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Síntesis en castellano

La fabricación de nuevos materiales magnéticos nanoestructurados ha despertado un gran
interés en la comunidad científica durante las últimas décadas debido a sus propiedades
novedosas. En particular, el estudio de paredes de dominios magnéticos en láminas del-
gadas de espesores nanométricos es de importancia tanto desde el punto de vista de la física
fundamental como para el desarrollo de nuevos dispositivos. Estas paredes, que separan
regiones de magnetización uniforme en una lámina delgada magnética, pueden ser vistas
como interfases unidimensionales que se mueven en un medio bidimensional. Debido a su
energía asociada, las paredes de dominios son objetos elásticos, que tienden a minimizar
su longitud. Además, la lámina delgada magnética puede ser considerada un medio des-
ordenado debido a la presencia de inhomogeneidades en su estructura microscópica. En
este contexto, la dinámica y la morfología de paredes de dominios magnéticos en láminas
delgadas pueden estudiarse utilizando la teoría de interfases elásticas unidimensionales en
medios desordenados bidimensionales. Este enfoque, que es parte del campo de la física
estadística, permite estudiar una gran variedad de fenómenos en la naturaleza considerando
sólo algunos elementos fundamentales: la elasticidad de la interfase, el desorden del medio,
la energía térmica, y la acción de una fuerza externa uniforme.

Dos modelos paradigmáticos para el estudio de este tipo de interfases son el modelo de
quenched Edwards-Wilkinson y el de quenched Kardar-Parisi-Zhang. Estos modelos predicen
ciertos comportamientos críticos tanto para la dinámica como para la morfología de la
interfase, con exponentes críticos característicos. Un ejemplo de comportamiento crítico
predicho por el modelo es el que se da en la llamada transición de desanclaje o depinning de
la interfase, en la que la fuerza externa supera a las fuerzas de anclaje debidas al desorden.
En esta transición, si no consideramos a la energía térmica, la velocidad de la interfase v sigue
una ley de potencia en función de la fuerza aplicada f , con un exponente crítico característico
β. Esto es, v ∼ (f − fd)β para f → f+

d , donde fd es la llamada fuerza de desanclaje.
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Los valores numéricos de los exponentes críticos están definidos únicamente por el modelo
utilizado y, por lo tanto, se dice que son exponentes universales, ya que se espera que distintos
fenómenos descriptos por un mismo modelo presenten los mismos exponentes críticos. Para
probar que uno de los modelos mencionados describe satisfactoriamente al fenómeno físico
estudiado, es necesario realizar una cuantificación experimental de los exponentes críticos
característicos para luego compararlos con los predichos por el modelo.

Utilizando el enfoque de la teoría de interfases elásticas en medios desordenados, en
esta tesis estudiamos la dinámica y la morfología de paredes de dominios en dos tipos de
láminas delgadas de gran interés en la actualidad: por un lado, una lámina ferrimagnética
de GdFeCo de 10 nm de espesor; por otro lado, una lámina ferromagnética y semicon-
ductora de (Ga,Mn)(As,P)/(Ga,Mn)As de 4 nm de espesor. La técnica experimental que
utilizamos para observar la morfología y la dinámica de paredes de dominios magnéticos es
la microscopía magneto-óptica por efecto Kerr polar (PMOKE).

Los resultados de nuestras investigaciones se dividen en cuatro temas fundamentales:

• Primero, el estudio de la dinámica de paredes de dominios en GdFeCo inducida por
campo magnético en un amplio rango de temperatura (10-353 K), considerando tem-
peraturas por encima y por debajo de la temperatura de compensación magnética TM ,
característica de los materiales ferrimagnéticos. Estos estudios nos permitieron cuan-
tificar, en función de la temperatura, parámetros que están fuertemente relacionados
con las características de las fuerzas de anclaje sobre las paredes de dominios, ob-
servando el efecto de la compensación magnética. Encontramos una divergencia del
campo de desanclaje Hd en TM , de acuerdo a lo esperado, y un aumento de la energía
característica kBTd asociada a las fuerzas de anclaje al disminuir la temperatura en
todo el rango estudiado. Este comportamiento es similar al observado en otros mate-
riales, con la particularidad de que en la muestra estudiada, los valores de kBTd son
particularmente altos a bajas temperaturas (∼ 100 K).

• Segundo, la observación de la transición de desanclaje a bajas temperaturas en GdFeCo,
que nos permitió caracterizar experimentalmente por primera vez dos de los expo-
nentes críticos de la transición y compararlos con las predicciones teóricas. Esta
caracterización fue posible gracias a que, en la muestra estudiada y en el rango de
bajas temperaturas (T < 100 K), la energía térmica efectiva es prácticamente nula.
Además de observar la ley de potencia v ∼ (H − Hd)β para H → H+

d , que nos
permitió obtener un exponente β = 0.30 ± 0.03, pudimos cuantificar la longitud de
correlación característica `av de la transición de desanclaje, que diverge en la transi-
ción como `av ∼ (H − Hd)−νdep para H → H+

d y T → 0. Así, pudimos cuantificar
al exponente crítico correspondiente, obteniendo νdep = 1.3 ± 0.3. Estos valores de
los exponentes críticos universales, obtenidos experimentalmente por primera vez, es-
tán en desacuerdo con las predicciones del modelo de quenched Kardar-Parisi-Zhang,
mientras que están de acuerdo con las predicciones del modelo de quenched Edwards-
Wilkinson. Por lo tanto, concluímos que la transición de desanclaje de paredes de
dominios magnéticos en láminas delgadas está bien descrita por este modelo. En otras
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palabras, decimos que las paredes de dominios pertenecen a la clase de universalidad
de quenched Edwards-Wilkinson.

• Tercero, el estudio de la morfología de paredes de dominios en un amplio rango de
temperaturas y campos magnéticos aplicados en la misma muestra de GdFeCo. En
particular, cuantificamos cuidadosamente el valor del llamado exponente de rugosidad
ζ. Este exponente se define, para el perfil de una pared ubicada en la dirección
x̂, descripto por una función u(x), de acuerdo a la ley de escala u(x) ∼ xζ que se
espera que el perfil satisfaga en el marco de la teoría de interfases elásticas en medios
desordenados. Observamos que los valores efectivos del exponente de rugosidad ζeff
que obtenemos son dependientes de la temperatura y del campo magnético aplicado, y
que sus valores no están de acuerdo con los valores de referencia esperados de acuerdo
al modelo de quenched Edwards-Wilkinson, ζeq = 2/3, ζdep = 1.25 y ζth = 1/2. De
acuerdo a ideas teóricas previas, proponemos una interpretación de nuestros resultados
teniendo en cuenta que los exponentes de rugosidad efectivos ζeff resultan de la acción
conjunta de los tres exponentes esperados a distintas escalas de longitud, y que las
longitudes características que separan estas escalas de longitud son las longitudes de
correlación `av y `opt, que corresponden a la transición de desanclaje y al límite H → 0,
respectivamente. Además, y también de acuerdo a ideas teóricas previas para T > 0,
consideramos que `av tiene valores finitos incluso por debajo de Hd. A partir de
estas ideas, obtuvimos una interpretación plausible para los exponentes determinados
experimentalmente, y cuantificamos la longitud de correlación `av en función de la
temperatura T y el campo H.

• Cuarto, la investigación de la dinámica de paredes de dominios magnéticos impulsada
tanto por campo (mediante la interacción Zeeman) como por corriente (mediante el
torque por transferencia de spin, STT) en (Ga,Mn)(As,P)/(Ga,Mn)As. Nos enfocamos
en el régimen térmicamente activado que se da por debajo de la transición de desan-
claje, llamado régimen de reptación o creep. Nos basamos en investigaciones previas
que encontraron que tanto el creep impulsado por campo como el impulsado por corri-
ente presentan los mismos comportamientos universales, e investigamos los efectos de
la aplicación simultánea de corriente J y campo H. Al analizar la acción de las fuerzas
inducidas por campo y por corriente en direcciones opuestas, encontramos condiciones
tales que la velocidad v de las paredes de dominios es nula, correspondiendo a un
balance entre ambas fuerzas. En estas condiciones y para un amplio rango de temper-
aturas por debajo de la temperatura de Curie de la muestra, encontramos que existe
una proporcionalidad entre las fuerzas inducidas por la corriente y el campo, con un
factor ε = µ0H/J = (1.3 ± 0.2) mT/(GA/m2). En base a esto, analizamos la acción
separada de campo y corriente y la acción simultánea en condiciones de v 6= 0 con-
siderando que existe un campo efectivo debido a los dos estímulos µ0Heff = µ0H + εJ .
Esta expresión proporciona una interpretación satisfactoria de los datos experimen-
tales para velocidades relativamente altas, pero observamos inconsistencias entre el
modelo propuesto y los datos experimentales para velocidades bajas. Dos posibles
fuentes de esta discrepancia son el carácter anisotrópico de la fuerza inducida por cor-
riente, que depende del ángulo relativo entre la corriente y la orientación de la pared
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en cada punto, y la contribución adiabática del torque por transferencia de spin, que
no fue tenida en cuenta en nuestro análisis.

Las investigaciones presentadas en esta tesis dan cuenta de los comportamientos uni-
versales de las paredes de dominios magnéticos en láminas delgadas y muestran que la
teoría de interfases elásticas en medios desordenados es una herramienta muy poderosa
para su estudio. El enfoque que utilizamos contribuye a nuestro conocimiento sobre las
propiedades estadísticas de las paredes de dominios y aporta nuevas evidencias de que el
modelo de quenched Edwards-Wilkinson describe satisfactoriamente su dinámica y su mor-
fología. Además, aporta nuevas ideas sobre la naturaleza de la dinámica inducida tanto por
campo como por corriente. Nuestros resultados motivan futuras investigaciones que permi-
tan seguir profundizando en la comprensión de las propiedades estadísticas de las paredes
de dominios magnéticos.
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Synthèse en français

Les nouveaux matériaux magnétiques nano-structurés ont suscité un grand intérêt dans la
communauté scientifique au cours des dernières décennies en raison de leurs propriétés in-
édites. En particulier, l’étude des parois de domaines magnétiques dans des films minces
d’épaisseur nanométrique présente un intérêt tant du point de vue de la physique fonda-
mentale que pour le développement de nouveaux dispositifs de spintronique. Ces parois,
qui séparent des régions d’aimantation uniforme dans une film mince magnétique, peuvent
être considérées comme des interfaces unidimensionnelles élastiques se déplaçant dans un
milieu bidimensionnel inhomogène. Lorsque les vitesses sont suffisamment faibles, les parois
sont très sensibles aux défauts des films minces qui tendent à les piéger et s’opposer à leur
déplacement. Dans ce cas, une paroi de domaines se comporte comme un système élastique
se déplaçant en milieu aléatoire. La dynamique et la morphologie de parois peuvent être
décrites par un modèle minimal qui ne prend pas en compte l’évolution de leur structure
magnétique interne. Cette approche, qui s’inscrit dans le domaine de la physique statistique,
permet d’étudier une grande variété de phénomènes en ne considérant que quelques éléments
fondamentaux : l’élasticité de l’interface, le désordre figé (quenched) de l’environnement,
l’énergie thermique, et l’action d’une force appliquée.

Des modèles minimaux paradigmatiques pour l’étude de ce type d’interfaces sont les
modèles de quenched Edwards-Wilkinson et de quenched Kardar-Parisi-Zhang. Ces modèles
prédisent des comportements critiques à la fois pour la dynamique et pour la morphologie
des interfaces, avec des exposants critiques caractéristiques. Un exemple de comportement
critique est la transition de dépiégeage ou de depinning se produisant lorsque la force externe
dépasse le seuil de dépiégeage des parois. Pour cette transition, si l’activation thermique
peut être négligée, la vitesse de l’interface v suit une loi de puissance en fonction de la force
appliquée f , avec un exposant critique β. Autrement dit, v ∼ (f − fd)β pour f → f+

d ,
où fd est la force seuil de désancrage. Les valeurs numériques des exposants critiques sont
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universelles et différents phénomènes peuvent partager les mêmes exposants critiques. Pour
prouver qu’un modèle minimal décrit de manière satisfaisante un phénomène physique, il est
nécessaire de mesurer les valeurs des exposants critiques caractéristiques et de les comparer
aux prédictions théoriques.

Dans cette thèse, nous analysons la dynamique et la morphologie des parois de domaines
dans le cadre de la théorie des interfaces élastiques en milieux désordonnés. Deux types de
films minces d’un grand intérêt ont été étudiés : un film ferrimagnétique de GdFeCo de 10 nm
d’épaisseur et un film du semi-conducteur ferromagnétique de (Ga,Mn)(As,P)/(Ga,Mn)As
de 4 nm d’épaisseur. La technique expérimentale que nous utilisons pour observer la mor-
phologie et la dynamique des parois de domaines magnétiques est la microscopie magnéto-
optique à effet Kerr polaire (PMOKE).

Les résultats de nos recherches font l’objet de quatre sujets principaux qui sont résumés
ci-dessous.

• Tout d’abord, nous présentons des études de la dynamique de parois de domaines
dans GdFeCo induite par un champ magnétique. Ces études sont effectuées sur une
large gamme de températures (10-353 K), de part et d’autre de la température de
compensation magnétique TM , caractéristique des matériaux ferrimagnétiques. Nous
avons pu quantifier, en fonction de la température, les paramètres qui caractérisent
l’ancrage des parois notamment au voisinage de la compensation magnétique. Nous
mettons en évidence une divergence du champ de désancrage Hd au voisinage de TM ,
comme attendu, et nous observons une augmentation de l’énergie d’ancrage des parois
kBTd lorsque la température diminue dans toute la plage étudiée. Ce comportement
est similaire à celui observé dans d’autres matériaux. Nous montrons en particulier
qu’à basse température (< 100 K), l’énergie d’ancrage des parois kBTd est très élevée
par rapport à l’énergie d’activation thermique kBT (Td/T > 300).

• L’observation de la transition de dépiégeage à basse température dans le film de
GdFeCo nous permet de déterminer expérimentalement pour la première fois deux
des exposants critiques de la transition et de les comparer aux prédictions théoriques.
Cette détermination a été possible grâce au caractère quasi-athermique de la transi-
tion, observée à basse température. Nous avons pu mettre en évidence un bon accord
avec la loi de puissance v ∼ (H −Hd)β prédite pour H → H+

d et obtenir une valeur
pour l’exposant β = 0.30 ± 0.03. D’autre part, nous avons pu quantifier la longueur
de corrélation caractéristique `av de la transition de désancrage, qui diverge suivant
la relation `av ∼ (H − Hd)−νdep pour H → H+

d et T → 0. Nous avons pu en dé-
duire la valeur de l’exposant critique correspondant νdep = 1.3 ± 0.3. Ces valeurs
des exposants critiques universels sont en désaccord avec les prédictions du modèle
de quenched Kardar-Parisi-Zhang mais présentent un bon accord avec celle du mod-
èle quenched Edwards-Wilkinson. Par conséquent, nous concluons que la transition
de désancrage des parois des domaines magnétiques dans les films minces est bien
décrite par ce modèle. En d’autres termes, le mouvement des parois de domaines
appartiennent à la classe d’universalité quenched Edwards-Wilkinson.

x



• D’autre part, nous avons effectué une étude de la morphologie des parois de domaine
sur une large gamme de températures et de champs magnétiques appliqués avec le
même échantillon de GdFeCo. En particulier, nous quantifions soigneusement la valeur
de l’exposant de rugosité ζ. Cet exposant est défini par la loi d’échelle u(x) ∼ xζ , pour
une paroi alignée suivant la direction x̂, dont le déplacement transverse est décrit par
une fonction u(x). Nous observons que les valeurs mesurées de l’exposant de rugosité
ζeff dépendent de la température et du champ magnétique appliqué. Ces valeurs ne
concordent pas avec aucune des valeurs de référence prédites par le modèle quenched
Edwards-Wilkinson, ζeq = 2/3, ζdep = 1.25 et ζth = 1/2 pour différentes échelles
de longueurs et gammes de champ magnétique. Nous proposons une interprétation
de nos résultats qui suppose que les exposants de rugosité mesurés correspondent à
des exposants effectifs. Nous supposons que les exposants effectifs ζeff résultent de la
contribution conjointe des trois exposants attendus à différentes échelles de longueur.
Les longueurs caractéristiques qui séparent ces échelles sont les longueurs de corrélation
`av et `opt, qui correspondent respectivement à la transition de désancrage et à la
limite H → 0. De plus, et d’après les idées théoriques précédentes pour T > 0,
on considère que `av a des valeurs finies même pour H < Hd. Sur la base de ces
hypothèses, nous obtenons une interprétation plausible pour les exposants déterminés
expérimentalement, et nous quantifions la longueur de corrélation `av en fonction de
la température T et du champ H.

• Enfin, nous rapportons une étude sur la dynamique de parois de domaines magnétiques
induite par champ magnétique et par courant électrique (transfert de spin) dans un
film de (Ga,Mn)(As,P)/(Ga,Mn)As à aimantation perpendiculaire. Nous nous sommes
concentré sur le régime thermiquement activé de reptation (creep) qui est observé
au-dessous de la transition de dépiégeage. Pour l’analyse des résultats, nous nous
sommes appuyé sur des recherches antérieures qui ont montré que la dynamique de
creep sous champ et sous courant présentent de comportements universels communs.
Nous avons étudié les effets de l’application simultanée du courant J et du champ
H. Nous montrons qu’il est possible d’annuler la vitesse v des parois lorsque les
contributions du champ et du courant à leur mouvement se compensent. Pour une
large gamme de températures, nous mettons en évidence une proportionnalité entre
les forces induites par le courant et le champ, avec un facteur de proportionnalité
ε = µ0H/J = (1.3 ± 0.2) mT/(GA/m2). Sur cette base, nous analysons l’action
séparée du champ et du courant et l’action simultanée, pour v 6= 0, en supposant qu’il
existe un champ effectif qui prend en compte les deux contributions µ0Heff = µ0H+εJ .
Cette expression fournit une interprétation satisfaisante des données expérimentales
pour des vitesses relativement élevées. Cependant, on observe des incohérences entre
le modèle proposé et les données expérimentales pour des vitesses faibles. Des sources
possibles de cet écart sont le caractère anisotrope de la force induite par le courant, qui
dépend de l’angle relatif entre le courant et l’orientation de la paroi, et une contribution
dite adiabatique du transfert de spin non prise en compte.

Les investigations présentées dans cette thèse rendent compte des comportements uni-
versels des parois de domaines magnétiques dans des films minces à aimantation perpen-
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diculaire et montrent que la théorie des interfaces élastiques dans les milieux désordonnés
est un outil très puissant pour leur étude. L’approche que nous utilisons contribue à notre
compréhension des propriétés statistiques des parois de domaines et fournit de nouvelles
preuves que le modèle quenched Edwards-Wilkinson décrit de manière satisfaisante leur dy-
namique et leur morphologie. En outre, il apporte de nouvelles informations sur la nature
de la dynamique induite par champ magnétique et transfert de spin. Nos résultats motivent
de futures recherches qui permettront de mieux comprendre les propriétés statistiques des
parois de domaines magnétiques.
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CHAPTER 1

Introduction

“Miré el arco y esquivé patadas.”
Diego Armando Maradona

This thesis is attached to several different areas of Physics: Statistical Physics, Mag-
netism, and Materials Science of Nanostructured Systems. Throughout this work,
we shall establish links between these disciplines in order to present a deep study of

our main subject, domain walls in magnetic thin films, not only focusing on its fundamental
aspects but also keeping an eye on its technological potential.

Magnetic domain walls are the boundaries or interfaces between magnetic domains,
which are regions of uniform magnetization in a material [1]. Inside a domain wall, mag-
netization changes rapidly as a function of the position when passing from one domain to
the other, i.e. when crossing the domain wall [2]. This abrupt variation of magnetization
results on an energetic cost for domain wall formation which may be effectively treated as
an elasticity. As a consequence, domain walls tend to be as flat as possible. In addition,
they are immersed in a magnetic material with its intrinsic inhomogeneities, meaning that
the elastic domain wall is also subject to the action of disorder. Its impact may be modelled
as an effective disordered pinning potential which affects the shape of domain walls and
tends to prevent their motion.

Given this context, our approach to the study of magnetic domain walls is framed on
the theory of elastic manifolds in disordered media, which comes from the field of Statistical
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Physics [3]. Therefore, we shall discuss the general statistical properties of elastic interfaces
in nature, which are particularly rich when disorder plays a relevant role [4, 5]. Due to the
interplay between elasticity, disorder and thermal activation, interfaces are rough and their
dynamics under the action of a driving force constitutes a stochastic process.

The motivation to understand the physics of a variety of phenomena within the same
theoretical framework, consisting on a bunch of several fundamental elements that permit to
describe them, is one of the main incentives for the study of elastic interfaces in disordered
media. Indeed, there exist several key features that many different interfaces in nature share,
being domain walls one of these interfaces. Furthermore, we can classify them into several so-
called universality classes, which are defined by small groups of general characteristics [3, 4].
Particularly, interfaces in disordered media may undergo a second-order dynamic phase
transition, the so-called depinning transition, which is characterized by critical behaviors.
For a given interface phenomena, the associated critical exponents have particular values
which define the universality class to which that phenomena belongs.

As we are particularly interested on magnetic domain walls in thin films, we shall put
our focus on the fascinating area of Magnetism and Magnetic Materials. This theme, which
is nowadays amazingly broad, has inspired human curiosity for centuries, even before the
development of the scientific method [6, 7]. In the last century and mainly during the last
decades, our deeper understanding of the microscopic phenomena behind magnetism and
our capability to create new materials with reduced dimensions boosted enormously the
technological improvements related to magnetism and unveiled new, previously unknown
phenomena. A flourishing area in this issue is Spintronics, which consists on the development
of devices such as sensors, magnetic memories and logic gates which are based on the control
of both the electronic charge and spin [8–12].

In the quest for new technologies, understanding the nature of magnetic switching and
domain wall motion is crucial. A variety of mechanisms are responsible for the dynamics of
magnetization, and therefore there exist several different driving forces which may act on
domain walls. To summarize, we can mention the two driving forces which are studied in this
work: magnetic field, which favors a particular orientation of the magnetization and there-
fore induces a force over domain walls [13–18], and the spin-transfer torque (STT), which
is generated by spin polarized electrical currents that drive domain walls when interacting
with their internal magnetization [19–27].

In this thesis, we deeply study how these forces act over domain walls, inducing their
movement and changing their morphology. The main experimental technique that we im-
plement is the magneto-optical Kerr effect (MOKE) microscopy, which permits a real-time
observation of domain walls in thin films, their shape, and their movement under applied
stimuli. We perform these studies in two particular magnetic systems: a ferrimagnetic rare
earth - transition metal alloy, composed by gadolinium, iron and cobalt (GdFeCo), and a
diluted ferromagnetic semiconductor, the gallium arsenide doped with manganese and phos-
phorus, (Ga,Mn)(As,P). The studied samples consist on thin films, with thicknesses of the
order of several nanometers, which have perpendicular magnetic anisotropy [28–30].
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Ferrimagnetic rare earth - transition metal alloys have become of huge interest in the last
years due to their particular magnetic ordering, which results in very efficient magnetization
dynamics and a big variability of magnetic properties when changing the temperature or
composition [31–37]. Our experimental studies in GdFeCo, which is part of this group of
materials, are focused on the dynamics and morphology of domain walls driven by field,
with the particularity that we perform careful studies in a wide range of temperatures.

Particularly, we have deeply studied the different regimes of motion of domain walls
to which we have experimental access at temperatures ranging from 10 to 353 K. This
has allowed for the detailed description of the temperature-dependence of parameters that
describe domain wall dynamics in these regimes of motion. One of our most striking observa-
tions is the almost complete suppression of thermal effects in a low temperature range, what
resulted in an unprecedented observation of the depinning transition with zero-temperature-
like characteristics. This has enabled the first experimental determination of the full set of
critical exponents defining the universality class to which field-driven domain wall depinning
in thin films belongs [4, 5, 38].

In addition, we have studied the morphology of domain walls driven by field in the
same GdFeCo sample by performing statistically meaningful roughness measurements [39].
This has given us a deeper insight on the statistical properties of domain wall morphology,
and has permitted us to readdress, with the power of new evidence, questions related to
the length scales defining the statistical nature of domain wall motion [40]. Particularly,
we demonstrate the consistence between experimental roughness determinations and re-
cently proposed theoretical ideas [4, 41] and, furthermore, we perform the first experimental
quantification of the characteristic correlation length of the depinning transition. Both the
determination of critical exponents and the study of characteristic length scales, which are
the main goals of our research regarding domain walls in GdFeCo, are of great importance
as they shed light on the nature of the fundamental ingredients that dominate domain wall
motion.

The other system under study, as mentioned above, is a diluted ferromagnetic semi-
conductor. Particularly, we perform domain wall dynamics measurements in a bilayer of
(Ga,Mn)(As,P)/(Ga,Mn)As. In this system, the current-driven force over domain walls via
spin-transfer torque (STT) is particularly efficient [24–27, 42], what permits an appropriate
comparison between the two types of drive. We therefore study and compare their nature
and effects over domain walls in the regimes of relatively low wall velocity. This comparison
sheds light over the similarities and differences between these two drives and on the nature
of wall motion under their separated or simultaneous action. Remarkably, we have found
that the forces induced by field and current are proportional between each other, with a
well-defined proportionality factor, in various experimental situations.

This thesis makes contributions to the understanding of domain wall motion in thin
films, both metallic and semiconducting, and both ferromagnetic and ferrimagnetic. In ad-
dition to this fundamental motivation, these contributions could be also of technological
interest due to the fact that the studied systems present properties that are suitable for
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device development [42–45]. Our approach is particular because our main tools are taken
from the framework of statistical physics, with the goal of contributing from an interdisci-
plinary point of view. This approach complements with fully magnetic studies and has its
own strengths and weaknesses, as we will discuss throughout this manuscript. A remarkable
strength is the fact that disorder, a challenging ingredient in Physics, is put as a protagonist
which must be considered in order to comprehensively understand the studied phenomena
and its intrinsic complexity.

This work is organized as follows. In chapter 2, we present the main general concepts
that we address in the framework of this thesis. We shall therefore discuss about magnetism,
statistical properties of magnetic domain walls in thin films, and the characteristics of the
magnetic materials that we study. In chapter 3, we present the experimental techniques
that we have used and developed during this thesis, focusing on magnetic imaging and
particularly on polar Kerr microscopy. In addition, we present a characterization of the
studied samples. Next three chapters are devoted to the presentation and discussion of the
main experimental results that we have obtained. In chapter 4 we focus on the domain wall
dynamics in a ferrimagnetic GdFeCo thin film, and in chapter 5 we present and discuss our
studies on the domain wall roughness in GdFeCo. Later, in chapter 6 we present our studies
on the current- and field-driven domain wall dynamics in (Ga,Mn)(As,P)/(Ga,Mn)As. We
conclude in chapter 7 with a synthesis of our main findings, a discussion on the strengths
and weaknesses of our study, and some remarks about the perspectives for future research
in this topic.
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CHAPTER 2

General concepts and framework

“Nós todos sabemos alguma coisa.
Nós todos ignoramos alguma coisa.
É por isso que sempre aprendemos.”

Paulo Freire

In this chapter, the main concepts that constitute the framework in which this thesis
work was performed, are presented. We start in section 2.1 with an overview of the
vast area of Magnetism, from a historical introduction to presenting the concepts of

magnetic domains and domain walls. Then, we shall describe the fundamental properties
of domain walls from a micromagnetic point of view in section 2.2, focusing both on their
statics and dynamics. Afterwards, a detailed presentation of the statistical properties of
driven elastic interfaces in disordered media will be done in section 2.3, as it constitutes
the main theoretical framework for the study of domain walls that we develop throughout
this thesis. In section 2.4, the main concepts that constitute the present knowledge of do-
main wall dynamics and morphology in the framework of the theory of driven interfaces in
disordered media will be presented. Then, in section 2.5 we shall describe the main prop-
erties of the systems studied in this thesis, the ferrimagnet GdFeCo and the semiconductor
(Ga,Mn)(As,P)/(Ga,Mn)As, focusing on their main properties and the reasons why they
are particularly interesting for the study of magnetic domain walls. Finally, we conclude
and summarize this chapter and its links with following chapters in section 2.6.
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2.1 Magnetism

Even if Magnetism has been observed and experienced by humans during millennia, almost
all of our current knowledge about this phenomena was achieved during the last two cen-
turies. Primitive observations of the “magical” attraction between some kinds of stones
(most of them containing magnetite, as we now know) had already inspired the fabrication
of instruments allowing humans to orientate on Earth since two thousand years ago [6].
Nevertheless, the fact that magnetism is not approachable directly through our senses lead
to a much more developed understanding of other broad areas as Mechanics, Heat and Light
[7]. Even today, Magnetism is probably one of the less comprehended big areas of Physics.

Up to the seventeenth century, the Greek notion that magnets were animated persisted
in Europe. It was René Descartes who put this idea away [6]. The nineteenth century
was the beginning of an incredible story for our understanding of Magnetism and its close
relationship with Electricity. Hans-Christian Oersted first observed in 1820 the appearance
of magnetic forces close to a current-carrying wire [46]. Then, Michael Faraday discovered
magnetic induction, demonstrated the principle of an electric motor, and intuited that
electric and magnetic forces could be understood from the basis of extended electric and
magnetic fields. The observation of the so-called Faraday effect showed that the properties
of a light beam can be affected by the interaction with magnetic materials [47]. Inspired
by all this experimental work, James Clerk Maxwell formulated in 1864 his unified theory
of Electricity, Magnetism and Light [47]. The research performed during this thesis is
closely related to these three concepts: the interaction between polarized light and magnetic
materials is on the basis of our experimental approach, and magnetic domain walls are
studied when interacting both with polarized electric currents and magnetic fields.

Before the end of nineteenth century, Electromagnetism was already the basis of many
technological advances which gave practical solutions for issues as illumination, transport
and communication. Despite the wonderful technical and intellectual triumphs of this dis-
cipline, humans still had no idea of which was the microscopic origin of magnetism in
matter. The molecular field theory of Pierre Weiss [48] (1907) successfully described the
phenomenology of paramagnetic and ferromagnetic states, and the existence of a phase
transition between them, but could not explain the origin of this molecular field. The for-
mulation of Relativity and Quantum Mechanics in the first decades of the twentieth century
[50] and, particularly, the discovery of electron’s intrinsic spin by George Uhlenbeck and
Samuel Goudsmit in 1925 [49] finally explained the microscopical origin of magnetism and
the spontaneous magnetization present in the ferromagnetic state of magnetic materials.
The main contribution to this phenomena was found to be the electronic magnetic moment,
arising from its intrinsic angular momentum, i.e. the electron spin.

The magnetic nature of different materials is intimately related to how electrons fill
the energetic levels of atoms following the Hund rules [51, 52]. Atoms with unfilled atomic
shells present an unbalance of electrons in the two possible spin states, “up” and “down”, and
therefore present a magnetic moment. Furthermore, electronic spins may interact between
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each other via exchange interactions, which arise due to the Pauli exclusion principle char-
acterizing fermions [53]. These interactions lead to the existence of spontaneously ordered
magnetic states which we will briefly discuss in the following.

2.1.1 Types of magnetism in matter

Magnetic materials or, more generally, the magnetic states in which they may be found, can
be grouped in different categories, depending on the interactions between their magnetic
moments and with an applied field. As main examples, we can mention the diamagnetic,
paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic states.

Diamagnetism is characterized by weak interactions between magnetic moments and a
negative response to an applied magnetic field, i.e. the magnetization induced by an applied
field is opposite to it. Paramagnetism also presents weak interactions but, in contrast to
diamagnetism, a positive alignment of magnetic moments with applied field is induced.
These two states do not present a spontaneous magnetic order.

Materials in a ferromagnetic state present a strong coupling between magnetic moments
via exchange interactions [54] which favors a parallel orientation of magnetic moments (see
figure 2.1(a)), generating a spontaneous magnetization of relatively high magnitude. In
anti-ferromagnetic materials, there also exists a strong exchange coupling between adjacent
magnetic moments which induces magnetically ordered states, but with anti-parallel config-
urations: half of the magnetic moments are oriented in one direction, and half in the opposite
one, resulting in no spontaneous magnetization. An example of anti-ferromagnetic ordering
is schematized in figure 2.1(b). In some cases, magnetic moments pointing in one direction
do not have the same magnitude as those pointing in the opposite direction, resulting in a
spontaneous magnetization even if the exchange interactions are anti-ferromagnetic. Mate-
rials that present this characteristic are classified as ferrimagnetic. This type of magnetic
ordering may be seen as formed by two ferromagnetic sub-lattices of different magnetiza-
tion which are anti-ferromagnetically coupled (see figure 2.1(c)). We will deeply talk about
ferrimagnetic materials throughout this thesis, as one of the studied systems belongs to this
group.

The kinds of magnetism that we have mentioned so far do not represent at all the
complete set of magnetic states and phases that we can encounter. There exists a huge
variety of magnetic interactions that result in more complex structures. For example, anti-
symmetric exchange interactions such as the so-called Dzyaloshinskii-Moriya interaction
[55, 56] favor twisted configurations of magnetic spins [57]. Moreover, as none of the possible
interactions between magnetic moments exist completely alone, their competition results in
many different states which are subject of present discussions [58, 59]. In addition, the
fabrication of new materials continuously gives rise to previously unknown magnetic states.
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Figure 2.1: Ferromagnetic, anti-ferromagnetic and ferrimagnetic configurations.
Schematic illustration of the magnetic ordering in (a) a ferromagnetic configuration, where
all spins are parallel, (b) an anti-ferromagnetic configuration, in which adjacent spins are
anti-parallel, resulting in a zero global magnetization, and (c) a ferrimagnetic configuration,
in which adjacent spins are anti-parallel but, as the magnitudes of magnetic moments in
each of the two sublattices are different, global magnetization is finite.

2.1.2 Magnetic energies

The variety of magnetic configurations that materials can experience result from the compe-
tition between different involved magnetic energies. These energy terms arise from interac-
tions within the material or in its surfaces, or from the response to external stimulus as, for
example, magnetic or electric field, strain, and temperature. In the following, we will briefly
describe the main contributions to magnetic energy that are fundamental for the study of
domains and domain walls in magnetized thin films.

Zeeman energy

A magnetic moment ~µ is subject to a torque when a magnetic field ~Ha is applied. The energy
of this interaction between field and moment is the Zeeman energy, and it is minimum when
~Ha and ~µ are aligned. For a point magnetic moment in a space where ~Ha is applied [60],

EZ = −µ0 ~Ha · ~µ , (2.1)

where µ0 = 4π × 10−7 H/m is the magnetic permeability of vacuum.

For an extended, continuous, magnetic material, we shall integrate over its volume,
taking into account that the magnetic moment of an infinitesimal volume dV is ~MdV ,
where ~M is the local magnetization. The Zeeman energy for a volume V immersed in a
space where ~Ha is applied is then

EZ = −µ0

∫
V

~Ha · ~MdV . (2.2)
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Exchange energy

As we have mentioned above, magnetism of materials is originated mainly by the intrinsic
spin of electrons. The intense spontaneous magnetization that arises in ferromagnetic ma-
terials is originated by the exchange interaction between electron spins, which is explained
by the Pauli exclusion principle [53].

In an array of spins ~Si interacting between pairs
(
~Si, ~Sj

)
with interaction energies Jij,

the exchange energy is expressed by the Heisenberg Hamiltonian [54]

H = −
∑
i 6=j

Jij ~Si · ~Sj . (2.3)

If Jij is positive, then the interaction between spins i and j will favor the parallel, ferro-
magnetic, orientation of these two spins. If Jij is negative, the interactions will favor an
anti-parallel, anti-ferromagnetic, orientation.

In a micromagnetic approach [1, 2], we consider that a magnetic material is a continuous
medium with magnetization of uniform magnitude | ~M | = Ms, where Ms is the saturation
magnetization. In this context, the strength of the exchange interaction is quantified by
the exchange stiffness A. For a ferromagnetic material, the exchange energy is lowest if
magnetization direction is uniform and grows in regions where uniformity is not satisfied.
The total exchange energy in a volume V of a magnetic material can be expressed as [2]

Eex =
∫
V
A
[
(∇mx)2 + (∇my)2 + (∇mz)2

]
dV , (2.4)

where (mx,my,mz) = ~M/Ms. In this last expression, ~m = (mx,my,mz) is a unit vector,
i.e. |~m| = 1.

The exchange interaction that we have just discussed, which favors uniform magnetic
structures, is a symmetric interaction: its magnitude depends only on the absolute value
of the angle between interacting spins and on a scalar quantity Jij (see equation (2.3)).
A higher order, antisymmetric exchange term playing an important role in the physics of
magnetic thin films is the so-called Dzyaloshinskii-Moriya interaction (DMI) [55, 56]. This
energy term is present in systems with low symmetry and favors not-uniform, chiral magnetic
configurations [57, 59]. It can be expressed microscopically as [56]

EDMI = −
∑
i<j

~Dij ·
(
~Si × ~Sj

)
, (2.5)

where ~Dij is an interaction vector whose magnitude is nonzero only if the magnetic sys-
tem presents a broken spatial symmetry. The direction of ~Dij depends on the symmetry
properties of the system.

The Dzyaloshinskii-Moriya interaction is usually relevant in magnetic thin films with
lack of inversion symmetry [57, 61, 62]. This affects strongly the internal structure and the
behavior of magnetic domain walls under a driving force [63–66] and therefore has to be
considered in the study of their dynamics and morphology.
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Figure 2.2: Demagnetizing field in a uniformly magnetized material. Schematic
representation of a material with magnetization ~M which generates a demagnetizing field
~HD due to the accumulation of magnetic charges in the two extremes, illustrated with signs
+ and −.

Dipolar energy

The magnetization ~M in a magnetized sample generates itself a magnetic field ~HD, both
outside (the so-called stray field) and inside the material (demagnetizing field). In an
uniformly magnetized material the demagnetizing field is opposite to the magnetization and
arises due to the accumulation of effective magnetic charges in the borders, as shown in
figure 2.2.

The presence of a demagnetizing field and its Zeeman interaction with magnetization
tends to prevent the existence of uniformly magnetized regions. The energy of this interac-
tion is

ED = −µ0

2

∫
V

~HD · ~MdV , (2.6)

where the factor 1/2 arises due to the fact that the field ~HD is generated by ~M itself [6],
and integration is performed in the volume of the magnetized sample.

The demagnetizing field magnitude and its distribution in space depends strongly in
the shape of the magnetized volume. For example, if the effective negative and positive
magnetic charges are relatively close to each other, its magnitude will be bigger, what
favors the orientation of magnetization in the direction of the longest axis of a magnetic
sample. This gives rise to the concept of shape anisotropy that we will discuss below.
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For an ellipsoidal material uniformly magnetized in the direction of one of its axes, ~HD

is uniform [6]. In this context, we can easily calculate the magnetic dipolar energy. For a
sphere, the demagnetizing field is ~HD = − ~M/3 = −(Ms/3)~m. For an infinitely thin film,
~HD = − ~M cos θ, where θ is the angle between ~M and the film’s normal. Then, if ~M is
out-of-plane, ~HD = − ~M and

ED = µ0

2 M
2
s V , (2.7)

where V is the total volume of the film. If ~M is in-plane, HD = 0 and ED = 0. Consequently,
dipolar energy ED favors an in-plane magnetization, as it is minimum if magnetization lies
in the plane of the thin film, and maximum if it points normal to it. Similarly, for an
infinitely long wire, ~HD = −( ~M/2) sin θ, where θ is the angle between ~M and the wire.
Then, dipolar energy ED favors a magnetization orientation parallel to the wire. Later in
this chapter, in sections 2.1.3 and 2.2.1, we shall recall these concepts for the energetical
analysis of domain walls in thin films.

Anisotropy energy

The shape-dependent dipolar energy that we have just mentioned is an example of magnetic
anisotropy called shape anisotropy. Generally, magnetic anisotropies consist on the existence
of “easy” and “hard” directions for the magnetization. If the anisotropy is uniaxial, i.e. if
the associated energy EK can be expressed as a function of the angle between ~M and one
particular direction, then we can write

EK =
∫
V
Ku sin2 θ dV , (2.8)

where Ku is the anisotropy energy per unit volume and θ is the angle between ~M and the
anisotropy axis k̂. If Ku > 0, then k̂ is an easy axis. If Ku < 0, then k̂ is a hard axis and
~M will tend to lie in the plane which is perpendicular to k̂.

There are several possible origins of magnetic anisotropy, besides the shape dependent
anisotropy that we have already discussed. Some examples are the crystallographic and
surface properties, which may generate magnetic anisotropies due to mechanisms such as
spin-orbit coupling and orbital hybridization [28, 52, 67].

The magnetic thin films that we study in this thesis present an out-of-plane magnetic
anisotropy, this is Ku > 0 with k̂ = ẑ, where ẑ is the film’s normal direction. In the studied
samples, this mechanism overcomes the shape anisotropy and therefore ẑ is the effective
easy axis [28, 68, 69]. In this context, the effective uniaxial anisotropy Keff results from
a competition between the energies corresponding to the out-of-plane anisotropy Ku and
the dipolar energy corresponding to the thin film, given by equation (2.7), which favors an
in-plane magnetization. Consequently, we may write

Keff = Ku − µ0M
2
s /2 , (2.9)

with Ku > µ0M
2
s /2 and therefore Keff > 0.
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Figure 2.3: Magnetic domains structure minimizing dipolar energy. In this exam-
ple, four uniformly magnetized regions are formed, resulting on zero global magnetization.
Magnetic charges in the borders of domains are balanced and thus the demagnetizing field
is minimum.

2.1.3 Magnetic domains and domain walls

The presence of different contributions to the total energy discussed above induces magnetic
systems to adopt suitable configurations in order to minimize the total energy. In the
following we will discuss how the competition between symmetric exchange, expressed by
equation (2.4), and the magnetic dipolar energy, equation (2.6), leads to the formation of
magnetic domains, i.e. to the appearance of several uniformly magnetized regions within a
material.

Let us consider a uniformly magnetized sample, as it was shown in figure 2.2. Shape
anisotropy induces magnetization to point in the sample’s longest direction, and exchange
energy favors the uniform magnetization. However, dipolar energy is considerable as unbal-
anced magnetic charges appear on the extremes, generating a demagnetizing field ~HD. This
relevant energy contribution is significantly reduced if different regions of uniform magne-
tization are formed within the sample, as illustrated in figure 2.3. In this configuration,
the sample’s global magnetization is zero, what results in a minimum stray field. Mag-
netic charges are balanced in the borders of uniformly magnetized regions and thus the
demagnetizing field is minimum.

Regions of uniform magnetization illustrated in figure 2.3 are the so-called magnetic
domains, and the limiting surfaces between these regions are called domain walls. Magnetic
domains may adopt a huge variety of shapes, according to the sample’s geometry and to the
role of all the mentioned magnetic energies [1, 2]. The internal structure of magnetic domain
walls is also very rich, as they constitute regions in which magnetization is not uniform,
changing rapidly as a function of position between configurations of adjacent domains. For
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Figure 2.4: Bloch and Néel Walls in a thin film with perpendicular anisotropy.
Schematic representation of the internal magnetization in (a) a Bloch wall and (b) a Néel
wall. The region corresponding to the domain wall is indicated in both cases as a shaded
area of width δ.

this reason, domain walls have an associated energetic cost corresponding both to exchange
energy, equation (2.4), and anisotropy energy, equation (2.8).

Let us now consider the case of a magnetic thin film with perpendicular anisotropy,
i.e. where magnetization points out of the sample’s plane. As pointed out above, dipolar
energy is reduced if several magnetic domains are formed. Their magnetization, due to the
perpendicular magnetic anisotropy, may point “up” or “down” with respect to the sample’s
plane. In this context, magnetic domain walls are formed between these two types of
domains. When crossing a domain wall, magnetization will progressively rotate in space.
We may mention two particular ways in which this transition can occur, which are illustrated
in figure 2.4. These two particular cases are the so-called Bloch and Néel walls.

The straight domain walls illustrated in figure 2.4 may be seen as vertical planes of
width δ which separate the two adjacent domains. Within Bloch domain walls (fig. 2.4(a)),
magnetization turns parallel to the plane of the domain wall when crossing from “up” to
“down”. In a Néel domain wall, in contrast, magnetization rotates in a plane which is
perpendicular to the domain wall (fig. 2.4(b)).

In order to analyze the plausibility of each of these two particular domain wall configura-
tions for a perpendicularly magnetized thin film, let us make some energetic considerations.
The domain wall can be seen as a region of in-plane magnetization which has a length L,
a height equal to the film thickness t and a width δ which corresponds to the distance in
which magnetization turns between uniform configurations of the two domains, with L� t
and L � δ [70]. Consequently, shape anisotropy of the domain wall will favor a configu-
ration in which its internal magnetization points along its long direction, i.e. it will favor
a Bloch configuration. On the contrary, Néel configurations are not favored by the dipolar
energy as magnetic charges are accumulated in both sides of the domain wall. However,
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evidences of the existence of Néel domain walls in magnetic thin films have been reported
in many systems [63–65, 71, 72]. These observations are explained by the existence of rele-
vant Dzyaloshinskii-Moriya interactions, which favor Néel domain walls of defined chirality
affecting both their static and dynamic properties [66, 73].

We have just presented the concept of magnetic domain walls and discussed their basic
static properties. In the following section, we will discuss in more detail the micromagnetic
theory of domain walls. We shall start by presenting an analytical study on their internal
structure which will permit us to quantify the domain wall energy and width. Afterwards,
we shall thoroughly analyze the domain wall dynamics under the action of an external force
in the framework of a simple micromagnetic model, which does not take into account the
action of pinning and temperature.

2.2 Micromagnetism of domain walls

In this section, we will consider the case of a planar domain wall in a continuous medium of
saturation magnetization Ms and effective uniaxial anisotropy Keff in the ẑ direction. We
start by discussing the domain wall magnetization profile in a static situation. Afterwards,
we shall present and discuss the dynamics of this domain wall when subject to an external
driving force.

2.2.1 Domain wall static profile

Let us consider a domain wall which is centered at y = 0 (in the xz plane), separating the
space in two semi-infinite regions, y > 0 and y < 0. Within the domain wall, magnetization
~M turns as a function of y, from ~M = +Ms ẑ to ~M = −Ms ẑ in a characteristic length
δ that corresponds to the domain wall width. We will therefore describe the domain wall
magnetization profile through a one-dimensional model, as a function of the coordinate y.
As | ~M | = Ms, we are only interested on the polar coordinates (θ, φ), defined relative to the
z axis as shown in figure 2.5(a).

The local energy per unit volume of the one-dimensional domain wall may be written
as the sum of the local exchange energy and the local anisotropy energy (see equations (2.4)
and (2.8)), in the following way [2]

w = wA + wK = A

(∂θ
∂y

)2

+
(

sin θ ∂φ
∂y

)2
+Keff sin2 θ . (2.10)

In order to find an analytical, static solution for θ(y) and φ(y), it is necessary to consider the
condition of static equilibrium in which torques are zero or, equivalently,

∫
w dy is stationary.
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Figure 2.5: Static profile of a one-dimensional domain wall. (a) Polar coordinates
(θ, φ), relative to the uniaxial anisotropy axis ẑ, for describing the magnetization direction.
(b) Domain wall profile as a function of y in the one-dimensional model. The plane formed
by ~M and ẑ is fixed and therefore φ = ψ where ψ is a constant. The angle θ varies from 0
to π as a function of y according to equation (2.12).

The resulting analytical solution is [2]

φ(y) = ψ = constant (2.11)
θ(y) = 2 arctan [exp(y/∆)] , (2.12)

where
∆ =

√
A/Keff (2.13)

is the wall width parameter. This result is shown schematically in figure 2.5(b). Note that,
as φ(y) = ψ is a constant, magnetization rotates as a function of y in a vertical plane
defined by ψ. If ψ = 0, π, the magnetization profile corresponds to a Bloch domain wall,
while ψ = π/2, 3π/2 corresponds to a Néel domain wall.

The analytical solution for θ(y) is plotted in figure 2.6(a). The z component of the
magnetization, which may be calculated as

Mz(y) = Ms cos θ(y) , (2.14)

is plotted in figure 2.6(b). Note that the actual domain wall width in which most of the
magnetization rotation occurs is δ = π∆. The fact that δ ∼

√
A/Keff is consistent with the

observation that exchange favors a gradual turn on magnetization, as it pushes for parallel
orientations of adjacent spins, while uniaxial anisotropy favors a rapid turn, as it induces
spins to point in the ẑ direction.

We finally may obtain the total anisotropy and exchange energy of the domain wall
substituting equations (2.11) and (2.12) in equation (2.10) and integrating in all space. The
resulting total energy per unit area is [2]

σ0 = 4
√
AKeff . (2.15)
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Figure 2.6: Analytical solution for the static profile of a one-dimensional domain
wall. (a) θ (equation (2.12)) and (b) Mz (equation (2.14)) as a function of y in units of
the wall width parameter ∆. The actual domain wall width δ = π∆ in which most of the
magnetization rotation occurs is indicated.

This shows that the existence of domain walls constitutes an energy cost both for the
exchange and the anisotropy energies. As mentioned above, this energy cost is usually
convenient, as it is compensated by a decrease on the dipolar contribution which may result
in a lower total energy. We may alternatively write, using (2.13) and (2.15),

σ0 = 4∆Keff . (2.16)

Equation (2.10) only considers uniaxial anisotropy and exchange energy. In order to ac-
count for the magnetostatic energy of the domain wall, which arises from the demagnetizing
field generated by the domain wall itself, we shall add a term [2]

wD = µ0

2 M
2
s sin2 φ sin2 θ . (2.17)

This term evidences that, if no other energy terms are relevant, the equilibrium static domain
wall profile corresponds to a Bloch domain wall, in which φ(y) = ψ = 0, π, resulting on
wD = 0. The total domain wall energy σ0 given by (2.15) is thus the energy per unit area
of a one-dimensional Bloch domain wall.

In the following, we will discuss how a magnetic domain wall reacts under an applied
magnetic field, in the context of the one-dimensional model. We shall start by presenting
the Landau-Lifshitz-Gilbert equation for magnetization dynamics, which is the basis of the
micromagnetic approach to domain wall dynamics theory.

2.2.2 Landau-Lifshitz-Gilbert equation

As magnetization is associated to an angular momentum, its dynamics under an applied
field may be approached taking as a starting point the fundamental mechanical law for an
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Figure 2.7: Schematic representation of magnetization dynamics according to the
Landau-Lifshitz-Gilbert equation. Magnetization ~M precesses under an effective field
~Heff according to the term −µ0γ ~M × ~Heff . Meanwhile, dissipative effects given by the term
(α/Ms) ~M × ~̇M induce magnetization to progressively align with ~Heff , approaching a lower
energy configuration.

angular momentum ~L under an applied torque ~τ , ~̇L = ~τ . A volume of magnetic moment ~µ
has an associated angular momentum1 which may be written as ~L = −~µ/γ, where γ is the
gyromagnetic ratio [2]. Therefore,

− ~̇µ/γ = ~τ . (2.18)
The torque ~τ may be separated on conservative and dissipative terms [2]. The conservative
one is µ0~µ × ~Heff , where ~Heff is an effective field resulting from the applied field, magnetic
anisotropy, exchange stiffness, demagnetizing field, etc. The dissipative term, the so-called
damping torque, may be written as −α~µ × ~̇µ/γ|~µ|, where α is the Gilbert damping pa-
rameter [74]. This term is a phenomelological representation of dissipative effects [2]. As
magnetization ~M is the magnetic moment per unit volume, we can re-write these equa-
tions in terms of ~M . The resulting equation for the dynamics of magnetization ~M is the
Landau-Lifshitz-Gilbert equation [74, 75], which may be written as

~̇M = −µ0γ ~M × ~Heff + α

Ms

~M × ~̇M . (2.19)

Let us now discuss the physical meaning of this equation. If no effective field ~Heff
exists, or if it is parallel to ~M , then ~M × ~Heff = 0. In this case, the equation is satisfied for

1This angular momentum of electrons is mainly originated on their spin, with corrections due to orbital
motion [2].
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~̇M = 0, i.e. no dynamics is induced. On the contrary, if there exists a finite component of
~Heff perpendicular to ~M , the term −µ0γ ~M × ~Heff 6= 0 induces a precession of magnetization
around ~Heff , as indicated in figure 2.7. This precession corresponds to a component of
~̇M which is perpendicular to ~M and ~Heff . The induced dynamics results in a non-zero
dissipative component (α/Ms) ~M× ~̇M which prompts magnetization to align with ~Heff while
it precesses (see figure 2.7). The resulting trajectory of magnetization is spiral-like, finally
arriving to a static situation when ~M aligns with ~Heff . This corresponds to the configuration
of lowest energy, as EZ ∼ − ~M · ~Heff (see equation (2.2)). The magnitude of ~Heff controls
the velocity of precession, while the magnitude of α determines how rapidly dissipation will
take place until reaching the lowest energy configuration.

