡𝑡)(𝛿𝛿𝑖𝑖2𝑈𝑈)

+ (k𝑡𝑡𝑏𝑏)�𝛿𝛿2𝑗𝑗𝑈𝑈 + 𝛿𝛿𝑖𝑖2𝑈𝑈 + 2𝛿𝛿11𝑉𝑉� − 𝜌𝜌𝐴𝐴�̈�𝑈𝑖𝑖,𝑗𝑗 = 0 

(k𝑛𝑛)(𝛿𝛿𝑖𝑖2𝑉𝑉) + (k𝑛𝑛𝑏𝑏)�𝛿𝛿𝑖𝑖2𝑉𝑉 + 𝛿𝛿2𝑗𝑗𝑉𝑉 + 2𝛿𝛿11𝑈𝑈� + (k𝑡𝑡)�𝛿𝛿2𝑗𝑗𝑉𝑉�

+ (k𝑡𝑡𝑏𝑏)�𝛿𝛿𝑖𝑖2𝑉𝑉 + 𝛿𝛿2𝑗𝑗𝑉𝑉 + 2𝛿𝛿11𝑈𝑈� − 𝜌𝜌𝐴𝐴�̈�𝑉𝑖𝑖,𝑗𝑗 = 0 

(304) 

Assuming a harmonic motion leads to the consideration of displacement and 

rotation in a general form as 𝑈𝑈𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖𝜔𝜔𝑡𝑡 , 𝑉𝑉𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖𝜔𝜔𝑡𝑡 and 𝛩𝛩𝑖𝑖,𝑗𝑗 = 𝜃𝜃𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖𝜔𝜔𝑡𝑡, the Eq. (303) 

can be written in the matrix form as follows: 

�
𝑘𝑘1𝛿𝛿2𝑗𝑗 + 𝑘𝑘2𝛿𝛿𝑖𝑖2 + 𝜌𝜌𝐴𝐴𝜔𝜔2 𝑘𝑘𝑏𝑏𝛿𝛿11 k𝑠𝑠𝛿𝛿𝑖𝑖1

𝑘𝑘𝑏𝑏𝛿𝛿11 𝑘𝑘1𝛿𝛿𝑖𝑖2 + 𝑘𝑘2𝛿𝛿2𝑗𝑗 + 𝜌𝜌𝐴𝐴𝜔𝜔2 −k𝑠𝑠𝛿𝛿1𝑗𝑗
k𝑠𝑠𝛿𝛿𝑖𝑖1 −k𝑠𝑠𝛿𝛿1𝑗𝑗 −k𝑟𝑟�𝛿𝛿2𝑗𝑗 + 𝛿𝛿𝑖𝑖2� − 4k𝑐𝑐𝑏𝑏𝛿𝛿11 + k𝑠𝑠�𝛿𝛿0𝑗𝑗 + 𝛿𝛿𝑖𝑖0� − 𝜌𝜌𝐼𝐼𝜔𝜔2

��
𝑢𝑢
𝑣𝑣
𝜃𝜃
�

= �
0
0
0
�   

 

(305) 

Denoting the following equivalence spring rigidity parameters as 

𝑘𝑘𝑏𝑏 = 2(𝑘𝑘𝑛𝑛𝑏𝑏 + 𝑘𝑘𝑡𝑡𝑏𝑏),   𝑘𝑘1 = 𝑘𝑘𝑛𝑛 + 0.5𝑘𝑘𝑏𝑏 ,   𝑘𝑘2 = 𝑘𝑘𝑡𝑡 + 0.5𝑘𝑘𝑏𝑏 , 

𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑡𝑡 + 2𝑘𝑘𝑡𝑡𝑏𝑏 ,   𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑐𝑐 + 2𝑘𝑘𝑐𝑐𝑏𝑏 ,     

(306) 

The following pseudodifferential operators could be expressed for continuum media with 

respect to Eq. (302): 

𝛿𝛿0𝑗𝑗 = 𝑊𝑊𝑎𝑎𝜕𝜕𝑥𝑥+2+𝑊𝑊−𝑎𝑎𝜕𝜕𝑥𝑥

4
= 𝑐𝑐𝑐𝑐𝑐𝑐ℎ2 (𝑎𝑎𝜕𝜕𝑥𝑥

2
) ,   𝛿𝛿1𝑗𝑗 = 𝑊𝑊𝑎𝑎𝜕𝜕𝑥𝑥−𝑊𝑊−𝑎𝑎𝜕𝜕𝑥𝑥

2𝑎𝑎
= 𝑠𝑠𝑖𝑖𝑛𝑛ℎ (𝑎𝑎𝜕𝜕𝑥𝑥)

𝑎𝑎
  ,   𝛿𝛿2𝑗𝑗 =

𝑊𝑊𝑎𝑎𝜕𝜕𝑥𝑥−2+𝑊𝑊−𝑎𝑎𝜕𝜕𝑥𝑥

𝑎𝑎2
= 4

𝑎𝑎2
𝑐𝑐𝑖𝑖𝑛𝑛ℎ2 (𝑎𝑎𝜕𝜕𝑥𝑥

2
) 

(307) 

𝛿𝛿𝑖𝑖0 =
𝑑𝑑𝑎𝑎𝜕𝜕𝑦𝑦 + 2 + 𝑑𝑑−𝑎𝑎𝜕𝜕𝑦𝑦

4
= 𝑐𝑐𝑐𝑐𝑐𝑐ℎ2 �

𝑎𝑎𝜕𝜕𝑟𝑟
2
�  ,   𝛿𝛿𝑖𝑖1 =

𝑑𝑑𝑎𝑎𝜕𝜕𝑦𝑦 − 𝑑𝑑−𝑎𝑎𝜕𝜕𝑦𝑦
2𝑎𝑎

=
𝑐𝑐𝑖𝑖𝑛𝑛ℎ (𝑎𝑎𝜕𝜕𝑟𝑟)

𝑎𝑎
 ,

𝛿𝛿𝑖𝑖2 =
𝑑𝑑𝑎𝑎𝜕𝜕𝑦𝑦 − 2 + 𝑑𝑑−𝑎𝑎𝜕𝜕𝑦𝑦

𝑎𝑎2
=

4
𝑎𝑎2
𝑐𝑐𝑖𝑖𝑛𝑛ℎ2 (

𝑎𝑎𝜕𝜕𝑟𝑟
2

) 

(308) 

𝛿𝛿11 =
2�𝑑𝑑𝑎𝑎2𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 − 𝑑𝑑−𝑎𝑎2𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦�

4𝑎𝑎2
=
𝑐𝑐𝑖𝑖𝑛𝑛ℎ (𝑎𝑎2𝜕𝜕𝑥𝑥𝜕𝜕𝑟𝑟)

𝑎𝑎2
 

(309) 

In which there is a relation between these operators as:  
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𝛿𝛿2𝑗𝑗𝛿𝛿0𝑗𝑗 = 𝛿𝛿0𝑗𝑗𝛿𝛿2𝑗𝑗 = 𝛿𝛿1
2 ,𝛿𝛿𝑖𝑖2𝛿𝛿𝑖𝑖0 = 𝛿𝛿𝑖𝑖0𝛿𝛿𝑖𝑖2 = 𝛿𝛿𝑖𝑖1

2 (310) 

For the continuum condition by assuming an infinite number of grains when the diameter 

of the grains converge to zero, the difference operators of Eq. (307), Eq. (308) and Eq. 

(309) could be continulized by keeping the first order development of Taylor series as 

follows: 

𝛿𝛿0𝑗𝑗 ≈ 1 ,   𝛿𝛿1𝑗𝑗 ≈ 𝜕𝜕𝑥𝑥  ,   𝛿𝛿2𝑗𝑗 ≈ 𝜕𝜕𝑥𝑥𝑥𝑥 (311) 

𝛿𝛿𝑖𝑖0 ≈ 1 ,   𝛿𝛿𝑖𝑖1 ≈ 𝜕𝜕𝑟𝑟 ,   𝛿𝛿𝑖𝑖2 ≈ 𝜕𝜕𝑟𝑟𝑟𝑟 (312) 

𝛿𝛿11 ≈ 𝜕𝜕𝑥𝑥𝑟𝑟 (313) 

In order to obtain the nonzero solutions for Eq. (305) considering the determinant of the 

coefficient matrix equal to zero, yields: 

[𝑘𝑘𝑟𝑟𝑘𝑘1𝑘𝑘2]�𝛿𝛿2𝑗𝑗
3 + 𝛿𝛿𝑖𝑖2

3�

+ �( 𝐼𝐼 𝑘𝑘1𝑘𝑘2 +  𝐴𝐴 𝑘𝑘2𝑘𝑘𝑟𝑟 +  𝐴𝐴 𝑘𝑘1𝑘𝑘𝑟𝑟)𝜌𝜌𝜔𝜔2 − 𝑘𝑘1𝑘𝑘2𝑘𝑘𝑠𝑠(𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗)��𝛿𝛿𝑖𝑖2
2 + 𝛿𝛿2𝑗𝑗

2�

+ �𝑘𝑘𝑟𝑟�𝑘𝑘1
2 + 𝑘𝑘2

2 + 𝑘𝑘1𝑘𝑘2�𝛿𝛿2𝑗𝑗𝛿𝛿𝑖𝑖2 + (𝑘𝑘1𝐼𝐼 + 𝑘𝑘2𝐼𝐼 + 𝑘𝑘𝑟𝑟𝐴𝐴)𝜌𝜌2𝐴𝐴𝜔𝜔4��𝛿𝛿𝑖𝑖2 + 𝛿𝛿2𝑗𝑗�

+ [(𝑘𝑘12  + 𝑘𝑘22)𝜌𝜌𝐼𝐼𝜔𝜔2 + (𝑘𝑘1 + 𝑘𝑘2)2𝑘𝑘𝑟𝑟𝜌𝜌𝐴𝐴𝜔𝜔2]�𝛿𝛿2𝑗𝑗𝛿𝛿𝑖𝑖2� + [𝑘𝑘1𝑘𝑘𝑠𝑠2]� 𝛿𝛿𝑖𝑖12 𝛿𝛿𝑖𝑖2 + 𝛿𝛿1𝑗𝑗2 𝛿𝛿2𝑗𝑗�

− [𝑘𝑘𝑠𝑠(𝑘𝑘12 + 𝑘𝑘22 − 𝑘𝑘2𝑘𝑘𝑠𝑠)]�𝛿𝛿1𝑗𝑗2 𝛿𝛿𝑖𝑖2 + 𝛿𝛿𝑖𝑖12 𝛿𝛿2𝑗𝑗� − [(𝑘𝑘1 + 𝑘𝑘2)𝑘𝑘𝑠𝑠𝜌𝜌𝐴𝐴𝜔𝜔2]�𝛿𝛿2𝑗𝑗𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗𝛿𝛿𝑖𝑖2�

− [(𝑘𝑘1 + 𝑘𝑘2 − 𝑘𝑘𝑠𝑠)𝑘𝑘𝑠𝑠 𝜌𝜌𝐴𝐴𝜔𝜔2]�𝛿𝛿1𝑗𝑗
2 + 𝛿𝛿𝑖𝑖1

2�

− ��𝛿𝛿2𝑗𝑗 + 𝛿𝛿𝑖𝑖2�𝑘𝑘𝑏𝑏2𝑘𝑘𝑟𝑟 − �𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗�𝑘𝑘𝑏𝑏2𝑘𝑘𝑠𝑠 +  𝐼𝐼 𝑘𝑘𝑏𝑏2𝜔𝜔2𝜌𝜌�(𝛿𝛿112 ) − �2𝑘𝑘𝑏𝑏𝑘𝑘𝑠𝑠
2��𝛿𝛿𝑖𝑖1𝛿𝛿1𝑗𝑗𝛿𝛿11�

− [𝑘𝑘𝑠𝑠𝜌𝜌2𝐴𝐴2𝜔𝜔4]�𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗� + [𝐴𝐴2𝐼𝐼 𝜔𝜔6𝜌𝜌3] = 0 

 

 

 

(314) 

For static condition and by assuming 𝜔𝜔 = 0: 

[𝑘𝑘𝑟𝑟𝑘𝑘1𝑘𝑘2]�𝛿𝛿2𝑗𝑗
3 + 𝛿𝛿𝑖𝑖2

3� + �−𝑘𝑘1𝑘𝑘2𝑘𝑘𝑠𝑠(𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗)��𝛿𝛿𝑖𝑖2
2 + 𝛿𝛿2𝑗𝑗

2�

+ �𝑘𝑘𝑟𝑟�𝑘𝑘1
2 + 𝑘𝑘2

2 + 𝑘𝑘1𝑘𝑘2�𝛿𝛿2𝑗𝑗𝛿𝛿𝑖𝑖2��𝛿𝛿𝑖𝑖2 + 𝛿𝛿2𝑗𝑗� + [𝑘𝑘1𝑘𝑘𝑠𝑠2]� 𝛿𝛿𝑖𝑖12 𝛿𝛿𝑖𝑖2 + 𝛿𝛿1𝑗𝑗2 𝛿𝛿2𝑗𝑗�

− [𝑘𝑘𝑠𝑠(𝑘𝑘12 + 𝑘𝑘22 − 𝑘𝑘2𝑘𝑘𝑠𝑠)]�𝛿𝛿1𝑗𝑗2 𝛿𝛿𝑖𝑖2 + 𝛿𝛿𝑖𝑖12 𝛿𝛿2𝑗𝑗�

− ��𝛿𝛿2𝑗𝑗 + 𝛿𝛿𝑖𝑖2�𝑘𝑘𝑏𝑏2𝑘𝑘𝑟𝑟 − �𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗�𝑘𝑘𝑏𝑏2𝑘𝑘𝑠𝑠�(𝛿𝛿112 ) − �2𝑘𝑘𝑏𝑏𝑘𝑘𝑠𝑠
2��𝛿𝛿𝑖𝑖1𝛿𝛿1𝑗𝑗𝛿𝛿11� = 0 

(315) 
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Omitting the rotational and diagonal terms (𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑏𝑏 = 0):  