Landau-Lifshitz-Gilbert equation is the basis of magnetization reversal and domain
wall dynamics theory. Furthermore, the understanding of mechanisms of precession and
damping are crucial both from the fundamental and applied points of view [2, 11, 12, 76].
In the following, we will present the main concepts of the domain wall dynamics theory in
the one-dimensional model.

2.2.3 1D model for field-driven domain wall dynamics

In order to start our discussion on the problem of domain wall motion, we present in this
section the so-called q-φ model. This model takes as starting point the domain wall profile
expressed by equations (2.11) and (2.12), now considering that the azimuthal angle is a
function of time φ(t) while

θ(y, t) = 2 arctan [exp ((y − q(t))/∆)] , (2.20)
where q(t) is a displacement parameter indicating the position of the wall center in the y
direction, normal to the domain wall. This equation considers that the θ(y) profile, which
is plotted in figure 2.6(a), is static with respect to the position q(t). In other words, do-
main wall moves with a rigid θ(y) profile2. Assuming this domain wall profile and integrating
Landau-Lifshitz-Gilbert equation (2.19) for the coordinates (θ(y, t), φ(t)) over the wall thick-
ness, it is possible to describe domain wall dynamics in terms of only two parameters, q(t)
and φ(t). Two fundamental differential equations for the partial derivatives of the domain
wall energy per unit area σ with respect to q and φ are obtained [2]:

∂σ

∂q
= −2Ms

γ

(
φ̇+ α

∆ q̇
)
, (2.21)

which accounts for the “pressure” over the domain wall that induces its normal displacement
given by q, and

∂σ

∂φ
= 2Ms

γ

(
q̇ − α∆φ̇

)
, (2.22)

2This approximation is valid whenever the domain wall structure is primarily determined by anisotropy
and exchange forces [2]. A correction to this rigid structure that takes into account domain wall dipolar
energy may be made by considering that the domain wall width parameter depends on the wall’s internal
magnetization and is given by ∆(φ) =

√
A/(Keff + (µ0M2

s /2) sin2 φ) [77].
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which corresponds to the torque over the in-plane domain wall magnetization given by φ.

In order to evaluate equation (2.21), we consider that the pressure over the domain
wall is given by an applied field of magnitude Ha in the ẑ direction. If Ha > 0, this
field energetically favors the left side domain (see figure 2.5) destabilizing the wall from
its static equilibrium. In this context, in accordance with (2.2), the rate of energy change
with respect to the domain wall position due to the complete inversion of magnetization is
∂σ/∂q = −2Msµ0Ha [2], and then

φ̇ = γµ0Ha −
α

∆ q̇ . (2.23)

This equation shows that the applied field induces the wall magnetization to precess in its
plane at a velocity equal to γµ0Ha. The term (α/∆)q̇ arises due to the damping term of
Landau-Lifshitz-Gilbert equation (2.19).

In order to evaluate equation (2.22), we may consider the following expression for the
wall energy σ, obtained by integrating the local anisotropy, exchange and dipolar energies
given by equations (2.10) and (2.17):

σ = σ0 + µ0M
2
s∆ sin2 φ , (2.24)

where σ0 is the Bloch domain wall energy given by (2.15). We thus find that ∂σ/∂φ =
µ0M

2
s∆ sin (2φ), and then

1
∆ q̇ = γ

2µ0Ms sin (2φ) + αφ̇ . (2.25)

This equation shows that wall motion, given by the velocity q̇, is induced by a torque over the
wall magnetization. The conservative term, proportional to Ms sin (2φ), corresponds to the
torque induced by the wall’s dipolar field, while the dissipative contribution, proportional
to αφ̇, arises from a damping torque [2].

Solving equations (2.23) and (2.25) permits to obtain predictions for the domain wall
velocity q̇ vs. applied field Ha dependence, in the framework of the micromagnetic one-
dimensional model. In the following we will present the solutions of these equations.

Steady regime

Let us first consider solutions of equations (2.23) and (2.25) for φ̇ = 0, i.e. for a stationary
in-plane magnetization of the domain wall. In this case,

q̇ = γ∆
α
µ0Ha (2.26)

and
sin (2φ) = 2Ha

αMs

. (2.27)
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These two equations correspond to the so-called steady regime of domain wall motion in
which, for a fixed applied fieldHa, internal magnetization presents a stationary configuration
given by (2.27) while domain wall velocity is proportional to µ0Ha, as indicated by (2.26).
The proportionality factor is the steady state domain wall mobility, given by

mst = γ∆
α

. (2.28)

Walker breakdown

If 2Ha > αMs, the solution expressed by equation (2.27) does not stand, meaning that there
is no solution for φ̇ = 0. The highest stationary φ value is φc = π/4, at a critical field

Hw = αMs

2 (2.29)

for which the steady motion loses its stability, called the Walker field [78]. The transition
from the steady state of φ̇ = 0 to the regime of φ̇ 6= 0 is the so-called Walker breakdown.

For a domain wall in a system of reduced dimensions like a magnetic thin film, the
Walker field needs to be corrected. This is due to its direct relationship with the demagne-
tizing field of the domain wall, strongly dependent on its dimensions. For a domain wall in
a magnetic thin film of thickness t [79],

Hw = αMs

2
t

t+ ∆ . (2.30)

This correction to the Walker field is relevant only if t is sufficiently small to be comparable
with ∆, and evidences that the Walker breakdown takes place at a lower field for systems
of reduced thickness.

Precessional regime

For Ha > Hw, solutions of equations (2.23) and (2.25) correspond to φ̇ 6= 0. The general
solution for φ may be obtained by integrating the differential equation

φ̇(t) = 1
1 + α2

[
γµ0Ha −

αγ

2 µ0Ms sin (2φ(t))
]
. (2.31)

This equation shows that for Ha > Hw the wall’s internal magnetization precesses at a non-
uniform velocity φ̇(t) > 0. This state is therefore called the precessional regime of domain
wall motion.

As for a fixed Ha, φ̇(t) is not stationary, q̇(t) is not stationary either. The mean domain
wall velocity v is obtained by integrating q̇(t) in a period of precession of the wall’s internal
magnetization,

v ≡ 〈q̇(t)〉 = γ∆
α
µ0Ha −

∆
α

〈
φ̇(t)

〉
. (2.32)
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For the limit of a very big driving force, i.e. for Ha � Hw, we may find an asymptotical
solution given by

φ̇ = 1
1 + α2γµ0Ha , (2.33)

where we have neglected the term (αγ/2)µ0Ms sin (2φ(t)) with respect to γµ0Ha in equation
(2.31). Consequently, we obtain for the domain wall velocity

v = q̇ = α2

1 + α2
γ∆
α
µ0Ha . (2.34)

In this asymptotical precessional regime, φ̇ tends to a stationary value and v is proportional
to µ0Ha, with a proportionality factor

masp = α2

1 + α2mst . (2.35)

As α2/(1 + α2) < 1, domain wall mobility is maximum in the steady regime and drops
from mst to masp as the applied field increases above Hw. This fact is very important for
technological applications, as it shows that the most efficient domain wall motion is achieved
only for Ha < Hw.

In figure 2.8(a), we summarize the result for the velocity vs. applied field dependence
in the framework of the one-dimensional q-φ model. The steady state of highest mobility is
evidenced for Ha < Hw. Above the Walker breakdown, the mean velocity v drops abruptly
due to the precession of domain wall’s internal magnetization, tending asymptotically to a
new linear dependence of lower mobility. Additionally, units are normalized in terms of γ,
∆ and Hw. Therefore, the only variable controlling the curve shape is the Gilbert damping
parameter which in this case is α = 0.4. As indicated in the figure, α controls the relation
between the steady state and the asymptotical precessional state mobilities.

The results that we have just presented are the basis of field-driven domain wall dy-
namics. As we will see throughout this thesis, behavior changes considerably when disorder
and temperature are relevant and therefore, experimental domain wall velocity vs. applied
field curves are generally different from the curve shown in figure 2.8(a). However, the
Walker breakdown is experimentally observed in a variety of systems. In figure 2.8(b), we
show an example of a clear observation of this phenomena in a ferromagnetic nanowire of
Ta(3 nm)/Py(20 nm)/Ta(5 nm) with in-plane magnetic anisotropy [80]. The first observa-
tion of the Walker breakdown in thin films with perpendicular anisotropy was made by A.
Dourlat and collaborators in 2008 [81]. The studied system in that case was the diluted
ferromagnetic semiconductor (Ga,Mn)As, very similar to one of the systems studied in this
thesis (see section 2.5.2).

In the following, we will discuss how the q-φ model is modified when domain wall
motion is driven by both an applied field and a spin-polarized current via the spin-transfer
torque (STT) mechanism. This is an important issue in the framework of this thesis, as in
chapter 6 we present our studies on simultaneous field- and STT-driven domain wall motion
in (Ga,Mn)(As,P)/(Ga,Mn)As.

21



2.2. Micromagnetism of domain walls General concepts and framework

0 1 2 3 4 5

Ha/Hw

0.0

0.5

1.0

1.5

2.0

2.5

v
/
γ

∆
µ

0
H
w

1/α α/(1 + α2)

Figure 2.8: Velocity vs. field dependence and Walker breakdown of a one-
dimensional domain wall. (a) We plot v vs. Ha in normalized units, for α = 0.4.
Below the Walker breakdown, for Ha < Hw, the domain wall moves in the steady state
with v/γ∆ = µ0Ha/α, reaching a velocity peak for Ha = Hw. For Ha > Hw, in the preces-
sional regime, mobility drops and velocity tends asymptotically to v/γ∆ = µ0Haα/(1+α2).
(b) Experimental curve for a field-driven domain wall in a ferromagnetic nanowire of
Ta(3 nm)/Py(20 nm)/Ta(5 nm), evidencing the Walker breakdown and the steady and pre-
cessional regimes. Adapted from [80].

2.2.4 Domain wall dynamics driven by field and current

An electrical current flowing through a magnetized material transports not only charge
but also angular momentum, as the spin of flowing electrons is affected by the magnetized
medium in which they move [82]. If these spin-polarized currents traverse a magnetic domain
wall, they transfer angular momentum in a way that may be strong enough to produce
domain wall motion [19, 20, 22, 23, 83], as confirmed in many laboratories [24–27, 84–86].
Furthermore, the spin-transfer phenomena is the operation basis of several devices as, for
example, the spin-transfer torque magnetic random access memories (STT-MRAM) [11]. In
the following, we will present how the Landau-Lifshitz-Gilbert equation and the q-φ model
are modified when the torque on magnetization is generated not only by an applied field
but also by spin-polarized currents.

Let us consider a spin-polarized charge current ~J = −Jŷ flowing in a one-dimensional
domain wall, like the one illustrated in figure 2.5(b), where J > 0 and then electrons flow in
the +ŷ direction. The spin polarization of the current is P = (n↑− n↓)/(n↑+ n↓), where n↑
and n↓ are the number densities of electrons that are polarized in the directions parallel and
anti-parallel to ~M , respectively. The magnetic moment of each electron is gµB/2, where g is
the so-called g-factor and µB is the Bohr magneton. Consequently, the rate of spin transfer
per unit area is JPgµB/2e in the +ŷ direction. If we consider that a full and adiabatic
transfer of angular momentum occurs, then the rate of change of magnetization due to the
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spin-transfer torque is [23]
~̇M |STT = −gµBPJ2eMs

∂

∂y
~M . (2.36)

However, this adiabatic term is not enough to account for experimental results in domain
wall motion driven by spin transfer [23]. In 2004, S. Zhang and Z. Li [22] derived a new term
for the spin-transfer torque without assuming adiabaticity which permitted to consistently
interpret domain wall motion driven by spin-transfer torque. The Landau-Lifshitz-Gilbert
equation (2.19) may be modified in order to account for both the adiabatic and the non-
adiabatic terms of the spin-transfer torque in the following way [23]:

~̇M = −µ0γ ~M × ~Heff + α

Ms

~M × ~̇M −
(
~u · ~∇

)
~M + βST

Ms

~M ×
[(
~u · ~∇

)
~M
]
, (2.37)

where
~u = gµBPJ

2eMs

ŷ (2.38)

is the so-called spin-drift velocity. In equation (2.37), on the one hand, the term −
(
~u · ~∇

)
~M

is the generalization of equation (2.36), which corresponds to the adiabatic spin-transfer
torque. On the other hand, the term (βST/Ms) ~M ×

[(
~u · ~∇

)
~M
]
corresponds to the non-

adiabatic spin-transfer torque. The weight of this term is controlled by the parameter βST.

Based on equation (2.37) and following the same procedure that we described in 2.2.3,
we may obtain equations for the domain wall velocity q̇ and the azimuthal angle of the
wall’s internal magnetization φ, in the framework of the one-dimensional model. Then, the
generalization of equations (2.23) and (2.25) for field- and STT-driven domain wall motion
is [23]

φ̇+ α

∆ q̇ = γµ0Ha + βST

∆ u , (2.39)

which is proportional to the pressure on the domain wall, ∂σ/∂q, and

1
∆ q̇ − αφ̇ = γ

2µ0Ms sin (2φ) + 1
∆u , (2.40)

which is proportional to the torque on the domain wall magnetization, ∂σ/∂φ. These
equations show that the non-adiabatic spin-transfer torque acts only as a pressure over the
domain wall, while the adiabatic component acts only as a torque.

Steady regime

In the steady regime of domain wall motion, for φ̇ = 0, we find

v = q̇ = γ∆
α
µ0Ha + βST

α
u , (2.41)
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which may also be written as

v = mst

(
µ0Ha + βST

γ∆u

)
, (2.42)

where mst is given by (2.28). This shows that, in the steady regime, the non-adiabatic spin-
transfer torque acts as an effective contribution to the applied field of magnitude (βST/γ∆)u.
As in the field-driven case, in the steady regime the domain wall velocity is proportional to
the driving force.

For the stationary value of the azimuthal angle of internal magnetization φ, we find

sin (2φ) = 2
αMs

Ha + 2
γ∆µ0Ms

βST − α
α

u , (2.43)

which shows that the applied current contributes to the tilting of the wall magnetization
in the same direction as the applied field if βST > α, while it generates a negative tilting if
βST < α. In other words, the non-adiabatic contribution generates a field-like torque over
the internal magnetization, while the adiabatic spin-transfer acts over φ in the opposite way.

Walker breakdown

The condition for the Walker breakdown for field- and STT-driven domain wall motion
corresponds to the limit in which the stationary solution for φ loses its stability, i.e. for
sin(2φ) = ±1. This condition may then be written as

± µ0Hw = µ0Ha + βST − α
γ∆ u , (2.44)

where Hw is given by (2.29) (or (2.30) for a thin film).

Precessional regime

As discussed in 2.2.3, above the Walker breakdown φ precesses with a time-dependent
velocity φ̇(t), what results in a time-dependent q̇(t). This precessional regime occurs if∣∣∣∣∣µ0Ha + βST − α

γ∆ u

∣∣∣∣∣ > µ0Hw. (2.45)

In this scenario, the mean domain wall velocity may be calculated as

v ≡ 〈q̇(t)〉 = ∆
α

(
γµ0Ha + βST

∆ u−
〈
φ̇(t)

〉)
, (2.46)
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where the time integration is performed over a precession period and

φ̇(t) = 1
1 + α2

[
γµ0Ha + βST − α

∆ u− γα

2 µ0Ms sin (2φ(t))
]
. (2.47)

In the asymptotical precessional limit that corresponds to big driving forces, namely
|µ0Ha + ((βST − α)/γ∆)u| � µ0Hw, we may write

v = α2

1 + α2
γ∆
α

[
µ0Ha + 1

γ∆

(
βST + 1

α

)
u

]
, (2.48)

which is equivalent to

v = masp

(
µ0Ha + βST

γ∆u+ 1
αγ∆u

)
, (2.49)

where masp is given by (2.35). Interestingly, the adiabatic spin-transfer torque gives rise to
an additional term u/αγ∆ on the effective field corresponding to the precessional regime. As
discussed above, this is in contrast with its effect in the steady regime, where the adiabatic
spin-transfer torque does not contribute to the effective field and, in addition, exerts an
opposite torque on the domain wall magnetization.

As evidenced by this one-dimensional model for domain wall motion driven by field
and spin-transfer torque, the effect of a spin-polarized current on domain wall dynamics
depends strongly on the relation between the βST and α parameters, corresponding to the
non-adiabatic torque and the Gilbert damping parameter, respectively. This relation deter-
mines the relative importance of the non-adiabatic vs. the adiabatic spin-transfer torques.
Previous works [24, 26] have shown that these two parameters are similar in the diluted
ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P), i.e. βST ∼ α, evidencing
that in these materials both the adiabatic and the non-adiabatic contributions are of crucial
importance. Additionally, these works found that in these systems, α ' 0.25.

2.2.5 Limitations of micromagnetic theory and alternative approaches

Based on the above discussion, in chapter 6 we shall present our studies on domain wall dy-
namics driven simultaneously by field and spin-transfer torque in (Ga,Mn)(As,P)/(Ga,Mn)As,
while in chapter 4 we will address the field-driven dynamics in GdFeCo. However, we will
evidence that the experimentally accessible domain wall motion in thin films with perpen-
dicular anisotropy occurs in a context which is much more complex, where temperature
and sample inhomogeneity play a very important role. For this reason, the one-dimensional
model that we have presented and discussed in this section does not fully describe the
observed domain wall velocity vs. driving force characteristics. In addition, it does not
account for the morphological properties of domain walls, namely their roughness, which
results from the interplay between domain wall elasticity and sample disorder.
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These problems may be treated following diverse approaches with different levels of
complexity. The most detailed approach is to numerically apply the micromagnetic theory
to a more realistic scenario, in two or three dimensions, and accounting for the presence of
inhomogeneities and temperature [87, 88]. However, even if great progress has been made in
the last years [89], computational power is a huge limitation for performing simulations that
successfully represent the dimensions and time scale of real experiments, specially in the
regimes of slow domain wall motion. An alternative approach which is being developed for
magnetic domain walls in thin films in the last years is based on the Ginzburg-Landau theory
[90–92]. In this approach, the problem is simplified to a two-dimensional scalar field model
with a double-well potential. In contrast with the micromagnetic model, which lies in a
microscopic scale, the Ginzburg-Landau model permits to address problems in a mesoscopic
level, allowing the description of larger spatial and temporal scales while preserving a link
with microscopical parameters.

A third approach, which will be thoroughly described in the following section, consists
on the effective description of magnetic domain walls in the framework of the theory of
elastic interfaces in disordered media [3, 4]. This is the main theoretical framework in which
we are based throughout this thesis, and its power is founded on two main factors. One of
them is the description of a complex problem as the result of a competition between several
key features, which are the elasticity of the domain wall, the medium’s disorder, thermal
activation and the driving force. This permits to drastically simplify the problem without
losing the main ingredients that determine its physics. The second factor is its power for
revealing universal features and critical behaviors of domain wall dynamics and morphology.
As we will see in the following, this approach permits to successfully describe a wide variety
of interface phenomena in nature.

2.3 Elastic interfaces in disordered media

Disorder plays a fundamental role in diverse phenomena and gives rise to complex behaviors
whose description is usually challenging. In our work, we valorize the quest for complex and
realistic problems and our capability as human beings to appropriately assess them. There-
fore, from now on, disorder will be an omnipresent element throughout this manuscript,
responsible of much of the inherent complexity of our field of study.

The existence of a huge variety of interfaces, which separate regions of different char-
acteristics, is an evident feature of the natural world. Furthermore, the phenomena that
occurs at interfaces is usually very rich and complex, and the understanding of their physics
needs to be approached from new points of view, using tools which are different to those
that explain the behavior of the extended regions that they separate. The theory of elastic
interfaces in disordered media, which is part of the field of Statistical Physics, has permit-
ted to understand the dynamics and morphology of a wide variety of interfaces in nature.
Their two main characteristics are the elasticity, which tends to minimize the interface’s
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Figure 2.9: Examples of elastic interfaces in disordered media. (a) Cell colony front
[97], (b) wetting line over a rough surface [95], (c) magnetic domain wall in a thin film of
GdFeCo [39], (d) ferroelectric domain wall in Pb(Zr,Ti)O3 [102].

length or surface, and disorder, which pins the interface inducing it to adopt a rough shape.
Some examples of this type of interfaces are firefronts [93], wetting fronts [94, 95], fronts of
bacteria or cell colonies [96–98], fractures in solids [99, 100], earthquakes [101], ferroelectric
domain walls [102], and magnetic domain walls [103].

In figure 2.9, we show images corresponding to some of these phenomena. This figure
puts in evidence the fact that these interfaces have a similar morphology, characterized
by their roughness, even if the nature of the microscopic mechanisms that give rise to
each of them is completely different. The similarity between these interfaces is a result of
the coexistence of disorder and elasticity which, in each case, arise due to its particular
microscopic features. Furthermore, the length scale at which this phenomena occurs may
be absolutely different for each case, as shown in the figure. In addition, as we will see
in the following, these type of interfaces usually have the property of self-affinity, which
means that particular scale transformations keep the statistical properties of the interface
morphology invariant [3].

27



2.3. Elastic interfaces in disordered media General concepts and framework

0 x0 40 80 L
x [µm]

0

10

20

u
(x

)
[µ

m
]

`1

h1

`2

h2

Figure 2.10: Elastic line in a two-dimensional medium and notion of self-affinity.
The profile corresponds to a magnetic domain wall in a thin film of GdFeCo with perpen-
dicular anisotropy. For a given length `1 starting from a particular horizontal position x0,
we define h1 ≡ h(`1, x0). We do the same for another length `2, defining h2 ≡ h(`2, x0).
In order to obtain a function h(`), we shall integrate these quantities considering all the
possible starting positions x0 in the horizontal coordinate x. If the interface is self-affine,
the resulting h(`) follows the relation h(`) ∼ `ζ , where ζ is the roughness exponent.

2.3.1 Roughness characterization

Let us then focus on the morphology of elastic interfaces in disordered media. As we have
already noticed (see figure 2.9), they are rough, what arises due to the competition between
elasticity and disorder. Interfaces are less rough if the pinning forces induced by disorder are
weak with respect to elasticity, and more rough when the opposite occurs. Their morphology
may be assessed in the following way, which we exemplify graphically in figure 2.10. The
shown profile corresponds to a magnetic domain wall in a thin film of GdFeCo which may
be seen as an elastic line (a one-dimensional interface) lying in a two-dimensional disordered
medium. We consider that the elastic line, of a total horizontal length L, lies in the horizontal
direction x̂, with its vertical position described by a continuous, uni-valued function u(x).
Taking as a reference an arbitrary coordinate x0, and given an horizontal length `1, we look
for the minimum vertical height h1 ≡ h(`1, x0) necessary to cover a segment of the interface
within the rectangle of height h1 and length `1. We may repeat this procedure for different
lengths `, with 0 < ` < L − x0 and therefore define a continuous function h(`, x0). By
integrating over x0, we may obtain

h(`) = 1
L− `

∫ L−`

0
h(`, x0) dx0 , (2.50)

which represents the height of the interface as a function of the segment size.

The function h(`) for an elastic line which lies in a two-dimensional disordered medium
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is usually expected to present particular statistical properties [3]. If it follows the scaling
relation h(`) ∼ `, then the interface is an isotropic fractal or a self-similar object. If
h(`) ∼ `ζ , with ζ > 0, then it is an anisotropic fractal, or a self-affine object. Here, ζ
is the so-called roughness exponent. Note that self-similarity is a particular case of self-
affinity, corresponding to ζ = 1. As we will further discuss later in this chapter, the ζ
value is crucial for the description of elastic interfaces as magnetic domain walls, and it is
characteristic of the universality class to which the interface belongs [4]. In the following,
we shall formally define several quantities and functions which are closely related to the
concept of roughness. Particularly, these definitions will serve us to perform experimental
measurements of parameters such as the roughness exponent ζ for magnetic domain walls,
which is an important subject of this thesis.

In order to adequately characterize the roughness of an elastic line in a two-dimensional
medium, it is important to emphasize that we are interested on making a statistically rele-
vant quantification. This means that the actual quantities and functions that characterize
the roughness shall be obtained as a statistical average of multiple realizations of the elastic
line, called an average on disorder [104, 105]. Let us take as an example the case of the
magnetic domain wall profile shown in figure 2.10. Disorder in the shown region is mod-
eled as an energetic landscape that is statistically uniform and quenched, i.e. it does not
change as a function of time. The statistical uniformity of disorder means that there are
no preferential regions for the domain wall to lie. Conversely, the wall may adopt many
different configurations which result energetically favorable. Thus, the configuration shown
in figure 2.10 is only one realization which does not fully describe the statistical properties
of the physical problem. Therefore, in order to obtain a statistically relevant measure of
domain wall roughness, we shall make an average on disorder in which we consider multiple
functions u(x) corresponding to different walls obtained under the same conditions. In the
following, we formally define several quantities in which we note this average as an over-line,
i.e. · · ·.

Global width

The roughness of an interface lying over a length L and described by an uni-valued function
u(x) may be characterized by its global width, which measures its fluctuations in a given
disordered landscape. This quantity is a function W (L) of the interface size L, and it is
defined as [104, 105]

W (L) =
〈
[u(x)− 〈u(x)〉L]2

〉
L

1/2
, (2.51)

where · · · indicates an average on disorder and 〈· · ·〉L denotes a spatial average over the full
length L, i.e. 〈f(x)〉L = L−1 ∫ L

0 f(x) dx.

For a self-affine interface, the global width scales as its size L following the relation

W (L) ∼ Lζ , (2.52)
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where ζ is the roughness exponent. This scaling relation is valid whenever the only relevant
characteristic length scale is L. However, for most rough interfaces there exists a character-
istic correlation length ξ < L, given by the so-called Family-Vicsek scaling form [104–106],
above which the relation (2.52) is not valid. In addition, as we will discuss later, other
relevant scales may play a role, resulting on more complex scaling relations.

The roughness exponent ζ of a given type of self-affine interface may be measured by
calculating the global width as a function of the interface size L and observing the lnW (L)
vs. lnL dependence in an appropriate range. Then, according to (2.52), the resulting
slope corresponds to ζ. This procedure is usual when applied to numerically simulated
interfaces, but it requires a control of the interface size over several orders of magnitude.
Consequently, its implementation for an experimentally observed interface is generally not
possible. This issue may be tackled by defining local quantities as the local width and the
displacement-displacement correlation function, which we present in the following. These
quantities measure, respectively, interface fluctuations and correlations over a distance r
which is smaller than the total size L.

Local width

The local width w(r) is a generalization of the global width, and it is defined as [104, 105]

w(r) =
〈
[u(x)− 〈u(x)〉r]

2
〉
r

1/2
, (2.53)

where 〈· · ·〉r indicates a spatial average over regions of size r within the interface size L. This
function is qualitatively similar to the function h(`) that we have graphically defined in figure
2.10. Besides, the limit r = L corresponds to the global width, this is w(r = L) = W (L).
Therefore, the function w(r) contains more information about the interface fluctuations
than W (L).

It has been found that in many cases, w(r) also exhibits a power-law behavior which
is characterized by the same scaling exponents as those that characterize the global width
W (L) [104, 105]3. Consequently, if W (L) satisfies the scaling law (2.52), it is expected that

w(r) ∼ rζ . (2.54)

Displacement-displacement correlation function

Another way to assess the roughness of an interface is provided by the displacement-
displacement correlation function B(r) of the u(x) profile, which measures the correlation

3However, there exist cases of anomalous roughness in which the local and global exponents are different
[107].
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between different points of the interface as a function of the horizontal distance r between
them. It is defined, for a given u(x), as

B(r) = 1
L− r

∫ L−r

0
[u(x+ r)− u(x)]2dx , (2.55)

where r belongs to the range 0 < r < L. The scaling law for B(r) for the case of a self-affine
interface, in absence of characteristic lengths other than the system size, is [104, 105]

B(r) ∼ r2ζ . (2.56)

The function B(r) constitutes an appropriate way to experimentally measure the rough-
ness of an elastic line in a two-dimensional disordered medium. In order to obtain a statisti-
cally relevant measurement, it is necessary to consider multiple B(r) functions corresponding
to different interfaces obtained in the same conditions [39]. In chapter 5, we will present
domain wall roughness measurements which are based on the definition (2.55).

Structure factor

Displacement correlation functions may be also computed in the reciprocal space, what
often results very useful. The structure factor is the reciprocal-space counterpart of the
displacement-displacement correlation function, and it is defined as

S(q) = ũ(q)ũ(−q) , (2.57)

where
ũ(q) = 1

L

∫
u(x)e−iqxdx (2.58)

is the Fourier transform of u(x). The structure factor and the displacement-displacement
correlation function are related through

B(r) =
∫

[1− cos(qr)]S(q)dq
π
. (2.59)

For a self-affine interface, S(q) scales as

S(q) ∼ q−(1+2ζ) . (2.60)

The structure factor has been proven to be more appropriate for the roughness character-
ization than the displacement-displacement correlation function from the theoretical point
of view and in cases in which sufficient statistics are obtained. This is particularly relevant
when several scaling regimes exist, in which different roughness exponents have to be con-
sidered as a function of the observed length scale [40, 104, 105, 108]. As we will further
discuss in chapter 5, these different regimes are well separated in the S(q) dependence while
they are mixed in B(r). In addition, B(r) cannot account for super-rough interfaces in
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which ζ > 1 [107]. However, the experimentally obtained S(q) functions are generally too
noisy, what prevents the clear observation of the scaling law (2.60) and thus impedes the ζ
determination. For this reason, the roughness analysis of experimentally observed domain
wall profiles is based on computing the B(r) function. In this context, our discussion on
the observed domain wall roughness will be continuously linked to theoretical predictions
via the relationship between B(r) and S(q).

We have just presented the main fundamental concepts that permit us to quantitatively
analyze the morphology of an elastic line in a two-dimensional medium. Particularly, we have
defined the quantities and functions which are closely linked to the concept of roughness
and the determination of critical roughness exponents. Later, in 2.4.4, we shall present
theoretical predictions on this issue for magnetic domain walls in thin films, which is an
important subject for the scope of this thesis: in chapter 5, we will present our studies on
domain wall roughness in a thin film of GdFeCo. As domain wall roughness is closely related
to its dynamics, we shall first present the main theoretical concepts that constitute the basis
for studying the dynamics of driven elastic interfaces. In the following, we will discuss how
the main ingredients that we have already mentioned, namely elasticity, quenched disorder,
thermal activation and a driving force, may be expressed quantitatively in order to write a
stochastic equation of motion for an elastic interface.

2.3.2 Dynamical regimes of driven interfaces

Let us now consider an elastic line which lies in a two-dimensional disordered medium
and which is subject to an external, uniform, driving force. The two-dimensional medium
corresponds to the xu plane, and the elastic line is now described by a time-dependent
uni-valued function u(x, t) of size L in the x̂ direction. An instantaneous position may be
described by the u(x) function illustrated in figure 2.10, with x̂ the horizontal and û the
vertical direction. The driving force f is applied in the û direction.

In this context, the energy of the interface may be written as

E[u] =
∫ L

0
dx
[
c

2(∇u(x, t))2 + Up(x, u(x, t))− fu(x, t)
]
, (2.61)

where (c/2)(∇u(x, t))2 is the elastic energy with a stiffness constant c, Up(x, u(x, t)) is the
quenched pinning potential, and −fu(x, t) is the energy associated with the driving force
f [5]. This force is uniform and acts in the û direction. Then, the equation of motion is
obtained as γf∂tu(x, t) = −δE[u]/δu(x, t) + η(x, t), where γf is a microscopic friction and
η(x, t) is an uncorrelated white noise which accounts for the temperature T and satisfies
η(x1, t1)η(x2, t2) = 2γfkBTδ(x1 − x2)δ(t1 − t2). Therefore,

γf∂tu(x, t) = c∇2u(x, t) + Fp(u, x) + η(x, t) + f , (2.62)

where Fp(u, x) = −∂Up(u, x)/∂u is the pinning force. This is the so-called quenched
Edwards-Wilkinson equation [3, 4] and constitutes a paradigmatic model in order to de-
scribe a driven elastic interface in a disordered potential. As we will thoroughly discuss
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throughout this work, the values of the critical exponents that characterize the universal
behaviors of an interface phenomena are defined by the used model, what allows for the
classification of these phenomena in several universality classes [3].

In equations (2.61) and (2.62), elasticity is considered to be harmonic (i.e. only small
deformations are supposed to occur) and short-ranged. Additionally, correlations of the
pinning potential Up(u, x) are considered only in the û direction, not in the x̂ direction
[5]. Two different types of potential are usually considered, each of them giving rise to
an universality class [109]. In the so-called random-bond class, the interface moves in a
random short-range correlated potential Up(u, x) which acts locally in a range ξp which
is the correlation length of disorder. In contrast, in the so-called random-field class, the
interface is coupled with the potential Up(u, x) in an entire region delimited by u(x, t) [41].
Then, in the random-field universality class, Up(u, x) displays long-range correlations. From
now on, we shall consider that the quenched Edwards-Wilkinson (qEW) universality class
corresponds to random-bond disorder and short-ranged elasticity.

Another model is usually proposed: the so-called quenched Kardar-Parisi-Zhang (qKPZ)
universality class, which is claimed to appropriately describe interface growth processes when
lateral displacements are allowed [3, 110–112]. The difference between the qEW and the
qKPZ models is the nature of interface elasticity. In the qEW model, as we have just
mentioned, harmonic elasticity is considered, corresponding to the linear term c∇2u(x, t)
in equation (2.62). On the other hand, in the qKPZ model an additional nonlinear term
(λ/2) (∇u(x, t))2 is considered, where λ is a constant. The quenched Kardar-Parisi-Zhang
equation then reads

γf∂tu(x, t) = c∇2u(x, t) + (λ/2) (∇u(x, t))2 + Fp(u, x) + η(x, t) + f . (2.63)

The qEW and the qKPZ models, equations (2.62) and (2.63), permit to make predic-
tions on the interface velocity as a function of the driving force. The mean velocity v for a
given constant force f , which is usually experimentally accessible, corresponds to averaging
∂u(x, t)/∂t along the whole interface size L within a given time period ∆t.

In the following, we shall discuss the predictions that correspond to the qEW uni-
versality class. As we will further discuss in chapter 4, the differences between different
universality classes lie in the criticality, i.e. in the set of numerical values of critical ex-
ponents describing the power-law variation of observable quantities close to the so-called
reference states [5]. In figure 2.11(a), we illustrate the predictions of equation (2.62) for the
mean velocity v as a function of the force f [4]. Additionally, in figure 2.11(b) we present
the force-dependence of characteristic lengths that we will introduce below and are closely
related to the interface dynamics.
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Figure 2.11: Dynamical regimes and associated critical exponents of an elastic
interface in the quenched Edwards-Wilkinson model. (a) Mean velocity v vs. driving
force f . For T = 0, v 6= 0 only if f > fd. In the depinning transition, just above fd, velocity
grows as v ∼ (f − fd)β. For f � fd, v ∼ f . For T > 0, thermal activation induces non-zero
velocities even for 0 < f < fd. In the limit f → 0, which corresponds to the so-called creep
regime, ln v ∼ f−µ. For f = fd, velocity grows with temperature as v(fd) ∼ Tψ. This
is the so-called thermal rounding. For sufficiently high driving forces, in the flow regime,
the effects of temperature and disorder become negligible and v ∼ f . Adapted from [4].
(b) Characteristic lengths ` vs. driving force f , corresponding to coherent displacements
of interface segments (see figure 2.12). Avalanche size `av diverging as (f − fd)−νdep when
f → f+

d , corresponding to the depinning critical point at T = 0, and optimal length `opt
diverging as f−νeq when f → 0 and T > 0, corresponding to the equilibrium reference state.
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Flow regime

For sufficiently high driving forces velocity tends asymptotically to a proportionality with the
driving force which constitutes the so-called flow regime, i.e. v ∼ f (see figure 2.11(a)). This
limit of very high driving forces, in which disorder becomes negligible, may be modeled as
a straight interface lying in an homogeneous medium. Therefore, for the case of a magnetic
domain wall, the flow regime is in correspondence with the description of the one-dimensional
model that we have discussed in section 2.2.3, in which the driving force is proportional to
the applied field Ha. As evidenced in figure 2.8, the flow regime of magnetic domain walls
may show a much more complex behavior than the simple proportionality v ∝ f . This is due
to the fact that in the elastic line model, we do not take into account the internal structure
of the interface which, in the case of domain walls, gives rise to the Walker breakdown.
Simultaneously, as shown by the theoretical prediction of figure 2.11(a), temperature and
disorder crucially affect elastic line dynamics for relatively low driving forces. This evidences
that both scenarios must be considered in order to fully comprehend magnetic domain wall
dynamics in thin films.

Depinning transition at zero temperature

For zero temperature, i.e. if no thermal noise is considered, no net movement of the interface
occurs below a critical force fd which we call the depinning force (see figure 2.11(a)). Above
this critical point, velocity is expected to grow following a power-law behavior

v ∼ (f − fd)β , (2.64)

where β is a depinning critical exponent. This dynamic transition in which the driving
force overcomes the pinning force is the so-called depinning transition. Interestingly, it is
analogous to standard second-order transitions as the paramagnetic-ferromagnetic one, with
the particularity that in this case v instead of M is the order parameter and f instead of T
is the control parameter. Accordingly, β is the depinning order parameter critical exponent.

Slightly above fd, the motion of a given point in the interface is intermittent: it suc-
cessively experiences displacements at high velocities which are separated by periods of
no motion [5]. As in equilibrium second-order phase transitions, there exists a correlation
length that diverges for f → f+

d . This correlation length is manifested in the collective
nature of these displacement events: for f slightly above fd, large portions of the inter-
face of characteristic size `av successively experience coherent movements at large velocities
while most of the interface remains pinned (see figure 2.12). These coherent events are the
so-called depinning avalanches. As shown in figure 2.11(b), for T = 0, the size `av diverges
when f → f+

d as
`av ∼ (f − fd)−νdep , (2.65)

where νdep is the depinning correlation length critical exponent [4, 5].
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Figure 2.12: Illustration of the coherent and fast displacement of one segment in
a driven elastic line. The quantity ` is the typical size of these events, and ∆u is the
corresponding displacement which follows the scaling relation ∆u ∼ `ζ . In the limit f → f+

d

and for T = 0, this coherent movement is a depinning avalanche and then ` is `av and ζ
is ζdep. In the limit f → 0 and for T > 0, the displacement corresponds to a thermally
activated jump over an effective pinning energy barrier, and then ` is `opt and ζ is ζeq.

The quenched Edwards-Wilkinson universality class is characterized by particular val-
ues of the depinning critical exponents. These values also depend on the dimension d of the
interface, which in the case of a line in a two-dimensional medium is d = 1. Additionally,
they are dependent on each other: β = νdep(z − ζdep) and νdep = 1/(2− ζdep), where ζdep is
the roughness exponent corresponding to T = 0 and f = fd, and z is the dynamic critical
exponent, which corresponds to the scaling law of the relaxation time tr of an interface seg-
ment as a function of its size `, i.e. tr(`) ∼ `z [3]4. In this context, z = 1.43 and ζdep = 1.25
[5] and, therefore, νdep = 1.33 and β = 0.24. Throughout this thesis, we shall thoroughly
discuss about the experimental quantification of these depinning critical exponents.

Creep regime

If T > 0, thermal activation induces stochastic jumps of the interface over the pinning
potential Up(u, x), thus allowing it to move even for f < fd. In fact, if T > 0, v > 0 for

4The scaling relation β = νdep(z − ζdep) results from considering that, at the depinning transition, v ∼
∆u/tr ∼ `

ζdep
av /`zav and, concomitantly, `av ∼ (f−fd)−νdep and v ∼ (f−fd)β . Thus, v ∼ (f−fd)−νdep(ζdep−z)

and consequently β = νdep(z − ζdep). For its part, the scaling relation νdep = 1/(2 − ζdep) is valid if the
equation of motion preserves the statistical tilt symmetry [41, 113]. If this condition is satisfied, then
∆u/(f − fd) ∼ `2av and, as (f − fd) ∼ `

−1/νdep
av and ∆u ∼ `

ζdep
av , νdep = 1/(2 − ζdep). The statistical tilt

symmetry is satisfied for the quenched Edwards-Wilkinson model (equation (2.62)) while it is not satisfied
for the quenched Kardar-Parisi-Zhang model (equation (2.63)).
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any finite force. In this stochastic process, which takes place in the range 0 < f < fd, the
interface successively visits different metastable states which are characterized by decreasing
energies E[u] due to the applied driving force f , as evidenced by equation (2.61). In the
limit f → 0, this thermally activated regime of motion is the so-called creep regime. In this
scenario, velocity grows with a stretched exponential behavior, namely

ln v ∼ f−µ , (2.66)

where µ is the so-called creep exponent (see figure 2.11(a)).

Let us now discuss the origin of the creep regime v vs. f dependence, given by (2.66).
Thermally activated jumps over pinning energy barriers occur with a time rate which is
characterized by an Arrhenius law5. Thus we may write

v(f) ∝ exp
(
−Ep(f)
kBT

)
, (2.67)

where Ep(f) is an effective pinning energy barrier dependent on the driving force and kBT
is the thermal energy. Due to the fact that Ep(f) affects the collective motion of the whole
interface, it diverges when f → 0 [5]. The critical exponent accounting for this divergence
is the creep exponent µ, i.e. Ep(f) ∼ f−µ. Similarly to the case of the depinning transition
at f = fd, the equilibrium at f = 0 constitutes a reference state characterized by several
critical exponents. The particular values of these exponents are defined by the universality
class.

In the limit f → 0, the elastic energy term Eel(`) corresponding to the displacement
∆u(`) of an interface segment of size ` (see figure 2.12) grows as

Eel(`) ∼
(

∆u(`)
`

)2

`d ∼ `2ζeq+d−2 (2.68)

in accordance with equation (2.61). This energy cost is compensated by an energy gain due
to the driving force,

Ef (`) ∼ f∆u(`)`d = f`ζeq+d . (2.69)
The competition between Eel(`) and Ef (`) results in a total energy ET (`) = Eel(`)−Ef (`)
which has a maximum at a characteristic length `opt which corresponds to the optimal
segment size coherently moving over characteristic pinning energy barriers [5], diverging
when f → 0 as

`opt ∼ f−1/(2−ζeq) , (2.70)
as indicated in figure 2.11(b). This relation is analogous to (2.65), which corresponds to the
depinning transition (f → f+

d and T = 0). Then, for the equilibrium (f → 0 and T > 0),
we may identify νeq = 1/(2− ζeq). Concomitantly, the characteristic magnitude of pinning
energy barriers is ET (`opt), and grows when f → 0 as

Ep(f) ∼ f
− 2ζeq+d−2

2−ζeq (2.71)
5The Arrhenius law may be invoked for the time rate of thermally activated events whenever thermal

energy is much lower than the energy barrier, i.e. kBT � Ep(f).
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where, according to the above discussion, we can identify the creep exponent

µ = 2ζeq + d− 2
2− ζeq

. (2.72)

For the case of a one-dimensional interface, i.e. a line, we have d = 1 and ζeq = 2/3
[13, 41, 112]. Therefore, for f → 0, `opt diverges as f−νeq with νeq = 3/4, and the velocity
follows ln v ∼ f−µ with µ = 1/4. In section 2.4, we shall show that this µ value describes
very convincingly the creep regime of magnetic domain walls in thin films.

Thermal rounding

At f = fd, i.e. in the depinning transition, velocity grows with temperature T with a power
law given by [114]

v(fd) ∼ Tψ , (2.73)
with the critical exponent ψ being the thermal rounding exponent [115] (see figure 2.11).
This effect of temperature in the depinning transition is analogous to the effect of an applied
field in the second-order paramagnetic-ferromagnetic phase transition. The thermal round-
ing for an elastic line in a two-dimensional medium in the quenched Edwards-Wilkinson
universality class has been studied numerically resulting on ψ = 0.15 [114, 115]. Further-
more, this value has been found to be consistent with experimentally measured values for
domain walls in magnetic thin films [15, 116].

We have just presented the main dynamical characteristics of driven elastic interfaces
in disordered media. Furthermore, we have established links between the velocity vs. force
characteristics, which show different regimes of motion, and the length scales that char-
acterize these dynamics. The characteristic lengths are naturally linked to the interface
morphological properties that we have discussed previously. In addition, we have shown
that critical behaviors occur both for f → f+

d and f → 0. The exponents that characterize
these critical points are closely related to the universality class to which the elastic interface
belongs. For this reason, we have presented their predicted values for the particular case of
the quenched Edwards-Wilkinson universality class, which may be considered as the most
simple model capturing the key features that are expected to govern domain wall dynam-
ics and morphology in thin films: short-ranged elasticity, random-bond quenched disorder,
thermal noise and a uniform force, as indicated by equation (2.62).

Accordingly, in the following we shall discuss the particular case of magnetic domain
walls in thin films with perpendicular anisotropy in the framework of the theory of driven
elastic interfaces in disordered media. We shall show that this theory is crucial for the
understanding of many experimentally measured velocity vs. force curves and for the study
of domain wall morphology and characteristic lengths in the different dynamical regimes.
Additionally, we will discuss the experimental access to the theoretically predicted critical
exponents, which is a cross-cutting issue of the studies that we present throughout this
thesis.
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2.4 Magnetic domain walls as driven elastic lines

The different terms which represent key ingredients in the motion of driven interfaces,
written in equation (2.62), can be qualitatively linked to the main energy contributions
playing a role in magnetic domain wall motion. The elasticity of domain walls is associated
with their energy per unit area σ, which arises from the interplay between anisotropy and
exchange energies (see equation (2.15)) and induces walls to be as flat as possible. Disorder,
whose origin is due to the inhomogeneities in the magnetic sample, is usually modeled as
an inhomogeneous anisotropy energy Keff(u, x) representing the pinning potential Up(u, x)
[90]. Thermal activation is responsible for the spontaneous and stochastic inversion of
magnetization which favors domain wall motion over anisotropy energy barriers. Finally, the
driving force may be originated by an applied field or current, as we have discussed in sections
2.2.3 and 2.2.4. These elements suggest that the domain wall dynamics and morphology
may be assessed in this framework. Accordingly, in this section we will thoroughly discuss
this approach and its amazing capability in order to describe domain wall dynamics and
morphology in magnetic thin films with perpendicular anisotropy. We will focus on field-
driven domain walls; however, as we will further discuss in section 2.5.2 and in chapter 6,
the following discussion also applies to current-driven domain walls.

2.4.1 Experimental observation of creep and flow regimes

Let us now discuss experimental measurements of the velocity vs. field dependence for
domain walls in thin magnetic films with perpendicular anisotropy. Figure 2.13 shows
curves corresponding to thin films of cobalt lying between two films of platinum, i.e. stacks
of Pt/Co/Pt [14]. The different shown curves correspond to different thicknesses of cobalt
tCo. In these measurements, the different dynamical regimes illustrated in figure 2.11(a) are
evidenced.

Figure 2.13(a) shows two velocity v vs. applied field H curves, corresponding to two
different values of tCo. In both cases, for sufficiently large fields a proportionality between
field and velocity is observed, consistent with predictions for the flow regime. Thus, for
sufficiently high fields,

v = mH , (2.74)

where the proportionality factor m is the flow-regime mobility. In contrast, for low applied
fields, velocity follows a stretched exponential behavior which is consistent with the predicted
creep regime, satisfying ln v ∼ H−µ. Two images obtained by Polar Kerr microscopy6 are
shown, each of them corresponding to one of these two dynamical regimes, i.e. creep and
flow. They evidence that morphological properties of magnetic domain walls drastically
change according to their regime of motion.

6In chapter 3 we will thoroughly discuss this experimental technique.
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Figure 2.13: Domain wall velocity versus applied field in Pt/Co/Pt thin films. (a)
Velocity v vs. field H for two magnetic films with different Co thicknesses tCo. Dashed lines
correspond to fits of the flow regime, with v ∝ H. Continuous lines correspond to the creep
regime, where ln v ∼ H−µ with µ = 1/4. The observed domain wall morphology in the
different dynamical regimes is illustrated. White scale bars are 5µm long. (b) Creep-type
plot of ln v vs. H−µ with µ = 1/4, for four different values of tCo. Straight lines correspond
to the creep regime, which spans over eleven orders of magnitude in measured velocity. Both
figures are adapted from [14].

Figure 2.13(b) shows velocity curves for four different tCo values, plotted as ln v vs.
H−1/4. As evidenced in the figure, the behavior in all cases is very well described in a wide
range of velocities by straight lines which represent the dependence ln v ∼ H−µ with µ = 1/4,
as theoretically predicted for the low velocity creep regime. The wide range of velocities
in which this dependence is observed experimentally, which spans from v ∼ 0.1 nm/s to
v ∼ 10 m/s, shows that the predicted behavior is verified in a very robust way. Furthermore,
the creep exponent value µ = 1/4 is shown to be consistent with all measurements.

The observation of the creep law with µ = 1/4 for magnetic domain walls in thin
films was made for the first time by S. Lemerle and collaborators in 1998 [13]. Nowadays,
many experiments in different magnetic thin films have been performed, resulting on similar
observations [14–16, 18, 27, 117]. In all cases, the creep exponent value µ = 1/4 is found
to be consistent with the observed velocity-field characteristics for low driving forces, what
accounts for the universality of the creep dynamical regime.

2.4.2 Universal creep regime

As we have just shown, the creep regime has been observed to span over a wide range of
velocities and a relatively wide range of driving forces, beyond the theoretically predicted
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limit f → 0. Recently, Vincent Jeudy and collaborators [16] proposed an empirical expres-
sion for describing the creep law of field-driven magnetic domain walls in the whole range
0 < H < Hd. This law reads

v(H) = vd exp
(
−Ep(H)

kBT

)
, (2.75)

where
Ep(H) = kBTd

[(
H

Hd

)−µ
− 1

]
(2.76)

and, consequently, vd = v(Hd). The particularity of this empirical law is the expression
for the effective pinning energy barrier (2.76), which diverges for H → 0 and vanishes
linearly for H → H−d . The depinning field Hd is material- and temperature-dependent. In
addition, a characteristic energy kBTd is introduced, with Td being the so-called depinning
temperature. Both Td and the velocity at depinning vd are also material- and temperature-
dependent. In contrast, the universal creep exponent is µ = 1/4 for any sufficiently thin7

magnetic film with perpendicular anisotropy at any temperature.