�𝑘𝑘1𝑘𝑘𝑠𝑠2(𝛿𝛿𝑖𝑖0 + 𝛿𝛿0𝑗𝑗)��𝛿𝛿𝑖𝑖2
2 + 𝛿𝛿2𝑗𝑗

2� − [𝑘𝑘1𝑘𝑘𝑠𝑠2]� 𝛿𝛿𝑖𝑖12 𝛿𝛿𝑖𝑖2 + 𝛿𝛿1𝑗𝑗2 𝛿𝛿2𝑗𝑗�+ [𝑘𝑘𝑠𝑠𝑘𝑘12]�𝛿𝛿1𝑗𝑗2 𝛿𝛿𝑖𝑖2 + 𝛿𝛿𝑖𝑖12 𝛿𝛿2𝑗𝑗�

= 0 

(316) 

Using the properties of Eq. (310) and considering a continuum media using Eq. (307), 

(308) and (309) leads to: 

��𝝏𝝏𝒙𝒙𝟐𝟐 + 𝝏𝝏𝒓𝒓𝟐𝟐� + �𝟐𝟐
𝐸𝐸
𝐾𝐾𝑠𝑠𝐺𝐺

�𝝏𝝏𝒙𝒙𝟐𝟐𝝏𝝏𝒓𝒓𝟐𝟐� 𝑢𝑢 = 𝟎𝟎 (317) 

The Lagrangian equation of the equivalent continuum system could be obtained as follows 

𝜹𝜹

=
𝟏𝟏
𝟐𝟐 �𝒎𝒎(𝝏𝝏𝒅𝒅𝜹𝜹)𝟐𝟐 + 𝑬𝑬𝒎𝒎(𝝏𝝏𝒅𝒅𝜣𝜣)𝟐𝟐 + 𝒎𝒎(𝝏𝝏𝒅𝒅𝑽𝑽)𝟐𝟐�

−
𝟏𝟏
𝟐𝟐 �

(𝒌𝒌𝒏𝒏 + 𝒌𝒌𝒏𝒏𝒅𝒅 + 𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)�(𝝏𝝏𝒙𝒙𝜹𝜹)𝟐𝟐 + (𝝏𝝏𝒓𝒓𝑽𝑽)𝟐𝟐� + (𝒌𝒌𝒏𝒏𝒅𝒅 + 𝒌𝒌𝒅𝒅 + 𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)�(𝝏𝝏𝒙𝒙𝑽𝑽)𝟐𝟐 + (𝝏𝝏𝒓𝒓𝜹𝜹)𝟐𝟐�

+ �
𝒌𝒌𝒅𝒅
𝟒𝟒 +

𝒌𝒌𝒅𝒅𝒅𝒅
𝟐𝟐 + 𝒌𝒌𝒄𝒄 + 𝟐𝟐𝒌𝒌𝒄𝒄𝒅𝒅� �(𝝏𝝏𝒙𝒙𝜣𝜣)𝟐𝟐 + (𝝏𝝏𝒓𝒓𝜣𝜣)𝟐𝟐� + (𝟐𝟐𝒌𝒌𝒏𝒏𝒅𝒅 − 𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)�𝝏𝝏𝒙𝒙𝜹𝜹𝝏𝝏𝒓𝒓𝑽𝑽 + 𝝏𝝏𝒙𝒙𝑽𝑽𝝏𝝏𝒓𝒓𝜹𝜹�

+ (𝟐𝟐𝒌𝒌𝒅𝒅 + 𝟒𝟒𝒌𝒌𝒅𝒅𝒅𝒅)�𝝏𝝏𝒓𝒓𝜹𝜹 − 𝝏𝝏𝒙𝒙𝑽𝑽�𝜣𝜣 + (𝒌𝒌𝒅𝒅 + 𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)�𝝏𝝏𝒓𝒓𝜹𝜹𝝏𝝏𝒓𝒓𝜣𝜣 − 𝝏𝝏𝒙𝒙𝑽𝑽𝝏𝝏𝒙𝒙𝜣𝜣�

+ (𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)�𝝏𝝏𝒙𝒙𝜹𝜹𝝏𝝏𝒙𝒙𝜣𝜣 − 𝝏𝝏𝒓𝒓𝑽𝑽𝝏𝝏𝒓𝒓𝜣𝜣� + (𝟐𝟐𝒌𝒌𝒅𝒅 + 𝟒𝟒𝒌𝒌𝒅𝒅𝒅𝒅)�𝝏𝝏𝒓𝒓𝜣𝜣�𝜣𝜣 + (𝟐𝟐𝒌𝒌𝒅𝒅)(𝝏𝝏𝒙𝒙𝜣𝜣)𝜣𝜣 + (𝟐𝟐𝒌𝒌𝒅𝒅 + 𝟐𝟐𝒌𝒌𝒅𝒅𝒅𝒅)𝜣𝜣𝟐𝟐� 

 

 

 

 

(318) 

Besides, the governing equations of the two-dimensional continuum for in-plane 

deformation could be obtained through the continualization of Eq. (305) as follows 

�
𝑘𝑘1𝜕𝜕𝑥𝑥𝑥𝑥 + 𝑘𝑘2𝜕𝜕𝑟𝑟𝑟𝑟 + 𝜌𝜌𝐴𝐴𝜔𝜔2 𝑘𝑘𝑏𝑏𝜕𝜕𝑥𝑥𝑟𝑟 𝑘𝑘𝑠𝑠𝜕𝜕𝑟𝑟

𝑘𝑘𝑏𝑏𝜕𝜕𝑥𝑥𝑟𝑟 𝑘𝑘1𝜕𝜕𝑟𝑟𝑟𝑟 + 𝑘𝑘2𝜕𝜕𝑥𝑥𝑥𝑥 + 𝜌𝜌𝐴𝐴𝜔𝜔2 −𝑘𝑘𝑠𝑠𝜕𝜕𝑥𝑥
𝑘𝑘𝑠𝑠𝜕𝜕𝑟𝑟 −𝑘𝑘𝑠𝑠𝜕𝜕𝑥𝑥 −k𝑟𝑟�𝜕𝜕𝑥𝑥𝑥𝑥 + 𝜕𝜕𝑟𝑟𝑟𝑟� − 4k𝑐𝑐𝑏𝑏𝜕𝜕𝑥𝑥𝑟𝑟 + 2𝑘𝑘𝑠𝑠 − 𝜌𝜌𝐼𝐼𝜔𝜔2

��
𝑢𝑢
𝑣𝑣
𝜃𝜃
�

= �
0
0
0
� 

 

(319) 

This system of equations is almost the same as the one of Suiker et al. [142] for 

nine-cell square lattice. Also omitting the diagonal shear and rotation springs (k𝑐𝑐𝑏𝑏 = 0, 

k𝑡𝑡𝑏𝑏 = 0) leads to the model studied by Pavlov et al. [143]. Neglecting all the diagonal 
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springs (k𝑛𝑛𝑏𝑏 = 0 , k𝑡𝑡𝑏𝑏 = 0  and k𝑐𝑐𝑏𝑏 = 0) leads to the governing equations obtained by 

Pasternak and Dyskin [144]. It is noteworthy to mention that neglecting rotational springs 

(𝑘𝑘𝑟𝑟 = 0) and shear springs (𝑘𝑘𝑐𝑐 = 0), the abovementioned equation of motion leads to the 

ones obtained by Navier with the assumption of plane strain by  

(𝜆𝜆+ 2𝜇𝜇)𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 + (𝜆𝜆+ 𝜇𝜇)𝜕𝜕𝑥𝑥𝑟𝑟𝑉𝑉 + (𝜇𝜇)𝜕𝜕𝑟𝑟𝑟𝑟𝑈𝑈 = 𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝑈𝑈; 

(𝜆𝜆+ 2𝜇𝜇)𝜕𝜕𝑟𝑟𝑟𝑟𝑉𝑉 + (𝜆𝜆+ 𝜇𝜇)𝜕𝜕𝑥𝑥𝑟𝑟𝑈𝑈 + (𝜇𝜇)𝜕𝜕𝑥𝑥𝑥𝑥𝑉𝑉 = 𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝑉𝑉 

(320) 

where 𝜆𝜆 and 𝜇𝜇 are Lamé parameters. The micro parameters of the model are then defined 

𝑘𝑘1 = 𝜆𝜆+ 2𝜇𝜇,   𝑘𝑘𝑏𝑏 = 𝜆𝜆+ 𝜇𝜇,   𝑘𝑘2 = 𝜇𝜇 (321) 

where the property of 𝑘𝑘𝑏𝑏 = 𝑘𝑘1 − 𝑘𝑘2 is true. Substituting Eq. (306) leads to 

𝑘𝑘𝑛𝑛 = 2𝑘𝑘𝑛𝑛𝑏𝑏 (322) 

While the macro parameters would be expressed by  

  𝜆𝜆 =  𝜇𝜇 = 𝑘𝑘𝑛𝑛𝑏𝑏    (323) 

Or in terms of Young’s modulus (𝐸𝐸) and Poisson’s ratio (𝜗𝜗) 

  𝜗𝜗 =
𝜆𝜆

2( 𝜆𝜆 + 𝜇𝜇)
=

1
4

,   𝐸𝐸 =
𝜇𝜇(3𝜆𝜆 + 2𝜇𝜇)

𝜆𝜆 + 𝜇𝜇
=

5
2
𝑘𝑘𝑛𝑛𝑏𝑏 

(324) 

3. Linear Isotropic Micropolar Elasticity Theory 

Nowacki [4] studied the linear elastic isotropic Cosserat continuum model, which 

has 6 independent parameters. In a linear micropolar continuum, a micropolar deformation 

is described by asymmetric strain and twist tensors which might be defined respectively as 

follows 

𝜀𝜀𝑖𝑖𝑗𝑗 = 𝑈𝑈𝑗𝑗,𝑖𝑖 − 𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊𝜃𝜃𝑊𝑊 

𝜏𝜏𝑖𝑖𝑗𝑗 = 𝜃𝜃𝑗𝑗,𝑖𝑖 

(325) 
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where 𝑈𝑈 is displacement field vector and 𝜃𝜃 is microrotation field vector. The strain tensor 

can be decomposed into a symmetric and antisymmetric part 

𝜀𝜀𝑖𝑖𝑗𝑗 = 𝜀𝜀𝑖𝑖𝑗𝑗𝑠𝑠 + 𝜀𝜀𝑖𝑖𝑗𝑗𝑎𝑎  

𝜀𝜀𝑖𝑖𝑗𝑗𝑠𝑠 = 1
2

(𝑈𝑈𝑗𝑗,𝑖𝑖 + 𝑈𝑈𝑖𝑖,𝑗𝑗) ,   𝜀𝜀𝑖𝑖𝑗𝑗𝑎𝑎 = 𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊(𝜑𝜑𝑊𝑊 − 𝜃𝜃𝑊𝑊) 

(326) 

where 𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊 is the antisymmetric Levi-Civita (alternating or permutation) tensor, 𝜑𝜑𝑊𝑊 is the 

macro rotation vector and is defined by 𝜑𝜑𝑊𝑊 = 1
2
�𝑈𝑈𝑗𝑗,𝑖𝑖 − 𝑈𝑈𝑖𝑖,𝑗𝑗� = 0.5𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊𝑈𝑈𝑗𝑗,𝑖𝑖. 

The associated internal energy  of the system is expressed by (Nowacki [4]): 

𝑈𝑈𝑖𝑖𝑛𝑛𝑡𝑡𝑊𝑊𝑟𝑟𝑛𝑛𝑎𝑎𝑊𝑊 = 𝜇𝜇𝜀𝜀𝑖𝑖𝑗𝑗𝑠𝑠 𝜀𝜀𝑖𝑖𝑗𝑗𝑠𝑠 + 𝜅𝜅𝜀𝜀𝑖𝑖𝑗𝑗𝑎𝑎 𝜀𝜀𝑖𝑖𝑗𝑗𝑎𝑎 +
𝜆𝜆
2
𝜀𝜀𝑊𝑊𝑊𝑊𝜀𝜀𝑛𝑛𝑛𝑛 + 𝛾𝛾𝜏𝜏𝑖𝑖𝑗𝑗𝑠𝑠 𝜏𝜏𝑖𝑖𝑗𝑗𝑠𝑠 + 𝛽𝛽𝜏𝜏𝑖𝑖𝑗𝑗𝑎𝑎 𝜏𝜏𝑖𝑖𝑗𝑗𝑎𝑎 +

𝛼𝛼
2 𝜏𝜏𝑊𝑊𝑊𝑊𝜏𝜏𝑛𝑛𝑛𝑛 

(327) 

Denoting that 𝜇𝜇, 𝜆𝜆, 𝜅𝜅, 𝛾𝛾,𝛼𝛼 and 𝛽𝛽 are six material parameters from which 𝜇𝜇 (shear modulus) 

and 𝜆𝜆 are the classical Lame coefficients. 𝜅𝜅  is Cosserat couple modulus 𝛾𝛾,𝛼𝛼 and 𝛽𝛽  are 

Cosserat twist coefficients, which are four new elastic constants referred to as the 

micropolar (Cosserat elastic constants).  

The internal loads in a micropolar continuum are definable in terms of a classical force 

stress tensor (𝜎𝜎) and a micropolar couple stress tensor (∁) which should satisfy the balance 

of linear and angular momentum as 

𝜎𝜎𝑗𝑗𝑖𝑖,𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑣𝑣 = 𝜌𝜌𝐴𝐴𝑈𝑈𝚤𝚤̈ ; 

∁𝑗𝑗𝑖𝑖,𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊𝜎𝜎𝑗𝑗𝑊𝑊 + 𝑙𝑙𝑖𝑖𝑣𝑣 = 𝜌𝜌𝐼𝐼𝜃𝜃�̈�𝚤 

(328) 

Denoting that 𝑓𝑓𝑖𝑖𝑣𝑣  and 𝑙𝑙𝑖𝑖𝑣𝑣  are respectively the body force and body moment. The constitutive 

relations for a homogeneous, isotropic, and centrally symmetric elastic body is considered 

by 

𝜎𝜎𝑖𝑖𝑗𝑗 = (𝜇𝜇 + 𝜅𝜅)𝜀𝜀𝑖𝑖𝑗𝑗 + (𝜇𝜇 − 𝜅𝜅)𝜀𝜀𝑗𝑗𝑖𝑖 + 𝜆𝜆𝜀𝜀𝑊𝑊𝑊𝑊𝛿𝛿𝑖𝑖𝑗𝑗 

∁𝑖𝑖𝑗𝑗  = (𝛾𝛾 + 𝛽𝛽)𝜏𝜏𝑖𝑖𝑗𝑗 + (𝛾𝛾 − 𝛽𝛽)𝜏𝜏𝑗𝑗𝑖𝑖 + 𝛼𝛼𝜏𝜏𝑊𝑊𝑊𝑊𝛿𝛿𝑖𝑖𝑗𝑗 

(329) 
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where 𝛿𝛿𝑖𝑖𝑗𝑗  is the Kronecker delta tensor (dyadic). Assuming a simple case by uniform 

tensile test along 𝑥𝑥11, leads to the classical strain Poisson’s ratio (𝜗𝜗) and the classical tensile 

or Young’s modulus (𝐸𝐸) as follows 

𝜗𝜗 = −
𝜀𝜀22
𝜀𝜀11

= −
𝜀𝜀33
𝜀𝜀11

=
𝜆𝜆

2(𝜇𝜇 + 𝜆𝜆)
 

𝐸𝐸 =
𝜎𝜎11
𝜀𝜀11

=
𝜇𝜇(2𝜇𝜇 + 3𝜆𝜆)

𝜇𝜇 + 𝜆𝜆
 

(330) 

The equations of motion in terms of displacements and rotations for the micropolar 

two-dimensional system with six material parameters could be obtained by substituting Eq. 