The material- and temperature-dependent quantities Hd, Td and vd are determined in
the following way. Given a v vs. H curve for a magnetic material at a fixed temperature,
the dependence ln v vs. H−1/4 is plotted, as already shown in figure 2.13(b). The range of
low fields in which this dependence is linear corresponds to the creep regime, and then a
linear fit of the type y = Sx + I may be performed, where y = ln v and x = H−1/4. Then,
according to equations (2.75) and (2.76), the fit slope S and intercept I correspond to

S = −Td
T
H

1/4
d (2.77)

and
I = ln vd + Td

T
. (2.78)

In this context, in order to determine Hd, Td and vd, it is necessary to independently
determine one of them. Considering that the creep law successfully describes the velocity
vs. field characteristics in the whole range 0 < H < Hd, the depinning field Hd may
be directly determined as the upper limit of the creep-type behavior. This hypothesis is
validated by the existence of an inflection point at Hd that, as we will further discuss in
2.4.3, is an evidence of the depinning transition. The simultaneity of the separation from
the creep-law behavior and the inflection point may be clearly observed in figure 2.13(a).
Once Hd is determined, both vd and Td can be obtained from (2.78) and (2.77).

The determination of material and temperature dependent quantitiesHd, Td and vd per-
mits to calculate the effective pinning energy barrier Ep(H). The main result of reference [16]
is the fact that expressions (2.75) and (2.76) with µ = 1/4 are shown to successfully describe

7A dimensional crossover is expected to occur in which µ changes from its d = 1 value to the d = 2 value
for sufficiently thick magnetic films [118]. Similarly, a crossover from d = 1 to d = 0 has been observed for
narrow magnetic tracks [117].
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Figure 2.14: Reduced effective pinning energy barrier as a function of the reduced
applied field in the whole creep regime. Experimental data for several different ma-
terials at different temperatures is considered, calculated according to (2.79) showing a
very good agreement with the proposed empirical law (2.80). Consistence with numerical
simulations for elastic lines in two-dimensional disordered medium [41] is shown. In the
limit H → H−d , a linear vanishing of Ep(H) is evidenced, which describes very well the
dependence over two orders of magnitude, as shown in the inset. Adapted from [16].

the creep regime in the whole range 0 < H < Hd for a notoriously wide variety of magnetic
materials at different temperatures, what accounts for the universality of the proposed ex-
pression for the effective energy barrier. This is evidenced by figure 2.14, where the reduced
energy barrier Ep(H)/kBTd is plotted as a function of the reduced field H/Hd for many
different magnetic thin films with perpendicular anisotropy: the diluted magnetic semicon-
ductor (Ga,Mn)(As,P), the ferrimagnet TbFe, and the ferromagnets Pt/Co/Pt, CoFeB and
Au/Co/Au. In addition, for some of these materials, curves at different temperatures are
considered.

More specifically, the very good agreement between the experimentally calculated

Ep(H)
kBTd

= − T
Td

ln
(
v(H)
vd

)
, (2.79)

and the proposed empirical law,

Ep(H)
kBTd

=
(
H

Hd

)−1/4
− 1 , (2.80)

is evidenced for different materials and temperatures. Additionally, the consistence with
numerical simulations [41] of a one-dimensional elastic line in a two-dimensional disordered
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medium is shown, what suggests that this empirical law may describe a larger variety of
elastic interfaces. In the limit H → H−d , a linear vanishing of the effective energy barrier is
shown to occur, in agreement with (2.76).

We have just discussed the universality of the velocity vs. field characteristics in the
creep regime of magnetic domain walls in thin films. In the following, we shall present the
state-of-the-art on the experimental observation of the depinning transition, which is rather
elusive, and its universal properties.

2.4.3 Universal depinning transition

Up to now, we have shown that creep and flow regimes of field-driven magnetic domain walls
in thin films are rather well understood and observed in a wide variety of materials. However,
the experimental study of the velocity-field characteristics in the intermediate depinning
regime faces more difficulties. This is due to the relatively narrow field and velocity range
in which this regime occurs, and to the thermal effects that hinder the observation of the
zero-temperature dependence v ∼ (H − Hd)β, in accordance with (2.64). Exactly at the
depinning field, for H = Hd, velocity follows the power law corresponding to the thermal
rounding, (2.73). For a magnetic domain wall in a thin film [116],

v(Hd) = vT

(
T

Td

)ψ
, (2.81)

where vT is a material and temperature dependent velocity. Concomitantly, in the limit of
T � Td and for a limited field range above Hd corresponding to the depinning regime [18],

v(H) = vH

(
H −Hd

Hd

)β
, (2.82)

where vH is another material and temperature dependent velocity. Note that in contrast
with the creep law (2.75), which shows a positive concavity8 of v(H) for Td/T ≥ (µ+ 1)/µ,
depinning law (2.82) presents a negative concavity because β < 1. Therefore, an inflection
point should occur close to H = Hd.

In 2017, Rebeca Díaz Pardo and collaborators [18] proposed a universal function de-
scribing the depinning regime in a range Hd < H < Hu, where Hu is a crossover field
corresponding to the upper boundary of the depinning regime. This universal function,
which reflects the two limit behaviors (2.81) for H = Hd and (2.82) for T = 0, is plot-
ted in figure 2.15(a) as a continuous line linking the quantities (v/vT ) (T/Td)−ψ and [(H −
Hd)/Hd]β (T/Td)−ψ. This function is found to successfully describe experimental data cor-
responding to three different materials in a very wide temperature range. Furthermore, the
relation between the two depinning velocities vT and vH is found to be practically indepen-
dent of the material and the temperature. Specifically, a relation x0 ≡ vT/vH ' 0.65 has
been found for the studied materials and temperatures.

8The positive concavity of creep law must be satisfied as it has been obtained from the Arrhenius law,
which assumes Td � T .
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Figure 2.15: Universality of the depinning transition at finite temperature. (a)
Universal depinning function plotted as a continuous line, and experimental data relating
(v/vT ) (T/Td)−ψ vs. [(H−Hd)/Hd]β (T/Td)−ψ, for Pt/Co/Pt at different temperatures (main
panel) and for Au/Co/Au and CoFeB (inset). The dot-dashed straight line corresponds to
the zero-temperature depinning law (2.82). (b) Reduced velocity v/vT vs. reduced field
H/Hd for different materials at different temperatures. The continuous line is the zero-
temperature depinning law (2.82) with vH = vT/0.65, and the dashed line corresponds to
the flow regime with a mobility m = vT/Hd. The limit at Hd between the universal creep
regime and the universal depinning transition is indicated as a dot-dashed line. Thermal
effects occur close to Hd due to the thermal rounding. A T -independent behavior is observed
in a limited range in which the zero-temperature depinning law successfully describes ex-
perimental data. Above this range, a crossover occurs until v = mH, corresponding to the
flow regime, is satisfied for sufficiently high H. Both figures are adapted from [18].

In reference [18], critical exponent values ψ and β are assumed to correspond to the
previously accepted ones, ψ = 0.15 [114, 115] and β = 0.25 [119]. However, while ψ was
already experimentally determined [15] showing a good agreement with ψ = 0.15, β has
never been directly measured experimentally.

The material- and temperature-dependent quantities playing a role in the universal
depinning function, vT , Td and Hd, are determined from the analysis of the creep regime
presented in 2.4.2 [16, 18]. Particularly, as the creep law (2.75) is valid up to H = Hd, vd
corresponds to v(Hd) in (2.81) and then

vT = vd

(
T

Td

)−ψ
. (2.83)

This vT value has a particular physical meaning. In velocity-field curves where the flow
regime is observed, as for example the curves shown in figure 2.13, the vT value was found
to systematically coincide with the flow-regime velocity corresponding to Hd [18], this is
vT = mHd, where m is the experimentally measured flow-regime mobility. Hence, vT is the
velocity that the domain wall would reach at H = Hd in the absence of pinning.

44



2.4. Magnetic domain walls as driven elastic lines General concepts and framework

The above discussion leads to a major conclusion of reference [18]: in a wide range of
temperatures and for many different materials, the material- and temperature-dependent
values vd, Td and Hd determined for the creep regime according to reference [16] can be
used in order to successfully describe both the depinning regime in a given range Hd <
H < Hu and the flow regime in which v = mH for a sufficiently high H. Furthermore, the
critical exponents β = 0.25 and ψ = 0.15 are found to be consistent with the velocity-field
characteristics in the depinning regime for all studied materials and temperatures. This
accounts for the universal nature of the depinning transition.

In figure 2.15(b), the reduced velocity v/vT is plotted as a function of the reduced field
H/Hd for diverse magnetic thin films with perpendicular anisotropy at different tempera-
tures, as indicated. The existence of an inflection point at H = Hd, expected according to
the above discussion, is evidenced in all cases. The zero-temperature depinning function
(2.82) with vH = vT/0.65 is plotted as a continuous line, and the flow regime v = mH
with m = vT/Hd is indicated as a dashed line. For fields slightly above Hd, thermal round-
ing effects are evidenced and monotonically grow with decreasing Td/T values, hindering
the experimental observation of the power-law v ∼ (H − Hd)β. However, there exists a
limited range in which the zero-temperature law (2.82), which is naturally temperature-
independent, describes the velocity vs. field characteristics even for finite temperatures.
This corresponds to the dot-dashed straight line plotted in figure 2.15(a). For each curve,
there exists an upper boundary of the depinning transition at Hu. Above this value, velocity
undergoes a crossover until reaching the flow-regime proportionality v = mH.

The depinning of field-driven domain walls in the ferrimagnetic GdFeCo, which is one of
the major subjects in this thesis, will be thoroughly discussed in chapter 4. One of the main
subjects in our study is the depinning transition, which we successfully observe directly in
a practically athermal scenario due to the huge value of the ratio Td/T that we reach at
low temperatures. Hence, our studies on the depinning transition in GdFeCo make relevant
contributions to the above discussion on the universal depinning transition.

In the following, we will address another important subject of this thesis, related to
the morphology of magnetic domain walls. Particularly, we shall present the theoretically
predicted field-dependence of the length scales `opt and `av at which different domain wall
displacement events occur, already introduced in 2.3.2, now considering the effect of tem-
perature in the vicinity of the depinning transition. Accordingly, we will discuss the role of
different roughness exponents in domain wall morphology at the different dynamical regimes.

2.4.4 Length scales and roughness exponents

As we have generally pointed out in section 2.3.2 for elastic interfaces in disordered media,
domain wall dynamics close to the depinning transition and in the creep regime occur via
the intermittent displacement of segments which have a characteristic size. We have already
introduced `opt and `av as diverging characteristic lengths which correspond, respectively, to

45



2.4. Magnetic domain walls as driven elastic lines General concepts and framework

10−1 100

H/Hd

10−1

100

101

102

`
[µ

m
]

ζeq

ζdep

ζth

`opt

`av(T > 0)

`av(T = 0)

Figure 2.16: Crossover diagram showing the field-dependence of characteristic
length-scales and associated roughness exponents. Optimal length `opt and depinning
avalanche length `av as a function of the reduced field H/Hd in log-log scale. The expected
behavior of `av for T = 0 and for finite temperatures is indicated. A typical Larkin-length
value Lc = 0.1µm is considered. Different roughness exponents correspond to different
length scale ranges: ζeq corresponds to Lc < ` < `opt, ζdep to `opt < ` < `av, and ζth to
` > `av.

the equilibrium reference state and the depinning critical point. For T > 0 and in the limit
H → 0, a domain wall successively jumps over characteristic pinning energy barriers through
events of typical length `opt ∼ H−νeq . For T = 0 and in the limit H → H+

d , the domain wall
experiences intermittent depinning avalanches of typical length `av ∼ (H −Hd)−νdep .

In figure 2.16, we illustrate the expected field-dependence of `opt and `av for magnetic
domain walls in thin films. We consider that these characteristic sizes are crossover lengths
between different interface morphological properties, characterized by different roughness
exponents, as theoretically proposed [4, 41]. In the figure, we indicate the three exponents
that are expected to govern domain wall morphology at different length scales: ζeq, ζdep
and ζth. In the following, we thoroughly discuss the hypothetical scenario illustrated in this
figure.

As we have discussed in 2.4.2 the creep regime, theoretically corresponding to the limit
H → 0, stands in all the range 0 < H < Hd. Accordingly, it is considered that `opt has a
field-dependence in all this range (see figure 2.16) which may be written as [40]

`opt = Lc

(
H

Hd

)−νeq

. (2.84)

The constant Lc is a characteristic material- and temperature-dependent length scale called
the Larkin length [120], analogous to the Larkin-Ovchinikov length of vortices in supercon-
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ductors [121, 122].

For the depinning avalanche characteristic length at zero temperature, we have [40]

`av(T = 0) = ξ0

(
H −Hd

Hd

)−νdep

, (2.85)

where ξ0 is another characteristic length scale of the order of Lc, i.e. ξ0 ≈ Lc [109]. The
behavior of `av at finite temperature is yet to be discovered. However, it is expected to be
finite for H ≤ Hd at T > 0 [4, 41]. This hypothesis is illustrated in figure 2.16.

The determination of roughness exponents is crucially affected by the length scale `
at which domain wall morphology is observed. Indeed, the measured roughness exponent
ζ is expected to change as the length scale of the measurement changes [41]: a particular
roughness exponent is expected to be observable for scales below the characteristic size of
the events giving rise to that exponent. Above this characteristic size, larger scale events
are expected to determine the measured roughness.

In this framework, three different exponents describing domain wall roughness are con-
sidered, each of them corresponding to one reference state. The equilibrium roughness ex-
ponent ζeq, which corresponds to H → 0 and T > 0, the depinning roughness exponent ζdep,
corresponding to the depinning transition at H → H+

d and T = 0, and the thermal rough-
ness exponent ζth, which corresponds to the limit H → ∞. This last exponent describes
domain wall roughness in the limit at which pinning force effectively becomes a thermal-like
noise [123]. Therefore, in the limit H →∞, domain wall roughness is induced by thermal-
like fluctuations due both to disorder and to the actual thermal noise that is present at finite
temperatures. The value of this exponent in the quenched Edwards-Wilkinson universality
class is ζth = 1/2.

At other field and temperature conditions, each of these three exponents describe do-
main wall roughness at different length scales. In figure 2.16, we illustrate this scenario
[41], considering length scales above the Larkin length9. For Lc < ` < `opt, ζ = ζeq. If
`opt < ` < `av, ζ = ζdep. Finally, if ` > `av, ζ = ζth. In this context, the roughness of a
magnetic domain wall at finite temperature T and for a given driving field H < Hd may
be affected by the three different values of ζ, depending on the length scales in which the
observation is performed. For H > Hd, only depinning and thermal roughness exponents
play a role and there exists a unique crossover length `av between the two behaviors.

The displacement-displacement correlation function B(r) and the structure factor S(q)
that we have introduced in 2.3.1, equations (2.55) and (2.57), are the functions that we shall
consider in order to characterize the roughness of a magnetic domain wall. In chapter 5 we
will present our studies on domain wall roughness. There, we will discuss how the scenario
illustrated in figure 2.16 affects these functions, what constitutes our framework for the
interpretation of domain wall roughness measurements. In order to analyze if this scenario

9We shall recall the physical meaning of the Larkin length Lc below.
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successfully describes domain wall roughness, we shall measure the field- and temperature-
dependence of experimentally measured effective roughness exponents.

Some remarks on the Larkin length Lc and the pinning correlation length ξp

The Larkin length Lc that appears in (2.84) corresponds to the domain wall segment size at
which pinning and elastic energies are equal [13]. Thus, for lengths ` > Lc, a domain wall
is affected mostly by disorder resulting in a rough shape, while for ` < Lc the domain wall
elasticity wins over disorder resulting on a segment which is straight for T = 0, or which
presents a roughness induced by thermal fluctuations for T > 0. In this context, a domain
wall may be seen as a line formed by successive segments of size Lc, which are the smallest
segments that may jump over energy barriers. As we will thoroughly discuss in chapter 5,
our experimental observations of domain walls are made well above Lc and, consequently,
we shall analyze domain wall roughness according to the scenario illustrated in figure 2.16.

The other fundamental characteristic length of the problem of an elastic line in a two-
dimensional disordered potential is the correlation length of the pinning force, ξp, already
mentioned in section 2.3.2. While Lc is a characteristic length along the domain wall, ξp is a
characteristic length in the domain wall displacement direction. Therefore, while the typical
length of depinning avalanches is given by (2.85), with ξ0 ≈ Lc [109], the corresponding
displacement is given by ∆uav ≈ ξp(`av/ξ0)ζdep . Analogously, for the equilibrium critical
point (H → 0), the typical length of thermally activated events is `opt, given by (2.84), and
the corresponding displacement is ∆uopt ≈ ξp(`opt/Lc)ζeq .

The correlation length of disorder ξp is rather difficult to quantify, as it is related to
the sample heterogeneity responsible for domain wall pinning. Additionally, as a domain
wall can only sense spatial variations of the pinning energy larger than its width, ξp must
satisfy ξp = max (δ, r0), where δ is the domain wall width and r0 is the characteristic length
of random sample heterogeneity.

Fortunately, in the framework of collective pinning theory [121, 122], ξp is related to
the depinning parameters Hd and Td and to other measurable quantities as the saturation
magnetization Ms, the domain wall energy σ and the sample thickness t. This relation may
be expressed as [120]

ξp ≈
(

(kBTd)2

2Msµ0Hdσt2

)1/3

(2.86)

and results from the competition between elastic and pinning energy.

An analogous expression can be obtained for the Larkin length, now considering the
competition between the Zeeman energy associated to the applied field and the pinning
energy, whose effective magnitude is given by kBTd. The Zeeman energy per unit area
associated to the complete inversion of magnetization in a thin film of thickness t is, in
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accordance with (2.2),
εZ(H) = 2µ0HMst . (2.87)

At depinning, characteristic energy barriers of magnitude kBTd are overtaken through in-
version events of characteristic size Lcξp which is the so-called Larkin surface area [120].
Therefore, we may write

2µ0HdMstLcξp ≈ kBTd . (2.88)

Combining relations (2.86) and (2.88), we obtain

Lc ≈
(

σkBTd
4t(µ0HdMs)2

)1/3

(2.89)

for the Larkin length expressed in terms of material and temperature dependent measurable
parameters. These expressions will be useful for the study of characteristic length scales
which impact on domain wall dynamics and morphology both in chapters 4 and 5.

We have already presented in this chapter the main topics that are addressed by this
thesis work and the fundamental concepts constituting their framework. However, we have
not presented the particular material systems in which these phenomena are experimen-
tally studied. In the following section, we will describe the main characteristics of the two
magnetic thin films that we study in this thesis, namely the ferrimagnetic GdFeCo and the
semiconducting (Ga,Mn)(As,P)/(Ga,Mn)As. We shall discuss about their particular prop-
erties, which make them suitable in order to study magnetic domain walls and, additionally,
have given them a notorious interest in the last decades both from fundamental and applied
points of view.

2.5 Studied magnetic thin films

The main scope of this thesis work is the experimental study of the topics we have introduced
in this chapter: the dynamics and morphology of domain walls driven by magnetic field
and by spin-transfer torque seen with the prism of statistical physics, i.e. focusing on the
critical behaviors corresponding to different dynamical regimes. These phenomena occur
within magnetic thin films, and even if many of its characteristics are universal and may be
observed in a variety of systems, material properties are crucial in order to determine the
experimental conditions that permit to observe them.

Furthermore, there exist groups of materials like the rare earth - transition metal fer-
rimagnetic alloys and the diluted ferromagnetic semiconductors which are of particular in-
terest in the scientific community. The systems that we experimentally study in this thesis
belong to these groups. As we will discuss in the following, amorphous rare earth - transi-
tion metal (RE-TM) ferrimagnetic alloys like GdFeCo present particular magnetization and
domain wall dynamics and highly temperature-dependent properties due to the antiferro-
magnetic coupling of its two different sub-lattices. We will describe their main characteristics
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and discuss the field-driven domain wall dynamics in this system in section 2.5.1. On the
other hand, the diluted ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P) have
a particularly efficient STT-driven domain wall motion, what makes them very suitable in
order to study both field- and STT-driven domain wall motion. In section 2.5.2 we shall
present their main characteristics and discuss the main features of STT-driven domain wall
motion in these systems.

Both studied thin films present perpendicular magnetic anisotropy. This feature is cru-
cial for our experimental studies, and constitutes an important advantage for the develop-
ment of efficient spintronics devices [11, 12]. The origin of perpendicular anisotropy is man-
ifold. In ultrathin metallic films as Pt/Co/Pt, with tCo < 1 nm, perpendicular anisotropy
is promoted exclusively by a surface effect due to the hybridization of d orbitals in the
interfaces between the ferromagnet (Co) and the heavy metal (Pt) [28, 124]. In amorphous
RE-TM ferrimagnetic thin films with a higher thickness t ∼ 10 nm, this surface effect is
present but there exists an additional contribution to perpendicular anisotropy due to the
anisotropic pairing of rare earth and transition metal atoms [29, 125]. In crystalline diluted
magnetic semiconductors as (Ga,Mn)As, perpendicular anisotropy is originated in its inter-
face with the substrate and it is associated to the valence band, which presents an anisotropy
that imposes the direction of easy magnetization [126]. This effect can be controlled by de-
formations of the substrate [30, 127]; consequently, both in-plane or out-of-plane anisotropy
can be induced in (Ga,Mn)As.

2.5.1 Rare earth - transition metal ferrimagnetic alloys

Even if many technological advances have been achieved in the field of spintronics, the ef-
ficient and fast manipulation of magnetization is still a key challenge in order to develop
competitive, low-power devices [128–131]. In order to overcome the difficulties usually en-
countered in this field with the commonly used ferromagnetic metals, more complex systems
are investigated. Particularly, materials in which an anti-ferromagnetic exchange coupling
occurs constitute promising systems [132], as this type of interaction results in drastically
reduced characteristic times of magnetization dynamics and, therefore, a faster motion of
magnetic structures as domain walls [133].

However, if the two anti-ferromagnetically coupled sub-lattices are identical, as occurs in
common anti-ferromagnets, sensing of magnetization structure constitutes a huge challenge
[43]. This is due to the fact that in these materials, global magnetization is zero and, in
addition, both sub-lattices react identically to electric or optical stimulus. This problem is
overcome in ferrimagnetic materials like the rare earth - transition metal (RE-TM) alloys,
in which the two sub-lattices are different [32]. In these systems, a rare earth as for example
gadolinium or terbium provides electronic spins which are anti-ferromagnetically coupled
with those provided by a transition metal, like cobalt or iron.

Three main exchange interactions give rise to ferrimagnetism in RE-TM alloys [134,
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Figure 2.17: Electronic states and exchange interactions giving rise to ferrimag-
netism in a GdCo compound. (a) Electronic structure. Ferromagnetically coupled 3d
spins in Co are indirectly coupled anti-ferromagnetically with 4f localized spins in Gd via
the ferromagnetic coupling between 4f and 5d spins in Gd, J5d-4f , and the anti-ferromagnetic
coupling JGd-Co between bands 5d in Gd and 3d in Co, which are overlapped. Adapted from
[137]. (b) Schematic spin-resolved density of electronic states. Yellow and blue regions
correspond, respectively, to Gd and Co states.

135]. Firstly, itinerant 3d spins belonging to the transition metal (normally Co and/or Fe)
are coupled ferromagnetically, as explained by the Stoner model [136]. Additionally, these
spins are anti-ferromagnetically coupled with itinerant 5d spins belonging to the rare earth
(normally Gd or Tb) due to the overlap between these two bands, namely transition metal
3d and rare earth 5d bands. Finally, within the rare earth sub-lattice, 5d delocalized spins
are ferromagnetically coupled with the localized 4f spins, giving rise to a big magnetic
moment of this sub-lattice. In summary, ferrimagnetism in these RE-TM alloys arises from
an indirect exchange interaction between rare earth 4f localized electrons and transition
metal 3d itinerant electrons via the rare earth 5d electrons. In figure 2.17(a) we schematize
the electronic structure for the case of a GdCo compound and the inter-band exchange
interactions that we have just mentioned [137].

The interplay between sub-lattices in a RE-TM alloy results in a band structure in which
conduction electrons, close to the Fermi level, mostly belong to transition metal d orbitals
[138–140]. This band structure is schematized in figure 2.17(b) for the GdCo alloy [135].
As a major consequence, electric and optical stimulus over a RE-TM compound will affect
mostly the transition metal electrons. This is crucial for magneto-optical measurements,
which are sensitive to the magnetization of the transition metal sub-lattice rather than to
the global magnetization of a RE-TM compound, as we will further discuss in chapter 3.
This may be very advantageous for sensing magnetic states in situations in which the global
magnetization is tiny, something usual for anti-ferromagnetically coupled sub-lattices.
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Figure 2.18: Mean-field calculation of magnetization as a function of temperature
in a ferrimagnetic GdCo alloy. (a) Magnetization versus temperature for Gd0.25Co0.75,
showing the µ0M vs. T dependence for oppositely magnetized Co and Gd sub-lattices, and
the resulting saturation magnetization µ0Ms, with a compensation temperature TM where
Ms = 0. The dashed blue line corresponds to |µ0MGd|. (b) µ0Ms vs. T for different Gd
concentrations. Both figures are adapted from [135].

Temperature dependence of magnetization

A striking property of ferrimagnetic materials is the temperature dependence of their mag-
netic properties [32]. In a RE-TM alloy, saturation magnetizationMs(T ) results from adding
the contributions corresponding to the two oppositely magnetized sub-lattices,

Ms(T ) = MTM(T ) +MRE(T ) , (2.90)

where MTM(T ) and MRE(T ) have opposite signs and correspond, respectively, to the tran-
sition metal and to the rare earth.

Following a mean-field theory approach and the Brillouin formalism [6], it is possible
to analytically calculate the temperature dependence of magnetization in a RE-TM alloy
[135, 137, 141]. In this model, an effective molecular field [48] resulting from the magnetic
states of electrons in all the system is considered to act over each spin. In figure 2.18, the
main results of this calculation are illustrated for the archetypal GdxCo1−x alloy, where x
indicates the relative concentration of Gd, belonging to the range 0 < x < 1 [135]. For this
case, MTM ≡MCo and MRE ≡MGd.

In figure 2.18(a), magnetization of both sub-lattices and the resulting saturation mag-
netization are plotted as a function of temperature for Gd0.25Co0.75, i.e. x = 0.25 or, equiv-
alently, 25 at% of Gd. Spontaneous magnetic order occurs below the Curie temperature
TC [6]10. Below TC , the sum of both contributions, MCo and MGd, results in a particular

10In most cases, magnetic materials above TC are paramagnetic.
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temperature dependence Ms(T ), negative below a characteristic temperature TM and pos-
itive above TM . This indicates that for T < TM , |MGd(T )| > |MCo(T )|, while for T > TM ,
|MCo(T )| > |MGd(T )|. The temperature TM corresponds to the magnetic compensation,
such that |MCo(T = TM)| = |MGd(T = TM)| and then Ms(T = TM) = 0. Due to the
lower demagnetizing energy associated to low Ms(T ) values close to TM , ferrimagnets close
to magnetic compensation are adequate in order to reduce the size of magnetic structures
[36, 142], what constitutes an advantage for the miniaturization of spintronics devices.

In figure 2.18(b), the calculated dependence of Ms as a function of T is plotted for
GdxCo1−x with different values of x [135]. As evidenced, the change of Gd concentration in
a reduced range (x = 0.20 to x = 0.30) changes drastically the magnetic properties. For x =
0.20, no compensation temperature exists and |MCo(T )| > |MGd(T )| in all the temperature
range below TC . In contrast, for x = 0.30 the opposite occurs: |MGd(T )| > |MCo(T )| for any
temperature T < TC . In the intermediate range, compensation temperature grows rapidly
from 0 to TC as x grows. Additionally, the Curie temperature TC slightly decreases as x
grows.

Field-driven domain wall dynamics

As we have just shown, ferrimagnetic materials present particularly temperature dependent
magnetization properties. This directly affects field-driven domain wall dynamics, as the
driving force over walls resulting from an applied field is a consequence of the Zeeman
interaction, proportional to the saturation magnetization Ms. Consequently, for a given H,
field-driven domain wall velocity v drops close to the magnetic compensation temperature
TM , where Ms → 0. Even if this fact is deduced straightforwardly, the effects of the Ms

vs. T dependence on the different dynamical regimes of domain walls are subject of several
open questions as, for example, how depinning parameters as Hd, Td and vd are affected by
magnetic compensation.

In the last years another particular characteristic of ferrimagnets, the compensation
of its angular momentum, has given rise to a huge interest due to its direct impact on
magnetization dynamics [33–35]. The angular momentum per unit volume ~Am is related
to magnetization as ~Am = − ~M/γ, where γ is the gyromagnetic ratio [2]. Therefore, in a
RE-TM alloy the angular momenta of both sub-lattices add up and we can write for the
temperature-dependent angular momentum of the whole system

Am(T ) = −MTM(T )
γTM

− MRE(T )
γRE

. (2.91)

As MTM(T ) and MRE(T ) are opposite, Am(T ) may present a compensation temperature TA
such that Am(T = TA) = 0. If γTM = γRE, then the angular compensation coincides with
its magnetic counterpart and TA = TM . However, the gyromagnetic ratios corresponding to
both sub-lattices do not coincide in a RE-TM alloy and then TA 6= TM [143, 144].

Recently, several experiments [35, 36, 145, 146] have shown impressively fast field-driven
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Figure 2.19: Domain wall velocity peak associated to the angular momentum
compensation in GdFeCo. Domain wall velocity in the flow regime as a function of the
temperature for different applied fields. The magnetic and angular compensation tempera-
tures, TM and TA, are indicated as shaded vertical areas. Adapted from [35].

domain wall motion close to an angular compensation temperature TA 6= TM [144]. This
inequality is crucial for observing these high velocities because, as we have discussed above,
field-driven domain wall velocity drops at T = TM . In figure 2.19, we show the velocity
vs. temperature dependence for different fixed applied fields measured by K.-J. Kim and
collaborators in the flow regime of domain wall motion in a thin film of Gd0.230Fe0.674Co0.096
with a thickness t = 30 nm [35]. Even if the angular compensation temperature has not
been directly measured by the authors, they observe a notorious velocity peak which they
associate to TA. The measured magnetic compensation temperature TM is also shown in
the figure, considerably below TA.

In order to assess if the observed separation between TM and TA is reasonable, we shall
study the γ values of both sub-lattices. The gyromagnetic ratio of the sub-lattice i is γi =
giµB/~, where gi is the corresponding g-factor [6]. The gi values that correspond to the two
sub-lattices in a GdFeCo sample are gFeCo ' 2.2 and gGd ' 2.0 [37, 147, 148], what results in
TA > TM , as observed experimentally [35, 36, 144]. TheMs(T ) dependence measured by K.-
J. Kim and collaborators and corresponding mean-field estimations ofMFeCo(T ) andMGd(T )
show consistency of equations (2.90) and (2.91) with the TM and TA values illustrated in
figure 2.19 [149].

Even if the static magnetic properties of RE-TM alloys are now quite well understood
[32], the dynamic properties are being intensely studied and a thorough comprehension is
still lacking. Particularly, the magnetization dynamics close to the magnetic and angular
compensation points are nowadays an important subject of study, as it is in these conditions
that ferrimagnetic systems fundamentally differentiate from the much well understood ferro-
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magnetic materials. In addition, in this context, adequate characteristics for technological
applications arise, as we have already pointed out: close to TM , magnetic structures are
smaller [36], while close to TA, faster magnetization dynamics occur [35].

Much of the work performed throughout this thesis consists on the study of the tem-
perature dependence of domain wall dynamics in a GdFeCo thin film which, as we have
just discussed, is full of rich phenomena. Even if many investigations have been performed
on this topic during the last years, most of them have studied the flow regime, where wall
velocities are high [35, 36, 145, 146, 150]. In contrast, little efforts have been devoted to
studying the lower-velocity dynamical regimes, namely creep and depinning. In chapter 4
we shall thoroughly discuss the experimental studies performed during this thesis on the
domain wall dynamics in GdFeCo, with particular focus on the temperature dependence of
the key features of creep and depinning regimes. Before, in section 3.3, we shall describe
the studied sample and present its magnetic characterization.

2.5.2 Diluted ferromagnetic semiconductors

Ferromagnetic semiconductors possess interesting and useful characteristics due to the com-
bination of spontaneous magnetic order and particular transport properties, both of them
being highly tunable by growth conditions, doping, strain, electric field, light, and electric
current [42]. One of the most studied ferromagnetic semiconducting materials is the gallium
arsenide doped with manganese, (Ga,Mn)As or Ga1−xMnxAs, which belongs to the group
of the III-V semiconductors [30]. In this compound, the well-known GaAs is doped with a
low concentration (x < 0.10) of substitutional Mn which occupies Ga sites in the zincblende
structure characteristic of GaAs (see figure 2.20(a)) [151].

In Ga1−xMnxAs, both the mobility of charge carriers resulting on conducting proper-
ties and the ferromagnetic character arise from the incorporation of Mn ions: the onset of
ferromagnetic order occurs for x ≈ 0.01, while the transition from insulating to metallic
character occurs for x ≈ 0.02 [151]. Collective ferromagnetic order arises from the random
distribution of spins corresponding to Mn ions which interact via an indirect exchange cou-
pling. Mediators of this interaction are valence-band holes that are anti-ferromagnetically
coupled with Mn spins [126]. However, the detailed nature of this interaction is still under
debate [42, 151, 152].

The transition to the ferromagnetic phase in (Ga,Mn)As occurs well below room tem-
perature; however, relatively high Curie temperatures have been obtained in this compound
compared to other magnetic semiconductors [42, 151], reaching TC ' 190 K. In figure
2.20(b), magnetizationM and inverse susceptibility χ−1 are plotted as a function of temper-
ature for a sample with substitutional Mn concentration x = 0.07 [151], where χ = ∂M/∂H
evaluated at H = 0. The Curie temperature in this case is TC ' 184 K. This figure shows
a textbook-like second-order paramagnetic-ferromagnetic transition, in which M vanishes
with a power-law behavior for T → T−C while χ = ∂M/∂H diverges for T → T+

C . Note the
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Figure 2.20: Crystalline structure and temperature dependence of magnetization
in (Ga,Mn)As. (a) Zincblende crystalline structure corresponding to low concentrations
of Mn, in which Mn ions substitute a small fraction of Ga ions. (b) M and χ−1 vs. T for
a sample with substitutional Mn concentration x = 0.07, showing the onset of M and the
divergence of χ = ∂M/∂H characteristic of the paramagnetic-ferromagnetic transition at
T = TC . Both figures are adapted from [151].

similarity between this equilibrium second-order transition and the depinning dynamical
transition of a driven elastic line illustrated in figure 2.11.

STT-driven domain wall dynamics

In metallic thin films, relatively high current densities are needed in order to generate a
domain wall displacement via STT. As a consequence, the Joule heating due to current
flow is highly restrictive, not only generating a sensible sample heating but also driving it
to a demagnetized state [153]. In this context, most experiments on STT-driven domain
wall motion in metallic thin films combine both field and current [154–157]. Domain wall
motion driven exclusively by STT has been studied in metallic thin films with perpendicular
anisotropy, but only relatively low velocities corresponding to the thermally activated creep
regime have been measured for current densities of the order of 1010 A/m2 [156, 158–160].

In contrast, STT in (Ga,Mn)As is particularly efficient, what makes this system paradig-
matic for the study of STT-driven domain wall motion. Relatively fast wall dynamics
have been observed for current densities as low as 108 A/m2 [24, 26, 27, 161, 162], permit-
ting to successfully observe domain wall motion in the creep, depinning and flow regimes
without a problematic Joule heating [163, 164]. In figure 2.21, we show domain wall
velocity curves, both field-driven (a) and STT-driven (b), corresponding to a bilayer of
(Ga,Mn)(As,P)/(Ga,Mn)As with perpendicular anisotropy [27]. In these measurements,
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Figure 2.21: Field- and STT-driven domain wall motion in perpendicularly mag-
netized (Ga,Mn)(As,P)/(Ga,Mn)As. (a) Domain wall velocity v as a function of (a)
the applied field µ0H and (b) the current density J for different fixed temperatures. Solid
lines indicate creep regime fits with a creep exponent µ = 1/4, while dashed lines correspond
to the zero-temperature depinning transition and dotted lines to the flow regime. Inset of
(b): creep-type plot of v in logarithmic scale vs. J−1/4. Both figures are adapted from [27].

both for field- and STT-driven domain wall motion, we may observe the three dynamical
regimes introduced in section 2.3.2, namely creep, depinning and flow.

Efficient STT in (Ga,Mn)As is a result of the low saturation magnetization Ms, of the
order of 10 kA/m [26], which results in a high spin-drift velocity, equation (2.38). Simulta-
neously, a low domain wall width parameter ∆ ∼ 5 nm [81] results in a high effective field
corresponding to STT (see equation (2.42)).

In chapter 6, we will present the studies performed throughout this thesis on field- and
STT-driven domain wall motion in a bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As with perpendic-
ular anisotropy which is nominally equivalent to the sample studied in reference [27]. We
shall focus on the creep regime of motion and compare the driving forces generated by the
applied field and current. Furthermore, we will study the effect of the combined application
of both stimuli. Before, in section 3.4, we shall describe the main characteristics of the
studied sample.

2.6 Chapter summary and thesis overview

In this chapter, we have presented the main topics that constitute the framework of this
thesis. As we have evidenced, the experimental work that we will present in the following
chapters is linked to a variety of big subjects, from the magnetism of nanostructured thin
films to statistical physics and critical phenomena.
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We have presented the big area of Magnetism and introduced the concepts of mag-
netic domains and domain walls in section 2.1. Then, in section 2.2, we have presented
the main concepts on the micromagnetic theory of driven domain walls, introducing the
applied magnetic field and the spin-transfer torque as possible driving forces. In section 2.3,
we discussed the morphological and dynamical properties of elastic interfaces in disordered
media, of which one example is magnetic domain walls. Then, in 2.4, we have shown how
the theory of elastic interfaces in disordered media applies to the study of driven domain
walls, focusing on the universality of the creep and depinning regimes and on the critical
behaviors of characteristic length scales, closely related to domain wall roughness. Finally,
in section 2.5, we have described the main properties of the studied material systems, which
are perpendicularly magnetized thin films belonging to two interesting groups of materi-
als: the rare earth - transition metal ferrimagnetic alloys and the diluted ferromagnetic
semiconductors.

In the following, chapter 3, we shall present the main experimental techniques that we
used throughout this thesis, focusing on the polar Kerr effect magneto-optical microscopy.
In addition, we will describe the particularly studied samples, their growth methods and
their magnetic characteristics. Then, chapters 4, 5 and 6 will be devoted to the presentation
and discussion of the main experimental results obtained throughout this thesis. We shall
cover:

• in chapter 4, the temperature dependence of field-driven domain wall dynamics in
GdFeCo, focusing on the characteristics of observed dynamical regimes and the ex-
perimental determination of universal depinning critical exponents;

• in chapter 5, the study of domain wall morphology in GdFeCo as a function of temper-
ature in the creep and depinning regimes, focusing on the determination of roughness
exponents and associated characteristic length scales;

• in chapter 6, a study of the interplay between magnetic field and STT as domain-
wall driving-forces in a bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As, focusing on the creep
regime.

Finally, in chapter 7, we will summarize our main conclusions and discuss the perspectives
for future work on these subjects.
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CHAPTER 3

Experimental techniques
and studied samples

“De perto, ninguém é normal.”
Caetano Veloso, Vaca profana

The studies performed throughout this thesis are based on observations of magnetic
domain walls in thin films. Therefore, both the experimental tools that permit these
observations and the knowledge of the main characteristics of the studied thin films

are fundamental for our research. The domain wall observation technique that we have
used is the polar magneto-optical Kerr effect (PMOKE) microscopy, which permits to view
magnetic structures in thin films with perpendicular anisotropy with an optical resolution
of ≈ 1µm. The studied thin films consist, on the one hand, on a ferrimagnetic and metallic
thin film of GdFeCo and, on the other hand, on a ferromagnetic and semiconducting bilayer
of (Ga,Mn)(As,P)/(Ga,Mn)As which has electrical contacts that permit current injection.

In this chapter, we will thoroughly describe our domain wall observation techniques and
the main characteristics of the studied samples. Firstly, in section 3.1, we shall present the
principles of magneto-optical Kerr effect imaging, focusing on the polar Kerr effect and the
key parameters that permit to perform a good magnetic domain visualization. Secondly,
in section 3.2, we will thoroughly describe the PMOKE microscopy setup that we have
used: the optical system, the temperature control and magnetic field application setup, and
our methods for domain wall dynamics measurements and wall profile detection. Then, in

59



3.1. Magneto-optical Kerr effect imaging
Experimental techniques

and studied samples

section 3.3, we shall describe the main characteristics of the studied ferrimagnetic GdFeCo
sample: its growth methods and composition, and the magnetic characterization that we
have performed in order to quantify its main global magnetic properties. Next, in section
3.4 we will describe the characteristics of the studied bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As
focusing on its particular shape, which permits to inject electric current in order to move
domain walls via the spin-transfer torque mechanism. Finally, in section 3.5 we will conclude
and summarize this chapter.

3.1 Magneto-optical Kerr effect imaging

Magneto-optical effects result from the influence of spontaneous magnetization and mag-
netic fields on the emission or propagation of light in matter [165], and they are the basis
for the domain observation in magnetic materials. The transmission of light within a mag-
netized material results on a rotation of its polarization via the so-called Faraday effect
[166]. Additionally, the polarized light which is reflected on a magnetic material’s surface
may undergo a change of its polarization via the so-called Kerr effect [167]. The first theo-
retical comprehension of these two effects was proposed by Lorentz [168], based on the idea
that left- and right-circularly polarized light couple differently to electrons in the material.
For this reason, Faraday and Kerr effects are circular birefringence effects. Other relevant
magneto-optical effects are the Voigt [169], Cotton-Mouton [170] and gradient [171] effects.
In addition, the Zeeman effect [172] consisting on the splitting of spectral lines of atoms in
a magnetic field constitutes another magneto-optical effect of crucial importance in Physics,
as it is very valuable for determining the structure of atoms, molecules and crystals.

The use of Kerr effect for the imaging of magnetic domains has become a technique
of great importance in the last decades [1, 165]. Even if this effect is rather weak as
compared with the Faraday effect1, most magnetic materials are not transparent and then
the transmission of polarized light necessary to exploit the Faraday effect is not possible. A
breakthrough in the use of the Kerr effect for domain imaging came in the 1980s with the
digital image processing [173], which permitted to get rid of the non-magnetic components
of images by simply digitally substracting a background image. This made Kerr microscopy
a paradigmatic technique in order to perform real-time observations of magnetic structures
and magnetization dynamics. Since light in the visible spectrum is generally used, the
optical resolution is typically of ≈ 1µm.

1This difference is due to the fact that Kerr effect results from reflection, i.e. from the coupling of
light with electrons in the material’s superficial region, while Faraday effect results from transmission, what
involves electrons in the whole sample’s thickness.
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3.1.1 Polar Kerr effect

As we have mentioned above, Kerr effect has its origin in the coupling of light with electrons
within the superficial region of a magnetized sample, what impacts on the polarization of
the reflected light. Hence, if a polarized light beam is reflected on a magnetized sample,
its polarization may change according to the local magnetization in the region of incidence.
Kerr effect may be exploited in order to observe domains in samples with in-plane and
out-of-plane magnetization. However, different geometries are used in each case.

The so-called longitudinal and transverse geometries [1] permit to observe changes in
the reflected polarization associated to the in-plane magnetization of a thin film. On the
other hand, the polar configuration is used in order to observe domains in films with per-
pendicular anisotropy, where magnetization lies out-of-plane. Figure 3.1 shows a schematic
representation which illustrates the geometry of the polar Kerr effect.

In this configuration, the incident light beam has a linear polarization and its direction
of incidence forms an angle ϑ with the film normal ẑ. Additionally, the plane of polarization
corresponds to the plane of incidence. In this context, the oscillating incident electric field
~Ein, with an amplitude Ain, generates an oscillation of electrons in the magnetized film’s
surface in the electric field direction. Then, as electrons are subject to a Lorentz force due
to the magnetic field generated by out-of-plane magnetization ~M , a component of electron
motion arises in the x̂ direction (see figure 3.1(a))2. Therefore, the reflected beam’s electric
field ~Ere has two components: a regular component ~EN which lies in the plane of polarization
of the incident beam, and a Kerr component ~EK which is perpendicular to ~EN. We define
the amplitudes of these two components as AN and AK, which satisfy AN � AK. The
direction of the Lorentz force over electrons that generates the component ~EK depends on
the direction of the out-of-plane magnetization, and then polarization of the reflected beam’s
electric field ~Ere will be different for oppositely magnetized domains. The Lorentz force is
maximum if ~Ein and ~M are perpendicular and, therefore, the polar Kerr effect amplitude
AK is maximum for ϑ = 0, i.e. for perpendicular incidence. If ϑ = 0, by symmetry, the Kerr
effect amplitude is equivalent for any polarization plane of the incident light beam.

3.1.2 Magneto-optical contrast

In order to assess the polarization of the reflected light beam, it is necessary to use an
analyzer, i.e. a polarizer whose function is to discriminate between different angles of the
polarization plane, resulting on different light intensities for differently polarized light beams.
Let us consider a perpendicular incidence, i.e. ϑ = 0, and an analyzer whose normal is set
with an angle αa with respect to the plane of polarization of the incident light, as indicated

2This oscillation occurs in a superficial region of several nanometers in metallic samples, corresponding to
the so-called skin depth in which the electric field penetrates the sample’s surface. Even if samples usually
have a non-magnetic capping layer, the stray field due to the magnetic layer impacts on electron dynamics
in this capping layer, what permits domain observation via the polar Kerr effect.
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Figure 3.1: Geometry of the polar Kerr effect. (a) An incident linearly polarized light
beam with its oscillating electric field ~Ein is reflected in the surface of a magnetic thin film
with out-of-plane magnetization ~M . The angle between the direction of incidence and the
film’s normal ẑ is ϑ, and the plane of polarization corresponds to the plane of incidence.
The electric field of the reflected beam ~Ere is the sum of the regular component ~EN, which
lies in the plane of polarization of the incident beam, and the Kerr component ~EK, which
is normal to ~EN and results from the contribution to the vibrational motion of electrons
in the magnetized material due to the Lorentz force. The direction of the Kerr component
depends on the direction of sample magnetization in the position where reflection occurs.
Adapted from [1]. (b) Sum of regular and Kerr amplitudes, AN and AK, respectively. The
direction of out-of-plane magnetization determines the direction of the Kerr amplitude.
The Kerr rotation ϕK is defined as ϕK = AK/AN because AN � AK. The polarizer sets the
direction of polarization of the incident light, which determines the direction of the regular
component. The analyzer’s normal is set with an angle αa with respect to the polarizer in
order to assess the polarization of the reflected beam.
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in figure 3.1(b). In this context, considering that AN � AK, we define the so-called Kerr
rotation as ϕK = AK/AN. Accordingly, the signal amplitude transmitted by the analyzer is

Aa ≈ AN sinαa ± AK cosαa , (3.1)

where the sign of the Kerr component (i.e. the second term) is given by the direction of
out-of-plane magnetization. Therefore, the intensities I+ and I− of oppositely magnetized
domains may be written as [1]

I+ = (AN sinαa + AK cosαa)2 + I0 (3.2)

and
I− = (AN sinαa − AK cosαa)2 + I0 . (3.3)

Here, we have introduced a background intensity I0 which accounts for the residual signal
originated in the whole optical system. This component is present in any real magneto-
optical imaging setup and should be minimized for better domain observation.

Note that I− = I0 for αa = ϕK = AK/AN. For this analyzer angle setting, if I0
was negligible, light coming from one of the two types of domains would be completely
extinguished. Consequently, one domain would appear completely dark, while the other
would appear relatively bright, resulting on a good contrast between them. However, as we
will see in the following, the optimization of the magneto-optical contrast is achieved for
αa > ϕK in real situations where the background intensity I0 is present3.

The relative magneto-optical signal smo is the difference between the intensities corre-
sponding to the two domains,

smo = I+ − I− = 2AKAN sin (2αa) , (3.4)

and the magneto-optical contrast Cmo is defined as[1]

Cmo = I+ − I−
I+ + I−

. (3.5)

The optimization of the magneto-optical contrast for visual observation of domains is
achieved by maximizing Cmo. This occurs for an optimal analyzer angle αa,opt given by

tanαa,opt =

√√√√A2
K + I0

A2
N + I0

, (3.6)

which results in an optimal contrast

Cmo,opt = AKAN√
(A2

K + I0)(A2
N + I0)

≈ AK√
A2

K + I0
, (3.7)

3Another difficulty for the optimization of magneto-optical contrast is that the reflected polarization is
usually elliptical. In order to get rid of elliptical polarization, a compensator such as a quarter wave plate
is usually used.
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where the approximation is valid for A2
N � I0. Therefore, if I0 is sufficiently low, the optimal

magneto-optical contrast depends only on the relation between AK and I0. Additionally,
note that equation (3.6) indicates αa,opt > ϕK for I0 > 0.

The optimization of magneto-optical contrast according to equations (3.6) and (3.7) is
usually not sufficient for obtaining the optimal domain observation. In practice, the signal to
noise ratio obtained with a Kerr microscopy setup is usually the most significant parameter
that has to be optimized in order to clearly observe magnetic domains. Therefore, the
optimal analyzer angle αa usually needs to be set to a higher angle than that indicated by
(3.6).

Three main sources of noise may be identified for a Kerr microscopy setup like the one
that we use in this thesis, in which images are digitally obtained by a CCD or a CMOS
camera. First, the so-called shot noise, which is due to the quantized nature of light and
varies with the square root of the photon number that arrives to the camera. Second, the
electronic noise, which depends on the detection electronics and is usually independent of
the light intensity. Third, the fluctuations in all the optical setup: the light source, the
optical path including all optical elements, and the sample.

In this context, the optimal domain visualization is obtained for a condition of balance
in which both a good magneto-optical contrast Cmo and a good signal to noise ratio are
achieved. Once a sufficiently good magneto-optical contrast is set by the analyzer angle αa,
the exposure time ∆texp of the camera may be set to sufficiently high values in order to obtain
a signal which is significantly above the noise magnitude. Furthermore, digital contrast
settings permit to focus on the intensity range in which the difference between oppositely
magnetized domains is observed, therefore obtaining a well-defined domain visualization.
This is possible if the intensities of oppositely magnetized domains are sufficiently well
separated in the intensity range resolved by the camera. The discrimination of similar
intensities is limited by the digital bit depth of the camera, which defines the number of
gray levels that can be resolved. An additional way of enhancing domain observation is
to digitally substract a background image corresponding to a saturated state of uniform
magnetization, what permits to get rid of the backgroud intensity I0 and highlights changes
in magnetization with respect to the saturated state.

As an example of a good domain observation, in figure 3.2 we show a polar magneto-
optical Kerr effect (PMOKE) image of a sample of GdFeCo. This image corresponds to
one of two pieces of a Ta(5 nm)/Gd32Fe61.2Co6.8(10 nm)/Pt(5 nm) trilayer in which we per-
formed studies on domain wall dynamics and morphology4, and was obtained by merging
111 individual images that cover all the sample in a static magnetic configuration, at room
temperature (T ' 293 K) and with no applied field. The individual images were obtained
directly, without background substraction, with an exposure time ∆texp = 200 ms. As no
background substraction was performed, some dust particles and the sample borders are
clearly seen. This GdFeCo sample presents a large Kerr amplitude AK due to a relatively
strong coupling of itinerant 3d transition metal electrons with polarized light, as we have

4For sample details, see section 3.3.
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Figure 3.2: Polar magneto-optical Kerr effect (PMOKE) image of a GdFeCo
sample. Obtained by merging 111 individual images at zero applied field, for a static
magnetic configuration, at room temperature (T ' 293 K). The two opposite magnetization
directions for the “clear” and the “dark” domains are indicated. The imaged sample is one
of two pieces of a Ta(5 nm)/Gd32Fe61.2Co6.8(10 nm)/Pt(5 nm) trilayer studied in this thesis.

pointed out in section 2.5.1.