(325) and Eq. (329) in Eq. (328) as follows (Cosserat and Cosserat [3], Nowacki [4] and 

Schaefer [145]): 

(𝜇𝜇 + 𝜅𝜅)𝑈𝑈𝑖𝑖,𝑗𝑗𝑗𝑗 + (𝜇𝜇 − 𝜅𝜅 + 𝜆𝜆)𝑈𝑈𝑗𝑗,𝑗𝑗𝑖𝑖 + 2𝜅𝜅𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊𝜃𝜃𝑊𝑊,𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑣𝑣 = 𝜌𝜌𝐴𝐴𝑈𝑈𝚤𝚤̈ ; 

(𝛾𝛾 + 𝛽𝛽)𝜃𝜃𝑖𝑖,𝑗𝑗𝑗𝑗 + (𝛾𝛾 − 𝛽𝛽 + 𝛼𝛼)𝜃𝜃𝑗𝑗,𝑗𝑗𝑖𝑖 + 2𝜅𝜅(𝜖𝜖𝑖𝑖𝑗𝑗𝑊𝑊𝑈𝑈𝑊𝑊,𝑗𝑗 − 2𝜃𝜃𝑖𝑖) + 𝑙𝑙𝑖𝑖𝑣𝑣 = 𝜌𝜌𝐼𝐼𝜃𝜃�̈�𝚤 

(331) 

Assuming plane strain conditions by 𝑈𝑈𝑖𝑖 = (𝑈𝑈,𝑉𝑉, 0)  and 𝜃𝜃𝑖𝑖 = (0, 0,𝜃𝜃)  and neglecting the 

body forces and moments, it could be obtained (𝜖𝜖 = 𝛾𝛾 + 𝛽𝛽): 

(𝜆𝜆 + 2𝜇𝜇)𝜕𝜕𝑥𝑥2𝑈𝑈 + (𝜇𝜇 − 𝜅𝜅 + 𝜆𝜆)𝜕𝜕𝑥𝑥𝑟𝑟𝑉𝑉 + (𝜇𝜇 + 𝜅𝜅)𝜕𝜕𝑟𝑟2𝑈𝑈 + 2𝜅𝜅𝜕𝜕𝑟𝑟𝜃𝜃 = 𝜌𝜌𝐴𝐴𝜕𝜕𝑡𝑡2𝑈𝑈; 

(𝜆𝜆 + 2𝜇𝜇)𝜕𝜕𝑟𝑟2𝑉𝑉 + (𝜇𝜇 − 𝜅𝜅 + 𝜆𝜆)𝜕𝜕𝑥𝑥𝑟𝑟𝑈𝑈 + (𝜇𝜇 + 𝜅𝜅)𝜕𝜕𝑥𝑥2𝑉𝑉 − 2𝜅𝜅𝜕𝜕𝑟𝑟𝜃𝜃 = 𝜌𝜌𝐴𝐴𝜕𝜕𝑡𝑡2𝑉𝑉; 

(𝜖𝜖)�𝜕𝜕𝑥𝑥2𝜃𝜃 + 𝜕𝜕𝑟𝑟2𝜃𝜃� − (2𝜅𝜅)�𝜕𝜕𝑟𝑟𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑉𝑉� − (4𝜅𝜅)𝜃𝜃 = 𝜌𝜌𝐼𝐼𝜕𝜕𝑡𝑡2𝜃𝜃 

(332) 

Going back to the discrete granular model, the micro parameters of the system might be 

determined by comparing Eq. (332) and Eq. (319) as follows 

𝑘𝑘𝑛𝑛 = 𝜆𝜆
2

+ 3𝜇𝜇
2

+ 𝜅𝜅
2
,   𝑘𝑘𝑡𝑡 = −𝜆𝜆

2
+ 𝜇𝜇

2
+ 3𝜅𝜅

2
,   𝑘𝑘𝑛𝑛𝑏𝑏 = 𝜆𝜆

4
+ 3𝜇𝜇

4
− 3𝜅𝜅

4
,   𝑘𝑘𝑡𝑡𝑏𝑏 = 𝜆𝜆

4
− 𝜇𝜇

4
+ 𝜅𝜅

4
, 

k𝑐𝑐𝑏𝑏 = 0,  𝑘𝑘𝑐𝑐 =  𝜖𝜖 

(333) 



Chapter 5: Two-Dimensional Plane: Discrete and Continuum Modelling 136 
 

 

In the view of abovementioned equation, the following property could be obtained between 

the microparameters of the system  

𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑡𝑡 = 2(𝑘𝑘𝑡𝑡𝑏𝑏 + 𝑘𝑘𝑛𝑛𝑏𝑏) (334) 

Assuming 𝑘𝑘𝑡𝑡𝑏𝑏 = 0 (𝜅𝜅 = 𝜇𝜇 − 𝜆𝜆) (Pavlov et al. [143]), leads to the comparison results of Suiker 

et al. [142]  

𝑘𝑘𝑛𝑛 = 2𝜇𝜇,   𝑘𝑘𝑡𝑡 = 2(𝜇𝜇 − 𝜆𝜆),   𝑘𝑘𝑛𝑛𝑏𝑏 = 𝜆𝜆,   𝑘𝑘𝑡𝑡𝑏𝑏 = 0, k𝑐𝑐𝑏𝑏 = 0,  𝑘𝑘𝑐𝑐 =  𝜖𝜖 (335) 

4. Two-dimensional Micropolar Continuum Model 

A micropolar plate ℒ ⊂ 𝑅𝑅2 deform in the two-dimensional Euclidean space ℰ ⊂ 𝑅𝑅2. 

In the reference placement, the state of a material particle is described by a position vector 

𝑋𝑋 ∈ ℒ and by a local reference system defined by two vectors 

𝑬𝑬𝟏𝟏′
′ (𝑿𝑿) = 𝑯𝑯(𝑿𝑿)𝑬𝑬𝟏𝟏,   𝑬𝑬𝟐𝟐′

′ (𝑿𝑿) = 𝑯𝑯(𝑿𝑿)𝑬𝑬𝟐𝟐 (336) 

where 𝐸𝐸1,𝐸𝐸2 ∈ ℒ are orthonormal base vectors; the application 𝐻𝐻 ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℒ,ℒ) is such that 

𝑯𝑯−𝟏𝟏 = 𝑯𝑯𝜹𝜹 ,   𝐝𝐝𝐝𝐝𝐝𝐝(𝑯𝑯) = 𝟏𝟏 (337) 

The tensor Q with four components for the 2D plates describes microrotations, i.e. 

the differences between the initial and the actual orientation of the local reference system 

jointed to each particle 

𝒆𝒆𝟏𝟏′
′ (𝑿𝑿) = 𝑸𝑸𝑬𝑬𝟏𝟏′

′ ,   𝒆𝒆𝟐𝟐′
′ (𝑿𝑿) = 𝑸𝑸𝑬𝑬𝟐𝟐′

′  (338) 

where 𝑑𝑑1′
′ (𝑋𝑋) = ℎ(𝑋𝑋)𝑑𝑑1,   𝑑𝑑2′

′ (𝑋𝑋) = ℎ(𝑋𝑋)𝑑𝑑2; 𝑑𝑑1 and 𝑑𝑑2 are orthonormal base vectors of ℰ; ℎ ∈

𝑂𝑂𝑑𝑑𝑡𝑡(ℰ,ℰ) and det(ℎ) = 1; the application 𝑄𝑄 ∈ 𝑂𝑂𝑑𝑑𝑡𝑡(ℒ,ℰ) has the following properties 

𝑸𝑸−𝟏𝟏 = 𝑸𝑸𝜹𝜹 ,   𝒅𝒅𝒆𝒆𝒅𝒅(𝑸𝑸) = 𝟏𝟏 (339) 

It is noteworthy to mention that assuming only an orthogonal structure for H and Q 

imply their determinants equal to ±1: fixing these two scalar quantities to 1 avoid numerical 

fluctuations and physical inconsistencies.  
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4.1. The Cauchy-Green Strain Tensor 

Let 𝐹𝐹 =  ∇𝜒𝜒 be the placement gradient that belongs to 𝐿𝐿𝑖𝑖𝑛𝑛(ℒ;ℰ) . The polar 

decomposition theorem ensures the existence of only one couple of linear applications 

(𝑅𝑅,𝑈𝑈)  ∈  𝑂𝑂𝑑𝑑𝑡𝑡(ℒ;ℰ) × 𝑆𝑆𝑟𝑟𝜇𝜇(ℒ,ℒ) such that 𝐹𝐹 =  𝑅𝑅𝑈𝑈: 𝑅𝑅 and 𝑈𝑈 are respectively the rotation 

and strain tensors. The Cauchy-Green tensor 𝐶𝐶  is defined by the product between the 

transpose of 𝐹𝐹 and 𝐹𝐹 itself: 𝐶𝐶 =  𝐹𝐹𝑇𝑇𝐹𝐹. Thus, the Cauchy-Green measure of deformation is 

defined as follows 

𝓚𝓚 =
𝟏𝟏
𝟐𝟐

(𝑭𝑭𝜹𝜹𝑭𝑭 − 𝑬𝑬) (340) 

 

4.2. Relative Rotation Tensor 

The presence of a microrotation implies the necessity to define another deformation 

tensor that takes into account the differences between macro and microrotations: indeed if 

the microrotation 𝑅𝑅 is equal to the microrotation 𝑄𝑄, the abovementioned new deformation 

tensor needs to be zero. Many authors consider the tensors 𝑅𝑅 , 𝑄𝑄  and 𝐹𝐹  in a unique 

deformation tensor 𝒞𝒞 =  𝑄𝑄𝑇𝑇𝐹𝐹 =  𝑄𝑄𝑇𝑇𝑅𝑅𝑈𝑈 which replaces also the Cauchy-Green tensor. It is 

noteworthy to mention that although 𝒞𝒞  is really useful from a computational point of view, 

it does not allow to divide the energy contributions linked respectively to strain, curvature 

and relative rotation. As an alternative method, it could be possible to introduce the tensor  

𝑄𝑄𝑇𝑇𝑅𝑅 which is objective and also depending only on 𝑅𝑅 and 𝑄𝑄; even if this new term would 

allow identifying each energy contribution, it would be almost impossible to evaluate and 

to define in a FEM code due to the structure of R: 

𝑹𝑹 =  𝑭𝑭𝜹𝜹−𝟏𝟏 = 𝑭𝑭(𝑭𝑭𝜹𝜹𝑭𝑭)−𝟏𝟏/𝟐𝟐 (341) 
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Keeping in mind all the aforementioned remarks, here, we decide to define a new relative 

rotation tensor ℛ as the difference between (𝑄𝑄𝑇𝑇𝐹𝐹)2 and (𝑅𝑅𝑇𝑇𝐹𝐹)2 

𝓡𝓡 =  (𝑸𝑸𝜹𝜹𝑭𝑭)𝟐𝟐 − (𝑹𝑹𝜹𝜹𝑭𝑭)𝟐𝟐 = (𝑸𝑸𝜹𝜹𝑭𝑭)𝟐𝟐 − 𝑪𝑪 (342) 

 

4.3. The Wryness Tensor 

To contribute the gradient of the microrotation tensor 𝑄𝑄 in the deformation energy 

functions, it is essential to define the third measure of deformation namely the wryness 

tensor 𝛤𝛤. This tensor could be expressed as follows: 

𝜞𝜞 =
𝟏𝟏
𝟐𝟐
𝝐𝝐:𝜵𝜵𝑸𝑸𝜹𝜹𝑸𝑸 (343) 

 

5. Energy Approach 

The energetic approach is indeed the most powerful tool to derive new mechanical 

models and to perform numerical applications. The principle of least action leads to fix a 

suitable action functional based on the kinematic assumptions introduced in Section 1: 

𝓚𝓚 = �(−𝑾𝑾(𝝌𝝌,𝑸𝑸,𝑪𝑪,𝓡𝓡,𝜞𝜞 ,𝑿𝑿))
𝓛𝓛

𝒅𝒅𝓚𝓚 + � (−𝑾𝑾𝒔𝒔(𝝌𝝌,𝑸𝑸,𝑿𝑿))
𝝏𝝏𝓛𝓛

𝒅𝒅𝒍𝒍 (344) 

where the field 𝜒𝜒  denotes the placement function between ℒ  and ℰ ; the potential 𝑊𝑊  is 

relative to the surface actions inside ℒ and the potential 𝑊𝑊𝑠𝑠 is relative to the edge actions 

externally applied at the boundary 𝜕𝜕ℒ: all the external actions are defined consistently with 

the internal work. 