This PMOKE image satisfies the conditions for domain observation that we have dis-
cussed above. Firstly, a good contrast, which permits to clearly observe oppositely mag-
netized out-of-plane domains and the shape of domain walls separating them. Secondly, a
good signal to noise ratio, as the observed domain intensities are very well defined, what
evidences that noise is negligible as compared with the signal. Thirdly, a good use of the
camera bit depth, as the magnetic signal, corresponding to the intensities of both domains,
is within an intermediate intensity range while black and white pixels are found only in dust
particles and sample borders.

In the following section, we shall present the PMOKE microscopes that we used in the
course of this thesis. We will describe the optical setup, the temperature control setup, and
the methods for domain wall velocity measurements and wall profile detection. Additionally,
we will describe our methods for the application of magnetic field pulses of diverse durations,
which is one of the key characteristics of our experimental setup.
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3.2 Polar magneto-optical Kerr effect microscope

Two PMOKE microscopes were used for the studies on domain wall dynamics and morphol-
ogy performed in the framework of this thesis. One of them is installed at the Magnetic
Resonances Laboratory (Laboratorio de Resonancias Magnéticas) at Centro Atómico Bar-
iloche (CAB), Bariloche, Argentina. The image shown in figure 3.2 was obtained using
this setup. The other used microscope is installed at the Solid State Physics Laboratory
(Laboratoire de Physique des Solides, LPS) in Orsay, France. This setup was used for all
studies performed at temperatures T ≤ 275 K.

3.2.1 Optical setup

Both used microscopes permit domain observation in perpendicularly magnetized thin films
using an optical system that is schematized in figure 3.3(a). In the laboratory, this setup
is assembled on an optical table of approximately 2 × 1 m2. The elements L1, L2, L3 and
L4 are optical lenses, while D1 and D2 are diaphragms. The diaphragm D2 and the lens L3,
separated by the lens focal distance f3, are the two fundamental parts of the objective lens.
In order to optimize the polar Kerr contrast, the sample surface is normal to the incidence
direction, what results on a common light path of the incident and reflected beams through
the objective lens. The incident beam, which is generated at the light source and passes
through a polarizer, is then separated in two components by a beam splitter, one of which
is then reflected at the sample’s surface. The reflected beam also passes through the beam
splitter; the transmitted component is analyzed by another polarizer (the analyzer) and is
finally collected by a camera. In practice, the light paths of the beams passing through the
polarizer and the analyzer are not exactly perpendicular. The beam splitter angle is slightly
tilted so that the parasite reflections on its surfaces do not impact on the image formed at
the camera sensor.

The used light source is a high radiance red LED with dominant wavelength λ ' 630 nm.
The camera is based on CCD or CMOS technologies and has a bit depth of 14 bits; this
means that 214 = 16384 intensities may be differentiated by the camera electronics. This
bit depth, much higher than the 8 bits of common screens in which only 256 intensities
may be differentiated, is crucial for discriminating similar signal intensities by appropriately
setting the digital contrast. The polarizer and analyzer qualities are also crucial for domain
observation: as the Kerr rotation ϕK is generally very small, a very well polarized incident
light beam and a good discrimination of different polarization directions by the analyzer
are needed in order to observe a measurable Kerr signal. This condition is achieved by
using polarizers with a good extintion ratio. This key parameter corresponds to the ratio
of transmitted light polarized in the set direction with respect to the transmitted light with
perpendicular polarization. Particularly, the polarizers used in the microscope installed at
CAB (both the polarizer and the analyzer) are of the type Glan-Thompson, model Newport
10GT04, while the ones used in the microscope installed at LPS are of the type Glan-Taylor,
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Figure 3.3: Optical setup of the used PMOKE microscopes. (a) Schematic repre-
sentation of the whole optical system indicating all the relevant elements. (b) Illumination
path. (c) Imaging path.
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model Casix PGT515. These polarizers have an extintion ratio ∼ 105.

Let us now describe the optical paths which are illustrated in figures 3.3(b,c). In
panel (b), we illustrate the illumination path, i.e. the light path from the light source
up to the sample surface. For simplicity, we do not draw the polarizer and the beam
splitter. The shown arrangement corresponds to the Köhler illumination [1, 165], which
permits to uniformly illuminate the sample surface. This is accomplished by generating
an image of the LED light source in the back focal plane of the objective lens, which
corresponds to the position of the diaphragm D2. In this way, each point of the region
of interest in the sample receives light from all the punctual sources that compose the
LED; therefore, the inhomogeneity of the light source does not impact on the illumination.
Additionally, note that D1, the so-called field diaphragm, is placed in a sample’s conjugate
plane. Therefore, an image of D1 is formed on the sample surface. This diaphragm, which
has an adjustable aperture, permits to filter diverging rays, hence avoiding unwanted effects
such as aberrations and reflections in the borders of the optical elements. The lens L1 is
the so-called collector lens, as it “collects” light coming from the LED source, changing its
propagation direction towards the center of the light path.

In figure 3.3(c) we illustrate the imaging path, i.e. the reflected light path from the
sample towards the camera. This arrangement permits to form an image of the illuminated
region of the sample’s surface on the camera sensor. The relation between the illuminated
area in the sample and its size in the sensor is given by the relation between the focal
distances f4 and f3 of the lens L4 and the objective lens L3, respectively. In addition, a
Bertrand lens may be added between D2 and L4 in order to project the image formed at the
back focal plane (at D2) on the camera sensor, what permits to test the correct arrangement
of the illumination path [174]. In accordance with the above discussion, a good illumination
is obtained if an image of the light source is formed at the camera when using the Bertrand
lens.

The camera sensor is an array of individual CCD or CMOS sensors, each of them
corresponding to one pixel. The size of the individual sensors and its relation with the ocular
magnification given by f3 and f4 determine the pixel size of PMOKE images. Additionally,
given a pixel size, the number of pixels determines the field of view. In the setup of the
microscope installed at CAB, we have used a QImaging EXi Blue CCD camera with 1392×
1040 pixels. Each individual CCD sensor has a size of 6.45 × 6.45µm2. In the microscope
installed at LPS, we have used an ORCA-Flash 4.0 V2 Digital CMOS Camera with 2048×
2048 pixels. In this camera, each individual CMOS sensor has a size of 6.5× 6.5µm2. Both
cameras have a bit depth of 14 bits, as we have mentioned above.

Both microscopes are equipped with 5× and 20× objective lenses Olympus LMPLFLN,
with working distances f3 of 22.5 mm and 12 mm, respectively. In the setup of the microscope
installed at CAB, the pixel size is 0.47µm if we use the 5× lens, while it is 0.12µm if we use
the 20× lens. In the microscope installed at LPS, the pixel size for the 5× lens is 0.69µm
while for the 20× lens it is 0.17µm. While a higher pixel size permits to observe a larger
area of the sample surface, a lower pixel size permits to observe slow domain wall motion
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and lower-scale morphological properties. As the optical diffraction limit of red light is
≈ 1µm, the resolution cannot be much lower than this value. However, in order to achieve
such resolution it is necessary to have a significantly smaller pixel size. This condition is
satisfied when we use the 20× lens.

Finally, the focal distances of the other three lenses, namely L1, L2 and L4, are the
following. In the microscope installed at CAB, f1 = 150 mm, f2 = 400 mm and f4 = 500 mm.
In the microscope installed at LPS, f1 = 70 mm, f2 = 250 mm and f4 = 300 mm. These
distances correspond to the light path lengths between the light source and L1, L2 and D2,
and L4 and the camera sensor, respectively, as we have indicated in figure 3.3(b,c).

3.2.2 Temperature control

The studied magnetic samples consist in multilayers deposited on top of a silicon substrate.
The bottom side of the substrate is glued to a thermally conducting sample holder. In
addition, the sample holder may be precisely positioned by three micrometric positioners in
the directions x, y and z, what permits a good focus of the sample image in the focal plane
of the objective lens and a precise selection of a region of interest in the sample surface.

The sample holder is thermally connected to a cooling system and a resistive heater.
Additionally, a resistive thermometer is fixed close to the sample in order to sense its tem-
perature. The thermometer and the heater are connected to a PID temperature controller
system. The correct balance between the cooling and the heater power permits to stabilize
the temperature to a desired value. The heater power is set by the PID (proportional-
integral-derivative) algorithm according to the target temperature (set-point), the temper-
ature measured by the thermometer, and the P , I and D values. These three parameters
need to be tuned depending on the set-point and the system’s cooling power in order to
achieve a stable temperature at the desired value.

Temperature control close to room temperature

In the setup installed at CAB, we have developed and constructed a sample holder with
temperature control which may be used for temperatures T & 280 K up to T ' 360 K.
The lower limit is due to the fact that the sample remains in atmospheric conditions, what
according to the ambient temperature and humidity may cause the condensation of water
droplets in the sample surface. The upper limit is a security limit below which we are sure
that the used sample and other elements of the sample holder are not affected. In this
thesis, we used this sample holder for measurements of domain wall dynamics in GdFeCo
in the range 283 K ≤ T ≤ 353 K.

The sample holder consists in an metallic piece of aluminium of approximately 5× 2×
2 cm3. The sample is glued on one of its ends with GE 7031 varnish, while the opposite

69



3.2. Polar magneto-optical Kerr effect microscope
Experimental techniques

and studied samples

end is attached to a cold finger made of numerous copper wires which are ∼ 30 cm long.
These wires are immersed in liquid nitrogen (LN2) which is contained in a Dewar flask.
The thermal contact of the sample holder with the LN2 permits its cooling and that of the
sample.

Additionally, a resistive heater that consists in a wire winding of manganin is coiled on
the metallic sample holder and is therefore in thermal contact with it. A Pt-100 thermometer
is placed in a hole of the sample holder, approximately 5 mm away from the sample. Both
the heater and the thermometer are connected to a PID temperature controller which,
according to a PID algorithm, permits to stabilize the temperature to a chosen set-point
value. As all our measurements are made at fixed temperatures, before each measurement
we tune the P , I and D parameters in order to obtain a stable fixed temperature with
fluctuations below 0.01 K. Note that, for the range 283 K ≤ T ≤ 353 K, this magnitude of
the fluctuations represents less than 0.01 %.

Temperature control at low temperatures

In the microscope installed at LPS, we have performed measurements of domain wall dy-
namics and observations of domain wall morphology in the range 10 K ≤ T ≤ 302 K. The
exploration of such a wide temperature range could be performed by using an optical cryo-
stat. Particularly, we have used an open-cycle gas flow optical cryostat CryoVac KONTI
Micro with nitrogen or helium as circulating gases according to the desired sample temper-
atures. When using nitrogen, we could explore all the range of temperatures above 77 K,
while the use of helium permitted to cool the sample down to 4 K. The used cryogenic gas
was pumped through the cryostat using a mechanical pump. Additionally, an insulating
vacuum is needed in order to cool the sample well below room temperature5. We achieved
an insulating vacuum of 10−5-10−6 mbar using an Edwards TIC pumping station with both
a mechanical and a turbomolecular pump.

The fixed metallic sample holder inside the cryostat is in thermal contact both with the
flowing gas circuit and with a resistive heater. Additionally, a Cernox thermometer is placed
in the interior of the sample holder. Both the heater and the thermometer are connected
to a PID temperature controller. The cooling power depends strongly on the insulating
vacuum, the rate of gas flow and the actual temperature. Additionally, the sample holder’s
heat capacity strongly depends on the temperature, and thus the heater power needs to be
precisely controlled at very different values according to the desired temperature. Therefore,
the P , I and D parameters had to be tuned for obtaining the stability at each studied
temperature. The fluctuations were verified to be always below 0.01 K.

5Such vacuum is crucial both for thermal insulation and for preventing the condensation of water and
the formation of ice, what would damage the sample and the whole system installed inside the cryostat.
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3.2.3 Domain wall velocity measurement

Let us now describe our methods for measuring the mean magnetic domain wall velocity
resulting from the application of an external out-of-plane magnetic field. As we will further
discuss in chapter 6, an equivalent method is applied when driving domain walls with
current. Figure 3.4(a-b) shows two PMOKE images obtained at CAB which correspond
to two successive wall configurations in the GdFeCo sample studied throughout this thesis,
at T = 295 K. Note that, in these PMOKE images, the diaphragm D1 appears as a focused
dark frame due to its correct positioning in a sample’s conjugate plane (see figure 3.3(b)).
The domain wall displacement occurring between these two configurations was induced by
a square-shaped magnetic field pulse generated by a coil.

As shown in figure 3.4(c), after nucleating and positioning a domain wall in the mi-
croscope field of view, successive pulses of magnitude H and duration ∆t are applied, and
PMOKE images are acquired before and after these pulses, when no field is applied. The
domain wall displacement may be measured by performing a substraction of two successive
wall configurations, as shown in panel (d). For obtaining a representative value for the
domain wall displacement ∆u, we measure several displacements ∆ui at different wall po-
sitions using the ImageJ software and we repeat this procedure for different field pulses of
the same magnitude and duration. For each H and ∆t, we obtain 10-20 individual displace-
ments ∆ui. We then obtain ∆u and its uncertainty as the mean value and the standard
deviation of ∆ui, respectively.

Assuming that the domain wall moves at a constant mean velocity v(H,T ) during all
the time ∆t in which the pulse is applied, we calculate the mean wall velocity as v = ∆u/∆t.
For the case illustrated in figure 3.4, i.e. T = 295 K, µ0H = 5.57 mT and ∆t = 10 ms, we
obtain v = (3.2± 0.3)× 10−3 m/s.

The hypothesis that the mean domain wall velocity is stationary for the field magnitudes
and pulse times for which we have performed wall velocity measurements has been carefully
verified. In figure 3.5 we show the measured domain wall displacements as a function of the
pulse duration for two different applied field magnitudes which result in strongly different
wall velocities, at T = 295 K. In panel (a), we plot ∆u vs. ∆t for µ0H = 3.82 mT. Note that
the application of pulses with durations ranging between 1 and 15 s result on an equivalent
domain wall velocity v = ∆u/∆t, as indicated by the straight line and the shaded region
which correspond to v = (9.2± 0.4)µm/s. This particular value results from analyzing the
wall displacements ∆ui resulting from the application of a 15 s-pulse. This evidences that
the mean domain wall velocity is stationary during the field pulse duration and depends
only on µ0H.

In figure 3.5(b), we show a similar plot for a field magnitude µ0H = 11.0 mT which
results in a much faster domain wall motion. Two different pulse durations are considered,
∆t = 1 and 5µs. For ∆t = 1µs, the mean domain wall velocity results v = ∆u/∆t =
(12 ± 2) m/s, while for ∆t = 5µs we obtain v = ∆u/∆t = (11 ± 1) m/s. As both results
are equal within their error bars, we may also claim that the domain wall velocity is practi-
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Figure 3.4: Domain wall velocity measurement. (a) PMOKE image of a domain wall
in the studied GdFeCo sample, nucleated after applying several pulses of µ0H = 5.57 mT
and ∆t = 10 ms at T = 295 K. The diaphragm D1 is observed as a dark frame. (b)
Domain wall configuration after applying an additional pulse of the same magnitude and
duration. (c) Measurement protocol, indicating that the images showing successive positions
of a domain wall are taken at H = 0, before and after the application of square-shaped field
pulses. (d) Differential image obtained by computing the difference between (a) and (b). The
domain wall displacement ∆u and its uncertainty are measured by considering displacements
∆ui occurring at different positions and due to equivalent field pulses and computing their
mean and standard deviation. For this field magnitude and pulse duration, we obtain
∆u = (32±3)µm; thus, the domain wall velocity results v = ∆u/∆t = (3.2±0.3)×10−3 m/s.
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Figure 3.5: Domain wall displacement as a function of the pulse time. (a) Wall
displacements ∆u resulting from the application of pulses with a magnitude µ0H = 3.82 mT
in the studied GdFeCo sample at T = 295 K. The pulse durations ∆t are 1, 5 and 15 s. All
measured displacements are consistent with a domain wall velocity v = ∆u/∆t = (9.2 ±
0.4)µm/s, represented by the dotted line and the shaded region. (b) Fast wall displacements
∆u resulting from the application of short pulses with a magnitude µ0H = 11.0 mT in the
same sample, at the same temperature. The pulse durations are ∆t = 1 and 5µs. Both
measured displacements are consistent with a wall velocity v = ∆u/∆t = (11±1) m/s which
is represented by the dotted line and the shaded region.

cally stationary within the pulse duration even for this relatively fast domain wall motion.
This analysis has been repeated in all the range of studied velocities and for each studied
temperature. Due to the limited field of view of the PMOKE microscope, the comparison
between pulse times which differ in more than an order of magnitude was not possible.

Let us finally make a remark regarding the initial domain wall state, i.e. the procedure
for nucleating a domain wall before measuring its velocity (see figure 3.4(c)). When possible,
we have nucleated this domain wall with the same field magnitude for which we would then
perform velocity measurements. This prevents any dependence of the wall velocity on its
initial state, as we are interested on the stationary domain wall velocity. In the range of
low fields, which do not permit domain nucleation, we have applied a higher magnitude
pulse in order to nucleate a domain wall, and then applied several pulses of the desired field
magnitude in order to generate a proper initial state. We then measured wall velocities
starting from this state in order to get rid of any impact of the nucleation field magnitude.

3.2.4 Magnetic field pulses

The above discussion evidences that a good control of the applied field magnitude, the pulse
duration and the pulse shape is crucial for an adequate domain wall dynamics measurement.
Particularly, our method requires the field pulses to be square-shaped. In addition, several
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orders of magnitude in the wall velocity are explored: we have measured velocities ranging
from 10−9 to 102 m/s. While the measurement of the lowest velocities require the application
of a magnetic field during times of the order of an hour, the measurement of the highest
velocities require the application of field pulses of ∼ 1µs.

As we have studied mainly the thermally activated creep regime and the depinning
regime (see section 2.4), several orders of magnitude in the velocity are covered with rela-
tively narrow field ranges. For this reason, in most of our measurements, the main limitations
for measuring high velocities is the need of a too short pulse duration rather than a too high
field. Regarding the lowest velocities, the main difficulties arise from the fact that the sta-
bility of the sample position and the optical system may be lost during a long measurement,
what may result on a lost of the sample focus and/or a difficult comparison between images
before and after the field application. Additionally, the current that is applied in a coil in
order to generate a magnetic field produces its heating, what prevents the field application
during long times in conditions for which the necessary field magnitude is relatively high.

We have used three types of coils in order to cover a wide domain wall velocity range.
Firstly, a “large coil” which has a bore diameter of ' 3 cm is fixed to the optical table
and is placed in the same position as the objective lens, i.e. the objective lens is placed
in its interior. It consists in a wire winding of copper coiled on an aluminium piece. The
copper wire has a diameter of ' 1.8 mm. The same type of large coil is used both in the
microscope installed at CAB and at LPS. As it is big with respect to the sample size, the
field generated by this coil is uniform in all the sample, and thus the calibration of the
out-of-plane field magnitude as a function of the applied current is easy to perform. For
the microscope installed at CAB, the field vs. current factor is 3.48 mT/A, while for the
microscope installed at LPS it is 2.62 mT/A. We have used these coils for driving domain
walls with pulses of durations ∆t ≥ 1 s, what corresponds to wall velocities up to 10−4 m/s.

Secondly, we used a medium sized coil which has a bore diameter of ∼ 0.5 cm and is
made of a copper wire which has a diameter of ≈ 0.3 mm. In order to make measurements
with this coil, we place it on the sample holder, above the sample, allowing the light path
to enter through its bore. For the field to be uniform in the microscope’s field of view, we
observe a sample region which is centered with respect to the coil. As this coil is relatively
small, the generated field µ0H when applying a given current I depends on the position of
the observed region. Additionally, as the domain wall velocity depends strongly on the field,
the most precise way to calibrate the field µ0H vs. applied current I dependence of this
coil consists in comparing velocities measured with this coil and with the large coil. This
is, after having measured several velocities with the large coil, we measure similar velocities
as a function of I using the smaller coil and tune the calibration factor µ0H/I so that
both measurements are consistent between each other. For the measurements made with
the medium sized coil that are presented in this thesis, the used field vs. current factor is
26.5 mT/A. We have used a unique calibration factor because all the domain wall velocity
measurements performed with this coil correspond to the same sample region, with a fixed
position of the coil.
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Figure 3.6: Application of field pulses and measurement of their shape when using
the medium sized coil. (a) Schematic representation of the circuit. A pulse generator
applies a current pulse through a circuit formed by a coil and a resistance R, connected in
series. The voltage V measured by the oscilloscope is proportional to the current I flowing
through the circuit. (b) Observed pulse shapes detected by the oscilloscope for a current
I = 300 mA and an applied pulse duration ∆tap = 3 ms, for different magnitudes R of the
resistance connected in series with the coil.

We have used the medium sized coil for field pulses of durations ranging between 1 ms
and 500 ms. We therefore have access to velocities ranging between 10−5 and 10−1 m/s using
this coil. The lower limit for the pulse time is due to the rise time of the circuit used for
applying pulses, and the upper limit is due to excessive coil heating. In figure 3.6(a), we
show a schematic representation of the circuit used for applying field pulses with the medium
sized coil. The use of a resistance in series with the coil is important both for obtaining
square-shaped pulses and for sensing the pulse shape with an oscilloscope. In figure 3.6(b),
we show the observed pulse shapes for a current I = 300 mA and an applied pulse duration
∆tap = 3 ms. As evidenced, changing the magnitude R of the resistance connected in series
results in different pulse shapes. For the shown case, the optimal pulse shape is obtained for
R = 10 Ω and we therefore use this resistance value for domain wall velocity measurements.
However, different field amplitudes and pulse durations may require a change on the used
resistance due to changes in the internal configuration of the pulse generator. The rise
time trise (equal to ' 0.2 ms for the case shown in the figure for R = 10 Ω) is considered
for computing domain wall velocities, i.e. v = ∆u/∆t with ∆t = ∆tap − trise. The used
equipment when applying field pulses with the medium sized coil are an Agilent B2902A
pulse generator and a Tektronix TDS 2024B oscilloscope.

Finally, the measurement of velocities ranging between 10−1 and 102 m/s was made
using tiny coils made with ∼ 50 turns of a copper wire of ' 100µm in diameter. We made
these coils by rolling the copper wire on a toothpick, gluing it externally to a teflon piece,
and finally taking away the toothpick. We then attached the teflon piece on the sample
holder, above the sample, so as to see the sample surface through the coil center, which
has a diameter of 0.5-1 mm. The limited number of turns of these coils permits to obtain a
rise time well below the microsecond. Concomitantly, a relatively high current needs to be
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Figure 3.7: Application of short field pulses and measurement of their shape. (a)
Schematic representation of the circuit. The trigger is a pulse generator which applies a
5 V pulse of a duration ∆tap on the chopper, which releases the voltage generated by the
high voltage source during ∆tap in the circuit formed by a tiny coil and a 50 Ω resistance
R connected in series. The oscilloscope detects the voltage on the resistance, which is
proportional to the current I flowing through the circuit. (b) Typical pulse shape measured
with the oscilloscope, for the shortest applied field pulses, corresponding to ∆t = ∆tap −
trise = 0.5µs.

applied in order to generate the magnetic field necessary to measure domain wall velocities
above ∼ 1 m/s. For this reason, we have used a high-voltage source connected to a chopper
that, when triggered by a 5 V pulse during a desired time ∆tap, discharges during this time
the voltage set by the source. The high voltage pulse is applied on a circuit in which the
tiny coil is connected in series with a 50 Ω resistance in order to adapt the impedance of
the circuit with that of the chopper. This resistance is required for optimizing the pulse
shape and also for observing it with an oscilloscope. In figure 3.7(a) we show a schematic
representation of the setup.

The drawback of this short pulse application setup is that it does not support pulse
times well above 10µs. This is due to the fact that the high voltage discharged by the
chopper is stable during a limited time. For higher pulse times, their application should be
made with a pulse generator using the circuit shown in figure 3.6(a), with the difficulty that
pulses applied in this way using a tiny coil are more limited on its magnitude. Some of the
measurements at intermediate domain wall velocities were made in this way, using a pulse
generator HP 8114A.

In figure 3.7(b) we show a typical short pulse, applied with a tiny coil used for the
highest velocity measurements presented in this thesis. The observed rise time trise of the
circuit is ≈ 0.1µs. As when using the medium sized coil, the pulse shape was monitored
in all our measurements and the rise time was considered and substracted from the applied
pulse time for measuring wall velocities; this is, we assume the effective application of a
square-shaped pulse with a duration ∆t = ∆tap − trise. The validity of this approximation
was verified by the independence of the wall displacement with ∆t, as we have shown in
figure 3.5. In other words, for the velocity measurements that we present in this thesis, the
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domain wall displacement during the rise time is negligible with respect to the displacement
during the time ∆t in which the current through the coil is maximum. This verification also
permits to discard other transient effects that could affect the applied field control as, for
example, the induction of eddy currents in the sample holder.

The pulse shown in figure 3.7(b) corresponds to ∆t = 0.5µs, which is the lowest pulse
time used in our measurements, and a field magnitude µ0H = 19.6 mT. As this coil is
extremely small and thus the field is not uniform, the dependence of the effective field
magnitude with the current in the coil is calibrated in terms of the domain wall velocity,
by the overlap of equal velocity measurements made with different coils. Particularly, the
applied field when using the medium sized coil is obtained in terms of the measurements
made with the large coil as we have explained above and, in turn, the applied field when
using a tiny coil is obtained in terms of the measurements made with the medium sized coil.
In some particular cases, measurements made with a tiny coil could be directly compared
with those made with the large coil. Once the calibration factor µ0H/I is well established
for a particular coil and sample region, velocities are measured always in the same region,
what allows us to use the obtained factor.

3.2.5 Domain wall profile detection

In order to study domain wall morphology, it is important to develop tools that permit to
obtain the function u(x) describing a wall profile (see section 2.3.1). In the following, we
briefly describe the method we have applied for detecting wall profiles, which was developed
by Daniel Jordán and Sebastian Bustingorry [175].

The description of one-dimensional elastic interfaces in a two-dimensional disordered
medium that we have presented in section 2.3 assumes that the interface lies in a given
direction x̂ and, thus, the movement occurs in the perpendicular direction, ŷ. Therefore,
an imaged domain wall must lie, on average, in a given direction in order to describe it in
this framework. Figure 3.8(a) shows a PMOKE image of an horizontally lying domain wall.
This image was obtained by substracting a background image for contrast enhancement
and then applying a gaussian blur for noise reduction. Additionally, in order to obtain an
horizontal wall, we have selected a wall segment which is straight on average and, then, we
have adequately rotated the image.

Once we have obtained an image as the one shown in figure 3.8, panel (a), we proceed to
the domain wall profile detection. In panel (b), we show the intensity profile corresponding
to an arbitrary position x = x0. The domain wall position at x = x0, u(x0), is determined
as the middle of the range [y1, y2] in which the derivative of the signal intensity vs. y
dependence overcomes an appropriately defined threshold. The used threshold corresponds
to 0.9 times the maximum value of the intensity vs. y derivative. This procedure is repeated
for all x positions, what permits to define the univalued function u(x) shown in panel (a).
Note that the analyzed domain wall segment must not have overhangs in order to define a
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Figure 3.8: Domain wall profile detection. (a) PMOKE image of an horizontally lying
domain wall whose profile is described by the function u(x). A background substraction and
a gaussian blur filter has been applied to the original image. The domain wall was imaged
after several pulses of µ0H = 5.71 mT and ∆t = 2 s at T = 275 K. (b) Signal intensity vs.
y corresponding to an arbitrary position x = x0, indicated in (a). The determined domain
wall position at x = x0, u(x0), is indicated.

u(x) function that correctly describes it. For more details on the algorithm for domain wall
profile detection, see reference [175].

The detection of domain wall profiles has been used throughout this thesis for the anal-
ysis of wall roughness (presented in chapter 5) and for the study of domain wall velocity
correlations (presented in section 4.3.4). The obtained wall profiles were analyzed at dif-
ferent temperatures and with no applied magnetic field, i.e. in a static configuration, after
the application of field pulses. For example, the domain wall shown in figure 3.8(a) was
obtained after applying several pulses of µ0H = 5.71 mT and ∆t = 2 s, at T = 275 K, what
corresponds to a domain wall velocity v = 2.7µm/s. As the exposure time used for obtain-
ing images, ∆texp = 200 ms, is relatively long, it is not possible to image well defined domain
wall profiles with applied field for most of the studied velocities. Even if this is a limitation
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for optimally describing the morphology of moving domain walls, in chapter 5 we will see
that the domain wall morphological properties are dependent on the state of motion just
before turning off the applied field, what allows for a study of domain wall morphology as a
function of field and temperature in our experimental conditions. This can be explained by
considering that domain walls are quenched to a metastable state associated to the applied
field value just before this field is turned off. Their relaxation to an equilibrium state occurs
in a timescale which is considerably longer than any experimental timescale [176].

3.3 Thin film of GdFeCo

One of the two types of magnetic thin films that we have studied in this thesis is a rare earth -
transition metal ferrimagnetic alloy, the GdFeCo6. The particular studied sample is a trilayer
of Ta(5 nm)/Gd32Fe61.2Co6.8(10 nm)/Pt(5 nm) deposited by radio-frequency (RF) sputtering
on a silicon substrate with a thermally oxidized upper layer SiO2(100 nm). The sub-indexes
are nominal concentrations and the thicknesses of each of the three layers are indicated
in parentheses. This sample was grown at the Lawrence Berkeley National Laboratory in
United States by the group of J. Gorchon, C.-H. Lambert, S. Salahuddin and J. Bokor.

The buffer and capping layers of Ta and Pt are crucial for the surface properties of the
ferrimagnetic GdFeCo layer, and they therefore strongly affect the magnetic properties of
the whole sample and impact on domain wall motion. First, they prevent the formation
of oxide. Second, they enhance the perpendicular magnetic anisotropy [28, 124], even if in
GdFeCo this anisotropy is mainly due to the anisotropic pairing of Gd and FeCo atoms
[29, 125]. Third, the buffer Ta layer reduces inhomogeneity of the bottom GdFeCo surface.
Additionally, these heavy metals enhance other effects related to the spin-orbit coupling like
the Dzyaloshinskii-Moriya interaction [55–57, 177]. However, studying the influence of these
effects on domain wall motion is beyond the scope of this thesis.

The grown sample was divided in two pieces of similar size; one of them, whose complete
PMOKE image is shown in figure 3.2, was studied at CAB, the other one was studied at
LPS. The studies on domain wall dynamics and morphology performed in both sample
pieces, which are presented in chapters 4 and 5, are consistent between each other.

3.3.1 Magnetic characterization

In order to characterize the global static magnetic properties of the studied sample, we have
performed several magnetometry measurements. These studies permitted us to obtain rele-
vant quantities as the saturation magnetizationMs, the coercive field Hc and the anisotropy
energy Keff as a function of temperature. In the following, we present and discuss these

6For a description of the general properties of this type of systems, see section 2.5.1.
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Figure 3.9: Saturation magnetization as a function of temperature in GdFeCo.
SQUID magnetometry measurement made by cooling from T = 320 K to T = 5 K with a
fixed applied field of 100 mT. The obtained magnetic compensation temperature, indicated
as a vertical dashed line, is TM = (190± 4) K. Below TM , the Gd sub-lattice magnetization
dominates over the FeCo magnetization. Above TM , the FeCo magnetization dominates.

measurements.

Figure 3.9 shows a measurement of the saturation magnetizationMs as a function of the
temperature T , carried out with a SQUID magnetometer Quantum Design MPMS which
is placed at the Low Temperatures Laboratory at CAB. This measurement was made by
cooling from T = 320 K to T = 5 K with a fixed applied field µ0H = 100 mT so as to
assure that the sample magnetization corresponds to the saturated state. Note that, in
the studied range, the magnetization decreases with decreasing temperature from Ms '
30 kA/m at T = 320 K to Ms ≈ 0 at T = 190 K. This particular temperature corresponds
to the magnetic compensation temperature, which we may quantify from this measurement
as TM = (190 ± 4) K. Below TM , Ms grows linearly with decreasing temperature until
Ms ' 120 kA/m for T = 5 K.

Note the similarity between the measured Ms vs. T dependence and the general ex-
pected behavior that is illustrated in figure 2.18. The fact that in our measurement Ms is
always positive is due to the orientation of the global magnetization in the direction of the
applied field. As we have discussed in section 2.5.1, the Gd sub-lattice magnetization is
larger than the FeCo magnetization below TM while the opposite occurs above TM . Exactly
at TM , both sub-lattices are compensated.

A further characterization of the sample’s magnetic properties can be made by per-
forming hysteresis cycles as a function of the applied field at fixed temperatures. We have
made this type of studies by applying both out-of-plane and in-plane field, what gives us
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information about the coercivity and the anisotropy energy, respectively.

In figure 3.10 we show hysteresis cycles for out-of-plane field application, obtained using
the PMOKE microscope installed at LPS. Firstly, for each fixed temperature, we obtained
PMOKE images as a function of a DC field applied with the large coil, starting from
µ0H = 21 mT, going down to −21 mT and back to 21 mT. For the studied temperatures,
these limits correspond to a saturated state of the sample’s magnetization. Then, we simply
computed the total signal intensity in a given region of the sample as a function of the out-
of-plane field applied with the large coil. In order to highlight the signal associated to the
polar Kerr effect in the sample surface, we substracted a constant mean value and a linearly
varying component which is associated to the Faraday effect in the glass of the objective lens.
The resulting cycles, presented in the figure, clearly show the coercive field µ0Hc at which
the sample magnetization experiences an inversion from a saturated state to the oppositely
saturated state. Additionally, they clearly evidence that the Kerr signal is associated to the
magnetization orientation of the transition metal (FeCo) sub-lattice, as we have discussed in
section 2.5.1: for T > TM (panels (a) and (b)), where the FeCo magnetization dominates and
it is thus oriented in the same direction as the global magnetization, sufficiently large fields in
the positive direction (defined arbitrarily) result on a positive Kerr signal; in contrast, Kerr
cycles are inverted for T < TM (panels (c) and (d)), indicating that the sensed magnetization
is opposite to the global magnetization.

As magnetization inversion is achieved by domain nucleation and the subsequent do-
main wall propagation, the coercive field measured from hysteresis cycles as the ones shown
in figure 3.10 is dependent on the field scanning velocity. It is convenient to perform co-
ercive field measurements with slow scanning velocities so as to reveal the domain nucle-
ation threshold and neglect the dependence of the coercive field on domain wall velocity.
These particular cycles were made with a relatively slow scanning velocity, ranging from
0.1 to 0.9 mT/s. The lowest scanning velocities correspond to the vicinity of the coer-
cive field, while the highest velocities correspond to |µ0H| > µ0Hc. The obtained coer-
cive field values for these temperatures, corresponding to a scanning velocity ' 0.1 mT/s,
are µ0Hc = (3.5 ± 0.2) mT for T = 302 K, µ0Hc = (13.9 ± 0.3) mT for T = 242 K,
µ0Hc = (16.0± 0.4) mT for T = 102 K, and µ0Hc = (11.9± 0.2) mT for T = 20 K.

Furthermore, we have measured hysteresis cycles with in-plane applied field, what al-
lows for a characterization of the uniaxial anisotropy energy Keff . This quantity may be
estimated by considering that, in a ferromagnetic film with out-of-plane anisotropy, the in-
plane applied field which is needed in order to induce the magnetization to point in-plane is
the so-called anisotropy field HK = 2Keff/Ms [6]. In a ferrimagnetic film, this is true when-
ever the applied field does not affect the anti-parallel orientation of the two sub-lattices.

In figure 3.11, we show hysteresis cycles which were obtained with an applied in-plane
field µ0Hip at fixed temperatures. The measured signal is the Hall voltage that results from
applying a current through the sample in an arbitrary direction and measuring a voltage
generated in the perpendicular direction in the sample’s plane. In the figure, this signal is
normalized with respect to its value for µ0Hip = 0. In order to perform these measurements,
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Figure 3.10: Polar Kerr effect hysteresis cycles as a function of the field for dif-
ferent temperatures. The time between successive points is ' 3 s; consequently, the
scanning velocity ranges from 0.1 to 0.9 mT/s according to the distance between successive
points. The lowest scanning velocities correspond to the vicinity of the coercive field.
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Figure 3.11: Anomalous Hall effect measurement of hysteresis cycles with in-plane
applied field at different fixed temperatures. Panel (a) corresponds to T < TM , and
panel (b) to T > TM . The observed signal is proportional to the out-of-plane magnetization
of the FeCo sub-lattice. The anisotropy field HK may be estimated if the signal saturates to
a value that corresponds to the saturation magnetization Ms pointing in the field direction.
This is achieved for the temperatures and fields indicated by arrows, i.e. for T = 20, 100,
120, 280 and 300 K.

thin gold wires were bonded in four extremes adequately positioned so as to apply a current
and measure a voltage in the perpendicular direction. The obtained Hall signal has its
origin in the so-called anomalous Hall effect (AHE) and is proportional to the out-of-plane
magnetization of the FeCo sub-lattice [178]. The field scanning velocity is, on average,
' 8 mT/s. These measurements were made in a Physical Property Measurement System
(PPMS) Quantum Design Model 6000 installed at LPS. Note that the µ0Hip magnitudes
involved in these measurements are much higher than the out-of-plane field magnitudes used
in PMOKE microscopy experiments.

In order to interpret the hysteresis cycles shown in figure 3.11, let us consider that the
sample’s plane is slightly tilted with an angle αt with respect to the applied field µ0Hip.
For µ0Hip = 0, the sample is saturated in the out-of-plane direction and then, a value equal
to 1 for the normalized Hall voltage corresponds to an out-of-plane magnetization equal to
Ms. If we assume that the anti-parallel coupling of the Gd and the FeCo sub-lattices is not
affected by the field, a sufficiently high µ0Hip will induce the magnetization, with magnitude
Ms, to point in the applied field direction. Therefore, the saturation value of the normalized
Hall voltage will be sinαt. The plotted curves for T = 20, 100, 120, 280 and 300 K show a
saturation at a unique value which is consistent with sinαt ' 0.1. Furthermore, the observed
coercivity is consistent with an inversion of the out-of-plane component of magnetization at
a field µ0Hip = µ0Hc/ sinαt with sinαt ' 0.1 and µ0Hc determined from hysteresis cycles
obtained with out-of-plane field. For intermediate temperatures, closer to TM , the saturation
at this value is not verified; this is an evidence that for these cases, the anti-parallel coupling
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Figure 3.12: Coercive field and anisotropy energy as a function of the temperature.
(a) Coercive field µ0Hc obtained from hysteresis cycles measured with an applied out-of-
plane field. (b) Anisotropy energy per unit volume Keff calculated as MsHK/2 from the
measured saturation magnetization Ms and the estimated anisotropy field HK .

between the two sub-lattices breaks before the expected saturation occurs, what impedes
the estimation of the effective anisotropy field HK .

The anisotropy field HK was thus estimated from the cycles shown in figure 3.11 as
the in-plane field at which the out-of-plane magnetization saturates to ≈ 0.1, as indicated
by the arrows. The uncertainties for these estimations range from ±0.1 T for T = 20 K to
±0.3 T for T = 280 K. Then, the anisotropy energy Keff was calculated as Keff = MsHK/2,
where the Ms values correspond to the measurement shown in figure 3.9.

In figure 3.12 we show the obtained values of the coercive field µ0Hc and the anisotropy
energy Keff as a function of the temperature. The temperature dependence of µ0Hc, shown
in panel (a), was obtained by combining both the polar Kerr effect measurements shown
in figure 3.10 and anomalous Hall effect measurements with out-of-plane field (not shown).
The observed divergence when approaching TM is consistent with the fact that Ms → 0 for
T → TM , what reduces the Zeeman energy (2.2) that induces magnetization inversion for a
given applied field. The obtained Keff vs. T values, shown in panel (b), do not show a clear
temperature dependence and, as explained above, its estimation for temperatures close to
TM was not possible. However, our results permit us to estimate that Keff ranges between
10 and 25 kJ/m3 in the whole studied temperature range.

The obtained µ0Hc and Keff values together with the saturation magnetization Ms,
whose temperature dependence was shown in figure 3.9, are the main results regarding
the global magnetic characterization of our studied GdFeCo sample. As we will discuss in
chapters 4 and 5, the determination of these physical quantities is useful for the analysis and
interpretation of our experimental studies on the domain wall dynamics and morphology in
this sample.
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3.4 (Ga,Mn)(As,P)/(Ga,Mn)As bilayer

While the experimental studies that will be presented in chapters 4 and 5 were performed
in the ferrimagnetic GdFeCo sample that we have described above, the studies on field- and
current-driven domain wall dynamics that will be presented in chapter 6 were performed
in a diluted ferromagnetic semiconductor. The magnetic part of the particularly studied
sample is a bilayer of (Ga,Mn)(As,P)(3 nm)/(Ga,Mn)As(1 nm) with perpendicular magnetic
anisotropy. As we have discussed in section 2.5.2, the ferromagnetic nature of this sample
arises due to the incorporation of a low concentration of manganese. Additionally, the
incorporation of phosphorus in the (Ga,Mn)(As,P) layer is done in order to control the
magnetic anisotropy [179].

The studied sample was grown by Aristide Lemaître using molecular beam epitaxy
(MBE) and lithography at the C2N (Orsay, France). It is patterned so as to permit the
application of an electrical current, what induces domain wall motion via the spin-transfer
torque (STT) mechanism. In figure 3.13(a), we show a microscopy image that displays this
pattern. The two electrodes for injecting a current density J in the magnetic bilayer are
indicated as I− and I+. This current density is uniform in the area of interest indicated in
the figure, where we observe domain wall motion with the PMOKE microscope. We have
systematically verified this uniformity when performing domain wall velocity measurements
by simply comparing wall velocities in different regions of this area.

Figure 3.13(b) shows a schematic representation of the stack of thin layers forming the
whole sample, corresponding to a cut through the dotted line shown in panel (a). The
buffer layers of AlAs and GaAs were grown at T ' 550 ◦C, resulting on a epitaxial (001)
GaAs buffer layer for the (Ga,Mn)(As,P)(3 nm), (Ga,Mn)As(1 nm) and GaAs(2 nm) layers,
which were grown at T ' 220 ◦C [180–182]. These three layers were patterned as a rectangle
of 133 × 210µm2, as shown by the darker area in panel (a). Additionally, a post growth
annealing at T ' 200 ◦C was performed in order to remove interstitial Mn ions. The
effective Mn concentration after this process is ∼ 5 % [180]. The two electrode bars used for
current injection are bilayers of of Ti(20 nm)/Au(200 nm) and were deposited on the GaAs
capping layer at both sides of the stack. Additionally, above the capping layer of GaAs,
an insulating 55 nm thick SiO2 layer (clearer region in panel (a)) was deposited by plasma-
enhanced chemical vapor deposition at T ' 200 ◦C. Then, it was covered by an evaporated
film of Ti/Au which serves as a gate for applying an electrical field and tuning the effective
magnetic anisotropy [181]. This gate was disconnected in the experiments presented in this
thesis.

In order to apply current pulses for generating domain wall displacement via STT,
we have applied voltages Vj between the two electrodes I+ and I− which range from 2
to 98 V, with pulse times ranging from 900 ms to 1.4µs. The sample resistance, mea-
sured between these two electrodes, has a magnitude of 22.14 kΩ. As the resistivity of the
(Ga,Mn)(As,P)/(Ga,Mn)As magnetic layer is much lower than that of the GaAs buffer and
capping layers, the relation between the applied voltage and the resulting current density is
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Figure 3.13: Studied (Ga,Mn)(As,P)/(Ga,Mn)As sample. (a) Optical microscopy
image of the sample, which was patterned by lithography. We indicate the two Au/Ti
electrodes I+ and I− used for current injection and highlight the area of interest in which
we observe domain wall motion with PMOKE microscopy. (b) Schematic representation of
the stack forming the sample corresponding to a cut through the dotted line drawn in (a).
The ferromagnetic components are the (Ga,Mn)(As,P)(3 nm) and the (Ga,Mn)As(1 nm)
layers. The Au/Ti electrodes at the two sides are used for current injection, while the
superior Au/Ti pad serves as a gate for generating an electric field.

J/Vj = (4 nm× 133µm× 22.14 kΩ)−1 ≈ 0.1 (GA/m2)/V.

The flow of a current through the (Ga,Mn)(As,P)/(Ga,Mn)As sample generates a power
dissipation that results in Joule heating. The subsequent sample’s temperature rise may
affect domain wall dynamics. Rebeca Díaz Pardo and Vincent Jeudy have studied the Joule
heating in the same sample that we have studied in this thesis [182] following a procedure
proposed by Javier Curiale and collaborators [163]. They have verified that the temperature
rise in this sample due to Joule heating can be quantified and established the conditions of
current injection for which the temperature remains practically unchanged. For the current
density magnitudes J and the pulse times ∆t that we have explored in this thesis, the
temperature rise due to Joule heating is lower than 0.3 K, what results in a domain wall
velocity variation which is not higher than 3 % for the studied conditions. As this percentage
is lower than the uncertainties with which we determine domain wall velocities, the Joule
heating is negligible in our experimental studies.

The Curie temperature of this sample, below which spontaneous ferromagnetic order
arises, is T = 65 K. This temperature was determined simply by observing the vanishing of
magneto-optical contrast for T → 65 K. Therefore, all our studies on domain wall dynamics
in this sample are performed for T < 65 K. These studies will be presented in chapter 6.
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3.5 Chapter summary

In this chapter, we have thoroughly described our main measurement technique, the polar
magneto-optical Kerr effect (PMOKE) microscopy. We have started by describing the prin-
ciples of magneto-optical imaging based on the polar Kerr effect and we have discussed on
the main parameters that affect the magneto-optical contrast, which needs to be optimized
in order to distinguish between oppositely magnetized domains in a PMOKE microscope.
Then, we have described in detail the main features of the used PMOKE microscopes and
the techniques we implemented in order to study magnetic domain walls in thin films with
perpendicular anisotropy: we have described the optical arrangement, the temperature con-
trol setup, the technique for domain wall velocity measurements, the particularities of the
magnetic field pulse application setup, and the protocol for domain wall profile detection
that permits to study wall morphology.

Furthermore, we have presented the main features of the two magnetic thin films that
are studied throughout this thesis. Firstly, we have described the ferrimagnetic thin film of
Ta/Gd32Fe61.2Co6.8/Pt and presented a detailed characterization of its main global magnetic
properties through magnetometry measurements. Secondly, we have described the diluted
ferromagnetic and semiconducting bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As, which has the
particularity that a uniform current density can be injected in it so as to study current-
driven domain wall motion.

In the following three chapters, we will present and discuss our studies on the domain
wall dynamics and morphology in these two samples, what constitutes the main research
performed throughout this thesis. In chapter 4, we shall discuss on the domain wall dy-
namics in the GdFeCo sample, focusing on its behavior as a function of temperature in a
wide temperature range and on the experimental determination of universal critical expo-
nents characterizing the depinning transition. In chapter 5, we will study the domain wall
morphology as a function of field and temperature in GdFeCo, focusing on the obtained
roughness exponents and proposing a plausible theoretical interpretation of our results. In
chapter 6, we shall present our studies on the field- and current-driven domain wall motion
in (Ga,Mn)(As,P)/(Ga,Mn)As, which are focused on establishing a comparison between
these two different driving forces and analyzing the effects of their simultaneous action on
the creep regime of wall motion.
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CHAPTER 4

Field-driven domain wall dynamics
in a ferrimagnetic GdFeCo thin film

“Lo mismo con las canciones,
los pájaros, los alfabetos:
Si quieres que algo se muera,
déjalo quieto.”

Jorge Drexler, Movimiento

The natural world’s richness is result of its changes and movements, and motion phe-
nomena possess themselves plenty of complex features which are worth studying.
In this context, Dynamics, i.e. the study of movement and the forces that produce

it, is a crosscutting issue in all areas of Physics. During this thesis, we have performed a
deep study of the field-driven domain wall dynamics in a ferrimagnetic GdFeCo thin film
with perpendicular anisotropy. All these studies, to which this chapter is devoted, were
performed by observing domain walls and measuring their velocities with a polar magneto-
optical Kerr effect (PMOKE) microscope1. The main particularities of our study are the
careful observation of the velocity vs. field characteristics, which permits us to analyze the
three dynamical regimes, i.e. creep, depinning and flow, and the exploration of a very wide
range of temperatures. Particularly, we measured velocity vs. field curves for 25 different
temperature values, ranging from 10 to 353 K.

1We have presented and discussed in detail the characteristics of this imaging technique in 3.1, and we
have described our experimental setup in section 3.2.
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The main goals of our research on the domain wall dynamics in GdFeCo are the study of
how the different dynamical regimes are affected by the material’s temperature dependence
of magnetic properties and the characterization of the depinning transition and associated
critical exponents. Throughout this chapter, we will present our results on domain wall
dynamics and thoroughly discuss these issues. We shall carefully characterize for each tem-
perature the creep and depinning regimes, what will give us access to the temperature
dependence of a variety of physical quantities. Remarkably, this characterization will per-
mit us to experimentally determine the complete set of critical exponents that define the
universality class to which domain walls in this thin film belong.

The particularly studied sample consists in a Ta(5 nm)/Gd32Fe61.2Co6.8(10 nm)/Pt(5 nm)
trilayer deposited on a thermally oxidized silicon SiO2(100 nm) substrate by RF sputter-
ing2. One of its main features is the existence of a magnetic compensation temperature
at TM = (190 ± 4) K. We could not determine experimentally the angular compensation
temperature TA; however, we have estimated it as TA ∼ 270 K according to previous investi-
gations which establish a correlation between TM and TA [144]. In this chapter, among other
topics, we will discuss which are the effects of the magnetic compensation on the physical
quantities characterizing the dynamical regimes of domain walls, and we will comment on
the possibility of observing signatures of the angular compensation in our measurements.

In the following section we will overview previous investigations that give us a frame-
work and motivate our studies on domain wall dynamics in GdFeCo. Firstly, in 4.1.1, we
will discuss some investigations on the thermally activated regimes in GdFeCo and the de-
pinning transition. We will see that these studies do not deepen on the universal nature of
creep and depinning and, in addition, they do not cover a wide range of temperatures, what
calls for further investigations. Secondly, in 4.1.2, we shall briefly review previous theoretical
studies on the critical exponents characterizing the universal depinning transition. These
investigations constitute the basis for our experimental studies on the depinning transition,
as one of our main interests in this thesis is the experimental characterization of universal
critical exponents.

The presentation and discussion of our experimental results in this chapter is separated
in two main sections. On the one hand, in section 4.2, we shall present the study of domain
wall velocity vs. applied field curves in a wide temperature range, from T = 10 K to T =
353 K. These studies will give us insight on the particularities of creep, depinning and flow
regimes in different temperature ranges, both above and below the magnetic compensation
temperature TM , and will permit us to analyze the temperature dependence of depinning
parameters such as Hd, Td, vd and related quantities which are linked to the characteristics
of the disordered landscape in which domain walls move. On the other hand, section 4.3
will be devoted to the study of the depinning transition in the range of low temperatures,
for T < 100 K. These results are the most relevant findings of our study, as we show a direct
experimental measurement of the universal depinning critical exponents β and νdep. This
result, which is possible due to the clear observation of the zero-temperature-like depinning

2See section 3.3 for sample details and magnetic characterization.
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transition, permits us to experimentally quantify for the first time the full set of critical
exponents characterizing the depinning transition. Finally, we end this chapter in section
4.4 by summarizing our main findings on domain wall dynamics in GdFeCo.