The internal energy W can be split into two addends, the first one representing the 

deformation energy satisfying the principle of material frame indifference, the second one 

an external conservative action of surface loads expressed as 
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𝑾𝑾(𝝌𝝌,𝑸𝑸,𝑪𝑪,𝓡𝓡,𝜞𝜞 ,𝑿𝑿) = 𝑾𝑾𝒅𝒅𝒆𝒆𝒇𝒇(𝑪𝑪,𝓡𝓡,𝜞𝜞 ,𝑿𝑿) + 𝜹𝜹𝒆𝒆𝒙𝒙𝒅𝒅(𝝌𝝌,𝑸𝑸,𝑿𝑿) (345) 

The objectivity of 𝐶𝐶,ℛ and 𝛤𝛤 ensures the objectivity of the deformation energy 𝑊𝑊𝑏𝑏𝑊𝑊𝑑𝑑 . The 

first variation of the action functional gives the minimum of the action functional itself 

and, consequently, the solution of the elastic problem in exam. 

 
5.1. Deformation Energy Function for Isotropic Materials 

For an isotropic material, the deformation energy function can be approximated up 

to quadratic terms in the non-linear case as follows (see La-Valle and Massoumi [44] and 

Massoumi and La-Valle [146]) 

𝑾𝑾𝒊𝒊𝒔𝒔𝒄𝒄 =
𝟏𝟏
𝟐𝟐
𝝀𝝀𝓚𝓚[𝑬𝑬𝓚𝓚]𝟐𝟐 + 𝝁𝝁𝓚𝓚𝑬𝑬𝑬𝑬𝓚𝓚 +

𝟏𝟏
𝟐𝟐
𝝀𝝀𝓡𝓡[𝑬𝑬𝓡𝓡]𝟐𝟐 + 𝝁𝝁𝓡𝓡𝑬𝑬𝑬𝑬𝓡𝓡 + 𝝁𝝁𝜞𝜞𝜞𝜞𝜹𝜹𝑬𝑬𝜞𝜞𝜞𝜞

𝜹𝜹 + 𝜸𝜸𝓚𝓚𝓡𝓡𝑬𝑬𝓚𝓚𝓡𝓡 (346) 

where 𝜆𝜆𝒦𝒦 ,𝜇𝜇𝒦𝒦 , 𝜆𝜆ℛ , 𝜇𝜇ℛ , 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 and 𝛾𝛾𝒦𝒦ℛ are six material parameters. The operators 𝐼𝐼(∗) and 𝐼𝐼𝐼𝐼(∗) 

represent the first and second invariants of the tensors assigned that are expressed by 

𝑬𝑬(∗) = 𝜹𝜹𝒓𝒓(∗),   𝑬𝑬𝑬𝑬(∗) =
𝟏𝟏
𝟐𝟐
��𝑬𝑬(∗)�𝟐𝟐 − 𝑬𝑬�(∗)𝟐𝟐�� (347) 

An alternative enriched deformation with eight material parameters could be considered as 

follows: 

𝑾𝑾𝒊𝒊𝒔𝒔𝒄𝒄

=
𝟏𝟏
𝟐𝟐
𝝀𝝀𝓚𝓚[𝑬𝑬𝓚𝓚]𝟐𝟐 + 𝝁𝝁𝓚𝓚𝓚𝓚𝑬𝑬𝑬𝑬𝓚𝓚𝓚𝓚 + 𝝁𝝁𝓚𝓚𝓚𝓚𝜹𝜹𝑬𝑬𝓚𝓚𝓚𝓚

𝜹𝜹 +
𝟏𝟏
𝟐𝟐
𝝀𝝀𝓡𝓡[𝑬𝑬𝓡𝓡]𝟐𝟐 + 𝝁𝝁𝓡𝓡𝓡𝓡𝑬𝑬𝓡𝓡𝓡𝓡 + 𝝁𝝁𝓡𝓡𝓡𝓡𝜹𝜹𝑬𝑬𝓡𝓡𝓡𝓡

𝜹𝜹 + 𝝁𝝁𝜞𝜞𝜞𝜞𝜹𝜹𝑬𝑬𝜞𝜞𝜞𝜞
𝜹𝜹

+ 𝜸𝜸𝓚𝓚𝓡𝓡𝑬𝑬𝓚𝓚𝓡𝓡 

(348) 

 

5.2. Boundary Conditions 

Since it has not been considered a rotation angle as in all the common Cosserat 

models, we need to analyze the correct way to fix boundary conditions. To model a 
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constrain which acts on a part of the boundary 𝜕𝜕𝐿𝐿 and which is able to block each degree 

of freedom, it is necessary to impose the initial placement equal to the actual placement 

and the initial orientation equal to the actual orientation. The boundary conditions of the 

displacement for clamped ends could be considered as 

𝒖𝒖𝟏𝟏 = 𝟎𝟎,   𝒖𝒖𝟐𝟐 = 𝟎𝟎, (349) 

Also regarding Eq. (338), the microrotations are assumed by 

𝒆𝒆𝟏𝟏′
′ (𝑿𝑿) = 𝑬𝑬𝟏𝟏′

′ ,   𝒆𝒆𝟐𝟐′
′ (𝑿𝑿) = 𝑬𝑬𝟐𝟐′

′  → 𝑸𝑸 = 𝑬𝑬 (350) 

 
6. Numerical Simulations 

In this section, several applications of the energy model which was given by 

equation (Eq. (346)) for the isotropic materials are investigated numerically. This sensitive 

numerical analysis is based on standard energy minimization techniques through the 

applications of the standard FEM packages in COMSOL Multiphysics. In detail, a 2D 

planar square of length 𝐿𝐿 = 0.5𝜇𝜇 with a single square hole of length 𝑙𝑙 is chosen. The defect 

is half size of the specimen dimensions and is located at the center of the model. The 

material parameters of the model are defined in Table 3. Many researchers investigated the 

efficient methods for determining material parameters which are mainly the micro-macro 

identifications (see for instance Misra and Poorsolhjouy [147], Giorgio et al. [148], Angelo 

et al. [149] and Turco [150]). The number of the mesh elements must be large enough to 

assure smooth convergence of the results for the discrete finite element approximation. The 

model is meshed through 1046 free quad elements corresponding to 47560 degrees of 

freedom. A usual Lagrange quadratic shape function of quartic order for displacement and 

quadratic order for microrotation is considered to discretize the weak formulations. 
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6.1. Compression Test 

The first test is set up by applying a vertical compression displacement to the top 

edge while the bottom edge is assumed to be clamped. Thus, the micro rotations and 

displacements of the bottom side are null. Accordingly, the boundary conditions are 

specified as follows: 

𝒖𝒖𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = −𝟎𝟎.𝟎𝟎𝟏𝟏𝜹𝜹,   𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟎𝟎, 

𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟎𝟎,   𝑸𝑸𝟏𝟏𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝑸𝑸𝟐𝟐𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟏𝟏, 

𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝒖𝒖𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟎𝟎,    

𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟎𝟎,   𝑸𝑸𝟏𝟏𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟐𝟐𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟏𝟏 

(351) 

The results are shown in Figure 30 It is noteworthy to mention that the maximum 

energy is stored near the corner of the hole which could be predicted also regarding the 

stress concentration. The variation of the shear and macro rotation distribution is nearly 

ignorable in contrast to the distribution of the microrotation which affects severely the 

domain. The compression test allows for the analysis of properties having a broad range of 

applications. The horizontal and vertical displacements obtained in Figure 30 are 

predictable and not so far from the classical one stating the reliability of the proposed 

theoretical model. 
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(a) 

 
(b) 

 
(c) 

 
Figure 30. Compression test with a clamped bottom side (a) distribution of the vertical strain (b) 

distribution of the horizontal strain (c) distribution of the microrotation 
 
6.2. Biaxial Shear Test 

This test is performed by imposing parallel displacements of 1% of the square 

dimension which we apply to each side of the square but in opposite direction with respect 

to the opposite side. The microrotations of all edges are clamped. Briefly, these conditions 

could be expressed as 

𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = −𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝒖𝒖𝟐𝟐(𝜹𝜹,𝑿𝑿𝟐𝟐) = −𝒖𝒖𝟐𝟐(𝟎𝟎,𝑿𝑿𝟐𝟐) = 𝟎𝟎.𝟎𝟎𝟏𝟏𝜹𝜹 (352) 
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𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟏𝟏𝟐𝟐(𝟎𝟎,𝑿𝑿𝟐𝟐) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝟎𝟎,𝑿𝑿𝟐𝟐) = 𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹)

= 𝑸𝑸𝟏𝟏𝟐𝟐(𝜹𝜹,𝑿𝑿𝟐𝟐) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝜹𝜹,𝑿𝑿𝟐𝟐) = 𝟎𝟎 

Some important results of this test are shown in Figure 31. The shear strain applied to the 

system is 1% and the numerical results clarify this value as well. The maximum values of 

the micro and macrorotations happen at the middle of each hole side with the same 

orientation. 

(a) 

 
(b) 

 
(c) 

 
Figure 31. Biaxial shear test with fixed microrotation on the sides (a) distribution of the macro-rotation (b) 

distribution of the micro-rotation Q21 (c) distribution of the relative rotation ℛ21 

 



Chapter 5: Two-Dimensional Plane: Discrete and Continuum Modelling 144 
 

 

6.3. Parametric Analysis for Tensile Test 

This section focuses on analyzing the effects of additional terms corresponding to 

the gradient of the microrotation in the energy equation with respect to the classical model. 

A sensitive parametric analysis has been done for 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 which controls mainly the amount 

of microrotation stored in the system. This test is set up by applying a horizontal tensile 

displacement equal to 1% of the model width. The constant displacement is applied to the 

top side of the square while the bottom side is clamped. For this setup, it is assumed also 

that the microrotations of the top and bottom sides are fixed. The boundary conditions 

could be specified as follows: 

𝒖𝒖𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟎𝟎.𝟎𝟎𝟏𝟏𝜹𝜹,   𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟎𝟎 , 

𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝑸𝑸𝟐𝟐𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟎𝟎 ,   𝑸𝑸𝟏𝟏𝟏𝟏(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝑸𝑸𝟐𝟐𝟐𝟐(𝑿𝑿𝟏𝟏,𝜹𝜹) = 𝟏𝟏 

𝒖𝒖𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝒖𝒖𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟎𝟎, 

𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟏𝟏𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟎𝟎,   𝑸𝑸𝟏𝟏𝟏𝟏(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝑸𝑸𝟐𝟐𝟐𝟐(𝑿𝑿𝟏𝟏,𝟎𝟎) = 𝟏𝟏 

(353) 

The effect of material parameter 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 on the distribution of the lateral displacement 

𝑢𝑢1 is presented in Figure 32 for two typical values of 0.001𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 and 0.1𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 in which 

𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 is presented in Table 3. The results are shown for a scale factor of 5 to magnify the 

deformation changes. For small values of 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇, the effect of the poison ratio is dominant 

and leads to the larger values of the lateral displacement and thus increasing the curvature 

of the sample. This condition converges to the classical model by neglecting the 

microrotations. Another interesting difference is the distribution of 𝑢𝑢1 between the corners 

of the sample and the ones of the squared hole. It can be noticed that for the great values 

of 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 the displacement distribution in these zones is not linear but curved. 
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(a) 

 
(b) 

 
Figure 32. Distribution of the lateral displacement for parametric analysis on 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 for tensile test (a) 

𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇/𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 = 0.001 (b) 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇/𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 = 0.1  

Figure 33 presents the effects of the 𝝁𝝁𝜞𝜞𝜞𝜞𝜹𝜹  changes on the microrotations 

distribution. This figure shows that an antisymmetric microrotation field is created for the 

tensile test. Increasing the value of the 𝝁𝝁𝜞𝜞𝜞𝜞𝜹𝜹 leads to the smaller values of the micro rotation 

proportionally. The maximum values occur at the corners of the squared defect. It is 
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noteworthy to emphasize that the decrease of this material parameter leads to the 

concentration of the microrotation field at the corners of the hole.  

The distributions of the reaction forces in the clamped boundary are plotted in 

Figure 34. The horizontal rection is distributed anti-symmetrically which refers to zero in 

total. 

(a) 

 
(b) 

 
Figure 33. Distribution of the micro rotation for parametric analysis on 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇 for tensile test (a) 

𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇/𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 = 0.001 (b) 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇/𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 = 0.1  
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(a) 

 
(b) 

 
Figure 34. Distribution of reactions along the clamped boundary (a) Horizontal reaction (along x-direction) 
(b) Vertical reaction (along y-direction) 
 

 
 
7. Conclusion and Summary 

First, a 2D discrete granular model was proposed to investigate the in-plane 

deformations. The micro parameters of the model were evaluated through the linear 

isotropic micropolar model for the plane strain conditions with four material parameters. 

The main outcome of the presented work is a new non-linear micropolar continuum model 

which could be applied for two-dimensional isotropic plates. The need of such an enriched 

model is motivated for studying in a better way the 2D granular material arrangement in a 

continuum framework. The total deformation energy function of the proposed theory 

involves the contribution of a new measure of deformation which account for the relative 

rotation between the macro and micro rotations. Unlike all the other models findable in the 

literature, it aims to clearly distinguish each energetic contribution. The latter aspect could 
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facilitate the conception of a discrete model converging to the proposed continuum 

approach, in addition to a better understanding of the mechanical behavior. Consequently, 

there are several implications for the study of granular, porous and composite material such 

as rocks, concrete, soil and biological tissues: nowadays, the application of generalized 

theories and second gradient models for the analysis of this kind of complex materials has 

been embraced by a large number of scientists. The approach proposed in this paper has 

been formulated for 2D plates subjected to in-plane loads through the three measures of 

deformation with the coupling’s terms. The enriched deformation energy depends on eight 

material parameters from which three correspond to the contributions of the new relative 

rotation. The derivation is purely kinematic and energetic: the authors recognize 

themselves as belonging to the group of analytical continuum mechanics and not 

continuum thermodynamics. Few applications of the model are studied for a squared plate 

with a central squared hole to depict some new functional aspects. Accordingly, the 

deformation energy equation has been implemented through the standard FEM in 

COMSOL Multiphysics. Parametric simulations are presented to expound the effect of 

microrotation on response. Decreasing the value of the microrotation material parameter 

results more dominancy of the Poisson’s ratio in the medium. This leads consequently to 

the higher values of the lateral displacement as well as the curvature. 
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CHAPTER 6 
 

Conclusion and Perspective 

1. Conclusion and Summary 

This thesis represents an effort to investigate theoretically the scale effect upon the 

bending deformation of a granular beam which can be viewed as a discrete Bresse-

Timoshenko beam in both static and dynamic conditions. Furthermore, the presented work 

introduces a new non-linear micropolar continuum model which could be applied for two-

dimensional isotropic elastic system. The need for such an enriched model is motivated for 

studying in a better way the 2D granular material arrangement in a continuum framework. 