4.1 Motivation, framework and previous investigations

Our study of domain wall dynamics in GdFeCo is motivated mainly by the particular tem-
perature dependence of magnetic properties, both static and dynamic, that this type of
materials present, already discussed in section 2.5.1. As we have pointed out, this results
on interesting dynamical features of domain walls. Additionally, variable magnetic proper-
ties permit us to study domain wall dynamics in diverse conditions using a single sample.
Specifically, domain wall velocity vs. applied field curves at different fixed temperatures
present distinctive features, as we will discuss throughout this chapter. Remarkably, how-
ever, all these curves are expected to show universal features that characterize the dynamics
of elastic interfaces in disordered media. Therefore, we shall study a wide variety of velocity
vs. field curves within a unique theoretical framework. As we will see, studies at different
temperature ranges shed light over diverse particularities of creep and depinning dynamical
regimes.

In the following, we shall briefly review previous investigations on two subjects that
we will thoroughly study in this chapter through experimental measurements of domain
wall dynamics. On the one hand, the effect of magnetic and angular compensation tem-
peratures on wall dynamics in the creep and depinning regimes. On the other hand, the
characterization of universal depinning critical exponents.

4.1.1 Thermally activated dynamics and depinning transition

In figure 2.19, we have shown that domain wall velocity in the flow regime shows a maximum
at the angular compensation temperature TA. However, below the depinning field domain
walls show intermittent, thermally activated dynamics in which the angular compensation
may not play any notorious role [36, 145].

In figure 4.1(a), we show velocity vs. temperature curves corresponding to different
fixed applied fields in a sample of SiN(100 nm)/Gd23.5Fe66.9Co9.6(30 nm)/SiN(5 nm) with
perpendicular magnetic anisotropy, measured by Y. Hirata and collaborators [145]. For
µ0H = 68 mT, a sharp peak on domain wall velocity is evidenced. This peak is shown to
correspond to an angular compensation temperature TA ' 236 K. However, for lower applied
fields, the velocity peak moves to higher T values and finally vanishes. This is due to the
fact that below the depinning field, domain wall velocity is dominated by thermal activation
and therefore grows for increasing temperature even above TA. The lower peaks observed
for µ0H = 44 and 36 mT at T > TA correspond to the temperatures at which domain
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Figure 4.1: Effect of the depinning field on domain wall velocity in GdFeCo close
to the angular compensation. (a) Wall velocity v vs. temperature T for different applied
fields µ0H. The velocity peak associated to angular compensation is indicated. Adapted
from [145]. (b) Depinning field µ0Hd vs. temperature T . Adapted from [150].

walls reach the flow regime for each applied field, what evidences that the depinning field
µ0Hd depends on temperature. Specifically, figure 4.1(a) suggests that for T = TA ' 236 K,
44 mT . µ0Hd(T ) < 68 mT, while for T ' 240 K, 36 mT < µ0Hd(T ) < 44 mT and finally,
for T ' 270 K, µ0Hd(T ) < 36 mT.

Figure 4.1(b) shows the depinning field vs. temperature dependence obtained by T.
Nishimura and collaborators in a sample of identical characteristics [150]. Decreasing µ0Hd

values with increasing T results consistent with the fact that in this sample, TM < 200 K
and, therefore, the saturation magnetization Ms grows with temperature for a certain range
above 200 K 3. As the driving force f over domain walls arises from Zeeman energy, which is
proportional to µ0HMs, the depinning field µ0Hd that has to be applied in order to overcome
effective energy barriers is expected to be inversely proportional to Ms [120]. Close to TM ,
therefore, Zeeman interaction vanishes and a divergence of µ0Hd for T → TM is expected.
However, this divergence has not yet been reported in the literature.

These investigations, which to our knowledge constitute the most recent studies on
depinning phenomena close to compensation temperatures, show that a detailed study of
creep and depinning regimes in ferrimagnets and corresponding parameters as the depinning
field and temperature is still lacking. In this chapter, we shall present a thorough study of
these issues, analyzing in detail velocity vs. field curves in a wide temperature range and
the corresponding dependence of parameters as µ0Hd and Td.

3Note that Ms is expected to decrease for sufficiently high temperatures, close to the Curie temperature
TC .
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4.1.2 Universal depinning critical exponents

The experimental measurement of critical exponents is one of the main subjects of this
thesis. In particular, as we will discuss in section 4.3, the study of domain wall dynamics in
GdFeCo at low temperatures permits us to experimentally determine the full set of critical
exponents corresponding to the depinning transition. This set of exponents characterizes
the universality class to which domain walls belong.

As we have discussed in section 2.3.2, driven elastic lines in disordered media as domain
walls in magnetic thin films are usually described in the framework of one of two possible
universality classes, which are the quenched Edwards-Wilkinson (qEW) and the quenched
Kardar-Parisi-Zhang (qKPZ) universality classes. Each universality class is characterized
by two sets of critical exponents, associated to the equilibrium (f → 0) reference state and
to the depinning (f → f+

d and T → 0) critical point. Interestingly, the equilibrium criti-
cal exponents, corresponding to the limit f → 0, are equivalent for both qEW and qKPZ
universality classes and thus the creep exponent µ, easily accessible experimentally, is equal
to 1/4 in both cases. However, the depinning critical exponents differ but their experimen-
tal distinction for magnetic domain walls in thin films with perpendicular anisotropy still
constitutes a challenge.

Table 4.1 shows the complete set of depinning critical exponents, the observable quan-
tities to which they are related and corresponding scaling laws, and their numerical calcula-
tions reported in the literature for the qEW and the qKPZ universality classes. These values
are independently determined; however, for the qEW class, the five exponents are related
through the relations νdep = 1/(2 − ζdep), β = νdep(z − ζdep) and τdep = 2 − 2/(d + ζdep)
[5], which result from scaling laws. The dimension for the case of an elastic line in a bi-
dimensional medium is d = 1. Therefore, the determination of two of them is sufficient
in order to calculate the full set of exponents. In the qKPZ class, two relations exist,
β = νdep(z − ζdep) and τdep = 2− (ζdep + 1/νdep)/(d + ζdep) and therefore, the independent
determination of three exponents is needed for calculating the full set.

We have already introduced, in section 2.3, the exponents β for the power-law variation
of velocity v ∼ (f − fd)β, νdep for the divergence of the depinning avalanche size `av ∼
(f − fd)−νdep , ζdep for the scaling law of the interface profile, u(x) ∼ xζdep , and z for the
relaxation time of the interface as a function of its size, tr(`) ∼ `z [3]. The exponent τdep
is the so-called Gutenberg-Richter exponent, corresponding to the distribution of depinning
avalanche areas Sav, which scales as P (Sav) ∼ S

−τdep
av [185]. The qualitative relationship

between the observable quantities to which critical exponents are related is confirmed by
the relationships written above, which show that only two (for qEW) or three (for qKPZ)
of these exponents are independent.

In this thesis work, as we will discuss in section 4.3, we succeeded to experimentally
determine β and νdep from domain wall velocity measurements. This constitutes the first
direct and independent experimental determinations of each of these critical exponents. As
we will see, the found values are consistent with the qEW universality class while they are
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Observable qEW qKPZ
β v(f) ∼ (f − fd)β 0.245± 0.006 [119] ' 0.64 [5, 112, 183]

0.33± 0.02 [184]
νdep `av(f) ∼ (f − fd)−νdep 1.333± 0.007 [119] ' 1.73 [183]
ζdep u(x) ∼ xζdep 1.250± 0.005 [119] ' 0.63 [112]
z tr(`) ∼ `z 1.433± 0.007 [119] 1 [183]
τdep P (Sav) ∼ S

−τdep
av 1.11± 0.04 [185] ' 1.26 [5, 112, 183]

Table 4.1: Universal depinning critical exponents. We indicate the observables to
which each exponent is linked and the corresponding scaling relations, which are valid in
the limit T → 0 and f → f+

d . Numerical values correspond to computational calculations
reported in the literature for the quenched Edwards-Wilkinson (qEW) and for the quenched
Kardar-Parisi-Zhang (qKPZ) universality classes.

inconsistent with the qKPZ class, what has allowed us to calculate the full set of depinning
critical exponents in accordance with the qEW class.

In the following, we will present our experimental results on domain wall dynamics in a
GdFeCo thin film with perpendicular anisotropy. Firstly, we will present our deep study of
creep and depinning regimes in a wide temperature range and secondly, the determination
of depinning critical exponents which, as we will see, is accessible experimentally in the
range of low temperatures.

4.2 Domain wall dynamics in a wide temperature range

In this section, we present and discuss our results on domain wall dynamics performed
in a ferrimagnetic thin film of GdFeCo, in the temperature range 10 K ≤ T ≤ 353 K. The
distinctive features of our experimental study consist on the measurement of velocity vs. field
curves in a wide range of velocities and, more importantly, in a wide range of temperatures.
As we will see, the velocity-field characteristics that we measure experimentally strongly
depend on temperature. For the creep regime, we can separate the nature of this dependence
in two groups. One of them is the intrinsic variation with temperature of the physical
parameters Hd(T ), Td(T ) and vd(T ). On the other hand, there is an explicit temperature
dependence arising from the thermally activated nature of creep regime, as indicated by
equation (2.75). As we have discussed in section 2.4.3, the depinning and flow regimes may
be assessed through these three temperature-dependent parameters.

Physical parameters vary in a particular way due to the intrinsic temperature variation
of the saturation magnetization Ms(T ). The existence of a magnetic compensation tem-
perature TM such that Ms(T → TM) = 0 induces particular features in the velocity-field
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characteristics. For example, as we have already pointed out, a divergence of Hd(T ) is ex-
pected to occur at T → TM . In addition, as we will discuss later, distinctive properties are
observed when comparing temperature ranges below and above TM .

The explicit role of temperature in equations describing the creep regime (equation
(2.75)) and the thermal rounding at the depinning transition (equation (2.81)) is directly
related to thermal activation, what evidences its crucial role in domain wall motion at rel-
atively low drives. A thorough discussion of how thermal activation evolves as a function
of the reduced temperature T/Td will be presented in the following, focusing on the conse-
quences of decreasing thermal energy as T decreases in the velocity-field characteristics.

The presentation and discussion of results in this section is organized in four parts.
First, in 4.2.1, we will present the general protocol used in order to analyze velocity vs. field
curves, which are measured as explained in 3.2.3. Secondly, in 4.2.2, we shall discuss the
domain wall dynamics for temperatures above TM . In third place, in 4.2.3, we will present
and discuss the results on domain wall dynamics below TM . The distinction between tem-
perature ranges above and below magnetic compensation is justified by the particularities of
velocity curves in these two ranges, which compels us to perform slightly different analysis
of velocity curves. Furthermore, the lowest temperature range, T < 100 K, is left for a thor-
ough discussion in section 4.3 due to its striking particularities. In the fourth part of this
section, 4.2.4, we summarize the temperature dependence of physical parameters related to
creep and depinning regimes in the whole temperature range. This gives us insight on the
nature of disorder and its influence on domain wall dynamics as a function of temperature.

4.2.1 General analysis of domain wall velocity curves

Let us first present the main features that we have observed in the measurement of v vs.
µ0H curves. This discussion will guide us in the analysis of these curves in all the studied
temperature range. Figure 4.2 shows the v vs. µ0H characteristics for T = 353 K. Domain
wall velocities are measured for fields ranging between 0.76 and 15 mT. In the linear plot,
we observe that the onset on velocity appears at µ0H ' 4 mT, and the highest measured
values correspond to v ' 260 m/s at µ0H ' 15 mT. As we have discussed in section 3.2.4,
these high values are close to the experimental limits of the Kerr microscopy technique.

Even if the onset on velocity appears to occur at 4 mT, when v approaches values of
the order of 1 m/s, our Kerr microscopy technique and the possibility of applying low-field
and high duration pulses allows the measurement of velocities in a very wide range below
1 m/s. In the inset of figure 4.2, we plot the DW velocity in logarithmic scale as a function
of (µ0H/mT)−1/4, in order to evidence the creep regime of domain wall motion. As we
can observe, the creep relation ln v ∼ H−µ, with the creep exponent µ = 1/4, satisfactorily
describes the velocity-field characteristics in a range of 8 orders of magnitude in the velocity,
from v ∼ 10−7 m/s at µ0H = 0.76 mT to 10 m/s at µ0H ' 6 mT. In this range, we may
perform a linear fit of the type y = Sx + I with y = ln (v/(m/s)) and x = (µ0H/mT)−1/4.
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Figure 4.2: Domain wall velocity as a function of the applied field for T = 353 K.
Main panel: linear scale, showing the creep dependence which describes low-velocity mea-
surements as a dashed line, an estimation of the corresponding athermal depinning regime as
a dotted curve, and an estimated proportionality of velocity and field corresponding to flow
regime as a dotted straight line. For the depinning field, we estimate µ0Hd = (7.6±1.0) mT.
This range is indicated as a vertical shaded area. Inset: creep plot, with a logarithmic scale
for the velocity as a function of (µ0H/mT)−1/4, showing that creep law with µ = 1/4 de-
scribes the observed dependence in a range of 8 orders of magnitude in the velocity. Creep
fit is shown as a dashed line, with resulting slope S = (Td/T )(Hd/mT)1/4 = 42.4± 0.2 and
intercept I = ln (vd/(m/s)) + Td/T = 30.6± 0.1.

This fit, which is shown in the figure as a dashed line, allows to obtain the following values
according to equations (2.75) and (2.76): S = (Td/T )(µ0Hd/mT)1/4 = 42.4 ± 0.2 and
I = ln (vd/(m/s)) + Td/T = 30.6± 0.1.

From a velocity-field curve like the one presented in figure 4.2, we can infer the corre-
sponding value of the depinning field µ0Hd. The depinning transition is evidenced by a range
in which v(H) separates from the stretched exponential behavior characteristic of creep with
increasing field, presenting lower velocities, and by an inflection point above which concavity
becomes negative, as we have pointed out in section 2.4.3. These two features usually occur
simultaneously, permitting a relatively precise determination of the depinning field: in this
scenario, µ0Hd is the field at which the inflection point and the separation between the
creep fit and the velocity curve occur. Furthermore, the coincidence of these two features
permits the realization of the self-consistent analysis proposed by Rebeca Díaz Pardo and
collaborators [18]. From the creep fit parameters and the determination of the depinning
field value, this method permits to calculate the depinning velocity vH and the mobility m
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which determine, respectively, the depinning and flow functions for v(H), equations (2.82)
and (2.74).

For T = 353 K, however, the separation from creep behavior occurs between 6 and
7 mT, while an inflection is observed in the range 7 mT < µ0H < 9 mT (see figure 4.2).
This slight mismatch is sufficient to prevent the realization of the auto-consistent analysis:
if we consider that depinning field occurs between 6 and 7 mT, we would then obtain a
flow prediction which falls well below the highest velocity points. If, conversely, we consider
that the depinning field is above 7 mT, the velocity at depinning vd = v(Hd) given by the
creep fit for H = Hd would be too large and then, the athermal depinning transition curve
would fall above measured velocities in a considerable range for H > Hd. As theoretically
predicted and evidenced by figure 2.15(b), equations (2.74) and (2.82) are upper and lower
boundaries of DW velocity for H ≥ Hd and, consequently, these results are not compatible
with the analysis proposed in reference [18].

Even if the hypothesis of simultaneity of the inflection and the separation from creep
behavior is not verified in many of our measurements, these two signatures of depinning
transition may be observed in a given field range in most of the velocity-field curves. As we
have discussed, this is the case for the data presented in figure 4.2. Thus, for this case we
estimate µ0Hd = (7.6 ± 1.0) mT. In addition, using this value, we may plot an estimation
of the corresponding athermal depinning transition which, as discussed in section 2.4.3, is
expected to coincide with velocity measurements in a reduced range for µ0H > µ0Hd. In the
figure we plot this dependence as a dotted curve, following equation (2.82) with β = 0.25
(in accordance with [119] and [18]) and an estimated value vH = 210 m/s.

In figure 4.2 we can also observe that at higher fields, above µ0Hd ' 8 mT, the velocity-
field characteristics progressively transform into a linear variation, v ∝ H, in accordance
with the flow regime of domain wall motion. In the figure, we plot a dotted straight line
corresponding to a mobility m = 18.6 (m/s)/mT, which constitutes an estimation of the
velocity-field proportionality for higher fields. As we will see below, this condition of propor-
tional variation corresponding to the flow regime is not reached for most of our velocity-field
curves.

In the following section, we will present and discuss all the measurements of velocity-
field curves above the compensation temperature at TM = (190 ± 4) K, i.e. for T > TM .
We shall analyze the measurement of a creep-type dependence and its characterization
for each of the different temperatures, the evidences of the depinning transition, and the
determination of quantities like the depinning field and temperature. Then, in section 4.2.3
we will present our measurements below the compensation temperature, i.e. for T < TM . As
we will see, this range presents some particularities which are induced mainly by two factors:
on the one hand, the decreasing Ms vs. T dependence (in contrast with the increasing Ms

vs. T for T > TM); on the other hand, the progressive vanishing of thermal effects with
decreasing temperature.
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Figure 4.3: Domain wall velocity as a function of the applied field above the
magnetic compensation temperature. Set of velocity-field curves plotted in linear
scale which represent the observed behavior above TM .

4.2.2 Domain wall dynamics above magnetic compensation

Let us now discuss the main features that we observe in the curves corresponding to T > TM ;
particularly, in the range 209 K ≤ T ≤ 353 K, in which we measured 13 velocity-field curves.
In figure 4.3 we present a set of curves which are representative of this range.

Some features are remarkable of the set of curves plotted in figure 4.3. First of all, we
observe that measured velocities shift to higher magnetic fields as temperature decreases. In
other words, it is necessary to apply a higher field at lower temperatures in order to obtain
the same domain wall velocity. This monotonous shifting to higher field with decreasing
temperatures is the expected behavior, as saturation magnetization Ms decreases when
approaching TM , resulting on lower forces over domain walls for a given applied field.

Another remarkable observation is the measurement of velocities of ' 300 m/s in the
range of highest temperatures. Even if we succeed to reach these relatively high velocities,
in most of the cases we are not able to clearly reach the flow regime, characterized by a
proportionality between field and velocity, v ∝ µ0H. Nevertheless, as we will see in the
following, there are signatures of the depinning transition in every measured v vs. µ0H
curve.

The highest measured velocities decrease to ∼ 100 m/s as temperature decreases below
T ' 280 K. This is mainly due to the appearance of a higher density of nucleation centers
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Figure 4.4: Creep-type plot of domain wall velocity curves above the magnetic
compensation temperature. Set of representative curves of the velocity v in logarithmic
scale as a function of (µ0H)−1/4 above TM , showing the good agreement with creep formula
for velocities below 10 m/s.

for the conditions of field and temperature at which we reach the highest velocities. This
prevents the observation of long domain wall displacements, as walls nucleated in different
points merge with other walls in their way. While measurements above 280 K have been
performed in the microscope installed at CAB, those below 280 K were performed in the
microscope installed at LPS, in a different region of the sample. Therefore, the appearance
of a higher density of nucleation centers might be due to inhomogeneities of the sample that
result on different domain nucleation conditions in different regions. However, as we will
see below, the domain wall dynamics do not show any particular change at T ' 280 k that
we could associate to this fact.

Let us take a look at the creep regime in this range of temperatures. Figure 4.4 shows
representative curves corresponding to T > TM in a creep plot, i.e. v in logarithmic scale
vs. (µ0H)−1/4. We may observe that the slope of the linear relation log v ∼ H−1/4 grows
as the temperature decreases, while the curves move to lower values of (µ0H)−1/4, i.e. to
higher field values. For T = 209 K, the high fields necessary to move domain walls make
it impossible to measure in the region of low velocities, as low-velocity measurements are
performed by applying field pulses of relatively long duration. We observe for all curves
that there exists a well-defined low-velocity region, for v lower than ∼ 10 m/s, where a
creep-type dependence with µ = 1/4 is observed. The lower limit if this low-velocity region
spans from ∼ 10−7 m/s for T ≥ 231 K to ∼ 1 m/s for T = 209 K. For higher velocities, data
points separate from this creep dependence, what constitutes an evidence of the depinning
transition’s proximity.
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Figure 4.5: Creep fit parameters above TM as a function of the temperature. (a)
Slope S = (Td/T )(µ0Hd/mT)1/4 and (b) intercept I = ln (vd/(m/s)) + Td/T resulting from
the linear fits of the type y = Sx + I with y = ln (v/(m/s)) and x = (µ0H/mT)−1/4. We
indicate the position of magnetic compensation at T = 190 K as a vertical dotted line.

Fitting the creep regime

Let us now present our quantitative analysis of the observed creep regime. We perform
linear fits of the type y = Sx + I, with y = ln (v/(m/s)) and x = (µ0H/mT)−1/4, for
the different temperatures, in the ranges in which we observe the characteristic dependence
ln v ∼ H−1/4. In this way, we obtain the temperature dependence of the slope

S(T ) = Td(T )
T

(
µ0Hd(T )

mT

)1/4

(4.1)

and the intercept

I(T ) = ln
(
vd(T )
m/s

)
+ Td(T )

T
(4.2)

according to equations (2.75) and (2.76). In figure 4.5 we present the fit results for these
quantities, taking into account all the measured velocity-field curves above the magnetic
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compensation temperature TM .

Creep fit slopes S increase notoriously when decreasing temperature in the range
209 K ≤ T ≤ 353 K. This fact was already noticed by observing figure 4.4, and it is
explicitly shown in figure 4.5(a). As we mentioned previously, the two points of lowest tem-
peratures correspond to creep fits performed in a reduced range of velocities, and they are
shown to be consistent with the observed tendency. This supports the idea that these fits
are a good estimation of the creep regime corresponding to these temperatures.

The values presented in figure 4.5(a) constitute a first quantitative approach to the
determination of the temperature dependence of the depinning field and temperature, Hd

and Td respectively, as these parameters are related through the relationship (4.1). In the
following we will discuss how we determine these two parameters for T > TM . Moreover,
depinning field and temperature will give us insight on microscopic physical quantities that
are derived from them.

The temperature dependence of the intercept I resulting from the creep fits, which is
related to Td and vd as indicated by (4.2), is presented in figure 4.5(b). It also grows when
decreasing temperature, but in a less notorious way. The main interest for the determination
of this quantity is the possibility of obtaining vd, which is a crucial parameter in order to
predict the mobility m corresponding to the flow regime, as we have discussed in 2.4.3.
However, its precise determination is elusive because a relatively small uncertainty in the
depinning field generates a relatively large uncertainty in vd, obtained as v(Hd).

The temperature dependence of S and I discussed above is consistent with recent
studies [186] in which the field-driven creep regime is observed for several temperatures well
above TM in ferrimagnetic TbFe wires. In those studies, however, the temperature and
velocity ranges in which the creep regime is observed are much smaller.

Determining the depinning field and temperature

We have already discussed, following figure 4.2, the determination of the position of the
depinning transition, i.e. the depinning field µ0Hd, in the velocity-field curve corresponding
to T = 353 K. In the following, we will present the determination of the depinning field
values as a function of the temperature for T > TM . Then, resulting from the combination
of the µ0Hd values and the creep fit slopes S, we shall find the depinning temperature Td
also as a function of T .

In figure 4.6 we present three representative curves for the range 209 K ≤ T ≤ 353 K,
both in linear scale (a) and in creep-type scale (b), i.e. v in logarithmic scale vs. (µ0H)−1/4.
Presented curves correspond to 333, 295 and 253 K. We also plot as dashed lines the creep
regime fits corresponding to each temperature, and we indicate as shaded vertical regions
the ranges of field in which we estimate the depinning field occurs, as described before.
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Figure 4.6: Depinning field determination for velocity curves above TM . v vs.
µ0H curves for T = 333, 295 and 253 K, in (a) linear scale and (b) creep scale. We plot
as dashed lines the curves corresponding to the creep fits at each temperature, and we
indicate as vertical shaded areas the ranges [µ0Hd,min, µ0Hd,max] in which we determine the
depinning field occurs. For T = 333 K, we estimate µ0Hd = (10 ± 1) mT; for T = 295 K,
µ0Hd = (15± 2) mT; and for T = 253 K, µ0Hd = (26± 4) mT.
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Figure 4.7: Depinning field vs. temperature for T > TM . We indicate the position of
magnetic compensation at T = 190 K as a vertical dotted line.

As we explore a rather wide range of temperatures and all curves do not share the
same characteristics, we are not able to use a unique protocol in order to determine the
depinning field. As described before, its estimation is performed taking into account the
separation of the velocity curve from the creep fit, which evidences the proximity of the
depinning transition, and the existence of an inflection point4 which is characteristic of the
depinning transition as it indicates the crossover between creep, of positive concavity, and
depinning regime, of negative concavity. These two signatures are systematically observed
at velocities which range approximately between 50 and 150 m/s, without any clear temper-
ature dependence. In other words, v(Hd) roughly belongs to this range for all the studied
curves. The observation of these elements in a quite well defined range of fields for each
temperature permits us to make an estimation of µ0Hd and its uncertainty with a good
degree of confidence.

As indicated in figure 4.6, the depinning field values for these three temperatures are
estimated as µ0Hd = (10 ± 1) mT for T = 333 K, µ0Hd = (15 ± 2) mT for T = 295 K, and
µ0Hd = (26 ± 4) mT for T = 253 K. In figure 4.7 we present the full set of depinning field
values obtained in all the range of studied temperatures above the magnetic compensation
temperature. Note the similarity between this dependence and that shown in figure 4.1(b).
This finding extends the studies performed by T. Nishimura and collaborators [150] to a
wider temperature range. In the following section we shall broaden this range by including
temperatures T < TM and then, in 4.2.4 we will discuss in more detail the whole depinning

4In many cases, we do not observe a clear inflection point but do identify a region of linear dependence,
i.e. an “inflection region” of zero concavity.
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Figure 4.8: Depinning temperature vs. temperature for T > TM . We indicate the
position of magnetic compensation at T = 190 K as a vertical dotted line.

field vs. temperature dependence. Additionally, we will compare it with the coercive field
vs. temperature dependence that we have shown in figure 3.12(a).

The depinning field values illustrated in figure 4.7 are plotted in logarithmic scale,
showing that µ0Hd grows dramatically when approaching the magnetic compensation tem-
perature, ranging from ∼ 10 mT at T = 353 K to ∼ 100 mT at T = 209 K. This behavior is
expected, as discussed in section 4.1.1: the saturation magnetization Ms goes to zero when
approaching TM , resulting on higher fields needed to generate a given force over domain
walls.

The depinning field determination for a given temperature permits us to obtain the
corresponding depinning temperature Td via the already determined slope S of the creep fit,
which is given by equation (4.1) and is plotted in figure 4.5(a) as a function of T . Following
this procedure, in figure 4.8 we present the Td vs. T dependence for the same temperature
range, calculated as Td = ST (µ0Hd/mT)−1/4. We may observe that Td gradually grows
when decreasing temperature, following an apparently linear dependence. For T < 250 K,
a less clear Td(T ) dependence is observed, probably associated to the proximity of TM and
the difficulty for the measurement of low velocities.

The depinning temperature corresponds to a characteristic scale kBTd for the effective
creep energy barrier, as indicated by equation (2.76). The origin of this effective energy is
the collective effect of the disordered landscape over the whole domain wall. Its increase
with decreasing temperature may thus be linked to an effective enhancement of pinning
forces. Note that thermal activation, quantified by the reduced temperature T/Td, naturally
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decreases for decreasing temperature resulting on less frequent jumps over energy barriers,
even if effective barriers remained of the same magnitude. However, not only thermal
activation decreases, but also kBTd increases with decreasing temperature, enhancing the
reduction of domain wall velocity for a given applied driving field. We shall extend this
discussion later, when analyzing the temperature dependence of µ0Hd, kBTd and other
parameters in the whole studied range.

A last remark that we can make about the analysis of domain wall dynamics for T > TM
presented above is that no effect of the angular compensation TA is observed. This char-
acteristic temperature, estimated as TA ∼ 270 K as mentioned previously, does not appear
to make any notorious effect on the intermittent domain wall dynamics characteristic of
creep and depinning regimes. No clear change on the temperature dependence of velocity
nor on the depinning field and temperature is observed at any point of the studied temper-
ature range above TM . This is consistent with the results of Y. Hirata and collaborators
[145] shown in figure 4.1(a), where they observe a maximum on the v(T ) dependence at
T = TA only for H well above Hd. The comprehension of the lacking influence of angular
compensation on thermally activated dynamics is still subject of present discussions.

4.2.3 Domain wall dynamics below magnetic compensation

Let us now discuss the domain wall velocity curves obtained for temperatures below the
magnetic compensation at TM = (190 ± 4) K. In this section, we will present and discuss
these results similarly to how we did in section 4.2.2 on domain wall dynamics above TM . As
we will see, the already discussed methods permit us to analyze this lower temperature range,
while we find several new ingredients and characteristics that lead us to new discussions. We
will find that the depinning transition becomes more abrupt and notorious as temperature
decreases while the creep regime is reduced to more restricted velocity and field ranges.
This results on the possibility of a direct analysis of the depinning regime below 100 K and,
concomitantly, the impossibility of observing the creep regime. This phenomenology is due
to the vanishing thermal activation occurring as temperature decreases, quantified by the
relation T/Td.

In figure 4.9 we present, in linear scale, a set of velocity-field curves which are char-
acteristic of the studied temperature range below TM , i.e. 10 K ≤ T ≤ 177 K. The first
notorious observation is the displacement of velocity curves to lower fields as temperature
decreases. This is opposite to the behavior observed above TM and is also an expected
phenomena: as saturation magnetization increases when decreasing temperature below TM ,
the field necessary to generate a given force over domain walls decreases.

Another feature of velocity curves below TM , which is well observed in linear scale plots
(figure 4.9) is that the onset on velocity is more abrupt: the field range in which experimental
data grow from ∼ 10 m/s to ∼ 200 m/s is relatively narrow. As we will discuss rigorously
in the following, this is the result of a much lower effective thermal activation, given by
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Figure 4.9: Domain wall velocity as a function of the applied field below the
magnetic compensation temperature. Set of velocity-field curves plotted in linear
scale which represent the observed behavior below TM .

the combination of a lower temperature and a higher Td. The observable consequences in
velocity curves are a higher slope for the creep regime, and a more notorious inflection point
corresponding to depinning transition, given by a weaker thermal rounding.

Similarly to what we observe above magnetic compensation temperature, below TM
we observe very high velocities, reaching values between 200 and 300 m/s, but in none of
the cases we reach an evident flow regime with the characteristic proportionality between
velocity and field. This is a rare circumstance of which we don’t know the origin: in most
domain wall velocity vs. field curves previously reported, the flow regime is well established
for velocities of the order of 100 m/s.

In figure 4.10, we present representative velocity curves below TM in a creep-type plot,
showing that creep law with µ = 1/4 satisfactorily describes most of them for velocities
below ∼ 100 m/s. However, clear differences are observed when comparing these results
with those corresponding to T > TM (figure 4.4), which we will discuss in the following.

Response to low fields in the low temperature range

One particularity of the velocity-field curves corresponding to T < TM is that measured
velocities are always above 10−2 m/s. For 129 K ≤ T < TM , lower velocity measurements
were not possible due to the experimental impossibility of applying field pulses of duration
longer than 50µs with magnitudes higher than 21 mT. However, below 129 K we were not
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Figure 4.10: Creep-type plot of domain wall velocity curves below the magnetic
compensation temperature. Set of representative curves of the velocity v in logarithmic
scale as a function of (µ0H)−1/4 below TM . A good agreement with creep formula for
velocities below 100 m/s is observed for temperatures above 100 K. Below this temperature,
creep regime is not observed.

able to measure low velocities either. The observed magnetization dynamics resulting from
the application of low fields has shown a high complexity which prevents the observation of
a rather uniform domain wall motion and, consequently, the measurement of wall velocity.

Figure 4.11 shows PMOKE images for T = 102 K. There, we exemplify the behavior
of magnetic domain walls under the application of three different field magnitudes between
16.2 and 19.3 mT, showing diverse behaviors which allow or not the measurement of domain
wall velocities. Images (a), (d) and (g) (left column) correspond to three different initial
states. They were obtained after the application of several field pulses of 16.2 mT and 2 s (a),
17.3 mT and 40µs (d), and 19.3 mT and 0.5µs (g). Images (b), (e) and (h) (middle column)
are the obtained images after applying one field pulse, starting from the corresponding
initial state shown in the left column. Applied field pulses are, respectively, of 16.2 mT and
2 s, 17.3 mT and 40µs, and 19.3 mT and 0.5µs. Images (c), (f) and (i) (third column) are
the differential images obtained from performing a substraction of first and second column
images. This allows to clearly observe the shape and size of the inverted regions due to the
application of one field pulse for each of the three cases.

The field pulse corresponding to figures (a), (b) and (c) was applied using a big coil,
appropriate for low fields (lower than 21 mT) applied during a relatively long time, ∆t ≥ 1 s.
In this case, we observe that the field pulse causes the inversion of an important region, but
with the particularity that there remain many uninverted areas within this inverted region.
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Figure 4.11: Effect of different magnetic field amplitudes on domain walls at
T = 102 K. Each row of PMOKE images corresponds to two successive states between
which a single field pulse of different amplitudes and durations was applied. (a), (d) and (g)
correspond to initial states obtained after applying several field pulses of 16.2 mT and 2 s,
17.3 mT and 40µs, and 19.3 mT and 0.5µs, respectively. (b), (e) and (g) are the final states
after applying one more pulse of the same amplitude and duration over the initial states.
(c), (f) and (i) are differential images obtained by substracting the initial and final states.
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These images illustrate that in this case, the inversion mechanism cannot be associated
uniquely to the displacement of one continuous domain wall. There exist other relevant
mechanisms, which could be the nucleation of multiple domains within the inverted area and
the existence of strong pinning regions where domain walls do not move appreciably under
this relatively low magnetic field. The existence of these rather strong pinning sites could
cause domain walls to “break” in the course of their displacement, leaving “islands” along
its path. Given this scenario, for this field magnitude we consider that the measurement of
domain wall velocity is not possible.

Slightly higher magnetic fields applied at T = 102 K during timescales of the order of
the second generate a complete inversion of the observed area. As it is illustrated in figures
(d), (e) and (f), for µ0H = 17.3 mT pulse time has to be dramatically reduced to the tens
of microseconds in order to generate the observable inversion of only one part of the sample
in the microscope’s field of view. In this case, after a pulse time of 40µs between figures
(d) and (e), the inversion of a finite area which could be associated to domain wall motion
occurs. Nevertheless, this apparent movement is very irregular, and there exist segments
of the initial domain wall that do not move at all. In addition, some small regions remain
uninverted within the newly inverted area, similarly to what we observed for µ0H = 16.2 mT.
In this context, a mean velocity which is representative of the global domain wall movement
cannot be defined. In summary, we are not able to determine the domain wall velocity for
this magnitude of the magnetic field either, even if this field is high enough to generate
magnetization inversion with a microseconds-time pulse. This highlights the fact that, at
this temperature, mean domain wall velocities below ∼ 0.5 m/s cannot be measured in our
sample.

For slightly higher fields, domain walls move in a more regular way and we are able to
infer a domain wall velocity which is representative of the whole wall. Images (g), (h) and
(i) (figure 4.11) show the effect of applying µ0H = 19.3 mT during ∆t = 0.5µs. As it is
evident, in this case the observed domain wall is displaced by the applied field pulse in a
uniform way, with the characteristic fluctuations resulting from disorder. The determined
domain wall velocity for this field magnitude at T = 102 K is v = (110± 10) m/s.

The difficulty of measuring low domain wall velocities that we have just discussed
becomes more crucial when decreasing temperature below 100 K. For this range of lowest
temperatures, it is even impossible to measure domain wall velocities below 10 m/s, leading
to the absence of an observable creep dependence in the velocity-field curves. However, as
we will see in section 4.3, for T < 100 K we are able to directly perform fits of the depinning
regime, which is clearly observed due to the vanishing relevance of thermal activation as
temperature decreases.

Fitting the creep regime

Let us now put our focus in the performed creep fits and obtained parameters. As we have
noticed when discussing figure 4.10, the creep regime in the range of T < TM corresponds
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Figure 4.12: Creep fit parameters as a function of the temperature in the
whole temperature range. (a) Slope S = (Td/T )(µ0Hd/mT)1/4 and (b) intercept
I = ln (vd/(m/s)) + Td/T resulting from the linear fits of the type y = Sx + I with
y = ln (v/(m/s)) and x = (µ0H/mT)−1/4. We indicate the position of magnetic com-
pensation at T = 190 K as a vertical dotted line.

to velocities in the range 0.01 m/s < v < 100 m/s. In figure 4.12, we plot all the slopes S
(a) and intercepts I (b) we obtained in all the temperature range, i.e. including the data
already shown in figure 4.5, which corresponds to T > TM . These quantities are related
with depinning parameters µ0Hd, Td and vd through relations (4.1) and (4.2).

Below TM , the obtained creep slopes S are practically constant between 129 and 177 K.
This feature is in contrast with the clear change on creep slope observed for T > TM . Note
that the µ0Hd(T ) dependence plays a crucial role on the S(T ) dependence, as it is given
by the combination (Td(T )/T )(µ0Hd(T )/mT)1/4, equation (4.1). Above TM , µ0Hd increases
with decreasing temperature due to its divergence at T = TM (see figure 4.7) and (Td/T )
also increases with decreasing temperature (see figure 4.8). Consequently, both µ0Hd and
(Td/T ) collaborate on the increase of S with decreasing T . Conversely, and also due to
the divergence at T = TM , µ0Hd decreases with decreasing temperature for T < TM , as
we will explicitly show below. This explains the fact that a different S(T ) dependence is
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observed above and below TM . For T = 102 K, the creep slope is notoriously higher, but
with a considerable uncertainty as the fit range is much smaller due to the reduced range
of measurable velocities.

Another notorious feature of the temperature dependence of the creep slope S, plotted
in figure 4.12(a), is the jump of almost a factor two between T = 209 K, above TM = 190 K,
and T = 177 K, below TM . The precise determination of µ0Hd and Td for these temperatures,
which we will present and discuss in the following, will shed light on this feature.

Creep fit intercepts I, related to Td and vd according to equation (4.2) and plotted
in figure 4.12(b), show a monotonous decrease when increasing temperature. As we will
show below, this dependence is associated fundamentally to Td(T )/T . Depinning velocities
vd, which may be obtained as v(Hd) = exp (IT/Td), are determined with a rather big
uncertainty; however, they do not change significantly in the studied range. As we have
pointed out before, they are systematically of the order vd ∼ 100 m/s.

Determining the depinning field and temperature

We shall now present our determination of the depinning field below the compensation
temperature. We will discuss the temperature dependence of µ0Hd and, then, the temper-
ature dependence of Td which arises from the combination of µ0Hd values and creep slopes
A. Furthermore, we will discuss how thermal activation, represented by the reduced tem-
perature T/Td, decreases notoriously with decreasing temperature, leading to the practical
disappearance of observable thermal effects below 100 K.

Figure 4.13 illustrates the depinning field determination for three different tempera-
tures, which are representative of the range 102 K ≤ T ≤ 177 K. We consider the ingre-
dients already discussed for the determination of µ0Hd from the velocity-field curves: the
separation from creep fit, and the inflection point.

In velocity curves measured between 100 K and TM , we observe the coincidence of the
inflection point and the separation from the fitted creep law. This is the hypothesis that
needs to be fulfilled for the application of the self-consistent method presented by Rebeca
Díaz Pardo and collaborators [18] and discussed in section 2.4.3. In this context, we are able
to perform a prediction on the mobility corresponding to the flow regime. This fact and the
high values of creep slopes, which generate a more abrupt separation from creep behavior
at µ0Hd, make the determination of the depinning field much more precise in the range
102 K ≤ T ≤ 177 K; in other words, we are able to determine µ0Hd with a much smaller
relative uncertainty. Figure 4.13 shows the velocity curves corresponding to T = 177, 169
and 155 K, their creep laws as dashed lines, the estimations of µ0Hd with their uncertainties
as vertical shaded areas, the corresponding zero-temperature depinning regime curves which
follow equation (2.82), and the corresponding predictions for the flow regime proportionality
v ∝ µ0H.
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Figure 4.13: Depinning field determination for velocity curves below TM and above
100 K. Velocity v vs. field µ0H curves for T = 177, 169 and 155 K, in (a) linear scale and
(b) creep scale. We plot the creep fits at each temperature as dashed curves, and we indicate
as vertical shaded areas the ranges in which we determine the depinning field occurs. For
T = 177 K, we estimate µ0Hd = (138± 3) mT; for T = 169 K, µ0Hd = (83± 2) mT; and for
T = 155 K, µ0Hd = (49.9 ± 0.9) mT. In the linear scale plot, zero-temperature depinning
regime (equation (2.82)) with β = 0.25 corresponding to each of the temperatures are plotted
as dotted curves. Resulting vH values are vH = 440 m/s for T = 177 K, vH = 420 m/s for
T = 169 K, and vH = 400 m/s for T = 155 K. Calculations of flow regime mobilities
permit us to indicate as dotted straight lines the predictions for the flow regime. Obtained
mobilities are m = 2.1, 3.3 and 5.2 (m/s)/mT for T = 177, 169 and 155 K respectively.
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Figure 4.14: Depinning field as a function of T for T > 100 K. We indicate as a
vertical dotted line the position of the magnetic compensation temperature at 190 K.

The obtained depinning field values for the three represented temperatures are µ0Hd =
(138 ± 3) mT for T = 177 K, µ0Hd = (83 ± 2) mT for T = 169 K, and µ0Hd = (49.9 ±
0.9) mT for T = 155 K. Note that, as we mentioned above, in this temperature range
uncertainties in µ0Hd correspond to ∼ 2 % of the determined value, while for T > TM
they were generally above 10 %. Zero-temperature depinning curves were plotted using the
determined µ0Hd values and the velocities vH calculated as vH = vT/x0, with x0 = 0.65
[18] and vT = vd (T/Td)−ψ, according to equation (2.81). In this last expression, we used
ψ = 0.15, Td = ST (µ0Hd/mT)−1/4, and vd = exp (IT/Td), in accordance with (4.1) and
(4.2).

Figure 4.14 presents all the determined depinning fields for T ≥ 102 K, plotted as
a function of temperature. The divergence of the depinning field when approaching the
compensation temperature TM becomes evident, both above and below TM . As we have
already discussed, this is an expected behavior because Ms → 0 when T → TM . Note that
the coercive field follows a similar divergence, as evidenced in figure 3.12(a). In the following
section we will discuss this issue more deeply.

In figure 4.15(a) we present Td values plotted as a function of temperature, obtained
from the combination of µ0Hd values and creep slopes A according to (4.1). We may
observe that the depinning temperature Td(T ) follows a monotonous decreasing behavior
with increasing temperature which is not affected significantly close to the compensation
temperature TM . A remarkable finding is that the obtained Td values are considerably
higher than most previously reported results [120]. In particular, the Td values of 20000-
30000 K that correspond to the range 102 K ≤ T ≤ 177 K are among the highest reported

113



4.2. Domain wall dynamics in a wide temperature range
Field-driven domain wall dynamics
in a ferrimagnetic GdFeCo thin film

0

10

20

30

T
d

[×
1
0

3
K

]

TM

(a)

0 100 200 300
T [K]

0.00

0.01

0.02

0.03

0.04

T
/
T
d

TM

(b)

Figure 4.15: Depinning temperature Td and reduced temperature T/Td as a func-
tion of T . (a) Td vs. T and (b) T/Td vs. T . We indicate in both cases as a vertical dotted
line the position of the magnetic compensation temperature at 190 K.

values [187–189]. This indicates that effective creep energy barriers in the studied sample
are relatively large and, besides, their magnitude is enhanced as temperature decreases.

Once we have determined the Td vs. T dependence, we may compute the reduced
temperature T/Td and plot it as a function of temperature; we present this result in figure
4.15(b). The reduced temperature is directly related to the effective thermal activation
energy, which as we have repeatedly claimed plays a crucial role in domain wall dynamics,
particularly in the creep regime and the thermal rounding of the depinning transition.

As it is illustrated in figure 4.15(b), effective thermal activation drops continuously
when cooling, from a reduced temperature T/Td = 0.04 at T = 353 K to T/Td = 0.003
at T = 102 K. Such extremely low values, corresponding to the proximity of T = 100 K,
had never been observed experimentally [120]. The value T/Td = 0.003 constitutes a lower
limit for our experimental access to the measurement of a creep-type dependence below the
depinning transition: very low T/Td values imply huge slopes S, what reduces the field range
in which creep occurs and necessitates a very precise field control. This difficulty aggregates
to the fact that, as we have shown previously, domain wall displacements at relatively low
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velocities cannot be measured with our experimental setup in the low temperature range.

As we have already noted in the previous discussion, for temperatures below 100 K we
are only able to measure velocities for values of field µ0H & µ0Hd. In this context, we are
only able to observe and analyze the depinning regime. However, as we will discuss in detail
in section 4.3, our observation of the depinning regime in velocity curves corresponding to
T < 100 K is particularly clear, what permits an unprecedented direct characterization of
this regime.

4.2.4 Temperature dependence of depinning parameters

After having discussed the domain wall dynamics in a wide temperature range, let us now
analyze the complete dependence of physical quantities which characterize the pinning of
field-driven magnetic domain walls in our GdFeCo sample. These quantities are plotted as
a function of temperature in figure 4.16.

In panel (a), we plot the SQUID measurement of the saturation magnetization Ms,
already presented in figure 3.9. As we have pointed out, this global magnetic quantity
impacts on the depinning field µ0Hd and the coercive field µ0Hc, plotted in panel (b). Note
that, while both µ0Hd and µ0Hc show a similar behavior, they are close to each other for
T < TM and they are well separated for T > TM , with µ0Hc < µ0Hd. This evidences that
the nucleation of magnetic domains and subsequent domain wall displacement occurs well
below the depinning of domain walls for T > TM , while it occurs close to the depinning for
T < TM . This may be qualitatively linked to the fact that domain wall motion in the creep
regime, i.e. below µ0Hd, spans over a rather wide range of fields for T > TM (see section
4.2.2) while it spans over a narrow range for T < TM (see section 4.2.3).

The close relation between µ0Hd and Ms, which is predicted to be an inverse propor-
tionality [120], is evidenced, particularly in the limit T → TM , where Ms → 0 and µ0Hd

diverges. In the plot of µ0Hd vs. T shown in panel (b), we also consider the depinning
field determination in the lowest temperature range, T < 100 K, of which we have not yet
presented the detailed analysis but will be described in section 4.3. The µ0Hd(T ) depen-
dence obtained for 10 K ≤ T ≤ 353 K constitutes to the best of our knowledge the first
measurement of the depinning field temperature dependence in such a wide range.

In order to quantitatively analyze the relationship between Ms and µ0Hd and to obtain
an insight on the nature of characteristic intermittent domain wall displacement events,
we may assess the Zeeman energy per unit area εZ(Hd) resulting from the inversion of
magnetization at the depinning transition and given by

εZ(Hd) = 2µ0HdMst (4.3)

in accordance with (2.87), where t = 10 nm is the film thickness. As discussed in 2.4.4, this
characteristic quantity is related to the effective pinning energy barrier, whose magnitude
is ∼ kBTd, through relation (2.88).
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Figure 4.16: Temperature dependence of obtained physical quantities character-
izing the pinning of magnetic domain walls. (a) Saturation magnetization Ms. (b)
Depinning field µ0Hd (full symbols) and coercive field µ0Hc (empty symbols). (c) Zeeman
energy per unit area εZ(Hd) corresponding to a domain wall displacement at depinning.
(d) Characteristic magnitude kBTd of the effective pinning energy barrier. (e) Estimated
characteristic Larkin surface area Lcξp.
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In figure 4.16(c), we plot the Zeeman energy per unit area at depinning. Close to
T = TM , obtained values have big error bars due to a big relative uncertainty of vanishing
Ms values. The observed increase of εZ(Hd) for decreasing temperatures independently con-
firms a fact previously evidenced by the observed Td(T ) dependence, this is, the increasing
magnitude of the effective pinning energy barrier as temperature decreases.

Figure 4.16(d) shows the characteristic pinning energy kBTd, calculated as described
previously from the analysis of domain wall velocity curves. The fact that εZ(Hd) and
kBTd follow similar behaviors support the relation (2.88) between independently calculated
characteristic energies. This is assessed in figure 4.16(e), where we plot the estimated
characteristic area Lcξp, the so-called Larkin surface area, estimated as Lcξp = kBTd/εZ(Hd).
As evidenced in the figure, this quantity belongs to the range 10000-20000 nm2 in all the
temperature range, suggesting that the characteristic length scales of disorder do not change
considerably even if the magnitude of energy barriers change as evidenced by the dependence
of kBTd with temperature. This aspect, namely the magnitudes of characteristic lengths
playing a role in domain wall motion and morphology, will be further addressed in section
4.3.4 and in chapter 5.

We have already discussed various aspects of the phenomenology encountered when
analyzing domain wall velocity curves in a wide range of temperatures. Furthermore, we
have studied the temperature variation of several physical parameters which play a role on
domain wall dynamics in the creep and depinning regimes and, additionally, shed light on
the properties of effective disorder playing a leading role in these phenomena. However,
the observed behaviors still keep several open questions which call for further research. For
example, the microscopic origin of the effective increase of the pinning magnitude when
temperature decreases is still unclear.

The discussion made above has been focused on temperature- and material-dependent
physical parameters, without talking deeply about universal aspects. In the following sec-
tion, which constitutes the second and final part of the presentation of results corresponding
to this chapter, we will present the measurements of domain wall dynamics which have driven
us to the most relevant result of this chapter; namely, the direct experimental determination
of the complete set of universal critical exponents corresponding to the depinning transition.

4.3 Athermal depinning transition at low temperatures

In our discussion about the temperature dependence of relative thermal activation, quan-
tified by the reduced temperature T/Td, we have pointed out that for temperatures close
to 100 K we reach extremely low values T/Td ' 0.003 (see figure 4.15). To the best of our
knowledge, such low experimentally measured values had never been reported [120]. In this
conditions, and also due to the difficulty of measuring relatively low velocities (see figure
4.11), the observation of the creep regime below T = 100 K was not possible. However, the
extremely low thermal activation gives rise to an unprecedentedly clear observation of the
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Figure 4.17: Thermally activated v vs. µ0H curve at T = 295 K and athermal
curve at T = 20 K. Main panel: plot in linear scale. A zero-temperature depinning
curve, equation (2.82), is plotted as a dashed line. The corresponding depinning field is
µ0Hd = 14.8 mT, which is indicated as a vertical dotted line. Velocity vs. field dependence
is practically the same for both curves in a range of 3 to 4 mT above this value. Inset:
Creep type plot where thermally activated creep regime is appreciated for T = 295 K, while
it cannot be observed for T = 20 K.

depinning transition, with practically athermal, i.e. zero-temperature-like, characteristics.

4.3.1 Zero-temperature-like characteristics

Let us now discuss the observed phenomenology for domain wall velocity curves in the low
temperature range, comparing it to the thermally activated behavior that we have analyzed
for higher temperatures in section 4.2. In figure 4.17, we plot two representative v vs. µ0H
curves: one of them corresponds to T = 20 K, and the other one to ambient temperature,
i.e. T = 295 K. A particularity of these two curves is that the determined depinning field
is practically equivalent: for T = 20 K, µ0Hd = (14.8 ± 0.2) mT, while for T = 295 K,
µ0Hd = (15± 2) mT. This, and the fact that they coincide in a finite range of µ0H, permits
to perform a direct comparison of the two curves, one of them showing a zero-temperature-
like behavior while the other presents evident thermally activated dynamics.

In the main panel, we plot the velocity vs. field characteristics in linear scale. For
T = 20 K, depinning transition is clearly observed with its characteristic curvature, as
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theoretically predicted for T = 0 (note the similarity with figure 2.11(a)). This permits to
describe the whole v(H) dependence via the zero-temperature depinning regime, equation
(2.82). The best obtained fit5 of this relation is drawn as a dashed curve. We indicate the
corresponding depinning field at µ0Hd = 14.8 mT as a vertical dotted line. Furthermore,
due the practical absence of thermal effects, at T = 20 K no domain wall velocities could
be measured for µ0H < µ0Hd. For T = 295 K, in contrast, the typical thermally activated
behavior is evidenced, with domain wall velocities measured in a relatively wide range
below µ0Hd. The inset evidences the very well defined creep regime dependence, which is
not observed at all for T = 20 K. Conversely, for µ0H > µ0Hd, the curves corresponding to
both temperatures coincide in a finite range, from µ0H ' 15.5 mT to µ0H ' 18.5 mT, what
evidences that thermal effects are substantially less relevant above depinning. These two
curves constitute an experimental realization of the theoretically predicted velocity-force
characteristics corresponding to a driven elastic line in a bi-dimensional disordered medium
with and without thermal activation that we have presented in figure 2.11(a).

4.3.2 General procedure for fitting the athermal depinning transition

Let us now describe the analysis method that we implement in order to fit the athermal
depinning law, equation (2.82), what permits us to obtain the parameters µ0Hd, vH and β.
We may write that equation taking the logarithm at both sides, as

ln v = ln vH + β ln
(
H −Hd

Hd

)
. (4.4)

Consequently, we can perform a linear fit of the type y = I + Sx with y = ln (v/(m/s))
and x = ln ((H −Hd)/Hd) in order to obtain β as the slope S and ln (vH/(m/s)) as the
intercept I.

Precise determination of the depinning field µ0Hd

Before performing such fitting procedure, it is necessary to find a value for µ0Hd. In the
following, we present the protocol for the determination of µ0Hd that we implement for
all the velocity curves corresponding to the range of temperatures below 100 K. A first
approximation can be directly made by looking at each velocity curve in linear scale. For
example, for T = 20 K (see figure 4.17), depinning field is clearly close to 15 mT, with an
uncertainty which is below 0.5 mT.

In order to have a better insight, we look at the phenomenology of domain wall motion
observed with the PMOKE microscope. In figure 4.18 we present a set of images for three
different applied fields in the range 14.6 mT ≤ µ0Hd ≤ 15.4 mT. For these three values
of the applied field, a sequence of two images and the corresponding differential image is

5In 4.3.2 we will describe the fitting methods.
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presented, similarly to what we have shown in figure 4.11, in order to illustrate the type
of magnetization inversion that we may appreciate via the PMOKE microscope in these
experimental conditions.

As we can appreciate in figure 4.18, images (a), (b) and (c), at 14.6 mT magnetization
reversal is not due to an homogeneous drive over continuous domain walls. They appar-
ently move in some areas while they don’t move in other areas. Additionally, they present
overhangs and, within the regions which are inverted by the applied pulse, there exist small
“islands” remaining uninverted. This may be caused by the occurrence of plastic events
that occur at relatively strong pinning sites and “break” domain walls, or may be the result
of a magnetization process dominated by the nucleation of many small domains. These ob-
servations evidence that domain walls are not under the hypothesis of a continuous elastic
line subject to an homogeneous drive; consequently, we cannot measure a representative
mean domain wall velocity that could be interpreted in the framework of the elastic line
model. As we do not observe a clear global domain wall displacement, we assume that the
depinning transition occurs at higher fields; then, for this case, µ0Hd > 14.6 mT.

In contrast, at 15.4 mT (see figure 4.18 (g-i)), we observe a clear and uniform domain
wall motion which corresponds to v ' 100 m/s. In addition, domain walls do not have
overhangs, and there is no evidence of plastic events breaking them. In this case, we have a
good velocity measurement with a relatively high value, of the order of typical vd values6, and
then we consider that the applied field is above the depinning transition, i.e. µ0Hd < 15.4 mT
for this case.

There exists an intermediate field range (µ0Hd,min, µ0Hd,max) where behavior shares
some features of these two extreme cases. For T = 20 K, this range corresponds to 14.6 mT <
µ0H < 15.2 mT. In figure 4.18 (d-f) we may appreciate the effect of an applied field pulse
within this range, in this case µ0H = 15.0 mT. Domain wall motion is relatively uniform,
but there exists evidence of plastic events generating islands and overhangs. We then assume
that µ0Hd belongs to this crossover range in which domain wall motion passes from being
unidentifiable to uniform, thus permitting to define a representative mean velocity which
may be analyzed in the framework of a continuous elastic line moving due to an uniform
drive.

In figure 4.19 we plot the velocity vs. field measurements for T = 20 K, indicating with
vertical dotted lines the range (µ0Hd,min, µ0Hd,max) in which we consider depinning transition
occurs. In order to evaluate more precisely the field at which depinning transition occurs,
we perform fits of equation 4.4 using µ0Hd values in all the range (µ0Hd,min, µ0Hd,max). All
these fits shall be performed considering the same number of data points, and then we do
not take into account velocity measurements within this range (empty circles in the figure).
In other words, we consider data points of v vs. µ0H corresponding to µ0H ≥ µ0Hd,max
(full circles in the figure). The final step for the determination of the µ0Hd value and its
uncertainty, indicated in the figure as a vertical dashed line and a shaded region respectively,
consists on a maximization of the ln (v/(m/s)) vs. ln ((H −Hd)/Hd) fit quality that we will

6See section 4.2 for a discussion on vd = v(Hd) values.
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Figure 4.18: PMOKE microscopy images in the vicinity of the depinning transi-
tion at T = 20 K. Each row corresponds to two successive states obtained for different
field pulse amplitudes and durations. (a), (d) and (g) are initial states obtained after the
application of several pulses of 14.6 mT and 1.5µs, 15.0 mT and 0.5µs, and 15.4 mT and
0.5µs, respectively. (b), (e) and (h) are final states after applying one more pulse of the same
amplitude and duration. (c), (f) and (i) are differential images obtained from substracting
initial and final states.
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Figure 4.19: Depinning transition in the velocity vs. field curve for T = 20 K. We
indicate with vertical dotted lines the range (µ0Hd,min, Hd,max) in which we consider depin-
ning transition occurs according to PMOKE microscopy observations. Full symbols indicate
v(H) which are considered for the fitting procedure, while empty symbols, corresponding
to the range (µ0Hd,min, Hd,max), are not considered. The finally determined depinning field
and its uncertainty are indicated with a vertical dashed line and a vertical shaded area, re-
spectively. The zero-temperature depinning regime law (2.82) is plotted as a dashed curve,
with parameters µ0Hd = 14.8 mT, β = 0.28 and vH = 270 m/s.

describe in the following.

First, we calculate the χ2 parameter of the fit,

χ2(Hd) = 1
N

∑
σ2
i (Hd) = 1

N

∑(
yi − (I(Hd) + S(Hd)xi)

δyi

)2

, (4.5)

as a function of µ0Hd, where N is the number of considered data points, and xi, yi and δyi
are, respectively, their x and y coordinates and y uncertainties. The intercept I and slope
S of a given fit depend on the chosen µ0Hd value.

Next, we look for the minimum value χ2
min in the range (µ0Hd,min, µ0Hd,max), and take

into account all the µ0Hd values resulting on χ2 < 1.1χ2
min. This defines a new, reduced

range which determines the depinning field value and its uncertainty: µ0Hd is the central
value in this range, and its uncertainty µ0δHd is half of its width.

Figure 4.20(a) presents the χ2 vs. µ0Hd dependence for T = 20 K in the field range
(µ0Hd,min, µ0Hd,max). In this case, the minimum value χ2

min corresponds to the lower limit
of this range, but we consider that the depinning field cannot be lower because the mean
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domain wall velocity is not well defined for µ0H ≤ µ0Hd,min. The figure shows as a dotted
horizontal line the limiting value 1.1χ2

min, which permits to define the range corresponding
to our determination of µ0Hd and its uncertainty µ0δHd in which the fit quality is sufficiently
good. The range [µ0Hd−µ0δHd, µ0Hd+µ0δHd] is indicated as a vertical shaded area, which
corresponds in this case to µ0Hd = (14.8± 0.2) mT.

Determination of the critical exponent β and the depinning velocity vH

In figure 4.20(b) we plot, for T = 20 K, the β values obtained from fitting equation (4.4), as
a function of the chosen µ0Hd value corresponding to the range (µ0Hd,min, Hd,max). These
values, corresponding to the fit slopes, are determined with a given uncertainty for each
µ0Hd. The uncertainties are indicated as a shaded region around the “best” β vs. µ0Hd

dependence, and is taken into account in order to obtain a representative β value for each
temperature. As shown in the figure, we consider all β values and their uncertainties in the
range [µ0Hd−µ0δHd, µ0Hd+µ0δHd] in order to finally obtain, for T = 20 K, β = 0.28±0.08.
As indicated in figure 4.20(c), exactly the same process is performed for the fit intercepts
ln (vH/(m/s)) in order to finally obtain ln (vH/(m/s)) = 5.6 ± 0.1. This results on vH =
(270± 40) m/s.

In figure 4.21, we present the ln (v/(m/s)) vs. ln ((H −Hd)/Hd) dependence which
results from our best estimation of the depinning field, µ0Hd = 14.8 mT, for T = 20 K.
Only data points corresponding to µ0H ≥ µ0Hd,max are represented because these are the
considered data for the depinning regime fit. As evidenced in the figure, a straight line
describes very well the observed dependence, what validates the realization of a fit following
equation 4.4. The dashed straight line corresponds to this relation, with the best values of β
and vH determined following the previously described protocol: β = 0.28 and vH = 270 m/s.

4.3.3 Universal and non-universal depinning parameters

The same protocol that we have just described for the analysis of the depinning transition
has been applied to all the studied temperatures below 100 K. Accordingly, the experi-
mentally measured v vs. µ0H curves in this temperature range were analyzed in terms
of the theoretically predicted equation (4.4). In order to evidence the good agreement of
experimental data with this relation, we plot in figure 4.22 the v/vH vs. ((H − Hd)/Hd)β
dependence obtained for all temperatures, using the best µ0Hd, β and vH values for each
temperature. This observed collapse of all experimentally measured velocity vs. field curves
on a single dependence clearly highlights the fact that the seven measured curves in the
range 10 K ≤ T ≤ 71 K share a common behavior which is well described by the theoret-
ically predicted zero-temperature depinning, illustrated in figure 2.11(a) for an elastic line
in a disordered bi-dimensional medium, and expressed by equation (2.82). Concomitantly,
it validates the description of the observed behavior in terms of the obtained values of
depinning parameters µ0Hd, β, and vH .
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Figure 4.20: Depinning fit parameters as a function of µ0Hd in the range
(µ0Hd,min,Hd,max) for T = 20 K. (a) χ2 vs. µ0Hd. We indicate as an horizontal dotted
line the limiting value 1.1χ2

min, which permits to define the range [µ0Hd − µ0δHd, µ0Hd +
µ0δHd] in which χ2 < 1.1χ2

min. The depinning field is determined as µ0Hd = (14.8±0.2) mT
and indicated as a vertical dashed line and a shaded area. (b) Slope β vs. µ0Hd, indicating
the uncertainty in its determination in all the range as a shaded region around the mean
value dependence. The final determination β = 0.28 ± 0.08 is made taking into account
this uncertainty, as indicated by the horizontal lines. (c) Intercept ln (vH/(m/s)) vs. µ0Hd,
indicating the uncertainty in its determination in all the range as a shaded region around
the mean value dependence. The final determination ln(vH/(m/s)) = 5.6 ± 0.1 is made
taking into account this uncertainty, as indicated by the horizontal lines.
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Figure 4.21: Log-log velocity vs. reduced field dependence corresponding to the
athermal depinning transition for T = 20 K. ln (v/(m/s)) vs. ln ((H −Hd)/Hd),
considering µ0Hd = 14.8 mT. We plot only the data points taken into account for the linear
fits of the depinning law, i.e. those corresponding to µ0H ≥ µ0Hd,max. The straight dashed
line corresponds to the depinning law with our best determined parameters, β = 0.28 and
vH = 270 m/s.

The obtained values of these three depinning parameters for all the studied tempera-
tures below T = 100 K are plotted as a function of T in figure 4.23. As we have described,
the precisely determined µ0Hd values, which are plotted in (a), permit to obtain β and vH
with a good degree of confidence. These two parameters are plotted as a function of T in
(b) and (c), respectively.

Both µ0Hd and vH are non-universal, and they are therefore material and tempera-
ture dependent parameters. For this reason, they are expected to vary as a function of
temperature. As it can be observed in figure 4.23, µ0Hd shows a smooth non-monotonous
temperature-dependent behavior, with a minimum at T ∼ 30 K, while vH seems to be con-
stant or slightly grow with temperature. Conversely, β is a universal critical exponent in
the framework of statistical physics and then, it is temperature and material independent
for any phenomena which can be allocated into a given universality class. The uniqueness
of β is verified in the figure, as it is shown to fluctuate over a mean value, without any no-
ticeable temperature dependence. We have calculated a mean value β = 0.30± 0.03 which
is representative of the whole set of β values.

The determination of the depinning velocity critical exponent β performed for several
temperatures and described above constitutes, to the best of our knowledge, the first direct
experimental determination of this critical exponent. Furthermore, the mean value β =

125



4.3. Athermal depinning transition at low temperatures
Field-driven domain wall dynamics
in a ferrimagnetic GdFeCo thin film

0.0 0.2 0.4 0.6 0.8

((H −Hd)/Hd)
β

0.0

0.2

0.4

0.6

0.8

v
/
v
H 10 K

15 K

20 K

30 K

40 K

56 K

71 K

Figure 4.22: Master curve showing the good agreement of velocity-field curves
below T = 100 K with the theoretically predicted zero-temperature depinning
transition. Reduced velocity v/vH as a function of ((H −Hd)/Hd)β for H > Hd, using as
parameters µ0Hd, β and vH the best obtained values for each case.

0.30±0.03, which is representative of all the values that we have plotted in figure 4.23(b), is
consistent with theoretically predictions corresponding to the quenched Edwards-Wilkinson
universality class. Conversely, our result is not consistent with the predicted β for the
quenched Kardar-Parisi-Zhang class (see table 4.1).

Let us briefly review the theoretically predicted β values for the qEW class, which are
presented in table 4.1. In 2005, O. Duemmer and W. Krauth computationally calculated
β = 0.33 ± 0.02 [184], consistent with our result β = 0.30 ± 0.03. In 2013, E. Ferrero
and collaborators calculated the asymptotic value β = 0.245 ± 0.006 [119]. This value is
expected to be reached only for driving fields sufficiently close to the depinning field, in
the limit `av � Lc, i.e. for a typical depinning avalanche size much larger than the Larkin
length. Otherwise, a larger effective β is expected and, therefore, our result may be also
consistent with this reference.

As we have pointed out in 4.1.2, in the qEW universality class the five critical exponents
corresponding to the depinning transition may be obtained if two of them are independently
calculated. In the following, we will show that the correlation length critical exponent νdep
may also be assessed experimentally at low temperatures. The experimental determination
of both β and νdep will permit us to determine the full set of critical exponents in agreement
with the qEW universality class.
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Figure 4.23: Depinning parameters µ0Hd, β and vH as a function of T , obtained
for all studied temperatures below T = 100 K. (a) µ0Hd vs. T . (b) β vs. T . We
show as an horizontal dotted line and a shaded area the mean value β and its uncertainty.
(c) vH vs. T .

4.3.4 Critical behavior of the depinning correlation length

In section 2.4.4, we have introduced the divergence of the characteristic size of depinning
avalanches `av in the limit of T = 0 and H → H+

d , as `av ∼ (H − Hd)−νdep (see equation
(2.85)) [4]. In the following we will see that, through the measurement of the local velocity
at low temperatures, we are able to quantify `av. This allows for the experimental access to
the critical exponent νdep.
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Figure 4.24: Successive domain wall profiles considered for calculating the depin-
ning correlation length at T = 20 K. Between both configurations, a magnetic field
pulse of µ0H = 15.44 mT and ∆t = 0.5µs was applied. We indicate the distance corre-
sponding to the local domain wall displacement ∆(x) at a position x. The corresponding
mean velocity for this case is v = ∆/∆t = (112.3 ± 0.3) m/s. Gray levels result from the
superposition of corresponding successive PMOKE images.

Domain wall velocity correlation function Cv(x)

As in the depinning transition domain wall motion occurs through the intermittent displace-
ment of segments with characteristic size `av, the local velocity vloc(x0) at a position x0 of
the wall is strongly correlated with vloc(x0 +x) if depinning avalanches affect simultaneously
the displacement at both considered positions, i.e. if x . `av. Consequently, in the follow-
ing we consider that `av is the correlation length along the domain wall at the depinning
transition.

In figure 4.24, we show two successive domain wall profiles obtained at T = 20 K.
Between the initial state u(x, t) and the final state u(x, t + ∆t), a magnetic field pulse of
µ0H = 15.44 mT and ∆t = 0.5µs was applied. The corresponding local displacement at a
position x is ∆(x) = u(x, t+ ∆t)− u(x, t), and the local velocity is vloc(x) = ∆(x)/∆t.

In order to quantify the correlation length `av, we first compute the velocity correlation
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function Cv(x), which may be calculated as [184]

Cv(x) =
N∑
i=1

(vloc(iδr + x)− v) (vloc(iδr)− v) , (4.6)

where the sum is performed over all the reference points x0 = iδr and δr = 0.171µm is the
pixel size (see section 3.2 for details). The wall size, which is unique for each considered
pair of domain walls, is L = Nδr.

The mean velocity v is calculated as v = ∆/∆t, where

∆ = 1
N

N∑
i=1

∆(iδr) (4.7)

and its uncertainty is

σ∆ = 1√
N

[
1
N

N∑
i=1

(
∆(iδr)−∆

)2
]1/2

. (4.8)

For the example shown in figure 4.24, v = (112.3 ± 0.3) m/s. Note that this uncertainty
is much smaller than the usual considered uncertainties for the mean velocity, obtained as
explained in section 3.2.3 and indicated for T = 20 K as error bars in figure 4.19. While larger
uncertainties are representative of the observable effect of different field pulses of a given
magnitude in the whole field of view of the microscope, which generates fluctuating mean
displacements, the much smaller error corresponding to the mean value ∆/∆t is associated
to a particular pair of successive walls as the ones shown in figure 4.24, which may not
be representative of the fluctuating effects of a given applied field. For this reason, in the
analysis that we describe in the following, for some of the applied fields we consider several
pairs of domain walls which may result not only on different velocity correlation functions
Cv(x) but also on different mean velocities v = ∆/∆t.

The velocity correlation function is thus calculated as

Cv(x) = 1
∆t2

N∑
i=1

(
∆(iδr + x)−∆

) (
∆(iδr)−∆

)
(4.9)

for several different pairs of successive domain walls at each temperature. In figure 4.25, we
show normalized velocity correlation functions Cv(x)/C0 for several different pairs of walls,
indicating the applied field corresponding to each of them. The normalization is made in
terms of the value corresponding to x = 0 for each case, i.e. C0 ≡ Cv(x = 0).

An exponential decay is expected for the velocity correlation function, Cv(x) ∼ e−x/`av

[184]. However, the obtained functions plotted in figure 4.25 show fluctuations which dif-
ficult the analysis through fits following the expected relation. We therefore estimate the
depinning correlation length as the distance x at which Cv(x) falls considerably with respect
to C0. Specifically, we calculate `av according to

Cv(x = `av) = cC0 , (4.10)
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Figure 4.25: Normalized velocity correlation functions for different applied fields
at T = 20 K. Each normalized function Cv(x)/C0 corresponds to a pair of successive
domain walls resulting from applying the indicated field magnitudes during ∆t = 0.5µs.
The horizontal dotted line at Cv(x)/C0 = 0.5 indicates the criteria used to compute the
correlation length `av: Cv(x = `av)/C0 = 0.5.

where we consider c = 0.5. Even if this c value is arbitrary, we have verified that results do
not change significantly for the range 0.2 < c < 0.7.

In figure 4.25, we indicate as a dotted horizontal line the value Cv(x)/C0 = 0.5 which is
crossed at x = `av for each velocity correlation function. We thus obtain a `av value for each
pair of successive domain walls, each of them corresponding to a particular mean velocity
v = ∆/∆t.

Determination of the critical exponent νdep and the characteristic length ξ0

The combination of equations (2.82) for the mean velocity v at the depinning transition and
(2.85) for the depinning avalanche size `av permits to write the following relation between
these two quantities:

v = vH

(
`av

ξ0

)−β/νdep

. (4.11)

Therefore,
ln v = ln vH + β

νdep
ln ξ0 −

β

νdep
ln `av . (4.12)

In figure 4.26, we plot the v vs. `av results in logarithmic scale, obtained for T = 20 K,
corresponding to the pairs of successive walls whose velocity correlation functions are plotted
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Figure 4.26: Mean domain wall velocity vs. depinning avalanche size for T = 20 K.
Each point corresponds to a pair of successive domain walls. The best fit of ln (v/(m/s))
vs. ln (`av/µm), shown as a dashed line, has a slope −β/νdep = −0.17.

in figure 4.25.

A linear fit of these data points of the type y = Sx + I, with y = ln (v/(m/s)) and
x = ln (`av/µm), permits to obtain I = ln (vH/(m/s)) + β

νdep
ln (ξ0/µm) and S = −β/νdep,

in accordance with (4.12). The obtained slope corresponding to the data of figure 4.26, for
T = 20 K, is S = −0.17± 0.05 and I = 5.2± 0.2.

We are particularly interested in the slope S, as it permits to quantify a new depinning
critical exponent, νdep. For T = 20 K, the obtained correlation length critical exponent,
calculated as −β/S using the β value previously obtained for this temperature, is νdep =
1.6 ± 0.7. This value is consistent both with the qEW and the qKPZ universality classes
due to the large uncertainty resulting from the poor fit quality. In order to perform a
more precise determination, we have repeated an analogous analysis for several different
temperatures that we will present below.

Additionally, once νdep is determined for a given temperature, we may calculate the
characteristic length ξ0 from the intercept I and the already determined vH and β for the
corresponding temperature. For T = 20 K, this analysis results on ξ0 = (0.1 ± 0.2)µm.
As the uncertainty is bigger than the obtained value, this determination is not significant;
however, its order of magnitude ∼ 0.1µm is consistent with the prediction ξ0 ≈ Lc, as we
will further discuss later.

The depinning correlation length critical exponent νdep and the characteristic length ξ0
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Figure 4.27: Common dependence of reduced parameters relating the mean do-
main wall velocity and the depinning avalanche length for different tempera-
tures. We plot v/vH vs. (`av/ξ0)−β/νdep , using the best values of vH , ξ0, β and νdep obtained
for each temperature. Despite considerable fluctuations, the observed common dependence
validates the relation given by (4.11).

were determined as explained above for T = 10, 15, 20 and 30 K. At higher temperatures,
the obtained plots of v vs. `av did not yield any meaningful result, as no tendency was
observed relating these observables. A possible explanation of this fact is that thermal
effects may result on a loss of validity of equation (2.85) and, therefore, of (4.11). This
might occur at lower temperatures than the appearance of considerable thermal rounding
effects impeding the observation of the zero-temperature-like v(H) dependence, which as
we have shown occurs above T = 100 K.

In figure 4.27, we plot the relation v/vH vs. (`av/ξ0)−β/νdep for the considered tempera-
tures, using the best values of the parameters vH , ξ0, β and νdep that we have obtained for
each temperature (these values are plotted in figures 4.23 and 4.28). Even if rather large
fluctuations are observed, as already shown for T = 20 K in figure 4.25, a common behavior
with a clear tendency is observed, what validates the use of equation (4.11) for the analysis
of these data.

In figure 4.28, we plot as a function of the temperature the obtained values of νdep and
ξ0. As predicted for a universal critical exponent, no noticeable tendency with temperature
exists for νdep and, therefore, we calculate its mean value which results on νdep = 1.3± 0.3.
This result is fully consistent with the qEW universality class, while it permits to discard
the qKPZ class (see table 4.1).
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Figure 4.28: Depinning correlation length parameters νdep and ξ0 as a function
of T for the lowest temperatures. (a) νdep vs. T , indicating the mean obtained value
νdep = 1.3± 0.3 as a dashed horizontal line and a shaded area illustrating the uncertainty.
(b) ξ0 vs. T, where the value ξ0 = (1± 2)µm corresponding to T = 15 K has been omitted
due to its out of scale value and uncertainty.

As we have shown above for T = 20 K, the ξ0 values are determined with huge error bars.
This makes the tendency with temperature observed in figure 4.28(b) weakly representative.
However, its values of the order of 0.1µm are consistent with the theoretical prediction that
ξ0 ≈ Lc, as we will briefly discuss in the following.

Larkin length Lc and pinning correlation length ξp

In section 2.4.4, we have pointed out that Lc and ξp are the fundamental characteristic
lengths in the theoretical framework corresponding to a one-dimensional domain wall driven
in a bi-dimensional disordered medium. These quantities may be estimated using expressions
(2.86) and (2.89), in terms ofHd, Td, the domain wall energy σ, the saturation magnetization
Ms, and the film thickness t = 10 nm.

In order to estimate these characteristic lengths, we make the following considerations.
We use Td = (30000 ± 5000) K, which corresponds to the lowest temperature for which
we could measure Td, T = 102 K. The domain wall energy σ is estimated according to
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equation (2.16), with ∆ = (15 ± 5) nm [135, 146, 190] and an effective uniaxial anisotropy
Keff = (22 ± 6) kJ/m3 estimated for the range 10 K ≤ T ≤ 30 K (see figure 3.12(b)). The
saturation magnetization Ms has been measured, as plotted in figure 3.9, and the depinning
field values are plotted in figure 4.23(a). This analysis yields, in the range 10 K ≤ T ≤ 30 K,

ξp = (70± 20) nm (4.13)

for the pinning correlation length, and

Lc = (170± 30) nm (4.14)

for the Larkin length.

Interestingly, the correlation length of disorder ξp is slightly larger than the domain wall
width δ ' π∆ and, thus, ξp can be associated to the characteristic length of the random
heterogeneity in the sample r0 [109], i.e. ξp ' r0 ' 70 nm. This constitutes an insight on
the microscopic origin of disorder, which is generally of difficult experimental access.

On the other hand, the obtained Lc value results of the same order of magnitude as
ξ0 (see figure 4.28(b)). Hence, in the whole range 10 K ≤ T ≤ 30 K we have ξ0 ∼ Lc, as
theoretically expected for the critical regime at depinning [109], while `av is one or two orders
of magnitude larger. Furthermore, note that the obtained ξp and Lc values are consistent
with those estimated for the Larkin surface area Lcξp for T ≥ 100 K (see figure 4.16(e)). The
found consistences between experimentally obtained quantities and theoretical predictions
validate the use of the elastic line model, giving robustness to our results and, particularly,
to our insight on domain wall’s critical behaviors.

4.3.5 Universality class of magnetic domain wall depinning

The independent determination of the depinning critical exponents β and νdep, which to the
best of our knowledge had not been experimentally determined before for driven magnetic
domain walls, is the most significant result of this chapter. As we have discussed in 4.1.2,
two universality classes are generally considered as candidates in order to describe field-
driven domain wall dynamics in thin films with perpendicular anisotropy. These universality
classes are the quenched Edwards-Wilkinson (qEW) and the quenched Kardar-Parisi-Zhang
(qKPZ) classes, which share the same critical behavior in the limit H → 0, making it
impossible to distinguish between them by measuring the equilibrium critical exponents.
An example of a widely studied equilibrium exponent is the creep exponent µ, equal to 1/4
for both universality classes in agreement with experimental studies (see section 2.4.2).

As we have shown above, our results for the depinning exponents β = 0.30± 0.03 and
νdep = 1.3± 0.3 are both consistent with the qEW class while they are significantly smaller
than those predicted for the qKPZ class. A comparison with the values written in table 4.1
clearly shows this finding. The slight inconsistence between the obtained β and one of the
theoretical predictions for the qEW class, β = 0.245 ± 0.006, can be explained considering
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Experimental qEW class
β 0.30± 0.03 0.245± 0.006 [119]

0.33± 0.02 [184]
νdep 1.3± 0.3 1.333± 0.007 [119]
ζdep 1.2± 0.2 1.250± 0.005 [119]
z 1.5± 0.2 1.433± 0.007 [119]
τdep 1.11± 0.07 1.11± 0.04 [185]

Table 4.2: Experimentally determined depinning critical exponents. β and νdep
were independently measured, while ζdep, z and τdep result from them by using scaling laws
(4.15), (4.16) and (4.17). Our results are fully compatible with the qEW universality class.

that our measurements are not sufficiently close to Hd, since this computationally calculated
value is an asymptotical result valid in the limit of H → H+

d and `av � Lc. In our case,
`av ∼ 10-100Lc while the considered field ranges roughly correspond to Hd < H < 1.3Hd.
In this context, the effective observed β value is expected to be larger than β = 0.245±0.006
[119], in accordance with our β = 0.30±0.03 and with the other computationally calculated
β = 0.33± 0.02 [184].

Now that we have shown that both independently obtained exponents are consistent
only with the qEW universality class, we may calculate all the depinning critical exponents
by using the following scaling relations, valid in the context of the qEW universality class
[5]:

ζdep = 2− 1
νdep

, (4.15)

z = β

νdep
+ ζdep , (4.16)

τdep = 2− 2
d+ ζdep

, (4.17)

where the interface dimension for an elastic line in a bi-dimensional medium is d = 1.

In table 4.2, we show the complete set of experimentally determined depinning critical
exponents, including the resulting ζdep, z and τdep, calculated using scaling relations (4.15),
(4.16) and (4.17) with β = β = 0.30±0.03 and νdep = νdep = 1.3±0.3. These results confirm
the full agreement between our experimentally determined depinning critical exponents
and predictions for the qEW universality class. Furthermore, as a universality class is
completely characterized by its critical exponents, they constitute an evidence that the
depinning transition of magnetic domain walls in perpendicularly magnetized thin films
belongs to the qEW universality class.
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4.4 Chapter summary and conclusions

Throughout this chapter, we have presented our studies on field-driven domain wall dy-
namics in a ferrimagnetic sample of GdFeCo and discussed our main findings. We have
addressed two main subjects of interest. On the one hand, the relationship between the rich
temperature dependence of magnetic properties that occurs in this type of materials and the
dynamical regimes of domain wall motion, fundamentally the creep and depinning regimes.
On the other hand, the direct characterization of the depinning transition in practically
athermal conditions, which is possible due to the extremely low values of T/Td.

The analysis of velocity vs. applied field curves of varying properties in a unique
framework corresponding to the theory of elastic interfaces in disordered media has shed
light on the universal and non-universal properties of domain wall creep and depinning
regimes. Particularly, we have noted and discussed different properties of velocity-field
characteristics found above and below the magnetic compensation temperature TM = (190±
4) K. In contrast, we have not observed any impact of the angular compensation at T = TA,
estimated as TA ∼ 270 K, on the creep and depinning regimes.

Additionally, these studies have permitted us to analyze the temperature dependence
of the depinning field Hd. We have experimentally confirmed the theoretically predicted
divergence of the depinning field at the magnetic compensation temperature T = TM due
to the corresponding vanishing of the saturation magnetization Ms.

Furthermore, we have analyzed the temperature dependence of the depinning temper-
ature Td, which characterizes the magnitude of collective pinning energy barriers. We have
shown that Td grows with decreasing temperature, what boosts the categorical decrease of
thermal effects when decreasing temperature.

The joint analysis of the Hd, Td and Ms temperature dependence has allowed us to
study fundamental properties linked to domain wall pinning, shedding light over character-
istic parameters as the Larkin length Lc and the pinning correlation length ξp. The found
quantities are consistent with their theoretically expected magnitudes, what validates our
approach for the interpretation and analysis of domain wall dynamics.

Below T = 100 K, we have shown that practically athermal characteristics can be ob-
served in velocity vs. field curves, allowing for the direct analysis of the depinning transition.
We have thus experimentally measured the critical exponent β of domain wall velocity at
the depinning transition, obtaining a mean value β = 0.30 ± 0.03 which successfully de-
scribes our experimental data and is in good agreement with theoretical predictions for the
quenched Edwards-Wilkinson universality class.

Not only that, but we also succeeded to experimentally quantify the characteristic
length of depinning avalanches for different applied fields at several temperatures in the
low temperature range. This characteristic length, which constitutes a diverging correla-
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tion length in the context of the depinning transition, has permitted us to experimentally
assess the critical exponent νdep. We obtained, for four different temperatures in the range
10 K ≤ T ≤ 30 K, a representative value νdep = 1.3± 0.3 which also agrees with theoretical
predictions for the quenched Edwards-Wilkinson universality class.

These findings permit to allocate the observed phenomena of domain wall motion in
perpendicularly magnetized thin films in the framework of the quenched Edwards-Wilkinson
universality class, discarding the quenched Kardar-Parisi-Zhang model. Additionally, using
the scaling laws which are valid in this context, we have calculated the full set of depin-
ning critical exponents which characterize the universality class of domain wall depinning
in agreement with theoretical predictions. Our findings constitute a robust experimental
demonstration of the predictive power of the theory of elastic interfaces in disordered media.
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CHAPTER 5

Domain wall roughness
in a ferrimagnetic GdFeCo thin film

“Le dessin n’est pas la forme,
il est la manière de voir la forme.”

Edgar Degas

The present chapter is devoted to the study of domain wall morphological properties.
Particularly, we shall analyze walls observed by polar magneto-optical Kerr effect
microscopy1 in a GdFeCo thin film with perpendicular anisotropy2 at different driv-

ing field and temperature conditions. The domain wall dynamics are thoroughly studied in
the same sample as a function of the driving field and in a wide range of temperatures in
chapter 4. Those studies on domain wall dynamics are closely related to the morphological
properties that we shall study in this chapter; indeed, domain wall motion in the creep and
depinning regimes is achieved through events of characteristic sizes, what impacts directly
on its roughness properties, as we have discussed in sections 2.3 and 2.4.4.

We have extensively addressed the importance of experimentally measuring universal
critical exponents, what constitutes one of our main motivations in this thesis. Indeed,
in chapter 4 we have shown that our most relevant result obtained from the measurement
of domain wall dynamics is the independent experimental determination of two depinning

1See section 3.1 for details on this technique and section 3.2 for a description of our experimental setup.
2See section 3.3 for sample details.
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critical exponents, β and νdep. This result permitted us to claim that the domain wall
depinning in magnetic thin films with perpendicular anisotropy belongs to the quenched
Edwards-Wilkinson universality class with random-bond disorder and short-range elasticity.
In this chapter, our attention will be also focused on critical exponents (particularly, on
the roughness exponents), considering as starting point that domain walls belong to the
quenched Edwards-Wilkinson universality class. In this context, we will study the impact of
the different involved roughness exponents on domain wall morphology in order to calculate,
as a function of T and H, characteristic length scales as Lc, `opt and `av, what will permit
us to test theoretical predictions.

In the following section, we shall motivate the studies presented in this chapter by
summarizing the state-of-the-art on experimental measurements of the roughness exponent
ζ for magnetic domain walls. Then, in section 5.2 we will present our methods for performing
meaningful roughness measurements and the resulting parameters obtained for different
fields and temperatures. The methods we implement, which were developed by Daniel
Jordán and collaborators [39], introduce a careful analysis of uncertainties and take into
account the intrinsic statistical dispersion of roughness exponents [104, 105]. In section 5.3
we will present our analysis and interpretation of roughness measurements in the framework
of the quenched Edwards-Wilkinson universality class, what allows for quantifying relevant
characteristic lengths and testing the theoretical scenario that we have introduced in 2.4.4.
Finally, in section 5.4 we will present a chapter summary and review our main conclusions.

5.1 Previous experimental roughness measurements

Since the first observation of the creep regime by S. Lemerle and collaborators in 1998
[13], magnetic domain walls in thin films with perpendicular anisotropy have become a
prototypical example of elastic lines in a disordered bi-dimensional medium. In that work,
and using a PMOKE microscope, the authors not only observed a creep exponent µ = 1/4
characterizing the velocity vs. field dependence, but they also measured the roughness
exponent ζ. In order to obtain ζ, they calculated the displacement-displacement correlation
function B(r) for multiple observed domain wall profiles, equation (2.55), and used the
scaling relation B(r) ∼ r2ζ . From the analysis of 36 domain wall profiles, they obtained
an average value ζ = 0.69 ± 0.07, consistent with the equilibrium roughness exponent
ζeq = 2/3. These results were considered as a double-proof that the observed domain
wall creep corresponds to the quenched Edwards-Wilkinson universality class, with the
theoretically calculated exponents ζeq = 2/3 and µ = (2ζeq − 1)/(2 − ζeq) = 1/4 for a
one-dimensional wall (see equation (2.72)).

However, further investigations, both theoretical and experimental, have shown that
the real scenario is much more complex. Firstly, because the characteristic length of op-
timal avalanches in the creep regime `opt is small compared to the typical length scale of
magneto-optical microscopy images (see equation (2.84) and references [40, 108, 120, 195]),
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Sample type ζ Reference Observation
Pt/Co/Pt 0.69± 0.07 [13]

0.60± 0.05 [191]
0.71 [192]
0.83 [192]

0.68± 0.04 [160]
0.73± 0.04 [193]
0.79± 0.04 [193] ac field

(Ga,Mn)(As,P) 0.62± 0.02 [118]
0.61± 0.04 [27]

Pt/CoFe/Pt 0.66± 0.02 [194]
CoFe/Pt 0.98± 0.03 [194] multilayer
Pt/CoNi/Al 0.64± 0.05 [193]
GdFeCo 0.759± 0.008 [39]

0.747± 0.009 [39]
0.716± 0.007 [39] in-plane field

Table 5.1: Experimentally determined roughness exponents reported in the lit-
erature, corresponding to field-driven domain walls. All these measurements were
performed via the analysis of wall profiles observed by magneto-optical microscopy. We in-
dicate the type of magnetic thin film studied in each case and observations regarding sample
or applied field particularities when applicable.

what suggests that other exponents as ζdep and ζth should play a role even for H < Hd

[4, 41]. In this context, the measured ζ exponent does not correspond uniquely to ζeq even
if it is compatible with its value. Secondly, because several roughness exponent determi-
nations have resulted on higher values. Table 5.1 shows the reported results of multiple
ζ determinations for field-driven domain walls, some of them being different from all the
theoretically predicted exponents, ζeq = 2/3, ζdep = 1.25 and ζth = 1/2. Additionally, their
values are rather disperse, what could be an evidence of its non-universality, in contrast
with all the theoretical framework and dynamics measurements supporting the universality
of field-driven domain wall motion. These results call for further investigations in order to
find an appropriate interpretation.

The existence of crossover lengths `opt and `av separating scales in which different
roughness exponents characterize domain wall morphology, illustrated in figure 2.16, may
constitute the scenario that correctly explains the measured values. In this context, ex-
perimentally obtained roughness exponents may be effective values ζeff which result from
the joint action of ζeq, ζdep and ζth. In this chapter, particularly in section 5.3, we shall
analyze our roughness measurements within this framework in order to provide a successful
interpretation not only for our results but also for the previous measurements written in
table 5.1.
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In order to test this theoretical scenario, we have carefully measured the field- and
temperature-dependence of effective roughness exponents. In the following, we will thor-
oughly describe the methods that we use in order to experimentally obtain B(r) functions
and the corresponding roughness parameters, and we will present the results for different
fields and temperatures.

5.2 Statistically meaningful roughness measurement

An adequate roughness exponent determination, with a representative resulting value and
uncertainty, is crucial for its contrast with theoretical predictions. Recently, J. Guyonnet,
S. Bustingorry and collaborators [104, 105] have shown that the distribution of roughness
exponents calculated for individual interfaces under equivalent experimental conditions are
inherently wide, and thus pointed out that a representative determination needs the analysis
of at least ∼ 40 independent interfaces under the same conditions. This fact was not
taken into account in most of the investigations cited in table 5.1; therefore, the reported
values and uncertainties should be considered with some reservations. Additionally, B(r)
fitting procedures should be as well defined as possible in order to tackle the impact of
observer criteria on obtained results. The work by Daniel Jordán and colleagues [39, 175],
which constitutes a collaboration in the framework of this thesis, permitted to systematize
a method for roughness parameter determinations which takes into account their statistical
dispersion and provides well defined fitting procedures.

As we use this method for the roughness characterization presented in this chapter, we
shall thoroughly describe it in the following. First, we will discuss our procedure for cal-
culating the displacement-displacement correlation function B(r) of a domain wall profile.
Second, we shall present its fitting methods and the careful quantification of roughness pa-
rameters and their uncertainties. Then, we will discuss the statistics resulting from repeating
this procedure for multiple domain walls in a particular condition of field and temperature,
what permits to obtain representative and meaningful values. Finally, we shall present the
results we have obtained for different fields and temperatures.

5.2.1 Computing the displacement-displacement correlation function
of a domain wall profile

Given a domain wall, obtained with the PMOKE microscope at a particular temperature T
and after applying a given field H, its profile u(x) is determined as described in 3.2.5. The x
direction is formed by a discrete and evenly spaced set of points xj = jδr with j = 0, ..., N ,
where δr is the pixel size, equal to 0.171µm for the measurements presented in this section.
At each point xj, the position of the domain wall, of length L = Nδr, is u(xj).

In figure 5.1(a) we show a domain wall profile u(x) obtained at T = 275 K, after applying
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Figure 5.1: Displacement-displacement correlation function for a single domain
wall profile. (a) PMOKE image where we highlight a wall profile u(x) corresponding to
T = 275 K and µ0H = 5.71 mT. We indicate a particular value u(xj) separated by an
horizontal distance r from another value u(xj + r). The integration through all xj values
permits to obtain B(r) according to (5.1). (b) Corresponding B(r) function and resulting
fit following equation (5.2) in the range r0 ≤ r ≤ r1.

pulses of µ0H = 5.71 mT and ∆t = 2 s. Arbitrary positions (xj, u(xj)) and (xj+r, u(xj+r))
are indicated, horizontally separated by a distance r = kδr, where k is an integer value,
k = 1, ..., N .

The displacement-displacement correlation function B(r) of a domain wall profile u(x)
is calculated for this discrete case as

B(r) = 1
N − k + 1

N−k∑
j=0

[u(xj + r)− u(xj)]2 . (5.1)

Accordingly, B(r) is obtained for each distance r by integrating over all the possible reference
positions xj. The B(r) function resulting from the particular domain wall profile shown in
figure 5.1(a) is plotted in (b).
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As expressed by the scaling relation (2.56), B(r) is expected to follow

B(r) = B0

(
r

µm

)2ζeff

, (5.2)

where B0 is the so-called roughness amplitude and the length unit is specified for B0 to have
the same units as B(r). The B(r) function computed for a given domain wall may thus be
fitted using the relation

log (B(r)/µm2) = log (B0/µm2) + 2ζeff log (r/µm) ; (5.3)

this is, fitting y = log (B(r)/µm2) vs. x = log (r/µm) as y = I+Sx, with resulting intercept
I = log (B0/µm2) and slope S = 2ζeff . It is worth noting that by definition of B(r), ζeff ≤ 1
and then, a roughness exponent ζ > 1 cannot be revealed by B(r) [107].

As evidenced in figure 5.1(b), the linear dependence characteristic of a self-affine domain
wall is not verified at large length scales. Several factors may induce this behavior: the
action of strong pinning sites, finite-size effects, and the coexistence of different roughness
exponents. Additionally, at very low scales the correct determination of domain wall profiles
is affected by the discrete nature of PMOKE images, with a pixel size δr, and by the optical
resolution of ≈ 1µm. Consequently, the fit of relation (5.3) must be performed within an
appropriate range with lower and upper limits.

In figure 5.1(b), we show the results of performing this fit in the range r0 ≤ r ≤ r1,
with r0 = 6δr = 1.026µm (i.e. discarding distances lower than 6 pixels) and r1 = 21δr =
3.591µm. The obtained roughness parameters for this case are B0 = (0.399 ± 0.002)µm2

and ζeff = 0.821 ± 0.005. The fit goodness is quantified by the coefficient of determination
R2 = 0.999883, which would be equal to 1 if all the considered points were perfectly aligned3.
The indicated uncertainties for B0 and ζeff correspond to the statistical error of the fit and
are relatively low due to the high fit goodness. However, the variations in B0 and ζeff
due to slight changes on the arbitrarily selected limits r0 and r1 are relatively large. In
the following, we present the method we apply in order to appropriately determine the
roughness parameters and their uncertainties, taking into account the fact that the fitting
range significantly affects the results.

5.2.2 Determining the roughness parameters and their uncertainties

In order to make a representative determination of B0 and ζeff , we consider the results
obtained from fitting equation (5.3) in a range in which the coefficient R2 is sufficiently
high. This range is determined as follows.

3The coefficient of determination for two variables X and Y is defined as R2 = σ2
XY /σ

2
Xσ

2
Y , where σ2

XY

is the covariance of (X,Y ) and σ2
X and σ2

Y are the variances of X and Y , respectively. In our case, X
corresponds to log (r/µm) and Y to log (B(r)/µm2).
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Figure 5.2: Protocol for determining roughness parameters and their uncertain-
ties for a single domain wall profile. (a) Coefficient of determination R2 resulting
from fits performed in ranges [r0, rmax] (blue squares) and [rmin, r1] (red diamonds) as a
function of rmax and rmin, respectively, for the B(r) of a single domain wall profile. We
indicate the lower bound R2

min considered for defining r∗0 and r∗1. r∗0 is then redefined as
r∗0 = max (r0, r

∗
0). (b) Roughness exponent ζeff and (c) roughness amplitude B0 resulting

from the same fits. We consider all the values obtained for [rmin, r1] with rmin ≥ r∗0 and
for [r0, rmax] with rmax ≤ r∗1 in order to determine ζeff and B0 and their uncertainties, as
indicated by the shaded areas.
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Figure 5.2(a) shows the R2 values resulting from fits performed in ranges [r0, rmax] (blue
squares) and [rmin, r1] (red diamonds) as a function of the upper and lower range limits rmax
and rmin, respectively, for the B(r) plotted in figure 5.1(b). All fits consider at least 6
points, hence δr ≤ rmin ≤ r1 − 5δr and r0 + 5δr ≤ rmax ≤ L. The figure evidences that, for
sufficiently high rmax, the linear logB(r) vs. log r dependence is lost, what may be identified
as a sharp decrease of R2. In contrast, linearity is verified for lower range limits as low as
rmin = δr, as no considerable decrease of R2 occurs at low rmin values. This characteristic is
verified for most of our roughness measurements.

In order to define the ranges in which the fit quality is sufficiently good, it is necessary
to choose a minimum R2 value. We have chosen R2

min = 0.9993 for all the results shown
in this chapter. We thus define r∗0 and r∗1 as the values such that fits performed in ranges
[r0, rmax] with rmax ≤ r∗1 and [rmin, r1] with rmin ≥ r∗0 have a coefficient R2 ≥ 0.9993. Then,
we redefine r∗0 = max (r0, r

∗
0) because we consider that distances within the first 5 pixels

(below 1µm) may comprise errors due to the discrete nature of u(x) and the microscope’s
optical resolution. In a small fraction of our roughness measurements, we have observed a
loss of linearity at low r values resulting on r∗0 > r0.

We thus obtain ζeff and B0 and their uncertainties considering all the fits performed in
the defined ranges, i.e. [rmin, r1] with rmin ≥ r∗0 and [r0, rmax] with rmax ≤ r∗1, as indicated
in figures 5.2(b) and (c). Note that the obtained uncertainties are considerably larger than
the uncertainty of an individual fit, exemplified in figure 5.1(b). The described protocol
results on representative values and uncertainties for the roughness parameters ζeff and B0
of a single domain wall. The arbitrary elections of r0, r1 and R2

min do not affect significantly
these final results, and they could be changed according to the particular characteristics
of the considered B(r) functions. All the measurements presented in this chapter were
obtained using r0 = 1.026µm, r1 = 3.591µm and R2

min = 0.9993.

5.2.3 Statistics of roughness parameters

As we have mentioned before, the roughness parameters determined for a single domain
wall may be not representative of the field and temperature conditions at which that wall
was imaged. Due to the intrinsic dispersion of roughness parameters [104, 105], the analysis
described above for one domain wall has to be repeated for multiple walls in order to obtain
a statistically meaningful measure which may be associated to a particular position in the
H - T diagram.

In figure 5.3, we show the results of analyzingN = 63 domain wall profiles for T = 275 K
and µ0H = 5.71 mT. In panel (a), all the obtained ζeff are plotted, each of them being
determined as presented above. Panel (b) shows the corresponding histogram of ζeff values.
The mean value ζeff = 0.823±0.007 is obtained considering both the dispersion of ζeff values
and their individual uncertainties, and is thus representative of the domain walls observed
in our sample for this particular driving field and temperature. In panels (c) and (d), the
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Figure 5.3: Statistics of roughness parameters for a particular field and tempera-
ture condition. (a) Obtained values of the exponent ζeff for the N = 63 considered domain
wall profiles at T = 275 K and µ0H = 5.71 mT. (b) Histogram of roughness exponents. The
resulting mean value is ζeff = 0.823 ± 0.007. (c) Obtained values of the amplitude B0 for
the same domain walls. (d) Histogram of roughness amplitudes. The resulting mean value
is B0 = (0.37± 0.02)µm2.
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analogous results are shown for B0, resulting on a mean value B0 = (0.37± 0.02)µm2.

Several features may be observed in figure 5.3. First, the asymmetric nature of the
resulting histograms, which results from the fact that both ζeff and B0 are bounded. While
ζeff ≤ 1, B0 cannot be negative. Second, the rather wide dispersion of both parameters,
which is in accordance with predictions [104, 105] and previous experimental measurements
[39]. However, as we have just mentioned, their mean values may be determined with a
rather small uncertainty due to the multiplicity of considered domain wall profiles.

In the following, we will show the results of applying this procedure for multiple domain
walls at different field and temperature conditions. By doing so, we obtain representative
values of ζeff and B0 corresponding to different places in the H - T diagram. These results
will be our starting point in order to test the theoretical predictions described in 2.4.4 and
quantify relevant characteristic lengths.

5.2.4 Roughness parameters in the field-temperature diagram

Let us now present the mean roughness parameters ζeff and B0 obtained at different fields
and temperatures. Multiple magnetic domain wall profiles were analyzed at several fixed
temperatures ranging from T = 20 K to T = 295 K, and after applying field pulses of
diverse magnitudes which generate domain wall motion in the creep and depinning regimes
covering up to 8 orders of magnitude in the velocity. Thereby, we have covered most of the
experimentally accessible space in the H - T diagram.

Figure 5.4 shows the velocity vs. field curves4 corresponding to the set of temperatures
for which we performed these careful roughness measurements. For each temperature, sev-
eral fixed applied magnetic fields, corresponding to different domain wall velocities, were
considered for roughness measurements. Thus, we highlight their positions in the velocity-
field curves. Slight mismatches between these points and the velocity curves may be due to
the fact that images for roughness measurements and for velocity vs. field curves were ob-
tained on different days, what could imply that slightly different temperatures were reached
and/or different sample regions were analyzed. In addition, we indicate as vertical dotted
lines the depinning field µ0Hd corresponding to each temperature5.

As we have discussed in section 4.2.3, below TM = (190± 4) K the observable velocity
range is less wide and, additionally, observed domain walls at low velocities present over-
hangs. Consequently, for T < TM the range in which domain wall roughness is measurable
following our protocols is reduced. For this reason, roughness measurements for T = 155
and 20 K could be made only close to the depinning field. The two points at T = 295 K,
well in the creep regime, correspond to previous measurements performed by Daniel Jordán

4See chapter 4 for a thorough study on the temperature dependence of domain wall dynamics in the
same sample.

5See chapter 4 for details on the depinning field determination.
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Figure 5.4: Velocity vs. field curves corresponding to temperatures for which we
performed domain wall roughness measurements. We indicate with filled symbols
the particular points (µ0H, v) which correspond to measurements of wall roughness. Vertical
dotted lines indicate the depinning field µ0Hd corresponding to each temperature.