A unidimensional granular chain consisting of rigid grains connected elastically with 

rotation and shear springs is considered. Thus, the mechanical properties of the system are 

characterized by the grain diameter (length scale). The proposed system can be considered 

as a discrete Cosserat chain with two independent degrees of freedom, namely the 

deflection and the rotation of each grain. Once the kinematics and Lagrangian energy of 

the model have been introduced, we have obtained the general solutions of the static 

granular chain under distributed vertical loads ruled by a coupled system of difference 

equations. It is shown that the discrete deflection equation of this granular system (Cosserat 

chain) is mathematically equivalent to the finite difference formulation of a shear 

deformable Bresse-Timoshenko beam resting on Winkler foundation. 

Then, the gradient elasticity Cosserat continuum is developed through the 

continualization of the difference equations using two equivalent strategies based on the 

Taylor series and Padé approximants (nonlocal continuum). The nonlocal models are able 

to reproduce the scale effects. The distinguishing features of these two refined continuous 
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models basically stem from the continualization of the bending moment valid for the 

discrete Cosserat media which could be defined either by displacement or rotation 

parameters. It was shown that both nonlocal solutions coincide with the exact discrete one. 

A numerical asymptotic problem of a cantilever beam under distributed loading is studied 

for various boundary conditions. The problem is simulated by the open-source framework 

of Yade based on DEM. The DEM numerical results are exactly the same as the ones 

obtained by the exact analytical discrete approach. As the relevance of this discrete 

numerical model was checked for elementary cases, it would be of great interest to use it 

for investigating more complicated problems involving disordered discrete structures 

subjected to various types of loading including dynamic and vibration effects in 2D and 

3D. 

Next, the natural frequencies of such a granular model with simply supported ends 

were analytically investigated, whatever considered modes through the resolution of a 

linear difference equation. The eigenfrequencies obtained from the continualized beam 

using the Padé approximation have shown a good performance if compared to the 

corresponding one from the Taylor approximation. Nevertheless, it has been shown that in 

some cases the approach based on the Taylor approximant provides imaginary values for 

the two eigenfrequencies branches without a physical sense for the homogenized 

continuum. The dependency of the beam dynamic responses to its length ratio is clarified 

and the equations of the eigenfrequencies are obtained regarding the discrete Cosserat 

model, local and nonlocal continuous ones. It was found that the shear stiffness 

(represented by shear springs) has a significant effect on the vibration frequencies. 

Furthermore, the scale effects of the granular chain are captured by the continuous gradient 
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elasticity model. This scale effect is related to the grain size with respect to the total length 

of the Cosserat chain.  

It is noteworthy to be summarized that for a S-S discrete beam modeled by granular 

elements, we obtained three critical frequencies. It was shown that the two higher critical 

frequencies are actually the natural frequencies of the system (one belongs to the 

mechanical branch of frequencies and the other belongs to the optical one). Notably, the 

corresponding mode shapes are the pure shear ones which represent that the grains are only 

rotating without displacing. As it was already mentioned for an infinite number of grains, 

the discrete model converges toward the continuum beam of Bresse and Timoshenko. For 

the continuum case, two of the critical frequencies which are depending on the length scale 

lead to zero. Thus, it could be predicted that the only critical frequency of the system 

�𝜔𝜔 = �𝐾𝐾𝐷𝐷 𝒦𝒦𝒦𝒦
𝜌𝜌𝐸𝐸

� refers to the one pure shear mode in simply supported boundary conditions. 

For this frequency, it could be imagined that although the deflection of the beam is zero, 

but the beam is vibrating through the rotations of the microstructure elements in the same 

orientation and with identical values. 

In order to capture the wave dispersion effect, the same model has been used to 

analyze the wave propagation in one dimensional discrete granular chain. Using the exact 

resolution of the difference equation of the discrete system, it has been clarified that the 

two branches of eigenfrequencies exist for the granular model which leads to the ones 

obtained in the literature, namely by Bresse and Timoshenko for an infinite number of 

grains. It has been shown that the dispersion behavior of higher-order continuous models 

is improved by considering additional gradient enrichments terms, as compared to the 

initial discrete one. It can be also concluded that, as observed for the dispersion curves of 
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the discrete granular chain, the continuous approximation issued of a Padé approximant is 

always stable.  

In the end, a new non-linear micropolar continuum model for two-dimensional 

isotropic plates was studied. The need for such an enriched model is motivated to study 

better the 2D granular material arrangement in a continuum framework. The total 

deformation energy function of the proposed theory involves the contribution of a new 

measure of deformation which accounts for the relative rotation between the macro and 

micro rotations. Unlike all the other models findable in the literature, it aims to clearly 

distinguish each energetic contribution. The latter aspect could facilitate the conception of 

a discrete model converging to the proposed continuum approach, in addition to a better 

understanding of the mechanical behavior. Consequently, there are several implications for 

the study of granular, porous and composite material such as rocks, concrete, soil and 

biological tissues: nowadays, the application of generalized theories and second gradient 

models for the analysis of this kind of complex materials has been embraced by a large 

number of scientists. The approach proposed in this study has been formulated for 2D 

plates subjected to in-plane loads through the three measures of deformation with the 

coupling terms. The enriched deformation energy depends on eight material parameters of 

which three of them correspond to the contributions of the new relative rotation. Few 

applications of the model are studied for a squared plate with a central squared hole to 

depict some new functional aspects. Accordingly, the deformation energy equation has 

been implemented through the standard FEM in COMSOL Multiphysics. Parametric 

simulations are presented to expound on the effect of microrotation on response.  
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2. Outlook 

The results of the presented thesis will serve as a preamble to the further 

investigations on passage from discrete to continuum mechanics specifically in static 

deformation, vibration analysis and wave dispersion for metamaterials and granular 

structures. Nowadays, the advancements in additive manufacturing technology clarify the 

importance of analyzing the characteristics of granular microstructures. 

Here, I would like to identify a few numbers of potential perspectives of the current 

thesis which will be useful for future works: 

First, the discrete granular model presented for one-dimensional analysis can be extended 

by incorporating the effects of more neighbors which are not just in the vicinity of the 

subject grain. One challenge would be how to define the proper interactions and resolve 

the problem through an exact solution.  

Another outlook might be working on the continualization approaches. To this aim, in 

truncation of the Padé approximant or Taylor’s series expansion, higher order 

developments in terms of the kinematic parameters can be considered. This leads to higher-

order gradient continuum theories. Also, it might be interesting to study the effects of the 

other continualization approximations for difference operators. 

The model can be extended to an anisotropic one by considering different mechanical 

properties in different orientations. Imagine a discrete system connected elastically through 

various types of springs with different rigidity. 

The proposed model motivates to study the nonlinear discrete systems which permits to 

analyze of further nonlinear plane waves, instability, buckling and post-buckling analysis. 

The nonlinearity may be considered in the geometry (geometrical nonlinear discrete 
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problem) or the constitutive law (nonlinear elasticity) and interactions. Random packed 

three-dimensional granular media are highly nonlinear according to the nonlinearity of the 

Hertz Law and the structural rearrangements of the structure when subjecting to dynamic 

loads. Wave propagation in nonlinear discrete systems leads to the failure of the continuum 

approximation which is evident in the acoustic diode behavior. 

The verification of the numerical simulations for the static and dynamic linear problem of 

the one-dimensional discrete model can be a prelude to study more complex systems such 

as discrete systems with different elastic foundations, intricate external loading, 2D and 3D 

dimensions discrete media, disordered discrete structures and nonlinear problems. 

For 2D planar problems, an interesting perspective might be considering various 

arrangements of the granular packing. Also, the influence of the further neighbors on the 

representative grain can be investigated. On the other hand, the interactions can be defined 

in such a way that lead to include more coupling effects between the kinematic descriptors. 

The next research track might be studying the problem experimentally by designing grain 

pair interactions using 3d printing. This allows studying different coupling effects between 

the degrees of the freedom of the system. 
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APPENDIX A. Exact solution of the static deflection of the discrete 
granular beam – General solution 

Basically, the general solutions of Eq. (12) could be considered as 

𝑾𝑾𝒊𝒊 = 𝑾𝑾𝒊𝒊
𝒄𝒄 + 𝑾𝑾𝒊𝒊

𝒑𝒑 ; 

𝜽𝜽𝒊𝒊 = 𝜽𝜽𝒊𝒊𝒄𝒄 + 𝜽𝜽𝒊𝒊𝒑𝒑 

 

(A.1) 

Note that 𝑊𝑊𝑖𝑖
ℎ and 𝜃𝜃𝑖𝑖

ℎ are the homogenous solutions of the associated homogenous 

equations of Eq. (12) and 𝑊𝑊𝑖𝑖
𝑝𝑝 and 𝜃𝜃𝑖𝑖

𝑝𝑝 are the particular solutions depending on the loading 

type. The homogenous parts admit the cubic polynomial solution: 

𝑾𝑾𝒊𝒊
𝒄𝒄 = 𝓚𝓚𝟏𝟏 + 𝑩𝑩𝟏𝟏(𝒂𝒂𝒊𝒊) + 𝑪𝑪𝟏𝟏 �

𝒂𝒂𝟐𝟐

𝟐𝟐 𝒊𝒊𝟐𝟐� + 𝑫𝑫𝟏𝟏 �
𝒂𝒂𝟑𝟑

𝟔𝟔 𝒊𝒊𝟑𝟑� ; 

𝜽𝜽𝒊𝒊𝒄𝒄 = 𝓚𝓚𝟐𝟐 + 𝑩𝑩𝟐𝟐(𝒂𝒂𝒊𝒊) + 𝑪𝑪� �
𝒂𝒂𝟐𝟐

𝟐𝟐 𝒊𝒊𝟐𝟐� + 𝑫𝑫𝟐𝟐 �
𝒂𝒂𝟑𝟑

𝟔𝟔 𝒊𝒊𝟑𝟑� 

 

 

(A.2) 

where 𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖,𝐶𝐶𝑖𝑖 and 𝐷𝐷𝑖𝑖 are constants. Eq. (A.2) could be simplified as follows by 

substituting in the homogenous difference equation system of Eq. (5). 

𝑾𝑾𝒊𝒊
𝒄𝒄 = 𝑾𝑾𝟎𝟎 + �𝒂𝒂𝜽𝜽𝟎𝟎 + �

𝒂𝒂
𝟔𝟔 −

𝟐𝟐𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔𝒂𝒂

�𝜷𝜷� 𝒊𝒊 + �
𝒂𝒂
𝟐𝟐𝜶𝜶� 𝒊𝒊

𝟐𝟐 + �
𝒂𝒂
𝟑𝟑𝜷𝜷� 𝒊𝒊

𝟑𝟑; 

𝜽𝜽𝒊𝒊𝒄𝒄 = 𝜽𝜽𝟎𝟎 + 𝜶𝜶𝒊𝒊 + 𝜷𝜷𝒊𝒊𝟐𝟐 

 

(A.3) 

Where 𝑊𝑊0,𝜃𝜃0, 𝛼𝛼 and 𝛽𝛽 are constants that are obtained through the boundary conditions. A 

particular solution of Eq. (11) for a uniform loading can be found as: 

𝑾𝑾𝒊𝒊
𝒑𝒑 = �

𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐 +
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

𝒊𝒊𝟒𝟒; 

𝜽𝜽𝒊𝒊𝒑𝒑 =
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

(A.4) 
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APPENDIX B. Exact solution of the static deflection of the discrete 
granular beam for various boundary conditions 

I. Clamped-Simply (C-S) Supported Granular Beam  

Considering the clamped condition located at the left and the simply support 

boundary at the right end. Thus, the boundary conditions for such a beam are given by  

𝑾𝑾𝟎𝟎 = 𝟎𝟎 ,   𝜽𝜽𝟎𝟎 = 𝟎𝟎 ;  𝑾𝑾𝒏𝒏 = 𝟎𝟎 , 

   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 − �
𝒂𝒂
𝟐𝟐�𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎 → −𝒂𝒂𝒌𝒌𝒔𝒔𝑾𝑾𝒏𝒏−𝟏𝟏 −

𝒂𝒂𝟐𝟐

𝟐𝟐 𝒌𝒌𝒔𝒔(𝜽𝜽𝒏𝒏−𝟏𝟏 + 𝜽𝜽𝒏𝒏)+𝟐𝟐𝒌𝒌𝒓𝒓(𝜽𝜽𝒏𝒏−𝟏𝟏 − 𝜽𝜽𝒏𝒏) = 𝟎𝟎 

(B.1) 

By replacing the general solutions of the discrete beam (Eq. (13)) into the aforementioned 

set of exact boundary conditions, the deflection and rotation can be obtained readily by: 

𝑾𝑾𝒊𝒊

= ��
𝟐𝟐𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐

−
𝟏𝟏
𝟔𝟔�

𝒂𝒂𝟐𝟐𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌𝒔𝒔𝜹𝜹𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓�
𝟒𝟒𝒌𝒌𝒓𝒓(𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐  +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓)� 𝒊𝒊

+ �
𝟔𝟔𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟒𝟒 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓(𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓) 𝒂𝒂𝟐𝟐𝑸𝑸� 𝒊𝒊𝟐𝟐 − �

𝒂𝒂𝟐𝟐𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌𝒔𝒔𝜹𝜹𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓�
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓(𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐  +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓)� 𝒊𝒊

𝟑𝟑

+ �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟒𝟒 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐; 

𝜽𝜽𝒊𝒊

=
𝟔𝟔𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟒𝟒 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓(𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐  +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓) 𝒂𝒂𝑸𝑸𝒊𝒊 −

𝒂𝒂𝒏𝒏𝑸𝑸�𝟓𝟓𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓�
𝟒𝟒𝒌𝒌𝒓𝒓(𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐  +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓) 𝒊𝒊𝟐𝟐

+
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

 

 

 

 

(B.2) 

For an infinite number of grains, the aforementioned discrete solutions could be compared 

well by the ones of Wang et al. [111] as follows 

𝑾𝑾(𝒙𝒙)

= �
𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�

𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐  + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)�𝒙𝒙 + �
𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)𝒒𝒒�𝒙𝒙
𝟐𝟐

− �
𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐  + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)�𝒙𝒙
𝟑𝟑 + �

𝒒𝒒
𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬�

𝒙𝒙𝟒𝟒 + �−
𝒒𝒒

𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�
𝒙𝒙𝟐𝟐; 

𝜽𝜽(𝒙𝒙) =
𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟒𝟒

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)𝒒𝒒𝒙𝒙 −
𝜹𝜹�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�
𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)𝒙𝒙

𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬𝒙𝒙

𝟑𝟑 

 

 

 

(B.3) 
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Once the solutions of the discrete beam have been obtained, the shear and bending 

interactions of the boundary grains could be expressed readily by using Eq. (B.2) in Eq. (7) 

as follows 

𝑽𝑽𝟏𝟏/𝟐𝟐 =
𝑸𝑸
𝟐𝟐 �

𝟓𝟓𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

𝒏𝒏 − 𝟏𝟏�  ;  

𝑴𝑴𝟏𝟏/𝟐𝟐 =
𝒂𝒂𝑸𝑸
𝟒𝟒 (

𝒏𝒏� 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐(𝟐𝟐𝒏𝒏 − 𝟓𝟓) −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐(𝒏𝒏 − 𝟏𝟏) − 𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓�
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

+ 𝟏𝟏) ; 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝑸𝑸
𝟐𝟐 �

𝟑𝟑𝒏𝒏�𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 +  𝟒𝟒𝒌𝒌𝒓𝒓�
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 − 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 − 𝟏𝟏�  ; 

   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝒂𝒂𝑸𝑸
𝟒𝟒 �

𝟑𝟑𝒏𝒏�𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 +  𝟒𝟒𝒌𝒌𝒓𝒓�
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 − 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 − 𝟏𝟏� 

 

 

 

 

(B.4) 

The reaction forces could be obtained through the equilibrium conditions of the granular 

beam as follows 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 −
𝑸𝑸
𝟐𝟐 − 𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   𝑴𝑴𝒓𝒓𝒓𝒓

𝟏𝟏 − �
𝒂𝒂
𝟐𝟐�𝑽𝑽𝟏𝟏/𝟐𝟐 − 𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ; 

𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 −
𝑸𝑸
𝟐𝟐 + 𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 − �

𝒂𝒂
𝟐𝟐�𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎  

 

 

(B.5) 

which leads to 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 =
𝟓𝟓𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

(
𝒏𝒏𝑸𝑸
𝟐𝟐 ) ,   𝑴𝑴𝒓𝒓𝒓𝒓

𝟏𝟏 =
𝒂𝒂𝒏𝒏𝟐𝟐𝑸𝑸� 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐�

𝟑𝟑𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓
 ; 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 =
𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 +  𝟒𝟒𝒌𝒌𝒓𝒓

𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 − 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓 (
𝟑𝟑𝒏𝒏𝑸𝑸
𝟐𝟐 )   

 

 

(B.6) 

Thus, the bending moment and shear equations are given by 

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = −𝑸𝑸�𝒊𝒊 +
𝟏𝟏
𝟐𝟐 −

𝟓𝟓𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟑𝟑𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

𝒏𝒏� ; 

𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐

=
𝒂𝒂𝑸𝑸
𝟐𝟐 �(𝒊𝒊 +

𝟏𝟏
𝟐𝟐)𝟐𝟐 −

𝟓𝟓𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝟐𝟐𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

𝒏𝒏(𝒊𝒊 +
𝟏𝟏
𝟐𝟐) +

𝒏𝒏𝟐𝟐� 𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐�
𝟒𝟒𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐 −  𝒌𝒌𝒔𝒔𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

+
𝟏𝟏
𝟒𝟒� 

 

 

(B.7) 

Replacing the continuum terms and neglecting the length scale leads to following 

continuum local equations 
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𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝟑𝟑𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 +  𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬𝜹𝜹� ; 

𝑴𝑴(𝒙𝒙) =
𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 −
𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝜹𝜹𝒙𝒙 +

𝜹𝜹𝟐𝟐�𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐�
𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬� 

 

 

(B.8) 

These results converge to the ones of the C-S Timoshenko beam (Wang et al. [111]). 

 
II. Clamped – Clamped (C-C) Granular Beam  

The exact conditions of the clamped ends beam can be considered with 

𝑾𝑾𝟎𝟎 = 𝟎𝟎 ,   𝜽𝜽𝟎𝟎 = 𝟎𝟎 ; 

𝑾𝑾𝒏𝒏 = 𝟎𝟎 ,   𝜽𝜽𝒏𝒏 = 𝟎𝟎 

 

(B.9) 

With regards to the general solutions form of granular beam for deflection and rotation of 

Eq. (13), the deformation of C-C discrete beam could be obtained by: 

𝑾𝑾𝒊𝒊 = ��
𝟐𝟐𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔𝒂𝒂

−
𝒂𝒂
𝟔𝟔�

𝒂𝒂𝒏𝒏𝑸𝑸
𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊 + �
𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟐𝟐 − �
𝒂𝒂𝟐𝟐𝒏𝒏𝑸𝑸
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟑𝟑 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟒𝟒 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐; 

𝜽𝜽𝒊𝒊 =
𝒂𝒂𝒏𝒏𝟐𝟐𝑸𝑸
𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓

𝒊𝒊 −
𝒂𝒂𝒏𝒏𝑸𝑸
𝟒𝟒𝒌𝒌𝒓𝒓

𝒊𝒊𝟐𝟐 +
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

 

(B.10) 

For an infinite number of grains, the solutions of the Bresse-Timoshenko beam on clamped 

ends might be considered as follows 

𝑾𝑾(𝒙𝒙) = �
𝜹𝜹𝒒𝒒

𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙 + �
𝜹𝜹𝟐𝟐𝒒𝒒
𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬�𝒙𝒙

𝟐𝟐 − �
𝜹𝜹𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬� 𝒙𝒙

𝟑𝟑 + �
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� 𝒙𝒙
𝟒𝟒 − �

𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙

𝟐𝟐; 

𝜽𝜽(𝒙𝒙) =
𝜹𝜹𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒙𝒙 −

𝜹𝜹𝒒𝒒
𝟒𝟒𝑬𝑬𝑬𝑬𝒙𝒙

𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬𝒙𝒙

𝟑𝟑 

 

(B.11) 

The recent results could be compared well with the ones proposed by Wang et al. [111]. 

The maximum values are given by  

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 = �
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� �
𝟏𝟏
𝟑𝟑 −

𝒂𝒂𝟐𝟐

𝟒𝟒𝜹𝜹𝟐𝟐 +
𝟑𝟑𝑬𝑬𝑬𝑬

𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� < 𝒇𝒇𝑪𝑪𝑪𝑪∞ ; 

𝜽𝜽𝒎𝒎𝒂𝒂𝒙𝒙 = 𝜽𝜽�
𝟑𝟑 ± √𝟑𝟑
𝟔𝟔 𝜹𝜹� = �

𝟑𝟑 ± √𝟑𝟑
𝟑𝟑𝟔𝟔

𝒒𝒒𝜹𝜹𝟑𝟑

𝑬𝑬𝑬𝑬 � �
𝟏𝟏
𝟐𝟐 −

𝟑𝟑 ± √𝟑𝟑
𝟒𝟒 + �

𝟑𝟑 ± √𝟑𝟑
𝟔𝟔 �

𝟐𝟐

� 

 

 

(B.12) 

where 𝑓𝑓𝐶𝐶𝐶𝐶
∞  represents the maximum displacement of the continuum beam which was 

obtained by Timoshenko [110] as follows 
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𝒇𝒇𝑪𝑪𝑪𝑪∞ = �
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� �
𝟏𝟏
𝟑𝟑 +

𝟑𝟑𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� 

(B.13) 

These two equations Eq. (B.12) demonstrate that the length scale influence only the 

maximum values of beam deflection. This predicts that the granular beam behaves more 

rigidly than the equivalent local continuum one. The interaction shear and bending moment 

could be obtained for the boundary grains by using Eq. (B.10) in the definitions of Eq. (7)  

𝑽𝑽𝟏𝟏/𝟐𝟐 =
𝑸𝑸
𝟐𝟐

(𝒏𝒏 − 𝟏𝟏),   𝑴𝑴𝟏𝟏/𝟐𝟐 = −
𝒂𝒂𝑸𝑸
𝟒𝟒 �−

𝒏𝒏𝟐𝟐

𝟑𝟑 + 𝒏𝒏 −
𝟐𝟐
𝟑𝟑� 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝑸𝑸
𝟐𝟐

(𝒏𝒏 − 𝟏𝟏),   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = −
𝒂𝒂𝑸𝑸
𝟒𝟒 �−

𝒏𝒏𝟐𝟐

𝟑𝟑 + 𝒏𝒏 −
𝟐𝟐
𝟑𝟑� 

 

 

(B.14) 

Also, the reaction forces of the boundary would be obtained by using the equilibrium 

conditions for the boundary grains as follows 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 −
𝑸𝑸
𝟐𝟐 − 𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   𝑴𝑴𝒓𝒓𝒓𝒓

𝟏𝟏 − �
𝒂𝒂
𝟐𝟐�𝑽𝑽𝟏𝟏/𝟐𝟐 −𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ; 

𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 −
𝑸𝑸
𝟐𝟐 + 𝑽𝑽

𝒏𝒏−𝟏𝟏𝟐𝟐
= 𝟎𝟎 ,   −𝑴𝑴𝒓𝒓𝒓𝒓

𝟐𝟐 + 𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 − �
𝒂𝒂
𝟐𝟐�𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎  

 

 

(B.15) 

Note that 𝐹𝐹𝑑𝑑𝑟𝑟1  and 𝑀𝑀𝑑𝑑𝑟𝑟
1  are the vertical force and moment reaction of the left clamped end 

and 𝐹𝐹𝑑𝑑𝑟𝑟2  and 𝑀𝑀𝑑𝑑𝑟𝑟
2  are the reactions of the right clamped boundary which are obtained by 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 = 𝑭𝑭𝒓𝒓𝒓𝒓𝟐𝟐 =
𝒏𝒏𝑸𝑸
𝟐𝟐  ,   𝑴𝑴𝒓𝒓𝒓𝒓

𝟏𝟏 = 𝑴𝑴𝒓𝒓𝒓𝒓
𝟐𝟐 =

𝒂𝒂𝑸𝑸
𝟏𝟏𝟐𝟐 �𝒏𝒏

𝟐𝟐 − 𝟏𝟏� ;  (B.16) 

The distribution of bending moment and shear forces for clamped ends beam could be 

found eventually by applying the conditions of Eq. (B.14) the discrete general solutions of 

Eq. (18), 

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = −𝑸𝑸�𝒊𝒊 +
𝟏𝟏
𝟐𝟐 −

𝒏𝒏
𝟐𝟐� ,   𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 =

𝒂𝒂𝑸𝑸
𝟐𝟐 �(𝒊𝒊 +

𝟏𝟏
𝟐𝟐)𝟐𝟐 − 𝒏𝒏(𝒊𝒊 +

𝟏𝟏
𝟐𝟐) +

𝟏𝟏
𝟏𝟏𝟐𝟐 +

𝒏𝒏𝟐𝟐

𝟔𝟔 � 
(B.17) 

It could be concluded that, for an infinite number of grains, the distribution of bending 

moment and shear forces converge to the ones that refer to the local continuum model of 

Bresse-Timoshenko as follows (Wang et al. [111]).  
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𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝜹𝜹
𝟐𝟐� ,   𝑴𝑴(𝒙𝒙) =

𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 − 𝜹𝜹𝒙𝒙 +
𝜹𝜹𝟐𝟐

𝟔𝟔 � 
(B.18) 

These equations are almost the same for the Euler-Bernoulli beam subjected to uniformly 

distributed load. 

 
III. Clamped-Free (C-F) Granular Beam 

 
We assumed here that the 2 DOF of the clamped boundary (for instant left side) are 

blocked while for the free side, there is no constraint. The reaction forces could be found 

through the application of the equilibrium equations of the whole system by 

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 − 𝒏𝒏𝑸𝑸 = 𝟎𝟎 ,   𝑴𝑴𝒓𝒓𝒓𝒓
𝟏𝟏 − (

𝒂𝒂𝒏𝒏
𝟐𝟐

)(𝒏𝒏𝑸𝑸) = 𝟎𝟎 (B.19) 

𝐹𝐹𝑑𝑑𝑟𝑟1  and 𝐹𝐹𝑑𝑑𝑟𝑟1  are respectively the vertical reaction and the bending reaction of the clamped 

end. Applying the equilibrium conditions to the individual boundary grains  

𝑭𝑭𝒓𝒓𝒓𝒓𝟏𝟏 −
𝑸𝑸
𝟐𝟐
− 𝑽𝑽𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ,   𝑴𝑴𝒓𝒓𝒓𝒓

𝟏𝟏 − �
𝒂𝒂
𝟐𝟐�

𝑽𝑽𝟏𝟏/𝟐𝟐 −𝑴𝑴𝟏𝟏/𝟐𝟐 = 𝟎𝟎 ; 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 −
𝑸𝑸
𝟐𝟐

= 𝟎𝟎 ,   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 − �
𝒂𝒂
𝟐𝟐�

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 = 𝟎𝟎  

 

 

(B.20) 

In view of Eq. (B.19) and Eq. (B.20), the shear and bending interactions of the boundaries 

might be obtained by  

𝑽𝑽𝟏𝟏/𝟐𝟐 =
𝑸𝑸
𝟐𝟐

(𝟐𝟐𝒏𝒏 − 𝟏𝟏),   𝑴𝑴𝟏𝟏/𝟐𝟐 =
𝒂𝒂𝑸𝑸
𝟒𝟒 �𝟐𝟐𝒏𝒏𝟐𝟐 − 𝟐𝟐𝒏𝒏 + 𝟏𝟏� 

𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 =
𝑸𝑸
𝟐𝟐 ,   𝑴𝑴𝒏𝒏−𝟏𝟏/𝟐𝟐 = �

𝒂𝒂
𝟐𝟐�𝑽𝑽𝒏𝒏−𝟏𝟏/𝟐𝟐 =

𝒂𝒂𝑸𝑸
𝟒𝟒  

 

(B.21) 

Applying these conditions in the discrete general form solutions of the shear and bending 

moment distribution (Eq. (18)) leads to 

𝑽𝑽𝒊𝒊+𝟏𝟏/𝟐𝟐 = −𝑸𝑸�𝒊𝒊 +
𝟏𝟏
𝟐𝟐 − 𝒏𝒏� ,   𝑴𝑴𝒊𝒊+𝟏𝟏/𝟐𝟐 =

𝒂𝒂𝑸𝑸
𝟐𝟐 �(𝒊𝒊 +

𝟏𝟏
𝟐𝟐)𝟐𝟐 − 𝟐𝟐𝒏𝒏(𝒊𝒊 +

𝟏𝟏
𝟐𝟐) +

𝟏𝟏
𝟒𝟒 + 𝒏𝒏𝟐𝟐� (B.22) 

Ignoring the length scale for an infinite number of grains refers to the Bresse-Timoshenko 

beam which has the same moment and shear distributions as the Euler-Bernoulli for the C-
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F conditions. Furthermore, the bending moment and shear equations could be found for the 

local continuum model as 

𝑽𝑽(𝒙𝒙) = −𝒒𝒒(𝒙𝒙 − 𝜹𝜹),   𝑴𝑴(𝒙𝒙) =
𝒒𝒒
𝟐𝟐 �𝒙𝒙

𝟐𝟐 − 𝟐𝟐𝜹𝜹𝒙𝒙 + 𝜹𝜹𝟐𝟐� (B.23) 

substituting the shear and bending moment interactions through the kinematics terms (Eq. 