[39].

In figure 5.5 we present the obtained mean roughness parameters, ζeff and B0, plotted
as a function of the reduced field H/Hd for the selected temperatures. Remarkably, the
roughness exponent ζeff does not coincide for any temperature and field with any of the
reference values that correspond to theoretical predictions. These values, which are indicated
in figure 5.5(a), are ζeq = 2/3, ζeff,max = 1 and ζth = 0.5. The value ζeff,max = 1 corresponds
to the upper limit of ζeff that can be obtained from a B(r) function; this is the expected ζeff
value if ζ > 1 and, particularly, if ζ = ζdep = 1.25.

Let us briefly describe the field- and temperature-dependence of ζeff and B0 that is
shown in figure 5.5. The roughness exponent appears to slightly decrease with increasing
field for each temperature, with the exception of T = 231 K, where ζeff is rather constant.
However, we do not appreciate a clear tendency with changing temperature: all the obtained
mean roughness exponents roughly belong to a range spanning between ' 0.7 and ' 0.8.

The mean roughness amplitude B0, however, shows a more clear field dependence: it
decreases with increasing field. This is consistent with the qualitative observation that
domain walls seem to become less rough with increasing velocity, as pinning force becomes
less relevant with respect to the increasing driving force induced by the applied field [39, 108].
The temperature dependence of B0 is less clear in figure 5.5(b) due to a lack of experimental
data for different temperatures at a given reduced field H/Hd. However, for a fixed H/Hd

value, roughness amplitude seems to decrease with increasing temperature for T > TM , what
could be qualitatively interpreted as due to thermal activation reducing the roughening effect

149



5.3. Analysis in terms of crossover lengths
Domain wall roughness

in a ferrimagnetic GdFeCo thin film

0.5

0.6

0.7

0.8

0.9

1.0

ζ
e
ff

ζeq

ζth

ζeff ,max = 1

0.2 0.4 0.6 0.8 1.0

H/Hd

0.0

0.2

0.4

0.6

0.8

B
0

[µ
m

2
]

T [K]

20

155

231

275

295

(a)

(b)

Figure 5.5: Mean roughness parameters as a function of the reduced field for
different temperatures. (a) ζeff vs. H/Hd indicating the reference values, ζth = 0.5,
ζeq = 2/3, and ζeff,max = 1 corresponding to the upper limit of ζeff that can be obtained
from B(r) functions. (b) B0 vs. H/Hd.

of pinning potential.

In the following section, we will present the analysis we have performed in order to
successfully interpret these results in the framework of the quenched Edwards-Wilkinson
universality class. For doing so, we shall establish a relationship between the obtained
roughness parameters and the structure factor S(q).

5.3 Analysis in terms of crossover lengths

Let us now present the interpretation of our roughness measurements in the framework of the
theoretical scenario we have discussed in 2.4.4. We shall formally propose an expression for
the structure factor S(q) which considers the existence of two crossover lengths `opt and `av
separating length scales at which ζeq, ζdep or ζth govern domain wall roughness. This descrip-
tion will permit us to relate the S(q) that is predicted in this framework with the measured
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roughness parameters B0 and ζeff , directly related to the displacement-displacement corre-
lation function B(r). Once this link is established, we shall determine the S(q) parameters,
closely related to `opt and `av. Combining the results shown in figure 5.5 with dynamics and
magnetometry measurements, we will show a method for the determination of these two
crossover lengths. Finally, we shall present and discuss an experimentally obtained H - T
diagram of crossover lengths, which may be directly compared with the theoretical picture
illustrated in figure 2.16. This interpretation provides a framework for understanding both
our roughness measurements and those reported in previous works, written in table 5.1.

5.3.1 Structure factor with two crossovers

The structure factor S(q), given by equations (2.57) and (2.58), is the function that best
captures roughness properties from the theoretical point of view [41]. For this reason, it
is extensively used for precisely determining roughness exponents in numerical calculations
[41, 104, 105, 119, 185].

In the following, we propose an expression for S(q) that considers the existence of two
crossovers between different length scales. Such a structure factor may be written as [40]

S(q) =
(

1
Sth(q) + 1

Sdep(q) + Seq(q)

)−1

, (5.4)

with

Seq(q) = S0

(
q

qopt

)−(1+2ζeq)

, (5.5)

Sdep(q) = S0

(
q

qopt

)−(1+2ζdep)

, (5.6)

Sth(q) = S0

(
qav

qopt

)−(1+2ζdep) (
q

qav

)−(1+2ζth)

. (5.7)

The characteristic crossover values are qopt = 2π/`opt and qav = 2π/`av. The expression
(5.4) for S(q) satisfies the desired limits:

S(q) =


Sth(q) ∼ q−(1+2ζth) for q � qav

Sdep(q) ∼ q−(1+2ζdep) for qav � q � qopt

Seq(q) ∼ q−(1+2ζeq) for qopt � q

(5.8)

In figure 5.6(a), we plot the S(q) function given by the above equations, what evidences
three q regions in which each of the limits written in (5.8) prevail. The log-log scale plot
shows the corresponding slopes −(1 + 2ζ), with the appropriate ζ value at each range.
The parameters for calculating the plotted S(q) function are L = 100µm, `opt = 0.67µm,
`av = 23.0µm, and S0 = 1.33× 10−6 µm2.
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Figure 5.6: Structure factor and displacement-displacement correlation function
of an elastic line with two crossovers between different roughness exponents.
(a) Structure factor S(q) in log-log scale. The reference Seq, Sdep and Sth are indicated as
dashed lines with slopes equal to −(1 + 2ζ) with ζ = ζeq = 2/3 for q � qopt, ζ = ζdep = 1.25
for qav � q � qopt, and ζ = ζth = 1/2 for q � qav. The crossover q values are qav = 2π/`av
and qopt = 2π/`opt, with `opt = 0.67µm and `av = 23.0µm. The interface size is L = 100µm,
and the structure factor amplitude is S0 = 1.33 × 10−6 µm2. (b) Associated B(r) function
in log-log scale. The corresponding roughness parameters are ζeff = 0.82 ± 0.04 and B0 =
(0.37± 0.02)µm2.
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In practice, as domain wall profiles u(x) are discretized, S(q) shall be treated as a
discrete function. Accordingly, we define

S(qn) = ũ(qn) ũ(−qn) (5.9)

in terms of the Fourier transform of the domain wall profile

ũ(qn) = 1
N

N∑
j=1

u(xj) exp (−iqnxj) , (5.10)

where qn = 2πn/L, with L = Nδr being the wall size and n = 1, ..., N . The discrete
displacement-displacement correlation function B(r) may be calculated for r � L in terms
of the structure factor as [40]

B(r) = 4
(N−1)/2∑
n=1

S(qn) [1− cos (qnr)] , (5.11)

where r = kδr with k = 1, ..., N . Here, we have chosen the symmetric basis for the Fourier
modes qn. Particularly, for computing the S(q) function, we consider an odd N value so
that n = −(N − 1)/2, −(N − 1)/2 + 1, ..., (N − 1)/2 and take into account the periodicity
of S(q) and the fact that S(qn) = S(−qn) [40]. The B(r) function corresponding to the
S(q) shown in figure 5.6(a) is plotted in (b), in log-log scale. Note the similarity with the
experimental B(r) that we have presented in figure 5.1(b).

In contrast with S(q), which shows three rather well defined slopes, B(r) does not show
well defined slopes in the different ranges of r. The implementation of the protocol described
in 5.2.2 for the computed B(r) shown in figure 5.6(b) shields an effective roughness exponent
ζeff = 0.82± 0.04 and an amplitude B0 = (0.37± 0.02)µm2.

The ζeff value evidences that the three roughness exponents are mixed in the B(r)
function resulting from a S(q) with two crossovers. In addition, the drop of B(r) at high r
values, which also reduces its effective slope, is due to finite-size effects: B(r) has a maximum
at r ' L/2, where L is the interface size. Furthermore, as we have already pointed out,
ζeff ≤ 1 by definition of B(r) and then, the depinning roughness exponent ζdep = 1.25
cannot be reflected only by B(r) [107]. These three factors difficult the discrimination of
interplaying roughness exponents by means of the displacement-displacement correlation
function B(r).

However, as we have extensively discussed, our experimental studies have permitted us
to obtain, from the analyzed domain wall profiles and their B(r) functions, representative
roughness parameters ζeff and B0 for different fields and temperatures. The computations
of S(q) from experimental wall profiles are very noisy, resulting on highly inaccurate defi-
nitions of the slopes [175], hence impeding the observation of the crossovers illustrated in
5.6(a). Consequently, the challenge we have to handle consists on relating the experimen-
tally obtained parameters with the structure factor parameters S0, qopt and qav; the last two
being directly related to `opt and `av.
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T [K] Ms [kA/m] Keff [kJ/m3] µ0Hd [mT] Td [K] σ [µJ/m2] Lc [nm]
20 112(2) 22(6) 14.8(0.2) 30000(5000)∗ 1300(600) 170(30)
155 25(5) 15(5) 49.9(0.9) 25800(600) 900(500) 170(40)
231 15(2) 15(5) 44(6) 19800(700) 900(500) 240(50)
275 27(1) 18(5) 19(3) 14700(500) 1000(500) 280(50)
295 32(2) 14(5) 15(3) 13200(500) 900(400) 260(50)

Table 5.2: Relevant material- and temperature-dependent parameters at selected
temperatures. Ms and Keff were obtained from magnetometry measurements, while µ0Hd

and Td result from the analysis of domain wall velocity vs. field curves. σ values were
obtained from equation (2.16), with ∆ = (15 ± 5) nm. Lc is obtained following equation
(2.89), with t = 10 nm. Uncertainties are indicated in brackets. ∗The Td value for T = 20 K
was estimated as an extrapolation from higher temperature values.

In the following, we will describe the procedure that we have implemented in order
to obtain the parameters that define the structure factor S(q) for each temperature and
field. First, we shall describe the independent determination of the Larkin length Lc and
the equilibrium correlation length `opt, which will then be combined with the data shown in
figure 5.5.

5.3.2 Larkin length and equilibrium correlation length

As we have three unknown parameters, S0, qopt and qav, and only two measured ones, ζeff
and B0, we shall use additional independent information in order to determine the unknown
quantities. Hence, we independently calculate qopt = 2π/`opt using equation (2.84) for `opt,
with the characteristic Larkin length Lc being calculated by using equation (2.89). In order
to obtain Lc, domain wall energy σ, depinning temperature Td, depinning fieldHd, saturation
magnetization Ms and sample thickness t shall be considered. All these quantities, except
t = 10 nm, are temperature-dependent. The values of the relevant parameters for the studied
temperatures and corresponding results for Lc are written in table 5.2. They were obtained
from magnetometry experiments (see section 3.3.1) and from velocity vs. field measurements
(see chapter 4). The domain wall energy σ is estimated following the expression for a Bloch
wall, equation (2.16), with a typical width parameter ∆ = (15± 5) nm [135, 146, 190] and
the Keff values indicated in the table.

The calculated values of Lc, written in table 5.2, are plotted in figure 5.7(a) as a
function of T . These values permit us to obtain the optimal size `opt corresponding to
thermally activated jumps over characteristic energy barriers as a function of the reduced
field H/Hd for each temperature using equation (2.84). Resulting curves are shown in figure
5.7(b) for the different temperatures, highlighting points corresponding to the H/Hd values
for which we have performed roughness measurements. These `opt vs. H/Hd curves are only
differentiated by the factor Lc(T ). Specifically, according to (2.84), for any temperature we
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Figure 5.7: Calculated Larkin length Lc and optimal event size `opt. (a) Lc vs.
T for the considered set of temperatures. (b) `opt vs. the reduced field H/Hd for the
different temperatures, indicating the full dependence (5.12) and values corresponding to
the analyzed domain walls.

may write

`opt(H,T ) = Lc(T )
(

H

Hd(T )

)−νeq

, (5.12)

where νeq = 1/(2− ζeq) = 3/4.

The fact that `opt is larger than the pixel size δr = 0.171µm for all the considered
temperatures and applied fields suggests that the domain wall morphology below `opt may
affect the experimentally observed wall profiles. As for the optical resolution ≈ 1µm, it is
above `opt in less than one order of magnitude. Particularly, the lowest distance that we
have considered for the fits of logB(r) vs. log r is r0 = 1.026µm (see section 5.2.2). As we
have discussed above, the three roughness exponents may impact on ζeff even outside their
corresponding length scale range. Consequently, the equilibrium roughness exponent ζeq =
2/3 that characterizes domain wall morphology below `opt should be taken into account.
Therefore, at least one crossover between Seq and Sdep at qopt = 2π/`opt should be considered
for the structure factors characterizing domain wall roughness. In the following, we will see
that the second crossover between Sdep and Sth at qav = 2π/`av should also be considered in
order to comprehend the roughness exponents plotted in figure 5.5(a).

5.3.3 Depinning correlation length and structure factor amplitude

In order to determine qav and S0 for each temperature and field, we shall find the structure
factor S(q) which is in best accordance with the obtained `opt, ζeff and B0. As we have
presented above, there is an independently calculated `opt value for each combination of T
and H/Hd. We therefore calculate S(q), equation (5.4), fixing qopt = 2π/`opt and varying
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qav and S0. This calculation is performed for a domain wall of size L = 100µm and pixel
size δr = 0.171µm, what defines the q range qmin ≤ q ≤ qmax with qmin = 2π/L and
qmax = 2π(N − 1)/2L = π/δr − π/L.

For each qav and S0, we then compute the associated B(r) function following equation
(5.11). Using exactly the same protocol that we have described in 5.2.2 for B(r) functions
computed from experimental domain wall profiles, we obtain the corresponding ζeff and B0
values with their uncertainties. The pursued S(q) is the structure factor with qav and S0
such that ζeff and B0 are in accordance with the experimentally measured ζeff and B0.

In figure 5.8(a) we plot, as a function of qav and for a fixed qopt, the ζeff values correspond-
ing to the B(r) function obtained from the calculated S(q). This ζeff vs. qav dependence is
independent of S0. We consider `opt = 2π/qopt = 0.67µm, corresponding to T = 275 K and
H/Hd = 0.31 (µ0H = 5.71 mT and µ0Hd ' 18.5 mT).

As illustrated in the figure, ζeff follows a smooth and monotonous decay for increasing
qav, with two asymptotical values corresponding to qav < qmin and qav > qmax. The low qav
(high `av) limit, with ζeff ' 0.9, corresponds to `av > L, resulting on only one crossover
between ζeq = 2/3 and ζdep = 1.25 at q = qopt. Therefore, this ζeff value results from the
interplay of ζeq = 2/3, ζeff,max = 1, and finite-size effects which reduce the logB(r) vs.
log r slope for distances r approaching L/2. This particular ζeff value depends on qopt and
L. However, we have verified that the maximum distance r∗1 that we consider in order to
obtain ζeff , which is always close to or below 10µm (see section 5.2.2), is sufficiently below
L/2 so that this result does not depend on L for L ≥ 100µm. In other words, this result
is not significantly affected by finite-size effects. Remarkably, for all the considered fields
and temperatures ζeff ' 0.9 for `av > L and, for their part, all the measured ζeff values
(see figure 5.5(a)) are below 0.9. Consequently, a finite `av must be considered in order to
interpret our results.

On the other hand, the high qav (low `av) limit corresponds to ζeff = ζth = 0.5. In
this limit, `av < δr, meaning that the observed domain wall fluctuations occur above the
characteristic length `av and then the decisive roughness exponent is the thermal exponent
ζth. Note that, as qopt < qmax (i.e. `opt > δr), this limit is unphysical because `av must be
larger than `opt.

The experimentally determined ζeff = 0.823± 0.007 for T = 275 K and H/Hd = 0.31 is
indicated in figure 5.8(a) as an horizontal line with a shaded area accounting for the uncer-
tainty. This value is consistent with the ζeff values obtained from the calculated structure
factor S(q) for qav = q?av = (0.27±0.02)µm−1, as indicated by a vertical line and shaded area
given by the intersection between the calculated ζeff(qav) dependence and the experimentally
determined ζeff . We thus calculate `av = 2π/q?av = (23± 2)µm.

A noteworthy result is that this `av value is higher than the r∗1 limit below which
we consider logB(r) vs. log r linear fits in order to obtain ζeff (see for example figure
5.6(b), where the fit satisfactorily describes the logB(r) vs. log r slope for r < 7µm).
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Figure 5.8: Determination of structure factor parameters qav and S0 in accordance
with measured roughness parameters ζeff and B0. (a) ζeff as a function of qav for
the B(r) obtained from a S(q) with `opt = 0.67µm, corresponding to T = 275 K and
H/Hd = 0.31 (µ0H = 5.71 mT and µ0Hd ' 18.5 mT). The shown curve is independent of
S0. qopt = 2π/`opt is indicated. qmin and qmax correspond to the window used for calculating
S(q): qmax = 2π/δr and qmin = 2π/L. ζeff = 0.823 ± 0.007, experimentally obtained for
this particular T and H, is indicated as an horizontal shaded region. We determine qav as
the value q?av that satisfies ζeff(q?av) = ζeff ; we then obtain qav = q?av = (0.27 ± 0.02)µm−1,
as indicated by the vertical shaded region. (b) B0 vs. S0 corresponding to the S(q) with
the same qopt and qav = q∗av. The measured roughness amplitude for the same T and H is
B0 = (0.37± 0.02)µm2, illustrated by the horizontal shaded region. S0 is established as the
value S?0 that satisfies B0(S?0) = B0; we then obtain S0 = S?0 = (1.33± 0.08)× 10−6 µm2, as
indicated by the vertical shaded region.
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Consequently, the crossover at `av affects ζeff even for distances r well below this crossover
length. Additionally, `av is considerably lower than the characteristic length L/2 above
which finite-size effects generate a drop of the B(r) dependence. Consequently, we can
associate the measured ζeff values, which are below the limit ζeff ' 0.9, to the crossover
at `av rather than to finite-size effects. As we have noted for `opt, which is lower than
r0 = 1.026µm but may affect ζeff , `av is higher than r∗1 . 10µm and is shown to affect ζeff .

Finally, once we have determined both qopt and qav, we may calculate S(q) functions
for different S0 values and evaluate the corresponding B(r) functions in order to obtain
B0. In figure 5.8(b) we plot the resulting B0 vs. S0 dependence, which presents a linear
behavior. Similarly to how we have chosen the appropriate qav value from comparing S(q)
and B(r) calculations with experimental results, we determine S0 from evaluating where
the B0(S0) dependence coincides with the experimentally determined B0. For the case of
the figure, i.e. T = 275 K and H/Hd = 0.31, B0 = (0.37 ± 0.02)µm2, and thus we obtain
S0 = S?0 = (1.33± 0.08)× 10−6 µm2.

5.3.4 Resulting parameters and experimental crossover diagram

The procedure for determining qav and S0 from `opt, ζeff and B0 that we described above
was repeated for all the fields and temperatures for which we have performed roughness
measurements. The resulting characteristic lengths `opt and `av are plotted as a function
of H/Hd in logarithmic scale for the different temperatures in figure 5.9(a). This plot is
analogous to the predicted crossover diagram that we have illustrated in figure 2.16.

The H/Hd-dependence of `opt, which separates the length scales at which the equilib-
rium roughness exponent ζeq (` < `opt) and the depinning roughness exponent ζdep (` > `opt)
dominate wall morphology, has already been presented in figure 5.7(b). On the other hand,
the field dependence of `av shown in figure 5.9(a) constitutes to the best of our knowledge
the first experimental determination of this quantity for H < Hd, what supports the hy-
pothesis that `av is finite for T > 0 even in the creep regime [4]. Remarkably, `av values
∼ 10µm, considerably smaller than L, are necessary in order to interpret our results.

The lack of a complete field dependence for three of the five shown temperatures diffi-
cults the evaluation of the temperature dependence of `av(H/Hd). However, the experimen-
tal results shown in figure 5.9(a) are roughly consistent with the scenario of a decreasing `av
with increasing temperature, also illustrated in figure 2.16.

In figure 5.9(b), we show the H/Hd-dependence of the structure factor amplitude S0 for
the different temperatures. No theoretical prediction has been performed for this quantity;
however, the obtained values show that temperature does not impact substantially on the
S0(H/Hd) dependence, while a clear decrease is observed for increasing H/Hd. A roughly
linear dependence may be observed in the semi-logarithmic plot, what suggests that lnS0 ∼
−H/Hd.
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Figure 5.9: Experimentally determined crossover diagram and structure factor
amplitude. (a) Characteristic lengths `opt (full symbols) and `av (empty symbols) vs.
H/Hd for the different considered temperatures in log-log scale. We indicate the pixel size
δr = 0.171µm and the considered domain wall size L = 100µm as horizontal dotted lines.
(b) Structure factor amplitude S0 vs. H/Hd for the different temperatures.

Discussion

The analysis of experimental results that we have described above shows that the theoretical
scenario presented in 2.4.4 and 5.3.1 may successfully describe the roughness of magnetic
domain walls in perpendicularly magnetized thin films. Moreover, the experimental re-
sults previously reported in the literature, written in table 5.1, could be interpreted in this
framework. We have thus shown that the roughness exponent measurements resulting from
computing and fitting the displacement-displacement correlation function B(r) of an exper-
imentally observed domain wall should be carefully interpreted, taking into account that
domain wall roughness may be dominated by different exponents at different length scales.

The relevant length scales in the crossover diagram separating regions characterized by
the three roughness exponents ζeq, ζdep and ζth are the equilibrium and depinning correlation
lengths `opt and `av. Their determination permitted us to plot a crossover diagram, figure
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5.9(a), which may be directly compared with the theoretical scenario illustrated in figure
2.16. While the `opt vs. H/Hd dependence had been previously studied [4], no quantitative
predictions had been made for the `av vs. H/Hd dependence for T > 0, even if finite
values of `av were theoretically expected for H < Hd and T > 0 [41]. In this context, our
results for `av are the first measurements of this quantity for H < Hd and confirm that
finite `av values must be considered in order to explain the experimentally obtained effective
roughness exponent values.

Particularly, we have found that `av (∼ 10µm) is within the experimentally accessible
length scales of magneto-optical microscopy (see figure 5.9(a)). Additionally, `opt (∼ 0.1-
1µm) is close to the optical resolution ≈ 1µm. Consequently, the existence of crossovers
at `opt and `av between length scales in which different roughness exponents dominate must
be considered and, therefore, the measured roughness exponents cannot be associated to
only one of the theoretically predicted exponents. Nevertheless, similar studies have been
recently performed in Pt/Co/Pt, in which `opt is shown to be well below experimental access
and thus roughness exponent measurements are interpreted in terms of only one crossover
at `av and two exponents, ζdep and ζth [108].

Other results of our study are the determination of the amplitudes B0 and S0. As these
quantities are not directly linked to universal parameters, the interpretation of these results
is more elusive and there do not exist precise predictions about their magnitude and their
temperature and field dependence. However, we have shown rather clear observations that
call for deeper studies. On the one hand, the decrease of B0 for increasing field H (see
figure 5.5(b)), which had already been observed [39] and is consistent with the qualitative
observation that domain walls become less rough as pinning force becomes less relevant with
respect to the driving force. On the other hand, the clear decrease of S0 with increasing
fields, which might be described as lnS0 ∼ −H/Hd, and the observation that the impact of
temperature is not significant (see figure 5.9(b)).

5.4 Chapter summary and conclusions

This chapter has been devoted to the analysis of the roughness properties of magnetic domain
walls in a thin GdFeCo sample with perpendicular anisotropy, focusing on the universal
critical roughness exponents. We have shown that previous experimental measurements
of the roughness exponent ζ are rather disperse and, furthermore, many of them are not
consistent with the theoretically predicted exponents.

Consequently, we have pointed out that the distribution of ζ values for elastic lines
in a disordered potential is intrinsically wide, what calls for careful studies in order to
perform statistically meaningful roughness exponent determinations. We have therefore
described the methods that we implement in order to experimentally measure and determine
representative values for the roughness exponent ζeff and the amplitude B0 obtained from
B(r) functions. These measurements were performed for different field and temperature
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conditions, thus obtaining mean roughness parameters ζeff and B0 spanning over most of
the experimentally accessible H - T diagram.

Further on, we have noted that our experimentally measured ζeff do not coincide with
any of the three theoretically predicted roughness exponents. In this context, we have de-
veloped the theoretical framework already proposed in section 2.4.4 for the interpretation of
experimentally determined roughness exponents. In this hypothetical scenario, we consider
that the three exponents ζeq, ζdep and ζth predicted for the quenched Edwards-Wilkinson
universality class impact on domain wall roughness at different length scales, with crossover
characteristic lengths `opt and `av. We have thus proposed an expression for a structure
factor S(q) with two crossovers which we would then use for the interpretation of our ex-
perimental results.

Our experimental determinations of the mean roughness parameters ζeff and B0 for
different fields and temperatures was then combined with the independent determination of
qopt in order to find, for each H/Hd and T , the structure factor parameters qav and S0 which
are consistent with those values. This permitted us to plot, as a function of H/Hd and for
different T values, the characteristic lengths `opt and `av. We found that both characteristic
lengths are within the experimentally accessible length scales, what results on the need of
considering two crossovers and three roughness exponents in order to successfully explain
the experimentally obtained ζeff values.

The major results obtained from the studies presented on this chapter are two. On
the one hand, the first determination of finite `av values for H < Hd, what had been
suggested only qualitatively for T > 0 but had no experimental support. On the other hand,
the successful interpretation of experimentally obtained roughness exponents within a new
theoretical framework, which calls for more careful domain wall roughness measurements
in future investigations and for their interpretation based on the interplay of the three
theoretically predicted exponents.
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CHAPTER 6

Field- and current-driven domain wall dynamics
in (Ga,Mn)(As,P)/(Ga,Mn)As

“Hay un mundo real ahí afuera que parece compor-
tarse con reglas propias y en el que ocurren cosas.
Eso que ocurre son hechos, hechos reales.
No existen los ‘hechos alternativos’.”

Guadalupe Nogués, Pensar con otros

In the last two chapters, we have presented the research performed throughout this thesis
on field-driven domain walls in a metallic thin film of GdFeCo, focusing both on wall
dynamics and morphology. In this chapter, we will present our studies on domain

wall dynamics performed in a semiconducting ferromagnet which consists on a bilayer of
(Ga,Mn)(As,P)/(Ga,Mn)As with dominant perpendicular magnetic anisotropy and a Curie
temperature TC = 65 K. The sample characteristics are presented in detail in section 3.4.
The key feature of these investigations consists on the application of both field and current
within the sample. While the former stimulus, i.e. the magnetic field, pushes domain walls
through the Zeeman interaction, the latter induces a spin-transfer torque (STT) over them.

The mechanisms giving rise to the STT have been a subject of intense debate in the
last decades [22–24, 26]. Additionally, the STT-driven inversion of perpendicularly mag-
netized devices has boosted important technological developments, particularly in the field
of data-storage applications [11, 196]. As we have discussed in section 2.5.2, STT in di-
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luted magnetic semiconductors as (Ga,Mn)(As,P)/(Ga,Mn)As is particularly efficient, what
makes this system an appropriate model in which to study this mechanism.

Several open questions remain regarding STT-driven domain wall dynamics, which
arise from some particularities that differentiate it from field-driven dynamics. One of these
particularities is the existence of adiabatic [19] and non-adiabatic [22, 23] spin-transfer
torques1. As these two torques are fundamentally different, the nature of domain wall
motion arising from each of them is expected to vary profoundly. While the non-adiabatic
STT acts similarly to an applied field, the adiabatic STT has very different properties [197].
Additionally, in contrast with the field-driven force over domain walls, which is isotropic,
the STT-driven force depends strongly on the angle between the wall and the flow direction
of the polarized current [27].

These particularities have given rise to debates on the universality class of STT-driven
domain wall motion [156, 162, 198]. However, as we will further discuss later, the most recent
and careful investigations suggest that despite the differences between field- and STT-driven
motion, both of them belong to the quenched Edwards-Wilkinson universality class [27]. In
this context, our research is focused on the creep regime of domain walls driven by field
and STT. On the one hand, we shall compare the magnitudes of these two forces and the
wall dynamics induced by each of them in this regime. On the other hand, we will study
the dynamics resulting from simultaneously applying field and current. Our studies shed
light on the effective action of each of these driving forces and on how the effective pinning
parameters are affected by the driving force nature.

This chapter is organized as follows. In section 6.1, we shall motivate our research by
briefly reviewing recent studies on the universality class of field- and STT-driven domain wall
motion and on the dynamics resulting from the combined application of field and current.
In this context, we shall propose some simple ideas which will permit us to analyze the creep
motion of magnetic domain walls driven by field and STT. In section 6.2, we will present our
methods for simultaneously applying field and current pulses and measuring representative
domain wall velocities. Then, in section 6.3 we shall present and discuss our experimental
results, analyzing the effect of field and STT on domain wall motion when applied both
separately and simultaneously. Finally, in section 6.4 we will present a summary of our
main conclusions.

6.1 Motivation and framework

In this section we shall present previous investigations and pose open questions related to the
comparison between field- and STT-driven domain wall motion and the effects of combining
these two driving forces. The ideas that we shall discuss here will permit us to analyze our
experimental results, presented later in this chapter. First, we will discuss the most recent

1See 2.2.4 for an introduction on the origin and nature of STT mechanisms.
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research on the universality class of field- and STT-driven motion. Second, we shall review
previous reports on the joint effect of these two driving forces.

6.1.1 Universality class of field-driven and STT-driven domain wall
motion

As we have already pointed out in section 2.4.2, the creep exponent µ = 1/4 is well estab-
lished for field-driven domain wall motion in many thin films with perpendicular anisotropy
including (Ga,Mn)As and (Ga,Mn)(As,P) [16]. Even if the determination of other critical
exponents as the roughness exponent ζ is more elusive, there exist diverse evidences which
support that both the equilibrium and the depinning of field-driven domain walls belong
to the quenched Edwards-Wilkinson universality class, as we have thoroughly discussed in
previous chapters.

For STT-driven domain wall motion, both µ and ζ values have been under debate in the
last years [27, 160, 162, 199]. In these works, µ and ζ are assessed on the one hand for field-
driven wall motion and on the other hand for STT-driven wall motion. This analysis has a
particular difficulty which consists on the directionality of these forces, already mentioned
above. While at any point of the domain wall field-driven force acts in the wall’s normal
direction, STT acts in the polarized current’s direction and its magnitude depends on the
angle between ~J and the domain wall, resulting on a non-isotropic force that induces domain
wall faceting [27].

This phenomena has been firstly observed by K.W. Moon and collaborators in Pt/Co/Pt
thin films [160]. Recently, in a work which constitutes a collaboration in the framework of
this thesis [27], Rebeca Díaz Pardo and colleagues carefully analyzed this phenomena in
(Ga,Mn)(As,P)/(Ga,Mn)As and provided a plausible interpretation. Figures 6.1(a,b) show
a comparison between successive domain wall profiles resulting from the application of field
(a) and STT (b). The observed profiles evidence that STT-driven velocities are higher for
domain wall segments oriented perpendicularly to the applied current, while they are lower
for tilted wall segments, resulting on domain wall faceting. This process is triggered by the
pinning of domain wall segments in relatively strong pinning sites, what induces wall tilting
and therefore an imbalance of the driving force. In contrast, field-driven motion at similar
velocities does not show domain wall faceting due to the uniformity of the driving force.

STT-driven domain wall faceting may distort roughness exponent determination. In the
same report [27], Rebeca Díaz Pardo and collaborators showed that the careful measurement
of ζ for STT-driven motion shields values which are consistent with those measured for field-
driven motion, as shown in figure 6.1(c). Additionally, as it is illustrated in figure 2.21, the
creep exponent value was also found to be consistent with µ = 1/4 both for field- and
STT-driven motion in (Ga,Mn)(As,P)/(Ga,Mn)As. These findings suggest that, even if
directionality of both driving forces result in different behaviors, they both correspond to
the quenched Edwards-Wilkinson universality class.
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Figure 6.1: Domain wall faceting and roughness exponent measurements for field-
and STT-driven domain walls in (Ga,Mn)(As,P)/(Ga,Mn)As. (a) Successive wall
profiles resulting from field-driven motion with applied field pulses of µ0H = 0.16 mT and
∆t = 0.5 s. (b) Successive STT-driven wall profiles in the same sample and with the same ∆t,
for J = 0.5 GA/m2. In both (a) and (b), triangles indicate strong pinning sites. (c) Measured
roughness exponent ζeff for field- and STT-driven walls in the same sample, obtained from
displacement-displacement correlation functions, as a function of the temperature. The
three shown figures are adapted from [27].

As we have just discussed, universality of field- and STT-driven domain wall motion has
been studied by applying these stimulus separately and comparing their effects. However,
a deep study of the simultaneous field- and STT-driven dynamics is still lacking. In the
following, we will review some recent reports on this issue and propose several open questions
that we shall try to answer in this chapter.

6.1.2 Combined effect of field and STT on domain wall motion

In order to analyze the field- and STT-driven domain wall dynamics, we shall try to address
the following question: which is the effective force over domain walls that is exerted by the
applied stimuli? As the field-driven dynamics is much well understood, we may try to find
an expression for the effective field Heff(H, J) arising from a combination of applied field H
and current density J . This effective field may be defined as the field which, solely applied,
would produce equivalent domain wall dynamics.

Steady and precessional flow regimes

In section 2.2.4, we have presented the adiabatic and non-adiabatic STT mechanisms and
their impact on domain wall dynamics in the framework of the micromagnetic 1D model.
In this context, disorder and temperature are neglected and thus the model predictions
correspond to the flow regime, i.e. Heff(H, J) � Hd. Let us consider the steady and the
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asymptotical precessional flow regimes in order to evaluate the effective field when both H
and J are applied.

For the steady flow regime, by comparing equation (2.26) for field-driven motion and
equation (2.41) for field- and STT-driven motion, we may write the effective field as

µ0Heff(H, J) = µ0H + βST

γ∆
gµBP

2eMs

J . (6.1)

Similarly, for the asymptotical precessional flow regime, we may obtain

µ0Heff(H, J) = µ0H +
(
βST + 1

α

) 1
γ∆

gµBP

2eMs

J (6.2)

from a comparison between (2.34) and (2.48).

As evidenced by equations (6.1) and (6.2), in these two flow regimes the effective field
may be written as

µ0Heff(H, J) = µ0H + εJ . (6.3)

In other words, the STT-induced effective field, εJ , is proportional to the current density
J , and the contributions due to field and current are independent and simply sum up.
The proportionality factor ε for the steady and asymptotical precessional flow regimes are,
respectively,

εst = βST

γ∆
gµBP

2eMs

(6.4)

and
εasp =

(
βST + 1

α

) 1
γ∆

gµBP

2eMs

. (6.5)

These expressions evidence a key feature of STT-driven domain wall dynamics. If we
consider pure current-driven motion and we neglect the non-adiabatic STT, i.e. ifH = 0 and
βST = 0, then no steady motion would occur, and an intrinsic depinning-like threshold would
take place at the Walker condition, J = 2eMsγ∆µ0Hw/αgµBP according to equation (2.44).
For higher J , a precessional regime of motion would take place, induced by the adiabatic
STT [23]. This evidences that the adiabatic STT is fundamentally different from the field-
induced force over domain walls. Conversely, the non-adiabatic STT, whose magnitude is
determined by the parameter βST, produces a field-like effect over domain walls.

In 2009, J.-P. Adam and collaborators [24] observed the STT-driven steady flow of
domain walls in perpendicularly magnetized (Ga,Mn)As. These studies clearly evidenced the
importance of the non-adiabatic STT on domain wall motion. Their experiments involved
the combined application of current and field, showing a linear change in the velocity as a
function of the applied field for a given current in the steady flow regime, as predicted by
2.26 with an effective applied field given by 6.1. However, a study of combined field- and
STT-driven dynamics in the thermally activated creep regime was still lacking.
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Creep regime

In 2011, J. Ryu and collaborators [197] proposed a theory in order to model the combined
effect of applied field and STT on domain wall motion in the creep regime, for relatively
small driving forces and below the Walker breakdown threshold, i.e. for∣∣∣∣∣µ0H + βST − α

γ∆
gµBP

2eMs

J

∣∣∣∣∣ < µ0Hw (6.6)

in accordance with (2.44). They thus formulated an expression for the effective field which
may be written as [157, 198]

µ0Heff(H, J) = µ0H + εJ + ηJ2 , (6.7)

valid for relatively low current densities. In this model, ε is associated to the non-adiabatic
STT and equal to εst, equation (6.4). The additional quadratic term ηJ2 proposed by J.
Ryu and collaborators results from the adiabatic STT.

The above expression has been shown to successfully describe the thermally activated
domain wall motion in metallic thin films with perpendicular anisotropy in several recent
studies [156, 157, 198]. In these reports, the dynamics resulting from the simultaneous appli-
cation of H and J is shown to be consistent with the creep law ln v ∼ H

−1/4
eff with an effective

field Heff given by (6.7). The reported values for ε and η are, respectively, in the range 10−2-
10−4 mT/(GA/m2) and 10−3-10−5 mT/(GA/m2)2. However, several open questions remain;
particularly, this expression is yet to be tested in diluted magnetic semiconductors where
STT is particularly efficient and thus ε is relatively high.

According to the discussion presented above, the effect of simultaneously applying field
and current may be modeled by simply considering that an effective field Heff(H, J) is
applied. In this framework, in analogy to (2.75) and (2.76), the creep law may be written
as

v(H, J) = vd exp
(
−Ep(H, J)

kBT

)
(6.8)

with

Ep(H, J) = kBTd

(Heff(H, J)
Hd

)−µ
− 1

 . (6.9)

Several questions, which we shall try to address in this chapter, arise from these expressions.

First, let us consider the case of H = 0, i.e. purely STT-driven creep motion. As
we have shown in figure 2.21(b) [27], current-driven domain wall motion in perpendicularly
magnetized (Ga,Mn)(As,P)/(Ga,Mn)As is consistent with ln v ∼ J−1/4, what results incon-
sistent with the existence of a significative quadratic term ηJ2 in Heff(H, J). This suggests
that the expression (6.3) rather than (6.7) correctly describes the experimental results. The
reason for this could be that εJ � ηJ2 in the explored J-range, what is probable due to
the high efficiency of non-adiabatic STT [24], or simply that (6.7) is not valid in the studied
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case. As the Joule heating is expected to produce a temperature rise ∼ J2 which strongly
affects thermally activated dynamics [164], its effect should be carefully analyzed because it
could be the origin of the observed consistence between experiments in metallic thin films
and the existence of a quadratic term in Heff(H, J).

A second key issue that arises from the description of the creep regime in terms of an
effective field Heff(H, J) is the impact of the driving mechanism on the depinning parameters
Hd, Td and vd. If the driving force is completely described by Heff(H, J) and expressions
(6.8) and (6.9) are valid, then these three parameters should be equivalent for field-driven,
STT-driven, or combined field- and STT-driven motion. However, this hypothesis could
be incorrect as different driving mechanisms may probably impact on the effective pinning
energy barrier Ep(H, J) in different ways.

In the following section we shall describe our methods for domain wall velocity measure-
ments in (Ga,Mn)(As,P)/(Ga,Mn)As. The results of these measurements will be presented
and discussed later, in section 6.3. There, we shall address the open questions that we have
just proposed by comparing the driving forces due to field and current and analyzing the
creep regime dynamics observed when applying field and current separately or simultane-
ously.

6.2 Methods for velocity measurements

Let us now describe the key features of the measurement methods that permitted us to
study the joint effect of field and current on domain wall motion in a perpendicularly
magnetized sample of (Ga,Mn)(As,P)/(Ga,Mn)As. All the measurements presented in this
chapter were performed using the PMOKE microscope installed at LPS. Firstly, we will
show the shape and simultaneity of the applied field and current pulses. Secondly, we shall
describe the measurement of domain wall velocities, with the particularity that we evaluate
the displacement of two domain walls, the left and right walls, which react differently to the
applied stimuli. This particular method will permit us to address the open questions that
we have mentioned in the last section.

6.2.1 Shape and simultaneity of applied pulses

In figure 6.2 we show two normalized pulses which were simultaneously measured, corre-
sponding to a field and a current pulse. The field pulse corresponds to the voltage measured
in a resistance of 50 Ω connected in series with the field coil, as explained in section 3.2.4
and illustrated in figure 3.7(a). The applied voltage is Vh = 120 V and the pulse time
is ∆tap = 2µs. As the rise time is trise ≈ 0.6µs, the considered effective pulse time is
∆t = ∆tap − trise = 1.4µs. The corresponding applied field is µ0H = 8.5 mT. The current
pulse was applied directly in an oscilloscope in order to check its simultaneity with the field
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Figure 6.2: Shape and simultaneity of field and current pulses. Normalized voltage
corresponding to simultaneously measured field and current pulses. The field pulse corre-
sponds to an applied voltage Vh = 120 V (field magnitude µ0H = 8.5 mT) and a pulse time
∆tap = 2µs. The current pulse corresponds to an applied voltage Vj = 70 V (current density
J = 7.9 GA/m2) and a pulse time ∆t = 1.4µs, with a delay of 0.6µs in order to consider
the rise time of the field pulse and achieve a good simultaneity.

pulse. As in the experiments this pulse is directly applied on the sample, which behaves as
a resistive load, current pulses have a rise time which is negligible at this scale. The shown
pulse corresponds to an applied voltage Vj = 70 V and a pulse time ∆t = 1.4µs applied
with a delay of 0.6µs in order to consider the rise time of the field pulse and obtain a good
simultaneity. The corresponding current density is J = 7.9 GA/m2.

The shown pulses correspond to the lowest pulse times that were applied in the ex-
periments discussed in this chapter, as for shorter pulses the rise time of the field coil may
considerably affect the measured velocities. In contrast, the domain wall displacement dur-
ing the 0.6µs rise time is negligible for ∆tap ≥ 2µs with respect to the displacement due to
the stationary field and current values during ∆t = ∆tap − trise.

The same rise time was observed for applied voltages Vh ranging from 5 to 200 V, i.e.
from µ0H = 0.36 to 14.2 mT, using a unique coil and a resistance of R = 50 Ω connected
in series. We have used the setup illustrated in figure 3.6(a) for Vh values ranging from 5
to 50 V, and the setup illustrated in figure 3.7(a) for Vh values ranging from 40 to 200 V.
This corresponds to all the measurements with applied field presented in this chapter except
for some low field measurements which were performed with the big coil for ∆t ≥ 1 s with
no current. These measurements were used for calibrating the applied field magnitude as
explained in section 3.2.4.

The explored range for current injection goes from Vj = 2 to 98 V, i.e. from J = 0.23 to
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11.1 GA/m2. In this range, and with the corresponding pulse times, approximately ranging
from ∆t = 900 ms at J = 0.23 GA/m2 to ∆t = 1.4µs at J ≥ 6.2 GA/m2, Rebeca Díaz Pardo
and Vincent Jeudy have verified that Joule heating is negligible [182] (see section 3.4).

6.2.2 Left and right domain wall velocities

In order to perform a fruitful analysis of the joint effect of field and current on domain wall
dynamics, we have simultaneously evaluated the displacement of two “different” domain
walls. In figure 6.3, we show PMOKE microscopy images obtained at T = 55 K in our
square-shaped sample, already described in section 3.4. The direction of current flow is
always horizontal, and the magnetic field direction is normal to the sample.

The first step for performing wall motion measurements is to nucleate two vertical
domain walls, as shown in figure 6.3(a). In order to obtain this state, we proceed as follows.
We start with a saturated state with � magnetization (light in the figure) and apply a
magnetic field in the ⊗ direction and a current in the ← direction (from right to left) in
order to nucleate a ⊗ (dark) domain in the left side. Then we apply successive current
pulses in order to move the nucleated domain wall towards the right side. Finally, we
simultaneously apply a field pulse in the � direction and a current pulse in the← direction
in order to nucleate a new domain of � (light) magnetization in the left side. The obtained
vertical domain walls are thus perpendicular to the current density direction. Both domain
walls are subject to an equivalent driving force towards the right direction due to electron
flow if the current density is applied in the ← direction. In contrast, the application of a
magnetic field would favor the light or the dark domains, thus generating opposite forces
over each of the two domain walls.

In figure 6.3(b), we show the resulting configuration after applying several equivalent
simultaneous field and current pulses, similar to those illustrated in figure 6.2, over the con-
figuration shown in (a). In particular, 10 successive pulses of ∆t = 1.4µs were applied be-
tween (a) and (b), with field and current magnitudes of µ0H = 2.1 mT and J = 4.5 GA/m2.
While the current density is applied from right to left, inducing the movement of both do-
main walls towards the right, the field favors the light domains, inducing the approximation
of both walls between each other.

In figure 6.3(c), we show the differential image resulting from substracting (a) from
(b). This clearly evidences the different mean displacements experienced by the left and the
right domain walls, which we define as ∆uL and ∆uR, respectively. Consequently, the left
and right domain wall velocities are defined as

vL = ∆uL
∆t (6.10)

and
vR = ∆uR

∆t , (6.11)
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Figure 6.3: Measurement of left and right domain wall displacements under si-
multaneous field and current pulses. (a) PMOKE image of the square-shaped sample
with three rectangular domains limited by two vertical domain walls. (b) Resulting image
after successively applying 10 simultaneous field and current pulses of ∆t = 1.4µs and am-
plitudes µ0H = 2.1 mT and J = 4.5 GA/m2 over the initial state shown in (a). The current
density is applied from right to left and the field favors the light domain, as indicated. (c)
Differential image resulting from the substraction of image (b) from image (a) which permits
us to measure the mean displacements of the left and the right domain walls, ∆uL and ∆uR,
respectively. In this case, both walls have moved towards the right and therefore, both ∆uL
and ∆uR are positive.

respectively. According to the relative magnitudes of µ0H and J , ∆uR and vR may be
positive, negative, or even zero if both driving forces are balanced. Conversely, ∆uL and vL
will always be positive for the considered directions of applied field and current.

6.3 Results and discussion

In the following we shall present and discuss our experimental results. These studies are
divided in three parts. Firstly, in 6.3.1, we will analyze the conditions in which the field-
and current-driven forces over domain walls are balanced in order to establish a comparison
between them, at different temperatures. To do so, we will analyze the right wall motion,
which in our experimental conditions is subject to opposite forces due to field and STT.
Secondly, in 6.3.2, we will present the domain wall velocity curves corresponding to field-
driven dynamics on the one hand and current-driven dynamics on the other hand. Hence,
we shall analyze and compare the thermally activated creep regimes resulting from each
of the two driving forces. Finally, in 6.3.3 we will present our experimental studies on the
simultaneous field- and STT-driven domain wall motion. Taking as starting point the results
shown in 6.3.1 and 6.3.2, we shall analyze the combined field- and STT-driven dynamics in
terms of an effective field Heff(H, J) and study the impact of the driving forces on Hd, Td
and vd.
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Figure 6.4: Right domain wall velocity as a function of the current density at
T = 55 K for different applied fields. (a) vR vs. J for three fixed µ0H values´. (b)
|vR| in logarithmic scale vs. J corresponding to the same data. We indicate the ranges
Jb(H) at which no displacement is observed. For µ0H = 2.5 mT, Jb = (1.9 ± 0.9) GA/m2;
for µ0H = 5.3 mT, Jb = (4.1± 0.5) GA/m2; and for µ0H = 8.5 mT, Jb = (6.3± 0.8) GA/m2.

6.3.1 Balance of field- and STT-driven forces

Let us now analyze the motion of the right domain wall, whose velocity is measured as
explained in 6.2.2 under the application of simultaneous field and current pulses. In figure
6.4 we plot right wall velocity vR measurements as a function of J for three fixed applied
fields µ0H of 2.5, 5.3 and 8.5 mT, at T = 55 K. As we have discussed above, this domain
wall velocity results from the competition between STT, which favors a displacement with
positive velocity, and field, which favors motion in the negative direction.

As shown in figure 6.4(a), for each of the applied fields there exists a region of negative
velocities, i.e. where the driving force induced by the applied field overcomes the force
induced by the STT. For sufficiently high current density J , the inverse situation occurs
and vR > 0. Accordingly, there must exist a particular J value for each fixed µ0H where
vR = 0. Indeed, for each of the considered µ0H values there exists a range of J for which
no right domain wall displacement is observed in our experimental conditions.

Figure 6.4(b) shows the absolute value of vR in logarithmic scale as a function of J ,
corresponding to the same data plotted in (a). There, we indicate with shaded areas the
ranges Jb(H) for which we do not observe any right wall displacement at each fixed µ0H.
The center values of these ranges are indicated as vertical dotted lines. As evidenced, for
each fixed field, |vR| falls abruptly as a function of J when approaching Jb(H).

The conditions of field and current that satisfy vR = 0 correspond to a balance of
the field- and current-driven forces over domain walls. Thereby, analyzing these conditions
permits to establish a comparison between the magnitude of these two stimuli. Particularly,
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Figure 6.5: Conditions of balance of the forces induced by field and current. Jb as
a function of µ0H at different temperatures. Full symbols correspond to T ≥ 52 K, empty
symbols to T < 52 K. We indicate the mean slope S = (0.8 ± 0.1) (GA/m2)/mT obtained
for T ≥ 52 K.

for a given J = Jb(H) that balances an applied field µ0H, we may deduce that the effective
field µ0Heff(0, J) is equal to µ0H. Repeating this analysis at different conditions may shade
light on the µ0Heff(0, J) dependence.

In figure 6.5 we plot the field-dependence of Jb at different temperatures ranging from
35 to 64 K. Note that the highest T is very close to the Curie temperature TC = 65 K. If
equation 6.3 is valid, then a proportionality between Jb andH is expected, asHeff(−H, Jb) =
0 in order to satisfy vR = 0. Note that, as the applied field pushes the right domain wall
towards the left (negative) direction, for this wall we consider µ0Heff = µ0Heff(−H, J). In
this context, we may write

Jb = 1
ε
µ0H . (6.12)

From a first glance at the figure we may deduce that if such a proportionality exists, it
changes monotonically as a function of temperature, with a decreasing 1/ε value for in-
creasing T . Additionally, for all temperatures above ≈ 50 K, the 1/ε factor appears to be
unique.

In order to test this scenario, we have performed linear fits of the type y = I +Sx with
x = µ0H and y = Jb for each temperature. In all cases, the observed Jb(H) dependence
may be fairly well described by this fitting relation. In figure 6.6 we plot the obtained slope
S and intercept I as a function of the reduced temperature T/TC .

Let us first analyze the fitting parameters obtained for T ≥ 52 K (full circles in figure
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Figure 6.6: Slope and intercept of the Jb vs. µ0H fits as a function of T/TC. Full
symbols correspond to T ≥ 52 K while empty symbols to T < 52 K. (a) Slope S. Full and
empty circles were obtained by fitting both the slope and the intercept, i.e. Jb = I+S µ0H,
while empty squares were obtained with the constraint I = 0, i.e. Jb = S µ0H. The mean
value S = (0.8 ± 0.1) (GA/m2)/mT, corresponding to T ≥ 52 K (full circles), is indicated
as a shaded horizontal region. (b) Intercept I. For T ≥ 52 K, I ' 0; therefore, in this range
the obtained data satisfies Jb = S µ0H.

6.6). The slopes, shown in (a), are rather constant and are well described by a mean
value S = (0.8 ± 0.1) (GA/m2)/mT. Furthermore, the intercepts I, shown in (b), are
practically equal to zero in this temperature range. Consequently, the obtained data may
be described by (6.12) with ε = 1/S = (1.3 ± 0.2) mT/(GA/m2). We may therefore claim
that, for T ≥ 52 K and when both driving forces are balanced, there exists a well defined
proportionality between applied current and field which spans over all the experimentally
accessible range of J and µ0H. The found proportionality factor ε is two to four orders of
magnitude higher than previously found values for metallic thin films [156, 157, 186, 198],
what supports the fact that the non-adiabatic STT is much more efficient in diluted magnetic
semiconductors [24, 26].