(7)) into Eq. (B.20) leads to 

𝑾𝑾𝟎𝟎 = 𝟎𝟎 ,   𝜽𝜽𝟎𝟎 = 𝟎𝟎 ; 

𝒌𝒌𝒓𝒓(𝜣𝜣𝒏𝒏 − 𝜣𝜣𝒏𝒏−𝟏𝟏) −
𝒂𝒂
𝟒𝟒𝑸𝑸 = 𝟎𝟎 ,   𝒌𝒌𝒔𝒔 �𝑾𝑾𝒏𝒏 −𝑾𝑾𝒏𝒏−𝟏𝟏 −

𝒂𝒂
𝟐𝟐

(𝜣𝜣𝒏𝒏 + 𝜣𝜣𝒏𝒏−𝟏𝟏)� −
𝟏𝟏
𝟐𝟐𝑸𝑸 = 𝟎𝟎 

 

(B.24) 

The solutions could be found by replacing the general solutions of Eq. (13) in the 

aforementioned boundary conditions. Thus, the deflection and micro rotations of the 

system are given by 

𝑾𝑾𝒊𝒊

= ��
𝟐𝟐𝒌𝒌𝒓𝒓
𝒌𝒌𝒔𝒔𝒂𝒂

−
𝒂𝒂
𝟔𝟔�

 𝒂𝒂𝒏𝒏𝑸𝑸
𝟐𝟐𝒌𝒌𝒓𝒓

� 𝒊𝒊 + �
𝟔𝟔𝒂𝒂𝟐𝟐𝒏𝒏𝟐𝟐𝑸𝑸 + 𝒂𝒂𝟐𝟐𝑸𝑸

𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓
� 𝒊𝒊𝟐𝟐 − �

𝒂𝒂𝟐𝟐𝒏𝒏𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟑𝟑 + �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

� 𝒊𝒊𝟒𝟒

+ �
𝒂𝒂𝟐𝟐𝑸𝑸
𝟐𝟐𝟒𝟒𝒌𝒌𝒓𝒓

−
𝑸𝑸
𝟐𝟐𝒌𝒌𝒔𝒔

� 𝒊𝒊𝟐𝟐; 

𝜽𝜽𝒊𝒊 =
𝟔𝟔𝒂𝒂𝑸𝑸𝒏𝒏𝟐𝟐 +  𝒂𝒂𝑸𝑸

𝟏𝟏𝟐𝟐𝒌𝒌𝒓𝒓
𝒊𝒊 −

𝒂𝒂𝒏𝒏𝑸𝑸
𝟐𝟐𝒌𝒌𝒓𝒓

𝒊𝒊𝟐𝟐 +
𝒂𝒂𝑸𝑸
𝟔𝟔𝒌𝒌𝒓𝒓

𝒊𝒊𝟑𝟑 

 

(B.25) 

These converge asymptotically to the ones obtained by Bresse-Timoshenko (Timoshenko 

[110] and Wang et al. [111]) for continuum beam assuming an infinite number of grains as 

follows 

𝑾𝑾(𝒙𝒙) = �
𝜹𝜹𝒒𝒒
𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙 + �

𝜹𝜹𝟐𝟐𝒒𝒒
𝟒𝟒𝑬𝑬𝑬𝑬�𝒙𝒙

𝟐𝟐 − �
𝜹𝜹𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬� 𝒙𝒙

𝟑𝟑 + �
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� 𝒙𝒙
𝟒𝟒 − �

𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙

𝟐𝟐; 

𝜽𝜽(𝒙𝒙) =
𝟔𝟔𝒒𝒒𝜹𝜹𝟐𝟐

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒙𝒙 −
𝜹𝜹𝒒𝒒
𝟐𝟐𝑬𝑬𝑬𝑬𝒙𝒙

𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬𝒙𝒙

𝟑𝟑 

 

(B.26) 

The maximum deflection and micro angle occur at 𝑖𝑖 = 𝑛𝑛𝑎𝑎 and obtained as follows 

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟑𝟑𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝟒𝟒𝑬𝑬𝑬𝑬

𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� = 𝒇𝒇𝑪𝑪𝑭𝑭∞ ; 
 

(B.27) 
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𝜽𝜽𝒎𝒎𝒂𝒂𝒙𝒙 =
𝒒𝒒𝜹𝜹𝟑𝟑

𝟔𝟔𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝟐𝟐𝜹𝜹𝟐𝟐� 

𝑓𝑓𝐶𝐶𝐹𝐹
∞  refers to the maximum displacement of the C-F continuum beam which was obtained 

by Timoshenko [110]. It could be concluded that the length scale only affects 𝜃𝜃𝜇𝜇𝑎𝑎𝑥𝑥 for 

clamped-free boundary conditions while 𝑊𝑊𝜇𝜇𝑎𝑎𝑥𝑥 is independent of the grain dimension. The 

maximum values of micro-rotation are estimated bigger than the local continuum ones for 

this case. 
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APPENDIX C. Exact solution of the static deflection of the continuous 
nonlocal granular beam 

 
The development of the difference operators is done neglecting the higher-order 

terms in 𝒂𝒂4 for deflection and rotation field as follows: 

𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐𝑾𝑾(𝒙𝒙) −𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟔𝟔 �𝑫𝑫𝒙𝒙𝜣𝜣(𝒙𝒙) = −𝒒𝒒 
(C.1) 

𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 �𝑫𝑫𝒙𝒙𝑾𝑾(𝒙𝒙) + �𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟒𝟒 ��𝜣𝜣(𝒙𝒙) = 𝟎𝟎 
(C.2) 

Here, a is the characteristic length of the nonlocal model which can be computed from the 

microstructure cell size (grain diameter for instance). Multiplying Eq. (C.2)(C.2) by the 

term −�1 − 𝑎𝑎2𝐷𝐷𝑥𝑥2

12
�𝐷𝐷𝑥𝑥 with neglecting the higher order terms in 𝑎𝑎4 leads to 

−𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐𝑾𝑾(𝒙𝒙) − �𝑬𝑬𝑬𝑬𝑫𝑫𝒙𝒙

𝟑𝟑 −𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 +
𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙

𝟐𝟐

𝟔𝟔 �𝑫𝑫𝒙𝒙�𝜣𝜣(𝒙𝒙) = 𝟎𝟎 
(C.3) 

Summing the previous equation with Eq. (C.1) leads to 

𝑬𝑬𝑬𝑬𝜣𝜣′′′ = 𝒒𝒒 (C.4) 

On the other hand, the following auxiliary equation could be obtained with the 

multiplication of Eq. (C.1) by the term �1− 𝑎𝑎2𝐷𝐷𝑥𝑥2

12 �𝐷𝐷𝑥𝑥2 and ignoring the higher-order terms 

in 𝑎𝑎4  

𝓚𝓚𝓚𝓚𝓚𝓚𝑫𝑫𝒙𝒙
𝟒𝟒𝑾𝑾(𝒙𝒙) −𝓚𝓚𝓚𝓚𝓚𝓚�𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟑𝟑𝜣𝜣(𝒙𝒙) = −𝒒𝒒�𝟏𝟏 −

𝒂𝒂𝟐𝟐𝑫𝑫𝒙𝒙
𝟐𝟐

𝟏𝟏𝟐𝟐 �𝑫𝑫𝒙𝒙
𝟐𝟐 

(C.5) 

Thus, the deflection differential equations of the nonlocal system for the displacement 

could be obtained for a uniform constant distributed loading through the application of 

relation Eq. (C.4) as follows 

𝑬𝑬𝑬𝑬𝑾𝑾′′′′ = 𝒒𝒒  (C.6) 
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APPENDIX D. Alternative methods of the static analysis of the continuous 
nonlocal granular beam 

I. Continualization of Discrete Bending Moment 

The nonlocal bending moment and shear distribution of the S-S continuum beam 

could be obtained from the continualization of Eq. (22) by substituting 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 

𝑄𝑄 = 𝑞𝑞𝑎𝑎 as follows 

𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝜹𝜹
𝟐𝟐�  ,   𝑴𝑴(𝒙𝒙) =

𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 − 𝜹𝜹𝒙𝒙 +
𝒂𝒂𝟐𝟐

𝟒𝟒 � 
(D.1) 

According to Eq. (52) and Eq.  (C.1) by considering the corresponding bending moments 

on the boundaries, the nonlocal conditions could be obtained the same as Eq. (55). 

II. Continualization of the Kinematic Boundary Conditions 

This method is based on the continualization of the cinematic boundary conditions 

presented for the discrete system by Eq. (24). This could be expressed for the nonlocal 

beam as 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎,   𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚𝑾𝑾(𝒂𝒂) −
𝒂𝒂𝟐𝟐

𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝜽𝜽(𝒂𝒂) + 𝜽𝜽(𝟎𝟎)� + 𝟐𝟐𝑬𝑬𝑬𝑬(𝜽𝜽(𝒂𝒂) − 𝜽𝜽(𝟎𝟎)) = 𝟎𝟎 ; 

𝑾𝑾(𝜹𝜹) = 𝟎𝟎,   − 𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚𝑾𝑾(𝜹𝜹 − 𝒂𝒂) −
𝒂𝒂𝟐𝟐

𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝜽𝜽(𝜹𝜹 − 𝒂𝒂) + 𝜽𝜽(𝜹𝜹)� + 𝟐𝟐𝑬𝑬𝑬𝑬�𝜽𝜽(𝜹𝜹 − 𝒂𝒂) − 𝜽𝜽(𝜹𝜹)� = 𝟎𝟎 

 

(D.2) 

Using the general nonlocal continuum solutions of Eq. (49) in the abovementioned 

conditions reflects the same nonlocal solutions that have been obtained by Eq. (56). 

 
III. Continualization of Discrete Bending Moment 

Another approach to continualize the cinematic conditions could be done by 

applying the polynomial expansions. Developing the difference terms using the Taylor 

series up to the quartic order 𝑎𝑎4 for displacement and cubic order 𝑎𝑎3 for rotation in Eq. 

(D.2) leads to 
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𝑾𝑾(𝟎𝟎) = 𝟎𝟎, 

𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚�𝒂𝒂𝑾𝑾′(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟐𝟐 𝑾𝑾′′(𝟎𝟎) +
𝒂𝒂𝟑𝟑

𝟔𝟔 𝑾𝑾′′′(𝟎𝟎) +
𝒂𝒂𝟒𝟒

𝟐𝟐𝟒𝟒𝑾𝑾
′′′′(𝟎𝟎)�

−
𝒂𝒂𝟐𝟐

𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝟐𝟐𝜽𝜽(𝟎𝟎) + 𝒂𝒂𝜽𝜽′(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟐𝟐 𝜽𝜽′′(𝟎𝟎) +
𝒂𝒂𝟑𝟑

𝟔𝟔 𝜽𝜽′′′(𝟎𝟎)�

+ 𝟐𝟐𝑬𝑬𝑬𝑬�𝒂𝒂𝜽𝜽′(𝟎𝟎) +
𝒂𝒂𝟐𝟐

𝟐𝟐 𝜽𝜽′′(𝟎𝟎) +
𝒂𝒂𝟑𝟑

𝟔𝟔 𝜽𝜽′′′(𝟎𝟎)� = 𝟎𝟎 ; 

𝑾𝑾(𝜹𝜹) = 𝟎𝟎, 

−𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚�𝒂𝒂𝑾𝑾′(𝜹𝜹) +
𝒂𝒂𝟐𝟐

𝟐𝟐 𝑾𝑾′′(𝜹𝜹) +
𝒂𝒂𝟑𝟑

𝟔𝟔 𝑾𝑾′′′(𝜹𝜹) +
𝒂𝒂𝟒𝟒

𝟐𝟐𝟒𝟒𝑾𝑾
′′′′(𝜹𝜹)�

−
𝒂𝒂𝟐𝟐

𝟐𝟐 𝓚𝓚𝓚𝓚𝓚𝓚�𝟐𝟐𝜽𝜽(𝜹𝜹) − 𝒂𝒂𝜽𝜽′(𝜹𝜹) +
𝒂𝒂𝟐𝟐

𝟐𝟐 𝜽𝜽′′(𝜹𝜹) −
𝒂𝒂𝟑𝟑

𝟔𝟔 𝜽𝜽′′′(𝜹𝜹)�

− 𝟐𝟐𝑬𝑬𝑬𝑬�𝒂𝒂𝜽𝜽′(𝜹𝜹) −
𝒂𝒂𝟐𝟐

𝟐𝟐 𝜽𝜽′′(𝜹𝜹) +
𝒂𝒂𝟑𝟑

𝟔𝟔 𝜽𝜽′′′(𝜹𝜹)� = 𝟎𝟎 

 

 

 

 

 

 

 

 

 

(D.3) 

The aforementioned developed conditions again lead to the solutions of Eq. (56). 