For T < 52 K, the lower thermal activation results on wider ranges of undetectable right
domain wall motion and therefore wider errorbars for Jb(H) (see figure 6.5). Furthermore,
as we have pointed out above, the Jb/µ0H factor increases as T decreases, what drives the Jb
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values closer to the experimental limit of ≈ 11 GA/m2. For these reasons, the uncertainties
on the determination of S and I in this range are larger (see empty circles in figure 6.6).
Despite this fact, both S and I appear to grow with decreasing temperature. The nonzero
values of I suggest that even for H = 0 there exists a finite Jb at which the effective force
is zero. This result is unphysical, what suggests that the chosen fitting relation might be
inappropriate for T < 52 K. However, it could be an evidence of an increase of the effective
pinning at low temperatures which strongly affects current-driven rather than field-driven
domain wall motion. Note that the increase of effective pinning for decreasing temperatures
is expected independently of the driving force nature, as we have thoroughly studied for
field-driven domain walls in GdFeCo (see section 4.2.4). The additional enhance that we
observe for current-driven motion could be originated by the phenomena of domain wall
faceting [27], which results in a lower effective force over the whole domain wall due to its
non-isotropic nature.

As the uncertainties in I for T < 52 K are large with respect to its mean values,
we may consider that I = 0 in order to describe the Jb(H) dependence in terms of a
proportionality. Adding this constraint, we obtain the factors SI=0 which are shown as empty
squares in figure 6.6(a). As noted above, these values decrease with increasing temperature,
approaching the S value obtained for T ≥ 52 K. Hence, in terms of (6.12), ε decreases
with decreasing temperature from (1.3± 0.2) mT/(GA/m2) at T ≥ 52 K (T/TC ≥ 0.80) to
(0.36± 0.06) mT/(GA/m2) at T = 35 K (T/TC = 0.54).

Let us now analyze these ε values in terms of the physical quantities which, according
to the micromagnetic 1D model, determine the proportionality between the forces induced
by field and current. Expressions (6.4) and (6.5) indicate, respectively, the expected values
for ε in the steady and asymptotical precessional regimes. The material- and temperature-
dependent quantities are βST, α, ∆, P andMs. The gyromagnetic ratio γ and the g-factor are
mutually dependent and, for simplicity and due to its relatively slight variations for different
materials [147], we consider the values that correspond to free electrons, i.e. g = 2.0 and
γ = gµB/~ = 1.76×1011 s/T. Using βST = α = 0.25 (typical values for (Ga,Mn)As according
to references [24, 26, 81]), ∆ = 1.5-3.5 nm [81], P = 0.3-0.4 [25, 26] and Ms = 10 kA/m [26],
we obtain εst = 0.9-1.6 mT/(GA/m2) and εasp = 16-28 mT/(GA/m2).

As evidenced, the estimated value of εst is in very good agreement with the experimen-
tally obtained ε = (1.3± 0.2) mT/(GA/m2) at T ≥ 52 K. Conversely, the estimated εasp is
much larger. This suggests that the observed right domain walls persist in the steady regime
for the conditions of force balance at which vR = 0, meaning that the domain wall’s internal
magnetization does not precess in these conditions. However, if we estimate the Walker field
from the same physical quantities using equation (2.30) with the film thickness t = 4 nm,
we obtain µ0Hw = 0.8-1.1 mT. According to (6.6) and since we consider that βST ' α,
this result is inconsistent with the existence of a steady regime of motion for all the Jb(H)
values shown in figure 6.5. This inconsistency calls for further studies in order to elucidate
the internal state of domain walls in these experimental conditions. However, as the used
physical quantities were not obtained strictly for the studied sample, the actual values might
differ. Thereby, further studies in this issue require a more reliable determination of relevant
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Figure 6.7: Field-driven and STT-driven domain wall velocity curves in the creep
regime at T = 55 K. (a) Field-driven v in logarithmic scale vs. (µ0H/mT)−1/4. The
fit of ln (v/(m/s)) vs. (µ0H/mT)−1/4 for (µ0H/mT)−1/4 > 0.65, with resulting intercept
Ih = 7.28±0.03 and slope Sh = −11.35±0.03, is shown as a dashed line. (b) Current-driven
v in logarithmic scale vs. (J/(GA/m2))−1/4. The fit of ln (v/(m/s)) vs. (J/(GA/m2))−1/4

in all the J range, with intercept Ij = 9.17± 0.06 and slope Sj = −13.3± 0.09, is shown as
a dashed line.

physical quantities.

Another feature of the experimentally found ε is its temperature dependence, already
described above. The observation of a constant value for T/TC ≥ 0.80 and its decrease with
decreasing temperatures for T/TC < 0.80 is in good agreement with previous experimental
studies which have found a similar temperature dependence of the factor P/Ms [25, 26] (note
that, according to (6.4) and (6.5), ε ∼ P/Ms). This result suggests that the temperature
dependence of ε is dominated by this quantity in our sample and hence, other relevant
quantities as βST, α and ∆ present a relatively smooth temperature dependence.

6.3.2 Field-driven and STT-driven creep regimes

In the following, we shall present and analyze the measured field-driven and STT-driven
domain wall velocity curves, obtained at T = 55 K by applying these two stimuli separately.
In figure 6.7, we show these curves in creep-type scales, with the critical exponent µ = 1/4.
For the field-driven motion (a), we plot the velocity v in logarithmic scale vs. (µ0H/mT)−1/4.
For the STT-driven motion (b), we plot v in logarithmic scale vs. (J/(GA/m2))−1/4.

As evidenced in the figure, both field-driven and STT-driven domain wall dynamics
are very well described by the creep law in a velocity range spanning over 6 to 7 orders of
magnitude, what supports their belonging to the quenched Edwards-Wilkinson universality
class. For the field-driven motion, we have performed a fit of the type y = Ih + Sh x
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Figure 6.8: Field-driven and STT-driven domain wall velocity curves as a function
of the effective field at T = 55 K. For field-driven dynamics, µ0Heff = µ0H, while for
current-driven dynamics µ0Heff = εJ with ε = 1.3 mT/(GA/m2). Corresponding creep fits
are shown as dashed lines. (a) v in linear scale vs. µ0Heff . (b) v in logarithmic scale vs.
(µ0Heff/mT)−1/4.

with x = (µ0H/mT)−1/4 and y = ln (v/(m/s)), for x > 0.65. For lower x values, i.e. for
µ0H > 5.6 mT, we observe a loss of linearity characterized by an excess velocity already
observed in other domain wall velocity curves close to the depinning [17]. From this fit we
obtained Ih = 7.28± 0.03 and Sh = −11.35± 0.03. For the current-driven motion, we fitted
y = Ij + Sj x with x = (J/(GA/m2))−1/4 and y = ln (v/(m/s)), obtaining Ij = 9.17 ± 0.06
and Sj = −13.3± 0.09. These two fits are shown as dashed lines in figures 6.7(a) and (b).

The fact that the STT-driven domain wall dynamics are well described by the creep
scaling relation ln v ∼ J−1/4 over several orders of magnitude in v supports the hypothesis
that the corresponding effective driving force is proportional to J . This hypothesis corre-
sponds to the proportionality between field and current expressed by equation (6.3) for the
effective field µ0Heff which, in the case of current-driven motion, reads µ0Heff(0, J) = εJ .
Conversely, if there existed non-negligible non-linear terms in J , the relation ln v ∼ J−1/4

would not prevail if ln v ∼ H
−1/4
eff .

The study of the conditions of balance of the driving forces induced by field and
STT that we have presented in 6.3.1 has allowed us to experimentally obtain ε = (1.3 ±
0.2) mT/(GA/m2) for 52 K ≤ T < TC = 65 K. Therefore, we may test the equivalence
between the field-driven and the current-driven creep regimes in terms of equations (6.8)
and (6.9), with the effective field given by (6.3). In figure 6.8, we plot the domain wall
velocity v vs. the effective field µ0Heff for the field-driven and the STT-driven motion.
In the former case, the effective field is simply µ0H, while in the latter µ0Heff = εJ with
ε = 1.3 mT/(GA/m2).

The plot in linear scale of v vs. µ0Heff shown in figure 6.8(a) evidences that the
independently obtained ε factor satisfactorily describes the relation between µ0H and J .
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The two experimental curves collapse onto a single curve for velocities of the order v ∼
1 m/s, what results consistent with the relation (6.3) and strongly supports the result ε =
(1.3±0.2) mT/(GA/m2) previously obtained at completely different conditions, as explained
in 6.3.1. This is one of the main results of this chapter: using two different methods, we
have found strong evidences for the validity of (6.3). Furthermore, we have quantified the
factor ε obtaining one unique value which is consistent both with the balance of the forces
induced by field and STT and with the relation between field-driven and current-driven
dynamics for 0.1 m/s < v < 10 m/s.

However, the creep-type plot shown in figure 6.8(b) evidences that the collapse of field-
driven and current-driven velocity curves does not hold in all the velocity range. While for
high velocities the description of both curves in terms of µ0Heff is good, the low-velocity
range shows that the corresponding creep fits are different, what results inconsistent with
equations (6.8) and (6.9). The ε value needed for the coincidence of µ0H and εJ at v ∼
10−3 m/s is ≈ 0.9 mT/(GA/m2). Nevertheless, there is no unique ε value that permits
the collapse of the two curves in all the velocity range: an ε value of ≈ 0.9 mT/(GA/m2)
generates a mismatch of ≈ 3 mT between µ0H and εJ at v ∼ 1 m/s.

The creep fit of ln (v/(m/s)) vs. (εJ/mT)−1/4 for STT-driven motion, obtained using
ε = 1.3 mT/(GA/m2), has an intercept Ij = 9.17±0.06 and a slope (ε/(mT/(GA/m2)))1/4Sj =
−14.3± 0.6, where the slope’s uncertainty is obtained considering both the uncertainties of
Sj and ε. Let us now compare these values with the fitting parameters Ih and Sh correspond-
ing to field-driven motion. In order to establish a fruitful comparison, we may consider two
creep laws:

ln
(
v(H, 0)

m/s

)
= ln

(
vd,h
m/s

)
+ Td,h

T
− Td,h

T
H

1/4
d H−1/4 (6.13)

for field-driven motion, and

ln
(
v(0, J)

m/s

)
= ln

(
vd,j
m/s

)
+ Td,j

T
− Td,j

T
(εJd)1/4(εJ)−1/4 (6.14)

for current-driven motion, where we have introduced the depinning current Jd. As in none
of the cases we are able to see evidences of the depinning transition, we cannot obtain
the relevant quantities. However, typical velocities at the depinning field for a nominally
equivalent sample [27] are roughly between 5 and 10 m/s (see figure 2.21). This observation
permits us to guess that µ0Hd = (16±3) mT. Additionally, we expect εJd to be in the same
range. Consequently, using (Td,h/T )H1/4

d = Sh and (Td,j/T )(εJd)1/4 = ε1/4Sj, we obtain
Td,h = (310± 20) K and Td,j = (390± 30) K.

According to the above analysis, the different creep fit slopes observed in figure 6.8(b)
may be associated mainly to differences in the depinning temperatures Td,h and Td,j. As we
have extensively discussed throughout this thesis, this quantity corresponds to the magni-
tude of the effective energy barriers acting collectively over domain walls in the thermally
activated creep regime. Our result Td,h < Td,j suggests that energy barriers are effectively
larger for current-driven motion, what could be associated to its non-isotropic nature. As
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Figure 6.9: Combined field- and current-driven left and right domain wall dynam-
ics as a function of εJ for µ0H = 5.3 mT at T = 55 K. We indicate as references
the current-driven velocity v(0, J) and its corresponding creep fit (dotted curve) and the
field-driven velocity v(H, 0) for the constant applied field value (horizontal dotted line).

domain wall roughening is more evident for relatively slow motion, current-driven wall
faceting is enhanced at low velocities and then the integrated force over walls may be lower,
what may effectively impact resulting on a higher Td. Note that this idea is consistent with
the increase of Jb(H) for low temperatures that we have evidenced in section 6.3.1, where
we have pointed out its possible relationship with an enhanced pinning for current-driven
motion.

6.3.3 Combined field- and STT-driven dynamics

In this third and final part of our studies on domain wall dynamics in the diluted mag-
netic semiconductor (Ga,Mn)(As,P)/(Ga,Mn)As, we shall present the experimental mea-
surements under combined field and current. In figure 6.9 we plot, for T = 55 K and with a
fixed applied field µ0H = 5.3 mT, the left and right domain wall velocity curves as a function
of εJ , where ε = 1.3 mT/(GA/m2) as determined experimentally for T ≥ 52 K (see section
6.3.1). We also plot the v vs. εJ curve corresponding to current-driven motion, with H = 0,
i.e. v(0, J). The dotted curve is the creep fit for current-driven motion, already shown in
figure 6.8. Additionally, the horizontal dotted line indicated the field-driven domain wall
velocity v(H, 0) corresponding to µ0H = 5.3 mT.

As we have already pointed out (see figure 6.4), the right wall velocity is negative for
εJ < µ0H and positive for εJ > µ0H. In addition, as it is expected due to the opposite
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action of field with respect to current for this domain wall, vR(H, J) < v(0, J) in all the J
range. On the other hand, the left wall velocity is always positive because both J and H
push in the same direction and, as expected, vL(H, J) > v(0, J) in all the J range. These
features are common of all left and right velocity curves with simultaneously applied field
and current.

Measurements as the ones shown in figure 6.9 for µ0H = 5.3 mT were repeated for
different fixed applied fields: µ0H = 2.5 and 8.5 mT. Additionally, similar measurements
were made as a function of field, for fixed applied currents: J = 2.3, 4.5 and 7.9 GA/m2.
As we have discussed in 6.1.2, we are interested on describing the domain wall dynamics
under simultaneous field and current in terms of an effective applied field µ0Heff(H, J). In
the following, we will evaluate this description for all our measurements. As the left and
right domain walls show different features on their dynamics, we shall present their study
separately.

Left wall dynamics

Figure 6.10 shows left domain wall velocity measurements in a creep-type plot, in terms of
an effective field defined as µ0H + εJ , in accordance with (6.3), with the experimentally
determined ε = 1.3 mT/(GA/m2). In (a), we plot the vL measurements performed with
varying H for three different fixed J values and additionally for J = 0, namely the field-
driven velocity v(H, 0). Analogously, in (b) we plot vL measurements performed with varying
J for three different H values and also for H = 0, the latter being the current-driven velocity
v(0, J).

The simultaneous field- and current-driven left wall velocity for fixed applied current,
figure 6.10(a), is rather well described in terms of µ0H + εJ , as evidenced by the fairly
good collapse of the four shown curves. However, the vL(H, J) data show a curvature which
suggests that there are elements on the underlying physics that are not being considered.
The observed curvature could probably be explained by a term of the type ηJ2, as indicated
by equation (6.7). However, the η value needed in order to correct the curvature is of
the order ∼ 0.4 mT/(GA/m2)2, what would considerably separate the four shown curves.
Additionally, as we have pointed out above, the need of a ηJ2 factor has been verified for
metallic films in which ε is two to four orders of magnitude lower due to the lower efficiency
of non-adiabatic STT. In our sample, conversely, ε is high and then any non-linear term
in the µ0Heff vs. J dependence is probably negligible. For these reasons, we consider that
the observed vL vs. (µ0H + εJ)−1/4 behavior for fixed J values supports the description in
terms of an effective field given by (6.3).

The observed curvature might be associated to the excess velocity of field-driven motion
[17] already mentioned above, namely the separation of the v(H, 0) dependence from the
creep-law behavior at high fields. This is evidenced in figure 6.8 and appears as a slight
curvature in the creep-type plot at high fields, similar (but less notorious) than the curvature
of the vL(H, J) vs. (µ0H + εJ)−1/4 curves. Additionally, note that we have estimated

181



6.3. Results and discussion
Field- and current-driven domain wall dynamics

in (Ga,Mn)(As,P)/(Ga,Mn)As

0.4 0.5 0.6 0.7 0.8

((µ0H + εJ)/mT)−1/4

10−1

100

101

v
L

[m
/
s]

εJ [mT]

0

3

6

11

0.4 0.5 0.6 0.7 0.8

((µ0H + εJ)/mT)−1/4

10−1

100

101

∼ Sh

µ0H [mT]

0

2.5

5.3

8.5

(a) (b)

Figure 6.10: Combined field- and current-driven left domain wall velocity in terms
of an effective field at T = 55 K. (a) vL in logarithmic scale as a function of (µ0H +
εJ)−1/4 for varying H and fixed J values. We also show the field-driven (J = 0) curve, i.e.
v(H, 0). (b) vL in logarithmic scale as a function of (µ0H + εJ)−1/4 for varying J and fixed
H values. We also show the current-driven (H = 0) curve, i.e. v(0, J). We indicate as a
reference the creep-fit slope Sh corresponding to v(H, 0) for (µ0H/mT)−1/4 > 0.65.

µ0Hd = (16± 3) mT, what corresponds to (µ0H/mT)−1/4 = 0.50± 0.03. Consequently, the
highest velocity range of the shown curves could be affected by the depinning transition,
what might induce a lack of coincidence between them in this region. For example, if
µ0Hd,j < µ0Hd,h, then the depinning transition could be overcome first by the highest
current curve, corresponding to εJ = 11 mT. In this case, a separation from the creep-law
behavior at different values of (µ0H + εJ)−1/4 for each of the shown curves in the highest
velocity range is possible.

The left wall velocity curves vL(H, J) for fixed field values, shown in 6.10(b), shows
a similar behavior. Accordingly, all curves collapse fairly well on one unique dependence,
what also supports the description in terms of the effective field µ0Heff = µ0H + εJ . They
show a smaller curvature and present a slightly lower slope in the creep-type plot than the
curve corresponding to current-driven dynamics, v(0, J). Remarkably, the observed slope is
similar to that corresponding to v(H, 0) for (µ0H/mT)−1/4 > 0.65, i.e. Sh = −11.35± 0.03,
as indicated.

The left wall velocity curves that we have measured support the description of domain
wall dynamics in terms of the effective field µ0H+εJ in agreement with (6.3). Furthermore,
the ε value that we have previously obtained, ε = (1.3± 0.2) mT/(GA/m2) for T ≥ 52 K, is
consistent with all the data presented up to now. Note that we have analyzed fundamentally
different situations: the balance of field- and current-driven forces over the right domain
wall, the comparison between field-driven and current-driven dynamics, and the left domain
wall motion, where both field and current push in the same direction. In the following, we
will analyze the right wall motion, where field and current push in opposite directions.
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Figure 6.11: Combined field- and current-driven right domain wall velocity in
terms of an effective field at T = 55 K. Full symbols correspond to positive velocities,
i.e. vR > 0 and εJ > µ0H; empty symbols correspond to negative velocities, i.e. vR < 0
and εJ < µ0H. (a) |vR| in logarithmic scale as a function of | − µ0H + εJ |−1/4 for varying
H and fixed J values. We also show the field-driven (J = 0) curve, i.e. v(H, 0), and the
corresponding creep fit. (b) |vR| in logarithmic scale as a function of | − µ0H + εJ |−1/4 for
varying J and fixed H values. We also show the current-driven (H = 0) curve, i.e. v(0, J),
and the corresponding creep fit.

Right wall dynamics

The right domain wall velocity vR(H, J) measurements are shown in creep-type plots in
figure 6.11. As field and current push this domain wall in opposite directions, vR is negative
for µ0H > εJ . We thus plot the absolute value |vR| as a function of | − µ0H + εJ |−1/4. In
the figure, we distinguish between positive vR, corresponding to µ0H < εJ , and negative
vR, corresponding to µ0H > εJ . The former are indicated as full symbols while the latter
are represented as empty symbols. In (a), we plot these measurements for fixed J values,
while in (b) we plot them for fixed H values.

Let us firstly discuss the results for fixed J . For εJ = 3.0 mT, both negative and positive
vR follow notoriously well the creep-type dependence in accordance with the zero-current
curve v(H, 0). However, for higher applied current other elements appear, as evidenced in
the figure. The most notorious observation is the difference between measurements corre-
sponding to vR > 0 and to vR < 0. Particularly, |vR|µ0H>εJ > |vR|εJ>µ0H , and this effect is
more notorious for relatively low values of | − µ0H + εJ |. Additionally, both curves sepa-
rate from the zero-current curve v(H, 0), what suggests that the description in terms of the
effective field given by (6.3) is no longer valid.

The results for fixed applied field values, figure 6.11(b), show both similarities and
differences with the curves for fixed current values. For the lowest value, µ0H = 2.5 mT,
both positive and negative right wall velocities are in very good agreement with the zero-
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field curve, v(0, J), when described in terms of | − µ0H + εJ |. For higher applied fields, the
results for vR > 0 and for vR < 0 differentiate in this description, with the particularity that
|vR|µ0H>εJ < |vR|εJ>µ0H , i.e. the observed behavior is roughly opposite to the one illustrated
in (a) for fixed J . However, the curvature of the plotted curves for fixed J and for fixed H
is consistent between each other. Namely, positive vR data show a negative concavity while
negative vR data show a positive concavity.

This last observation indicates that the balance of field- and current-induced forces is
achieved more abruptly for µ0H < εJ , in the limit µ0H → (εJ)− (or εJ → (µ0H)+) than
for µ0H > εJ , in the limit µ0H → (εJ)+ (or εJ → (µ0H)−). This may also be observed
in figure 6.4. Remarkably, for fixed εJ = 6 and 11 mT and sufficiently low | − µ0H + εJ |
(see figure 6.11(a)), negative velocities tend to stabilize towards an apparently constant |vR|
value. However, the detailed measurement of the region of low | − µ0H + εJ | values was
not possible due to the experimental conditions, in which both left and right domain walls
move simultaneously at different velocities.

In the region of relatively high velocities, |vR| generally tends to a linear behavior
consistent with the creep law, see figure 6.11. However, the slope of this creep law is in some
cases significantly different to the reference slopes corresponding to v(H, 0) or v(0, J), Sh
and ε1/4Sj respectively. For fixed J , panel (a), negative velocities (empty symbols) separate
more notoriously from the reference slope Sh, towards lower slopes. In contrast, for fixed H,
panel (b), positive velocities (full symbols) separate from the reference slope ε1/4Sj while,
remarkably, negative velocities for all finite field values are in very good accordance with
the reference data for | − µ0H + εJ |−1/4 < 0.8.

The observed discrepancies between the creep-law description in terms of µ0Heff =
µ0H + εJ and the left and right wall velocities under simultaneous field and current, shown
in figures 6.10 and 6.11, cannot be explained by the existence of an additional term in the
effective field of the type ηJ2, as proposed by J. Ryu and collaborators [197] and expressed by
equation (6.7). Even if several studies on metallic samples [156, 157, 198] show the validity
of this expression, our results in (Ga,Mn)(As,P)/(Ga,Mn)As are not consistent with it. As
we have already mentioned, this may be due to the high efficiency of non-adiabatic STT
in diluted magnetic semiconductors and the resultant high ε value, which rules out any
non-linear term in the µ0Heff vs. J dependence.

We may therefore highlight two main observations. On the one hand, we have shown
that the simple expression (6.3) successfully describes domain wall dynamics in a variety of
situations with a unique value ε = (1.3± 0.2) mT/(GA/m2): in the conditions of balance of
the field- and current-induced forces over domain walls for T ≥ 52 K, when comparing field-
driven and current-driven dynamics at velocities in the range 0.1 m/s < v < 10 m/s, and for
most of the simultaneous field- and current-driven dynamics of left and right domain walls
in the range |µ0Heff |−1/4 < 0.8. On the other hand, we have shown that in some situations,
generally for relatively low values of |µ0Heff |, the description in terms of an effective field
is not enough to account for the observed domain wall dynamics if we consider equations
(6.8) and (6.9) with unique values of vd, Hd and Td. Rather than this, the effective pinning
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parameters could depend on the driving force nature, or another regime which cannot be
described by these equations could appear. The obtained results, which up to now could not
be completely understood in the framework of the present theories, call for further studies.

6.4 Chapter summary and conclusions

In this chapter, we have presented and discussed our studies on the field- and STT-driven
domain wall dynamics in a diluted ferromagnetic semiconductor. Specifically, we have stud-
ied a bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As with a thickness t = 4 nm. The particularities
of the experimental investigations which constitute the core of this chapter are the material
properties (different from the metallic ferrimagnet studied in chapters 4 and 5) and the
study of domain wall dynamics under two different driving forces.

We have started this chapter by presenting the most recent investigations on this topic
and posing some open questions. Firstly, we have shown that the most recent evidences
support the hypothesis that both field- and STT-driven domain wall motion belongs to the
quenched Edwards-Wilkinson universality class, what has permitted us to analyze all our
results in this framework. Secondly, we have reviewed some previous investigations in which
field and current are combined in order to drive domain walls. In this context, we have
presented some ideas which permit to analyze domain wall dynamics in the creep regime in
terms of an effective field Heff which considers both the effect of the applied field H and the
current density J .

Then, in section 6.2, we have described the experimental methods that we have imple-
mented in order to study combined field- and current-driven domain wall dynamics. We
have discussed about the simultaneity of the applied field and current pulses, and we have
described our velocity measurements, in which we consider the motion of two domain walls:
the “left” wall, which is pushed in the same direction both by field and current, and the
“right” wall, which is pushed in opposite directions by these two stimuli.

In section 6.3, we have presented and discussed our experimental results. Firstly, we
have analyzed the right domain wall velocity and the conditions in which both forces over
domain walls are balanced, as a function of the temperature, in the range 0.5 < T/TC < 1,
where TC = 65 K. These studies have permitted us to compare the forces induced by
field and current over domain walls. We have found that, for T ≥ 52 K, there exists a
proportionality between these two stimuli with a value ε = (1.3± 0.2) mT/(GA/m2), two to
four orders of magnitude higher than the value obtained for metallic samples in which STT
efficiency is much lower.

Secondly, we have compared the pure field-driven motion with the pure current-driven
motion, both in the creep regime. Remarkably, we have observed that in the range 0.1 m/s <
v < 10 m/s, the same ε factor permits to successfully compare the field-driven and current-
driven domain wall dynamics. In other words, the effective field for current-driven motion
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may be calculated as εJ . However, we have found that for lower velocities, this relation is
no longer valid and the creep slopes are considerably different.

Finally, we have studied the simultaneous field- and current-driven domain wall dy-
namics when field and current push both in equal or opposite directions. Even if most of
the results also show a rather good consistency with the description in terms of the effective
field µ0Heff = µ0H + εJ , some systematic discrepancies have been observed, specially when
the two driving forces act oppositely and at low domain wall velocities. As this expression
for µ0Heff is very robust and non-linear terms are expected to be negligible due to the high
ε value, our results suggest that other regimes of motion which cannot be described by the
creep law appear. These observations call for further research in this field, both theoretical
and experimental.
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CHAPTER 7

General conclusions and perspectives

“Creo que la palabra nos hace libres.
Creo que la palabra nos hace bellos.
Creo que la palabra nos hace luminosos.
Y creo que si alguna vez nos toca
quedarnos sin palabras,
es bueno que sea porque estamos maravillados
y no porque estamos vacíos.”

Liliana Bodoc

Throughout this thesis work, we have explored the dynamics and morphology of
magnetic domain walls in thin films with perpendicular anisotropy. We have noted
that, as domain walls have an associated energy arising fundamentally from con-

tributions of the exchange and anisotropy energies, they can be treated as elastic objects.
In addition, they lie in magnetic materials with intrinsic inhomogeneities and therefore, we
may consider that domain walls lie in a disordered energy landscape. On this basis, we
have addressed the study of magnetic domain walls in thin films with the Statistical Physics
approach, i.e. using the theory of elastic manifolds in disordered media. Particularly, as
the thickness of the studied magnetic thin films is comparable to the domain wall width,
we have considered that walls may be seen as elastic lines in a two-dimensional disordered
medium.

Keeping in mind this theoretical framework, we have experimentally studied domain
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wall dynamics and morphology by using the polar magneto-optical Kerr effect (PMOKE)
microscopy, in two fundamentally different materials. On the one hand, the ferrimagnetic
GdFeCo, which presents particular temperature-dependent magnetic properties due to the
antiferromagnetic coupling of rare-earth and transition metal sub-lattices. On the other
hand, a ferromagnetic and semiconducting bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As, which
presents an efficient spin-transfer torque mechanism and is therefore suitable for the study
of both field-driven and current-driven domain wall motion.

In our experimental studies, we have observed domain walls in the creep and depinning
regimes of motion. In this context, we have measured their dynamic and morphological
properties for different conditions of temperature and driving force magnitude. Based on
these measurements, we have addressed fundamental questions related to the universality
class to which domain walls in thin films belong, the length scales that are involved in the
statistical properties of domain walls, and the nature of the driving forces that induce wall
motion.

For the ferrimagnetic GdFeCo sample, we have firstly performed a careful study of
field-driven domain wall dynamics in the creep and depinning regimes in a wide range of
temperatures, from T = 10 K to T = 353 K. For T > 100 K, we have verified the existence
of a creep regime of motion with the expected creep exponent µ = 1/4, and we have found
evidences of the depinning transition for domain wall velocities of the order v ∼ 100 m/s.
This allowed for the quantification of key parameters which permit to describe these dy-
namical regimes as a function of T ; particularly, the depinning field Hd and the depinning
temperature Td. We have observed a divergence of the depinning field Hd when approaching
the magnetic compensation temperature of the sample at TM = (190 ± 4) K. This diver-
gence is directly linked to the temperature-dependence of the saturation magnetization Ms.
In addition, we have observed an increase of Td for decreasing T , what evidences that the
effective pinning energy barrier grows for decreasing temperature. Remarkably, magnetic
compensation does not seem to affect this Td vs. T dependence. Additionally, from the
joint analysis of the temperature-dependence of Hd, Ms and Td, we have compared the Zee-
man energy εZ(Hd) associated to domain wall displacement at depinning with the effective
pinning energy barrier kBTd, what has shed light over fundamental length scales associated
to disorder, namely the Larkin length Lc and the pinning correlation length ξp. The found
magnitudes of these characteristic lengths are consistent with theoretical predictions, what
validates our approach for the interpretation of domain wall dynamics measurements.

Future studies regarding the temperature-dependence of domain wall dynamics in
GdFeCo could focus on the effects of angular compensation in the creep and depinning
regime. Even if we have not observed any evidence of the angular compensation tem-
perature TA in our experimental studies, we have not characterized it by means of other
techniques. A characterization of dynamic magnetic properties which could be made, for
example, with ferromagnetic resonance, time-resolved MOKE magnetometry or domain wall
velocity measurements in the flow regime, would be appropriate in order to determine TA
and carefully investigate its effects in the creep and depinning regimes.
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The depinning transition of field-driven domain walls in GdFeCo, which resulted rather
difficult to analyze in the range of high temperatures due to thermal effects, appeared to be
increasingly clear for decreasing temperatures. This notorious fact may be associated with
the increase of Td for decreasing T , what results on a significant decrease of the reduced
temperature T/Td quantifying the effective thermal activation. Moreover, the Td values that
we have found for temperatures close to T = 100 K are surprisingly high, what results in
an extremely reduced thermal energy in the range of low temperatures. Particularly, in the
range 10 K ≤ T < 100 K, we have measured domain wall velocity vs. applied field curves
which may be directly analyzed in terms of the theoretically expected depinning transition
at zero-temperature. This allowed us to directly determine the parameters associated to
this transition. In particular, for each velocity vs. field curve, we determined the value of
the critical exponent β associated to the power-law behavior of domain wall velocity. As
theoretically expected for universal critical exponents, we have found that the obtained β
values are consistent with a unique mean value β = 0.30 ± 0.03. Furthermore, we have
analyzed the spatial correlation of domain wall velocities in this range of low temperatures,
what permitted us to estimate the velocity-dependence of the depinning correlation length
`av at different temperatures. As theoretically expected, we have found a power-law de-
pendence from which we obtained the critical exponent of the depinning correlation length,
νdep. Remarkably, we have found a mean value νdep = 1.3 ± 0.3 which is representative of
all the values obtained for the analyzed temperatures. To the best of our knowledge, the
direct experimental determination of β and νdep had never been performed for magnetic
domain walls in thin films. The obtained values of these universal critical exponents of the
depinning transition are in very good agreement with the theoretically calculated values
for the quenched Edwards-Wilkinson (qEW) universality class with random-bond disorder
and short-range elasticity, and they are clearly inconsistent with the expected values for the
other usually considered universality class, the quenched Kardar-Parisi-Zhang (qKPZ) class.
Therefore, our results permit us to claim that the depinning of magnetic domain walls in
GdFeCo thin films belongs to the qEW universality class. Furthermore, this strongly sug-
gests that this is the case for all domain walls in perpendicularly magnetized thin films, as
expected for universal phenomena.

Future experimental research in this issue could be devoted to experimentally charac-
terize β and νdep in other materials in order to test our result. An open question in this
context is why the studied GdFeCo sample shows such large values of the depinning tem-
perature Td, what allows for our direct observation of the depinning regime and associated
power-laws. Another open issue from the experimental point of view is the determination
of other critical exponents of the depinning transition. Regarding the relationship between
our results and theoretical predictions, an interesting discussion remains on the possibility
of theoretically predicting, based on fundamental properties, when the KPZ term is relevant
enough to change the universality class to which domain walls or other interface phenomena
belong to.

Regarding the morphological properties of domain walls, we have carefully quantified
the roughness parameters of magnetic domain walls in the same GdFeCo sample for different
temperatures and driving fields. This quantification is performed by computing and fitting
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the displacement-displacement correlation function B(r) of domain wall profiles observed
by PMOKE microscopy. A particularity of our analysis is that we consider multiple wall
profiles at each field and temperature condition in order to obtain statistically representative
mean values of the measured roughness exponent ζeff and the roughness amplitude B0.
As the obtained mean values of ζeff result inconsistent with any of the three theoretically
expected values for the qEW universality class, ζeq = 2/3, ζdep = 1.25 and ζth = 0.5,
we propose that the measured exponent may be interpreted as an effective value given
by contributions of these three expected exponents, each of them dominating at different
length scales. We consider that below the correlation length `opt, which is associated to the
equilibrium reference point at H → 0, ζeq dominates the power-law behavior of domain wall
roughness, while between `opt and the depinning correlation length `av > `opt, ζdep dominates.
Finally, for length scales above `av, the thermal roughness exponent ζth dominates. We have
therefore analyzed our results in terms of this scenario, taking into account that the different
power-law behaviors corresponding to different length scales are appropriately modeled in
terms of the structure factor S(q). Consequently, based on this ideas and on previously
determined physical quantities we have obtained the temperature-dependence of `opt and
`av. Remarkably, both characteristic lengths are within the working range of the PMOKE
microscope: `opt . 1µm and `av & 10µm. This supports the idea that the three different
theoretically predicted exponents can impact on the effective measured roughness exponent
ζeff . Furthermore, we have experimentally quantified for the first time `av as a function of
H for driving fields below Hd, what is in agreement with qualitative theoretical arguments
suggesting that `av is finite even below the depinning transition at T > 0. Moreover,
the proposed interpretation of experimentally measured roughness exponents permits to
successfully reinterpret previously reported experimental roughness determinations.

Several open questions remain regarding domain wall roughness and the characteristic
correlation lengths. Even if we have experimentally quantified `av below the depinning tran-
sition, its detailed field-dependence for finite temperatures is not clear and it has never been
theoretically obtained. As domain wall roughness is not easy to experimentally quantify
and an important statistical analysis is needed, a very careful research should be made in
order to obtain more detailed results in this subject. Moreover, the field- and temperature-
dependence of the roughness amplitude B0 that we have obtained still needs to be success-
fully interpreted. Even if this parameter is not universal, it clearly decreases for increasing
domain wall velocities, what is consistent with the direct naked-eye observation that domain
walls are less rough as they move faster. Since the roughness amplitude might be related
with pinning parameters, a detailed study of this relation is still lacking.

For the diluted magnetic semiconductor (Ga,Mn)(As,P)/(Ga,Mn)As, we have per-
formed measurements of domain wall dynamics driven both by field and current. These
investigations were motivated by open questions regarding the effective nature of these two
driving forces on domain wall motion when applied both separately and simultaneously.
We have firstly analyzed the dynamics of magnetic domain walls when the driving forces
induced by field and current are opposed and act simultaneously. In this context, we have
focused on the conditions in which these two forces are balanced and thus no domain wall
motion is detected. We have analyzed these conditions as a function of temperature in a
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large range which spans between T = 35 K and the sample’s Curie temperature TC = 65 K.
Remarkably, for T/TC ≥ 0.8, we have observed that the balance of field- and current-
driven forces over domain walls occurs for a current density J = Jb(H) = µ0H/ε with
ε = (1.3 ± 0.2) mT/(GA/m2) for all the experimentally accessible field magnitudes. This
accounts for a proportionality between the two driving forces in the studied conditions and
evidences a high efficiency of the spin-transfer torque (STT) mechanism. Furthermore, we
have analyzed and compared the creep regimes resulting from applying field and current
separately at T = 55 K. Notably, in the range of relatively high velocities, i.e. close to
the depinning transition, the domain wall velocity resulting from applying a field µ0H is
equal to the velocity that results from applying a current J such that εJ = µ0H with
ε = (1.3 ± 0.2) mT/(GA/m2). Consequently, the comparison between field- and current-
driven forces yields a proportionality that is equivalent in two fundamentally different situ-
ations. Nevertheless, in the range of velocities v < 10−1 m/s, this proportionality is no longer
valid. Instead, field-driven motion is more efficient. This difference might be associated to
the non-isotropic nature of current-driven motion, which may result in a reduced effective
force over the whole domain wall. Finally, we have analyzed the effect of simultaneously
applying field and current at T = 55 K, both when they push domain walls oppositely and
when they push in the same sense. Remarkably, most of our results are consistent with
describing domain wall dynamics in terms of an effective field µ0Heff = µ0H + εJ with the
same ε value we have previously found. However, some systematic discrepancies have been
observed, specially for oppositely acting driving forces and in the range of low wall velocities.

These observations call for further theoretical and experimental research in this field.
An open question remains regarding the state of domain wall’s internal magnetization in
the conditions of balance between field- and current-driven forces and also for simultaneous
drive. This could be addressed by characterizing the static and dynamic magnetic properties
of the studied sample, what would permit to determine the theoretically expected ε value.
Furthermore, a detailed investigation of the influence of different driving forces on effective
pinning parameters as Hd, Td and vd would be appropriate. In addition, a thorough char-
acterization of the global effective force over domain walls that considers the non-isotropic
nature of the force induced by current is lacking. These investigations would allow for a
correct evaluation of both the effective force and the effective pinning as a function of the
combination of field and current that acts over domain walls.

The studies presented in this thesis make contributions to our knowledge about the
nature of magnetic domain walls in thin films with perpendicular anisotropy. While a
deep understanding of the microscopic mechanisms that give rise to magnetic domain walls
and their behavior under diverse stimuli has been achieved by considering the tools of
micromagnetism, in this thesis we have focused on their statistical properties and universal
features, which are common to many other interface phenomena in nature. Our studies shed
light on the universality class to which domain wall depinning belongs, on the basic features
of wall roughness and the length scales that are involved in their motion and morphology,
and on the effective nature of field-driven motion and current-driven motion via the STT
mechanism. While these investigations push the limits of our knowledge in this area, they
call for further studies permitting to test our ideas and to achieve an increasingly deep
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insight on domain walls and other interface phenomena. Furthermore, they motivate further
research on the relationship between effective models of statistical physics for interface
phenomena and more fundamental approaches focused on the basic principles that govern
them.
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Titre : Dynamique et morphologie des parois des domaines magnétiques dans les films minces du point de 
vue de la physique statistique 

Mots clés : systèmes désordonnés, transition de dépiégeage, dynamique de l'aimantation, parois de 
domaines magnétiques, systèmes nano-structurés 

Résumé : L'étude des parois de domaines 
magnétiques (PD) dans les films minces est d’un 
grand intérêt pour la compréhension de la 
dynamique de l'aimantation et pour le 
développement de dispositifs spintroniques. En 
raison de ses caractéristiques, les PD peuvent être 
étudiés dans le cadre de la théorie des interfaces 
élastiques dans les milieux désordonnés. Dans cette 
thèse, nous étudions les propriétés dynamiques et 
morphologiques des PD à partir de ce point de vue. 
Notre principal outil expérimental est la microscopie 
par effet Kerr magnéto-optique polaire (PMOKE). Les 
échantillons étudiés sont un film ferrimagnétique de 
GdFeCo de 10 nm d’épaisseur, et une bicouche semi-
conductrice ferromagnétique de 
(Ga,Mn)(As,P)/(Ga,Mn)As de 4 nm d’épaisseur. 
Pour l’échantillon de GdFeCo, nous avons étudié la 
dynamique des PD déplacées par champ 
magnétique, sur une large gamme de températures 
(10-353 K), dans les régimes de reptation et de 
dépiégeage. Nous avons constaté une divergence du 
champ de dépiégeage à la température de 
compensation magnétique, et une augmentation de 
l’énergie caractéristique de piégeage kBTd lorsque la 
température T diminue, ce qui se traduit par des 
effets thermiques exceptionnellement faibles en 
dessous de 100 K. Cela nous a permis d’observer une 
transition de dépiégeage quasi athermique à basse 
température et de déterminer les exposants critiques. 
Nous avons indépendamment déterminé les valeurs 
de l’exposant de paramètre d’ordre β=0.30±0.03 et 
l’exposant de longueur de corrélation ν=1.3±0.3, qui 
sont tous deux compatibles avec les prédictions 
théoriques pour la classe d’universalité Edwards-
Wilkinson pour un système avec un désordre figé. 
Une autre étude de cette thèse est l’analyse 
statistique de la morphologie des PD en GdFeCo. 
Nous avons obtenu des valeurs représentatives pour 
l’exposant de rugosité ς et l’amplitude de rugosité B0. 
Les valeurs de ς obtenues ne peuvent pas être 
directement identifiées avec les valeurs 
théoriquement prédites.  
 

Afin d’expliquer ce désaccord, nous considérons que 
les exposants prédits gouvernent la rugosité des PD 
à différentes échelles de longueur séparées par deux 
longueurs de croisement : la longueur de corrélation 
Lopt associée aux sauts au-dessus des barrières 
énergie d’ancrage, et la longueur de corrélation Lav 
associée à la taille caractéristique des avalanches. Sur 
la base de ces idées, nous interprétons l’exposant ς 
mesuré comme une valeur effective et quantifions 
expérimentalement pour la première fois la longueur 
de corrélation Lav pour différents champs et 
températures. En outre, nous avons constaté que Lav 
restait fini au-dessous de la transition de dépiégeage 
(pour H<Hd) conformément aux propositions 
théoriques. 
Avec le film de (Ga,Mn)(As,P)/(Ga,Mn), nous avons 
étudié le mouvement des PD induit simultanément 
ou séparément par un champ magnétique et un 
courant électrique polarisé en spin. Afin de comparer 
la contribution de ces deux forces motrices, nous 
avons analysé les conditions d’équilibre d’une paroi 
lorsque que ces deux forces agissent en direction 
opposée. Nous montrons que ces deux contributions 
sont proportionnelles avec un facteur (1.3±0.2) 
mT/(GA/m2) sur une grande plage de température 
proche du point de Curie. Nous constatons que ce 
même facteur décrit avec succès la dynamique des 
PD dans le régime de reptation au voisinage de la 
transition dépiégeage. Cela suggère que la force 
effective exercée sur les PD peut être décrite par une 
somme des forces dues au champ et au courant. 
Cependant, ce n’est plus valable dans le régime de 
reptation à plus faible vitesse, ce qui pourrait être 
associé à la nature non isotrope du mouvement des 
PD induit par le courant. Les résultats présentés dans 
cette thèse jettent un éclairage sur la nature 
universelle du déplacement des PD de domaines 
magnétiques et élargissent nos connaissances sur les 
caractéristiques de base des forces motrices qui 
produisent leur mouvement. 

 



 

  

 

Title: Dynamics and morphology of driven domain walls in magnetic thin films from the standpoint of 
statistical physics 

Keywords: depinning transition, disordered systems, magnetic domain walls, dynamics of magnetization, 
nanostructured systems  

Abstract: Studying magnetic domain walls (DWs) in 
thin films is of great interest for the understanding of 
magnetization inversion mechanisms and for the 
development of spintronics devices. As DWs have an 
associated energy and lie in a material with intrinsic 
inhomogeneities, they can be studied within the 
theory of elastic interfaces in disordered media. In 
this thesis, we investigate the dynamic and 
morphological properties of DWs in thin films from 
this viewpoint. Our main experimental tool is the 
polar magneto-optical Kerr-effect (PMOKE) 
microscopy, which permits the direct observation of 
DWs. The studied samples are a ferrimagnetic 10nm-
thick film of GdFeCo, and a ferromagnetic 4nm-thick 
semiconducting bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As, 
both of them presenting perpendicular magnetic 
anisotropy. 
For the GdFeCo sample, we have studied the 
dynamics of field-driven DWs in a wide temperature 
range, from 10 K to 353 K, in the creep and depinning 
regimes. We have found that the depinning field Hd 
diverges at the magnetic compensation temperature 
TM, and that the characteristic pinning energy barrier 
kBTd grows in magnitude for decreasing temperature, 
what results in exceptionally low thermal effects 
below 100 K. This has allowed for the direct 
observation of the depinning transition at low 
temperatures and the subsequent determination of 
associated critical exponents. We have 
independently determined values of the order-
parameter exponent β=0.30±0.03 and the 
correlation length exponent ν=1.3±0.3, both of them 
being consistent only with the quenched Edwards-
Wilkinson universality class. 
Another investigation of this thesis concerns the 
statistical analysis of DW morphology in the GdFeCo 
sample. For different temperatures and applied 
fields, we have obtained representative values for the 
roughness exponent ς and the roughness amplitude 
B0. We have found that the obtained ς values cannot 
be directly identified with any of the theoretically 
predicted roughness exponents.  

In order to explain this disagreement, we propose a 
quantitative interpretation based on previous 
theoretical studies. We consider that the predicted 
exponents govern DW roughness at different length 
scales separated by two crossover lengths: the 
correlation length Lopt associated to jumps over 
characteristic energy barriers, and the correlation 
length Lav associated to the characteristic size of 
depinning avalanches. Based on these ideas, we 
interpret the measured ς exponents as effective 
values and experimentally quantify for the first time 
the depinning correlation length Lav for different 
fields and temperatures. Moreover, we have found 
that Lav is finite even for H<Hd in accordance with 
previous theoretical ideas for DW dynamics at finite 
temperatures. 
For the (Ga,Mn)(As,P)/(Ga,Mn)As sample, we have 
studied the field- and current-driven DW motion 
when both stimuli are applied separately and 
simultaneously. In order to compare the strength of 
these two driving forces, we have analyzed the 
conditions of balance between them when they push 
oppositely. We show that there is a constant 
proportionality factor (1.3±0.2) mT/(GA/m2) over a 
large temperature range close to the Curie point. We 
find that this same factor successfully describes the 
DW dynamics in the creep regime close to the 
depinning transition both when field and current are 
applied separately and simultaneously. This suggests 
that the effective force exerted on DWs can be 
described by a sum of the forces due to field and 
current. However, this relation does not stand at 
relatively low velocities, which could be associated 
with the non-isotropic nature of current-driven DW 
motion. The results presented in this thesis shed light 
on the universal nature of driven DWs and broadens 
our knowledge on the effective features of the 
driving forces. 
 

 

 



 

  

 

Título: Dinámica y morfología de paredes de dominios magnéticos en láminas delgadas desde el punto de 
vista de la física estadística 

Palabras clave: dinámica de la magnetización, paredes de dominios magnéticos, sistemas nanoestructurados, 
transición de desanclaje, sistemas desordenados 

Resumen: El estudio de paredes de dominios 
magnéticos (PDM) en láminas delgadas es de gran 
interés para la comprensión de los mecanismos de 
inversión de la magnetización y para el desarrollo de 
dispositivos de electrónica de spin. Debido a sus 
características, las PDM pueden ser estudiadas en el 
marco de la teoría de interfases elásticas en medios 
desordenados. En esta tesis, investigamos la 
dinámica y la morfología de PDM en láminas 
delgadas con anisotropía magnética perpendicular 
desde dicho enfoque. La técnica experimental 
principal que utilizamos es la microscopía magneto-
óptica por efecto Kerr polar (PMOKE), que permite la 
observación directa de las PDM. Las muestras 
estudiadas son una lámina ferrimagnética de GdFeCo 
de 10 nm de espesor, y una bicapa ferromagnética 
de (Ga,Mn)(As,P)/(Ga,Mn)As de 4 nm de espesor.  
En la muestra de GdFeCo, estudiamos la dinámica de 
PDM impulsadas por campo magnético en un rango 
amplio de temperaturas, 10K-353K, en los regímenes 
de creep (reptación) y depinning (desanclaje). 
Encontramos que el campo de depinning Hd diverge 
en la temperatura de compensación magnética TM, y 
que la barrera de energía de anclaje característica 
kBTd crece al bajar la temperatura. Esto último resulta 
en efectos térmicos excepcionalmente débiles por 
debajo de 100K, y permite la observación directa de 
la transición de depinning a bajas temperaturas y la 
determinación de exponentes críticos asociados. 
Determinamos independientemente los valores del 
exponente del parámetro de orden β=0.30±0.03 y 
del exponente de la longitud de correlación 
ν=1.3±0.3. Ambos son consistentes sólo con la clase 
de universalidad de quenched Edwards-Wilkinson. 
Por otro lado, estudiamos las propiedades 
estadísticas de la morfología de PDM en la muestra 
de GdFeCo. Para diferentes temperaturas y campos 
aplicados, obtuvimos valores representativos del 
exponente de rugosidad ς y de la amplitud de la 
rugosidad B0. Encontramos que los valores de ς 
obtenidos no pueden ser identificados directamente 
con ninguno de los exponentes teóricamente 
predichos. 

Para explicar esta discordancia, proponemos una 
interpretación cuantitativa basada en estudios 
teóricos previos. Consideramos que los exponentes 
predichos dominan la rugosidad de PDM a distintas 
escalas de longitud separadas por dos longitudes 
características: la longitud de correlación Lopt 
asociada a saltos sobre barreras de energía 
características, y la longitud de correlación Lav 
asociada al tamaño característico de las avalanchas 
en la transición de depinning. En base a estas ideas, 
interpretamos los exponentes ς medidos como 
valores efectivos y cuantificamos experimentalmente 
por primera vez la longitud de correlación Lav para 
distintos campos y temperaturas. Asimismo, 
encontramos que Lav es finita incluso para H<Hd, de 
acuerdo con ideas teóricas previas para 
temperaturas finitas. 
En la muestra de (Ga,Mn)(As,P)/(Ga,Mn)As, 
estudiamos la dinámica de PDM impulsadas tanto 
por campo como por corriente. Para comparar la 
magnitud de estas dos fuerzas de empuje, 
analizamos las condiciones tales que, al empujar en 
direcciones opuestas, ambas fuerzas están 
balanceadas. Mostramos que existe un factor de 
proporcionalidad (1.3±0.2) mT/(GA/m2) en un 
amplio rango de temperaturas cercano al punto de 
Curie de la muestra. Encontramos que este mismo 
factor describe satisfactoriamente la dinámica de 
PDM en el régimen de creep cerca de la transición de 
depinning.  Esto sugiere que la fuerza efectiva que 
actúa sobre las PDM puede ser descrita como una 
suma de las fuerzas debidas al campo y a la corriente. 
Sin embargo, esta relación no se mantiene a 
velocidades relativamente bajas, lo cual puede ser 
asociado a la naturaleza anisotrópica de la fuerza 
inducida por corriente. Los resultados presentados 
en esta tesis amplían nuestro conocimiento sobre la 
naturaleza universal de las PDM y sobre las 
propiedades efectivas de las fuerzas de empuje. 
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