IV. Continualization of the Static Boundary Conditions with Cinematic Variables 

The equilibrium of the bending moment for the boundaries of the nonlocal beam 

could be considered by 

𝑴𝑴�
𝒂𝒂
𝟐𝟐� +

𝒂𝒂
𝟐𝟐𝑽𝑽 �

𝒂𝒂
𝟐𝟐� = 𝟎𝟎 ,    𝑴𝑴�𝜹𝜹 −

𝒂𝒂
𝟐𝟐� −

𝒂𝒂
𝟐𝟐𝑽𝑽�𝜹𝜹 −

𝒂𝒂
𝟐𝟐� = 𝟎𝟎 (D.4) 

Substituting Eq. (50) and Eq. (51)  in these equations leads to  

�𝑬𝑬𝑬𝑬𝜣𝜣′ �
𝒂𝒂
𝟐𝟐� +

𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒𝒒𝒒� +
𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚
𝟐𝟐 �𝑾𝑾′ �

𝒂𝒂
𝟐𝟐� − 𝜣𝜣�

𝒂𝒂
𝟐𝟐� −

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑾𝑾
′′′ �

𝒂𝒂
𝟐𝟐�� = 𝟎𝟎 ; 

    �𝑬𝑬𝑬𝑬𝜣𝜣′ �𝜹𝜹 −
𝒂𝒂
𝟐𝟐� +

𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒𝒒𝒒� −
𝒂𝒂𝓚𝓚𝓚𝓚𝓚𝓚
𝟐𝟐 �𝑾𝑾′ �𝜹𝜹 −

𝒂𝒂
𝟐𝟐� − 𝜣𝜣�𝜹𝜹 −

𝒂𝒂
𝟐𝟐� −

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑾𝑾
′′′ �𝜹𝜹 −

𝒂𝒂
𝟐𝟐�� = 𝟎𝟎 

 

(D.5) 

The constants of the general solutions of Eq. (49) could be obtained the same as the ones 

that have been expressed by Eq. (56). 
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APPENDIX E. Nonlocal static analysis of the granular beam for various 
boundary conditions 

I. Clamped-Simply Nonlocal Model 

For C-S boundary conditions, ones could be obtained for the bending moment and 

shear distribution, through the continualization of the corresponding discrete equations. 

These are given respectively as follows 

𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝟑𝟑𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 +  𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 𝜹𝜹�, 

𝑴𝑴(𝒙𝒙) =
𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 −
𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬
𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝜹𝜹𝒙𝒙 +

𝜹𝜹𝟐𝟐�𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐�
𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 +  𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 +

𝒂𝒂𝟐𝟐

𝟒𝟒 � 

 

(E.1) 

The nonlocal C-S boundary conditions could be considered in view of Eq. (52) and Eq. 

(E.1), by: 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ;    𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ;    𝜣𝜣′(𝜹𝜹) =
𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 

(E.2) 

Thus, ones could be obtained for the deflection and rotation of the nonlocal beam by 

replacing the nonlocal general solutions (Eq. (49)) 

𝑾𝑾(𝒙𝒙)

= ��
𝟐𝟐𝑬𝑬𝑬𝑬
𝓚𝓚𝓚𝓚𝓚𝓚 −

𝒂𝒂𝟐𝟐

𝟔𝟔 �
𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�
𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −  𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐  + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)�𝒙𝒙

+ �
𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟒𝟒 − 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟒𝟒 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬) 𝒒𝒒�𝒙𝒙𝟐𝟐

− �
𝜹𝜹𝒒𝒒�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 − 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐  + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)�𝒙𝒙

𝟑𝟑 + �
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬�
𝒙𝒙𝟒𝟒 + �

𝒒𝒒𝒂𝒂𝟐𝟐

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 −
𝒒𝒒

𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙
𝟐𝟐; 

𝜽𝜽(𝒙𝒙)

=
𝟔𝟔𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟒𝟒 − 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟒𝟒 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬) 𝒒𝒒𝒙𝒙 −
𝜹𝜹�𝟓𝟓𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 − 𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�
𝟒𝟒𝑬𝑬𝑬𝑬(𝟒𝟒𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐 −𝓚𝓚𝓚𝓚𝓚𝓚𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬)𝒙𝒙

𝟐𝟐

+
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬𝒙𝒙

𝟑𝟑 

 

 

 

 

(E.3) 
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These could be also obtained from the continualization of the corresponding discrete 

solutions (Eq. (B.2)). 

 
II. Clamped-Clamped Nonlocal Model 

The shear and bending distribution of the nonlocal continuum beam could be 

obtained by continualizing the ones which were found for the discrete system. This could 

be done by considering the continuum terms 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 𝑄𝑄 = 𝑞𝑞𝑎𝑎. Accordingly, 

Eq. (B.14) leads to 

𝑽𝑽(𝒙𝒙) = −𝒒𝒒�𝒙𝒙 −
𝜹𝜹
𝟐𝟐� ,   𝑴𝑴(𝒙𝒙) =

𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 − 𝜹𝜹𝒙𝒙 +
𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐 +
𝜹𝜹𝟐𝟐

𝟔𝟔 � 
(E.4) 

For this case, the boundary conditions might be defined the same as the discrete or local 

ones by 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ;    𝑾𝑾(𝜹𝜹) = 𝟎𝟎 ;    𝜣𝜣(𝜹𝜹) = 𝟎𝟎  (E.5) 

Applying the aforementioned set of boundary conditions in the general solutions of the 

nonlocal beam (Eq. (49)) leads to: 

𝑾𝑾(𝒙𝒙) = �
𝜹𝜹𝒒𝒒

𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙 + �
𝜹𝜹𝟐𝟐𝒒𝒒
𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬 −

𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙

𝟐𝟐 − �
𝜹𝜹𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬� 𝒙𝒙

𝟑𝟑 + �
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� 𝒙𝒙
𝟒𝟒 + �

𝒂𝒂𝟐𝟐𝒒𝒒
𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬�

(𝒙𝒙 − 𝜹𝜹)𝒙𝒙; 

𝜽𝜽(𝒙𝒙) =
𝜹𝜹𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬𝒙𝒙 −

𝜹𝜹𝒒𝒒
𝟒𝟒𝑬𝑬𝑬𝑬𝒙𝒙

𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬 𝒙𝒙

𝟑𝟑 

 

(E.6) 

Similarly, an alternative method to obtain these results is through the continualization of 

the corresponding discrete solutions of Eq. (B.10). The maximum displacement occurs at 

the middle of the beam and is given by  

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 = 𝑾𝑾(𝜹𝜹/𝟐𝟐) = �
𝒒𝒒𝜹𝜹𝟒𝟒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� �
𝟏𝟏
𝟑𝟑 −

𝒂𝒂𝟐𝟐

𝟒𝟒𝜹𝜹𝟐𝟐 +
𝟑𝟑𝑬𝑬𝑬𝑬

𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� 
(E.7) 
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It is noteworthy to state that the maximum value is equal to Eq. (B.12). Although the 

boundary conditions and the governing differential equations of the local and nonlocal 

beam are the same, the scale effect appears (only in the displacement equation) in the 

results. This stems from the nonlocal gradient coupled differential equations system 

expressed by Eq. (C.1) and Eq. (C.2). 

 
III. Clamped-Free Nonlocal Model 

Replacing 𝑥𝑥 = 𝑎𝑎𝑖𝑖, 𝐿𝐿 = 𝑎𝑎𝑛𝑛 and 𝑄𝑄 = 𝑞𝑞𝑎𝑎 in Eq. (B.22) leads to the moment and shear 

equations of the nonlocal continuum beam as follows  

𝑽𝑽(𝒙𝒙) = −𝒒𝒒(𝒙𝒙 − 𝜹𝜹),   𝑴𝑴(𝒙𝒙) =
𝒒𝒒
𝟐𝟐�𝒙𝒙

𝟐𝟐 − 𝟐𝟐𝜹𝜹𝒙𝒙 +
𝒂𝒂𝟐𝟐

𝟒𝟒 + 𝜹𝜹𝟐𝟐� 
(E.8) 

For the free boundary, we have 𝑉𝑉(𝐿𝐿) = 0 and 𝑀𝑀(𝐿𝐿) = 𝑎𝑎2𝑞𝑞
8

. Applying Eq. (50) and Eq. (51) 

leads to the following nonlocal variational boundary conditions 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ;   

𝜣𝜣′(𝜹𝜹) =
𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬  ;    𝑾𝑾′(𝜹𝜹) − 𝜣𝜣(𝜹𝜹) −

𝒂𝒂𝟐𝟐

𝟏𝟏𝟐𝟐𝑾𝑾
′′′(𝜹𝜹) = 𝟎𝟎  

(E.9) 

Also, regarding Eq. (52) and knowing 𝑀𝑀′(𝐿𝐿) = −𝑉𝑉(𝐿𝐿) = 0 , an equivalent boundary 

conditions could be assumed 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ;   

𝜣𝜣′(𝜹𝜹) =
𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬  ;    𝜣𝜣′′(𝜹𝜹) = 𝟎𝟎  

(E.10) 

On the other hand, defining the bending moment and shear force of the free end 

through the cinematic parameters leads to an alternative set of boundary conditions for C-

F nonlocal beam 

𝑾𝑾(𝟎𝟎) = 𝟎𝟎 ;    𝜣𝜣(𝟎𝟎) = 𝟎𝟎 ;   

𝜣𝜣(𝜹𝜹) − 𝜣𝜣(𝜹𝜹 − 𝒂𝒂) =
𝒂𝒂𝟑𝟑𝒒𝒒
𝟒𝟒𝑬𝑬𝑬𝑬  ;    𝑾𝑾(𝜹𝜹) −𝑾𝑾(𝜹𝜹 − 𝒂𝒂) − 𝒂𝒂

𝜣𝜣(𝜹𝜹) + 𝜣𝜣(𝜹𝜹 − 𝒂𝒂)
𝟐𝟐 =

𝒂𝒂𝟐𝟐𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚  

 

(E.11) 
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Applying the nonlocal beam solutions of Eq. (49) in one of the aforementioned boundary 

conditions (e.g. Eq. (E.9)) leads to: 

𝑾𝑾(𝒙𝒙) = �
𝜹𝜹𝒒𝒒
𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙 + �

𝜹𝜹𝟐𝟐𝒒𝒒
𝟒𝟒𝑬𝑬𝑬𝑬 −

𝒒𝒒
𝟐𝟐𝓚𝓚𝓚𝓚𝓚𝓚�𝒙𝒙

𝟐𝟐 − �
𝜹𝜹𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬� 𝒙𝒙

𝟑𝟑 + �
𝒒𝒒

𝟐𝟐𝟒𝟒𝑬𝑬𝑬𝑬� 𝒙𝒙
𝟒𝟒 + �

𝒂𝒂𝟐𝟐𝒒𝒒
𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬�

(𝒙𝒙 − 𝜹𝜹)𝒙𝒙; 

𝜽𝜽(𝒙𝒙) =
𝟔𝟔𝜹𝜹𝟐𝟐𝒒𝒒 +  𝒂𝒂𝟐𝟐𝒒𝒒

𝟏𝟏𝟐𝟐𝑬𝑬𝑬𝑬 𝒙𝒙 −
𝜹𝜹𝒒𝒒
𝟐𝟐𝑬𝑬𝑬𝑬𝒙𝒙

𝟐𝟐 +
𝒒𝒒
𝟔𝟔𝑬𝑬𝑬𝑬𝒙𝒙

𝟑𝟑 

 

 

(E.12) 

These results coincide with the ones that could be found from the continualization of the 

discrete solutions which have been presented in Eq. (B.25). The maximum deflection 

happens at the free side of the beam and is obtained as follows 

𝑾𝑾𝒎𝒎𝒂𝒂𝒙𝒙 = 𝑾𝑾(𝜹𝜹) =
𝒒𝒒𝜹𝜹𝟒𝟒

𝟑𝟑𝑬𝑬𝑬𝑬 �𝟏𝟏 +
𝟒𝟒𝑬𝑬𝑬𝑬

𝓚𝓚𝓚𝓚𝓚𝓚𝜹𝜹𝟐𝟐� 
(E.13) 

This equation reflects also the same values as Eq. (B.27). 
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APPENDIX F. Comparison of the numerical DEM model and the exact 
discrete approach of the static deflection of the granular beam 

Table 1: Comparison of the maximum deflection values (𝜇𝜇𝜇𝜇) for the discrete granular beam with simply 
supported (S-S), clamped-simply (C-S), clamped-clamped (C-C) and clamped-free (C-F); exact analytical 
solutions and the numerical ones (DEM) 

 DEM Results Exact Analytic Results 

Boundary 
Conditions 

Number of Grain 𝑛𝑛 = 𝐿𝐿
𝑎𝑎
 

5 11 21 5 11 21 ∞ 

S-S 0.2261 0.2366 0.2381 0.2261 0.2366 0.2381 0.2386 

C-S 0.1709 0.1788 0.1799 0.1709 0.1788 0.1799 0.1808 

C-C 0.1326 0.1379 0.1386 0.1326 0.1379 0.1386 0.1388 

C-F 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 0.1653 

Table 2: Comparison of the maximum rotation values (𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for the discrete granular beam with simply 
supported (S-S), clamped-simply (C-S), clamped-clamped (C-C) and clamped-free (C-F); exact analytical 
solutions and the numerical ones (DEM) 

 Numerical DEM Results Exact Analytic Results 

Boundary 
Conditions 

Number of Grain 𝑛𝑛 = 𝐿𝐿
𝑎𝑎
 

5 11 21 5 11 21 ∞ 

S-S 0.3742 0.3951 0.3981 0.3742 0.3951 0.3981 0.3991 

C-S -0.3063 -0.3282 -0.3314 -0.3063 -0.3282 -0.3314 -0.3324 

C-C 0.7483 0.7663 0.7663 0.7483 0.7663 0.7663 0.7681 

C-F -0.1646 -0.1604 -0.1598 -0.1646 -0.1604 -0.1598 -0.1596 

Table 3: Material parameters used in energy definition of the medium 
𝜆𝜆𝒦𝒦0 𝜇𝜇𝒦𝒦𝒦𝒦0 𝜇𝜇𝒦𝒦𝒦𝒦𝑇𝑇0 𝜆𝜆𝑅𝑅0 

85.52 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 32.50 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 25.35 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 40.12 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 

𝜇𝜇ℛℛ0 𝜇𝜇ℛℛ𝑇𝑇0 𝜇𝜇𝛤𝛤𝛤𝛤𝑇𝑇0 𝛾𝛾𝒦𝒦ℛ0 

15.85 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 20.40 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 25.36 × 106 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇 20.25 𝑘𝑘𝑁𝑁.𝜇𝜇𝜇𝜇−1 
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